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Preface

This Special Issue aims to highlight the latest advancements in the critical areas of

characterizations, mechanical properties, and constitutive modeling of advanced materials,

integrating both experimental and theoretical perspectives. This collection of works spans a

diverse range of topics, from the characterization of cutting-edge materials like nanomaterials and

biomaterials to the detailed investigation of their mechanical properties under various conditions.

Additionally, it features the development of sophisticated constitutive models that enhance our

understanding and prediction of material behavior. By bringing together pioneering research and

insights, this Special Issue aspires to contribute significantly to the advancement of materials science

and engineering.

Madhav Baral and Charles Lu

Editors
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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
James Malumbo Mwase * and Jafar Safarian

Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway
* Correspondence: james.mwase@ntnu.no

Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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An Algorithm for Modeling Thermoplastic Spherulite Growth
Using Crystallization Kinetics
Jamal F. Husseini 1, Evan J. Pineda 2,* and Scott E. Stapleton 1

1 Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
jamal_husseini@student.uml.edu (J.F.H.); scott_stapleton@uml.edu (S.E.S.)

2 Multiscale and Multiphysics Modeling Branch, NASA Glenn Research Center, Cleveland, OH 44135, USA
* Correspondence: evan.j.pineda@nasa.gov

Abstract: Crystallization kinetics were used to develop a spherulite growth model, which can deter-
mine local crystalline distributions through an optimization algorithm. Kinetics were used to simulate
spherulite homogeneous nucleation, growth, and heterogeneous nucleation in a domain discretized
into voxels. From this, an overall crystallinity was found, and an algorithm was used to find crys-
tallinities of individual spherulites based on volume. Then, local crystallinities within the spherulites
were found based on distance relative to the nucleus. Results show validation of this model to
differential scanning calorimetry data for polyether ether ketone at different cooldown rates, and to
experimental microscopic images of spherulite morphologies. Application of this model to various
cooldown rates and the effect on crystalline distributions are also shown. This model serves as a tool
for predicting the resulting semi-crystalline microstructures of polymers for different manufacturing
methods. These can then be directly converted into a multiscale thermomechanical model.

Keywords: thermoplastics; crystallization; modeling; spherulites

1. Introduction

High performance semi-crystalline thermoplastic resins such as polyether-ether-ketone
(PEEK) and polyether-ketone-ketone (PEKK) are gaining popularity for use in aerospace
applications due to desirable material properties, manufacturability, and repairability while
in service. The thermal history during manufacturing ultimately influences the growth and
formation of microscale spherulites, which may impact the thermomechanical properties
of these materials. For thermoplastics to be used for novel applications, understanding
the relationship between the microscale crystalline morphology and bulk properties is
imperative. Using this understanding, computational models can be developed that predict
thermomechanical properties and residual stresses based on the material microstructure
and spherulite growth derived from processing conditions.

At the microscale, semicrystalline thermoplastics contain structures referred to as
spherulites, which consist of crystalline and amorphous phases with distinct mechanical
properties. During thermal cooldown, spherulites grow radially from a nucleation site until
they impinge on neighboring spherulites. As such, the material is not fully crystalline and
there are gradients in the crystallinity of the spherulites themselves, resulting in a higher
crystallinity at the core than the perimeter of the spherulites. Thus, the different spherulite
morphologies and local crystalline distributions have an impact on the thermoelastic
properties, residual stresses, and failure.

Multiple studies have tried to examine spherulite fracture, but there is still not a
complete consensus on this phenomenon [1–3]. Studies such as [1] have shown scanning
electron microscope (SEM) images of a fracture surface where there is nuclei “pull-out”
within the spherulite, whereas studies such as [2] indicate that cracks tend to propagate
through the spherulite nucleus depending on its orientation. These studies highlight that
understanding the crystalline microstructure of these materials is necessary to predict

Materials 2024, 17, 3411. https://doi.org/10.3390/ma17143411 https://www.mdpi.com/journal/materials1
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mechanical properties and failure. Understanding these phenomena is often difficult using
experiments alone, as different manufacturing techniques such as ultrasonic welding, addi-
tive manufacturing, automated fiber placement (for composites), and stamp forming may
produce unknown microstructures [4–8]. Computational simulation techniques can be used
to establish structure–property relationships for thermoplastic materials and supplement
experimental data.

Computational models have been developed to predict spherulite nucleation, growth,
and crystallinity based on thermal history. These models typically use the Avrami equation [9]
to model crystallization, which has shown good empirical agreement [10–13]. More modern
approaches utilize crystallization kinetics, due originally to Lauritzen and Hoffman [14], to
model crystalline growth [15]. From these methods, models have been developed which can
describe the isothermal and non-isothermal crystallization of thermoplastic polymers [16–22].
Choe and Lee [10] reported an approach adopted from [12] to model the non-isothermal
crystallization of PEEK. Their results showed that for different cooldown rates, the proposed
model predicted the non-isothermal crystallization well as compared to experimental dif-
ferential scanning calorimetry (DSC) values. Guan and Pitchuami [23] adapted this model
to predict 2D PEEK spherulite growth around fibers based on processing parameters of a
tow placement process. Saber [24] used crystallization kinetics to model spherulite growth in
2D and 3D domains with neat resin and with fibers, using scans of microstructures for fiber
locations. These models were validated against cross-polarized microscopy images of in situ
spherulite growth and relative crystallinity as a function of time in neat resin from DSC data,
and then used in more complex model geometries. While these models serve as important
tools in modeling spherulite growth, they do not address the distribution of crystalline and
amorphous phases locally within the spherulites. If the ultimate goal is a thermomechanical
model for predicting properties and failure, this additional level of detail is necessary.

In this study, a crystallization kinetic model was developed from [10] using constants
for PEEK and used to simulate different spherulite morphologies. Ultimately, the intent
of the current development is to couple the output of the crystallization simulations to a
multiscale thermomechanical model [25–27]. Therefore, the model domain was discretized
into voxels, where, after the spherulite growth, each voxel was assigned crystallinity
through an optimization scheme that used the overall crystallinity of the polymer as the
objective. This optimization algorithm was used to determine the crystallinities of each
spherulite and the local crystalline distributions within a spherulite. Results of this model
were first validated against DSC data from the literature, as well as microscopic images
of spherulites taken under cross-polarized light from [5]. Finally, different cooldown
rates were simulated using this algorithm and the predictions presented. Coupling with
multiscale thermomechanical models will be presented in subsequent publications.

2. Materials and Methods
2.1. Spherulite Crystallization Growth Simulation

A simulation was developed that can model the growth of thermoplastic spherulites
based on non-isothermal cooldown. The governing kinetic equations were introduced
in [10] and applied in simulations by [23] for non-isothermal crystallization of PEEK. A
flow chart showing the growth simulation process can be found in Figure 1.

The simulation works by discretizing a volume with lengths lX × lY × lZ (or lX × lY
for a 2D simulation) into a grid of sub-volume elements (voxels) referred to as subcells for
this study. The subcell length, which controls the coarseness of the subcell discretization, is
defined by user input as ls. The number of subcells in each coordinate direction is lX/ls,
lY/ls, and lZ/ls, respectively. The growth simulation assumes that the thermoplastic starts
from a complete melt with no “memory” of previous nucleation, meaning that all nucleation
events are random and not dependent on time history. This simulation also assumes that
the entire volume considered is heated uniformly at each time increment. Once all input
parameters defined by the user are preprocessed, the voxelated volume consisting of the
subcells is constructed. If fibers are present in the simulation, the centers are placed on the
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x − y plane and are assumed to continue straight in the z-direction. Subcells within the
fiber radius are identified and designated as regions where crystallization cannot occur. At
t = 0 s of the simulation, an instantaneous nucleation occurs and is governed by

N =
k1

4πv3
o

(1)

where N is the number of nuclei per unit volume, and k1 and vo are kinetic constants for
PEEK and can be found in Table 1. If there were fibers present, a fiber nucleation factor, NF,
was used and from the literature was assumed to be NF = 4 nuclei/µm2. NF only controls
nucleation on the surface of the fiber. This is outlined to demonstrate that the algorithm can
handle fiber surface nucleation, but henceforth this study will only present results without
fibers. As the growth simulation continues, t > 0 s, it was assumed that the spherulites
are allowed to grow radially from each nucleation site. Note that the code could be easily
altered to accommodate different growth patterns, such as parabolic growth from fiber
surfaces, if deemed necessary. The growth rate of the spherulites, G, is described as

G = v0e(
−Ed
RT )e

(
−ψ1T0

m
T(T0

m−T)
)

(2)

where Ed, R, ψ1, and T0
m are kinetic parameters for PEEK outlined in Table 1. T is the current

temperature based on the user prescribed cooldown rate and time step, highlighting that
the simulation is both time- and temperature-dependent. When a subcell’s center was
found to be within the growth radius of a spherulite nucleus, that subcell was “captured”
as part of the spherulite. During the simulation, new nuclei were allowed to form based on
the relation

Inuc =
k2

4πv3
0

e(
−Ed
RT )e

(
−ψ2T0

m
T(T0

m−T)
)

(3)

where the kinetic constants k2 and ψ2 are also outlined in Table 1. Inuc is in units of[
Nuclei/µm3/s

]
, where, for a given time increment, the nuclei per unit volume or[

Nuclei/µm3] is found and multiplied by the volume of amorphous subcells, or sub-
cells which have not been captured by spherulite growth. If the number of nuclei is above
one for that time increment, a new nucleus is added randomly to the domain.
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Figure 1. Flow chart describing process of thermoplastic spherulite growth simulation.
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Table 1. List of PEEK crystallization kinetic values used as inputs for spherulite growth simulation.

Symbol Value Units

vo 7.50 × 108 [µm/s]
R 1.986 [cal/molK]
k1 9.03 × 1024 [

s−3]

k2 9.32 × 1038 [
s−4]

T0
m 385–395 [◦C]

Ed 1.52 × 104 [cal/mol]
ψ1 529 [◦C]
ψ2 1517 [◦C]

The growth simulation continues until the end of the cooldown or until there are
no longer any subcells to capture within a spherulite. Periodicity was also enforced,
where all fibers and spherulite growths were properly reflected over the simulation
domain boundaries.

2.2. Local Crystallinity Distribution

A spherulite is composed of lamella stacks that grow radially outwards from the
nucleation center during the non-isothermal cool-down from melt [28,29]. Amorphous
material occupies the volume in between crystalline lamella stacks. Due to the branch-
like nature of lamella growing away from the nucleus, there is a local distribution of
crystallinity within the spherulites that is important to capture in computational models
when investigating the mechanical behavior of these materials [2].

From the growth simulation, relative crystallinity was calculated as the ratio of the
number of subcells that were enveloped during the radial growth of the spherulites versus
the total number of subcells. The relative crystallinity varies from zero, a pure amorphous
material, to one, a material where spherulites have reached a maximum growth and occupy
100% of the volume of the material.

For PEEK, a sample with a relative crystallinity of one may still only have an overall
degree of crystallinity, χ, of 20–30% due to the inter-amorphous regions with spherulites
between lamellae. To model this, each subcell within a spherulite was assigned a local crys-
tallinity, vc. This local crystallinity was optimized with the constraint that the crystallinity
must decrease radially from the respective nucleus, and the objective function yielded
the assumed maximum PEEK χ of 30% [30]. To this regard, if there were still uncaptured
subcells once the simulation ended, χ was found by multiplying the relative crystallinity
by the assumed maximum crystallinity, χmax, of 30%.

The optimization process started by calculating an overall degree of crystallinity, χ, as

χ = χV × χmax (4)

where χV is the relative degree of crystallinity defined by

χV =
Vsph

V
(5)

and V is the total volume of the domain, Vsph is the volume of spherulites, and χmax is the
assumed maximum degree of crystallinity.

Once χ was calculated, the crystallinity within each spherulite was found. It was as-
sumed that smaller spherulites had a higher crystallinity than larger ones due to denser crys-
tallization near the nucleus, which also composes more of the volume in small spherulites as
compared to large ones. The crystallinity of each spherulite was found through minimizing
an objective function

min
∣∣∣χsph·vsph − χV

∣∣∣ (6)

4



Materials 2024, 17, 3411

where χsph is a vector containing the crystallinities of individual spherulites ordered from
lowest to highest and vsph is a vector containing the associated volumes. The optimization
enforced a linear inequality such that

A χsph ≤ b (7)

where A and b are defined as

A =




−1 1 0 . . .
0 −1 1 . . .
0 0 −1 1

. . . . . . . . . −1


 and b =




0
0

. . .


. (8)

The optimization was used to find χsph, which achieved a target χ.
After the crystallinities of each spherulite were found in χsph, the crystallinities of

each subcell within a spherulite were determined using the same optimization process
with a different objective function and linear inequality. For each spherulite i, the objective
function is defined by

min

∣∣∣∣∣
χsub·ni

sub

∑ ni
sub

− χi
sph

∣∣∣∣∣ (9)

where χsub is a vector containing the crystallinities of subcells within a spherulite, ni
sub

is a vector containing the number of subcells with centroids located at particular radial
distances from the nucleus where the jth entry of ni

sub is the number of subcells within a
radius, rj. A schematic of this is shown in Figure 2 depicting how ni

sub is determined for
an arbitrary spherulite demonstrated in a 2D cross section. The subcells that fall within
a given radius are all assigned the same crystallinity determined from the optimization.
The summation of ni

sub is the total number of subcells within a spherulite. It is assumed
that the subcells at the nucleus have a fixed crystallinity of 85%, which is approximately
the maximum possible crystallinity [26]. The linear inequality for this optimization is
defined as

C χsub ≤ d (10)

where C and d are defined as

C =




−1 1 0 . . .
0 −1 1 . . .
0 0 −1 1

. . . . . . . . . −1


 and d =




0
0

. . .


. (11)
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3. Results and Discussion
3.1. Parameter Sensitivity and Validation

A parameter convergence study was conducted to determine the maximum subcell
refinement required to capture the crystallinity evolution accurately. A cube domain was
used where all lengths were equal (i.e., lX = lY = lZ), the subcell dimension, ls, was varied,
and the crystallinity outputs were measured. The domain size was normalized by subcell
length

(
lX
ls

)
, where the minimum subcell length could be determined based on the desired

domain. To examine this, a thermal cooldown of 10 ◦C/min was applied to a domain
where lX = 15 µm and the subcell length was refined from 1 µm to 0.1 µm and the relative
crystallinity, χV , was recorded. The domain size was also varied from 10 µm to 30 µm
keeping ls = 1 constant. The results are shown in Figure 3.

Materials 2024, 17, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. 2D Representation of how crystallinity decreases radially from the spherulite nucleus 
where 𝐧  is a vector containing the number of subcells assigned a specific crystallinity. 

3. Results and Discussion 
3.1. Parameter Sensitivity and Validation 

A parameter convergence study was conducted to determine the maximum subcell 
refinement required to capture the crystallinity evolution accurately. A cube domain was 
used where all lengths were equal (i.e., 𝑙 =  𝑙 =  𝑙 , the subcell dimension, 𝑙 , was var-
ied, and the crystallinity outputs were measured. The domain size was normalized by 
subcell length  , where the minimum subcell length could be determined based on the 
desired domain. To examine this, a thermal cooldown of 10 °C/min was applied to a do-
main where 𝑙 = 15 μm and the subcell length was refined from 1 μm to 0.1 μm and the 
relative crystallinity, 𝜒 , was recorded. The domain size was also varied from 10 μm to 30 μm keeping 𝑙 = 1 constant. The results are shown in Figure 3. 

 
Figure 3. Relative crystallinity, χ , versus temperature for a simulation with a 10 C/min cooldown 
for (a) increasing subcell refinement and (b) increasing domain size. 

Shown in Figure 3a, there is minimal dependency on subcell refinement for the crys-
tal growth, but Figure 3b shows that domain size does affect the spherulite volume frac-
tion. This domain size dependency is likely due to homogeneous nucleation because a 
larger overall volume means that more nuclei can form during cooldown. This is why the 
curves start at the same temperature at 𝜒 = 0, but the new nuclei that form in the larger 

Figure 3. Relative crystallinity, χV , versus temperature for a simulation with a 10 ◦C/min cooldown
for (a) increasing subcell refinement and (b) increasing domain size.

Shown in Figure 3a, there is minimal dependency on subcell refinement for the crystal
growth, but Figure 3b shows that domain size does affect the spherulite volume fraction.
This domain size dependency is likely due to homogeneous nucleation because a larger
overall volume means that more nuclei can form during cooldown. This is why the curves
start at the same temperature at χV = 0, but the new nuclei that form in the larger domains
cause the curves to differ from smaller domains. For the remainder of the results, a standard
domain size of 30 µm and a subcell refinement of 1 µm were used.

A validation of the crystallization kinetic mode was performed, where different non-
isothermal cooldown rates were applied and χV was recorded. The model predictions were
compared to differential scanning calorimetry (DSC) experiments from the literature for
PEEK [10]. Figure 4 shows that there is very good agreement between the experimental
and simulation results, which implies that the kinetic constants used (Table 1) can predict
the spherulite growth for PEEK for different non-isothermal cooldown rates. There are
slight differences at high χV , which is possibly due to the domain being discretized into
voxels, causing jumps in χV when a new subcell is captured, or nucleates.

It was noted in this study that changing equilibrium temperature, T0
m, which for PEEK

is commonly reported as 395 ◦C [31] but was measured in [10] as 385 ◦C, resulted in a shift
of relative crystallinity. The effect of these two bounds on recorded χV was compared to
the experimental results [10] at a 10 ◦C/min cooldown and shown in Figure 5a. Figure 5a
shows that χV shifts by approximately 10 ◦C when T0

m changed, and this value had to
be chosen carefully to represent experimental results. The shaded area in between the
two bounds shows where results may fall if an intermediate T0

m value is chosen. For
this study, a T0

m = 392 ◦C was chosen for thermal cooldowns 10 ◦C/min and below. By
contrast, for higher thermal cooldowns, T0

m = 395 ◦C was used, which better represented
the experimental results. This shift in relative crystallinity, which is almost equal to the
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difference in T0
m bounds, suggests that relative crystallinity is nearly constant with respect

to the temperature to the equilibrium melting point, shown in Figure 5b. Figure 5b shows
that the curves line up closely when adjusted based on respective T0

m. Moreover, this aspect
can be beneficial for future simulations with new materials where T0

m may not be known.
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Figure 4. Validation of crystallization kinetic model with experimental DSC results [10] for thermal
cooldowns of 2(+), 5(×), 10(♦), 20(�), and 50(o) ◦C/min.
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m, and (b) adjusted with respect to T0
m for PEEK.

3.2. Spherulite Morphology Validation

Once the model was validated to ensure the spherulite growth was representative of
experimental DSC results, it was used to compare simulated morphologies to experimental
scans. A study by [5] was simulated where a film of PEEK was cooled at 20 ◦C/min. For
the simulation, a domain size of 100 × 100 × 1 µm was used with a subcell length of 1 µm.
A side-by-side comparison is shown in Figure 6.

The results reported by [5] showed that there was a distribution in spherulite sizes of
approximately 15–30 µm. The simulation shows similar results with spherulite measure-
ments depicted in Figure 7.
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Figure 7. (a) Spherulite morphology from a sample cooled at 20 ◦C/min with the largest spherulite
diameter labelled, (b) the corresponding local crystallinity distribution, and (c) a probability density
function (PDF) of spherulite volumes.

In Figure 7a, the growth simulation showed similar spherulite measurements com-
pared to experiments where the largest spherulite had a diameter in the upper end of the
reported range. Figure 7c shows the probability distribution function (PDF) of all spherulite
volumes. Spherulites are not perfectly circular, and their volumes do not directly corre-
spond to their diameter, which is typically reported for these experimental measurements.
Figure 7b shows the calculated crystallinity distribution for this sample, where the nuclei
are clearly visible. The results show the simulation is producing expected spherulite sizes
compared to experimental results. More advanced image analysis techniques are needed
to measure and validate the crystallinity distribution within spherulites in these types of
experimental results.

Typical cooldown rates may vary depending on manufacturing and application. For
example, tow placement processes such as automated fiber placement can have a cooldown
rate on the order of 2000 ◦C/min [32]. To examine this effect on spherulite growth and
morphology, simulations with different cooldown rates (20, 200, 500 and 2000 ◦C/min)
were conducted using a 30 × 30 × 30 µm domain size and compared in Figure 8.

Figure 8 shows the nucleation, spherulite evolution, and resulting local crystallinity
for different cooldown rates. Figures of the growth were taken at initial nucleation, halfway
through the cool down, and at the final time step. Both 20 and 200 ◦C/min reached a
state with fully grown spherulites that impinged with one another, where the cooldown of
500 ◦C/min had some spherulite growth but not full impingement and 2000 ◦C/min was
quick enough to not let the spherulites grow past initial nucleation or form new nuclei. As
a result, the crystallinity of each nucleus in the 2000 ◦C/min simulation was equal to 85%
where the surrounding is pure amorphous. It can also be seen that the 20 ◦C/min simulation
allowed for spherulites to grow significantly larger than the 200 ◦C/min simulation, but
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more new nuclei formed in the latter case. The result shows that a slower cooldown rate
promotes spherulite growth, whereas a higher cooldown rate promotes more nucleation
with smaller spherulites, which is consistent with experimental results shown in [33,34].
This relationship between growth and cooldown rates can be seen in Table 2, except for
2000 ◦C/min, because there was no spherulite growth. A distribution of spherulite relative
volumes, the volume of each spherulite divided by its respective average, can be seen
in Figure 9. The crystallinity in Figure 8 also represents this finding and shows that
larger spherulites have a gradual crystalline transition from the nucleus outwards. The
relationship between thermal cooldown, growth radius, and homogeneous nucleation rate
for these cases is shown in Figure 10.
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Table 2. Minimum, maximum, average, and standard deviation of spherulite volumes from three
different thermal cooldowns.

Cooldown
(◦C/min)

Minimum Volume
(µm3)

Maximum Volume
(µm3) Average (µm3)

Standard
Deviation

20 4 767 221.31 212.91
200 1 213 32.88 35.61
500 1 106 8.60 12.81
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Figure 10. (a) Temperature versus time, (b) nuclei growth radius, and (c) nucleation rate for
four different simulations with increasing thermal cooldown rates.

Table 2 shows that the minimum spherulite volume for the 200 ◦C/min and 500 ◦C/min
cooldown was 1 µm3, meaning it was only a nucleus that did not grow because the subcell
dimension was ls = 1× 1× 1 µm. This can occur when a new nucleus is placed in between
surrounding spherulites and is not given any room to grow, or near the end of a fast cooldown
where growth rate is very low, and the final temperature is reached before growth to a
neighboring subcell is reached. This can be changed by increasing the subcell refinement,
which will decrease the probability that a nucleus will be fully surrounded by spherulites.
Further, lower growth rates could be captured because the subcell-to-subcell distance would
be smaller. While this may be desirable, increasing the discretization will increase computation
time, and further studies are needed to understand required refinement to achieve sufficient
fidelity. The 20 ◦C/min simulation has the tightest distribution where bins are similar heights,
meaning the spherulites are similar volumes. As the cooldown rate increases, so does the
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number of small spherulites, as well as the distribution spread, meaning that there is a large
range of spherulite sizes relative to the average.

Figure 10a shows the temperature versus time profile for the four examined cooldown
rates. Figure 10b shows the corresponding growth radius for all cooldown rates, which
is calculated by integrating Equation (2) with respect to time. This shows that the slower
the thermal cooldown, the larger the growth radius can form by the end of the simulation.
Lastly, Figure 10c shows the homogeneous nucleation rate as a function of temperature,
which is calculated by integrating Equation (3) with respect to time and shows similar
relationships of the growth radius. While this shows that slower cooldowns should form
more nuclei per unit volume, this is opposite of what is displayed in Figure 7. This is
because as the growth radius increases, the amount of subcells not captured by a spherulite
decreases, so in slower cooldowns, there is significantly less volume for new nucleation. By
contrast, in fast cooldowns, the growth radius is not very large and there is a large amount
of remaining amorphous volume, so when the nucleation rate is multiplied by the available
amorphous volume to determine how many nuclei form, that value is higher than slower
cooldowns shown in Figure 11.
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Figure 11. Nucleation versus temperature for three different thermal cooldowns.

Figure 11 shows the number of nuclei that form during the thermal cooldown rates.
This is found by multiplying nucleation rate (Figure 10) by the amorphous volume at a
given time step. Seen in Figure 11, nucleation happens at different temperature ranges for
each of the cooldowns. At the temperature range of the 20 ◦C/min simulation, all three
cooldown rates have very similar nucleation rates (Figure 10c), but the spherulite growth
radius is much higher, meaning there is not much amorphous volume, resulting in low
nuclei formation. This shows how the 20 ◦C/min cooldown has fewer, larger spherulites,
and at ~280 ◦C there is full impingement. The 200 ◦C/min nucleation primarily happens in
a temperature range of 280 ◦C–230 ◦C where the spherulite growth radius for this cooldown
rate is low and has a higher nucleation rate than the 20 ◦C/min cooldown. Due to the
spherulites not growing as large, there is more amorphous volume available, and more
nucleation can occur. The 500 ◦C/min cooldown has the lowest spherulite growth radius
of the three cases, and a lower nucleation rate than the 200 ◦C/min cooldown. But, because
there is less growth, there is significantly more amorphous volume available, and the
nucleation is much higher. The 2000 ◦C/min case had no new nucleation or growth.

4. Conclusions

In this study, a model was developed that uses crystallization kinetics to model the
growth of semi-crystalline spherulites within a domain. Optimization was used, with
assumed constraints on spherulite geometries, to determine inter-spherulitic crystallinities.
The kinetic constants and equations used in this model were obtained from the previous
literature for PEEK. The equations were applied to a model domain that was discretized

11



Materials 2024, 17, 3411

into voxelated regions called subcells. After growing the spherulites in this domain, overall
crystallinity was determined, and optimization schemes were used to determine crys-
tallinities for each spherulite and then crystallinities for each subcell. Results of this study
investigated the model validation against DSC data for PEEK from literature, and then
sensitivity of the model to domain size, subcell discretization, and certain kinetic constants.
Then, a simulated microstructure was compared to an experimental image from PEEK after
a cooldown where spherulite sizes were compared. Finally, the effect of cooldown rate was
examined by simulating three rates of 20, 200, 500 and 2000 ◦C/min. The results of these
simulations showed that the fastest cooldown rate resulted in no spherulite growth, just
nucleation, the rate of 20 ◦C/min showed fewer but larger spherulites grown, 200 ◦C/min
showed more but smaller spherulites, and 500 ◦C/min showed some spherulite growth but
not full impingement. These models were then processed through the optimization schemes
and the final crystalline distributions were shown. The crystalline distributions show the
nucleus of the spherulites having higher crystallinities that decrease radially outward.

Previous studies have shown that thermomechanical modeling of thermoplastics is a
multiscale problem due to the local distribution and orientation of the lamellae, and the
current model was developed to directly convert into a geometry for NASA’s Multiscale
Analysis Tool (NASMAT), which relies on subcell discretization for its semi-analytical
multiscale recursive micromechanics methods [25,35–37]. Knowing the crystallinity for
each individual subcell from this analysis allows for lower length scales, such as individ-
ual lamella surrounded by amorphous material, to be simulated and integrated into the
mesoscale containing the morphology of the spherulites. Coupling with NASMAT will
also allow for linear and nonlinear thermomechanical analysis, where stiffness, strength,
fracture toughness, thermal conductivity, etc., can be simulated for different morpholo-
gies resulting from different manufacturing processes. Future work on this model will
include studying the effect of these properties with the inclusion of fibers, where fiber
morphologies [38] and different spherulite geometries from spherulite nucleation on the
fiber surface can impact mechanical results. Finally, an anisotropic core for the spherulites
will be considered as this impacts the fracture behavior [2].
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Sheet metals usually experience various loading paths such as uniaxial tension, uniaxial
compression, biaxial tension, and simple shear during the forming process. However, the existing
constitutive models cannot always accurately describe blanks’ anisotropic yield and plastic flow
behavior of blanks under all typical stress states. Given this, this paper improves the Eyld2000-2d
yield criterion by introducing hydrostatic pressure to the A-Eyld2000-2d yield criterion that can
describe the strength differential effect of materials. Meanwhile, to control the curvature of the yield
surface more effectively, the near-plane strain yield stresses were added in the parameter identification
process to calibrate the exponent m, so that the exponent is no longer considered as a constant value.
Taking the widely used AA6016-T4, AA5754-O, DP980, and QP980 blanks in the automotive stamping
industry as an example, the effectiveness of the new model and different parameter identification
methods was verified by predicting experimental data under various simple and complex loading
paths. Subsequently, the new model employing the optimal parameter identification strategy was
compared with four widely used asymmetric yield criteria under associated and non-associated flow
rules, including CPB06, LHY2013, S-Y2004, and Hu & Yoon2021, to further verify the accuracy of
the proposed constitutive model. The results indicate that parameter identification strategy with
variable exponent can significantly improve the flexibility of the yield criterion in describing the
plastic anisotropy of blanks. Compared to the other yield criteria examined in this work, the new
model provides the best prediction accuracy for the yield stresses and plastic flows of all blanks,
especially in the near-plane strain and simple shear stress states. Modeling under the concept of
anisotropic hardening can more accurately capture the evolving plastic behavior of blanks than
isotropic hardening.

Keywords: sheet metal; yield criterion; strength differential effect; plastic anisotropy; evolving
plastic behavior

1. Introduction

With increasingly strict requirements for lightweight and crashworthiness in the auto-
motive manufacturing industry, an increasing number of aluminum alloy and advanced
high-strength steel blanks are widely used [1–6]. However, sheet metals usually exhibit
serious anisotropic behavior during the forming process and are subjected to various stress
states such as uniaxial tension (UT), uniaxial compression (UC), equi-biaxial tension (EBT),
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near-plane strain (NPS), and simple shear (SS) [7,8]. These complex plastic deformation
behaviors pose a grand challenge in the development of high-fidelity constitutive mod-
els. Nevertheless, establishing a high-precision constitutive model that can characterize
typical stress states and anisotropic behavior is still a main research interest in the field of
plastic forming.

To date, researchers have already proposed various anisotropic constitutive models.
Hill [9] proposed the famous quadratic anisotropic yield criterion based on the von Mises
isotropic yield criterion, which has become one of the most widely used yield criteria
due to its simple expression and ease of calculation [10]. Considering the poor ability of
the secondary yield criterion to describe the plastic deformation behavior of sheet metals,
especially aluminum alloys, Barlat and Lian [11] developed the Barlat89 yield criterion.
With the demand for accurate predictions of more mechanical properties, Barlat et al. [12,13]
have successively established the yield criteria of Balat94 and Balat96. However, the con-
vexity of the yield criterion cannot be guaranteed, which limits their application. To solve
the above issue, Barlat et al. [14] proposed the Yld2000-2d yield criterion applicable to
the plane stress state by introducing a fourth-order linear operator to the Cauchy stress
tensor. Because Yld2000-2d can describe the anisotropic behavior of blanks more accu-
rately, it has become one of the most widely used advanced yielding criteria in industry
and academia. Subsequently, Barlat et al. [15] proposed the Yld2004-18p yield criterion
applicable to three-dimensional stress states, which effectively predicted the phenomenon
of six or eight earings appearing in deep drawing tests of cylindrical cups for blanks with
strong anisotropy. However, due to the large amount of experimental data and complex
calculation process required for calibrating parameters, they have not been widely used
in industry. Distinguishing from the linear transformation approach, Banabic et al. [16]
developed the BBC2005 yield criterion by adding anisotropy parameters in Hershey1954,
which can accurately predict the shape of the yield surface. Cazacu and Barlat [17] con-
structed an orthotropy yield criterion based on the J2- and J3-based Drucker frameworks
using the theory of the representation of tensor functions, which can accurately describe
the plastic anisotropic behaviors of AA6016-T4 and AA2093-T3. Another anisotropic form
of the Drucker yield function was introduced through linear transformation tensor [18],
which is implemented into Ansys LS-DYNA as *Mat_263 with four ductile fracture cri-
teria developed by the same authors. Meanwhile, to reduce the input of experimental
data, Khalfallah et al. [19,20] further proposed a simplified calibration program for the
CB2001 yield criterion and verified the effectiveness of the newly developed parameter
identification strategy through simulation analysis of cross-shaped deep-drawn cup and
tube hydroforming experiments. Lou et al. [21] introduced a reduced Yld2004 function
under associate flow rule to model anisotropic plastic behavior both in strength and plastic
deformation for spatial and plane stress loading conditions. Recently, Lee et al. [22] coupled
quadratic S-Y2009 with non-quadratic Hosford72 and proposed the CQN2017 yield crite-
rion, which can describe the yield stresses anisotropy of blanks under the non-associated
flow rule (non-AFR). Inspired by CQN2017, Hu et al. [23] further coupled the fourth-order
polynomial yield criterion with the Hosford isotropic yield criterion under the associated
flow rule (AFR), which can accurately describe the anisotropic behavior of materials; even
for blanks with strong plastic flow anisotropy, it can provide accurate prediction levels.
Chen et al. [24] proposed another form of the CQN function by coupling the quadratic
S-Y2009 function with the non-quadratic Drucker function to achieve higher computation
efficiency with similar accuracy. Hou et al. [25] further replaced the coupling function
based on stress components with the coupling function based on stress invariants.

However, most of the yield criteria mentioned above cannot describe the asymmetric
yield behavior under tension and compression of materials. Spitzig et al. [26] and Spitzig
and Richmond [27] found that the UT yield behavior of aluminum alloys and steels was
influenced by superimposed hydrostatic pressure. Therefore, Stoughton and Yoon [28]
developed a quadratic asymmetric yield criterion to describe the strength differential (SD)
effect of AA2008-T4 and AA2090-T3 aluminum alloys. To seek a yield criterion suitable
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for describing the anisotropic behavior of HCP structure, Cazacu and Barlat [29] modified
the even-form Drucker1949 yield criterion to an odd-form one and proposed the CB2004
yield criterion that uses the invariants of the stress deviator to characterize the asymmetric
yield behavior of materials. Subsequently, Cazacu et al. [30] further developed the CPB06
yield criterion containing a fourth-order linear operator. To improve the flexibility of CPB06
in describing plastic anisotropy, Plunkett et al. [31] and Li et al. [32] added additional
linear transformation tensors to the CPB06 yield criterion and established CPB06ex2 and
M_CPB06 yield criteria. Khan et al. [33] proposed a new method to describe the SD effect by
using the Lode angle parameter, which can describe the tension–compression asymmetry
individually. Lou et al. [34] modified the Yld2000-2d yield criterion to accurately describe
the asymmetric yield behavior of aluminum alloys by introducing the first stress invariant.
Yoon et al. [35] and Lou et al. [36] developed two asymmetric yield functions in a form of
three stress invariants. Furthermore, Hou et al. [37–39] improved the KB93 and Min2016
yield criteria under the non-AFR, which can describe the tension–compression asymmetry
of yield stresses and r-values, respectively. Hu and Yoon [40] simplified the expression
of the Yoon2014 yield criterion by analyzing the transformation tenors on the deviatoric
stress invariants, which achieved the analytical calibration of anisotropic parameters while
retaining the traditional model’s ability to describe the SD effect. Hu et al. [41] established
a more flexible asymmetric yield criterion by reconstructing LHY2013 and verified its
accuracy based on FCC and HCP materials. Recently, Lou and Yoon [42] proposed a Lode-
dependent asymmetric–anisotropic (LAA) framework by analyzing the correspondence
between stress triaxiality and normalized third deviatoric stress invariant under uniaxial
and equi-biaxial stress states, which can accurately predict the asymmetric behavior of
yield stresses and r-values with a 45◦ increment under uniaxial loading paths.

To accurately describe the dominant plasticity behaviors under SS and NPS stress
states, Vegter et al. [43] optimized the exponents of the Yld2000-2d and Yld2004-18p yield
criteria based on interpolation methods, which filled the gap in traditional calibration
methods for predicting the mechanical properties of SS and NPS stress states. Similarly,
Du et al. [44] accurately predicted the normal and diagonal planes yield loci of AA6016-T4,
AA5182-O, MP980, and DP490 blanks by incorporating NPS yield stresses along the 0◦, 45◦,
and 90◦ directions into the calibration of anisotropy parameters and exponents of BBC2008.
To address the issue of insufficient accuracy in describing plastic flow under NPS loading
paths, Hou et al. [45] further introduced the directions of plastic strain rate along the 0◦, 45◦,
and 90◦ directions in the NAFR-Poly4 yield criterion to calibrate the anisotropy parameters
of the plastic potential function. In addition, it is worth noting that the Yld2000-2d yield
criterion can accurately predict the plastic deformation behavior under corresponding stress
states when identifying anisotropic parameters through NPS or SS mechanical properties,
but it cannot describe both stress states simultaneously [46]. Therefore, He et al. [47]
improved the Yld2000-2d yield criterion by introducing a shear-related additional term to
enhance the flexibility of the Yld2000-2d, while ensuring the accuracy of describing biaxial
tensile (BT) stress states, it can effectively predict anisotropic yield and plastic flow near
the SS stress states. Recently, Hu et al. [48] proposed a more flexible Analytical Poly6-18p
yield function based on the Analytical Poly6-16p yield criterion, which not only achieved
accurate modeling of SS stress along the 45◦ direction but also incorporated SS stress along
the 0◦ direction into the modeling category.

In summary, considering that existing constitutive models usually cannot accurately
describe the anisotropic behavior of blanks under various typical loading conditions such
as UT, UC, EBT, NPS, and SS, in this work, the Eyld2000-2d yield criterion was improved
to a new model, i.e., the A-Eyld2000-2d yield criterion, that can describe the SD effect
by introducing hydrostatic pressure. Meanwhile, to more effectively control the yield
locus of the sheet metals, the mathematical constraint that the exponent m is a constant
value was removed by increasing NPS yield stresses during the parameter calibration
process. Through experimental data measured under UT, UC, SS, and BT stress states, the
differences in describing the anisotropic yield and plastic flow of AA6016-T4, AA5754-O,
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DP980, and QP980 using the new model with different parameter identification strategies
were systematically evaluated. Subsequently, the new model employing the best parameter
identification strategy was compared with four commonly used asymmetric yield criteria,
i.e., CPB06, LHY2013, S-Y2004, and Hu & Yoon2021, to further verify the validity and
applicability of the new model. Finally, the influence of different hardening concepts on
the prediction accuracy of yield criteria in describing the evolving plastic behavior of sheet
metals was discussed.

2. Modeling Strategies for Describing the Plastic Anisotropic Behavior of Materials
under Various Typical Stress States
2.1. Asymmetric Eyld2000-2d Yield Criterion

This section improves the Eyld2000-2d yield criterion proposed by He et al. [47] under
AFR to describe the SD effect of blanks. The equivalent stress of the newly proposed
asymmetric Eyld2000-2d yield criterion (A-Eyld2000-2d) is defined as:

ϕ = σ = Ĩ + f 1/m (1)

Ĩ = hxσ11 + hyσ22 (2)

f =
1
2
( f1 + f2) (3)

where ϕ is the yield function, σ is the equivalent stress (in this work the rolling direction
(RD) was chosen as the reference direction), Ĩ is the hydrostatic pressure, m is the exponent
of the yield criterion, f is the sum of the two isotropic functions f1 and f2, where f1 and f2
are expressed as

f1 =
1
2
(
∣∣X′1 − X′2

∣∣m +
∣∣2X′1 + X′2

∣∣m +
∣∣X′1 + 2X′2

∣∣m) (4)

f2 =
1
2
(
∣∣2X′′1 + X′′2

∣∣m +
∣∣X′′1 + 2X′′2

∣∣m) (5)

where X′i and X′′j (i, j = 1, 2) are the eigenvalues of the stress deviators X′ and X′′ , i.e.,

X′1,2 =
1
2
(X′11 + X′22 ±

√
(X′11 − X′22)

2 + 4X′12
2) (6)

X′′1,2 =
1
2
(X′′11 + X′′22 ±

√
(X′′11 − X′′22)

2
+ 4X′′12

2
) (7)

where X′ij and X′′ij (i, j = 1, 2) are obtained through linear transformation of Cauchy stress,
there are

X′ =




X′11
X′22
X′12


 =




2
3 C′11 − 1

3 C′12 − 1
3 C′11 +

2
3 C′12 0

2
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2
3 C′22 0

0 0 C′66
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σ22
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 (8)

X′′ =
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2
3 C′′11 − 1

3 C′′12 − 1
3 C′′11 +

2
3 C′′12 0

2
3 C′′21 − 1

3 C′′22 − 1
3 C′′21 +

2
3 C′′22 0

0 0 C′′66






σ11
σ22
σ12


 (9)

where C′ij and C′′ij (i, j = 1, 2 or i = j = 6) are the anisotropy parameters of the yield criterion,
and σij (i, j = 1, 2) is the in-plane stress component of the Cauchy stress tensor.

2.2. Exponent m Study of A-Eyld2000-2d

To quantitatively clarify the potential regulative effects of the exponent m on the
curvature of yield locus, the normalized yield loci of the A-Eyld2000-2d yield criterion are
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calculated using isotropic mechanical properties and a specific set of anisotropic parameters
by adjusting the value of m, as shown in Figure 1. In general, the uniaxial and equi-biaxial
tensile/compressive yield stresses are not affected by changes in the exponent, but the
yield points near the NPS and SS stress states exhibit strong exponent sensitivity. When
using isotropic mechanical properties, as the exponent increases, the boundary near the
SS stress state shrinks first and then expands, while the region corresponding to the NPS
stress state continues to expand outward, as shown in Figure 1a. In contrast, when the
anisotropy parameters remain constant, as the exponent increases, the normalized yield loci
of the NPS and SS stress state regions gradually shrink inward, as shown schematically in
Figure 1b. Furthermore, to further understand the prediction capability of the A-Eyld2000-
2d yield criterion on plastic anisotropy behavior within the investigated exponent range
of m∈[2, 20], the ratios PTR and STR of NPS and SS yield stresses to UT yield stress, as
defined by Hou et al. [49], are used to quantify the maximum and minimum boundaries
described in Figure 1. After calculation, the values of PTR and STR in Figure 1a are
1.2879 and 0.6496, while the values of PTR and STR are 1.0528 and 0.5359 in Figure 1b,
respectively, which are sufficient to accurately describe the yield behavior of the vast
majority of conventional blanks. The above characteristics provide a theoretical basis for
calibrating the exponent and anisotropy parameters of the A-Eyld2000-2d yield criterion
using NPS and SS mechanical properties.
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mechanical properties and (b) a specific set of anisotropic parameters at different exponents m.

2.3. Parameter Calibration Programs for A-Eyld2000-2d Yield Criterion

The description ability of the yield criterion is not only related to the modeling expres-
sion but also influenced by the calibration methods. Therefore, four different parameter
identification strategies are designed for A-Eyld2000-2d in this section to illustrate the
regulative effects of the selected mechanical properties and exponent m on the curvature of
the yield locus. Table 1 lists the mechanical properties employed by different calibration
methods, where “

√
” and “×” represent selected and unselected, respectively. Method #1 is

the same as the original Eyld2000-2d yield criterion and does not consider the asymmetric
yield behavior of blanks; Method #2 additionally introduces σC0 and σC90 to calculate hx
and hy based on Method #1; Method #3 further adds the NPS yield stresses to identify
anisotropy parameters; Method #4 removes the mathematical constraint that the exponent
m is an integer compared with Method #3. Note that when m∈N*, i.e., Methods #1, #2, and
#3, m is set to 6 for BCC materials and 8 for FCC materials. In addition, it is usually difficult
to measure the plastic strain rate rs of blanks under SS stress state. Therefore, to avoid
the formation of underdetermined equations during calibration process, which leads to
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non-uniqueness of parameters, in this work, the anisotropy parameters C′′12 and C′′21 related
to the normal stress component are made equal.

Table 1. Mechanical properties required for different parameter identification strategies of the
A-Eyld2000-2d yield criterion.

Mechanical Properties Parameter Identification Strategies

σ r #1 m∈N* #2 m∈N* #3 m∈N* #4 m∈N

σT0 rT0
√ √ √ √ √ √ √ √

σT45 rT45
√ √ √ √ √ √ √ √

σT90 rT90
√ √ √ √ √ √ √ √

σb rb
√ √ √ √ √ √ √ √

σC0 - × -
√

-
√

-
√

-

σC90 - × -
√

-
√

-
√

-

σS45 -
√

-
√

-
√

-
√

-

σ0
PS

- × - × -
√

-
√ -

σ90
PS

- × - × -
√

-
√

-

For different parameter identification strategies, the following minimization objective
function is defined to compute the anisotropy parameters.

F
[
C′11, C′12, C′21, C′22, C′66, C′′11, C′′12, C′′22, C′′66, hx, hy, m

]
Min =

λ1

[
3
∑

t=1

(
σcal

Ti
σ

exp
Ti
− 1
)2
]
+ λ2

[
3
∑

t=1

(
rcal

Ti
rexp

Ti
− 1
)2
]
+ λ3

(
σcal

S45
σ

exp
S45
− 1
)2

+λ4

[(
σcal

b
σ

exp
b
− 1
)2

+

(
rcal

b
rexp

b
− 1
)2
]

+λ5

[(
σcal

C0
σ

exp
C0
− 1
)2

+

(
σcal

C90
σ

exp
C90
− 1
)2
]

+λ6

{[
(σ0

PS)
cal

(σ0
PS)

exp − 1
]2

+

[
(σ90

PS)
cal

(σ90
PS)

exp − 1
]2}

(10)

where i = 0, 45, and 90, “cal” and “exp” represent the theoretical calculation values and
experimental measurement values, respectively. λj(j = 1, 2, . . . , 6) is the weighting factor,
when the corresponding mechanical properties are used in the parameter identification
processes λ = 1; conversely, λ = 0. In this work, the Particle Swarm Optimization
function in MATLAB is used to calculate the anisotropy parameters in different calibration
methods [37]. To demonstrate the differences in describing plastic anisotropy among
several parameter identification strategies, they are applied to AA6016-T4, AA5754-O,
DP980, and QP980 blanks, which are widely used in the automotive stamping industry,
wherein the mechanical properties of AA6016-T4 are obtained from the reports of Du
et al. [50,51], and the mechanical properties of AA5754-O, DP980, and QP980 are extracted
from the research of Hou et al. [38].

3. Results and Discussions
3.1. Prediction Results of Different Parameter Identification Strategies

Figure 2 shows the normalized yield loci of AA6016-T4, AA5754-O, DP980, and
QP980 blanks predicted by the A-Eyld2000-2d yield criterion with different parameter
identification strategies and compared with the experimental data. Note that the equivalent
plastic strains (EPSs) selected for calibrating the anisotropy parameters of four blanks
are 0.056, 0.074, 0.050, and 0.060, respectively. These are the maximum EPSs that can be
achieved by obtaining experimental data within a uniform deformation range in all loading
paths investigated, i.e., UT, UC, EBT, NPS, and SS stress states and different sampling
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directions. The anisotropy parameters calculated by different parameter identification
strategies are summarized in Table A1 in Appendix A. It can be observed that the four
parameter identification strategies can reasonably describe the yield loci of four blanks.
Compared to Method #1, the other three methods can accurately predict the UC yield
stresses, and the ability to describe the SD effect has been improved. This can be attributed
to the fact that Methods #2, #3, and #4 employed UC yield stresses during the parameter
calibration process, as shown in Table 1. It can also be observed that Methods #1 and #2
exhibit slight deviations in characterizing the NPS stress states, especially for QP980, as
shown in Figure 2d. This is because these two methods do not use NPS yield stresses to
calibrate the anisotropy parameters, resulting in the inability to more accurately control the
curvature of the yield loci. In addition, the four methods can accurately predict the SS yield
stresses of AA5754-O, DP980, and QP980 blanks, as shown in Figure 2b–d. However, only
Method #4 provides the best prediction accuracy for SS yield stress of AA6016-T4, as shown
in Figure 2a. This can be attributed to the exponent of Method #4 having more flexible
adjustment space. To further evaluate the ability of the A-Eyld2000-2d yield criterion with
different parameter identification strategies in describing yield loci, the errors are calculated
through the analytical indicator used by Du et al. [52]:

∆yl =

√√√√ 1
N

N

∑
t=1

{
f
[(

σij
)exp

(t)
]

σ
− 1

}2

(11)

where σij (i, j = 1, 2) is the experimental stress component, N is the number of loading paths,
t is the tth loading path.

Figure 3 shows the prediction errors of the normalized yield loci calculated by the
A-Eyld2000-2d yield criterion with different parameter identification strategies for AA6016-
T4, AA5754-O, DP980, and QP980 blanks. It can be observed that Method #4 provides
the best prediction accuracy for these four blanks, while Method #1 provides the highest
level of prediction errors. Compared with Method #1, the errors of AA6016-T4, AA5754-O,
DP980, and QP980 blanks predicted by Method #4 decreased by 51.57%, 23.94%, 46.32%,
and 50.43%, respectively. Methods #3 and #4 are compared to further illustrate the contri-
bution of exponent m to improving the accuracy of yield criteria in describing the yield
locus of blanks, which have great accuracy and insignificant difference in describing the
mechanical properties of DP980 and QP980 blanks under SS and NPS stress states, as
shown in Figure 2c,d. This can be attributed to Method #4 removing the restriction of
the integer exponent of the yield criterion, and thereby enhancing the ability of the yield
criterion to adjust the curvature of the yield locus. Meanwhile, the quantitative analysis
of errors showed that compared with Method #3, the errors of AA6016-T4, AA5754-O,
DP980, and QP980 blanks predicted by Method #4 decreased by 46.27%, 2.05%, 1.35%,
and 17.86%, respectively, as shown in Figure 3. This proves that changing the exponent
from integer to non-integer has a positive effect on improving the prediction accuracy of
the yield criterion. Note that DP980 always has the lowest prediction errors for the four
engineering materials investigated. This is because there is no phenomenon of residual
austenite transforming into martensite in DP980 compared with QP980 [41]. Meanwhile,
the shapes of the yield loci of DP980 are more rounded than that of aluminum alloy blanks.
Therefore, regardless of the parameter calibration method used, it will always provide the
best prediction accuracy for the DP980.
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Figures 4 and 5 show the normalized UT yield stresses and r-values of AA6016-T4,
AA5754-O, DP980, and QP980 blanks predicted by the A-Eyld2000-2d yield criteria with
different parameter identification strategies, respectively. It can be observed that the four
parameter identification strategies can accurately predict the normalized UT yield stresses
and r-values along the RD, diagonal direction (DD), and transverse direction (TD), but there
are certain deviations when describing the normalized UT yield stresses and r-values at 15◦,
30◦, 60◦, and 75◦ directions along the RD. This can be attributed to the fact that these four
methods employ mechanical properties along the RD, DD, and TD to identify anisotropy
parameters. Therefore, when predicting normalized yield stress and r-values along the
RD, DD, and TD, it is more accurate than other angles. However, it is worth noting that
Method #2 has obvious errors in describing the UT yield stresses of blanks, especially for
AA6016-T4 and QP980, as shown in Figure 4a,d. Meanwhile, Method #4 always provides
the best prediction accuracy for in-plane anisotropic behavior of r-values, which is the most
evident in AA6016-T4 and AA5754-O, i.e., the prediction results provided by Methods #1,
#2, and #3 deviate significantly from the experimental values, as shown in Figure 5a,b. To
further evaluate the ability of the A-Eyld2000-2d yield criterion with different parameter
identification strategies to describe normalized UT yield stresses and r-values, the analysis
indicators proposed by Stoughton and Yoon [53] are used to calculate the prediction errors
∆UT and ∆r:
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1
12




(
σcal

0
σ

exp
0
− 1
)2

+ 2
(

σcal
15

σ
exp
15
− 1
)2

+

2
(

σcal
30

σ
exp
30
− 1
)2

+ 2
(

σcal
45

σ
exp
45
− 1
)2

+ 2
(

σcal
60

σ
exp
60
− 1
)2

+2
(

σcal
75

σ
exp
75
− 1
)2

+

(
σcal

90
σ

exp
90
− 1
)2




(12)

∆r =

√√√√√√√√√√√√

1
12




(
rcal

0
rexp

0
− 1
)2

+ 2
(

rcal
15

rexp
15
− 1
)2

+

2
(

rcal
30

rexp
30
− 1
)2

+ 2
(

rcal
45

rexp
45
− 1
)2

+ 2
(

rcal
60

rexp
60
− 1
)2

+2
(

rcal
75

rexp
75
− 1
)2

+

(
rcal

90
rexp

90
− 1
)2




(13)

Due to the significant anisotropic behavior in the 105◦, 120◦, 135◦, 150◦, and 165◦

directions along the RD, the weights of yield stresses and r-values under the UT stress
states in the 15◦, 30◦, 45◦, 60◦, and 75◦ directions are increased.

Table 2 lists the errors of the normalized UT yield stress and r-values predicted by
the A-Eyld2000-2d yield criterion with different parameter identification strategies. The
average errors of r-values provided by the four methods for all engineering materials
investigated are 0.0911, 0.1229, 0.1294, and 0.0293, respectively. Obviously, compared with
Methods #1, #2, and #3, Method #4 provides the minimum ∆r for these four blanks, and
the average errors are reduced by 67.87%, 76.19%, and 77.40%, respectively. The average
errors of the four methods in predicting UT yield stresses are 0.0114, 0.0265, 0.0147, and
0.0121, respectively. This indicates that except for Method #2, the prediction accuracy of the
other methods is not significantly different. In summary, it can be concluded that among
all the calibration methods investigated, Method #4 is the best and can accurately describe
the plastic anisotropy behavior of blanks under UT, UC, SS, NPS, and EBT stress states,
especially for the plastic flow anisotropic behavior.
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Figure 4. Normalized UT yield stresses of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980 

blanks predicted by the A-Eyld2000-2d yield criterion with different parameter identification strat-
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Figure 4. Normalized UT yield stresses of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980
blanks predicted by the A-Eyld2000-2d yield criterion with different parameter identification strategies.
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Figure 5. r-values of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980 blanks predicted by the
A-Eyld2000-2d yield criterion with different parameter identification strategies.
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Table 2. Errors of the normalized UT yield stress and r-values predicted by the A-Eyld2000-2d yield
criterion with different parameter identification strategies.

Methods
AA6016-T4 AA5754-O DP980 QP980

∆UT ∆r ∆UT ∆r ∆UT ∆r ∆UT ∆r

#1 0.0170 0.2865 0.0172 0.0254 0.0051 0.0324 0.0064 0.0199
#2 0.0662 0.1590 0.0160 0.1573 0.0047 0.0542 0.0190 0.1209
#3 0.0211 0.2133 0.0145 0.1642 0.0166 0.1196 0.0066 0.0206
#4 0.0089 0.0553 0.0165 0.0247 0.0124 0.0255 0.0104 0.0115

3.2. Prediction Results of Several Asymmetric Yield Criteria

To further present the advancement of the new model, the A-Eyld2000-2d yield
criterion employing the best parameter identification strategy is compared with several
asymmetric yield criteria, CPB06 [30], LHY2013 [34], S-Y2004 [28], and Hu & Yoon2021 [40],
which are widely used under the AFR and non-AFR. Combining quantitative analysis of
errors, a systematic evaluation is made for the describing ability of different asymmetric
yield criteria to the anisotropic behavior of four blanks.

Table 3 lists the mechanical properties required to calibrate anisotropic parameters for
several asymmetric yield criteria. Note that the yield models S-Y2004 and Hu & Yoon2021
under the non-AFR use S-Y2009 as the plastic potential function (PPF). The anisotropy
parameters calculated by several asymmetric yield criteria are summarized in Tables A2
and A3 in Appendix B.

Table 3. Mechanical properties required to calibrate anisotropic parameters for several asymmetric
yield criteria.

Mechanical Properties Asymmetric Yield Criteria

σ r
AFR NAFR

CPB06 LHY2013 A-Eyld2000-2d S-Y2004 Hu &Yoon2021

σT0 rT0
√ √ √ √ √ √ √ × √ ×

σT45 rT45 × × √ √ √ √ √ × √ ×
σT90 rT90

√ √ √ √ √ √ √ × √ ×
σb rb

√ × √ √ √ √ √ × √ ×
σC0 -

√
-

√
-

√
-

√
-

√
-

σC45 - × - × - × - × -
√

-
σC90 -

√
-

√
-

√
-

√
-

√
-

σCb - × - × - × - × -
√

-
σS45 - × - × -

√
- × - × -

σ0
PS - × - × -

√
- × - × -

σ90
PS

- × - × -
√

- × - × -

Figure 6 shows the normalized yield locus of AA6016-T4, AA5754-O, DP980, and
QP980 blanks predicted by several asymmetric yield criteria. CPB06 shows significant devi-
ation when describing the yield loci of AA6016-T4 and AA5754-O, as shown in Figure 6a,b.
However, for DP980 and QP980, the errors of normalized yield loci predicted by the five
asymmetric yield criteria are relatively small, and the differences are mainly reflected in
the SS and NPS stress states, as shown in Figure 6c,d. In addition, it can also be observed
that S-Y2004 and Hu & Yoon2021 have very similar abilities to describe the normalized
yield loci of four blanks, and their prediction accuracy is always better than CPB06 under
NPS and SS stress states. To further quantitatively evaluate the ability of five asymmetric
yield criteria to describe the normalized yield loci of four blanks, the errors between the
normalized yield loci and experimental data are calculated by Equation (11).
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Figure 6. Normalized yield loci of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980 blanks
predicted by several asymmetric yield criteria.

Figure 7 shows the errors of normalized yield loci of AA6016-T4, AA5754-O, DP980,
and QP980 blanks calculated by several asymmetric yield criteria. The average errors of the
five yield criteria for the four engineering materials investigated are 0.0271, 0.0508, 0.0215,
0.0265, and 0.0069, respectively. It can be observed that A-Eyld2000-2d can provide the
minimum prediction errors for the normalized yield loci of these four blanks, especially
for NPS and SS stress states, which can be attributed to the new model using more com-
prehensive stress state data to calibrate the anisotropy parameters and exponent m. In
addition, CPB06 provides the highest errors for AA6016-T4 and AA5754-O. Compared to
A-Eyld2000-2d, the errors of both blanks have increased by 92.72% and 82.71%, respectively,
while LHY2013 always has lower errors than S-Y2004 and Hu & Yoon2021, and the average
errors are reduced by 20.66% and 18.87%, respectively. However, LHY2013 provides the
worst prediction accuracy for DP980 and QP980, which is inconsistent with conventional
cognition that increasing the number of yield stresses to identify anisotropy parameters
usually helps to improve the prediction accuracy of yield criteria in describing yield loci
directly related to stress. This can be attributed to the high dependence on blanks, i.e.,
among the four engineering materials investigated in this study, the CPB06 yield criterion
is more suitable for describing the yield loci of BCC materials, while the LHY2013 yield
criterion shows higher applicability to FCC materials.
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Figure 7. Prediction errors of normalized yield loci of AA6016-T4, AA5754-O, DP980, and QP980
calculated by several asymmetric yield criteria.

Figures 8 and 9 show the normalized UT yield stresses and r-values of AA6016-
T4, AA5754-O, DP980, and QP980 blanks predicted by several asymmetric yield criteria,
respectively. It can be observed that the curves of CPB06 in characterizing the in-plane
anisotropic behaviors of four blanks show extremely obvious and strong upward convex or
downward concave trends. The curves deviate significantly from the experimental values
of UT yield stresses for these four blanks. Because the CPB06 yield criterion does not
use the mechanical properties along the DD to identify anisotropy parameters, it exhibits
drastic fluctuations in predicting the normalized UT yield stresses, as shown in Figures 8
and 9. This indicates that the prerequisite for reasonably predicting the UT mechanical
properties of blanks through the yield criterion is to ensure the priority of calibration along
the RD, DD, and TD. However, LHY2013 has large errors in predicting the normalized
UT yield stresses and r-values of DP980 and QP980, and the curves show a relatively
obvious fluctuation. Except for CPB06 and LHY2013, the other three yield criteria can
predict the in-plane anisotropic behaviors of four blanks more reasonably. The prediction
curves of S-Y2004 and Hu & Yoon2021 have the smallest variations and show the weakest
fluctuations. Furthermore, although S-Y2004, Hu & Yoon2021, and A-Eyld2000-2d show
different trends in predicting the normalized UT yield stresses, they all show good accuracy
in predicting the normalized UT yield stresses and r-values of four blanks along the RD,
DD, and TD. To further quantitatively evaluate the ability of the five yield criteria to predict
the normalized UT yield stresses and r-values of four blanks, the errors ∆UT and ∆r of
several asymmetric yield criteria to predict the normalized UT yield stresses and r-values
are calculated by Equations (12) and (13), respectively.
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Figure 8. Normalized UT yield stresses of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980
predicted by several asymmetric yield criteria.

Table 4 shows the errors ∆UT and ∆r for predicting the normalized UT yield stresses
of four blanks based on several asymmetric yield criteria. The average errors of the
normalized UT yield stresses predicted by the five yield criteria for the four engineering
materials investigated are 0.0082, 0.3323, 0.0201, 0.0092, and 0.0107, respectively, and the
average errors of r-values are 0.0339, 1.6855, 0.1331, 0.0339, and 0.0504, respectively. In
general, CPB06 always provides the highest errors. Compared with the other four yield
criteria, the average errors of CPB06 in describing normalized UT yield stresses increased
by 97.53%, 93.95%, 97.23%, and 96.78%, respectively. The average errors in describing
r-values increased by 97.99%, 92.10%, 97.99%, and 97.01%, respectively, while the quadratic
yield function S-Y2004 achieves the best returns in predicting normalized UT yield stresses.
Due to the application of the same PPF in S-Y2004 and Hu & Yoon2021, the calculated ∆r are
completely equal. In summary, compared with other asymmetric yield criteria, A-Eyld2000-
2d can always make the most accurate prediction of the normalized yield loci of four blanks,
especially under NPS and SS stress states. Considering that the blanks are mainly subjected
to multi-axial stress states in the actual forming process, and none of the yield criteria
can accurately predict the plastic anisotropy behavior under all loading paths, although
A-Eyld2000-2d is not stable enough and there exists a certain deviation to describing the
normalized UT yield stresses and r-values, as shown in Figures 8a–c and 9c,d, it is still the
best asymmetric yield criteria investigated.
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Table 4. Errors of normalized UT yield stresses and r-values predicted by several asymmetric yield 

criteria. 

Yield Criteria 
AA6016-T4  AA5754-O  DP980  QP980 

UT
  r   UT

  r   UT
  r   UT

  r  
S-Y2004  0.0044  0.0689  0.0166  0.0287  0.0067  0.0178  0.0051  0.0201 
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Table 4. Errors of normalized UT yield stresses and r-values predicted by several asymmetric
yield criteria.

Yield Criteria
AA6016-T4 AA5754-O DP980 QP980

∆UT ∆r ∆UT ∆r ∆UT ∆r ∆UT ∆r

S-Y2004 0.0044 0.0689 0.0166 0.0287 0.0067 0.0178 0.0051 0.0201
CPB06 0.3354 0.8146 0.5127 4.8851 0.4343 0.8401 0.0466 0.2023

LHY2013 0.0058 0.0769 0.0166 0.0275 0.0490 0.2692 0.0090 0.1588
Hu & Yoon2021 0.0053 0.0689 0.0193 0.0287 0.0068 0.0178 0.0052 0.0201
A-Eyld2000-2d 0.0103 0.0645 0.0165 0.0247 0.0107 0.0393 0.0051 0.0730

3.3. Evolving Plastic Behavior

The deformation characteristics of sheet metals under a specific level of EPS cannot
fully reflect the anisotropic behavior during the forming process [54], i.e., the materials ex-
hibit an anisotropic hardening (AH) phenomenon. Therefore, this section further describes
the yield loci, UT yield stresses, and r-values of four blanks at different EPSs and compared
with the predicted results of the isotropic hardening (IH) concept.

Figure 10 shows the yield loci of AA6016-T4, AA5754-O, DP980, and QP980 blanks
predicted by A-Eyld2000-2d based on the IH and AH concepts at various EPSs. Whether
applying IH or AH concepts, both can accurately predict the initial yield loci of four blanks
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at EPS = 0.002. However, the IH concept exhibits obvious defects in describing the yield
loci of four blanks with the increase of EPS. Overall, the SS yield stress and UC yield stress
along the RD predicted by the IH concept for these four blanks have significant errors
compared to experimental data, especially in the stage of large plastic strain. In addition,
the UC yield stresses along the TD of AA5754-O, DP980, and QP980 predicted by the
IH concept also have obvious errors, as shown in Figure 10b–d. Furthermore, it can be
observed that the IH concept is difficult to provide accurate prediction results for AA5754-O
and QP980 under NPS and EBT stress states, as shown in Figure 10b,d. In contrast, the AH
concept can always accurately predict the yield loci of four blanks with changes in EPS.
This can be attributed to the AH concept using instantaneous mechanical properties to
identify the anisotropy parameters of the yield criterion. In other words, the IH concept
cannot accurately predict the yield loci under all EPS conditions, which is most significant
in AA6016-T4 and QP980, as shown in Figure 10a,d.
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Figure 10. Yield loci of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980 blanks predicted by
IH and AH concepts at various EPSs.

Figure 11 shows the UT yield stresses of AA6016-T4, AA5754-O, DP980, and QP980
predicted by the A-Eyld2000-2d yield criterion based on the IH and AH concepts at various
EPSs. For AA6016-T4 and QP980, because the curve shapes of UT yield stress predicted by
the IH concept are calculated through the anisotropic parameters at the initial yield point,
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the prediction accuracy gradually deteriorates with the increase of equivalent plastic strain,
while the accuracy of UT curves predicted based on the AH concept gradually improves,
as shown in Figure 11a,d. Meanwhile, it can also be observed that the curve obtained
based on the AH concept is more stable with the continuous increase of EPS, which makes
the prediction accuracy of UT yield stresses at 15◦ intervals along the RD much higher
than that of the IH concept. This indicates that the prediction effect of the A-Eyld2000-2d
yield criterion based on the AH concept on the UT yield stresses of four blanks become
increasingly excellent.
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Figure 11. UT yield stresses of (a) AA6016-T4, (b) AA5754-O, (c) DP980, and (d) QP980 predicted by
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Figure 12 shows the r-values of AA6016-T4, AA5754-O, DP980, and QP980 predicted
by the A-Eyld2000-2d yield criterion based on the IH and AH concepts at various EPSs.
These two different concepts have the same ability to describe the r-values at the initial
yield point for these four blanks, and can accurately predict r-values along the RD, DD, and
TD. However, the IH concept is difficult to provide reasonable predictions for the r-values
of AA6016-T4 and QP980 with the EPS increases. In contrast, the AH concept can effectively
describe the r-values along the RD, DD, and TD, and the prediction accuracy of r-values
in other directions has also become increasingly accurate, as shown in Figure 12a–d. In
addition, although there is no evolving flow behavior in the r-values of AA5754-O and
DP980, the ability of the AH concept to describe r-values at 15◦ intervals along the RD is also
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becoming stronger with the increase of EPS, as shown in Figure 12b,c. This indicates that it
is necessary to describe the evolving plastic behavior of blanks through the AH concept.
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4. Conclusions

In this work, the Eyld2000-2d yield criterion was improved by introducing hydrostatic
pressure and proposed an A-Eyld2000-2d asymmetric yield criterion that can describe the
SD effect and anisotropic hardening. Four different parameter identification strategies
were designed for the new model, and their validity and applicability in describing plastic
anisotropy were verified through AA6016-T4, AA5754-O, DP980, and QP980 blanks. Mean-
while, the A-Eyld2000-2d employing the optimal parameter identification strategy was
compared with several existing pressure-sensitive asymmetric yield criteria under AFR
and non-AFR. Finally, the influence of different hardening concepts on the evolving plastic
behavior of blanks was analyzed, and the following conclusions can be drawn:

(1) The A-Eyld2000-2d yield criterion proposed by coupling hydrostatic pressure method
has higher prediction accuracy for the tensile and compressive asymmetric yield
behavior of sheet metals compared to the traditional Eyld2000-2d yield criterion.
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(2) It is feasible to introduce additional NPS yield stresses to calibrate the exponent m of
the new model. The parameter identification strategy with a non-integer exponent can
significantly improve the prediction ability of the yield criterion for plastic anisotropic
behavior, especially for in-plane plastic flow.

(3) The A-Eyld2000-2d yield criterion can provide the best prediction accuracy for the
yield loci of four blanks, compared to the S-Y2004, CPB06, LHY2013, and Hu &
Yoon2021 yield criteria. The ability to describe UT yield stresses and r-values also
shows reasonable prediction accuracy, which is most suitable for characterizing the
plastic anisotropy behavior of these four blanks.

(4) The deformation characteristics of the initial yield point cannot fully reflect the plastic
anisotropic behavior of blanks during the entire deformation stage, considering that
the anisotropic hardening concept can significantly improve the ability of the yield
criterion to describe the evolving yield behavior and provide sufficient power for the
accurate characterization of anisotropic behavior at various EPSs.
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Appendix A. Anisotropy Parameters Calculated by Different Parameter Identification
Strategies

Table A1. Anisotropy parameters calculation results of AA6016-T4, AA5754-O, DP980, and QP980 blanks.

Materials Methods
Anisotropy Parameters

C’
11 C’

12 C’
21 C’

22 C’
66 C”

11 C”
12 C”

22 C”
66 hx hy m

AA6016-
T4

#1 0.0639 1.2217 −1.0993 −1.1564 −0.6901 0.0240 −0.9873 0.0670 −1.5581 - - 8
#2 0.0540 1.1636 1.0995 −0.0462 0.9001 0.1775 0.3873 0.8453 −1.5309 −0.0076 0.0116 8
#3 −0.0491 −1.2111 −1.0499 0.0423 −0.8238 0.0056 −0.9575 0.1264 1.5649 −0.0066 0.0136 8
#4 1.0829 1.0797 −0.0457 −1.1160 0.9356 0.0202 −0.8239 −0.3891 1.2707 −0.0235 0.0021 17.3657

AA5754-
O

#1 −0.9159 0.0657 0.0588 −1.0801 1.0802 −0.0689 −1.0264 0.0650 −1.2148 - - 8
#2 0.9543 −0.1929 −0.9290 −0.7634 −1.0551 −1.0760 0.0305 −1.1241 1.2151 −0.0171 0.0021 8
#3 −0.9956 −1.0216 0.9945 −0.0689 −1.0386 −0.0486 1.0663 −0.0795 1.2319 −0.0088 −0.0046 8
#4 −0.9972 0.0456 −0.0092 −1.1091 1.0798 −1.0682 0.0736 −1.0055 1.2479 −0.0101 −0.0049 8.4664

DP980

#1 −0.0499 −1.0020 −1.0562 −0.0830 1.0854 0.6179 −1.1072 0.5978 −1.2492 - - 6
#2 −1.0467 −0.0945 −0.0527 −0.9848 1.0894 −0.6309 1.1125 −0.6240 1.1477 0.0019 0.0092 6
#3 1.1080 −0.0161 −1.1077 −1.0329 −1.0674 0.1468 −0.7867 −0.1393 −0.9006 0.0046 0.0027 6
#4 −0.0183 1.0318 1.1271 0.0186 1.0985 0.1808 −0.5419 −0.4794 −0.8793 0.0047 0.0028 6.0340

QP980

#1 −1.1328 −0.0153 0.0074 −1.0673 −1.1022 0.2161 −0.7535 0.0491 0.6944 - - 6
#2 0.0104 −1.1038 1.0940 1.1144 1.0678 −0.7402 −0.2993 −0.1210 1.0231 −0.0109 −0.0110 6
#3 −1.1117 −0.0749 −0.0059 −1.0243 −1.0820 −0.5555 1.0464 −0.5353 1.3200 −0.0188 −0.0014 6
#4 −1.0697 0.2114 −0.2727 −0.8849 1.2262 0.3140 −0.9775 −0.2876 −0.8423 −0.0123 −0.0019 2.8502
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Appendix B. Anisotropy Parameters Calculated by Different Yield Criteria

Table A2. Anisotropy parameters of AA6016-T4 and AA5754-O calculated by different yield criteria.

Yield Criteria AA6016-T4 AA5754-O

S-Y2004

α1 −7 × 10−5 α1 −8 × 10−5

α2 −3 × 10−6 α2 4 × 10−5

λy1 1.0274 λy1 1.0279
λy2 1.1466 λy2 1.0605
νy 0.5199 νy 0.5586
ρy 1.7016 ρy 1.7021

CPB06

C11 0.0089 C11 −3 × 10−6

C22 −0.0012 C22 0.0003
C33 −0.0012 C33 0.0075
C12 0.0006 C12 0.0085
C13 3 × 10−6 C13 −0.0010
C23 0.0085 C23 −0.0010
C66 0.0042 C66 −0.0483

LHY2013

a1 0.9230 a1 −1.7729
a2 1.1087 a2 0.2303
a3 1.1223 a3 −1.5438
a4 1.0992 a4 −0.8316
a5 1.0218 a5 −0.0958
a6 0.9753 a6 −1.7788
a7 0.9160 a7 0.9472
a8 1.2183 a8 −1.2773
hx −0.0134 hx −0.0125
hy −0.0006 hy 0.0096

Hu & Yoon2021

µ 0.0047 µ −0.0097
C11 −0.0267 C11 −0.0057
C22 −0.0087 C22 0.0263
C66 −24.6485 C66 14.3624
E 1.1158 E 1.0325
F 1.0323 F 0.9847
G 1.0055 G 1.0560

A-Eyld2000-2d

C′11 0.0626 C′11 −0.9972
C′12 1.1393 C′12 0.0456
C′21 1.0457 C′21 −0.0092
C′22 −0.0548 C′22 −1.1091
C′66 0.2116 C′66 1.0798
C′′11 0.0605 C′′11 1.0682
C′′12 −0.7675 C′′12 0.0736
C′′22 −0.4126 C′′22 −1.0055
C′′66 1.4650 C′′66 1.2479
hx −0.0150 hx −0.0101
hy 0.0010 hy −0.0049
m 11.2927 m 8.4664
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Table A3. Anisotropy parameters of DP980 and QP980 calculated by different yield criteria.

Yield Criteria DP980 QP980

S-Y2004

α1 7 × 10−6 α1 −5 × 10−6

α2 1 × 10−5 α2 −6 × 10−6

λy1 0.9860 λy1 1.0091
λy2 0.9549 λy2 0.9458
νy 0.5138 νy 0.4805
ρy 1.4520 ρy 1.4455

CPB06

C11 0.0019 C11 −0.0005
C22 −0.0036 C22 0.0028
C33 −0.0029 C33 0.0238
C12 −0.0027 C12 0.0241
C13 −0.0034 C13 0.0037
C23 0.0016 C23 −0.0017
C66 −0.0013 C66 −0.0257

LHY2013

a1 −1.6343 a1 0.0185
a2 1.5577 a2 −1.6411
a3 1.6999 a3 −1.7365
a4 0.0370 a4 −0.0551
a5 0.0027 a5 0.8565
a6 1.6425 a6 1.6198
a7 0.9453 a7 0.6292
a8 0.8113 a8 1.6660
hx 0.0071 hx −0.0045
hy 0.0098 hy −0.0060

Hu & Yoon2021

µ 0.0028 µ −0.0032
C11 0.0065 C11 −0.0019
C22 0.0103 C22 −0.0039
C66 8.3327 C66 21.4960
E 0.9684 E 0.9373
F 0.9594 F 0.9729
G 0.9687 G 0.9686

A-Eyld2000-2d

C′11 0.0030 C′11 −0.8073
C′12 −1.0565 C′12 0.6162
C′21 −1.1262 C′21 1.2326
C′22 −0.0031 C′22 0.6194
C′66 1.1000 C′66 1.2455
C′′11 −0.0219 C′′11 0.2957
C′′12 −0.1449 C′′12 0.7318
C′′22 −0.7115 C′′22 0.1844
C′′66 −0.9697 C′′66 −0.1656
hx 0.0084 hx −0.0047
hy 0.0061 hy −0.0060
m 5.4945 m 3.4011
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: This paper studies the plastic behavior of the ZK61M magnesium alloy through a combina-
tion method of experiments and theoretical models. Based on a dog-bone specimen under different
loading directions, mechanical tests under uniaxial tension were carried out, and the hardening
behavior was characterized by the Swift–Voce hardening law. The von Mises yield function and
the pressure-coupled Drucker yield function were used to predict the load–displacement curves of
the ZK61M magnesium alloy under various conditions, respectively, where the material parameters
were calibrated by using inverse engineering. The experimental results show that the hardening
behavior of the ZK61M magnesium alloy has obvious anisotropy, but the effect of the stress state is
more important on the strain hardening behavior of the alloy. Compared with the von Mises yield
function, the pressure-coupled Drucker yield function is more accurate when characterizing the
plastic behavior and strain hardening in different stress states of shear, uniaxial tension, and plane
strain tension for the ZK61M alloy.

Keywords: ZK61M magnesium alloy; hardening behavior; anisotropy; yield function; plastic evolution

1. Introduction

ZK61M magnesium alloy is extensively utilized in the domestic military industry
to manufacture components that are subjected to significant mechanical stress, such as
aircraft skins, panels, and interior components, as well as complex die forging parts. The
incorporation of a zirconium element into magnesium alloys offers numerous benefits, for
example, enhanced mechanical properties and robust overall performance. As a hexagonal
dense packing (HCP) metal, the mechanical behavior of the ZK61M magnesium alloy is very
complex. Selecting an appropriate yield function based on the hardening characteristics of
the ZK61M magnesium alloy is advantageous in enhancing the dependability of numerical
simulations for steel forming and fulfilling the requirements of real-world applications.

To study the yield behavior of metals, scholars have carried out a lot of research. The
Hill48 yield criterion [1] was the first attempt to analyze anisotropy and is now one of
the most widely used quadratic yield functions, providing accurate prediction of these
hardening curves under uniaxial tension along different directions and under equibiaxial
tension. However, due to the quadratic form of the Hill48 function, it is impossible to distin-
guish the difference in the yield surface of metals with different crystal structures. Hosford
et al. [2,3] used an exponential form to combine the yield surfaces of body-centered cubic
(BCC) and face-centered cubic (FCC) metals. Barlat et al. [4] extended isotropic functions to
anisotropy by introducing anisotropic coefficients through linear transformation tensors.
Barlat et al. [5,6] proposed the Yld2000-2d and Yld2004-18p yield criteria to characterize the
anisotropic behavior of metals under plane and spatial stress states, respectively. Cazacu
et al. [7] introduced an orthogonal anisotropic yield criterion in the form of the principal
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value of stress deviation to capture the anisotropy and tension–compression asymmetry.
Some yield functions were established based on stress invariants. Yoon et al. [8] pro-
posed an asymmetric yield function with the first invariant to accurately characterize the
tension–compression asymmetry. Lou and Yoon [9] effectively distinguished the anisotropic
behavior of metals with BCC and FCC structures by correcting for the effect of the third
invariant, which was used to model the deep drawing of the 6K21 aluminum alloy [10].
Lou et al. [11] proposed a pressure-coupled Drucker yield function to simulate the strength
of sheet metal between shear and plane strain, which takes into account the influence of
three stress invariants: pressure sensitivity, Lode dependence, and strength difference.

In recent years, some anisotropic hardening models were proposed to capture the
evolution of the yield surface through the analytical description of the anisotropy coefficient.
Stoughton and Yoon [12] established the S-Y2009 yield function, and the numerical result
was consistent with the hardening behavior in reality. Lee et al. [13] proposed a CQN
model by the coupling of the above quadratic yield function and the Hershey–Hosford
yield function. Chen et al. [14] coupled the S-Y2009 function with the Drucker function
to explain the difference in the yield behavior of metals with BCC and FCC structures,
which was used for the plastic evolution characterization for 304 stainless steel [15]. Hou
et al. [16] proposed an anisotropic hardening model by coupling the asymmetric Hill48
function with the isotropic stress-invariant yield function. Hu et al. [17] coupled the yield
criterion of fourth-order polynomials with the non-quadratic yield function under the
associated flow rule to analytically describe the evolution process of anisotropic yield
behavior. Wu et al. [18] established a Cazacu2004 yield function [19] with the temperature
variable to describe the tension–compression asymmetry of a Mg-Gd-Y alloy under various
temperatures. Lou et al. [20] proposed a stress invariant-based yield function to accurately
simulate the strain hardening behavior of metals with BCC, FCC, and HCP structures under
different stress states, and the convexity was analyzed by a GINCA method [21]. Hou
et al. [22] proposed a constitutive model to accurately describe the anisotropy behavior
of sheet metal. Zhang and Lou [23] characterized the evolving plastic behavior of BCC
and FCC metals by coupling the enhanced pressure-coupled Drucker yield function and
the S-Y2009 model. The yield criterion proposed by Hu et al. considers the pure shear
stress along various directions to simultaneously predict the mechanical behavior under
both pure shear and uniaxial tension [24]. Lou and Yoon [25] constructed an anisotropic
asymmetric hardening model by coupling two Hill48 functions with Lode correlation
weight functions.

Recently, Bassini et al. [26] investigated the effect of cold rolling on the microstructural
and mechanical properties of a dual-phase steel. Baral et al. [27] analyzed plastic evolution
and its modeling of an Al-Si-Mg die-cast alloy. Ha et al. [28] characterized the plastic
anisotropy of annealed, commercially pure aluminum through experiments and modeling.
Allen et al. [29] studied anisotropic hardening and texture evolution due to dislocation
transmutation in twining using crystal plasticity modeling. Imandoust et al. [30] reviewed
the effect of rare-earth elements on texture evolution and anisotropic hardening during
the processing of magnesium alloys. Ha et al. [31] investigated the plastic anisotropy of
a bake-hardening AA6013 aluminum sheet. Knysh and Korkolis [32] identified the post-
necking hardening response of rate- and temperature-dependent metals. Proust et al. [33]
modeled the texture, twinning, and hardening evolution during deformation of hexagonal
materials. Dick and Korkolis [34] investigated the anisotropic hardening of thin-walled
tubes using a new experimental method for combined tension and shear loading. Generally
speaking, the more material parameters in the yield function, the more accurately the
anisotropic hardening behavior can be characterized. Previous research mostly considered
the anisotropic and strength differential effect, but did not consider the effect of stress states
on the flow curves. The stress-state effect on the different strain hardening behaviors and
their modeling is the focus of this study.

This investigation aimed to characterize the distinct hardening behavior of ZK61M in
different stress states, from shear to plane strain tension, using experiments and analytical
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and numerical modeling. The mechanical experiments were conducted under various
stress states and loading directions. The hardening behavior was analyzed by using the
Swift–Voce hardening equation. The inverse engineering method was used to optimize
the prediction result. A comparative analysis was conducted to assess the precision of the
pressure-coupled Drucker yield function and the von Mises yield function in characterizing
the plastic deformation behavior of the ZK61M magnesium alloy.

2. Experiment
Materials and Experiments

The parent material of the ZK61M magnesium alloy is a sheet metal with 2 mm
thickness, which was prepared by using the rolling process. The size of these experimental
specimens is shown in Figure 1, including dog bone, R20 notched, R5 notched, and shear
specimens. To investigate the anisotropy of the ZK61M magnesium alloy, four specimens
were cut along three different angles, 0◦, 45◦, and 90◦, namely, RD, DD, and TD. Three
replicates were conducted for each specimen in order to validate the precision and reliability
of the collected data.
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Figure 1. Size structure of (a) dog-bone specimen; (b) R20 notched specimen; (c) R5 notched specimen;
and (d) shear specimen. (Unit: mm).

The experimental equipment is shown in Figure 2. A universal mechanical exper-
imental machine manufactured by WANCE, Shenzhen, China and XTOP digital image
correlation system in Xi’an, China were utilized to conduct tests and obtain the deformation
process, respectively. The experimental apparatus is capable of preserving the symmetry
and stability of clamping, hence enabling the acquisition of precise experimental load and
displacement measurements. In the experimental procedure, it is important to determine
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the tensile velocity of these specimens. Given the quasi-static strain rate (0.001/s), the
tensile velocity of the dog bone, R20 notched, R5 notched, and shear specimens was deter-
mined to be 3.6, 0.5, 0.5, and 0.5 mm/min, respectively. A 30 mm gauge was established
for the dog bone and R20 notched specimens, and a 20 mm gauge was created for the R5
notched and shear specimens, as shown in Figure 1. The load–displacement curves of
all tests and the longitudinal strain–width strain curves of the dog-bone specimen were
obtained by the analysis of XTOP and GOM systems, as presented in Figures 3 and 4.

Materials 2024, 17, x FOR PEER REVIEW 4 of 17 
 

 

Figure 1. Size structure of (a) dog-bone specimen; (b) R20 notched specimen; (c) R5 notched speci-
men; and (d) shear specimen. (Unit: mm).  

The experimental equipment is shown in Figure 2. A universal mechanical experi-
mental machine manufactured by WANCE, Shenzhen, China and XTOP digital image cor-
relation system in Xi’an, China were utilized to conduct tests and obtain the deformation 
process, respectively. The experimental apparatus is capable of preserving the symmetry 
and stability of clamping, hence enabling the acquisition of precise experimental load and 
displacement measurements. In the experimental procedure, it is important to determine 
the tensile velocity of these specimens. Given the quasi-static strain rate (0.001/s), the ten-
sile velocity of the dog bone, R20 notched, R5 notched, and shear specimens was deter-
mined to be 3.6, 0.5, 0.5, and 0.5 mm/min, respectively. A 30 mm gauge was established 
for the dog bone and R20 notched specimens, and a 20 mm gauge was created for the R5 
notched and shear specimens, as shown in Figure 1. The load–displacement curves of all 
tests and the longitudinal strain–width strain curves of the dog-bone specimen were ob-
tained by the analysis of XTOP and GOM systems, as presented in Figures 3 and 4. 

 
Figure 2. Universal mechanical experimental machine and XTOP digital image correlation system. Figure 2. Universal mechanical experimental machine and XTOP digital image correlation system.

Materials 2024, 17, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Load–displacement curves of four different samples of ZK61M: (a) dog-bone specimen; 
(b) R20 notched specimen; (c) R5 notched specimen; (d) shear specimen. 

 
Figure 4. Longitudinal strain–width strain curves of the dog-bone specimen for the ZK61M magne-
sium alloy. 

From the load–displacement curves, the majority of the specimens have a notable 
degree of repeatability. It is evident that the load–displacement curve of each specimen 
exhibits a significant anisotropy. The dog-bone specimen exhibits a maximum strength 
difference of approximately 3.8%. Similarly, the R20 notched specimen demonstrates a 
maximum strength difference of approximately 2.2%, while the R5 notched specimen dis-
plays a maximum strength difference of approximately 9.5%. The shear specimen exhibits 
a maximum strength difference of approximately 3.9%. The conspicuousness of the max-
imum strength disparity among the four types of samples is evident. This indicates that 

Figure 3. Load–displacement curves of four different samples of ZK61M: (a) dog-bone specimen;
(b) R20 notched specimen; (c) R5 notched specimen; (d) shear specimen.

41



Materials 2024, 17, 1150

Materials 2024, 17, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Load–displacement curves of four different samples of ZK61M: (a) dog-bone specimen; 
(b) R20 notched specimen; (c) R5 notched specimen; (d) shear specimen. 

 
Figure 4. Longitudinal strain–width strain curves of the dog-bone specimen for the ZK61M magne-
sium alloy. 

From the load–displacement curves, the majority of the specimens have a notable 
degree of repeatability. It is evident that the load–displacement curve of each specimen 
exhibits a significant anisotropy. The dog-bone specimen exhibits a maximum strength 
difference of approximately 3.8%. Similarly, the R20 notched specimen demonstrates a 
maximum strength difference of approximately 2.2%, while the R5 notched specimen dis-
plays a maximum strength difference of approximately 9.5%. The shear specimen exhibits 
a maximum strength difference of approximately 3.9%. The conspicuousness of the max-
imum strength disparity among the four types of samples is evident. This indicates that 

Figure 4. Longitudinal strain–width strain curves of the dog-bone specimen for the ZK61M
magnesium alloy.

From the load–displacement curves, the majority of the specimens have a notable
degree of repeatability. It is evident that the load–displacement curve of each specimen
exhibits a significant anisotropy. The dog-bone specimen exhibits a maximum strength
difference of approximately 3.8%. Similarly, the R20 notched specimen demonstrates a
maximum strength difference of approximately 2.2%, while the R5 notched specimen
displays a maximum strength difference of approximately 9.5%. The shear specimen
exhibits a maximum strength difference of approximately 3.9%. The conspicuousness of
the maximum strength disparity among the four types of samples is evident. This indicates
that the ZK61M magnesium alloy exhibits clear anisotropy under uniaxial tension, plane
strain tension, and shear strength. From the longitudinal strain–width strain curves, the
r-value also presents some anisotropy. The result indicates that the ZK61M magnesium
alloy possesses the anisotropic plastic flow phenomenon.

The experimental true stress–true plastic strain curves of the dog-bone specimen
along RD are shown in Figure 5 and are described by the Swift and Voce hardening laws,
respectively. The parameters in the Swift and Voce hardening laws are calibrated by the
simplex method in the Origin 8.5.1 software. The calibrated coefficients are presented in
Table 1.
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Table 1. Swift and Voce hardening coefficients of the dog-bone specimen along RD for ZK61M
magnesium alloy.

Swift Coefficients in σSwift(ε) = k(e0 + ε)n Voce Coefficients in σVoce(ε) = A − (A − B)−Cε

k e0 n A B C
0.443 GPa 1.406 × 10−4 0.136 0.321 GPa 0.1777 GPa 43.079

3. Model and Method
3.1. Pressure-Coupled Drucker Yield Function

The precise modeling of sheet metal strength between shear and plane strain is of
significance in ensuring the reliability of the analysis of the sheet metal forming process. In
the case of nearly isotropic metals, the normalized third stress invariant exhibits equivalence
between uniaxial tension and plane strain tension. It is imperative to consider the influence
of pressure in order to accurately model the disparity in strength between shear and plane
strain tension. Therefore, by coupling the pressure effect with the Drucker function, the
following function is proposed:

f (σij) = a[3bη +
1
3
(27 − 4cξ2)1/6]σ̄VM (1)

where σ̄VM is the von Mises equivalent stress, η is the stress triaxiality, ξ is the normal-
ized Lode parameter, and a, b, and c are the material parameters. Here, parameter a is
calculated as

a =
1

b + 1
3 (27 − 4c)1/6

(2)

The value of parameter a depends on the stress–strain curve calculated by the ex-
periment. Based on the conclusion that the material strength is linearly affected by the
hydrostatic pressure, parameter b is introduced as a pressure-sensitive parameter, and
parameter c is used to simulate the dependence of the yield on the third invariant. The
value of parameter c ranges from −3.375 to 2.25 to guarantee the convexity of the above
function, which is the same as that in the Drucker function. The effect of the third stress
invariant on the yield surface is shown in Figure 6. When c = 0, the third stress invariant
has no effect on the yield, and the yield surface is reduced to the von Mises yield surface.
When c < 0, the Drucker yield surface around the normalized plane strain tension is greater
than the von Mises yield surface, which means that higher stress is required to activate the
plastic deformation around the normalized plane strain tension. On the contrary when
c > 0, the Drucker yield surface is smaller than the von Mises yield surface, indicating that
the stress required for the material to plastically deform under plane strain tension is lower.

The above typical yield surface is shown in Figure 7, where the stress–strain curve is
assumed to be measured by the uniaxial tensile test. Parameter b is equal to 0.05 to consider
the pressure sensitivity, and parameter c is equal to 2 to couple the third stress invariant
effect. Here, parameter a is equal to 1.6821, which is calculated from Equation (2).

The pressure sensitivity of Equation (1) enables it to model the difference between
shear and plane strain tension strength, while the Lode dependence gives the yield function
flexibility to characterize the different strength ratios of uniaxial and plane strain tension.
Therefore, the pressure-coupled Drucker yield function can accurately predict sheet metal
strength under shear, uniaxial tension, and plane strain tension.
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3.2. Inverse Engineering

The flow chart of inverse engineering is depicted in Figure 8, which is applied to
references [11,20,35–37]. Initially, an appropriate value is assigned as the initial value
for the optimization parameter. Subsequently, the parameter is numerically simulated,
and the numerical data are extracted and compared to the corresponding experimental
value. The discrepancy between the numerical and the experimental values is quantified
by utilizing the error function to assess the precision of the prediction. To obtain the most
optimal optimization settings, it is important to minimize the error function. If the value
of the error function exceeds the expected value, a simulation is conducted to predict
the next optimization parameter. The updated prediction value is then compared to the
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experimental value once again, ensuring that the error function is less than or equal to the
expected value. This process is repeated until the optimal parameter is obtained.
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4. Comparison of the Predicted Load–Displacement Curves between Different
Yield Functions
4.1. Mesh Sensitivity Analysis

The load–displacement curve of R20 notched specimens was numerically predicted
by using ABAQUS/Explicit 6.14 with different element sizes to study the element size
effect. The 1/8 finite element model was used to study the influence of six different element
sizes on the numerical result of the R20 notched specimen, as shown in Figure 9. Three
symmetric boundary constraints were applied to the numerical model accordingly because
the 1/8 FE model was adopted to reduce computation time. The element used was a type
of brick element with reduced integration called C3D8R. The element numbers were 220,
440, 660, 880, 1100, and 4400 for the six different meshing results in the figure, respectively.
From model 1 to model 5, the number of units in the thickness direction gradually increased
from one layer to five layers, and the number of units in each layer was consistent. The
mesh in the thickness direction of model 6 was five layers, but the overall mesh size was
smaller than that of model 5. Here, the elastic modulus in the material card was set to
45 GPa, the Poisson’s ratio was set to 0.33, and the density was set to 1.8 × 10−6 kg/mm3.
The strain hardening of all models was modeled using the Swift–Voce hardening law as

σ̄ =
1
2
[k(e0 + ε)n + (A − (A − B)exp(− Cε)] (3)

where k, e0, n, A, B, and C are strain hardening parameters. This can be seen from the coeffi-
cients in Table 2. The flow chart of the numerical simulation is referenced in reference [38].

Table 2. Swift–Voce hardening coefficients of the dog-bone specimen along RD.

σSwift−Voce(ε) = α
[
k(e0 + ε)n]+(1 − α)[A − (A − B) − Cε]

k e0 n A B C α
0.443 1.406 × 10−4 0.136 0.321 0.178 43.079 0.5
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(d) model #4: 880 elements; (e) model #5: 1100 elements; and (f) model #6: 4400 elements.

Figure 10 shows the predicted load–displacement curves of the six finite element mod-
els with different element sizes in Figure 9. Through a comparison with the experimental
result, it is found that the element size has little influence on the numerical results of the
R20 notched specimen when it is smaller than 0.5 mm in the edge length of the C3D8R
elements. Therefore, numerical models with a similar element size to #1 were adopted
for the simulation of all the specimens. In addition, the yield strength in the numerical
simulation is different from that in the experiments, as shown in Figure 10. This is because
the stress–strain curve is calibrated from the dog-bone specimens for which the stress state
is uniaxial tension, while the stress state of the notched R20 specimens is between uniaxial
tension and plane strain tension. The elastic regime of the numerical and experimental
curves is observed to be different after the force is higher than 3.2 kN. This is because, in
experiments, small plastic deformation takes place at the grain boundary, thereby reducing
the slope of the force–stroke curves. The change in elastic modulus in the simulation at
about 3.2 kN is expected to be caused by a numerical error in the computation of the onset of
plastic deformation under small plastic deformation by the return-mapping algorithm. Last,
the predicted force–stroke curve at large displacement is observed to decrease, while the
experimental results do not drop. This is because the Swift–Voce hardening law calibrated
by the stress–strain curve from the dog-bone specimen underestimates the strain hardening
behavior under large plastic deformation. Therefore, the strain hardening behavior under
large plastic strain is calibrated by the inverse engineering approach in Sections 4.2 and 4.3
of this study.

46



Materials 2024, 17, 1150Materials 2024, 17, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 10. Comparison between the predicted load–displacement curves of six finite element mod-
els with different element sizes with the experimental results for the R20 notched specimen. 

Table 2. Swift–Voce hardening coefficients of the dog-bone specimen along RD. 𝛔𝑺𝒘𝒊𝒇𝒕 𝑽𝒐𝒄𝒆(𝜺) = 𝜶[𝒌(𝒆𝟎 + 𝜺)𝒏] + (𝟏 − 𝜶)[𝑨 − (𝑨 − 𝑩) 𝑪𝜺] 𝑘 𝑒  𝑛 𝐴 𝐵 𝐶 𝛼 
0.443 1.406 × 10−4 0.136 0.321 0.178 43.079 0.5 

4.2. Von Mises Yield Function  
The numerical simulation of R20 notched, R5 notched, and shear specimens was per-

formed, where the yield function was the von Mises criterion. The numerical load–dis-
placement curves were compared with the experimental results, as presented in Figure 
11. Table 2 displays the parameters associated with the anticipated Swift–Voce hardening 
law. Clearly, the prediction error of the R20 notched specimen is approximately 20% at 
the elastic deformation stage, while that is approximately 5%. The error magnitude ob-
served during the elastic stage of the R5 notched specimen is around 25%, while the error 
magnitude during the plastic stage is approximately 2%. The displacement increment is 
observed to have a significant effect on the error value of the shear specimen. Specifically, 
the error value initially rises, followed by a subsequent decline. It is noteworthy that the 
total error value is greater in magnitude. The numerical load exhibits an approximate in-
crease of 4% compared to the experimental load of the shear specimen, and a 6% increase 
compared to the experimental load of the notched specimen. This indicates that the von 
Mises function has a tendency to overestimate the plane strain tensile strength of ZK61M 
by approximately 6% and the shear strength by approximately 4%.  

Figure 10. Comparison between the predicted load–displacement curves of six finite element models
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4.2. Von Mises Yield Function

The numerical simulation of R20 notched, R5 notched, and shear specimens was
performed, where the yield function was the von Mises criterion. The numerical load–
displacement curves were compared with the experimental results, as presented in Figure 11.
Table 2 displays the parameters associated with the anticipated Swift–Voce hardening law.
Clearly, the prediction error of the R20 notched specimen is approximately 20% at the elastic
deformation stage, while that is approximately 5%. The error magnitude observed during
the elastic stage of the R5 notched specimen is around 25%, while the error magnitude
during the plastic stage is approximately 2%. The displacement increment is observed to
have a significant effect on the error value of the shear specimen. Specifically, the error
value initially rises, followed by a subsequent decline. It is noteworthy that the total error
value is greater in magnitude. The numerical load exhibits an approximate increase of 4%
compared to the experimental load of the shear specimen, and a 6% increase compared to
the experimental load of the notched specimen. This indicates that the von Mises function
has a tendency to overestimate the plane strain tensile strength of ZK61M by approximately
6% and the shear strength by approximately 4%.

To enhance the prediction performance of the above numerical simulation, the inverse
engineering method was used to optimize the Swift–Voce hardening parameters. The
preliminary guess of the material parameters in Equation (3) is based on the material
parameters calibrated by the true stress–true plastic strain curve of the dog-bone specimen
in Table 2. The optimized material parameters are shown in Table 3. Using the optimized
hardening parameters, the R20 notched, R5 notched, and shear specimens were numeri-
cally simulated, as shown in Figure 12. The comparison shows that the Swift–Voce strain
hardening coefficients optimized by the inverse engineering method can more accurately
characterize the strain hardening behavior of the alloy. This proves that the inverse engi-
neering method is a promising method to characterize the strain hardening of metals under
various loading conditions.
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Table 3. Swift–Voce hardening coefficients optimized by the inverse engineering method under the
von Mises yield function.

σSwift−Voce(ε) = α
[
k(e0 + ε)n]+(1 − α)[A − (A − B)−Cε]

k e0 n A B C α
0.443 1.406 × 10−4 0.136 0.321 0.178 43.079 0.584

Materials 2024, 17, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 12. Comparison of the von Mises load–displacement curves with the inverse engineering 
method and the experimental results for the (a) R5 notched specimen; (b) R20 notched specimen; (c) 
shear sample; and (d) prediction error. 

4.3. Pressure-Coupled Drucker Yield Function  
The evidence derived from the comparison between Figures 6 and 7 demonstrates 

that the pressure-coupled Drucker function exhibits a satisfactory level of adaptability in 
the context of strength modeling for metals subjected to diverse loading situations. To 
ensure the precision of the numerical simulation, the pressure-coupled Drucker function 
was employed to estimate the load–displacement curves of material constants b and c, as 
well as the Swift–Voce hardening law. In order to streamline the procedure, the numerical 
simulation made the assumption of isotropic hardening. This decision was based on the 
fact that the tests conducted in this study involved loads that were approximately propor-
tionate, and the changes in stress states were deemed to be negligible. The strain harden-
ing model incorporates the combined model of the Swift–Voce law in Equation (3) and 
the hardening coefficient specified in Table 3. The inverse engineering method was em-
ployed to enhance the prediction performance of the R20 notched, R5 notched, and shear 
specimens. The simulation employed the associated flow rule and maintained a constant 
volume during plastic deformation. The optimized Swift–Voce parameters are listed in 
Table 4, b = −0.0268, and c = 2.2496. The yield surface in (𝜂, 𝜉, �̄� ) space is shown in 
Figure 13. 

Table 4. Swift–Voce hardening calibrated by the inverse engineering method under the pressure-
coupled Drucker yield function. 𝛔𝑺𝒘𝒊𝒇𝒕 𝑽𝒐𝒄𝒆(𝜺) = 𝜶[𝒌(𝒆𝟎 + 𝜺)𝒏] + (𝟏 − 𝜶)[𝑨 − (𝑨 − 𝑩) 𝑪𝜺] 𝑘 𝑒  𝑛 𝐴 𝐵 𝐶 𝛼 

0.443 1.406 × 10−4 0.136 0.321 0.178 43.079 1.608 

Figure 12. Comparison of the von Mises load–displacement curves with the inverse engineering
method and the experimental results for the (a) R5 notched specimen; (b) R20 notched specimen;
(c) shear sample; and (d) prediction error.

48



Materials 2024, 17, 1150

4.3. Pressure-Coupled Drucker Yield Function

The evidence derived from the comparison between Figures 6 and 7 demonstrates
that the pressure-coupled Drucker function exhibits a satisfactory level of adaptability in
the context of strength modeling for metals subjected to diverse loading situations. To
ensure the precision of the numerical simulation, the pressure-coupled Drucker function
was employed to estimate the load–displacement curves of material constants b and c, as
well as the Swift–Voce hardening law. In order to streamline the procedure, the numerical
simulation made the assumption of isotropic hardening. This decision was based on the fact
that the tests conducted in this study involved loads that were approximately proportionate,
and the changes in stress states were deemed to be negligible. The strain hardening model
incorporates the combined model of the Swift–Voce law in Equation (3) and the hardening
coefficient specified in Table 3. The inverse engineering method was employed to enhance
the prediction performance of the R20 notched, R5 notched, and shear specimens. The
simulation employed the associated flow rule and maintained a constant volume during
plastic deformation. The optimized Swift–Voce parameters are listed in Table 4, b = −0.0268,
and c = 2.2496. The yield surface in (η, ξ, σ̄VM) space is shown in Figure 13.

Table 4. Swift–Voce hardening calibrated by the inverse engineering method under the pressure-
coupled Drucker yield function.

σSwift−Voce(ε) = α
[
k(e0 + ε)n] + (1−α)[A − (A − B) − Cε]

k e0 n A B C α
0.443 1.406 × 10−4 0.136 0.321 0.178 43.079 1.608
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In Figure 14a, a comparison is made between the numerical load–displacement curve
and the experimental curve. The result indicates that the pressure-coupled Drucker func-
tion accurately predicts the load–displacement curve of the R5 notched specimen prior
to fracture. However, when comparing the prediction performance of the R5 notched
specimen using the pressure-coupled Drucker yield function to that of the von Mises yield
function, no advantage is observed.

For the prediction case of the R20 notched specimen in Figure 14b, the numerical load
of the pressure-coupled Drucker function is higher than the experimental value, but it
reasonably predicts the strength at the beginning of yield. After yield, the strength predicted
by the pressure-coupled Drucker function is still about 3% lower than the experimental
result. The pressure-coupled Drucker function can predict the trend more accurately than
the von Mises function.
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For the prediction case of the shear specimen in Figure 14c, the pressure-coupled
Drucker function reasonably describes the trend from yield to fracture, and the predicted
error value is within 3%. In addition, the maximum load predicted by the pressure-coupled
Drucker function is basically consistent with the experimental value. Compared with the
von Mises yield function, the pressure-coupled Drucker function was more accurate.

5. Conclusions

In this paper, the plastic behavior of ZK61M is characterized from shear to plane strain
tension using experiments, analytical modeling, and numerical simulation. The result
shows that the plastic behavior of the metal is very complicated and cannot be properly
modeled by the von Mises yield function. The pDrucker yield function can significantly
improve the prediction accuracy of the load–stroke curves for shear, notched, and plane
strain tension specimens. The pDrucker yield function and the combined Swift–Voce
hardening law were calibrated by the inverse engineering approach and the advanced
calibration approach further reduced the prediction error to less than 10% for most parts
of the stroke before fracture for these three specimens. Numerical simulation showed
that there is little effect of element size on the force–stroke curves predicted in numerical
simulation. According to the result, the pDrucker function and the Swift–Voce hardening
law are suggested to model complicated plastic behaviors of metals under wide stress states
from shear to plane strain tension. The inverse engineering approach is recommended
to calibrate parameters in the constitutive model to improve the prediction accuracy of
numerical simulation.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: This study introduces a modified DF2016 criterion to model a ductile fracture of sheet metals
from shear to equibiaxial tension. The DF2016 criterion is modified so that a material constant is equal
to the fracture strain at equibiaxial tension, which can be easily measured by the bulging experiments.
To evaluate the performance of the modified DF2016 criterion, experiments are conducted for QP980
with five different specimens with stress states from shear to equibiaxial tension. The plasticity of
the steel is characterized by the Swift–Voce hardening law and the pDrucker function, which is
calibrated with the inverse engineering approach. A fracture strain is measured by the XTOP digital
image correlation system for all the specimens, including the bulging test. The modified DF2016
criterion is also calibrated with the inverse engineering approach. The predicted force–stroke curves
are compared with experimental results to evaluate the performance of the modified DF2016 criterion
on the fracture prediction from shear to equibiaxial tension. The comparison shows that the modified
DF2016 criterion can model the onset of the ductile fracture with high accuracy in wide stress states
from shear to plane strain tension. Moreover, the calibration of the modified DF2016 criterion is
comparatively easier than the original DF2016 criterion.

Keywords: ductile fracture; DF2016 criterion; stress triaxiality; Lode parameter; advanced high-
strength steel; sheet metal forming

1. Introduction

With the continuous development of the aerospace and automotive industry, people
are no longer satisfied with basic safety or strength requirements but hope that the materials
can meet the requirements of weight reduction and energy conservation while meeting
the strength standards. Advanced high-strength steel, aluminum alloys, and other metal
materials have excellent material properties, especially in terms of strength and plasticity,
making it possible to reduce weight, save energy, and meet safety standards. Therefore, they
have shown excellent application prospects. However, a fracture that may occur during
deformation processes, such as stamping and deep drawing, can pose a serious threat to the
safety of practical applications. Therefore, it is necessary to study the deformation behavior
of metals and to accurately predict the occurrence of fractures.

Researchers have developed many yield criteria to mathematically characterize the
yield behavior of metals. First, many isotropic yield functions were developed to improve
the modeling accuracy of yielding at different stress states of compression, shear, tension,
etc., by considering the effect of pressure and the third stress invariant. These yield functions
include the Tresca, von Mises, Drucker, Drucker–Prager, etc. For sheet metals, texture is
formed during rolling, and sheet metals show dependence of plastic behavior on loading
directions. Accordingly, many anisotropic yield functions were proposed. The Hill48 yield
criterion [1] is one of the most representative research results, which accurately predicts
the uniaxial and equibiaxial tensile strength along the rolling direction (RD), transverse
direction (TD) and normal direction (ND) by introducing four anisotropic parameters based
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on the Huber–von Mises yield function. On this basis, the yield criteria after Hill48 increase
the number of anisotropic parameters through linear transformation of stress tensors to
improve the accuracy of the yield equation in characterizing plastic deformation. Barlat
et al. [2] put forward the plane stress non-quadratic yield criterion to describe anisotropic
metal sheets, such as aluminum alloy sheets. Barlat et al. [3–5] developed more accurate
anisotropic yield functions based on a similar method to more accurately characterize the
anisotropic behavior of metals and alloys. Other popular anisotropic yield functions were
also proposed by Banabic et al. [6], Aretz and Barlat [7], Cazacu et al. [8], Cazacu [9], Yoshida
et al. [10], Lou and Yoon [11], etc. Anisotropic hardening was extensively analyzed in the
last 15 years by Stoughton and Yoon [12], Lee et al. [13], Park et al. [14], Hou et al. [15–18],
Hu et al. [19–23], Du et al. [24], etc. Plastic behavior under various stress states was modeled
recently by Hu et al. [25], Lou et al. [26,27], etc. These advances dramatically improve
the plasticity modeling accuracy of metals under different loading directions and wide
stress states.

Ductile fracture is increasingly investigated in the last 20 years since the 15 fracture
experiments of AA2024-T351 by Bao and Wierzbicki [28]. Thereafter, many ductile frac-
ture criteria were developed, including the modified Mohr–Coulomb criterion [29], the
DF2012 [30], DF2016 [31], Mu [32], Ganjiani–Homayounfard [33], Hu–Chen [34], Zheng [35],
Zhang [36], Quach [37], Shang et al. [38], etc. These criteria are expressed in a form of mixed
stress and strain and based on micromechanisms of ductile fractures by nucleation, growth,
and the coalescence of voids [39,40]. Stress-based ductile fracture criteria were proposed by
Khan and Liu [41], Stoughton and Yoon [42], Mohr and Marcadet [43], sDF2016 [44], etc. An
anisotropic ductile fracture was also studied in the last 10 years. Modeling approaches of
anisotropic ductile fracture were proposed by Beese et al. [45], Luo et al. [46], Jia and Bai [47],
and Lou and Yoon [48]. Park et al. [49] numerically studied ductile fracture modeling in
pre-cracked tensile tests of SUS304L stainless steel. Baral et al. [50] modelled plasticity and
ductile fracture of an Al-Si-Mg die-cast alloy. Bidadi et al. [51] investigated the effects of
model mixity and the loading rate on the fracture behavior of cracked thin-walled 304L
stainless steel sheets with large non-linear plastic deformations. Khan and Liu [52] pro-
posed a ductile fracture criterion to consider strain rate and temperature effect. Wcislik and
Lipies [53] reviewed the numerical modeling of void development in metals to investigate
the mechanism of a ductile fracture during plastic deformation. Baral and Korkolis [54]
investigated ductile fracture under proportional and non-proportional multiaxial loading.
Alrasheedi et al. [55] investigated the tensile deformation and fracture of unreinforced AZ91
and reinforced AZ91-C at temperatures up to 300 ◦C. Ha et al. [56] characterized the ductile
fracture of an aluminum sheet under proportional loading. Egidio et al. [57] analyzed the
influence of microstructure on fracture mechanisms of the heat-treated AlSi10Mg alloy
produced by laser-based powder bed fusion. Korkolis and Kyriakides [58] investigated
the effect of the strain path on the failure of inflated aluminum tubes. Torabi et al. [59]
investigated the fracture behavior of AA7075-AA6061 and AA7075-Cu friction-stir welded
joint. Roth and Mohr [60] characterized the effect of the strain rate on the fracture of
advanced high-strength steel.

In this study, the DF2016 fracture criterion is modified to model the fracture behavior
of advanced metals from shear to equibiaxial tension. In the modified DF2016 criterion, the
material constant C3 is equal to the fracture strain at equibiaxial tension, which can be easily
measured by the bulging experiments. Therefore, the material calibration of the modified
DF2016 criterion is relatively simple. The modified DF2016 criterion is applied to model
the fracture behavior of an advanced high-strength steel of QP980. Five different specimens
are tested to characterize plasticity and fracture behaviors from shear to equibiaxial tension
with the strain measurement by the XTOP digital image correlation system. Plasticity is
characterized by the Swift–Voce hardening law and the pDrucker function. The modified
DF2016 criterion is calibrated with an inverse engineering approach. The predicted load–
stroke curves with fractures are compared with the experimental results to evaluate the
performance of the modified DF2016 criterion from shear to equibiaxial tension.
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2. A Modified DF2016 Fracture Criterion

The DF2016 criterion is proposed to characterize fracture onset for sheet metals from
shear to plane strain tension. It is expressed as below:

(
2τmax

σVM

)C1
(
〈 f (η, L, C)

f (1/3,−1, C)
〉
)C2

ε
p
f = C3 〈x〉 =

{
x i f x ≥ 0
0 i f x < 0

(1)

with

f (η, L, C) = η + C4
(3− L)

3
√

L2 + 3
+ C (2)

where η is the stress triaxiality, L is the Lode parameter, τmax is the maximum shear stress,
σVM is the von Mises equivalent strain, and ε

p
f is the equivalent plastic strain at fracture.

There are five fracture parameters of C1, C2, C3, C4, and C. The DF2016 criterion reduces
to the DF2014 criterion when C4 = 1 and the DF2012 criterion by setting C4 = 0 and
C = 1/3. The DF2016 criterion can be reformulated in a form of the Lode parameter and
stress triaxiality because the maximum shear stress normalized by the von Mises effective
stress is solely a function of the Lode parameter as below:

(
2√

L2 + 3

)C1
(
〈 f (η, L, C)

f (1/3,−1, C)
〉
)C2

ε
p
f = C3 (3)

In the DF2016 criterion, the material constant C3 is equal to the equivalent plastic
strain to fracture at uniaxial tension. The fracture strain at equibiaxial tension can be
easily predicted by the bulging test with DIC technique. Therefore, the DF2016 criterion is
modified so that C3 is equal to the equivalent plastic strain at equibiaxial tension by bulging
tests as below: (

2√
L2 + 3

)C1
(
〈 f (η, L, C)

f (2/3, 1, C)
〉
)C2

ε
p
f = C3 (4)

In the numerical application of the ductile fracture criterion above, the von Mises
equivalent stress and strain are computed again based on the stress components updated
based on the yield function, which is used to describe the plastic deformation of metals.
After that, the stress triaxiality and Lode parameter are then computed according to their
definitions based on the von Mises equivalent stress to compute damage and fractures
during plastic deformation.

3. Materials and Experiments

This part aims to collect mechanical behavior data under uniaxial tension, hole tension,
plane strain tension, shear tension, and equibiaxial tension to assess the plastic behaviors
of the QP980 steel. The material is manufactured by BAOSTEEL in Shanghai, China. The
chemical composition of QP980 in weight percent is 0.2% C, 1.49% Si, 1.82% Mn, 0.011%
P, 0.0043% S and 0.046% Al. The thickness of the steel was 1.0 mm. Five specimens were
cut as shown in Figure 1 to characterize the mechanical properties of QP980 steels. These
five specimens included the dogbone specimens, the specimens with a central hole, the
notched specimens, the in-plane shear specimens, and the circular specimens. The first
four specimens were tested with a universal material testing machine, and the deformation
was measured with the XTOP DIC method. The circular specimens were used to conduct
the bulging test. The dogbone specimens were used to characterize plasticity at uniaxial
tension along three different loading directions. The specimens with a central hole were
used to characterize fracture behavior under uniaxial tension, the notched specimens were
used to characterize the fracture behavior under plane strain tension, the in-plane shear
specimens were used to characterize fracture strain under shear, and the circular specimens
for bulging tests were used to measure the fracture strain of the steel under equibiaxial
tension. The dimensional information of the specimens was designed as shown in Figure 1,
including the initial gauge length.
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Figure 1. Four types of specimens [61]: (I) dogbone specimens; (II) specimens with central hole;
(III) notched specimens; (IV) in-plane shear specimens; and (V) bulging specimens.

The universal mechanical testing system in Figure 2 was used to load the first four
specimens. The loading velocity was 3.6 mm/min for the dogbone specimens to ensure
that the strain rate during the tests was about 0.001/s. Deformation processes during
experiments were recorded using the XTOP digital image correlation. Force during experi-
ments was measured with a load cell. The measured force–stroke curves for the dogbone
specimens were compared in Figure 3 along three directions of RD, DD, and TD. The
evolution of plastic strain along the longitudinal and width directions is shown in Figure 4
to evaluate the anisotropic plastic deformation along the three directions. The comparison
shows that the anisotropy in strength and plastic deformation is negligible. Therefore, the
material was assumed to be isotropic in this study.
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Figure 2. Universal mechanical testing system and the XTOP digital image correlation [62].

The load–stroke curves were also measured for the specimens with a central hole,
notched specimens, and shear specimens along the rolling direction since the material was
assumed to be isotropic. The loading velocity was set as 0.5 mm/min for the specimens with
a central hole, notched specimens, and the in-plane shear specimens so that the strain rate
during the tests were about 0.001/s. The measured load–stroke curves were compared in
Figure 5 for the specimens with a central hole, Figure 6 for notched specimens, and Figure 7
for the shear specimens. It was obvious that the repeatability of the tests was reliable
regarding the hardening behavior of the material. However, the stroke at failure was not as
repeatable as the hardening behavior, especially for the shear test. The poor repeatability in
the stroke at failure may be due to manufacturing error, inhomogeneous microstructure, etc.
In this study, the most repeatable experiments with mean stroke at failure were selected to
represent the experimental results for different specimens. Therefore, test #1 was selected
for the further analysis of the specimen with central hole and #2 for the notched and
shear specimens.
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Figure 3. Load–stroke curves of QP980 for dogbone specimens.
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Figure 4. Relations between axial and width strain evolution of QP980 for dogbone specimens.
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Figure 5. Load–stroke curves of QP980 for hole specimens.
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Figure 6. Load–stroke curves of QP980 for notched R5 specimens.
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Figure 7. Load–stroke curves of QP980 for shear specimens.

Bulging tests were conducted for the QP980 steel with the specimen V in Figure 1.
The punch velocity was 5 mm/min. Three bulging tests were carried out to ensure the
repeatability of the experiments. The pressure and dome height are plotted in Figure 8.
The evolution of equivalent strain is also shown against the dome height in the figure.
It was measured that the fracture strain at the dome was about 0.5361 for QP980. There
were two fracture strains shown in the figure, and the smaller one was selected so that
fracture prediction was somewhat conservative. All the strains from DIC were the von
Mises equivalent strain. To be consistent, the von Mises equivalent strain and its increment
were computed by the plastic strain increments to compute the damage and fracture during
simulation of plastic deformation. According to the modified DF2016 criterion, this fracture
strain was equal to the parameter C3 in the modified DF2016 criterion in Equation (4).
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Figure 8. Bulging experimental results of QP980.

4. Plasticity Modeling

The strain hardening behavior is characterized by the dogbone specimens and fitted
with the Swift–Voce hardening law below in Equation (5). The fitted parameters are
summarized in Table 1 for the Swift, Voce, and Swift–Voce hardening laws. The fitted
hardening laws are used to predict the strain hardening of QP980 and compared with
experimental results, as shown in Figure 9. In the finite element analysis, small elements
with an edge size of about 0.1 mm are adopted for the severe plastic zones of these
specimens. All the simulations are conducted with C3D8R brick elements. All the other
settings in the simulation are identical with the experimental conditions for all three
specimens. The Swift and Swift–Voce hardening law are almost overlapped. The Voce
model predicts the worst flow curve for QP980. The comparison demonstrates that the
Swift–Voce hardening law fits the experimental result with the best agreement compared
to the Swift and Voce hardening laws.

σ = αK(e0 + εp)n + (1− α)(A− (A− B)exp(−Cεp)) (5)

Table 1. Coefficients of Swift–Voce function.

K [GPa] e0 n A [GPa] B [GPa] C α

Swift 1.6562 0.0014 0.1451 \ \ \ \
Voce \ \ \ 1.2543 0.7393 21.5435 \

Swift–Voce 1.6562 0.0014 0.1451 1.2543 0.7393 21.5435 1.0262

Then the fitted Swift–Voce law is used to predict the load–stroke responses of speci-
mens with a central hole, notched R5 specimens, and the in-plane shear specimens. The
numerical simulation is conducted with Abaqus/Explicit 6.14. The minimum element size
is about 0.5 mm. The predicted results are compared with experimental results in Figure 10.
The prediction errors by numerical simulation are also computed with respect to stroke
increase. It is observed that the predicted force is about 2% larger than the experimental
results for the specimens with a central hole, 1% higher than the experimental results for the
notched R5 specimens, and 4%~9% higher than the in-plane shear specimen results. The
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simulation error is too big, especially for the in-plane shear specimens, and not acceptable.
The big error is due to the fact that the von Mises yield function cannot take the effect of
the stress state into account on yielding and plastic deformation. The Lode parameter is 0.0
for shear and plane strain tension, but the strain hardening behavior is characterized by
uniaxial tension of dogbone specimens whose Lode parameter is −1.
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Figure 9. Comparison of the fitted hardening laws with experimental results for QP980.

The big load–stroke prediction error is due to the fact that the effect of stress states is
not considered for the strength modeling from shear to plane strain tension. Therefore, the
pDrucker yield function [26] is applied for QP980 to consider the effect of stress states on
strength and expressed as follows:

σ
(
σij
)
= a

(
bI1 +

(
J3
2 − cJ2

3

)1/6
)

(6)

with
a =

1

b + 1
3 (27− 4c)1/6 (7)

where I1, J2, and J3 are the three stress invariants and a, b, and c are material parameters to
adjust the yield surface. The computation of the parameter a in Equation (7) is based on the
assumption that the strain hardening is characterized by uniaxial tensile tests by dogbone
specimens. The a parameter can also be computed in a different form if the strain hardening
curve is characterized at equibiaxial tension by the bulging tests. Details are suggested
in the publication [26]. In the pDrucker function, there are three parameters to model the
effect of stress states on the strength of QP980 steel sheets from shear to plane strain tension.
These three parameters are calibrated with the flow curves under shear, uniaxial tension,
and equibiaxial tension. By introducing the pressure effect and the dependence of the third
stress invariant, the pDrucker function can predict different yield stresses in shear, uniaxial
tension, and plane strain tension. This difference cannot be modeled by the von Mises
yield function because the von Mises function only considers the effect of the second stress
invariant on yielding.
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Figure 10. Comparison of the predicted load–stroke curves via von Mises function with experimental
results for (a) specimens with a central hole; (b) notched specimens; and (c) shear specimens.

The pDrucker function and the Swift–Voce hardening law are calibrated with the
inverse engineering approach [26] with the calibrated parameters in Table 2. Then, the load–
stroke curves are predicted by the Abaqus/Explicit and compared with the experimental
results in Figure 11. The prediction error is also computed and compared in the figure. The
comparison shows that the error ranges from about −2% to 2% for the specimens with a
central hole, from −1% to 1% for the notched specimens, and from −1% to 3% for the shear
specimens. Compared with the prediction with the von Mises yield function, the prediction
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error for the load–stroke curves is significantly reduced by the pDrucker function, especially
for the in-plane shear specimens, for which the error is reduced from 4%~9% to −1%~3%.
Therefore, the Swift–Voce hardening law and the pDrucker function calibrated in Table 2
are used to model the plastic behavior of QP980 for these three specimens with stress states
from the shear to plane strain tension. The significant reduction in the prediction error of
the load–stroke curves is because the pDrucker yield function adjusts the relative strength
of shear, uniaxial tension, and plane strain tension by optimizing the parameters of a, b,
and c during inverse engineering approach, as shown in Figure 12, for the comparison of
the von Mises and pDrucker yield surfaces. The error in the force–stroke curve for shear
specimens is significantly reduced by the pDrucker yield function because the difference
between the von Mises and pDrucker yield surfaces is very apparent, as shown in Figure 12.
The yield surface difference under uniaxial and plane strain tension is not as obvious as
that around shear. Therefore, the prediction accuracy improvement in the force–stroke
curves is not obvious for specimens with a central hole and notched specimens. The error
even increases slightly for the specimens with a central hole, which is due to the fact that
the inverse engineering approach minimizes the total error in the load–stroke prediction
for the three specimens. In the studied case, the total error is reduced, but the method
sacrifices the prediction accuracy for the specimens with a central hole.

Table 2. Coefficients of the Swift–Voce function and the pDrucker function calibrated with the inverse
engineering approach.

pDrucker Swift–Voce Hardening Law

a b c K
[GPa] e0 n A

[GPa]
B

[GPa] C α

1.8769 −0.02486 1.2692 1.796 0.0080 0.1862 1.4050 0.6993 15.2893 0.5

The hardening law was fitted for low strain values before necking based on the
dogbone specimens, and the fitted strain hardening parameters are summarized in Table 1.
However, the fitted Swift–Voce hardening law cannot accurately predict the reaction forces
for shear specimens, specimens with a central hole, and notched specimens, as shown
in Figure 10. The force–stroke curves predicted by the flow curve calibrated with the
inverse engineering approach matches with the experimental results with higher accuracy,
as shown in Figure 11. To further improve the prediction accuracy of the force–stroke
curves for different specimens, the evolution of yield surfaces is suggested to be considered
during plastic deformation at different stress states.
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Figure 11. Comparison of the predicted load–stroke curves via the pDrucker function with experi-
mental results for (a) specimens with a central hole; (b) notched specimens; and (c) shear specimens.
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Figure 12. Comparison of the von Mises and pDrucker yield surfaces.
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5. Fracture Modeling with the Modified DF2016 Criterion

The modified DF2016 criterion in Equation (4) is used to model the fracture behavior
of QP980 from shear to equibiaxial tension. The material constant C3 is equal to the fracture
strain at equibiaxial tension, which is measured with the bulging test to be 0.5361 with
the help of the XTOP digital image correlation method. The other fracture parameters in
the modified DF2016 criterion are calibrated with the inverse engineering approach and
summarized in Table 3. The inverse calibration of fracture parameters is conducted by
minimizing the error between the predicted fracture stroke and experimental results for
shear, specimens with a central hole, and plane strain tension of notched specimens. The
fracture stroke during the simulation is determined by the sharp drop of load–stroke curves
during simulation.

Table 3. Fracture parameters of the modified DF2016 criterion calibrated with the inverse engineering
approach.

C1 C2 C3 C4 C

0.0654 1.1221 0.5361 4.542 3.0

In the implementation of the modified DF2016 criterion to the finite element sim-
ulation, the pDrucker yield function is used to describe the plastic deformation of the
metal. The corresponding pDrucker equivalent strain is computed based on the pDrucker
yield function to describe the strain hardening of the metal. The plastic strain increment
components are obtained at the end of each integration and then used to compute the von
Mises equivalent strain increment. The computed von Mises equivalent strain is used to
compute damage and fractures based on the modified DF2016 criterion. All the equivalent
strain used in damage and fracture computation is the von Mises equivalent strain because
the calibration of the fracture criterion is based on the von Mises strain computed by DIC
in different experiments.

The modified DF2016 criterion is implemented into ABAQUS/Explicit to predict the
onset of the fracture for QP980 under various stress states from shear to plane strain tension.
The load–stroke curves with an element deletion from the modified DF2016 criterion are
predicted and compared with the experimental results of the specimens with a central hole,
notched specimens, and shear specimens in Figure 13. For the specimens with a central
hole, the predicted fracture stroke is 1.24 mm, while the experimental result is 1.15 mm. The
difference between experiments and prediction is 0.09 mm, and the error is about 7.8% for
the specimens with a central hole. For the notched specimens, the numerical prediction of
the fracture stroke is 1.44 mm, and the experimental results is 1.43. The predicted fracture
stroke is 0.01 mm longer than the experimental results, and the error is 0.7%. For the
shear specimens, the predicted fracture stroke is 1.15 mm, while the experimental result is
1.26 mm. The experimental result is 0.09 mm higher than the prediction, and the error is
8.7%. Based on the comparison between prediction and experimental results in Figure 13,
the prediction of the fracture stroke is all less than 10%. Considering the difficulty of the
fracture prediction under complicated stress states, the prediction accuracy of less than 10%
is definitely acceptable for engineering applications.

In addition, oscillation behaviors are observed for the force evolution in the simulation
for specimens with a central hole, notched specimens, and shear. This is because all the
numerical simulations are conducted with explicit formulation via ABAQUS/Explicit. The
oscillation can be reduced by decreasing the mass scaling factor during the simulation or
removed by the simulation with an implicit scheme via ABAQUS/Standard. However,
simulations with ABAQUS/Standard cannot remove elements after a fracture.

64



Materials 2024, 17, 958

Materials 2024, 17, x FOR PEER REVIEW  13  of  16 
 

 

Table  3.  Fracture  parameters  of  the  modified  DF2016  criterion  calibrated  with  the  inverse 

engineering approach. 

C1  C2  C3  C4  C 

0.0654  1.1221  0.5361  4.542  3.0 

 

 

(a) 

 

(b) 

 

(c) 

Figure 13. Comparison of the predicted load–stroke curves with the onset of ductile fracture via the 

modified DF2016  criterion with  experimental  results  for  (a)  specimens with  a  central  hole;  (b) 

notched specimens; and (c) shear specimens. 

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.4
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

fracture stroke:
exp.: 1.15 mm
pred.: 1.24 mm
difference: 0.09 mm
error: 7.8%L

o
ad

 [
kN

]

Stroke [mm]

 exp. (hole RD #1)
 fracture prediction

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0
1
2
3
4
5
6
7
8
9

10
11
12
13

L
o

ad
 [

kN
]

Stroke [mm]

 exp. (R5 RD #2)
 fracture prediction

fracture stroke:
exp.: 1.43 mm
pred.: 1.44 mm
difference: 0.01 mm
error: 0.7%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
o

ad
 [

kN
]

Stroke [mm]

 exp. (shear RD #2)
 fracture prediction

fracture stroke:
exp.: 1.26 mm
pred.: 1.15 mm
difference: -0.11 mm
error: 8.7%

Figure 13. Comparison of the predicted load–stroke curves with the onset of ductile fracture via the
modified DF2016 criterion with experimental results for (a) specimens with a central hole; (b) notched
specimens; and (c) shear specimens.

The purpose of this study is to introduce the modified DF2016 criterion, which is
relatively simple in parameter calibration compared to the original DF2016 criterion. Frac-
ture prediction is not conducted in this study with the von Mises yield function because a
simulation with the von Mises yield function results in a big error in the force–stroke curve
prediction for the shear specimens. However, a fracture can be predicted with the modified
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DF2016 criterion with the von Mises yield function, but the fracture parameters of the
modified DF2016 criterion need to be calibrated again to obtain good fracture prediction
results. The key problem is that the predicted reaction force with the von Mises function is
not as accurate as that with the pDrucker function.

6. Conclusions

This study proposed a modified DF2016 criterion to model a ductile fracture from
shear to equibiaxial tension for sheet metals. The modified DF2016 criterion is applied to
describe the onset of a fracture for four specimens of QP980 steel. The result shows that
the modified DF2016 criterion predicts the ductile fracture with acceptable accuracy. In
addition, the modified DF2016 criterion is user-friendly since the fracture parameter C3 is
equal to the fracture strain at equibiaxial tension, which can be measured directly with the
bulging test. According to the high accuracy and user-friendliness, the modified DF2016
criterion is suggested to be applied to model the fracture behavior of sheet metals from
shear to equibiaxial tension.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: PC/ABS composites are commonly used in airbag covers. In this paper, uniaxial tensile
experiments of a PC/ABS composite at different temperatures and strain rates were conducted. The
results showed that the temperature and loading rate affect the mechanical properties of the PC/ABS
composite. As the temperature increases, the yield stress decreases and the strain at the moment
of fracture increases, but the strain rate at the same temperature has a relatively small effect on the
mechanical properties, which are similar to ductile materials. The experimental results were applied
to the Abaqus model which considered thermal effects and the exact Johnson–Cook constitutive
parameters were calculated by applying the inverse method. Based on the constitutive model and
the failure analysis findings acquired by DIC, the uniaxial tensile test at the room temperature and
varied strain rates were simulated and compared to the test results, which accurately reproduced
the test process. The experiment on target plate intrusion of the PC/ABS composite was designed,
and a finite-element model was established to simulate the experimental process. The results were
compared with the experiments, which showed that the constitutive and the failure fracture strains
were valid.

Keywords: failure analysis; polymers and plastics; Johnson–Cook constitutive; numerical simulation;
inversion method

1. Introduction

In recent decades, polymers have become increasingly popular in various indus-
tries due to their superior properties, such as high specific strength and low cost. ABS
(acrylonitrile-butadiene-styrene) has a good durability and rigidity, containing rubber
particles which allow it to suffer more plastic deformation under impact loads [1]. PC
(polycarbonate) is often used in structural support due to its wide temperature and impact
resistance [2]. TC-45M is a composite material made of a mixture of PC and ABS, which
exhibits better impact toughness and tensile strength compared to pure polymer [3–5]. It
has gradually replaced PC materials and is extensively used in the automotive industry for
airbag covers. The study of its failure behavior can provide effective theoretical support for
the study of vehicle safety performance.

During the last few decades, uniaxial tensile or compressive testing has represented a
widely used method for studying polymer mechanical properties at different temperatures
and strain rates Zheng et al. performed uniaxial stretching of Poly-Ether-Ether-Ketone at
elevated temperatures and simulated its deformation behavior using a phenomenological
model named DSGZ [6]. A study on the uniaxial compressive deformation behavior of
PC/ABS blends at different rates and temperatures was conducted by Wang et al. [7].
They utilized a modified DSGZ model to characterize the deformation after unloading and
reloading. Louche et al. conducted uniaxial tensile experiments on ABS polymer materials
at various strain rates and temperatures to investigate their performance under impact
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loading, simulated the experimental process using the J-C constitutive (Johnson–Cook con-
stitutive) to simulate the experimental process, and finally compared the experimental and
numerical results to prove the correctness of the model [8]. Based on uniaxial tensile tests
and single-edge-notch-tension (SENT) tests, two rubber-toughened thermoplastic polymer
blends with different volume fractions of PC and ABS were analyzed experimentally, as
well as by constitutive models and finite-element simulations with regard to their large
strain deformation and fracture behavior by Hund et al. [9]. The impact behavior and
modeling of ABS and polybutylene-terephthalates (PBT) were obtained as a function of
impact velocity and temperature from a multiaxial impact test by Duan et al., and the
deformation and failure of polymers were analyzed using a combination of experiments
and finite-element analysis [10,11].

When a car is subjected to a violent impact force, airbag ejection leads to an impact
loading, and the cover plant temperature increases [12]. However, there are limited
thermodynamic constitutive models available for impact loading and the viscoplasticity
model which considers temperature, suffers from the issue of too many parameters. In
this paper, a uniaxial tensile test of the PC/ABS composite was conducted. Based on
the experimental results of middle and low strain rates, the initial parameters of the J-C
constitutive were obtained by MATLAB fitting. It should be noted that the parameters
determined in this way may have some inaccuracy [13–15]. Subsequently, the initial
parameters were substituted into Abaqus 2020 to simulate the experimental process, and
the parameters were gradually adjusted to invert the modified constitutive model, and
the results have a high accuracy [16–18], and apply to the high strain rate case. Based
on the determined constitutive model and fracture parameters, numerical simulations of
high-speed tensile testing of PC/ABS were conducted and compared with experimental
results. Finally, a target plate impact experiment for the PC/ABS composite was designed,
and a finite-element model was established to simulate the experimental process. The
results were compared with the experiments, indicating the validity of the constitutive
model and the failure fracture strain.

2. Materials and Methods
2.1. Material

The material used in the experiments of this paper is the PC/ABS composite. The
PC/ABS composite material can combine the excellent properties of PC and ABS, improve
the heat resistance, impact resistance and tensile strength of ABS, reduce the cost of PC and
the viscosity of the melt, improve the processing performance, and reduce the internal stress
of the product and the sensitivity of the impact strength to the thickness of the product. In
addition, it also has a low price, low density, and other characteristics. The PC/ABS can be
used as a structural material. It has been widely used in the car tool industry as a car cover.

A composite is not a simple blend of many materials. Therefore, it is not possible
to derive accurate results of PC/ABS failure behavior from a single ABS or PC [19]. To
accurately simulate the failure behavior of automotive covers during vehicle impacts, the
material behavior at different temperatures and strain rates is investigated in this paper.

2.2. Uniaxial Tensile Test of the PC/ABS Composite Material

The PC/ABS composite model TC-45M (Dongguan Xinrui polymer material Technol-
ogy Co., Ltd., Dongguan, China) was used in this study, and a specimen of the PC/ABS
composite was designed for testing in the MTS-810 dynamic and static materials testing
machine (MTS Systems Corporation, Eden Prairie, MN, USA), as shown in Figure 1a. The
MTS-810 has a measured strain rate range of 10−4–10 s−1. The low and medium strain
rate tensile test at various temperatures can be realized with the temperature chamber.
The influence of specimen size on the force balance error should be considered in the
case of high-speed drawing [20]. The specific dimensions of the specimen are shown in
Figure 1b. The specimen length of 15 mm can greatly reduce the influence of specimen size
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on the results of high-speed tensile experiments and can be used in quasi-static experiments
too [21].
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The MTS-810, shown in Figure 1a, was used to perform uniaxial tensile tests on
the PC/ABS composite at various ambient temperatures and strain rates. The ambient
temperature was accurately controlled by a temperature chamber (238.15 K was achieved
by continuously passing liquid nitrogen into the chamber). The PC/ABS composite is
mostly used in automobile manufacturing, so its failure behavior under a high strain rate
is also the focus of this paper. The ZwickRoell-5020 high-speed hydraulic tensile testing
machine system (ZwickRoell GmbH & Co. KG, Ulm, Germany) was selected, shown in
Figure 1c, which can also cooperate with the temperature chamber. This device has a strain
rate measurement range of 10–1000 s−1. The sample still uses the specifications shown in
Figure 1b. The above experimental conditions are listed in Table 1.

Table 1. Uniaxial tensile test conditions.

Strains (s−1) Temperature (K) Equipment Model Loading Rate (mm/s)

0.01

238.15/273.15/293.15
MTS-810

0.15
1 15
10 150

100
ZwickRoell-5020

1500
1000 15,000

2.3. PC/ABS Composite Material Ballistic Impact Test

The PC/ABS composite material penetration test sample was designed as a
100 mm × 100 mm × 3 mm rectangular target plate. Four holes were punched into the
sample’s four corners to make it unmovable. The bullet used in the experiment is a
cylindrical length of 24 mm with a hemispherical head measuring 12 mm in diameter.
The bullet is made of Cr12MoV tool steel. Figure 2a provides the plate’s and bullet’s
precise design.

The experiment of the ballistic impact test uses a high-speed air gun in combination
with a high-speed camera system. Figure 2b displays the schematic of the experimental
device arrangement. The caliber of the high-speed air gun launch tube is 12 mm, and
the length of the gun tube is 4 m. A tachymeter was placed between the high-speed air
gun barrel and the test simple to measure the average velocity of the bullet strikes. After
research, it was found that the average speed of cars on the highway was approximately
30 m/s. To test the applicability of the PC/ABS composite material, the speed of the
experiment should be greater than 30 m/s [22]. After many empty gun experiments, with
the same bullet and the conditions of the pressure, the bullet’s hitting speed is maintained
at around 34 m/s.
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Figure 2. Ballistic impact test experimental design diagrams: (a) Design dimensions of target plate
and bullet (unit: mm); (b) Layout of penetration test device.

The bullet penetration process is captured by a high-speed camera system. The camera
is pointed toward the side of the target plate, and the camera’s shooting direction is
perpendicular to the path of the bullet’s incidence. A mirror was placed on the target’s rear
to capture back-view pictures during the bullet impact, positioned at a 45◦ angle to both
the direction of the bullet and the direction of high-speed photography. This allowed the
high-speed camera to capture images of the deformation and fracture on the specimen’s
back. In all experiments, the sampling frequency of the high-speed camera was set at
4 × 104 Hz, the time interval between neighboring photos was 25 µs, and the shooting
resolution was set at 384 × 288 pixels.

3. Results and Discussion
3.1. Uniaxial Tensile Test Results

Uniaxial tensile tests were conducted on the MTS-810 testing machine at varying
temperatures and strain rates. Uneven material distribution can lead to unrepeatable
experimental results, so this paper performs three replications under each experimental
condition to assess the homogeneity of the composite [23]. The typical results are displayed
in Figure 3, which illustrates the composite’s good homogeneity. Figure 4a,b depict the
results of averaging three sets of test results for different ambient temperatures at the same
strain rate, as well as different strain rates at the same ambient temperature.
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Figure 3. Three times quasi static test results of the PC/ABS composite under 273.15 K and a strain
rate of 0.01 s−1.
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Figure 4. Effect of a single variable for the failure behavior of the PC/ABS composite: (a) Force–
displacement curve of the PC/ABS composite under the same strain rate (1 s−1) and different
temperatures; (b) Force–displacement curve of the PC/ABS composite under different strain rates at
room temperature.

The figure shows that the mechanical properties of the PC/ABS composite are influ-
enced by both the loading rate and ambient temperature. The temperature factor responds
to these mechanical properties in a particularly noticeable way: as the ambient temperature
rises, yield stress and fracture strain respectively decrease and increase. The mechanical
properties’ effects are relatively weak by the strain rate at the same temperature and the
mechanical properties are similar to those of traditional ductile materials [24,25].

The yield stresses at different temperatures and strain rates are compared and analyzed
as shown in Figure 5. The results show that the yield stress of the material is linear with
the temperature and the logarithm of strain rate. The yield stress of the material increases
with the increase in strain rate and decreases with the increase in temperature. When the
temperature rises, the movement of polymer chains in the PC/ABS composite is activated,
and under the action of external load, the molecular chains are rotated and displaced, the
plastic flow is strengthened, and the yield stress is reduced. Under quasi-static tensile
conditions, the material is in a steady state, allowing infinite plastic flow; under medium to
high strain rates, the polymer chains in the PC/ABS composites cannot rotate and displace
rapidly, resulting in the strengthening of the yield stress.
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Figure 5. Comparison of yield stress under different experimental conditions: (a) Yield stress
temperature curve; (b) Yield stress strain rate (logarithmic) curve.
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3.2. Experimental Results of Ballistic Impact Test

Target plate penetration experiments were conducted on the PC/ABS composite under
the required experimental conditions. The high-speed impact process was recorded by
a high-speed camera. For the convenience of observation, the instant of bullet impact
(when the bullet was just in touch with the target plate) was defined as the start time.
Figure 6 displays the experimental processes of the penetration procedure from the side
and rear perspectives. It can be found that it has a large deformation and a long plastic
stage during the experiment, rather than a brittle fracture. Therefore, it is found that the
PC/ABS composite material is a typical ductile material by analyzing the deformation and
failure mode of the target plate.
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Figure 6. Penetration process under different angles of view of the experiment: (a) Penetration
process under the side angle of view of the experiment; (b) Penetration process from the experimental
back view.

3.3. Determination of the Parameters of the J-C Constitutive

The number of viscoelastic thermodynamic coupling models under impact loads is
small, and there are many problems such as too much parameter measurement [26–28].
Because PC/ABS is widely used in the preparation of vehicles, the study of its failure
behavior should pay attention to the influence of strain rate and temperature, especially
the plastic deformation and failure at a high strain rate, rather than its creep or relaxation
behavior. Therefore, the J-C constitutive is selected in this paper. The J-C constitutive
model is a phenomenological model that describes plastic hardening, strain rate effects,
and thermal softening of materials [29]. These three phenomenological formulations are
connected multiplicatively in the J-C constitutive. The J-C constitutive is mainly applied
to materials with large deformations, high strain rates, and high temperatures, meaning
it is suitable for numerical simulations of most materials. The form of Equation (1) is as
follows [30–32]:

σ = (A + Bεn
p)(1 + C ln

.
ε
.
ε0
)[1 − (

T − T0

Tm − T0
)

m
] (1)

where εp—equivalent plastic strain;
.
ε—equivalent plastic strain rate;

.
ε0—reference strain

rate; T0—reference temperature; Tm—melting point temperature of the material; T—test
temperature. A, B, C, n, m are the material parameters.

The following is the principle used in this research to determine the parameters
A, B, C, n, m of the J-C constitutive: The stress–strain curve transformed by the force–
displacement curve at the reference temperature of 238.15 K and strain rate of 0.01 s−1 gives
the values of A, B and n, the stress–strain curve transformed by the various strain rates at
238.15 K gives the value of C; the stress–strain curve transformed by the various tempera-
tures at 0.01 s−1 gives the value of m. Based on this principle, the initial parameters of the J-C
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constitutive are determined as A = 60 MPa, B = 115 MPa, C = 0.03, n = 1.75, m = 0.95.
However, the parameters determined by this method have a large error and cannot accu-
rately reproduce the failure behavior of the material [15]. The constitutive model is mainly
used in the field of numerical simulation, so researchers will reproduce the experimental
process by numerical simulation and modify the parameters by comparing with the results
of uniaxial tensile experiment. The above parameters are put into the Abaqus 2020 to apply
the same loading conditions as the test. Then, numerical simulation is compared with the
tests, and the parameters are adjusted until they are in total agreement with the test. The
specific process of determining the final parameters is shown in Figure 7. This method
is hereafter referred to as the inversion method. The basic mechanical parameters of the
PC/ABS composite are as follows: the density is 1120 kg/m3, the modulus of elasticity
is 1750 MPa, Poisson’s ratio is 0.38, and the specific heat capacity is 1400 J/(kg·K). The
Abaqus solver was used for numerical simulation, and the mesh type was C3D8R. After
many attempts, the mesh size had no obvious influence on the simulation results.
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Figure 7. Process of determining parameters by the inversion method.

Through the above inversion method, J-C constitutive parameters are determined and
shown in Table 2. A comparison between numerical and experimental results is shown
in Figure 8, and it should be pointed out that there is no failure criterion, so there is no
steep drop in the numerical simulation curve. At this time, the deformation process can be
basically reproduced at low and medium strain rates.

Table 2. J-C constitutive parameters of the PC/ABS composite.

A B C n m

57.5 MPa 120 MPa 0.032 1.734 1.02
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3.4. Validation of J-C Constitutive Parameters

The results obtained using the inversion method are only applicable to low and
medium strain rates. However, the cover material is often subjected to high-speed impact
loading when the airbag is deployed. To test the validity of the J-C constitutive determined
by the inversion method when applied to high strains, we calibrated it with high strain
rate tensile tests. Using a ZwickRoell-5020 high-speed tensile tester, we performed uni-
axial tensile tests at strain rates of 100 s−1 and 1000 s−1 at three ambient temperatures
sustained by particular temperature chambers. The test results were compared with the
J-C constitutive numerical simulation data obtained using the inversion approach. The
numerical simulation results of the J-C constitutive were close to the test results. Figure 9
presents the comparative results. This shows that the J-C constitutive derived from the
inversion approach is fit for large strain rates. It should especially be pointed out that the
experimental process can be regarded as an adiabatic process under high-speed impact [33],
and a large amount of heat will be generated in the experiment, and a large degree of
temperature change will be generated in the pattern. Therefore, a mechanical thermal effect
is added in the simulation to correct for the effects of adiabatic warming.
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Figure 9. Experiments and simulations at high strain rates validate the accuracy of the constitu-
tive model: (a) Comparison of results under different temperatures with strain rate of 100 s−1;
(b) Comparison of results under different temperatures with strain rate of 1000 s−1.

3.5. Failure Behavior Analysis in One-Dimensional Tensile State

The J-C constitutive parameters constructed above do not include a failure criterion.
Researchers are concerned with the failure behavior of materials in engineering. The
failure behavior of this composite material is examined in this chapter. A high-speed video
camera recorded the deformation and fracture process of the PC/ABS composite at room
temperature with different strain rates. Note that other temperatures were achieved by
an ambient temperature box. Therefore, the process for other temperatures could not
be captured with a high-speed video camera. Figure 10 shows typical results. Digital
image correlation (DIC) can be used to measure dimensional changes in drawing patterns
in real-time using optical sensors. The deformation information of the specimen under
tension at different strain rates and the local deformation of the specimen at the failure
time was obtained with a DIC, and the fracture strain εtr is calculated (Equation (2) shows
the calculation, where A0 represents the original cross-sectional area of the material, and
A represents the cross-sectional area of the material fracture) [34]. The local strains in the
failure region are listed in Table 3.

εtr = ln
(

A0

A

)
(2)
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Table 3. Fracture strains and sample temperature.

strain rate (s−1) 0.01 1 10 100 1000

fracture strain 0.825 0.833 0.922 0.646 0.527

sample temperature by simulation (K) 293 313 328 311 309

sample temperature by theory (K) 293 320.6 326.5 313.9 312.1

In this paper, based on the J-C constitutive constructed by the inversion method
combined with the fracture strain εtr calculated by the deformation information of the
specimen. Numerical simulation was conducted to analyze the uniaxial tensile behavior
of the PC/ABS composite at room temperature (293.15 K) under different strain rates.
The simulation compares the process to the recording of a high-speed camera. Figure 10
displays the typical comparison results, while Figure 11 compares the force–displacement
curves of the tests under different strain rates with the numerical simulations. It can be
seen from the figures that the J-C constitutive determined by the inverse method and the
failure parameters obtained by using DIC can reproduce the uniaxial tensile test process of
the PC/ABS composite under different strain rates at room temperature.
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Figure 11. Comparison between uniaxial tensile test results and numerical simulation of the PC/ABS
composite at room temperature and different strain rates.

The J-C failure model is shown in Equation (3) [35], which describes the effects of
stress triaxiality, strain rate, and temperature in a decoupled form so that factors can be
removed when they are not important to the study.

εtr = [D1 + D2 exp D3(
σm

σeq
)][1 + D4 ln

.
ε
.
ε0
][1 + D5(

Ts − Tr

Tm − Tr
)] (3)

where σm—hydrostatic stress; σeq—equivalent strength; Ts—sample temperature; Tr—reference
temperature. It should be noted that the temperature of the sample during the stretching
process will change significantly due to the generation of a large amount of heat, so Ts
refers to the internal temperature of the material before the sample fracture, rather than the
ambient temperature.

Polymer materials are highly sensitive to temperature [36], and during the tensile
process, a large amount of heat is generated in the sample, leading to a temperature rapid
increase in material. To accurately analyze failure behavior, the failure temperature in the
finite-element simulation is chosen as the specimen’s fracture temperature. This paper
focuses on the effect of strain rate and temperature on the failure behavior of the PC/ABS
materials, for which the J-C failure model is degraded as shown in Equation (4).

εtr = [d1 + d2 ln
.
ε
.
ε0
][1 + d3(

Ts − Tr

Tm − Tr
)] (4)

where
.
ε0 = 0.01 s−1, Tr = 293 K, Tm = 450 K. After fitting, it can be determined that

d1 = 0.825, d2 = −0.043, d3 = 2.6. At medium strain rates, thermal softening takes a
dominant role and the temperature rises rapidly, leading to a slight increase in the fracture
strain. However, at high strain rates, high-velocity impacts dominate the fracture strain of
the material, the fracture strain decreases, heat fails to accumulate in the material in large
quantities, and the temperature rise before fracture is relatively few.

TS is shown in Table 3, and its theoretical temperature can also be calculated from
Equation (5) [37], where density ρ = 1120 kg/m3, specific heat capacity c = 1400 J/(kg·K)
and mechanical thermal effect β = 0.9, and ∆T is the elevated temperature. At a strain rate
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of 0.01 s−1, the sample is in thermal equilibrium with the outside world and the TS can be
regarded as the same as the ambient temperature.

∆T =

β
εtr∫
0

σdεtr

cρ
(5)

3.6. Failure Behavior Analysis under Ballistic Impacts

The ballistic impact experiment was numerically simulated. The inputs were the DIC-
calculated failure fracture strain and the J-C constitutive parameters. A friction coefficient
of 0.25 was used to describe the interaction between the bullet and the target plate.

Figure 12 shows the simulation results of the finite-element simulation of the PC/ABS
composite for the penetration experiment, as well as a comparison to the experimental
process of penetrating the target plate. Time (t0 = 0 µs) was defined as the moment the bullet
began contact with the target plate. Then, we compared the simulation with the target
plate’s damage shape and the bullet’s location at each of the following times: t0 = 0 µs,
t1 = 200 µs, t2 = 400 µs, t3 = 600 µs, t4 = 800 µs, and t5 = 1000 µs. The results of the
finite-element simulation were found to be in good agreement with the experimental
results. The finite-element simulation’s damage shape and experimentally reclaimed target
plate were compared, as shown in Figure 13. The finite-element simulation results can be
accepted given the intricacy of the experimental procedure, the target plate fixation error,
and several irresistible factors like air pressure instability, bullet ejection deviation, etc., [38].
In conclusion, the failure fracture strain computed by the deformation information of the
specimen and the J-C constitutive parameters of the PC/ABS composite established using
the inversion method are both accurate in this paper.
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4. Conclusions

PC/ABS composites were subjected to uniaxial tensile tests at different speeds and
temperatures. A high-speed video camera filmed the samples’ deformation process while
they were at room temperature. Based on the experimental results, this paper used the
inverse method to determine the J-C constitutive model that can be used to describe such a
composite. The high-speed impact tensile tests of the PC/ABS composite were simulated
numerically using Abaqus 2020 and the determined constitutive model and compared
with the test results. In addition, the numerical simulation can reproduce the test process
recorded by a high-speed camera in combination with the failure parameters obtained from
the DIC analysis. We carried out the design of target penetration experiments simulation.
The penetration simulation reproduces the experimental process and the failure model is
correct. The main conclusions are as follows:

(1) The results of tensile tests at different temperatures and different strain rates show
that such composite have more obvious temperature effect and strain rate effect, the
yield stress decreases with the increase in temperature and increases with the increase
in strain rate. The yield stress is linearly dependent on temperature and the logarithm
of the strain rate;

(2) The J-C constitution established by the inversion method in this paper has high
accuracy and is applicable to the PC/ABS composite. The failure behavior of the
material at different temperatures and strain rates can be predicted;

(3) Based on the local deformation of the sample recorded by the DIC technique, the
fracture strain of the PC/ABS composite can be deduced. This fracture strain can
accurately reproduce the fracture behavior of uniaxial tensile materials.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: The protective and preservative role of apple skin in maintaining the integrity of the fruit is
well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity.
This study employs a combination of experimental and numerical methodologies, specifically utilising
the digital image correlation (DIC) technique. A specially devised inverse strategy is applied to
evaluate the mechanical behaviour of apple skin under uniaxial tensile loading. Three apple cultivars
were tested in this work: Malus domestica Starking Delicious, Malus pumila Rennet, and Malus
domestica Golden Delicious. Stress–strain curves were reconstructed, revealing distinct variations
in the mechanical responses among these cultivars. Yeoh’s hyperelastic model was fitted to the
experimental data to identify the coefficients capable of reproducing the non-linear deformation.
The results suggest that apple skin varies significantly in composition and structure among the
tested cultivars, as evidenced by differences in elastic properties and non-linear behaviour. These
differences can significantly affect how fruit is handled, stored, and transported. Thus, the insights
resulting from this research enable the development of mathematical models based on the mechanical
behaviour of apple tissue, constituting important data for improvements in the economics of the
agri-food industry.

Keywords: apple skin; hyperelasticity; digital image correlation; uniaxial tensile loading; finite
element analysis

1. Introduction

Skin appearance and cracking are significant causes of fruit value decrease and losses.
It is well recognised that fruit skin (FS; exocarp) is subjected to a complex stress field during
fruit growth, harvesting, storage and transportation. Additionally, the complex mechanical
behaviour of FS makes the identification of its constitutive laws a challenging theme,
presenting difficulties from both theoretical and experimental perspectives. Understanding
the relationship between FS composition and morphology and its mechanical behaviour is
an important research topic that has a clear economic impact on the agri-food industry.

The majority of existing works on this issue involve the evaluation of material param-
eters of fruit tissues (e.g., rupture force, rupture energy and firmness), aiming to establish
relationships between mechanical properties and production and post-harvesting factors.
Oey et al. [1] highlighted the influence of turgor on the structural and mechanical properties
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of apple tissue. Also, Juxia, W. and co-authors [2] studied the biomechanical characteris-
tics of the peels of two apple cultivars, using tensile strength, tear strength and puncture
resistance tests. The Allende team [3] focused on evaluating the relationship between
the histology of tomato peel and its breaking strength. Grotte M. and his co-workers [4]
measured the firmness of the skin and flesh of fruit using puncture tests.

In the above studies, the experimental and data-reduction methods used do not allow
for the identification of intrinsic mechanical properties of FS, which are fundamental to
numerical studies when estimating fruit mechanical behaviour.

The quality and risk of rupture of FS are usually evaluated by parameters such as
rupture force, rupture energy, and firmness. These parameters are often associated with
high scatter, primarily due to the mechanical tests as well as the coarse geometric and
mechanical simplifications adopted in evaluating these parameters. The classical method
used to determine the mechanical properties of FS is the uniaxial tensile test [5,6]. Different
loading strategies have been used for strain partition into elastic, plastic, and viscoelastic
components [7–9].

It is known that plant tissues have complex mechanical behaviour [10] and most of
them are considered to be elastic or viscoelastic [7–9]. However, some reported values
of ultimate strains [5,10] suggest that a hyperelastic approach is required, although the
material behaviour can change from elastic (viscoelastic) to hyperelastic (hyperviscoelastic)
through growth and ripening phases. Bargel and Neinhuis [5] confirm this behaviour,
showing the decrease in extensibility of the tomato fruit cuticle at the final stages of ripening.
Similarly, Bidhendi et al. [11] noted that stress–strain behaviour of the onion epidermis
under tension was remarkably non-linear. These authors evaluated the capacity of a few
hyperelastic models to reproduce the non-linear deformation of the onion epidermis using
a fitting strategy. Over the years, an extensive amount of hyperelastic constitutive models
have been proposed, such as the generalised Fung model [12], the Yeoh model [13,14],
and the Holzapfel–Gasser–Ogden model [15,16]. In this context, it remains unclear which
specific experimental tests should be conducted to precisely calibrate a hyperelastic model.

In this work, we investigated the hyperelastic behaviour of apple skin coupled with
full-field displacement measurements based on the digital image correlation technique.
Monotonic tensile tests were performed to obtain stress–strain curves on apple skin spec-
imens in the longitudinal direction. A methodology based on inverse identification con-
sidering finite element model updating (FEMU) was adopted to minimise the difference
between full-field numerical and experimental displacements. Through this process, the
Yeoh model coefficients were determined to replicate the hyperelastic response of the skin
accurately. This approach allows for the rational exploration of the connections between
mechanical properties, material composition, and morphology.

2. Materials and Methods
2.1. Specimen Preparation

Three apple cultivars, Malus domestica Starking Delicious, Malus pumila Rennet, and
Malus domestica Golden Delicious (Figure 1), were tested under the same conditions (opti-
mal stage), one day after harvesting in the Armamar region (Portugal; 41◦07′ N 7◦41′ O).
Five skin samples were extracted from each cultivar from the epicarp region, where lenticel
zones were less concentrated. Skin samples were taken from trees with no shading area,
without any control over the sunning position.

This was performed using a scalpel to form a rectangle shape (60× 20 mm) in the
longitudinal direction (Figure 2). Adequate razoring was then executed to remove apple
pulp until a uniform thickness (0.2 mm) was attained along the entire length of the specimen.
Subsequently, a speckle pattern suitable for DIC measurements was applied to the pill side
(20× 20 mm) by spraying black paint using an airbrush over the natural substrate of the
apple skin (Figure 2).
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direction: pedicel to calix) using a servo-electrical testing machine (Micro-Tester 
INSTRON 5848; 2 kN load-cell, INSTRON, MA, USA), with the crosshead displacement 
rate set to 3 mm/min (Figure 3a). To prevent water loss, the test was completed 
immediately after the specimen preparation, at room temperature (25 °C and 65 RH). 
Specimen slipping in the grips was avoided by cautious grip tightening during the 
specimen setting. Load–displacement curves were monitored by setting the acquisition 
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(Figure 3b) with a frequency of 1 Hz. These time steps allowed for the synchronisation of 
the load data with the acquired DIC images. Light distribution was adequately chosen to 
allow suitable contrast for DIC measurements (Figure 3c). 
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Figure 2. Specimen orientation (L = 60 mm , B = 20 mm).

2.2. Uniaxial Tensile Test

Tensile tests were performed in the apple skin specimens (in the longitudinal direction:
pedicel to calix) using a servo-electrical testing machine (Micro-Tester INSTRON 5848; 2 kN
load-cell, INSTRON, MA, USA), with the crosshead displacement rate set to 3 mm/min
(Figure 3a). To prevent water loss, the test was completed immediately after the specimen
preparation, at room temperature (25 ◦C and 65 RH). Specimen slipping in the grips was
avoided by cautious grip tightening during the specimen setting. Load–displacement curves
were monitored by setting the acquisition rate to 5 Hz while capturing images for DIC (digital
image correlation) measurements (Figure 3b) with a frequency of 1 Hz. These time steps
allowed for the synchronisation of the load data with the acquired DIC images. Light distribu-
tion was adequately chosen to allow suitable contrast for DIC measurements (Figure 3c).
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2.3. Digital Image Correlation
2.3.1. Optical System and Speckle Pattern

The integration of the 2D-DIC technique with mechanical tests was chosen due to
its suitability for conducting contactless and full-field measurements across the fruit-skin
substrate. This approach eliminates the need for gluing-based systems, such as strain
gauges or Bragg gratings, traditionally used to assess strains [17–19]. An 8-bit camera
(Baumer Optronic GmbH, Radeberg, Germany, model FWX20) with a telecentric lens (Opto
Engineering SRL, Mantova, Italy, model TC 13 36) was used, as reported in Table 1. Images
were recorded at an acquisition frequency of 1 Hz, and the working distance was set to
103.5 mm, with a fixed magnification factor of 4.4 µm/pixel. This camera sensor was
positioned perpendicular to the flat surface of sample while ensuring there was appropriate
lighting with a white-light LED (Table 1). The MatchID DIC software was used to process
the DIC analysis.

Table 1. Optical devices and DIC data.

CCD Camera

Model Baumer® Optronic FWX20 (8 bts)

Pixel resolution 1624 × 1236 pixels, 4.4 µm/pixel

Shutter time 0.7 ms

Acquisition frequency 1 Hz

Lens

Model Opto Engineering Telecentric lens TC 23 36

Magnification 0.243 ± 3%

Field of view (1/1.8′′) 29.3 × 22.1 mm2

Working distance 103.5 ± 3 mm

Working F-number f/8

Field depth 11 mm

Conversation Factor 0.018 mm/pixel

Lighting LED Raylux 25

Speckle Pattern
Painting technique Airbrush (nozzle set of 0.2 mm)

Average speckle size 6 pixels|21.5 µm

2.3.2. DIC Setting: Parametric Analysis

When conducting DIC measurements, it is essential to perform a convergence analysis
on the intrinsic parameters that govern the numerical imaging correlation method [17,20].

This is particularly crucial for biological materials that exhibit natural heterogeneities
at the observation scale. The DIC parameters significantly impact spatial resolution and
accuracy in both displacement and strain measurements [21]. A parametric study was
conducted with the MatchID Performance Analysis Tool [22], allowing for multiple DIC
analyses on the same image set and considering various parameter combinations. Each
point on the DIC setting space corresponds to a specific spatial resolution. To quantify this
metric, we used the Virtual Strain Gauge (VSG) measure [22,23]:

VSG = [(SW − 1) × ST] + SS [pixels] (1)

where SW refers to the strain window, determining the number of data points in the fitting
polynomial approach; ST stands for the subset step; and SS represents the subset size.

The physical units of millimetres for the VSG can be achieved by considering the image
conversion factor of the optical system (see Table 1). Each parameter was systematically
examined within a defined design space with specified minimum and maximum values
(refer to Table 2). We assessed the reconstruction of the strain component εxx at the specimen
centre, observing its variation in response to the preselected DIC setting parameters.
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Table 2. Parameters used in the Performance Analysis Tool of MatchID 2D DIC.

Subset-based settings

Subset size SS ∈ {21 + 4n | n =10} pixel
Subset step ST = 10 pixel (fixed)

Shape function {Affine, Quadratic}

Strain reconstruction-based settings

Strain window SW ∈ {3 + 2n | n = 8} data points
Polynomial order ? Bilinear (Q4), Biquadratic (Q8)
Strain convention Green–Lagrange

? Local least-squares fitting approach for the strain evaluation.

Figure 4 shows the εxx strain signal at the central reference point as a function of the
VSG. The data points visibly converge to a plateau with increasing VSG values, suggesting
an average strain at that specific point. This analysis revealed a compromise that balanced
spatial resolution and accuracy. Finally, Table 3 summarises the DIC settings selected in
this study to report the full-field data.
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Table 3. DIC and strain settings selected in the full-field measurements.

DIC settings

Correlation criterion ZNCC
Interpolant Bicubic spline

Subset shape function Quadratic

Subset size 41 pixels

Step size 10 pixels

Image pre-filtering Gaussian, 5-pixel kernel

Strain settings

Strain window size Nine data points
Strain interpolation Quadratic Q4
Strain convention Green–Lagrange

2.4. Procedure to Assess the Material Law

Evolutionary algorithms (EAs) have proven to be effective when applied to the itera-
tive optimisation of FEMU updating. This iterative process involves defining an objective
function based on the differences between the nodal displacements in experimental and nu-
merical datasets. Noteworthy applications encompass tasks such as determining viscoelas-
tic properties for wood-based panels [24], identifying elastic parameters at fibre–matrix
interfaces in composite materials [25], optimising parameters for hyperelastic cardiac ma-
terials [26], and establishing damage parameters for large-scale structural systems [27].
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Furthermore, EAs offer the advantage of not being heavily reliant on the initial solution,
thus mitigating the risk of becoming trapped in local minima during the optimisation
process [24,28].

The Yoeh, Odgen, and Neo-Hookean hyperelastic models are the most recommended
hyperelastic models in the literature for simulating the mechanical behaviour of various
biological tissues. MCalibration 5.1.2 software (Veryst Engineering, Needham, MA, USA)
was used to identify which of the three suggested models could most accurately replicate
the experimental outcome (i.e., stress–strain curves). Experimental stress–strain (σ = f (ε))
data ensuing from the tensile tests was used as input to identify the material law. The
objective function to be minimised was set as the mean square difference (MSD) between
the numerical output and the experimental data (σ = f (ε)). An extensive search for
optimal parameters minimising the fitness function was performed, which included an
initial random search, followed by the application of an EA. This search strategy (i.e., EA)
was offered by MCalibration as a suitable methodology to identify the hyperelastic co-
efficients, thus leading to the most suitable agreement with the experimental true σ− ε
curve. The accuracy of the obtained solutions was heavily contingent upon the selected
evolutionary parameters, such as the population size, crossover rate, and mutation rate
(Table 4). In this process, Yeoh’s model demonstrated more suitability in replicating the
experimental response.

Table 4. Parameters used in the evolutionary search.

Population Size Crossover Rate Mutation Rate Maximum Number
of Generations

100 0.05 0.95 1000

The output of this procedure is the identification of the set of coefficients defining
the material law, allowing us to replicate the experimental (mechanical) behaviour under
tensile loading. To this aim, in-plane stress analyses were conducted considering a finite
element model formed by 3321 shell (6-node) quadrilateral finite elements, using boundary
conditions to ensure admissible kinematic requirements for the tensile test, as illustrated in
Figure 5a.
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3. Hyperelastic Law

The approach adopted in this work starts with the basic assumption that apple skin
exhibits an isotropic behaviour. Concerning the hyperelastic models currently used in
commercial FEM software, the deformation gradient F and the right Cauchy–Green tensor
C are decomposed into dilatational and distortional components,

F = J 1/3 F∗ (2)

C = FTF = J 2/3C∗ (3)

with F∗ and C∗ being the distortional components and J = det(F) being the dilatational
component. Accordingly, the first and second invariants of C∗ are related to the invariants
of the right Cauchy–Green tensor by the equations:

I∗1 = J−
2
3 I1 and I∗2 = J−

4
3 I2 (4)

I1, I2 and J2 are the invariants of the right Cauchy–Green tensor

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ2

2 + λ2
2λ2

3 + λ2
3λ2

1
I3 = λ2

1λ2
2λ2

3 = J2
(5)

and λ1, λ2 and λ3 are the principal extension ratios.
The general constitutive equation of hyperelastic materials provdes the Cauchy stress

tensor σ as a function of the deformation gradient F by

σ(F) =
1
J

∂ψ(F)
∂F

FT (6)

ψ(F) is the strain-energy density function. The restrictions imposed by the principle of
material frame indifference imply that the strain-energy density function depends only on
the stretch tensor (U) component of F or, equivalently, on C = U2:

ψ(F) = ψ̂(C) (7)

The chain rule yields the following relationship between the partial derivatives of the two
strain-energy density functions with respect to their tensor arguments:

∂ψ(F)
∂F

= 2F
∂ψ̂(C)

∂C
(8)

Hence, combining Equations (6) and (8), the Cauchy stress can be expressed as

σ(C) =
2
J

F
∂ψ̂(C)

∂C
FT (9)

For isotropic materials, the strain-energy density function is a function of the right Cauchy–
Green tensor via its invariants (4 and 5), and can be written as ψ̃

(
I∗1 (I1, J), I∗2 (I2, J), J

)
. Thus,

the Cauchy stress tensor (9) becomes:

σ(I∗1 , I∗2 , J) =
J
2

(
∂ψ̃

∂I∗1

∂I∗1
∂I1

+ J2/3 I∗1
∂ψ̃

∂I∗2

∂I∗2
∂I2

)
b− 2

J
∂ψ̃

∂I∗2

∂I∗2
∂I2

b2 +

(
∂ψ̃

∂I∗1

∂I∗1
∂J

+
∂ψ̃

∂I∗2

∂I∗2
∂J

+
∂ψ̃

∂J

)
I (10)

where b = FFT is the left Cauchy–Green tensor and I is the identity tensor.

ψ̂
(
Cij; Di

)
=

N

∑
i+j=1

Cij(I∗1 − 3)i(I∗2 − 3)j +
N

∑
i=1

1
Di

(J − 1)2i (11)
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where Cij and Di represent material parameters. A particular version of the polynomial
model is the Yeoh model:

ψ̂(C10, C20, C30, κ) = C10(I∗1 − 3) + C20(I∗1 − 3)2 + C30(I∗1 − 3)3 +
κ

2
(J − 1)2 (12)

with κ representing the bulk modulus.

4. Results and Discussion
4.1. Uniaxial Tensile Tests

Figure 6 shows the load–displacement (P-δ) curves obtained cyclically, with increasing
load levels at a constant crosshead displacement rate (0.5 mm/min) until the final rupture
(last cycle). These results show that the area enclosed by the loading–unloading curves,
representing the energy per unit volume, gradually increases with the load value defined
to invert the crosshead, thus configuring a hysteresis loop (a history-dependent property).
This shows the increase in width in the hysteresis loop strain with load amplitude and the
rise in compliance with the number of load cycles in the loading branch, with the latter
effect being referred to as softening behaviour. Another characteristic identified in those
plots regards the unrecoverable strain in the material following unloading, which is more
visible as the load value defined to invert the crosshead increases. Figure 6 also illustrates
that the material can no longer replicate the same non-linear behaviour, as the number
of cycles increases, as observed from N = 1 to N = 6. As a result, it is obvious that the
load–unload curves obtained from mechanical testing on apple skin exhibit non-linear
elastic behaviour. This response suggests that following pure elasticity, these materials can
tolerate a high intensity of load and even exceed 100% deformation without damage [29].
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Figure 6. Load–unloading cycles in: (a) Malus domestica Starking Delicious; (b) Malus pumila
Rennet; and (c) Malus domestica Golden Delicious.

Figure 7 shows the set of experimental P-δ curves obtained in monotonic tensile
tests for the tested apple cultivars. These results evidence the existence of a linear trend
in the load–displacement curve (up to point A), followed by non-linear behaviour until
total failure.

DIC processing has revealed a set of strain cartographies along the loading axis, i.e., εxx
(Figure 8a,d,g), where an extensive homogeneous region was formed in the specimen
central area. Mean values of strain εxx were calculated considering the measurements per-
formed in that region, which were correlated with the applied load to plot the stress–strain
curves for each apple cultivar (Figure 9a–c). Those results allowed us to conclude the
existence of a low scatter of the ensued experimental data. Figure 9a–c also presents the
result of regressions derived from fitting procedures using power-law distributions for
each cultivar, showing clear differences.
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following stages: within the elastic response, the occurrence of relevant strain gradients (lenticels
identification), and the crack onset of apple skin, respectively.
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Figure 9. True stress–strain curves of apple cultivars: (a) Malus domestica Starking Delicious; (b) Malus
pumila Rennet; (c) Malus domestica Golden Delicious; and (d) corresponding average curves.

Figure 8b,e,h allow us to identify strain gradients (points B in Figure 7) in particular
regions of the skin apple samples, whose origin was later associated with existing anatomic
structures in apple skin, namely lenticels (Figure 10). The existence of these structures in
the apple skin allows for ensuring fruit oxygen and other gas exchanges, which are charac-
teristic of the secondary plant body (rather than the stomata, or pores in the epidermis, in
the primary plant). In fact, lenticels appear as a result of microcracks in the bark cuticle,
similar to the formation of areas known as russet. While lenticels form small spots on the
skin, russet covers large areas of the fruit. Both phenomena involve periderm formation in
response to rupture in the cuticle, influencing skin mechanical behaviour [30].
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In regards to Figure 8c,f,i, with correspondence to point C in Figure 7, crack initiation
and propagation are visible in the set of regions previously identified as highly affected by
strain concentrations (Figure 8b,e,h), where damage onset was under development.

4.2. Numerical Agreement

A procedure was developed to identify the most suitable constitutive model to mimic
the hyperelastic behaviour of apple skin under uniaxial tensile loading. The methodology
was based on the stress–strain response, exhibiting a pronounced non-linear S-shape (as
noticed by [2]). Implementing this approach, the Yeoh model proved very effective in repli-
cating the true stress–strain response, encompassing the non-linear domain (see Figure 11;
rescaled to improve visibility). This observation suggests that the adopted methodology is
suitable for extrapolating situations beyond experimentally tested conditions, including
scenarios involving different strain rates or environmental conditions.

Table 5 presents the set of coefficients used to define the constitutive law characteristic
of the Yeoh model (Equation (12)) for each cultivar identified by the inverse method.

Table 5. Material parameters of the Yeoh model identified by the inverse method for each apple
cultivar (values C10, C20, C30 in MPa).

Starking Delicious
Material

parameters Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 Average CoV
(%)

C10 13.28 30.85 24.37 17.74 13.68 19.99 34%
C20 −2289.75 −56,083.60 −17,502.80 −3771.46 −2056.59 −16,340.8 −127%
C30 509,610 82,163,500 11,920,400 960,077 573,257 19,225,369 165%

Rennet Delicious
Material

parameters Specimen 6 Specimen 7 Specimen 8 Specimen 9 Specimen10 Average CoV
(%)

C10 11.69 13.61 13.53 13.56 13.68 13.22 6%
C20 −908.19 −1672.44 −4534.94 −1476.87 −4779.09 −2674.31 −61%
C30 123,028 311,363 137,444 252,213 198,770 204,563.6 34%

Golden Delicious
Material

parameters Specimen 11 Specimen 12 Specimen 13 Specimen 14 Specimen 15 Average CoV
(%)

C10 7.354 10.33 10.30 7.187 10.88 9.21 17%
C20 −304.38 −503.81 −762.77 −384.85 −611.95 −513.55 −32%
C30 16,769 33,889.7 65,864.2 23,801.7 39,268.8 35,918.68 47%
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The results presented in Table 6 reveal a significant scatter in the identified coefficients
regardless of the apple cultivars. Despite this, coefficient C10 presents a smaller CoV in
comparison to C20 and C30, demonstrating a more consistent response to smaller strains (as
noted by Yeoh (1990) [13]), both within the individual apple cultivar and among cultivars.

Also, mean values of coefficients C10, C20 and C30 were determined to perceive even-
tual differences among the analysed cultivars (Figure 12). Analysing C20 and C30 for
Starking, Rennet and Golden, the difference among these values is very significant, which
evidences existing potential intrinsic differences in the apple skin microstructure or compo-
sition. Although a negative C20 may appear unconventional, one can affirm that there are
no real physical issues with this observation [13,14]. The fact that coefficient C20 is negative,
whereas C10 and C30 are positive, indicates that the secant shear modulus varies with the
deformation in a characteristic way [13,14]. Fruit skin was considered isotropic and nearly
incompressible. For the numerical analysis, compressibility values close to 0 were assigned
to D1 (in MPa).

The coefficients for Yeoh’s hyperelastic model on the studied apple cultivars are
compared in Table 6 with other research on various biological materials. A broad range
of values in various biological materials was seen when compared with literature studies,
underscoring the uniqueness of the coefficients for each kind of tissue. In comparison
to apple skin, the epidermis of onions has much lower values, suggesting a more elastic
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response. These biological materials have specific mechanical properties that underscore
the need to tailor constitutive models to capture their particularities. This underscores the
requirement for a customised approach when examining various biological structures.
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Table 6. Yeoh’s coefficients of different biological tissues.

Material
Yeoh Coefficients

C10 (MPa) C20 (MPa) C30 (MPa)
Starking Delicious

(This study) 19.99 −16,340.8 19,225,369

Rennet
(This study) 13.22 −2674.31 204,563.6

Golden Delicious
(This study) 9.21 −513.55 35,918.68

Onion epidermis
[11] 0.406 6.68 34

Porcine skin
[31] 0.26 15.5 1.75

Pig skin
[32] 8.42 8.75 2.35

Arteries branches
[33] 0.1067 5.1602 0.0

5. Conclusions

This work follows an innovative approach that harnesses a combination of experimen-
tal techniques based on full-field measurements (contactless) with appropriate numerical
modelling to predict the mechanical response of apple skin under tensile loading.

The proposed methodology is used to identify the coefficients of a constitutive law of
apple skin, to mimic the hyperelastic behaviour. In this process, the Yeoh’s model appeared
to be the most appropriate. The influence of the lenticel areas on the mechanical behaviour
of the apple skin was emphasised by DIC measurements. According to this study, these
areas are at risk of rupturing and are important in lowering the apple skin’s resistance to
external stress before achieving irreversible deformation. The identification of the influence
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of lenticel areas on the mechanical behaviour of apple skin adds an additional layer of
practical relevance.

Moreover, modelling and predicting the mechanical behaviour of these materials
was rendered attainable through the biomechanical interpretation of both Yeoh’s model
parameters and deformation cartographies. Understanding the coefficients in Yeoh’s
equation makes it possible to develop more accurate models to explain the mechanical
response of apple skin, which enhances the comprehension of the non-linear and elastic skin
characteristics. In the future, this mechanical characterisation may allow for establishing
a relationship between constitutive parameters of fruit skin and qualitative attributes
currently used to classify fruit (e.g., firmness and texture).

These findings constitute an important contribution to our knowledge of the me-
chanical behaviour of this complex biological structure (apple skin), outlining practical
implications concerning the selection and application of apple cultivars in many technical
and commercial contexts, from the food industry to biomaterials engineering. Additionally,
these results not only allow for advances in the scientific understanding of apple skin be-
haviour but also have valuable practical implications in sectors that depend on the quality
and durability of this fruit.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: The study aims to present the results of paper compression under an axial load. Different
heights of samples subjected to compression were taken into account. The main goal of the analysis
was to determine experimentally the maximum compression load. In addition, numerical models
based on the finite element method (FEM) were validated to refer to empirical results. The performed
numerical simulations were founded on Green–Lagrangian nonlinear equations for large displace-
ments and strains. The progressive failure of the compressed orthotropic material after exceeding
maximum stresses was based on Hill’s anisotropy theory. Nonlinear calculations were conducted by
using a typical Newton–Raphson algorithm for achieving a sequence convergence. The accuracy of
the developed model was confirmed experimentally in compression tests. The technique of analysing
the shape of the compressed paper sample on the basis of images recorded during the measurement
was used. The obtained test results are directly applicable in practice, especially in the calculation of
the mechanical properties of corrugated cardboard and in determining the load capacity of cardboard
packaging. Knowing the maximum compressive stress that packaging paper can withstand allows
packaging to be properly designed and its strength assessed in the context of the transport and
storage of goods.

Keywords: paper strength; digital image analysis; finite element method; Hill’s anisotropy
potential theory

1. Introduction

Paper is an orthotropic material widely used for the production of corrugated and
cellular cardboard, from which a variety of packaging is created [1]. The strength prop-
erties of these packages depend to a large extent on the properties of the paper. Much
effort is devoted to researching these properties of paper. Authors of [2] explore the ma-
terial’s response to compressive forces. They enhance our understanding of its structural
integrity under pressure. Reference [3] sheds light on the complex phenomenon of creep
in corrugated board, which is a key aspect when packaging fresh produce. This research
provides valuable information on the challenges of maintaining product integrity during
transportation and storage. The research presented in [4] integrates experimental and
numerical approaches to comprehensively study paperboard tube failure. The synergy
of methods enhances the robustness of findings, contributing to a deeper understanding
of lateral stress impacts on paper structures. The work [5] introduces a novel method for
assessing the radial crush strength of paper cores; this source marks a notable advancement
in evaluating paper strength properties. The innovative approach presented holds promise
for redefining industry standards in the assessment of paper core integrity. Study [6]
presents a comprehensive approach, examining the crushing dynamics of double-wall
corrugated cardboard and its impact on the load-bearing capacity of boxes. This allows us
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to look at packaging materials from an energy perspective. In [7], the response of a paper
honeycomb to changing relative humidity was investigated. This helps us to understand
how environmental conditions affect the stresses of these structures. Works [8–10] acknowl-
edge the significance of environmental conditions, specifically humidity, in influencing
the properties of honeycomb structures. However, paper [11] introduces a new method
for measuring the edgewise compression properties of paper. It laid the groundwork for
understanding the fundamental compression characteristics of paper, serving as a historical
reference in the evolution of testing methodologies. On the other hand, work [12] presents
a modelling framework for understanding both global and local buckling phenomena in
corrugated board panels subjected to edge-to-edge compression. The research sheds light
on the structural intricacies of corrugated materials under compression, contributing to
the broader understanding of their mechanical behaviour. There is a need to minimize
the weight of the packaging while maintaining the required strength. To achieve this, it
is increasingly customary to predict the strength properties of packaging by calculating
the properties of the papers used in its production [13–18]. One of the most important
properties is the resistance to edge crushing, which is measured in a short-plug compres-
sion test known as an SCT [19,20]. However, the SCT test does not take into account the
phenomenon of buckling of the sample, which occurs at longer fastening lengths and is
commonly observed under the operating conditions of corrugated packaging. The phe-
nomenon of sample buckling causes a significant reduction in its load capacity and it
is necessary to take it into account in the prediction of this quantity [21–27]. Thanks to
modern methods of processing and analysis of digital images [28–31], it is possible to
observe changes in the shape of paper samples during the test of resistance to crushing by
compressive forces [32,33]. This allows the change in the shape of the sample to be linked
to the force acting on it during the test. To achieve this, images of the tested sample are
recorded. As a result, it is possible to observe and evaluate the buckling parameters of the
sample, in particular its shape and the size of the deflection arrow. The results of the image
analysis of the paper sample compression process provide valuable data for numerical
prediction of their load capacity. This allows for a more effective search for a numerical
model describing the process of paper destruction in a unidirectional compression test.

The research presented in this article focused on the development and validation
of a numerical model describing the process of crushing paper with compressive forces
acting in its plane on the basis of experimental data from a testing machine and resulting
from the analysis of a sequence of sample images recorded during the measurement [34].
Thanks to this approach, it was possible to verify the prediction of the shape of the paper
sample subjected to the test, which is a strong confirmation of the validity of the developed
model. Moreover, taking into account Green–Lagrangian nonlinear equations for large
displacements and strains, progressive failure based on Hill’s anisotropy potential theory
was assumed to validate the numerical model and to achieve numerically maximum loads.

2. Materials and Methods
2.1. Measuring Stand

The SCT test of paper samples is usually made using a universal testing machine
(UTM). This allows us to record the shortening of the sample and the accompanying force.
To enable the assessment of the shape of the sample during the measurement, the sample
was recorded using a vision system based on a single camera. In order to synchronize the
shape registration of the paper sample subjected to the test and the measurement of the
displacement of the movable UTM handle, a measuring station as shown in Figure 1a was
developed. The stand is a modification of a measurement setup developed for registering
the local deformation of paper in a one-directional tensile test [35]. It consists of a Zwick
Roell Z 010 testing machine (89079 Ulm, Germany) with SCT test holders and a camera.
The design of the holders allows for much longer connection lengths than in a standard
SCT. Thanks to this, it was possible to perform the presented experiments and observe the
phenomenon of buckling of paper samples. The camera used is a Canon EOS 6D Mark II
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digital SLR camera (Hong Kong, China) with a Canon MP-E 65 mm f/2.8 1-5x Macro lens.
The camera is placed on a tripod that provides stable conditions for photo recording. The
sample is illuminated by a white light source ensuring constant illumination. The camera is
attached to the tripod via a setting shoe with the possibility of adjusting the position of the
parallel and perpendicular axis to the optical axis of the camera. Chessboard patterns of a
single square length of 1 mm (Figure 1b) are glued onto the handles of the testing machine.
This allows us to track the movement of the handle and determine the spatial resolution
of the recorded images. The measurement begins by placing the test paper sample in
the holders of the testing machine and positioning the camera ensuring the visibility of
the sample and fragments of chessboards in its field of view. The recording of the photo
sequence is then triggered and, after recording several images, the measurement is initiated
in the machine. Reaching the desired displacement of the movable handle completes the
measurement. The number of recorded images depends on the duration of the compression
test. The photo capture rate is 4 fps, but is not constant. In some cases, it dropped after
the camera cache was full. Nevertheless, thanks to reading information from photo EXIF
about the time of taking the photo with an accuracy of 1/100 of a second, it was possible
to precisely synchronize the photos with the UTM measurement results. The measuring
station and the measurement procedure are described in more detail in [34].
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Figure 1. The measurement setup composed of UTM and DSLR camera (a) and UTM handles with
chessboard patterns glued to them and a paper sample under test (b).

2.2. Image Processing and Analysis Technique

The recorded sequence of images was subjected to preprocessing and analysis. Pre-
processing consisted of converting images to grayscale, extracting images of the examined
paper sample, a chessboard on a movable handle and a chessboard on a fixed handle,
linear filtering of the sample image using a filter highlighting vertical edges in the image
with the mask shown in Figure 2a and linear filtering of chessboard images using a filter
highlighting the corners of the chessboard corners in the image with the mask shown
in Figure 2b.

The image resulting from the filtering of the paper sample image is shown in Figure 3a.
In Figure 3b, the original image of the sample with the left (green) and right (red), detected
edges, is presented. The left edge is detected with low efficiency due to low contrast in the
image. For further analysis, the right edge was selected.
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Figure 3. The result of the image filtering of the paper sample (a); the image of the sample with
the edges detected (b); and the shape of the right edge of the tested sample obtained in subsequent
images of the analysed sequence (c).

Sets of coordinates of points of the detected edges and corners were input information
to the algorithm for image data analysis. Image coordinates were converted to metric
coordinates (mm) based on information about the spatial resolution of the images and the
arbitrary place of origin of the coordinate system (related to the place where the sample is
attached to the stationary holder). The shape of the edges of the tested sample in subsequent
images of the recorded sequence is shown in Figure 3c. Next, the average values of the
coordinates of the corners of the moving and stationary chessboard were calculated. They
were used to determine the movement of the handles as a function of the time of recording
individual photos. On the basis of this information, the time of image recording as a
function of the measurement data acquisition time in the testing machine was estimated.
The result was the synchronization of data recording times from two different sources.

2.3. Hill’s Anisotropic Potential Theory

Material properties of orthotropic paper were assumed: Ex = 5600 MPa, Ey = Ez = 2450 MPa,
Gxy = Gxz = Gyz = 2120 MPa, Poisson’s ratio 0.3. Index x denotes the direction of compression.
This means that moduli Ex and Ey represent the properties in longitudinal and perpendicu-
lar directions with regard to the compression direction, respectively. In order to model the
plasticity of the analysed paper, Hill’s anisotropic criterion was applied [36–38] to describe
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the anisotropy material behaviour after exceeding the yield stress of paper. If this criterion
was considered for isotropic hardening, the yield function could be determined by [36–38]:

f (σ) =
√
{σ}T [M]{σ} − σ0(ε

p) (1)

where σ0 and εp represent a reference yield stress and equivalent plastic strain, respectively.
For the material with the three orthogonal planes of symmetry (sym.), the plastic compliance
matrix [M] can be given as:

[M] =




G + M −H −G 0 0 0
F + H −F 0 0 0

F + G 0 0 0
2N 0 0

2L 0
2M




(2)

The coefficients mentioned above, F, G, H, L, M and N, are the material constants and
should be defined experimentally. These magnitudes are shown in the following form:
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The yield stress ratios can be determined with the use of the following expressions
as below:

Rxx =
σ

y
xx

σ0
, Ryy =

σ
y
yy

σ0
, Rzz =

σ
y
zz

σ0
, Rxy =

√
3

σ
y
xy

σ0
, Ryz =

√
3

σ
y
yz

σ0
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√
3
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xz
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(4)

where σ
y
ij represents the yield stress for appropriate directions. In the case of the appli-

cation of Hill’s criterion, it was assumed that the tangential modulus Et after coming to
the limit strength was 56 MPa and subsequently stress ratios Rij amounted to: Rxx = 1,
Ryy = Rzz = 0.44 and Rxy = Rxz = Ryz = 0.3. On the basis of one-directional tensile tests of the
paper sample, the yield stress σ0 was determined to be 36 MPa.

2.4. Finite Element Model

FE (finite element) calculations were carried out by using Ansys 18.2 software [38].
The dimensions a (0.7 mm, 1.3 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm)
and b (15 mm) represent the height and the width of the sample, respectively (Figure 4).
To elaborate adequate discrete models of the compressed samples, the 4-node 181-shell
element was used. The size of finite element was assumed a/50. The buckling analysis
(BA) was performed based on the linear block Lanczos algorithm to determine the critical
loads. The nonlinear analysis was conducted for large strains and deflections on the basis
of Green–Lagrangian equations. The number of substeps for the single calculation was
assumed to be from 1000 up to 50,000. The maximum number of iterations for each substep
was set up to 5000. Figure 4 shows the FE model and the boundary conditions. The
compression load applied to the sample was realised by using a master node associated
with slave nodes lying on the outer edges of the sample. The preliminary imperfection w0
of columns for the sake of considered model was assumed: 0.1 t, 0.5 t, 0.75 t, 1 t, 1.5 t, 2 t, 4 t,
where t (0.14 mm) denotes the thickness of the sample. The initial deflection was related
to the mode of the first buckling force of the analysed sample. Nonlinear estimations and
convergence analysis were conducted by using the Newton–Raphson algorithm.
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Figure 4. Model FE (a) and view of master node connected with outer nodes (b).

3. Results and Discussion
3.1. Shape of Paper Samples Subjected to Compressive Forces in Subsequent Measurement Phases

In order to be able to compare the results of paper modelling in compression tests with
the results of real measurements in the UTM, the shapes of samples in measurement phases
characterized by a change in sample behaviour were presented. The moment when the
buckling started, the moment when the maximum compressive force was reached, and the
moment when the sample broke and its shape of the buckled sample ceased to resemble a
fragment of a sinusoid, were selected. Images of the samples are shown in Figures 5–7.
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Figure 5. The shape of the paper sample and the corresponding point on the force-shortening curve
for a clamping height of 3 mm at the beginning of buckling (a); at maximum force (b); at the end of
the sine wave shape (c).
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Figure 6. The shape of the paper sample and the corresponding point on the force-shortening curve
for a clamping height of 4 mm at the beginning of buckling (a); at maximum force (b); at the end of
the sine wave shape (c).

The analysis of the recorded images reveals the occurrence of four phases of destruction
of the samples, characterized by the following aspects:

1. compression without visible deflection—linear dependence of force on shortening;
2. significant deflection (possible appearance of buckling force) and consequent nonlin-

ear increase in force with further shortening;
3. visible deformation of sample and nonlinear drop of force vs. shortening;
4. appearance of a joint in the middle of the sample or destruction in the area of the joints.

Figures 5–7 show the shape of the samples and the corresponding points on the force-
shortening curves at the boundaries between the mentioned destruction phases.

3.2. Critical Forces

This subsection shows the results of critical load calculations for a compressed paper
sample with clamped supports (Figure 4). The estimations were performed for several
heights a taking into account the first five buckling loads. Critical forces expressed in a
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that
for the shortest a, the critical forces are the greatest. It is interesting that the next critical
loads are very close to each other. This means that the orthotropic material allows us to
attain different modes with a small changing a force. In Table 2, total deformation maps
are shown. Taking a look at the deformation modes, the number of half-waves for the
appropriate buckling load are the same regardless of the considered height. This means that

105



Materials 2023, 16, 7513

a small orthotropy (in the case of the analysed paper two to three times) does not matter
significantly. Furthermore, these shown shapes at the application of the initial deflection
were assumed.
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Figure 7. The shape of the paper sample and the corresponding point on the force-shortening curve
for a clamping height of 5 mm at the beginning of buckling (a); at maximum force (b); at the end of
the sine wave shape (c).

Table 1. The critical forces for different heights a between jaws.

Fcr (N)

Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3

2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8

3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7

4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8

5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9
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Table 2. The buckling modes of compressed paper with several heights a.

a
(mm)

Number of Mode

1 2 3 4 5

0.7

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

1.3

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

2

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

2.5

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

3

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

3.5

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

4

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

Materials 2023, 16, x FOR PEER REVIEW 9 of 16 
 

 

3.2. Critical Forces 
This subsection shows the results of critical load calculations for a compressed paper 

sample with clamped supports (Figure 4). The estimations were performed for several 
heights a taking into account the first five buckling loads. Critical forces expressed in a 
Newton unit have been inserted in Table 1. Based on the results, it can be easily seen that 
for the shortest a, the critical forces are the greatest. It is interesting that the next critical 
loads are very close to each other. This means that the orthotropic material allows us to 
attain different modes with a small changing a force. In Table 2, total deformation maps 
are shown. Taking a look at the deformation modes, the number of half-waves for the 
appropriate buckling load are the same regardless of the considered height. This means 
that a small orthotropy (in the case of the analysed paper two to three times) does not 
matter significantly. Furthermore, these shown shapes at the application of the initial 
deflection were assumed. 

Table 1. The critical forces for different heights a between jaws. 

 crF  (N) 
Mode a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm 

1 1124.3 415.3 187.5 122.2 85.7 63.4 48.7 38.6 31.3 
2 1125.8 416.9 189.1 123.8 87.3 64.9 50.2 40.1 32.8 
3 1128.4 420.2 192.6 127.4 90.9 68.6 54.0 43.9 36.7 
4 1132.2 425.3 198.3 133.4 97.1 75.0 60.6 50.8 43.8 
5 1137.4 432.5 206.5 142.1 106.3 84.7 70.8 61.4 54.9 

Table 2. The buckling modes of compressed paper with several heights a. 

a 
(mm)  

Number of Mode 
1 2 3 4 5 

0.7  
     

1.3 
     

2 
     

2.5 
     

3 
     

3.5 
     

4 
     

4.5

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 
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divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 
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might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

5

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

Materials 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4.5 

     

5 
     

3.3. Full Curves of Compression 
This subsection shows the diagrams of paper compression as the shortening s vs. the 

compression force Fcomp and gives maximum values of the forces. Based on the results, 
Figure 8a illustrates the curves of compression for the smallest considered height, i.e., a = 
0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller 
than the first critical force. If one can take into account the numerical curves, a significant 
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (re-
gardless of the magnitude of the initial imperfection) are meaningfully greater. Secondly, 
it was not possible to obtain maximum loads if even the initial deflection was equal to 
four thicknesses. However, it should be noted that at this variant the curves are the clos-
est (between the experiment and the simulation). To justify this situation, one should note 
that the initial imperfection of the sample in the numerical model was based on modes 
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case 
of the experiment, the initial imperfection in this case could differ or be of another mode 
(through the whole width of the sample almost uniform curvature might have occurred, 
for example). This could mean that the resistance of paper under compression just for this 
variant caused a significant drop in stiffness and simultaneously a decrease in the max-
imum load that was observed in the experiment looking at registered curves. In the next 
graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model 
some peaks were achieved. The mean maximum load in the experiment came to about 32 
N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It can be 
seen that the curves go similarly, but in the case of the FE curve, the stiffness is still 
greater. By increasing the height a, the curves based on the FEA are getting closer to ex-
perimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed, 
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 
t). In the case of numerical curves, the maximum load is noticed at a smaller shortening 
(circa 0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maxi-
mum load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), be-
cause peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next di-
agrams (Figures 10a,b, 11a,b and 12) where height a increases, it can be easily seen that 
there is better convergence between curves both in the maximum compression load and 
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical 
simulation are still great. In Figure 12, apart from the curves created based on Hill’s the-
ory, for a comparison, the curve without application of this theory is shown. In this case, 
a different trend in the curve is seen after exceeding a limit stress (yielding of the paper 
might have been possible). Hence, this means that achieving a maximum load was not 
possible. The comparison of maximum loads obtained by both methods is set out in Table 
3. Based on charts for greater a, it can be noted that within an increase in the initial de-
flection, both maximum loads and stiffnesses decrease; therefore, numerical curves begin 
to cover or be close to experimental ones. 

3.3. Full Curves of Compression

This subsection shows the diagrams of paper compression as the shortening s vs. the
compression force Fcomp and gives maximum values of the forces. Based on the results,
Figure 8a illustrates the curves of compression for the smallest considered height, i.e.,
a = 0.7 mm. The average peak of the force amounted to 38.2 N. It is 30 to 40 times smaller
than the first critical force. If one can take into account the numerical curves, a significant
divergence is seen in contrast with the experimental ones. Firstly, the stiffnesses (regardless
of the magnitude of the initial imperfection) are meaningfully greater. Secondly, it was
not possible to obtain maximum loads if even the initial deflection was equal to four
thicknesses. However, it should be noted that at this variant the curves are the closest
(between the experiment and the simulation). To justify this situation, one should note
that the initial imperfection of the sample in the numerical model was based on modes
achieved for linear buckling (See Table 2—for a = 0.7, first mode). Nevertheless, in the case
of the experiment, the initial imperfection in this case could differ or be of another mode
(through the whole width of the sample almost uniform curvature might have occurred,
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for example). This could mean that the resistance of paper under compression just for
this variant caused a significant drop in stiffness and simultaneously a decrease in the
maximum load that was observed in the experiment looking at registered curves. In the
next graph (Figure 8b), if a = 1.3 mm was taken into consideration, in the numerical model
some peaks were achieved. The mean maximum load in the experiment came to about
32 N. In the case of numerical estimations (for w0 = 2 t), the maximum load is 36 N. It
can be seen that the curves go similarly, but in the case of the FE curve, the stiffness is
still greater. By increasing the height a, the curves based on the FEA are getting closer to
experimental curves. It is just observed on the next chart (Figure 9a) for a = 2 mm. Indeed,
this effect is visible just for a greater preliminary deflection (between w0 = 1 t and w0 = 1.5 t).
In the case of numerical curves, the maximum load is noticed at a smaller shortening (circa
0.01 mm, but for the experiment it is at 0.03 mm). Better consistency at the maximum
load (experiment vs. simulation) is observed for height a = 2.5 mm (Figure 9b), because
peaks amounted to 28 N for both cases (for w0 = 1 t). Looking through the next diagrams
(Figure 10a,b, Figure 11a,b and Figure 12) where height a increases, it can be easily seen that
there is better convergence between curves both in the maximum compression load and
stiffness. Nevertheless, it should be admitted that initial imperfections used in numerical
simulation are still great. In Figure 12, apart from the curves created based on Hill’s theory,
for a comparison, the curve without application of this theory is shown. In this case, a
different trend in the curve is seen after exceeding a limit stress (yielding of the paper might
have been possible). Hence, this means that achieving a maximum load was not possible.
The comparison of maximum loads obtained by both methods is set out in Table 3. Based
on charts for greater a, it can be noted that within an increase in the initial deflection, both
maximum loads and stiffnesses decrease; therefore, numerical curves begin to cover or be
close to experimental ones.

Table 3. The maximum compression forces for different length a.

Fmax

Variant a = 0.7 mm a = 1.3 mm a = 2 mm a = 2.5 mm a = 3 mm a = 3.5 mm a = 4 mm a = 4.5 mm a = 5 mm

EXPmean 36.5 ± 3.1 33.4 ± 1.3 30.8 ± 1.0 28.7 ± 0.4 26.8 ± 0.7 24.0 ± 1.7 20.4 ± 1.4 17.5 ± 1.5 15.9 ± 0.9

FEM/
w0 = 0.1 t - 71.9 65.7 59.3 51.6 44.8 38.2 32.2 27.2

FEM/
w0 = 0.5 t - 58.3 46.7 38.8 32.4 28.6 25.3 22.5 19.9

FEM/
w0 = 0.75 t - - - - 27.3 24.2 - - 17.4

FEM/
w0 = 1 t - 48.1 35.7 28.8 23.6 21.1 19.0 17.1 15.5

FEM/
w0 = 1.5 t - - 29.1 - - - - - -

FEM/
w0 = 2 t - 35.6 - - - - - - -

FEM/
w0 = 4 t - - - - - - - - -

3.4. Deformation Edge Points

This subsection shows some diagrams as a deflection w (growth of deflection) vs.
the distance between the jaws for several stages (before buckling, at maximum load, at
greater shortenings of sample) of compression for a = 2.5 mm, 3 mm, 4 mm and 5 mm
(Figures 13 and 14; for shorter samples, no buckling was observed). The deflections illus-
trated in the diagrams denote a displacement of the lateral edge of the sample. Based
on these results, it can be seen that deflections obtained numerically are greater than in
the experiment. For higher samples, these differences are not significant. Moreover, the
modes in both methods seem to be similar. Of course, there are some discrepancies because
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peak points might have been lightly shifted with regard to the symmetry axis but in the
experiment with regard to the imperfect structure such a behaviour of paper is possible and
accessible. In the case of results for paper compression with a = 2.5 mm, the experimental
displacements in sequential stages are not clearly visible as far as typical buckling modes
are concerned. Therefore, the resistance of the paper is more noticeable because initial
imperfections could be small and did not matter significantly. In general, the greater the
lengths of samples that were considered, the better the convergences in deflections were
achieved (e.g., for a = 4 mm or 5 mm).
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4. Conclusions

The presented study was conducted to explore the compression behaviour of paper
samples under an axial load, considering a few heights of samples. The SCT test assumed
a pure compression without taking into account material buckling. However, this work
involved the analyses both of buckling and its impact on the load-bearing capacity of paper.
Through an empirical study, we determined the maximum compression loads and curves
of compression whose results were the base of a validation of numerical models by using a
finite element method, among others. The results of simulations, where numerical models
were based on Green–Lagrangian nonlinear equations and Hill’s anisotropy theory, showed
pretty good coincidence, especially for greater heights of compression; however, in the
case of the smallest considered height, numerical determination of the maximum load was
not possible even for a large initial imperfection. The reason this situation could result in
an improper mode of initial deflection which finally might have been influenced by the
entire stiffness. Nevertheless, the present study is the experimental confirmation of the
developed model’s accuracy in compression tests, coupled with the innovative technique
of shape analysis based on recorded images, and enhanced the practical applicability of
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the authors’ findings. These results directly benefit various industries, particularly in
the evaluation of mechanical properties for corrugated cardboard and the determination
of load capacity for cardboard packaging. Understanding the maximum compressive
stress that packaging paper can withstand empowers the design of robust packaging
solutions and aids in assessing their strength. Moreover, the conducted analysis of paper
compression in the present paper allows us to explain and describe several phenomena
occurring in paper goods. Firstly, one of the essential aspects can be obtaining different
bending stiffnesses of corrugated cardboards for opposite signs of bending moments whose
effect can be easily explained just by testing a deflection in the flat layer of cardboard
taking into consideration the compression due to forces acting in their plane. Secondly, the
performed tests of a paper compression determining the buckling effect and maximum
loads may have defined the demanded lengths between the peaks in the wave (core) in
multilayer corrugated cardboard.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: The application of carbon fiber-reinforced composite materials in marine engineering is
growing steadily. The mechanical properties of unbonded flexible risers using composite tensile
armor wire are highly valued. However, the curing process generates a certain amount of internal
residual stress. We present a detailed analysis of epoxy resin laminates to assess the impact of
thermal, chemical, and mechanical effects on the curing stress and strain. An empirical model that
correlates temperature and degree of cure was developed to precisely fit the elastic modulus data of
the curing resin. The chemical kinetics of the epoxy resin system was characterized using differential
scanning calorimetry (DSC), while the tensile relaxation modulus was determined through a dynamic
mechanical analysis. The viscoelastic model was calibrated using the elastic modulus data of the
cured resin combining temperature and degree of the curing (thermochemical kinetics) responses.
Based on the principle of time–temperature superposition, the displacement factor and relaxation
behavior of the material were also accurately captured by employing the same principle of time–
temperature superposition. Utilizing the empirical model for degree of cure and modulus, we
predicted micro-curing-induced strains in cured composite materials, which were then validated
with experimental observations.
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1. Introduction

As the exploration of offshore oil and gas resources extends into deeper waters,
there is an increasing demand for high-performance equipment and longer transmission
pipelines. This necessitates pipelines with high-pressure resistance (over 10,000 psi), a
wide operating temperature range (−20 ◦C to +150 ◦C), excellent corrosion resistance, and
high durability (with a service life exceeding 25 years). Furthermore, the pipelines must
be capable of withstanding high flow rates, minimizing the environmental impact, and
operating effectively at substantial depths (greater than 1000 m). Traditional unbonded
flexible risers, typically reinforced with carbon steel tensile armor layers, are increasingly
proving insufficient for deepwater operations due to their high density and significant
weight. These armor layers, crucial for the structural integrity of the risers, consist of several
flat steel bars spirally wound at angles between 30◦ and 50◦ relative to the axial direction.
To maintain torsional and load balance, the adjacent armor layers are configured in reverse
spirals with large angles. The main function of the tensile armor layers is to resist the axial
tension and reduce the partial torque, ensuring that the riser remains operational and safe
under its own weight and additional tensile force [1,2]. The riser structure is composed of
multiple independent layers, each made from different materials and possessing unique
sectional shapes, as shown in Figure 1.
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ally, CFRPs demonstrate superior fatigue and corrosion resistance. Extensive research on 
curing-induced thermal residual stress in composite materials has been conducted. How-
ever, few studies have specifically addressed the impact of residual stress on the strength 
of flexible riser composite tensile armor wires. A simple and effective computational 
model is needed to calculate the residual stress and strength failure in these composite 
materials. To do this, it is necessary to combine experimental research with numerical 
simulation through methods considering constitutive models, volume fraction, curing 
temperature, and service temperature of fibers and matrices. This will help establish a 
comprehensive computational theory and a calculation model for residual stress in com-
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Compared to other materials, composite tensile armor wires present fewer inconven-
iences such as delamination, degumming, and voids, especially when manufactured us-
ing an autoclave. Pultrusion is a continuous manufacturing process for composite profiles, 
which significantly affects the quality and performance of the final product [3]. Due to the 
inherent anisotropy and heterogeneity of composite materials, combined with the mis-
match in the thermal expansion coefficients between the internal fibers and the resin, re-
sidual stresses can develop. However, the residual stresses generated during the autoclave 
curing process can significantly impact the mechanical properties of the composites, po-
tentially initiating matrix cracks, delamination, and warpage. These stresses may compro-
mise the performance of the composite structure [4]. Dusi [5] analyzed the cure kinetics 
and viscosity of Fiberite 976 resin, determining the heat of reaction, rate of cure, and de-
gree of cure at various temperatures using DSC and measuring viscosity over time with a 
viscometer. Mijović [6] analyzed the cure kinetics of three epoxy formulations composed 
of TGDDM and DDS using isothermal tests. They found that an auto-catalyzed mecha-
nism with an overall reaction order of 2 adequately described the cure kinetics, noting 
increased reaction rates at higher temperatures and DDS concentrations. Fu [7], Che [8], 
and Singleton [9] analyzed cure deformations and residual stresses in 3D braided compo-
sites using a representative volume element (RVE) and thermochemical and thermody-
namic models. They examined the effects of temperature rise rate and curing temperature 
on the degree of cure, deformation, and residual stresses. Therefore, it is crucial to con-
sider these residual stresses in the design and engineering of composite material struc-
tures to ensure long-term reliability and performance. 
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The replacement of traditional steel with composite materials for manufacturing tensile
armor layers presents a promising, yet under-researched, solution. Carbon fiber-reinforced
polymers (CFRPs) are particularly suitable for this application based on their high strength,
low weight, and corrosion resistance. CFRPs weigh approximately 77% less than traditional
steel, which makes it an excellent choice for reducing the overall weight of flexible risers
while maintaining the same load-bearing capacity. They possess an elevated strength-to-
weight ratio, which enhances the structural efficiency of flexible risers by reducing the
overall weight while maintaining the same load-bearing capacity. Additionally, CFRPs
demonstrate superior fatigue and corrosion resistance. Extensive research on curing-
induced thermal residual stress in composite materials has been conducted. However, few
studies have specifically addressed the impact of residual stress on the strength of flexible
riser composite tensile armor wires. A simple and effective computational model is needed
to calculate the residual stress and strength failure in these composite materials. To do
this, it is necessary to combine experimental research with numerical simulation through
methods considering constitutive models, volume fraction, curing temperature, and service
temperature of fibers and matrices. This will help establish a comprehensive computational
theory and a calculation model for residual stress in composite tensile armor layers.

Compared to other materials, composite tensile armor wires present fewer inconve-
niences such as delamination, degumming, and voids, especially when manufactured using
an autoclave. Pultrusion is a continuous manufacturing process for composite profiles,
which significantly affects the quality and performance of the final product [3]. Due to the
inherent anisotropy and heterogeneity of composite materials, combined with the mismatch
in the thermal expansion coefficients between the internal fibers and the resin, residual
stresses can develop. However, the residual stresses generated during the autoclave curing
process can significantly impact the mechanical properties of the composites, potentially
initiating matrix cracks, delamination, and warpage. These stresses may compromise the
performance of the composite structure [4]. Dusi [5] analyzed the cure kinetics and viscosity
of Fiberite 976 resin, determining the heat of reaction, rate of cure, and degree of cure at
various temperatures using DSC and measuring viscosity over time with a viscometer.
Mijović [6] analyzed the cure kinetics of three epoxy formulations composed of TGDDM
and DDS using isothermal tests. They found that an auto-catalyzed mechanism with an
overall reaction order of 2 adequately described the cure kinetics, noting increased reaction
rates at higher temperatures and DDS concentrations. Fu [7], Che [8], and Singleton [9]
analyzed cure deformations and residual stresses in 3D braided composites using a repre-
sentative volume element (RVE) and thermochemical and thermodynamic models. They
examined the effects of temperature rise rate and curing temperature on the degree of
cure, deformation, and residual stresses. Therefore, it is crucial to consider these residual
stresses in the design and engineering of composite material structures to ensure long-term
reliability and performance.

Several factors affect the formation of residual stress and strain throughout the auto-
clave curing process. The accurate prediction of cure-induced residual stresses in composite
laminates depends on a suitable constitutive model that incorporates factors such as ther-
mal expansion, cure-induced chemical shrinkage, and material degradation or relaxation
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during curing. Traditionally, studies on residual stress have primarily been focused on
elastic models during the cool-down stage only. These models overlook several key effects:
chemical shrinkage, stress development before cooling, and stress relaxation during the
cooling process. Studies have shown that the classic lamination theory (CLT) or its modified
versions can effectively forecast the residual stress in thin laminates [10–12]. Stango and
Wang [13] calculated thermal residual stresses by using CLT; they found that CLT overes-
timates residual stresses and discussed potential reasons for this discrepancy. However,
these models do not account for residual stress development before cooling and fail to solve
the complex coupling of temperature and curing degree in thick laminates. Consequently,
an increasing number of scholars are paying attention to this critical issue.

It is important to recognize that most polymers, due to their viscoelastic properties like
stress relaxation and strain creep, are not described by linear elastic models, particularly
under conditions of high temperature and low degree of cure. Initially, Schapery [14]
conducted series analyses on the viscoelastic stress of composite laminates. Following
this, several researchers focused on studying residual stresses using viscoelastic models,
predominantly during the cooling stage of the curing process [15]. Accurately simulating
the viscoelastic behavior of materials throughout the entire curing process of laminated
boards remains challenging. Subsequent studies incorporated factors such as the thermal
expansion coefficient, cure-induced chemical shrinkage, and material stress relaxation,
examining some fundamental characteristics of the matrix using the time–temperature
superposition and equivalence principles [16–19]. Kim and White [20] investigated the
stress relaxation behavior of 3501-6 epoxy resin during curing, using experimental data to
model the relaxation process. Eom [21] applied time–temperature superposition to predict
the instantaneous viscoelastic properties during cure, providing a method to anticipate
material behavior throughout the curing process. Prasatya [22] developed a viscoelastic
model to predict the isotropic residual stress in thermosetting materials, examining the
effects of the processing parameters on stress development. As the thermal, physical, rheo-
logical, and mechanical properties of a resin change during curing, the analysis becomes
more complex. To better represent these performance changes, advancements in modeling
and further progress in experimental characterization are necessary.

In this paper, the reaction kinetics of CFRPs produced from unidirectional (UD)
prepregs was characterized and modeled. The curing kinetics parameters of the material
were obtained by non-isothermal differential scanning calorimetry (DSC). Additionally,
a viscoelastic residual stress model for composite materials was developed, employing
the time–temperature superposition principle to describe how the material’s mechanical
properties change with temperature and degree of cure. Finally, differential finite element
(FE) codes were devised and incorporated into ABAQUS with a UMAT subroutine, which
was then utilized to model the evolution of residual stress in composite laminates exposed
to different curing cycles and validated through experimental verification.

2. Multiscale Modeling Process
2.1. Resin Cure Kinetics

The kinetics of the resin curing reaction was characterized using DSC. Resins undergo
a series of phase transitions during the curing process, each accompanied by the release of
exothermic heat due to polymerization reactions. From the DSC data, an empirical model that
describes the cure rate of a resin can be developed by applying various kinetic models. In order
to calculate the resin degree of cure α over time, it is necessary to measure the total heat ∆Hwhole
generated during the reaction process, as well as the instantaneous heat ∆H released:

α =
∆H

∆Hwhole
. (1)
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The autocatalytic model effectively captures the cross-linking dynamics of polymer
chains by incorporating two reaction orders. The autocatalytic model of an epoxy resin
system is as follows [6,23]:

dα

dt
= Ae

−Eα
RT αm(1− α)n. (2)

By applying the natural logarithm to both sides of Equation (2), we can obtain:

ln
(

dα

dt

)
= ln A + m ln α + n ln(1− α)− Eα

RT
, (3)

in which α represents the degree of cure, T is the temperature, A stands for the pre-
exponential factor, Eα denotes the activation energy, R is the gas constant, and m, n charac-
terize the reaction order of the cure kinetics. They are obtained from multivariable linear
regression of the DSC data.

An Nth-order kinetic model suggests that a single reaction order prevails during the
curing process, and the rate equation is expressed as follows [24]:

dα

dt
= Ae

−Eα
RT (1− α)n. (4)

The natural logarithm is calculated for both sides of Equation (4):

ln
(

dα

dt

)
= ln A + n ln(1− α)− Eα

RT
. (5)

2.2. Cure-Dependent Modulus

The elastic modulus of the resin experiences significant development in response
to changes in the degree of cure during manufacture. The instantaneous isotropic resin
modulus is described by Bogetti [23] as follows:

{
Em = E0

m α < αgel
Em = (1− αmod)E0

m + αmodE∞
m α ≥ αgel ,

(6)

in which αmod =
α−αgel
1−αgel

, E0
m represents the resin modulus at the onset of the curing process,

E∞
m denotes the modulus of the fully cured resin, and αgel is the degree of cure at the gel

point (theoretically 0.63 for epoxy resin [17]).
The shear modulus is given by:

Gm =
Em

2(1 + vm)
, (7)

where the Poisson ratio of the resin is specified as [25]:

vm =
1
2

(
1− Em(1− 2v∞)

E∞
m

)
. (8)

Furthermore, the orthotropic elasticity of the laminate at specified degree of cure and
temperature can be described through a micromechanical model [26]. The properties of
T700 carbon fiber and the cured epoxy resin are listed in Table 1, which provides detailed
material characteristics essential for accurate modeling and analysis.
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Table 1. Mechanical characteristics of T700 and completely cured epoxy.

Laminate Material Properties

T700

Elastic modulus 115 GPa
α1 f −0.9 × 10−6/K
α2 f 7.2 × 10−6/K

Poisson’s ratio 0.3

Epoxy Thermal coefficient 5.27 × 10−5/K
Volumetric shrinkage 0.29

2.3. Viscoelastic Constitutive Model

During curing, the relaxation of residual stresses formed in composites can be char-
acterized by a detailed viscoelastic constitutive equation that incorporates a hereditary
integral. For situations involving variations in both temperature and degree of cure, the
stress in a linearly viscoelastic material can be calculated with the equation below [16,27]:

σ(t) =
∫ t

0
E(α, T, t− τ)

d
dτ

[
εtotal(τ)− εtc(τ)

]
dτ, (9)

where εtc represents the free thermochemical strain resulting from alterations in both
temperature and degree of cure. Composite materials exhibit thermal flow behavior, and
the corresponding equation is written as [28]:

σ(t) =
∫ t

0
E
(
ξ(t)− ξ ′(τ)

) d
dτ

[
εtotal (τ)− εtc(τ)

]
, (10)

in which ξ and ξ ′, termed reduced times, are a time representation combining temperature
and degree of cure and are described as:

ξ(t) =
∫ t

0

1
aT(α, T)

dt′; ξ ′(τ) =
∫ τ

0

1
aT(α, T)

dt′, (11)

where aT is the shift factor and enables the time–temperature superposition. Thermal
expansion εth and chemical shrinkage εch are the major source of the primary cause of
non-mechanical strains εtc which is expressed as:





εtc = εth + εch

εth1 = αT1(T − Ta)
εth2 = αT2(T − Ta).

(12)

The thermal expansion coefficients along the fiber direction αT1 and the transverse
direction αT2 are defined as:





αT1 =
α1 f E f Vf +αmEmVm

E f Vf +EmVm

αT2 =
(

α2 f + v12 f α1 f

)
Vf + (αm + vmαm)Vm,

(13)

in which E f and Em are the elastic moduli, Vf and Vm are the volume fractions, and α f and
αm are the thermal expansion coefficients.

During the curing process, the volume of the resin decreases because of the chemical
cross-linking reaction. The chemical shrinkage strain of an isotropic homogeneous resin
can be characterized as follows:

εr = 3
√

1 + ανre − 1, (14)
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where νre is the volume resin reduction and equals to −0.03 [29]. This indicates that
the effective thermal expansion and cure shrinkage of composites are impacted by the
properties of their constituents and their volumetric proportions.

3. Model Verification and Numerical Implementation
3.1. Experimental Section

In this section, a UD prepreg suitable for high-temperature (180 ◦C) curing was used.
The epoxy resin was tailored for high-temperature applications. The composite material
was reinforced with T700 carbon fibers. The conventional DSC Q200 from TA Instruments
(New Castle, DE, USA) was used to assess the exothermic flow of the epoxy prepreg during
the manufacturing process and to determine the curing reaction parameters. In a nitrogen
atmosphere, the uncured prepreg was placed in a DSC sample tray for dynamic scanning;
the sample weight was approximately 18 mg. Subsequently, DSC was set at the different
heating rates of 5 ◦C/min, 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min within the temperature
range of room temperature, up to 300 ◦C. Firstly, standard materials like indium were used
for temperature calibration, recording their melting points and adjusting the instrument
settings accordingly. Next, we conducted a heat flow calibration using a material with
a known heat capacity, such as sapphire, and adjusted the heat flow settings. A stable
baseline was established by running an empty crucible experiment. Finally, the calibration
was verified with additional standard materials to ensure accuracy and precision.

The storage and loss moduli were evaluated by DMA-Q800 from TA Instruments
(New Castle, DE, USA). A sample measuring 50× 5× 2 mm was tested in the 3-point
bending mode. Before inserting the standard spline into the DMA, we accurately measured
the spline using a vernier caliper and determined the average value. The calibrated device
functioned across multiple cure cycles and heating rates in the 3-point bending mode with
a testing frequency of 1 Hz and a heating rate of 5 ◦C/min, consistently maintaining an
oscillation amplitude of 20 µm.

Directional strains in laminates during the curing reaction are measured using Fiber
Bragg Grating (FBG) sensors. The conversion relationship among strain, temperature, and
wavelength λB is as follows [30]:

∆λB
λB

=
(

α f + ς
)

∆T + (1− pe)∆ε (15)

In which α f denotes the thermal expansion, and ς and pe are the thermo-optic and
photo-elastic coefficients of the optical fibers. The coefficient pe equals 0.22 for silica
optical fibers oriented in both directions. At the same time, a thermocouple was placed
to compensate for the temperature response of the FBG sensors on the laminate. Figure 2
shows the placement of the FBG sensors and the thermocouple. They were placed in the
center of a 4 mm thick UD laminate, indicating the material directions.
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3.2. Numerical Model

A multi-scale model was established to simulate the stress–strain state during the
laminate curing process. At the macroscopic level, stress, strain, temperature, and degree
of cure of the material were determined. The unidirectional laminate was assumed to be
a uniform transversely isotropic material, and we used a viscoelastic constitutive model
to determine the macroscopic mechanical response throughout the curing process. At
the microscale, the resin’s thermochemical properties were calculated. Temperature and
degree of curing were calculated at the macroscale and transferred to the microscale. These
calculations determined the corresponding thermochemical mechanical properties, which
were fed back to the macroscopic level.

The mechanical model was executed and integrated into the commercial finite element
software ABAQUS 2021, complete with the geometry and mesh configuration of the finite
element model. The laminate plane was meshed using the C3D8T element. The user
subroutines HETVAL and USFFLD were developed to investigate the curing kinetics
of thermochemical models. Simultaneously, the user subroutines UMAT and UEXPAN
were used to model the changes in stress and strain in relation to the degree of cure and
temperature. A finite element model with 4 mm thick laminate boundary conditions was
obtained following the guidelines provided in Figure 3.
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Figure 3. The geometry and mesh of the finite element model.

The dashed line in Figure 4 shows the manufacturer’s recommended curing cycle. For
thicknesses below 4 mm, curing cycle-1 is recommended, which involves heating from
room temperature to 180 ◦C at a rate of 2.5 ◦C/min, holding this temperature for 1 h, and
then cooling down to room temperature at a rate of 2 ◦C/min. For thicknesses greater than
4 mm, curing cycle-2 is recommended, initially heating up to 120 ◦C at a rate of 1.5 ◦C/min,
maintaining this temperature for one hour, then increasing it to 180 ◦C at the same rate,
holding it for 90 min, and finally returning to room temperature at a rate of 2.5 ◦C/min. The
curves in the figure also show a comparison of the distribution of the degree of curing. With
temperature changes, the curing rate in cycle-1 becomes more rapid, and the glass transition
phase is less pronounced. However, for thicker laminates, this can lead to uneven curing.
Using the t-test method, the t-statistic value was calculated to be 1.009, and the p-value was
0.320. Here, we compared the curing degrees of cycle-1 and cycle-2 at specific time points.
At all time points, there was a small statistical difference in the overall solidification degree
between the two cycles. The performance difference between the two cycles under real
conditions could be evaluated through practical application testing.
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Figure 4. Development of the degree of cure in the central point of the laminate. During the curing
process of thick laminates, the curing speed is different between the interior and the surface of
the material. The temperature gradients cause inconsistent thermal expansion and contraction.
This inconsistency can result in residual stress within the laminate, potentially causing warping,
deformation, and even cracking of the laminate, thereby compromising its dimensional stability and
structural integrity. Additionally, different degrees of cure between the inner and the outer layers
can result in uneven crosslinking density, leading to disparities in the mechanical properties (such as
strength and toughness) in different locations, thus reducing the overall performance and reliability
of the material. Furthermore, uneven solidification during the curing process can introduce defects
such as uncured areas or bubbles, increasing the risk of material failure during service. An optimized
curing process is necessary to overcome these challenges, requiring real-time monitoring systems to
ensure uniform curing and high-quality laminate performance.

4. Results and Discussion
4.1. Cure Kinetics

We examined the cure kinetics over a degree range from 0.05 to 0.9 to derive the
related parameters. Both Nth-order and autocatalytic models were employed to analyze
the cure kinetic parameters from the collected data. Initially, dynamic measurements
were conducted using DSC at various heating rates (5 ◦C/min, 10 ◦C/min, 15 ◦C/min,
20 ◦C/min), and the heat flux curves consistently displayed an endothermic peak. Figure 5
shows this phenomenon at different heating rates. By employing various dynamic models,
an empirical model depicting the curing rate can be derived from DSC data. The Nth-
order kinetic model presumes a singular order reaction throughout the entire curing
process. The cumulative data are graphed and linearly fitted to determine the reaction
order. Figure 6 displays the curve obtained using an Nth-order dynamic model. It was
observed that a linear relationship existed when the curing degree was below 0.7, but
significant nonlinearity arose when the curing degree exceeded 0.7. This discrepancy
suggests that when the curing degree surpasses 0.7, the Nth-order kinetic model fails to
conform to Equation (4), thereby indicating that the Nth-order model cannot accurately
represent the curing reaction process of the material. The Nth-order model began to fail at a
degree of cure α of approximately 0.7, across all heating rates analyzed (5 K/min, 10 K/min,
15 K/min, and 20 K/min). At this threshold, the values of ln

(
dα
dt

)
+ Eα

RT ranged from 22.2 to
23.0, depending on the heating rate. Beyond these points, significant deviations indicated
the Nth-order model’s inadequacy for describing the curing process accurately.
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The activation energy Eα  of the curing process showed a clear decreasing trend as 
the degree of cure increased from 0 to 1, as shown in Figure 7. Initially, at a degree of cure 
near 0, the activation energy was high, around 85 kJ/mol, indicating a significant energy 
requirement to initiate the curing reaction. As the degree of cure progressed to approxi-
mately 0.25, the activation energy decreased to about 80 kJ/mol and continued to drop 
gradually to around 70 kJ/mol at a degree of cure of 0.75. In the final phase, approaching 
full cure, the activation energy sharply declined to approximately 60 kJ/mol. This trend 
suggests that the curing process became progressively easier as the polymer network 
formed and crosslinking was facilitated, highlighting the importance of optimizing the 
curing conditions in different stages to ensure uniform and high-quality material proper-
ties. 
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The activation energy Eα of the curing process showed a clear decreasing trend as
the degree of cure increased from 0 to 1, as shown in Figure 7. Initially, at a degree of
cure near 0, the activation energy was high, around 85 kJ/mol, indicating a significant
energy requirement to initiate the curing reaction. As the degree of cure progressed to
approximately 0.25, the activation energy decreased to about 80 kJ/mol and continued to
drop gradually to around 70 kJ/mol at a degree of cure of 0.75. In the final phase, approach-
ing full cure, the activation energy sharply declined to approximately 60 kJ/mol. This
trend suggests that the curing process became progressively easier as the polymer network
formed and crosslinking was facilitated, highlighting the importance of optimizing the
curing conditions in different stages to ensure uniform and high-quality material properties.
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Figure 7. Relationship between activation energy and degree of cure for the curing process.

Nonlinear fitting was performed on other parameters in the model, and the curing
kinetics parameters are shown in Table 2. Figure 8 shows the comparison between the
experimental and the autocatalytic models. The high R2 values across all heating rates
indicated that the autocatalytic model fitted the experimental data well, maintaining
a high predictive accuracy. The slight decrease in R2 at higher heating rates suggests
minor deviations, but overall, the model remained robust. It can be seen that the model
and the experimental data were in good agreement in both early and late stages of the
curing reaction. The autocatalytic model, which accounted for the concentration of resin
and reaction products in calculating the reaction rate, could accurately predict the curing
process of the prepreg system. Additionally, consistency was apparent, as shown in Figure 9:
the temperature range where the curing degree curve increased coincided with the peak
temperature on the reaction rate curve. As the temperature continued to rise, the degree of
curing tended to saturate (close to 1), and the corresponding reaction rate curve started to
decrease, reflecting the gradual completion of the reaction. The solidification progress was
slow in the low-temperature zone, and the corresponding peak of the reaction rate curve
appeared in a higher temperature range.

Table 2. Cure kinetic parameters of autocatalytic model and Nth-order model.

Heating
Rate/(K·min−1)

Autocatalytic Model Nth-Order Model

ln(A)/min−1 m n R2 ln(A)/min−1 n R2

5 23.26 0.55 1.28 0.997 21.53 0.179 0.49
10 23.96 0.5 1.41 0.991
15 24.23 0.4 1.21 0.987
20 24.39 0.39 1.43 0.988

123



Materials 2024, 17, 3040Materials 2024, 17, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Comparison of the cure rate profiles at different heating rates. 

 
Figure 9. Degree of cure at different heating rates. 

Using Table 3, we conducted a detailed statistical comparison. It involved examining 
the R2 values of both models at different heating rates and calculating additional fit quality 
indices by using RMSE, AIC, and BIC. Taking the heating rate of 5 K/min as an example, 
the comparison is clearly shown in Table 3. The autocatalytic model consistently provided 
a better fit at different heating rates. This was evidenced by higher R2 values and lower 
RMSE, AIC, and BIC values, as expected. The Nth-order model, with significantly lower 
R2 values, indicated a much poorer fit to the experimental data. This detailed statistical 
analysis highlighted the superiority of the autocatalytic model for describing the curing 
process. 
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Figure 9. Degree of cure at different heating rates.

Using Table 3, we conducted a detailed statistical comparison. It involved examining
the R2 values of both models at different heating rates and calculating additional fit quality
indices by using RMSE, AIC, and BIC. Taking the heating rate of 5 K/min as an example,
the comparison is clearly shown in Table 3. The autocatalytic model consistently provided
a better fit at different heating rates. This was evidenced by higher R2 values and lower
RMSE, AIC, and BIC values, as expected. The Nth-order model, with significantly lower R2

values, indicated a much poorer fit to the experimental data. This detailed statistical analysis
highlighted the superiority of the autocatalytic model for describing the curing process.

Table 3. Summary of the expanded comparison.

Model R2 RMSE AIC BIC

Autocatalytic 0.997 0.15 30.1 35.4
Nth-order 0.490 0.60 45.0 50.3
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4.2. Material Modulus Characteristics

The mechanical properties of a resin change with polymerization and temperature.
Understanding these changes is crucial for estimating residual stresses and the resins’ final
properties. The dynamic storage modulus E′(w, T) is converted to the apparent tensile
relaxation modulus G(tr, T) as follows [31,32]:

E′(w, T) ≈ G(tr, T) (16)

in which tr is the relaxation time. On the left side of Figure 10, we show the relaxation
modulus against time in a logarithmic scale at different temperatures. Except for the curve
at the reference temperature Tref = 23 ◦C, the other curves are horizontally shifted, tending
to overlap. As depicted on the right side of this figure, a single smooth master curve against
the reduced time was obtained. The smoothness of the curve confirmed the applicability of
the time–temperature superposition principle to the apparent tensile relaxation modulus.
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We set x r=  indicating the relaxation. The shift factors for the tensile relaxation modulus 
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Through their accurate fitting with the experimental data, reflecting the material physical 
behavior, it was proved that at low temperatures, a small activation energy corresponded 
to a middle thermal activation value, while a high activation energy at high temperatures 
indicated significant molecular mobility and rearrangement. These shift factors can con-
struct an accurate master curve of the tensile relaxation modulus, which can then be used 
to analyze the relaxation behavior of materials over a wide temperature range. 

Figure 10. Relaxation modulus for the epoxy system and its master curve.

Here, we used the shift factor αT of the Arrhenius equation at temperatures near or
above the glass temperature:

log αT =
∆H

2.303R
(

1
T
− 1

T0
) (17)

where R represents the gas constant, set at 8.314× 10−3 [kJ/(K mol)]. The shift factors for the
relaxation modulus G used in the master curve construction are shown in Figure 11. We set
x = r indicating the relaxation. The shift factors for the tensile relaxation modulus aligned
well with the Arrhenius equation with ∆H1 = 34 kJ/mol and ∆H2 = 400 kJ/mol. Through
their accurate fitting with the experimental data, reflecting the material physical behavior,
it was proved that at low temperatures, a small activation energy corresponded to a middle
thermal activation value, while a high activation energy at high temperatures indicated
significant molecular mobility and rearrangement. These shift factors can construct an
accurate master curve of the tensile relaxation modulus, which can then be used to analyze
the relaxation behavior of materials over a wide temperature range.
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Figure 11. Shift factors for the relaxation modulus.

The fully cured samples were readied with a specific curing cycle for DMA analysis.
Tension tests were conducted to evaluate how the elastic modulus of the specimens changed
with temperature at varying frequencies. The temperature was incrementally raised, and
isothermal pauses of 5 min were implemented to establish thermal equilibrium. Figure 12a
shows the storage modulus and loss modulus of E of the cured resin. Figure 12b shows
the loss factor tan δ in relation to temperature. The resin transformed from liquid to solid
gel as the temperature increased. The storage modulus of the cured resin decreased at
around 125 ◦C and tended to stabilize at around 170 ◦C. At temperatures above 180 ◦C,
the resin was completely cured, and the modulus tended to stabilize. The loss factor
remained low and constant at lower temperatures when the material was in its glassy state
and rose at higher temperatures as the material became viscoelastic. The peak of the loss
factor typically occurred near the glass transition temperature of the cured resin. Prior
to vitrification, a significant variation was noted in the measured storage modulus as the
frequency of the specimen increased. The experimental results indicated a difference in the
storage modulus of 8 GPa, and the loss modulus was 0.6 GPa. After the vitrification of the
resin, the difference between the storage modulus and the energy dissipation modulus at
the two indicated frequencies was 5 GPa and 0.3 GPa.
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4.3. Residual Stress and Strain Simulation

In this section, we describe the finite element verification of the proposed viscoelastic
model and the numerical simulation of composite laminates that we conducted to study
the residual stress distribution during the curing of a CFRP. The composite material studied
was T700/epoxy resin unidirectional prepreg with a thickness of 4 mm. To facilitate the
comparison with the experiments, the finite element model was set to four layers. Under
the recommended curing cycle, the mechanical state of the center point (a/2, b, c/2) of the
laminate in Figure 2 was studied.

Figures 13 and 14 present a dual-axis plot tracking the temperature and stress of a car-
bon fiber-reinforced composite over time through two curing cycles. Cycle-1 is represented
in orange, and cycle-2 in green. The orange dashed line represents the curing temperature
curve for cycle-1, while the solid line represents the residual stress. At a certain time,
the corresponding stress depended on the temperature. The curing time for cycle-1 was
3.33 h, and that for cycle-2 was 5 h. The key aspects to note are the points of vitrification
and transition to a gel state, which are significant in the curing process. In both cycles,
the stress response to the thermal treatment was apparent; however, the stress in cycle-2
suggests a more complex interaction, possibly due to the response to the dual-stage heating
process. Notably, the stress did not completely revert to its initial state as the temperature
returned to baseline in both cycles, suggesting that residual stress remained in the material
after curing.
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In the initial stage of cycle-2 curing, lasting less than 60 min, due to the fast stress
relaxation and chemical shrinkage at a low degree of cure, the stress slightly decreased with
the increasing temperature in the first heating stage (compressive stress). In the first stage,
the resin began to cure and contract, and the shrinkage rate and thermal expansion rate of
the material were similar; so, the stress increased but not significantly. In the second stage
of heating and holding, due to the chemical hardening effect, the stress increased. In the
later stage of holding in the second stage, the stress changes tended to stabilize, which can
be attributed to the fact that a balance between the complete solidification of the material
and stiffness relaxation was reached. During the cooling stage, the slow relaxation and
thermal expansion of the material in the second stage resulted in a significant increase
in stress. In the curing processes of cycle-1 and cycle-2, the total residual stresses were
11.7 and 17 MPa, respectively. Due to the fact that the composite material underwent two
heating and insulation stages in the two cycles, many cross-linking reactions occurred,
resulting in high stress levels in the material. At the same time, the second heating stage
allowed more unreacted resins to participate in the reaction, increasing the curing degree
and material rigidity.

Compared to Figure 14, the unidirectional direction of composite fibers resulted in a
higher modulus and greater strength in the longitudinal direction (fiber direction) during
the curing process. At the same time, the fibers could also withstand higher loads. In
the longitudinal cycle-1 and cycle-2, the total residual stresses were 51.4 MPa and 49.1
MPa, respectively, with little difference between the two cycles. The comparison between
the values measured for the FBG sensor and the numerical values of the curing shrinkage
strain at the center of the laminate is shown in Figures 15 and 16. In the actual experimental
testing, an oven was used for curing, with pressure applied to ensure the curing behavior of the
material with cycle-1. The numerical simulation results revealed a dynamic interplay between
temperature and strain during the curing of the prepreg. Initially, thermal expansion caused the
strain to increase to a peak as the temperature rose. Concurrently, the semi-cured resin began its
transition into a liquid state. As the curing process began, the material polymerization reaction
caused resin shrinkage, resulting in a sharp decrease in the material strain. In this stage, the
shrinkage in the laminate attributable to the curing process superseded the thermal expansion
strain. Due to the slow chemical reaction of the polymer chain, a small delay in strain variation
was observed after vitrification. After the resin curing was completed, the strain increased
twice, proportionally to the temperature increase caused by thermal expansion. Finally, as the
resin cooled, volume contraction due to the reduced temperature led to a minimization of the
strain. At the end of curing, the difference between the transverse strain (−4640 µε) based
on the proposed modulus and the experimentally measured transverse strain (−4438 µε) was
very small. Therefore, the proposed viscoelastic modulus model can accurately predict the
curing strain.
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5. Conclusions

We comprehensively characterized the residual strain observed during the curing
process of CFRPs. Subsequently, the kinetics of this process was meticulously analyzed
using both Nth-order and autocatalytic models. The autocatalytic model demonstrated
a closer alignment with practical applications, and the temperature range increase in the
curing degree curve was consistent with the peak temperature in the reaction rate curve.
The alignment between the autocatalytic model and its applications was based on its
accurate prediction of the kinetic parameters, the consistency of the obtained results with
the experimental data, and its ability to describe the mechanical properties of laminate.
An empirical model combining the curing degree and temperature was used to describe
the thermochemical properties of the cured prepregs. This model effectively captured
the viscoelastic behavior and shift factors by using the principle of time–temperature
superposition. Following resin vitrification, the differential observed between the storage
modulus and the loss modulus at varying frequencies was quantified as amounting to 5 GPa
and 0.3 GPa. Viscoelastic models are utilized to investigate the material manufacturing
process, predicting and analyzing the residual stress and strain during the curing process.
For laminates measuring 4 mm in thickness, the difference between the two cycles was
minimal. Comparing the curing cycles under the same conditions, the measured curing
strain and the simulated curing strain showed overall consistency. This viscoelastic model
assumes uniform material properties and curing, which may not be accurate for thicker
laminates. This can cause inaccuracies in predictions. Thus, experimental validation and
better modeling techniques are necessary to accurately predict complex laminate behaviors.
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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
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Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU),
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: We present a macroscale constitutive model that couples magnetism with thermal, elastic,
plastic, and damage effects in an Internal State Variable (ISV) theory. Previous constitutive models did
not include an interdependence between the internal magnetic (magnetostriction and magnetic flux)
and mechanical fields. Although constitutive models explaining the mechanisms behind mechanical
deformations caused by magnetization changes have been presented in the literature, they mainly
focus on nanoscale structure–property relations. A fully coupled multiphysics macroscale ISV
model presented herein admits lower length scale information from the nanoscale and microscale
descriptions of the multiphysics behavior, thus capturing the effects of magnetic field forces with
isotropic and anisotropic magnetization terms and moments under thermomechanical deformations.
For the first time, this ISV modeling framework internally coheres to the kinematic, thermodynamic,
and kinetic relationships of deformation using the evolving ISV histories. For the kinematics, a
multiplicative decomposition of deformation gradient is employed including a magnetization term;
hence, the Jacobian represents the conservation of mass and conservation of momentum including
magnetism. The first and second laws of thermodynamics are used to constrain the appropriate
constitutive relations through the Clausius–Duhem inequality. The kinetic framework employs a
stress–strain relationship with a flow rule that couples the thermal, mechanical, and magnetic terms.
Experimental data from the literature for three different materials (iron, nickel, and cobalt) are used
to compare with the model’s results showing good correlations.

Keywords: magnetism; magnetostrictive strain; magneto-mechanical effect; ferromagnets

1. Introduction

In recent years, automotive electrification has served as an efficient technology to
reduce fuel consumption, greenhouse gas emissions (GHG), and dependency on volatile
resources, as well as maintain the high-power density and efficiency of a motor [1,2]. A new
generation of electric propulsion motors is based on magnetic materials (iron (Fe), nickel
(Ni), and cobalt (Co) for example), including soft magnetic laminations and Rare Earth (RE)
elements (e.g., Neodymium or Cerium). Magnets exhibit a rich variety of material behavior
originating from their type (diamagnet, paramagnet, ferromagnet, antiferromagnet, and
ferrimagnet) and microstructural behavior (magnetic domains interaction and electron
spin) that are strongly dependent on temperature, mechanical stress, external magnetic
field, damage within the material, and time.
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To meet the high automotive market requirements, the electric cars industry used
Permanent Magnets (PM) and Rare-Earth (RE) magnets to increase the engine power at a
low price. Permanent magnets are critical components for electric motors and power gener-
ators. However, RE elements are earth sources that decrease on a daily basis, thus requiring
a high market value and becoming more expensive. According to the US Department
of Energy (DOE) and other international institutes [3], RE elements are critical elements
that are subjected to high supply risks, since the main location of RE elements is in China.
To date, RE elements are non-recyclable elements; therefore, finding a cheap and more
available alternative is an emerging issue to address. In an effort to fill this engineering
gap, scientists dedicated considerable efforts to find an alternative to permanent magnets
by understanding the physical behavior of magnets and modeling it in a mathematical
framework that is used for various industrial applications.

Previous models describe the mechanical response of a magnetic sample when sub-
jected to an external magnetic field [4,5]. The mechanical response comes, in most cases,
as a mechanical dimensional elongation [6]. This effect is called magnetostriction [6,7]
and is mostly found in ferromagnetic materials and giant magnets [8]. Bozorth (1945) [9]
and Brown (1949) [10] first presented a theoretical analysis of the magneto-mechanical
effect in ferromagnetic materials by replacing the applied stress with an equivalent field.
Afterward, Cullity (1972) [11] researched such problems using Le Chatelier’s principle.
Sablik et al. (1988) [12] considered the changes in the hysteresis of ferromagnetic materials
under constant stress. More systematic research on the magneto-mechanical effects was
presented by Jiles (1995) [13] and Jiles and Atherton (1986) [14] based on the concepts of an
“effective field theory” and “law of approach”.

Although various models have been previously introduced to solve such intricate
engineering problems [15–17], most studies individually considered mechanical, magnetic
effects, and thermal effects. None of the previously cited models coupled the mechanical,
thermal, and damage effects with magnetic effects in a consistent model.

Only a handful of studies on magnetoplasticity have been completed, and the his-
tory is fairly recent. Zagoruiko (1965) [18] was one of the first researchers to address the
magneto-plasticity effect when he demonstrated that a pulsed magnetic field affected the
plasticity of NaCl crystals. Later, Kravchenko (1970) [19] showed that the presence of a
magnetic field inversely affects the metal’s plasticity. Later, Al’shits (1987) [20] showed that
a static magnetic field can affect the plastic behavior of NaCl. Molotskii (2000) [21] showed
that when magnetic field transitions between singlet and triplet states occur, the depin-
ning of dislocations from obstacles is facilitated, thus increasing plasticity. Mullner et al.
(2003) [22] showed how a magnetic field changed the stress–strain behavior of a single
crystal Ni-Mn-Ga. An experimental study also showed that the yield strength can decrease
by ~5%, but the ductility can increase by ~15% [23]. In other studies, however, the hardness
of steel increased under the magnetic field [24,25], and some studies even showed that
both ductility and tensile strength increased [26,27]. Many laboratory experiments have
shown that the mechanical properties of materials can be affected by precipitation and
phase transformation kinetics altered by the applied magnetic field [28,29]. For instance,
AISI 8620 steel showed some changes in the amount of cementite and its distributions
with exposure to a magnetic field [28]. In their study, the cementite increased with the
magnetic field while temperature was maintained low, which implies the altered precip-
itation is due to the magnetic field instead of temperature. Murase et al. (1993) [30] also
showed that the fracture toughness of austenitic steels decreased by approximately 20% at
a magnetic strength of 8 T. This embrittlement was due to the martensitic transformation
induced by the magnetic field as it decreases austenite stability. Other than the effects
on phase transformation and precipitation, several studies reported that magnetic fields
influence fracture toughness [31–33], ductility [24,28,32,34,35], fatigue life [23,25,28,36–41],
and creep [42] through various and complex mechanisms. Interestingly, Mullner et al.
(2003) [22] reported that the crystallographic orientations (texture) and twins under a mag-
netic field change the magnetization across the twins and thus affect the dislocations in
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polycrystalline Ni-Mn-Ga. A useful review summarizing recent research progress regard-
ing microstructure and property of metals influenced by magnetic field can be also found
in Hu et al. (2022) [43].

Several studies have been conducted to develop constitutive models to account for
the magnetostriction and magnetoplasticity behavior of magnetic materials. In recent
studies, Zheng and Liu (2005) [44] proposed a constitutive relation for largely (non-linear)
magnetostrictive straining, particularly for Terfenol-D rods. Li and Xu (2011) [45] modified
the classical model by Jiles and Atherton (1984) [46] and Sablik (1997) [47] to account for
asymmetry in magneto-mechanical behavior arising from different loading directions (ten-
sile and compressive). They incorporated a stress demagnetization effect, a variable domain
pinning coefficient, stress-dependent saturation magnetostriction, and a domain coefficient
dependent on applied stress. Wang et al. (2011) [48] integrated the plastic deformation effect
into a magneto-mechanical constitutive model. More recently, Daniel (2018) [49] presented a
useful analytical model with only three parameters that captures stress-dependent magne-
tostriction deformation based on the energy consideration. Shi et al. (2020) [50] proposed a
magnetoelastoplastic model from the standpoint of magnetic memory, and Shi (2020) [51]
also presented a magnetoelastoplastic constitutive relation by using magnetoelastic energy
and magnetoplastic energy due to domain pinning. In this historical context, a theoretical
study on the thermomechanical effects coupled with damage and magnetic effects is of
great interest to provide a physical basis for various magnetic testing techniques and gives
a better understanding of the test results. Therefore, a comprehensive model framework for
predicting magnetically influenced deformation behavior is needed. In the present study,
we report a magnetism-dependent elastoviscosplastic and damage model in the framework
of Internal State Variables constitutive theory, which incorporates aspects of kinematics,
thermodynamics, and kinetics of deforming continuum body under magnetic, thermal,
and mechanical loads.

The Internal State Variable (ISV) theory has been viable over the past years start-
ing from the significant contribution of Onsager (1931) [52] related to thermodynamics.
Then, Eckart (1948) [53] used ISV theory in continuum mechanics. Kroner (1960) [54]
postulated that the ISV continuum theory can use physically observed behaviors although
the complete microstructure arrangement is unnecessary as long as the macroscale ISV
representation is complete. Later, Coleman and Gurtin (1967) [55] proposed the use of
history-dependent variables to quantify dissipative mechanisms of internal deformation
within a thermodynamically consistent framework. Hence, an ISV model employs a set of
constitutive equations that capture the history effects of a material to predict its mechan-
ical properties and its future behavior based on the already existing mathematical state
description [56]. Many models are based on Coleman and Gurtin’s (1967) [55] framework,
and they are summarized by Horstemeyer and Bammann’s (2010) [57] historical review of
ISV theory.

The deformation gradient maps the deformation from the reference configuration to
the current configuration. The multiplicative decomposition of the deformation gradient
describes the deformation of elastic–thermal–magnetic behavior. Previous researchers used
kinematic decomposition [58–73]; to establish a constitutive model for deformations of
different materials (such as thermal effects [71]). Later, Dimitrov et al. (2020) [74] extended
the thermomechanical description to electrothermomechanical constitutive equations to
relate the electric effects on the thermomechanical hardening of the metals. Recently,
Cho et al. (2022) [75] incorporated the nuclear irradiation effect on the elastoviscoplastic
behavior of crystalline metals but not for magnetic effects heretofore.

The contribution of our work includes the development of an Internal State Variable
(ISV) constitutive model that accounts for magnetism-dependent elasto-viscoplasticity
and damage for magnetic materials that brings in three novel ideas: (1) introduction of
kinematics for the deforming continuum body under an external magnetic field to account
for elastic/inelastic deformation and vorticity affected by the magnetic field; (2) introduc-
tion of a new magnetic ISV constrained by the first and second laws of thermodynamics
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(Clausius–Duhem inequality); and (3) this ISV-based constitutive model is a novel ap-
proach to address the kinetics of mechanical, thermal, and magnetic boundary conditions.
The kinematics, thermodynamics, and kinetics of an ISV model should be independently
developed but internally consistent, and we generate the theory for magnetic-influenced
deformation herein. The contribution of this work is twofold. First, the physical estab-
lishment of how magnetic effects, resulting from a material’s proper magnetization or a
material subjected to an externally applied field, can change the behavior of a structure
on the macroscale level. Second, the development of a consistent thermodynamic model
following the Coleman and Gurtin (1967) [55] thermodynamic framework satisfies the
first and second laws of thermodynamics. The first section of this document presents an
introduction to the problem statement. Section 2 presents the macroscale deformation
behavior exhibiting a response to an external magnetic field admitting subscale information
from the mesoscale and the nanoscale. Section 3 provides a full description of the model’s
kinematics relations of the thermal–elastic–damage–magnetic ISV model. The Coleman and
Gurtin (1967) [55] thermodynamic framework of the ISV model is presented in Section 4.
To describe the macroscale behavior of the material, the kinetics of the ISV model are
presented in Section 5. Finally, we present model comparison with lab experimental data
for magnetostriction and magnetization behavior.

A standard notation is followed in this mathematical formulation. In this text, tensors
are denoted by boldface font while scalar values have the standard weight. All tensor
components are written with respect to a fixed Cartesian coordinate system. Special
care is given to specify configurations throughout the derivation by using accent marks

where the tilde (Ř), circumflex (R̂), macron (R), double macron (R), and overbrace (

}

R)
represent different intermediate configurations. The following definitions are used in the
text: AB => (A.B)ij = AikBkj, A; B = AijBij, tr(A) = Aii,

(
AT)

ij = Aji. The overdot
denotes the material time derivative. The apostrophe denotes the co-rotational derivative.

2. Phenomenological Behavior

In nature, several types of magnetic materials exist. Differences in magnet types
depend on material microstructure properties and response to external magnetic fields. The
different types of magnets are diamagnets, paramagnets, ferromagnets, antiferromagnets,
and ferrimagnets, and these are summarized in Table 1. Brugmans (1778) [76] characterized
diamagnetism as the tendency of the material to oppose an applied magnetic field (H). Dia-
magnetism creates a repulsive force, and paramagnetism creates an attractive force when
subjected to an applied magnetic field (H), making the total magnetic field stronger [77].
The third type of magnetism is ferromagnetism. Ferromagnetism is characterized by a
spontaneous and strong magnetic field without the presence of an externally applied field.
The three main ferromagnetic elements that exist in nature are the following: iron (Fe),
nickel (Ni), and cobalt (Co), which are used to demonstrate our theory. Antiferromagnetism
tends to have electrons with intrinsic magnetic moments that do not align parallel with
each other but align in antiparallel orientations [78]. The fifth type of magnetism is ferri-
magnetism. A ferrimagnet has the same properties as a ferromagnet, such that it retains a
magnetic field even when no external magnetic field is applied but has a net magnetization
less than that of ferromagnets alone.

The magnet types exhibit behavior that extends to multiscale levels. The effects of
magnetism are described at the macroscale, mesoscale, and nanoscale as presented in the
following section.
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Table 1. Five different types of magnetic materials.

Type Spin Alignment Spin Illustrated in Simplified Plot Examples

Ferromagnets Electron spins align parallel to one another,
resulting in a spontaneous magnetization.
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one another, some spins are antiparallel,
resulting in spontaneous magnetization.
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Antiferromagnets Electron spins align antiparallel to each
other, resulting in a null net magnetization.
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Paramagnets Electron spins tend to align parallel when
an external magnetic field is applied.
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Oxygen, sodium, aluminum,
calcium, uranium

Diamagnets Electron spins tend to align antiparallel
to an external magnetic field.
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2.1. Macroscale Level: The Magnetostriction Phenomenon

Magnetostriction is a phenomenon found in ferromagnetic materials [7,15,79,80]. The
magnetostriction phenomenon arises from the misalignment of magnetic domains such
that, when subjected to an externally applied magnetic field, the domains align parallel
to the magnetic field direction, resulting in a shape change at the macroscale level. Joule
(1842) was the first to identify magnetostriction by observing a sample of nickel expanding
when subjected to an external magnetic field. The concept of magnetostriction is a key
feature employed in the magneto-mechanical coupled constitutive model described herein.

Magnetostriction phenomena involve elastic, magnetic, and thermal effects. Mag-
netostriction is of great industrial interest for use in sensors, actuators, adaptive struc-
tures, robotics, and transducers [81]. They are widely used in the field of nondestructive
evaluation [82]. The essence of magnetostriction is the dependence of mechanical strain
on magnetization. MagnetoStrictive Materials (MSMs) are a class of smart materials that
transfer energy from one form to another form; for example, they can convert magnetic
energy into mechanical energy (Joule effect [83,84]) and vice versa (Villari effect, c.f. [84]).

MSMs can exhibit large mechanical deformations in different directions when sub-
jected to a strong external magnetic field. This behavior is due to the rotations of small
magnetic domains (that exist inside of the grain) within the material, which are arbitrarily
oriented when the material is not subjected to an external magnetic field. The orientations of
these small domains change by the imposition of the magnetic field. The domain moments
align themselves parallel to the externally applied field direction, thus creating a strain
field, resulting in a noticeable mechanical elongation. As the intensity of the magnetic
field increases, the magnetic domains tend to orient themselves in order to co-align their
principal axes with the magnetic field in each region until saturation is reached. This
effect is described in a small crystalline sample of a ferromagnetic material as illustrated
in Figure 1.
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applied, and (b) magnetic moments when subjected to a vertical external magnetic field. Two strain
components appear: a parallel strain (λ||) and a perpendicular one (λ
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Bieńkowski and Kulikowski (1980) and Jiles (1995) demonstrated the existence of a
mechanism reciprocal to magnetostriction [13,85]. The mechanism, called the Villari effect,
involves a change in magnetization induced by mechanical stress. The Joule and Villari
effects are observed in ferromagnets, antiferromagnets, and ferrimagnetic objects. Figure 2
illustrates the Villari effect for a crystal lattice structure. When the lattice is subjected to
a mechanical stress parallel to the original magnetic moments, the magnetization of the
sample rotates. Note that up to this point, the previously described effects were limited
to temperatures lower than the Curie temperature, which is the temperature above which
the material loses its magnetic properties [86,87]. Once the temperature of these materials
exceeds the Curie temperature, the magnetic properties of the material are lost.
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Figure 2. A nine-atom lattice showing the effect of a compressive uniformly distributed stress (
→
σ ) on

the magnetic properties of the atoms presented as the magnetic moment (
→
m). (a) Non-presence of

stress illustrates a horizontal orientation of the magnetic moment. (b) The presence of compressive
stress (

→
σ ) results in a direction change in the magnetic moment (

→
m) (magnetic moments pointing up).
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2.2. Mesoscale Level: Domain Wall Motion

In most cases, magnetostrictive strains exhibit a nonlinear behavior with respect to
the external magnetic field. The nonlinear behavior is due to the domain structure within
the grains and the grain orientation of the microstructure under study. Magnetic domains
are the heart of magnetic material deformation. Figure 3 shows the domain structure
of a magnetostrictive alloy. In Figure 3, the neighboring domains tend to have different
magnetic moment orientations. The different alignment minimizes the magnetic energy
within the specimen. Each domain (d) has a magnetization that can be expressed by [11]

→
Md = Ms

→
γ , (1)

such that
→
Md is the magnetization of the domain,

→
γ represents the vector orientation of

the axis on which most of the material’s magnetization is fixed, and Ms represents the
saturation magnetization value of each domain.
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Figure 3. (a) Polycrystalline structure showing the magnetic domains and their appropriate magne-

tization (
→
m) direction when no external magnetic field (

→
H) is applied. (b) Magnified region of the

polycrystalline structure, with no external magnetic field applied, and (c) magnified region when

an external magnetic field (
→
H) is applied. The magnetic domain’s direction aligns with the external

magnetic field direction.

The moments of magnetic domains tend to rotate when exposed to a magnetic field
until the magnetic domains’ direction is aligned with the magnetic field direction [88].
Thus, the domain walls, which are considered the transition region between the domains,
start to move and elongate due to domain wall motion [14]. Domains whose orientation is
closer to the magnetic field direction tend to elongate through the process while the others
tend to shrink. Domain elongation and shrinkage result in a dimensionless change on the
macroscale level (the Joule effect). Domain growth stops once saturation magnetization
is reached.

2.3. Nanoscale Level: Ising Model

At the nanoscale level, electron spins play an important role in moving domain walls.
This physical behavior is explained through the Ising model [89–91]. The Ising model is
a statistical model used to describe ferromagnetic behavior in terms of phase transitions
and the magnetic domain motion. The Ising model was initially developed to solve a
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one-dimensional problem under the assumption of no phase transitions. The model is
based on defining two spinning variables that represent the magnetic dipole moments of
the atomic spins. For a two-dimensional (2D) lattice, each lattice site has a local magnetic
moment and is represented by an arrow pointing up (for a positive magnetic moment) and
an arrow pointing down (for a negative magnetic moment). The moment is assumed to
be equal to +1 when the spins are pointing up or to −1 when the spins are pointing down.
The Ising model is used to compute the magnetization order (O) using

O =

〈
K+ − K−

K

〉
, (2)

such that K represents the total number of spins in the lattice, K+ is the number of positive
spins, and K− is the number of negative spins. The magnetization order in Equation (2)
represents the expectation value of the magnetic moment (µ(K+ − K−)) relative to the
largest possible magnetic moment (µK) such that µ is the magnetic moment.

In terms of energy, the Ising model [89] includes two contributions: the first character-
izes how neighboring spins affect the spin, and the second contribution characterizes how
an applied magnetic field affects each spin within the lattice. This statement is written in
the following way:

E = −J∑〈i,j〉 gigj − H∑i gi, (3)

such that E is the total energy, J is the positive coefficient giving the interaction strength,
and gi is the spin variable corresponding to direction values (=+1 or −1). The first term of
Equation (3) represents the neighboring spin’s interaction, while the second term represents
the effect of the applied field on each spin.

3. Kinematics

In continuum mechanics, a three-dimensional material subjected to a magneto-thermo-
mechanical deformation can be described using the deformation gradient concept to map a
deformation from the reference (initial) configuration (R0) to the current configuration (R)
with possible intermediate configurations in between. The deformation gradient mapping
a particle from its initial position X to the current position x is given as follows [58,92]:

F =
∂x
∂X

, (4)

such that X is the displacement in the reference configuration (R0) and x is the displacement
in the current configuration (R). The deformation gradient assumes continuity, where the
local deformation at X is characterized as the gradient of the motion, which is a second-
order two-point tensor.

For the continuum model herein, we need to define the Eulerian and the Lagrangian
strains in a classical manner [93]. The Lagrangian finite strain tensor with respect to the
reference configuration is defined as follows:

E =
1
2

(
FTF− I

)
, (5)

with I as the identity matrix.
For large strains, a multiplicative decomposition of the deformation gradient [93]

into plastic, damage, magnetic, thermal, and elastic parts is performed as schematically
illustrated in Figure 4. The total deformation gradient is therefore written as

F = FeFθFϕFHFp, (6)

where the total deformation gradient can be multiplicatively decomposed into elastic (Fe),
thermal (Fθ), damage (Fϕ), magnetostrictive (FH), and plastic (Fp) deformation gradients.
Note that the thermomechanics in our constitutive model represents the thermal contri-
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bution to the deformation. For instance, our model takes the thermal contribution into
consideration of the kinematics to track the elastic and inelastic deformation of the material
as shown in Equation (6) and Figure 4.
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damage (ϕ), thermal (θ), and elastic parts (e).

The magnetic deformation gradient (FH) is multiplicatively decomposed into two
sub-deformation gradients in this model:

FH = FMS
H FMX

H , (7)

where the first sub-deformation gradient (FMS
H ) is related to the magnetostriction elongation

effect and the second sub-deformation gradient (FMX
H ) is related to the Maxwell magnetic

field effects created by the externally applied field (H). Generally, the Maxwell field effects
on the deformation of the material are so small that they are not taken into consideration
in previously developed models. However, the purpose of this model is to provide a full
description of the magnetic material’s behavior; therefore, all the effects are included. The
total deformation gradient (in Equation (6)) can be simplified to a product of inelastic (F∗)
and elastic (Fe) deformation gradient components,

F = FeF∗, (8)

such that F∗ represents all the inelastic deformations F∗ = FθFϕFHFp.

The first intermediate configuration (R) is defined by the plastic deformation gradient
(Fp). The second intermediate configuration (R̂) is defined by the multiplication of the
magnetic deformation gradient (FH) and the plastic deformation gradient (Fp): FHFp.

The third intermediate configuration (Ř) is defined by the multiplication of the dam-
age deformation gradient (Fϕ), the magnetic deformation gradient (FH), and the plastic
deformation gradient (Fp): Fϕ FHFp. The magnetic deformation gradient also depends on
the damage since the presence of voids/cracks may modify the motion of the domain
walls, known as the domain wall pinning effect [94]. Domain wall pinning can arrest
material elongation caused by an external magnetic field. Moreover, a high number of
heterogeneities (particles, voids) leads to a decrease in permeability (µ) and an increase in
coercivity (Hc) [95].

The fourth intermediate configuration (R) is defined by the multiplication of the
thermal deformation gradient (Fθ), the magnetic deformation gradient (FH), the dam-
age deformation gradient (Fϕ), and the plastic deformation gradient (Fp):F∗, such that
F∗ = FθFϕFHFp. Both magnetic and damage behavior characteristics of a material are
sensitive to temperature. A permanent magnet can lose its properties once a critical tem-
perature (Curie temperature) is reached. Damage mechanisms and evolutionary rates
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vary with temperature. The elastic deformation gradient serves to describe unloading
elastically through F−1

e . The thermal deformation gradient and damage deformation follow
Francis et al. (2014) [71]. Finally, the plastic deformation gradient is the last one since the
inelastic flow rule is a function of thermal and damage effects.

For our interest, the constitutive equations are developed in intermediate configuration
R̂, where all magnetic deformations happen. The deformation gradient tensors in their
corresponding intermediate configurations are mathematically defined as follows:

F∗=
∂x
∂X

, Fp=
∂x
∂X

, FH=
∂x̂

∂X
, Fϕ=

∂
∼
x

∂X̂
, Fθ=

∂x
∂X̂

, Fe=
∂x
∂X

. (9)

The Jacobian of the total deformation gradient, which is the change in volume between
the reference (R0) and current (R) configurations, is given as

J = det(F) = det
(
Fp
)
det(FH)det

(
Fϕ

)
det(Fθ)det(Fe), (10)

such that the Jacobian of each deformation gradient represents the conservation of the mass
of the system, given as follows:

det
(
Fp
)
= Jp=

V
V0

, det(FH) = JH=
V̂
V

, det
(
FH

MX) = JH
MX =

}
V
V

, det
(
FH

MS) = JH
MS = V̂ }

V
, det

(
Fϕ

)
= Jϕ=

∼
V
V̂

,

det(Fθ) = Jθ=
V
V̌

, and det(Fe) = Je=
V
V

.
(11)

Based on previous work by Bammann and Aifantis (1989) [61], the damage deforma-
tion gradient is expressed as follows:

Fϕ =
1

(1− ϕ)
1
3

I. (12)

The Jacobian of the damage deformation gradient is the following [96]:

det
(
Fϕ

)
=

1
(1− ϕ)

. (13)

Similarly, Bammann and Solanki (2010) [97] defined the Jacobian of the thermal
deformation gradient as follows:

det(Fθ) = Fθ
3. (14)

The developed model assumes a linear thermal expansion that can be assumed for the
thermal deformation gradient tensor (Fθ) and is given as

Fθ = (1 + αth∆θ)I, (15)

where αth is the thermal expansion coefficient and θ is the temperature.
Assuming deviatoric plastic deformation, the Jacobian of the plastic deformation

gradient is unity,
det
(
Fp
)
= 1. (16)

From the total deformation gradient, the total Lagrangian strain tensor is obtained
using additive decomposition in the reference configuration

E = Ee + Eθ + Eϕ + EH + Ep, (17)

where

E = 1
2 (C− I), Ee =

1
2
(
Ce − I

)
, Ěθ = 1

2
(
Čθ − I

)
, Êϕ = 1

2
(
Ĉϕ − I

)
, EH = 1

2 (CH − I),

}

E
MS

H = 1
2 (

}

C
MS

H − I), E
MX
H = 1

2 (C
MX
H − I), and Ep = 1

2 (Cp − I),
(18)
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and C is the Cauchy–Green deformation tensor. Pulling back all the intermediate La-
grangian tensors to the reference configuration, we obtain the following:

Ee = FT
p FT

HFT
ϕFT

θ EeFθFϕFHFp,

Eθ = FT
p FT

HFT
ϕĚθFϕFHFp,

Eϕ = FT
p FT

HÊϕFHFp,

EH = FT
p EHFp.

(19)

The stretch tensors of each Lagrangian tensor are a strain measure in terms of material
coordinates and can be obtained when the deformation gradients are determined as follows:

C = FTF, Ce = FT
e Fe, Čθ = FT

θ Fθ , Ĉϕ = FT
ϕFϕ, CH = FT

HFH , C
MX
H =

(
FMX

H

)T
FMX

H ,

}

C
MS

H =
(

FMS
H

)T
FMS

H , and Cp = FT
p Fp. (20)

Each Cauchy–Green deformation tensor (C) may be subjected to spectral decomposition
of the form

C = ∑3
i=1 λ2

i ni ⊗ ni, (21)

where the stretch ratio, λi, is the square root of each positive eigenvalue that corresponds to
each orthonormal vector, ni. Each deformation gradient tensor has a polar decomposition
of the form

F• = R•U•, (22)

where (•) can be any of the terms resulting from the deformation gradient decomposition
(p, H, ϕ, θ, e). The relationship between C and U is

U =
√

C = ∑3
i=1 λini ⊗ ni, (23)

where the directions (eigenvectors) (ni) remain unchanged, and the principal stretch ratios
(λi) are used.

The scalar form of the damage right stretch tensor that affects the damage internal state
variables, defined by Bammann and Solanki (2010) [97], is defined in the damage-associated
configuration (R̂) as follows:

t̂ϕ =
1
3

tr
(
Ĉϕ

)
=

1

(1− ϕ)
1
3

I, (24)

for which the corresponding time derivative is given as follows:

.
t̂ϕ =

.
ϕ

3 ∗ (1− ϕ)
4
3

I =
.
ϕ

3 ∗ (1− ϕ)
t̂ϕ I=

1
3

I :
.
Čϕ. (25)

The velocity gradient associated with the deformation of the current configuration is
decomposed into elastic, thermal, magnetic, damage, and plastic components:

l =
.
FF−1 = le + l∗ = le + lθ + lϕ + lH + lp = le + lθ + lϕ + lH

MS + lH
MX + lp, (26)

where (le) is the elastic velocity gradient, (lθ) is the thermal velocity gradient, (lH) is the
magnetic velocity gradient, (lϕ) is the damage velocity gradient, and (lp) is the plastic
velocity gradient. Each velocity gradient can be written in terms of the deformation
gradients as follows:

le =
.
FeF−1

e , lθ = Fe
.
FθF−1

θ F−1
e , l

ϕ
= FeFθ

.
FϕF−1

ϕ F−1
θ F−1

e ,

lH = FeFθFϕ

.
FHF−1

H F−1
ϕ F−1

θ F−1
e , and lp = FeFθFϕFH

.
FpF−1

p F−1
H F−1

ϕ F−1
θ F−1

e .
(27)
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The velocity gradients in the intermediate R̂ configuration is obtained by pulling back
the elastic, thermal, and damage velocity gradients (Fe), (Fθ), and (Fϕ) and pushing forward
the plastic velocity gradient (Fp). This results in the following velocity gradients:

l̂e = F−1
ϕ F−1

θ F−1
e

.
FeF−1

e FeFθFϕ,

l̂θ = F−1
ϕ F−1

θ

.
FθF−1

θ FθFϕ = F−1
ϕ F−1

θ

.
FθFϕ,

l̂ϕ = F−1
H

.
FϕF−1

ϕ FH ,

l̂H =
.
FHF−1

H ,

l̂p = FH
.
FpF−1

p F−1
H .

(28)

Velocity gradient l can be decomposed into two parts, the skew and symmetric parts:

l = D + W, (29)

where D is the symmetric rate of deformation tensor and W is the asymmetric spin tensor:

D = sym(l) =
1
2

(
l + lT

)
, and W = skew(l) =

1
2

(
l− lT

)
. (30)

The total rate of deformation is additively decomposed into elastic, plastic, damage,
magnetic, and thermal deformation rates by additive decomposition as follows:

D = De + Dθ + Dϕ + DH + Dp, (31)

where De, Dθ, Dϕ, DH, and Dp are the elastic, thermal, damage, magnetic, and plastic
components of the rate of deformation. Likewise, the spin tensor is additively decomposed
as follows:

W = We + Wθ + Wϕ + WH + Wp, (32)

where the thermal spin and the damage spin are assumed to be equal to zero because
the nondiagonal components of the velocity gradient are zero. Therefore, the total spin is
written as follows:

W = We + WH + WP. (33)

The magnetic moment spin in this case refers to the spin moment resulting from the
electron’s intrinsic motion. The spin moment resulting from other subatomic elementary
particles (such as quarks in the protons and neutrons of the atomic nuclei) is assumed to be
neglected because of its small magnetic moment. The magnetic spin influences the ordering
of the electrons, nuclei in atoms, and molecules. A change in the ordering of the molecules
induces a change in the magnetic domain orientation, resulting in a dimensional change
appearing on the macroscale level of the material. The spin of a complete body is the sum
of the spins of the elementary particles (electrons, neutrons, and protons),

WH = 1/g[χ DH −DHχ], (34)

where g is the orientation spin variable arising from the Ising model and χ and DH are the
kinematic magnetization term and the magnetic deformation rate tensor that are described
in detail in the kinetics part of the model. This form is similar to the plastic spin [98].
Dafalias (1989) [98] showed that the plastic spin represents the rotation rate of the material
with respect to its substructure during inelastic deformations. This physical behavior
is expressed in terms of an equation relating the plastic spin to the plastic deformation
rate tensor.

Wp = −1/ς
[
βDp −Dpβ

]
, (35)

where ζ is the orientation coefficient and β is the kinematic hardening variable [98,99].
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The strain rate is therefore given as follows:

.
ε =

.
εe +

.
εθ +

.
εϕ +

.
εH +

.
εp. (36)

The Cauchy stress (σ) is expressed as follows:

σ = J−1
e τ = J−1

e FeŜFT
e , (37)

where the Cauchy stress tensor (σ) and the first Piola Kirchhoff stress tensor (τ) are found
in the current configuration, R, and the second Piola–Kirchhoff stress (Ŝ) invoked the
intermediate configuration, R̂.

4. Thermodynamics

In this section, a thermodynamic model with internal state variables is developed
to capture the path-dependent inelastic deformation processes in the intermediate con-
figuration (R̂) (where all magnetic deformations occur) and then mapped to the current
configuration (R) [100].

The law of conservation of energy dictates that the rate of change in the internal energy
of any Representative Volume Element (RVE) is equal to the rate of mechanical work of the
net external force acting on that volume plus all other energies (magnetic energy in this
model) that enter or leave the RVE. In local form, the first law of thermodynamics is given
as follows:

ρ
.
u = S :

.
E +

(
B.

.
H +

.
B.H

)
+ ρr−∇.q, (38)

such that u is the specific internal energy, S is the Piola–Kirchhoff stress tensor, H = H(B, M) is
the external magnetic field, B is the magnetic flux density,

.
H is the external magnetic field

rate,
.
B is the magnetic flux density rate, r is the specific heat generation rate, q is the heat

flux vector, and ρ is the density. Term
(

B.
.

H +
.
B.H

)
includes the magnetoelastic and the

Zeeman energies [101]. The magnetoelastic energy results from magnetostriction, while
the Zeeman energy represents the interaction of the magnetic material and the externally
applied magnetic field.

In the intermediate configuration (R̂), the first law of thermodynamics is written
as follows [71,102]:

ρ̂
.
û = Ŝ :

.
Ê +

(
B̂.

.
Ĥ +

.
B̂.Ĥ

)
+ ρ̂r̂− ∇̂.q̂. (39)

The Clausius–Duhem (CD) inequality is given in the local form as follows [71,103]:

ρ
.
s− 1

θ
ρr +

1
θ
∇.q− 1

θ2 q.∇θ ≥ 0, (40)

where s is the entropy of the material.
In the intermediate configuration (R̂), the CD inequality is given as follows:

ρ̂
.
ŝ− 1

θ
ρ̂r̂ +

1
θ
∇̂.q̂− 1

θ2 q̂.∇̂θ̂ ≥ 0. (41)

The Helmholtz free energy in the intermediate configuration
(

R̂
)

is defined using the
formulation of Coleman and Gurtin (1967) [55] as follow:

ψ̂ = û− θŝ, (42)

and its time derivative is defined as follow:
.
ψ̂ =

.
û−

.
θŝ− θ

.
ŝ. (43)
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Substituting Equation (43) into the energy balance relation in Equation (39) yields

ρ̂
( .

ψ̂ +
.
θŝ + θ

.
ŝ
)
= Ŝ :

.
Ê +

(
B̂.

.
Ĥ +

.
B̂.Ĥ

)
+ ρ̂r̂− ∇̂.q̂. (44)

Substituting Equation (44) into the Clausius–Duhem inequality (Equation (41))
produces inequality

−ρ̂
.
ψ̂− ρ̂

.
θŝ + Ŝ :

.
Ê +

(
B̂.

.
Ĥ +

.
B̂.Ĥ

)
− 1

θ̂
q̂.∇̂θ ≥ 0. (45)

The Helmholtz free energy is assumed as a locally defined function and can be charac-
terized by observable variables such as temperature and strain and other non-observable
variables that characterize internal rearrangements of a material’s microstructure such as
isotropic hardening and kinematic hardening (cf. [97,104]). In this model, the Helmholtz
free energy is assumed to be a function of the following independent state variables: the
product of elastic strain and damage stretch EeCϕ, temperature θ, magnetic field flux density
B, and a set of i number of strain-like internal variables ISVs Π̂i that are given as follows:

ψ = ψ̂
(
EeCϕ, B, θ, Π̂i

)
. (46)

The ISVs (Π̂i), are chosen to represent irreversible mechanisms related to the internal
rearrangement of the material microstructure caused by externally applied magnetic, ther-
mal, and mechanical fields. The evolution of ISVs induces strain fields within the domains
and changes the electron spin motion on an electronic scale. The ISVs of this model are
given as follows:

Π̂i = βCϕ, εstϕ, M̂ (47)

where β is the strain-like quantity due to the kinematic hardening describing the effects of
geometrically necessary dislocation density (GND) evolution, εs is the strain-like quantity
due to the isotropic hardening describing the statistically stored dislocation density (SSD)
effects, and M̂ is the total magnetization of the material. Magnetization nonlinearity occurs
due to the rotation and the growth of the magnetic domains. Magnetization refers to which
the material can be magnetized when subjected to an external magnetic field. Therefore,
the Helmholtz free energy function in Equation (47) may be expressed as

ψ = ψ̂
(
EeCϕ, B, θ , β̂Ĉϕ, ε̂s t̂ϕ, M̂

)
. (48)

Assuming that the Helmholtz free energy can be additively decomposed,

ψ̂ = ψ̂(EeCϕ, B, θ, β̂Ĉϕ, ε̂s t̂ϕ, M̂)

= ψ̂EeCϕ

(
ÊeĈϕ, θ

)
+ψ̂B̂

(
B̂, θ
)
+ ψ̂βCϕ

(
β̂Ĉϕ, θ

)
+ψ̂εstϕ

(
ε̂s t̂ϕ, θ

)
+ψ̂M̂

(
M̂, θ

)
.

(49)

Given these ISVs, the time rate of change in Helmholtz free energy is derived as

.
ψ̂ =

∂ψ̂

∂
(
ÊeĈϕ

) :
.
ÊeĈϕ +

∂ψ̂

∂
(
ÊeĈϕ

) : Êe

.
Ĉϕ +

∂ψ̂

∂
(

B̂
)

.
B̂ +

∂ψ̂

∂
(
ε̂s t̂ϕ

)
.
ε̂s t̂ϕ +

∂ψ̂

∂
(
ε̂s t̂ϕ

) ε̂s

.
t̂ϕ +

∂ψ̂

∂
(

β̂Ĉϕ

)
.
β̂Ĉϕ +

∂ψ̂

∂
(

β̂Ĉϕ

) β̂
.
Ĉϕ+

∂ψ̂

∂(θ)

.
θ +

∂ψ̂

∂
(

M̂
)

.
M̂. (50)

The setting of the thermodynamic conjugates corresponding to the aforementioned
magnetism internal state variables is as follows:

ŷ =
∂ψ̂

∂
(
M̂
) . (51)

Substituting the free energy rate (Equation (50)) and (Equation (51)) into the C-D
Inequality (Equation (42)) yields

145



Materials 2024, 17, 2412

−ρ̂( ∂ψ̂

∂(ÊeĈϕ)
:

.
ÊeĈϕ + ∂ψ̂

∂(B̂)

.
B̂ + ∂ψ̂

∂(ÊeĈϕ)
: Êe

.
Ĉϕ + ∂ψ̂

∂(ε̂s t̂ϕ)

.
ε̂s t̂ϕ + ∂ψ̂

∂(ε̂s t̂ϕ)
ε̂s

.
t̂ϕ + ∂ψ̂

∂(β̂Ĉϕ)

.
β̂Ĉϕ + ∂ψ̂

∂(β̂Ĉϕ)
β̂

.
Ĉϕ+

∂ψ̂

∂(θ̂)

.
θ + ŷ.

.
M̂)−

ρ̂
.
θ̂ŝ + Ŝ :

.
Ê + (B̂.

.
Ĥ +

.
B̂.Ĥ)− 1

θ̂
q̂.∇̂θ̂ ≥ 0.

(52)

Based on the model developed by Bammann and Solanki (2010) [97], an increasingly
strong interaction between some individual dislocation strain fields and their neighboring
dislocations induces more dislocation motion that causes material hardening. Therefore,
the thermodynamic conjugates, which are stress-like quantities, of the ISVs associated with
the stored dislocation and geometrically necessary densities are κ̂ and α̂, and are given
as follows:

κ̂= ρ̂
∂ψ̂

∂
(
ε̂s t̂ϕ

) t̂ϕ, α̂ = ρ̂
∂ψ̂

∂(β̂Ĉϕ)
ĈT

ϕ. (53)

Substituting Equation (50) into Equation (51) yields

(−ρ̂
∂ψ̂

∂(ÊeĈϕ)
: Ûϕ + Ŝ) :

.
Êe + (−ρ̂

∂ψ̂

∂(θ̂)
− ρ̂ŝ + ζ(θ)I)

.
θ + ( 1

2 Ŝ− ρ
∂ψ̂

∂(β̂Ĉϕ)
β̂−

1
3 Iρ

∂ψ̂

∂(ε̂s t̂ϕ)
ε̂s − ρ̂

∂ψ̂

∂(ÊeĈϕ)
Êe)

.
Ĉϕ + (Ĥ− ρ̂

∂ψ̂

∂(B̂)
)

.
B̂ + (B̂.

.
Ĥ) + Ŝ :

.
ÊH − ρ̂ŷ.

.
M̂− κ̂

.
εs−

α̂
.
β + Ŝ :

.
Êp − 1

θ̂
q̂.∇̂θ̂ ≥ 0,

(54)

where .
Ê =

.
Êe +

.
Êθ +

.
Êϕ +

.
ÊH +

.
Êp. (55)

In Equation (54), the damage and the thermal strain rates are given by Dimitrov et al.
(2019) as

.
Êϕ =

1
2

.
Ĉϕ, and

.
Êθ = $(θ)I

.
θ. (56)

Unlike the other listed strains, the thermal expansion strain is considered a nonlocal
variable in this study. We assume the thermal expansion is adequately represented by
the linear coefficient of thermal expansion ($) and the temperature increment (∆θ), as
previously presented by Dimitrov et al. (2019) [105]:

Êθ = Êθ(θ) =
1
2
(
Ĉθ − I

)
=

1
2

[
2$∆θI + ($∆θ)2I

]
. (57)

For most practical applications, the coefficient of thermal expansion exhibits minimal
temperature dependence and is considered constant within a small temperature range,
below the Curie temperature for magnetic materials [106]. The material time derivative of

the thermal expansion strain (
.
Êθ) in the local form is then approximated as follows:

.
Êθ =

∂

∂θ
Êθ

.
θ = $(θ)I

.
θ +

∂$

∂θ
I

.
θ ≈ $(θ)I

.
θ. (58)

Based on the scheme used by Coleman and Gurtin (1967) [55] and Kratochvil and
Dillon (1969) [107], the constitutive equations for stress, entropy, and magnetism for this
continuum model are given as follows:

Ŝ = ρ̂
∂ψ̂

∂(ÊeĈϕ)
: Ĉϕ,

ŝ = − ∂ψ̂
∂(θ)

+ 1
ρ̂ $̃tr(S̃),

(
1
2 Ŝ− ρ

∂ψ̂

∂(β̂Ĉϕ)
β̂− 1

3 Iρ
∂ψ̂

∂(ε̂s t̂ϕ)
ε̂s − ρ̂

∂ψ̂

∂(ÊeĈϕ)
Êe

) .
Ĉϕ = 0,

−ρ̂
∂ψ̂

∂(B̂)
+ Ĥ = 0,

(59)
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where H, S and s are considered as thermodynamic forces associated with B, Ee, and
θ, respectively.

Using Equation (59), the dissipation energy inequality (Equation (54)) can be reduced to

(B̂.
.

Ĥ) + Ŝ :
.
ÊH − ρ̂ŷ.

.
M̂− κ̂

.
εs − α̂ :

.
β + Ŝ :

.
Êp −

1
θ

q̂.∇̂θ ≥ 0. (60)

Following the classical definition of entropy and neglecting second-order effects,
Equation (40) can be approximated as part of the internal energy that dissipates as specific
heat. Equation (41) is assumed to equal the portion of the internal energy that is stored as
reversible processes or converted to irreversible damage and dislocation structure evolution.
Consequently, from the definition of specific heat per unit mass (cM = du/dθ), we write
the temperature evolution equation:

.
θ =

1
ρ̃c̃M

{
S̃ :

.
Ẽp − κ̃s

.
ε̃s − α̃ :

.
β̃− ∇̃.q̃ + ρ̃r̃ + ρ̂

∂ψ̂

∂
(
B̂
)

.
B̂ + (

.
Ĥ.B̂ + Ĥ.

.
B̂) + Ŝ :

.
ÊH − ρ̂â.

.
M̂

}
. (61)

5. Kinetics
5.1. Experimental Magnetostriction Test

In order to examine the effects of mechanical stress and magnetic field, experiments
were conducted on the three rod specimens (length of 185 mm and diameter of 6 mm) of
iron, nickel, and cobalt. The specimen dimension is appropriate to place them inside of
the magnetic coils. The experiments quantified the magnetostriction of the rod specimens.
The apparatus used in this experiment is the Michelson Interferometer. The Michelson
Interferometer is an optical method used to measure the magnetostriction. The Michelson
Interferometer emits a laser wave that is then divided into two parts. Each of the new light
beams travels a different path that recombines together. The magnetostriction strain is
equal to the small mirror movement once the sample is subjected to a magnetic field and
starts to elongate. Figure 5 shows the Michelson Interferometer used in this study. We
applied various intensities of external magnetic fields (various electrical currents), and the
obtained relationship among external magnetic field, magnetostriction, and magnetization
is presented in Figures 6 and 7, respectively.
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5.2. Cauchy Stress Tensor
The frame indifferent Jaumann rate of the Cauchy stress was initially developed by

Bammann (1990) [99] as a function of kinematics and elastic properties. It was then extended
by Horstemeyer and Gokhale (1999) [109] to capture the degradation of a material’s effective
stiffness by damage. Therefore, the frame indifferent elastic stress rate in the current
configuration (R) is given as follows:

◦
σ =

.
σ-Weσ + σWe

T =
.
σ-Weσ + σWe = λ(1− ϕ)tr(De)I + 2µ(1− ϕ)De −

.
ϕ

(1−ϕ)
σ, (62)

where λ, µ are the Lamé constants, ϕ is the total damage, De is the elastic rate deformation,
and We is the elastic spin which is given as follows:

We = W−WH −Wp, (63)

where Wp is the plastic spin and WH is the magnetic spin. The magnetic spin term is
nonzero because of the electron spin motion distribution of the electrons within the atoms.

The elastic rate of deformation De, is given as the difference between the total rate
of deformation and the plastic, magnetic, damage, and thermal rates of deformation
(Dp, DH , Dϕ, and Dθ):

De = D−Dp −DH −Dϕ −Dθ . (64)

The plastic deformation rate is given using the strain flow rule, which was initially
developed by Bammann (1990) [99] in order to relate the deviatoric rate of deformation to
the applied stress and ISVs, then extended by Horstemeyer and Gokhale (1999) [109]. The
plastic strain flow rule is the tensor rate at which the distances between a point (P) and its
neighboring particles deform plastically, and it is given as follows:

Dp =

√
3
2

f (θ)× sin h




√
3
2‖σ’ −

√
2
3 α‖ − {R + Y(θ)}{1− ϕ}
V(θ){1− ϕ}


×

σ’ −
√

2
3 α

‖σ’ −
√

2
3 α‖

. (65)

The thermal and damage deformation rate were developed in a similar way by Bam-
mann (1990) [99] and Horstemeyer et al. (2000) [110], respectively, and given as follows:

Dθ = αth
.
θI, (66)
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Dϕ =
ϕ

3(1− ϕ)
I. (67)

The magnetic deformation rate is derived in this work as follows:

DH = ±c

(
−bp exp

(
(H ⊗ HT + χ)p

‖H ⊗ HT + χ‖q

)
∗ (H ⊗ HT + χ)p−1

‖H ⊗ HT + χ‖q ∗
.

H

)
∗ H ⊗ HT + χ

‖H ⊗ HT + χ‖ + DMX
H , (68)

For the sake of simplicity, we set the magnetic field vector and its transpose dyadic
product as follows:

Γ = H ⊗ HT . (69)

Therefore, the magnetic deformation rate is written as

DH = ±c

(
−bp exp

(
(Γ + χ)p

‖Γ + χ‖q

)
∗ (Γ + χ)p−1

‖Γ + χ‖q ∗
.

H

)
∗ Γ + χ

‖Γ + χ‖ + DMX
H . (70)

In this case, the Maxwell-associated deformation rate (DMX
H ) is assumed to be zero,

since the deformation caused by the Maxwell stress is zero; thus, the magnetic deformation
rate is written as follows:

DH = ±c

(
−bp exp

(
(Γ + χ)p

‖Γ + χ‖q

)
∗ (Γ + χ)p−1

‖Γ + χ‖q ∗
.

H

)
∗ Γ + χ

‖Γ + χ‖ . (71)

Functions f (θ), Y(θ), and V(θ) are functions that have an Arrhenius-type temperature
dependence. They were developed by Bammann (1990) [99] and are given as follows:

f (θ) = C5 exp(− C6/θ),

Y(θ) = C3 exp(C4/θ),

V(θ) = C1 exp(− C2/θ),

(72)

where Y(θ) is the rate-independent yield stress. Function f (θ) determines when the rate
dependences affect initial yielding. Function V(θ) determines the magnitude of the rate
dependence on yielding. These functions are easily determined from simple isothermal
compression tests with different strain rates and temperatures. C1, C2, C3, C4, C5, and C6
are Arrhenius-type temperature-dependent calibration constants.

Kinematic hardening internal state variable α represents the anisotropic effect of
the dislocation density while isotropic hardening internal state variable R mimics the
global dislocation density effect. The kinematic hardening rate equation was developed
by Bammann (1990) [99] and then extended by Tucker et al. (2010) [111] to account for the
grain size effect,

◦
α =

.
α−Weα + αWe = h(θ)Dp −

[√
2
3

rd(θ)‖Dp‖+ rs(θ)

]√
2
3
‖α‖α)

(
DCS0
DCS

)Z
, (73)

where

rd(θ) = C7

(
1− C19

[
4

27 −
J2
3

J3
2

]
− C20

J3
J1.5
2

)
exp

(
−C8

θ

)
,

h(θ) = C9

(
1 + C19

[
4

27 −
J2
3

J3
2

]
+ C20

J3
J1.5
2

)
exp

(
−C10

θ

)
,

rs(θ) = C11 exp(− C12/θ).

(74)
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The isotropic hardening rate equation is prescribed in a hardening minus recovery
format which accounts for the grain size effect and is presented by Tucker et al. (2010) [111]
as follows:

.
κ =

√
2
3

H(θ)Dp −
[√

2
3

Rd(θ)‖Dp‖+ Rs(θ)

]
κ2
(

DCS0
DCS

)Z
, (75)

where κ is the isotropic hardening, H is the work hardening modulus, Rd(θ) is the dynamic
recovery that captures the dislocation glide effect, Rs(θ) is the static recovery that captures

the dislocation climb or the diffusion effect, and Din =
√

2
3

.
ε

pN is the deviatoric inelastic
strain rate. DCS0 and DCS represent the initial average grain size and the average grain
size that directly influence the dislocation density and thereby interact with the hardening
parameters, respectively. Z is a constant exponent for the grain size effect on hardening.

The parameters of these mechanisms are given [72] as follows:

Rd(θ) = C13

(
1− C19

[
4

27 −
J2
3

J3
2

]
− C20

J3
J1.5
2

)
exp

(
−C14

θ

)
,

H(θ) = C15

(
1 + C19

[
4

27 −
J2
3

J3
2

]
+ C20

J3
J1.5
2

)
exp

(
−C16

θ

)
,

Rs(θ) = C17 exp(− C18/θ),

(76)

where J2 and J3 are the second and third invariants of deviatoric stress, respectively.
The equations describing the material’s degradation (or total damage) were developed

by Horstemeyer et al. (2000) [72] (void volume fraction) based on the consideration of the
microphysical damage mechanism. They are given as follows:

φ = ηvc, (77)

where η, v, and c represent void nucleation, growth, and coalescence, respectively. The
total damage rate of the void volume fraction within a ductile metal is given as follows:

.
φ =

.
ηvc + η

.
vc + ηv

.
c. (78)

The rate evolution of the void nucleation/growth and coalescence were described in-
dependently by Horstemeyer et al. (2000) [72]. The void nucleation rate is given as follows:

.
η =

d
1
2

Kic f
1
3

η


a

[
4

27
− J2

3

J3
2

]
+ b

J3

J
3
2
2

+ c‖ I1√
J2
‖

‖Dd‖ exp

(
CηT

T

)
, (79)

where d and f are material property constants of the initial secondary phase particle size
and volume fraction, respectively. I1, J2, and J3 are the first, the second, and third stress
invariants representing the stress dependence of the void nucleation rate. Calibration
constants a, b, and c represent the material’s torsional for void nucleation, the difference be-
tween the tension and compression, and the stress triaxiality sensitivity for void nucleation,
respectively, and they are all determined experimentally (based on tension, compression,
and torsion tests at different strain levels). CηT is the calibration constant used to control
thermal sensitivity during the void nucleation phase.

Void nucleation for a bar subjected to uniaxial stress for which the deformation is
isothermal and happens at a constant strain rate can be obtained by an integration of
Equation (79). This is given, as follows, by Bammann (1990) [99]:

η = η0 exp


‖E‖ d

1
2

Kic f
1
3

η


a

[
4
27
− J2

3

J3
2

]
+ b

J3

J
3
2
2

+ c‖ I1√
J2
‖

 exp

(
CηT

T

)
, (80)
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where ‖E‖ is the norm of the total Lagrangian strain tensor.
The rate evolution of the second phase particle growth was developed by McClintock

(1964) [112]. Among all damage models, McClintock’s model is the most used one since it
can be used at different strain/hardening rates, different temperatures, and different stress
triaxialities. The void growth rate is therefore given as follows:

.
v =

4π

3

( √
3dv0

4(1− n)
sin h

[√
3(1− n)

√
2I1

3
√

J2

]
‖Dd‖

)3

(81)

such that dv0 is the initial void diameter and n is the McClintock growth rate constant
originally motivated by the material hardening rate.

The void growth equation for an increasing strain and/or stress triaxiality is given by
McClintock (1964) [112] as follows:

v =
4π

3

(
dv0 exp

[
‖E‖

√
3

2(1− n)
sin h

(√
3(1− n)

√
2I1

3
√

J2

)])3

. (82)

As the applied stress increases, and as the voids nucleate within the material, voids
tend to coalesce, resulting in a void sheet or a natural void. The coalescence rate evolution
is described by Tucker et al. (2010) [111] and is given as follows:

.
c =

[
cd1 + cd2

(
η

.
v +

.
ηv
)]

expCCT T
(

DCS0
DCS

)z
, (83)

where cd1 and cd2 are calibration constants, and DCS0 and DCS represent the initial average
grain size and the average grain size that directly influence the dislocation density and as
such interact with the hardening parameters, respectively. Z is a constant exponent for the
grain size effect on hardening. CCT is a thermal sensitivity calibration constant for void
coalescence.

The co-rotational Jaumann rate is given as follows:

◦
σ = Y

.
εe(1− ϕ) + Yεe(1− .

ϕ
)
+

.
Yεe(1− ϕ)−Weσ + σWe, (84)

◦
σ = Y

.
εe(1− ϕ) + Yεe(1− .

ϕ
)
+

.
Yεe(1− ϕ)−We[(YMεe + YMεt + YMεϕ + YMεMS+YMεMX)(1− ϕ)] + σWe (85)

where the elastic strain rate is given as

.
ε

e
=

.
ε− .

ε
p − .

ε
ϕ − .

ε
θ − .

ε
H . (86)

Assuming isotropic damage-induced deformation, the damage-induced strain (the
volumetric strain related to the nucleation, growth, and coalescence of voids) is given by
Horstemeyer et al. (1999) [109] as follows:

.
ε

ϕ
=

1
3
(1− ϕ)−1 .

ϕI, (87)

which illustrates the damage-related strain rate change with respect to the damage param-
eter, in this case related to the nucleation, growth, and coalescence of the voids within
the material.

The strain arising from thermal expansion and contraction is given by Francis et al.
(2014) [71] as follows:

.
ε

θ
= αth∆θ. (88)
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Equation (72) shows the main relationship between the magnetostriction strain and
the magnetic field for ferromagnetic material.

εMS = ±
(

1− exp
(
(Γ + a)p

‖Γ + a‖q

)
∗ b
)
∗ c± d, (89)

where a is the normal component χ, c, d, p, and q are calibration constants, b is the magne-
tostriction constant at the saturation level, and H is the external magnetic field known to
vary with respect to time. The magnetostriction strain rate is given as follows:

.
ε

MS
= ±c

(
−bp exp

(
(Γ + a)p

‖Γ + a‖q

)
∗ (Γ + a)p−1

‖Γ + a‖q ∗
.

H

)
. (90)

The magnetostriction strain equation is compared with experimental data obtained
from the Michelson interferometer for the two ferromagnetic materials: nickel (Ni) and
cobalt (Co), as shown in Figure 6. Since the magnetic flux density strain is so small, it is
assumed that εMX takes a constant value that depends on the magnetic field applied in
the material. Therefore, the magnetic flux density strain rate (

.
ε

MX) is assumed to be equal
to zero.

.
ε

MX
= 0. (91)

5.3. An Internal State Variable for Magnetization

To capture the dissipative and the hysteretic response of magnetostrictive materials,
the use of internal state variables is necessary. Magnetization is defined as the material’s
response to an external magnetic field (H). It is the average of the magnetic domains’
moments. Paramagnetic and diamagnetic materials have no magnetization (or if they
do it is a negligible one), unless it is subjected to a magnetic field. Once the magnetic
field is removed, the material loses its magnetization. Ferromagnetic, ferrimagnetic, and
antiferromagnetic materials all have magnetization even when no magnetic field (H) is
applied. When an external magnetic field (H) is applied, the ferromagnetic, ferrimagnetic,
and antiferromagnetic materials exhibit a nonlinear magnetization with respect to the
magnetic field (H), as shown in Figure 7.

Previous models were developed to describe the hysteresis behavior of magnetic
material. The most known model is the Jiles–Atherton Model [14,46,113] which describes
the magnetization (M) behavior with respect to the magnetic field (H) through an ordinary
differential equation. Differential equations require significant computational resources.

In this work, magnetization is assumed to be one of the internal state variables de-
scribing the magnetic domain behavior when subjected to magnetic field (H). Based on
the hysteresis behavior, the magnetization rate evolution is written in a simpler form
than previous models, which allows for simple numerical implementation and is given
as follows: .

M(H) =
.
ξ(H) +

.
χ(H), (92)

such that
.
ξ(H) is the isotropic magnetization rate (needs identity matrix) and

.
χ(H) is the

anisotropic magnetization rate given as follows:

.
ξ(H)=

.
H∗
(

Ms
A ∗ sec h2

(
H
A

)
− 1

B exp
(
−H

B

))

.
χ(H)=

.
Γ∗
(

Ms
Q ∗ sec h2

(
Γ
P

)
+ R

P

(
sin h

(
Γ
Q

)))
,

(93)

where A, B, P, Q, and R are constants of the material, Ms is the saturation magnetization.
These equations are compared with available experimental data [108] for magnetization

of iron, nickel, and cobalt at various magnetic field strengths as shown in Figure 7. The
results show an acceptable approximation to the experimental results.
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6. Discussion

In this paper, we developed an Internal State Variable (ISV) constitutive model to
account for magnetism-dependent elasto-viscoplastic and damage model for magnetic
materials that brings in three novel ideas: (1) it is new to analyze the kinematics of the
deforming continuum body under the external magnetic field to account for elastic/inelastic
deformation and vorticity affected by the magnetic field; (2) this is the first paper (to the
best of our knowledge) that introduces a new magnetic internal state variable constrained
by the first and second laws of thermodynamics (Clausius–Duhem inequality); and (3) this
ISV-based constitutive modeling is a novel approach, by itself, to this particular problem.
The ISV model integrates the effect of a new magnetic observable variable: magnetic flux.
Magnetic flux is the main macroscale constraint to which ferromagnetic materials are
subjected during operation in most applications. To predict the behavior of ferromagnetic
materials, the model included magnetization variations with respect to the magnetic field as
an ISV that was then experimentally validated. Even though the strain response due to the
magnetic field was small compared to the mechanical and thermal responses, the latter was
included as the magnetostriction strain. The magnetostriction strain was experimentally
validated for cobalt and nickel. More experiments related to different materials, boundary
conditions, and non-monotonic sequences can be explored for future evaluation of the
theoretical model.

7. Conclusions

In this study, a novel macroscopic constitutive theory is presented to describe the
thermal–elastic–plastic damage behavior of magnetic materials. A multiscale and fully
coupled multiphysics Internal State Variable (ISV) model is created to describe the effects
of magnetic field forces and moments under thermomechanical deformations based on
a kinematics, thermodynamics, and kinetics independently developed and subsequently
coupled to provide an internally consistent theory for magnetic influenced deformation.

The major contributions are related to developing a model that captures the magnetic
effects on deformation using a thermodynamically consistent framework developed by
Coleman and Gurtin (1967) [55]. The ISV model features a kinematics description of the
deformation using a multiplicative decomposition of the total deformation gradient into
elastic, thermal, magnetostrictive, damage, and plastic components. Thermodynamic re-
strictions are employed using the Clausius–Duhem Inequality which combines the first and
second laws of thermodynamics. The kinetic framework enables the prediction of magneti-
cally influenced stresses and strains in materials exposed to magnetic fields. The novel ISV
model framework couples elastic, thermal, damage, and plastic effects to magnetic effects.

To describe the mechanical deformation resulting from the magnetic field, an equation
describing the magnetostriction variation with respect to the magnetic field is introduced.
The magnetostriction strain is a simple equation, with one variable (magnetic field) and
other calibration constants, that can predict the nonlinear behavior of soft and hard magnets.
To describe the magnetic behavior of the magnet, magnetization is introduced as an internal
state variable for which an equation is developed.

The developed magnetism-dependent ISV constitutive model is compared with exper-
imental data of nickel, cobalt, and iron. From the experiments, we measure the mechanical
deformation (magnetostriction strain) of nickel and cobalt and magnetization of iron, nickel,
and cobalt when they are subjected to magnetic fields. The magnetostriction strain and
the magnetization equations are developed in the framework of ISV theory and compared
with the obtained experimental data, and both show good agreement.

For future considerations, we encourage researchers to conduct experiments in which
the applied magnetization levels, temperatures, and applied strains at different strain rates
and paths are varied. This ISV model framework should be admissible to address the
aforementioned topics for use in design. In addition, we are planning to further the model
development with a multiscale analysis of large strain deformation with different levels of
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magnetization. Finally, we recommend that different alloyed systems be examined in the
context of this ISV model as only pure metals are used in this study.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.

Processes 2022, 10, 1769. https://doi.org/10.3390/pr10091769 https://www.mdpi.com/journal/processes

Citation: Su, P.; Han, B.; Wang, Y.;

Wang, H.; Gao, B.; Lu, T.J.

Crashworthiness of Foam-Filled

Cylindrical Sandwich Shells with

Corrugated Cores. Materials 2023, 16,

6605. https://doi.org/10.3390/

ma16196605

Academic Editors: Madhav Baral and

Charles Lu

Received: 7 September 2023

Revised: 5 October 2023

Accepted: 7 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Crashworthiness of Foam-Filled Cylindrical Sandwich Shells
with Corrugated Cores
Pengbo Su 1, Bin Han 2,*, Yiming Wang 1, Hui Wang 1, Bo Gao 1 and Tian Jian Lu 3,4

1 Xi’an Institute of Space Radio Technology, Xi’an 710100, China; su_pengbo@126.com (P.S.);
wangyiming0920@126.com (Y.W.); 13519122235@139.com (H.W.); gaob_2004@163.com (B.G.)

2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics

and Astronautics, Nanjing 210016, China; tjlu@nuaa.edu.cn
4 Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of

Aeronautics and Astronautics, Nanjing 210016, China
* Correspondence: hanbinghost@xjtu.edu.cn

Abstract: Inspired by material hybrid design, novel hybrid sandwich shells were developed by
filling a corrugated cylindrical structure with aluminum foam to achieve higher energy absorption
performance. The crushing behavior of the foam-filled corrugated sandwich cylindrical shells
(FFCSCSs) was investigated using theoretical and numerical methods. Numerical results revealed a
significant enhancement in the energy absorption of FFCSCSs under axial compression, showcasing
a maximum specific energy absorption of 60 kJ/kg. The coupling strengthening effect is highly
pronounced, with a maximum value of Fc/F reaching up to 40%. The mechanism underlying this
phenomenon can be approached from two perspectives. Firstly, the intrusion of folds into the foam
insertions allows for more effective foam compression, maximizing its energy absorption capacity.
Secondly, foam causes the folds to bend upwards, intensifying the mutual compression between the
folds. This coupling mechanism was further investigated with a focus on analyzing the influence of
parameters such as the relative density of the foam, the wall thickness of the sandwich shell, and the
material properties. Moreover, a theoretical model was developed to accurately predict the mean
crushing force of the FFCSCSs. Based on this model, the influence of various variables on the crushing
behavior of the structure was thoroughly investigated through parametric studies.

Keywords: foam-filled corrugated sandwich cylindrical shells; coupling strengthening effect; energy
absorption; theoretical model

1. Introduction

Researchers have consistently aimed to design high-performance protective equipment
and enhance the crashworthiness of various modes of transportation to reduce injuries
and property damage resulting from collisions while achieving lightweight designs. Thin-
walled shells are widely employed as collision-resistant structures due to their high energy
absorption efficiency, reliability, and low manufacturing cost [1]. During collisions, thin-
walled shells absorb kinetic energy through significant plastic deformation, safeguarding
public safety and protecting property; examples of such shells include energy-absorbing
boxes in cars, bumpers in high-speed trains, and crash-resistant landing gears in helicopters.
Comprehensive research has been conducted on the energy absorption capacity of single-
cell, multicell, and foam-filled shells. Single-cell tubular structures, such as circular, square,
and polygonal tubes, have been extensively studied. Corresponding theoretical models
for estimating the energy absorption capacity of these structures have been gradually
established. When subjected to axial compression, single-cell tubular structures typically
exhibit three collapse modes: progressive mode, global mode, and transition mode [2,3].
The progressive collapse mode is the primary focus of most studies because it exhibits
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stable deformation processes and possesses higher energy absorption efficiency. In the case
of circular tubes, Guillow et al. divided the progressive collapse mode into axisymmetric
mode, nonsymmetric mode, and mixed mode [4]. Alexander [5] derived an approximate
theory to estimate the collapse load specifically for the axisymmetric mode. For square
tubes, Weirzbickihe and Abramowicz [6,7] proposed a fundamental folding mode known
as the “super folding element” based on their observation of the folding deformation pro-
cess. This mode was utilized to predict the mean crushing force. Subsequently, the “super
folding element” was extended to polygonal tubes with arbitrary interior angles [8]. Trian-
gular tubes [9–11], hexagonal tubes [12–15], octagonal tubes [16], nonconvex multicorner
tubes [17,18], and star-shaped tubes [15,19] have been extensively investigated based on
this work. It is demonstrated that energy dissipation primarily occurs at horizontal plastic
hinges. Consequently, increasing the number of folds would significantly improve the
energy absorption capacity of tubular structures.

To further enhance energy absorption, researchers proposed tubular structures filled
with foam or honeycomb cores. Corresponding studies indicated that filled tubular struc-
tures exhibited significantly more folds than unfilled ones, resulting in higher energy
absorption efficiency [20]. Reid et al. [21,22] conducted a series of static and dynamic
experiments on circular and square tubes filled with polyurethane foam. Their findings
revealed that the specific energy absorption of foam-filled structures was twice as high
as that of nonfilled structures. Compared to polyurethane foam, metal foam, specifically
aluminum foam, exhibits higher platform stress levels. With the commercial prepara-
tion process for aluminum foam gradually maturing, subsequent researchers conducted
extensive studies on aluminum-foam-filled tubes with various cross sections, including
square tubes [20,23–25], circular tubes [26–28], and polygonal tubes [23,29]. Furthermore,
the potential of honeycomb-filled tubular structures in energy absorption was thoroughly
examined by Hussein et al. [30] and Yin [31]. These studies effectively demonstrated the
advantages of honeycomb filling to enhance energy absorption capabilities. Recently, novel
fillings made of cellular materials were proposed based on the continuous development
of configuration and preparation processes. These materials include functionally graded
foam [32–35], auxetic foam [36], composite foam [37,38], ex situ aluminum foam [39], and
liquid nanofoam [40].

To further improve the energy absorption capacity of tubular structures, researchers
designed sandwich tubular structures filled with cellular materials, such as foams and
honeycombs. The advantageous energy absorption capabilities of these sandwich structures
were demonstrated by Seitzberger et al. [23], Li et al. [41], Zhang et al. [42], Zheng et al. [43],
Gao et al. [44], Djamaluddin et al. [45], and Goel [46]. These investigations revealed that
the sandwich structures exhibited a higher mean crushing force due to the coupling effect
between the face sheets and the filling materials. Meanwhile, research findings revealed
that sandwich structures featuring two-dimensional (2D) corrugated or honeycomb cores
offered superior weight reduction and design benefits, as evidenced by studies [47–52].
In our previous work, the energy absorption capacity of corrugated sandwich shells was
investigated through a combined experimental, theoretical, and numerical approach [53,54].

Moreover, due to the interconnected nature of the corrugated channels, some re-
searchers filled these channels with cellular materials such as foam and aluminum hon-
eycomb to enhance structural performance. Foam-filled corrugated sandwiches were
designed and fabricated by Yan et al. [55] and Han et al. [56]. Their work revealed that
the energy absorption performance of these structures under out-of-plane compression
surpassed the combined energy absorption of the hollow corrugation and the foam in-
dividually, attributed to the coupling effect between the foam and the corrugated core.
Similar coupling effects were also observed in honeycomb–corrugate hybrid structures [57],
ceramic–corrugate hybrid structures [58–60], and other hybrid sandwich structures [61–64].
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To further enhance the energy-absorbing properties of the tubular structure, a novel
hybrid sandwich shell was proposed by incorporating aluminum foam into a corrugated
sandwich cylindrical shell. To characterize the crushing behavior, the finite element (FE)
method was employed, and its accuracy was verified using experimental data in refer-
ence [53]. The energy absorption of the FFCSCS under axial compression was investigated
through numerical simulations. The collapse behavior and folding modes were analyzed,
and the coupling strengthening mechanism between foam and shell wall was explored.
Based on FE simulations, a theoretical model was developed to predict the mean crushing
force of FFCSCSs. Parametric analysis was conducted using the theoretical model to explore
the influence of different parameters on the coupling strengthening effect. This paper is
organized as follows: Section 2 introduces the definition of terminology. Section 3 presents
and validates the finite element model. Section 4 provides an analysis of the coupling
strengthening effect and its mechanism. Section 5 discusses the influence of wall thickness,
material, and foam density on the energy absorption performance of FFCSCSs based on
finite element analysis. Section 6 presents a theoretical model for predicting the mean
crushing force and conducts a parametric study based on the mechanistic model.

2. Terminology Definition in the Crushing Process

This section presents the relevant physical quantities and their definitions used to
describe the crushing process and assess energy absorption characteristics of cylindrical
shells under axial compression. As illustrated in Figure 1, Hs represents the initial height of
the cylindrical shell, d is employed to signify the compressive displacement of the structure,
and F characterizes the corresponding crushing force within the structure.
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Figure 1. The FFCSCS is under crushing process.

The maximal value of F within the interval from 0 to d is denoted as Fmax(d). Simultane-
ously, the energy absorption within this stage is defined as E(d), which can be expressed as

E(d) =
d∫

0

F(d)dx (1)

Building upon this, the mean crushing force within the interval from 0 to d is denoted
as F(d), which can be expressed as follows:

F(d) =
E(d)

d
(2)

Meanwhile, TE (d) represents the energy absorption efficiency of the structure, and its
expression is given as follows:

TE(d) =
E(d)

Fmax(d)Hs
(3)

162



Materials 2023, 16, 6605

When under compression, TE (d) exhibits a trend where it initially increases with
the increasing value of d and subsequently decreases [20]. During this progression, TE
(d) reaches a maximum value, corresponding to the peak energy absorption efficiency of
the structure [20]. The compression displacement at which TE (d) reaches its maximum
value is defined as dmax [20]. The values of F(d) and Fmax(d) at this specific compression
displacement dmax are subsequently designated as the ultimate mean crushing force F and
maximum crushing force Fmax of the structure. Expanding on this concept, the crushing
force efficiency, labeled as AE, is defined as F/Fmax. In this study, SEA (specific energy
absorption) represents the energy absorbed per unit mass by the structure during the
compression failure process, and its expression is as follows:

SEA =
E(dmax)

Ms
(4)

where E(dmax) signifies the energy absorption of the structure at dmax and Ms represents
the mass of the structure.

For an ideally energy-absorbing structure, the objective is to maximize energy ab-
sorption within a specified compression displacement while keeping the crushing force
during compression within acceptable limits. Simultaneously, the structure should possess
lightweight characteristics. Translating these prerequisites into energy absorption parame-
ters, the goal is to attain higher values for F, SAE, and AE while striving for a lower value
of Fmax.

3. Finite Element Modeling
3.1. Descriptions of the Geometric Model

Critical geometric parameters of the FFCSCS are presented in Figure 2, including inner
radius (Ri), outer radius (Ro), number of corrugations (N), thickness of the inner and outer
face sheets (tf), thickness of the corrugated core (tc), width of the corrugated core (w), and
height of the shell along z direction (Hs). In the present study, tc = tf = t is specifically
emphasized. The mass of the FFCSCS can be determined as follows:

Ms = 2tHρs[π(Ri + Ro) + Nw] + ρfH
[
π(R2

o − R2
i )− Nwt

]
(5)

where the mass of FFCSCSs is divided into two components: the first component represents
the corrugated sandwich cylindrical shell’s mass, and the second component represents the
mass of the filled foam.
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Figure 2. Geometric schematic of foam-filled corrugated sandwich cylindrical shells.

3.2. FE Model

The finite element (FE) analysis in this study was performed using the commercial
finite element software LS-DYNA 971, employing its explicit algorithm. The FE model
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is given in Figure 3. Both the upper and lower plates were modeled as rigid bodies and
simulated in LS-DYNA utilizing the *MAT_RIGID card. To impose appropriate boundary
conditions, the lower plate was in its position, while the upper plate was constrained to have
all degrees of freedom except for translational motion in the z direction. A displacement
load was applied to the upper plate in the negative z-axis direction. The loading rate of
1 m/s was employed. At this rate, the kinetic energy within the structure represented less
than 1% of the total energy, leading to an approximately quasi-static process.
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Figure 3. The finite element model of the FFCSCS under axial compression condition.

In the finite element model, the corrugated sandwich shell, aluminum foam, and
rigid plates were meshed with SOLID164 solid elements. The corrugated sandwich shell
was meshed with a minimum element size of 0.2 mm × 0.2 mm × 0.2 mm. This mesh
size ensured that at least three layers of elements were present along the wall thickness
direction of the shell, allowing for an appropriate resolution. For the aluminum foam, a
mesh size of 0.25 mm × 0.25 mm × 0.25 mm was used. The upper and lower pressure
plates, treated as rigid bodies, were meshed with a size of 0.3 mm × 0.3 mm × 0.3 mm.
Mesh sensitivity study showed that further mesh refining did not yield improvements in
the accuracy of the simulation results. Therefore, the current mesh size achieves a balance
between computational accuracy and efficiency.

During the simulation, the contact interactions between the upper or lower plates
and FFCSCS were defined by the *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE
card. To model the internal self-contact within the composite cylindrical sandwich shell
structure, the *CONTACT_AUTOMATIC_SINGLE_SURFACE card was employed. To
simulate the bonding relationship between foam and corrugated sandwich shell walls,
the *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK card was utilized.
When significant normal and tangential stress occurred at the interface between
the adhesive interfaces, this bonding relationship automatically degraded to
*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE according to the following degrada-
tion criterion [65]: ( |σn|

NFLS

)2
+

( |σs|
SFLS

)2
≥ 1 (6)

where σn and σs denote the normal and tangential stresses between the adhesive interfaces.
NFLS and SFLS are the tensile and shear strengths of the bonding material. These strengths
are determined based on the Loctite Hysol E-120HP two-component epoxy adhesive from
Henkel, with measured values of 41 MPa for NFLS and 33 MPa for SFLS [66].

3.3. Material Properties

The materials considered for the face sheets and core in this study are 6063Al, 6061Al,
and 304L stainless steel, respectively. The real stress–strain curves measured in experiments
are sourced from references [54,67], depicted in Figure 4. The solid black lines in the figure
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represent the experimentally obtained data, with the corresponding material parameters
denoted as follows: density (ρs), elastic modulus (Es), yield strength (σ0.2 or σy), ultimate
strength (σu), and ultimate strain (εu). The hardening behavior of the materials is described
by a power-hardening model represented by the equation σ = σu(ε/εu)

n, which is depicted
by the red dashed line in Figure 4. The parameter n represents the power-law-hardening
exponent, which is determined through fitting to the experimental data. σo represents the
flow stress, considering the strain-hardening effects of the metal material. In the case of the
power-law-hardening model, σo can be expressed as [24]

σo =

√
σuσy

1 + n
(7)

The materials mentioned above were considered isotropic elastic–plastic solids with
isotropic hardening in the finite element analysis. The Mises yield rule and J2 flow law were
employed. The *MAT_PIECEWISE_LINEAR_PLASTICITY intrinsic model was utilized for
the three materials in LS-DYNA, while the material’s dynamic strengthening effect was
not considered.
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Figure 4. Material properties and corresponding power-hardening model of parent materials for
corrugated cores and face sheets: (a) 6063 Al [54]; (b) 6061Al [54]; (c) 304L stainless steel [67].

This research investigated the effects of varying relative densities of aluminum foam
on the coupled strengthening effect of FFCSCSs. To mitigate the errors arising from
uncertainties in the aluminum foam processing process and substrate material, a theoretical
model developed by Hanssen et al. [68] was used to derive the material parameters of foam
material as follows:
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σp = 720ρf
2.33 (8)

Ep = 330ρf
2.45 (9)

where ρf represents the relative density of the foam, σp denotes the yield strength of the
foam in MPa, and Ep refers to the modulus of elasticity of the foam in GPa.

The stress–strain curve of the foam after yielding was also obtained using the equation
given by Hanssen et al. [68]:

σ = σp + 42ρf
1.42 e

eD
+ 251ρf ln

[
1

1− (e/eD)
β

]
(10)

where e is the engineering strain of the foam, σ is the compressing stress of the foam,
β = 1/

(
0.1 + 15.7ρf

3), and eD = 1− ρf. This formula applies to the relative density of the
foam ranging from 0.05 to 0.2.

Figure 5 displays the compressive stress–strain curves of seven relative density foams
obtained using the equations mentioned above. The influence of these foams on the cou-
pling enhancement effect of the FFCSCSs will be examined and discussed. In LS-DYNA,
the foam material was defined using *MAT_CRUSHABLE_FOAM and identified as Mate-
rial Type 63 in LS-DYNA. This material model requires the specification of mass density,
Young’s modulus, Poisson’s ratio, and a load curve. The load curve encompasses both the
plateau and densification stages that occur after the foam material reaches its yield point. It
should be noted that in the finite element analysis conducted in this paper, the failure of
the foam material, specifically in terms of fracture, was not taken into consideration.
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3.4. Validation against Experiments

In reference [53], preliminary axial compression tests were conducted on the FFCSCS.
The experimental findings demonstrated a significant coupling enhancement effect of the
FFCSCS when subjected to axial compression, in contrast to the independent foam and shell
components. Figure 6 presented the comparison between the experimental and numerical
results. In the experiment [53], the mean crushing force of the structure was 28.76 N, and the
mean crushing force obtained through simulation in this work was 31.28 N. The excellent
agreement between the two values indicates that the simulation approach employed in
this study effectively characterizes the energy absorption characteristics of the structure.
Furthermore, the final collapse mode captured from the FE results closely resembles the
experimental photo, except for localized debonding observed in the experiments.
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4. Numerical Results

Based on FE simulations, a comprehensive study of the crushing behavior of the
FFCSCS, encompassing the crushing process, the coupling enhancement effect, and its
underlying mechanisms, is presented in this section.

4.1. Crushing Process

A representative structure is selected for a detailed analysis of the crushing process of
FFCSCSs under axial compression. The shell material of this structure is 6063 aluminum,
the wall thickness of the shell component is 0.8 mm, and the foam has a relative density
of 0.1. This representative structure is labeled as 6063-08-01, signifying the shell material
(6063), the shell-wall thickness (08), and the foam relative density (01).

Figure 7a depicts the crushing force–compression displacement (F-d) curve for the
6063-08-01 structure. Figure 7b presents the energy absorption–compression displacement
curve (E-d curve). Figure 7c shows the deformation configurations corresponding to the
peak and trough values of the F-d curve (Only 1/4 of the structure is shown to facilitate the
observation of internal deformation).

Initially, the F-d curve exhibits a linear increase, indicating the structure is primarily
in the elastic stage. Subsequently, a bifurcation point emerges on the F-d curve, signifying
the transition from the linear–elastic stage to the nonlinear zone, where the crushing force
F continues to increase. At point 2 on the F-d curve, the first fold in the structure begins
to form and reaches its peak value before sharply declining. As compression progresses
from point 2 to point 3, the folding area expands, resulting in a gradual decrease in F. From
point 3 to point 4, mutual compression occurs within the first fold, causing the F-d curve to
rise. As the new fold starts to form between point 4 and point 5, the F-d curve once again
declines. Throughout the compression process, the F-d curve alternates between peak and
valley values as folds form, expand, and extrude layer by layer. Upon reaching point 8, the
curve enters the densification stage, exhibiting a rapid increase.

A clear trend can be observed that the energy absorption (Etotal) increases linearly
with the increase in compression displacement (d). The corrugated core exhibits the highest
energy absorption capacity (Ecc), surpassing that of the outer face sheet (EOF). At smaller
d values, the inner face sheet absorbs slightly more energy (EIF) compared to the foam
(EFoam). However, as d increases, EIF gradually becomes equivalent to EFoam.
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4.2. Coupling Enhancement Effect

The coupling strengthening behavior and the strengthening mechanism of the FFCSCS
6063-08-01 are explored here. Additionally, separate simulation analyses are conducted for
the two constituents of the FFCSCS: the corrugated core shell (CSCS) and the foam column
(foam). This enables the analysis of the energy absorption contributions arising from the
coupling strengthening effect. In this study, “foam + CSCS” represents the algebraic sum of
the energy absorption characteristics of the two components when analyzed independently
and does not represent an actual physical structure.

Figure 8a presents the crushing force–displacement (F-d) curves for 6063-08-01 and
its individual constituents when subjected to independent compression. The F-d curve
for the FFCSCS is represented by a solid black line, while those for the independently
compressed corrugated sandwich cylindrical shell (CSCS) and foam column are depicted
by a dashed blue line and a dotted green line, respectively. The curve for the “Foam + CSCS”
combination is shown as a dashed red line. The shaded region between the solid black line
and the red dashed line depicts the pronounced coupling strengthening effect observed
between the components of the FFCSCS.

Based on the F-d curves depicted in Figure 8a, the mean crushing force F(d) for the
FFCSCS and its individual components as a function of the compression displacement d is
calculated and shown in Figure 8b. The shaded region in Figure 8b represents the coupling
strengthening effect characterized by F(d), which exhibits a progressive increase with the
increasing d until it reaches a stable state.
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The final mean crushing forces for the FFCSCS, foam, and CSCS are denoted as F, Ff,
and Fs, respectively. Therefore, the coupling strengthening effect is characterized by the
coupling mean crushing force, expressed as Fc, and is determined as follows:

Fc = F− Fs − Ff (11)

Based on the definitions and compression curves mentioned above, several parameters
are calculated for the CSCS, foam, and FFCSCS, including the mean crushing force F,
coupling mean crushing force Fc, specific energy absorption SEA, and the crushing force
efficiency AE. The values for these parameters are presented in Table 1. It is evident
that in the case of FFCSCS, Fc accounts for 31% of F, indicating a significant coupling
strengthening effect between the components. Furthermore, a comparison between the
different configurations reveals that the SEA and AE of the FFCSCS are considerably
enhanced compared to CSCS and the foam.

Table 1. Comparison of energy absorption of FFCSCS 6063-08-01 and its individual components.

Structures
F Fc SEA (kJ/kg) AE

Value (kN) Percentage Value (kN) Percentage

CSCS 65.7 65% / / 33.38 0.64
Foam 4.29 4% / / 24.79 /

FFCSCS 101.19 / 31.2 31% 42.79 0.8

4.3. Mechanism of Coupling Enhancement

In the preceding section, it is observed that a pronounced coupling strengthening
effect exists among the components of FFCSCS 6063-08-01. To further reveal the coupling
strengthening mechanism, the energy absorption properties and folding mode of FFCSCS,
individual CSCS, and individual foam components are analyzed separately. It is worth men-
tioning that the individual foam component utilized in the analysis is in the form of a solid
cylindrical structure, aligning its height with that of the FFCSCS. Its cross-sectional area
encompasses the total area occupied by all foam sections within the corrugated channels.

Table 2 presents the energy absorbed by each component in the FFCSCS, the CSCS, and
the foam. It is evident that in the FFCSCS, the corrugated core absorbs the highest amount
of energy, followed by the outer face sheet, the inner face sheet, and the foam. Similarly, in
the CSCS, the corrugated core absorbs the most energy, followed by the outer and inner
face sheets. When comparing the energy absorption of the corresponding components in
the FFCSCS and CSCS, it is notable that the corrugated core, outer face sheet, and inner
face sheet of the FFCSCS exhibit increased energy absorption. Specifically, the inner face
sheet shows a 26% increase, the outer face sheet shows a 14% increase, and the corrugated
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core shows a 5% increase. Moreover, when comparing the energy absorption of the foam in
the FFCSCS with that of an equally massed individual foam column, it is evident that the
filled foam in the FFCSCS exhibits a remarkable improvement. The energy absorption of
the filled foam is enhanced by 283% compared to that of the individual foam column.

Table 2. Energy absorption of each component in FFCSCS, CSCS and the foam.

Component
FFCSCS CSCS Foam

(kJ)
E

EnhancementValue (kJ) Percentage Value (kJ) Percentage

Outer face 1.2 25% 1.056 30% / 14%
Inner face 0.96 20% 0.76 22% / 26%

Corrugation 1.76 36% 1.68 48% / 5%
Foam 0.92 19% / / 0.24 283%

In Figure 9, the collapse mode of FFCSCS 6063-08-01 after compaction is depicted, with
a quarter of the structure intercepted to facilitate observation of internal deformation. The
collapse mode of FFCSCS 6063-08-01 exhibits an axisymmetric pattern, while independent
local folds form along the corrugated core. Upon closer examination, it becomes apparent
that shell folds intrude into the foam region during compression. This deformation mode
allows for a more thorough foam compression, resulting in increased energy absorption
compared to an individual foam column. Moreover, the foam alters the deformation modes
of the folds in the corrugated core and face sheets. Figure 9 clearly illustrates the upward
bending of the folds in the inner face sheet across all folding layers.
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Figure 9. Collapse configuration of the FFCSCS 6063-08-01.

Table 3 provides an overview of the collapse configurations observed in the inner
face sheet (IF), outer face sheet (OF), and corrugated core within both the FFCSCS and
CSCS structures. In the initial row of the table, the collapse configurations of the IF within
both structures are depicted, with the folds in each layer highlighted by a red line. It is
evident that in the CSCS, the folds of the IF exhibit minimal deformation in the compression
direction. In contrast, in the FFCSCS, all the folds are observed to bend upwards along the
compression direction. Moving to the second row of Table 3, a comparative analysis of the
collapse mode of the OF is presented.

Similarly, in the FFCSCS, the folds in the OF exhibit bending along the compression
direction, whereas the folds in the CSCS display minimal deformation in this direction. The
bending deformation of the folds in the FFCSCS results in increased plastic deformation
of the material and enhanced interfolding compression. These two factors synergistically
contribute to the improved energy absorption properties of the FFCSCS. Furthermore, the
collapse mode of the corrugated core, as depicted in the third row of Table 3, exhibits
a nearly identical behavior in both the CSCS and FFCSCS. In summary, the coupling
effect is more pronounced for the inner and outer face sheets of the FFCSCS, whereas it is
comparatively weaker for the corrugated core.

To elucidate the observed folding phenomenon in the inner and outer face sheets of
the FFCSCS, Figure 10 provides a visual representation of the formation of the second layer
of folds within the inner face sheet.
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Table 3. Comparison of collapse configuration of each component in the FFCSCS and CSCS.

CSCS FFCSCS

IF
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In Figure 10a, the initial stage of the crushing process is depicted, where the 

formation of the second layer of folds has not yet commenced. As depicted in Figure 10b, 

the initiation of the second layer of folds begins as the compression displacement 

increases. With further compression, as shown in Figure 10c, the second layer of folds 

becomes progressively compressed, resulting in their upward bending along the direction 

of compression. Moving to Figure 10d, it is evident that the second layer of folds is fully 

developed, and the folds bend upwards along the compression direction. Additionally, it 

is observed that the second layer of folds comes into contact with the first layer of folds, 

giving rise to mutual compression due to the bending deformation. 

For a more detailed examination of this process, Figure 10e partially magnifies Figure 

10c. It becomes apparent that the foam adjacent to the fold undergoes compression due to 

the pressure exerted by the face sheet, causing the foam material to flow upwards. This 

upwards flow of foam material subsequently forces the adjacent region of the face sheet 

to bend upwards. Similarly, Figure 10f partially enlarges Figure 10d, illustrating how the 

folds are forced to contact and compress each other. This collapse mode further enhances 

the energy absorption properties of the structure. 

5. Discussion 

The preceding analysis reveals the coupling strengthening effect and its underlying 

mechanisms. This section discusses the influence of the foam’s relative density, the wall 

Materials 2023, 16, x FOR PEER REVIEW 13 of 28 
 

 

Core 

  

To elucidate the observed folding phenomenon in the inner and outer face sheets of 

the FFCSCS, Figure 10 provides a visual representation of the formation of the second 

layer of folds within the inner face sheet. 

 

Figure 10. The formation process of folds (enclosed by the red dash circle) in FFCSCS (6063-08-01): 

(a) initial stage; (b) beginning of formation; (c) bending upwards; (d) compressing each other; (e) 

partially enlarged view of (c); (f) partially enlarged view of (d). 

In Figure 10a, the initial stage of the crushing process is depicted, where the 

formation of the second layer of folds has not yet commenced. As depicted in Figure 10b, 

the initiation of the second layer of folds begins as the compression displacement 

increases. With further compression, as shown in Figure 10c, the second layer of folds 

becomes progressively compressed, resulting in their upward bending along the direction 

of compression. Moving to Figure 10d, it is evident that the second layer of folds is fully 

developed, and the folds bend upwards along the compression direction. Additionally, it 

is observed that the second layer of folds comes into contact with the first layer of folds, 

giving rise to mutual compression due to the bending deformation. 

For a more detailed examination of this process, Figure 10e partially magnifies Figure 

10c. It becomes apparent that the foam adjacent to the fold undergoes compression due to 

the pressure exerted by the face sheet, causing the foam material to flow upwards. This 

upwards flow of foam material subsequently forces the adjacent region of the face sheet 

to bend upwards. Similarly, Figure 10f partially enlarges Figure 10d, illustrating how the 

folds are forced to contact and compress each other. This collapse mode further enhances 

the energy absorption properties of the structure. 

5. Discussion 

The preceding analysis reveals the coupling strengthening effect and its underlying 

mechanisms. This section discusses the influence of the foam’s relative density, the wall 

Materials 2023, 16, x FOR PEER REVIEW 13 of 28 
 

 

Core 

  

To elucidate the observed folding phenomenon in the inner and outer face sheets of 

the FFCSCS, Figure 10 provides a visual representation of the formation of the second 

layer of folds within the inner face sheet. 

 

Figure 10. The formation process of folds (enclosed by the red dash circle) in FFCSCS (6063-08-01): 

(a) initial stage; (b) beginning of formation; (c) bending upwards; (d) compressing each other; (e) 

partially enlarged view of (c); (f) partially enlarged view of (d). 

In Figure 10a, the initial stage of the crushing process is depicted, where the 

formation of the second layer of folds has not yet commenced. As depicted in Figure 10b, 

the initiation of the second layer of folds begins as the compression displacement 

increases. With further compression, as shown in Figure 10c, the second layer of folds 

becomes progressively compressed, resulting in their upward bending along the direction 

of compression. Moving to Figure 10d, it is evident that the second layer of folds is fully 

developed, and the folds bend upwards along the compression direction. Additionally, it 

is observed that the second layer of folds comes into contact with the first layer of folds, 

giving rise to mutual compression due to the bending deformation. 

For a more detailed examination of this process, Figure 10e partially magnifies Figure 

10c. It becomes apparent that the foam adjacent to the fold undergoes compression due to 

the pressure exerted by the face sheet, causing the foam material to flow upwards. This 

upwards flow of foam material subsequently forces the adjacent region of the face sheet 

to bend upwards. Similarly, Figure 10f partially enlarges Figure 10d, illustrating how the 

folds are forced to contact and compress each other. This collapse mode further enhances 

the energy absorption properties of the structure. 

5. Discussion 

The preceding analysis reveals the coupling strengthening effect and its underlying 

mechanisms. This section discusses the influence of the foam’s relative density, the wall 

Figure 10. The formation process of folds (enclosed by the red dash circle) in FFCSCS (6063-08-01):
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partially enlarged view of (c); (f) partially enlarged view of (d).

In Figure 10a, the initial stage of the crushing process is depicted, where the formation
of the second layer of folds has not yet commenced. As depicted in Figure 10b, the initiation
of the second layer of folds begins as the compression displacement increases. With further
compression, as shown in Figure 10c, the second layer of folds becomes progressively
compressed, resulting in their upward bending along the direction of compression. Moving
to Figure 10d, it is evident that the second layer of folds is fully developed, and the
folds bend upwards along the compression direction. Additionally, it is observed that the
second layer of folds comes into contact with the first layer of folds, giving rise to mutual
compression due to the bending deformation.

For a more detailed examination of this process, Figure 10e partially magnifies
Figure 10c. It becomes apparent that the foam adjacent to the fold undergoes compression
due to the pressure exerted by the face sheet, causing the foam material to flow upwards.
This upwards flow of foam material subsequently forces the adjacent region of the face
sheet to bend upwards. Similarly, Figure 10f partially enlarges Figure 10d, illustrating
how the folds are forced to contact and compress each other. This collapse mode further
enhances the energy absorption properties of the structure.
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5. Discussion

The preceding analysis reveals the coupling strengthening effect and its underlying
mechanisms. This section discusses the influence of the foam’s relative density, the wall
thickness, and the materials of the corrugated sandwich on the coupling strengthening effect.

5.1. Influence of Foam Density on the Coupling Effect

The influence of the relative density of the foam (ρf) on the coupling enhancement
effect of the FFCSCSs is investigated in this section. The relative density of the foam ρf
varies within the range of 0.06 to 0.19 while maintaining a constant shell material (6063 Al)
and a shell-wall thickness of 0.8 mm.

Figure 11 illustrates the crushing force–compression displacement curves (F-d curves)
and compression mean crushing force–displacement curves (F-d curves) for FFCSCSs with
varying ρf ranging from 0.06 to 0.19. In Figure 11a, it is evident that the F-d curves for
ρf ranging from 0.06 to 0.14 exhibit similar patterns. Initially, each curve reaches its peak
value, followed by fluctuations around a stable value, and it finally undergoes a rapid rise
due to compaction. Notably, both the peak and stable values in the F-d curves increase with
an increasing value of ρf. However, in Figure 11b, the shape of the F-d curves changes as ρf
increases to 0.16 and 0.19. The curves display overall fluctuations without any distinct peak
or stable values. Moving to Figure 11c, the F-d curves for FFCSCSs with ρf values of 0.06
to 0.14 are presented. It is observed that as displacement (d) increases, the mean crushing
force (F(d)) also increases and gradually converges to the constant value (F). Furthermore,
it is evident that F increases with increasing ρf. However, in Figure 11d, the F-d curves
exhibit a rising and falling pattern with an increase in d for structures with ρf values of 0.16
and 0.19, without converging to a constant value.
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Figure 11. Crushing response of FFSCSCs with different relative foam density ρf: (a) force–
displacement curves for ρf = 0.06~0.14; (b) force–displacement curves for ρf = 0.16~0.19; (c) mean
crushing force–displacement curves for ρf = 0.06~0.14; (d) mean crushing force–displacement curves
for ρf = 0.16~0.19.
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Figure 12 illustrates the collapse modes of FFCSCSs with ρf values ranging from 0.08
to 0.19. For ρf between 0.08 and 0.14, the structures exhibit the progressive folding mode,
where the folds occur layer by layer along the compression direction. This phenomenon is
depicted in Figure 11a, where the F-d curves show fluctuations, indicating the layer-by-layer
formation of folds. However, as shown in Figure 12d, when ρf reaches 0.14, some of the
folds in the FFCSCSs are not fully developed, and a tendency toward global deformation
begins to emerge. As ρf increases to 0.16 and 0.19, the deformation mode of the structure
transitions to a global folding mode, as demonstrated in Figure 12e,f. In this global folding
mode, the F-d curves no longer exhibit fluctuations around a stable value, as observed in
Figure 11b.
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Figure 12. Collapse configuration of FFSCSCs with ρf values ranging from 0.08 to 0.19: (a) 0.08;
(b) 0.10; (c) 0.12; (d) 0.14; (e) 0.16; (f) 0.19.

Table 4 presents the crushing performance of the FFCSCSs for ρf values ranging from 0
to 0.19, where ρf = 0 represents the CSCS. It is evident that the FFCSCSs exhibit significantly
higher mean crushing force (F) and specific energy absorption (SEA) compared to the CSCS.
For ρf ≤ 0.16, F, Fc, SEA and AE of the FFCSCSs increase with an increasing value of
ρf. However, as ρf further increases to 0.19, F, Fc, SEA, and AE decrease. This decline
can be attributed to the global deformation, as depicted in Figure 12f, when ρf exceeds a
certain threshold.

Table 4. Crushing properties of FFSCSCs with ρf = 0 ∼ 0.019.

ρf F (kN) Fc (kN) SEA (kJ/kg) AE

0 65.70 / 33.30 0.64
0.06 80.11 13.03 36.85 0.72
0.08 90.59 22.28 39.34 0.81
0.10 101.19 31.20 42.79 0.80
0.12 114.14 41.97 45.32 0.86
0.14 127.25 52.34 48.80 0.99
0.16 135.91 57.62 49.00 0.94
0.19 132.99 48.15 45.26 0.87

As indicated in Equation (2), the mean crushing force of the FFCSCS (F) is composed
of the mean crushing force of the CSCS (Fs), the mean crushing force of the foam (Ff), and
the coupling mean crushing force (Fc).

Figure 13a presents the absolute values of Fs, Ff, and Fc, while their respective propor-
tions in F are illustrated in Figure 13b. Throughout this section, the shell-wall thickness
and material of the FFCSCSs remain constant, ensuring that Fs remains consistent for each
FFCSCS. In Figure 13a, as ρf increases, both Ff and Fc initially increase, followed by a
subsequent decrease for each structure. In Figure 13b, it can be observed that when ρf is
equal to 0.6, Fs accounts for the highest proportion (82%), followed by Fc (16%), and Ff
represents the lowest proportion (2%). As ρf increases, the proportion of Fs decreases, while
the proportions of Ff and Fc increase. This observation indicates that the contribution of the
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foam itself and the coupling effects in energy absorption grow with increasing foam density.
However, when ρf reaches 0.19, the structure undergoes global deformation, resulting in a
reduction in the coupling effect and subsequently a decrease in the proportion of Fc in F.
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5.2. Influence of Shell-Wall Thickness on the Coupling Effect

This section examines the influence of the wall thickness (t) on the coupling strength-
ening effect in FFCSCSs. Three distinct wall thicknesses are considered: 0.6 mm, 0.8 mm,
and 1.0 mm, respectively. For the structures discussed in this section, 6063 Al is employed
for both the corrugated core and face sheets while maintaining the relative foam density
within the range of 0.06 to 0.19.

Figure 14 illustrates the influence of shell-wall thickness on the crushing performance
and coupling strengthening effect of FFCSCSs, considering a range of ρf values from 0 to
0.19. It is important to note that ρf = 0 represents the CSCS structure. The results clearly
demonstrate that the FFCSCSs exhibit higher values of F, Fc, AE, and SEA compared to the
CSCSs. For a given value of t, as ρf increases before global deformation occurs, there is a
corresponding increase in F, Fc, AE, and SEA. However, when the value of ρf exceeds a
certain threshold, global deformation occurs, leading to a decrease in F, Fc, AE, and SEA.
Furthermore, for a given value of ρf, prior to the occurrence of global deformation, higher
values of t are associated with increased values of F, Fc, AE, and SEA.

Moreover, as illustrated in Figure 14, the critical threshold of ρf at which FFCSCSs
undergo global deformation varies depending on the values of t. A higher t value is associ-
ated with a lower critical threshold of ρf. This finding indicates that structures with thicker
walls are more prone to global deformation. Furthermore, once the structure undergoes
global deformation, a higher value of t results in a more substantial decline in F, Fc, AE, and
SEA. To illustrate this, let us consider Fc as an example. When t values are set at 0.6 mm,
0.8 mm, and 1.0 mm, the corresponding reductions in Fc during global deformation are 8%,
15%, and 28%, respectively. Overall, FFCSCSs exhibit superior energy absorption capabili-
ties compared to CSCSs. Notably, FFCSCSs with greater wall thicknesses demonstrate a
pronounced coupling strengthening effect, resulting in higher energy absorption capacities.

Figure 15 illustrates the absolute values of Fs, Ff, and Fc, as well as their respective
proportions in F, for various combinations of t and ρf. In Figure 15a, when a specific value
of ρf is considered, the bar charts represent Fs, Ff and, Fc for FFCSCSs with different t
values (0.6 mm, 0.8 mm, and 1.0 mm), arranged from left to right. It is evident that when a
specific value of ρf is provided, Fs exhibits an increasing trend as t increases. In the case of
Ff, as t increases, the foam-filled area within the corrugated channel decreases, resulting
in a reduction in Ff. However, within the discussed range, the differences in t values are
relatively small, resulting in less noticeable variations in Ff for different t values. For Fc,
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before the global deformation occurs, a larger t corresponds to a larger Fc for the same ρf.
Additionally, when t is held constant, an increase in ρf results in no change in Fs, while Ff
and Fc increase. In Figure 15b, for a specific value of ρf, the bar charts, from left to right,
represent the proportions of Fs, Ff, and Fc in F for t values of 0.6 mm, 0.8 mm, and 1.0 mm,
respectively. It is evident that when a specific value of ρf is given, an increase in t results in
a higher proportion of Fs, while the proportions of Ff and Fc decrease. Conversely, when t
is held constant, before global deformation occurs, the proportion of Fs decreases, and the
proportion of Ff and Fc increases as ρf increases.
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It is observed that, prior to the occurrence of global deformation, higher relative foam
density and greater shell-wall thickness contribute to a strengthened coupling effect among
the structural components. Conversely, greater relative foam density and smaller shell-wall
thickness result in an increased proportion of the coupling strengthening effect in structural
energy dissipation.

5.3. Influence of Shell Material on the Coupling Effect

This section investigates the influence of shell materials in FFCSCSs on the coupling
strengthening effect. Three different materials are considered: 6063 Al, 6061 Al, and 304L
stainless steel. Among these materials, there is a gradual increase in both yield stress and
flow stress, progressing from 6063 Al to 6061 Al and finally to 304L stainless steel. In the
considered structure, the corrugated core and face sheet wall thickness t is fixed at 0.8 mm,
while the relative density of the foam ρf ranges from 0.06 to 0.19.

Figure 16 illustrates the impact of shell material on the crushing performance and
coupling strengthening effect of FFCSCSs. It is observed that all FFCSCSs exhibit higher
values for F, Fc, AE, and SEA compared to the CSCSs. For each material, as the relative
density ρf increases up to 0.16, F, Fc, AE, and SEA increase accordingly. However, when
ρf exceeds 0.16, the structure experiences global deformation, resulting in a decrease in
energy absorption performance and a subsequent decline in F, Fc, AE, and SEA.
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Furthermore, for a given ρf, the performance of the structure is significantly influenced
by the strength of the shell material, with higher strength materials exhibiting greater
values for F, Fc, and AE. However, in Figure 16d, it is observed that for the same ρf, the
SEA of the 6061 Al structure is the highest, followed by the 6063 Al, while the 304L stainless
steel exhibited the lowest SEA. The reason for this phenomenon can be analyzed as follows.
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Referring to Figure 4, although the flow stress of 304L stainless steel is 1.9 times that of
the 6063 Al, its density is 2.9 times that of the 6063 Al as well, resulting in a lower SEA.
On the other hand, both 6063 Al and 6061 Al have the same density, but the 6061 Al has
higher yield stress and flow stress compared to the 6063 Al, leading to a higher SEA for
the 6061 Al structures. Overall, the FFCSCSs consistently demonstrate superior energy
absorption performance compared to the CSCSs for all materials considered. The coupling
strengthening effect and mean crushing force of the FFCSCSs are strengthened with higher
flow stress in the shell material. The specific energy absorption of the structure is influenced
by both the flow stress and the density of the base material.

Figure 17 provides an analysis of the absolute values of Fs, Ff, and Fc with different
shell materials and ρf, along with their respective proportions in F. In Figure 17a, for a
specific value of ρf, the bar charts depict Fs, Ff, and Fc for the FFCSCSs with different
shell materials (6063 Al, 6061 Al, and 304L stainless steel), arranged in ascending order
of material flow stress from left to right. It is observed that when a specific ρf value is
assigned, both Fs and Fc increase with an increase in material flow stress, while Ff remains
constant. Similarly, for a given material, as ρf increases before global deformation occurs,
Fs remains constant, while both Ff and Fc increase. In Figure 17b, when ρf is assigned,
the bar charts from left to right represent the proportion of Fs, Ff, and Fc in F for 6063 Al,
6061 Al, and 304L stainless steel, respectively. With a constant ρf value, an increase in
material flow stress results in a higher proportion of Fs, accompanied by a lower proportion
of Fc and Ff. Likewise, when a specific material is given, before the structure undergoes
global deformation, the proportion of Fs decreases with an increasing value of ρf, while the
proportions of Ff and Fc increase.
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Consequently, an increase in foam relative density and shell material strength results
in a stronger coupling strengthening effect among the components of FFCSCSs. Conversely,
higher foam relative density and weaker shell material lead to a greater proportion of the
coupling strengthening effect in energy absorption.

6. Theoretical Analysis

Based on the findings above, it is evident that the coupling strengthening effect
increases with higher foam density, greater wall thickness of the shells, and higher flow
stress of the shell material. In this section, a theoretical model is derived for predicting
the mean crushing force of the FFCSCSs. The development of this model builds upon
our previous work [54] for predicting the mean crushing force of CSCSs and incorporates
insights regarding the coupling effect of foam-filled square tube structures [69].
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6.1. Theoretical Model

According to Equation (2), the mean crushing force (F) of the FFCSCS is determined
as the sum of the mean crushing forces of the shell (Fs) and foam core (Ff) and the coupling
contribution (Fc). The calculation of Fs is based on our former theoretical model, the de-
tailed solution process of which can be referred to in Ref. [54]. During the solution process,
the energy absorption of each folded cell within a folding cycle of 2H is cumulatively calcu-
lated. Based on the principle of energy balance (which ensures that the work performed by
external forces is equal to the internal energy dissipation), the expression for Fs is derived
as follows:

Fs = Wtotal/2Hξ (12)

where Wtotal is determined as the function in terms of H and b. Here, b refers to the radius
of the toroidal surface in the super folding elements (not shown for brevity), while H
represents the half-length of the fold. ξ denotes the effective crush distance coefficient.

The actual crushing mode of FFCSCSs should minimize the mean crushing force [5].
Therefore, it is crucial to ensure that

∂Fs
∂H = 0 ∂Fs

∂b = 0 (13)

After solving the aforementioned equation, the resulting values of H and b are then
used in Equation (8) to calculate Fs.

The foam mean crushing force Ff can be calculated from [69]:

Ff = σfSfoam (14)

where σf is defined as the plateau stress of foam when compressed to 50%, and Sfoam
represents the cross-sectional area of the foam perpendicular to the compression direction.

To compute σf for foams with a range of ρf values spanning from 0.05 to 0.2, Equation (5)
can be applied as follows:

σf= 2
∫ 0.5

0

{
σp + 42ρf

1.42 e
eD

+ 251ρf ln

[
1

1− (e/eD)
β

]}
de (15)

According to reference [69], the general expression of the coupling mean crushing
force Fc is provided as follows:

Fc = NCavgσα
f σ

(1−α)
o wβt(2−β) (16)

where N represents the number of corrugated cells. Cavg, α, and β are dimensionless
parameters that describe the coupling strengthening effect. The equation involves the
plateau stress of foam σf, the flow stress of the shell material σo, the width of the corrugated
core w, and the thickness of shell walls t.

Thus, the mean crushing force F can be expressed as follows:

F = Fs + σfSfoam + NCavgσα
f σ

(1−α)
o wβt(2−β) (17)

The first two terms in Equation (13) can be computed directly from the geometric and
material parameters of FFCSCSs. However, the third term, representing the coupling mean
crushing force, depends on three dimensionless parameters: Cavg, α, and β. In reference [69],
these dimensionless parameters were obtained through fitting the experimental data. In this
study, a similar fitting approach is employed to ascertain the values of Cavg, α, and β. This is
achieved using MATLAB’s built-in multiple nonlinear regression function, “nlinfit”, which
is based on numerical simulations. The goodness of fit is assessed using the coefficient of
determination R2 between the theoretical predictions and simulated results. A higher R2
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value, closer to 1, indicates a more reliable and higher-quality fit. The expression for R2 is
provided as follows:

R2 = 1−

M
∑

i=1
(yi − ŷi)

2

M
∑

i=1
(yi − yi)

2
(18)

where yi represents the simulated results, yi denotes the mean value of simulations, ŷi
represents the theoretical predictions, and M corresponds to the number of fitted samples.

6.2. Comparison with Simulated Results

The finite element analysis presented in Section 4 shows that the structure undergoes
global deformation when ρf exceeds a certain threshold value. Consequently, the theoretical
model mentioned above is found to be inapplicable in such cases. Therefore, in developing
the theoretical model, only FFCSCSs with ρf values ranging from 0.06 to 0.14 were consid-
ered. Based on the simulated results, through multivariate nonlinear regression analysis,
the values of Cavg, α, and β were determined as 6.6051, 0.6796, and 1.3236, respectively. The
predicted values were calculated by substituting these values into Equations (13) and (14).

Figure 18 displays both the simulated and theoretical results for the mean crushing
force F and the coupling mean crushing force Fc. The x axis represents the simulated results,
and the y axis represents the theoretical predictions. The solid black line (45◦ diagonal line)
represents perfect agreement between the theoretical and simulated results, while the gray
dashed line represents an error margin of ±20% between the simulated and theoretical
results. In Figure 18a, the theoretical results and corresponding simulated results for
Fc are shown. All data points are distributed on both sides of the 45◦ diagonal line,
indicating strong agreement between the theoretical and simulated results. The coefficient
of determination R2, obtained using Equation (15), is 0.956, affirming the reliability of the
obtained values of Cavg, α, and β. Figure 18b displays the theoretical and corresponding
simulated results for F. The agreement between the simulated and theoretical results of
F is higher compared to Fc, with data points more closely aligned to the 45◦ diagonal
line. Additionally, the R2 value for the predicted value of F is 0.965. Consequently, the
proposed theoretical model for predicting F and Fc within the discussed range of ρf values
is deemed reliable.
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6.3. Parametric Studies

In Section 4, the influence of foam relative density ρf on the coupling strengthening
effect was discussed using the finite element method. However, due to computational
limitations and the complexity of numerical models, the compared structures did not
adhere to the principle of equal mass, and the interval of ρf is relatively large (0.02). In this
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section, the theoretical model is employed to investigate the influence of ρf on F, Fs, Ff, and
Fc while adhering to the principle of equal mass. To achieve this, the mass of FFCSCSs is
equated with that of the CSCS with a wall thickness of t = 1 mm. As ρf increases, the mass
of FFCSCSs remains constant by reducing the value of t. In this section, ρf varies within the
range of 0.6 to 0.14, with a finer interval of 0.002, allowing for a more precise analysis of the
influence of ρf on the mentioned parameters.

Figure 19 presents the variation characteristics of F, Fs, Ff, and Fc in different FFCSCSs
with equal mass, as a function of ρf. The base materials considered here are 1060 Al,
6063 Al, 6061 Al, and 304L stainless steel. The flow stress for 1060 Al is set to 140 MPa,
while the values for the other three materials can be found in Section 3.3. Figure 19 shows
that for a given shell material, increasing ρf necessitates a reduction in t to maintain the
same structural mass. Throughout this process, F, Ff, and Fc show an increase, while
Fs experiences a decrease. Among the FFCSCSs made of 6063 Al, 6061 Al, and 304L
stainless steel, the mean crushing force can be arranged in descending order as Fs, Fc,
and Ff. Additionally, the difference between Fs and Fs decreases with an increasing ρf.
In the case of the FFCSCSs made of 1060 Al, when ρf is less than 0.13, Fs is greater than
both Fc and Ff. However, when ρf exceeds 0.13, Fs becomes smaller than Fc. In general,
based on equal mass, F increases with ρf, corresponding to the increased energy absorption.
Simultaneously, Fs decreases, while Ff and Fc increase.
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Figure 19. Theoretical predictions of mean crushing force of FFCSCSs with equal mass: (a) 1060 Al
face sheets with different ρf; (b) 6063 Al face sheets with different ρf; (c) 6061 Al face sheets with
different ρf; (d) 304L stainless steel face sheets with different ρf.

Figure 20 presents the variation characteristics of the proportion of Fs, Ff, and Fc in
F under equal mass conditions as a function of ρf. Figure 20a shows the proportional
contribution of Fs in F. For a given material, the proportion of Fs decreases as ρf increases.
Conversely, for a given ρf, higher material flow stress results in a more significant proportion
of Fs in F. Figure 20b displays the proportional contribution of Ff in F. It can be observed
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that for a given material, the proportion of Ff increases with increasing ρf, while for a given
ρf, higher material flow stress leads to a lower proportion of Ff. Figure 20c demonstrates the
proportional contribution of Fc in F. It can be seen that for a given material, the proportion
of Fc increases as ρf increases, whereas for a given ρf, higher material flow stress results in
a lower proportion of Fc in F.
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In conclusion, based on equal mass conditions, a higher ρf contributes to greater
energy absorption in FFCSCSs. This contribution can be attributed to both the foam itself
and the coupling strengthening effect. When ρf is held constant, a higher shell flow stress
leads to a larger energy absorption, with a significant contribution from the shell itself but
a smaller contribution from the coupling effect and foam.

7. Conclusions

The concept of material hybrid design was introduced to incorporate aluminum foam
into the corrugated channels of the corrugated core sandwich cylindrical shell, thereby
creating a novel foam-filled corrugated sandwich cylindrical shell (FFCSCSs). The energy
absorption characteristics of FFCSCSs were systematically investigated through a com-
bination of simulations and theoretical analysis. The main conclusions are summarized
as follows:

1. The FFCSCS demonstrates significantly enhanced energy absorption performance
under axial compression, primarily due to the foam filling, resulting in maximum
specific energy absorption of 60 kJ/kg. Furthermore, the coupling strengthening effect
is notably pronounced, as evidenced by the maximum value of Fc/F, which reaches
up to 40%.

2. The coupling strengthening effect is primarily observed in two aspects. Firstly, the
intrusion of folds into the foam leads to a more comprehensive compression of the
foam insertions. Secondly, influenced by foam insertions, the folds bend along the
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compression direction and compress against each other, thereby expanding the plastic
deformation zone.

3. In FFCSCSs, as the foam relative density, shell-wall thickness, and material flow
stress increase, the coupling strengthening effect among the components strengthens,
resulting in improved energy absorption performance, enhanced crushing efficiency,
and increased mean crushing force.

4. The theoretical predictions strongly agree with the results of the finite element simula-
tions. A parametric analysis based on the theoretical model shows that an increase in
foam density leads to an increase in F. Simultaneously, the proportion of Fs decreases,
while the proportions of Ff and Fc increase.
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Nomenclature
Hs initial height of cylindrical shell
Ro outer radius of the sandwich cylindrical shell
Ri inter radius of the sandwich cylindrical shell
t thickness of the face sheets and corrugated core
w width of the corrugated cell
N number of the corrugated core
ρf density of the filling foam
ρf relative density of the filling foam
σo flow stress of the metal material
e engineering strain of the foam
eD engineering compaction strain of the foam
σp yield strength of the foam
Ep modulus of elasticity of the foam
d compressing displacement
F crushing force
Fmax maximal value of F during compression
F mean crushing force of the entire structure
Fs mean crushing force of the corrugated sandwich cylindrical shell
Ff mean crushing force of the filling foam
Fc mean crushing force sourced from the coupling effect
E energy absorption by the structure
AE crushing force efficiency
TE energy absorption efficiency
SEA specific energy absorption
H half-length of the fold
b radius of toroidal surface in the super folding elements
ξ effective crush distance coefficient
Cavg, α and β dimensionless parameters which described the coupling enhancement effect

182



Materials 2023, 16, 6605

References
1. Lu, G.; Yu, T. Energy Absorption of Structures and Materials; Woodhead Publishing Ltd.: Cambridge, UK, 2003.
2. Jensen, Ø. Behaviour of Aluminium Extrusions Subjected to Axial Loading. Ph.D. Thesis, Norwegian University of Science and

Technology, Trondheim, Norway, 2005.
3. Abramowicz, W.; Jones, N. Transition from initial global bending to progressive buckling of tubes loaded statically and dynami-

cally. Int. J. Impact Eng. 1997, 19, 415–437. [CrossRef]
4. Guillow, S.R.; Lu, G.; Grzebieta, R.H. Quasi-static axial compression of thin-walled circular aluminium tubes. Int. J. Mech. Sci.

2001, 43, 2103–2123. [CrossRef]
5. Alexander, J.M. An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q. J. Mech. Appl. Math.

1960, 13, 10–15. [CrossRef]
6. Abramowicz, W.; Jones, N. Dynamic progressive buckling of circular and square tubes. Int. J. Impact Eng. 1986, 4, 243–270.

[CrossRef]
7. Abramowicz, W.; Jones, N. Dynamic axial crushing of square tubes. Int. J. Impact Eng. 1984, 2, 179–208. [CrossRef]
8. Abramowicz, W.; Wierzbicki, T. Axial Crushing of Multicorner Sheet Metal Columns. J. Appl. Mech. 1989, 56, 113–120. [CrossRef]
9. Hong, W.; Jin, F.; Zhou, J.; Xia, Z.; Xu, Y.; Yang, L.; Zheng, Q.; Fan, H. Quasi-static axial compression of triangular steel tubes.

Thin-Walled Struct. 2013, 62, 10–17. [CrossRef]
10. Fan, Z.; Lu, G.; Yu, T.; Liu, K. Axial crushing of triangular tubes. Int. J. Appl. Mech. 2013, 5, 1350008. [CrossRef]
11. Alavi Nia, A.; Hamedani Haddad, J. Comparative analysis of energy absorption and deformations of thin walled tubes with

various section geometries. Thin-Walled Struct. 2010, 48, 946–954. [CrossRef]
12. Zhang, X.; Zhang, H. Experimental and numerical investigation on crush resistance of polygonal columns and angle elements.

Thin-Walled Struct. 2012, 57, 25–36. [CrossRef]
13. Umeda, T.; Mimura, K.; Morisaka, T. Study of energy absorption efficiency for a few thin-walled tubes in axial crushing. J. Solid

Mech. Mater. Eng. 2010, 4, 875–890. [CrossRef]
14. Alavi Nia, A.; Parsapour, M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with

triangular, square, hexagonal and octagonal sections. Thin-Walled Struct. 2014, 74, 155–165. [CrossRef]
15. Fan, Z.; Lu, G.; Liu, K. Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng. Struct. 2013,

55, 80–89. [CrossRef]
16. Mamalis, A.G.; Manolakos, D.E.; Ioannidis, M.B.; Kostazos, P.K.; Dimitriou, C. Finite element simulation of the axial collapse of

metallic thin-walled tubes with octagonal cross-section. Thin-Walled Struct. 2003, 41, 891–900. [CrossRef]
17. Tang, Z.; Liu, S.; Zhang, Z. Energy absorption properties of non-convex multi-corner thin-walled columns. Thin-Walled Struct.

2012, 51, 112–120. [CrossRef]
18. Reddy, S.; Abbasi, M.; Fard, M. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant

protection. Thin-Walled Struct. 2015, 94, 56–66. [CrossRef]
19. Deng, X.; Liu, W.; Lin, Z. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression.

Thin-Walled Struct. 2018, 130, 321–331. [CrossRef]
20. Hanssen, A.G.; Langseth, M.; Hopperstad, O.S. Static and dynamic crushing of circular aluminium extrusions with aluminium

foam filler. Int. J. Impact Eng. 2000, 24, 475–507. [CrossRef]
21. Reid, S.R.; Reddy, T.Y. Axial crushing of foam-filled tapered sheet metal tubes. Int. J. Mech. Sci. 1986, 28, 643–656. [CrossRef]
22. Reid, S.R.; Reddy, T.Y.; Gray, M.D. Static and dynamic axial crushing of foam-filled sheet metal tubes. Int. J. Mech. Sci. 1986, 28,

295–322. [CrossRef]
23. Seitzberger, M.; Rammerstorfer, F.G.; Gradinger, R.; Degischer, H.P.; Blaimschein, M.; Walch, C. Experimental studies on the

quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Struct. 2000, 37, 4125–4147. [CrossRef]
24. Santosa, S.P.; Wierzbicki, T.; Hanssen, A.G.; Langseth, M. Experimental and numerical studies of foam-filled sections.

Int. J. Impact Eng. 2000, 24, 509–534. [CrossRef]
25. Zarei, H.R.; Kröger, M. Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct. 2008, 46,

214–221. [CrossRef]
26. Børvik, T.; Hopperstad, O.S.; Reyes, A.; Langseth, M.; Solomos, G.; Dyngeland, T. Empty and foam-filled circular aluminium

tubes subjected to axial and oblique quasistatic loading. Int. J. Crashworthiness 2003, 8, 481–494. [CrossRef]
27. Kavi, H.; Toksoy, A.K.; Guden, M. Predicting energy absorption in a foam-filled thin-walled aluminum tube based on experimen-

tally determined strengthening coefficient. Mater. Des. 2006, 27, 263–269. [CrossRef]
28. Yan, W.; Durif, E.; Yamada, Y.; Wen, C. Crushing simulation of foam-filled aluminium tubes. Mater. Trans. 2007, 48, 1901–1906.

[CrossRef]
29. Wang, W.; Wang, Y.; Zhao, Z.; Tong, Z.; Xu, X.; Lim, C.W. Numerical Simulation and Experimental Study on Energy Absorption

of Foam-Filled Local Nanocrystallized Thin-Walled Tubes under Axial Crushing. Materials 2022, 15, 5556. [CrossRef]
30. Hussein, R.D.; Ruan, D.; Lu, G.; Guillow, S.; Yoon, J.W. Crushing response of square aluminium tubes filled with polyurethane

foam and aluminium honeycomb. Thin-Walled Struct. 2017, 110, 140–154. [CrossRef]
31. Yin, H.; Wen, G.; Hou, S.; Chen, K. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled

single and bitubular polygonal tubes. Mater. Des. 2011, 32, 4449–4460. [CrossRef]

183



Materials 2023, 16, 6605

32. Zhang, Y.; Lu, M.; Sun, G.; Li, G.; Li, Q. On functionally graded composite structures for crashworthiness. Compos. Struct. 2015,
132, 393–405. [CrossRef]

33. Fang, J.; Gao, Y.; An, X.; Sun, G.; Chen, J.; Li, Q. Design of transversely-graded foam and wall thickness structures for
crashworthiness criteria. Compos. Part B Eng. 2016, 92, 338–349. [CrossRef]

34. Suethao, S.; Shah, D.U.; Smitthipong, W. Recent Progress in Processing Functionally Graded Polymer Foams. Materials 2020,
13, 4060. [CrossRef] [PubMed]

35. Wang, A.; Yu, X.; Wang, H.; Li, Y.; Zhang, J.; Fan, X. Dynamic Response of Sandwich Tubes with Continuously Density-Graded
Aluminum Foam Cores under Internal Explosion Load. Materials 2022, 15, 6966. [CrossRef]

36. Mohsenizadeh, S.; Alipour, R.; Shokri Rad, M.; Farokhi Nejad, A.; Ahmad, Z. Crashworthiness assessment of auxetic foam-filled
tube under quasi-static axial loading. Mater. Des. 2015, 88, 258–268. [CrossRef]

37. Duarte, I.; Krstulović-Opara, L.; Dias-de-Oliveira, J.; Vesenjak, M. Axial crush performance of polymer-aluminium alloy hybrid
foam filled tubes. Thin-Walled Struct. 2019, 138, 124–136. [CrossRef]
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Periodic truss-based lattice materials, a particular subset of cellular solids that generally
have superior specific properties as compared to monolithic materials, offer regularity and pre-
dictability that irregular foams do not. Significant advancements in alternative technologies—such as
additive manufacturing—have allowed for the fabrication of these uniquely complex materials, thus
boosting their research and development within industries and scientific communities. However,
there have been limitations in the comparison of results for these materials between different studies
reported in the literature due to differences in analysis approaches, parent materials, and boundary
and initial conditions considered. Further hindering the comparison ability was that the literature
generally only focused on one or a select few topologies. With a particular focus on the crashworthi-
ness of lattice topologies, this paper presents a comprehensive study of the impact performance of
24 topologies under dynamic impact loading. Using steel alloy parent material (manufactured using
Selective Laser Melting), a numerical study of the impact performance was conducted with 16 differ-
ent impact energy–speed pairs. It was possible to observe the overarching trends in crashworthiness
parameters, including plateau stress, densification strain, impact efficiency, and absorbed energy
for a wide range of 3D lattice topologies at three relative densities. While there was no observed
distinct division between the results of bending and stretching topologies, the presence of struts
aligned in the impact direction did have a significant effect on the energy absorption efficiency of
the lattice; topologies with struts aligned in that direction had lower efficiencies as compared to
topologies without.

Keywords: energy absorption; finite element analysis; dynamic compression; 316L stainless steel;
truss lattice materials

1. Introduction

Cellular solids are materials that can be found directly in nature, such as wood or coral,
but have also been developed and manufactured in the industrial capacity for a wide range
of applications in biological and medical sciences, aviation and aerospace, and defense
and automotive industries [1–8]. They are useful for such a variety of applications due to
their highly customizable nature; it is possible to tailor one or multiple attributes to obtain
a unique and desired set of properties, including high specific stiffness and strength and
high energy absorption [1,9,10]. The customization capability of these materials means
their tailored set of properties may not be achievable by other existing monolithic materials
nor a fully dense solid of the same parent material, and, as such, cellular solids extend the
material property selection design space into areas once inaccessible [1,3,11].

Cellular solids are generally defined as solid materials made of cells—which are
themselves an assembly of connected struts or plates—which are tessellated in a random
(stochastic) or periodic manner to fill a design space [2]. The subset of cellular solids, where
the cells are made up of an assembly of plate-like faces and arranged in a stochastic fashion,
are generally called foams [12]. Conversely, the result of the periodic tessellation of cells is
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Materials 2024, 17, 1597

generally called a lattice material [3,13–15]. This subset of cellular solids—lattice materials—are
of interest as they typically exhibit superior properties when compared to stochastic cellular
solids and, due to their periodic nature, are more controllable and offer greater repeatability
and predictability with regards to overall properties and performance [12,13,16–18]. Indeed,
the advancement in additive manufacturing technology allows for the ability to investigate
and characterize these complex geometric materials and for the repeated fabrication of
samples and parts, with key features that can be on the micro- or nano-scale [8,15,19–23].

As mentioned, lattice materials are known for their high energy absorption capabilities,
which allow them to be excellent candidates for applications such as protective packaging,
shock absorption, and crash and blast mitigation, particularly within the aviation and
aerospace industries [2,10,12,24,25]. In the literature, typical methods of approach for
characterizing and quantifying the behavior of lattice materials—whether subjected to
quasi-static or dynamic loading—involve utilizing numerical models, generally developed
from or validated by experimental data and/or experimental testing with lattices produced
using additive manufacturing.

Nasrullah et al. [26] investigated the dynamic response of eleven topologies (cube,
cube open-cell, Kagome, octahedron, octet, pyramid, rhombicuboctahedron, rhombic-
dodecahedron, tetrahedron, truncated pyramid, and a twisted octet) modeled for LS-
DYNA and designed with material data based on AlSi-12 manufactured using Selective
Laser Melting (SLM). Their numerical model results reveal that the topology-optimized
octet topology—the “twisted octet”—had the highest specific energy absorption when
the deformation mode was bending-dominated (at a relative density of less than 20%)
versus when it is stretching-dominated (at a relative density above 25%). This twisted
octet topology was then utilized in an aircraft subfloor structure and showed better specific
energy absorption than the original design, indicating that the new configuration could be
utilized in this type of system.

Mueller et al. [10] utilized ABAQUS/Explicit to characterize the impact performance
of four aluminum alloy-based topologies (cube, Delauney, octet, and Voronoi) undergoing
quasi-static and dynamic (< 104/s) strain rates. They concluded that while relative density
was the most important parameter for determining the response of stochastic foams, the
deformation mode (bending or stretching) was the most important for periodic structures.
By investigating the effect of unit cell rotation with respect to impact direction, they also
concluded that this orientation was important for energy absorption properties since the
same topology at different orientations might exhibit different deformation modes.

Wang et al. [27] used theoretical and numerical methods to characterize the deforma-
tion mode and energy absorption potential of an aluminum alloy FCC lattice at different
orientations and impact velocities. The theoretical analysis calculated plateau stresses for
the unit cell at different orientations and validated the numerical model, which used the
solver ABAQUS. They found that unit cell orientation and impact velocity had an effect
on energy absorption, plateau stress, densification strain, and deformation mode. At high
impact velocities, however, the deformation mode “I”—defined by the concentration of the
deformation in a band perpendicular to the load direction—prevailed regardless of unit
cell orientation. For the FCC lattice, an orientation of 45◦ resulted in the highest energy
absorption and plateau stress but the lowest densification strain (and vice versa for a
20◦ orientation).

Ozdemir et al. in [24,28] observed the energy absorption properties of three titanium
alloy-based (Ti6Al4V) topologies (cubic, diamond, and re-entrant cube) under quasi-static
and dynamic loading, manufactured using the additive manufacturing technique Electron
Beam Melting. First, they performed quasi-static experiments under compression using
a universal test machine, while the dynamic tests were performed using a Hopkinson
pressure bar. Then, in [28], they created a numerical non-linear finite element model
based on the experimental results of the previous paper, finding good accuracy between
experimental and numerical results. It is believed that those were the first papers to
investigate the dynamic response of the diamond and re-entrant topologies.
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Jin et al. [29] additively manufactured samples of four different topologies
(two novel diamond lattices,—Dfcc and Dhex—FCC, and BCC) made of titanium alloy
Ti6Al4V manufactured with SLM. The dynamic response was tested on a split Hopkinson
pressure bar, and the numerical model, created in LS-DYNA, showed a good correlation
with the experimental results. They found that the Dfcc and Dhex lattices showed a mix-
ture of stretching- and bending-dominated deformation modes, while the FCC and BCC
topologies were stretching- and bending-dominated, respectively. Under dynamic loading,
they found that the lattices exhibiting a stretching-dominated deformation mode had better
mechanical properties.

Lei et al. [30] fabricated aluminum alloy multi-layer BCC and BCC-Z lattice samples
using SLM and, prior to experimental testing, examined the specimens using X-ray micro-
computed tomography (µ-CT). This data allowed the novel finite element model they
developed to factor in printing imperfections, which are not generally a consideration.
Using such a design approach for the lattice within the numerical model, they found
that predicted compressive modulus and initial crushing strength were consistent with
experimental results.

It is obvious that the design of lattice materials requires the consideration of many
multiscale variables, including parent material, geometry and topology, and relative density,
among others [1,31]. However, the literature identified previously is generally limited in
the variety of topologies examined, a limitation which was also described by Helou and
Kara in [3] after a review of over 45 publications in the realm of lattice structures. Helou
and Kara also critiqued the difficulty in comparing data from one paper to the next due
to the variations in materials and investigative approaches and having no standardized
test methods for analyzing lattice structures. Indeed, there are many modeling strategies
available for the investigation of lattice structures; Giorgio et al. [32] defined the mechanical
behavior of pantographic lattices using a second-grade elasticity model, while Tran and
Niiranen [33] and Dong et al. [34] formulated a non-linear Euler–Bernoulli beam model that
maintained high accuracy while saving computational costs and developed a numerical
homogenization method for 3D cellular materials in MATLAB, respectively.

To begin to close the gap caused by differences in methods between publications,
further exacerbated by limited topologies being investigated per publication, this paper
analyzes over 20 different topologies using the same base FEA model. To quantify impact
performance, we look specifically at energy absorption capabilities—calculating energy
absorption efficiency and densification strain—across multiple impact strain rate levels.
This work was accomplished by validating the developed FEA model with experimental
data and utilizing FEA model material data published and validated in [16,17].

This paper is organized into three main sections following this introduction. In
Section 2, the lattice topology design, finite element model, design of experiment approach,
and validation are described. In Section 3, the results collected are presented and discussed.
Finally, the conclusion is in Section 4, with acknowledgments and references following.

2. Materials and Methods
2.1. Lattice Geometry and Design

For this study, 24 topologies were investigated. Each topology was modeled as a
single unit cell with an original height of 10 mm, where the radius of the struts was varied
to investigate three different relative densities, namely 0.10, 0.20, and 0.30. While it is
theoretically possible to utilize Equation (1) from [26] to determine the design radius (R)
for a given topology based on unit cell height (h) and relative density (ρ), since k and c are
correction coefficients dependent on the topology (k—correction of total strut length of a
unit cell, c—correction of total strut length of geometrical cubic), in practice, it is much
more difficult [26].

ρ = k
(

R
h

)2
− c
(

R
h

)3
(1)
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To determine those coefficients, one can derive them by observing the geometry of a
single strut within the given topology as per the method in [35,36]. For simpler topologies,
this derivation is straightforward. Additionally, for certain topologies, such as octet, the
procedure and results have been well-documented in the literature [11,31,36–38]. However,
the same data for other topologies is quite limited or non-existent: [36,38] for octet; [36] for
truncated octahedron; [39] for BCC-Z; [39,40] for rhombic dodecahedron; and [41,42] for
BCC. Additionally, sources may use a modified version of Equation (1), where instead of the
height of the cell, the radius (or even diameter) is normalized against the length of one strut.
The differences between the literature and a lack of values for the topologies of interest
in this study led to determining the design radius for each of the 24 topologies using a
combination of what was already identified in the literature and the homogenization code
written in MATLAB from [34]. While the main purpose of that code is to determine the
homogenized constitutive matrix of 3D cellular materials, it also outputs a relative density
calculated using topology, cell size, and radius during the calculation process. This value
was used to determine an approximate radius for geometry creation, which was ultimately
confirmed after creating the geometry in ANSYS SpaceClaim (2020 R2) using a modified
version of the code from [43].

Radius values and the corresponding relative density for each topology are provided
in Table 1, as well as a visual representation of each topology. This data was utilized
to compute a curve fit and the coefficients k and c from Equation (1) for the 24 studied
topologies, making it easier to determine the radius for a given relative density (or vice
versa) in the future. The plot of relative density vs radius–height ratio and the coefficients
are provided in Figure 1 and Table 2. The plot is similar to the one presented in [14], though
it expands on the number of topologies presented and provides numerical values for the
coefficients for use in Equation (1).
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Figure 1. Relative density versus the ratio of radius to unit cell height. Line types distinguish between
stretching (solid), bending (dotted), and mixed (dashed) deformation modes, discussed in Section 3.1.
Line opacity indicates whether there is at least one strut aligned in the loading direction: opaque—no,
semi-translucent—yes.
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Table 1. Geometry and design data for lattice structures.

Topo. Geometry ¯
ρ R [mm] Topo. Geometry ¯

ρ R [mm]

AFCC
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Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 
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0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 
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0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.663 Kelvin
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.665
0.2 0.973 0.2 0.985
0.3 1.218 0.3 1.250

Auxetic
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Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.583
Octahedron
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Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
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0.1 0.585 
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 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.645
0.2 0.867 0.2 0.945
0.3 1.108 0.3 1.195

BCC
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Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.723 Octet
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Table 1. Geometry and design data for lattice structures. 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.466
0.2 1.080 0.2 0.684
0.3 1.357 0.3 0.867

BCC-Z
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Table 1. Geometry and design data for lattice structures. 
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0.2 0.683  0.2 0.900 
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0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 
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 0.2 0.942  0.2 0.983 
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IsoTruss 
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0.1 0.450 

 0.2 0.783  0.2 0.655 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.683
Rhombic Dodecahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
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Table 1. Geometry and design data for lattice structures. 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.519
0.2 1.000 0.2 0.760
0.3 1.267 0.3 0.965

Cube
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 1.130
Rhombi-cuboctahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 
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0.1 0.723 Octet 
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 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 
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 0.3 1.267 0.3 0.965 

Cube 
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0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.500
0.2 1.636 0.2 0.742
0.3 2.047 0.3 0.950

Cuboctahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 
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 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 
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 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 
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0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
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 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 
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 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.467 Star
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 
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0.1 0.723 Octet 
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 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 
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Cube 
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0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 
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0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.615
0.2 0.683 0.2 0.900
0.3 0.867 0.3 1.125

Diamond
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 
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Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
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0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 
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 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.740 Tesseract
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.551
0.2 1.095 0.2 0.792
0.3 1.400 0.3 1.000

FBCC
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.542
Tetrahedron
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 
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0.3 1.017 0.3 1.075
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 
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BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.808
Truncated Cube 1
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
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Table 1. Geometry and design data for lattice structures. 
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.750
Truncatedcuboctahedron
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.642 Vintiles
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.667
0.2 0.942 0.2 0.983
0.3 1.200 0.3 1.250

IsoTruss
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.533 Xgrid
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

0.1 0.450
0.2 0.783 0.2 0.655
0.3 0.983 0.3 0.830

1 The truncated cube cannot be built beyond a relative density of ~24%.

Table 2. Coefficients k and c for the equation ρ = k
(

R
h

)2
− c
(

R
h

)3
, where ρ is unitless, R is radius,

and h is unit cell height, and both have the same units.

Topology k c Topology k c

AFCC 26.656 54.618 Kelvin 26.657 60.331
Auxetic 34.381 90.751 Octahedron 28.049 59.170

BCC 21.765 39.187 Octet 53.313 154.493
BCC-Z 24.907 49.179 Rhombic Dodecahedron 43.530 117.566
Cube 9.425 11.311 Rhombicuboctahedron 46.847 144.491

Cuboctahedron 53.313 154.493 Star 31.190 69.157
Diamond 21.765 46.361 Tesseract 39.156 90.673

FBCC 39.542 102.212 Tetrahedron 33.635 71.375
FCC 17.774 31.282 Truncated Cube 20.919 59.354

FCC-Z 20.913 43.497 Truncatedcuboctahedron 39.391 123.597
G7 28.048 59.169 Vintiles 26.657 60.330

IsoTruss 40.614 99.127 Xgrid 170.547 57.846
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2.2. Finite Element Model
2.2.1. Initial Model Creation

The finite element model was developed in Altair’s HyperMesh (v2020, Altair Engi-
neering Inc., Troy, MI, USA) for the explicit finite element solver Radioss (v2020, Altair
Engineering Inc., Troy, MI, USA). The initial finite element model was based on that model
from the literature containing the material model (further described in Section 2.2.4.), which
provided quasi-static results for a 3 × 3 ×3 rhombic dodecahedron lattice with overall
dimensions of 24 mm × 24 mm × 24 mm and a relative density of 11.68% [17]. As in [40],
a one-quarter model was created, reducing the complexity and computation time for the
model. Boundary conditions for the one-quarter model along the planes of symmetry
were additionally applied following [40]. Figures 2 and 3 illustrate the stress–strain and
deformation results, respectively, of the quasi-static (0.001/s) experimental results from
Cao et al. [17] and the developed numerical model for this work. Note that stress and strain
values are for the lattice as a whole; load and displacement data were utilized, along with
original model dimensions, to calculate stress and strain values. These figures suggested a
good correlation to the experimental results, initially validating the model. Further require-
ments to reduce the model complexity (due to the large number of numerical simulations
to be completed, detailed in Section 2.3) meant further validation for a model containing a
single unit cell, described in the following subsections.
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Figure 2. Stress–strain and efficiency–strain results for the quasi-static experiments (from Cao
et al. [17]) and the corresponding numerical model as designed for this work. Select deformation
behavior illustrated in Figure 3.
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There are three interfaces defined in the model: (i) the interaction between the im-
pactor and lattice cell, (ii) the self-contact of the lattice cell during compression, and (iii) 
the interaction between the fixed plate and lattice cell. The former and latter are both con-
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ondary nodes (lattice cell). The self-contact of the lattice cell was controlled by a single-
surface interface. 
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rotational degrees of freedom of the rigid plate impactor are restricted except the vertical 
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Figure 3. Deformation behavior of rhombic dodecahedron cluster from experiments (half-image on
the right, from Cao et al. [17]) and corresponding numerical model for this work (half-images on the
left) for given strain values. Corresponding stress and efficiency results are provided in Figure 2.

2.2.2. Unit Cell Model

The model was constructed such that a single unit cell made of solid tetrahedron
elements was impacted at a given initial velocity by a flat plate impactor (“impactor”) made
of 4-node shell elements. An additional non-moving, fixed flat plate (“base”) is modeled
beneath the single unit cell, illustrated in Figure 4. This model has boundary conditions, as
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detailed in Section 2.2.3., which represent a single-layer lattice; multi-layer lattice behavior
is considered out-of-scope for this work.
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Figure 4. General finite element model components, using a BCC-Z unit cell (orange) for illustrative
purposes. Base plate (grey) is fixed and not permitted to translate or rotate. Impactor (green) is given
an initial velocity in the downward y-direction as indicated by the black arrow.

Both the impactor and the base have side lengths of 14 mm and thicknesses of
1 mm. They are modeled as rigid, and the mass and initial velocity of the impactor
are parametrized, allowing for variations to the initial kinetic energy (“impact energy”).
The initial velocity was applied to the primary node of the rigid body, in the middle of the
impactor, and only in the direction of axial compression.

For unit cell topologies, it should be noted that while impact only occurs in the global
y-direction, for non-isotropic orientations (such as BCC-Z, octahedron, etc.), the results
may change depending on the orientation of the unit cell; the investigation of unit cell
orientation was beyond the scope of this work.

There are three interfaces defined in the model: (i) the interaction between the impactor
and lattice cell, (ii) the self-contact of the lattice cell during compression, and (iii) the
interaction between the fixed plate and lattice cell. The former and latter are both controlled
by a solid contact interface between a primary surface (impactor or plate) and secondary nodes
(lattice cell). The self-contact of the lattice cell was controlled by a single-surface interface.

2.2.3. Boundary Conditions

Considering the Cartesian coordinate system defined in Figure 4, all translational and
rotational degrees of freedom of the rigid plate impactor are restricted except the vertical
translational motion, as the impactor was only allowed to move along the y-axis. For the
lattice unit cell, periodic boundary conditions (BCs) were applied such that they mimicked
the periodicity of the lattice.

For validation of these BCs, four separate models were created and tested: a model
containing a unit cell whose nodes on the side surfaces were restricted to permit only
motion in the y-axis direction; a model containing a unit cell whose nodes on the side
surfaces were not restricted; and models containing a single-layer of either 3 × 3 or 5 × 5
clustered unit cells lattice whose nodes on the side surfaces were not restricted. The interest
in these clustered lattices was for the comparison of internal energy, force, and general
deformation behavior of the middle unit cell to those resulting from the single unit cell
models. These results are depicted in Figure 5 for internal energy and force over the course
of the compression event and Figure 6 for general deformation behavior characteristics. It
should be noted that all models were all compressed at the same rate and the lattices were
all defined by the same material parameters presented in Section 2.2.4.

From Figure 5, it can be seen that fixed BCs applied to a single unit cell represent the
response of the middle unit cell in a clustered (3 × 3 or 5 × 5) layer most accurately, as
compared to the results of the unit cell with free BCs. In general, across the compression
event, the percent difference between fixed BC results and the middle unit cell of the cluster
is below 20% (absolute value), whereas the free BC model reaches a percent difference of
almost 70% and 90% for internal energy and force, respectively. Even the deformation
behavior, illustrated in Figure 6, is best captured by the fixed BCs as opposed to the free

192



Materials 2024, 17, 1597

BCs; the vertical struts of the cubic unit cell in the fixed BC model “squish” in the same
manner as those same struts of the middle unit cell in the 3 × 3 cluster while the vertical
struts of the unit cell in the free BC model instead buckles outwards.
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Figure 5. (Left) Unit cell internal energy over compression of lattice. (Right) Interface force over
compression of lattice. Lettered displacement locations (A, B, C, D, E, and F) correspond to images in
Figure 6 for the two single-unit cells and the 3 × 3 layer.
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Figure 6. Deformation behavior of two unit cells with different boundary conditions applied to the
sides (fixed in top row and free in bottom row), as compared to the middle unit cell of a single-layer
3 × 3 lattice cluster (middle row). Color contour is of plastic strain, units [mm/mm]. Letters
correspond to displacement locations in Figure 5.

Such validation testing was also used to justify the use of a single unit cell as opposed
to a cluster of unit cells, reducing the overall computation time and memory requirements
that would come with the larger lattice model. In Table 3, the number of elements in
the lattice, the output file size (animation file and results file), and the overall run time
(all simulations were run using parallelization across 32 cores) are provided for the three
simulation runs. Being able to utilize one unit cell with the appropriate BCs allows for a
minimum 70% to 89% reduction of those measures. As such, all topologies were modeled
as a single lattice unit cell for the remainder of this work.

193



Materials 2024, 17, 1597

Table 3. Number of elements in model, output file size, and run time for unit cells and single-layer
cluster, along with associated percent reductions.

Model Num. Elem.
Output File
Size [MB]

Run Time
[min]

Percent Reduction 1 [%]
Num.
Elem.

Output
File Size Run Time

Free BC 3139 74 15 89 85 72
Fixed BC 3139 74 16 89 84 70

3 × 3 Single-Layer Cluster 27,520 498 53 - - -
5 × 5 Single-Layer Cluster 77,547 1010 339 - - -

1 As compared to the 3 × 3 cluster.

2.2.4. Material and Failure Model

The lattice unit cell was modeled as a 316L stainless steel alloy with properties as
produced by the additive manufacturing technique SLM, and, in Radioss, the material itself
was defined using a Johnson–Cook strength model [44,45].

The Johnson–Cook strength model considers the plastic stress to be made up of the
product of three terms, each considering a different mechanism, namely: strain hardening;
strain rate hardening; and temperature softening. Equation (2) presents this product, where
A, B, C, m, and n are all material constants, determined from experimental testing, and
εp,

.
ε
∗, and T∗ are the equivalent plastic strain, the normalized equivalent plastic strain

rate, and the dimensionless homologous temperature, respectively. Equations (3) and (4)
define the normalized equivalent plastic strain rate and the dimensionless homologous
temperature, respectively, where

.
ε is the plastic strain rate,

.
ε0 is the reference strain rate, T0

is room temperature, and Tm is melting temperature.

σ =
[

A + Bεn
p

][
1 + Cln

.
ε

*
][

1 − T*m
]

(2)

.
ε

*
=

.
ε
.
ε0

(3)

T* =
T − T0

Tm − T0
(4)

For this model, no temperature effects were considered. All other material constants
required to define the Johnson–Cook strength model for the 316L stainless steel, as manu-
factured by SLM, are provided in Table 4, including material density (ρ0), Young’s modulus
(E), and Poisson’s ratio (ν). These values come from the work of Cao et al. in [16,17], where
a numerical model employed the Johnson–Cook strength and failure models for the lattice
structures and was validated by experimental testing.

Table 4. Mechanical properties of 316L stainless steel alloy (manufactured by SLM) for use in
Johnson–Cook strength and failure models.

ρ0 E ν

7960 kg/m3 93 GPa 0.3

A B C n
.
ε0

310 MPa 622 0.1 0.8 0.001

D1 D2 D3 D4 D5
0.1152 1.0116 −1.7684 −0.05279 0.5256

As in [16,17], the material card definition for this FEA model also utilized the Johnson-
Cook failure model. This failure model splits the plastic portion of the stress–strain behavior
into damage initiation and damage evolution up until the complete failure of the material.

194



Materials 2024, 17, 1597

Damage initiation can be described by Equation (5), specifically that when ω = 1, damage
is initiated (ω can vary between 0 and 1).

ω = ∑ (∆εp/ε f ) (5)

In this equation, ∆εp is the increment of the equivalent plastic strain and ε f is the
equivalent plastic strain at failure. The equivalent plastic strain at failure can be defined
by Equation (6), where D1 through D5 are material constants and σ∗ is the ratio of the
mean stress (σmean) to the Mises equivalent stress (σe f f ). The material constants D1 through
D5 are presented in Table 4. As with the constants for the Johnson–Cook strength model,
these values come from the work of Cao et al. in [16,17], and temperature effects are not
considered.

ε f =
[

D1 + D2exp
(

D3σ*
)][

1 + D4ln
.
ε

*
][

1 + D5T*
]

(6)

2.3. Design of Experiments

The energy absorption capabilities of each lattice topology unit cell and relative
density were observed through four variations to impactor initial kinetic energy (KE)
and four variations to impactor initial velocity for a total of 16 different initial velocity-
KE combinations per a given topology and relative density set. An “energy matrix” is
presented in Table 5, which outlines the different speed and impactor energy values (and
corresponding impactor mass) for each of the 16 different runs. The 16 Radioss files per
topology and relative density pair were created from the “parent” HyperMesh models by
utilizing commands in .tcl files to modify the mass and velocity parameters of the impactor.
Once passed through the solver, the animation and time history files were processed,
and result data was collected using a developed .oml file in Altair’s Compose (v2021,
Altair Engineering Inc., Troy, MI, USA). The final post-processing of the collected data was
performed in MATLAB (R2020b, MathWorks, Natick, MA, USA) and Golden Software’s
Grapher (20.1.251, Golden Software LLC, Golden, CO, USA).

Table 5. Speed-kinetic energy matrix for the 16 runs per topology-relative density, with mass [kg] in
the center.

Strain Rate 1

[1/s]
Speed
[m/s]

Initial Kinetic Energy [J]
1 5 50 100

100 1 2 10 100 200

1000 10 0.02 0.1 1 2

10,000 100 0.0002 0.001 0.01 0.02

100,000 1000 0.000002 0.00001 0.0001 0.0002
1 Strain rate is calculated by dividing speed by the height of the unit cell (10 mm).

3. Results
3.1. Data Analysis and Crashworthiness Parameters

Data was collected from the finite element solver so that an analysis of the crashwor-
thiness of the lattices could be performed. The determination of the performance of those
lattices involved calculating the following crashworthiness parameters:

Energy Absorption Efficiency. Also, “EA efficiency” or “efficiency”, this parameter,
η, is calculated from the stress–strain (σ–ε) curve as

η(ε) =
1

σ(ε)

∫ ε

0
σ(ε)dε (7)

where, in the numerical model, the stress is obtained from the impact force between the
impactor and lattice divided by the surface area of the upper surface of the lattice unit
cell envelope, and the strain is obtained from the displacement of the uppermost surface
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of the lattice divided by the lattice unit cell height, a method commonly used in the
literature [25,46,47].

Densification Strain. Using the energy absorption efficiency method, the densification
strain, εD, is

dη(ε)

dε

∣∣∣∣
ε=εD

= 0 (8)

which is simply the strain at the maximum efficiency point (ηmax) [25,48,49].
Plateau Stress. Plateau stress, σpl , along with densification strain, are considered to

be the most important values with regard to the energy absorption of materials [50]. This
stress is determined using [25]

σpl =

∫ εD
0 σ(ε)dε

εD
(9)

Energy Absorption. Energy absorption, EA or IE (internal energy), is calculated as

EA = V
∫ εD

0
σ(ε)dε (10)

It should be noted that while Equation (10) utilizes the densification strain in the integral
for calculation, the actual selected strain values do vary in the literature [10,25,26,31,51].

Specific Energy Absorption. Specific Energy Absorption (SEA) is calculated either
per unit volume—SEAV—or per unit mass—SEAm. Equations for both of these specific
energy absorptions are provided as follows [25,51,52]

SEAV =
EA
V

=
∫ εD

0
σ(ε)dε (11)

SEAm =
EA
m

=

∫ εD
0 σ(ε)dε

ρρ0
(12)

where V is the volume of the lattice structure, and m is the mass of the lattice structure. It
should be noted that these values are also calculated up to the densification strain.

Bending- versus Stretching-Dominated Behavior. Maxwell’s stability criterion [53]
can be utilized to help understand the deformation behavior of a topology, which can
be helpful in understanding appropriate applications for a lattice made of that topology.
However, it should be noted that even if the stability criterion designates the unit cell of a
certain topology as bending-dominated, it is still possible that the actual behavior of the
topology is stretching-dominated (or mixed-mode), particularly since the criterion does
not account for the loading direction, including the presence of struts aligned directly
in the loading direction [54,55]. Indeed, Calladine [56] described tensegrity structures
as “[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the
conditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57]
discussed a modified version of this criterion, and it has been noted the criterion is only a
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58].
However, the determination of the variables for the modified criterion is not trivial [57]
and is considered to be beyond the scope of this work. Instead, with this knowledge of the
criterion and its limitations, the determination of the compression behavior of the topologies
in this work considers several characteristics: Maxwell’s criterion for a single unit cell, strut
orientation with respect to loading, and classification in the literature. A summary of these
quantitative and qualitative characteristics is provided in Table 6. As can be seen from
Table 6, Maxwell’s stability criterion may not accurately reflect the compressive behavior
of a topology if it is predicted to be bending-dominated by the criterion. However, those
topologies that are determined to be stretching-dominated by the criterion will still exhibit
predominantly stretching-dominated behavior during compression.
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Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts aligned
directly in the loading direction.

Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6
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 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

12 9 −9 B S/B [54,55] Y

Materials 2024, 17, x FOR PEER REVIEW 12 of 23 
 

 

“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Cube

Materials 2024, 17, x FOR PEER REVIEW 5 of 23 
 

 

Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

12 8 −6 B S/B [10,14,26,62] Y
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Cuboctahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

36 13 3 S S [60] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Diamond
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

16 14 −20 B S/B [14,24,28] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

FBCC
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

24 13 −9 B B [60] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

FCC
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 
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Diamond 
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 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 
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0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
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1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

FCC-Z
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 
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dron 
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Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 
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IsoTruss 
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 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

20 12 −10 B S/B [54,55] Y
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

G7

Materials 2024, 17, x FOR PEER REVIEW 5 of 23 
 

 

Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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 0.2 0.973  0.2 0.985 
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0.1 0.583 Octahe-
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Cube 
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0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 
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G7 
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 0.2 0.942  0.2 0.983 
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IsoTruss 
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0.1 0.450 
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 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

16 9 −5 B B [60,63] Y
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

IsoTruss
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
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dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

26 15 −13 B S [10,59] Y
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Kelvin
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
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 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
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0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 
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IsoTruss 
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 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

36 24 −30 B B [10,14,64,65] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Octahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

12 6 0 S S [26,59] Y
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Octet
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

36 14 0 S S [10,26,29,59,65] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Rhombic Dodecahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

32 20 −22 B B [16,40] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

Rhombicuboctahedron
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 

Table 1. Geometry and design data for lattice structures. 

Topo. Geometry 𝝆 R [mm] Topo. Geometry 𝝆 R [mm] 
AFCC 

 

0.1 0.663 Kelvin 

 

0.1 0.665 
 0.2 0.973  0.2 0.985 
 0.3 1.218  0.3 1.250 

Auxetic 

 

0.1 0.583 Octahe-
dron 

 

0.1 0.645 
 0.2 0.867 0.2 0.945 
 0.3 1.108  0.3 1.195 

BCC 

 

0.1 0.723 Octet 

 

0.1 0.466 
 0.2 1.080  0.2 0.684 
 0.3 1.357  0.3 0.867 

BCC-Z 

 

0.1 0.683 Rhombic 
Dodecahe-

dron  

0.1 0.519 
 0.2 1.000 0.2 0.760 
 0.3 1.267 0.3 0.965 

Cube 

 

0.1 1.130 Rhombi-
cuboctahe-

dron  

0.1 0.500 
 0.2 1.636 0.2 0.742 
 0.3 2.047 0.3 0.950 

Cuboctahe-
dron 

 

0.1 0.467 Star 

 

0.1 0.615 
0.2 0.683  0.2 0.900 

 0.3 0.867  0.3 1.125 
Diamond 

 

0.1 0.740 Tesseract 

 

0.1 0.551 
 0.2 1.095  0.2 0.792 
 0.3 1.400  0.3 1.000 

FBCC 

 

0.1 0.542 Tetrahe-
dron 

 

0.1 0.585 
 0.2 0.800 0.2 0.850 
 0.3 1.017  0.3 1.075 

FCC 

 

0.1 0.808 Truncated 
Cube 1  

0.1 0.767 
 0.2 1.192 0.2 1.208 
 0.3 1.517   

FCC-Z 

 

0.1 0.750 Truncat-
edcubocta-

hedron  

0.1 0.558 
 0.2 1.117 0.2 0.825 
 0.3 1.425 0.3 1.075 

G7 

 

0.1 0.642 Vintiles 

 

0.1 0.667 
 0.2 0.942  0.2 0.983 
 0.3 1.200  0.3 1.250 

IsoTruss 

 

0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

48 24 −18 B S/B [14,26,64] N
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“[constituting] a paradoxical exception to Maxwell’s rule,” going on to examine the con-
ditions required to “break” Maxwell’s rule. In 1986, Peregrino and Calladine [57] dis-
cussed a modified version of this criterion, and it has been noted the criterion is only a 
necessary condition, and not a sufficient condition, for determining truss stiffness [1,58]. 
However, the determination of the variables for the modified criterion is not trivial [57] 
and is considered to be beyond the scope of this work. Instead, with this knowledge of the 
criterion and its limitations, the determination of the compression behavior of the topolo-
gies in this work considers several characteristics: Maxwell’s criterion for a single unit cell, 
strut orientation with respect to loading, and classification in the literature. A summary 
of these quantitative and qualitative characteristics is provided in Table 6. As can be seen 
from Table 6, Maxwell’s stability criterion may not accurately reflect the compressive be-
havior of a topology if it is predicted to be bending-dominated by the criterion. However, 
those topologies that are determined to be stretching-dominated by the criterion will still 
exhibit predominantly stretching-dominated behavior during compression. 

Table 6. Topologies as bending- or stretching-dominated and whether the topology has struts 
aligned directly in the loading direction. 

 Topology b 1 j 2 M 3 S/B 4 S/B 5 Ref. LD? 6 

 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y Star
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Section 3.1. Line opacity indicates whether there is at least one strut aligned in the loading direction: 
opaque—no, semi-translucent—yes. 
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0.1 0.642 Vintiles 
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0.1 0.533 Xgrid 

 

0.1 0.450 

 0.2 0.783  0.2 0.655 

 0.3 0.983  0.3 0.830 
1 The truncated cube cannot be built beyond a relative density of ~24%. 

Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 

20 9 −1 B S/B [14,59] Y
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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Table 2. Coefficients 𝑘  and 𝑐  for the equation �̅� = 𝑘 − 𝑐  , where �̅�  is unitless, 𝑅  is ra-
dius, and ℎ is unit cell height, and both have the same units. 

Topology 𝒌 𝒄 Topology 𝒌 𝒄 
AFCC 26.656 54.618 Kelvin 26.657 60.331 

Auxetic 34.381 90.751 Octahedron 28.049 59.170 
BCC 21.765 39.187 Octet 53.313 154.493 
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-
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3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
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• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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3.2. Numerical Model Results and Discussion

All performance parameters mentioned in the previous section, as well as time-history
internal and kinetic energies, force, and displacement data, were carefully analyzed for all
24 lattice topology unit cells at three relative densities for each of the 16 speed-impact energy
scenarios of the Design of Experiments. There are four main independent variables in this
study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and (iv) topology—the
effects of which are further discussed in the following subsections.

3.2.1. Effect of Initial KE

Based on internal energy variations over the compression event and stress–strain
results for all topologies, the following observations were made:

• It was noted that simulations with lower initial impactor kinetic energies mimicked the
initial behavior of the larger initial KE, particularly for simulations with initial impactor
speeds of 100 m/s or less. That is, the results suggest that running simulations at a
larger initial KE could still predict the behavior of the simulations at a lower initial KE.
A set of internal energy over compression displacement curves for the AFCC topology
(at all three relative densities) is provided in Figure 7 to illustrate such a phenomenon.
In the top graphs of this figure, it is evidently seen that the lower initial impact energy
curves (solid lines) follow the path of the higher initial internal energy curves (dashed
lines) up until the system limit is reached and the higher energy curves continue.

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as
densification strain or energy absorption—for the simulations with those lower initial
KE would not accurately reflect the behavior and capabilities of the topology. It should
be noted that for some topologies, even an initial impactor KE of 50 J was not always
sufficient to reveal the complete elastic-plateau-densification characteristics expected
of a stress–strain curve for lattice materials, particularly at higher relative densities.
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help compare relative densities. 
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kinetic energies. Top graphs are for initial KE of 50 J and 100 J, and bottom graphs are for initial KE 
of 1 J and 5 J (identified by line type per legend). Variations in initial impact speeds are distinguished 
using the line color specified in legend. From left to right: relative density 10%, 20%, 30%; images of 
unit cell provided for reference. Grey lines are used to help compare relative densities. 
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Figure 7. Internal energy over compression displacement for AFCC topology at three relative
densities, four speeds, and four initial kinetic energies. Top graphs are for initial KE of 50 J and
100 J, and bottom graphs are for initial KE of 1 J and 5 J (identified by line type per legend). Variations
in initial impact speeds are distinguished using the line color specified in legend. From left to right:
relative density 10%, 20%, 30%; images of unit cell provided for reference. Grey lines are used to help
compare relative densities.
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Figure 8. Stress over strain for AFCC topology at three relative densities, four speeds, and four initial
kinetic energies. Top graphs are for initial KE of 50 J and 100 J, and bottom graphs are for initial KE of
1 J and 5 J (identified by line type per legend). Variations in initial impact speeds are distinguished
using the line color specified in legend. From left to right: relative density 10%, 20%, 30%; images of
unit cell provided for reference. Grey lines are used to help compare relative densities.

Based on such observations—which suggest that the full potential of the topology
is not being utilized if the impactor initial KE is lower and that the curves for low KE
mimicked the behavior of the larger KE anyway—the focus for further investigations was
narrowed to include only results from the 100 J initial KE simulations.

199



Materials 2024, 17, 1597

3.2.2. Effect of Speed

Based on internal energy variations over the compression event and stress–strain
results for all topologies, the following observations were made:

• As illustrated in Figure 7, despite the strain-sensitivity of the material, up to initial
impactor speeds of approximately 10 m/s, there is very little difference in results,
suggesting that at those low speeds, the sensitivity of the material to strain rate
variations is negligible. While it also appears that data from simulations with initial
impactor speeds of 100 m/s is also insignificantly different from the two lower speed
levels in those plots, stress–strain plots for certain topologies (as an example, in
Figure 8) did suggest that results from 10 m/s could not always be used to accurately
predict results for a speed of 100 m/s.

• Also seen from stress–strain results was the indication that the current model setup was
insufficient to appropriately reveal topology behavior at an initial impactor speed of
1000 m/s. While the internal energy over the compression event curves (Figure 7) and
associated simulation animations (Figure 9) for numerical models at initial impactor
speeds at 1000 m/s appear to illustrate the phenomenon of layer-by-layer collapse
at high impact speeds (versus all layers deforming in the same or similar manner
during a quasi-static or low-speed compression event), the jump in magnitude from
100 m/s to 1000 m/s results in erratic time-history behavior, bringing into question the
reliability and credibility of the data. Additionally, with only one unit cell contained
in this model, such a conclusion would realistically require multiple layers. Coupled
with the stress–strain result observations, data for numerical models with impact
speeds of 1000 m/s were perceived to have a high level of uncertainty.
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Based on the observations for the effect of speed and initial KE, the focus for addi-
tional data analysis was placed on simulations with an initial KE of 100 J at speeds of 10 
m/s and 100 m/s. 

3.2.3. Effect of Relative Density 
To first get a sense of the static mechanical properties of the topologies of interest in 

this work, the homogenized properties—such as the constitutive matrix and Young’s 
modulus (in x-, y-, and z-axes directions)—were computed for all topologies at the three 
relative densities investigated (10% through 30%, at 10% increments) using the 

Figure 9. Internal energy over compression displacement for AFCC topology at a relative density
of 10%. Variations in initial KE are 50 J and 100 J (distinguished by line type). Variations in initial
impact speeds are 100 m/s and 1000 m/s (distinguished by line color). Color contour for images of
compression of unit cells is for plastic strain [mm/mm].

Based on the observations for the effect of speed and initial KE, the focus for additional
data analysis was placed on simulations with an initial KE of 100 J at speeds of 10 m/s and
100 m/s.
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3.2.3. Effect of Relative Density

To first get a sense of the static mechanical properties of the topologies of interest in this
work, the homogenized properties—such as the constitutive matrix and Young’s modulus
(in x-, y-, and z-axes directions)—were computed for all topologies at the three relative
densities investigated (10% through 30%, at 10% increments) using the homogenization
code for cellular materials in MATLAB presented in Dong et al. [34] and a modified version
of the MATLAB code for visualizing elastic anisotropy from Nordmann et al. [69]. In
analyzing the dynamic response of these topologies, this homogenized data was useful in
understanding their relationships and behavior.

Plateau stress results have been plotted in Figure 10 alongside the homogenized
Young’s modulus results (in the compression direction). It is seen that those topologies,
such as cubic (
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 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

), that have higher homogenized strengths for a given
relative density also have higher resulting plateau stresses, and understandably, as relative
density increases, the plateau stress increases as well. Notably, the rate of increase for the
tesseract topology (
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 Truncated Cube 
 

36 24 −30 B B [14] N 

 
Truncatedcuboctahe-

dron  
72 48 −66 B S [60] N 

 Vintiles 
 

36 28 −42 B B [10] N 

 Xgrid 
 

44 15 5 S S/B [59] Y 
1 Number of struts. 2 Number of nodes. 3 Maxwell’s number. 4 Stretching (S, blue color) or Bending 
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 

) is lower in comparison to other topologies. While the data for the
10 m/s speed and initial impact energy of 100 J is presented in Figure 10, it is noted that,
except for actual numerical result values, the trends and relations between topologies are
generally the same for a speed of 100 m/s.
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In addition to an increase in plateau stress for an increase in relative density, the fol-
lowing trends were also generally observed, regardless of topology: 
• Decrease in densification strain. Shown in Figure 11 (right), this statement is true for all 

topologies, except auxetic ( ). The expectation for this decrease with an increase in 
relative density is understandable if one considers densification strain to represent 
the point at which the lattice has been compressed and begins behaving like the solid 
parent material; at lower relative densities, the lattice must be compressed more be-
fore it self-contacts and can behave as a monolithic material. Thus, the auxetic behav-
ior is intriguing and will be discussed further in the following subsection.  

• Increase in absorbed energy up to densification strain. Such a trend can be seen in Figure 
12 (left). Since absorbed energy is related to both stress and strain, and it has been 
observed that the plateau stress increased with increasing relative density, this result 
is also unsurprising. However, given that the rate at which the plateau stress in-
creased for the tesseract topology was notably lower in comparison to other topolo-
gies, the absorbed energy actually decreased with an increase in relative density from 
0.1 to 0.2; its decrease in densification strain was enough to cause a shift in direction. 

Figure 10. (Left) static homogenized Young’s modulus (i.e., in compression direction) versus strut
radius and (right) plateau stress versus strut radius (impact energy 100 J, speed 10 m/s). Legend as
shown in Figure 1. Line types distinguish stretching (solid), bending (dotted), and mixed (dashed)
deformation modes, discussed in Section 3.1. Line opacity indicates whether there is at least one
strut aligned in the loading direction: opaque—no, semi-translucent—yes (see Table 6 for clear
classification on whether strut(s) are aligned in loading direction or not). The arrow at the end of the
line indicates increasing relative density.

In addition to an increase in plateau stress for an increase in relative density, the
following trends were also generally observed, regardless of topology:

• Decrease in densification strain. Shown in Figure 11 (right), this statement is true for all
topologies, except auxetic (
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 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 
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 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 
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32 20 −22 B B [16,40] N 
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). The expectation for this decrease with an increase in
relative density is understandable if one considers densification strain to represent
the point at which the lattice has been compressed and begins behaving like the solid
parent material; at lower relative densities, the lattice must be compressed more before
it self-contacts and can behave as a monolithic material. Thus, the auxetic behavior is
intriguing and will be discussed further in the following subsection.

• Increase in absorbed energy up to densification strain. Such a trend can be seen in Figure 12
(left). Since absorbed energy is related to both stress and strain, and it has been
observed that the plateau stress increased with increasing relative density, this result is
also unsurprising. However, given that the rate at which the plateau stress increased
for the tesseract topology was notably lower in comparison to other topologies, the
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absorbed energy actually decreased with an increase in relative density from 0.1 to 0.2; its
decrease in densification strain was enough to cause a shift in direction. Additionally,
the two highest-strength (and highest plateau-stress) topologies—cubic and FCC-Z—
had a consistent internal energy at densification regardless of relative density; had the
initial impact energy been increased beyond 100 J, it may have been possible for the
trend of increasing IE for increasing relative density to be observed.

• Decrease in energy absorption efficiency. This decreasing trend can be seen in Figure 13,
and more discussion regarding the EA efficiency is provided in the following subsec-
tion with regards to whether there are struts aligned in the loading direction.
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Figure 12. (Left) plateau stress versus IE at densification strain and (right) plateau stress versus 
densification strain. Both sets of data are for an impact energy of 100 J, speed of 10 m/s. Legend as 
shown in Figure 1. Line types distinguish stretching (solid), bending (dotted), and mixed (dashed) 
deformation modes. Line opacity indicates whether there is at least one strut aligned in the loading 
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Figure 11. (Left) homogenized Poisson’s ratio (in compression direction) versus strut radius and
(right) densification strain versus strut radius (impact energy 100 J, speed 10 m/s). Legend as
shown in Figure 1. Line types distinguish stretching (solid), bending (dotted), and mixed (dashed)
deformation modes. Line opacity indicates whether there is at least one strut aligned in the loading
direction: opaque—no, semi-translucent—yes (see Table 6 for clear classification on whether strut(s)
are aligned in the loading direction or not). The arrow at the end of the line indicates increasing
relative density.
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Figure 12. (Left) plateau stress versus IE at densification strain and (right) plateau stress versus
densification strain. Both sets of data are for an impact energy of 100 J, speed of 10 m/s. Legend as
shown in Figure 1. Line types distinguish stretching (solid), bending (dotted), and mixed (dashed)
deformation modes. Line opacity indicates whether there is at least one strut aligned in the loading
direction: opaque—no, semi-translucent—yes (see Table 6 for clear classification on whether strut(s)
are aligned in the loading direction or not). The arrow at the end of the line indicates increasing
relative density.
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Figure 13. EA efficiency versus strut radius (impact energy 100 J, speed 10 m/s)—left: struts in load-
ing direction; right—no struts in loading direction (see Table 6 for clear classification on whether 
strut(s) are aligned in loading direction or not). Legend as shown in Figure 1. Line types distinguish 
stretching (solid), bending (dotted), and mixed (dashed) deformation modes. The arrow at the end 
of the line indicates increasing relative density. Grey lines are for ease of comparison between the 
data in the two plots (grey data is found as color data in the other plot). 

3.2.4. Effect of Topology 
For a mass comparison of the crashworthiness parameters of the 24 topologies, Fig-

ures 12 and 13 illustrate some of the interesting relationships observed within the data. 
• Bending versus Stretching. While bending-dominated cellular materials are known to 

be better energy absorbers and be compliant (lower strength and stiffness), and 
stretching-dominated cellular materials have higher stiffness and strength, the dy-
namic data collected for this work using the numerical model set up described sug-
gests no noticeable delineation between these two categories of topologies (nor 
mixed-mode topologies), though it is noted that absorbed energy is measured up to 
the densification of the given topology, not up to a stationary strain point. Addition-
ally, as has been noted by others in the literature, it appears that there is a non-negli-
gible influence of the strut orientation with respect to the loading direction when it 
comes to deformation modes, which is not accounted for in Maxwell’s criterion and 
can increase the strength of otherwise bending-dominated topologies. 

• Strut(s) aligned in loading direction. With regards to energy absorption efficiency (Fig-
ure 13), there is, quite interestingly, a clear separation of performance when it comes 
to a topology having strut(s) aligned in the loading direction versus a topology not 
having any struts aligned in that direction. For those topologies with struts aligned 
in the loading direction— , Figure 13 (left)—the resulting max-
imum energy absorption efficiency during impact is lower than for topologies that 
do not have struts aligned in that direction (Figure 13 (right), ). 
For plateau stress (Figure 10 (right)), it is obvious that the cubic unit cell—which has 
struts aligned in the compression direction and fewer struts, leading to a larger over-
all strut radius to reach a given relative density—has a greater strength than other 
topologies when considering only a given relative density. Indeed, the topology that 
has the next highest plateau stress for a given relative density is FCC-Z, which also 
has struts aligned in the impact direction and has a similarly large radius for struts 
given the fewer total number of struts compared to other topologies (not including 
cubic). The BCC ( ) topology, which has no struts aligned in the compression direc-
tion and is generally bending-dominated, has the lowest strength. 

Figure 13. EA efficiency versus strut radius (impact energy 100 J, speed 10 m/s)—left: struts in
loading direction; right—no struts in loading direction (see Table 6 for clear classification on whether
strut(s) are aligned in loading direction or not). Legend as shown in Figure 1. Line types distinguish
stretching (solid), bending (dotted), and mixed (dashed) deformation modes. The arrow at the end of
the line indicates increasing relative density. Grey lines are for ease of comparison between the data
in the two plots (grey data is found as color data in the other plot).

3.2.4. Effect of Topology

For a mass comparison of the crashworthiness parameters of the 24 topologies,
Figures 12 and 13 illustrate some of the interesting relationships observed within
the data.

• Bending versus Stretching. While bending-dominated cellular materials are known to be
better energy absorbers and be compliant (lower strength and stiffness), and stretching-
dominated cellular materials have higher stiffness and strength, the dynamic data
collected for this work using the numerical model set up described suggests no
noticeable delineation between these two categories of topologies (nor mixed-mode
topologies), though it is noted that absorbed energy is measured up to the densification
of the given topology, not up to a stationary strain point. Additionally, as has been
noted by others in the literature, it appears that there is a non-negligible influence of
the strut orientation with respect to the loading direction when it comes to deformation
modes, which is not accounted for in Maxwell’s criterion and can increase the strength
of otherwise bending-dominated topologies.

• Strut(s) aligned in loading direction. With regards to energy absorption efficiency
(Figure 13), there is, quite interestingly, a clear separation of performance when it
comes to a topology having strut(s) aligned in the loading direction versus a topol-
ogy not having any struts aligned in that direction. For those topologies with struts
aligned in the loading direction—
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8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
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 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 
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 Tesseract 
 

32 16 −10 B S [60,66,67] Y 

 Tetrahedron 
 

22 9 1 S S [68] Y 
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36 24 −30 B B [14] N 

 
Truncatedcuboctahe-

dron  
72 48 −66 B S [60] N 

 Vintiles 
 

36 28 −42 B B [10] N 

 Xgrid 
 

44 15 5 S S/B [59] Y 
1 Number of struts. 2 Number of nodes. 3 Maxwell’s number. 4 Stretching (S, blue color) or Bending 
(B, orange color) based on Maxwell’s number. 5 Stretching (S, blue color) or Bending (B, orange 
color) based on the literature references in the next column. . (S/B) indicates a mix of Stretching and 
Bending modes (red color). 6 Strut(s) in loading direction? Yes (Y, green color) or No (N, yellow 
color). 

3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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, Figure 13 (left)—the resulting
maximum energy absorption efficiency during impact is lower than for topologies
that do not have struts aligned in that direction (Figure 13 (right),
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(B, orange color) based on Maxwell’s number. 5 Stretching (S, blue color) or Bending (B, orange 
color) based on the literature references in the next column. . (S/B) indicates a mix of Stretching and 
Bending modes (red color). 6 Strut(s) in loading direction? Yes (Y, green color) or No (N, yellow 
color). 

3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 
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). For plateau stress (Figure 10 (right)), it is obvious that the cubic unit cell—which
has struts aligned in the compression direction and fewer struts, leading to a larger
overall strut radius to reach a given relative density—has a greater strength than other
topologies when considering only a given relative density. Indeed, the topology that
has the next highest plateau stress for a given relative density is FCC-Z, which also has
struts aligned in the impact direction and has a similarly large radius for struts given
the fewer total number of struts compared to other topologies (not including cubic).
The BCC (
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 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

) topology, which has no struts aligned in the compression direction and is
generally bending-dominated, has the lowest strength.

• Topology Highlight: Auxetic (
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 FBCC 
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 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

). Unlike other topologies, the densification strain in-
creased with an increase in relative density for the auxetic topology. The Poisson’s

203
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ratio of this topology in relation to other topologies—Figure 11 (left)—is notably sig-
nificantly smaller, almost equal to zero (generally, auxetic materials are those materials
with negative Poisson’s ratio, unlike other types of topologies).

• Topology Highlight: Cubic (
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 FCC 
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20 12 −10 B S/B [54,55] Y 
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16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 
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dron  
32 20 −22 B B [16,40] N 
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) and FCC-Z (
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24 12 −6 B S [59] N 
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36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

). These two topologies had noticeably larger
plateau stresses for a given relative density than other topologies. For a constant
relative density and unit cell height, these two topologies have the largest strut radius
as compared to other topologies with struts aligned in the impact direction. Thus, the
combination of large strut radius and struts aligned in the loading direction seems
to have allowed for an increase in overall strength and higher plateau stress during
impact. Notably, observing the response of the FCC-Z, FCC (
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 Cube 
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36 13 3 S S [60] N 
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16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 
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48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

), diamond (
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 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 
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48 24 −18 B S/B [14,26,64] N 
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20 9 −1 B S/B [14,59] Y 

), and BCC
(
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 AFCC 
 

24 12 −6 B S [59] N 

 Auxetic 
 

36 18 −12 B B [60,61] Y 

 BCC 
 

8 9 −13 B S/B [14,29,54,55] N 

 BCC-Z 12 9 −9 B S/B [54,55] Y 

 Cube 
 

12 8 −6 B S/B [10,14,26,62] Y 

 Cuboctahedron 
 

36 13 3 S S [60] N 

 Diamond 
 

16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 

 G7 
 

16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
 

36 14 0 S S [10,26,29,59,65] N 

 
Rhombic Dodecahe-

dron  
32 20 −22 B B [16,40] N 

 Rhombicuboctahedron 
 

48 24 −18 B S/B [14,26,64] N 

 Star 
 

20 9 −1 B S/B [14,59] Y 

) topologies at a constant strut radius of approximately 1.4 mm in Figure 10 (left or
right), it is the topology with struts aligned directly in the loading direction (FCC-Z)
that has the highest Young’s modulus and plateau stress, whereas the others reach less
than 70% of those properties of the FCC-Z topology. Also interesting is that the cubic
topology requires a larger strut radius to reach a similar strength and plateau stress
as compared to the FCC-Z topology; at a radius of approximately 1.4 mm, it yields
similar results to the FCC, diamond, and BCC topologies.

• Topology Highlight: Tesseract (
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 Tesseract 
 

32 16 −10 B S [60,66,67] Y 

 Tetrahedron 
 

22 9 1 S S [68] Y 

 Truncated Cube 
 

36 24 −30 B B [14] N 

 
Truncatedcuboctahe-

dron  
72 48 −66 B S [60] N 

 Vintiles 
 

36 28 −42 B B [10] N 

 Xgrid 
 

44 15 5 S S/B [59] Y 
1 Number of struts. 2 Number of nodes. 3 Maxwell’s number. 4 Stretching (S, blue color) or Bending 
(B, orange color) based on Maxwell’s number. 5 Stretching (S, blue color) or Bending (B, orange 
color) based on the literature references in the next column. . (S/B) indicates a mix of Stretching and 
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3.2. Numerical Model Results and Discussion 
All performance parameters mentioned in the previous section, as well as time-his-

tory internal and kinetic energies, force, and displacement data, were carefully analyzed 
for all 24 lattice topology unit cells at three relative densities for each of the 16 speed-
impact energy scenarios of the Design of Experiments. There are four main independent 
variables in this study, namely, (i) impact KE, (ii) impact speed, (iii) relative density, and 
(iv) topology—the effects of which are further discussed in the following subsections. 
3.2.1. Effect of Initial KE 

Based on internal energy variations over the compression event and stress–strain re-
sults for all topologies, the following observations were made: 
• It was noted that simulations with lower initial impactor kinetic energies mimicked 

the initial behavior of the larger initial KE, particularly for simulations with initial 
impactor speeds of 100 m/s or less. That is, the results suggest that running simula-
tions at a larger initial KE could still predict the behavior of the simulations at a lower 
initial KE. A set of internal energy over compression displacement curves for the 
AFCC topology (at all three relative densities) is provided in Figure 7 to illustrate 
such a phenomenon. In the top graphs of this figure, it is evidently seen that the lower 
initial impact energy curves (solid lines) follow the path of the higher initial internal 
energy curves (dashed lines) up until the system limit is reached and the higher en-
ergy curves continue. 

• In looking at stress–strain results, it was revealed that initial impactor KE of 1 J and 
5 J was not sufficiently large to reveal complete elastic-plateau-densification stress–
strain curves and a demonstratory set of stress–strain curves for the AFCC topology 
is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
always sufficient to reveal the complete elastic-plateau-densification characteristics 
expected of a stress–strain curve for lattice materials, particularly at higher relative 
densities. 
Based on such observations—which suggest that the full potential of the topology is 

not being utilized if the impactor initial KE is lower and that the curves for low KE mim-
icked the behavior of the larger KE anyway—the focus for further investigations was nar-
rowed to include only results from the 100 J initial KE simulations. 

). The tesseract topology was noted to have a lower
rate of increase in plateau stress for an increase in strut radius (thus, relative density)
(Figure 10 (right)). Together with a decrease in densification strain from a relative
density of 0.1 to 0.2, the absorbed energy up to densification actually decreased with
the increase in relative density (71.2 J vs. 27.6 J). However, with an additional 10%
relative density from 0.2 to 0.3, the absorbed energy also increased (to 47.6 J), the
results of which are plotted in Figure 12 (left).

• Topology Highlight: Octahedron (
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16 14 −20 B S/B [14,24,28] N 

 FBCC 
 

24 13 −9 B B [60] N 

 FCC 
 

16 12 −14 B S/B [54,55] N 

 FCC-Z 
 

20 12 −10 B S/B [54,55] Y 
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16 9 −5 B B [60,63] Y 

 IsoTruss 
 

26 15 −13 B S [10,59] Y 

 Kelvin 
 

36 24 −30 B B [10,14,64,65] N 

 Octahedron 
 

12 6 0 S S [26,59] Y 

 Octet 
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dron  
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), Truncated Cube (
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is provided in Figure 8. As a result, calculated crashworthiness parameters—such as 
densification strain or energy absorption—for the simulations with those lower initial 
KE would not accurately reflect the behavior and capabilities of the topology. It 
should be noted that for some topologies, even an initial impactor KE of 50 J was not 
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). Of the topologies with struts aligned in the impact direction, the
octahedron topology is the only one that has two half-struts aligned in that direc-
tion, as opposed to four-quarter struts. Interestingly, the energy absorption efficiency
results from Figure 13 (left) place the octahedron topology along the strut-no strut
division. Also close to this split are the truncated cube, truncatedcuboctahedron, and
rhombicuboctahedron (Figure 13 (right)), which do not have full struts aligned in
the impact direction (i.e., a strut with a length equal to the unit height) but do have
smaller-length struts aligned in the impact direction. Such an observation seems to
suggest that while it is possible to observe a generally distinct division between the
energy absorption efficiency results of Figure 13 based on whether or not there are
struts aligned directly in the loading direction, the amount and length of those struts
can shift the efficiency.

3.2.5. Discussion Concluding Remarks

Figure 12 plots plateau stress versus both absorbed energy up to densification and
the actual densification strain. As expected, Figure 12 (left) shows a positive relationship
between increasing plateau stress and absorbed energy—a higher plateau stress means
more energy is absorbed during deformation. However, the energy of the system was
limited by the initial impact energy of the impactor—100 J for Figure 12 —and, as such, there
were some topologies/relative densities that, at densification, had absorbed the impact
energy. During analysis of the data, there appears to be a relationship between the impact
energy, plateau stress, and densification strain, shown in Figure 12 (right) with the limiting
grey dashed curve. For a given initial impact energy, there were densification-plateau stress
pairings that were unattainable; for an initial impact energy of 100 J, this area has been
highlighted in Figure 12 (right), and the limiting curve equation has been provided. Other
limiting curves for the lower initial impact energies—1 J, 5 J, 50 J—were also observed; they
had similar power exponents (approximately equal to −1) but lower coefficients (due to
their lower initial impact energies).
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While this work dealt with results predicted by a developed numerical model, the
material data itself came from additively manufactured samples. Since additive man-
ufacturing technologies have greatly expanded the ability to research lattice materials,
it is important to note their limitations, particularly in regard to minimum geometrical
dimensions, such as the strut radii. From the results for these 24 topologies across the range
of relative densities, it can be seen that for the range of strut diameters (approximately
0.8 mm to 4.4 mm), there is a variety of mechanical property sets that could be obtained
simply by modifying the topology: Figure 10 (right) indicates that the plateau stress of a
cube (
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) at a relative density of 10% is almost equivalent to the plateau stress of an AFCC
topology (
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) at a relative density of 30%, allowing for a reduction in structure weight;
Figure 11 (right) indicates that there is a minimal change in densification strain for changing
relative density for the Xgrid topology (
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); and Figure 13 shows that by simply removing
the struts aligned in the impact direction, the energy absorption increases.

4. Conclusions

In an attempt to close the gap in the literature caused by the difficulty in comparing
data between papers due to material, model, and setup differences, this work analyzed
the dynamic impact performance of over 1,000 lattice simulations, which included over
24 topologies at three relative densities. To ensure the data captured represented a wide
dynamic range, four different impact speeds and initial impact energy levels (each) were
simulated using a developed numerical model containing a single unit cell with a material
model sensitive to strain rate and validated boundary conditions. Several conclusions
based on careful analysis of time-history-based data as well as crashworthiness parameters,
including energy absorption and densification strain, were drawn:

• Despite the strain-rate-sensitive material properties of the SLM steel alloy, changes
in impact performance from 1 m/s to 10 m/s were negligible (for the same initial
impact energy). There were some changes between speeds of 10 m/s and 100 m/s,
but general trends were similar regardless of the data set observed. At speeds of
1000 m/s, significant performance changes were observed, but it was determined that
there was a large amount of uncertainty in results given the current numerical model
setup—single unit cell with periodic boundary conditions—and that a multi-layered,
larger cluster of cells would probably be better suited to illustrate the layer-by-layer
collapse observed for high impact speeds with lattice materials.

• Increasing initial impact energy allowed for a better representation of the elastic-
plateau-densification stress–strain curve characteristic of lattice materials. Lower
impact energies whose stress–strain curves did not reach densification simply revealed
a portion of the stress–strain curve; higher energies were better for performance
comparison, given more representative values for densification strain and energy
absorption up to densification.

• For increasing relative density, it was generally seen that the plateau stress increased,
the densification strain decreased, the energy absorbed at densification increased, and
the energy absorption efficiency decreased. A few exceptions include the auxetic and
tesseract topologies.

• It was clear that topologies with struts aligned in the impact direction had lower
energy absorption efficiencies as compared to topologies that had no struts aligned in
that direction.

• Based on the numerical model setup, there was no clear separation in performance
based on bending, stretching, or mixed deformation modes.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Experimental research and numerical simulations of the structural response to shock waves
with pulse durations of hundreds of milliseconds, or even seconds, are extremely challenging. This
paper takes typical single-layer and sandwich cylindrical shells as the research objects. The response
rules of cylindrical shells under long-duration blast loadings were studied. The results show that
when the pulse duration is greater than or equal to 4~5 times the first-order period of the structure,
the maximum response of the structure tends to be consistent, that is, the maximum response of
the cylindrical shells with different vibration shapes shows a saturation effect as the pulse duration
increases. This study established the relationship between the saturation loading time and the
inherent characteristics of the structure. It was found that the saturation effect was applicable under
the following conditions, including different load waveforms, elastic–plastic deformation of the
structure, and the loading object being a sandwich shell. This will help transform the long-duration
explosion wave problem into a finite pulse-duration shock wave problem that can be realized by both
experiments and numerical simulations.

Keywords: critical saturation response; cylindrical shells; long-duration blast loading; inherent
characteristics; sandwich structures

1. Introduction

Shock wave parameters are closely related to the explosion yield and distance. Small-
and medium-yield shock waves have generally short pulse durations of microseconds to
milliseconds, while the shock waves of large-yield explosions exhibit long durations (tens
to hundreds of milliseconds or more) in the medium and far fields [1,2]. Wars and large-
scale explosion disasters all involve long-duration blast wave loads. However, it is very
difficult to directly conduct experimental research and numerical simulations of structural
responses under the action of long-duration blast loading of hundreds of milliseconds or
even seconds. On the one hand, long-pulse explosion impact experiments are huge in scale
and extremely low in cost-effectiveness [3,4]; on the other hand, numerical simulations
require huge computing resources [5,6].

Previous research has found that if the impact load lasts for a long time, the saturation
impulse phenomenon will appear in the dynamic response of the structure [7], that is,
when the plate is subjected to a strong transverse pressure pulse load, it will produce large
deformation, and the membrane force induced by the large deformation will enhance the
load-bearing capacity of the plate. If the plate is subjected to a long enough rectangular
pressure pulse, after the pulse load reaches the saturation time, the deformation mode of
the structure will no longer continue to change with the increasing loading time. Regarding
the research on saturation impulse theory, Zhao et al. [7,8] discovered, for the first time,
the saturation impulse phenomenon that occurs in the large-deflection plastic dynamic
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response of structures under moderate-intensity pulse loads. Moreover, a reasonable expla-
nation was given for the saturation impulse phenomenon, and the dimensionless saturation
impulse values of a simply supported beam or fixed beam were given. On the basis of
the above, Zhu et al. [9] further studied the elastic–plastic dynamic response of a square
plate and proposed two types of saturation impulses corresponding to the maximum defor-
mation and permanent deformation based on the elastic–plastic analysis. Zhu et al. [10]
verified that the saturation impulse phenomenon satisfies the scale rate by analyzing the
saturation impulse phenomenon of square plates of geometrically similar bilinear elastic–
plastic materials. In addition, the concept of a saturation impulse is not limited to structures
such as beams, circular plates, and square plates, but is also applicable to other complex
structures, such as stiffened plates [7]. Xi et al. [11] studied the rigid-plastic response of a
hinged circular plate under uniform pulse loading and discovered the saturation impulse
phenomenon in the high load range. Xi et al. [12] took steel beams as their research object
and pointed out that for strain rate-sensitive structures that undergo plastic deformation
under pulse loads, the occurrence of the saturation impulse phenomenon depends on two
necessary parameters: the pulse amplitude and length. In addition, Zhu et al. [13] also
studied the effects of the aspect ratio and boundary conditions on the saturation impulse
of rectangular plates; the effects of material strain rate sensitivity and strain hardening on
the saturation impulse [14]; the saturation impulse of a square plate under different pulse
loads [15]; the saturation impulse of a square plate considering a moving hinge [16]; and
the saturation impulse of a beam taking into account the transient response stage and the
accurate yield surface [17]. The above saturation impulse method reflects the relationship
between the load impulse and structural characteristics and provides a simple and reliable
calculation method for structural deformation calculations under an explosion load. In
general, the research on saturation impulse theory has become relatively mature.

The above saturation impulse method is mainly used in the dynamic response analysis
of structures under conventional air burst loads. Conventional air burst loads are charac-
terized by a high shock wave pressure attenuation rate and a short action time, which are
far lower than the response time of the structure. Therefore, the dynamic deformation and
failure of the structure are often only related to the impulse of the shock wave load. Under
the principle of impulse equivalence, the structural response has nothing to do with the
shape of the shock wave load [18,19].

However, the shock wave of a large-yield explosion exhibits a long duration (tens to
hundreds of milliseconds or more) in the mid-to-far field, and the duration of a nuclear
explosion shock wave can even reach the order of seconds. The above impulse equivalence
method may no longer be applicable. However, it is very difficult to directly conduct
experimental research and numerical simulations of structural responses under the action
of long-duration blast loading of hundreds of milliseconds or even seconds. This paper
draws on the research ideas of the saturation impulse method to establish the relationship
between the saturation loading time of the maximum response of a cylindrical shell under
long-duration blast loading and the first-order period of the structure and discusses its
applicability. This will help transform the long-duration shock wave problem into a finite
pulse-duration (saturation loading time) shock wave problem that can be more easily
realized by both experiments and numerical simulations.

2. Finite Element Model

In subsequent studies, four types of single-layer cylindrical shells and one corrugated
sandwich cylindrical shell (CSCS) were used as the research objects. The specific dimensions
of the single-layer cylindrical shells are shown in Table 1, wherein the structure numbers
are S1, S2, S3, and S4, respectively. The geometric dimensions of the CSCS are shown in
Figure 1, and the specific geometric dimensions are shown in Table 2.
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Table 1. Geometric dimensions of cylindrical shells.

Num. Diameter (mm) Height (mm) Wall Thickness
(mm)

S1 1000 1500 40
S2 1000 1500 80
S3 3000 1000 40
S4 2000 1500 40
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Table 2. Geometric dimensions of corrugated sandwich cylindrical shell.

Num. L (mm) Ri (mm) Ro (mm) α (◦) t (mm)

CSCS 1500 450 500 18 10

The finite element analysis of the mechanical response of the above-mentioned shell
under the action of dynamic pressure is realized by the nonlinear explicit FE algorithm.
The finite element model of S1 is described in detail below. The model settings of the other
structures are basically the same as those of S1. The finite element model of S1 is shown in
Figure 2. The bottom end of the cylindrical shell is fixed, and one side of the shell (the red
area in Figure 1) is subjected to dynamic-pressure loads inward along the normal direction.
In addition, the vibration characteristics of the cylindrical shell are obtained via the linear
perturbation analysis method based on a Lanczos eigensolver. The finite element model
uses a 1:1 3D model. In this study, Q235, a common metal material in engineering structures,
is used as a representative material. In Sections 3.1 and 3.2, only elastic deformation occurs,
the material’s constitutive model is a linear elastic constitutive model, and the material
properties are a density of 7.8 g/cm3, an elastic modulus of 2 × 105 MPa, and Poisson’s
ratio of 0.33. In Sections 3.3 and 3.4, the structure undergoes plastic deformation, the
material’s constitutive model in the finite element model is the Johnson–Cook model, and
the specific parameters are shown in Table 3 [20], among which A is the initial yield stress,
B is the strain hardening modulus of the material, n is the hardening index of the material,
and m is the thermal softening index of the material. A four-node shell element is used,
and upon checking the convergence of the numerical solutions, the optimal mesh size is
selected as 20 mm × 20 mm.

Table 3. Parameters of constitutive model for steel.

ρ (g/cm−3) E (MPa) ν A (MPa) B (MPa) n m

7.8 2 × 105 0.33 293.8 230.2 0.578 0.706
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Considering that the main purpose of this article is to verify the saturation effect, when
this effect is satisfied for a certain strain component, other strain values will also satisfy
the corresponding law. Therefore, the typical strain (axial strain component LE11) of the
shell is extracted herein as a representative for this study. The response of the structure is to
extract the LE11 of the “Response point”, and the specific location of the “Response point”
is shown in Figure 2.
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3. Results and Discussion
3.1. A Preliminary Exploration of the Saturation Effect

Analyzing the free vibration characteristics of the cylindrical shells, it can be seen in
Figure 3 that the first-order vibration modes of structures S1 and S2 are both breathing
vibration modes. In addition, the first-order natural frequency of S1 is 168.91 Hz, that is,
the first-order period T = 5.9 ms. The first-order natural frequency of S2 is 256.45 Hz, that
is, the first-order period T = 3.9 ms.
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In order to analyze the saturation response characteristics of the structure under the
action of long-duration, dynamic-pressure loads with different pulse durations are applied
on one side of the outer surface of the cylindrical shell. The load waveform is a rectangular
wave with an amplitude of 1 MPa. The pulse duration (td) is N times the first-order period
of the structure (that is, td = NT, whereby for S1, when N = 1, td = 5.9 ms). In subsequent
studies, dynamic loads with different pulse durations, different waveforms, and different
amplitudes will be applied. In order to more intuitively compare the differences between
the different loads, Figure 4 shows the pressure–time curves of the dynamic loads of
rectangular waves and sawtooth waves with different pulse widths when td = 5.9 ms.
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Combining the data of the maximum strain and its occurrence time, as shown in
Figure 5, it can be seen that when N < 5, the maximum strain and its occurrence time
fluctuate as N increases. When N ≥ 5, the maximum strain and its occurrence time tend
to be stable. Further analysis of the data shows that when N ≥ 5; the error between the
maximum value (0.41384 × 10−4) and the minimum value (0.4006 × 10−4) of the maximum
strain of S1 is only 3.2%; and the error between the maximum value (0.14454 × 10−3) and
the minimum value (0.144 × 10−3) of the maximum strain of S2 is only 0.4%. Such an
error can obviously satisfy subsequent practical engineering applications. The structural
response shows a saturation effect as the load pulse duration increases.
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Figure 5. The maximum strain and its occurrence time.

The above research found that under the action of rectangular wave loads with dif-
ferent pulse durations, the maximum strain response of the cylindrical shell showed a
saturation effect as the pulse duration increased. However, the above results are satisfied
under the following conditions: the load is a rectangular wave, the free vibration mode of
the structure is the breathing mode, the structural deformation is elastic deformation, and
the structure is a simple single-layer cylindrical shell. In subsequent sections, the above
conditions will be studied to explore the applicability of this saturation effect.

3.2. Influence of Structural Vibration Shape and Load Waveform

The vibration shape of a structure is related to its structural form, material properties,
etc. In this study, in order to explore whether the saturation effect is applicable to structures
with different vibration modes, three structures (S1, S2, and S3) with different geometric
sizes and different vibration modes were selected as representatives for this research. The
specific geometric dimensions are shown in Table 1. The free vibration modes of S1, S3,
and S4 are the breathing mode, bending mode, and triangle mode, respectively, as shown
in Figure 6. In addition, the first-order natural frequency of S1 is 168.91 Hz, that is, the
first-order period T = 5.9 ms; the first-order natural frequency of S3 is 97.01 Hz, that is, the
first-order period T = 10.3 ms; and the first-order natural frequency of S4 is 137.0 Hz, that
is, the first-order period T = 7.3 ms.
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Dynamic-pressure loads with different pulse durations are applied to the outer sur-
faces of the above-mentioned structures S1, S3, and S4. The load waveform is a rectangular
wave or a sawtooth wave, the amplitude is 1 MPa, and the pulse duration (td) is N times
the first-order period of the structure. Figure 6 shows the maximum strain data of S1, S3,
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and S4 under different pulse durations. It can be seen in Figure 7 that when N < 5, the
maximum strain fluctuates with the increase in N. When N ≥ 5, the maximum strain tends
to be stable. Further analysis of the data shows that when the loads are rectangular waves
and N ≥ 5, the error between the maximum value (0.41384 × 10−4) and the minimum value
(0.4006 × 10−4) of the maximum strain of S1 is only 3.2%; the error between the maximum
value (0.1957 × 10−3) and the minimum value (0.189 × 10−3) of the maximum strain of S3
is only 3.4%; and the error between the maximum value (0.1401 × 10−3) and the minimum
value (0.137 × 10−3) of the maximum strain of S4 is only 2.2%. When the loads are sawtooth
waves and N ≥ 5, the error between the maximum value (0.378 × 10−4) and the minimum
value (0.355 × 10−4) of the maximum strain of S1 is only 6.1%; the error between the
maximum value (0.172 × 10−3) and the minimum value (0.167 × 10−3) of the maximum
strain of S3 is only 2.9%; and the error between the maximum value (0.134 × 10−4) and
the minimum value (0.125 × 10−4) of the maximum strain of S4 is only 6.7%. Such an
error can obviously satisfy subsequent practical engineering applications. In summary,
the above saturation effects still exist for cylindrical shells with different vibration shapes
under rectangular-wave and sawtooth-wave loads.
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3.3. Influence of Load Amplitude

Dynamic-pressure loads with different amplitudes and different pulse durations are
applied to the outer surface of the above-mentioned structure S1. The load waveform is a
rectangular wave, the amplitude is 1 MPa~10 MPa, and the pulse duration (td) is N times
the first-order period of the structure. Figure 8 shows the maximum strain data of S1 under
different pulse durations. It can be seen in Figure 8 that when N < 4, the maximum strain
fluctuates with the increase in N. When N ≥ 5, the maximum strain tends to be stable.
Figure 9 shows the deformation mode of the structure when the amplitude is 10 MPa. It can
be seen in Figure 9 that when N > 1, the maximum stress of the structure exceeds the yield
strength of Q235, that is, the structure begins to undergo plastic deformation. Moreover,
when N ≥ 5, the deformation mode of the structure basically no longer changes. Further
analysis of the data shows that when the load amplitude is 1 MPa and N ≥ 5, the error
between the maximum value (0.41384 × 10−4) and the minimum value (0.4006 × 10−4) of
the maximum strain of S1 is only 3.2%; when the load amplitude is 2 MPa and N ≥ 5, the
error between the maximum value (0.832 × 10−4) and the minimum value (0.811 × 10−4)
of the maximum strain of S1 is only 2.5%; when the load amplitude is 4 MPa and N ≥ 5, the
error between the maximum value (0.173 × 10−3) and the minimum value (0.168 × 10−3)
of the maximum strain of S1 is only 2.9%; when the load amplitude is 6 MPa and N ≥ 5, the
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error between the maximum value (0.263 × 10−3) and the minimum value (0.257 × 10−3)
of the maximum strain of S1 is only 2.3%; and when the load amplitude is 8 MPa and N ≥ 5,
the error between the maximum value (5.7 × 10−3) and the minimum value (5.7 × 10−3)
of the maximum strain of S1 is only 0.0%. Such an error can obviously satisfy subsequent
practical engineering applications. In summary, it can be seen that for different amplitude
loads, whether the structure undergoes elastic deformation or large plastic deformation,
the above-mentioned saturation effect still exists.
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10 MPa.
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3.4. Sandwich Shells

The structures studied above were all single-layer cylindrical shells. This section
will study more complex cylindrical shells. As a novel structure, sandwich cylindrical
shells have excellent mechanical properties and have been widely researched in recent
years [21–25]. This section takes a corrugated sandwich cylindrical shell as the research
object to explore the applicability of the above saturation effect.

When large plastic deformation occurs, mutual extrusion and friction will occur
between the components of the sandwich shell. This is a significant difference between a
sandwich shell and a single-layer shell. However, there is no such difference during elastic
deformation. Therefore, this paper discusses the situation of large plastic deformation of a
sandwich shell. The load waveform is a rectangular wave, the amplitude is 8 MPa, and the
pulse duration (td) is N times the first-order period of the structure.

Figure 10 shows the maximum strain data of the corrugated sandwich cylindrical
shell under different pulse durations. It can be seen in Figure 10 that when N < 4, the
maximum strain fluctuates with the increase in N. When N ≥ 4, the maximum strain tends
to be stable. Figure 10 shows the deformation mode of the structure. It can be seen that
the structure has undergone large plastic deformation, but when N ≥ 4, the deformation
mode basically no longer changes. Further analysis of the data shows that when N ≥ 4,
the error between the maximum value (0.27 × 10−3) and the minimum value (0.26 × 10−3)
of the maximum strain of S1 is only 3.7%. Such an error can obviously satisfy subsequent
practical engineering applications. In summary, the above saturation effects apply to both
simple single-layer cylindrical shells and corrugated sandwich cylindrical shells.
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4. Conclusions

This article focused on the difficult problem of experimental research and numerical
simulations of structural responses under the action of shock waves with long durations
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of hundreds of milliseconds or even seconds. This study took the typical cylindrical shell
structure as the research object. The response rules of cylindrical shells under long-duration
blast loadings were studied, and the following conclusions were found:

1. When the pulse duration of the load is greater than or equal to four to five times
the first-order period of the structure, the maximum response of the structure tends
to be consistent. That is, the maximum response of the cylindrical shell of different
vibration modes (the breathing mode, bending mode, and triangle mode) shows a
saturation effect as the pulse duration increases.

2. When the load waveform is a typical rectangular wave or sawtooth wave, the above
saturation effect is applicable.

3. Whether the structure undergoes elastic deformation or large plastic deformation, the
above saturation effect is applicable.

4. The above saturation effect applies to both simple single-layer cylindrical shells and
relatively complex structures (i.e., corrugated sandwich cylindrical shells).

This study established the relationship between the saturation loading time of the
maximum response of the cylindrical shell under long-duration blast loading and the
inherent characteristics of the structure. After the load reaches the saturation loading time,
the maximum response of the structure no longer changes as the pulse duration increases.
This will help transform the long-duration shock wave problem into a finite pulse-duration
(saturation loading time) shock wave problem that can be more easily realized by both
experiments and numerical simulations. In the future, the mechanism will be further
studied, and a unified theory will be established together with the short pulse duration
saturation effect mentioned above.
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Nomenclature

T First-order period of cylindrical shells
td The pulse duration
N td = NT
L The height of the sandwich cylindrical shell
Ri The radius of the inner panel of the sandwich cylindrical shell
Ro The radius of the outer panel of the sandwich cylindrical shell
α A single corrugation corresponds to the central angle
t The wall thickness of the sandwich cylindrical shell
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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
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7491 Trondheim, Norway
* Correspondence: james.mwase@ntnu.no

Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: In this paper, the scope of discrete asymptotic homogenization employing voxel (cartesian)
mesh discretization is expanded to estimate high fidelity effective properties of any periodic heteroge-
neous media with arbitrary Bravais’s lattice symmetry, including those with non-orthogonal periodic
bases. A framework was developed in Python with a proposed fast–nearest neighbour algorithm
to accurately estimate the periodic boundary conditions of the discretized representative volume
element of the lattice unit cell. Convergence studies are performed, and numerical errors caused
by both voxel meshing and periodic boundary condition approximation processes are discussed in
detail. It is found that the numerical error in periodicity approximation is cyclically dependent on the
number of divisions performed during the meshing process and, thus, is minimized with a refined
voxel mesh. Validation studies are performed by comparing the elastic properties of 2D hexagon
lattices with orthogonal and non-orthogonal bases. The developed methodology was also applied
to derive the effective properties of several lattice topologies, and variation of their anisotropic
macroscopic properties with relative densities is presented as material selection charts.

Keywords: asymptotic homogenization; cartesian mesh; voxel mesh; non-orthogonal periodic basis;
lattice material; Bravais lattice symmetry

1. Introduction

Periodic cellular solids, also known as lattice materials, are formed by tessellating a
unit cell in an infinite periodicity to fill a design space. The unit cell, the representative
volume element (RVE), is the smallest depiction of the lattice that has the most accurate
statistical representation of its physical macroscale properties. The dimensions of the
unit cell are at least an order of magnitude smaller than the characteristic length of the
macroscopic structure.

While having complicated geometries that cannot be fabricated using conventional
manufacturing methods, recent advances in additive manufacturing have permitted the
fabrication of cellular materials with increasingly intricate structures and new topolo-
gies [1–4], opening the door for their adoption in many applications. Over the last few
decades, lattice materials have been used in a wide range of applications, including acoustic
and vibrational damping and reflections [5–7], thermal and heat exchangers [8–10], actu-
ation for shape morphing structures [11,12], energy absorption [1,13–15], and multiscale
optimization [16,17].

Multiscale numerical simulations to evaluate lattice material characteristics consider-
ing structural attributes at all length scales are normally challenging and computationally
expensive. Thus, homogenization methods are developed to analyze the effective qualities
of a multiscale material such that its macroscale properties may be represented statistically.
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A number of analytical, numerical, and experimental studies have been proposed in
the literature [18–26] to characterize the effective properties of lattice materials. Some of the
proposed homogenization techniques include energy methods [18–21], the wavelet-reduced
order model [22], the Cauchy–Born hypothesis [23–26], discrete homogenization [27–29],
and asymptotic homogenization [30–34].

Some notable works [35–37] have provided closed-form representations of the effec-
tive mechanical characteristics of lattice materials. Their methods, however, were only
applicable to simple topology with straightforward arrangement of lattice cells.

The characteristics of planar lattice materials have also been homogenized using matrix-
based methods based on Bloch’s theorem and the Cauchy–Born hypothesis [24,25]. In order
to derive the material’s macroscopic stiffness parameters, Hutchinson and Fleck [24] first
converted the microscopic nodal deformations of a lattice in terms of the macroscopic strain
field. A method was developed to describe cell topologies, such as the Kagome lattice and
the Triangular–Triangular lattice, which have a particular degree of symmetry. This approach
was expanded by ElSayed and Pasini [25] and ElSayed [38] to handle planar topologies that
can have any arbitrary cell geometry. A more generic matrix-based method for the analysis of
arbitrary bi-dimensional and tri-dimensional cell topologies with open and closed cells was
described by Vigliotti and Pasini [23,26,39].

The characterization of cellular materials has also been effectively accomplished using
discrete homogenization approaches [27–29]. These methods simulate the lattice cell walls
using discrete elements like beam or rod elements. The homogenized characteristics are
produced by converting the discrete sum of equilibrium equations into a continuous relation
of stress and strain.

The asymptotic homogenization (AH) theory has been effectively used among other
numerical methods for predicting the effective mechanical characteristics of periodic lattice
materials [30–34,40–44]. Their results have been validated by experimental tests, demon-
strating the effectiveness of the AH method [45–48]. The main discrepancy between the
experimental and the theoretical analyses was mainly due to defects and deviations present
in the manufactured part. The defects invalidated the periodic boundary condition and
caused deviations in the measured experimental values. A standout benefit of AH in
comparison to other homogenization systems is its ability to precisely identify the stress
distribution in the lattice unit cell, which can then be utilized for an in-depth analysis of
the strength and damage of heterogeneous periodic materials [29,49].

The double-scale AH method, considering the use of 2D iso-parametric plate elements,
was employed by Andreassen and Andreasen [33] to determine the elastic properties,
thermal expansion, thermal conductivity, and fluid permeability of 2D periodic cellular
lattices and composite materials. Andreassen and Andreasen [33] were able to analyze
RVE’s cell envelope with monoclinic, orthorhombic, tetragonal, and hexagonal periodicities
by changing the shape of the 2D iso-parametric quadrilateral plate element.

Considering the use of solid elements for discrete homogenization techniques, the ho-
mogenized elastic tensor could be obtained by applying unit strains and performing volume
averaging of the stresses and strains in the discretized elements. This approach has been per-
formed using popular commercial finite element packages, such as Abaqus [50] and ANSYS
Material Designer [51]. The main limitation for these commercial applications adopting this
approach is that they are only developed for RVEs with orthorhombic, tetragonal, or cubic
periodicity [50–52] mainly due to the limitations imposed by the meshing process, leading
to an incompatibility while applying the periodic boundary conditions. When discretizing
the RVE, the locations and the number of nodes along a periodic boundary face would not
necessarily match while applying periodic boundary conditions.

Dong et al. [34] expanded the work of Andreassen and Andreasen [33] by considering
the use of 3D solid elements (iso-parametric hexahedral element shown in Figure 1, also
hereafter referred to as 3D voxel). The code developed by Dong et al. [34] was limited to
analyzing the periodic cell envelope with the orthogonal periodic basis.
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The periodic cellular solids can have an open or a closed cell construction. The former 

can be modelled as a micro-truss-like structure, while the latter is commonly represented 
with shells and plates. In this paper, an open-cell micro-truss with circular cross-section 
elements is considered.  

The numerical homogenization performed in this paper is based on the asymptotic 
double-scale homogenization [30–33,53,54] with a workflow written in Python [55]. Here, 
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Figure 1. Iso-parametric hexahedral voxel element, with the global coordinate system (x, y, z), local
coordinate system (ξ, ζ, η), and voxel edges aligned with a global cartesian coordinate system with
lengths (lx, ly, lz), respectively.

This paper expands on the work performed by Dong et al. [34]. The prior work only
considered cell envelopes with orthogonal periodicity, whereas the current work expands
upon this by (a) proposing methods to discretize unit cells with non-orthogonal bases and
(b) applying approximated periodic boundary conditions for non-orthogonal cell envelopes
to evaluate the homogenized elastic properties.

The paper is organized into five sections. After the introduction, in Section 2, the
methodology for discretizing the geometry and approximating the periodic boundary
condition, along with the numerical homogenization process for determining high fidelity
homogenized elastic properties, are presented. In Section 3, the validation for the numerical
analysis is detailed. The developed methodology is then applied to triclinic and monoclinic
Bravais grid lattice topologies, and the results are documented in Section 4. The paper is
concluded in Section 5.

The developed methodology was also used to derive the effective properties of 35
lattice topologies, and variation of their anisotropic macroscopic properties with relative
densities which is presented in the appendices included in the Supplementary File.

2. Methodology

The periodic cellular solids can have an open or a closed cell construction. The former
can be modelled as a micro-truss-like structure, while the latter is commonly represented
with shells and plates. In this paper, an open-cell micro-truss with circular cross-section
elements is considered.

The numerical homogenization performed in this paper is based on the asymptotic
double-scale homogenization [30–33,53,54] with a workflow written in Python [55]. Here,
the periodic cellular lattices are categorized, based on the shape of the cell envelope, as
either orthogonal or non-orthogonal. Cell envelopes with orthogonal periodic bases could
be part of an orthorhombic, tetragonal, or cubic Bravais lattice system, as shown in Figure 2.
On the other hand, non-orthogonal cell envelopes have non-orthogonal periodic bases and
could be part of triclinic, monoclinic, and hexagonal systems.
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Figure 2. Primitive Bravais lattices. α, β, and γ are angles (α 6= β 6= γ), whereas p, q and r are lengths
(p 6= q 6= r).

2.1. Representative Volume Element

The RVE of a lattice is its unit cell represented by a cell envelope and the lattice struc-
ture, as shown in Figure 3. This figure shows the honeycomb lattice topology with different
possibilities of cell envelope representation, including both orthogonal and non-orthogonal
bases. Figure 3b shows a discretized 2D hexagon geometry with a non-orthogonal cell
envelope. Three different types of voxels are shown in this figure. The green voxels repre-
sent the voids within the RVE’s cell envelope, and they have a non-zero volume and zero
material property. The green voxels are only considered when calculating total volume
but ignored when finding periodic node pairs and calculating the stiffness matrix. The
red voxels represent the discretized geometry, with both non-zero material property and
non-zero volume. The blue voxels are assigned a zero volume and zero material property
because they are outside the RVE’s cell envelope. The cell envelope is defined as a face
with a normal pointing outside the cell envelope, as shown in Figure 4. Based on the cell
envelope’s plane definition, any voxel elements that are outside the cell envelope (same
side as the normal vector) are removed during the analysis.
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Figure 3. (a) Honeycomb lattice RVE with multiple cell envelope definitions. Periodic bases are
shown with red and green arrows for the three proposed envelopes. (b) Visualization of the 2D Open
Hexagon RVE, RVE’s envelope, voxels, and periodic basis. Voxels’ shape is not to scale.
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Figure 4. Cell envelope definition for filtering voxels with zero and non-zero volume. Red voxel
centers are considered to be inside the cell envelope, whereas blue-coloured voxel centers are outside
the cell envelope based on the normal direction of the cell envelope (orange arrow).

The parent material property for the individual voxel is defined using the two Lame’s
parameters, namely, λ and µ, which are expressed as:

λ = vE
(1+v)(1−2v)

µ = E
2(1+v)

(1)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. The analysis
presented in this paper employs isotropic steel with Eiso = 2.0× 1011 Pa and νiso = 0.3,
which correspond to lame parameters of λ = 1.153× 1011 Pa and µ = 7.692× 1011 Pa.

The voxel element is formulated as an iso-parametric brick element whose edges are
orthogonal with lengths of lx, ly and lz aligned in the global cartesian coordinate system.
The individual voxels with non-zero volume, which are inside the cell envelope, are treated
as having an isotropic material property, and the element’s stiffness material matrix (C(e))
is formulated as:

C(e) = λ(e)




1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



+ µ(e)




2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(2)

2.2. Discretization and Approximation of the Periodic Boundary Condition

The process to determine the translational periodicity of the node pairs is to translate
the coordinates of a node using the periodic basis vector and then find the closest node
within a prescribed search radius.

A periodic physical quantity of a structure can be represented as:

F (x + NY) = F (x) (3)

where x = [x1, x2, x3]
T is the position vector of a point where the physical quantity F is

evaluated, N = dn1, n2, n3c is a 3× 3 diagonal matrix which consists of arbitrary integer
values, and Y = [Y1, Y2, Y3]

T is a vector that denotes the period of the structure, where this
value could be a scalar, vector, or tensor function of x [30].
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The static response of a periodic structure can then be represented as:

σij = Cijkl(x)εkl = Cijkl(x + NY)εkl
i, j, k, l ∈ {1, 2, 3} (4)

where Cijkl is the stiffness tensor, εkl is the strain tensor, and σij is the stress tensor. By
definition of x, N, and Y, the stiffness tensor Cijkl can be expanded as

Cijkl(x1 + n1Y1, x2 + n2Y2, x3 + n3Y3) = Cijkl(x1, x2, x3)
i, j, k, l ∈ {1, 2, 3} (5)

The voxel nodes have been discretized such that the nodal coordinates (xi
1, xi

2, xi
3) of

the ith node are defined as:



xi
1

xi
2

xi
3


 =




A1lx + Ox
A2ly + Oy
A3lz + Oz


, where

A1 = {0, 1, 2, . . . , xdivs}
A2 = {0, 1, 2, . . . , ydivs}
A3 = {0, 1, 2, . . . , zdivs}

,

i = {1, 2, . . . , (xdivs + 1) ∗ (ydivs + 1) ∗ (zdivs + 1)}
(6)

where, A1, A2, and A3 are integers and {Ox, Oy, Oz} is the origin. The i superscript
indicates node numbers; lx, ly, and lz are the lengths of the voxel along the global x, y, and
z axis, respectively; and the xdivs, ydivs and zdivs are integers denoting the number of voxel
discretization along the global x, y, and z axes, respectively. Typically, lx, ly, and lz are the
same for all the voxels and can be calculated as:




lx
ly
lz


 =




max(xi
1)−min(xi

1)
xdivs

max(xi
2)−min(xi

2)
ydivs

max(xi
3)−min(xi

3)
zdivs


 and




Ox
Oy
Oz


 =




min
(
xi

1
)

min
(
xi

2
)

min
(
xi

3
)


 (7)

The periodicity vector Y can be decomposed such that:

Y =




Y1
Y2
Y3


 =




B1lx
B2ly
B3lz


+




G1
G2
G3


 :

B1, B2, B3 ∈ Z
G1, G2, G3 ∈ R

G1 < lx, G2 < ly, G3 < lz,
(8)

where B1, B2, and B3 are integers and G1, G2, and G3 are the residual or the remainder
which are smaller than the lengths of the voxel lx, ly, and lz, respectively.

For each node of the voxel defined by Equation (6) that is part of the RVE’s cell envelope,
there exists a periodic node pair that is also part of the discretized RVE’s cell envelope.

If any of the residuals G1, G2, or G3 are non-zero, then it would not be possible to find
the exact node that is part of the voxels, as shown in Figure 5, (which leads to approximating
the periodic node pairs, causing some numerical errors which are discussed in Sections 3.1
and 3.4). Approximating the location of the periodic node pair involves ignoring the
residuals (Gi). A perfect voxel mesh can be obtained by minimizing the residual term.
For an orthogonal periodic basis, aligned with the global cartesian coordinate system, the
residuals are automatically zero. But for an RVE with a non-orthogonal periodic basis, the
xdivs, ydivs, and zdivs must be altered to minimize the residuals.
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Figure 5. Determination of a periodic node pair for node i located at (xi
1, xi

2) with its periodic pair i′
at Ni

→
Yi and the search radius

→
R (green arrow) required to search the approximate periodic node pair

due to the difference between the voxel element basis and RVE’s periodic basis. This search radius
can be used with a KD-Tree algorithm [56] to query the closest point.

Thus, to find the periodic node pair for an RVE with a non-orthogonal periodic basis, a
local search must be conducted within a radius of R, such that at least one point lies within
the defined search radius, as shown in Figure 5. If the periodic node is not found for the
node in the cell boundary, or the node pair is incorrectly identified, it can introduce small
numerical errors. A suggested search radius is proposed as follows:

R = max

(
0.51 max

(
lx, ly, lz

)

0.51
(√

l2
x + l2

y + l2
z

)
)

(9)

For a coarse mesh (where lx, ly, lz values are similar or larger relative to the truss
radius), it is suggested to use angular constraints, where the angle θp, shown in Figure 5,
is more than 5◦, rather than the suggested radius constraint in Equation (9). The angle θp,
as shown in Figure 5, can be calculated by performing the dot product operation between

the two normalized vectors,
→
Y and

→
xi p. The misalignment of the periodic basis with the

voxel’s element natural coordinate system introduces slight numerical errors, which are
discussed in Section 3.

To determine the periodicity of the lattice, the nodal coordinates of all the voxels
are used to create a k-d tree from [56] to implement a fast–nearest neighbour algorithm.
Then, similar to Equation (5), an offset from Equation (8) is applied to all of the voxel
coordinates based on all of the unique combinations of the basis, and the closest point
within a certain minimum distance R and a minimum angle θ is chosen as its periodic
nodal pair. Unit cells with the orthogonal periodic basis that align with the voxel’s natural
coordinate system do not need the minimum distance and the angle restrictions. But for a
lattice geometry with a periodic basis that is not an integer multiple of the voxel’s natural
coordinate system, the process of finding the periodic nodal pair requires an additional
step because the offset coordinate is not coincident with the second nodal pair. Thus, a
local search must be conducted to find the closest point that is subject to minimum distance
and angle restrictions described by (9).

2.3. Numerical Homogenization

The asymptotic homogenization process is based on the double-scale expansion the-
ory [30–33,53,54]. The homogenized macroscopic elasticity tensor can be written as:

EH
ijkl =

1
|V|

∫
VEpqrs

(
ε

0(ij)
pq − ε

(ij)
pq

)(
ε

0(kl)
rs − ε

(kl)
rs

)
dV, i, j, k, l, p, q, r, s ∈ {1, 2, 3} (10)
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where V is the volume of the base RVE, Epqrs is the locally varying stiffness tensor, ε
0(ij)
pq

represents the macroscopic strain, and ε
(ij)
pq is the microscopic strain (locally periodic). The

superscript H denotes the homogenized quantity. More details for 3D and 2D voxels can
be found at [33,34]. ε

(ij)
pq is defined as:

ε
(ij)
pq = εpq

(
χij
)
=

1
2

(
χ

ij
p,q + χ

ij
q,p

)
, p, q ∈ {1, 2, 3} (11)

Based on displacement fields χ kl , which are found by solving the elasticity equations
with prescribed macroscopic strains:

∫
V Eijpqεij(ν )εpq

(
χkl)dV =

∫
V Eijpqεij(ν )ε

0(kl)
pq dV

i, j, k, l, p, q ∈ {1, 2, 3} (12)

where ν is the virtual displacement field. Homogenization is normally performed numeri-
cally using discretization and finite element method to solve Equation (12).

3. Validation

In this section, the analysis of a voxelized RVE with a non-orthogonal base is vali-
dated against results of a commercial finite element software for the same lattice topology
but represented by a different RVE with orthogonal bases, as reported by Gibson and
Ashby [36], Vigliotti and Pasini [26], and other homogenization codes by Andreassen and
Andreasen [33], as well as Dong et al. [34]. For low relative density lattice, the results of the
voxelized non-orthogonal hexagon are compared against similar non-orthogonal hexagons
but formulated using beam theory [27–29]. Grid convergence studies have been performed
in this section, and the numerical errors caused by both the voxel meshing and the periodic
boundary condition approximation processes are discussed in detail. The material used in
the validation study is isotropic steel with Eiso = 2.0× 1011 Pa and νiso = 0.3.

3.1. Grid Convergence Study

For the grid convergence study, the lattice materials’ truss radius is held constant, and
the number of divisions along the global axis is varied. For the first mesh sensitivity study,
a 3D primitive cubic lattice with an orthogonal cell envelope was analyzed, and the results
are shown in Figure 6. The primitive cubic lattice, which had a unit length of 1 with a truss
radius of 0.157, was targeted, which converged to a volume fraction of 0.18. The convergence
of elastic properties was satisfied around a discretization of 60 voxels in each direction.
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Figure 6. Grid convergence study.

Then, a 2D closed hexagon lattice was analyzed, and a volume fraction of 0.25 was
targeted using a radius of 0.117 units. The length of the truss was 1 unit, and the cell
angle was 60◦. The elastic constants of the stiffness matrix and the elastic properties are
presented in Figure 7 It was observed that increasing the number of divisions affects the
volume fraction of the discretized geometry; this is due to the voxel meshing process, where
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at some critical point, the volume fraction increases due to the voxel center coordinate
suddenly being included as part of the truss radius (refer to Figure 8). In the plots below,
the other quantities generally follow a similar trend as the volume fraction (black dashed
lines). However, the observed discrepancy is generally due to the errors in approximating
periodicity, which generally converges while refining the mesh.
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Figure 8. Variation of volume fraction due to increasing the number of voxel divisions in the y-
direction while maintaining an aspect ratio of unity. The voxel’s center coordinate has been repre-
sented as smaller voxels. The periodic basis is plotted as a bold green line. 

The theoretical zero terms presented in an orthotropic stiffness matrix are plotted in 
Figure 7 above. It can be observed that the supposed zero terms fluctuate between a high 
and low value. The higher values are at least two orders of magnitude smaller than the 
main diagonals of the matrix, whereas the lower error terms are at least eight orders of 
magnitude smaller than the main diagonals. The main cause for this is because the perio-
dicity is discretized where the remainder term (𝐺 ) mentioned in Equation (8) is mini-
mized; this means that the periodicity basis vector could be resolved as an integer multiple 
of the voxel lengths. 

The effect of reduced remainder term leads to a case where the periodic nodes are 
matched in an orderly fashion, as shown in Figures 8 and 7b. When comparing the perio-
dicity lines from Figure 7a’s blue circle to the magenta circle, the periodicity lines are not 
parallel, as shown in Figure 7b. Furthermore, comparing the periodicity from the blue 

Figure 7. Numerical error analysis of a closed hexagon with voxel aspect ratios of unity. (a) The large
non-zero elastic constants. For a constant truss radius, the volume fraction changes due to the voxel
meshing process, and the volume fraction converges for a smaller voxel mesh. (b) The homogenized
effective properties of the hexagon lattice, where the fluctuations are caused by the voxel meshing
process and approximating the periodic boundary conditions. (c) The residual terms in a log plot,
where the residuals fluctuate between a high and a low value, corresponds to the error caused by
approximating the periodic boundary conditions. (compare colored circles in (d,e)) The periodic
boundary conditions for the voxelized hexagon lattice are marked in (c). (d) Large error (AR ≈ 1) for
46 by 39 divisions, VF = 0.263. This voxelized hexagon corresponds to the upper red arrow shown in
(c). (e) Small error (AR ≈ 1) for 47 by 40 divisions, VF = 0.262. This voxelized hexagon corresponds
to the lower red arrow shown in (c).
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Figure 8. Variation of volume fraction due to increasing the number of voxel divisions in the
y-direction while maintaining an aspect ratio of unity. The voxel’s center coordinate has been
represented as smaller voxels. The periodic basis is plotted as a bold green line.

The theoretical zero terms presented in an orthotropic stiffness matrix are plotted
in Figure 7 above. It can be observed that the supposed zero terms fluctuate between
a high and low value. The higher values are at least two orders of magnitude smaller
than the main diagonals of the matrix, whereas the lower error terms are at least eight
orders of magnitude smaller than the main diagonals. The main cause for this is because
the periodicity is discretized where the remainder term (Gi) mentioned in Equation (8) is
minimized; this means that the periodicity basis vector could be resolved as an integer
multiple of the voxel lengths.

The effect of reduced remainder term leads to a case where the periodic nodes are
matched in an orderly fashion, as shown in Figures 8 and 7b. When comparing the
periodicity lines from Figure 7a’s blue circle to the magenta circle, the periodicity lines are
not parallel, as shown in Figure 7b. Furthermore, comparing the periodicity from the blue
circle to the red circle, a single periodic node is shared with two other nodes; this can lead
to the periodicity being mismatched. Several of these scenarios are visualized in Figure 9.
Based on the visualization, the planes of symmetry are disrupted when periodicity is not
matched properly, which causes the orthotropic cellular lattices to have smaller magnitude
non-zero terms like a monoclinic or a triclinic material. An in-depth analysis is presented
in Section 3.4.
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3.2. Comparison with ANSYS

The results obtained from the voxelization process are compared with the results
from ANSYS Material Designer, which can perform homogenization of elastic and thermal

229



Materials 2023, 16, 7562

properties for RVE with an orthogonal periodic basis. The results obtained from ANSYS are
comparable with the results obtained with the voxelized method, with differences of less
than 2%. The anisotropy plot for the primitive cubic lattice and hexagon lattice is shown
in Figure 10. The primitive cubic lattice in ANSYS was meshed using tetrahedrons, and
the meshing strategy made sure that the meshes in all of the faces were similar, such that
the periodicity of the lattice could be found easily. The hexagon lattice in ANSYS follows
a similar meshing strategy, but the Honeycomb was meshed with a mix of hexahedral
(brick) and tetrahedral elements. However, the cell envelope’s faces are meshed using
brick elements, which ensures that the cell envelope’s nodes can be matched easily to
apply the periodic boundary conditions. ANSYS also provides an option to calculate the
homogenized properties by applying symmetric boundary conditions for some of the
simpler lattices.
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Three planes of symmetry exist in the x, y, and z-planes for both the primitive cubic 
lattice in 3D and the hexagon lattice in 2D (with periodic conditions imposed in the out-
of-plane). Thus, the homogenized elastic properties for these two lattices can be consid-
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Due to some small numerical residuals, the zero terms shown in Equation (13) were 
not zeros when the hexagon and the cubic lattice were homogenized. A comparison of the 
terms for 𝐶  for the hexagon and cubic lattice is shown in Figure 11. The data exported 
from ANSYS, which is marked as “D [1,1]” and “D [4,1]” in the figures, are from the grid 
and the hexagon lattice cell, respectively. 

Figure 10. Comparison of normalized E11 anisotropy plot at multiple volume fractions for (a)
voxelized grid with ANSYS’ cubic lattice model, and (b) voxelized hexagon with non-orthogonal
periodic basis and ANSYS’ Honeycomb lattice cell with orthogonal periodic basis. (c) Voxelized grid
and ANSYS’ cubic lattice model. (d) Voxelized hexagon with non-orthogonal periodic basis and
ANSYS’ Honeycomb model with orthogonal periodic basis.

Three planes of symmetry exist in the x, y, and z-planes for both the primitive cubic
lattice in 3D and the hexagon lattice in 2D (with periodic conditions imposed in the out-of-
plane). Thus, the homogenized elastic properties for these two lattices can be considered as
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an orthotropic. Theoretically, the homogenized elasticity tensor in the Voigt notation for an
orthotropic lattice cell takes the form of:

[
CH

ij

]
=




C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66




i, j ∈ {1, 2, 3} (13)

Due to some small numerical residuals, the zero terms shown in Equation (13) were
not zeros when the hexagon and the cubic lattice were homogenized. A comparison of the
terms for CH

41 for the hexagon and cubic lattice is shown in Figure 11. The data exported
from ANSYS, which is marked as “D [1,1]” and “D [1,4]” in the figures, are from the grid
and the hexagon lattice cell, respectively.
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Figure 11. Comparison of the [1,4] term of the homogenized elastic tensor for (a) hexagon lattice and
(b) grid lattice with the [1,1] term for a material of Eiso = 2 × 1011 and nuiso = 0.3. The CH and D
labels correspond to the data from the voxelization and ANSYS material modeller, respectively.

Based on the data presented in Figure 11, it can be observed that results from ANSYS
have a lower CH

41 term for the hexagon lattice, and a higher error for the grid lattice, in
comparison to the voxelized homogenization process developed in this paper. This small
numerical error is caused by the meshing scheme, as the grid lattice was meshed using
tetrahedrons, while the hexagons were meshed mostly using brick elements, as shown in
Figure 10c,d, respectively. In the next section, numerical errors caused by approximating
periodicity are discussed.

3.3. RVE Rotation

The anisotropic behaviour of the elastic properties of the lattice cell is investigated by
rotating the microstructure of the unit cell with respect to the applied macroscopic strain
field; this is carried out by applying the rotation tensor as follows:

EH
ijkl
′
= QipQjqQkrQlsEH

pqrs i, j, k, l, p, q, r, s ∈ {1, 2, 3} (14)

where Q is the orthogonal tensor, which corresponds to an orthogonal transformation
from x′i to xi basis. The CH

ij in the Voigt notation is expanded to EH
ijkl, and an Einstein

summation [57] was performed, where Qip = Qjq = Qkr = Qls = Q.
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The 2D anisotropy plot produced in this paper (shown in Figure 10) corresponds to a
rotation in the x3 the axis of the global coordinate system, where:

Qip =




cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


, 0 ≤ α ≤ 2π (15)

The 3D anisotropy plot produced in this paper corresponds to a rotation in the x3 axis
and the x2 axis, where:

Qip =




cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1






cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)


,

0 ≤ α ≤ 2π
0 ≤ β ≤ 2π

(16)

Using the compliance matrix by finding the inverse of the elasticity matrix, the follow-
ing elastic properties can be determined:

Sij = E−1
ij

EH
x = 1

S11
, EH

y = 1
S22

, EH
z = 1

S33
,

GH
xy = 1

S44
, GH

yz =
1

S55
, GH

xz =
1

S66
,

νH
xy = − S12

S11
, νH

xz = − S13
S11

, νH
yz = − S23

S22

(17)

where Sij is the compliance matrix, and Eij is the elastic stiffness matrix. The sensitivity
of the primitive cubic lattice’s elastic property to the cell rotation was performed and
presented in Figure 12. The radius for each plot was adjusted such that a volume fraction
of 0.3 could be achieved. The RVE was rotated along the z-axis by an angle of α, and the
E11 was plotted in the anisotropy plot, which was plotted for α = 0◦. For a volume fraction
of 0.3, it was noted that 50 voxel discretization was sufficient to prove that applying the
rotation matrix to the homogenized elastic tensor is equivalent to rotating the RVE.
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Figure 13. A grid lattice cell discretized by 30 voxels along the x, y, and z axis, where the unit cell
rotated at 0◦, 22◦, 45◦, and 68◦ along the z-axis.

3.4. Numerical Errors Due to Approximating Periodicity

In this section, a hexagon was meshed with an equal number of divisions along the
global x and y axes and one element along the z-axis. The following term (τe) has been
visualized in Figure 14:

τ
(i)(j)
e =

1
CH

ij

∫
Ve

(
χ

0(i)
e − χ

(i)
e

)T
ke

(
χ

0(j)
e − χ

(j)
e

)
dVe (18)

where χ
0(i)
e and χ

(i)
e are the element’s macroscopic and microscopic displacement due to

unit strain i, and τe represents the contribution of element e to the homogenized elastic
tensor CH

ij normalized by the total CH
ij . By visualizing τe for each element, it is possible to

observe the elements that could cause the numerical errors shown in Figure 11. The colour
scheme used in Figure 11 is such that the maximum absolute value dictates the positive
(red) and negative (blue) limits of the plot. Values close to zero are given a green colour.
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For the hexagon closed topology with a volume fraction of 0.29 using isotropic steel 
with 𝐸 = 2.0 × 10  and 𝜈 = 0.3, which has been discretized as 30 × 30 × 1 voxels 
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Table 1. Comparison of eigenvalues of lower resolution (19) and higher resolution (20) hexagon 
lattice for an imperfectly voxelized hexagon with a voxel aspect ratio of 1.155. 

Figure 14. Visualization of the integral in Equation (18) for individual voxel elements, a hexagon
with lx/ly = 1.155 and a voxel shape of (a) 30× 30× 1 and (b) 150× 150× 1. Each of the individual
hexagon visualizations were normalized by the value of the CH

ij term.
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For the hexagon closed topology with a volume fraction of 0.29 using isotropic steel
with Eiso = 2.0× 1011 and νiso = 0.3, which has been discretized as 30× 30× 1 voxels
(lx/ly = 1.155), the homogenized elastic tensor was computed to be:

[
CH

ij

]
=




23.8422 18.3845 12.5175 −0.0127 −0.0589 −0.1269
18.3845 23.0329 12.3423 −0.0116 −0.0204 0.0223
12.5175 12.3423 72.047 −0.0278 −0.0421 −0.0378
−0.0127 −0.0116 −0.0278 3.3903 −0.0154 0.0016
−0.0589 −0.0204 −0.0421 −0.0154 13.0261 −0.0147
−0.1269 0.0223 −0.0378 0.0016 −0.0147 14.7842



× 1010 (19)

After the mesh resolution was increased to 150× 150× 1 voxels (lx/ly = 1.155), with
a volume fraction of 0.30, the refined, homogenized elastic tensor was computed to be:

[
CH

ij

]
=




24.6521 18.4319 12.9212 0.0001 0.0001 −0.0009
18.4319 24.5085 12.8797 −0.0001 0.0002 0.0014
12.9212 12.8797 71.0627 −0.0001 0.0004 0.0006
0.0001 −0.0001 −0.0001 3.2672 −0.0004 0.0001
0.0001 0.0002 0.0004 −0.0004 14.020 −0.0002
−0.0009 0.0014 0.0006 0.0001 −0.0002 14.1044



× 1010 (20)

The contributions of the voxels that contribute the small non-zero terms for the 30× 30× 1
and the 150× 150× 1 are shown in Figure 14a b, respectively. The comparison of the eigen
values with and without the zero terms is tabulated in Table 1. Comparing the hexagon
corresponding to CH

51 in Figure 14a with Figure 15a, it can be seen that the voxels that have the
highest contributions belong to the group whose periodicity has not been matched properly
due to discretizing the periodicity basis vector; this can be seen in Figure 15a—the line that
marks the periodic node pair for the nodes near the marked area of a1 to a5, is not parallel
with the periodic basis (bold green line), and a single node from a1 is periodic, with two nodes
from a5 zone. This behaviour causes over-stiffening of the nodal degree of freedom because
the stiffness corresponding to another node would be accumulated into one node during the
global stiffness formulation. Similarly, if the nodes on the cell envelope are not periodically
matched with another node on the envelope, it would cause the stiffness of the nodal degree
of freedom to be smaller than the ones that have been matched. The over-stiffening and
the under-stiffening impact the microscopic displacements, which contribute to values that
are above or below the actual threshold. The mismatch in the periodic degrees of freedom
would remove planes of symmetry and would cause the RVE with hexagonal symmetry to be
represented as a monoclinic or a triclinic material, as shown in Figure 9.

Table 1. Comparison of eigenvalues of lower resolution (19) and higher resolution (20) hexagon
lattice for an imperfectly voxelized hexagon with a voxel aspect ratio of 1.155.

Eigenvalues of
(19)

(1011)

Eigenvalues of
(19) with Zeros

(1011)
% Diff.

Eigenvalues of
(20)

(1011)

Eigenvalues of
(20) with Zeros

(1011)
% Diff.

% Diff.
Between (19)

and (20)

8.0118 8.0117 0.0002 8.0050 8.0050 0 0.08
3.3757 3.3757 0.0006 3.4025 3.4025 0 −0.79
1.4785 1.4784 0.0070 1.4104 1.4104 0 4.8
1.3026 1.3026 −0.0009 1.4020 1.4020 0 −7.1
0.5047 0.5048 −0.0241 0.6148 0.6148 0 −17.94
0.3390 0.3390 −0.0012 0.3267 0.3267 0 3.77
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Figure 15. Visualization of the periodicity node pairs. Each line of a random colour represents a 
coupling of the degrees of freedom for that node pair. The periodic basis has been highlighted as 
thick green lines. The approximated periodic boundary condition can be observed while comparing 
how the periodic boundary condition is applied at (a) between regions a1 to a5 and a2 to a4. Due to 
the finer mesh size, the approximation of the periodic boundary condition at (b) is not affected. 

Figure 15. Visualization of the periodicity node pairs. Each line of a random colour represents a
coupling of the degrees of freedom for that node pair. The periodic basis has been highlighted as
thick green lines. The approximated periodic boundary condition can be observed while comparing
how the periodic boundary condition is applied at (a) between regions a1 to a5 and a2 to a4. Due to
the finer mesh size, the approximation of the periodic boundary condition at (b) is not affected.

Furthermore, it can be observed from Figures 14 and 16 that increasing the voxel
discretization reduces the small non-zero components in the

[
CH

ij

]
tensor because each

voxel contributes a smaller value due to the smaller voxel volume. In Figure 14, for the
hexagon with a larger voxel size, the residual terms are contributed by the voxels along
the edges caused by imperfect periodic boundary conditions; this is also the case for the
refined hexagon lattice, but the ratio of voxels in the edge is smaller than the hexagon with
larger voxel size, so the contribution of the residual error is decreased.
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Figure 16. Convergence of error terms for the hexagon lattice with non-unity aspect ratio. The datum
shown above is a reduced subset of Figure 7c to emphasize the decreasing residual errors (thick red line).

3.5. Comparison of Young’s Modulus with Volume Fraction

The E11 elastic property for the hexagon lattice that is obtained from the voxelization
code and ANSYS are compared with different homogenization procedures obtained from
Gibson and Ashby [36] and Vigliotti and Pasini [26]. In Figure 17, the E11, properties
calculated from the voxelized closed cell hexagon, open cell hexagon, and hexagon cell
envelope (all shown in Figure 18) with orthogonal basis are compared. No significant
deviations were observed when comparing it to the results from ANSYS, which were
obtained from a hexagon cell envelope with an orthogonal basis.
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Figure 17. Comparison of normalized E11 for the hexagon lattice at multiple volume fractions across
multiple homogenization schemes present in the literature [26,36].
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Figure 18. Multiple representations of the Honeycomb hexagon lattice with different representative
volume elements with their corresponding periodic basis. The representative volume element of the
unit cell is shown as red voxels.

A hexagon lattice made from a circular truss (i.e., without considering periodicity in
the out-of-plane direction) and a hexagon with a plate wall (3D voxel with a single layer
and periodicity in the z-direction) are considered below. Gibson and Ashby’s model [36]
starts to overpredict the elasticity, whereas Vigliotti and Pasini’s [26] model, which uses a
beam model, underpredicts the elasticity at higher relative density.
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3.6. Comparison of Elastic Properties for Hexagon Lattice with Varying Cell Angle

In this section, the cell angle is changed, and Young’s modulus and shear modulus are
plotted for a hexagon with a relative density of 0.2. The results obtained from the voxel
homogenization process match very well, with some slight discrepancies; this is caused
by the geometry discretization process, where a volume fraction of 0.2 was not achieved
due to the linear interpolation used with the optimizer to define the relative density as
a function of the radius of the truss elements. The variation of the homogenized elastic
properties for the hexagon lattice w.r.t cell angle is presented in Figure 19.
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Figure 19. Elastic properties of the 2D hexagon lattice with a relative density of 0.25 made from
isotropic material with Young’s modulus of 2 × 1011 Pa and Poisson’s ratio of 0.3. Two-dimensional
anisotropic diagram of elastic properties for the hexagon with a volume fraction of 0.2 due to the
variation of the hexagon cell angle.

3.7. Comparison of Elastic Constants for a 2D Monoclinic RVE Lattice with Varying Cell Angle

In this section, a square-like 2D lattice is considered; the angle shown varies from 45◦

to 90◦. The results are compared with code published by Andreassen and Andreasen [33]
as shown in Figure 20. Andreassen’s work is considered more accurate because the 2D
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voxel elements change shape as the cell angle changes, and there are no approximations
performed when applying periodicity boundary conditions to the lattice. The voxel code
underestimates the C22 component of the stiffness matrix because of the periodicity approx-
imations and the voxel meshing algorithm. The main cause is the voxel meshing, where
the truss elements are jagged, as shown in Figure 8.
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Figure 20. Comparison of homogenized elastic properties of a square lattice with varying cell angles
between 2D MATLAB voxel and 3D voxel code.

4. Application

In this section, application of the developed voxel code is applied to different lattice
topologies with non-orthogonal bases. The material used in this study is isotropic steel
with Eiso = 2.0× 1011 Pa and νiso = 0.3.

4.1. Three-Dimensional Triclinic and a Monoclinic Bravais Grid Lattice

In this section, a triclinic and a monoclinic Bravais grid lattice are analyzed by applying
the approximated periodicity boundary condition. The geometry was discretized using
voxels, as shown in Figure 21.
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system with 𝜙 and 𝜃 rotation angles, as shown in Figure 22. The periodic basis for the 
lattice was defined using the trusses 𝑇 , 𝑇 , and 𝑇 . The angular restrictions for 𝜙, 𝜃, 
and 𝛾 for the Bravais lattice system are tabulated in Table 2. 

Figure 21. Discretized triclinic Bravais grid lattice. The Voxel center is represented as a small sphere
for a volume fraction of 0.3. The planes that represent the cell envelope definition and its normal
have also been plotted.
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The lattice definition used for the current analysis to create the triclinic and monoclinic
Bravais grid lattice is shown in Figure 22. The lattice is defined such that the red trusses
are in the global x–y plane. The trusses T14 and T23 are aligned parallel to the global x-axis.
The other red trusses T12 and T43, are rotated from the global y-axis using angle gamma
(γ) in the x–y plane. The green trusses are created by offsetting the red trusses using the
blue trusses. The blue trusses are defined using a spherical coordinate system with φ and θ
rotation angles, as shown in Figure 22. The periodic basis for the lattice was defined using
the trusses T12, T14, and T15. The angular restrictions for φ, θ, and γ for the Bravais lattice
system are tabulated in Table 2.
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Table 2. Angular constraints for the Bravais lattice are based on the angle definitions used in this paper.

Phi (φ) Theta (θ) Gamma (γ)

Triclinic (φ 6= θ 6= γ) 6= 0◦ 6= 0◦ 6= 0◦

Monoclinic 6= 0◦ = 0◦ = 0◦

Cubic, Orthorhombic,
and Tetragonal = 0◦ = 0◦ = 0◦

The key difference between the triclinic and the monoclinic Bravais grid lattice used
for the current analysis is the slight change in the truss angles and their corresponding
periodicity bases. It can be noted that for the monoclinic lattice, the trusses that make up
the red and the green frames are orthogonal to each other (γ = 0◦). Furthermore, the point
set {1,4,5,8} and {2,3,6,7} are co-planar with the z–x plane.

For the monoclinic Bravais grid lattice shown in Figure 23b, which had a volume
fraction of 0.29 and was discretized as 30 × 30 × 1 voxels, the homogenized elastic tensor
was computed to be:

[
CH

ij

]
=




31.0421 3.8754 5.0174 0.0000 0.0000 1.9074
30.0581 2.9965 0.0000 0.0000 1.2017

24.1917 0.0000 0.0000 6.9772
2.7767 0.5141 0.0000

2.4535 0.0000
5.2315



× 109 (21)
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Figure 23. Geometric definitions for the monoclinic and triclinic grid lattice are used in this paper.

Similarly, for the triclinic Bravais grid lattice shown in Figures 23a and 23, which had a
volume fraction of 0.29 and was discretized as 30 × 30 × 1 voxels, the homogenized elastic
tensor was computed to be

[
CH

ij

]
=




31.8431 4.3748 5.2469 1.3106 1.1570 2.8994
27.8371 2.3521 4.1020 0.3740 1.3446

18.1782 1.6143 2.6998 7.1696
3.5984 0.8139 1.2457

2.5514 1.3011
6.3248



× 109 (22)

The elastic properties of the monoclinic and the triclinic lattice are tabulated in Table 3.
The evolution of the elastic properties visualized as 2D and 3D anisotropic plots is shown
in Figures 24 and 25 for the triclinic and monoclinic Bravais grid lattice, respectively. The
key difference between the 3D anisotropy plot between the triclinic and monoclinic Bravais
grid lattice is how the peaks of the anisotropy plots are warped.

Table 3. Elastic properties of the sample monoclinic and triclinic Bravais lattice.

Elastic Properties Monoclinic Triclinic

E11 [Pa] 2.96 × 1010 2.96 × 1010

E22 [Pa] 2.93 × 1010 2.27 × 1010

E33 [Pa] 1.46 × 1010 9.28 × 109

G12 [Pa] 2.67 × 109 2.68 × 109

G13 [Pa] 2.36 × 109 2.03 × 109

G23 [Pa] 3.21 × 109 3.36 × 109

ν12 0.108 0.1247
ν13 0.156 0.1668
ν23 0.076 0.0778
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Figure 24. Two-dimensional and three-dimensional anisotropy plots for triclinic Bravais grid lattice 
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Figure 24. Two-dimensional and three-dimensional anisotropy plots for triclinic Bravais grid lattice
(3D). Three-dimensional anisotropy plots are not to scale.
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Figure 25. Two-dimensional and three-dimensional anisotropy plots for monoclinic Bravais grid 
lattice (3D). Three-dimensional anisotropy plots are not to scale. Figure 25. Two-dimensional and three-dimensional anisotropy plots for monoclinic Bravais grid

lattice (3D). Three-dimensional anisotropy plots are not to scale.

4.2. Two-Dimensional Non-Orthogonal Lattice

In this section, the elastic properties of the 3.4.6.4 2D lattice are plotted. The homoge-
nized elastic tensor of the 3.4.6.4 lattices shown in Figure 26 is tabulated in Table 3. The
tabulated tensor is based on voxels that are generated as a single layer with an additional
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periodicity added out of a plane (z-axis). Considering this periodicity means that the single
layer is equivalent to a fully tessellated geometry that has infinite depth in the out-of-plane
direction. The tabulated tensors are obtained by fitting a third-order polynomial for each of
the tensor entries, where the volume fraction varies from 0.1 to 0.9.
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Figure 26 depicts the 3.4.6.4 lattice for multiple volume fractions. This figure shows 
how the geometry of the lattice changes as the volume fraction increases. This sort of fill-
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Figure 26. 3.4.6.4 lattice cells with a non-orthogonal periodic basis. The representative volume element of
the unit cell is shown as red voxels. Evolution of selected 2D latices as the volume fraction increases.

Figure 26 depicts the 3.4.6.4 lattice for multiple volume fractions. This figure shows
how the geometry of the lattice changes as the volume fraction increases. This sort of filling
behaviour is one of the reasons for the Euler–Bernoulli beam formulation being invalid
for larger relative density, as it cannot predict the interactions of the geometry within the
lattice. The 2D and 3D anisotropy plots for the 3.4.6.4 lattice are shown in Figure 27. The
coefficients for the homogenized elastic tensor as a function of relative density is tabulated
in Table 4.
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Figure 27. Two-dimensional and three-dimensional anisotropy plots for 3.4.6.4 lattice.

4.3. Three-Dimensional Sandwich Panel Lattice

In this section, the elastic properties of the sandwiched X (body-centred cubic) lattice
are plotted. For the sandwich panel analysis, periodicity in the z-direction (sandwich
plate normal) is assumed; thus, the elastic properties that are plotted in this section are for
sandwich panels that are assumed to be stacked. For all the sandwich panel geometries
analyzed in this paper, the thickness of the sandwich panel is held constant at a unit of 0.05
of the cell length. The homogenized elastic tensor of the Sandwich X lattice is shown and
tabulated in Table 3. The 2D and 3D anisotropy plots for the Sandwich X lattice are shown
in Figure 28. The coefficients for the homogenized elastic tensor as a function of relative
density is tabulated in Table 5.
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Table 4. Homogenized elastic tensor coefficients (based on Equation (13)) and correlation coefficient
(R) for the polynomial fit for the 3.4.6.4 lattice.

C11 C22 C33 C44 C55 C66 C12 C13 C23
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Figure 28. Two-dimensional and three-dimensional anisotropy plots for X lattice in a sandwich panel (3D).
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Table 5. Homogenized elastic tensor coefficients (based on Equation (13)) and correlation coefficient
(R2) for the polynomial fit for the Sandwich X lattice.

C11 C22 C33 C44 C55 C66 C12 C13 C23
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Sandwich X Lattice (3D)

ρ3 2.318 2.318 1.499 0.456 0.127 0.127 0.78 0.607 0.607
ρ2 −1.915 −1.915 −0.296 −0.387 0.193 0.193 −0.646 −0.265 −0.265
ρ 0.941 0.941 0.118 0.32 0.045 0.045 0.365 0.14 0.14
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5. Conclusions

The homogenized elastic properties of several 2D and 3D lattices can be performed
using the voxel mesh approach regardless of whether the periodicity is orthogonal or non-
orthogonal. Approximating the periodicity on an imperfect voxel mesh misaligns the periodic
node pairs; this alters or removes the planes of symmetry within the RVE and introduces
errors in the stiffness matrix. These errors are at least two orders of magnitude smaller than
the main diagonals for the imperfect voxel mesh. The mesh is considered perfectly voxelized
if the translated nodes of the cell envelope, using the periodicity basis, align themselves with
another node. For this perfectly voxelized mesh, the numerical errors are at least eight orders
of magnitude smaller than the main diagonals; this can be achieved by altering the number of
discretizations performed along the global coordinate system. Furthermore, the numerical
error caused by approximating the non-orthogonal periodicity decreases as the voxel size
is reduced. We have shown that it is possible to evaluate the elastic properties of periodic
cellular materials whose periodic basis is of any Bravais lattice system.
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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: In advancing special materials, seamless integration into existing production chains is
paramount. Beyond creating improved alloy compositions, precision in processing methods is crucial
to preserve desired properties without drawbacks. The synergy between alloy formulation and
processing techniques is pivotal for maximizing the benefits of innovative materials. By focusing
on advanced deep processing technology for small ingots of modified 12% Cr stainless steel, this
paper delves into the transformation of cast ingot steel structures using radial shear rolling (RSR)
processing. Through a series of nine passes, rolling ingots from a 32 mm to a 13 mm diameter with a
total elongation factor of 6.02, a notable shift occurred. This single-operation process effectuated a
substantial change in sample structure, transitioning from a coarse-grained cast structure (0.5–1.5 mm)
to an equiaxed fine-grained structure with peripheral grain sizes of 1–4 µm and an elongated rolling
texture in the axial part of the bar. The complete transformation of the initial cast dendritic structure
validates the implementation of the RSR method for the deep processing of ingots.

Keywords: rheology; plastometry; radial-shear rolling; severe plastic deformation; FEM-simulation;
ingots; casting structure; fine-grained structure

1. Introduction

In recent years, there has been a renaissance in the exploration of liquid-metal-cooled
fast reactor (LMFR) fuels and fuel cycle possibilities [1]. This renewed interest has not
only been observed in various national research and development initiatives, but has also
extended to international collaborative efforts. Some of these global undertakings include
the International Project on Innovative Reactors and Fuel Cycles (INPRO), the Generation
IV International Forum (GIF), and the Global Nuclear Energy Partnership (GNEP) [2–4].

Austenitic nickel-based stainless steels in the 300s family were initially chosen because
of their good long-term mechanical properties at high temperatures and resistance to
sodium coolant [5,6]. However, nickel, which stabilizes the austenite phase and gives steel
its heat resistance, so necessary in high-temperature Gen-IV, experiences problems with
induced radioactivity [7,8]. Nickel transition under neutron irradiation from the long-lived
radioactive isotope nickel-63 makes reactor core structure disposal very problematic [9]. It
is also known that matrix precipitates γ′, which gives nickel steels increased strength, are
unstable under irradiation [10,11]. This increases brittleness and reduces the strength of
grain boundaries of such steel, which were unacceptably high, leading to the development
of alternative stainless steels [12–14].
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Nickel can be replaced by particulate, fine dispersed inclusions such as oxides or
carbides. As reinforcing and stabilizing elements, yttrium oxide (Y2O3) particles are most
effective [15,16]. This is the main dispersion strengthened (ODS) steel idea. Moreover,
yttrium oxide has increased resistance to radiation [17–20], thereby prolonging the max-
imum service life of structural materials, and solving labor-consumption issues and the
dangerous processing and disposal of steel structures in decommissioned nuclear power
plant (NPP) cores.

ODS steels are usually produced using powder metallurgy by various types of mechan-
ically alloyed powder sintering [21,22]. These methods are associated with problems related
to residual porosity, uneven composition, and large grain size of 80 µm or more [23,24]. In
addition, billets, as well as ingots, need additional deformational and heat treatments to
improve structures.

The production of such special materials, as a rule, is carried out in small-scale pro-
duction, special enterprises [25,26]. The technological chain usually includes smelting an
ingot using a vacuum of at least 10–3 mbar, hot deformation processing (forging, pressing,
and rolling), and cold deformation processing (pilger rolling, drawing, etc.) [27–30]. Due to
the high quality requirements of semi-finished and finished products, these technological
schemes are characterized by significant metal losses and low yields [31]. As a result,
finished products for the nuclear industry will have high costs, thus the development of
technologies that reduce these negative consequences is highly relevant.

Even minor changes in chemical composition can affect the manufacturability of a ma-
terial during product manufacturing, primarily at cold deformation processing stages [32,33].
In addition, as a rule, due to the high costs of smelting full-scale ingots as in mass produc-
tion, ingots of smaller diameter are used here [34,35]. A decrease in diameter leads to a
decrease in the deformation of the cast structure during hot processing, which can lead
to structural inhomogeneities during subsequent processing operations [36]. Therefore,
deformation processing studies of small ingots of special materials are of great relevance.
This is the main focus of this work.

For the deep processing of a cast structure, severe plastic deformation (SPD) methods
can be used [37,38]. For this initial purpose, the equal-channel angular pressing (ECAP)
method was invented by Segal [39,40]. This method later became generally accepted and
most widespread in the bulk ultrafine-grained (UFG) and nanostructured material field by
SPD [41–43]. Various SPD process schemes are shown in Figure 1.
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Generally, using plastic strain intensification to improve the quality of ingots makes a
lot of sense and has a previous application history. The most common use of SPD methods
is in the forging of ingots using special dies [44,45] or in all-round forging [46]. High-
effective microstructure processing methods such as high-pressure torsion (HPT) [47–49]
are unfortunately not applicable outside laboratories, and even more so for ingots, not
applicable due to sample size limitations and method scaling factors. The same can be
said for cyclic extrusion (CEC) [50,51], accumulated roll bonding (ARB) [52], and some
other methods [53–59]. Of course, ECAP can be used for pressing ingots, but this is not
technologically easy due to the need for several pressing cycles and considerable effort
and equipment strength requirements. This general point can be seen clearly from the SPD
process schemes in Figure 1.

One of the alternative and still not widely used methods of intensive structure refine-
ment using the SPD method is Radial Shear Rolling (RSR) [60,61]. This method is outwardly
similar to the classical Mannesmann method for producing seamless pipes [62,63] but dif-
fers significantly from it. Figure 1 shows the process scheme.

As can be seen from Figure 1, there are not two skew rolls, like in the pipe piercing
scheme, but three skew rolls, and not a pipe is rolled, but a solid bar. A more important
difference is not visible in the figure; due to the special combination of roll angles, all-
around compressive stresses are realized in the deformation zone, without tensile stresses,
as it works in pipe piercing processes. Due to increased roll skew angles of 18–21 degrees,
metal flows in the deformation zone have an axisymmetric vortex character with a gradient
along the radius [64]. Such a stress–strain state ensures intense deformation of the outer
sample zone with the formation of an equiaxed ultrafine-grained structure [65]. Laminar
metal flow along the rolling axis in the central third zone of the bar ensures the formation
of a rolling texture [66].

This method has been successfully used for the significant refinement of titanium [67,68],
zirconium [64,69], copper [70], and steel [71]. In many of these cases, a gradient structure is
formed. All experiments with radial shear rolling involve the processing of semi-products
of rolling production with a structure either after hot rolling or after recrystallization
annealing.

One of the main requirements is to provide a structure. NPP core zone structural
elements should be predominantly recrystallized with a grain size of at least 9–12 points
according to ASTM E112 [72,73]. Such a structure type can be achieved by the described
method, therefore, the use of RSR is justified.

Equally, the influence of radial shear rolling on the structure of ingots is of no less
scientific interest. Implemented high levels of accumulated deformation and a stress state
scheme, which are favorable for materials with reduced plasticity, promise significant
effects with relatively small changes in workpiece dimensions.

The main purpose of this study was to investigate ingot initial structure behaviors
under the influence of radial shear rolling. The possibilities of this method were realized by
evaluating the processing microstructures of special alloy ingots in small-scale production
conditions of NPP critical parts.

2. Materials and Methods

Yttrium-modified stainless steel small ingots were used as experimental materials
for this study. Ingots were obtained by vacuum induction furnace melting as part of
other research focused on generating oxide dispersion-strengthened (ODS) steel. The base
material for melting was ordinary Fe-13%Cr steel (AISI 403). During the melting process,
a small quantity of metallic yttrium and iron oxide (0.5% together) was added to steel.
Metallic yttrium undergoes oxidation through the reduction of iron oxide, transforming
it into yttrium oxide (Y2O3) particles in steel. The melting operation was carried out
at a temperature of 1600 ◦C and a furnace pressure ranging from 1 to 5·102 Pa. The
final composition percentages were Fe-86.50, Cr-12.47, Si-0.25, Y-0.12, and Other-0.65.
The melting technology and its features, including oxide dispersion and composition
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fluctuations are other ongoing research subjects and will be published separately. Here, we
studied casted structure deep processing. A typical casting dendrite ingot structure was
reached for a 32 mm diameter ingot intended for RSR rolling experiments (Figure 2).
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Figure 2. Initial 32 mm diameter ingots.

Casted ingots were examined for rheology properties using a Gleeble 3800 (Dynamic
systems Inc., Austin, DX, USA) plastometer using the “Pocket Jaw” module. Plastometric
tests were carried out by the uniaxial compression of cylindrical specimens at strain rates
of 0.5 s−1, 5 s−1, and 15 s−1 at temperatures of 600 ◦C, 800 ◦C, 1000 ◦C, and 1200 ◦C. That
is, 12 deformation cases of modified steel were studied. Strain rate and temperature ranges
were selected based on all-round forging and radial shear rolling conditions of the resulting
alloy, and accounted for the thermal effects of plastic deformation. Although the average
strain rate during radial shear rolling corresponded to 5 s−1, there were regions of localized
metal flow where the strain rate was lower (central part of the bar) and higher (periphery).
The testing process is shown in Figure 3.
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Figure 3. Gleeble 3800 testing machine (left) and a photo showing the testing of cast ODS-steel
specimens in ISO-T model dies with mounted extensometers for longitudinal and transverse mea-
surements of specimens during testing (right).

Cylindrical specimens with a working part diameter of 10 mm and a length of 12 mm
from several initial ingots were made. The test temperature was controlled using a
chromel–copel thermocouple welded to the central part of the specimen on the Ther-
wocouple welder tool supplied with the Gleeble 3800 set. Graphite-based thin gaskets were
used as a lubricant in tests. Working dies of the ISO-T model were additionally lubricated
with OKS255 (OKS, Maisach, Germany) grease after each test.

Radial-Shear Rolling for ingot processing computer simulations by the Finite Element
Method (FEM) using DEFORM-3D (SFTC, Columbus, OH, USA) software were conducted.

A verification experiment was conducted using the RSR-10/30 radial shear rolling
mill at Karaganda Industrial University. The rolling process included 10 passes with a
2 mm step (in terms of diameter), commencing from an initial diameter of 32 mm and
concluding at a diameter of 13 mm, with an initial heating temperature of 1200 ◦C. These
represented the maximum and minimum achievable rolling diameters for the mill to attain
the highest deformation level. Rolling diameters for each pass were the next route (mm):
32-30-28-26-24-22-20-18-16-13. Rolling reduction factor and temperature selections were
guided by reference materials and previous studies [74–77]. The heating process was
conducted using the Nabertherm LH-30/14 heating furnace.
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The experimental rolling process is shown in Figure 4. The RSR mill the next rolling
gape diameter setting process to the next pass took 2–5 min. The rolling process is shown
in Figure 4.
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Figure 4. Experimental rolling and the RSR-10/30 radial shear rolling mill.

After rolling, the bar was cut for microstructure characterization into short small bars,
which were cut in half along the axis using a Brilliant-220 (QATM, Mammelzen, Germany)
precision cutting machine with a cutting speed of 10 µm/s and intensive water cooling
to minimize deformation–temperature damage to structures. From both halves of the
section, two thin plates were cut—one for Transmission Electron Microscopy (Jeol, Tokyo,
Japan) specimen preparation to characterize deformed peripheral zone fine structure zones.
Another plate was used for Electron Backscatter Diffraction (EBSD) sample preparation by
electrolytic polishing (jet-polishing). The longitudinal section was preliminarily polished
on a Saphire-520 (QATM, Mammelzen, Germany) grinding and polishing machine, and
then electrolytically polished on a LectroPol-5 (Struers, Copenhagen, Denmark) unit. A
3 mm diameter round TEM specimen was punched out with a Gatan puncher and subjected
to electrolytic thinning on a TenuPol-5 (Struers, Copenhagen, Denmark) machine. In both
cases, A2 electrolytes recommended by the manufacturer were used. Electrolytes forced
cooling to −20 ◦C using attached Julabo 600F cryostats (Julabo, Seelbach, Germany). The
cutting scheme is shown in Figure 5.
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Figure 5. The rolled bar cutting scheme.

Electron microscopy methods were used to study microstructural changes. The mi-
crostructural characterization of grains, including crystallographic orientation, was per-
formed using Electron backscatter diffraction (EBSD) on a Carl Zeiss Crossbeam-540 field
emission scanning electron microscope (Carl Zeiss, Jena, Germany) with an NordlysNano
EBSD(Oxford Instruments, Abingdon, UK) attachment. Diffraction pattern recognition
and mapping were performed using HKL Channel-5 Tango software v.5.12.74.0 (Oxford
Instruments, Abingdon, UK). Maps were built along the radius line from the center to the
periphery at five points and at the same distance with steps of 1.625 mm. Once the grains
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were reconstructed, a variety of grain size parameters were automatically calculated, e.g.,
Circle Equivalent Diameter (CED) was better and more accurate in characterizing deformed
grain sizes. Therefore, we used this parameter later for grain size. Major and minor axis
ratios were used to characterize grain elongation parameters. The scheme according to the
Channel-5 User Manual is shown in Figure 6.
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Figure 6. Scheme for calculating grain size parameters.

The fine structures of the most deformed peripheral zones were studied on a JEOL
JEM-1400PLUS transmission electron microscope with a Gatan OneView camera (Gatan
Inc., Pleasanton, CA, USA) in bright field mode. The original ingot sample microstructure,
due to its very large grain size and beyond the minimum field of view, was performed only
on a SEM JEOL JSM IT-200LA (Jeol, Tokyo, Japan) in back-scattered electron (BSE) mode.

A microhardness test was performed on the EBSD-ready-cross-section plate using the
Shimadzu HMV-G31ST (Shimadzu, Kyoto, Japan) tester and the Vickers method (10 HV)
using five times averaging with a load of (2.942) N and 10 s holding times.

3. Results and Discussion
3.1. Rheological Properties and Database Making

Based on Gleeble 3800 plastometer plastometric test results, ODS steel stress-strain
flow curve graphs for 0.5–15 s−1 strain rate ranges and 600–1200 ◦C temperature ranges
were plotted. To construct curves, three tests were conducted and a total of 30 tests were
carried out. Flow curves are shown in Figures 7–10.
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Figure 7. Material flow curves obtained at 600 ◦C: solid markers—indicate experimental data and
transparent markers—–indicate approximation results.

The advantage of the compression test scheme was the similarity of the load appli-
cation scheme with many metal pressure treatment processes and data generation on the
resistance of the metal to plastic deformation over a wide range of deformations. The
Figures 7–10 showed that with increasing temperatures from 600 to 1200 ◦C, deformation
resistance values decreased by more than 10 times. Increasing the strain rate from 0.5 s−1

to 15.0 s−1 increased strain resistance values, and at T = 600 ◦C, the increase was approx-
imately 30%. At T = 800 ◦C, the increase was approximately 48%. At T = 1000 ◦C, the
increase was approximately 57%, and at T = 1200 ◦C, the increase was 55%. Thus, the effects
of increasing strain rates on strain resistance increased with increasing test temperature.
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Figure 9. Material flow curves obtained at 1000 ◦C: solid markers—indicate experimental data and
transparent markers—indicate approximation results.
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Flow curve characters in temperature ranges coincided. In the strain range up to
ε = 0.5, flow curves reached steady-state stages. Moreover, with increasing strain rates,
eliminated stages occurred at higher strain values.

For the practical use plastometric study results, an approximation of flow curves was
carried out using a generalized dependence—the function (1) of Hensel A., Spittel T. [33].

σp = Aexp(m1T)Tm9 εm2exp
(

m4/ ε)(1 + ε)m5T exp(m7ε)
.
ε

m3 .
ε

m8T (1)
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where A and m1. . .m9—are unknown coefficients in the deformation resistance model.
To solve the regression, we used the built-in program of the Forge 2008® “Rheol-

ogyDatabase” program, which used the Levenberg–Marquardt method. This method
provides the automatic determination of coefficients based on an array of experimental
points. The operation was performed at the Institute of Metal Forming Processes and Safety
Engineering, Czestochowa Polytechnic (Poland). The approximating coefficients were as
follows: A = 2251; m1= −0.0052; m2 = −0.01; m3 = 0.2; and m4 = −0.05. An analysis of the
verification results of approximated and real results showed an approximation error of no
more than 10%. The approximation was considered optimal when the approximation error
was not more than 15%. The difference between flow curves obtained experimentally and
calculated by deformation ε < 0.4 was due to the fact that deformation resistance σp values
were influenced by elastic deformation, which was not accounted for in Equation (1). Thus,
in experimental flow curves, plastic deformation began at large deformation resistance σp
values. As the degree of deformation increased, the error decreased. Due to the large mag-
nitude of plastic deformation that occurred in simulated processes, the difference between
the magnitude of the actual deformation and the value obtained after approximation in the
range of smaller deformations of 0.4 did not affect the results.

After processing the data, a new material database was created for a new material
base was created for Deform-3D suitable for modeling deformation processes of the cast
ODS-steel in the temperature range of 600–1200 ◦C and strain rates of 0.5–15 s−1.

The database can be used to simulate hot deformation processing conditions (hot
pressing, hot forging, and hot rolling), which are used at the beginning of the technological
cycle for the manufacture of fast reactors fuel assemblies, fuel element claddings, and plugs.

3.2. Computer Simulation of RSR Ingot Processing

Radial shear rolling processing was simulated for the sequential rolling of a 32 mm
diameter ingot to a 13 mm diameter bar in nine passes with a 2–3 mm reduction in diameter
on the RSR-10/30 (MISIS, Moscow, Russia) rolling mill. The total rolling elongation factor
was 6.05. Simulation results are shown in Figure 11.
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Figure 11. Computer simulation of RSR ingot processing.

The accumulated total strain degree in some areas of the final bar reached 30 mm/mm
with a minimum value of 15 mm/mm. Such deformation levels should be sufficient
for initial casted structure deep transformation. Strain levels had axisymmetric radial
gradients regarding bar cross-sections. These differences can be used to interpret mi-
crostructural changes.

3.3. Microstructural Change Study

Initial ingot microstructures at various magnifications are shown in Figure 12. The
images clearly show the light axes of dendrites and darker interdendritic spaces. The grain
sizes fall within the range of 0.5–1.5 mm. Consistently, dendritic cast structures are preva-
lent throughout the steel volume, embodying typical ingot structures as expected. This
microstructure was suitable for casted structure evolution research during RSR processing.
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Figure 12. SEM (BSE) scale images of original ingot dendritic structures.

Following the rolling process, a gradient structure was expected. To characterize this,
gradient EBSD mapping was used. The mapping spans along the longitudinal section
radius from the axial zone to the peripheral zone at equal distance measurements at five
specific points. The resulting EBSD maps, showcasing full-size microstructure images of the
most differenced axial and peripheral zones of the bar (left and right images respectively),
are presented in Figure 13.
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Figure 13. EBSD map of the axial zone (left) and peripheral zone (right) of a longitude bar section
after final rolling.

The peripheral zone map of the bar revealed a fine-grained structure characterized
by equiaxed grains with diverse orientations. Within structures, similar orientation grains
to elongated along rolling direction chains aligned and interspersed randomly, exhibiting
significantly different orientation grain chains. The occurrence of identical orientation grain
chains suggested unfinished potential dynamic recrystallization processes. However, this
fact generally correlated with well-known work on radial shear rolling [24–30,51,52] and
SPD processing generally [4–6], and indicated significant processing of the cast structure
with its complete transformation into fine-grained structures close to nuclear engineering
needs [53,54].

The center of the bar microstructure exhibited predominantly similar orientations of
large grains elongated in the rolling direction. However, there were notable regions with
fine grain clusters and varying orientation zones, rendering the structure more intricate
than anticipated based on existing research. It did not resemble a heavily deformed
laminar shape typically observed in metals with a strong rolling texture, as previously
seen [18,26]. Instead, it appeared to represent an intermediate state between the texture and
structure of the bar’s center after potential deformation using the RSR method, as outlined
elsewhere [51].

This complex structure likely resulted from a combination of processes involving
dynamic recrystallization, manifesting as clusters or colonies of fine grains within the
matrix with different orientations, and static recrystallization, leading to the formation of
large grains that retained their longitudinal orientation in the rolling direction. However,
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these large grains were now irregular and more rounded in shape, exhibiting evident mis-
orientation. This phenomenon was probably induced by longer, smoother deformational
heating in the central part, contrasting with rapid heating and cooling cycles experienced
by the near-surface layer due to large shear deformations and subsequent swift cooling
from cold rolls and the environment.

To conduct a comprehensive and quantitative analysis of microstructure changes
across cross-sections, all EBSD maps were meticulously processed and subjected to statisti-
cal analysis. This analysis generated a graph featuring two primary indicators, as depicted
in Figure 14. The gray columns, with a scale on the left, represented the average grain
size by CED in the axial-peripheral direction. Concurrently, the red plot, with a scale on
the right, illustrated the average ratio of the larger and smaller axes of grain dimensions,
serving as a measure of equiaxiality. A value close to 1 indicated a more equiaxed grain,
while a value closer to 0 suggested a more elongated grain, characteristic of rolling texture
morphology. This indicator was introduced to address gradient structures across the rod’s
cross-section and to provide a more objective characterization of microstructures than the
average grain size by CED alone.
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Figure 14. EBSD study of the gradient microstructures of rolled bar longitudinal sections.

In the axial zone of the rod, the grain ratio value was 0.58, showcasing a 23% change
towards the peripheral zone. This indicated a decrease in grain equiaxiality from the
peripheral to the axial zone. As illustrated in Figure 13, this aligned with the transition
from a fine-grained structure in the peripheral zone to an elongated fine-grained structure
along the axis of the bar.

In the provided miniatures, it was evident that grains tended to cluster in fine-grained
groups with closely aligned orientations across almost all images. A notable shift in grain
equiaxiality was observed around the halfway point of the rod’s radius. The highest
concentration of elongated grains started from this region. However, interestingly, the
average grain size remained comparable to that of the periphery. Grain growth was initiated
at a depth of approximately 2/3 of the radius from the surface. These data were comparable
with FEM-simulation data (Figure 10). They had a general gradient similarity regarding
the structure-changing radial distribution. A higher total strain level of 25 mm/mm and
more for outer zones corresponded to a better structure. Medium 18–24 mm/mm levels
corresponded to a transition structure. Although the average grain size at this stage was
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still notably smaller than the original sample’s grains, which were larger than 1000 µm,
the change was considerable. The average grain size across the entire cross-sectional area
of the rolled sample was 3.2 µm, representing a reduction of over 300 times compared to
initial grain size.

Overall, the cast structure of ingots had a complete transformation throughout the
entire cross-section, leading to the successful application of the RSR method for ingot deep
processing. The transformed structure of the periphery zone mainly corresponded to ASTM
E112 requirements [72,73].

The fine structure TEM characterization of the longitudinal section peripheral part
(2 mm from the edge along the radius of the rod) at various magnifications is shown
in Figure 15. The TEM study affirmed grain refinement down to sizes of 1–4 µm in the
peripheral part of the rod, accompanied by a similar misorientation level. Dislocations were
primarily concentrated at grain boundaries. Within the grain body, dislocation clusters,
if present in sufficient quantities, demonstrated a trend towards dislocation rearrange-
ments, resulting in the formation of a cellular structure. Simultaneously, numerous grains
displayed a small number of dislocations, suggesting increased material plasticity. High
deformation heating probably triggered fine structure recovery processes with dislocation
annihilation. Notably, these observations slightly deviated from previous data [52], which
indicated a significantly higher number of dislocations in peripheral ultrafine-grained
(UFG) zone grains.
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Figure 15. Fine structure of fine-grained zones in the peripheral bar part after final rolling.

In this case, despite substantial processing, the peripheral region did not transition to
the Ultrafine-Grained (UFG) state. Probably, between passes, recovery and recrystallization
processes had likely occurred. Specific thermal and rolling conditions played crucial roles
in achieving desired microstructural outcomes. Further optimization of the processing
parameters may be necessary to achieve a targeted UFG state in the peripheral zone.

Microhardness evaluations showed decreasing values from 212 HV to 183 HV. These
changes corresponded to microstructural changes in the full transformation of non-plastic
casted structures to normal. Also, a decrease in hardness was explained by dislocation-free
grains according to the TEM study.

4. Conclusions

Based on our analyses, the following conclusions were formulated:

1. The use of radial shear rolling processing led to changes in the structure of a small
ingot of stainless steel modified with yttrium.

2. The original coarse-grained dendritic structure of casted ingots was significantly
refined to a fine-grained structure. The region farthest from the axis of the rod,
constituting 1/3 of the radius of the rod, had a fine-grained structure with a grain size
of 1–4 µm, with an equiaxial structure, without a clear dominant orientation structure.
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The axial zone, which also occupied 1/3 of the radius of the rod, had a more elongated
and coarse-grained structure with grain sizes from 4 to 10 µm. The predominant grain
orientation in this region was oriented along the rolling axis. In the middle region,
there was a transition-type structure between these two. The average cross-sectional
grain size was approximately 3.2 microns, which was 300 times smaller than grain
sizes before the rolling process.

3. Grains in the highly deformed peripheral zone had a relatively small number of
dislocations. Based on fine structure and some EBSD features, we conclude that
processing can be improved.

4. Resulting blanks were close to nuclear engineering needs and could be used as semi-
product improvements for the manufacture of some structural elements for nuclear
power plant cores.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Sand solidification of earth-rock dams is the key to flood discharge capacity and collapse
prevention of earth-rock dams. It is urgent to find an economical, environmentally friendly, and
durable sand solidification technology. However, the traditional grouting reinforcement method
has some problems, such as high costs, complex operations, and environmental pollution. Enzyme-
induced calcium carbonate precipitation (EICP) is an anti-seepage reinforcement technology emerging
in recent years with the characteristics of economy, environmental protection, and durability. The
erosion resistance and shear strength of earth-rock dams solidified by EICP need further verification.
In this paper, EICP-solidified standard sand is taken as the research object, and EICP-cemented
standard sand is carried out by a consolidated undrained triaxial test. A two-stage pouring method
is adopted to pour samples, and the effects of dry density, cementation times, standing time, and
confining pressure on the shear strength of cemented standard sand are emphatically analyzed. The
relationship between cohesion, internal friction angle, and CaCO3 formation was analyzed. After the
optimal curing conditions are obtained through the triaxial shear strength test, the erosion resistance
model test is carried out. The effects of erosion angle, erosion flow rate, and erosion time on the
erosion resistance of EICP-solidified sand were analyzed through an erosion model test. The results
of triaxial tests show that the standard sand solidified by EICP exhibits strain softening, and the
peak strength increases with the increase in initial dry density, cementation times, standing time, and
confining pressure. When the content of CaCO3 increases from 2.84 g to 12.61 g, the cohesive force
and internal friction angle change to 23.13 times and 1.18 times, and the determination coefficients
reach 0.93 and 0.94, respectively. Erosion model test results indicate that the EICP-solidified sand
dam has good erosion resistance. As the increase in erosion angle, erosion flow rate, and erosion
time, the breach of solidified samples gradually becomes larger. Due to the deep solidification of
sand by EICP, the development of breaches is relatively slow. Under different erosion conditions, the
solidified samples did not collapse and the dam broke. The research results have important reference
value and scientific significance for the practice of sand consolidation engineering in earth-rock dams.

Keywords: EICP; standard sand; earth-rock dam; erosion resistance; shear strength

1. Introduction

The earth-rock dam is a traditional dam type with simple technology and low cost,
which accounts for a large proportion of dam construction in the world. However, dam-
break accidents occur frequently, and their safety has attracted much attention. There
are more than 98,000 reservoirs built or under construction in China, including 756 large
reservoirs, 3944 medium reservoirs, and 94,000 small reservoirs, with a total water storage
capacity exceeding 900 billion cubic meters [1]. It is crucial to deal with dam failure
to improve the utilization rate of resources. Traditional curtain grouting anti-seepage
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engineering uses cement slurry and chemical slurry, which have some shortcomings such
as low permeability, high energy consumption, high costs, and environmental pollution.
Therefore, it is an important task and necessary measure for geotechnical engineering to
develop energy-saving, emission-reducing, eco-environmental, economical, and efficient
dam seepage control and reinforcement technology. Plant-derived enzyme-induced calcium
carbonate precipitation technology is a new solidification method. The mineralization
principle is that urease is extracted from plants, and urea is decomposed into ammonium
ions and carbonate ions under the catalytic action of urease. Subsequently, carbonate ions
react with the calcium source to form a CaCO3 precipitate, which bonds the soil particles to
form a whole, achieving the purpose of solidification [2–7]. The EICP technology has the
characteristics of high efficiency [8], environmental friendliness [9], economic benefit [10],
durability [11], etc. This method not only has many applications in reinforcement but
also involves the restoration and protection of ancient buildings [12], replacing some civil
engineering materials [13], improving the thermal conductivity of backfill materials and
soil [14], etc.

Under normal circumstances, the shear strength of soil is an important mechanical
index of soil that is closely related to the bearing capacity of the foundation, the earth
pressure of the retaining wall, and the stability of the slope. Alwalan et al. [15] conducted
direct shear tests on consolidated sand spraying through EICP technology in four different
ways: namely spraying, mix and compact, percolation, and injection. In the spraying
method, EICP solution is directly sprayed on the top of the sample through a plastic spray
bottle and then penetrates the sample. Compared with the untreated sample, the peak
shear strength of sand increased by about 2.3 times. Meng et al. [16] found that the amount
of calcium carbonate generated in the multiple-phase method is at least four times higher
compared to the one-phase method. After 20 applications of cementation solution, the
unconfined compressive strength of the EICP-treated sand exceeds 10 MPa, with a CaCO3
content of 20%. He et al. [17] discovered that after EICP treatment of soil slopes was carried
out four times in dry and humid environments, the permeability resistance increased to
92.1 N and 71.5 N in slope runoff erosion experiments, respectively, which were 7.7 times
and 11.3 times higher than those in one treatment round. Wang et al. [18] found that there is
a relationship between the cement solution concentration and the unconfined compressive
strength of the EICP-treated sand soil. When grouting times are N = 4, as the cement
solution concentration increases from 0.75 mol/L to 1.5 mol/L, the unconfined compressive
strength continued to increase, reaching a maximum of 9.87 MPa, which is an improvement
of 1.87 times. Gao et al. [19] found that soybeans crude extract-induced calcium carbonate
precipitation (SICP) improved the strength of sandy soil. The experiment showed that
the surface strength of SICP-treated sandy reached 306.2 kPa compared with untreated
sandy soil, an increase of 1813.75%. Almajed et al. [20] found that compared to untreated
samples, the samples treated with the EICP and sodium alginate (SA) combination had the
lowest erosion rate. SA of 0.5% biopolymer and EICP solution significantly enhances the
surface strength and the amount of carbon precipitation in sandy soil. Wu et al. [21] found
that when the urease activity increased from 2.95 U/mL to 5.39 U/mL, the cementing
solution increased from 0.25 M to 0.75 M, and the unconfined compressive strength of
the EICP-solidified sand was enhanced from 180.58 kPa to 1850.70 kPa, which improved
9.25 times. Alotaibi et al. [22] found that in a life cycle assessment (LCA) experience,
the abiotic depletion potential of EICP-treated sand in terms of capacity was reduced by
nearly 90% compared with portland cement (PC), and the global warming potential of
soil capacity was 3% lower than that of PC. Miao et al. [23] included that the EICP has
higher production efficiency and production in a wide temperature range (10 ± 70 ◦C),
significantly improving the water retention performance of the material, which is more
suitable for desert environments. It is included that with the increase in spraying times,
the urease mineralization method can better resist wind. Lee et al. [24] found that in EICP-
solidified soil, when the soybean solution was 140 g/L and the urea–CaCl2 solution was
3 M, the unconfined compressive strength increased from 273 kPa to 870 kPa when curing
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time was 7 days and 28 days, respectively. Baruah et al. [25] found that the influence of urea,
calcium chloride, and urease enzyme on the development of sand strength was studied
using unconfined compressive strength. A combination of 0.5 M urea, 1 M CaCl2, and
6 g/L urease enzyme was used as the bonding medium to obtain the maximum calcium
carbonate precipitation. Xu et al. [26] obtained that the optimal extraction time and dosage
of urease solution in the EICP-treated sand cushion layer were 1 h and 100 g/L. As the
number of EICP treatments increases, the content of calcium carbonate increases and the
highest dynamic deformation modulus (Evd) reaches 50.55 MPa. Shen et al. [27] discovered
that the addition of basal fiber (BF) and polyvinyl acetate emulsion (PVAC) in the EICP
experiment resulted in high surface strength (SS) with the addition of 50 g/L PVAC. After
treatment with EICP-0.5% BF, EICP-30 g/L PVAC, and EICP-50 g/L PVAC, the sandy soil
exhibits high erosivity.

The mechanical properties of EICP-solidified sand have improved significantly, but
the erosion resistance still needs to be studied. Through the triaxial shear strength test, the
influence factors of dry density, cementation times, standing time, and confining pressure
on the strength of solidified sand are discussed. The correlation between cohesion, internal
friction angle, and CaCO3 precipitation amount is established, and the optimum conditions
for solidifying standard sand by EICP are determined. At the same time, the effects of
erosion angle, flow rate, and time on erosion performance were analyzed by an erosion
model test, and its durability under erosion was evaluated. These achievements provide an
important reference for reinforcement and seepage control of earth-rock dams.

2. Materials and Methods
2.1. Test Materials

The test adopts (GB/T 17671-1999) [28] standard sand from Xiamen, China, and the
parameters are shown in Table 1 below. According to its nonuniformity coefficient (Cu) and
curvature coefficient (Cc), the sand is judged to be fine sand with poor particle gradation.
According to the standard for geotechnical test methods (GB/T 50123-2019) [29], the sand
particle size distribution curve is shown in Figure 1. Soybeans were purchased in the
market, and their origin was Suihua City, Heilongjiang Province. The reagents used in
the test are urea (Tianjin Hengxing Chemical Reagent Manufacturing Company, Tianjin,
China) and calcium chloride (Suzhou Wuzhong District Luzhi Sheng Da Drying Reagent
Company, Suzhou, China), and the purity is more than 99.0%.

Table 1. Xiamen ISO standard sand parameters.

ρdmax (g/cm3) ρdmin (g/cm3) d10 (mm) d30 (mm) d60 (mm) Cu Cc

1.890 1.480 0.136 0.300 0.660 4.853 1.003
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2.2. Sample Preparation

The size of the standard sand sample is 39.1 mm in diameter and 80 mm in height. To
carry out the triaxial shear strength test, a PVC pipe with an inner diameter of 39.1 mm
and a height of 150 mm was selected as the die. The test steps should strictly follow the
standard for geotechnical test methods (GB/T 50123-2019) [29]. Samples are made in four
layers, and shaving treatment is needed between each layer. Before loading, lay three layers
of filter paper on the bottom of the sample, and after loading, lay another layer of filter
paper on the top. The bottom of the mold shall be plugged with a rubber plug with holes,
and the reserved holes shall be connected to the liquid outlet. Urease is extracted from
soybeans, urease activity is measured in a conductivity meter and the steps of extracting
urease solution include the following: crushing dried soybean until the particle size is less
than 0.10 mm, weighing an appropriate amount of soybean flour and adding it to deionized
water to achieve a concentration of 100 g/L, stirring the solution for 30 min, and then
refrigerating for 24 h at a temperature of 4 ◦C. The solution was centrifuged at high speed
for 15 min, and the supernatant was taken to obtain the urease solution. The concentration
of urea and calcium chloride solution was adjusted to 1.25 mol/L, and the pH value was
8.0. The sample was perfused by a two-stage method: first, 20 mL of urease solution, then
10 of mL calcium chloride solution, and 10 mL of urea solution, with an interval of 24 h
each time. After completion, we rinsed with purified water three times to stop the reaction.
Finally, the sample is saturated in an air-pumping vacuum saturation cylinder. Separation
and extraction of soybean urease are shown in Figure 2.
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Figure 2. Separation and extraction process of soybean urease: (a) crushed; (b) stirring sample
powder; (c) centrifugation of sample; (d) urease.

2.3. Test Methods

According to the standard for geotechnical test methods (GB/T 50123-2019) [29], the
triaxial shear strength test adopts the KTL-LDF 50 soil static triaxial instrument (Xi’an Kang-
tuoli Instrument and Equipment Co., Ltd., Xi’an, China) for the consolidated undrained test.
During the test, the loading mode was set to be controlled by a strain rate of 0.10%/min, and
the test was stopped when the axial strain reached 15%. Based on relevant research [30–33],
dry density, cementation times, standing times, and confining pressure were determined,
and the test scheme is shown in Table 2. Carry out an erosion model test, analyze the
influence of erosion angle, erosion flow rate, and erosion time on erosion resistance, and
verify the erosion resistance of EICP-cemented sand. See Table 3 for the test scheme.

Table 2. Triaxial shear strength test scheme of EICP-cemented standard sand.

Dry Density
ρd (g/cm3)

Cementation Times
n

Standing Times
t1 (d)

Confining Pressure
σ3 (kPa)

1.55, 1.60, 1.65 2, 4, 6 1, 3, 5 25
1.55, 1.60, 1.65 2, 4, 6 1, 3, 5 50
1.55, 1.60, 1.65 2, 4, 6 1, 3, 5 100
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Table 3. EICP model test scheme for erosion resistance.

Erosion Angle α (◦) Erosion Flow Q (L/min) Erosion Times t2 (min)

15 1, 3, 5 5, 10, 15
30 1, 3, 5 5, 10, 15
45 1, 3, 5 5, 10, 15

Figure 3 shows a model box for erosion resistance in which plain sand is presented in
the form of natural accumulation with a particle density of 1.65 g/cm3, which is used for
the erosion model test. The size of the dam model is 160 mm in length and 100 mm in width.
This kind of experiment was carried out in a model box with a length of 50 cm, a width of
10 cm, and a depth of 12 cm. As shown in Figure 3, a self-circulating water pump is used
for water supply, the dam model is placed at a position 2/3 away from the water inlet to
prevent the uneven erosion of water flow, and a static water grid is set at a position 1/3
away from the water inlet. During the dam cementation process, urease solution (100 g/L),
calcium chloride solution (1.25 mol/L), and urea solution (1.25 mol/L) were uniformly
sprayed on the surface of the dam sample using T_70103405A adjustable spray cleaning
bottle (Thermo Fisher Scientific, Massachusetts, USA). To ensure that the solidified dam
samples have good shaping performance, a small amount of deionized water was added
for mixing before spraying the solidification liquid.
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3. Results and Discussion
3.1. Analysis of the Influence of Dry Density on the Strength of Solidified Sand

Figure 4 shows a stress–strain diagram of a cemented specimen under a confining
pressure of 50 kPa. It can be seen from the figure that under the same confining pressure,
with an increase in initial dry density, the peak strength of deviator stress increases with dif-
ferent standing times and cementation times. When the cementation times increased from
two to six times and the dry density increased from ρd = 1.55 g/cm3 to ρd = 1.65 g/cm3, the
peak strength of deviator stress increased significantly and the corresponding axial strain
decreased gradually. The peak strength of cemented specimens is 518.39 kPa, 520.3 kPa,
and 569.72 kPa when the dry density is 1.55 g/cm3, 1.60 g/cm3, and 1.65 g/cm3, respec-
tively, when the cementation times are six times, the confining pressure is 50 kPa, and the
standing time is 1 d. The main reason for the above phenomenon is that during the EICP so-
lidification process of sandy soil, urease accelerates the urea reaction and combines with the
calcium source to produce CaCO3 [2]. The produced CaCO3 crystals mainly cement loose
sand particles into a whole through bonding and filling. With the increase in sample dry
density, the pore size between sand particles decreases, which improves the cementation ef-
ficiency of CaCO3 and then makes the peak strength of the sample increase accordingly [34].
Under confining pressure, the cohesion and internal friction angle between sand particles
increase, which makes the shear strength of cemented samples improve.
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3.2. Analysis of the Influence of Cementation Times on the Strength of Solidified Sand

Figure 5 shows the stress–strain diagram of the cemented specimen under a confining
pressure of 25 kPa. It can be seen from the figure that under the same confining pressure,
with the increase in cementation times, the amount of CaCO3 generated gradually increases
and the peak intensity of deviator stress increases continuously. When ρd is 1.65 g/cm3,
the confining pressure is 25 kPa, the standing time is 5 d, and cementation times are
two, four, and six, respectively, the corresponding deviator stress peaks are 186.06 kPa,
385.43 kPa, and 548.10 kPa, respectively. The axial strain corresponding to the peak value
of deviator stress is 1.85~2.51% when the cementation times are two times, and decreases
to 0.78~1.84% when the cementation times increase to four times and six times. The main
reason for the above phenomenon is that with the increase in cementation times from
2 times to 6 times, CaCO3 crystals produced by the reaction between urease and cementing
solution are also increasing, so the consolidation strength of samples is also increasing. In
cemented specimens, when the deviator stress reaches its peak value, the brittle failure
phenomenon will appear. At this time, the deviator stress decreases rapidly, and the
more cementation times, the more obvious the brittle failure characteristics are, and this is
consistent with the findings of reference [35]. Consequently, the axial strain of cemented
specimens decreases accordingly.
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3.3. Analysis of the Influence of Standing Time on the Strength of Solidified Sand

Figure 6 is a stress–strain diagram of a cemented specimen at a dry density of 6. It
can be seen from the figure that, under the same dry density, the peak strength of deviator
stress of cemented specimens increases with the increase in confining pressure and standing
time. When ρd is 1.65 g/cm3, the confining pressure is 100 kPa, cementation times are
6, standing time is 5 days, and the maximum deviator stress of the specimen reaches
988.20 kPa. Compared with the peak strength of deviator stress under the same condition,
when the standing time is 1 d, it increases by 12.52%. During the solidification process of
EICP, urease catalyzes the production of carbonate ions from urea. The content of CaCO3
precipitate produced by the combination of carbonate ions and calcium source ions has a
significant impact on the strength of the sample [3]. This phenomenon is mainly due to
the continuous reaction between the urease solution and cementing solution in the sample
with the passage of time. The longer the standing time, the more sufficient the curing
reaction, and then more CaCO3 precipitates are generated from cement sand particles, thus
increasing the peak value of the deviator stress of the sample [36]. The test results show
that when the standing time is 5 days, the deviator stress of the cemented specimen reaches
its highest value. However, when the standing time is 1 day, the peak value of deviator
stress is low due to the insufficient reaction between urease and cementing solution.
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3.4. Influence of Confining Pressure on Strength of Solidified Sand

Figure 7 shows the stress–strain diagram of cemented specimens under different
confining pressures. With an increase in the in situ depth of soil, its confining pressure
increases accordingly. The figure shows the influence of different confining pressures
on the shear strength characteristics of EICP-solidified specimens. It can be seen from
the figure that when the cementation times are six, the residual strength of cemented
samples under low confining pressure is significantly lower than the peak strength, and
the stress–strain curve shows an obvious strain softening phenomenon. The peak strength
of the cemented specimens at 25 kPa, 50 kPa, and 100 kPa is 482.12 kPa, 569.92 kPa, and
880.04 kPa, respectively, when the cementation times are 6 times and the standing time
is 1 d. The main reason for the above phenomenon is that with the increase in confining
pressure, the closer the contact between CaCO3 crystal and soil particles, the more contact
points there are, which leads to the enhancement of adhesion and friction between CaCO3
crystal and soil particles, and this is consistent with the findings of reference [37]. When
the specimen is subjected to an external load, the force conversion and transfer effect occur
between the CaCO3 crystal and soil particles, and they will share the external load, thus
further improving the shear strength of EICP-solidified standard sand.
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3.5. Failure Mode Analysis of Samples

Figure 8 shows the failure modes of EICP-cemented samples under different cementa-
tion times and confining pressures. As shown in Figure 8a, when the cementation times are
2, with the continuous increase in strain, the specimen state first appears as shear shrinkage
and then dilatancy failure, forming an indistinct shear band. With the increase in strain, the
shear band becomes clear gradually, and the specimen is destroyed at the shear band. As
shown in Figure 8b, the shear phenomenon is basically consistent with that in Figure 8a, but
with the increase in cementation times, the surface strength of the sample is significantly
improved compared with that in Figure 8a. However, with the continuous increase in
confining pressure times, the surface shear failure phenomenon is gradually aggravated,
and the shear band is becoming more and more obvious. As shown in Figure 8c, the shear
phenomenon is basically consistent with Figure 8a, and the shear failure of the specimen
decreases with the increase in cementation times. In Figure 8d, the continuous strain growth
rate is faster than that in Figure 8a. At this time, the phenomenon is not local shear failure,
but the cementation between sand particles and CaCO3 is destroyed first. With the increase
in cementation times and confining pressure, the time of shear back formation is relatively
early, and the degree of shear failure is more thorough. Experiments indicate that local
deformation occurs earlier at low confining pressure than at high confining pressure. Strain
softening and obvious shear bands are formed in the specimens, and then the strength
decreases obviously. This shows that EICP-solidified standard sand has poor plasticity
under low confining pressure and a high cementation degree and is more prone to brittle
failure, and this is consistent with the findings in [38].
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Figure 8. Failure modes of EICP-cemented specimens under different cementation times and different
confining pressures: (a) n = 2, σ3 = 25 kPa; (b) n = 4, σ3 = 50 kPa; (c) n = 6, σ3 = 25 kPa; (d) n = 6,
σ3 = 100 kPa.

3.6. Analysis of the Relation between Cohesion, Internal Friction Angle, and CaCO3 Formation

Figure 9 is the regression analysis curve of cohesion, internal friction angle, and CaCO3
formation of the EICP-solidified standard sand sample. After EICP treatment of standard
sand samples, it was found that the increase in cohesion brought about an improvement
in shear strength. As shown in the figure, when the content of CaCO3 increases from
2.84 g to 12.61 g, the cohesive force and internal friction angle change to 23.13 times and
1.18 times, respectively. It can be seen that there is a positive correlation between them, and
the determination coefficient reaches 0.93 and 0.94, respectively, indicating that there is a
significant correlation between cohesion and CaCO3 production. The main reason for this
phenomenon is that CaCO3 crystals formed during the EICP process can fill and cement
sand particles and enhance the adhesion and friction between sand particles. Therefore,
the loose sand particles can be cemented into a whole and bear the external load together,
thus improving its shear strength. Therefore, there is a significant positive correlation
between the amount of CaCO3 produced and the cohesion and internal friction angle of
the specimen, so the main way to improve the shear strength of standard sand using EICP
technology is to increase its cohesion.
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4. Analysis of Erosion Characteristics of EICP-Solidified Sand
4.1. Erosion Performance Analysis of Uncemented Dam

Figure 10 is a standard sand dam with an uncemented α = 30◦ and Q = 1 L/min,
and the erosion resistance model test is carried out. As shown in the figure, when the
water level overflows the height of the dam crest, a narrow breach at the dam crest can be
observed immediately, and the breach will spread and expand rapidly to both sides [39].
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The erosion process is mainly affected by water flow, and the continuous expansion of
the breach will also cause the collapse of the soil on both sides. The eroded particulate
matter will be transported to the downstream slope toe for deposition along with the water
flow, which leads to the slope of the slope toe gradually slowing down until it reaches a
certain stable state. The whole erosion process is very short, lasting about 6 s, and its failure
speed is extremely rapid, which cannot be directly compared with the dam samples after
EICP cementation treatment. When the water flows over the top of the embankment, it
will cause erosion on the surface of the embankment and produce local shear stress. Once
this shear stress reaches or exceeds its critical value, it will lead to erosion failure, which
will scour the soil particles to the foot of the slope and deposit them. The breach usually
occurs in the weak link of the dam because the shear stress at the breach is higher than in
the surrounding area, so the breach will expand rapidly.
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Figure 10. Model test of standard sand dam: (a) uncemented specimen; (b) the water flow reaches
the dam crest; (c) water erosion; (d) end of erosion.

4.2. Erosion Angle Analysis

Figure 11 shows the relationship between erosion angle, breach width, and breach
depth under erosion flow rates (Q) of 5 L/min and 7 L/min. It can be seen from the figure
that within 3 min, the depth of breach changes little in the erosion test, and the dam is
relatively stable. When the erosion flow rate is 33 L/min and the erosion angles are 15◦, 30◦,
and 45◦, there is no breach in the dam specimen. As the angle increases to 30◦ and 45◦, the
breach appears, and the depth and width of the breach gradually expand with the passage
of erosion time. The reason for the above phenomenon is that on the surface of the dam
treated with EICP, urease accelerates the combination of carbonate ions and calcium ions
to form CaCO3 crystal shells [5]. The EICP test shows that the smaller the erosion angle,
the lower the shear stress caused by overtopping erosion, the higher the dam stability, and
the longer the dam break time. However, the larger the erosion angle is, the higher the top
shear stress of water flow [40], and with the increase in erosion time, the breach will appear
in the fragile part of surface cementation, but the breach develops relatively slowly due to
the larger cementation depth.
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4.3. Erosion Flow Analysis

Figure 12 shows the curves of erosion flow rate (Q) versus the breadth and depth of
the breach at 15, 30, and 45 erosion angles. It can be seen from the figure that no obvious
breach phenomenon is observed when the erosion angle is 15 and the erosion flow rate
is 3 L/min. However, when the erosion flow rate is increased to 7 L/min, a significant
breach phenomenon appears. The experimental results show that as the increase in erosion
angle, the breadth and depth of the breach show an obvious increasing trend. At the same
time, with the continuous increase in erosion flow, the width and depth of the breach are
gradually expanded, which is consistent with the findings of reference [41]. The appearance
of this phenomenon is due to the corresponding enhancement of water impact force caused
by the increase in erosion flow rate, which in turn increases the shear stress for overtopping
failure. Once the dam breaks, its energy release will be more intense. If the water flow rate
continues to increase, the time of rapid erosion will be further shortened in the process of
overtopping erosion. This will accelerate the development of breaches and the scale of the
secondary collapse, which will lead to an increase in breach flow.
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4.4. Erosion Time Analysis

Figure 13 shows the relationship between erosion time, breach width, and breach
depth at 15, 30, and 45 erosion angles. It can be seen from the figure that after the dam
breach occurs, the depth and width of the breach will gradually expand with the passage of
erosion time. When the erosion flow rate is 3 L/min and the erosion angle is 15◦, there is no
breach in the dam specimen. However, with the increase in erosion angle and flow rate, the
expansion speed of the breach will accelerate at first and then tend to be stable. The reason
for this phenomenon is that the overtopping dam failure belongs to the type of scouring
failure, which first occurs at the contact between the dam crest and the downstream slope.
In the case of a small flow rate, the scouring speed is relatively slow [41]. During the EICP
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mineralization process, urease-catalyzed hydrolysis of urea produces carbonate ions [6].
The calcium carbonate precipitate produced by carbonate ions and calcium ions tightly
binds with the sand particles on the surface of the dam, forming a strong hard shell that
prevents the shear stress generated by water flow from damaging the top and downstream
of the dam. However, with the increase in water flow rate and erosion angle, the shear
stress will increase accordingly. Therefore, under the action of erosion time, the breach
first appeared at the weak surface cementation site, where the shear stress was higher
than the surrounding area, and the breach developed rapidly. However, due to the large
cementation depth of EICP, the development speed of the breach is relatively slow.
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4.5. Analysis of Erosion Failure Mode

Figure 14 shows the failure process of dam overtopping. Overtopping dam failure is
a form of traceability scouring, and dams without EICP reinforcement will collapse and
break under current erosion. The failure begins in the contact area between the dam crest
and the downstream slope, during which the current erosion forms a gully and extends
upstream. As time goes by, the gully expands and deepens to form an obvious breach.
When the breach extends to the upstream edge of the dam body, the flow rate increases
sharply and the erosion intensifies, which leads to the expansion and deepening of the
breach and the collapse of the dam bodies on both sides. After the breach runs through,
the water flow velocity increases sharply, the water level drops sharply, the dam erosion
becomes more intense, the breach continues to expand and deepen, and the collapse of the
dams on both sides intensifies. Due to the uneven particle distribution and structure in
the dam, the breach is often asymmetric, which leads to the flow around the breach and
aggravates the erosion at the foot of the slope. With the continuous discharge of water
flow, the upstream water level gradually decreases, and the erosion of the upstream part
weakens, finally emerging from the water surface. At this time, the main erosion focus of
the breach shifts to the downstream side wall, and the water flow continues to erode the
foot of the breach slope, causing the slope to collapse [42].
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Figure 14. Failure process of dam overtopping: (a) rise of water level in reservoir area; (b) overflow
of dam; (c) discharge of water on slope; (d) scarp erosion; (e) traceability of water; (f) dam failure;
(g) dam shrinkage; (h) further erosion; (i) stability phase.

Figure 15 shows the erosion pattern of the dam strengthened by EICP after failure.
As shown in the figure, there is no serious collapse or dam break under various erosion
conditions. When erosion occurs, the breach of the sample is uneven in shape. Weak
cementation will wash the massive particles to the foot of the slope under the erosion of
water flow. As shown in Figure 15a, when the erosion angle is 15, the breach is mostly
shallow and wide. As shown in Figure 15a–c, when the erosion angles are 30 and 45, the
breach is mostly deep and thin. The main reason for the above phenomenon is that after
EICP treatment, CaCO3 crystals cover the surface of sand particles, which can wrap and
cement loose sand particles into a whole, and the friction and adhesion between sand
particles increase at the same time, which is consistent with the findings of reference [43].
Compared with uncemented dam samples, the anti-erosion ability is significantly improved
and the integrity is stronger when subjected to water erosion. At the same time, due to
the deep cementation, the weak part of the cementation is washed to the foot of the slope
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by water flow after the breach, while the remaining part can still resist the erosion of
water flow.
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Figure 15. Erosion failure mode: (a) α = 15◦; (b) α = 30◦; (c) α = 45◦.

5. Conclusions

The effects of dry density, cementation times, standing time, and confining pressure
on the shear strength of EICP-solidified Aeolian sand were analyzed through a triaxial con-
solidated undrained shear test. The quantitative relationship between CaCO3 generation,
cohesion, and internal friction angle was established. The effects of erosion angle, erosion
flow rate, and erosion time on the erosion resistance of EICP-solidified sand were analyzed
through the erosion model test. The main conclusions are as follows:

1. When the dry density of the sample is high, the smaller the distance between sand
particles, the better the cementation effect of CaCO3. With the increase in the cementa-
tion times, the strength of standard sand increases, and the brittle failure is obvious.
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With the increase in standing time, the peak strength of the deviator stress of standard
sand also increases.

2. When the sample with low CaCO3 content reaches its peak strength, the internal struc-
ture changes little, the difference between residual strength and peak strength is small,
and the strain softening is not obvious. When the sample with high CaCO3 content
reaches peak strength, the internal CaCO3 crystal is destroyed, the integrity of sand
particles is damaged, the shear strength is greatly reduced, the difference between
residual strength and peak strength is large, and the strain softening is obvious.

3. The local deformation of the specimen under low confining pressure is earlier than that
under high confining pressure. Under low confining pressure and high cementation,
the deviator stress increases rapidly with the increase in strain, then decreases or
stabilizes after the peak value, and the specimen appears to have strain-softening
characteristics, with the peak value appearing as a shear band. The strength of EICP-
solidified sand is obviously decreased, which indicates that EICP-solidified sand has
poor plastic deformation ability under low confining pressure and high cementation
levels and is more prone to brittle failure.

4. With the increase in CaCO3 content, the cohesion and the angle of internal friction
increase, showing a positive correlation. CaCO3 crystals produced in the EICP process
play a role in filling and cementing sand particles, which increases the cohesion and
internal friction angle between sand particles and makes the loose sand particles be
cemented together to bear the external load together, thus significantly improving
their shear strength.

5. The smaller the erosion angle, the better the stability of the dam, and the longer the
dam break time. When the erosion angle is 15◦ and the erosion flow rate is 3 L/min,
there is no obvious damage, and the overall integrity of the dam sample is good. The
larger the erosion angle, the greater the overtopping shear stress of the water flow.
With the increase in erosion time, the breach appears at the weak surface cementation.

6. With the increase in erosion flow, the impact capacity of water flow is gradually
enhanced. When overtopping failure occurs, the shear stress will increase, and at the
same time, when the dam breaks, the released energy will become greater, which will
lead to an increase in the degree of harm caused by it. In addition, in the process of
overflow scouring, the increase in flow rate will accelerate the scouring speed and
make the breach gradually larger.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Microbially induced calcite precipitation (MICP) is an emerging solidification method
characterized by high economic efficiency, environmental friendliness, and durability. This study
validated the reliability of the MICP sand solidification method by conducting a small-scale wind
tunnel model test using aeolian sand solidified by MICP and analyzing the effects of wind velocity
(7 m/s, 10 m/s, and 13 m/s), deflation angle (0◦, 15◦, 30◦, and 45◦), wind erosion cycle (1, 3, and 5),
and other related factors on the mass loss rate of solidified aeolian sand. The microstructure of aeolian
sand was constructed by performing mesoscopic and microscopic testing based on X-ray diffraction
analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy
(SEM). According to the test results, the mass loss rate of solidified aeolian sand gradually increases
with the increase in wind velocity, deflation angle, and wind erosion cycle. When the wind velocity
was 13 m/s, the mass loss rate of the aeolian sand was only 63.6%, indicating that aeolian sand has
excellent wind erosion resistance. CaCO3 crystals generated by MICP were mostly distributed on
sand particle surfaces, in sand particle pores, and between sand particles to realize the covering,
filling, and cementing effects.

Keywords: MICP; aeolian sand; wind erosion resistance; model test; solidified mechanism

1. Introduction

Arid and semi-arid regions account for 40% of the world’s total land area. Under the
action of wind erosion, land desertification and sandstorm events have happened more
frequently in these regions, further deteriorating the ecological environment. Therefore, it
is urgent to implement wind prevention and sand solidification. Traditional sand fixation
methods include mechanical sand fixation [1], plant sand fixation [2], and chemical sand
fixation [3]. However, these methods have disadvantages such as a long construction
period, high cost, and environmental pollution. The microbially induced calcite precipita-
tion (MICP) technique is an emerging sand solidification method characterized by high
efficiency, environmental protection, and durability [4]. With respect to the principle of
MICP mineralization, the microorganisms that produce urease are used to hydrolyze urea
into CO2−

3 , which generates CaCO3 deposits together with Ca2+ in the environment for
solidification [5]. MICP has been applied to improve soils’ properties [6], crack repair [7],
treatment of pollution soil [8], and waste [9]. Ghalandarzadeh et al. [10] used MICP to
improve the unconfined compressive strength of kaolinite clay. Behzadipour et al. [11]
explored the application of MICP technology in improving the shear strength of gold mine
tailings. The experimental results showed that compared with the untreated samples, the
cohesion intercept and friction angle of the treated tailings samples increased by about
19 kPa and 5◦, respectively. Prongmanee et al. [12] stabilized clayey soil by producing
ammonium carbonate supernatant to generate calcite precipitation. The results showed
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that the soil stabilized with calcite had higher compressive strength than the untreated
soil. The microcosmic test showed that calcite filled the voids between soil particles and
resulted in the denser package of soil. Wang et al. [13] studied the effect of temperature on
the cemented structure of sand treated by MICP. The results showed that the generation
of CaCO3 crystals by temperature would lead to changes in the internal friction angle,
cohesion, stiffness, peak strength, residual strength, and expansion of sand samples treated
by MICP. When carbonate crystals produced at 4 ◦C and 50 ◦C were fewer and smaller, they
had lower strength reinforcement. In contrast, more larger crystal clusters were produced
at 20 ◦C and 35 ◦C, which have effectively reinforced the sand particles. Jiang et al. [14]
prepared cementing solution in hydrochloric acid solution to promote the solidification rate
in the MICP reaction and evaluate its effectiveness. Research had shown that this method
promoted the rapid bonding of calcareous sand particles, resulting in an unconfined com-
pressive strength (UCS) of 1312.6 kPa for the sand column after five treatments. Compared
with the conventional test group, the UCS of the test group containing HCl increased
by about 1357%. Naskar et al. [15] investigated the effect of MICP on the mechanical
properties of coal fly ash (CFA). After research, it was found that the specimens cured by
MICP had higher strength, stiffness, and cohesion. Within a 28-day processing period, the
permeability of CFA decreased by 78%, and the precipitation rate of calcite increased by
8%. Dubey et al. [16] conducted biological cementation treatment on desert sand through
MICP and carried out soil erosion tests in indoor wind tunnels. The test results showed
that single doses of 0.5 M and 1 M cementing solutions could continuously produce crusts
with depths of 2 cm and 3.5 cm, thus effectively reducing erosion under the maximum
velocity of 55 km/h. Devrani et al. [17] treated sand with MICP and biopolymer. Wind
tunnel tests showed that the threshold friction velocity (TFV) increased from 20 km/h of
the untreated sand to 45 km/h of the sand treated by MICP and biopolymer. They also
observed that the mass loss rate of sand decreased from 75.23% of the untreated sand to
0%. Hang et al. [18] formed a cemented layer on the surface of desert sand through MICP
to resist erosion and studied various factors relating to the erosion resistance of desert sand.
The results showed that the erosion resistance of desert sand and the penetration resistance
of sand surfaces were improved with the increase in treatment temperature and cementing
solution concentration.

MICP technology has high bonding strength. It is not only suitable for soil reinforce-
ment but also has a broad application prospect in controlling pollution elements, repairing
cracks, repairing cultural relics, and anti-seepage treatment. However, aeolian sand has
small particles, low water content, poor permeability, and low shear strength. Further
validation is necessary for aeolian sand solidification using MICP. By taking aeolian sand
solidified by MICP as the research object and conducting a small-scale wind tunnel model
test, we analyzed the effects of wind velocity, deflation angle, wind erosion cycle, and
other related factors on the mass loss rate of solidified aeolian sand and evaluated the
erosion resistance of solidified aeolian sand. All the findings of this study provide an
important reference value and scientific basis for the practice of wind prevention and sand
solidification in desert regions.

2. Materials and Methods
2.1. Test Materials

In order to reduce the negative effects of sandstorm brought by Mu Us Desert to
the northwest of China, aeolian sand was taken from the desert (Figure 1). The physical
properties of aeolian sand were tested in accordance with the standard for the geotechnical
testing method (GB/T 50123-2019) [19]. The main physical properties of aeolian sand are
shown in Table 1. Aeolian sand can be identified as poorly graded fine sand according to
the coefficient of curvature and coefficient of nonuniformity.
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Figure 1. Aeolian sand taken from Mu Us Desert in Yulin, Shaanxi, China. 

  

Figure 1. Aeolian sand taken from Mu Us Desert in Yulin, Shaanxi, China.

Table 1. Basic physical index of aeolian sand.

Gs
ρdmax

(g/cm3)
ρdmin

(g/cm3)
d10

(mm)
d30

(mm)
d60

(mm) Cu Cc

2.65 1.85 1.47 0.086 0.120 0.198 2.30 0.85

The test strain was Sporosarcina pasteurii (ATCC 11859), purchased from Shanghai
Bioresource Collection Center. The bacterial culture medium contained 5 g of NaCl, 20 g of
agar powder, 900 mL of purified water, and 100 mL of 20% urea. During the test, the pH
value of the culture solution was adjusted to 9.0, and the solution was sterilized under a
high-pressure steam at 125 ◦C for 20 min. After the solution was cooled to 60 ◦C, 100 mL
of sterilized 20% urea was added. Then, 1 mL of bacterial solution (OD600 = 1.0) was
inoculated into the culture solution, and the mixed solution was placed onto a shaking
table at 30 ◦C and 200 rpm for culture. The culture was stopped when the bacterial solution
concentration of OD600 was 1.5, and the mixed solution was then placed into a 4 ◦C
refrigerator for storage. The mixed solution of urea and calcium chloride with an equal
concentration and volume was prepared as the cementing solution with a concentration of
1.25 mol/L and pH of 9.0.

2.2. Sample Preparation

During the test, an appropriate amount of aeolian sand was filtered by a 0.5 mm sieve
and stored for further use. A small transparent plastic tray was used as a sand table for
sample preparation. The top side of the sand table was 23.5 cm long, the bottom side was
15.4 cm long, the width was 16.5 cm, and the height was 3.0 cm. In order to ensure the
discharge of bacterial and cementing liquid during the solidification process of the sample,
9 small holes with a diameter of 0.5 cm were drilled at the bottom of the sand tray at equal
intervals. To prevent sand from accumulating at the bottom and flowing away, a layer
of filter paper was laid at the bottom of the tray before loading. Subsequently, 40 sand
tables were prepared under the condition of 1.45 g/cm3 dry density for the wind tunnel
model test. Among them, 36 were treated with MICP curing and 4 were loose sand. The
test set the loading height of aeolian sand at 2.5 cm and calculated that the sand required
for each sand table was 1050.9 g, and that the volume was 724.78 cm3. Seventy milliliters
of bacterial solution was evenly sprayed to the surface of aeolian sand using a handheld
sprayer. Seventy milliliters of cementing solution with the same concentration was sprayed
1 h later. The steps above were repeated every 24 h to spray the bacterial solution and
cementing solution 5 times, respectively. The wind tunnel test was conducted 10 to 15 days
after the solidification samples were dried. The mass of the solidified aeolian sand samples
was 1489.7 g (Figure 2).

285



Materials 2024, 17, 1270

Materials 2024, 17, x FOR PEER REVIEW 2 of 11 
 

 

 

 
Figure 2. Sand table device. 

  

Figure 2. Sand table device.

2.3. Test Method

The wind tunnel test was carried out by means of the SNDY-4000 wind tunnel testing
machine (manufactured by Nanjing Meiwen Science and Education Instrument Co., Ltd.,
Nanjing, China) (Figure 3a). The test section of the wind tunnel testing machine was 1.0 m
long, 0.3 m wide, and 0.3 m high, with a wind rate of 11,000 m3/h and a rotating speed of
2800 r/min. During the test, the HT-9829 anemometer (manufactured by Shanghai Shouni
Electric Technology Co., Ltd., Shanghai, China) was used to measure the wind velocity, and
the anemometer was calibrated before each test to ensure the accuracy of the velocity, as
shown in Figure 3b. Taking into account the effect of wind velocity (v), deflation angle (α),
wind erosion cycle (n), and other related factors on the quality loss rate of aeolian sand (ϕ)
considered during the test, we set 5 min as the deflation time. The next blow was carried
out at an interval of 5 min, thus completing a cycle (Table 2). After the completion of all
tests in each group, the mass loss rate of aeolian sand was obtained by measuring the mass
of aeolian sand samples before and after the test. A lower mass loss rate of aeolian sand
samples indicates stronger resistance of the samples against wind erosion.
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Table 2. Wind tunnel testing scheme.

Deflation Angle (◦) Wind Velocity (m/s) Wind Erosion Cycle

0 7 1, 3, 5
10 1, 3, 5
13 1, 3, 5

15 7 1, 3, 5
10 1, 3, 5
13 1, 3, 5

30 7 1, 3, 5
10 1, 3, 5
13 1, 3, 5

45 7 1, 3, 5
10 1, 3, 5
13 1, 3, 5

The action mechanism of aeolian sand solidification by MICP was unveiled by se-
lecting MICP solidified aeolian sand as samples, conducting XRD (BrukerAXS D8 X-ray
diffractometer, Bruker Corporation, Billerica, MA, USA), FTIR (Thermo Scientific Nicolet
iS20 Fourier-transform infrared spectrometer, Thermo Fisher Scientific, Waltham, MA,
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USA), and SEM (ZEISS Sigma 300 high-resolution scanning electron microscope, Carl
ZEISS, Jena, Germany) testsand comprising and analyzing the crystal phase, characteristic
functional group, and microstructure of aeolian sand before and after solidification.

3. Results and Discussion
3.1. Analysis of the Effect Caused by Wind Velocity

Wind velocity has a significant effect on the threshold friction velocity (TFV), flying
height, and migration distance of aeolian sand. Figure 4 presents the curve of mass loss
rate variation in aeolian sand with wind velocity. As can be seen from the figure, the mass
loss rate of aeolian sand is positively correlated with wind velocity and keeps increasing
with the increase in the wind erosion cycle. When the deflation angle and number of wind
erosion cycles are constant and the wind velocity increases from 7 m/s to 13 m/s, the
maximum mass loss rate of aeolian sand reaches 92.68%. When the deflation angle is 15◦

and the number of wind erosion cycles is three, the mass loss rate of aeolian sand increases
from 3.34% to 56.57% with the increase in wind velocity. When the deflation angle is 30◦

and the number of wind erosion cycles is fiveand the wind velocity increases from 10 m/s
to 13 m/s, the mass loss rate of aeolian sand shows a downward trend compared with
that in the wind velocity range of 7 m/s to 10 m/s. The fundamental reason for the above
situation is that after cementation through MICP, a cemented layer with a certain thickness
is formed on the surface of aeolian sand, thereby increasing TFV.A higher TFV usually
indicates stronger resistance of samples against wind erosion [17]. The surface of aeolian
sand is broken with the continuous increase in wind velocity. When the wind velocity
reaches a certain level, the surface cemented layer is destroyed. As a result, the mass loss
rate of aeolian sand in sand tables increases rapidly. After the loose aeolian sand is blown
away, the mass loss rate tends to be stable. Nikseresht et al. [20] conducted similar wind
tunnel tests. The samples were blown for 5 min at a wind velocity of 10 m/s, 20 m/s, and
30 m/s, and the soil loss was analyzed after repeated operation. The conclusion is similar
to that in this paper, in that it can have a strong soil stabilization effect against wind erosion,
which is primarily related to the formation of CaCO3 content. However, it is difficult to
make a comprehensive comparison for different additives, wind speeds, and soil types.
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3.2. Analysis of the Effect Caused by Deflation Angle

Deflation angle has a significant effect on the mass loss rate of aeolian sand. Figure 5
presents the curve of the mass loss rate variation in aeolian sand with the deflation angle.
As can be seen from the figure, the mass loss rate of aeolian sand increases with the increase
in the deflation angle under different wind velocities. The mass loss rate of aeolian sand
also increases with the increasing number of wind erosion cycles. When the wind velocity
and number of wind erosion cycles are constant and the deflation angle increases from
0◦ to 45◦, the mass loss rate of aeolian sand shows a stepwise upward trend. When the
wind velocity is 13 m/s and the number of wind erosion cycles is one, the mass loss rate
of aeolian sand increases from 43.28% to 44.46%, it then increases from 44.46% to 49.99%,
and it finally increases from 49.99% to 59.66%. The fundamental reason for this is that
with the continuous increase in the deflation angle, the wind erosion experienced by the
samples increase and the corresponding TFV decreases, so that sand particles are blown
away by wind more easily. As a result, the mass loss rate of aeolian sand changes steadily
when the deflation angle increases from 0◦ to 30◦, but it changes sharply when the deflation
angle increases from 30◦ to 45◦. Low wind velocity cannot destroy the solid surface of
aeolian sand [21]. When the deflation angle increases, the surface area of wind acting
on aeolian sand increases gradually, which will blow the solid sand lumps on the outer
surface of aeolian sand away from sand tables, leading to a steady increase in the deflation
mass of internal loose sand. Tominaga et al. [22] conducted a wind tunnel experiment
of sand erosion/deposition around the cube. The conclusion is that as the wind velocity
increased, the mass transport rate increased sharply. And, most importantly, considerable
erosion occurred at the windward corners of the cube. All these findings can be echoed in
this paper.
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3.3. Analysis of the Effect Caused by Wind Erosion Cycles

The wind erosion cycle sfactor is one of the key factors affecting the mass loss rate of
aeolian sand. Figure 6 presents the curve of the mass loss rate variation in aeolian sand with
wind erosion cycles. As illustrated, under the action of different wind speeds, the mass loss
rate of aeolian sand increases with the increase in wind erosion cycles, and the increase in
amplitude becomes larger with the increase in the deflation angle. When the wind velocity
is 7 m/s and the deflation angle is 45◦, the mass loss rates of aeolian sand after 1, 3, and 5
wind erosion cycles are 4.19%, 7.57%, and 9.11%, respectively. When the wind velocity is
13 m/s and the deflation angle is 45◦, the mass loss rates of aeolian sand after 1, 3, and 5
wind erosion cycles are 59.66%, 77.04%, and 92.68%, respectively. The fundamental reason
for the above situation is that when there are fewer wind erosion cycles, the surface of
aeolian sand only suffers weak erosion and the crust of aeolian sand is not completely
destroyed, resulting in a lower mass loss rate of aeolian sand. When the number of wind
erosion cycles increases, continuous wind erosion destroys the solidified layer of aeolian
sand and the internal loosened aeolian sand will be further eroded, thereby increasing
the mass loss rate of aeolian sand. The increase in the number of wind erosion cycles
is equivalent to the increase in the total time of blowing erosion. Desert environments
are harsh, and the ability of aeolian sand to withstand prolonged erosion is one of the
major challenges.

Materials 2024, 17, x FOR PEER REVIEW 6 of 11 
 

 

The wind erosion cycle sfactor is one of the key factors affecting the mass loss rate of 
aeolian sand. Figure 6 presents the curve of the mass loss rate variation in aeolian sand 
with wind erosion cycles. As illustrated, under the action of different wind speeds, the 
mass loss rate of aeolian sand increases with the increase in wind erosion cycles, and the 
increase in amplitude becomes larger with the increase in the deflation angle. When the 
wind velocity is 7m/s and the deflation angle is 45°, the mass loss rates of aeolian sand 
after 1, 3, and 5 wind erosion cycles are 4.19%, 7.57%, and 9.11%, respectively. When the 
wind velocity is 13m/s and the deflation angle is 45°, the mass loss rates of aeolian sand 
after 1, 3, and 5 wind erosion cycles are 59.66%, 77.04%, and 92.68%, respectively. The 
fundamental reason for the above situation is that when there are fewer wind erosion cy-
cles, the surface of aeolian sand only suffers weak erosion and the crust of aeolian sand is 
not completely destroyed, resulting in a lower mass loss rate of aeolian sand. When the 
number of wind erosion cycles increases, continuous wind erosion destroys the solidified 
layer of aeolian sand and the internal loosened aeolian sand will be further eroded, 
thereby increasing the mass loss rate of aeolian sand. The increase in the number of wind 
erosion cycles is equivalent to the increase in the total time of blowing erosion. Desert 
environments are harsh, and the ability of aeolian sand to withstand prolonged erosion is 
one of the major challenges. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Curve of mass loss rate variation in aeolian sand with the number of wind erosion cycles: 
(a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s. 

3.4. Analysis of Morphological Characteristics of Aeolian Sand 
Figure 7 presents the wind erosion morphology distributions of loose aeolian sand 

samples under different wind velocities, deflation angles, and wind erosion cycles; the 
deflation direction is from left to right. As can be seen from Figure 7a, when the wind 
velocity is 7 m/s, the deflation angle is 15°, and the number of wind erosion cycles is one; 
both the wind force and deflation angle are small, and the duration of wind action is short. 
Therefore, much aeolian sand is distributed in sand tables, and the aeolian sand moves 
from the middle to both sides. As can be seen from Figure 7b,c, the aeolian sand in the 

Figure 6. Curve of mass loss rate variation in aeolian sand with the number of wind erosion cycles:
(a) v = 7 m/s; (b) v = 10 m/s; (c) v = 13 m/s.

3.4. Analysis of Morphological Characteristics of Aeolian Sand

Figure 7 presents the wind erosion morphology distributions of loose aeolian sand
samples under different wind velocities, deflation angles, and wind erosion cycles; the
deflation direction is from left to right. As can be seen from Figure 7a, when the wind
velocity is 7 m/s, the deflation angle is 15◦, and the number of wind erosion cycles is
one; both the wind force and deflation angle are small, and the duration of wind action
is short. Therefore, much aeolian sand is distributed in sand tables, and the aeolian sand
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moves from the middle to both sides. As can be seen from Figure 7b,c, the aeolian sand in
the middle of the sand table is gradually blown away when the wind velocity is 10 m/s
and the deflation angle is 30◦, and the central blank area gradually increases with the
increase in wind erosion cycles. According to Figure 7d, most of the aeolian sand in the
sand table is blown and eroded, and only a small amount of aeolian sand is distributed at
the end nearby wind source and the end far from the wind source when the wind velocity is
13 m/s, the deflation angle is 15◦, and the number of wind erosion cycles is one. The above
fact suggests that loose aeolian sand has poor resistance against wind erosion. Therefore,
sandstorms and other natural disasters occur frequently in desert areas.

Materials 2024, 17, x FOR PEER REVIEW 7 of 11 
 

 

middle of the sand table is gradually blown away when the wind velocity is 10 m/s and 
the deflation angle is 30°, and the central blank area gradually increases with the increase 
in wind erosion cycles. According to Figure 7d, most of the aeolian sand in the sand table 
is blown and eroded, and only a small amount of aeolian sand is distributed at the end 
nearby wind source and the end far from the wind source when the wind velocity is 13 
m/s, the deflation angle is 15°, and the number of wind erosion cycles is one. The above 
fact suggests that loose aeolian sand has poor resistance against wind erosion. Therefore, 
sandstorms and other natural disasters occur frequently in desert areas. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Wind erosion morphology of loose aeolian sand (The arrow indicate the dispersion direc-
tion of the aeolian sand): (a) v = 7 m/s, α = 15°, n = 1; (b) v = 10 m/s, α = 30°, n = 1; (c) v = 10 m/s, α = 
30°, n = 3; (d) v = 13 m/s, α = 15°, n = 1. 

Figure 8 presents the wind erosion morphology distributions of solidified aeolian 
sand samples under different wind velocities, deflation angles, and wind erosion cycles; 
the deflation direction is from left to right. As figured, the deflation of solidified aeolian 
samples is significantly less than that of loose aeolian sand when the wind velocity is 7 
m/s, the deflation angle is 30°, and the number of wind erosion cycles is three[23] because 
solid crusts can prevent aeolian sand from deflation to some extent. Small solidified aeo-
lian sand samples are blown away when the wind velocity is 10 m/s, and some sand par-
ticles abrade sample surfaces during movement, which will further deteriorate the de-
struction caused by wind erosion. When the deflation angle is 45°, the area under the ac-
tion of wind erosion increases, and the middle part of aeolian sand suffers more serious 
erosion than the two sides. We found that CaCO3 crystals mainly precipitated in the shal-
low layer because MICP only consolidated the surface layer of aeolian sand, and the 

Figure 7. Wind erosion morphology of loose aeolian sand (The arrow indicate the dispersion direction
of the aeolian sand): (a) v = 7 m/s, α = 15◦, n = 1; (b) v = 10 m/s, α = 30◦, n = 1; (c) v = 10 m/s, α = 30◦,
n = 3; (d) v = 13 m/s, α = 15◦, n = 1.

Figure 8 presents the wind erosion morphology distributions of solidified aeolian
sand samples under different wind velocities, deflation angles, and wind erosion cycles;
the deflation direction is from left to right. As figured, the deflation of solidified aeolian
samples is significantly less than that of loose aeolian sand when the wind velocity is 7 m/s,
the deflation angle is 30◦, and the number of wind erosion cycles is three [23] because solid
crusts can prevent aeolian sand from deflation to some extent. Small solidified aeolian
sand samples are blown away when the wind velocity is 10 m/s, and some sand particles
abrade sample surfaces during movement, which will further deteriorate the destruction
caused by wind erosion. When the deflation angle is 45◦, the area under the action of
wind erosion increases, and the middle part of aeolian sand suffers more serious erosion
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than the two sides. We found that CaCO3 crystals mainly precipitated in the shallow layer
because MICP only consolidated the surface layer of aeolian sand, and the experimental
results of Wang et al. [24] are very consistent with this. When the wind velocity is 13 m/s,
aeolian sand lumps are eroded and loose sand particles are blown away, resulting in a mass
loss rate of 63.6%. Therefore, different from loose aeolian sand, a solid layer is formed on
the surface of the aeolian sand solidified by MICP and has a certain ability to resist wind
erosion. This will be of great help to reduce the occurrence of natural disasters in desert
areas and reduce the current situation of air pollution.
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3.5. Analysis of the MICP Solidification Mechanism

In order to compare the mineral composition of aeolian sand before and after solid-
ification and evaluate the effect of the MICP solidification reaction on aeolian sand, the
crystal phase of the samples was determined by carrying out an XRD test. Figure 9 presents
the XRD spectrum of both loose aeolian sand and MICP-solidified aeolian sand. As shown,
quartz is the main mineral component of loose aeolian sand, showing fewer diffraction
peaks, but MICP-solidified aeolian sand shows more characteristic diffraction peaks. Ac-
cording to the analysis conducted using the software Jade 6 (TiLab, Beijing, China), they
are the characteristic diffraction peaks of calcite, indicating that calcite is the main crystal
settling in the samples treated by MICP.
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Figure 10 shows the FTIR testing results of both loose aeolian sand and MICP-solidified
aeolian sand. As shown in the figure, the absorption peak of the two samples is mainly a
narrow peak, and the position and quantity of absorption peaks vary slightly. The peaks
at the location of 3621.02 cm−1 are O-H and N-H stretching vibration peaks; the peaks at
the locations of 777.17 cm−1, 694.09 cm−1, and 462.09 cm−1 are Si-O symmetric stretching
vibration peaks. The peak position at the location of 3233.70 cm−1 is the O-H stretching
vibration peak, the peak at the location of 2512.77 cm−1 is the asymmetric vibration peak of
CO2−

3 , and the absorption peak at the location of 1408.14 cm−1 is the C-O antisymmetric
stretching vibration peak of CO2−

3 , as well as the characteristic peak of vaterite. The
peak at the location of 1033.58 cm−1 is the C-O symmetric stretching vibration peak of
CO2−

3 , indicating the presence of carbonate. The peaks at the locations of 777.77 cm−1,
694.21 cm−1, and 457.97 cm−1 are Si-O symmetric stretching vibration peaks, and SiO2 is
the main component of sand particles, which is consistent with the XRD test results. It can
be concluded that the carbonate generated in the process of MICP mineralization is CaCO3.
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Figure 11 presents the microstructure of the aeolian sand solidified by MICP in order to
further analyze the action mechanism of aeolian sand solidification by MICP. As illustrated,
CaCO3 crystals generated by MICP mineralization are mostly distributed on sand particle
surfaces, in sand particle pores, and between sand particles to achieve covering, filling, and
cementing effects [25]. In the process of MICP mineralization, bacteria are first adsorbed
on the surface of aeolian sand particles, providing nucleation sites for the formation and
superposition of CaCO3 crystals [26]. The CaCO3 crystals deposit, accumulate, and grow
between adjacent particles to cement the adjacent particles into a whole, turning the point
contact between particles into surface contact and improving the overall stability of the
samples. CaCO3 crystals can increase the surface roughness and cohesive force of sand
particles, thereby improving the mechanical strength and erosion resistance of solidified
aeolian sand. In Figure 11d, it can be seen that the CaCO3 crystals generated by MICP
are diamond-shaped, indicating that the generated CaCO3 crystals are mainly calcite [27].
Calcite minerals are formed in the pores of particles to bind them. And there is a favorable
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relationship between its content and the strength of the sample [15]. These are consistent
with the results of the XRD and FTIR experiments.
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4. Conclusions

This study validated the reliability of the MICP sand solidification method by con-
ducting a small-scale wind tunnel model test using aeolian sand solidified by MICP and
analyzing the effects of wind velocity, deflation angle, wind erosion cycle, and other related
factors on the mass loss rate of solidified aeolian sand. The microstructure of aeolian sand
was constructed by performing mesoscopic and microscopic testing (XRD, FTIR, and SEM),
thus revealing the mechanism of aeolian sand solidification via MICP. The main conclusions
are as follows:

1. The mass loss rate of aeolian sand is positively correlated with wind velocity and
keeps increasing with the increase in the wind erosion cycle. When the deflation angle
and number of wind erosion cycle are constant and the wind velocity increases from
7 m/s to 13 m/s, the maximum mass loss rate of aeolian sand reaches 92.68%.

2. The mass loss rate of aeolian sand increases with the increase in the deflation angle.
The mass loss rate of aeolian sand also increases with the increasing number of wind
erosion cycles. When the wind velocity and number of wind erosion cycle are constant
and the deflation angle increases from 0◦ to 45◦, the mass loss rate of aeolian sand
shows a stepwise upward trend.

3. Under the action of different wind speeds, the mass loss rate of aeolian sand increases
with the increase in wind erosion cycles, and the increase amplitude becomes larger
with the increase in the deflation angle. When the wind velocity is 7 m/s and the
deflation angle is 45◦, the mass loss rate of aeolian sand after 1, 3, and 5 wind erosion
cycles is 4.19%, 7.57%, and 9.11%, respectively.
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4. Loose aeolian sand has poor resistance against wind erosion. With the increase in
wind velocity, the aeolian sand in the middle of the sand table is gradually blown
away. Only a small amount of aeolian sand is distributed at the end near the wind
source and the end far from the wind source. The solid layer formed on the surface of
MICP-solidified aeolian sand has a certain ability to resist wind erosion. The mass
loss rate of such aeolian sand is only 63.6% when the wind velocity is 13 m/s.

5. Quartz is the main mineral component of loose aeolian sand, while new calcite
is the main mineral component of MICP-solidified aeolian sand. CaCO3 crystals
generated by MICP mineralization were mostly distributed on sand particle surfaces,
in sand particle pores, and between sand particles to achieve covering, filling, and
cementing effects.

6. The solidification of aeolian sand will be particularly important for subgrade filling,
soil anti-seepage, and erosion resistance, as well as slope protection. However, the
environment in the desert area is complex and harsh, and factors such as freeze–
thaw and ultraviolet light have not been effectively solved, which is expected to be
supplemented and improved on in future related research.
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