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contributed to over 60 scientific publications, 48 of which are indexed on the Web of Science platform.

Her primary research interests involve solving Combinatorial Optimization Problems, particularly

with applications in Transportation and Logistics.

Elena Nechita

Elena Nechita graduated from ”Alexandru Ioan Cuza” University of Iaşi, Romania, in 1987
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Abstract: The development of the sharing economy has made carsharing the main future development
model of car rental. Carsharing network investment is enormous, but the resource allocation is
limited. Therefore, the reasonable location of the carsharing station is important to the development
of carsharing companies. On the basis of the current status of carsharing development, this research
considers multiple influencing factors of carsharing to meet the maximum user demand. Meanwhile,
the constraint of the limited cost of the company is considered to establish a nonlinear integer
programming model for station location of carsharing. A genetic algorithm is designed to solve the
problem by analyzing the location model of the carsharing network. Finally, the results of a case
study of Lanzhou, China show the effectiveness of the establishment and solution of the station
location model.

Keywords: carsharing; station location modeling; genetic algorithm; fix stations and free stations

1. Introduction

Carsharing is gaining popularity due to its green advantages. Carsharing helps reduce the number
of private cars, which alleviates traffic congestion in turn [1]. Carsharing refers to the leasing business
in which cars are owned by a carsharing company and used by different users at varying times with
measurement by duration and mileage. Unlike traditional offline car rental service and day-by-day
billing units, carsharing users register and authenticate on their mobile phones, use applications to
find surrounding stations, and rent cars by time [2]. This research analyzes electric carsharing, which
is a carsharing that is powered by electricity and has less pollution impact than traditional cars.

This research focuses on the types of electric carsharing [3,4] in which the cars can be fetched and
parked at fix or free stations. Fix stations require a certain area to store cars, and the costs include
land rent, charger and station construction costs [5,6]. If the area does not have fix stations, then users
can park their cars on the public parking space in a certain area. Different fees of users are charged
for parking at varying stations. However, the parking fee is paid by the company. Therefore, for the
carsharing company, the free station does not require the cost of station construction, but parking
costs will be incurred. The construction of fixed stations is conducive to the management of cars,
and free stations are convenient for users to use cars and for reducing the cost of station construction.
The combination of two operation forms is conducive to the sustainable development of carsharing.

Carsharing is advantageous because it provides great convenience for users and improves the
flexibility of cars [7]. Zhu [8] analyzed the objective conditions of the new energy carsharing in China
and revealed the popularization value and prospects of carsharing in China. Feng [9] analyzed the
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current development status and future scale of the major car long-term rental, short-term rental, and
online car rental markets. These studies are biased toward policy and market analysis. Notably,
carsharing has a great future in the transportation field. However, the development of the carsharing
industry is still in its early stages. The problems of few stations, few available cars, and few chargers
have become key restricting factors of the development of carsharing companies [10]. Some studies
have found that carsharing network settings can affect user willingness and company development.
Ciari [11] used a binary logistic model and showed that the location of stations actually affects potential
membership. This research used elastic analysis to find the relationship between distance and number
of users but did not introduce specific methods for station location optimization. Correia [12] found
that financial losses can be reduced through appropriate choices with respect to the number, location,
and size of the depots. This research provided the foundation for the necessity of the station location
optimization model.

Scholars have conducted the following research to address the problems of carsharing station
location optimization. Jiang [13] used analytic hierarchy process to calculate the best scheme for
carsharing stations. The study identified variables with a significant effect on station location selection
but did not build an optimization model for carsharing station location determination. Lu [14] used
the interval fuzzy soft set method of risk preference for each carsharing station in Wang Cheng County.
The evaluation of the plan has certain reference significance for the location and future planning of
carsharing. This method is more suitable for evaluating existing carsharing stations than for planning
for new cities. The above-mentioned research methods are relatively subjective. Other methods using
mathematical models are presented as follows. Çalık [15] illustrated a carsharing locating recharging
station model that operates under demand uncertainty. The research developed a demand forecasting
method that allows the generation of many demand scenarios. Hu [16] formulated a mixed queuing
network model for the joint design of fleet size and station capacities. The optimization problem was
solved by the genetic algorithm. They proved that the profit is maximized when the existing road
congestion is moderate. This research mainly considered the carsharing model of the fixed station
but ignored the setting of free stations. Wielinski, G [17] researched the travel area and behavior of
free-floating carsharing users. This study mainly considered the operation model of free-floating
carsharing but ignored the setting of fixed stations. Zheng [18] proposed a method for optimizing the
location of charging stations for one-way electric carsharing systems. The objective function was to
maximize the profit of carsharing service. Simulations were performed to prove the effectiveness of
the research method. The final station was optimized by 0–1 variable station selection among existing
candidate sites. However, the study failed to provide scientific theoretical basis for the selection of the
alternative station. Lee [19] analyzed eight spatial elements related to carsharing location. A model was
established to determine the optimal carsharing locations with the minimum total distance between
carsharing users. This model took the minimum travel cost of the users as the optimization goal, which
optimized the station location based on fixed station operations. Chen [20] designed a genetic algorithm
to solve the problem with the least total change and the smallest gap between supply and demand.
The model results obtained the adjustment of the number of cars at each station after optimization.
This model is more suitable for the scale expansion of a city that already has carsharing than for the
location optimization of a new city. In this research, the electric carsharing location and car allocation
model of fixed and free stations are considered first. This way improves not only the efficiency of
electric carsharing management but also the convenience of user demands. Second, this study uses the
grid division method for area discretization, which improves the shortcomings of random optimization
of alternative stations based on alternative station optimization. To the best of the authors’ knowledge,
this study is the first to integrate the above-mentioned method to carsharing location method.

Electric carsharing is an asset-heavy and high-risk industry. Networking is the development
trend. The electric carsharing station network is not only crucial to the company’s profitability but
also significant for the development of urban transportation systems [21]. First, electric carsharing
network is difficult to alter after completion due to its large investment. The geographical location of
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the network directly determines the network location and economic benefits of the company. Second,
the current charging, parking space, and car license plate resources in the industry are limited. The
location of the stations determines whether these resources can be fully utilized for reducing costs [22].

This research analyzes the optimization model of the location of electric carsharing networks.
The optimization model and application scenarios of electric carsharing are combined to determine
the affecting factors of electric carsharing network station location. The objective function is to meet
the maximum user demand with the limited cost of the company as the constraint while considering
factors, such as land rent, parking prices, and the number of chargers. An optimization model for the
location of electric carsharing is established. Then, the location plan of the network in the research
area is obtained using genetic algorithm by analyzing the established nonlinear integer programming
model. Finally, a case study is conducted. The results indicate that this research can improve the
coverage ratio of user demand and the convenience of users. Accordingly, the competitiveness of the
electric carsharing industry development can be enhanced. On the one hand, this research is important
in promoting healthy development of the industry. On the other hand, this research can provide
theoretical guidance for the station location of electric carsharing companies.

The remainder of the paper is organized as follows. In Section 2, the data process is introduced.
Section 3 presents the electric carsharing location model and the solution of genetic algorithm in detail.
Section 4 demonstrates the case study and solution result. Conclusions and prospects are elaborated in
Section 5.

2. Data Preprocessing

2.1. Region Discretization

In this research, the area is discretized [23]. As shown in Figure 1, the area is divided into a grid
with m rows by n columns. Each small grid is a demand point and a candidate station. The number
and size of small grids can be determined on the basis of the development status and development
plan of the study area.

Figure 1. Schematic of the study area meshing.

2.2. Definitions of Variables

2.2.1. Regional Demand Forecast

The amount of user demand in the area as needed is determined. First, the total demand for
electric carsharing in the region can be obtained through the macro demand forecast. Then, according
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to the population density, land use, and other parameters of each small grid, the total demand for
regional electric carsharing is allocated to each small area, and the demand matrix of the entire area
can be obtained [24]. In accordance with Equation (1), the total demand of electric carsharing in the
area is obtained on the basis of the urban resident population in consideration of the average daily
trip volume, travel mode rate, and electric carsharing travel demand. We define the total number of
carsharing in a region that is proportional to the user’s total carsharing distance divided by the daily
carsharing travelable distance.

M =

ω
r∑

i=0
apd

gv
, (1)

where M is the total demand number of electric carsharing. r is the total number of residents. i is the
resident. a is the daily number of trips per capita, (trips/day). p is the share of electric carsharing that
can be acquired by survey data. d is the average distance traveled by the electric carsharing, (meter).
g is the daily travelable duration of the electric carsharing,(minutes). v is the average travel speed
of the electric carsharing, (meter/minutes). ω is the adjustment coefficient, which is related to car
redistribution efficiency and car utilization efficiency.

After the total demand number of electric carsharing is obtained, the demand for electric carsharing
in each small region is calculated. Combined with factors, such as electric carsharing application
scenarios and pedestrian flow, this research considers seven indicators, namely, residential population
density, population of the campus, job numbers, leisure entertainment venues, tourist attractions,
transportation hubs, and ordinary interchange point demand for electric carsharing, to measure the
effect of each small area. The demand for electric carsharing Cuv in each small grid is calculated
as follows.

Cuv = c1
uv + 0.5c2

uv + c3
uv + c4

uv + c5
uv + c6

uv + c7
uv, (2)

where v is the v-th column and u is the u-th row. We consider several factors that may affect the demand
for carsharing in an area. These factors are chosen due to the following reasons. c1

uv is the daily human
traffic of residential users and represents the number of potential users and the amount of trips to
a certain extent (people volume/day). c2

uv is the daily human traffic of college students who have a
high percentage of driving licenses, limited purchasing power, and strong ability to accept new things.
Meanwhile, students need to go to the city center for shopping and entertainment because most college
campuses are in suburbs. Thus, college students are the important users of electric carsharing (people
volume/day). c3

uv is the daily human traffic for jobs. Job places are not only the starting and ending
points of commute but also an important node for people traveling during the day. High-density
jobs will generate high travel demands (people volume/day). c4

uv is the daily human traffic of the
leisure entertainment places. Electric carsharing is often suitable for the purposes of going to the
places of leisure entertainment places at night, weekends, and holidays (people volume/day). c5

uv is
the daily human traffic of tourist attractions that often attract a large number of tourists from the city.
The convenience and privacy of electric carsharing meet their travel needs to stations, hotels, and
attractions (people volume/day). c6

uv is the daily human traffic of large-scale transportation hub, which
mainly refers to passenger stations, high-speed rail stations, ordinary railway stations, and airports
in the city. These places are distribution centers for a large number of people and accommodate a
certain number of customer groups (people volume/day). c7

uv is the daily human traffic of ordinary
interchange point, which mainly refers to the subway and bus interchange stations in the city. Although
the short-term flow of people at these interchange points is not as large as that at a transportation
hub, these interchange points are more numerous in cities and function as important connection
points among different modes of transportation (people volume/day). The weight of each factor is
set according to the average of survey data. Although college students have a high intention to use
carsharing, economic conditions restrict the use frequency for carsharing. Therefore, the weight of c2

uv
is set to 0.5. Other factors are set to 1, which means other kind of human has more influence than c2

uv.
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According to the ratio of the demand of each small grid to the total demand of the area, the total
cars in the area is distributed to each small grid, and the demand number of electric carsharing Ruv in
grids of row u and column v is obtained, as follows. Cuv is the demand for electric carsharing in grids

of row u and column v.
m∑

u=1

n∑
v=1

Cuv is the total demand for electric carsharing in this area. We allocate

total cars according to the proportion of demand in each grid.

Ruv =
Cuv

m∑
u=1

n∑
v=1

Cuv

∗M, (3)

where R is the number of electric carsharing demand matrix. Ruv is the demand number of electric
carsharing in grids of row u and column v.

2.2.2. Regional Service Matrix

The service capacity and scope of a single electric carsharing station are limited. If the user arrives
at an electric carsharing station at a long distance, then the user’s willingness to rent will be greatly
decreased. This phenomenon can be quantified using business circle theory. According to the business
circle theory in economics, the mall or business district within a certain economic area is the center to
expand in a certain direction and distance, thus forms a certain range or area that attracts customers.
Commercial districts are generally divided into core, secondary, and marginal commercial districts.
In this study, the willingness to use the carsharing decreases with distance between the station and
the user, which also means the capacity of each station’s service decreases with distance. Placing
carsharing in a grid will attract users in nearby grids. Therefore, not 100% of the cars in this grid will
serve users in this grid. Some cars put in this grid will be used by users in nearby grids. So, carsharing
in a locale will also provide services to users in nearby grids. The grid with electric carsharing network
is assumed as the core district. The number of cars that can serve this point accounts for β1 of the total
number of users. The secondary district accounts for β2. The marginal district accounts for β3. If the
station set is at row u and column v, then its service matrix is Auv.

Auv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β3 β2 β3

β2 β1 β2

β3 β2 β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where β1 is the service capacity of the core districts. β2 is the service capacity of the secondary districts.
β3 is the service capacity of the marginal districts.

L(u, v) is a matrix that indicates the distribution of the network stations to be created, where
luv= 1 indicates that a network point is to be created at that grid, and luv= 0 indicates that no station is
to be created at this grid. L(u, v) is a 0–1 matrix with m rows and n columns. The u-th row and v-th
column of this matrix are equal to 1, and others are equal to 0. Then, the carsharing station of the
distribution matrix in the entire area L is calculated as follows.

L =
∑

L(u, v), (4)

where L(u, v) is the distribution of the network stations to be created in row u and column v. L is the
distribution matrix of carsharing station.

The service provided by a single station in row u and column v, P′uv can be calculated as follows.

P′uv = L(u, v) ⊗ (AuvBuv), (5)

where Buv is the number of cars to be invested at the stations in row u and column v. ⊗ represents
two-dimensional discrete volume integrals [25]. The service matrix provided by a single station in
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the entire area can be directly obtained through the calculation of two-dimensional discrete volume
integrals. Therefore, the sum of the services provided by the entire station is calculated as follows:

P =
m∑

u=1

n∑
v=1

Puv =
m∑

u=1

n∑
v=1

∑
P′uv, (6)

3. Electric Carsharing Location Optimization Model

3.1. Assumptions

We make several assumptions to construct the electric carsharing location optimization model.
The specific content is listed as follows:

1. The influence of electric carsharing stations on user demand in the region is ignored.
2. We mainly focus on one-way carsharing system. The number of cars in each station remains stable.
3. The maintenance costs of cars in free parking areas are ignored.

3.2. Problem Setting

This study aims to determine the location and scale of electric carsharing under the condition of
limited resources for maximizing the number of users. First, the research area is gridded. Second, the
demands within each grid are calculated. Finally, the optimal network scheme is obtained using the
mathematical model.

3.3. Mathematical Model

The model is mainly divided into two parts: objective function and cost constraint. The objective
function is obtained by comparing the user demand matrix with the service matrix. The demand and
service matrixes are obtained by discretizing the regions. Constraints mainly consider cost restrictions.
Costs include land rent, car purchase fees, charging construction fees, and parking fees. This section
discusses the electric carsharing station location model in detail.

3.3.1. Objective Function

Many factors should be considered in the station location of electric carsharing. The most
important factor is user demand. The more user demands that are satisfied, the larger the economic
benefits. This factor is the foundation and value of existence of the electric carsharing company.
Therefore, the objective function is to maximize the user demands that are met in accordance with
Equation (7).

maxS =
m∑

u=1

n∑
v=1

min(Puv, Ruv), (7)

where Puv is the service provided by the stations in row u and column v. Ruv is the demand of the grid
in row u and column v. S is the total number of user demands that can be met.

3.3.2. Constraint Condition

(1) Car purchase cost

We assume that the purchase cost of cars is linearly related to their number. Then, the car purchase
cost can be calculated as follows:

Fcar =
m∑

u=1

n∑
v=1

b ∗ Buv, (8)

where Buv is the car purchase plan and denotes the number of cars to be invested at the stations in row
u and column v. b is the cost of each car.

6
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(2) Charger cost

At present, the chargers located in cities cannot meet the charging demands of all electric vehicles,
and electric carsharing will have demands for charging during the operation process. Thus, electric
carsharing operators need to build a certain number of chargers. The construction costs for chargers
can be calculated as follows:

Fcharging = λ ∗ e
m∑

u=1

n∑
v=1

Buv, (9)

where e is the construction cost of each charger and λ is the corresponding coefficient between the
required number of stations and charging. λ is generally less than 1.

(3) Parking fee cost

At free stations, parking fees are incurred after cars are used. The parking fee is generally related
to the parking price, parking time, and the number of cars in the station. The parking costs for one
year can be calculated as follows:

Fparking =
m∑

u=1

n∑
v=1

Juv ∗ t ∗Kuv, (10)

where Kuv is the locations of free stations. Juv is the average parking price for 1 h in row u and column
v. t is the average parking time of each car in a year.

(4) Land rent cost

The rent of each fixed station is related to the average local land price and the area of the station.
The car number in the station determines the size of the station. The land rent can be calculated
as follows:

Frent =
m∑

u=1

n∑
v=1

μ ∗Vuv ∗ (Buv −Kuv) (11)

where Vuv is the average rent per square meter and per year in row u and column v. μ is the
correspondence coefficient between size and location of the station. Buv is the delivery plan for cars in
the entire area. Kuv is the delivery plan for cars at free stations.

The total cost F is equal to the accumulation of various costs, as shown in Equation (12).

F = Fcar + Frent + Fcharging + Fparking

=
m∑

u=1

n∑
v=1

b ∗ Buv+
m∑

u=1

n∑
v=1

Vuv ∗ μ ∗ (Buv −Kuv)+
m∑

u=1

n∑
v=1
λ ∗ e ∗ Buv+

m∑
u=1

n∑
v=1

Juv ∗ t ∗Kuv

=
m∑

u=1

n∑
v=1

Buvluv(b + μ ∗Vuv + λ ∗ e) +
m∑

u=1

n∑
v=1

Kuv ∗ (Juv ∗ luv ∗ t−Vuv ∗ μ)
(12)

(5) Budget constraint

We suppose that the maximum investment of these companies in these costs is W. Thus, the cost
constraint is Equation (13).

F ≤W. (13)

(6) Other constraints

Constraints on the size of stations are given by Equation (14). From practical considerations, the
scale of stations should not be too large or too small. Thus, the number of cars put in is limited.

Buv ∈ [num1, num2], u ∈ [1, m], v ∈ [1, n] (14)
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Constraints on the total number of stations are shown below. The total number of stations to be
laid out in the solved layout plan should not exceed the total number of alternative stations. According
to Equation (15), N is the total number of proposed network points.

1 < N < mn (15)

3.4. Optimization Algorithm

Genetic algorithm was proposed by John Holland in 1975 as an intelligent bionic algorithm that
mimics the evolutionary process of living things [26]. This algorithm is a heuristic algorithm. This
algorithm borrows natural phenomena, such as the initial population generation, natural selection, gene
crossing, and mutation during the evolution of organisms, and iteratively generates new offspring. [27]
The fitness function is set by simulating Darwin’s “survival of the fittest” rule. The genetic algorithm
is highly scalable and can thus judge the pros and cons of generating offspring, continuously optimize
the problem, and obtain the optimal solution of the problem.

The model for station optimization and layout of electric carsharing network established in this
study has the following characteristics. First, all variables are integers. The variables to be solved
include the network deployment and launch matrixes. The network deployment status is represented
by a value of 0–1, and the number of cars launched by the network is also an integer. Second, the
calculation of two-dimensional discrete volume integrals in the model cannot be solved by Lingo
software. The objective function is also nonlinear. Finally, the model involves a large number of
0–1 variables. At present, finding the optimal solution is difficult using a traditional enumeration
method on a computer. However, the genetic algorithm can only find a satisfactory solution for the
model. The calculation and iteration process of the genetic algorithm is complicated. A problem often
needs to be iterated thousands of times to find its optimal solution, but this process is regular and can
be repeatedly executed according to a certain program [28]. The genetics are considered in this study.
The basic cyclic process and steps of the algorithm are shown in Figure 2 [29,30].

 
Figure 2. Flowchart of genetic algorithm processing.
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In this model, the decision variables include whether a station is established in the grid, the number
of cars allocated to a fixed station, and the number of cars allocated to a free station. The demands of
each area are known. Therefore, a multivariate mixed integer programming model solution is designed.

3.4.1. Encoding

The encoding steps are as follows. Each grid has a size of 15 × 12. Each grid is initialized to luv= 0,
that is, no station is established in the grid. Grids are then selected to establish a fixed station, and
let luv= 1. Accordingly, a chromosome can be formed from all the luv values. Chromosome matrix is
designed as LC =

{
L1, L2, . . . , Lz

}
, which represents the various attributes of a scheme as a chromosome.

In this matrix, each gene fragment L in the chromosome corresponds to a station-selected scheme for
any gene fragment luv= {0, 1}. Depending on the demands of each grid, the numbers of fixed and free
stations allocated to optimize the objective function are allocated.

3.4.2. Fitness Function

The objective function is selected as the fitness function. For simplicity of calculation, the fitness

function takes the following form. maxS =
m∑

u=1

n∑
v=1

Puv+Ruv−|Puv−Ruv |
2 . The solution with the maximum

fitness function is the optimal solution of the station location optimization model.

3.4.3. Selection

This study designs a selection strategy for alternative solution sets. According to different station
selection and car allocation schemes, the strategy chooses to be liberated into alternative solution sets
that meet the budget constraints. Then, this strategy compares the alternative solution sets to make the
objective function optimal into the offspring. Finally, the strategy performs random traversal sampling
on the current population until the offspring population is the same size as the parent.

3.4.4. Variation

Crossover of chromosomes is made to redefine new fixed station combinations. The crossover
operator is double-point crossover.

For example, we have two chromosomes L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l111, l112, l113, . . . , l11v, . . . , l11n
l121, l122, l123, . . . , l12v, . . . , l12n

. . .
l1m1, l1m2, l1m3, . . . , l1mv, . . . , l1mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l211, l212, l213, . . . , l21v, . . . , l21n
l221, l222, l223, . . . , l22v, . . . , l22n

. . .
l2m1, l2m2, l2m3, . . . , l2mv, . . . , l2mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let crossover with . Then, we obtain

 and  . Any row to row and column to column
can crossover.

9
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Chromosomal mutations are used to redefine new fixed station locations. The mutation operator
is multipoint mutation. A chromosome is randomly selected to mutate to ensure luv change.

3.4.5. Termination Condition

We determine whether the termination condition is reached. If yes, then end the iteration; if not,
then rerun the genetic iteration. We set the maximum number of iterations reached and a plateau
reached as the termination condition. When the maximum number of iterations is reached, the fitness
function value converges, which indicates that the optimal solution is reached.

The costs are calculated under this allocation plan. If the cost meets the budget constraint and the
number of vehicle constraint, then the allocation scheme is added to the set of alternative solutions.
Otherwise, we transfer and readjust the number of allocated cars and repeat the steps until the optimal
number of allocated cars at this station is obtained.

4. Case Study

4.1. Setting up the Case Study

Lanzhou is an important tourist city in China. The city is an important comprehensive
transportation hub. At present, the resident population in Lanzhou City is more than 3.6 million, and
the number of cars is more than 1.04 million. Urban transportation problems are prominent in the city
because of the large population and cars. The spatial layout of Lanzhou is shown in Figure 3.

Nowadays, the construction of electric carsharing stations is based on experience. Thus,
optimization of the entire region is difficult. As a result, the company spends a lot of time and
resources in operating. Therefore, the rational construction of an electric carsharing location model
helps companies reduce blind investment and improve operating efficiency in station optimization.
This research applies the location optimization model to optimize the electric carsharing station
in Lanzhou.

 

Figure 3. Spatial layout of the study area.

4.2. Parameter Calibration

Lanzhou is a strip-shaped city. This research selects a rectangular research area of 30 km × 12 km
in Lanzhou and divides the research area into small areas of 2 km × 1 km. A total of 15 × 12 area is
obtained. The specific division is shown in Figure 4.

10
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Figure 4. Diagram of area division.

The demand for electric carsharing D is obtained according to the survey done by the carsharing
company. Seven types of land use, namely, transportation hubs, ordinary interchange point, business
districts, college campuses, jobs, residential areas, and tourist attractions, have significant effects on the
demand for electric carsharing. Using Equation (2), the final carsharing demand matrix is obtained.

We divide the area by a grid of 12 rows and 15 columns and set the fixed station placement plan
B as a matrix of 12 rows and 15 columns. K is the free station placement plan. In this research, the
location of the free station is preset. Therefore, the capacity of the free station needs to be optimized.

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 k2,4 0 0 0 0 0 0 0 0 0 0

k3,0 k3,1 0 0 0 0 0 0 0 0 0 0 0 0 0
k4,0 k4,1 k4,2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 k7,7 0 k7,9 0 0 0 0 0
0 0 0 0 0 0 0 0 k8,8 k8,9 k8,10 0 k8,12 0 0
0 0 0 0 0 0 0 0 k9,8 k9,9 0 k9,11 0 k9,13 k9,14

0 0 0 0 0 0 0 0 0 k10,9 k10,10 k10,11 k10,12 0 0
0 0 0 0 0 0 0 0 0 0 0 0 k11,12 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The service capacity Ruv and demand Puv of a single car rental station are generally closely related

to the location and capacity of the electric carsharing at the station. It is given by the electric carsharing
company based on its own investment level and development strategy. Service intensity usually
decreases as the distance to the center of the carsharing station increases. Thus, this research divides
the district into core, secondary, and marginal districts. Then, the service matrix of each station can be
constructed. This study supposes that a single station has same service capabilities A.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2% 10% 2%

10% 45% 10%
2% 10% 2%

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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V is the average monthly rent matrix per square meter in each small grid.

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 1 2 2 2 2 2 4 3 3 3 3 2 2
2 2 3 7 5 5 5 2 8 3 4 5 7 4 2

15 10 8 7 5 5 5 2 8 3 4 5 7 4 2
25 26 15 13 8 6 14 12 11 11 11 8 8 5 10
24 24 18 12 12 10 10 10 10 7 14 12 11 10 8
11 12 10 10 10 10 8 8 7 7 4 5 7 10 10
4 4 3 6 5 5 8 8 8 9 16 7 7 9 9
4 4 3 6 5 9 10 10 10 30 20 20 15 15 15
8 5 5 8 6 9 10 10 10 30 30 20 20 20 20
2 3 3 5 8 8 8 8 10 25 25 30 20 19 17
3 2 2 3 4 4 6 8 8 15 20 24 20 15 15
2 2 3 3 3 3 5 7 5 3 8 10 25 20 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
J is the parking price per hour in the free parking area.

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0
8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
3 7 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 7 0 0 0 0 0
0 0 0 0 0 0 0 0 3 8 6 0 6 0 0
0 0 0 0 0 0 0 0 3 3 0 5 0 6 6
0 0 0 0 0 0 0 0 0 2 3 5 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The company intends to invest W = 50 million in these costs.
The cost of buying each car is b = 100,000 yuan.
The construction cost of each charger is e= 2000 yuan.
The average parking time for each car in the free parking area is t = 1440 h a year.
The corresponding coefficient μ = 20 of the area of the stations and the size of the stations.
The corresponding coefficient λ = 0.5 between the scale of the stations and the required number

of chargers.
The maximum number of cars dropped at each station is 100.
We design a genetic optimization algorithm to solve the model. The calculation process of the

algorithm is shown in Figure 2. The corresponding parameters are set as follows:
The selection operator is tournament selection;
The crossover operator is single-point crossover;
The crossover probability is 0.8;
The mutation operator is multipoint mutation;
The mutation probability is 0.05;
The population size is set to 500;
The stop rule is set to a maximum of 600 iterations.

4.3. Results

The generated genetic algorithm iterative curve is shown in Figure 5. The figure shows that the
genetic algorithm iterative curve shows a rising trend, which is consistent with the optimization model
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established in this study. Specifically, before the 400th generation the speed of rising is evident, and
the degree of dispersion is large. After the 400th generation, the curve is stable, and the fluctuations
are reduced. The latter trend continues to the end of the iteration. Therefore, the genetic algorithm
converges, and the optimal value of 426 of the stationary period is taken as the optimal solution of
the algorithm.

 
Figure 5. Graph of the iterative process of genetic algorithm.

Figure 6 shows the result of superimposing the service range of the electric carsharing network
calculated by the genetic algorithm and the demand range of the demand matrix. As observed, the
scope of requirements can be surrounded by the service matrix, which indicates that the requirements
can be met. Furthermore, the demands are mainly distributed diagonally, which is similar to the
demand matrix and the actual situation.

 
Figure 6. Bubble chart of service and demand ranges.

This research meets the overall demands of the city by placing cars in free stations or fixed stations,
as shown in Figures 7 and 8. Figure 7 shows the demand range (left) and overall service ability (right)
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of free and fixed stations. The lighter the color, the larger the quantity, and vice versa. Figure 8 shows
the service capabilities and scope of fixed and free sites. The lighter the color, the greater the service
capability, and vice versa.

 
(a) (b) 

Figure 7. (a) Thermal map of demand range and (b) overall service range.

 
(a) (b) 

Figure 8. (a) Thermal map of the fixed station and (b) free station service range.

Figure 9 presents the heat map for the final network of the stations. Color shades represent the
number of services available minus the number of requirements. The figure shows that user demands
can be met in most areas. Some cases in the red grid have demands that are not met.

Figure 9. Thermal map of the service excess matrix.
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The specific statistics of the station planning are shown in Table 1. The entire area must be
resettled at 56 regional points, of which two points are required to set stations at free and fixed stations.
A maximum of 24 cars can be installed in a single area. A total of 425 vehicles are settled.

Table 1. Statistical table of the arrangement plan.

Station Type Station Number Maximum Number of Cars Car Number Installed

Free station 8 8 44
Fix station 50 20 381
All station 56 24 425

5. Conclusions and Prospects

The rapid development of the electric carsharing industry has made the way to locate and
design electric carsharing stations a critical issue. This study analyzes the development status and
existing problems of electric carsharing. An electric carsharing station location model is established in
consideration of multiple influencing factors. The main factors for the demand of electric carsharing are
summarized by studying the application scenarios and business models of electric carsharing. On the
basis of these factors, a quantitative method that allocates cars according to travel demand is proposed.
A model of station location is established on the basis of a two-dimensional spatial analysis. A genetic
algorithm is designed to solve the problem given the characteristics of the model. The feasibility of the
model and solution method is verified using a case study of Lanzhou.

This research can be used for carsharing station location optimization in a new city.
A comprehensive station location optimization model is constructed by considering factors, such as
the total number of people in the city, the proportion of travel modes, station construction costs, and
construction budget. This method can also be used to study the locations of shared bicycles, electric
vehicle charging piles, and logistics distribution points. Therefore, this method can be extended.

The station location problem of electric carsharing is a multi-disciplinary problem and has many
influencing factors. On the basis of the analysis and summary of the development status of electric
carsharing, this study establishes a network location model and the solution methods. The proposed
methods can be improved from the following aspects. First, the forecast of the overall demand for
electric carsharing in the region is insufficiently accurate. This study only quantitatively predicts the
demand from several macro data indicators. Relatively few influencing factors are considered, and the
correlation between the factors has not been studied and verified with examples. Further research is
needed. Second, some parameters use an average estimation method that may be inconsistent with
actual operations. Finally, the model also ignores the effect of other operators on the regional demand.
These issues will be complemented in the future research.
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Abstract: In person re-identification, extracting image features is an important step when retrieving
pedestrian images. Most of the current methods only extract global features or local features of
pedestrian images. Some inconspicuous details are easily ignored when learning image features,
which is not efficient or robust to for scenarios with large differences. In this paper, we propose a
Multi-level Feature Fusion model that combines both global features and local features of images
through deep learning networks to generate more discriminative pedestrian descriptors. Specifically,
we extract local features from different depths of network by the Part-based Multi-level Net to fuse
low-to-high level local features of pedestrian images. Global-Local Branches are used to extract the
local features and global features at the highest level. The experiments have proved that our deep
learning model based on multi-level feature fusion works well in person re-identification. The overall
results outperform the state of the art with considerable margins on three widely-used datasets.
For instance, we achieve 96% Rank-1 accuracy on the Market-1501 dataset and 76.1% mAP on the
DukeMTMC-reID dataset, outperforming the existing works by a large margin (more than 6%).

Keywords: deep learning; intelligent monitoring; person re-identification

1. Introduction

Public safety incidents often occur in dense crowds. Therefore, a large number of surveillance
cameras are installed and applied in various areas of the city. Person re-identification is a key
component technology in the field of urban remote sensor monitoring. For a certain target person
appearing in a remote sensing surveillance video or remote sensing pedestrian image, the method of
person re-identification can accurately and quickly identify this target person in other remote sensing
monitoring fields. The goal of person re-identification is to find the same person from the videos or
images captured from different cameras [1], as in Figure 1. Recently, deep learning methods achieve
great success by designing feature representations [2–6] or learning robust distance metrics [7–10].

Algorithms 2020, 13, 111; doi:10.3390/a13050111 www.mdpi.com/journal/algorithms
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Figure 1. Retrieving the same pedestrian image under different cameras.

The pedestrian features extracted by deep learning can be divided into two types: global features
and local features. The global features are extracted from the whole picture, which is easy to calculate
and intuitive. These features contain the most significant information of a person (such as the color of
pedestrian clothes), which is helpful to indicate the identity of different pedestrians [6]. However, some
inconspicuous details (such as hats, belts, etc.) are easily ignored by the global features. For example,
if two persons are wearing clothes of the same color, and one of them is wearing a hat, it is hard to
discriminate the two persons from only the overall appearance. Moreover, when the background is
complex, it is difficult for the global features to associate the images of the same person with different
backgrounds into one identity, as shown in Figure 2.

In order to solve the problem of person re-identification, some recent work mainly uses deep
learning models to extract local features, using salient local details to match the local features of
a queried pedestrian. Local feature information of each body part is extracted by neural network.
The similarity between local features is very low, which is more conducive to person re-identification.
However, the method of extracting local features may ignore the overall pedestrian information,
as shown in Figure 2.

Figure 2. If the network only extracts local features of (a), it cannot be determined that those local
features belong to the same person. If the network only extracts global features, complex background
content can be detrimental to identifying pedestrians, as shown in (b). Horizontal arrows mean we
horizontally divided the feature map into six parts and extracted the local features of each part.

Representing local information of individuals by locating notable body parts from pedestrian
images is also an effective method of person re-identification in recent years [11–13]. Local features are
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extracted from different body parts. Each body part contains a small portion of local information from
the whole body [14,15]. In this way, we can learn detailed local features from the divided parts which
make the features focus on the local details. The learned local features supplement important details,
which can be taken as the complementary of the global features.

Therefore, in this paper, the local features and global features are jointly learned for person
re-identification. In this paper, we propose a Multi-level Feature Fusion (MFF) model that fuses global
features and local features. Moreover, the local features are extracted from different network depths.
An MFF model consists of two components: Part-based Multi-level Net (PMN) and Global-Local
Branch (GLB). PMN is used to extract local features from different layers of the network. GLB extracts
local features and global features at the highest level. The global features and local features are used to
perform identity predictions in MFF. We train the MFF model on three classic datasets. Performance of
experiments show that the MFF model which fuses global and local features is particularly effective
and our model results outweigh many state-of-the-art methods.

The main contributions of our work are as follows:

• We add Part-based Multi-level Net (PMN) to extract local features more comprehensively from
lower to higher layers of the network. Compared with other traditional feature extraction methods,
PMN can learn more local detailed features from different network layers.

• We join to learn global features and local features. The robustness of the MFF model can be
improved by joint learning features. We use multi-class loss functions to classify the features
extracted from different network branches separately, which enhances the accuracy of MFF.

• We implement extensive experiments on three challenging person re-identification datasets.
Experiments show that our method is superior to existing person re-identification methods.

The remainder of our paper is organized as follows: some related works are reviewed in Section 2.
The structure of our proposed model and implementation details are presented in Section 3. Extensive
comparative experiment results on three benchmark datasets are shown in Section 4. The conclusions
of our work are described in Section 5.

2. Related Work

Person re-identification aims to find matching pedestrian images from different camera views.
With the rapid development of deep learning, feature learning by deep networks has become a
common practice in person re-identification. Li et al. [16] combined deep siamese network architecture
with pedestrian human body feature learning for the first time and achieved higher performance.
Zheng et al. [11] proposed a baseline that combined ID-discriminative embedding (IDE) with a
ResNet-50 backbone network for modern deep person re-identification systems. Proposed methods
also improved the performance of deep person re-identification. Varior et al. [17] described the
interrelationship of local parts by computing mid-level features of image pairs. Xiao et al. [18]
improved the generalization of different pedestrian scenes by using the Domain Guided Dropout
method. Yang et al. [19] used deep learning networks to integrate multiple feature representations
together for person re-identification. Some recent works use features of different views or top-view for
person re-identification [20,21]. Paolanti et al. [21] extracted neighborhood component features and
used multiple nearest neighbor classifiers to identify pedestrians.

For local features extraction, Li et al. [12] proposed a deep learning method called STN.
Local features can be easily localized from image patches by learning deep contextual awareness of
body and potential parts. Zhao et al. [13] applied deep learning method to align same parts of different
images after splitting pedestrian image. Liu et al. [22] utilized attention module to extract part features
emphasized of the model. Bai et al. [23] combined some feature slices which are vertically divided into
multiple pieces with the LSTM network. Some recent works strengthen the representation of the body
part by embedding attention information [22,24,25]. In our proposed method, we extract local features
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from several horizontal stripes. At the same time, local features are extracted from different network
depths which achieves good performance.

For global feature extraction, a kernel feature map is used to obtain similar information of all
patches from different images [26]. Liao et al. [6] proposed a method called Local Maximal Occurrence
(LOMO) to represent a local feature which has a positive effect on person re-identification. In our paper,
we combine global features and low-to-high level local features together for person re-identification.

In the feature learning phase, classification loss is a commonly used loss function. Some loss
functions based on softmax loss achieve state-of-the-art performance in face recognition. Liu et al. [27]
proposed L-Softmax to improve the discrimination of pedestrian image features by adding angular
constraints to each identity. A-Softmax [28] improves L-Softmax by normalizing weights to
recognize by learning angularly discriminative features. Since softmax loss is robust to various
multi-class classification tasks and can be used individually [25,29] or in combination with other
losses [10,16,23,30–32], softmax loss is often used as a classification for loss function in person
re-identification. In our proposed method, we also use softmax loss to solve multi-class tasks.

3. Materials and Methods

Details of our method are described in this section. Proposed Multi-level Feature Fusion (MFF) is
introduced in detail which contains two main components: Part-based Multi-level Net (PMN) and
Global- Local Branch (GLB), as shown in Figure 3. PMN is used to extract local features from different
layers of the network. GLB extracts local features and global features from the final layer. More details
of the MFF are introduced in Sections 3.1 and 3.2. The loss function is introduced in Section 3.3.

 

Figure 3. Multi-level Feature Fusion (MFF) architecture is split into two components: Multi-level Net
(PMN) and Global-Local Branch (GLB). An input image is fed to the modified ResNet50 to obtain
feature maps. The extracted global features are sent to a classifier. Meanwhile, the feature maps are
divided into several parts and each part after dimension reduction is sent to a classifier.

3.1. Change of Backbone Network

By considering the relatively effective performance and concise architecture, this paper uses
ResNet50 as the backbone network. In order to extract features more accurately, the ResNet50 structure
is divided into block1, block2, block3 and block4, as in Figure 3. Then we can extract feature maps
between each block and use classifiers to predict identity. Each block consists of conv block (includes
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multiple convolution blocks) and identity blocks. The upper layer network of block1 is max pooling
layer. The backbone structure of ResNet50 remains unchanged until block4. In this paper, we remove
the entire network after block4 (including the global average pooling layer). In this way, feature maps
will be retained with more feature information by removing the global average pooling layer.

3.2. Structure of Multi-Level Feature Fusion (MFF)

The combination of global features and local features can learn more information which leads to
more accurate pedestrian retrieval results. In this paper, we propose an MFF model which fuses local
features and global features together. In MFF, local features and global features are learned identity
predictions. As shown in Figure 3, the MFF model is composed of Part-based Multi-level Net (PMN)
and Global-Local Branch (GLB). The structure of PMN and GLB are introduced separately. And Table 1
shows the dimensions of the features extracted from each branch.

Table 1. Comparison of the settings for five branches.

Branch Dimension

Branch-1 256 × 6
Branch-2 256 × 6
Branch-3 256 × 6

GLB-1 256
GLB-2 256 × 6

The structure of Global-Local Branch (GLB) consists of two parts to extract local and global
features from the deepest layer of the network, respectively. Given an input image, we can obtain
the feature maps through the backbone network. Then an average pooling layer and a classifier
are employed after the ResNet50 network to get the 256-dimension global features. The classifier is
composed of a fully connected layer and a softmax layer to get the prediction of pedestrian identity
from the global feature. The second branch of GLB is used to extract local features from the deepest
layer of the network. In order to extract the local features, we divide the feature maps horizontally
into six parts as shown in Figure 3. We add an average pooling layer and a classifier after the divided
feature map to get the prediction of pedestrian identity.

The structure of Part-based Multi-level Net (PMN) consists of three parts (Branch-1, Branch-2 and
Branch-3) which is used to extract local features from lower to higher layers of the network, as shown in
Figure 4. ResNet50 consists of four blocks, and we add Branch-1, Branch-2 and Branch-3 between each
pair of continuous blocks. In each branch, firstly, we apply an average pooling on the corresponding
output feature map. Then the feature map is divided into six parts horizontally as introduced in
previous subsection. We add a 1 × 1 kernel-sized convolutional layer, a batch normalization layer, a
relu layer and a global pooling layer to obtain 6 × 256-dimension local features. Then each local feature
is input into a classifier, where each classifier is implemented with a fully-connected (FC) layer and
a softmax layer. The classifier is used for the identity prediction. Note that, Branch-1, Branch-2 and
Branch-3 run in parallel.
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Figure 4. Method of body part partitions is shown above. The feature maps extracted from the deep
learning model is horizontally divided into six parts.

3.3. Loss Function

In our paper, we regard the person identification task as a multi-class classification problem.
Considering that softmax loss is widely used in various deep person re-identification methods, we
employ softmax loss as the loss function for classification in training stage.

In MFF, we regard person re-identification task as a multi-class classification problem. For i-th
learned class vector hi, the softmax loss function is described as follows:

Lso f tmax = −
M∑

i=1

log
exp
(
KT

yihi

)
∑D

c=1 exp
(
KT

c hi
) (1)

where Kc is the weight of class c, D is the number of classes in training dataset, Kyi is the weight of
yi− th in fully connected layer, yi− th is the i− th value of output vector y. M is the size of mini-batch
in training process. In MFF, the softmax loss is employed into the features extracted by GLB and PMN.

The final loss function is formulated as follows:

L = LG
so f tmax + LL

so f tmax + LL1
so f tmax + LL2

so f tmax + LL3
so f tmax (2)

where LG
so f tmax and LL

so f tmax represent the identity classification tasks in global and local branches of

GLB, LL1
so f tmax, LL2

so f tmax and LL3
so f tmax represent the identity classification tasks in Branch-1, Branch-2 and

Branch-3 of PMN, respectively.
Each classifier predicts the most similar pedestrian images when using a single classifier to make

decisions. A pedestrian image with the same identity as a query image is usually determined as
the most similar pedestrian image in the process of classification. We vote on the prediction results
obtained by five classifiers to get the final classification prediction results.

4. Results

4.1. Datasets

In order to evaluate the performance of the MFF model, here we evaluate three datasets in the
experiments, i.e., Market-1501 [33], DukeMTMC-reID [6] and CUHK03 [34]. The dataset of person
re-identification is divided into Training_set, Verification_set, Query and Gallery. In our experiment,
the network model is trained on the training set. Then we calculate the similarity of features extracted
from Query and Gallery which is used to find similar pedestrian images of Query in Gallery. Pedestrian
images of the Gallery are sorted according to the similarity of image features, as shown in Figure 5.
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Figure 5. Examples of person re-identification. The similar pedestrian images of Query are shown in
blue box.

The Market-1501 [33] dataset includes 1501 identities captured by six cameras and 32,668 detected
pedestrian rectangles under six camera viewpoints. In this dataset, each pedestrian contains at least
two camera viewpoints. The training set is consisted of 751 identities and each identity includes
17.2 training data on average. The test set is composed of 19,732 images of 750 identities. The pedestrian
detection rectangle in the gallery is detected by DPM [35]. Here, we use mean Average Precision (mAP)
to evaluate person re-identification algorithms.

The DukeMTMC-reID [6] dataset consists 36,411 images of 1404 identities. With those images
collected by eight cameras and each image sampled every 120 frames from the video. This dataset
is composed of 16,552 training images, 2228 query images and 17,661 gallery images. Half of the
identities are randomly sampled as training sets while the others as test sets. DukeMTMC-reID offers
human labeled bounding boxes.

The CUHK03 [34] dataset is composed of 13,614 images and 1467 identities. Each identity
automatically captured by two cameras. In this dataset, bounding boxes are provided by two different
ways: automatically detected which is the same as Market-1501 dataset and hand-labeled bounding
boxes. Here we use two kinds of bounding boxes in this paper. In the whole experiment, we evaluate
the single-query setting and adopt new test protocol proposed in [36] which is similar to Market-1501.
CUHK03 is divided into a training set consisting of 756 pedestrians and a test set of 700 pedestrians in
the new protocol. A randomly selected image is used as query image while the rest is used as gallery.
In this way, each pedestrian gets multiple ground truths in gallery.

The detailed information about these datasets is summarized in Table 2. Three widely-used person
re-identification datasets contain many challenges, such as misalignment, low resolutions, viewpoints
and background clusters. In addition, Figure 6 shows some image samples of the four datasets.

Table 2. The details of person re-identification dataset.

Dataset Release Tine Identities Cameras Crop Size Label Method

Market-1501 2015 1501 6 Vary Hand/DPM
DukeMTMC-reID 2017 1812 8 128 × 64 Hand

CUHK03 2014 1467 10 Vary Hand/DPM
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Figure 6. Some samples from Market-1501, CUHK03 and DukeMTMC-reID. Here each row includes
two different identities captured under different cameras.

For each query image, we merge the five feature vectors into one and calculate the Euclidean
distance between query image and pedestrian image in gallery. We use the Euclidean distance value to
rank the images. The higher the ranking, the more similar the image is to the query image. Then we
arrange them in descending order according to the Euclidean distance, and use the Cumulative Match
Characteristic (CMC) curve to show the performance. In terms of performance measurement, we use
the Rank-1 accuracy and the mean Average Precision (mAp).

Mean Average Precision (mAP) is an important evaluation indicator for person re-identification.
Precision and recall are important components of mean Average Precision. Precision is the ability of a
model to identify only the relevant objects. Recall is the ability of a model to find all the relevant cases.
The precision and recall are expressed as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP means the number of true positive, FP means the number of false positive, FN means the
number of false negative.

Average precision (AP) means the mean of the highest precision under different recalls, which is
expressed as follows:

AP =
1
R

∑
r∈R

Precision(r) (5)

MAP is the average value of the AP, which is expressed as follows:

mAP =
1
M

∑
m∈M

AP(m) (6)
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4.2. Implementation Details

We pre-trained ResNet50 on ImageNet [37] and used the weight of ResNet50 in MFF. Our training
environment is Pytorch and code is edited using python. The computer configuration system is 64-bit
ubuntu 16.04LTS. Single-GPU training is used in MFF and the type of GPU is NVIDA GEFORCE GTX
1080. Considering the configuration of the graphics card, we set batch size to 32. Due to differences
between three datasets, the learning rate of each dataset is different. Learning rate of Market-1501 is
0.05. Learning rate is set to 0.045 when training on DukeMTMC-reID. The learning rate of CUHK03
is 0.08. The entire training process is terminated in 60 epochs. We randomly select one image as the
query image which means we conduct all the experiments under single-query settings, and the input
pedestrian images are resized to 384 × 192.

4.3. Comparison with Market1501

Comparison with the proposed method on Market-1501 is detailed in Table 3. The MFF model is
compared with several state-of-the-art person re-identification methods on Market-1501 in recent years,
for example, the bag of words model BoW+KISSME [33] with a hand-crafted method, the SVDNet [34]
using global features extracted by deep learning model, and the part-aligned representation PAR [17]
using part features extracted by a deep learning model. We can observe from Table 3 that the proposed
MFF model gets best results in Rank-1 accuracy, Rank-5 accuracy and Rank-10 accuracy. In the
experiment, we use mean average precision (mAP) as an evaluation index of person re-identification.
The MFF model achieves 87.9% mAP on the Market-1501, which is 18.8% higher than the best proposed
method. In addition, the MFF model achieves Rank-1 accuracy of 96.0%, which is 11.1% higher than
the best method. Rank-5 accuracy of our model achieves 98.7%, 4.5% better than the best compared
method. This is because the MFF model fuses the global features and local features together. Moreover,
adding PMN when extracting local features is also helpful to obtain better results.

Table 3. Comparison with existing methods on Market1501.

Method
Market1501

Rank-1 Rank-5 Rank-10 mAP

BoW + KISSME [33] 44.4 63.9 72.2 20.8
WARCA [36] 45.2 68.1 76.0 -
SVDNet [34] 82.3 92.3 95.2 62.1

PDC [38] 84.4 92.7 94.9 63.4
Triplet Loss [39] 84.9 94.2 - 69.1

DML [40] 87.7 - - 68.8
PAR [13] 81.0 92.0 94.7 63.4

MFF (Ours) 96.0 98.7 99.3 87.9

The above shows Rank-1 to Rank-5 accuracy (%) and mean Average Precision (mAP) (%).

4.4. Comparison with CUHK03

Comparison between the proposed method and CUHK03 is detailed in Tables 4 and 5. We conduct
experiments on a CUHK03-detected dataset and a CUHK03-labeled dataset, respectively. We only
use the single-query method for person re-identification on CUHK03-detected and CUHK03-labeled
datasets. In this paper, our model is compared with many methods, such as LOMO+KISSME [6]
using a horizontal occurrence model, pedestrian alignment network [41] and HA-CNN [25] using
harmonious attention network. In this experiment, we use Rank-1 accuracy and mAP as evaluation
indicators. As shown in Table 4, the MFF model achieves Rank-1 accuracy of 67.4% which is 0.6%
higher than the best experimental result on CUHK03-detected data. Additionally, the mAP reaches
66.7%, which is 0.7% better than the best experimental result. Comparison results obtained on
CUHK03-labeled are as follows: we surpass MGN by 1.6% in Rank-1 accuracy for the single-query
setting. The MFF model reaches mAP of 68.8%. Compared with other deep learning methods, our
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model is even more discriminative, which is attributed to our global feature extraction and each-part
feature extraction. We believe that local feature extraction benefits from PMN, which is because PMN
can extract low-to-high level features more comprehensively.

Table 4. Comparison with existing methods on CUHK03-detected data.

Method
CUHK03-Detected

Rank-1 mAP

BoW + KISSME [33] 6.4 6.4
LOMO + KISSME [6] 12.8 11.5

IDE [42] 21.3 19.7
PAN [41] 36.3 34.0
DPFL [43] 40.7 37.0

SVDNet [34] 41.5 37.3
HA-CNN [25] 41.7 38.6

MLFN [44] 52.8 47.8

PCB+RPP [11] 63.7 57.5

MGN [45] 66.8 66.0

MFF (Ours) 67.4 66.7

Rank-1 accuracy (%) and mAP (%) are compared.

Table 5. Comparison with existing methods on CUHK03-labeled data.

Method
CUHK03-Labeled

Rank-1 mAP

BoW + KISSME [31] 7.9 6.4
LOMO + KISSME [6] 14.8 11.5

IDE [42] 22.2 19.7
PAN [41] 36.9 34.0
DPFL [43] 43.0 37.0

SVDNet [34] 40.9 37.3
HA-CNN [25] 44.4 38.6

MLFN [44] 54.7 49.2

MGN [45] 68.0 67.4

MFF (Ours) 69.6 68.8

Rank-1 accuracy (%) and mAP (%) are compared.

4.5. Comparison with DukeMTMC-reID

We compare the MFF model with a state-of-the-art model on DukeMTMC-reID. Comparative
details are shown in Table 6. Methods of extracting features are different in Table 6, for example,
LOMO+KISSME [6] extract local features with a horizontal occurrence model, whereas PAN [41] and
SVDNet [34] use a deep learning method to extract global features.
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Table 6. Comparison with existing methods on DukeMTMC-reID.

Method
DukeMTMC-reID

Rank-1 mAP

BoW + KISSME [33] 25.1 12.2
LOMO + KISSME [6] 30.8 17.0

Verif + Identif [46] 68.9 49.3
ACRN [47] 72.6 52.0
PAN [41] 71.6 51.5

SVDNet [34] 76.7 56.8
DPFL [43] 79.2 60.6

HA-CNN [25] 80.5 63.8
Deep-Person [48] 80.9 64.8

PCB+RPP [11] 83.3 69.2

MFF (Ours) 86.0 76.1

Rank-1 accuracy (%) and mAP (%) are compared above.

We evaluate the MFF model on DukeMTMC-reID with single-query-setting and the significant
advantage can be observed in Table 6. Rank-1 accuracy reaches 86.0% which achieves the highest
accuracy in comparison methods. We also use mAP as an evaluation indicator. MFF model reaches
76.1% in mAP. Extracting local features and global features enrich the available features when searching
for target pedestrians. Adding a classifier in different levels of ResNet50, which is good for extracting
part features, can also increase the accuracy of our model. In addition, we visualize the top-10 ranking
results on DukeMTMC-reID for some randomly-selected query pedestrian images in Figure 7.

Figure 7. One example query image in DukeMTMC-reID dataset and ranking list results from Rank-1
to Rank-10 using MFF model. The blue boundary means true positive and red means false positive.

4.6. Effectiveness of PMN

We evaluate the MFF model compared to three classic datasets: Market1501, CUHK03 and
DukeMTMC-reID. PMN is proposed to extract local features from the low-to-high level layers. In order
to further explore the influence of the PMN model, we conduct two experiments on each dataset. Firstly,
we remove the structure of the PMN model. We fuse local features and global features extracted from
entire backbone network. GLB is the structure without the PMN model, as in Figure 8. Experiments on
GLB can clearly test the performance of our model without adding the PMN structure. Then we train
the MFF model on three datasets and report their performance in Figure 8. Difference between MFF
and GLB is that MFF fuses low-to-high level local features.
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(a) 

(b) 

(c) 

Figure 8. Cont.
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(d) 

Figure 8. Evaluation of GLB and MFF are shown above. Rank-1 to Rank-10 accuracy is compared
on three datasets. From (a–d) is the evaluation performance on Market-1501, DukeMTMC-reID,
CUHK03-detected and CUHK03-labeled.

We exhaustively train MFF and GLB on three datasets separately and use Rank-1 accuracy to
Rank-10 accuracy as the evaluation standard. In Figure 8, a comparison of experimental results of two
models not only shows the effect of model enhancement after fusing low-to-high level local features,
but also shows that the improvement effect of PMN on each dataset is different. PMN structure has the
most significant effect on CUHK03 especially on CUHK03-labeled data. But the effect on Market-1501
is less significant. Figure 8 shows that rank accuracy of MFF is higher than GLB on three datasets,
which proves that low-to-high local features extracted by PMN structure have a positive impact on
person re-identification.

4.7. Influence of the Number of Parts

In this paper, we use the method of dividing a pedestrian image into several parts to extract local
features. The visualization of the delicate parts is shown in Figure 9. Intuitively, the granularity of
the part feature affects the results. When the number of parts is one, the learned feature is a global
feature. As the number of divided parts increases, the retrieval accuracy increases. However, accuracy
does not always increase with the number parts, as shown in Figure 10. Rank-1 accuracy of three
datasets shows that when the number of parts increases to eight, the performance drops dramatically.
The over-increased parts actually compromise the extraction of local features. Therefore, we use six
parts in our experiments.

Figure 9. Visualization of the parts under six values.
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Figure 10. Visualization of the parts under six values.

Discussion: we divide the pedestrian image into six parts to get the best results. We consider
different proportions and attributes of body parts. We divide the image into six parts according to
the position of the elbow joint, crotch, knee joint, etc., as shown in Figure 2. Due to the limitation of
joints, the grate range of human motion is limited to these six parts. The image is divided into six
parts to ensure that the local features of each part have a high degree of recognition when a pedestrian
is engaged in a wide range of activities. In addition, we also consider the effect of attributes on the
results. The relevant attributes in pedestrian images include clothing categories (dresses, shorts etc.),
clothing color, hat, hair, etc. The recognition of the attribute features of each part is also strengthened
after dividing the image into six parts.

4.8. Influence of the PMN Branches

Low-to-high level local features are extracted by Branch-1 to Branch-3 as in Figure 3. To verify the
effectiveness of different branches in PMN, we remove the branches of PMN in different ways and the
experimental results are compared in Figure 11. The way of removing branches is as follows. (1) Only
Branch-1 is removed. (2) Branch-1 and Branch 2 are both removed. (3) Structure of PMN (Branch-1 to
Branch-2) is removed (GLB). (4) No branches are removed (MFF). In Figure 11, we can observe that
MFF model achieves the highest rank precision. Removing Branch-1 means not extracting low-level
local features which reduces the rank accuracy. In the same way, the more branches in PMN are
removed, the lower rank accuracy of the model. This experiment proves that sampling local features
from different depths is effective for MFF.

We can try to use PMN networks with different network structures to extract features in the future.
In addition, the PMN branches can be used for face recognition to extract facial features from different
network depths and learn higher discriminative features. PMN has a wide range of applications and
can also be used in other image recognition networks.
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(a) 

(b) 

Figure 11. Impact of low-to-high level local features. Rank-1 to Rank-10 accuracy is compared on
datasets CUHK03-detected (a) and CUHK03-labeled (b).

5. Conclusions

This paper mainly verified the important role of our model in solving person re-identification
problems. A deep learning network called Multi-level Feature Fusion (MFF) is proposed to extract
local features and global features. The proposed Part-based Multi-level Net (PMN) structure not only
extracts local features more comprehensively from low to high levels, but also can be flexibly applied
into different deep learning models. PMN greatly improves the performance of Multi-level Feature
Fusion (MFF) by extracting different levels of local features. A more comprehensive feature fusion
effectively improves the accuracy of searching for the target person in person re-identification and
outperforms the current state-of-the-art methods with considerable margins.
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Abstract: Upgrading ordinary streetlights to smart streetlights to help monitor traffic flow is a
low-cost and pragmatic option for cities. Fine-grained classification of vehicles in the sight of
smart streetlights is essential for intelligent transportation and smart cities. In order to improve
the classification accuracy of distant cars, we propose a reformed YOLOv3 (You Only Look Once,
version 3) algorithm to realize the detection of various types of automobiles, such as SUVs, sedans,
taxis, commercial vehicles, small commercial vehicles, vans, buses, trucks and pickup trucks. Based on
the dataset UA-DETRAC-LITE, manually labeled data is added to improve the data balance. First,
data optimization for the vehicle target is performed to improve the generalization ability and position
regression loss function of the model. The experimental results show that, within the range of 67 m,
and through scale optimization (i.e., by introducing multi-scale training and anchor clustering),
the classification accuracies of trucks and pickup trucks are raised by 26.98% and 16.54%, respectively,
and the overall accuracy is increased by 8%. Secondly, label smoothing and mixup optimization
is also performed to improve the generalization ability of the model. Compared with the original
YOLO algorithm, the accuracy of the proposed algorithm is improved by 16.01%. By combining the
optimization of the position regression loss function of GIOU (Generalized Intersection Over Union),
the overall system accuracy can reach 92.7%, which improves the performance by 21.28% compared
with the original YOLOv3 algorithm.

Keywords: smart streetlight; YOLOv3; multi-scale training; anchor clustering; label smoothing;
mixup; IOU; GIOU; fine-grained classification of automobile

1. Introduction

With the rapid development of the modern transportation industry, a common scenario in an urban
transportation network is that certain sections of the road may experience severe traffic congestion,
whereas the traffic flow on nearby sections is relatively smooth. Therefore, by knowing the traffic
conditions of each road in real time, the intelligent transportation system can help drivers choose a
reasonable driving route, which is also an effective approach to solve urban traffic congestion [1–4].
The image-processing-based traffic length detection system combines image processing with various
traffic information technologies and has the advantages of wide application range, high measurement
precision, excellent real-time performance and direct upgrade based on the existing monitoring system.
Therefore, it is an important technical component for obtaining modern intelligent traffic information.

During the last decade, researchers have conducted extensive studies. In 2014, Ross Girshick et al. [5]
proposed a visual inspection method named R-CNN (Regions with Convolutional Neural Networks
features). This method first divides the inspected image into thousands of different regions, then extracts
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deep features of these regions, and finally adopts Softmax for classification. On dataset VOC2012,
the mean average precision (mAP) detected by R-CNN could reach 53.3%, which is higher than the
precision of previous methods. However, it has the disadvantages of long detection time and difficult
engineering application. In 2016, Liu et al. [6] proposed the SSD (Single-Shot Multi-Box Detector)
method, which improves the deep convolutional neural network of VGG-16 (Visual Geometry Group
Network) [7] and the target detection method of YOLO (You Only Look Once) [8], extracts multi-scale
feature maps, and directly outputs the location and class of the detected target. On dataset VOC2007,
this method could achieve a mAP of 74.3% and a speed of 59 FPS. In 2018, Chu et al. [9] reported a
deep convolutional neural network (CNN) based on multiple tasks and the vehicle detection method
for an automatic pilot based on region-of-interest voting. In this method, the multi-task targets of
CNN include area overlapping, subclass, regression of detection frame and region of proposals (ROI)
regional training, and the vehicle is detected by fully considering the influence of the neighborhood
ROI. According to the validation of vehicle datasets KITTI [10] and VOC [11], it presents a much better
performance than most similar algorithms. In 2019, Chang-Yu Cao et al. used the YOLO-UA model to
improve the detection precision of vehicles under complicated weather conditions [12].

In the various studies above, all researchers have ignored a problem, which is that, in actual
street lighting, we need to extend the effective detection distance of the video as much as possible to
reduce the number of intelligent streetlights, and thus reduce the cost of the entire system. However,
in the case of long-distance vision, the accuracy of the current algorithm to achieve fine-grained car
classification is not ideal. In order to address this issue, in this article, we primarily make the following
three contributions:

1. In order to realize high-precision and large-scale traffic situation detection, we propose a
distributed system based on smart streetlights.

2. Based on the dataset UA-DETRAC, we add the local manually labeled data images in the sight
of smart streetlights, establish the classification dataset for SUVs, sedans, taxis, commercial
vehicles, small commercial vehicles, vans, buses, trucks, and pickup trucks, and build the
dataset UA-DETRAC-LITE-NEW.

3. We optimize the YOLOv3 algorithm in various respects to improve the detection accuracy for
distant cars in the sight of smart lights and then combine it with multi-scale training and anchor
clustering methods to improve the accuracy of automobile target detection. In addition, we apply
label smoothing and mixup approaches to increase the generalization ability of the model and
adopt optimized position regression loss functions of IOU (Intersection Over Union) and GIOU
to increase the system accuracy. Each step of the improvement is experimentally verified.

2. Smart Streetlights and Experimental Datasets

2.1. Smart Streetlights

As shown in Figure 1, the camera and computing unit are integrated into the ready-made
streetlight to form an intelligent streetlight. After the camera in the intelligent streetlight identifies the
type and number of vehicles, the traffic data collected by the computing unit is transmitted to the cloud
strategy platform through the wireless communication, power line carrier communication or visible
light communication system. According to the information from smart streetlights, the cloud strategy
platform could provide a variety of application services, such as traffic guidance and emergency
rescue. Because the streetlight system is a complete infrastructure, cable layout and routing have cost
advantages. In addition, streetlights can provide sufficient brightness for video and image detection to
ensure the accuracy of detection.

Furthermore, the number of nine kinds of vehicles in the field of vision of each streetlight can
be summed up, and the ratio of the road area occupied can be accurately calculated according to the
area of the road projected by each type of vehicle. This index is very important for illegal parking
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assessment, traffic diversion and traffic light strategy formulation, which is also difficult to achieve by
other technologies (satellite remote sensing, microwave radar).

Figure 1. Smart streetlights in the Internet of Vehicles.

2.2. Experimental Dataset

The target detection in this research focuses on the fine-grained detection of vehicles, but there is
no public fine-grained vehicle detection dataset at present. Therefore, in this paper, the dataset used in
the experiment is obtained by mixing the manually labeled dataset with the public dataset.

Part of the manually labeled dataset was obtained by the camera installed in a pedestrian bridge
in Chengdu. This dataset includes the front and back images of vehicles. The vehicle models include
sedans, buses, taxis, trucks, SUVs and pick-ups; the involved scenarios include: daytime, night,
fine day and cloudy day. In total, 1231 images were obtained, and the resolution was adjusted to
540 × 960. The other part was obtained through network crawling: 387 images were obtained in
total, and the resolution was adjusted to 540 × 960. Finally, the vehicle location was labeled using
LabelImage, and the labeled data were given in the format of VOC2007. Figure 2 presents the frame
image decomposed from the vehicle video collected from a smart streetlight in Chengdu. The detection
range is 67 m.

The common public vehicle detection datasets include UA-DETRAC [13–15], KITTI [16], etc.
Because the images in the dataset UA-DETRAC were all collected from a pedestrian bridge, the image
collection angle is closest to the angle of the image collected by intelligent streetlights in the IoV
(Internet of Vehicles), so the dataset UA-DETRAC is used in this paper. This dataset consists of ten-hour
video continuously collected by a Cannon EOS 550 camera at 24 different locations in Beijing and
Tianjin, China. The video was collected at the speed of 25 frames per second (fps); then, each frame of
video was decomposed to images using software, and each image had a resolution of 960 × 540 pixels.
In this dataset, 8250 vehicles were manually labeled, and there were 1.21 million label boxes in total.
The dataset includes the labels of four major classes and thirteen subclasses, such as SUV, sedan, taxi,
commercial vehicle, small commercial vehicle, large van, hatchback, bus, police car, medium van, truck,
pick-up and platform truck. The shooting scenarios include cloudy weather, night, sunny days and
rainy days, as shown in Figure 3.
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Figure 2. Labelling of vehicles with image label software.

Figure 3. Images of dataset UA-DETRAC.

Because, among the subclasses of vehicles in the dataset UA-DETRAC, the distribution of various
types of vehicles is not even in number, the numbers of police cars and platform trucks are particularly
low, and there are only 300 labeled police cars in the entire dataset. Furthermore, there are not many
police cars on real roads, and manual shooting is inconvenient. Considering the above factors, in this
paper, dataset UA-DETRAC only consists of the following nine subclasses of vehicles: SUVs, sedans,
taxis, commercial vehicles, small commercial vehicles, vans, buses, trucks and pick-ups, in which
the class of vans combines the two subclasses of large vans and medium vans, and trucks combine
platform trucks and original trucks. Because the computing resources are not particularly sufficient,
in this paper, we select 13,516 images from the 82,118 images in dataset UA-DETRAC, and mix them
with 1618 manually labeled images to form the dataset used in this paper: UA-DETRAC-LITE-NEW.
Among these, the 2053 manually labeled images are mainly used to supplement the insufficient number
of pick-ups and trucks in the original dataset UA-DETRAC. In this paper, we select 12,455 images from
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the 15,569 in the dataset UA-DETRAC-LITE-NEW as the training dataset, and we select 3114 images
captured in the sight of streetlights as the test dataset.

3. Methodology

3.1. Introduction of YOLOv3

In 2018, Joseph Redmon et al. [17] proposed YOLOv3, and, compared with the last generation of
the YOLO algorithm, this method has increased detection prevision and strengthened identification
ability for small objects. In YOLOv3, a new backbone network called Darknet-53 is used. By referring
to the residual network (ResNet [18]), this network has set shortcut connections between some layers,
so that information can be directly transmitted from shallow layers to deep layers, so as to maintain the
integrity of information. In addition, the idea, similar to FPN [19], is to conduct multi-scale prediction
of bounding boxes, which can prevent missing of small objects.

In YOLOv3, the L2 distance is used to calculate the loss by default. Loss consists of three parts:
position loss, confidence loss and class loss. The loss computation is as shown in Formula (1):

loss = coorLoss + con f idenceLoss + classError (1)

where YOLOv3 is used to calculate loss. Pay attention to the following details:

(1) During calculation of position loss, the L2 distance does not have scale invariability relative to
the bounding box, so the loss of a small bounding box should be distinguished from that of a big
bounding box, which is more reasonable. The author multiplies factor α (a = 2− truthw × truthh)
with the L2 distance loss of position to weaken the negative influence of scale on position loss.
truthw and truthh are the width and height of normalized true-value bounding boxes. Factor α is
smaller when encountering large-scale targets and bigger when encountering small-scale targets,
and in this way, the loss of small bounding boxes can be improved.

(2) During calculation of loss, no matter whether it is position loss or other loss, the true value
should correspond to the predicted values one by one to realize calculation. However, in reality,
the number of targets in each image is not fixed. When the output image has a scale of 416,
assuming m image targets participate in the training, while the YOLOv3 model will predict
10,647 targets, they cannot correspond to each other one by one in this case. Therefore, YOLOv3
employs a matching mechanism to reconstruct m targets in true-value tag into the data in the
format of 10,647 targets. m targets are placed in their proper positions in the 10,647 constructed
data, and, at this moment, the calculation and training process is completed.

(3) In the YOLOv3 algorithm, only the lattice with the scale which best matches the anchor is
used to predict the target. However, under normal circumstances, it is also highly possible to
use the lattices near this lattice to predict this target. This situation is normal, which does not
require punishing this lattice. However, when the lattice far away from this lattice is also used to
predict this target, this situation is abnormal, which requires punishment. Therefore, in YOLOv3,
the predicted value and corresponding position of constructed real-value tag are used to calculate
IoU, then the IoU is used to decide when punishment is required and when it is not. In general,
a hyper-parameter will be defined in the algorithm: ignore thresh. When the IoU of a lattice is
bigger than the ignore thresh, this lattice is regarded as being close to the real lattice, and it is
normal that it has high confidence, which does not require punishment; when the IoU of a lattice
is smaller than the ignore thresh, this lattice is regarded as being far from this lattice, and it is
abnormal when it has high confidence, which requires punishment.

(4) In (2), the m targets are reconstructed into the data in the format of 10,647 targets, and all the
parts without targets are 0. In (3), it is mentioned that the IoU of the corresponding position of
predicted value and real-value tag need to be calculated, while in the real-value tags without
targets, all data are 0, and in this case, the confidence in the predicted value and corresponding
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real-value tags cannot be calculated. Therefore, in YOLOv3, the lattices of all real-value tags and
current predicted value are used to calculate the IoU, and the highest one is used as the final IoU
of this lattice to participate in the subsequent operation.

To sum up, the loss function of YOLOv3 is as shown in the following Formula (2):

loss = lossscale1 + lossscale2 + lossscale3 (2)

Because the loss functions under various scales are very similar, this paper only provides the loss
function of one scale. The loss function of Scale I is as shown in Formula (3):

lossscale1 =
S2
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where S2
1 refers to the number of lattices in the first scale and B represents the number of anchors under

each scale, or the maximum number of lattices predicted by each lattice under each scale. In YOLOv3,
B is set at 3; aij refers to the scale factor corresponding to the jth prediction of the ith bounding box;

as mentioned above, each lattice will predict three bounding boxes, Iobj
i j represents that the object is in

the jth prediction box of the ith lattice, while Inoobj
i j indicates that the object is not in the jth prediction

box of the ith lattice; (x, y, w, h, C, p) is the true value, and (x̂, ŷ, ŵ, ĥ, Ĉ, p̂) is the predicted value of
the model.

The third line represents the confidence error. The confidence error consists of two parts: one
type is the lattice with true value and target, and it only requires calculating the error between the
corresponding positions of predicted value and true value in a normal way; the other type is the
lattice with the true value but without the target; in this case, the predicted value of the confidence in
corresponding position might be too high, and we need to determine whether such a high predicted
value of confidence is normal. As mentioned above, current lattices with high predicted values and the
IoUs of all real-value bounding boxes need to be calculated, so as to determine whether the lattice
with high predicted confidence is close to a certain real-value bounding box. If it is close, it does
not need to calculate the loss of the current lattice; otherwise, it requires calculating the loss. In this
process, βij indicates whether it requires calculating the loss of current lattice. If the ignore thresh is T,
the computation formula of βij is as shown in Formula (4).

βij =

⎧⎪⎪⎨⎪⎪⎩
0 IoU(pred, true) > T

1 else
(4)

The fourth line shows the class error. Because the calculation of class error is only meaningful
when there is a target, this line also uses Iobj

i j to filter out the lattices without a target, and it only
calculates the loss between lattices with targets.

To sum up, YOLOv3 still uses the L2 distance massively during loss calculation. In position
calculation, although the scale factor α is used to balance the influence of object loss with different
scales, this influence still cannot be completely eliminated, which will cause negative influence on
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the optimization of the network. Therefore, it will reduce the regression precision of object detection
position to a certain degree.

3.2. Scale Optimization for Vehicle Target Detection Scenario

This paper focuses on studying vehicle target detection under the intelligent streetlight in the IoV,
while in the target detection problem, different scenarios involve different bounding boxes. For example,
in face detection, the finally predicted bounding box has a shape close to square with a high probability.
In pedestrian detection, the predicted bounding box is more like a long and thin rectangular box;
therefore, there is prior information for each scenario, and such prior information can be maximally
utilized to better optimize the model. In this section, the clustering method will be used to determine
the optimal prior box for the vehicle detection scenario. Furthermore, in the vehicle detection problem,
the vehicle might be far or near, so the multi-scale training method can be employed to improve the
model performance, and we call this method scale optimization.

3.2.1. Multi-Scale Training

In the target detection problem, the size of the input image has a significant influence on the
precision of the model. Although a bigger input image may indicate better precision performance of the
model, it also means a higher computation cost and slower inference speed. In practical applications,
it generally requires achieving a balance between the model precision and inference speed, so the size
of input images should not be too big.

After the image is input into the basic network, it will generally generate a feature map ten times
smaller than the input image, which makes it difficult for the network to capture the small objects in a
small feature map. Therefore, by imputing bigger and more images to train the model, the model’s
robustness against object size can be improved to a certain degree. As a result, the model can learn
more common features of the target rather than specific details of target, and the model’s generalization
ability can be improved. During the inference stage, small input images are still used for inference,
which does not incur any loss in inference speed. However, more optimal model performance can be
obtained through multi-scale training, so when the same size of input image is used during inference,
the model precision obtained through multi-scale training is higher.

This paper has defined the scale rule as shown in Formula (5) during training, in which n is a
constant number. For each batch, the image of a scale will be randomly selected from the scale rule
and inputted into the neural network for training and learning.

S(n) = 320 + 32n 0 ≤ n ≤ 9 (5)

3.2.2. Anchor Clustering

Generally speaking, the anchor-based target detection algorithm needs to set the anchor to predict
the bounding box of target. However, if the selection of anchor is not suitable, more iterative trainings
of neutral network are needed for the neural network to better predict the bounding box. In general,
different anchors should be set for different application scenarios, so the setting of the anchor can also
be regarded as a hyper-parameter. In this paper, the k-means clustering algorithm is adopted to find a
group of anchors suitable for the scenarios discussed in this paper.

In the k-means algorithm, at the beginning, the user needs to specify k initial centroids. These k
initial centroids will scan all data and divide the points with closest “distance” to themselves into
clustering classes, and, in this way, all data will be divided into k classes. Next, the centroid of each
cluster will be updated, then all data are scanned once again for classification, and the iteration is
repeated until the algorithm converges. The k-means algorithm involves the following steps:

(1) Select k initial centroids (as the k initial clusters);
(2) For each sample point, obtain the nearest centroid based on calculation, and label its class as the

corresponding cluster of this centroid;
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(3) Recalculate the centroids corresponding to k clusters;
(4) The algorithm will end when the centroids of k clusters do not change anymore; otherwise,

jump to Step 2.

Under the Euclidean distance, the sum of the squared error (SSE) is generally used as the objective
function of clustering, and this index is often used as the index to measure the quality of clustering
result. Its expression is as shown in Formula (6).

Loss = SSE =
k∑

i=1

∑
x∈Ci

distance(x, ci) (6)

where ci presents the centroid of the ith cluster; and distance(x, ci) represents the “distance” from x to ci.
The reason why the word distance mentioned is in quotes is because, generally speaking, the common
distance is the Euclidean distance, but under the service scenario required in this paper, if the Euclidean
distance is used for clustering of bounding boxes, a big bounding box will generate more errors than a
small bounding box. Therefore, we hope that the distance required in clustering is irrelevant to the
size of the bounding box, and the distance formula applicable to the scenario of this paper is as shown
in Formula (13).

distance(x, ci) = 1− IoU(x, ci) (7)

In this paper, after running the clustering algorithm in dataset UA-DETRAC-LITE-NEW multiple
times, an optimal group of anchors is obtained: (8,9), (10,23), (19,15), (23,33), (40,25), (54,40), (101,80),
(139,145), (253,224). The comparison between the anchor set by the original YOLO algorithm and
the anchor with optimal performance obtained by our clustering method in the vehicle detection
environment is shown in Figure 4. In this paper, the input image sizes for all target detections are
set at 416 × 416, so the comparison in the diagram below is also based on the comparison of original
image size. In addition, nine anchors are drawn, with the center of the image (i.e., coordinate position
(208,208)) as the center. Through comparison, it can be found that the original YOLO algorithm focuses
more on the generality of algorithm, different sizes of anchors have uniform distribution in number,
and the algorithm emphasizes universality; the anchors obtained with our clustering algorithm are
generally smaller than the anchors obtained with the original YOLO algorithm, and most anchors have
small sizes. This also suits the intelligent streetlight environment of IoV. Most vehicles in the image
have small sizes.

Figure 4. Comparison of anchor before and after clustering.

After completing the anchor data clustering, when there is prior box information closer to the real
target, the YOLO algorithm can return to the target position with less iterations, which can reduce the
model training times to a certain extent.
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3.3. Improvement of the Model’s Generalization Ability

The model’s generalization ability refers to whether the model can have good performance when
facing unknown data. We train the model to make the model extract and learn the characteristics of
real object, so that the model can be used for real unknown data in the future. From this perspective,
the model’s generalization ability is particularly important. On the one hand, mixup is used in
target detection in this section to improve model’s generalization ability when facing unknown data
(test dataset), thus further improving the model’s average precision; on the other hand, the label
smoothing method is introduced in this section to reduce the model’s “confidence” about objects,
thus improving the model’s generalization ability.

3.3.1. Improvement Based on Label Smoothing

The training dataset used in this paper is generally from dataset UA-DETRAC. Dataset UA-DETRAC
was collected from real roads, while the vehicles on the roads are generally sedans and SUVs, and the
number of trucks, pick-ups and commercial vehicles is significantly smaller than that of sedans.
Although some of these vehicles, in small numbers, were also manually collected and labeled in this
paper, which are also added to the training dataset, this still cannot balance the numbers of various
classes of vehicles. For vehicle classes with small numbers in the dataset, the deep neutral network
might not be able to learn features with strong generalization ability, and, as a result, the final model
obtained by training has poor generalization ability. In this paper, the label smoothing technique is
adopted to maximally prevent the problem of the weak generalization ability of the model.

When the target detection algorithm proposed in this paper is finally used to predict the target class,
the one-hot coding method is adopted. For example, if the sample is observed as belonging to a certain
class, the position of the corresponding class of vector has the value of 1, or otherwise, it is 0. Such a
coding method may cause over-fitting when the above samples have uneven distribution, because
limited samples are used for training in general, which cannot cover all possible situations. In an
extreme example, when the training data include 200,000 sedans but only 3000 pick-ups, the occurrence
probability of a sedan is around 98.52%, while that of a pick-up is only about 1.48%. In this case,
with continuous training, the neutral network tends to predict the class of sedan, and the probability of
the predicted class being a sedan is 100% or very close to 100%, while the class of pick-ups is ignored.
At this time, the model is “overconfident” in the prediction of sedans.

The Label Smoothing Regularization (LSR) method aims to alleviate the over-fitting problem
which tends to occur because the true-value label is not “soft” enough. It is a constraint method which
adds some noise to the true value of the class to constrain the model and lower the over-fitting degree
of the trained model.

The LSR formula is as shown in Formula (8), in which qi represents the one-hot coding after
smoothing; ε ∈ [0, 1], ε is a small hyper-parameter, which represents the smoothing degree or how
much noise has been added to the real value, and bigger ε indicates more noise has been added to
real value; K refers to the number of classes; the true value of the class is generally stored in the ID of
the class before being transformed to the one-hot code, and in the formula, y is the ID of the classes
true value.

qi =

{
1− ε i = y
ε

K−1 else
(8)

In essence, LSR takes the value of true-value class in the original one-hot code from ε, and then
evenly distributes it among other classes, so that the final distribution of true-value label is no longer
distributed on its true-value position. As shown in Figure 5, ε = 0 on the left diagram, which means
no LSR; the right diagram shows the case of ε = 0.1.
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Figure 5. Schematic diagram of Label Smoothing Regularization.

In the above diagram, only five classes are chosen to present the change of label value before and
after label smoothing. In the meantime, ε is set as 0.1 to make it easier to see the change. In practical
training, ε is set as 0.01. It can be seen that the label value has a broader distribution after label
smoothing. As a result, the model is finally not that “confident”, and the model’s generalization ability
is improved.

3.3.2. Improvement Based on Mixup

In the field of target detection, the data enhancement technique will frequently be used. When the
dataset does not contain particularly sufficient data, the deep model is unable to learn good features.
In addition, in most datasets, various types of samples are not balanced in number, which will result
in poor ability of the model in predicting samples with small numbers. The above problem can be
alleviated through data enhancement, which can efficiently improve the network’s performance and
generalization ability. Data enhancement refers to utilizing certain image conversion methods (such as
random cropping, random translation, angle rotation, mirror image flipping, etc.) based on existing
datasets to generate some “new data” for the neural network.

Hongyi Zhang et al. proposed the mixup method, which can be used to effectively improve the
performance and generalization ability of the object classification model [20]. The mixup method is a
data enhancement method irrelevant to data, which is also simple. It is used to generate new samples
with the method shown in Formulas (9) and (10).

x = λxi + (1− λ)xj (9)

y = λyi + (1− λ)yj (10)

The original author applied mixup in the classification task, in which xi and xj are two random
image samples, while yi and yj are their corresponding class labels. λ ∈ (0,1), and λ follow a Beta
distribution: λ ∈ Beta (α,α), α ∈ (0,∞). The mixup method linearly integrates existing samples and
generates new samples, which makes the model more stable.

In this paper, the data enhancement technique of mixup is introduced into vehicle target detection.
In the dataset used in this paper, all images have 540 × 960 pixels. In image integration, similar to
the above Formulas (9) and (10), a new sample x can be obtained through superposition of the
corresponding pixels of randomly selected images xi and xj according to linear coefficients λ and
(1 − λ). Tags yi and yj of images xi and xj are kept, and tag y is obtained corresponding to a new sample
x. A schematic diagram of using mixup to realize data enhancement in the vehicle target detection
problem is shown in Figure 6.
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Figure 6. Schematic diagram of Mixup.

3.4. Improvement Based on the Position Regression Loss Function

In the YOLOv3 algorithm, the predicted position (x,y,w,h) of a bounding box is obtained through
direct regression, because one bounding box is regressed, while the bounding box may have big size
or small size. During calculation of position loss, if the size of the bounding box is not considered,
it will cause inaccurate regression of the bounding box, slow training and convergence speed and
other problems. YOLOv3 uses the scale factor to reduce the difference in position loss between
bounding boxes of different sizes. However, because the L2 distance does not possess scale invariability,
this approach will only reduce part of the difference between big and small bounding boxes in loss.
Therefore, we believe a distance evaluation index with scale invariability is needed to improve the loss
function. In this section, IoU and GIOU will be used as the indices to measure the distance between
bounding boxes and improve the loss function of YOLOv3.

3.4.1. Improvement of Loss Function Based on IoU

Because IoU has invariability with the change of scale, it means it is not affected by the sizes of
two objects. Therefore, in this section, IoU will be used to improve the loss function of the YOLO
algorithm. Moran Ju [21] once proposed using this method to improve the algorithm’s performance,
and we adopt this method in our system.

IoU is within the range of 0~1. When IoU is 0, it means the two bounding boxes are completely
disjoint; when IoU is 1, it indicates the two bounding boxes completely overlap. Therefore, Formula (11)
can be used to describe the distance between two bounding boxes, and this distance can be directly
used in the position loss function of the YOLO algorithm.

d(b0, b1) = 1− IoU(b0, b1) (11)

IoU satisfies scale invariability, which is not affected by the scales of two objects, and it can also be
used to describe the distance between two objects. During regression of coordinates, YOLOv3 can use
Formula (11) as the distance to directly describe the difference between the predicted bounding box
and the real-value bounding box. The size of this difference can be used in the position regression loss
function and participate into the network optimization.

3.4.2. Improvement of Loss Function Based on GIOU

IoU has scale invariability and can be used as the index to measure the distance between objects;
however, when IoU is used as distance, if the two objects are completely disjoint, no matter whether
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they are far from or close to each other, the distance value is fixed, which is 1. At this time, the gradient
cannot be returned, and the model may be unable to learn the position of part of true-value bounding
box during training, which has lowered the final precision of the model. In this section, GIOU will be
used as the distance to improve the YOLO position loss.

GIOU is a new index used to measure the overlapping degree between two bounding boxes on
the basis of IoU, which considers the non-overlapping area not considered by IoU, and it can reflect
the overlapping method between A and B. Assume the coordinate of the predicted bounding box is
Bp =

(
xp

1, yp
1, xp

2, yp
2

)
, and the coordinate of true-value bounding box is Bg =

(
xg

1, yg
1, xg

2, yg
2

)
. GIOU and

the computation process using GIOU as the loss function is as follows:

(1) In order to ensure the coordinates of the predicted box satisfy xp
2 > xp

1 and yp
2 > yp

1, conduct data
manipulation as in Formulas (12)–(15):

x̂p
1 = min

(
xp

1, xp
2

)
(12)

x̂p
2 = max

(
xp

1, xp
2

)
(13)

ŷp
1 = min

(
yp

1, yp
2

)
(14)

ŷp
2 = max

(
yp

1, yp
2

)
(15)

(2) Calculate the area of Bg:

Ag =
(
xg

2 − xg
1

)
×
(
yg

2 − yg
1

)
(16)

(3) Calculate the area of Bp:

Ap =
(
x̂p

2 − x̂p
1

)
×
(
ŷp

2 − ŷp
1

)
(17)

(4) Calculate the intersection between Bp and Bg:

xI
1 = max

(
x̂p

1, xg
1

)
(18)

xI
2 = min

(
x̂p

2, xg
2

)
(19)

yI
1 = max

(
ŷp

1, yg
1

)
(20)

yI
2 = min

(
ŷp

2, yg
2

)
(21)

I =
{

(xI
2 − xI

1) × (yI
2 − yI

1) xI
2 > xI

1, yI
2 > yI

1
0 else

(22)

(5) Find the smallest rectangular box Bc enclosing Bp and Bg:

xc
1 = min

(
x̂p

1, xg
1

)
(23)

yc
1 = min

(
ŷp

1, yg
1

)
(24)

yc
2 = max

(
ŷp

2, yg
2

)
(25)

(6) Calculate the area of Bc:

Ac =
(
xc

2 − xc
1

)
×
(
yc

2 − yc
1

)
(26)

(7) Calculate IoU and GIOU:

IoU =
I

Ap + Ag − I
(27)
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GIoU = IoU − Ac − (Ap + Ag − I)
Ac (28)

(8) Obtain the loss function based on GIOU:

LGIoU = 1−GIoU (29)

4. Experiment and Results

4.1. Evaluation Metrics

In this paper, we adopt the broadly used evaluation model indices with concentrated VOC data:
average precision (AP) and mean average precision (mAP). In addition, the parameters of confusion
matrix, PR curve, model frames per second (FPS), etc. are also used to further evaluate the model.

See Formulas (30) and (31) for the calculation of AP and mAP.

AP =

1∫
0

p(r)dr (30)

mAP =

∑N
i=1 AP(i)

N
(31)

where p(r) represents the curve function with precision (P) as the ordinate and recall (R) as the abscissa,
hereafter referred to as the PR curve. The enclosed area by the PR curve and abscissa axis is AP;
mAP refers to the mean average precision, which equals to the sum of the precisions of all classes
divided by the class number N. In this paper, the 11-point computation method in VOC2007 is used for
calculation of precision.

The indices of precision and recall were mentioned above, and, in order to introduce these two
indices, we need to introduce other common indices. In general, the multi-classification task can be
split into multiple binary classification tasks, and, in binary classification, the samples are generally
divided into positive samples and negative samples. Therefore, for real value and predicted value,
the following four situations may occur through combination: the true value is a positive sample,
and the predicted value is also a positive sample, which is called true positive (TP); the true value
is a positive sample, while the predicted value is a negative sample, which is called false negative
(FN); the true value is a negative sample, while the predicted value is a positive sample, which is
called false positive (FP); the true value is a negative sample, and the predicted value is also a negative
sample, which is called true negative (TN). However, in a target detection task, the target is regarded
as a positive sample, and the background is treated as a negative sample, so the background will not
be detected in target detection task. Therefore, the two indices of TN and FN are generally not used.
In this paper, indices which can better reflect the model performance will be built based on TP and FP.

See Formula (32) for the definition of precision; in general, see Formula (33) for the definition
of recall. However, in the abovementioned target detection problem, FN and TN are generally not
discussed. TP+FN refers to the number of positive samples, and the number of positive samples can
be obtained from the true-value tag. Therefore, in this paper, Formula (34) is used to redefine recall,
and it is not different from the original definition in meaning. In it, Np refers to the number of positive
samples; see Formula (35) for the definition of F1 measurement.

P =
TP

TP + FP
(32)

R =
TP

TP + FN
(33)
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Rnew =
TP
Np

(34)

F1 =
2× P×R

P + R
(35)

The confusion matrix is another index used to evaluate the model performance. Its row vector
represents the true value, and its column vector represents the predicted value. Therefore, it is easy and
intuitive to find which class is misclassified into another class from the confusion matrix. In addition,
the frames per second (FPS) can also be used to measure the computation efficiency of algorithm.

4.2. Experimental Results

4.2.1. Improved Experimental Results Based on Results of Scale Optimization

In this section, dataset UA-DETRAC-LITE-NEW is used to conduct an experiment with the
original YOLOv3 algorithm and the algorithm proposed in this section, respectively. In the experiment,
the following data are preprocessed: randomly regulate the brightness, contrast, hue and saturation; by
ensuring that there is bounding box, randomly crop the image; randomly turn the image; conduct other
operations. During training, set the batch size at 4, and in order to realize faster convergence of the
network, conduct continuous training based on the trained pre-training weight by the author of
YOLOv3 on ImageNet. Use the gradient descent method with momentum to optimize the model.
Set the momentum as 0.9 and the learning rate as 0.001.

The average precision (AP) of each class and the mean average precision (mAP) of all classes are
obtained in the experiment. See Table 1 for specific data; a more intuitive diagram comparison is shown
in Figure 7. The comparison diagram of the omission ratio is presented in Figure 8; the confusion
matrix is shown in Table 2.

Table 1. Comparison of accuracy between the original YOLO algorithm and its improved algorithm.

Type Original YOLO (%) YOLO with Scale Optimization (%)

Suv 71.80 76.42
Sedan 88.55 89.41
Taxi 89.55 91.45
Van 82.15 84.67

Truck-Box 76.94 84.16
Bus 82.94 90.94

MiniVan 74.48 78.08
Truck-Util 40.82 67.80

Pickup 35.54 52.08
mAP 71.42 79.45

Table 2. The confusion matrix of the improved YOLO algorithm (unit %).

Type Suv Sedan Taxi Van Truck-Box Bus MiniVan Truck-Util Pickup

Suv 88.35 9.36 0.25 0.17 0 0 1.87 0 0
Sedan 0.21 99.48 0.22 0.05 0 0 0.05 0 0
Taxi 0 0.42 99.52 0 0 0 0.05 0 0
Van 0.45 0.57 0.11 95.69 0 0 3.17 0 0

Truck-Box 0 1.55 0 1.55 96.37 0 0 0.52 0
Bus 0 0.17 0 0 0 99.83 0 0 0

MiniVan 1.94 2.53 0.17 1.6 0 0 93.76 0 0
Truck-Util 0 0 0 1.27 0 0 0 98.73 0

Pickup 0 8.33 0 2.08 0 0 0 2.08 87.5
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Figure 7. Comparison of accuracy between the original YOLO algorithm and its improved algorithm.

Figure 8. Comparison of omission ratio between the original YOLO algorithm and its improved algorithm.

According to the experimental results, it can be seen that the improved YOLO algorithm proposed
in this section can significantly improve the detection performance for the two classes of trucks and
pick-ups. In precision, the detection precisions for the classes of trucks and pick-ups are increased by
26.98% and 16.54%, respectively; through further analysis of the omission ratio, it can be seen that
the main reason for the low precisions of the two classes of trucks and pick-ups is that they have low
omission ratios, which further lowers the index of precision.

Although the detection precisions for trucks and pick-ups are significantly increased after
improvement, their precisions are still lower than the average level. Next, the improved model
proposed in this section will be continuously analyzed through confusion matrix. The row vector of
confusion matrix represents the true value, while the column vector represents the predicted value.
Therefore, the confusion matrix can only be used to analyze the distribution and accuracy of detected
targets by the model. The diagonal from upper left to lower right represents the prediction accuracy
for detected targets, and other positions indicate false class detections of detected targets. Through the
confusion matrix, it can be seen that the detection accuracies for trucks and pick-ups by the improved
model in this section are not low, so we can conclude that the main cause for the low precisions for
these two classes is that they involve high omission ratios. Through the confusion matrix, we can also
see that the model predicts the class of SUVs with true value of 9.36% as sedans and predicts pick-ups
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with a value of 8.33% as sedans. This indicates that the model has not learned more specific features of
SUVs and pick-ups yet.

By comparing the omission ratios of different algorithms, we can find that, after clustering,
the model has a lower omission ratio. This can also be summed up as follows: after anchor clustering,
the prior information of size closer to the size of real target is provided to the model, so that the model
can regress more target positions faster, and the detection rate is increased accordingly.

4.2.2. Improved Experimental Results Based on Improving Model’s Generalization Ability

In the experiments of this section, the classic two-stage target detection algorithm Faster-RCNN is
used as the algorithm for comparison with the original YOLO algorithm and the improved YOLO
algorithm proposed in this section. Among them, the Faster-RCNN algorithm adopts ResNet50 with
stronger feature extraction ability as its backbone network. The improved algorithm 1 in this section
requires the following experimental conditions: the anchor of the original YOLO algorithm, multi-scale
training, using label smoothing, and using mixup for the first 10 epochs of training. The improved
algorithm 2 in this section requires the following experimental conditions: the anchor for clustering of
vehicle detection scenario in this paper, multi-scale training, using label smoothing, and using mixup
for the first 10 epochs of training.

According to Table 3 and Figure 9, it can be seen that the various precisions of the two-stage
Faster-RCNN algorithm are higher than the precisions of the YOLO algorithm. This is because
Faster-RCNN adopts the RPN network to generate candidate area that may contain the target, so that
more candidate areas can be obtained, and the reliability is also higher. Therefore, the Faster-RCNN
algorithm has low omission ratio, and its precision is improved as a result. In addition, because dataset
UA-DETRAC-LITE-NEW has labeled many pick-ups captured by camera from a long distance, where it
is almost impossible to see the back of pick-up with human eyes, it is difficult to detect the class of the
pick-up. By comparing the performances of the Faster-RCNN algorithm, the original YOLO algorithm,
the improved YOLO algorithm 1 and the improved YOLO algorithm 2 in this section, it can be seen that
the mixup and label smoothing methods can be used to effectively improve the model’s generalization
ability, almost without increasing the network computation overhead, so as to further improve the
model’s accuracy.

Figure 9. Comparison of Faster-RCNN, YOLO and improved YOLO in terms of precision.
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Table 3. Comparison of Faster-RCNN, YOLO and improved YOLO in terms of precision.

Type Faster-RCNN (%) Original YOLO (%) Label Smoothing (%) Mixup (%)

Suv 75.10 71.80 92.66 90.33
Sedan 74.78 88.55 92.72 91.08
Taxi 85.83 89.55 96.27 92.79
Van 85.50 82.15 91.63 91.88

Truck-Box 89.95 76.94 82.78 83.98
Bus 90.01 82.94 95.19 96.25

MiniVan 77.27 74.48 84.25 86.98
Truck-Util 95.53 40.82 71.30 86.02

Pickup 90.89 35.54 62.34 67.53
mAP 84.99 71.42 85.46 87.43

According to Figure 10, it can be seen that the improved YOLO algorithms have lower omission
ratios. Although the improved algorithm 2 has a higher omission ratio than the improved algorithm 1
in general, similar to the situation in the previous section, because the improved algorithm involves a
higher FP ratio, the improved algorithm 2 has a higher average precision than the improved algorithm 1.
Furthermore, the average omission ratio of the two improved algorithms is lower than that of the
Faster-RCNN algorithm for comparison, and their omission ratio for most classes is lower than that
of Faster-RCNN. Their omission ratio is higher than that of Faster-RCNN only for the two classes of
pick-ups and trucks, which once more proves the effectiveness of the improved algorithm.

Figure 10. Comparison of Faster-RCNN, YOLO and improved YOLO in terms of omission ratio.

Table 4 shows the improved YOLO confusion matrix in this section. According to analysis of
the confusion matrix, the probability of the model misclassifying the detected target into another
class is very small. For the class of small commercial vehicles, the model falsely predicts 3.58% of
small commercial vehicles as SUVs, and this is probably because the small commercial vehicles are
close to SUV in height and size. In contrast, the model also falsely predicts 0.8% of SUVs as small
commercial vehicles.

The main difference between improved algorithm 1 and improved algorithm 2 in this section
is whether the anchor for clustering of the vehicle detection scenario proposed in this paper is
used. It can be seen that when the anchor obtained through clustering is used to train the model,
the performance can be improved by 1.98% compared to the performance of the improved algorithm
using the original anchor. Once again, it proves that the model performance can be effectively improved
for scenario clustering.
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Table 4. Improved YOLO confusion matrix in this section (unit %).

Type Suv Sedan Taxi Van Truck-Box Bus MiniVan Truck-Util Pickup

Suv 98.35 1.57 0 0 0 0 0.8 0 0
Sedan 0.23 99.7 0.2 0.2 0.3 0 0 0
Taxi 0.5 0.21 99.68 0 0 00 0.5 0 00
Van 0.43 1.18 0 97.33 0 0 1.7 0 0

Truck-Box 0 0.53 0 0 98.41 0 0 1.6 0
Bus 0 0 0 0 0 1 0 0 0

MiniVan 3.58 0.7 0 0.62 0 0 95.9 0 0
Truck-Util 0 0 0 0 0 0 0 1 0

Pickup 0 0 0 1.85 0 0 0 1.85 96.3

4.2.3. Improved Experimental Results Based on IoU Loss

In this section, we will verify the effects of replacing the original L2 loss with IoU loss in the position
regression loss. The improved algorithm in this section involves the following experimental conditions:
the anchor for clustering of the vehicle detection scenario described in this paper, multi-scale training,
using label smoothing, and using mixup for the first 10 epochs of training. The situation of the loss
function is as follows: using the IoU loss as position loss, using the L2 norm loss function as confidence
loss, and using cross entropy as class loss.

According to Table 5 and Figure 11, when the position regression loss function is modified as the
IoU loss function, the model performance is significantly improved. Except for trucks, its precision
in predicting the other classes is higher than that of Faster-RCNN with high precision. The YOLOv3
algorithm has two main shortages: firstly, this algorithm is not very accurate in regression of object
position; secondly, it has a low recall rate. For the problem of inaccurate regression of object position,
the IoU loss in this section is irrelevant to scale, which can reduce the influence of different scales and
improve the model’s performance.

Table 5. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with IoU loss
function in terms of precision.

Type Faster-RCNN (%) Original YOLO (%) Improved YOLO with IoU (%)

Suv 75.10 71.80 90.29
Sedan 74.78 88.55 90.32
Taxi 85.83 89.55 90.32
Van 85.50 82.15 92.92

Truck-Box 89.95 76.94 95.23
Bus 90.01 82.94 95.90

MiniVan 77.27 74.48 89.84
Truck-Util 95.53 40.82 94.89

Pickup 90.89 35.54 93.73
mAP 84.99 71.42 92.60

In Figure 12, we compare the omission ratio and average omission ratio for each class of object.
It can be seen that, after employing the IoU loss function, the omission ratio is lower than that of the
original algorithm and the other algorithm in comparison. The output end of the YOLOv3 algorithm
will predict 10,647 bounding boxes; some of these 10,647 bounding boxes will be filtered through
the confidence threshold value, and the rest of the bounding boxes will continue to participate in
the operation of the NMS algorithm. In the NMS algorithm, there is a threshold value of IoU. If the
IoU of the selected bounding box and surrounding bonding boxes is higher than the threshold value,
the surrounding bounding boxes will be deleted. From this perspective, if the model has predicted the
correct target, but the location of predicted target is not very accurate, then this predicted target might
be deleted in the NMS process due to inaccurate location, which will reduce the model’s precision.
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According to the above result, it can be seen that, after using the IoU loss, the precision is improved,
the omission rate is reduced, and the model performance is further improved.

Figure 11. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with IoU loss
function in terms of precision.

Figure 12. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with IoU loss
function in terms of omission ratio.

4.2.4. Improved Experimental Results Based on GIOU Loss

In this section, we will verify the effects of replacing the original L2 loss with GIOU loss in the
position regression loss. The improved algorithm 1 in this section requires the following experimental
conditions: the anchor for clustering of the vehicle detection scenario described in this paper, multi-scale
training, not using label smoothing, and using mixup for the first 10 epochs of training. The loss
function is as follows: using the GIOU loss as position loss, using the L2 norm loss function as
confidence loss, and using cross entropy as class loss. The improved algorithm 2 in this section requires
the following experimental conditions: the anchor for clustering of the vehicle detection scenario
described in this paper, multi-scale training, using label smoothing, and using mixup for the first
10 epochs of training. The loss function is as follows: using the GIOU loss as position loss, using the L2
norm loss function as confidence loss, and using cross entropy as class loss.

As shown in Table 6 and Figure 13, the two improved algorithms have very similar performance.
The average precision of improved algorithm 2 is 0.22% higher than that of improved algorithm 1.
They also have very close performance in precision for each class, and the difference is that the improved
algorithm 1 does not use label smoothing, while the improved algorithm 2 uses it. According to the
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experimental results in this section, it can be seen that GIOU can also be used as the position regression
loss function to well optimize the model.

Table 6. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with GIOU loss
function in terms of precision.

Type
Faster-RCNN

(%)
Original YOLO

(%)
Improved YOLO with IoU

(%)
Improved YOLO with GIOU

(%)

Suv 75.10 71.80 89.63 90.30
Sedan 74.78 88.55 89.97 90.34
Taxi 85.83 89.55 89.91 89.99
Van 85.50 82.15 93.03 92.53

Truck-Box 89.95 76.94 95.82 95.82
Bus 90.01 82.94 96.04 96.36

MiniVan 77.27 74.48 89.56 89.83
Truck-Util 95.53 40.82 95.36 95.4

Pickup 90.89 35.54 92.99 93.74
mAP 84.99 71.42 92.48 92.70

Figure 13. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with GIoU
loss function in terms of precision.

As shown in Figure 14, similar to the comparison in terms of precision, the omission ratio of
improved algorithms in this section is significantly lower than that of the Faster-RCNN algorithm and
the original YOLO algorithm.

To sum it up, we believe that GIOU and IoU can be used as the position loss function to well
regress the target position, accelerate the model’s convergence speed, reduce the training volume of
the model and improve the final performance of the model.
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Figure 14. Comparison of Faster-RCNN, original YOLO and improved YOLO algorithm with GIOU
loss function in terms of omission ratio.

5. Conclusions

In this article, we propose a distributed system based on smart streetlights, build the dataset
UA-DETRAC-LITE-NEW, and improve the YOLOv3 algorithm in various respects. On the intelligent
streetlight platform, we have realized fine-grained automobile detection for SUVs, sedans, taxis,
commercial vehicles, small commercial vehicles, vans, buses, trucks and pick-ups; we have conducted
scale optimization for the vehicle target and improved the model by introducing multi-scale training
and anchor clustering; as a result, the detection accuracies for trucks and pick-ups are improved by
26.98% and 16.54%, respectively, and average accuracy is increased by 8%. The label smoothing and
mixup methods are used to improve the model’s generalization ability, and its generalization ability is
increased by 16.01% compared to the original YOLO algorithm. By combining the position regression
loss function of IOU or GIOU for optimization, the system accuracy can reach 92.7%, which is 21.28%
higher than that of the original YOLOv3 algorithm. For further development, we can continue to
optimize the YOLOv3 algorithm from the perspective of confidence loss.
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Abstract: Smart cities need technologies that can be really applied to raise the quality of life and
environment. Among all the possible solutions, Internet of Things (IoT)-based Wireless Sensor
Networks (WSNs) have the potentialities to satisfy multiple needs, such as offering real-time plans for
emergency management (due to accidental events or inadequate asset maintenance) and managing
crowds and their spatiotemporal distribution in highly populated areas (e.g., cities or parks) to
face biological risks (e.g., from a virus) by using strategies such as social distancing and movement
restrictions. Consequently, the objective of this study is to present an IoT system, based on an IoT-WSN
and on algorithms (Neural Network, NN, and Shortest Path Finding) that are able to recognize
alarms, available exits, assembly points, safest and shortest paths, and overcrowding from real-time
data gathered by sensors and cameras exploiting computer vision. Subsequently, this information is
sent to mobile devices using a web platform and the Near Field Communication (NFC) technology.
The results refer to two different case studies (i.e., emergency and monitoring) and show that the
system is able to provide customized strategies and to face different situations, and that this is also
applies in the case of a connectivity shutdown.

Keywords: smart city; emergency management; monitoring; social distancing; neural network;
internet of things; wireless sensors network; near field communication technology; computer vision

1. Introduction

The application of Information and Communication Technologies (ICTs) in real contexts is a key
factor for the development of smart cities, where proper levels of quality of life and environment,
safety, and sustainability are the main targets [1].

The benefits related to the use of ICTs affect everyday life in both normal and emergency conditions.
The occurrence of accidental or catastrophic natural events (e.g., sudden floods, earthquakes, fires,
etc.) and the adoption of inadequate management strategies are the main causes of the occurrence
of emergency conditions in structures and infrastructures. These causes can affect the structural
health status of the abovementioned assets, which in turn can affect the health and safety of highly
populated areas (i.e., urban contexts, buildings, occasional assembly points for crowds, theme parks,
etc.). Significant improvements in disaster management are expected if artificial and human intelligence
are integrated (e.g., Disaster City Digital Twin paradigm; cf. [2]), affecting the efficiency of real-time
monitoring (by social and remote sensing), of the data analysis (to detect and monitor human activities,
damages, and relief needs), and of the scenario simulations (for various and fair allocation of resources,
or for training and planning purposes). Consequently, the main disaster management stages (e.g.,
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preparedness and risk reduction, disaster response, recovery) can be boosted if proper information
sharing, which includes different systems and stakeholders, is carried out [3].

Furthermore, emergency conditions are defined as the presence or the spreading of high
concentrations of pollutants (environmental risk), or of diseases and epidemics caused by bacteria
or viruses (biological risk). In the first case, thresholds can be determined, and pollutants can be
monitored (e.g., using ICT solutions based on fixed and mobile sensor nodes that actively include
citizens in the information gathering [4]) to verify that the pollutants’ concentrations are under the
given thresholds, or to trigger predefined alarms. In the second case, it is crucial to manage the
spatiotemporal distribution of the crowds by using technologies that allow for the implementation of
specific and well-designed measures, such as physical distancing (or social distancing) and movement
restrictions [5], which are well-known strategies to reduce infection and mortality risks [6,7].

1.1. Literature Review on Available Solutions

In order to face the above problems, several approaches have been proposed. Among them,
noteworthy examples of Internet of Things Wireless Sensor Networks (IoT -WSNs), monitoring
platforms and recommender systems are reported in the following (Table 1), also exploiting the use
of machine learning (ML) in IoT systems [8]. Importantly, the applicability of the WSNs mainly
depends on the lifetime of the sensor nodes, and, for this reason, it is important to design this type of
system while bearing in mind this crucial aspect and selecting the more convenient energy efficient
routing protocol [9–11]. Other important design parameters are [10,12,13]: (i) the limited storing and
computational resources of each sensing nodes, (ii) the costs (i.e., cheap sensors are prone to failure,
while expensive sensors need good housing and cannot be used for dense deployments), (iii) the
position of each sensing node, which cannot be predetermined and depends on the accessibility of the
point where the node should be placed, (iv) the sensing nodes’ deployment (to collect the needed data,
to have the required coverage and connectivity, to extend the network lifetime, and to minimize energy
consumption), and (v) the minimum number of time slots required to aggregate data along the edges
of a data-gathering tree spanning all the nodes in a WSN (a.k.a., minimum aggregation delay), if the
gathered data are aggregated before the transmission to the control center. The solution presented in
this paper was designed while bearing in mind all the design parameters mentioned above, focusing,
in particular, on maximizing the exploitation of the nodes’ storing and computational resources, on
minimizing the system cost and on optimizing the system deployment.

Table 1. Examples of Wireless Sensor Networks (WSN) and Internet of Things (IoT)-WSN solutions for
emergency and disaster management.

Reference Main Characteristics Limitations

[14]

WSN based on energy-efficient wireless sensor nodes
equipped with an ultrasonic sensor, which were tested in a

field experiment (explosion in a building) to confirm
functionality and reliability in terms of collision-free data

transmission during the emergency.

Buildings only; Ultrasonic sensor
only; Explosion emergency only;

Does not consider the
overcrowding.

[15]

WSN based on the idea of monitoring the earthquake
precursors (e.g., unusual movement of animals, ground water
pressure, radon emission, etc.), which was designed for early

earthquake warnings and disaster management.

Earthquake emergency only; Does
not consider the overcrowding.

[16]

WSNs used together with Unmanned Aerial Vehicles (UAV)
for monitoring, forecast, early warning, information fusion

and sharing, logistics, evacuation, search and rescue mission,
damage assessment.

Does not consider the
overcrowding.
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Table 1. Cont.

Reference Main Characteristics Limitations

[17]

WSN paradigm for real-time applications in smart cities,
which aims at balancing performance and energy

consumption, and uses the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) optimization
technique to find the shortest data transmission path.

Paradigm; Does not consider the
overcrowding.

[18]

WSN based on a method inspired by biological intracellular
signaling, which was designed to perform smog pollution

sensing, and taking into account the ad hoc demand routing
protocol (AODV) and bellman-ford and interzone routing

protocol (IERP) for data transmission.

Air pollution only; Does not
consider the overcrowding.

[19] IoT-WSN based on an evidence-based interactive trust
management system for disaster management.

Medical emergency only;
Communications between

autonomous and adaptive nodes.

[20]
WSN that aims at detecting, in a disaster scenario, moving

people without ‘tracking devices’ (i.e., carrying out the
so-called Device free Passive Localization, DfPL).

Does not consider the emergency
detection.

[21]

IoT-WSN based on smart fire sensors, cameras, and a
Convolutional Neural Network (CNN), acting as a

surveillance monitoring system for detecting disasters that
occur in a remote area (e.g., a forest).

Remote area only; Does not use
sensors for structural monitoring.

[22]

IoT-WSN based on machine learning algorithms that run in a
cloud server and includes a modular redundancy fault

tolerant scheme to obtain an accurate prediction from sensor
data (gas and force sensors) managed by the ultra-low power
MSP430 board and a Raspberry Pi, which was designed for

early warning in an industry environment.

Gas and force sensors only;
Industry environment only; Does

not consider overcrowding.

[23]

IoT-WSN that uses the Advanced Adaptive Wavelet Sampling
Algorithm (AAWSA) for prolonging the lifetime and power

consumption of sensor nodes that include several sensors (i.e.,
moisture sensors, pressure sensor, rain gauge, tilt meters, and
strain gauge), which was developed for disaster prediction in

an urban region.

Does not consider overcrowding.

[24]

IoT-based architecture that collects real-time data from the city
(from existing sensors at home, parking, vehicular networking,

surveillance, weather and water monitoring system, etc.),
implemented in the Hadoop ecosystem that allows the

processing of Big Data, to obtain a “Smart Digital City”.

Architecture; Based on
existing sensors.

Another group of solutions for the problems mentioned above is represented by software platforms
(Table 2).

Table 2. Examples of platforms for emergency and disaster management.

Reference Main Characteristics Limitations

[25]

2D and 3D WebGIS-based platform that has a scalable network
architecture and uses a three-tier software architecture, which was

designed for effective landslide multilevel management, and an
emergency response.

Landslide emergency
only; Does not consider

overcrowding.

[26]

SENS-ME platform that aims at exploiting the functionalities of
Commercial Off-The-Shelf (COTS) smartphones to carry out
opportunistic networking, mobile sensing, and distributed

information processing.

Does not consider
emergency detection.

Smartphones as sensors.

[27] Flood disaster management system (FDMS) that carries out
environmental model selection and disaster-related data binding. Flood disaster only.
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Table 2. Cont.

Reference Main Characteristics Limitations

[28]

DECATASTROPHIZE (a.k.a., DECAT) platform that aims at managing
disasters or multiple and/or simultaneous natural and man-made

hazards by means of a Geospatial Early-warning Decision Support
System (GE-DSS) that allows early warning, decision making, rapid

mapping, impacts assessment and mitigation, and geospatial
data/information dissemination.

Does not consider
overcrowding.

[29]

A web platform developed by the Emergency and Security
Coordinating Centre to improve the decision making process of the

Canary Islands’ Authorities, which provides a geographical and
temporal incident distribution and which is able to forecast and

classify incidents.

Emergency and security
incident

distribution only.

[30]

A Building Information Modeling (BIM)-based platform that was
designed for building fire emergency management in a dynamic way,

i.e., using building users’ behavior decisions (e.g., escape, wait for
rescue, and fire extinguishing) and both fire and users’ positions, which

plans action routes and provides visual route guidance.

Buildings only; Fire
emergency only; Does

not consider
overcrowding.

[31]

A smartphone-based platform for city-wide crowd management
(through a “heat map-like” system for a real-time overview of the
spatiotemporal distribution of crowds in given areas and through

specific messaging for real-time, smart, adaptive emergency response
and evacuation strategies), which aims at having smart crowds in smart

cities and which was used in at least three European countries (UK,
Netherlands, Switzerland).

Smartphones as sensors;
Does not consider

emergency detection.

[32]

A cloud-based architecture for emergency management and
first-responders localization (landmark-based and landmark-free),

which aims at supporting coordinated emergency management in smart
cities based on the localization of first responders during crisis events.

Localization of first
responders only.

[33]

Smart disaster management system for transportation applications in
smart cities, which gathers information from multiple sources and
locations (using VAENTS, i.e., Vehicular Ad hoc Networks, such as

Vehicle-to-Vehicle, V2V, Vehicle-to-Infrastructure, V2I, or smartphones
or other technologies), detects the point of incidence, makes strategies

and decisions (using, e.g., high-performance computing, HPC), and
propagates the information to vehicles and other nodes in real time.

Traffic incident only.

Other important and innovative examples of ICT solutions for emergency management refer to:
(a) smartphone-based information systems [34]; (b) mobile post-disaster management systems based
on free and open source technologies [35]; (c) satellite remote sensing for disaster management [36];
(d) exploiting data from social media [37]; (e) using deep learning to identify survivors in debris from
images gathered by smart infrastructures [38]; (f) using an IoT ecosystem (wellbeing-wearable and
home automation system sensors with varying communication protocols) to empower the elderly
population to self-manage their own health and stay active, healthy, and independent as long as
possible within a smart and secured living environment [39].

Recommender systems technology aims at reducing the consumer over-choice due to the huge
amount of information available on the web [40]. These systems use information (e.g., location,
preferences, past interaction, item features, etc.), gathered through few interactions with its user,
to create a customized selection of items (e.g., recommendation list) that can interest the user and can
facilitate a better user experience [40,41]. Recommender systems could be further improved if Machine
Learning (ML; users extract the features from raw data to feed the algorithm) and Deep Learning (DL;
the algorithm automatically extracts features from raw data) algorithms were used for information
retrieval [40]. Noteworthy applications of recommender systems in smart cities include: 1) a mobile IoT
recommender system for users that need to find Park-and-Ride infrastructures to switch from a private
to a public transportation mode [42]; 2) an autonomous situation-aware evacuation route recommender
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architecture, optimized in real time, to obtain smart buildings [43]; 3) a recommendation system based
on the concept of Social IoT (SIoT), i.e., use and reuse data generated by various IoT applications,
and adapt the services provided by the single IoT system, to improve the user experience [44].

Based on the literature, different strategies can be adopted to derive/recognize safe routes and
assembly points. Traditionally, the problems above can be solved using Shortest Path Finding (SPF)
algorithms that belong to the mathematical field of Combinatorial Optimization. Noteworthy examples
are: (1) Prim’s algorithm, which can be used to derive the Minimum Spanning Tree (MST; i.e., a tree
diagram without circles) [45]; and (2) the Dijkstra’s and the A* algorithms, which allow one to derive
the shortest path between two points [46]. In the Matlab environment, it is possible to find different
tools (e.g., “shortestpath” and “digraph”) that allow one to solve this problem [47].

This study also refers to a bidirectional exchange of information between a platform and its users,
which can be satisfied using NFC technology [48].

The efficiency of the solutions presented above is strictly related to the real-time knowledge
of the spatiotemporal distribution of the population, which is fundamental for risk analysis and
emergency management (i.e., for an estimation of human exposure and vulnerability) [49]. One of
the most used techniques to model or track moving crowds is Computer Vision [50]. Convolutional
Neural Networks (CNNs) represent the key algorithms in computer vision, and recently [51], enhanced
versions of the tree growth and firefly metaheuristics algorithms have been proposed to automatize
the hyperparameters’ optimization process (i.e., find the right set of hyperparameters that allow one to
obtain the best CNN model accuracy), obtaining better performances (in terms of image classification
accuracy and the use of computational resources) than the traditional approaches (that require time
expertise). Furthermore, faster regions CNN (Faster R-CNN) is considered one of the most important
techniques for automatic pedestrian detection from video [52], and, if automatic color enhancement
(ACE) is used, good performances (in terms of recognition rate and offset of target selection) can be
obtained because of the reduced susceptibility to the diversity of pedestrians’ appearances and the
light intensity in specific scenarios (e.g., a subway) [52]. Other suitable techniques, such as satellite
imagery processing, could be used as an aid for the automatic recognition of vegetation, landslides,
and geospatial data [53,54]. Note that an easy detection of a full-body person in perspective can
be carried out using other methods, such as Mask R-CNN [55], Pose2Seg [56], and EfficientDet [57].
Finally, Convolutional Neural Networks are methods specialized in a grid-like structure or multiple
arrays form [58,59].

1.2. Objectives and Scopes

In light of the above, previous works [60,61] presented an innovative IoT-WSN platform that
was designed as a decision support tool for an Italian theme park. The main limit of the proposed
platform was to provide solutions (emergency plans) that neglected the people density (number and
spatiotemporal distribution). However, the literature review reported above allows one to identify
solutions, i.e., the recommender system and the computer vision applications, which can be effectively
used to improve the abovementioned tool. Hence, for this reason, in the study described in the
following sections, we report the results of the integration of these solutions into the previous platform.

The main novelty of the study refers to the integration in an all-in-one solution, for the first time
as per the authors’ knowledge, of available and new algorithms and ICT solutions that allow one to
solve two important problems related to the theme park, i.e., the overcrowding and the emergency
management, which were presented as two case studies in this paper.

Consequently, the remaining part of the paper is organized as follows. The following section
(Section 2) describes the IoT system, based on the platform cited above (Hardware in Section 2.1),
and how the system uses input data (Software in Section 2.2) to carry out the main objective of this
study, i.e., obtain a multipurposes IoT-WSN-based system that can be used by authorities for emergency
and crowd management, and by authorized customers as a decision support tool. Subsequently,
Section 3 describes two case studies that were used to validate the proposed system, including dataset
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generation and algorithms application. Section 4 reports the main results related to the case studies
mentioned above, which were derived from simulations. Finally, the last two sections contain the main
conclusions derived from this study and some anticipatory remarks about future works.

2. IoT System Description

In this section, the main components of the IoT system presented in this paper will be described.
The system consists of two components, i.e., a hardware (i.e., an IoT-WSN) and a software (NN-based
and SPF algorithms for emergency management and social distancing purposes).

2.1. Hardware: A Multisensor IoT-WSN

The IoT-WSN proposed in this paper consists of wireless sensing nodes, which are fed using
a suitable tuned photovoltaic energy harvester [62]. Figure 1 shows the main components of the
first prototype of one wireless sensing node of the WSN. In particular, the figure cited above shows
(1) the power supply unit of the sensing node (which consists of a 5 W-18 V polycrystalline silicon
photovoltaic panel, a 12 V-20 A recharge circuit, and a 12 V-12 Ah battery), and (2) an ultralow-power
IoT board [63], which is the core of the sensing node.

Figure 1. First prototype of the wireless sensing node of the proposed WSN.

In more detail, the IoT board includes several MEMS sensors (i.e., a 3D accelerometer, a microphone,
a temperature/humidity sensor, magnetometer, barometer, etc.) and a microcontroller. The IoT board
can wirelessly transmit the data gathered by the sensors, using different standards and protocols,
i.e., Wi-Fi, Bluetooth, and NFC tags. It is important to underline that the NFC protocol allows
for further applications, e.g., the interaction/exchange of information with the theme park visitors
during normal and emergency conditions, also in the absence of a remote connection, thus allowing a
backup communication channel with the users. Note that, to obtain a more detailed environmental
and structural monitoring, the IoT board was also equipped with a smoke sensor (to detect carbon
monoxide, liquid petroleum gas, and smoke), a flame sensor, and an additional microphone. The latter
was added to receive the vibro-acoustic response [64–66] of the structure on which the units were
installed. In more detail, the additional microphone was isolated from the airborne noise through
a cover (inside the box) and isolating material (between the box and the structure), and was able to
receive the acoustic signals (a.k.a., vibro-acoustic signature of the structure) that travelled into the
structure. Proper analyses of these acoustic signals (i.e., feature extraction, multidomain analysis for
cracks identification and monitoring, structural health status classification; [64–66]) allow one to carry
out the Structural Health Monitoring (SHM) of the structures where the sensing node is attached,
which is also applicable in the case of road monitoring, where the use of self-powered and smart
sensors is envisioned [67].
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The study reported in this paper refers to two case studies that were carried out using, as a
reference place, an Italian theme park. Figure 2a shows the map of the park, where lines point out
boundaries and main routes (solid and dashed, respectively), numbers (from 1 to 6) point out the
positions in which the sensing nodes of the WSN were installed, and the positions of the two exits
(called Exit 1 and Exit 2) and the two assembly points (called AP 1 and AP 2) are indicated. Figure 2
also shows three prototypes of wireless sensing nodes installed at different points of the theme park,
i.e., a road pavement near the Exit 1 (see Figure 2b, which refers to point 1 in Figure 2a), a masonry
structure (historical military fort; see Figure 2c, which refers to point 5 in Figure 2a), a light pole (see
Figure 2d, which refers to point 6 in Figure 2a). Importantly, the prototype cited above have been
subsequently equipped with Wi-Fi cameras that allow computer vision analyses aimed at defining the
spatiotemporal distribution of the visitors of the theme park per given area.

Figure 2. (a) Map of the theme park where the WSN was installed and three self-powered wireless
sensing nodes installed on (b) a road pavement, (c) a masonry structure, and (d) a light pole in the park.

2.2. Software: NN-Based and SPF Algorithms for Emergency Management and Social Distancing

The framework of the proposed IoT system is depicted in Figure 3. In particular, the system
includes the WSN (which was described in the previous section and is represented by box 1 in Figure 3)
and a procedure, consisting in several steps (represented by boxes 2 to 13 in Figure 3), which allows
one to analyze the data that come from the WSN (i.e., sensing nodes and cameras).

The sensing nodes of the WSN (see box 1 in Figure 3) gather data from the environment using
their sensors, while the Wi-Fi cameras detect the people’s position in a given area. Sensing nodes
and cameras are fed by a photovoltaic-based power supply system. The aforementioned data are
sent, with a proper timing (e.g., every five minutes), to a local server (see box 2 in Figure 3) for
analysis/backup purposes. At the same time, the IoT board converts the collected data to text strings
(JSON format) and sends the converted data to a web server (see box 3 in Figure 3) using the MQTT
protocol (e.g., the MQTT broker Eclipse Mosquitto™) for backup purposes. Note that, sampling and
data transmission frequencies are defined so as to minimize the transmission cost, latency, network
bandwidth, and resource requirements, and to increase data privacy and data transfer reliability.

The data stored in the web local server can be accessed by an authorized customer of the system
(i.e., subscribing to a specific topic) for further analyses, while the data stored in the local server are
analyzed as follows using three different algorithms (see boxes 4–6 in Figure 3).
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Figure 3. Framework of the proposed IoT system.

The first algorithm (Algorithm 1, represented in box 4 in Figure 3) is used to process the data
that come from the cameras using computer vision to define the spatiotemporal distribution of the
people in each area and trigger the overcrowding alarm (if people in a given area exceed a predefined
threshold). Hence, Algorithm 1 can be used as an automatic tool when the social distancing measure
must be respected or to limit the access to a given area, avoiding overcrowding. In more detail (cf.
Table 3), this algorithm uses object detection frameworks to classify and locate objects in a visual field.
Facial detection would take an image input of some kind, check for the person or face class of the
objects, and locate them in the frame. Additionally, facial recognition would pick out eyes, mouths,
and various other features to compare them to a known dataset. The applications detect humans
in the visual field via processing blocks pre-trained by crunching a huge number of images with a
deep learning artificial intelligence system. The extracted features, as the number of humans and the
direction of the people flow, are used in the following to determine the spatiotemporal distribution.

Table 3. Main characteristics of the Algorithm #1.

Scopes Input Output Steps

Count the number of
people entering and
leaving a given area

using data from cameras.

• Video stream from
cameras installed at
strategic points of
the theme park.

• Number of people
entering and
leaving a
given area.

- Receive data from cameras;
- Count the number of people

entering and leaving a given
area using data
from cameras.

The second algorithm (Algorithm 2; see box 5 in Figure 3) is used to process the raw data from the
sensors (cf. Table 4). In particular, raw data are preprocessed in order to extract meaningful features
(i.e., statistical indicators such as maximum, minimum, average, root mean square, etc.), which are
used as input in a NN for clustering purposes. This NN is used to identify the occurrence of one or
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more environmental and/or structural alarms detected by one or more sensing nodes of the WSN.
The output of the NN cited above is one of all the possible combinations of alarm. The number of
alarm combinations is equal to the permutations of the number of sensing nodes without repetitions
and can be calculated using the following expression:

A =
∑

i

N!
Ki! · (N −Ki)!

, (1)

with i = 1, . . . , 6, and where N is the length of the array {1, 2, 3, 4, 5, 6} that represent the sensing
nodes of the WSN, and K is an integer that shows how many nodes detected an alarm at the same
time. Note that the WSN used in this study consists of six sensor nodes. Hence, the number of alarm
combinations A without repetitions (e.g., the condition “alarm actives at node 1 + alarm actives at
node 3” is equal to the condition “alarm actives at node 3 + alarm actives at node 1”) is 63.

Table 4. Main characteristics of the Algorithm #2.

Scopes Input Output Steps

Classify environmental
and structural conditions

and trigger related
alarms when predefined
thresholds are exceeded.

• Sensor data;
• Thresholds.

• Features from
sensor data;

• Emergency
(environmental,
and/or structural)
alarm(s).

- Receive sensor data;
- Extract features from sensor data;
- Classify sensor data identifying

environmental and structural
conditions based on
predefined thresholds.

The third algorithm (Algorithm 3, represented by box 6 in Figure 3) is used to define the shortest
and the safest paths if the Environmental and/or Structural alarm or the Overcrowding alarm is active
in at least one node of the WSN. In particular (cf. Table 5), the Algorithm 3 automatically updates:
(1) when the overcrowding alarm is active, a crowd management plan that consists of an image that
highlights, with red areas and white signals, the overcrowded areas (see two examples in Figure 6);
(2) when the environmental/structural alarm is active, an Emergency plan that consists of an image (see
two examples in Figure 8) that shows in which nodes the alarm is active (with red circles and yellow
triangles), if an exit is closed (with a no entry sign), and the exit or the assembly point that must be
reached (with green and white signs, respectively). In more detail, Algorithm 3 is based on the graphs
shown by Figure 4 (i.e., graph in Figure 4a was used in the case study 1, while graph in Figure 4b was
used in the case study 2) and was developed using Matlab tools (i.e., using the “shortestpath” and
“digraph” functions [47]). It takes as input the connections among the graphs and the alarm conditions,
and takes the people in each area as weight; it then returns the sequence of nodes that should be
passed through, which corresponds to the safest path for the people who, because of active alarm/s,
must reach a predefined point (which could be an exit or an assembly point) from their starting node.

In summary, the fastest (i.e., on paths traveled by few people) and safest (i.e., avoiding nodes
where an alarm is active) path is suggested at the same time, considering that the spatiotemporal
distribution of the people could affect the speed of the flow to reach the available exits or, alternatively,
the assembly points.

Note that Algorithm #3 is based on the assumption that all the edges of the graph have the same
endless capacity, and the main parameter used to evaluate the availability of each edge is the number
of people that are on the edge when an alarm is activated. Based on this assumption, the objective of
the algorithm is not the flow of people that can move on the graph per unit of time but to recognize and
provide, as a solution, the less busy path to reach an exit or an assembly point. Importantly, although
the Matlab function "shortestpath" was used, Algorithm #3 does not select the “shortest” path but
selects the path that includes edges that allow one to reach a final point (exit or assembly point) while
avoiding slowdowns, even though the path is the longest one.
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Table 5. Main characteristics of the Algorithm #3 (consisting of two parts).

Scopes Input Output Steps

• Close area(s) in case of
overcrowding alarm;

• Find the shortest and
the safest paths in case
of an emergency alarm.

For part 1:

• Graph of the park;
• Number of people

in each area of
the park;

• Number of people
entering and
leaving each area of
the park.

For part 1:

• Graph of the park with
closed and open areas;

• Number of people
leaving overcrowded
area(s);

• Number of people
entering and leaving not
overcrowded area(s).

For part 1:

- Compare number of people (P)
inside an area with a threshold (T);

- If P>T, trigger the
overcrowding alarm;

- Close overcrowded area(s);
- Define the flows of people leaving

the overcrowded area(s).
- Update the digital signage and

the dashboard.

For part 2:

• Graph of the park;
• Active alarm(s) at

the sensing nodes.

For part 2:

• Graph of the park with
nodes with
activated alarms;

• Shortest and safest paths
to reach an available
exit(s) or assembly
point(s).

For part 2:

- Update graph’s node(s) N with
activated alarm(s);

- If N is(are) closed to exit(s), exit(s)
is(are) closed.

- If all exits are closed, the assembly
points are activated;

- Shortest and the safest paths are
calculated to leave all the nodes
and reach an available exit(s) or
assembly point(s).

- Update the dashboard.

Figure 4. Graphs used by the Algorithm 3 in case of (a) Overcrowding alarm (Case study 1: monitoring
scenario and social distancing); (b) Environmental and/or Structural alarm (Case study 2: emergency
scenario and emergency management).

Finally, the local server dispatches the plans defined above using different ways, i.e., (1) using
internet via a dashboard of the IoT system (e.g., an open-source server-side platform dashboard
for controlling IoT devices and visualizing the sensor data in real time was used in this study
(Thingsboard [68]); see box 10 in Figure 3; Figure 5a) that can be accessed by the users of the IoT
system (e.g., staffmembers or visitors of the park); (2) using a digital signage that is carefully spread
throughout the park (see box 11 in Figure 3); (3) using internet via the abovementioned web server (see
box 12 in Figure 3); (4) via the NFC interface of the sensing nodes (see box 13 in Figures 3 and 5b) in
case of connectivity shutdown or if the user is close to the node and has a smartphone.
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Figure 5. (a) IoT system dashboard; (b) Emergency plan provided by the NFC module-smartphone
connection in the form of a smartphone compatible map.

3. Case Studies

This section of the paper contains the description of two simulated cases studies in which the
IoT system was applied to face two different problems, i.e., an emergency scenario and a monitoring
scenario, occurring in the abovementioned theme park.

3.1. Case Study 1: Monitoring Scenario (Social Distancing)

The first case study refers to a monitoring scenario. In particular, the IoT system is envisioned as a
tool to control the spatiotemporal distribution of the people in a given area and to trigger, automatically,
the overcrowding alarm that allows one to respect social distancing. Figure 6 shows two examples of a
crowd management plan, where the overcrowded areas are highlighted in red, while white signals
indicate which sensing node detected the overcrowding alarm.
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Figure 6. Two examples of a crowd management plan in case of an overcrowding alarm active at
(a) node 4, and (b) nodes 2 and 5.

3.1.1. Case Study 1: Data Generation

As described above (cf. description of Figure 3), the data for this application consists of video
from Wi-Fi cameras sent using a Raspberry Pi. The used cameras provide a video with 30 fps and a
resolution of 1280x960 pixels. Figure 7 reports an example of the output obtained from the Algorithm 1
(note that, in this case, the algorithm counts the people between the two white lines on the pavement).

Figure 7. Example of the application result of the Algorithm 1 (computer vision).

3.1.2. Case Study 1: Algorithms

Based on the above, a computer vision algorithm—the Algorithm 1—with the following
characteristics can be used to derive the spatiotemporal distribution of the people in each monitored
area of the park (see Figure 4a) from the dataset described above (i.e., video from Wi-Fi cameras)
and is used to trigger the overcrowding alarm. The software was developed using the programming
language Python.
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In pursuing the implementation of person detection and tracking, we use a two-step procedure
for (a) the detection of the position of the people in the video frame, carried out periodically due to the
large computational cost and implemented with the built-in OpenCV algorithm HOG (Histogram of
Oriented Gradients) + Linear SVM model [69], and (b) the tracking of the people’s movement around
the video frames, using the built-in OpenCV algorithm Discriminative Correlation Filter with Channel
and Spatial Reliability (DCF-CSR) [70].

For every camera installed in every single node, the output of the software task is the value of
people actually in the area, with a refresh rate of 1 sec. The maximum number of people admitted in
every single area is a priori known, so an alarm is raised if the number of people in the area is above
the threshold. If the overcrowding alarm is detected by Algorithm 1, the Algorithm 3 is triggered
to define a crowd management plan, as shown in the previous section. In this case, the “digraph”
function [46] is automatically activated to derive the shortest path that the people in the overcrowded
area must follow to leave the area.

3.2. Case Study 2: Emergency Scenario (Emergency Management)

The second case study refers to an emergency scenario, in which sensor alarms are active and the
IoT system is envisioned as a tool to control the environmental and structural conditions of the areas
and assets of the park and to automatically recognize several sensor alarm conditions and provide,
in real-time, customized emergency plans that show safe paths for the park’s visitors, who need to
reach an exit or an assembly point from one of the six areas of the park because of the emergency.

Figure 8 shows two examples of emergency plans, which contain: (i) a graph that indicates the
connections among the nodes, exits, and assembly points; (ii) sensing nodes that are represented by
red and green circles if an alarm is active or not, respectively; (iii) exits that are represented by yellow
and green circles if the exit is safe or not, respectively; (iv) yellow triangles with a black exclamation
point that indicate the point where the alarm is active; (v) green signals that indicate an available exit
and red access-denied signals that point out an unavailable exit (closed); and (vi) white signals that
show the assembly points.

Figure 8. Two examples of emergency plans in case of an environmental/structural alarm active at
(a) node 3, and (b) nodes 1, 3, and 5.

3.2.1. Case Study 2: Dataset Generation

The dataset for this case study consists of one matrix (see Figure 9), which is used to train the
Algorithm 2 (described below) and contains sensor data (10 different sensors per each sensing node
of the WSN). This matrix simulates the 64 possible park conditions (i.e., the condition 0—no sensor
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alarm—together with the 63 sensor alarm conditions defined above) and a number from 0 to 63 that
represents all the possible park conditions. In more detail, the matrix was created using a MATLAB
script that generates, for each sensor, a suitable value in the range of operations using a random
function with a Gaussian distribution. Furthermore, some of the data is “faulted” to inject alarm
conditions. The matrix contains 32,000 records of data (10 sensors for each of the six sensor nodes) and
has been randomized and standardized during the preprocessing task. The last column of the matrix
represents, for each record, the labeled alarm condition.

Figure 9. Table description of the input matrix used by the algorithm for emergency management.

Note that every row of the above matrix is a complete record of a single sensors’ data acquisition
and has a 1D grid-like structure (1 × 63). Importantly, the position of every column is fixed, i.e.,
containing a specific order of the sensor data (accelerometer, temperature, humidity, etc.). Hence, every
row is a different set of sensors’ data in a specific column position for a single acquisition. In this way,
the NN is able to learn the relationship between data related to each alarm condition, using every
single row as a full set of information.

3.2.2. Case Study 2: Algorithms

As described above (cf. description of Figure 3), in an emergency scenario the Algorithm 2;
Algorithm 3 are used. In particular, Algorithm 2 is a clustering NN, which was used in this study to
detect environmental/structural alarm from the above matrix and has the following characteristics:
(i) Input size = 63; (ii) Output size = 64; (iii) Hidden layers = 55; and (iv) Batch size = 50.

Furthermore, Algorithm 2 uses the Stochastic Gradient Descent (SGD) as an optimizer function
(i.e., an iterative method for optimizing an objective function with suitable smoothness properties).
Meanwhile, the activation function REctified Linear Unit (relu) is used for hidden layers (relu is the
most commonly used activation function in neural networks, especially in NNs). The output layer
uses the Softmax function, which takes as input a vector of K real numbers, and normalizes it into
a probability distribution consisting of K probabilities proportional to the exponentials of the input
numbers. The outputs of the algorithm are the nodes in which the alarms are not active. Using this
information, the definition of the graph G is modified accordingly, thus eliminating the unsafe nodes
and the possibility of passing through a damaged infrastructure, creating a simplified graph G*.

Moreover, data from Algorithm 1 are also used to update the weights of the graph connections.
If an environmental or structural alarm is detected by Algorithm 2, the Algorithm 3 is used to define an
Emergency plan, using the graph G* as inputs. In this case, the “digraph” function [46] is automatically
activated to derive the fastest and safest paths that the people near to each node must follow to reach
an exit (if available) or an assembly point (if the exits are closed).

4. Results and Discussions

Algorithm 1 was tested using Anaconda, which is a free and open-source distribution of the
Python and R programming languages for scientific computing. The performances were estimated
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using several prerecorded videos that compared the output to the manual counting of the people,
showing an accuracy above 90%.

Algorithm 2 was tested using Keras, a deep-learning library that allows for easy and fast
prototyping. Algorithm 2 showed a test accuracy of about 85%.

Algorithm 3 (see Figure 10) was tested using Matlab, taking as inputs the output of Algorithms 1
and 2 and modifying, accordingly to the above results, the G graph. When it is executed with data
coming from Algorithm 1, the Algorithm 3 shows the areas that are closed because of the activation of
the overcrowding alarm. In the case of data coming from Algorithms 1 and 2, the Algorithm 3’s output
represents the safest and fastest path to reach an exit or assembly point in case of active environmental
or structural alarms.

Figure 10. Pseudo-code of the Algorithm 3 for: (a) crowd and (b) emergency management.

The following figures (Figures 11 and 12) show the results of the Algorithm 1 in two simulated
cases of overcrowding alarm according to those shown by Figure 6. Note that Figure 11a is an example
of a graph of the theme park without alarm, while Figure 11b is an example of a graph with alarm.
The latter was automatically generated because of the activation of the overcrowding alarm at node
4, which led to the closing of the area number 4 (please note that the name of node 4 changed from
“N4” to “A4 CLOSED”). Meanwhile, Figure 11c is a table that shows the overall conditions and that
consists in the columns: (i) “Area”, which reports the six areas into which the theme park was divided;
(ii) “People_in”, which reports the number of people entering in each area (which will be provided
by the Algorithm 1 in the real application of the IoT system); (iii) “People_out”, which reports the
number of outgoing people from each area (provided by the Algorithm 1 in the real application);
(iv) “People_inside”, which reports the number of people that are inside each area at the time t1 (when
the crowd management plan was generated), which was calculated by subtracting the entering and
outgoing people in relation to each area (note that only the positive values are reported, while the
null and the negative ones are represented with zeros); (v) “Threshold”, which reports the maximum
number of people allowed to stay at the same time in each area; and (vi) “Alarm”, which can be “NO”
and “ACTIVE” if the overcrowding alarm is inactive and active, respectively. Note that, when an area
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is closed, it is only possible to leave the area (see the arrows on the graphs), and specific messages,
shown by the digital signages installed in the park, prevent the access to the closed area.

Figure 11. Example of the results of the Algorithm 3 in case of an overcrowding alarm at node 4, where
(a) is the graph without an alarm, (b) is the graph in case of an alarm, and (c) is a table showing the
overall condition.

Figure 12. Example of the results of the Algorithm 3 in case of an overcrowding alarm at nodes 2 and
5, where (a) is the graph without an alarm, (b) is the graph in case of an alarm, and (c) is a table that
shows the overall condition.
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As in Figure 11, Figure 12 shows the results of the Algorithm 3 in case of an overcrowding alarm,
but, in this case, this alarm was detected by nodes 2 and 5, contemporaneously.

The next figures ( Figures 13–18) show two examples of the Algorithm 3’s output, which were
obtained by carrying out two simulations according to Figure 8 (i.e., environmental/structural alarm
active at node 3 (see Figures 13–15) and at nodes 1, 3, and 5 (Figures 16–18)).

In particular, Figure 13a shows the weighted graph (the weights are the people on the path
between two nodes) of the theme park without an alarm, while Figure 13b shows the graph in case of
an alarm. In more detail, as shown by Figure 13b, when an alarm is detected by the Algorithm 2 at an
i-th node (node 3 in this case), the Algorithm 3: (1) changes the name of the i-th node in the graph to
point out the node in which the alarm is active (see “N3 ALARM” in Figure 13b); (2) removes the edge
between the i-th node and the other node without an alarm; (3) if the i-th nodes are those that are near
one exit (i.e., nodes 1 and 3), the name of the exit changes as well (see “E2 CLOSED” in Figure 13b).

Note that, in order to improve the clarity of the figure below, the position of node 6 was defined
so as to show the node 6-node 3 connection in a better way, and that, in case of an alarm, the weights
were removed from the related graphs.

Figures 14 and 15 show the safest (i.e., that do not include nodes with active alarms) and fastest
(i.e., that consider the people on the edges as a resistance to the crowd flow) paths. These paths can
be used by the people near each node of the system (from node 1, N1, to node 6, N6) to face the
environmental/ structural emergency detected by node 3 (N3). Importantly, the Algorithm 3 also
provides a path for people that are near N3 where the alarm was detected. In addition, a table that
summarizes the overall conditions is reported in Figure 15c. This table shows: (i) the “Start Node”,
which is the node from which the paths start; (ii) the “End Node”, which is the final destination of
the people reaching a safe place (i.e., an assembly point); (iii) the safest and fastest path, consisting of
the edges between the i-th node (Ni) and the n-th node (Ni+3); (iv) the node(s) where the alarm(s)
was/were detected.

Figure 13. Example of the results of the Algorithm 3 in case of an environmental/structural alarm
at node 3 (N3), where (a) is the graph before the alarm triggering and (b) is the graph after the
alarm triggering.
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Figure 14. Example of the safest and fastest paths provided by the Algorithm 3 in case of an
environmental/structural alarm at node 3 (N3), which can be used by people at (a) node 1 (N1), (b) node
2 (N2), (c) node 3 (N3), and (d) node 4 (N4) to reach the exit 1 (E1 = N7).

Figure 15. Example of the safest and fastest paths provided by the Algorithm 3 in case of an
environmental/structural alarm at node 3 (N3), for people at (a) nodes 5 (N5) and (b) 6 (N6), and (c) is a
table that shows the overall condition.

Finally, Figures 16–18 report a second example of the application of the Algorithm 3, which
was derived according to that shown in Figure 8b. In this case, nodes 1, 3, and 5 detected an alarm.
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Consequently, the exits 1 and 2 (herein called E1 and E2) were closed, and the target of the Algorithm 3
became the Assembly Points 1 and 2 (that are also indicated as nodes 9 and 10, or N9 and N10, in the
figure below).

Figure 16. Example of the results of the Algorithm 3 in case of an environmental/structural alarm at
nodes 1, 3, and 5 (N1, N3, and N5), where (a) is the graph before the alarm triggering and (b) is the
graph after the alarm triggering.

Figure 17. Example of the safest and fastest paths provided by the Algorithm 3 in case of an
environmental/structural alarm at nodes 1, 3, and 5 (N1, N3, and N5), which can be used by the people
at (a) node 1 (N1), (b) node 2 (N2), (c) node 3 (N3), and (d) node 4 (N4) to reach the Assembly Points 1
and 2 (AP1 and AP2, which are also nodes 9, N9, and 10, N10).
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Figure 18. Example of the safest and fastest paths provided by the Algorithm 3 in case of an
environmental/structural alarm at nodes 1, 3, and 5 (N1, N3, and N5), for the people at (a) nodes 5 (N5)
and (b) 6 (N6), and (c) is a table that shows the overall condition.

Note that Table 6 and Equation 2 report the results of a scalability analysis carried out considering
a system consisting in 6, 60, 240, 480, 960 and 1200 nodes, two exits and two assembly points. Alarms
were simulated considering that, in each case, 20% of the nodes (randomly selected and indicated in the
following with “A”) triggered an emergency alarm. The results refer to one of the worst conditions, i.e.,
the definition of the safest and shortest path to reach the exit 2 from node 1 (cf. Figure 2a) considering
that: (i) node 1 is adjacent to the exit 1; (ii) the exit 1 is closed; and (iii) the people around node 1 have
to cross the whole park while avoiding all the emergencies (i.e., the nodes “A”) to reach the exit 2.
In each of the six abovementioned cases, the system’s response times, using a desktop PC equipped
with Intel® Core™ i5-7400 CPU @ 3.00GHz, 8.00 GB of RAM, were calculated by averaging the results
of 50 simulations for each case. The results of the scalability analysis described above are reported in
Table 6.

Table 6. Results of the scalability analysis.

Condition
# of Node That Make

Up the System
# Nodes in Alarm (i.e.,
20% of All the Nodes)

Average Time of Response
of the Algorithm 3 (s)

1 6 1 0.5513

2 60 12 0.9253

3 240 48 1.7147

4 480 96 2.9778

5 960 192 5.9606

6 1200 240 7.3738

The results in Table 6 were used to define the law that better describes how the response time of
the algorithm 3 decays if the number of nodes increases (Equation (2) was derived).

t = 0.1706·N0.487, (2)

where t is the response time of the algorithm 3 (seconds) as a function of the number of sensing nodes N.
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Finally, all the algorithms have been developed and tested in a desktop PC and in a Raspberry PI,
showing a computational time compatible with the level of risk associated with the safety application
(<3 sec) in the case of actual nodes. The possibility to run a Raspberry PI on a Wireless Local Area
Network (WLAN) is also powerful in the case of a network communication interruption, as the
algorithms can be implemented in low computational and standalone devices.

Future works include (1) the implementation on low computational devices (e.g., microcontrollers),
(2) the comparison with other simple neural network classifiers, such as a K-Means algorithm or a
tree-based method (e.g., random forest or decision tree), or Convolutional Neural Networks and (3) the
usage of a “flow graph” created by means of a min-cut max flow algorithm in order to maximize the
number of people per unit of time who can move out of the park (e.g., using the number of people per
unit of time who can use the path as capacities, and the actual number of people who are expected to
use it at any given time based on a decision for evacuation as a flow value. In this way, crowds can be
redirected from all the nodes simultaneously, and the flow is maximized).

5. Conclusions

In this study, an IoT system consisting of a system and algorithms that allow environmental and
structural monitoring and emergency management is presented. Using powerful Machine Learning
and Shortest Path Finding algorithms, fed with simulated datasets, useful information is gathered
from sensors (environmental and structure-related), cameras, and using NFC technology (number and
location of visitors) in order to obtain an alarm detection, safe path suggestion, and social distancing
alarm for users and platform managers. Raw and elapsed data are sent to a platform dashboard for
the additional online monitoring of environmental and structural conditions. The implementation is
envisioned on low computational devices such as microcontrollers, which are also powerful in the case
of a network communication interruption because they do not require a remote data exchange.
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Abstract: Residential and industrial buildings are significant consumers of energy, which can be
reduced by controlling their respective Heating, Ventilation, and Air Conditioning (HVAC) systems.
Demand-based Ventilation (DCV) determines the operational times of ventilation systems that de-
pend on indoor air quality (IAQ) conditions, including CO2 concentration changes, and the occupants’
comfort requirements. The prediction of CO2 concentration changes can act as a proxy estimator
of occupancy changes and provide feedback about the utility of current ventilation controls. This
paper proposes a Hierarchical Model for CO2 Variation Predictions (HMCOVP) to accurately predict
these variations. The proposed framework addresses two concerns in state-of-the-art implementa-
tions. First, the hierarchical structure enables fine-tuning of the produced models, facilitating their
transferability to different spatial settings. Second, the formulation incorporates time dependencies,
defining the relationship between different IAQ factors. Toward that goal, the HMCOVP decouples
the variation prediction into two complementary steps. The first step transforms lagged versions of
environmental features into image representations to predict the variations’ direction. The second
step combines the first step’s result with environment-specific historical data to predict CO2 varia-
tions. Through the HMCOVP, these predictions, which outperformed state-of-the-art approaches,
help the ventilation systems in their decision-making processes, reducing energy consumption and
carbon-based emissions.

Keywords: energy consumption reduction; HVAC systems; CO2 variations prediction; convolutional
neural networks; transfer learning; ensemble learning

1. Introduction

The amount of energy consumed by buildings and industrial facilities accounts for
around 70% of the total energy consumption in the US [1], and it constitutes a primary
source of energy consumption in the majority of European countries [2]. Heating, Venti-
lation, and Air Conditioning (HVAC) systems represent a controllable energy consumer
that fluctuates based on the thermal needs and occupants’ comfort requirements [3]. Main-
taining indoor air quality (IAQ) is an essential requirement for occupants due to the
downstream effect of poor ventilation on the occupants’ health [4]. An array of health-
related problems arises with poor ventilation, such as decreased productivity [4,5] and
increased risks of COVID-19 infections [6,7] which can reduce a human’s quality of life [8].
Examples of these potential health-related hazards are encountered on a daily basis. Vehicle-
based indoor contaminant levels increase in houses and buildings with indoor garages,
increasing the risk of developing cancer and inducing fires [9,10]. Moreover, households
within industrial cities suffer from elevated levels of heavy metal contamination, which
contributes to health-related problems [11]. In a similar context, Liao et al. [12] uncovered
a direct association between extended exposure to cooking oil fumes and deterioration in
sleep quality. These dire consequences can be tackled with proper ventilation systems that
provision fresh outdoor air to facilitate indoor air circulation [13].
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The increased buildings’ energy bills due to increased oil prices coupled with strict
legislation to stifle Greenhouse Emissions (GHG) and the comfort needs of occupants are
pushing the HVAC system operators to a critical juncture [14]. As a result, there is a need
to match the occupants’ comfort requirements while reducing the energy consumption of
the HVAC systems by properly activating them. The demand-controlled ventilation (DCV)
methods alter the ventilation systems based on the ventilation demands of the indoor
environment. Since these demands are centred around the occupants’ requirements, the
prediction of the occupant’s number changes is essential for controlling the ventilation
loads. The regulatory bodies for efficient building development in North America and
Europe [15] did not reach a consensus on concrete strategies or methods to utilize for
measuring occupancy. In that regard, the literature and practical implementations suggest
two main strategies [16]. The first method involves inferring the number of occupants by
video surveillance cameras or the collection of occupants’ identities, which raises some
privacy concerns. The second method depends on proxy estimators of changes in occupancy
using either motion and thermal energy sensors [17], Wi-Fi signals [18], or CO2 levels [19],
or a combination of sensors.

The collection of ground truth data to reflect the number of occupants is infeasible in
real time; thus, resorting to proxy estimators is a more practical approach with the already
existing sensor infrastructure. In regard to proxy estimators, changes in occupancy can
be estimated using Wi-Fi signals, CO2 concentration level changes, and PassiveInfrared
(PIR) sensors. However, employing Wi-Fi signals or activity levels to that end hinges
on very loose assumptions. The Wi-Fi signals pre-suppose that occupants are connected
to access points or hold a single device [20] while the PIR sensors are oblivious to static
occupants and can potentially overestimate the number of occupants [21]. These factors
favour CO2 concentration changes that vary with the occupancy changes, which either
stem from changes in their number or their activity, both with similar effects to the ven-
tilation demands [22].The occupant’s respiratory activity directly affects the indoor CO2
concentrations, which highlights the distinctive property of CO2 concentrations as a more
accurate representation of occupancy changes.

The predictions of CO2 concentration changes reveal two things about the environ-
ment, both signalling changes in the ventilation demands of the indoor environment. The
lagged effect of the current collective occupants’ respiration can be reflected in the predic-
tion of CO2 concentration changes. Similarly, due to its hysteresis property, the prediction
of CO2 concentration changes shows the lagged effect of the current ventilation controls
on indoor CO2 concentrations [20]. Therefore, these predictions serve to piece together
different parts of the indoor environment that can aid DCV in producing an informed
decision about its activity. As a result, the optimization of HVAC system energy consump-
tion while maintaining the indoor occupants’ comfort is a downstream effect of accurate
predictions of the variation in CO2 concentrations [23]. The reduction in HVAC system
energy consumption aligns with the overall sustainability goals of reducing the buildings’
carbon footprint.

The abundance of computing resources and the miniaturization of sensors have pro-
moted the implementation of Machine Learning (ML) and Deep Learning (DL) applications
in estimating indoor environmental conditions using different sensors [24]. The state-of-
the-art approaches to predicting occupancy lack the incorporation of time dependencies or
suffer from transferability issues. Therefore, to address these issues, this paper proposes a
Hierarchical Model for CO2 Variation Predictions (HMCOVP), which divides the problem
of predicting CO2 variations into two complementary sub-problems, each solved using su-
pervised Machine Learning (ML) techniques. The first sub-problem uses lagged versions of
time-series environmental features transformed into images to predict the variations’ future
direction, which can be increasing, decreasing, or constant. The second sub-problem com-
bines the predictions of the first step with the historical difference between the minimum
and maximum value (e2s) of the feature to predict the variations in CO2 concentrations in
a pre-defined time window. The proposed framework serves to achieve two main goals.
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The first goal is to accurately predict the CO2 variations. The second goal is to facilitate the
transferability of the model to other buildings or rooms, which is a missing component in
state-of-the-art implementations. The second goal is achieved by the framework’s hierar-
chical structure that enables the fine-tuning of specific blocks of the proposed architecture.
The HMCOVP is applied to a publicly available dataset [25], encompassing CO2 levels,
humidity, pressure, temperature, and Passive Infrared (PIR) Count, and its transferability
is evaluated in different spatial settings.

The main contributions of this paper are as follows:

• Propose a hierarchical framework, including Convolutional Neural Networks (CNNs),
transfer learning, and supervised learning that accurately predicts CO2 variations to
serve as proxy estimators of occupancy and provide feedback about the utility of the
current ventilation system controls;

• Utilize a novel time-series-to-image data transformation strategy that reflects the
time-correlation aspect of time-series data in general and environmental sensory data
in particular;

• Evaluate and compare the proposed approaches with state-of-the-art approaches
applied to the same dataset in terms of prediction accuracy using different history and
future time windows;

• Evaluate the proposed approach to different office spaces using transfer learning and
re-tuning techniques.

The rest of the paper is organized as follows. Section 2 discusses the related work to
shed light on the novelty of this manuscript. Section 3 explains some preliminaries per-
taining to the dataset. Section 4 describes the different steps of the proposed methodology.
Section 5 details the experimental procedure. Section 6 investigates the results of applying
the proposed methodology, and Section 7 concludes the paper.

2. Related Work

The field of occupancy estimation through environmental data has incorporated
ML and DL techniques. However, the research works differ regarding the features used
for estimating the occupancy and the utility of the developed models in connection to
HVAC systems.

The work of Dong et al. [26] is flagship research evaluating the usefulness of envi-
ronmental sensors in capturing occupancy. A feature engineering module is employed
to output the most relevant features out of lagged versions of CO2 concentrations and
acoustic levels. The authors report a 73% accuracy in occupancy estimation using Ar-
tificial Neural Networks, a Support Vector Machine, and Hidden Markov Models. The
authors of [27,28] employ low-complexity ML methods [29] such as Classification And
Regression Trees (CART), and Random Forest (RF) for the approach in [27] and an Extreme
Learning Machine Classifier for the approach in [28] to estimate occupancy. Candanedo
et al. [27] uniquely incorporate the time aspect in their feature engineering steps, whereas
the methodology in [28] designs wrapper and filter methods to address the noisiness of
the raw sensory data. Similarly, Kallio et al. [30] explored different combinations of lagged
indoor environment data to predict CO2 concentrations and made available the dataset
used throughout their paper. To predict CO2 in different future time horizons, the resul-
tant features are fed to Ridge Regression (RR), Decision Trees (DT), RF, and Multi-Layer
Perceptron (MLP) algorithms.

Different types of Deep Neural Networks (DNNs) such as CNNs and Long Short-Term
Memory (LSTM) were utilized for occupancy predictions. The work by Chen et al. [24]
combines CNNs and bi-directional LSTM to predict different classes of occupancy. The
data in [31] incorporate HVAC sensory data with indoor climate sensory data to infer the
number of occupants using particle filtering and neural networks. In a similar manner, Li
et al. [23] tackle DCV by proactively predicting CO2 concentrations. The authors of [32]
uniquely tackle the transferability of occupancy estimation models using a transfer learning
approach. To that end, the authors build their models using data collected in a small
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conference room. Later, the developed models are evaluated by transferring them to a large
room. This process is achieved because of the layer-wise architecture of their developed
CNN and LSTM models.

Some of the literature identified the use of Wi-Fi signals to estimate occupancy. The
authors of [18] collect the Channel State Information (CSI) from commercial Internet of
Things (IoT) devices. A pipeline of DL models, encompassing Autoencoders and LSTM, is
proposed to predict occupancy. Similarly, Wang et al. [33] utilize Wi-Fi usage to predict
occupancy trends using RF, DNNs, and LSTMs.

Despite advancing the state-of-the-art in terms of occupancy estimation, there are some
limitations to the current literature. A general limitation concerns the absence of publicly
available datasets, hindering the comparison or replication of different approaches. The
authors of [23,30] broke this trend by relying on the same dataset that is used throughout
the paper. In terms of the methodology, time dependencies are not incorporated in most
previous works, which constitute a critical aspect in occupancy estimation and HVAC-
related operations [34]. We compare our methodology with the applied methodology
in [30], which is referred to as Feature Engineering for CO2 Predictions (FECOP). The
limitations of this work cover four main aspects:

• Utility: Their work predicts CO2 concentrations, such that a value of concentration can
drastically vary from one spatial setting to another. For example, a specific prediction
value can be interpreted differently in a room with two or 12 people. Mapping CO2
concentrations to occupancy represents a physical modelling exercise, which varies
depending on the studied space. Both these aspects are addressed when predicting
the future variations of CO2 concentrations.

• Feature Engineering: When linked to occupancy, the pressure feature is indicative
of invasive airflow introduced by the occupants entering or leaving a specific space.
This detail is overlooked by excluding this feature from the feature engineering step.
Their methodology involves a tedious feature engineering step, resulting in many
extracted features;

• Results: Their reported results are not categorized based on the capacities of each
room. This factor is instrumental because of the drastic changes in the relationship
between environmental features in different spatio-temporal modalities.

• Transferability: This aspect is missing among most of the state-of-the-art methods. The
developed models lack the structural disposition for fine-tuning, which jeopardises
their utility in multi-zonal spaces of different capacities or different buildings. This
characteristic is instrumental when encountering an environment with a limited
amount of data.

This paper addresses these limitations using a framework that decomposes the prob-
lem into two complementary sub-problems and encompasses data transformation, transfer
learning, hierarchical modelling, and ensemble learning. The data transformation method
adheres to the time-dependent nature of the environmental data. Applying transfer learn-
ing facilitates the training and testing processes and the transferability of the proposed
approach to different spatial resolutions. The ensemble models improve the predictions’
accuracy by practically implementing the concept of the crowd’s wisdom.

3. Data Preliminaries

This section explores the dataset used for training and testing the developed mod-
els and the exploratory data analysis essential for finding the historical and prediction
time horizons.

3.1. Dataset Description

The dataset used includes IAQ data collected over a period of one year in 2019
in the Nordic climate. As a result, the dataset includes 22.6 million samples collected
from 62 nodes mounted in 13 rooms [25]. The IAQ features include temperature (°C),
relative humidity (%), pressure (hecto Pascals), CO2 concentration (ppm), and activity
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levels ranging from 0 to 12. Each sample was captured with one-minute granularity. The
activity level was calculated using PIR sensors that aggregate movement levels within a
five-second interval. The collected data covered 13 rooms, including 11 cubicles that can
fit 2–3 people and 2 meeting rooms that can fit 12 people. The code made available by the
authors produces continuous chunks of data in separate datasets, which reduced the total
number of samples to 6.1 million datapoints distributed over all the rooms [30]. The steps
to obtain these datasets are as follows [30]:

1. Data from different sensors in each room are aggregated;
2. Gaps of less than two minutes are interpolated;
3. Continuous data samples of high variability in CO2 levels are extracted as testing set

to evaluate the developed methodology.

3.2. Exploratory Data Analysis

The exploratory data analysis is fundamental to estimating the prediction and history
time windows predicated on the studied space. These time frames best reflect the existing
relationship between the CO2 concentration levels, and the lagged versions of activity levels,
humidity, pressure, temperature, and CO2 levels. This analysis is important to validate the
existence and the extent of time correlations between IAQ features; a characteristic that
rationalises any modelling-related decision.

Many methods can be applied to quantify the relationship between lagged versions
of IAQ features and the CO2 concentration. The original work’s feature engineering step
extracted lagged versions of features to predict future CO2 using ML techniques such as
RR. Good results with a low Mean Absolute Error (MAE) were obtained using RR, which
assumes a linear relationship between the features and the response variable. Therefore,
a linear function can successfully quantify the relationship between lagged versions of
the environment features and the CO2 concentrations. These assumptions align with
the guiding principles of the Pearson Correlation Coefficient (PCC), which measures the
strength of the linear relationship between two continuous variables.

The environmental features and their lagged versions are denoted by Xi and the CO2
level by C. Given an environmental feature Xi and C, the PCC represented by ρ is as follows:

ρXi ,C =
E[(Xi − μXi )(C − μC)]

σXi σC
(1)

such that:

– E is the expectation
– μXi is the mean of Xi
– μC is the mean of C
– σXi is the standard deviation of Xi
– σC is the standard deviation of C

The analysis that follows is conducted on a single room denoted by room00, which
fits 12 people. The lag time distribution with respect to each dataset when the correlation
between CO2 and other features is below a certain threshold is displayed in Figure 1.
This calculation allows inferring the time window whereby a lagged feature can explain
the changes in CO2 concentrations. The correlation thresholds involved are {0.2 −→ 1}
with a 0.1 increment. If the threshold is not found, meaning the dataset has a higher
correlation than the threshold, a value of −10 is returned to emphasize the distinction in
the distribution figure.

Figure 1 shows the lag time distribution with respect to each parameter using corre-
lation thresholds. The displayed thresholds are determined based on a comprehensive
evaluation of the obtained correlations for each feature. Both activity levels and CO2
displayed high correlation values of above 0.5 in the majority of the datasets. These results
justify the results in [30], whereby the lowest MAE is the result of combining these two
features. This observation can be inferred by small peaks for both parameters for lag time 0.
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Moreover, the figure shows that in the majority of the datasets, a high positive correlation
exists (≥0.5) at a lag time above 20 min, which also includes the lag time of −10. On the
other hand, the distribution results demonstrate a weaker positive relationship (≤0.2) with
the CO2 concentrations. The datasets with no occupancy changes have contributed to the
dilution of the results with no or low correlation results.
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Figure 1. Distribution of Correlations.

These correlation results do not prove that there is no complementarity between
the environmental features, rather it determines the reasonable prediction time windows.
Therefore, in the applied methodology, all the parameters were used with a variable lag
time of 5, 10, 15, and 20 min. These lag times incorporate all the levels of the existing corre-
lations between environmental features. The choice of prediction horizons is also connected
to HVAC systems. The prediction horizons of 5–20 min are equivalent to a HVAC control
loop that varies within these ranges [23,35,36], dictated by the studied space. As a result,
predictions within the pre-defined time horizons serve as indicators of the environment’s
future state, in terms of CO2 concentration changes, if the HVAC systems keep their cur-
rently defined ventilation and heating/cooling setpoints. The control system can leverage
this piece of information to calibrate its subsequent decisions, especially in use cases that
depend on data-driven control achieved through Reinforcement Learning techniques.

4. Method: Hierarchical Model for CO2 Variation Predictions (HMCOVP)

This section describes the steps applied to obtain accurate predictions of the variations
in CO2 concentrations over a future time window. Figure 2 depicts the methodology
referred to as the HMCOVP, such that each practical step is detailed based on the input to
this step, the operation taking place, and its output. The following subsections explain each
step of predicting CO2 variation direction and predicting CO2 variations. Time-series to
Image Transformation and CNN Individual Learners are the building blocks to predict the
CO2 future direction. Outputs of decreasing CO2 variation direction and ensemble learners
are the foundations for CO2 variation predictions.
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Figure 2. Methodology Steps.

4.1. Time-Series to Image Transformation

The input represents time-series data of environmental features defined by X =
{X1, X2, ..., Xk}, such that each Xi where i ∈ [1, k] describes the time-series data of a single
environmental feature. The discussion about the extracted environmental features is
provided in the experimental setup. Accordingly, Xi = {xi1, xi2, ..., xin}, such that n is the
number of observations. To simplify the subsequent equations, xj ∈ Xi would represent
values of a feature i at timestamp j.

The exploratory data analysis showed that a lag time of up to 20 min for each envi-
ronmental feature can be used to predict the CO2 concentration changes for a conference
room that fits 12 people. As such, there is a need to reflect the existing time correlation
in the feature engineering step. Python packages can be used for extracting time-based
features such as the Time Series Feature Extraction Library [37] and Time Series FeatuRe
Extraction on the basis of the Scalable Hypothesis test [38] (tsfresh). The extraction of hand-
crafted features resulting from these two packages requires incorporating domain-specific
insights, which are not available for the case under study. Additionally, the large feature
space necessitates integrating feature selection or transformation steps. To address the
limitations of the hand-crafted extraction of features, DNNs create their own features by
the composition of multiple non-linear functions, each representing combinations of the
input dataset features. One concern with DNNs, in their crude form, is their inability to
model the time aspect, despite the manual process of including lagged versions of the
features. Therefore, a feature engineering stage is incorporated to reflect the underlying
time correlation between lagged versions of the available variables.

Wang and Oates [39] have devised the Gramian Angular Field (GAF) method for
the transformation of time series data into a symmetrical 2D matrix. As opposed to
other time series-to-image transformations, the resulting GAF image exposes the temporal
dependencies between data points in a time series. Towards obtaining GAF images, two
steps are followed. In the first step of the transformation, the time series data are normalized
between [0, 1]. The normalization process is conducted in the following equation, whereby
x̃j is the normalized value:

x̃j =
xj − min(Xi)

max(Xi)− min(Xi)
(2)

88



Algorithms 2023, 16, 256

In the second step, the normalized data is transformed into the polar coordinate system
that is calculated as follows:

φj = arccos(x̃j), 0 ≤ x̃j ≤ 1

r =
tj

N
, tj ∈ N (3)

After obtaining the transformation to polar coordinates for each data point, the next
step is to generate a matrix that reflects the data dependencies between the new form
of observations. The GAF technique exploits the angular representation by calculating
the pairwise trigonometric sum between the points to reflect the temporal correlations.
Considering a time frame of k seconds, such that θj,j+1 = cos(φj + φj+1), the k × k GAF
matrix is defined as follows:

⎡
⎢⎢⎢⎣

θ0,0 θ0,1 . . . θ0,k−1
θ1,0 θ1,1 . . . θ1,k−1

...
. . . . . . . . .

θk−1,0 θk−1,1 . . . θk−1,k−1

⎤
⎥⎥⎥⎦ (4)

The GAF matrix fits the requirements of the use case under study. First, it exposes the
temporal dependencies present in the original time series as the time increases progressively
from top-left to bottom-right. Second, the polar coordinates expose the relative correlations
between data points with the help of superposition. Lastly, the time-series information is
retained in the GAF matrix, which is beneficial when there is a need to integrate original
data in any envisioned process. These original values can be extracted from the diagonal
values. Each value in the GAF matrix is in the range of [−1, 1], which can be easily
transformed into an image.

4.2. Individual Learners

The GAF images resulting from the time-series transformation process reflect the
correlation by colour intensities. In their turn, these intensities translate the time corre-
lation aspect of environmental sensory data through spatial resolution. CNNs, one of
the variations of DNNs, are a strong candidate to find patterns in the produced grid-like
structures and the output variable of concern. This selection stems from a CNN’s capability
to infer spatial dependencies in a gird-structured input via its filters that extract specific
features. Moreover, a CNN’s architecture is characterized by its sparse connections and
weight sharing, which enables any developed model to be swiftly retrained and tested [40]
compared to other resource-intensive and data-intensive DNN models such as LSTM.
These properties are desirable for CNN models’ deployment in a resource-constrained and
dynamically changing environment.

Predicting the variations in CO2 values is split into two steps. The first step is achieved
using the individual learners considering the future direction of CO2 variations as its output
variable. The direction is divided into three groups, decreasing equivalent to 0, increasing
equivalent to 2, and constant equivalent to 1. The new definition of the output variables
transforms the task at hand from regression to a classification task, which allows exploiting
the wealth of literature for CNN-related classification tasks. The second step is achieved
using the ensemble learner explained in the following sections.

A large body of research was conducted in the field of image recognition that ex-
perimented with different CNN architectures to obtain good accuracy results for their
respective tasks. Therefore, a Transfer Learning (TL) approach is adopted to extract spatial
features in the GAF representations to exploit these accumulated contributions. TL is a
methodology to transfer the knowledge gained from an extensive source dataset to improve
the learning process in the target dataset [41]. In DL, this methodology is implemented
by transferring the weights learned from the source model to the target model. The dif-
ferences between the source task, trained on the ImageNet dataset [42], and target tasks,
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trained on GAF representations, necessitate re-tuning the model’s weights using the target
dataset or augmenting the initial model with extra layers so that the resulting model can
accrue some of the characteristics of the target dataset. The employment of a TL approach
has several benefits. The available pre-trained CNN models have proven their merit in
a similar domain, saving the time needed to train and tune CNN models from scratch.
The addition of more layers and consequently the exponential growth in the number of
parameters are required to extract more abstract features from the input images. This step
is integral for pattern recognition, which pre-conditions the existence of a large amount of
data. The limitations of the deployment environment in terms of the constrained resources
and gathered data drive the adoption of the TL approach.

The newly developed CNN model is built on each of the environmental features,
such that the predictor of each variable is the feature’s GAF image for the history time
window and the response variable is the direction of the variation of CO2 concentration
levels for the future time window. The past and future time windows are denoted by h and
f. Assuming that the CNN model is denoted by a function Φi built on the data from the
environmental feature Xi, the predictor input GAF image by GAF(Xi ,h), and the prediction
is d f , the created CNN model on the feature Xi is as follows:

Φi(GAF(Xi ,h), d f ) (5)

The following example is given to clarify the notation, the notions of history and
future time windows, and the expression in general. If the current time is t = 10 with a
one-minute granularity, and the history and future time windows are 5 min for a feature
X1, the GAF image represents X1 values from t = 5 to t = 10. The future time frame
encompasses the values at t = 11 and t = 16. Assuming that CO2 at t = 11 is equal to 545
and CO2 and at t = 16 is equal to 547, which means that d f = 1.

4.3. Ensemble Learner

The dataset is split into training, validation, and testing sets. Models of each individual
feature are developed using the training set. Since each individual learner outputs a
probability prediction of each class, the probability of predicting decreasing change on
the validation set is retained. This method is adopted to avoid overfitting the individual
learners on the validation set. The individual learner’s classification task predicts the
direction of future CO2 variations, instead of the variation itself. Therefore, the learner’s
output probability values are combined with other features, describing the historical e2s
values of each environmental feature, as inputs to an ensemble model to predict CO2
variations. This method is referred to as a Stacked Generalization ensemble. These features
are obtained from the validation set. The set of outputs of all the individual features is
denoted by Ot such that oit ∈ O represents the output of environmental feature i at the
current time t. The set of historical features is defined as Ft such that fit represents the
historical environmental e2s values. The ensemble learner is denoted by Ψ. The predictors
of the ensemble learner are represented by L = O ∪ F and the output is p f , such that p
represents the variation of CO2 concentrations in f = t + w, whereby w represents the
future time window. The notation of the ensemble learner is as follows:

Ψ(L, p f ) (6)

The exploratory data analysis has shown a varying correlation between CO2 values
and the other environmental sensors. Because correlation values do not fully reflect the
relationship between different environmental features, all the features were included in
the Individual Learner step. This step yielded learners that are skillful in modelling
the relationship between each environmental feature and the CO2 variation direction.
However, since all of the features contribute to some extent to this variation, there is a
need to reflect the relative importance of each model. Assigning weights based on the
classification results is a method to convey the contribution of each model to the regression
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task. The environmental features’ predictions can be replaced by averaging the outcomes
of each feature. However, this method does not explore the potential interactions existing
between the input variables and undermines the classification of weak individual learners.
Therefore, in this paper, different ensemble methods, representing supervised ML models,
are explored and evaluated.

5. Experimental Setup

This section discusses the experimental procedure, which explains the different steps
undertaken to solve the issue under study. After that, details of the implementation
procedure are outlined and the evaluation criteria are investigated.

5.1. Experimental Parameters

The analysis of HMCOVP commences by applying it to a large conference room,
referred to as room00 and then later the models are evaluated on a smaller conference
room, referred to as room01. Room00 can fit 12 people, with an area comprising 28.0 m2

and a volume of 89.6 m3 while room01 is of area 14.2 m2 and a volume of 38.3 m3 [25]. This
process is followed to evaluate the transferability of the developed models to a room of
different capacities. The hierarchical structure of HMCOVP promotes its transferability,
which addresses a common concern in the IAQ-related literature. The following paragraphs
explain the parameters involved in the experimental procedure summarized in Figure 3.

Figure 3. Summary of Experimental Parameters.

History and Future Time Windows: The EDA highlighted the relationship between
lagged environmental features and the CO2 concentrations to infer a reasonable prediction
time window. This EDA showed that a prediction horizon of 20 min is viable for the
available dataset. The analysis includes the results of applying HMCOVP with the same
time window for history and future time horizons. These parameters are subsets of the
ones evaluated in FECOP. The remainder of the possible combinations will be considered
in future work, given that the current formulation is not concerned with the memory
constraints of the deployment environment. The history and the future time horizon will
be referred to as “h-{w}_f-{w}”, whereby w represents the time window. Time windows of
5, 10, 15, and 20 min were considered. The combinations of the history and future time
windows experimented with are h-5_f-5, h-10_f-10, h-15_f-15, and h-20_f-20.

The time series to image transformation step yielded several datasets that vary depend-
ing on the historical and future time windows. A 1-minute sliding window is implemented
to produce larger datasets. For example, for h-5_f-5, a single row is formed by predictors
representing GAF images from t = 0 to t = 5 and the CO2 variations from t = 5 to t = 10.
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The next row would represent the GAF images from t = 1 to t = 6 and the CO2 variations
from t = 6 to t = 11. The resulting process yields datasets of different sizes that range
between 328,647 to 334,677 data points for training data and 74,085 to 74,730 data points for
testing data for different history and future time horizons. The training and testing data
points for different history and future time windows are summarized in Table 1.

Table 1. Dataset Sizes.

History (Minutes) Future (Minutes)
Training Data
Testing Data

h-5 f-5
334,677
74,730

h-10 f-10
332,667
74,514

h-15 f-15
330,657
74,300

h-20 f-20
328,647
74,085

Experimental Features: The original dataset consists of five environmental features:
pressure, temperature, humidity, CO2 concentration, and activity levels. The activity
level or PIR is a categorical variable formed of 0.5 increments from 0 to 12, amounting to
25 variables. The PIR feature space is first reduced to four categories, each representing
eight contiguous activity levels, except 0, which is a category on its own. The one-hot
encoding schema would create many 0–1 variables, which cannot be transformed into an
image representation. Therefore, the PIR feature is transformed into two features, denoted
by temperature_PIR and CO2_PIR. These two features are chosen because they exhibit the
highest correlation with the PIR feature. The quantities are obtained by calculating the
ratio of CO2 and temperature to the PIR feature. Six environmental features are obtained
following this feature engineering step that includes CO2, temperature, pressure, humidity,
CO2_PIR, and temperature_PIR.

GAF Representation: Normalization is a fundamental step in the time series to image
transformation. Two main methods can branch out from this step, referred to as “local”
and “holistic” approaches. Each of these methods targets a specific angle of the studied
phenomenon. On the one hand, the “local” method calculates the minimum and the
maximum in a defined w. This representation accentuates the small differences in such
windows, reflected by the colour intensities of the GAF representation. On the other
hand, the “holistic” approach calculates the minimum and the maximum over the whole
datasets of a single environmental feature. The resulting GAF images are in concert with the
dynamics in the whole dataset, which means that the images’ colour intensities mirror the
differences in values in a w compared to value differences over the whole dataset. Both of
these approaches are investigated in the experimental procedure. The existence of outliers is
fundamental in the GAF representation, affecting the accuracy of CO2 variation predictions.

The EDA provided interesting insights into each environmental feature. Features
such as CO2, CO2_PIR, and humidity displayed highly skewed distributions with large
differences between the minimum and maximum values, to the detriment of the “holistic”
approach. If these features are normalized based on these extremes, the majority of the
data will fall within a small margin, and the resulting differences in GAF images will
be minuscule. As a result, the CNNs will fail to infer any meaningful relationship from
the GAF representation. A log transformation is applied to these features to mitigate the
effect of outliers and to shrink the values’ ranges. Other features, such as pressure and
temperature features displayed little variations. The exponential function is applied to each
of these features to amplify these small differences. These concerns are not shared with the
“local” approach, since its GAF representation depends on the minimum and maximum
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calculated in a time window. Therefore, the differences in feature values will be mirrored
in the GAF representation despite their value ranges resulting from any transformation.

Individual CNN Models: The research community provides ample image recognition
models for individual learners that can be applied to the generated datasets. These pre-
trained CNN models include VGG16 and VGG19 [43], ResNets [44], ResNet_inception [45],
Inception [46], and Xception [47] with different respective architectures. The experimental
procedure evaluated all these CNN models. Keen readers can find the details of their
respective architectures in the papers listed with every CNN model. Each of their architec-
tures includes many convolutional and Fully Connected Layers (FCL). In the experimental
procedure, the last layer that outputs the classification result is removed, given that a
different dataset with different outputs is used in this study. Therefore, the remainder of the
layers is augmented with a global average pooling layer and Fully Connected Layers (FCL).
The obtained CNN models include either no FCLs, one FCL, or two FCLs. The number of
neurons of these FCLs ranges from 64 to 4096 neurons.

Ensemble Learner Algorithms: Different algorithms were evaluated for the ensemble
learning step. In particular, the same algorithms used in FECOP were evaluated following
HMCOVP. These ML algorithms include RF, DT, RR, and DNNs. This step is followed
to emphasize the distinction between the two methodologies in terms of the validity of
feature engineering techniques.

Transferability Parameters: The transferability of the developed models is evaluated
by applying them to a small room, denoted by room01, that fits two people. When the
results were unsatisfactory, part of the training data of the target room is used to tune
the parameters of the source room’s model. The fraction of the used training data is
{0.1, 0.25, 0.33}. Moreover, this experimental analysis included re-tuning or re-training the
ensemble learners. Future works will include a more profound evaluation of the HCOMVP
transferability.

5.2. Experimental Procedure

In the training phase of the methodology, the dataset is split into training, validation,
and testing datasets. The training dataset is used to train the individual learners. The
validation dataset is used to obtain the outputs of each of the individual learners that
are used with the historical e2s values of environmental features in the validation set as
inputs to train the ensemble learners. Such a split is followed to avoid overfitting the
ensemble learner if fed with the outputs of the individual learners applied to the training
set. After obtaining the trained individual learners and the ensemble learner, these learners
are evaluated on the testing set.

5.3. Evaluation Metrics

The HMCOVP is evaluated against FECOP [30] and 1D CNNs, a popular method for
time-series prediction. Since the problem of predicting CO2 variation prediction is a regres-
sion task, multiple evaluation metrics such as Mean Square Error (MSE) or Mean Absolute
Error (MAE) can be used. Choosing one of these metrics depends on the experiments’
main goals.

The MSE metric emphasises the large errors while minimizing the effect of the smaller
ones. On the other hand, the MAE equalises the effect of all individual errors. No anomaly
detection method was applied to sanitize the gathered data, which suggests the existence
of data corrupted with noise. This noise originates either from the environment itself or
from the inaccuracies of the sensing technologies. Such circumstances call for a robust
evaluation metric that can offset the noise’s effect. On a different note, the small prediction
errors that are continually produced by models can result in long-term consequences to the
HVAC systems. The predictions of CO2 variations affect the ventilation systems that need
to maintain the indoor CO2 concentrations within acceptable levels and the estimation of
current occupancy changes dictating the HVAC system’s operation. Consequently, small
deviations, while insignificant in the short term, can accumulate unnecessary activation
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of HVAC systems, increasing the building’s Carbon footprint and energy expenditure.
Large deviations of predictions originate either from models’ under-fitting data, which
can be identified if it is a shared trend among different input values or from the existence
of anomalous data that the model fails to fit. The anomalous data can be manifested by
wrong sensor readings, corrupting the data with noise, or the occurrence of rare events
that have little implications on long-term energy expenditure. As such, the robustness
requirement and the equal importance of small and large deviations favour the use of MAE
as an evaluation metric.

The MAE evaluation metric is used to find the best set of hyper-parameters on the
validation set and to compare the performance of the HMCOVP, FECOP, and 1D CNNs on
the testing set. The methods are evaluated on a set of CO2 variations exceeding pre-defined
thresholds, including {5, 10, 20, 40, 50, 75, 100}. These thresholds unveil different methods’
capability to predict big variations in CO2 concentration, which can potentially activate
the HVAC systems and determine the instantaneous energy expenditure. The average
MAE combining all these thresholds is employed to highlight the performance differences
between the proposed methodology and the other approaches, providing a comprehen-
sive overview of the proposed methods’ performance under different circumstances. The
training and instance-wise testing times are incorporated into the evaluation to gauge the
methods’ ability to learn in resource-constrained environments. Different CO2 variation
thresholds and execution times are important factors of the deployment of proper solu-
tions for building operators. The accurate predictions of CO2 changes are envisioned to
facilitate the ventilation system’s decision-making processes. Therefore, the reduction in
the superfluous activation of these systems translates into limiting energy expenditure.
In the grand scheme of things, this methodology contributes to the mitigation of Carbon
emissions, which can be quantified depending on the ore used for electricity production.

5.4. Implementation

The different algorithms used throughout this paper were built using sklearn [48]
and Keras [49] python libraries. The developed models were evaluated on Windows
10 PC with a 3.00 GHz 24-Core AMD Threadripper processor, 128 GB of RAM, and 8 GB
Nvidia GeForce RTX 3060 Ti GPU. The code is made available on the GitHub repository
(https://github.com/Western-OC2-Lab/hierarchical-CO2, accessed on 14 May 2023).

6. Results and Discussion

This section analyses and discusses the results obtained from applying the HMCOVP.
Firstly, it compares the performance of the HMCOVP using different parameters over
different combinations of history and future time windows. After that, the best parameters
are evaluated against competing methodologies. Lastly, the transferability of the models is
investigated when applied to a smaller conference room.

6.1. Parameter Selection

Under different history and future time windows, this subsection explains the effect
of parameters, including the GAF representation method, CNN models and their hyper-
parameters, and ensemble learners. To that end, a subset of 10,000 data points for each
history and future window combination (h&f) are used for parameter selection. A trial-
and-error approach is conducted to find a subset that can balance training and evaluation
times and underfitting avoidance. All the combinations of features were evaluated using
a Grid Search method. More profound and less time-demanding approaches [50] will
be investigated in future work. The sample of 10,000 data points is split into training,
validation, and testing sets following the explained experimental procedure. Since many
parameters are involved in the parameter selection procedure, this section explains a subset
of these experiments. Keen readers and practitioners can refer to the code available through
the GitHub repository for a comprehensive overview of the obtained results and the effect
of all parameters. As such, the analysis in this section is restricted to the effect of different
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ensemble learners, the h&f combinations, and CO2 variation thresholds on the performance
of the HMCOVP.

Table 2 summarises the findings of the parameter selection grouped by h&f. The
best-performing combination of parameters and hyper-parameters with respect to each
h&f are highlighted in bold. To highlight the significance of these differences in the MAE, it
is important to map the obtained MAE values to their physical representations. The CO2
variation predictions help the ventilation systems in their decision-making process. There-
fore, as previously mentioned, small MAEs can accumulate to falsely trigger the ventilation
system. Moreover, less accurate CO2 variation predictions imply inaccurate prediction of
the current effect of occupants and ventilation systems on CO2 concentration variations.
Both of these factors contribute to reflecting an imprecise image of the environment in the
HVAC decision-making systems. Accordingly, HVAC systems can be activated either early
or late, contributing to potential violations of indoor environmental requirements and an
increase in energy expenditure. As such, the MAE reflects a fundamental aspect of the
HVAC system operation.

Table 2. Parameter Selection on the Training Dataset.

History and Future
Time Window (in Minutes)

Ensemble Algorithm CNN Model CNN FCL Method MAE

h-5_f-5

RR VGG_16 [64] holistic 1.61

DT Resnet_152 [256] local 0.65

RF VGG_16 [512] holistic 0.4

NN Resenet_152 [512, 256] holistic 1.3

h-10_f-10

RR VGG_19 [4096] local 3.25

DT VGG_19 [512] local 0.84

RF Resnet_152 [128, 64] local 0.765

NN Resnet_101 [256, 128] local 2.63

h-15_f-15

RR VGG_16 None local 5.54

DT Resnet_152 [256, 128] local 0.98

RF Xception None local 1.22

NN Resnet_101 [256] local 4.48

h-20_f-20

RR Resnet_50 [128] holistic 6.07

DT Resnet_101 [128, 64] local 1.18

RF VGG_19 [4096] holistic 0.84

NN Resnet_50 [128, 64] local 4.91

The variants of decision trees are the best-performing algorithms, represented by DT
and RF. This shows that the non-linearity defines the relationship between the individual
learners’ predictions and the historical e2s environmental features manifested through the
superior MAE of non-linear algorithms (NN, RF, and DT) compared to the RR algorithm.
The expansion of the prediction window contributed to a systematic increase in the MAE
for all algorithms. This consensus is broken by the RF algorithm such that its MAE value de-
creases when the prediction horizon increases from 15 to 20 min. However, with more runs
to execute, this exception will be reversed to conform to the trend. This increase in MAE is
expected with the expansion of the future time window, given the increased probability of
uncertainties affecting the environment, including the CO2 concentrations. In terms of the
GAF representation, the best-performing models for each h&f combination do not highlight
a preferable method. However, most ensemble learners display a better performance with
the local method. Therefore, the CNN models extract representative information of CO2
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variation direction with better accuracy when fed with GAF representations that accentuate
local differences within a time window.

The summarized results in Table 2 have shown some parameter combinations that
clearly outperform others. However, a clear limitation of the MAE parameter in this
application is that it is skewed toward the values that constitute the majority of the response
variable. In order to clarify this caveat, Figure 4 shows the percentage distributions of
different absolute values of thresholds defined in the evaluation criteria. These results
suggest that more than 60% of the variations are under 5 ppm. Therefore, a model with a
low MAE is not fully representative of its performance on drastic changes in data. These
radical changes are of higher importance for HVAC systems and building operators, but
they are less common in the studied dataset. As a result, the crude MAE is replaced by
a metric that averages the MAEs over each of the defined thresholds. This new metric is
referred to as Thresh_MAE.
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Figure 4. Thresholds’ Data Percentages.

Figure 5 shows the differences in MAE for each of the defined thresholds for the two
best-performing models in Table 2 that use DT or RF for ensemble learning. Figure 5a
shows that RF combined with the other parameters included in Table 2 outperforms its DT
counterpart when no thresholds are imposed. However, the performances start to diverge
with increasing thresholds until a huge gap in performance is prominent. This trend
shows that the RF model performs well on small variations in CO2 while DT outperforms
RF when more drastic changes are involved. A similar observation can be applied to
Figure 5b, whereby DT outperforms RF when thresholds are considered. However, a
notable separation exists between the results of the RF for higher thresholds with the
expansion of the prediction time horizon. This discrepancy is attributed to the abundance
of more extreme variations with the expansion of future time windows. This fact enables
the models to better map the relationships between these extreme values and the input
variables, manifested by the lower MAE for higher thresholds.
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(b) DT vs. RF for h-20_f-20

Figure 5. MAE for Different Thresholds.

Following the newly defined metric, Thresh_MAE, the best-performing parameters
are shown in Table 3. As opposed to pure MAE, DT clearly outperformed all other en-
semble learners and showed superior performance in predicting drastic variations. This
observation is demonstrated by the decrease in Thresh_MAE value compared to MAE
value, when DT is involved, for all h&f combinations. All the CNN models included
FCLs, which emphasize the existing distinction between the source and target datasets in
terms of the interactions between the extracted CNN features. Lastly, the local method of
GAF representation dominates the better-performing combinations. This result shows that
CNNs produce more informative features for CO2 direction prediction when the effect of
small differences in values are magnified, resulting in more accurate classifications. The
parameters included in Table 3 qualify for the next stage in the evaluation pipeline by
training them on the whole training data and evaluating their performance on the testing
test. The small Thresh_MAEs obtained in Table 3 unveil that the models overwhelm-
ingly captured the factors affecting the environment. However, these small differences
show that some environmental conditions are not considered, potentially playing a role
in deciding the future variations in CO2 concentrations. These conditions may include
the uncertainty of the environment that can be challenging to incorporate. Another factor
can be connected to the interpolation strategy that is not reflective of the environmental
dynamics. Lastly, the effect of the ventilation systems’ activation is excluded from the
gathered data. This condition can affect the dynamics of the CO2 variation in connection
with other environmental features.

Table 3. Best-Performing Combinations.

h&f Ensemble CNN Model CNN FCL Method Thresh_MAE

h-5_f-5 DT Xception [512] local 0.11

h-10_f-10 DT Resnet_50 [128, 64] local 0.6

h-15_f-15 DT Resnet_152 [256, 128] local 1.0

h-20_f-20 DT Resnet_101 [128, 64] local 1.49

6.2. HMCOVP vs. FECOP vs. 1D CNN

Table 4 summarises the performance of the three methods, our proposed method-
ology HMCOVP, FECOP, and 1D CNN, which are evaluated using Thresh_MAE and
their training times. The best-performing combination configurations of hyper-parameters
for the FECOP and 1D CNN are applied to the testing set. Similarly, the HMCOVP was
implemented using the configurations outlined in Table 3. The HMCOVP significantly
outperforms the other two methods in the prediction of the future CO2 variations in all

97



Algorithms 2023, 16, 256

the h&f combinations. The results prove the GAF images are better representatives of
the time correlation aspects than the local features extracted by the 1D CNN to reflect
these correlations. Additionally, the combination of image representations and numerical
features present in the HMCOVP outperforms the rigorous feature engineering process
of FECOP. While the HMCOVP incorporates some of the FECOP features, the distinctive
quality of the features obtained from CNN models contributed to its superior performance.
In some way, the HMCOVP combines the numeric features extracted in the FECOP and the
time correlation found in the 1D CNN approach. These results prove the significance of
hierarchical modelling.

Table 4. HMCOVP vs. FECOP vs. 1D-CNN.

Parameter Thresh_MAE Training Time (min)

Methodologies HMCOVP FECOP 1D-CNN HMCOVP FECOP 1D-CNN

h-5_f-5 10.14 40.89 2331.11 229.69 2.1 36.5

h-10_f-10 14.48 52.52 8969.98 360.34 2.275 22.62

h-15_f-15 19.37 66.83 9201.81 716.54 2.83 19.16

h-20_f-20 27.74 77.21 10,128.83 381.78 3.62 17.84

The training times highlight salient differences between the methods. The 1D CNN
method training time decreases with the expansion of the time window. This trend is
expected given that fewer data are available for training when this happens. On the other
hand, this trend is reversed for the FECOP. This phenomenon can be attributed to the
feature engineering step, which extracts lagged versions of each environmental feature.
As such, more features are extracted with the expansion of the time window, contributing
to an increase in training time. Lastly, the HMCOVP does not exhibit any trend with the
changes in the time window. Different configurations with varying model complexities
contribute to the non-uniformity of training times. Compared to the FECOP and 1D CNN,
the HMCOVP takes significantly more time to train given that it requires training six DL
models and one ensemble model. The training of individual models can be executed in
parallel, which significantly reduces the total training time. Therefore, a tradeoff exists
between training times and the accuracy of the developed models.

6.3. Transferability Assessment

After proving its superior performance in predicting CO2 variations in room00, the
next stage assesses the transferability of the developed models by applying them to a
smaller room, referred to as room01, which only fits two people. The FECOP models’ re-
sults are obtained by training the models on the training set of room01. Both the HMCOVP
and FECOP approaches are evaluated on the testing set of room01 using the Thresh_MAE

metric. The evaluation criteria include the testing time per instance to infer the compu-
tational footprint of these methods. As for the HMCOVP, the models developed using
room00’s training data are applied to the testing data of room01 without fine-tuning any of
its individual learners or ensemble learner. As such, the transferability of the developed
models is assessed in different spatial settings.

Table 5 summarises the results of the outlined process. In terms of predictive perfor-
mance, the untuned HMCOVP outperforms its counterpart in every h&f combination. The
HMCOVP models performed best with the h-15_f-15 and h-20_f-20 compared to other com-
binations. The h-15_f-15 combination performed best in terms of its Thresh_MAE, breaking
the established trend of increasing Thresh_MAE with the increase in the prediction horizon.
The h-20_f-20 experienced the least performance percentage gap in Thresh_MAE from
room00 to room01. This observation means that the larger room’s environment dynamics
acquired through hierarchical modelling closely resemble those of the smaller room in the
bespoke combinations. As for smaller prediction horizons, it is expected that smaller rooms
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would exhibit different variations. In fact, changes in the small room’s environment, such
as the existence of occupants, can momentarily affect the CO2 concentrations as opposed
to the more spacious rooms. Lastly, the differences in the capacities of both rooms result
in changes in the ranges of activity level-related features; thus, affecting the HMCOVP
models’ accuracy. Consistent with the previous analysis, the FECOP approach is a less time
and resource-intensive approach, manifested by its lower per-instance testing time. A 6–7×
speedup is obtained by the FECOP approach; however, at the expense of its underwhelm-
ing prediction performance. The speedup benefit is blurred when the individual learners’
are parallelised.

Table 5. Room01 Result Comparisons.

Parameters Thresh_MAE Time/Instance (ms)

Methodologies HMCOVP FECOP HMCOVP FECOP

h-5_f-5 41.11 49.35 6.24 0.67

h-10_f-10 43.14 52.4 6.48 1.14

h-15_f-15 39.90 55.9 14.64 2.16

h-20_f-20 49.93 54.2 10.44 1.44

The differences in feature scales between the two rooms require incorporating some of
these missing characteristics into the developed HMCOVP model. Thanks to the hierar-
chical structure of the HMCOVP, the induction of this novel information can be realized
on the level of individual and ensemble learners. As a result, the next step can include
one of these scenarios. The first scenario re-tunes the individual CNN models by freezing
some layers and training others. The second scenario replaces the old ensemble trained on
room00 training data with a newer one trained using room01’s training data. While both
scenarios are viable, choosing one of them depends on the obtained results and the nature
of the data. The results have shown that the greatest performance divergence occurs in
the ensemble learning phase as the individual learners almost produce the same accuracy
results in both rooms. This gap can be surmised by the differences in e2s values and their
effect on the future CO2 variations. Therefore, the ensemble learners are retrained using a
subset of room01’s training data and evaluated using its testing data.

Figure 6 shows the effect of retraining the ensemble learner with different training
sizes. The HMCOVP’s retrained ensemble model regressed in performance when applied
to the h-5_f-5 combinations, regardless of the integrated training set’s size. This observa-
tion essentially suggests that the tuning process for this combination should incorporate
individual models. On the other hand, a significant performance improvement is noted
for all the other combinations. The greatest improvement is observed for the h-20_f-20
combinations, whereby its performance is the closest to the model applied to room00. For
all the improved combinations, retraining the ensemble model with a quarter of the training
set yields the best results. The results of these combinations show that incorporating the his-
torical numerical values with the individual learners’ outputs contributes to performance
enhancement. However, this alteration does not fully capture the dynamics of the target set,
representing the small conference room. To mitigate the performance gap in CO2 variation
predictions, the individual learners should be tuned the same as the ensemble learner. This
aspect will be addressed in future work.
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Figure 6. Effect of Tuning.

7. Conclusions

Buildings are one of the main contributors to energy consumption, whereby HVAC
systems represent a controllable energy consumer. Specifically, ventilation systems are
activated based on the requirements and existence of occupants. Therefore, the prediction
of occupants and the utility of current ventilation control can be achieved through accurate
predictions of proxy indicators, CO2 concentration changes, in particular, are key to the
optimization of HVAC systems. This work proposes a hierarchical modelling approach,
termed the HMCOVP, with the goal of accurately predicting CO2 concentration changes.
The HMCOVP incorporates the time aspect by creating image-based lagged environment
features and a hierarchical structure that enables the transferability of the developed
models. These two features are missing in the state-of-the-art approaches. The HMCOVP
was evaluated using a host of history and future time windows in a large office room
and outperformed the state-of-the-art approaches by 400% using the mean absolute error
metric. The transferability of the HMCOVP is investigated by applying and re-tuning
the developed models in a smaller room and promising results are obtained. Overall, the
HMCOVP successfully predicted future CO2 concentration changes in different spatial
settings, facilitating the decision-making process of ventilation systems. Future work will
experiment with ways to shorten the training time of the HMCOVP using feature selection
techniques and enhance the transferability performance.
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Abstract: In bike-sharing systems, the inventory level is defined as the daily number of bicycles
required to optimally meet the demand. Estimating these values is a major challenge for bike-sharing
operators, as biased inventory levels lead to a reduced quality of service at best and a loss of customers
and system failure at worst. This paper focuses on using machine learning (ML) classifiers, most
notably random forest and gradient tree boosting, for estimating the inventory level from available
features including historical data. However, while similar approaches adopted in the context of
bike sharing assume the data to be well-balanced, this assumption is not met in the case of the
inventory problem. Indeed, as the demand for bike sharing is sparse, datasets become biased toward
low demand values, and systematic errors emerge. Thus, we propose to include a new iterative
resampling procedure in the classification problem to deal with imbalanced datasets. The proposed
model, tested on the real-world data of the Citi Bike operator in New York, allows to (i) provide upper-
bound and lower-bound values for the bike-sharing inventory problem, accurately predicting both
predominant and rare demand values; (ii) capture the main features that characterize the different
demand classes; and (iii) work in a day-to-day framework. Finally, successful bike-sharing systems
grow rapidly, opening new stations every year. In addition to changes in the mobility demand, an
additional problem is that we cannot use historical information to predict inventory levels for new
stations. Therefore, we test the capability of our model to predict inventory levels when historical
data is not available, with a specific focus on stations that were not available for training.

Keywords: bike sharing; rebalancing problem; inventory level; machine learning; random forest;
imbalanced data

1. Introduction

Bike-sharing systems are one of the most popular and environmentally friendly forms
of shared mobility. Traditional sharing systems allow the pickup and drop-off of bikes at
fixed stations (or throughout an operational area if the system is free-floating) and have
proven to be an effective solution for first-/last-mile mobility [1].

To keep a high quality of service, bike-sharing operators face two major problems,
namely, the optimal inventory problem and the rebalancing problem [2]. The fact that bike-
sharing users can take a bicycle from and return it to any station in the system leads to
an imbalanced state, in which some stations are full while others stay empty. This non-
homogeneous distribution of bicycles lowers the overall level of service of the system [3].
The rebalancing problem consists in reorganizing the fleet location in time and space to
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re-establish the optimal level of service [4], an operation that can be performed when
the system is shut down or the demand is low (static rebalancing) or while it is running
(dynamic rebalancing) [1,5]. To reduce operational costs generated by rebalancing oper-
ations, it is fundamental to know the correct number of bicycles (and available docks if
the service is station-based) required to achieve the optimal level of service, i.e., the target
inventory values for the rebalancing procedure. This problem is known as the optimal
inventory problem [6], and since inventory levels depend on user behavior [7], it is extremely
challenging. While many rebalancing studies assume that the target inventory level for
each station is known, to the best of the authors’ knowledge, only a few studies have
focused on combining rebalancing with target-level computation.

This paper tests specific machine learning (ML) techniques that estimate the inventory
level required to address the station-based bike-sharing static rebalancing problem. Specif-
ically, the use of decision tree classifiers—most notably a random forest classifier (RFC)
and gradient tree-boosting classifier (GTBC)—is investigated. Due to the vast amount
of data publicly available, decision trees have already been used to study bike-sharing
systems [8,9]. However, the majority of machine learning models adopted in the literature
(e.g., decision trees but also neural networks and support vector machines) assume the data
to be well-balanced. This assumption is not met in the case of the inventory problem [10].
Therefore, in this paper, we propose an ad hoc iterative resampling procedure that allows to
accurately predict inventory levels using several features, including historical data, in the
case of imbalanced datasets. The main contributions of this paper are summarized below:

1. The inventory problem is formulated as a classification problem that can be easily
solved using decision trees (or any other state-of-the-art classifier);

2. While traditional classifiers over-represent the majority class, this paper presents a
novel resampling technique that better leverages data and provides better estimates
for rare observations;

3. The proposed algorithm can be used to compute both an upper-bound and a lower-
bound value for the bike-sharing inventory problem, thus yielding to different possi-
ble configurations;

4. Although mainly based on historical data, the proposed approach can also be used
to solve the inventory problem for new stations, for which historical information is
not available;

5. The proposed model is easily implementable into an ITS-based decision support
system for also supporting bike-sharing companies in a day-to-day framework, thus
helping in improving operations.

Points 4 and 5, i.e., predictions for new stations and the proposal of a rolling horizon
approach to make day-to-day forecasts, are completely new developments with respect to
the previous presentation of this work [10].

The method has been applied and validated using the data of the New York City
Bike service.

The remainder of the paper is organized as follows: Section 2 introduces the relevant
literature, namely, the existing research on inventory and rebalancing problems, but also
provides a short overview of the most popular solutions to deal with imbalanced datasets in
ML. As a consequence, the main gaps of the literature are identified, and possible solutions
are discussed. The methodology is reported in Section 3: specifically, (i) how the target
values of the inventory problem used as the benchmark in the paper are computed; (ii) the
inventory problem formulation using ML classifiers to make previsions (for both existing
and new stations); and (iii) the proposed iterative resampling technique to deal with data
imbalance. The application and related results are reported in Section 4, followed by
the conclusion.
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2. Related Research

2.1. The Inventory Problem and the Rebalancing Problem

Developing an inventory model for a traditional station-based bike-sharing service is
particularly challenging as it needs to capture two features: (1) the demand for bicycles;
(2) the demand for docks—i.e., finding an empty dock where the user can return the rental
bicycle [11]. Therefore, to simply find the number of bicycles that serves the demand is not
sufficient [7].

The uneven distribution of vehicles and docks in the system causes some stations to
be empty (or entirely full), creating shortages of both bicycles and docks. To prevent this
shortage, several studies introduced rebalancing techniques that aim at evenly redistribute
bicycles and docks in the system [12]. Traditionally, the problem is solved using either
optimization techniques [12] or ML models [8]. Optimization techniques translate the
problem into a mathematical language and focus on tractability and convergence properties.
The most common approach is to formulate the problem as a one-commodity pickup-and-
delivery capacitated vehicle-routing problem, which is then solved using mixed-integer
linear programming [12]. This approach has also been extended to other station-based
shared mobility services, such as car sharing [13]. The complexity of the algorithm depends
on whether the objective is to achieve a complete rebalancing (all stations are jointly
optimized) or a partial one (only a subset of stations is optimized), with the former case
being far more complex than the latter [14]. Traditional algorithms for solving the problem
include tabu search [15] and branch-and-cut [16]. However, as exact formulations are not
suited for real-life instances, heuristic models have been developed to solve the problem in
practice [9,17].

In recent years, other authors have proposed using ML instead of optimization tech-
niques to solve the rebalancing problem. The most popular models include decision
trees [8,9], neural networks [18], deep neural networks [19,20], and clustering techniques [2].
The main convenience of these models is that they are suited for large-scale, real-life appli-
cations and require limited assumptions of user behavior.

The models discussed up to this point also present several differences in the opera-
tional approach. For instance, [15] provides a price mechanism to support rebalancing,
while [9] assumes that rebalancing operations are performed by the sharing company; these
approaches are translated into different parameters and objective functions. However, most
repositioning studies, including those using ML, assume that the inventory level (i.e., the
optimal number of docks/bicycles at any given time) is known from historical data or by
using an existing demand model [7]. To date, only a few studies have focused on how to
compute the optimal target levels while considering the rebalancing problem.

Among the studies that have focused on the inventory levels, [21] proposed a mixed-
integer program formulation to find the inventory levels that minimize the cost of rebalanc-
ing. Alternatively, [22] formulated the inventory problem as a nonstationary Markov chain
model that computes the most likely optimal inventory levels during the day. Ref. [23]
identifies an upper bound and a lower bound for the inventory level using historical
information. A similar approach is used in [24]. Ref. [7] also identifies an upper bound
and a lower bound for the inventory level using mixed-integer optimization. One of the
main limits of the previous approaches, however, is that the model explicitly minimizes the
journey dissatisfaction levels with respect to the user and cannot be used if the operator
has different goals (such as maximizing profit).

Another aspect to highlight is the role of IT technologies. While bike-sharing systems
date back to 1960, this service was initially unsuccessful due to several issues, e.g., vandal-
ism and theft [25] The IT revolution not only enabled operators to develop a better service
but also to improve aspects related to strategic and operational planning [26]. Thanks to the
large amount of historical data, often openly available, it is now possible to optimize not
only the fleet size and location of docks but also the entire supply chain of the system, from
ordering vehicles and spare parts to scheduling fleet maintenance [27]. This is expected to
become a primary problem in the future. Systems where the demand exceeds the capacity
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may not require rebalancing. In addition, to investigate a potential unserved demand,
operators will therefore focus on optimizing inventory levels while also considering the
scheduled maintenance, hence reducing costs and increasing margins [28].

2.2. Learning from Imbalanced Datasets

Data Imbalance means that an uneven distribution of classes exists within the data, and
it is a serious threat for classification problems, as standard classifiers assume the data to
be well-balanced. In general, class imbalance is one of the greatest challenges in machine
learning and data mining research [29] and can appear in two main forms: rare classes or rare
cases [30]. The problem of rare classes refers to datasets that contain different proportions of
observations (or instances) per class. The concept of rare cases refers instead to the sparse
distribution of examples in the feature space [30]. The two problems are closely related, as
they both result in an uneven distribution of observations. However, rare cases refer to data
that is sparse by nature, while a rare class might simply depend on the sampling procedure.

Different approaches have been proposed in the literature to deal with imbalanced
datasets, and they can be broadly divided into two: methods working at a learner level
and methods working at a sampling level [31]. Methods working at a learner level
modify an existing algorithm to increase the precision of the minority class. The most
common approach is to use cost-sensitive approaches, in which the learner associates
the rare class with some weights to compensate for data imbalance [32]. The main
limitation of these methods is that they are designed for specific learners and are hard
to generalize. Methods working at a sampling level are considered more general [33]
as they use resampling to artificially rebalance the dataset. Over-sampling and under-
sampling are the most common resampling techniques [34]; this approach consists in
creating a balanced dataset by artificially generating new observations for the rare class.
In the case of over-sampling, the algorithm creates new artificial data points for the
minority class. The SMOTE (synthetic minority over-sampling technique) approach
is one of the most common techniques [35]. The other main option is to use under-
sampling procedures, which consists of using a subsample of the majority class [36].
One particularly advanced model is balance cascading [37]: in this algorithm, the model
iteratively drops observations from the majority class that are correctly classified. The
argument is that these observations are redundant and might negatively affect the quality
of the classifier, making it biased toward the majority class.

2.3. Discussion

In this paper, we propose a novel model that uses ML—most notably decision trees—
to address the inventory problem as a classification problem. The main argument for this
decision is that inventory levels are usually estimated from historical data, and ML captures
historical trends better than simple averages. Similar to other approaches presented in the
literature, our model will compute upper bounds and lower bounds for the inventory level.
Moreover, as it is based on data, it is not limited to one specific goal, as it usually happens
when using optimization.

As previously reported, the main problem in using ML for solving the inventory prob-
lem is data imbalance. In the case of the inventory problem, we deal with both rare cases and
rare classes. Though existing algorithms for data imbalance demonstrate promising advan-
tages, they also have several disadvantages, most notably over-generalization [38]. Simply
stated, dock stations characterized by a high demand strongly differ from those character-
ized by a low demand. No model will be able to properly predict both, which means that
the model will either provide poor predictions or fit the dominant class. Case-specific algo-
rithms, tailor-made to the problem, can address the over-generalization issue [39]. Decision
trees are among the most interpretable ML classifiers as they allow to understand how
each feature contributes to the classification effort. Differently from standard decision trees,
random forest classifiers (RFCs) and gradient tree-boosting classifiers (GTBCs) combine
multiple models to make predictions, which allow them to provide better output. Inspired
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by these models, we proposed an iterative resampling algorithm that leverages multiple
learners. Similar to balance cascading, at each iteration the model drops those observations
that belong to the majority class and are properly classified. However, instead of simply
dropping some observations and repeating the training exercise on the new dataset, the
proposed model drops the majority class entirely and defines a new classification prob-
lem. Therefore, the model outputs an ensemble of models, each of them having different
classes, different features, and different prediction capabilities. The final prediction is a
combination of all these classifiers and provides more reliable predictions compared to
using a single learner.

3. Methodology

The system considered is station-based with rebalancing activity conducted during
the night (i.e., low demand, static rebalancing).

The proposed method to approach the inventory problem as a ML classification
problem is here described. It will be adopted for both defining the target demand levels
for each station and estimating the demand for new stations. The results of our proposed
method will be compared with the results of common approaches based on historical data
(benchmark values, as described in the following section). Finally, the resampling technique
used to avoid data imbalance is presented.

3.1. Benchmark Values from Historical Data

The benchmark values from historical data are computed in terms of a set of options,
from a lower bound (LB) to an upper bound (UB), never producing a lake of bikes or
docks [7,22–24]. To compute the LB and UB, once departures and arrivals in a bike-sharing
station are collected (Figure 1), the cumulative curves for departures and arrivals can
be derived, as well as the cumulative net curve, i.e., the difference between arrivals and
departures (Figure 2).

Figure 1. Hypothetical trend of bike departures and arrivals (Source: own elaboration).
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Figure 2. Hypothetical cumulative net flow (Source: own elaboration).

Considering the cumulative net curve, its highest value is the minimum number of
docks required to respond to the arrival demand at the station (or the dock’s lower bound—
LB). Instead, its lowest value is the minimum number of bikes required to respond to the
demand (bikes’ LB). The upper bound (UB), for docks and bikes, can be computed as the
difference between the capacity C of the station and, respectively, the LB for bikes and
docks [10], as in the following equations:

LBdock = max(Cumulative net f low) (1)

LBbikes

{
min|Cumulative net f low| i f Cumulative net f low < 0

LBbikes = 0 i f Cumulative net f low ≥ 0
(2)

UBbike = C − LBdock (3)

UBdock = C − LBbikes (4)

3.2. The Inventory Problem as a Classification Problem Using Machine Learning

An ML classifier is an algorithm that returns the probability p(Y = k) that the depen-
dent variable Y belongs to a certain class k. Without the loss of generality, in the case of a
supervised classifier, we can write

p(Y = k) = H(X, Θ) (5)

where H is a general nonlinear-model, X is the set of features (or independent variables)
used to predict the probability p(Y = k), and Θ is a set of hyperparameters. The form
of the model H depends on the type of classifier used (neural networks, decision trees,
etc.) and the hyperparameters Θ, which explain the relationship between dependent
and independent variables. To obtain the correct value of Θ, supervised models use a
training set (i.e., a dataset where both dependent and independent variables are known)
and compute the set of parameters Θ that, given the training set, is more likely to reproduce
the data. In the case of decision trees, Equation (5) can be rewritten as follows:

p(Y = k) = DT(X, θ, Θ) (6)
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where θ is the set of hyperparameters/weights that is associated with the feature vectors X.
Similar to linear regression or logistic regression, θ represents the impact that each feature
has on the prediction. This aspect related to interpretability makes decision trees among
the simplest and most interpretable classifiers.

In order to use Equations (5) and (6) in the context of the inventory problem, it is
necessary to define the dependent and independent variables. In the case of the dependent
variables, our objective is to estimate the UB and LB of the demand for bikes/docks;
therefore, we might want to set YUB = UB and YLB = LB in Equations (5) and (6). The
problem is that classification problems require discrete variables while the LB/UB for
bikes/docks are continuous ones. Therefore, we need to define classes for the UB and LB
and transform YUB/YLB into categorical variables. To do so, we introduce the error term ε,
which represents the expected precision of the model. Given ε, we can say that a certain
value of the UB belongs to the class k if, and only if,{

UB ∈ k i f UBk − ε < UB ≤ UBk + ε with UBk − ε ≥ 0
UB /∈ k otherwise

(7)

where UBk is the center of the class. To provide a numerical example, the first class will
have a center equal to zero, therefore UB0 = 0. Assuming an error term ε of 2 bikes,
all target values UB ≤ 2 will belong to Class 0. The second class will assume UB1 = 4,
therefore all observations 2 < UB ≤ 6 will belong to this class, and so on. Note that for
ε = 0.5, each integer represents a separate class. The same procedure applies for the LB.

Creating independent variables is straightforward, as any feature can potentially be
used within the ML classifier. In general, we argue that three features should be used in the
context of the inventory problem:

X =
{

Xbehavioral , Xendogenous , Xexogenous

}
(8)

The difference between endogenous and exogenous features is straightforward. En-
dogenous features are explained by other variables within the model (for instance, lagged
variables such as the departures and arrivals collected in the station the day before), while
exogenous variables are not explained by other variables within a model (e.g., location of
the station).

The distinction between these two variables is not important when we want to predict
the target values for an existing station, but it becomes relevant when the objective is to
predict the demand for a new station, for which exogenous features might not be available.
Finally, as the target levels depend on user behavior [7], some features that approximate
user behavior will also help the model provide better estimates.

In this research, we have no access to behavioral features such as the value of time
or individual preferences. Therefore, we use weather data to approximate Xbehavioral . The
reason is that, in the case of bike sharing, it has been observed that user behavior is highly
correlated to weather data, which allows to partially compensate for the lack of behavioral
features [40].

To propose a formulation that can be deployed in practice, the classification problem
proposed in Equation (6) can be rewritten as a time series and be used to make day-to-
day predictions:

p
(

Yd = k
)
= DT

(
Xd−1, Xd−2, . . . , Xd−T , β, Θ

)
(9)

where Xd is the set of features for a given day, T represents the time lag, i.e., how many past
days are used to predict the demand for the next day, and Yd is the prediction for day d.
With respect to Equation (6), we have a new dataset every day, and the procedure must be
repeated daily.
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3.3. Iterative Resampling and Data Imbalance

Though traditional techniques for data imbalance provide many benefits, in the case of
the inventory problem, off-the-shelf techniques might over-generalize the problem. Simply
stated, they might identify a set of hyperparameters Θ that is too general, as they assume
that the same features that are important for the majority class are also important for the
minority class. Therefore, this section introduces a resampling technique that generates
and estimates, in an iterative manner, balanced data classes. The model focuses on a
database-splitting function, and it is intuitively illustrated in Figure 3.

Figure 3. Illustrative example of the resampling technique (Source: own elaboration).

Starting from the entire dataset, the approach divides the data into 2 classes. Class 1
corresponds to k = 0, therefore UB0 = 0. All the other data points are inserted in Class 2.
The objective is to create two balanced classes of data. In Figure 3, we assume that two
classes are sufficient. In practice, additional classes are created until all classes are the same
size. However, only Class 1 is computed using the system of Equation (6), therefore UBk

and ε, while all other classes are computed to ensure balance within the data, i.e., the only
criterion to create all other classes is that they must have the same number of data points.
At each iteration, a decision tree classifier is used to classify the data. All data points that
are classified as Class 1 are considered properly classified. All remaining observations are
included in a new dataset. At this point, we set k = k + 1, and we repeat the operation on
the new reduced dataset. The operation continues until all data points have been classified.
As Figure 3 is a purposely trivial example, the procedure is depicted in Algorithms 1 and
2, where E is the tolerance error for the class imbalance, i.e., how much class imbalance is
allowed in the system.

Algorithm 1: Iterative Resampling Technique

Procedure: resampling (X, Y, ε, k, E)
For UB in Y

UBk = UBk−1 + 2ε

if UBk − ε < UB ≤ UBk + ε

UB ∈ Class1

Else

UB ∈ Class2

Set Len = length
(

Class2
)

If length
(

Class1
)
< Len + E

Set n = Len/length
(

Class1
)

Split Class2 in n classes

If length
(

Class1
)
> Len − E

Set n = length
(

Class1 )/Len

Split Class1 in n classes
Return (X, Class)
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Algorithm 2: Iterative ML Classifier

Procedure : HIT(X, Y, Θ)
Set ε, k, E
Set k = 0
While (X, Y) is not empty:
ClassLabel = resampling(X, Y, ε , k, E)
Train ML Classifier DT(X, β, Θ)
For X, Y inClass1:
remove X, Y from X, Y

Set k = k + 1

It should be noted that, as the lower and upper bounds are computed using the
cumulative net flow and not the demand, stations with different demand levels (e.g., in
the city center or in the suburbs) may still have similar inventory levels and therefore
be grouped in the same class. This could create issues during the classification, as these
stations may exhibit a different behavior. Therefore, the model should ideally incorporate
endogenous features, as previously mentioned, to account for this phenomenon.

The resampling function needs to be used together with the learner in an iterative
manner. This is illustrated in Algorithm 2. Specifically, the function determines a balanced
group of classes to be forecasted at each iteration. Once a maximum number of classes is
defined for each prediction group, the function generates the set of classes that have to
be predicted (A) and the set to predict later (B). At each iteration, the machine learning
classifier is adopted to forecast (A), and the process goes ahead on the group (B). The
procedure is repeated until all points have been properly predicted. An illustrative example
is presented in Figure 4.

 
Figure 4. Example of the iterative procedure (Source: own elaboration).

The proposed resampling procedure can be considered as a hybrid model, as it works
both at a learner level and at the sampling level. Specifically, at each iteration, a different
model is trained. For instance, the models used in Figure 4 to predict Class (0–2) and Class
(3–7) are different. At the same time, any classifier can be used, as the model leverages
different training sets at each iteration and does not modify the learner. Similarly, it should
be noted that the iterative resampling procedure is used on the training set, as it requires
knowledge of both dependent and independent variables.
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4. Numerical Results

4.1. Case Study

The methods discussed in the previous section are now tested adopting real data from
the Citi Bike station-based service in New York City, US (about 900 stations and 14,500
shared bikes available). In particular, the database for the machine learning derives from
over 17 million rides during 2018.

The trained models estimate the LB/UB of bikes adopting the available features
reported in Table 1. Given the capacity at the station and the LB/UB of bikes, the number
of docks is then calculated as in Equations (3) and (4). A correlation analysis of the features
is performed to avoid redundant variables. All the ML algorithms, unless differently
indicated, adopt 90% of the data as the training set and 10% for testing (randomly selected).
Also, the benchmark values have been computed on the same 10% dataset, thus allowing
for the comparison of the results.

Table 1. Available features aggregated as a function of the feature type (adapted from [10]).

Feature Type Characterization [Unit]

Exogenous

Month
Weekday

Season
Capacity of the station [number of bikes]

Nearby stations [number]
Station location (inside/outside Manhattan) [binary]

Endogenous

Average number of departures/arrivals
observed in the previous two months, in the

same referenced period
[number]

Number of departures/arrivals at the station
in the previous day [number]

Departure/arrival trip duration observed at
the station the previous two months [seconds]

Average LB (or UB) observed in the previous
two months, in the same referenced period

and at the same station
[number of bikes]

Behavioral *

Average temperature (current day) [Classes from 1(Low) to 10 (High)]
Average temperature (day before) [Classes from 1(Low) to 10 (High)]

Variability of the temperature (current day),
as the difference between the maximum and

minimum registered
[Classes from 1(Low) to 5 (High)]

Variability of the temperature (day before), as
the difference between the maximum and

minimum registered
[Classes from 1(Low) to 5 (High)]

Precipitation (current day) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Precipitation (day before) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Snow depth (current day) [Classes 0 (Null) and from 1(Low) to 5 (High)]
Snow depth (day before) [Classes 0 (Null) and from 1(Low) to 5 (High)]

Dependent variable Bikes LB (or UB) [number of bikes]

* Weather data are assumed to approximate behavior, e.g., more rides when the temperature is high, less rides
when the temperature is low.

In the next subsections, we first analyze the data adopted in this research; the aim
is twofold: (i) to underline if imbalance exists and (ii) if different features can impact the
model explanation as a function of the considered class of the dependent variable. Then,
the results are reported and, specifically, the following:

• The computation of the UB and LB of the inventory problem by using different decision
trees, i.e., RFC and GTBC, with and without combining them with a standard resam-

112



Algorithms 2023, 16, 351

pling technique (BorderlineSMOTE [34]) or with the iterative resampling approach
discussed in Section 2;

• The prediction for new stations by adopting the best classifier as a result of the first
point, again combining it with a standard resampling technique (BorderlineSMOTE)
or with the iterative resampling approach;

• The first results in terms of predictions in a day-to-day framework as a result of
applying Equation (9).

The results are reported only in terms of bikes since docks can be calculated as the
difference between the capacity at the station and the number of bikes.

4.2. Data Imbalance

Table 2 shows the percentage of observations as a function of the number of bikes for
the UB and LB. Considering the LB, it appears evident that the dataset is highly imbalanced
and that low values are dominant. Therefore, it is expected that traditional ML classifiers
will prioritize the larger classes and that over-sampling techniques will be required. The
observations for the UB computation are more balanced than for the LB, hence traditional
ML should correctly classify the data.

Table 2. Distribution of the upper-bound and lower-bound observation in the dataset.

Number of Bikes
Upper-Bound Distribution

[%]
Lower-Bound Distribution

[%]

(0–10) 6.2 83.1
(11–20) 18.6 10.4
(21–30) 39.2 4.5
(31–40) 19.2 1.5
(41–50) 11.3 0.3
(>50) 5.5 0.2

4.3. Resampling and Feature Importance

This subsection demonstrates how different demand classes may depend on different
features. We adopt a random forest classifier (RFC) which performs feature selection based
on correlation analysis. Figure 5 shows the relative importance of some features along
the iterations of the algorithm, with Iteration 0 being the model that predicts the majority
class (low demand values), and Iteration 32 is the model that forecasts the rarest class (high
demand values). Only three main features have been shown in order to point out how their
importance changes along iterations.

Figure 5. Relative feature importance with the number of iterations of the model.

The feature “Average LB (or UB) observed in the previous two months” (in the table—
bikes_nec_pred) is the most important one in the first iterations (low demand), while it
becomes irrelevant when the goal is to predict large volumes of bikes (Iteration 32). The
opposite trend can be observed for other features, such as the Capacity of the station (in the
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table—totalDocks), which is not relevant for small demand values but becomes dominant when
we deal with large volumes of bikes. Note also that the features Nearby_station and totalDocks
became even more correlated, and therefore at Iteration 23, the latter becomes redundant, and it
is removed, allowing for the increase in the relevance of the Nearby_station feature.

Thus, while different features can impact different demand levels, general purpose
resampling methods would not perceive this difference and therefore would not be able
to use the best features during the prediction phase. This is the reason for proposing
the iterative resampling approach that provides more flexibility when it comes to feature
importance, allowing to capture the difference between features that are good at explaining
the majority class, the rare class, or both.

4.4. Prediction of the Upper Bound and Lower Bound for Existing Stations

In this section, the UB and LB are calculated using the methods discussed in Section 2.
Specifically, decision trees such as GTBC and RFC are firstly implemented with the features
of Table 1.

For clarity of analysis, the results (Figures 6 and 7) are illustrated dividing the class
with the low number of bikes from the class with the high number of bikes, where the
division was performed according to half of the observed UB/LB. Hence, the MAE values
can be compared (Figure 7), highlighting the accuracy for each class. Please note that these
classes are not those used to solve the classification exercise. In that case, the classes are
defined as discussed in Section 2, assuming ε = 2.

Figure 6. Distribution of the residuals for the LB, Classes (0–35) and (36–71), and related prediction metrics.
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Figure 7. MAE values for the UB (a) and LB (b) with and without resampling for existing stations.

In the UB estimation case, no rebalancing technique was needed since the database
was sufficiently balanced. All models, the benchmark included, returned good forecasts of
bikes’ UB, nevertheless a slight underestimation is observed (Figure 7a).

With the benchmark model, good predictions are obtained; however, the RFC was the
best performing algorithm. Specifically, it adjusted the benchmark estimation by deriving
information thanks to the features additionally adopted in the calibration. On the other
hand, the GTBC was quite poor, especially with respect to the class with the highest number
of bikes; thus, the RFC should be used in this case.

The situation is different for the LB (Figures 6 and 7b). In this case, the database was
imbalanced (Table 2) toward the low values of bikes; thus, resampling techniques have
been used. These techniques, specifically the BorderlineSMOTE and our proposed iterative
model, have been combined with the RFC. The BorderlineSMOTE is the reference model
for resampling, as it represents a common method for data imbalance.

As expected for the LB prediction, when looking at the benchmark, at the RFC and the
GDBC, the MAE is fairly low for the classes with the highest number of bikes, while it is at
least three times larger for the other ones. From the distribution of the residuals for each
model (Figure 6), it emerges clearly.

Concerning data unbalancing, we can also observe that both the BorderlineSMOTE
and the iterative model perform better than the other models. Nevertheless, the pro-posed
iterative model clearly outperforms the BorderlineSMOTE. This is because the Borderline
SMOTE shows a smaller error for the dominant class (MAE (0–35)) and a larger error for
the minority one (MAE (36–71)), which is a clear indication of the BorderlineSMOTE model
overfitting the dominant class.

4.5. Predicting New Stations Using Only Exogenous Variables

One of the main problems when using ML is the lack of endogenous variables. For
instance, if a new station appears in the system, the endogenous features presented in
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Table 1 cannot be used to predict inventory levels. Therefore, in this section, we test the
same model as discussed in the previous section but with only exogenous and behavioral
features. This model can be used, for instance, to predict the inventory levels when
historical data are not available, as in the case of a new station.

Table 3 shows the numerical results. As in the previous case, for the LB calculation,
the RFC alone and in combination with the iterative resampling and BorderlineSMOTE has
been used to make predictions. As expected, the results look worse than in the previous
case, especially for the rare classes (36–71). When looking at the RFC, the MAE is fairly
low for (0–35), while it is almost 10 times larger for (36–71), showing that data imbalance
becomes more relevant when only exogenous variables are available. Concerning the other
models, in this case, the BorderlineSMOTE performs better than the proposed iterative
model for the dominant class, while it performs worse in terms of rare classes. This is
related to the generalization problem and shows, as for the previous test, the tendency
of the model to overfit the dominant class. With or without endogenous variables, the
proposed iterative procedure achieves similar results for the minority and majority classes,
showing that the model is less sensitive to overfitting. To remove possible collinearity
issues and assess how the features affect the model, the approach was tested using different
correlation cuts (see Table 4).

Table 3. Results for the LB (with and without resampling) for new stations.

Lower-Bound Models MAE (0–35) MAE (36–71)

RFC 4.85 37.83
RFC with BorderlineSMOTE 6.68 9.07

RFC with Iterative Model 8.41 8.36

Table 4. Results for the LB (with and without resampling) for new stations.

RFC with BorderlineSMOTE RFC with Iterative Model
Correlation Cut MAE (0–35) MAE (36–71) MAE (0–35) MAE (36–71)

0.1 6.66 10.67 8.18 8.19
0.3 6.68 9.07 8.41 8.36
0.5 6.73 8.94 8.31 8.43
0.7 6.66 9.40 8.16 8.51
1 6.66 8.81 8.19 8.44

1.2 10.45 21.39 11.43 8.17

Multicollinearity occurs when multiple features utilized by the ML classifier are
strongly correlated. When features are correlated, they are unable to individually provide
independent predictions for the dependent variable. Instead, they jointly explain a portion
of the variance, thereby diminishing their individual statistical significance. In this section,
multicollinearity is accounted for by performing hierarchical clustering on the Spearman’s
rank-order correlations, picking a threshold, and keeping a single feature from each cluster.
As hierarchical clustering computes the information loss associated with aggregating two
features, high thresholds will translate into larger clusters and higher information loss.
This threshold is called a ‘correlation cut’, and it is one of the parameters of the model
that we used to avoid overfitting. As discussed at the beginning of this section, during
each iteration, we use feature selection to select which features should be used and which
features should be excluded to avoid overfitting. A high correlation cut translates into a
model with less features. Intuitively, more features (i.e., a low correlation cut) implies more
overfitting while less features (i.e., high correlation cut) lead to poor model performance.
The results confirm that the BorderlineSMOTE tends to overfit the dominant class with
respect to the minority class and, in general, model performance is heavily influenced by
the adopted correlation cut. The proposed iterative model, which makes predictions on an
ensemble of classifiers and weights, provides more balanced predictions and an error that
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is similar for the majority and minority classes. It can also be observed that, for all models,
the error is maximum when the correlation cut = 1.2. This is reasonable, as when too many
features are grouped together, the model is not able to sufficiently generalize from the data.

4.6. Prediction Based on a Day-to-Day Approach

Finally, we test the model using the day-to-day approach as described in Equation (8).
The results are depicted in Table 5. Note that, in this case, the dominant class and the
minority class of the lower bound have different values than in the previous experiment
(MAE (0–39) and MAE (40–79) instead of MAE (0–35) and MAE (36–71) in Tables 3 and 4).
The reason is that, in this experiment, we use a different dataset. More specifically, this
experiment uses data from 2019, while the previous one focused on the number of rides in
2018. The definition of the dominant class in the two experiments is the same. However, the
interval is different, which also reflects an increase in the demand for bike-sharing services
in 2019 with respect to 2018.

Table 5. Results for the LB (best classifier with iterative resampling model) previsions for new stations.

Lower-Bound Models MAE (0–39) MAE (40–79)

RFC with Iterative Model 3.27 4.79

It should be noted that the results are shown only for the iterative model; this is
because firstly the comparison between resampling approaches was already presented in
the previous subsections. Secondly, the BorderlineSMOTE was extremely time-consuming
and not applicable in practice for a day-to-day framework. Therefore, Table 4 only validates
what was described before, showing that the proposed formulation is a good method to
compute inventory levels and that the iterative approach also performs well in the case of a
day-to-day framework.

5. Conclusions

The inventory problem is a challenge for bike-sharing operators. The problem, which
consists in estimating the total number of bikes necessary at each bike-sharing station, is
complex for two reasons. First, for traditional station-based systems, it is necessary to
estimate both the number of bikes as well as the number of bicycles, which makes the
problem more complex. Second, the demand for bicycles is sparse, meaning that many
stations are empty while a few have very high demand values. While researchers agree that
the inventory problem is a key issue, this information is usually obtained from historical
data. Therefore, in this paper, we proposed using machine learning (ML) as a more accurate
way of extracting this information from historical data. Specifically, we formulate the
inventory problem as a classification problem that can be solved using any state-of-the-art
classifier ML model. We also developed an iterative resampling technique to deal with the
problem of the sparsity of the demand, which is a main problem when using ML classifiers.

The model is tested using real-world data from Citi Bike, the bike-sharing system that
is currently in service in New York, US. The model provides estimates for the inventory
problem in terms of the upper bound and lower bound of bikes. The results suggest
that the proposed approach is robust in terms of results and can be applied in several
circumstances, including opening new bike-sharing stations and day-to-day operations.
The current research has two main limitations. First, it has been tested on a station-based
system. Second, it has been adopted for the solution of the static inventory problem, i.e.,
estimating during the nighttime the optimal inventory levels for the morning. Future
research will therefore focus on testing with different data, different operational settings,
and in the case of real-time problems. A relevant future research direction is also to use
clustering to identify similar stations. While in this research we focused primarily on
resampling, it appears obvious that it is irrelevant to compute the inventory levels for
stations that tend to naturally rebalance themselves, therefore requiring no action from
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the operator. As multiple stations have a lower bound of zero, it would be relevant to use
clustering to identify these stations. This would allow to remove these stations from the
dataset and remove or at least substantially reduce data imbalance.
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Abstract: Plant growth is inevitably affected by diseases, and one effective method of disease
detection is through the observation of leaf changes. To solve the problem of disease detection in
complex backgrounds, where the distinction between plant diseases is hindered by large intra-class
differences and small inter-class differences, a complete plant-disease recognition process is proposed.
The process was tested through experiments and research into traditional and deep features. In the
face of difficulties related to plant-disease classification in complex backgrounds, the advantages of
strong interpretability of traditional features and great robustness of deep features are fully utilized,
and include the following components: (1) The OSTU algorithm based on the naive Bayes model is
proposed to focus on where leaves are located and remove interference from complex backgrounds.
(2) A multi-dimensional feature model is introduced in an interpretable manner from the perspective
of traditional features to obtain leaf characteristics. (3) A MobileNet V2 network with a dual attention
mechanism is proposed to establish a model that operates in both spatial and channel dimensions at
the network level to facilitate plant-disease recognition. In the Plant Village open database test, the
results demonstrated an average SEN of 94%, greater than other algorithms by 12.6%.

Keywords: plant disease; classification; MobileNet V2; attention

1. Introduction

With the proliferation of artificial-intelligence technology, the development of smart
agriculture has gained momentum. In the area of plant-disease recognition, researchers
have conducted much research, which can be divided into two approaches: classification
and clustering.

Classification perspective: Based on the analysis of inter-class differences, plant-
disease classification can be mainly divided into traditional-feature and deep-feature as-
pects. Representative algorithms based on traditional features include: Al-Hiary et al. [1]
analyzed the typical characteristics of plants and proposed a fast classification algorithm for
plants; Kulkarni et al. [2] constructed a classifier founded on texture features extracted from
plant images; Arivazhagan et al. [3] classified plant health status based on texture features;
Hossain et al. [4] achieved plant-disease classification through leaf color information analy-
sis; Singh et al. [5] implemented swift plant-disease detection from the algorithmic level
based on image segmentation and soft computing techniques; Kaur et al. [6] implemented
plant-disease detection based on gradient and texture features; Nanehkaran et al. [7] for-
mulated a visual model for disease analysis and correlation assessment; Pujari et al. [8]

Algorithms 2023, 16, 442. https://doi.org/10.3390/a16090442 https://www.mdpi.com/journal/algorithms120



Algorithms 2023, 16, 442

extracted plant image features based on SVM and ANN; Brahimi et al. [9] focused on the
salient area of plants, established a saliency map, and achieved plant-disease classification;
Mahmoud et al. [10] established a disease image representation using inverse coding tech-
nology; and Sandesh et al. [11] constructed an Adaboost-based model for disease prediction
from the perspective of color. Representative algorithms based on deep feature extraction
mainly include: Hang et al. [12] proposed a CNN-based method for plant-disease anal-
ysis; Atila et al. [13] devised an EfficientNet deep learning model to mine image depth
features; Sardogan et al. [14] conducted research based on CNN with LVQ algorithm;
Deepa et al. [15] enhanced images and established an interactive model to facilitate disease
classification; ALTAN et al. [16] constructed capsule networks to measure the efficacy in
plant-disease classification; Pal et al. [17] established the semantic relationship between
images and diseases in AgriDet; and Liang et al. [18] introduced a deep-learning network
for plant-disease classification and severity assessment.

Clustering perspective: Models are built by an analysis of intra-class differences. Rep-
resentative algorithms based on traditional features include: Yu et al. [19] constructed a
K-means model to analyze intra-class differences and achieve clustering; Padol et al. [20]
established an SVM to cluster different disease images; Rani et al. [21] enhanced clustering
accuracy by adding SVM on top of the K-means algorithm; Trivedi et al. [22] established a
model from the perspective of a color histogram for image analysis; Faithpraise et al. [23]
established a K-means model for disease classification from a clustering perspective;
Tamilselvi et al. [24] used unsupervised machine-learning algorithms to cluster based
on color features; and Hasan et al. [25] proposed an extended kernel-density-estimation
approach to analyze disease morphology. On the other hand, representative algorithms
based on deep feature extraction mainly include: Yadhav et al. [26] obtained clustering
features based on the CNN model with optimized activation functions; Bhimavarapu et al. [27]
fused PSO and CNN algorithms to extract multi-dimensional features; Hatuwal et al. [28]
experimentally demonstrated the capabilities of random forest, KNN, SVM, and CNN for
clustering; Pareek et al. [29] established a 1D-CNN model for clustering based on image
segmentation; Mukti et al. [30] achieved plant-disease detection based on multiple itera-
tions of ResNet; Li et al. [31] analyzed plant diseases through the construction of the model
ensemble with inception module and cluster algorithm; Türkoğlu et al. [32] used deep
networks to extract disease image features and analyze differences between classes; and
Ramesh et al. [33] constructed a model from the perspective of image and machine learning
to achieve disease classification.

In summary, plant-disease classification algorithms based on images face the following
issues: (1) Traditional algorithms are based on visual features that can be easily affected
by natural factors, such as lighting and angles, with limited performance improvement.
(2) Deep-learning algorithms based on neural conduction processes exhibit the features
of strong robustness and positive effects. However, the classification effect remains to be
improved in the face of complex background interference.

Through an analysis of the image features of plant diseases, traditional features with
deep features are integrated to propose a comprehensive plant-disease feature classification
algorithm, which involves the following components: (1) The OSTU algorithm based on
the naive Bayes model is proposed to eliminate background interference and focus on the
area where leaves are located. (2) From the perspective of traditional features, a multi-scale
and multi-directional Gabor feature extraction model is proposed to obtain interpretable
features. (3) Based on the advantages of MobileNet V2, spatial attention and channel
attention mechanisms are proposed for plant-disease classification.

The remainder of this paper is organized as follows: Section 2 introduces the con-
structed database, including the multilevel feature extraction algorithm in Section 2.1 and
the MobileNet algorithm based on dual attention in Section 2.2. Section 3 presents the
experimental results and analysis, which verify the effectiveness of the proposed algorithm.
Section 4 summarizes the innovations introduced in this paper and outlines potential
avenues for future research.
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2. Materials and Methods

The experimental data are sourced from the Plant Village public database provided by
the University of Pennsylvania. It includes a total of 61 categories, classified by “species-
disease-degree”. The categories consist of 10 species, 27 diseases (24 of which are classified
as general or severe), and 10 health classifications, as shown in Table 1. The dataset
comprises 31,718 pictures in the training set and 4514 pictures in the test set, as shown in
Figure 1. We can see that there are certain similarities within classes and certain differences
between classes. It is crucial to choose effective features.

Table 1. Data classification.

Apple

Healthy

Sreawberry

Healthy

Scab
General

Scorch
General

Serious Serious

Cedar Rust
General

Tomato

Bacterial Spot Bacteria
General

Serious Serious

Cherry

Healthy
Early Blight Fungus

General

Powdery Mildew
General Serious

Serious
Late Blight Water Mold

General

Corn

Healthy Serious

Cercospora Zeaemaydis
Techon and Daniels

General
Leaf Mold Fungus

General

Serious Serious

Puccinia Polvsora
General

Target Spot Bacteria
General

Serious Serious

Corn Curvularia Leaf
Spot Fungus

General
Septoria Leaf Spot Fungus

General

Serious Serious

Maize dwarf mosaic virus
Spider Mite Damage

General

Grape

Healthy Serious

Black Rot Fungus
General

YLCV Virus
General

Serious Serious

Black Measles Fungus
General Tomv

Serious

Pepper

Healthy

Leaf Blight Fungus
General

Scab
General

Serious Serious

Citrus

Healthy

Potato

Healthy

Greening June
General

Early Blight Fungus
General

Serious Serious

Peach

Healthy
Late Blight Fungus

General

Bacterial Spot
General Serious

Serious
Pepper Scab

General

Pepper Healthy Serious
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Figure 1. Experiment database.

The proposed plant disease classification algorithm based on an attention mechanism
is shown in Figure 2. The algorithm comprises the following steps: (1) The OSTU algorithm
based on the weighted Naive Bayes model is constructed to focus on the area where
leaves are located and remove the influence of complex backgrounds. (2) Interpretable
traditional features are adopted and extracted from multi-scale and multi-directional Gabor
filters. (3) The extracted Gabor features are fed into a dual attention network for plant
disease classification.

 
Figure 2. Algorithm flow chart.

2.1. Multilevel Feature Extraction Algorithm

The OTSU algorithm [34] achieves image segmentation through the calculation of the
image gray features to determine the threshold. The principle is to maximize the inter-class
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variance between the objects and the background of the image. It serves as an automatic
optimization algorithm for image segmentation.

The total number of pixels in the image is notated as N, and the pixel gray level as G.
fi represents the number of pixels at gray level i. The threshold t is selected to divide the
analysis into two categories: C0 and C1. Then, the corresponding probability of the two
categories can be expressed as:

w0 = P(C0) =
t

∑
i=1

Pi = w(t) Pi = fi/N

w1 = 1 − w(t)
(1)

The inter-class variance of each pixel σ2
B(t) is selected as the evaluation index:

σ2
B(t) =

[μrw(t)− μ(t)]2

w(t)[1 − w(t)]
(2)

μr = μ(L) =
L

∑
i=1

iPi, w(t) =
t

∑
i=1

Pi (3)

Then, the optimal threshold T is determined.

σ2
B(T) = max

1≤t≤l

{
σ2

B(t)
}

(4)

The traditional OTSU algorithm considers the neighborhood information. However,
in cases where there is minimal distribution difference between background features and
target pixels, the two peaks may not be clearly defined, resulting in a poor segmentation
effect. To improve the traditional OTSU image processing method, the weighted Naive
Bayes algorithm is introduced to refine the segmentation effect.

The naive Bayes algorithm is a commonly utilized data classification algorithm in
machine learning algorithm research [35]. Thanks to its strong theoretical support, it boasts
high classification efficiency and has been continuously studied and applied across different
fields. Firstly, the Bayes principle is introduced:

P(c|X ) =
P(X|c )P(C)

P(X)
(5)

where P(c|X) represents the posterior probability that X belongs to the category c. P(c) and
P(X) denote the prior probabilities of category c, and conditional X. P(X|c) represents the
posterior probability that category c belongs to the condition X.

Suppose the dataset comprises m attribute variables denoted as A, and the category
variables are C = {c1, c2, . . . cn}. The Naive Bayes model is obtained

c(x)NB = arg max
i

P(ck)
m

∏
i=1

P(xi|ck ), 1 ≤ k ≤ n (6)

where P(ck) is the prior probability when category c takes the value of k; P (xi|ci) represents
the posterior probability that category ci belongs to the condition xi.

The traditional naive Bayes model presupposes that different attributes are indepen-
dent of one another, which is difficult to achieve in practice. In cases where there is a
correlation between certain attributes, it greatly reduces the classification efficiency of
the model, resulting in inaccurate experimental results. Therefore, attribute weighting is
employed to retain the high classification accuracy of the traditional naive Bayes algorithm.
The approach also alleviates the negative impact caused by the special condition of attribute
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independence, which improves and enhances the efficiency of the traditional algorithm to
a large extent. The corresponding formula is

c(x)P = arg max
i

P(ck)
m

∏
i=1

P(xi|ck )
w(i), 1 ≤ k ≤ n (7)

where wi represents the weight value of the class attribute Ai, exerting control over the
segmentation effect. The key to the improved classification algorithm lies in the precise
determination of the corresponding weight value of each attribute to yield superior results.

Through the above algorithms, the segmentation problem is transformed into a prob-
lem in probability theory calculations. The segmentation image is obtained by isolating the
gray features in the image data and training with the Naive Bayes model. The correspond-
ing algorithm process is illustrated in Figure 3.

 

Figure 3. OSTU algorithm based on naive Bayes model.

The input image gray map is notated as G, with a total of N pixels, and the gray levels
i = 0, 1. . . L − 1. The corresponding gray histogram is represented as H = {h0, h1, . . . hL−1}.
The threshold T is calculated to divide the gray image into Gb (background region) and Gf
(foreground region). The corresponding probability distributions are

P(Gb) =
T

∑
i=0

P(i) (8)

P
(

Gf

)
=

L−1

∑
i=T+1

P(i) (9)

The average occurrence probability of each gray level is given by:

M(Gb) =

T
∑

i=0
i × wi × P(i)

P(Gb)
(10)

M
(

Gf

)
=

L−1
∑

i=k+1
i × wi × P(i)

P
(

Gf

) (11)

The threshold T to divide the original gray image into two categories is calculated by:

η =
σ2

B
σ2

G
(12)
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σ2
B = P(Gb)(M(Gb)− MG)

2

+P
(

Gf

)(
M
(

Gf

)
− MG

)2 (13)

σ2
G =

L−1

∑
i=0

(i − MG)
2P(i) (14)

The distance between classes of the two parts is calculated, and the distance is propor-
tional to the segmentation effect. Therefore, the corresponding optimal threshold is:

T = max
0≤i≤L−1

σ2
B (15)

In order to analyze plant features, Gabor filtering [36] was introduced for further
feature extraction. The Gabor filter, a kind of wavelet transform, exhibits excellent charac-
teristics in the time and frequency domain. The Gabor function can be used to construct
filters with different scales and directions. Since plant disease images are two-dimensional,
research was conducted at the two-dimensional Gabor level. Its corresponding complex
expression is as follows:

g(x, y) = exp
(
−X2 + γ2Y2

2σ2

)
exp

[
i
(

2π
X
λ
+ ϕ

)]
(16)

X = x cos θ + y sin θ
Y = −x sin θ + y cos θ

(17)

⎧⎨
⎩

gre = exp
(
−X2+γ2Y2

2σ2

)
cos

(
2π X

λ + ϕ
)

gim = exp
(
−X2+γ2Y2

2σ2

)
sin

(
2π X

λ + ϕ
) (18)

where θ is the filter direction, λ is the filter wavelength, ϕ is the phase translation, γ is
the spatial aspect ratio, σ is the standard deviation of the Gaussian factor, and b is the
bandwidth. gre represents the real part, and gim represents the imaginary part.

σ =
λ

π

√
ln 2

2

(
2b + 1
2b − 1

)
(19)

When the curve of the elliptic Gaussian envelope modulated by the complex sine
wave of the Gabor function falls within the range of (μ − 3σ, μ + 3σ), the area contained
accounts for about 99.7% of the total area.

When designing a deep network, the receptive field must cover the entire relevant
image region and be large enough to capture the context information for each pixel axis.
Currently, the mainstream algorithms stack either large convolution kernels in shallow or
small convolution kernels. However, increasing the receptive field will lead to a rise in
training parameters and the computational cost.

If the standard convolution layer contains K m × m convolution kernels and c input
features, then the corresponding number of parameter training is (m × m × c + 1) × K. The
proposed Gabor convolutional layer structure only requires updating of 4 parameters in
each iteration, and the corresponding training parameter is (4 × c + 1) × K. Therefore, the
Gabor convolution kernel is advantageous for the design of more compact networks.

In the Gabor convolution kernel, the parameters of each Gabor filter need to be
optimized. The gradient descent algorithm is used to optimize filtering parameters through
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back propagation according to the objective function. The reverse derivation process is
as follows:

∂gre
∂λ = ∂πX

λ2 gim
∂gre
∂θ = greXY

σ2

(
γ2 − 1

)− 2πY
λ gim

∂gre
∂ϕ = −gim

∂gre
∂σ = X2+γ2Y2

σ3 gre
∂gre
∂γ = − γ2Y2

σ2 gre

(20)

To further enhance the feature map expression, Gabor filter weighting is adopted to
generate Gabor filter with U directions and V scales. The direction is weighted by learning
the weight vector W. The modulation process is as follows:

Cv
i,u = C[Wg(u, v)] (21)

where u and v represent orientation and scale indexes. Since the Gabor filter contains
multiple directions, the corresponding output feature updating process follows the back
propagation mechanism:

δ =
∂L

∂Cn
u
=

U

∑
u=1

∂L
∂Cn

u
[Wg(u, v)] (22)

Cn+1
u = Cn

u − ηδ (23)

where L is the loss function, η is the learning rate, and Cn
u is the result of the nth iteration.

This makes the model more compact and robust to changes in direction and scale.

2.2. MobileNet Algorithm Based on Dual Attention

The main features of MobileNet V2 include: (1) the adoption of depth separable
convolution in place of ordinary convolution to reduce model computation and param-
eter requirements; (2) the introduction of reverse residual structure to increase the num-
ber of network layers and enhance feature expressiveness; (3) replacement of nonlin-
ear structures with linear Bottleneck structures to minimize the loss of low-dimensional
feature information.

Based on the low power consumption characteristics of MobileNet V2 [37], MobileNet
V2 has been selected as the main backbone network and improved through adjustments in
width factor, attention module and multi-scale feature fusion. The network block diagram
is shown in Figure 4.

 

Figure 4. Attention-based MobileNet framework.
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The depth-separable convolution replaces the standard convolution with fewer pa-
rameters and computation [38]. The computation ratio of the depth-separable convolution
with the standard convolution is given by:

H =
D2

f D2
k M + D2

f MN

D2
f D2

k MN
=

1
N

+
1

D2
k

(24)

where Df represents the length of the input feature map and the number of channels,
Dk is the length of depthwise convolution (DW) convolution kernel, and M is the number
of pointwise convolution channels.

In feature extraction, the usual convolution kernel size is 3 × 3. The computation
amount and parameter quantity of depth-separable convolution are approximately 1/9
of conventional convolution. MobileNet V2 incorporates the concept of ResNet and pro-
poses the reverse residual structure. There are two typical methods: In the first method,
PW convolution is used to increase the dimension, and DW convolution is used to extract
the features from each channel, and PW convolution is then employed to reduce the feature
dimensionality. When the step size is 1, a residual connection is established, while a series
connection is established when the step size is 2; S The second method of the reverse resid-
ual structure first increases and then reduces dimensionality, which allows the network
to accommodate smaller input and output dimensions, so as to reduce the computational
load and parameters. At the same time, the residual connection can improve gradient
propagation efficiency, with a deeper network layer.

An important parameter in the network is the width factor, which adjusts the number
of convolution kernels in each module of the network to α times the original one, and the
corresponding calculation load is:

T = αD2
f D2

k M + α2D2
f MN (25)

By adjusting α, the computational burden of the model is greatly reduced.
CBAM is an attention mechanism module that integrates channel and space [39]. It is

embedded in a convolutional neural network for end-to-end training. The final channel
attention is illustrated in Figure 5a.

Mc(F) = σ
(
W1W0Favg + W1W0Fmax

)
(26)

where F is the input feature map, σ is the nonlinear activation function, Wi is the weight
of layer i, and Favg and Fmax are the results of input F after the average pooling and kernel
maximum pooling, respectively.

The spatial attention mechanism is shown in Figure 5b: the channel direction is
averaged, and the kernel is maximally pooled to generate a feature description of size
2 × H × W, and the feature vector is obtained and activated by a convolution operation.
The corresponding spatial attention mapping model is as follows:

Ms(F) = σ
(

f
(

fc(Favg + Fmax)
))

(27)

where f is the convolution operation, and f c is the join operation. The complete calculation
process of the CBAM module is

FA = Ms(F′)F′
F′ = Mc(F)F

(28)

The CBAM module is integrated consecutively with the reverse residual block of
MobileNet V2, which enables the module to focus on important features and suppress
unnecessary ones in channel and spatial dimensions.
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(a) Channel attention mechanism 

 
(b) Spatial attention mechanism 

Figure 5. Attention mechanism module.

Inception uses multiple convolution checks of varying sizes to extract features from
feature maps, which increases the adaptability of the network to different scales. The
structure of Inception V1 is shown in Figure 6, which enriches features at spatial scales and
proves beneficial for subsequent classification.

 

Figure 6. Inception V1 module.

Given that the MobileNet V2 network uses depth-separable convolution, in order
to give full play to the advantages of MobileNet and Inception, the Inception module
step is set to 2 to remove the linear structure of residual short-form, as shown in Figure 7.
Feature extraction is carried out through three parallel branches. Considering that stitching
increases channel count in the output feature map, along with the total network parameters,
an addition-based merging approach is chosen to reduce the overall model parameters.

129



Algorithms 2023, 16, 442

 

Figure 7. Scale feature fusion module.

3. Experimental Results and Analysis

3.1. Feature Extraction Algorithm

The result of leaf extraction is shown in Figure 8. To evaluate the algorithm perfor-
mance, the following index [40] is introduced:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AOM =
Rs∩Rg
Rs∪Rg

AVM =
Rs−Rg

Rs

AUM =
Rg−Rs

Rg

CM = 1
3{AOM + (1 − AVM) + (1 − AUM)}

(29)

where the area overlap measure (AOM), the area over segmentation measure (AVM), the
area under segmentation measure (AUM), and the combination measure (CM) are used
to evaluate the algorithm’s performance. RS represents the result of manual leaf labeling
and serves as the gold standard. Rg denotes the result of the algorithmic labeling. Values of
AOM and CM are proportional to the segmentation results, while AVM and AUM values
are inversely proportional to the segmentation results.

  

Figure 8. The effect of our object extraction.

130



Algorithms 2023, 16, 442

Typical tomato leaf diseases, as shown in Figure 9, were selected for the study. The
results of the algorithm comparison are summarized in Table 2. The algorithm with a fixed
threshold requires human-computer interaction for threshold selection, which exhibits
low adaptability and presents different colors in the presence of the scab, resulting in
the inability to accurately segment tomato leaves with a single threshold. On the other
hand, OSTU [34] achieves threshold segmentation by calculating the gap between classes
and setting the threshold, which is self-adaptive. However, due to the uniqueness of
the threshold setting, the segmentation performance is somewhat limited. The GSO [41]
algorithm searches for local optimal clustering, which realizes target recognition even under
complex backgrounds, but it has some limitations in considering inter-class differences. The
proposed algorithm fuses the OSTU algorithm with the attribute-weighted Bayes algorithm.
This hybrid approach considers inter-class differences and intra-class similarities at a local
level and exhibits a favorable effect on shadow suppression.

   
(a) Bacterial Spot bacteria (b) Early blight fungus (c) Powdery mildew 

   
(d) Spider mite damage (e) Target spot bacteria (f) Healthy 

Figure 9. Typical tomato diseases.

To show the effect of the algorithm, an analysis is conducted on the effect of Gabor
filtering. As shown in Figure 10, a variety of conditions of leaves are observed: Figure 10a
shows a smooth leaf surface; Figure 10b displays leaves damaged as a whole; Figure 10c
illustrates leaves with a large number of spots on the surface; and Figure 10d exhibits leaves
with yellowing surfaces. After Gabor filtering, Leaf 1 demonstrates rich texture features
at low dimensions and angles, appearing relatively rich and smooth as dimensions and
angles increase. Leaf 2 exhibits a robust response in high dimensions and angles, with high
pixel values in the displayed image. Leaf 3 presents more textures after Gabor filtering.
Overall, the response of Leaf 4 is not strong, but the lesion area exhibits a robust response
in high dimensions and angles. Through the above analysis, the Gabor-filtered image is
input into the depth learning module for disease classification.

To reflect the effect of feature extraction through Gabor filtering, the study takes
the original image and Gabor-filtered image as input, uses a deep network for training,
and compares their convergence performance, as shown in Figure 11. The results clearly
demonstrate that the features extracted by Gabor are more representative, with the fast
convergence speed of the algorithm, which brings it closer to the target function. This is
because Gabor extracts multi-angle features, analyzes image characteristics, focuses on
targets, and achieves efficient representation.
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Table 2. (1) The algorithm extracts the performance of tomato leaves with bacterial spot bacteria.
(2) The algorithm extracts the performance of tomato leaves with early blight fungus. (3) The
algorithm extracts the performance of tomato leaves with powdery mildew. (4) The algorithm
extracts the performance of tomato leaves with spider mite damage. (5) The algorithm extracts the
performance of tomato leaves with target spot bacteria. (6) The algorithm extracts the performance of
healthy tomato leaves.

(1)

Algorithm AOM AVM AUM CM

T 0.71 0.41 0.34 0.65
OSTU [34] 0.76 0.35 0.33 0.70
GSO [41] 0.82 0.34 0.31 0.72

Ours 0.85 0.31 0.29 0.75

(2)

Algorithm AOM AVM AUM CM

T 0.74 0.33 0.35 0.69
OSTU [34] 0.81 0.31 0.32 0.73
GSO [41] 0.85 0.27 0.29 0.76

Ours 0.87 0.26 0.27 0.78

(3)

Algorithm AOM AVM AUM CM

T 0.75 0.31 0.33 0.70
OSTU [34] 0.78 0.27 0.31 0.73
GSO [41] 0.84 0.24 0.28 0.77

Ours 0.88 0.23 0.24 0.80

(4)

Algorithm AOM AVM AUM CM

T 0.74 0.34 0.27 0.71
OSTU [34] 0.81 0.35 0.25 0.74
GSO [41] 0.86 0.24 0.22 0.8

Ours 0.91 0.21 0.19 0.84

(5)

Algorithm AOM AVM AUM CM

T 0.79 0.31 0.25 0.74
OSTU [34] 0.87 0.28 0.23 0.79
GSO [41] 0.91 0.23 0.19 0.83

Ours 0.93 0.18 0.17 0.86

(6)

Algorithm AOM AVM AUM CM

T 0.86 0.26 0.23 0.79
OSTU [34] 0.89 0.23 0.22 0.81
GSO [41] 0.92 0.17 0.18 0.86

Ours 0.95 0.15 0.16 0.88
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(a) Leaf 1 (b) Leaf 2 

  
(c) Leaf 3 (d) Leaf 4 

Figure 10. The effect of Gabor filtering.

Figure 11. Iteration curve.

3.2. Comparison of Classification Algorithms

The following index are introduced for performance evaluation,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SEN = TP
TP+FN

SPE = TN
TN+FP

ACC = TP+TN
TP+FP+TN+FN

FPF = 1 − ACC

(30)
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where SEN reflects the detection performance for real objects. SPE reflects the detection
performance for false objects. ACC reflects the ratio of correct test results to all samples in
the test results, and FPF reflects the ratio of false test results diagnosed as true objects.

The comparison results of algorithms are shown in Tables 3 and 4. It can be seen
that the algorithm’s results without leaf area extraction are inferior to those with leaf area
extraction, indicating that focusing on the area where leaves are located and reducing
the influence of surrounding environments yields a positive effect. This verifies the good
effect of the proposed leaf segmentation algorithm on subsequent disease clustering. The
algorithm based on texture features proposed in Ref. [2] exhibits disease detection capabili-
ties, albeit with slightly lower performance in terms of indicators. Ref. [23] conducts an
in-depth analysis of the image characteristics and constructs a K-means model to improve
the classification accuracy. Ref. [8] adds ANN based on an SVM classifier to introduce the
classification task into multi-dimensional space, realize classification, and achieve certain
results. Based on the current mainstream RESNET, Ref. [30] requires 50 iterations to achieve
disease detection, but too many network parameters cause large consumption of comput-
ing resources. Ref. [37] constructs the traditional MobileNet V2 algorithm and refines the
convolution calculation method to effectively boost the calculation speed and performance.
Although SEN reaches an impressive 91%, this process is inconsistent with the human
cognitive process. On the basis of MobileNet V2, the proposed algorithm adds an attention
mechanism module in line with the process of human visual perception. The modification
induces a further enhancement in algorithm performance, with superior results achieved.

Table 3. Algorithm results without leaf region extraction.

Algorithm SEN SPE ACC FPF

Texture [2] 0.65 0.31 0.72 0.28
K-means [32] 0.72 0.29 0.76 0.24

SVM + ANN [8] 0.75 0.25 0.80 0.20
ResNet [30] 0.81 0.20 0.82 0.18

MobileNet V2 [37] 0.84 0.18 0.84 0.16
ICNN [42] 0.85 0.15 0.86 0.14
GAN [43] 0.86 0.12 0.89 0.11

Ours 0.86 0.10 0.91 0.09

Table 4. Algorithm results with leaf region extraction.

Algorithm SEN SPE ACC FPF

Texture [2] 0.71 0.26 0.79 0.21
K-means [32] 0.79 0.24 0.85 0.15

SVM + ANN [8] 0.81 0.21 0.87 0.13
ResNet [30] 0.85 0.15 0.91 0.09

MobileNet V2 [37] 0.91 0.13 0.96 0.04
ICNN [42] 0.91 0.11 0.97 0.03
GAN [43] 0.92 0.10 0.96 0.04

Ours 0.94 0.08 0.98 0.02

Table 3 illustrates the limited effect of the traditional algorithm [2,8,23], but the al-
gorithm based on depth network exhibits commendable performance. Therefore, deep
learning algorithms [30,37,42,43] are compared, as shown in Figure 12. The ResNet al-
gorithm [30] involves many parameters, resulting in slower convergence in the training
process. In contrast, the MobileNet V2 algorithm [37] introduces a fast convolution change
to reduce parameters, along with faster convergence. Improved CNN (ICNN) [42] based
on color features focuses on the area where leaves are located and achieves satisfactory
results. Generative adversarial networks (GAN) [43] further improve the effect by deeply
mining intra-class and inter-class features in small sample situations.
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Figure 12. Algorithm success rate curve.

On the basis of MobileNet V2, the proposed algorithm integrates the Inception module,
which not only ensures swift convergence but also introduces visual attention, which is in line
with the principle of human visual perception, alongside further improved performance.

Classified images of representative tomato diseases are selected: scab, early blight,
powdery mildew, starred spider, spotted disease, and health to verify the performance of
different algorithms, as shown in Figure 13. ResNet extracts local and global features for ac-
curate image classification. MobileNet V2 demonstrates a certain classification performance
in low-parametric network construction. VGG, through multi-layer filter convolution, can
fully explore image features and realize classification. It can be seen from the figure that for
single disease recognition, the accuracy of scab and early blight identification is low due to
their striking similarity in spot shape, size and texture. As a result, misclassifications are
more likely to occur in these cases. On the contrary, Health exhibits the highest accuracy.
Based on MobileNet V2, the proposed algorithm adds the attention mechanism module to
extract features across different scales, with superior results compared to other algorithms.

  

  

Figure 13. Cont.
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Figure 13. ROC curve.

4. Conclusions

Plant diseases impose a serious impact on plant growth, making it of great significance
to identify diseases through artificial intelligence. Since leaves are the direct manifestation of
plant diseases, the research focuses on leaf features. To maximize the potential of traditional
features and deep features, a comprehensive Plant Disease classification algorithm is
proposed. (1) To solve the difficult classification of leaf diseases in complex backgrounds,
the OSTU algorithm based on the Naive Bayes model is proposed to focus on the area
where leaves are located and reduce background interference. (2) From the perspective of
feature interpretability, a multi-dimensional feature model based on traditional features
is constructed to fully explore leaf features. (3) From the perspective of deep learning,
a MobileNet framework based on dual attention is established to achieve swift disease
recognition. The algorithm underwent rigorous testing on the Plant Village open database,
and the results showed that the algorithm could achieve plant disease classification.

Despite these achievements, there are also some problems in the research: The exper-
imental dataset is limited and does not cover most diseases. Therefore, a larger dataset
will be constructed to further integrate traditional features and deep features. Further
studies will be conducted on interpretable fusion networks to promote research on plant
disease prediction.
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Abstract: Predicting the price gap between the day-ahead Market (DAM) and the real-time Market
(RTM) plays a vital role in the convergence bidding mechanism of Independent System Operators
(ISOs) in wholesale electricity markets. This paper presents a model to predict the values of the
price gap between the DAM and RTM using statistical machine learning algorithms and deep neural
networks. In this paper, we seek to answer these questions: What will be the impact of predicting
the DAM and RTM price gap directly on the prediction performance of learning methods? How can
exogenous weather data affect the price gap prediction? In this paper, several exogenous features
are collected, and the impacts of these features are examined to capture the best relations between
the features and the target variable. An ensemble learning algorithm, namely the Random Forest
(RF), is used to select the most important features. A Long Short-Term Memory (LSTM) network
is used to capture long-term dependencies in predicting direct gap values between the markets
stated. Moreover, the advantages of directly predicting the gap price rather than subtracting the
price predictions of the DAM and RTM are shown. The presented results are based on the California
Independent System Operator (CAISO)’s electricity market data for two years. The results show that
direct gap prediction using exogenous weather features decreases the error of learning methods by
46%. Therefore, the presented method mitigates the prediction error of the price gap between the
DAM and RTM. Thus, the convergence bidders can increase their profit, and the ISOs can tune their
mechanism accordingly.

Keywords: electricity market; real-time market; day-ahead market; locational marginal pricing; long
short-term memory (LSTM); multivariate time series forecasting

1. Introduction

One major concern in the design of a two-settlement electricity market is the gap in
the clearing prices across the DAM and RTM. The DAM is a financial market that schedules
the supply and demand before the operating day, while the RTM is a physical market
that settles based on the served demand and provided supply. Based on the concept of
locational marginal pricing (LMP) [1], the ISOs determine DAM and RTM prices daily using
generation units’ offers and locational demands. The difference between the locational
marginal pricing (LMP) values of the DAM and RTM is an indicator of the surplus or short-
age of electricity in the electric grid compared to the predicted values. Wholesale electricity
market prices are volatile due to fuel-cost alterations; weather-sensitive generation units,
such as solar generation [2] and Distributed Energy Resources (DERs) [3]; weather-related
demands [4]; and planned and forced outages [5]. Multiple settlements create more stable
prices and lessen the RTM’s vulnerability to price surges [6]. It is shown in [7] that with
two-settlement electricity markets, generation units have incentives to enter into real-time
contracts, which will reduce real-time electricity prices, which in turn will increase social
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welfare. Consequently, all market participants will benefit from such a settlement. Never-
theless, there will be a gap between the day-ahead and real-time settlement. The increase
in the penetration level of renewable energy resources exacerbated the volatility of energy
supply and prices within the RTM [8]. Thus, predicting the price gap between the DAM
and RTM has become more complicated. Predicting such a gap plays an integral role in
establishing the operating schedules and adjusting the bidding strategies of the market
participants, i.e., physical and virtual market participants within the market [9]. This is
particularly important for convergence bidders who are interested in a hedge against the
price gap across the two markets [10,11]. The day-ahead market (DAM) is a financial
market where participants submit their bids for the following 24 h, whereas the real-time
market (RTM) is a physical market in which buyers and sellers submit their bids during
the day, usually for a 5-min interval. The RTM balances out the differences between DAM
purchases and the actual real-time demand and generation of electricity. In this paper, the
focus is on predicting the gap between the cleared prices within the two markets. The
gap value can provide significant insights about the supply and demand of the electricity
market, which could be valuable information for ISOs, market designers, and physical and
virtual market participants to help them enhance the efficiency of the market and reduce
their risks.

The prediction of day-ahead hourly electricity prices by leveraging an integrated
machine learning model is proposed in [12]. In this article, the authors employed Bayesian
clustering by dynamics to cluster the data set into several subsets, and Support Vector
Machines (SVM) were used to fit the training data into each subset. The error metrics of the
integrated model are significantly improved compared to that of the single SVM network.
In [13], the authors proposed Auto-Regressive Integrated Moving Average (ARIMA) models
to predict next-day prices for Spanish and Californian markets. In [14], a Random Forest
regression is leveraged to predict DAM prices. The proposed approach outperformed the
ARIMA model. However, this paper does not consider the impacts of exogenous features
such as temperature and solar irradiance to predict prices. Moreover, the price gap between
the DAM and RTM is not predicted in the literature.

Even though statistical models perform well at identifying patterns and indicators
that will influence the price of electricity, they struggle to predict prices accurately in the
presence of spikes, which is particularly important for predicting the gap price across a
two-settlement market [15]. The electricity market will be cleared based on the net demand,
which in turn depends on many characteristics such as weather, temperature, wind speed,
and precipitation. Thus, the LMP tends to fluctuate over an operational horizon. In [16],
the authors compared the ARIMA model with Artificial Neural Networks (ANNs) to
forecast an electricity price. To handle the complexity of the electricity market, ANNs
are used in [17]. The increase in the number of computation layers increases the feature
abstraction capability of the networks, which makes them better at identifying non-linear
trends [18]. An ensemble of CNN-LSTM and an ARMA model is utilized for financial time
series data in [19]. In [20], a Temporal Convolutional Neural Network (TCNN) model is
utilized for the analysis of financial time series data, specifically focusing on applications
in Forex markets. This approach is contrasted with Recurrent Neural Networks and other
deep learning models, as well as some of the top-performing Machine Learning methods,
to demonstrate its effectiveness in handling financial data. The ARMA model captures
the linear dependencies of features and target variables, while CNN-LSTM models the
nonlinear spatial connections in data features between adjacent time intervals and also
accounts for long-term time-based patterns in the data. The ensemble of CNN-LSTM and
the ARMA model achieved a 0.8837 MAE score for The European Union Emission Trading
System (EU ETS) dataset. In [21], the LSTM network and a variation of the deep Recurrent
Neural Network (RNN) are used to forecast electricity load, and the outputs of the models
are compared to those of statistical models. The electricity consumption of the past 10 days
is used to predict the electricity consumption of the next day. The LSTM-based network
significantly outperformed the Seasonal-ARIMA and Support Vector Regression (SVR)

140



Algorithms 2023, 16, 508

models. A similar model is used in [22] to predict electricity load, but in this case, in
addition to the historical load data, weather datasets are also utilized. However, no change
in the model performance is observed when weather-related features are removed and
only the time lags are used as inputs. In [23], the LSTM network is used to predict the
next 24 h of electricity prices for Australian and Singaporean markets. The mean absolute
percentage error (MAPE) was used to evaluate the model, and up to a 47.3% improvement
was observed compared to a multi-layer ANN.

According to [24], the prediction of real-time LMP is even more challenging, and most
of the approaches adopted from previous studies generate an MAPE of around 10–20%.
In [25], a homogeneous Markov chain representation of the RTM LMP is used to predict the
RTM LMP for the prediction horizon of 6–8 h. Future prices are computed based on state
transition matrices using the Monte Carlo method. Although the mean average error (MAE)
metric of the model was 11.75 USD/MWh, it has a huge computation burden. In [26], the
authors proposed a deep LSTM (D-LSTM) network to estimate short- and medium-term
demand as well as the LMP. The D-LSTM network turned out to have a flat trend without
the validation set. However, once the network was tuned, it outperformed the nonlinear
auto-regressive network with exogenous variables (NARX) and Extreme Learning Machine
(ELM) models in terms of accuracy. In [27], the researchers used the Generative Adversarial
Network (GAN)-based video prediction approach on market data from ISO NE to predict
RTM LMPs. The market data images are created from the historical data, and by the
concatenation of these images, a video stream is created. Consequently, the prediction of
the next frame is used to predict the next-hour RTM LMP. The proposed method achieved
approximately an 11% MAPE score. However, weather data sets are not utilized to enhance
the prediction model of the price spikes. The enhanced convolutional neural networks are
also used in [28] to predict electricity load and prices. Here, feature selection is carried out
using the Random Forest model, and the extracted features are passed to the convolutional
layer, which later is filtered using the max pooling layer. The showcased work resulted in
smaller error measurements than the SVR using NYISO market data.

Leveraging the LSTM network to predict the gap between RTM and DAM prices using
weather features brings the following question to mind: Can we improve the prediction of
the price gap across the DAM and RTM by leveraging exogenous information (e.g., weather
data, including solar irradiance)?

The contributions of this paper are summarized as follows:

1. Syncing the exogenous information on weather data with the electricity market infor-
mation, i.e., prices and demand data, to create an extensive dataset. The significance
of leveraging the external dataset is illustrated, and the importance of features is
also demonstrated.

2. Both the DAM and RTM are analyzed for price prediction. A realistic set of assump-
tions is made regarding the availability of features for both the RTM and DAM once
the prices are predicted 24–36 h in advance for the following market operation day
upon the clearing of the market.

3. The ensemble learning method, namely the Random Forest (RF), is used to calculate
the probability distribution of the predicted market prices for the DAM and RTM, as
well as the gap.

4. An LSTM architecture is deployed to enhance predictions given the complexity of pre-
dicting values for the time series dataset. The proposed model is compared with other
statistical machine learning methods, which demonstrate significant improvements.

The rest of the paper is organized as follows. The learning methods used and the LSTM
network are discussed in Section 2: Learning Methods. The metrics deployed to evaluate
the performance of learning methods are presented in Section 3. The data collection and
data cleansing procedures are detailed in Section 4: Data. The performance of the proposed
method is evaluated in Section 5. The paper is concluded in Section 6.
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2. Learning Algorithms and Methodologies

In this section, the methods that are leveraged to examine the direct price gap values
are introduced. The described learning algorithms are utilized to predict price gaps between
the RTM and DAM as well as to rank features based on their importance. In addition,
these methods are leveraged to construct probability distributions for the DAM and RTM
price predictions.

2.1. Least Absolute Shrinkage and Selection Operator (LASSO)

The objective of the linear regression model is to find a relationship between two
variables by fitting a linear equation to observed data points. The most common way
to find a fitted line is to use the least-squares method, in which the model finds a fitted
line by minimizing the sum of squared residuals; however, shrinking or setting some
coefficients to 0 can increase the accuracy of the mentioned model. In the LASSO model, an
L1 regularization term is added to the cost function to address the above-mentioned issue.
L1 regularization is a technique that modifies the objective function of a model by adding
a penalty based on the absolute values of the coefficients, leading to simpler and sparser
models [29]. The penalty term, λ, controls the amount of regularization. LASSO is a good
method to eliminate irrelevant variables and only consider related variables to compute the
output of the model. The cost function, J, of the LASSO method is presented in (1). Here,
m represents the size of the dataset, while g denotes the model.

J
LASSO

(θ) =
1
2

m

∑
i=1

(g
LASSO

(xi)− yi)
2 + λ‖θ‖1 (1)

In this paper, the LASSO method is utilized to predict the DAM price, the RTM price,
and the price gap between the DAM and RTM directly. LASSO can set some coefficients
to zero, so it can perform variable selection. On the other hand, LASSO has difficulties
handling correlated features. One of the correlated features will have a high coefficient,
while the rest will be nearly zero. However, this one feature is selected randomly. In
addition, the LASSO algorithm can only learn linear mappings; thus, due to the nature
of non-linearity in the existing dataset, it may not be the best family of functions in the
hypothesis space.

2.2. Support Vector Regression (SVR)

The SVR method is a non-linear learning algorithm. One of the most common versions
of SVR regression is ε-SV regression. The goal of ε-SV regression is to find a function that
has the most ε divergence for all the data points. The algorithm accepts errors only within
the range of ε, as presented in (2)–(5).

min
w,b,ξ,ξ∗

1
2

w2
2 + C

m

∑
i=1

(ξi + ξ∗i ) (2)

subject to wTφ(xi) + b − yi ≤ ε + ξi (3)

yi − wTφ(xi)− b ≤ ε + ξ∗i (4)

ξi, ξ∗i ≥ 0, i = 1, . . . , m (5)

Here, the constant, C > 0, balances the flatness of a function and the amount up to
which deviations larger than ε are tolerated. φ(xi) maps xi into a higher-dimensional space,
where w and b are coefficients. ξ and ξ∗ represent the distance from the actual values to the
margin of the ε-tube with support vectors. Errors outside the margin are penalized linearly.
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A predictor, g, of the SVR with m-training examples is presented in (6).

g
SVR

(x) =
m

∑
i=1

(−αi + α∗i )K(xi, x) + b. (6)

The SVR with an RBF kernel is a non-linear algorithm, and it enables choosing the
acceptable error of the model. The hyper-parameter ε controls the maximum acceptable
error for the model. Thus, it is expected that the SVR with an RBF kernel predicts prices
better than the LASSO algorithm.

2.3. Random Forest Algorithm

The Random Forest is an ensemble learning algorithm. It combines multiple weak
models to build a strong predictor by taking advantage of methods called bagging and
decision trees. The goal of the decision tree algorithm is to build a tree-like structure from
the existing data points, where each leaf will only contain labels from the same class. The
algorithm will split the dataset into roughly two halves until the leaves are pure. To find
the best split that will keep the tree compact, the impurity function is minimized. In the
case of regression tasks, usually the squared loss, as given in (7), is used as an impurity
function, while classification problems employ the Gini impurity, as presented in (8).

L(D) =
1
|D| ∑

(x,y)∈D
(y − ȳD)

2 (7a)

where ȳD =
1
|D| ∑

(x,y)∈D
y (7b)

Given a dataset, D = {(x1, y1), . . . , (xn, yn)}, with c distinct categories, where Dk is
all the inputs with the label k, the squared loss impurity outputs the average squared
difference of the actual value and the average prediction, while the Gini impurity measures
the homogeneity of the classes.

G(D) =
c

∑
k=1

pk(1 − pk) (8a)

where pk =
|Dk|
|D| (8b)

Decision trees learn the exact patterns in the training set, so they do not generalize
well enough, so they are prone to overfitting. The Random Forest uses bagging to decrease
the high variance caused by decision trees. Bagging generates datasets D1, . . . , Dm from
the existing data points, D. The created datasets are the replicated datasets, each consisting
of k features drawn at random but with replacements from the original dataset [30]. The
new datasets are equal in size to the original dataset and have approximately the same
probability distribution.

The Random Forest consists of large number of decision trees, h(x, Dm), from D1, . . . , Dm,
where Dm is an independent, identically distributed vector [31]. In the case of classification
tasks, the majority vote acquired from all the decision trees will be the prediction, and for
regression purposes, the average of all the predictors will be the output. Moreover, the RF
algorithm has only two hyper-parameters, m and k. Based on empirical evidence, a good
choice for k is k =

√
d, where d is the total number of features in the dataset, and increasing

the size of m will only benefit the model.
The RF algorithm performs feature selection and generates uncorrelated decision trees

by choosing a random set of features to build each decision tree. In addition, by averaging
the results from each decision tree that the model builds, it also averages variance as well.
Consequently, the RF can balance the bias-variance trade-off well. Thus, in this paper, the
RF algorithm is utilized to select the most important features.

143



Algorithms 2023, 16, 508

2.4. Long Short-Term Memory (LSTM) Networks

Neural networks try to model the behavior of the human brain. They consist of
artificially created neurons and a set of edges that connect those neurons. Furthermore,
each neuron has its associated activation function, which models neuron impulses. The
RNN is a special type of neural network, where the input is a sequence. An RNN is
very powerful because it not only uses the input to predict the output but it also utilizes
the information from previously observed timestamps. All RNNs form a sequence of
connected units that represent the state of the network at a timestamp, t. A single module
takes data from the previous unit, ht − 1, and input for that timestamp, xt, then uses the
tanh function to compute the output for a timestamp, t. According to [32], a finite-sized
RNN can compute any function that exists. However, RNNs suffer either from exploding
or vanishing gradients when back-propagating through time. To update the weights, the
neural network computes partial derivatives of the loss function of the current layer at
each timestamp. Consequently, when the gradients are very small, either learning happens
at a very slow rate or not at all. To overcome this issue with RNNs, the LSTM network is
proposed, as suggested in [33]. The LSTM network is a special kind of RNN architecture.
Instead of only using the tanh function in a unit, the LSTM network utilizes three gate
units: a forget gate, an input gate, and an output gate. The forget gate is responsible for
keeping only the relevant information, as given in (9a). It takes an input at timestamp xt
and the data from the previous hidden layer, ht − 1. Then, the sigmoid function is applied
to those inputs, and as a result, the output of the forget gate is somewhere between 0 and
1. The output closer to 0 will be forgotten, and the output with a numeric value of 1 will
be kept for further calculations. Furthermore, the input gate decides how the memory cell
will be updated, as shown in (9b). First, the candidate value is computed using (9c), then
the result is scaled by the output of the input gate to decide by how much the cell state
will be updated, as shown in (9d). Finally, the LSTM network employs an output gate,
which is a filtered version of the cell state. First, the cell state is normalized using the tanh
function, then the sigmoid layer that is presented in (9e) is utilized to decide which parts of
the memory will be output, as presented in (9f). The outputs of the hidden state, ht, and
the prediction, yt, is the same; however, the notation ht are used as a hidden state input at
timestamp t + 1. The structure of the LSTM network for a single unit is given in Figure 1.

ft = σ(Wf [ht−1, xt] + b f ) (9a)

it = σ(Wi[ht−1, xt] + bi) (9b)

c̃t = tanh(Wc[ht−1, xt] + bc) (9c)

ct = ft ⊗ ct−1 + it ⊗ c̃t (9d)

ot = σ(Wo[ht−1, xt] + bo) (9e)

ht = tanh(ct)⊗ ot (9f)

The LSTM architecture is better suited for time series problems compared to the other
mentioned algorithms. The LSTM model will learn the previously observed sequence
before predicting the output, whereas the mentioned models treat each row in the dataset
as an individual training sample.
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Figure 1. The LSTM architecture of a single unit.

3. Prediction Performance Evaluation

The metrics introduced in Table 1 are presented to measure the performance of the
learning algorithms presented in the previous section. Here, yt is the actual value at time
t, while ŷt is the predicted value for the same timestamp. The maximum and minimum
values of all the actual values are represented by ymax and ymin. In addition, s is the number
of samples in the testing dataset. The mean absolute error (MAE) measures the average
magnitude of the errors between the predictions and actual values. Similarly, the RMSE
also expresses the average model prediction error. However, it is measured by taking the
square root of the average of the squared differences between the actual and predicted
values. Both of these metrics measure prediction errors, and they can range from 0 to
∞. Consequently, lower values characterize a better-performing model. The error metric
nRMSE outlined represents the normalized RMSE value. In this case, the normalization
is carried out by dividing the RMSE score by the difference between the maximum and
minimum values of the actual values. Furthermore, the metric max error represents the
evaluation of the worst-case scenario and measures the maximum error in the predicted
value of the samples.

Table 1. Prediction errors for Station A while using temporal data for various learning algorithms.

MAE
[

1
s ∑s

t=1 |yt − ŷt|
]

RMSE
√

1
s ∑s

t=1(yt − ŷt)2

nRMSE
√

1
s ∑s

t=1(yt − ŷt)2
/

[ymax − ymin]

Max Error max(|yt − ŷt|)∀t ∈ {0, s}

4. Data Preparation

4.1. Data Collection

Three distinct datasets are collected and merged to form an extensive dataset for study-
ing the price gap across the DAM and RTM. The first dataset is the one with information
from the electricity market. The California Independent System Operator (CAISO) pro-
vides an Open-Access Same-time Information System (OASIS) Application Programming
Interface (API), which produces reports for the energy market and power grid information
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in real-time. To demo the results of this paper, the MURRAY6N015 node, located in San
Diego, CA, is chosen, and its reports for the energy market and power grid information
in real-time are leveraged. The LMP, the LMP congestion component, the LMP energy
component, and the LMP loss component are collected for the DAM and RTM. Furthermore,
a seven-day-ahead load forecast as well as load forecasts for the next two days are acquired
using the CAISO API. The period of collection for the dataset is two years, starting from
the 1 January 2017.

The second one has meteorological data. For the historical hourly weather dataset, the
Meteostat API is used. Meteostat collects hourly weather measurements from more than
5000 weather stations around the world. In addition, it offers comprehensive historical
datasets that combine their measurements with the NOAA’s Global Historical Climatology
Network’s dataset. The weather data are obtained from the San Diego International
Airport weather station, which is the closest weather station to the node of interest. The
collected data include information about temperature, dew point, humidity, wind speed,
wind direction, weather condition, sea level pressure, wind gust, cloud layers, and weather
forecasts for the next 3 and 6 days. Weather conditions directly and indirectly influence both
the demand and supply of electricity, which in turn affects the price. Solar power generation
is directly influenced by the amount of sunlight, while the production of electricity from
wind turbines depends on wind speeds. If wind speeds are predicted to be low, wind-
generated electricity might be reduced, potentially leading to higher prices. On the other
hand, weather conditions may influence the demand for electricity. Extreme temperatures,
both hot and cold, increase the demand for electricity.

The third dataset concerns renewable energy availability. The mesonet API is utilized
to acquire a dataset for solar irradiation. This API offers quality-controlled, surface-based
environmental data such as Global Horizontal Irradiance (GHI), Direct Normal Irradiance
(DNI), Diffuse Horizontal Irradiance (DHI), solar zenith angle, cloud type, and precipitable
water. The GHI is the total amount of terrestrial irradiance received from above by a surface
horizontal to the ground. The DNI means the radiation that comes in a straight line directly
from the sun and is absorbed by a unit perpendicular to the rays. Furthermore, the DHI is
the radiation that does not arrive on a direct path from the sun, and it is equally absorbed
by the particles in the atmosphere. It should be noted that the historical weather data
(i.e., the second dataset), the forecast weather data (i.e., the third dataset), and the forecast
demand data (i.e., the first dataset) are utilized.

4.2. Data Cleansing and Pre-Processing

The collected datasets are merged based on the date and the hour of the day. Only the
data from the time span of 1 January 2017, 00:00 to 30 December 2018, 23:00 are utilized.
Data cleansing techniques are applied to ensure the quality of the data. Duplicate rows
are dropped, categorical variables are converted to numerical representations, and every
measurement is converted to a floating-point value. In addition, the missing values are
substituted with a global constant. Mean imputation is performed to address cases in which
the measurements from the weather dataset are not available at a particular timestamp.
Mean imputation replaces all missing values with a mean value calculated across the
whole dataset. After data cleansing, since the data for some hours are missing from the
official API, 16,566 h worth of data are available. The dataset is arbitrarily split into two
parts. The earlier 90% of the data are used for training, and the later 10% are utilized
for testing purposes. Then, the input data are normalized using a Min–Max scaler. As a
result, each feature is converted into a {0, 1} range. The Random Forest model is employed
to select features. The data collected are extensive and combine three different datasets.
Consequently, it is important to showcase which features contribute to prediction and
which are insignificant. Moreover, feature selection ensures that features that do not affect
the prediction are removed and do not introduce extra noise into the system.
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5. Simulation Results

5.1. Feature Importance

LASSO, SVR, and Random Forest algorithms can not inherently capture temporal
dependencies for sequential data; that is why day-ahead prices for a previous 48 h time
horizon are added as features. Therefore, 48 new columns are created that contain the
delayed values of the DAM LMP. Similarly, lagged real-time and gap values are added to
the existing dataset; however, for the RTM, the most recent prices that are available are at
t − 12 h. Consequently, only those features that are realistically available for the RTM are
taken into consideration.

In this section, the RF algorithm is procured to select the most important features.
Since the RF method employs decision trees, it can be leveraged for feature selection. The
RF naturally ranks by how well each decision tree improves the purity of the node. The Gini
index of decision tree algorithms is leveraged to procure feature importance values. For
example, the greatest decrease in impurity happens at the root of the tree, while the least
decrease in impurity happens at the leaves of the tree. Consequently, pruning the tree below
a particular node creates a subset of the most relevant features. In comparison to PCA, the
above-described algorithm captures the non-linear dependencies of the features, while PCA
only captures linear relationships between features. Table 2 presents the selected features,
ranked by their importance for predictions of the price gap between the two markets. The
RF algorithm renders 204 features useful for gap prediction. Note that the 13 most relevant
features are shown in Table 2. The right column of Table 2 represents the importance
coefficient. The importance coefficient is scaled so that the sum of all the importance
coefficients is 100. It is interesting that the external features that are collected demonstrated
a significant effect on predicting the price gap between the two markets. For example, the
solar zenith angle has an importance coefficient of 1.0, while the DHI contributes to the
prediction with a 0.39 importance score.

Table 2. Selected feature importance for gap predictions.

Feature Importance Coefficient

GAP LMP price 24 h before 3.32

DAM LMP price 24 h before 1.9

RTM LMP price 24 h before 1.3

Solar Zenith Angle 1.0

Demand Forecast Day-Ahead 0.78

Relative humidity 0.67

Perceptible Water 0.61

Cloud Layer 0.54

Dew point 0.53

Wind Speed 0.47

Wind Direction 0.46

Demand Forecast 2 Days Ahead 0.46

DHI 0.39

5.2. Hyper-Parameter Tuning

To perform day-ahead, real-time gap predictions, the hyper-parameters of each learn-
ing method presented in Section 2, are optimized. Hyper-parameters control the learning
process, and they have to be optimized so that the predefined loss function is minimized
for a given dataset. A grid search with nested cross-validation is used to tune hyper-
parameters. A grid search is a brute force algorithm that calculates the output for all subsets
of predefined parameters and picks the best estimator. The performance of the estimators
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is evaluated using time-series nested K-Fold cross-validation, where k = 5. The time-series
nested cross-validation divides the existing dataset into k inner loops, and each inner loop
is split into a training subset and a validation set. Then, the parameters that minimize
the error on the validation set are chosen. The outer loop splits the dataset into multiple
different training and test sets, and the error on each split is averaged to compute a robust
estimate of the model’s error. K-fold cross-validation helps mitigate the risk of overfitting
and provides a more reliable assessment of how well the model is expected to perform on
unseen data.

The Lasso algorithm presented in (1) has only one hyper-parameter: λ. To find the
optimal value for λ, a set of arbitrarily chosen values, {0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.001, 0.002, 0.003, 0.004, 0.005, 0.01}, is examined. The highest accuracy or minimal loss is
acquired using a grid search when the hyper-parameter λ is 0.0003.

The SVR model is optimized for four different hyper-parameters, including C; ε; the
kernel function, K; and the kernel coefficient, γ. The optimal value found using the grid
search for the constant C is C = 1000, while the margin of the tube ε = 0.001 turned out to
give the most accurate estimator. In addition, different kernel functions, including linear,
sigmoid, and RBFs, are tested, and the most accurate results are obtained using an RBF
with γ = 0.1.

Similarly, the Random Forest algorithm is also tuned for hyper-parameters. Generally,
an increase in the number of trees in the forest can only benefit the algorithm. However,
this increment also introduces significant overhead in computation time, so only forests
with 50 and 100 trees were tested, and 100 trees turned out to give more accurate results.

In addition, the maximum number of features considered when looking for the best
split turned out to be equal to the total number of features. Moreover, different maximum
depths of the trees are passed to the grid search, and the optimal value is found when the
nodes are expanded until all the leaves are pure. Finally, the algorithm is tuned for the
methods of sampling the data points, and sampling with replacement turned out to be the
optimal option.

The LSTM network is optimized for the number of units, loss function, optimizer, and
lookback period, which represent several previous timestamps that are considered for a
prediction at each time unit. The following set of values, {10, 20, 50, 100}, is examined for
the number of units, while the MAE and MSE are tested for the loss function, and Stochas-
tic Gradient Descent (SGD), Root Mean Square Propagation (RMSProp), and Adaptive
Moment Optimization (ADAM) are utilized for optimizer choices. Note that RMSProp is a
gradient-based optimization technique that uses the moving average of squared gradients
to normalize the gradient, while ADAM is a combination of RMSProp and SGD. Moreover,
for lookback options, a day, a week, and a month are tested, and for epoch numbers, the
following set of values are examined: {10, 20, 50, 100}. It turned out that 100 LSTM cells
with a loss function of the MSE and with an ADAM optimizer resulted in the most accurate
results. In addition, the optimal lookback period is a day, and the best number of epochs is
100. Note that here, the different learning methods presented in Section 2 are utilized to
predict the electricity prices for the DAM and RTM and the direct gap between DAM and
RTM prices.

5.3. Analysis of Probability Distributions

The Random Forest algorithm described in Section 2 is used to calculate the probability
distribution of the predicted electricity prices for the DAM and RTM. The outputs of the
100 regression trees are used to approximate the probability distribution for both markets.
The spread of predictions from the individual decision trees showcases the uncertainty and
variance of the predictions. To represent the results, the 15 October 2018 is chosen for the
test, and the hours of interest are 8 a.m. and 5 p.m.

As shown in Figure 2, the prices for the DAM at 8am range from 18 USD/MWh to
44 USD/MWh, while the prices for the same market at 5 p.m. range from 30 USD/MWh to
62 USD/MWh. For this case study, the RTM prices tend to be in a lower range. The price
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prediction for the RTM at 8 p.m. is in the range of −3 USD/MWh to 44 USD/MWh, while
the price prediction at 5 p.m. ranges from 17 USD/MWh to 60 USD/MWh. The electricity
prices tend to be much higher at 5 p.m. compared to those at 8 a.m.

Direct predictions by leveraging the RF algorithm would render the most promising
probability distribution on the price gap. Figures 3 and 4 present the importance of direct
gap prediction in comparison to the difference in predicted prices of the DAM and RTM.
In direct gap prediction, the target value for the model is the gap price between the
DAM and the RTM. However, to calculate the difference between the predicted DAM and
RTM, two distinct models are developed to predict DAM and RTM prices, and then the
predictions are subtracted. The time and date are the same as in the case study described
above. However, in this case, the actual electricity gap price is also displayed to underline
the significance of direct gap prediction. The ground truth gap price for the mentioned
date at 8 a.m. is 17.4 USD/MWh.

It can be observed from Figure 3 that the probability of the gap procured by the direct
gap prediction case is 17.4 USD/MWh higher than the probability acquired by subtracting
the day-ahead and real-time price predictions. Figure 4 shows the probability distributions
for 5 p.m. The direct gap prediction has a higher chance of being more accurate. The
actual gap price for 5 p.m. is 49 USD/MWh. On the one hand, the price range acquired by
subtracting the DAM and RTM price predictions is from −60 USD/MWh to 30 USD/MWh;
in this case, it would be virtually impossible to correctly predict the actual gap by calculating
the difference in predictions for the mentioned markets. On the other hand, the range for
direct gap predictions includes the ground truth gap value. Even though, in this case, the
probability of accurately predicting the actual gap using the direct gap prediction is not
very high, it is still the better choice between those two methods. Furthermore, the direction
of the gap difference is more solid toward a positive range in the direct gap prediction than
in the difference calculation, which has a smaller expected value.

Figure 2. The probability distribution of the DAM and RTM price predictions for a specific date and
time, procured by the RF algorithm.
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Figure 3. A comparison between the probability distribution of direct gap predictions and the differ-
ence between separately predicted prices for the DAM and RTM at 8 a.m., procured by LSTM network.

Figure 4. A comparison between the probability distribution of direct gap predictions and the differ-
ence between separately predicted prices for the DAM and RTM at 5 pm, procured by LSTM network.

5.4. Performance Evaluation

To understand the quantitative insights for the DAM, RTM, and gap prices, the
descriptive statistics of the entire data set are presented in Table 3, where all the values
are in USD/MWh. It is worth pointing out that the standard deviation for the DAM was
almost half of that for the RTM, which means that the values tend to be closer to the mean
in the case of the DAM and prices do not fluctuate as much as the price fluctuations in the
case of the RTM. The 25th percentile of all gap prices is less than −0.16, which means that
almost a quarter of the direct gap prices are negative.
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Table 3. Statistical analysis of DAM, RTM, and gap prices of the data set.

Statistics Gap DAM RTM

Mean 3.1 39.1 36.0

Standard Deviation 87.7 45.6 84.5

Min −1488.6 −61.6 −262.3

Max 2276.2 2374.4 1545.4

25th Percentile −0.16 25.0 19.6

50th Percentile 6.6 33.4 27.1

75th Percentile 17.5 46.5 36.7

In Tables 4 and 5, an evaluation of the DAM prices and RTM prices procured by the
learning methods presented in Section 2 is illustrated, where the unit for the MAE, RMSE,
and max error is USD/MWh. All algorithms performed significantly better at predicting
DAM prices than predicting RTM electricity prices. For instance, the LSTM network, which
is the best-performing algorithm, had an MAE and RMSE of 4.9 and 7.1, respectively,
while, for the RTM, the same algorithm resulted in a MAE of 21.2 and an RMSE of 48.
Consequently, the complexity of predicting the gap between these markets is dependent on
the accuracy of the prediction of the RTM.

Table 4. Prediction errors for the DAM.

Error Measure LASSO SVR RF LSTM

MAE 9.6 11.7 5.1 4.9

RMSE 13.3 33.7 7.9 7.1

nRMSE [%] 7.4 39.8 4.4 4.2

Max Error 95.2 122.7 62 40

Table 5. Prediction errors for the RTM.

Error Measure LASSO SVR RF LSTM

MAE 18.9 21.4 26.4 21.2

RMSE 59 54 71.9 48

nRMSE [%] 5.1 5.0 6.2 4.4

Max Error 1064 1060 1058 1040

LASSO failed to capture any spikes in the price change, and the maximum error
between the prediction and the actual gap values was 1054.8 USD/MWh. The poor
performance of the LASSO algorithm can be explained by the fact that LASSO is a linear
algorithm and leverages a linear function for prediction, while gap prediction should be a
non-linear mapping based on empirical evidence.

The most promising results were procured using the RF algorithm and the LSTM
network. The Random Forest algorithm had an MAE score of 24.5 USD/MWh and an
RMSE score of 67.5 USD/MWh when predicting direct gap prices. Even though these
metrics are slightly worse than the above-described algorithms, it can be observed from
Figure 5 that the RF algorithm is not as good as the LSTM network. While the RF does a
good job of predicting correct values when predicting positive gap prices, it suffers from
a notable error in capturing a big negative price spike in gap values. The LSTM network
had the best performance in terms of error metrics as well as an empirical evaluation based
on the plot provided in Figure 5. Furthermore, Figure 6 illustrates the relative error of the
price gap predicted by the LSTM and RF methods. Table 6 shows that the LSTM network
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renders the lowest MAE, nRMSE, and Max Error values among all the learning methods
used to predict the gap prices. In addition, the LSTM network also outperformed all the
methods in predicting the DAM and RTM electricity prices individually.

Table 6. Prediction errors for the gap.

Error Measure LASSO SVR RF LSTM

MAE 19.6 28.2 24.5 17.1

RMSE 58.9 80.4 67.5 56.9

nRMSE [%] 4.98 6.1 5.7 4.8

Max Error 1054.8 1051 1048 1046

5.5. Importance of Exogenous Weather Information

To illustrate the importance of the collected exogenous features, the learning methods
described in Section 2 are leveraged without exogenous weather features to predict gap
prices, and the results are compared to the predicted gap prices procured by those methods
using collected features. Adding exogenous features such as weather conditions and
solar irradiance significantly improved the accuracy of the price gap prediction for all the
learning algorithms. The error metrics of all the algorithms without exogenous weather
features are presented in Table 7. All the algorithms without exogenous weather features
had worse error metrics than those with exogenous weather features, as illustrated by
comparing Tables 6 and 7.

Figure 5. A comparison of predicting the gap using LSTM and RF algorithms for the next 96 h to the
actual values of the gap.

Table 7. Prediction errors for the gap without exogenous features.

Error Measure LASSO SVR RF LSTM

MAE 19.7 44.8 24.7 31.8

RMSE 64 81.6 75 62.15

nRMSE [%] 5.4 6.9 6.3 5.2

Max Error 1053.7 1069 1058 1052
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Figure 6. A comparison of the relative error of direct gap predictions procured by LSTM and RF
algorithms for the next 96 h.

6. Conclusions

This paper proposed a model to predict the price gap between the RTM and the DAM.
To this end, several machine learning algorithms and neural networks are leveraged to
obtain the price gap across the DAM and the RTM. To improve the accuracy of the price
gap prediction, exogenous weather data, e.g., solar irradiance, is added to the training
data of the learning methods and the LSTM. To enable the integration of exogenous
weather information, three distinct datasets are collected, matched, and synchronized.
It is shown that consideration of related exogenous weather information will outweigh
the importance of algorithm selection. Furthermore, this paper investigates the benefits
of learning algorithms for direct gap prediction compared to the subtraction of price
predictions. To fully achieve this goal, several learning methods are tested to evaluate
the performance of the learning algorithms for direct gap prediction compared to the
subtraction of price predictions, and it is shown that the prediction error will be lower
with a direction price gap prediction. There is no single algorithm that will deliver the
best performance all the time. The Random Forest algorithm did a better job of predicting
positive gaps as well as the probability distribution of the price gap, while the overall
prediction error for the LSTM network was lower. Thus, for future work, it is recommended
to consider a combination of the Random Forest algorithm and the LSTM network to predict
the price gap. While the former does predict the sign of the gap relatively well, the latter
will be able to determine the value of the gap given the sign.
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Abstract: This article explores the intertwining connections among artificial intelligence, machine
learning, digital transformation, and computational sustainability, detailing how these elements
jointly empower citizens within a smart city framework. As technological advancement accelerates,
smart cities harness these innovations to improve residents’ quality of life. Artificial intelligence
and machine learning act as data analysis powerhouses, making urban living more personalized,
efficient, and automated, and are pivotal in managing complex urban infrastructures, anticipating
societal requirements, and averting potential crises. Digital transformation transforms city operations
by weaving digital technology into every facet of urban life, enhancing value delivery to citizens.
Computational sustainability, a fundamental goal for smart cities, harnesses artificial intelligence,
machine learning, and digital resources to forge more environmentally responsible cities, minimize
ecological impact, and nurture sustainable development. The synergy of these technologies empowers
residents to make well-informed choices, actively engage in their communities, and adopt sustainable
lifestyles. This discussion illuminates the mechanisms and implications of these interconnections for
future urban existence, ultimately focusing on empowering citizens in smart cities.

Keywords: smart cities; artificial intelligence; machine learning; digital transformation;
computational sustainability; logic programming; the laws of thermodynamics; entropy

1. Introduction

In the evolving domain of urban innovation, smart cities (SCs) symbolize a transforma-
tive agenda, as described by Batty et al. [1], and further refined by Allam and Newman [2].
Here, the incorporation of technology into urban spaces acts as a propellant for sustainable,
efficient living. Anthopoulos [3] underscores this strategy’s focus on interconnectivity and
sophisticated technology to improve residents’ lives. This discourse delves into the synergis-
tic bond between artificial intelligence (AI), machine learning (ML), digital transformation
(DT), and computational sustainability (CS)—the four critical tenets shaping the SC con-
cept and enhancing citizen empowerment, resonating with views from Caragliu et al. [4],
Angelidou [5], and Bibri and Krogstie [6]. Kitchin [7] observes that the digital age has
propelled technology forward, prompting cities worldwide to adopt AI and ML as vital
components of urban ingenuity, a sentiment shared by Amović et al. [8]. These tools are
proficient at handling large datasets, pivotal for bolstering urban operations, automating
processes, and customizing services, as suggested by Komninos et al. [9]. AI and ML also
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allow urban areas to anticipate societal necessities, oversee intricate systems, and promptly
respond to crises, expanding upon Neirotti et al. [10]. Digital transformation extends
beyond the scope outlined by Chourabi et al. [11], not merely digitizing public amenities
but revolutionizing urban governance and service provision, promoting inclusivity, efficacy,
and a citizen-focused approach. Wirtz et al. [12] argue this shift can diminish bureaucratic
barriers, enhance transparency, and spur economic growth, advancing the conversation
initiated by Batty [13]. CS, a cornerstone of the SC concept emphasized by Albino et al. [14],
is crucial amidst pressing environmental challenges. AI, ML, and digital advancements
aid in resource optimization, waste reduction, carbon footprint shrinking, and the pursuit
of sustainable growth. These initiatives are key in monitoring environmental indicators,
endorsing clean energy, refining waste management, and encouraging residents towards
sustainable living. At the nexus of AI, ML, DT, and CS lies citizen empowerment in SCs.
Harnessing these technological strides, citizens gain the means to make well-informed
decisions, actively participate in their communities, and pursue sustainable practices. These
technologies afford access to real-time transport data, digital platforms for civic engage-
ment, and bolster an informed, proactive, and resilient populace. This analysis endeavors
to unravel the intricate interplay among these intertwined elements and their collective
impact on citizen empowerment within SCs. It strives to shed light on these technologies’
role in enhancing urban life, navigate the path for cities seeking smart evolution, and
underscore pivotal considerations for the future of urban living, a concept emphasized by
Meijer and Bolíver [15].

The Synergy between Sustainable Development, Green Technology, Corporate Social Responsibility,
and Innovation

For a smart city model to be sustainable, it must incorporate environmental considera-
tions (related to CS) alongside innovative practices (related to DT), powered by data-driven
decisions (related to AI and/or ML) [16]. Indeed, the intersection of AI, ML, DT, CS, and
SC represents a collaborative framework essential for advancing urban innovation [17].
The logical interconnection of these concepts fosters a harmonious blend of technology
and sustainability, which is crucial to the development and functioning of SCs [18]. AI
and ML serve as the brain of SCs, equipping urban systems with the capability to process
vast amounts of data, enabling adaptive and predictive operations [18]. This intelligence is
not just about the automation of tasks but extends to the comprehension of patterns and
behaviors within an urban context, allowing for the efficient allocation of resources and
better decision-making. DT is the circulatory system of this organism, vital for conveying
the benefits of technology to every corner of the urban fabric [19]. It facilitates the transition
from traditional practices to digitally enabled governance and service delivery, ensuring
that efficiency, transparency, and inclusivity are embedded in the city’s operations. It is
the pathway through which AI and ML solutions reach the hands of citizens and admin-
istrators. CS acts as the lungs, ensuring that the city’s growth is not at the expense of
its environment [20]. Rieder et al. [21] outline how the above-mentioned technological
advancements are leveraged to enhance the quality of life for residents, promote efficient
and automated urban living, and foster sustainable development. In alignment with the
findings of Ortega-Fernández et al. [22], the core argument of the Rieder’s study revolves
around the symbiotic relationship between technology and urban development, highlight-
ing how AI and ML serve as foundational elements in processing large datasets, automating
processes, and personalizing services to meet the dynamic needs of urban populations [21].
Several authors highlight DT as a powerful force that integrates digital technology across all
facets of urban life, thereby enhancing value delivery to citizens. These studies underscore
the significance of CS in realizing the goal of fostering environmentally responsible and
sustainable cities through the efficient utilization of digital resources [23–25].

By utilizing AI and ML, cities can optimize energy consumption, reduce waste, and
promote sustainable practices, making the city not only smarter but also greener. SCs, as
the tangible manifestation of these combined efforts, embody the holistic body that benefits
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from the synergies of its parts. In SCs, citizen empowerment is paramount, the inhabitants
are not mere bystanders but active participants, equipped with real-time data and platforms
for civic engagement provided through the DT processes. However, if these concepts were
to operate in silos without a logical interconnection, there is a risk of creating a semblance of
interdependence that is arbitrary and not genuinely integrated. This disjunction can lead to
inefficiencies, underutilization of data, and a failure to meet sustainable development goals.
Without AI and ML’s predictive analytics, DT might only result in superficial changes
without deep systemic transformation. Without DT, the advancements of AI and ML
would remain inaccessible to the broader population. Without a focus on CS, technological
progress could lead to unsustainable practices that harm the environment and society in
the long term. Therefore, it is imperative that AI, ML, DT, CS, and SCs not only coexist
but are deeply intertwined, each reinforcing the other to create a robust, responsive, and
sustainable urban ecosystem. The synergy among these components is what allows for the
intelligent evolution of cities, fostering environments where technology serves the people
and the planet in a balanced and thoughtful manner. SCs thrive on this interconnectedness;
it is the bedrock of their innovation, ensuring that technological advancements equate to
an improved quality of life for all citizens.

2. Exploring the Influence of Entropy in Knowledge Expression and Logical Discourse

The study introduces a novel methodology for evaluating entropic efficiency in
problem-solving scenarios. It builds on the concept that entropy ranges between 0 and 1,
with lower values indicating order and higher ones reflecting disorder [26–28]. Situated
in the realm of Knowledge Representation and Reasoning (KRR) within AI, the focus is
on structuring knowledge for computational interpretation and developing algorithms for
intelligent decision-making using such knowledge [29]. KRR employs formal languages
like First-Order Logic, Description Logics, and frame-based systems for organizing infor-
mation, which reasoning algorithms then utilize to answer queries and tackle complex
challenges. The methodology draws an analogy between KRR and thermodynamics, liken-
ing the process of energy degradation to the way usable energy decreases over time, an
idea echoing the First and Second Laws of Thermodynamics. The First Law dictates energy
conservation within an isolated system, implying energy transformation rather than loss.
The Second Law introduces entropy as a measure of systemic order, delineating the natural
trend towards disorder [30,31]. In KRR, the entropic state signifies the quantum of energy
that diminishes yet never vanishes entirely [27,32]. This is characterized, viz.

• Exergy, reflecting the portion of energy that can be harnessed;
• Vagueness, denoting the potential energy that could have been exploited; and
• Anergy, indicating the potential of energy that remains unutilized.

KRR methodologies, especially in Model Theory [33,34] and Proof Theory [35,36],
intertwine with Logic Programming (LP) principles. The paper leverages a Proof Theoret-
ical framework to extend the LP paradigms for problem resolution. It develops a Logic
Program with a well-defined set of clauses or archetypes to exemplify the application of
these theories (Program 1) [36,37], viz.

Program 1. The quintessential instance of a logical entity.

{
¬ p ←not p, not exceptionp
p ←p1, . . ., pn, not q1, . . ., not qm
? (p1, . . . , pn, not q1, . . . , not qm) (n, m ≥0)
exceptionp1

, . . . , exceptionpj
(0 ≤ j ≤k) being k an integer number

}
This approach integrates foundational ground literals and assertive propositions,

along with negation-as-failure—a principle asserting that a proposition is deemed false if it
cannot be proven true due to the absence of explicit evidence [36]. Within this structure,
each program comprises a set of abducibles, which are hypotheses or assumptions used
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as exceptions to the standard extensions of the predicates shaping the program’s logic
framework [33,38], viz.

exceptionp1
, . . . , exceptionpj

(0 ≤ j ≤k) being k an integer number

This data captures crucial details, insights, or specific elements that are indispensable.
Meanwhile, certain types of clauses serve as integrity constraints or invariants which
supply the necessary context for understanding the universe of discourse, viz.

? (p1, . . . , pn, not q1, . . . , not qm) (n, m ≥ 0)

The structuring of knowledge for computational interpretation and algorithm devel-
opment for intelligent decision-making benefits from integrating Computational Collective
Intelligence with diverse disciplines such as Knowledge Representation, Thermodynamics,
and Mathematical Logic [39,40]. This integrated approach demonstrates remarkable flexi-
bility and effectiveness across different scenarios, making it universally applicable to any
case study [41,42]. The core of this approach is its interdisciplinary nature, which leverages
the principles of thermodynamics as a metaphorical lens for AI performance and con-
straints [43]. This approach is not only novel but also highly adaptable, making it suitable
for a variety of case studies [44]. For instance, the integration of KRR with thermodynamic
concepts allows for a dynamic assessment of AI systems, focusing on energy efficiency and
entropy, the key factors in determining system performance and sustainability [44]. Several
other case studies can be referenced, particularly those involving, namely:

Complex Data Environments—In these cases, the approach’s emphasis on energy
efficiency (borrowed from thermodynamics) can guide the structuring of AI systems to
handle and process large datasets more efficiently [45]. This is particularly relevant in fields
like big data analytics and cloud computing, where managing computational resources
effectively is crucial [46].

Decision-Making Systems—The incorporation of mathematical logic into the problem-
solving framework enhances AI’s decision-making capabilities. In case studies focused on
autonomous vehicles or financial systems, where precision and reliability are paramount,
the rigorous logical frameworks ensure that the AI’s decisions are both sound and verifi-
able [46].

Dynamic and Evolving Systems—This approach’s adaptability makes it ideal for appli-
cations in environments that are not static but require continuous learning and adaptation.
Case studies in robotics or adaptive learning systems can benefit from this approach, as
it supports the development of AI that can evolve and respond to changing conditions
without human intervention [47].

Interdisciplinary Integration—The ability to integrate various disciplines ensures
that the approach can be applied in a broad range of case studies, from healthcare to
environmental science. This flexibility is essential for developing holistic AI solutions that
consider multiple aspects of a problem, such as ethical considerations, sustainability, and
technical feasibility [48].

3. The Role of Thermodynamics in Data Procurement and Judgement

In the rapidly advancing domain of data science, the groundbreaking method of
applying thermodynamic concepts to data collection and analysis presents an innovative
perspective on data comprehension and application. This approach interestingly draws
comparisons between the principles of thermodynamics, particularly regarding energy and
work, and the practices of gathering and analyzing data. While non-traditional, the belief
is that such a comparison will pique the reader’s interest. Additionally, the incorporation
of AI, ML, and DT within this framework promotes sustainability and enhances citizen
empowerment in a SC context. The application of thermodynamics to data collection
and analysis signifies an extraordinary convergence of distinct disciplines, providing a
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novel angle that could further strengthen the role of AI, ML, and DT in forging sustainable
initiatives, thus reinforcing citizen engagement in the smart city infrastructure.

Enhancing Citizen Agency in Smart Urban Environments

Artificial intelligence, machine learning, digital transformation, and computational
sustainability are pivotal in advancing smart city initiatives. These technologies greatly
improve citizens’ ability to interact with and impact their urban environments. AI and ML
are instrumental in gathering and analyzing urban data, empowering people to navigate the
complexities of city life. AI decodes complex patterns, from traffic circulation to air quality,
enabling informed decisions. ML enhances this with predictive models that forecast urban
developments, promoting a forward-thinking community. DT and CS are transformative,
making vast data sets actionable through digital platforms, allowing citizens to access
real-time updates and partake in civic engagement, from urban planning to energy use.
This integration turns citizens from mere spectators into active contributors, revitalizing
democratic engagement in cities. It lifts citizen involvement, leveraging data for civic
engagement and empowerment. Indeed, the goal is to evolve the urban experience into
a collaborative creation by its residents, thanks to AI, ML, DT, and CS. This interplay is
reshaping urban life, creating a milieu for an informed, involved citizenry. The vision of an
informed, proactive urban community is materializing as these tools lay the groundwork
for an interactive, responsive urban existence. The influence of these technologies on citizen
involvement in SCs invites further exploration, especially through entropic methods in KRR,
which could further enhance the empowerment process. This leads to a critical inquiry:

How might entropic methodologies in KRR intensify citizen empowerment within the
Smart City architype?

Offering a clear-cut response to this question is complex, as it hinges on the partic-
ularities of the urban setting and the diversity of its population. Nevertheless, several
possibilities can be considered. For instance, the pertinence of each answer may need to
be adjusted to fit the specific scenario, suggesting that reactions should be customized to
reflect the subtleties of the inquiry at hand.

4. Methodology

This section briefly summarizes the study design, data collection procedure, instru-
ments employed, sample characteristics, and data analysis methods. It also touches upon
the ethical considerations observed during the research.

4.1. Study Design

Technological advancements act as a driving force in various domains such as urban
management, innovation, job creation, industry growth, and environmental sustainability,
among others. However, there remains public apprehension regarding the role of the
connections among AI, ML, DT, and CS, in the empowerment of citizens within a smart
city framework. To tackle this challenge, evaluating the understanding and acceptance
of these technologies is essential, which entails active involvement from the population.
Therefore, this study aims to evaluate the perception of the Portuguese population regard-
ing the role of the connections among of these technologies in a smart city framework. With
this goal in consideration, a questionnaire was developed and distributed in Portugal to
a cross-section of individuals, incorporating male and female genders and diverse ages.
Addressing five key topics (artificial intelligence and machine learning awareness and
usage, digital transformation perception and use, citizen empowerment and perception,
and correlation perception), the questionnaire was structured to facilitate the applica-
tion of the methodology proposed in [49] for transforming non-numeric information into
numeric data.
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4.2. Data Collection

The choice of a questionnaire survey method arose from a thorough examination
of available techniques, with the decision bolstered by its simplicity and adaptability.
Although questionnaire surveys may lack depth and context, they provide efficiency,
standardization, and anonymity.

The questionnaire devised for this study was divided into two segments. The first
segment aimed to gather sociodemographic information, encompassing details like age,
gender, and educational background. The second segment delved into a series of state-
ments exploring the core topics under investigation (i.e., artificial intelligence and machine
learning awareness and usage (AI and ML—4); digital transformation perception and
use statements (DT and US—5); citizen empowerment and perception statements (CE
and PS—4); and correlation perception statements (CPS—4), for which participants were
prompted to select the option(s) that align with their opinions on each statement. Further-
more, they were also requested to indicate the progression tendency of his/her answer,
i.e., an increasing tendency (strongly disagree → strongly agree) or the opposing (strongly
agree → strongly disagree) as shown in Figure 1.

 

Figure 1. The preferences expressed by participant one in response to the second part of the questionnaire.
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Each core topic is crafted to gauge aspects related to the role of the connections among
artificial intelligence, machine learning, digital transformation, and computational sustain-
ability, in the empowerment of citizens within a smart city framework. The statements
associated with each of the topics mentioned earlier can be found in Figure 1. The primary
goal of the AI and ML—4 topic is to comprehend and scrutinize various critical elements
regarding the participant’s awareness of AI and ML. It focuses on how people perceive
and utilize these technologies, as well as associated tools and services. The statements
included in this topic endeavors to assess awareness, gauge usage levels, identify emerging
trends, evaluate public perception, understand the overall impact, inform strategic decision-
making, and guide the development of policies and regulatory frameworks. Regarding
the topic DT and US—5, the expectation is that the researcher team will be able to extract
significant understanding of the public’s grasp on and opinions about DT, particularly
its effects on daily life and interactions with different entities. This knowledge is likely
to be instrumental in formulating strategies for communication and education related to
DT. These strategies will aim to improve public awareness of DT, assess the degree of
its implementation and user engagement, identify the impact as perceived by users, and
measure the quality of interactions between individuals and organizations. Concerning
the topic CE and PS—4, this set of statements is primarily designed to explore the public’s
sense of empowerment as individuals within society. It aims to determine the contributing
factors to this sentiment, identify potential areas for enhancement, and collate data that
may aid in the creation of more effective strategies to boost citizen empowerment. This
includes examining the concept of “empowerment” from diverse perspectives, how indi-
viduals encounter it in their daily existence, pinpointing tools or instances that intensify this
sensation, and assessing the level of empowerment individuals perceive across different
facets of their life. Finally, the set of statements included in the topic CPS—4 aims to delve
into the public’s understanding of the relationship between cutting-edge technologies such
as AI, ML, DT, and CS, and the empowerment of citizens. It seeks to explore the potential
advantages and limitations, uncover opportunities, and gauge expectations for the future.
The questionnaire is structured to gauge the perceived linkage between technology and em-
powerment, pinpoint moments where empowerment occurs, assess the perceived pros and
cons, identify tools that could facilitate empowerment, and understand the anticipations
for the future, just to name a few.

Unlike the descriptive nature of the responses in the first segment of the questionnaire,
the subsequent segment uses a four-level Likert scale (i.e., strongly agree (4), agree (3),
disagree (2), and strongly disagree (1)).

The questionnaires were administered monthly for a period of 6 months, spanning
from January 2023 to June 2023. Each participant received a hard copy of the questionnaire
in person. All 73 distributed questionnaires were returned, resulting in a 100% return rate.
The questionnaire was answered anonymously, and all participants agreed to participate
over a period of 6 months by completing the questionnaire monthly. The participants
received a secret personal code when they first answered the questionnaire, enabling
researchers to identify responses from the same participant across multiple instances.

4.3. Participants

The study comprised an opportunity sample of 73 participants who completed the
questionnaire during the study period. The age of the participants ranged from 18 to
65 years (with a mean age of 39.6 years), with 53.4% being women and 45.6% men.

4.4. Qualitative Data Processing

The information obtained in the second segment of the questionnaire uses a four-
level Likert scale (i.e., strongly agree (4), agree (3), disagree (2), and strongly disagree (1)).
However, since the tendency of progression of the participant’s response was also asked,
the Likert scale can be expanded to consider seven levels:

162



Algorithms 2024, 17, 192

Strongly Agree (4), Agree (3), Disagree (2), Strongly Disagree (1), Disagree (2), Agree
(3), Strongly Agree (4)

The expanded Likert scale should be read either from left to middle, indicating a
progression from strongly agree (4) to strongly disagree (1), or from middle to right,
indicating a progression from strongly disagree (1) to strongly agree (4). The first reading
suggests a shift towards a more negative perspective or a disagreement with the statements
presented, whereas the second suggests a shift towards a more positive perspective or an
agreement with the statements.

Following the methodological framework introduced in [49], the non-numeric infor-
mation was transformed into numerical information. In accordance with this methodology,
the z responses associated with each theme are visualized in a circle with a radius of 1/

√
π.

Within the circle, z sections are delineated, with a mark on the axis indicating each response
option, as described in Section 5.

4.5. Ethical Aspects

The research was conducted in accordance with existing legal norms and ethical
standards. All participants were informed about the research objectives and voluntarily
agreed to take part by filling out the questionnaire.

5. Case Study

The role of the connections among AI, ML, DT, and CS in the empowerment of citizens
within a smart city framework were examined at the individual level. Thus, Table 1 presents
the responses of participant one to the second segment of the questionnaire during the
study period, taking into account the expanded Likert scale. For example, for the AI and
ML—4 topic at month 0 the answer to S1 was Disagree (2)—Agree (3), indicating a decrease
in entropy, since there is an increasing tendency in his/her opinion. For S2, the answer
was Agree (3), a fact that speaks for itself. For S3, the answer was Disagree (2)—Strongly
Disagree (1), indicating an increase in entropy, since there is a decreasing tendency in
his/her opinion. Finally, for S4 no options were marked, corresponding to a vague situation.
In this case, although the values of the different forms of energy (i.e., exergy, vagueness,
and anergy) are unknown, it is known that the bandwidth is the interval [0, 1].

Table 1. The answers of participant one to the topics artificial intelligence and machine learning
awareness and usage (AI and ML—4), digital transformation perception and use statements (DT and
US—5), citizen empowerment and perception statements (CE and PS—4), and correlation perception
statements (CPS—4), over a six-month period.

Month Topic Statements
Expanded Likert Scale 7 Items *

4 3 2 1 2 3 4 Vagueness

0

AI and ML—4

S1 × ×
S2 ×
S3 × ×
S4 ×

DT and US—5

S5 ×
S6 ×
S7 ×
S8 ×
S9 ×

CE and PS—4

S10 ×
S11 ×
S12 ×
S13 ×
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Table 1. Cont.

Month Topic Statements
Expanded Likert Scale 7 Items *

4 3 2 1 2 3 4 Vagueness

0 CPS—4

S14 ×
S15 ×
S15 × ×
S17 ×

1

AI and ML—4

S1 ×
S2 ×
S3 × ×
S4 ×

DT and US—5

S5 ×
S6 ×
S7 × ×
S8 ×
S9 ×

CE and PS—4

S10 ×
S11 ×
S12 ×
S13 ×

CPS—4

S14 × ×
S15 ×
S15 × ×
S17 ×

2

AI and ML—4

S1 ×
S2 ×
S3 ×
S4 ×

DT and US—5

S5 ×
S6 ×
S7 ×
S8 ×
S9 ×

CE and PS—4

S10 ×
S11 ×
S12 ×
S13 ×

CPS—4

S14 ×
S15 ×
S15 × ×
S17 ×

3

AI and ML—4

S1 ×
S2 ×
S3 × ×
S4 ×

DT and US—5

S5 × ×
S6 × ×
S7 ×
S8 ×
S9 ×

CE and PS—4

S10 ×
S11 × ×
S12 ×
S13 ×
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Table 1. Cont.

Month Topic Statements
Expanded Likert Scale 7 Items *

4 3 2 1 2 3 4 Vagueness

3 CPS—4

S14 ×
S15 × ×
S15 ×
S17 ×

4

AI and ML—4

S1 × ×
S2 ×
S3 ×
S4 × ×

DT and US—5

S5 ×
S6 × ×
S7 ×
S8 ×
S9 ×

CE and PS—4

S10 × ×
S11 ×
S12 ×
S13 ×

CPS—4

S14 × ×
S15 × ×
S15 ×
S17 ×

5

AI and ML—4

S1 ×
S2 ×
S3 × ×
S4 ×

DT and US—5

S5 ×
S6 ×
S7 × ×
S8 ×
S9 ×

CE and PS—4

S10 ×
S11 ×
S12 ×
S13 × ×

CPS—4

S14 ×
S15 ×
S15 × ×
S17 ×

* (1) Strongly Disagree, (2) Disagree, (3) Agree, (4) Strongly Agree.

The shapes in Figure 2 represent the visual interpretation of participant one’s answers
to the topics AI and ML—4, DT and US—5, CE and PS—4, and CPS—4, at month 0, for
both the Best-Case Scenario (BCS) and the Worst-Case Scenario (WCS). In Figure 2, the dark
areas symbolize exergy, representing high-energy states or useful energy, the grey areas
indicate vagueness, suggesting uncertainty or areas of indeterminate energy states, and the
white ones stand for anergy, or areas where energy cannot be harnessed for work [49–51].

The assessment of the areas shown in Figure 2, for the BCS and for the WCS are
provided in Tables 2 and 3, respectively, for both scales, i.e., from strongly agree (4) to
strongly disagree (1), and from strongly disagree (1) to strongly agree (4).
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π π

ππ

ππ

π π

Figure 2. A pictorial reading of the participant one answers to the statements S1 to S17, in the
best-case and worst-case scenarios at month 0. The dark, gray, and white colored areas correspond to
exergy, vagueness, and anergy, respectively.
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Table 2. Evaluation of exergy, vagueness, and anergy for artificial intelligence and machine learning
awareness and usage (AI and ML—4) topic in month 0, in the best-case scenario, for both scales, i.e.,
from strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to strongly agree (4).

Statement AI and ML—4—Scale (4) (3) (2) (1) AI and ML—4—Scale (1) (2) (3) (4)

S1

− exergyS1
= − 1

4 πr2
]0

2
4

√
1
π

= − 1
4 πr2

]0

2
4

√
1
π

= π

(
0 −

(
2
4

√
1
π

)2
)

= 0.06

− vaguenessS1
= − 1

4 πr2
] 2

4

√
1
π

2
4

√
1
π

= 0

− anergyS1
= − 1

4 πr2
]√ 1

π

2
4

√
1
π

= 0.19

S2

− exergyS2
= − 1

4 πr2
]0

2
4

√
1
π

= 0.06

− vaguenessS2
= − 1

4 πr2
] 2

4

√
1
π

2
4

√
1
π

= 0

− anergyS2
= − 1

4 πr2
]√ 1

π

2
4

√
1
π

= 0.19

S3

exergyS3
= 1

4 πr2
] 3

4

√
1
π

0
= 0.14 −

vaguenessS3
= 1

4 πr2
] 3

4

√
1
π

3
4

√
1
π

= 0 −

anergyS3
= 1

4 πr2
]√ 1

π

3
4

√
1
π

= 0.11 −

S4

exergyS4
= 1

4 πr2
]0

0
= 0 −

vaguenessS4
= 1

4 πr2
]0

0
= 0 −

anergyS4
= 1

4 πr2
]√ 1

π

0
= 0.25 −

Similarly, by repeating the calculations presented above, it is possible to compute the
values of the different forms of energy, i.e., exergy, vagueness, and anergy for all topics
(i.e., AI and ML—4, DT and US—5, CE and PS—4, and CPS—4), for the various months
during which the study was conducted, and for all participants. Furthermore, the Degree
of Confidence (DoC) was computed according to Figure 3, using Equation (1), and the
Quality of Information (QoI) was also computed using Equation (2), with all the findings
presented in Table 4, for the BCS.

DoC

Exergy+Vagueness

Figure 3. Evaluation of the Degree of Confidence (DoC) based on the values of exergy and vagueness.
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Table 3. Evaluation of exergy, vagueness, and anergy for artificial intelligence and machine learning
awareness and usage (AI and ML—4) topic in month 0, in the worst-case scenario, for both scales, i.e.,
from strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to strongly agree (4).

Statement AI and ML—4—Scale (4) (3) (2) (1) AI andML—4—Scale (1) (2) (3) (4)

S1

− exergyS1
= − 1

4 πr2
]0

2
4

√
1
π

= 0.06

− vaguenessS1
= − 1

4 πr2
] 3

4

√
1
π

2
4

√
1
π

= 0.08

− anergyS1
= − 1

4 πr2
]√ 1

π

3
4

√
1
π

= 0.11

S2

− exergyS2
= − 1

4 πr2
]0

2
4

√
1
π

= 0.06

− vaguenessS2
= − 1

4 πr2
] 2

4

√
1
π

2
4

√
1
π

= 0

− anergyS2
= − 1

4 πr2
]√ 1

π

2
4

√
1
π

= 0.19

S3

exergyS3
= 1

4 πr2
] 3

4

√
1
π

0
= 0.14 −

vaguenessS3
= 1

4 πr2
]√ 1

π

3
4

√
1
π

= 0.11 −

anergyS3
= 1

4 πr2
]√ 1

π√
1
π

= 0 −

S4

exergyS4
= 1

4 πr2
]0

0
= 0 −

vaguenessS4
= 1

4 πr2
]√ 1

π

0
= 0.25 −

anergyS4
= 1

4 πr2
]√ 1

π√
1
π

= 0 −

Table 4. Values of EXergy (EX), VAgueness (VA), ANergy (AN), Degree of Confidence (DoC), and the
Quality of Information (QoI), regarding participant one, for all topics (i.e., AI and ML—4, DT and
US—5, CE and PS—4, and CPS—4) for the study period, in the best-case scenario, for both scales, i.e.,
from strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to strongly agree (4).

Scale (4) (3) (2) (1) Scale (1) (2) (3) (4)

EX VA AN DoC QoI EX VA AN DoC QoI

M
on

th
0

AI and ML—44–1 0.14 0 0.36 0.99 0.86 AI and ML—41–4 0.12 0 0.38 0.99 0.88
DT and US—54–1 0.20 0 0 0.98 0.80 DT and US—51–4 0.25 0 0.55 0.97 0.75
CE and PS—44–1 0.25 0 0.25 0.97 0.75 CE and PS—41–4 0.20 0 0.30 0.98 0.80

CPS—44–1 0.31 0 0.19 0.95 0.69 CPS—41–4 0.28 0 0.22 0.96 0.72
catch-all-clause 0.22 0 0.20 0.97 0.78 catch-all-clause 0.21 0 0.36 0.98 0.79

M
on

th
1

AI and ML—44–1 − − − − − AI and ML—41–4 0.33 0 0.67 0.94 0.67
DT and US—54–1 − − − − − DT and US—51–4 0.28 0 0.72 0.96 0.72
CE and PS—44–1 0.75 0 0 0.66 0.25 CE and PS—41–4 0.06 0 0.19 1.0 0.94

CPS—44–1 0.14 0 0.11 0.99 0.86 CPS—41–4 0.19 0 0.56 0.98 0.81
catch-all-clause 0.44 0 0.06 0.83 0.56 catch-all-clause 0.22 0 0.54 0.97 0.78

M
on

th
2

AI and ML—44–1 0.25 0 0 0.97 0.75 AI and ML—41–4 0.14 0 0.61 0.99 0.86
DT and US—54–1 − − − − − DT and US—51–4 0.24 0 0.76 0.97 0.76
CE and PS—44–1 0.25 0 0 0.97 0.75 CE and PS—41–4 0.42 0 0.33 0.91 0.58

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.19 0 0.56 0.98 0.81
catch-all-clause 0.19 0 0.06 0.98 0.81 catch-all-clause 0.25 0 0.57 0.95 0.75

M
on

th
3

AI and ML—44–1 0.14 0 0.11 0.99 0.86 AI and ML—41–4 0.09 0 0.66 0.99 0.91
DT and US—54–1 0.05 0 0.15 1.0 0.95 DT and US—51–4 0.26 0 0.54 0.97 0.74
CE and PS—44–1 0.39 0 0.11 0.92 0.61 CE and PS—41–4 0.20 0 0.30 0.98 0.80

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.09 0 0.66 0.99 0.91
catch-all-clause 0.16 0 0.14 0.98 0.84 catch-all-clause 0.16 0 0.54 0.98 0.84

M
on

th
4

AI and ML—44–1 0.06 0 0.19 1.0 0.94 AI and ML—41–4 0.05 0 0.70 1.0 0.95
DT and US—54–1 0.11 0 0.09 0.99 0.89 DT and US—51–4 0.12 0 0.68 0.99 0.88
CE and PS—44–1 0.14 0 0.11 0.99 0.86 CE and PS—41–4 0.27 0 0.48 0.96 0.73

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.09 0 0.66 0.99 0.91
catch-all-clause 0.09 0 0.14 1.0 0.91 catch-all-clause 0.13 0 0.63 0.99 0.87
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Table 4. Cont.

Scale (4) (3) (2) (1) Scale (1) (2) (3) (4)

EX VA AN DoC QoI EX VA AN DoC QoI

M
on

th
5

AI and ML—44–1 0.06 0 0.19 1.0 0.94 AI and ML—41–4 0.05 0 0.70 1.0 0.95
DT and US—54–1 0.11 0 0.09 0.99 0.89 DT and US—51–4 0.05 0 0.75 1.0 0.95
CE and PS—44–1 0.06 0 0.19 1.0 0.94 CE and PS—41–4 0.19 0 0.56 0.98 0.81

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.14 0 0.61 0.99 0.86
catch-all-clause 0.07 0 0.16 1.0 0.93 catch-all-clause 0.11 0 0.65 0.99 0.89

Similarly, by repeating the calculations presented above, it is possible to compute the
values of the different forms of energy, i.e., exergy, vagueness, and anergy for all topics
(i.e., AI and ML—4, DT and US—5, CE and PS—4, and CPS—4), for the various months
during which the study was conducted, and for all participants. Furthermore, the Degree
of Confidence (DoC) was computed according to Figure 3, using Equation (1), and the
Quality of Information (QoI) was also computed using Equation (2), with all the findings
presented in Table 4, for the BCS.

DoC =

√
1 − (exergy + vagueness)2 (1)

QoI = 1 − (exergy + vagueness) (2)

For both scales, i.e., ranging from strongly agree (4) to strongly disagree (1) and from
strongly disagree (1) to strongly agree (4), the values of exergy, vagueness, and anergy
presented in Table 4 are the sum of the respective areas. Therefore, in the case of the AI and
ML—4 topic in month 0, in the best-case scenario, the value of exergy on the scale from
strongly agree (4) to strongly disagree (1) is computed based on the values provided in
Table 2.

exergy4−1 = exergy4−1S3
+ exergy4−1S4

= 0.14 + 0 = 0.14

whereas for the scale strongly disagree (1) to strongly agree (4) is:

exergy1−4 = exergy1−4S1
+ exergy1−4S2

= 0.06 + 0.06 = 0.12

Likewise, the values related to the different forms of energy, DoC, and QoI, for the BCS,
were computed for the remaining participants, integrating a database, of which Table 4
represents only an excerpt, since it refers only to participant one. Program 2 describes the
answers of participant one using the data provided in Table 4 for month 0.

Program 2. A Logic Programming view of predicates AI and ML—4, DT and US—5, CE and
PS—4, and CPS—4’s extensions for the best-case scenario at month 0, for participant one.

{
/* The sentences below state that the extension of predicates AI and ML—44–1, . . ., cps—41–4 in best-case scenario are based on explicitly
specified clauses and those that cannot be dropped */

¬ ai&ml − 44−1 ( EX, VA, AN, DoC, QoI)
← not ai&ml − 44−1 ( EX, VA, AN, DoC, QoI),

not exceptionai&ml−44−1
( EX, VA, AN, DoC, QoI)

ai&ml − 44−1 (0.14, 0, 0.36, 0.99, 0.86).
· · · (the dots stand for the remaining predicates4–1 in Table 4)

}
{

¬ ai&ml − 41−4 ( EX, VA, AN, DoC, QoI)
← not ai&ml − 41−4 ( EX, VA, AN, DoC, QoI),

not exceptionai&ml−41−4
( EX, VA, AN, DoC, QoI)

ai&ml − 41−4 (0.12, 0, 0.38, 0.99, 0.88).
· · · (the dots stand for the remaining predicates1–4 in Table 4)

}
Similarly, for the WCS, Table 5 presents, for participant one, the different forms of

energy, DoC, and QoI for AI and ML—4, DT and US—5, CE and PS—4, and CPS—4, for
the various months during which the study was conducted.
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Table 5. Values of EXergy (EX), VAgueness (VA), ANergy (AN), Degree of Confidence (DoC), and the
Quality of Information (QoI), regarding participant one, for all topics (i.e., AI and ML—4, DT and US—5,
CE and PS—4, and CPS—4) for the study period, in the worst-case scenario, for both scales, i.e., from
strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to strongly agree (4).

Scale (4) (3) (2) (1) Scale (1) (2) (3) (4)

EX VA AN DoC QoI EX VA AN DoC QoI

M
on

th
0

AI and
ML—44–1

0.14 0.36 0 0.87 0.50 AI and
ML—41–4

0.12 0.08 0.30 0.98 0.80

DT and
US—54–1

0.20 0 0 0.98 0.80 DT and
US—51–4

0.25 0 0.55 0.97 0.75

CE and
PS—44–1

0.25 0.25 0 0.87 0.50 CE and
PS—41–4

0.20 0 0.30 0.98 0.80

CPS—44–1 0.31 0.08 0.11 0.92 0.61 CPS—41–4 0.28 0 0.22 0.96 0.72
catch-all-clause 0.22 0.17 0.03 0.91 0.61 catch-all-clause 0.21 0.02 0.34 0.97 0.77

M
on

th
1

AI and
ML—44–1

− − − − − AI and
ML—41–4

0.33 0.19 0.48 0.86 0.48

DT and
US—54–1

− − − − − DT and
US—51–4

0.28 0.06 0.66 0.94 0.66

CE and
PS—44–1

0.75 0 0 0.66 0.25 CE and
PS—41–4

0.06 0 0.19 1.0 0.94

CPS—44–1 0.14 0 0.11 0.99 0.86 CPS—41–4 0.19 0.16 0.41 0.94 0.65
catch-all-clause 0.44 0 0.06 0.83 0.56 catch-all-clause 0.22 0.10 0.44 0.94 0.68

M
on

th
2

AI and
ML—44–1

0.25 0 0 0.97 0.75 AI and
ML—41–4

0.14 0 0.61 0.99 0.86

DT and
US—54–1

− − − − − DT and
US—51–4

0.24 0 0.76 0.97 0.76

CE and
PS—44–1

0.25 0 0 0.97 0.75 CE and
PS—41–4

0.42 0 0.33 0.91 0.58

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.19 0.08 0.48 0.96 0.73
catch-all-clause 0.19 0 0.06 0.98 0.81 catch-all-clause 0.25 0.02 0.55 0.96 0.73

M
on

th
3

AI and
ML—44–1

0.14 0 0.11 0.99 0.86 AI and
ML—41–4

0.09 0.05 0.61 0.99 0.86

DT and
US—54–1

0.05 0.06 0.09 0.99 0.87 DT and
US—51–4

0.26 0.06 0.48 0.95 0.68

CE and
PS—44–1

0.39 0 0.11 0.92 0.61 CE and
PS—41–4

0.20 0.08 0.22 0.96 0.72

CPS—44–1 0.06 0.08 0.11 0.99 0.86 CPS—41–4 0.09 0 0.66 0.99 0.91
catch-all-clause 0.16 0.04 0.11 0.97 0.80 catch-all-clause 0.16 0.05 0.49 0.97 0.79

M
on

th
4

AI and
ML—44–1

0.06 0.08 0.11 0.99 0.86 AI and
ML—41–4

0.05 0.05 0.66 0.99 0.90

DT and
US—54–1

0.11 0 0.09 0.99 0.89 DT and
US—51–4

0.12 0.04 0.64 0.99 0.84

CE and
PS—44–1

0.14 0 0.11 0.99 0.86 CE and
PS—41–4

0.27 0.08 0.41 0.94 0.65

CPS—44–1 0.06 0.08 0.11 0.99 0.86 CPS—41–4 0.09 0.05 0.61 0.99 0.86
catch-all-clause 0.09 0.04 0.11 0.99 0.87 catch-all-clause 0.13 0.06 0.58 0.98 0.81

M
on

th
5

AI and
ML—44–1

0.06 0 0.19 1.0 0.94 AI and
ML—41–4

0.05 0.05 0.65 0.99 0.90

DT and
US—54–1

0.11 0 0.09 0.99 0.89 DT and
US—51–4

0.05 0.04 0.71 0.99 0.91

CE and
PS—44–1

0.06 0.08 0.11 0.99 0.86 CE and
PS—41–4

0.19 0 0.56 0.98 0.81

CPS—44–1 0.06 0 0.19 1.0 0.94 CPS—41–4 0.14 0.05 0.56 0.98 0.81
catch-all-clause 0.07 0.02 0.15 0.995 0.91 catch-all-clause 0.11 0.04 0.62 0.985 0.85

The values related to the different forms of energy, DoC, and QoI, for the WCS, were
also computed for the remaining participants, integrating a database, of which Table 5
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represents only an excerpt, since it refers only to participant one. Program 3 describes the
answers of participant one using the data provided in Table 5 for month 0.

Program 3. A Logic Programming view of predicates AI and ML—4, DT and US—5, CE and
PS—4, and CPS—4’s extensions for the worst-case scenario at month 0, for participant one.

{
/* The sentences below state that the extension of predicates AI and ML—44–1, . . ., cps—41–4 in worst-case
scenario are based on explicitly specified clauses and those that cannot be dropped */

¬ ai&ml − 44−1 (EX, VA, AN, DoC, QoI)
← not ai&ml − 44−1 (EX, VA, AN, DoC, QoI),

not exceptionai&ml−44−1
(EX, VA, AN, DoC, QoI)

ai&ml − 44−1 (0.14, 0.36, 0, 0.87, 0.50).
· · · (the dots stand for the remaining predicates4–1 in Table 4)

}
{

¬ ai&ml − 41−4 (EX, VA, AN, DoC, QoI)
← not ai&ml − 41−4 (EX, VA, AN, DoC, QoI),

not exceptionai&ml−41−4
(EX, VA, AN, DoC, QoI)

ai&ml − 41−4 (0.12, 0.08, 0.30, 0.98, 0.80).
· · · (the dots stand for the remaining predicates1–4 in Table 4)

}
Aiming to extract specific data or to conduct calculations based on records stored in the

database (Tables 4 and 5), Program 4 is presented. It delineates predicates corresponding to
each participant entry, establishes specific thresholds for categorization, and integrates rules
for the calculation and categorization of averages based on these thresholds. Therefore,
within Program 4, one may find:

• Facts (item_score, three arguments): Each fact denotes a score for a topic. The former
argument is the topic code, the next one is the participant code, and the last one is
the score.

• Retrieving Score (get_item_score, two arguments): This predicate returns the score for
a particular participant using its code. The former argument is the participant code,
whereas the last one is the score.

• Listing Participants Above a Specific Threshold (participants_above_threshold, two
arguments): This predicate returns all participants with scores exceeding the specified
threshold via the findall built-in predicate.

• Average Score (average_item_score, one argument): This predicate evaluates the
average score for all participants via the built-in predicates.

• Maximum Score (max_item_score, one argument): This predicate returns the maxi-
mum score among all participants via the built-in predicate.

• Minimum Score (min_item_score, one argument): This predicate returns the minimum
score among all participants via the built-in predicate.

Program 4. An excerpt of the program based on the data provided in Table 4 for managing the
participants’ answers in the best-case scenario.

% scores for the various topics for participant one at month 0 in the best-case scenario
AI and ML_4_4_1_exergy_score(‘AI and ML_4_4_1’, ‘Participant 1’, 0.14).
AI and ML_4_1_4_exergy_score(‘AI and ML_4_1_4’, ‘Participant 1’, 0.12).
AI and ML_4_4_1_vagueness_score(‘AI and ML_4_4_1’, ‘Participant 1’, 0).
AI and ML_4_1_4_vagueness_score(‘AI and ML_4_1_4’, ‘Participant 1’, 0).
AI and ML_4_4_1_anergy_score(‘AI and ML_4_4_1’, ‘Participant 1’, 0.36).
AI and ML_4_1_4_anergy_score(‘AI and ML_4_1_4’, ‘Participant 1’, 0.38).
AI and ML_4_4_1_doc_score(‘AI and ML_4_4_1’, ‘Participant 1’, 0.99).
AI and ML_4_1_4_doc_score(‘AI and ML_4_1_4’, ‘Participant 1’, 0.99).
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AI and ML_4_4_1_qoi_score(‘AI and ML_4_4_1’, ‘Participant 1’, 0.86).
AI and ML_4_1_4_qoi_score(‘AI and ML_4_1_4’, ‘Participant 1’, 0.88).
. . . (the dots stand for the predicates DT and US_5_4_1; DT and US_5_1_4; CE and PS_4_4_1;

CE and PS_4_1_4; CPS_4_4_1; and CPS_4_1_4 in Table 4)
% Retrieving the DoC score for a specific participant
get_ doc_score(ParticipantCode, Score): -

doc_score(ParticipantCode, Score).
% Listing all participants with a DoC score above a specified threshold
participants_above_threshold(Threshold, ParticipantsCodes): -

findall(ParticipantCode, (doc_score(ParticipantCode, Score), Score > Threshold),
ParticipantsCodes).

% Calculating the average DoC score for all participants
average_ doc_score(Average): -

findall(Score, doc_score(ParticipantCode, Score), Scores),
sum_list(Scores, Total),
length(Scores, Count),
Count > 0, % Prevent division by zero
Average is Total/Count.

% Finding the maximum DoC score among all participants
max_ doc_score(MaxScore): -

findall(Score, doc_score(ParticipantCode, Score), Scores),
max_list(Scores, MaxScore).

% Finding the minimum DoC score among all participants
min_ doc_score(MinScore): -

findall(Score, doc_score(ParticipantCode, Score), Scores),
min_list(Scores, MinScore).

% Retrieving the QoI score for a specific participant
get_ qoi_score(ParticipantCode, Score): -

qoi_score(ParticipantCode, Score).
% Listing all participants with a QoI score above a specified threshold
participants_above_threshold(Threshold, ParticipantsCodes): -

findall(ParticipantCode, (qoi_score(ParticipantCode, Score), Score > Threshold),
ParticipantsCodes).

% Calculating the average QoI score for all participants
average_ qoi_score(Average): -

findall(Score, qoi_score(ParticipantCode, Score), Scores),
sum_list(Scores, Total),
length(Scores, Count),
Count > 0, % Prevent division by zero
Average is Total/Count.

% Finding the maximum QoI score among all participants
max_ qoi_score(MaxScore): -

findall(Score, qoi_score(ParticipantCode, Score), Scores),
max_list(Scores, MaxScore).

% Finding the minimum QoI score among all participants
min_ qoi_score(MinScore): -

findall(Score, qoi_score(ParticipantCode, Score), Scores),
min_list(Scores, MinScore).

To illustrate the process of interacting with the database (Tables 4 and 5) using Program
4, several query examples are presented below. These examples emphasize the extraction
of specific data or the execution of calculations using the scores:

% To obtain the QoI score for the ‘Participant 1’
?- get_qoi_score(‘Participant 1’, Score).

% To retrieve all participants with a QoI score above 0.75
?- participants_ qoi_score_above_threshold(0.75, ParticipantsCodes).

% To compute the average QoI score for all participants
?- average_qoi_score(Average).
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% To retrieve the maximum QoI score among all participants
?- max_qoi_score(MaxScore).

% To retrieve the minimum QoI score among all participants
?- min_qoi_score(MinScore).

The sample queries illustrate the method of engaging with the database to extract
specific data or to conduct calculations based on recorded scores. For instance, it is possible
to monitor the fluctuations of a participant’s entropic state (i.e., exergy + vagueness) and
QoI across a six-month span, for the BCS (Figure 4) and for the WCS (Figure 5).

Entropic States BCS QoI Scores BCS

Figure 4. The evolution of participant one’s Entropic State (ES) and Quality-of-Information (QoI)
according to his/her answers within the Best-Case Scenario (BCS) over a six-month period for both
scales, i.e., from strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to strongly
agree (4).

Entropic States WCS QoI Scores WCS

Figure 5. The evolution of participant one’s Entropic State (ES) and Quality-of-Information (QoI)
according to his/her answers within the Worst-Case Scenario (WCS) over a six-month period for
both scales, i.e., from strongly agree (4) to strongly disagree (1), and from strongly disagree (1) to
strongly agree (4).
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When considering the significance of the results obtained from analyzing question-
naire responses over a six-month period within the context of SCs, the essay should explore
the reliability and validity of these results to mitigate the influence of arbitrary factors.
The study’s novel approach to evaluating entropic efficiency in problem-solving scenarios
suggests that the methodology is both rigorous and systematic, aiming to reflect the true
relationship between the use of technology and citizen empowerment in SCs. Firstly, the
significance of the results lies in the consistent trend observed over a sustained period
(Figures 4 and 5). This is not a one-off measurement but a pattern emerging from data
collected systematically over half a year, reducing the chance of random fluctuations or
temporary biases affecting the findings. The geometric interpretation of citizens’ entropic
states provides a mathematical and visual representation of this evolution, reinforcing
the argument that the observed changes are structured and significant. Secondly, the
study uses a detailed and well-defined questionnaire, divided into specific topics (i.e.,
AI and ML—4, DT and US—5, CE and PS—4, CPS—4), to capture the multifaceted im-
pact of technology. This comprehensive approach ensures that a wide range of factors
influencing citizen empowerment are considered, which strengthens the argument against
arbitrary influences.

The premise that lower entropy values denote order and higher values reflect dis-
order provides a quantifiable measure of understanding. Participants with structured
and consistent responses display low entropy, suggesting a firm grasp of the concepts in
question. Conversely, high values of entropy indicate varied and possibly chaotic responses,
characteristic of less understanding or misconceptions. The extreme cases, i.e., individuals
with no grasp of AI, ML, or DT presented high entropy, their responses lacking coherent
structure. In contrast, the experts exhibited low entropy, their responses demonstrating
coherent structure and a depth of understanding. The act of completing a questionnaire
can raise awareness and pique interest in the topics covered. In this context, participants
are nudged to reflect on concepts they might not have otherwise considered, potentially
altering their level of understanding. It is essential to consider whether this heightened at-
tention, spurred by the questionnaire itself, constitutes an artificial influence. Arguably, any
form of measurement affects the subject being measured, a phenomenon well-documented
in quantum mechanics as the observer effect. In the case of completing a questionnaire, this
effect could manifest as an increase in the participants’ awareness of the topics covered.
The act of answering questions about these topics may compel individuals to reflect and
thereby deepen their understanding, even if superficially. In the scenario where filling out
a questionnaire leads to an enduring engagement with the concepts, fostering continued
learning and curiosity, then the influence can be deemed constructive. However, if the
impact is fleeting, dissipating soon after the questionnaire is completed, it could be consid-
ered artificial, i.e., a transient spike in awareness with no lasting educational value. The
entropic approach employed in this study helps to gauge the quality of understanding that
arises from this process. By examining the evolution of participants’ entropic states over
time, the researcher can ascertain whether the questionnaires have a lasting educational
effect or merely a momentary one. In summary, the act of filling a questionnaire has the
potential to both evaluate and influence the understanding of technical concepts. While
there is a risk that the influence could be artificial, it ultimately depends on the persistence
of the effect. In the present case, if the engagement with AI, ML, DT, and related concepts
continues after the questionnaire filling, it can lead to a genuine enhancement of under-
standing. Therefore, it is not the immediate influence that should be under scrutiny but
the long-term effects on the participants’ comprehension and interest in these burgeoning
fields of technology. In the future, it would be beneficial to regularly administer the surveys
(e.g., every 4 months) after the initial 6-month period to better determine the persistence of
the educational impact. Only through longitudinal studies is it possible to truly understand
whether the questionnaires are simply catalysts for momentary awareness or effective tools
for lasting awareness in complex domains such as AI, ML, and DT, just to name a few.
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6. Result Analysis

This paper presents an inclusive study that delves into the integration and impact of
AI, ML, DT, and CS within the context of SCs. A novel approach is proposed for evaluating
entropic efficiency in problem-solving scenarios within AI, drawing parallels between
the principles of thermodynamics and the organization of knowledge for computational
interpretation. This approach aims to enhance the ability of AI systems to make intelligent
decisions based on structured knowledge. Furthermore, the document explores the concept
of citizen empowerment within SCs, arguing that the convergence of AI, ML, DT, and CS
technologies provides residents with the tools to make informed choices, actively participate
in community life, and adopt sustainable behaviors. It suggests that empowerment is
pivotal for navigating the complexities of modern urban environments and underscores
the potential of these technologies to reshape urban living. This research includes detailed
questionnaires aimed at understanding public awareness, perception, and use of AI, ML,
and DT technologies. It assesses the impact of these technologies on citizen empowerment
and evaluates how they contribute to the creation of smart, sustainable urban ecosystems.
Through the analysis of questionnaire answers over several months, the study presents
a geometric interpretation of citizens’ entropic states, offering insights into the evolving
relationship between technology use and empowerment in smart cities. This analytical
approach highlights the transformative potential of integrating AI, ML, DT, and CS into
urban development strategies, emphasizing the importance of technology in enhancing
citizen engagement, sustainability, and the overall quality of urban life.

When analyzing the results of this study, it becomes evident that the achieved out-
comes are intertwined with various other research findings, connecting technological
advances with enhancements in urban life. Indeed, the present findings align with sev-
eral works, including Batty et al. [1] who conceptualized SCs as a convergence of digital
networks and urban environments, and Allam and Newman [2], who underscored the
transformative potential of technology in urban spaces. Additionally, it aligns with re-
sults obtained by Anthopoulos [3], who elucidates the interconnected nature of urban
technology, thus underlining with the intertwined role of AI and ML as identified in this
study. Furthermore, the insights drawn from Caragliu et al. [4] regarding the economic
framework of SCs anticipate the economic implications of the current study’s results. The
implementation of the questionnaire over a period of six months is in line with the ideas
presented by Kitchin [7] involving the notion of data-driven cities.

The longitudinal approach used in this study, marked by a geometric interpretation
of citizens’ entropic states, offers a novel perspective akin to the entropic frameworks
presented by Neirotti et al. [10], who explore the informational structure of urban systems.
Additionally, this study touches upon the themes of DT and its impact on governance
and service delivery, contributing to the discussion initiated by Wirtz et al. [12,52]. These
authors explore the idea of cities as platforms for innovation, a concept that the current
study reinforces through its exploration of DT’s transformative power. The current study
also ventures into the realm of CS, a cornerstone of SCs, which echoes the environmental
concerns addressed by Albino et al. [14]. The findings presented contribute to this ongoing
discourse by showcasing how AI and ML can catalyze resource optimization and waste
reduction, thus aligning with the sustainability goals put forth by Bokhari and Myeong [20]
in their work on AI in SCs.

The current study contributes to a better understanding of the complexity of urban
ecosystems through its innovative entropic approach, thereby complementing the research
by Meijer and Bolíver [15], which examines the empirical and normative aspects of SCs. The
application of entropy to KRR within the study could also augment the foundational work
on KRR methodologies discussed by Lifschitz et al. [42]. In terms of citizen empowerment,
the results presented in this study align with the work of Goldsmith et al. [16] where they
advocate for the potential of data to enhance citizen participation.

The questionnaire used in this study mirrors this emphasis on engaging citizens,
providing empirical data that reinforce the significance of AI, ML, DT, and CS in realizing
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the vision of responsive and participatory urban spaces. By situating its methodology
and results within these contexts, the current study not only reaffirms the findings of its
predecessors but also paves the way for future studies. It encourages a deeper probe into
the synergies between urban technology and societal benefits, advocating for a continuous
dialogue between empirical findings and theoretical advancements. The richness of this
comparison highlights the study’s intricate relationship with the broader research landscape
and its potential to contribute meaningful insights into the interdisciplinary study of
SCs and technology’s role in urban development and citizen empowerment. It is this
interlacing of the study’s findings with the work of other authors that propels the academic
discussion forward, challenging and refining the understanding of SCs in the age of
pervasive technology.

Although this study produced promising findings, it is essential to acknowledge
certain limitations that impeded a deeper evaluation of the role of the connections among
AI, ML, DT, and CS, in the empowerment of citizens within a smart city framework. The
primary constraint stems from the sample size and its nature, i.e., an opportunity sample.
By expanding the sample to encompass participants from all regions of Portugal, it becomes
feasible to derive results that enable generalization across the entire Portuguese territory.
Moreover, gathering additional data on the socio-demographic and socio-economic at-
tributes of the participants will allow a more thorough examination of the factors that could
impact the perceptions of the Portuguese population regarding the role of the connections
among AI, ML, DT, and CS, in the empowerment of citizens within a smart city framework.

Finally, it is also important to address some possible criticisms/limitations by un-
derscoring the research’s intentional focus and the methodological underpinnings that
guided the approach. The inherent nature of scholarly research in technology and urban
development often carries a forward-looking perspective. This is not to overlook potential
drawbacks or challenges but to explore and maximize the capabilities of emerging tech-
nologies for societal benefits. The study’s positive stance reflects a proactive approach to
problem-solving and innovation, a crucial element in the domains of AI, ML, DT, CS, and
SCs. It aligns with the aspirational goals of these fields, which seek to harness technology
for the greater good, optimize human life, and promote sustainable development. The
“dark parts” of these concepts suggests a balanced view that encompasses potential risks,
limitations, and negative implications. While this is indeed valuable for a comprehensive
overview, the scope of any analysis is bound by its objectives. The optimistic character of
the analysis serves a strategic purpose, i.e., to ideate, conceptualize, and propose solutions
that can be iteratively refined and critically evaluated in future research. It is part of a
strategic view where different studies contribute varying perspectives, eventually creating
a balanced understanding. In summary, concerns about exploring the full spectrum of
consequences in technological advancements are valid and the positive focus of the study
is justified within its context and scope. The research in question serves as a constructive
addition to the collective understanding of how emerging technologies can be leveraged
for urban and societal betterment. Future research can and should explore the negative
implications, as a natural progression of scholarly debate and as a necessary complement
to this study.

7. Conclusions and Future Work

This work finishes off by synthesizing the impact of integrating artificial intelligence,
machine learning, digital transformation, and computational sustainability in smart cities. It
emphasizes that these technological pillars are crucial for transforming urban environments
into more efficient, personalized, and sustainable habitats. This synergy between technol-
ogy and urban management empowers citizens by equipping them with the knowledge and
tools necessary for engaging actively in their communities and making sustainable choices.
Looking forward, the text suggests a roadmap for future research that includes a deeper
dive into the confluence of artificial intelligence, machine learning, digital transformation,
and computational sustainability within urban ecosystems. It highlights the importance
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of pioneering more refined methods for analyzing entropic efficiency in artificial intelli-
gence, which could significantly improve the sophistication of knowledge representation
and reasoning. This initiative aims to amplify the decision-making capabilities of artifi-
cial intelligence systems, making them more responsive and effective in urban settings.
Furthermore, it advocates for an interdisciplinary approach to research, blending data
science, urban studies, sustainability, and technology development to create smarter, more
responsive cities. It proposes an investigation into new strategies for enhancing citizen
empowerment through technology, aiming to better understand how these tools can foster
greater civic participation, tackle urban issues, and promote sustainable development.
This vision for future work underscores the potential of technology to revolutionize city
living, making urban areas not just more technologically adept but also more inclusive and
conducive to the well-being of all residents. By charting a course for future research and
innovation, this study lays the groundwork for the next generation of smart cities that are
sustainable, efficient, and empowering for citizens worldwide. Encouraging eco-innovative
urban development is a complex endeavor fraught with limitations. However, by proac-
tively identifying these limitations and implementing thoughtful mitigation strategies,
cities can navigate these challenges. Mitigation is not merely about addressing current
issues but anticipating future ones, ensuring that the smart city framework remains robust,
inclusive, and adaptable. Ultimately, by joining innovation with foresight, the goal of
sustainable and empowered urban living can be realized. Future research should focus
on the longitudinal study of these mitigation strategies, assessing their effectiveness and
refining them over time. It should also explore the intersectionality of eco-innovation with
socio-economic factors, ensuring that the progress in urban development translates into
tangible improvements in the quality of life for all citizens.
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Abstract: Transportation asset management has historically overlooked equity considerations. How-
ever, recently, there has been a significant increase in concerns about this issue, leading to a range
of research and practices aimed at achieving more equitable outcomes. Yet, addressing equity is
challenging and time-consuming, given its complexity and multifaceted nature. Several factors can
significantly impact the outcome of an analysis, including the definition of equity, the evaluation and
quantification of its impacts, and the community classification. As a result, there can be a wide range
of interpretations of what constitutes equity. Therefore, there is no single correct or incorrect approach
for equity evaluation, and different perspectives, impacts, and analysis methods could be considered
for this purpose. This study reviews previous research on how transportation agencies are integrating
equity into transportation asset management, particularly pavement management systems. The
primary objective is to investigate important equity factors for pavement management and propose a
prototype framework that integrates economic, environmental, and social equity considerations into
the decision-making process for pavement maintenance, rehabilitation, and reconstruction projects.
The proposed framework consists of two main steps: (1) defining objectives based on the three equity
dimensions, and (2) analyzing key factors for identifying underserved areas through a case study
approach. The case study analyzed pavement condition and sociodemographic data for Califor-
nia’s Bay Area. Statistical analysis and a machine learning method revealed that areas with higher
poverty rates and worse air quality tend to have poorer pavement conditions, highlighting the need
to consider these factors when defining underserved areas in Bay Area and promoting equity in
pavement management decision-making. The proposed framework incorporates an optimization
problem to simultaneously minimize disparities in pavement conditions between underserved and
other areas, reduce greenhouse gas emissions from construction and traffic disruptions, and maxi-
mize overall network pavement condition subject to budget constraints. By incorporating all three
equity aspects into a quantitative decision-support framework with specific objectives, this study
proposes a novel approach for transportation agencies to promote sustainable and equitable asset
management practices.

Keywords: equity; asset management; pavement decision-making; resource allocation

1. Introduction

Transportation asset management significantly impacts various aspects of modern
society, including mobility, health, safety, economic opportunities, and overall life quality.
Decision-making is a very important step in asset management, as it involves a wide range
of activities, including strategic planning, infrastructure design, treatment selection, and
policy implementation. At the core of these impacts lie well-functioning transportation
systems, which comprise infrastructure, vehicles, regulations, and user behavior, all of
which interact to meet travel demand within a specific area [1]. Distress detection is one of
the most critical topics in this domain. As transportation assets inevitably deteriorate over
time due to various factors, including traffic loads and environmental conditions, efficient
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and timely inspection is a crucial element of a successful infrastructure management sys-
tem [2]. Effective asset management requires a meticulous decision-making process, which
includes identifying current problems; establishing objectives, criteria, and constraints;
creating solutions, such as new infrastructure construction; rehabilitating existing assets;
and implementing management strategies.

The global cost of maintenance and repair for transportation infrastructure is remark-
ably high, amounting to hundreds of billions of USD annually. Numerous studies have
consistently highlighted the detrimental impact of deteriorated transportation assets, such
as pavements and bridges, on both public safety and economic productivity. A primary
focus for researchers in this field is to minimize the substantial expenditures associated
with inspection and maintenance efforts [3,4].

The complexity of decision-making intensifies when considering the multitude of
stakeholder objectives, which often conflict. Highway agencies face the challenge of de-
veloping effective maintenance and rehabilitation (M&R) plans that accommodate limited
funding and diverse stakeholder priorities. In transportation asset management, a wide
range of stakeholders emerge, each representing distinct entities with varying objectives
and vested interests. These stakeholders include local agencies overseeing highway in-
frastructure, highway users like commuters and businesses, environmental organizations
advocating for ecological considerations, and local communities directly impacted by high-
way planning and operation. With such a diverse array of perspectives and priorities,
decision-making processes require strategic coordination to address potential conflicts and
maximize overall outcomes to provide an equitable system. Robust evaluation methods
are crucial to achieving this balance by enabling a comprehensive assessment of trade-offs
between various stakeholder priorities [5–7].

An effective transportation asset management program relies on various evaluation
methods. These approaches differ in how they handle weight definition and analysis. In
the field of transportation asset management, evaluation methods can be broadly catego-
rized into parametric and non-parametric approaches, each with distinct implications for
weight definition and analysis. Parametric methods, such as Stochastic Frontier Analysis
(SFA), assume a specific functional form for the relationship between inputs and outputs,
with weights often determined exogenously based on theoretical or empirical consider-
ations. In contrast, non-parametric methods like data envelopment analysis (DEA) do
not assume a specific functional form, deriving weights endogenously from the observed
data. This allows for a flexible evaluation of efficiency without predefined weights. Multi-
criteria decision-making (MCDM) approaches often fall into the parametric category, with
exogenously defined weights [8].

The United States has recently made significant investments in its highway infras-
tructure network to enhance sustainable development within the country. These extensive
investments have resulted in the development of over 8 million lane miles of urban and
rural roads throughout the country [9–13]. Sustainable development includes economic, en-
vironmental, and social aspects of decision-making. These dimensions may have conflicting
relationships, requiring a balance based on decision-makers’ preferences [14,15].

In the economic dimension, highway agencies aim to make cost-effective decisions for
M&R plans within limited budgets [16]. According to Title 23 of the United States Code, the
second aspect is concerned with the environmental dimension [17]. It considers greenhouse
gas (GHG) emissions in M&R projects and aims to protect the natural environment while
improving transportation systems. Environmentally friendly approaches may not always
be the most cost-effective, and there should be a tradeoff between these dimensions [18–22].
Moreover, the Federal Highway Administration (FHWA) introduced a third aspect in
the asset management practices of decision-making as social equity, which focuses on
social responsibility and equity in the highway M&R process [23]. Developing sustainable
M&R plans poses significant challenges for decision-makers, who must consider multiple
conflicting objectives. Therefore, social equity is often overlooked as decision-makers
mostly focus on the economic and/or environmental aspects [24–27]. By distributing
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benefits fairly and equitably among all stakeholders, decision-makers can ensure that
the transportation system meets the needs of all members of society, regardless of their
background or location.

While there has been growing recognition of the importance of equity in transportation
asset management, a limited number of studies have comprehensively explored its inte-
gration into decision-making processes. Existing research primarily focuses on individual
aspects of equity, such as social equity or environmental justice, within the context of pave-
ment maintenance optimization; however, these studies often rely on specific assumptions
or lack consensus on how to best measure equity. For instance, in 2009, Thomopoulos
et al. [28] proposed a method for evaluating the equity impacts of transportation infras-
tructure projects. The indicators used in this study are assumed to accurately reflect and
measure the equity impacts of the project, even though there is no consensus on the most
suitable indicators for assessing various aspects of equity. As a result, there is a possibility
that the results may have been biased. In 2015, Boyles [29] conducted research to incorpo-
rate equity considerations into a network-level maintenance optimization problem. The
study assumed the pavement deteriorates over time and can only be maintained through
a single maintenance action, with the maintenance intervals for each facility identified as
decision variables, subject to an annual budget constraint. This study made significant con-
tributions to the field by incorporating equity considerations into a network-level pavement
maintenance optimization problem. However, it is important to note that the assumptions
made about the cost of maintenance, discount rate, and usage rates of facilities may not
reflect real-world conditions.

In another study, in 2018, France-Mensah et al. [30] compared three methods including
ranking-based, integer linear programming (ILP), and decision tree with needs-based
allocation (DTN) [31] for the budget allocation of pavement M&R projects in a subset
network in Texas. Following this research, they [32] conducted another study in 2019 to
evaluate four different policies for incorporating social equity in highway M&R decision-
making. For this purpose, they developed budget allocation models for each policy and
used genetic algorithms (GA) to obtain policy-specific optimal solutions. Finally in 2022,
Kothari et al. [23] proposed a sustainable pavement management plan, which considered
all three aspects of sustainability, including economic, environmental, and social equity.

Gunathilaka and Amarasingha [33] also developed a framework based on the analytic
network process (ANP) method for prioritizing pavement maintenance and rehabilitation
projects considering social and economic factors, in Sri Lanka. The key factors in this
research for equity evaluation were road user satisfaction, social equity, economic growth,
environmental sustainability, road safety, technical feasibility, and project cost. Pairwise
comparison interviews were conducted with nine transportation experts, and the obtained
weights were converted into a matrix to obtain priorities.

Traditional approaches to incorporating equity often struggle to account for the inher-
ent uncertainties in transportation planning. These uncertainties can stem from factors like
population growth, traffic patterns, and economic fluctuations. As a result, achieving a
truly balanced distribution of benefits across network users can be challenging. In 2017,
Caggiani et al. [34] proposed a novel approach to address this limitation. They advocate for
a paradigm shift towards incorporating flexible equity constraints represented by fuzzy sets.
Fuzzy sets acknowledge and quantify these uncertainties, allowing for a more nuanced
consideration of equity in decision-making. By introducing fuzzy programming, they
achieved a more balanced distribution of benefits across network users, addressing both
horizontal and vertical equity concerns.

Recent advancements in artificial intelligence and machine learning techniques present
significant opportunities for optimizing decision-making processes in transportation asset
management. Potential methods for optimization in this context include machine learning
classifiers such as artificial neural networks (ANNs), random forest classifiers, and support
vector machine (SVM) models. These models can address key optimization issues such as
network capacity by enabling dynamic resource allocation, sample complexity by requiring
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fewer labeled data for training, and computational complexity through efficient learning
algorithms. Additionally, genetic algorithms, integer linear programming (ILP), and the an-
alytic network process (ANP) have been successfully applied in previous studies for similar
optimization problems, highlighting their potential applicability in this framework [35].

When it comes to incorporating equity into transportation and infrastructure systems,
it goes beyond just research. The FHWA developed PlanWorks as a tool to facilitate col-
laborative decision-making during transportation planning and project development [36].
PlanWorks provides guidance on how and when to involve cross-disciplinary partners and
stakeholder groups, encouraging transportation professionals to consider environmental
equity throughout the entire planning and project development process. While the FHWA
has made commendable efforts to incorporate environmental justice (EJ) considerations
into transportation planning, there is a need to explore how EJ can be integrated with other
equity aspects in transportation planning. The United States Department of Transportation
(US DOT) has also taken a significant step towards prioritizing equity as a core strategic
goal. The aim is to promote equity across the department’s policies and programs, with the
ultimate goal of reducing transportation-related inequities within the communities they
serve [37].

In another practice, the US Government Accountability Office (GAO) conducted
research to investigate uneven National Highway System (NHS) pavement conditions
in communities with different characteristics. The findings indicate that 3.7 percent of
the pavement in census tracts with higher underserved racial and ethnic populations
is in poor condition, whereas only 1.3 percent of the pavement in census tracts with
lower underserved racial and ethnic populations is in poor condition. Additionally, the
investigation found a significant association between the prevalence of family poverty in
a census tract and the condition of the National Highway System pavement in that area.
Census tracts with higher rates of family poverty had a higher percentage of pavement in
poor condition and a lower percentage in good condition [38]. The results highlighted the
importance of considering underserved areas as a factor in the decision-making process
and asset management planning.

According to the literature, most studies tried to consider different aspects of sus-
tainability to develop an equitable asset management program, while there are a limited
number of studies covering all three factors simultaneously. The objective of this study is to
develop a prototype decision-support framework for allocating budgets for asset manage-
ment projects by integrating all three decision parameters. The scope of implementation of
the framework includes pavement maintenance, rehabilitation, and reconstruction projects.

Following this comprehensive literature review, Section 2 details the proposed decision-
support framework. This framework involves a three-step process: defining objectives,
analyzing data to identify underserved areas, and incorporating equity considerations
into budget allocation for asset management projects, specifically focusing on pavement
maintenance, rehabilitation, and reconstruction. The framework is followed by a case study
analysis to investigate key factors influencing pavement conditions in underserved areas
and to help define the underserved areas for the framework. Results are represented in
Section 3. Section 4 discusses the potential limitations and biases of the framework, provid-
ing a critical evaluation of its robustness and applicability. Finally, Section 5 concludes with
a summary of the key findings and implications, emphasizing the importance of integrating
equity into transportation asset management decision-making.

2. Materials and Methods

The schematic representation of the framework is demonstrated in Figure 1. Further-
more, an analysis was conducted based on a case study to investigate the important factors
that must be considered in the decision-making process. In other words, the focus is on
identifying and highlighting the key factors that have a significant impact on equitable
asset management planning. The case study serves as a real-life example, illustrating how
considering certain factors to define an underserved area can lead to more inclusive and
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equitable outcomes in transportation asset management. The implementation of the case
study is discussed in the following paragraphs.

Figure 1. Schematic framework.

2.1. Framework

As shown in Figure 1, this framework consists of three steps. The first step involves
defining the objective of the research. The second step deals with the analysis in which
underserved areas are defined based on key factors, such as sociodemographics, using a
case study approach. Then, the optimization model could be developed to select the best
treatment option by optimizing the objectives. In the third and final step of the framework,
the optimal solution obtained from the developed optimization model should be evaluated
using the necessary evaluation metrics to demonstrate the efficiency and effectiveness of
the chosen solution.

As previously discussed, the objective can be generally formulated as Equation (1),
which is an optimization problem with three factors, including the economic, environmen-
tal, and social equity aspects, representing the three components of sustainable planning.
The optimization technique proposed in this study to develop a sustainable pavement
management plan is based on the literature [25].

M&R option = f (SD, EN, EC) (1)

where M&R option is the most optimum maintenance and rehabilitation activities; SD is
sociodemographic factors; EN is environmental factors; and EC is economic factors.

Multiple factors such as type, measurement mechanism, and service provided can
indicate the transportation asset performance with respect to a particular decision pa-
rameter. Regarding the focus of this paper, performance measurement is developed to
assess pavements. In Equation (1), the first objective considers the social aspect and tries
to enhance social equity by decreasing the condition gap between a disadvantaged group
and others. The second objective focuses on the environmental aspect, with an emphasis
on minimizing greenhouse gas (GHG) emissions [22]. Lastly, the third objective is about
the economic aspect, which aims to reduce agency and road user costs by optimizing the
road network condition [30]. A total number of 10 factors that affect the three decision
parameters were used in this study based on the literature review, which is discussed in
the following paragraphs.

2.2. Objectives

Pavement quality plays a significant role in ensuring smooth transportation flow
and connectivity. Well-maintained pavements offer a smoother, safer, and more reliable
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transportation infrastructure system, which positively impacts daily activities, mobility,
and access to essential services, including jobs, education, healthcare, and business opportu-
nities. Therefore, every member of society has the right to access a good-quality pavement
system. However, underserved communities often face greater challenges with the quality
of their transportation infrastructure. In simple terms, underserved communities have less
access to well-maintained and reliable infrastructure compared to other regions.

Previous studies [38] suggest investigating various parameters’ relationships with
pavement condition (PC), such as population density, percentage of elderly people, race
and ethnicity, traffic, education level, poverty rate, and unemployment rate. Using the
factors, underserved areas were defined, as the results showed significant differences
in pavement quality in areas with varying percentages of these factors. By minimizing
differences in pavement quality among different groups in a community, transportation
systems become more efficient and interconnected, benefiting not only underserved areas
but the entire community.

The first aspect of a sustainable pavement management system is social equity. There-
fore, addressing these disparities by minimizing objective 1 ensures that all community
members have access to safe and well-maintained pavements, promoting social inclusivity
and cohesion. The objective function can be formulated as Equation (2).

Minimize Objective1 = ∑n
i=1

m

∑
j=1

∣∣PCUA,i − PCOA,j
∣∣ (2)

where
Objective1: Minimize the absolute difference in pavement conditions between under-

served and other areas.
PCUA,i = Pavement condition in underserved areas.
PCOA,j = Pavement condition in other areas.
n = Number of underserved areas.
m = Number of other areas.
constraints:
PCUA,i, PCOA,j : speci f ied ranges based on agency requirements.
Budget constraints.
The environmental aspect of the pavement management system is defined as the

second factor in a sustainable system. Reducing air pollution is a critical consideration in
pavement planning, as air pollution, especially GHG emissions, significantly contributes
to climate change and negatively affects air quality and public health. Therefore, another
objective of this study is to improve air quality by selecting treatment options that produce
less GHG emissions from two sources: traffic disruptions, which are influenced by traffic
volume and treatment duration, and emissions from construction activities, which depend
on the type of applied treatment (Equation (3)) [23,32].

Minimize Objective2 = EC,k + ET,k (3)

where
Objective2: Minimize the total emissions from construction and traffic disruptions.
EC = Emissions from construction activities in kg CO2 equivalents.

ET = Emissions from traffic disruptions in kg CO2 equivalents.
constraints:
Budget constraints.
Emissions limits.
Treatment feasibility and schedules constraints.
The emissions from construction activities (EC,k are dependent on the specific type of

M&R treatment performed on a given road section. This component accounts for emissions
generated from material production, transportation of materials and equipment, as well
as the construction processes themselves. Consequently, M&R activities that are more
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extensive and intensive in nature will inevitably result in higher EC,k levels. This is due
to the larger quantities of materials required and the longer durations of the construction
projects, leading to prolonged usage of emissions-producing construction equipment. The
EC,k can be quantified using the Equation (4) [23,32].

EC,k =
N

∑
i=1

J

∑
j=1

T

∑
t=1

(
gcitj

)
(4)

where
gcitj = the average GHG emission due to a specific M&R treatment type i on section j

at time t.
Different scenarios can be defined for construction activities, including doing nothing,

applying preservation treatments, implementing rehabilitation treatments, performing re-
constructions, or conducting maintenance. Preservations are proactive treatments that aim
to protect the existing pavement and extend its service life, resulting in lower construction
emissions compared to more extensive rehabilitation or reconstruction methods. Rehabili-
tation treatments involve partial pavement restoration, requiring moderate construction
emissions but leading to reduced traffic disruptions compared to full reconstruction. Recon-
struction treatments involving complete pavement replacement typically result in higher
construction emissions due to the extensive nature of the work. Maintenance activities
address minor pavement issues and prevent further deterioration, potentially causing
lower construction emissions, but may lead to increased traffic disruptions if not appropri-
ately planned.

Emissions due to traffic disruption (ET,k) are another critical factor to consider. Traffic
disruption also refers to the inconveniences and disturbances caused to traffic flow and road
users during construction activities. It can lead to significant traffic congestion, resulting
in increased fuel consumption and adverse effects on air quality. Lane closures, road
diversions, and reduced road capacity can create bottlenecks, causing vehicles to move too
slowly. Consequently, cars consume more fuel than usual, leading to higher emissions of
GHG and other pollutants. Reduced traffic flow efficiency due to congestion can further
exacerbate air pollution, as vehicles spend more time on the road emitting pollutants. To
address these issues, pavement management systems should carefully consider planning
and scheduling activities to minimize the impact on traffic flow.

The ET,k is a function of the traffic volume and the duration required to apply the
M&R treatment. It can be quantified using the Equation (5) [23,32].

ET,k =
N

∑
i=1

J

∑
j=1

T

∑
t=1

(
gditj

)·AADTjt (5)

where
AADTjt = the expected annual average daily traffic on section j in year t.
gditj = the marginal increase in GHG emissions of treatment i due to traffic disruptions

on section j at time t for each unit of AADT.
Based on previous studies, the unit costs for the scenarios and their estimated GHG

emissions from construction and traffic disruptions are included in Table 1, which serves as
a schematic table for this [19,23,39].

The third aspect of sustainability is the economical point of view, in which pavement
condition plays a vital role. Pavement condition assessment relies on various indicators or
indices that reflect its overall state or level of service. These include pavement structural
condition indicators such as the pavement structural number and distress score, as well
as pavement functional condition indicators like the International Roughness Index (IRI)
and riding quality. There are also indicators that combine both structural and functional
conditions, such as the Pavement Condition Index (PCI) and Pavement Condition Rating
(PCR). While different state Departments of Transportation (DOTs) use various pavement
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condition indices based on their own policies and the data they collect in their pavement
management systems, the PCI provides a standard way to assess pavement condition.
It is a scored metric ranging from 0 to 100, where 0 indicates the most severe pavement
deterioration and 100 represents the optimal pavement condition. In this study, the PCI is
employed as the primary indicator for assessing pavement condition. The PCI is chosen due
to its comprehensive coverage of all significant distress factors for pavements, including
rutting, roughness, and cracking. This index is calculated using mathematical formulas,
providing a complete picture of pavement condition and facilitating effective evaluation of
pavement performance in different situations [40].

Table 1. Schematic Table for Environmental Analysis [23].

Treatments
Construction Emission
(kg CO2eq = lane − mi)

Traffic Emission
(kg CO2eq = lane − mi − AADT)

Agency Costs ($/lane − mile)

Do Nothing 0 0 0
Preservation 5700 0.5 37,000

Rehabilitation 28,000 2.5 300,000
Reconstruction 57,000 5.1 560,000
Maintenance 17,000 1.5 220,000

Over time, pavement sections deteriorate, leading to a reduction in their condition.
However, implementing the appropriate M&R treatments at the right time could improve
the pavement condition significantly, thereby reducing both agency and user costs. This is
because well-maintained pavements exert less pressure on vehicles, resulting in reduced
deterioration and increased vehicle service life, consequently lower maintenance costs
for vehicle owners. Additionally, smoother pavements enhance fuel efficiency, reducing
fuel consumption and associated expenses for drivers. On the other hand, deteriorated
pavements can lead to increased vehicle operating costs, frequent repairs, and potential
accidents due to uneven road surfaces.

Moreover, for agencies responsible for maintaining and managing road networks, the
condition of pavements directly impacts their operational costs. Regular and timely main-
tenance of pavements can prevent minor issues from escalating into more severe problems,
thereby reducing the need for expensive repairs and reconstruction. By optimizing the
pavement condition through appropriate M&R strategies, agencies can effectively extend
the service life of the pavement, maximizing their return on investment. On the other hand,
neglecting pavement conditions can lead to premature failure, requiring costly emergency
repairs and increasing the burden on the agency’s budget.

Therefore, maximizing the pavement condition, as demonstrated in Equation (6), is
an important objective from an economic efficiency standpoint. This not only translates to
cost savings for both users and agencies over the long term but also ensures that budget
allocations are utilized effectively by prioritizing the sections that require immediate
attention based on their current condition and expected performance.

Maximize Objective3 =
1
T
×

T

∑
t=1

PCt (6)

where
Objective3: Maximize the average pavement condition over a given period.
PCt = Pavement Condition at time t.
T = Total period of analysis.
constraints:
Pavement condition limits.
Treatment feasibility and schedules constraints.
Budget constraints.
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2.3. Analysis

In the analysis section of this framework, the identification of underserved areas relies
on sociodemographic key factors, including age, population density, poverty rate, and other
mentioned variables. Employing a case study approach, the authors investigate whether
there is a lack of equity in the decision-making process by assessing if certain communities
or regions are suffering from worse pavement conditions in comparison to others.

Case Study

A comprehensive dataset was used as a case study in this research. The data was
publicly available, containing sociodemographic data for California’s Bay Area, sourced
from the Office of Environmental Health Hazard Assessment (OEHHA) (The Office of
Environmental Health Hazard Assessment 2023), alongside 20,764 miles of local pave-
ment condition data obtained from the metropolitan transportation commission (MTC)
website [41]. The dataset contains 1584 census tracts and is used as a resource to explore
which significant factors should be considered in the decision-making process for pave-
ment management and define underserved areas. Table 2 summarizes the dataset used in
the research.

Table 2. California’s Bay Area data summary.

Data Description

Pavement Condition
20,764 miles of local roads
Source: Metropolitan Transportation Commission (MTC) website

Sociodemographic 1584 census tracts
Source: Office of Environmental Health Hazard Assessment (OEHHA)

According to this dataset, 43% of the street pavement (length) in the Bay Area is in
excellent condition, with a pavement condition index (PCI) of 80 or higher. Moreover, 28%
falls under the category of good condition, with a PCI ranging from 79 to 60. Furthermore,
9% of the pavement is considered to be at risk, with a PCI between 59 and 50, while 20% is
classified as poor condition, with a PCI of 49 or lower. Figure 2 represents the distribution
of pavement condition across the California Bay Area.

Figure 2. Pavement condition distribution in California’s Bay Area.

According to the sociodemographic data, the total population in the area is around
7,758,000, with only 7.5% of individuals over 25 years old having less than a high school
education, almost 60% of the population are not classified as white, and almost 14%
are aged 65 and older. The dataset was then analyzed to investigate any relationships
between pavement condition and various factors, including educational level, traffic, air
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quality, race and ethnicity, age, income level, and population density. Initially, a non-
parametric approach was employed to identify key factors influencing pavement quality in
underserved areas. This exploratory phase prioritizes data-driven insights, allowing for a
flexible analysis of efficiency without predefined weights. This approach is particularly well
suited for uncovering complex relationships between various sociodemographic factors
and pavement condition.

A statistical analysis was initially conducted, followed by the application of the
Lasso (least absolute shrinkage and selection operator) regression method for more precise
predictions and a better understanding of the impact of these factors on pavement condition.
The detailed results are presented in Tables 3 and 4 in the result section.

The second step of analysis in this framework involves developing an optimization
model that can solve Equation (1). This model for selecting maintenance and rehabilitation
(M&R) options transitions to a parametric approach. The specific objective functions will
be defined to quantify social equity, environmental impact, and economic efficiency. The
weights for these objectives are determined exogenously, based on the established literature,
policy considerations, and sustainability criteria.

The proposed framework incorporates objective constraints and regulations into the
optimization process to ensure the proposed solutions are not only optimal but also feasible
within the context of existing regulations and practical limitations. These constraints are
derived from federal and state-level guidelines, standards, and regulations related to social
equity, environmental justice, and sustainability considerations in transportation asset
management. For instance, guidelines from the Federal Highway Administration (FHWA)
and the Environmental Protection Agency (EPA) can be integrated as constraints to ensure
compliance with environmental justice principles, air quality standards, and other relevant
regulations. Additionally, state-level regulations and local ordinances specific to the region
under consideration can be included as constraints, addressing factors such as minimum
accessibility requirements for underserved communities, maximum allowable emissions
levels, or specific criteria for defining and prioritizing disadvantaged areas. The constraints
may also include budget limitations, an acceptable pavement performance range, and
limitations on the frequency of M&R treatments applied to a pavement section. By incor-
porating these regulatory constraints, the framework ensures that any proposed solution
adheres to established guidelines and standards, reducing subjectivity and distortion due to
stakeholder perceptions or regional peculiarities. The final step in this framework involves
reporting the results and defining evaluation metrics to assess the efficiency of the model
based on a case study dataset.

2.4. Excepted Output

In the third and final step of the framework, the optimal solution obtained from the de-
veloped optimization model should be reported. However, it is worth noting that this does
not mark the conclusion of the process; evaluation metrics are necessary to demonstrate
the efficiency and effectiveness of the optimum solution. These evaluation metrics play a
pivotal role in measuring the equity in the optimized version of pavement management
strategies and their alignment with the defined objectives. One of the evaluation metrics
involves calculating the absolute difference in pavement conditions between underserved
areas and other regions. This metric helps determine whether the optimization model
successfully addressed the objective of minimizing disparities in pavement quality among
different communities. By quantifying the absolute difference, the extent to which the
pavement management strategies improved conditions in underserved areas compared to
other areas can be assessed.

In addition, evaluating the total amount of GHG emissions associated with pavement
management activities and traffic disruption is essential for assessing the environmental
impact of the optimization model. By quantifying and minimizing these emissions, the
transportation agency can make significant contributions to its environmental sustainability
goals and reduce the carbon footprint of the pavement management program. Another crit-
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ical evaluation metric is the average pavement condition. This metric serves as a reflection
of the overall effectiveness of the optimization model in achieving its primary objective,
which is to maximize the pavement condition. A higher average pavement condition
indicates that the model successfully improved the overall quality of the road network.

2.5. Proposed Optimization Algorithm

The pseudocode in Appendix A (Algorithm A1) outlines the proposed framework for
optimizing pavement management decisions. It defines three objective functions: mini-
mizing disparity in pavement quality between underserved and other areas minimizing
greenhouse gas emissions and maximizing overall pavement condition over a specific time
period. Additionally, two constraints are enforced: staying within budget and ensuring
all pavements meet a minimum acceptable condition after treatment. The code could
generate all possible treatment plans, filter out those violating the constraints, evaluate
the remaining plans based on the objectives, and select the optimal plan according to a
user-defined selection process.

3. Results and Discussion

In the first step of the analysis, the Shapiro–Wilk test was conducted to investigate
whether the dataset followed a normal distribution. The Shapiro–Wilk test is a hypothesis
test designed to assess whether a dataset follows a normal distribution. This test examines
data from a sample, operating under the null hypothesis that the dataset is normally
distributed. A high p-value suggests that the dataset conforms to a normal distribution,
whereas a low p-value indicates a departure from normal distribution. According to the
results (Figure 3), the data did not follow a normal distribution. Therefore, non-parametric
tests were employed for further analysis.

Figure 3. Histogram and normal QQ plot of pavement condition data.

As mentioned in the methodology, the dataset used in this study contains a wide
range of potential factors, including age, educational level, poverty rate, race and ethnicity,
population density, traffic, and air quality that could impact pavement condition. The
Kruskal–Wallis test was utilized to analyze any significant relationships between the
aforementioned factors and pavement conditions. This non-parametric test was selected
due to the normality assumption of the dataset is violated. The Kruskal–Wallis test does
not require data to be normally distributed, ensuring a more robust analysis. Results are
presented in Table 3.

Table 3. Kruskal–Wallis test result.

Poverty Rate Air Quality Traffic Education Level Race and Ethnicity Population Age

p-value 0.001 0.0114 0.489 0.141 0.495 0.523 0.491
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According to the results, the p-value for the poverty rate and air quality is less than
0.05, indicating a statistically significant relationship between these factors and pavement
conditions. This suggests that the pavement condition may vary in areas with different
rates of poverty and varying air quality. In other words, there is a significant difference in
pavement conditions between areas with varying poverty rates and air quality levels. This
highlights the importance for decision-makers to consider these factors in their management
process to promote equity in their pavement management system.

However, factors such as population density, traffic, education, percentage of non-
white population, and age, with p-values greater than 0.05, did not show a significant
relationship with pavement condition in this specific dataset, which contradicts the findings
in the Government Accountability Office (GAO) report [38]. This finding could be due to
the fact that some agencies in the Bay Area have been considering race and ethnicity in
their pavement management systems since 2017 [42]. However, further analysis needs to
be conducted in individual areas to evaluate the effectiveness of that equity consideration.
Currently, the Bay Area is being analyzed as a single data source. The results have also
revealed a concerning observation regarding areas with higher poverty rates and areas
with different ranges of air quality.

There are several machine learning methods for feature selection, with Lasso regression
being one of the most common ones [9]. It can select useful features while discarding useless
or redundant ones. In Lasso regression, discarding a feature will set its coefficient equal to
0. Therefore, in the next step, the Lasso regression method was applied to the dataset to
achieve more precise results and determine the type of correlation, whether it is positive or
negative. The results are shown in Table 4.

Table 4. Lasso regression method coefficient.

Poverty Rate Air Quality Traffic Education Level Race and Ethnicity Population Age

Coefficient 0.10 0.27 0.00 0.00 0.00 0.0 0.01

According to the results, air quality showed a coefficient of 0.27, indicating a positive
relationship with the percentage of pavement in poor condition. This suggests that areas
with worse air quality correspond to a higher percentage of pavement in poor condition.
Similarly, the poverty rate showed a coefficient of 0.1, supporting the observation that
tracts with higher poverty rates tend to have a higher percentage of pavement in poor
conditions. This implies that these two factors should be used as key indicators for defining
underserved areas and should be incorporated as equity factors in the decision-making
process. Decision-makers should consider these areas as underserved when allocating
budgets or making decisions on M&R treatments if they want to establish an equitable
management system.

On the other hand, the coefficients of other factors, such as race and ethnicity, educa-
tional level, population density, and traffic were aligned with the statistical results, showing
coefficients of 0, indicating no significant relationship between these factors and pavement
conditions in the dataset. The only contradictory finding was related to the factor of age.
While the statistical analysis indicated that areas with a percentage of people older than
65 years had no correlation with pavement condition, the Lasso regression showed a slight
increase in the percentage of pavement in poor condition, with a coefficient of 0.01.

This trend is further highlighted in Figures 4 and 5. Figure 4 demonstrates that tracts
with higher poverty rates tend to have a greater percentage of pavement in poor conditions
compared to areas with lower poverty rates. This indicates that these areas are more
neglected or receive less attention for budget allocation for M&R projects, emphasizing
the need for some equity adjustment in the decision-making process. Moreover, Figure 5
reveals that tracts with poor air quality mostly showed a higher percentage of pavement
in poor condition compared to areas with better air quality. There are several possible
explanations for these observations.
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Figure 4. Pavement condition variation by poverty rate.

Figure 5. Pavement condition variation by air quality.

An important factor that could explain these findings is the land use type of the tracts,
whether they are industrial or residential areas. Typically, air quality in industrial areas is
lower compared to residential areas due to increased emissions and pollutants associated
with industrial activities. Therefore, any potential relationship between the land use type
and pavement condition should be investigated in future studies. Consequently, there is a
possibility that the land use type should also be considered as another factor in defining
underserved areas during the decision-making process. Additionally, the poor pavement
condition itself could play a significant role in environmental issues. The presence of
distressed pavement leads to frequent interruptions and traffic delays, which result in
increased fuel consumption, higher emissions, and carbon footprint, which is one of the
most important contributing factors in environmental equity assessments.

In conclusion, both the statistical analysis and Lasso regression results highlight air
quality and poverty rate as the most influential factors for defining underserved areas,
which might be considered in an equitable pavement management planning. The statistical
analysis revealed that these factors have p-values less than 0.05, signifying their statisti-
cal significance. Moreover, the Lasso regression revealed non-zero coefficients, further
supporting their importance in the decision-making process.

4. Potential Limitation and Biases

When proposing a framework that integrates social equity, environmental equity, and
economic considerations into pavement management systems, it is crucial to recognize
several significant limitations and potential biases. Firstly, the availability and quality
of data related to social, environmental, and economic factors may vary across regions,
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potentially constraining the framework’s generalizability. This introduces a possible bias,
where regions with more robust data collection infrastructure might be overrepresented in
assessing the framework’s effectiveness.

Another critical consideration involves the inherently subjective nature of assessing
social and environmental equity. Divergent views among stakeholders on what constitutes
equitable outcomes can introduce biases in decision-making. Additionally, economic condi-
tions are dynamic, and the framework’s reliance on economic factors may face challenges
in adapting to changing circumstances. Economic biases may emerge if the framework
lacks flexibility to accommodate variations in economic conditions.

Furthermore, the framework may not fully account for cultural and regional differ-
ences, posing limitations in its applicability in diverse contexts and potentially introducing
cultural biases. Temporal dynamics also pose a challenge, as the framework may not ade-
quately address long-term changes in social, environmental, or economic factors, limiting
its relevance over time.

The effectiveness of the framework may also depend on stakeholder engagement, and
challenges in obtaining meaningful participation could hinder successful implementation,
potentially introducing biases in decision-making processes, especially if certain perspec-
tives are underrepresented. Addressing these limitations through careful consideration,
sensitivity analyses, and transparent decision-making processes is crucial for ensuring the
robustness and applicability of the proposed framework in pavement management systems.

Finally, it is important to note the potential for endogeneity in these types of analyses.
Endogeneity can arise when there is a bidirectional relationship between the variables
considered, meaning that the causal relationship may not be straightforward. In situations
where endogeneity is present, the framework’s ability to disentangle and accurately model
the causal relationships may be compromised. This could impact the effectiveness of the
decision-support system, as interdependencies among variables may introduce biases in
the allocation of budgets. For example, improving the conditions in an underserved area
may lead to changes in the social, economic, and environmental factors, influencing the
overall dynamics of the pavement management system.

To address the endogeneity concerns, advanced statistical techniques like instrumental
variables (IV) or control function methods could be employed in. These techniques aim to
extract the exogenous component of the endogenous variables, breaking the correlation
between the endogenous variables and the error term. Additionally, sensitivity analyses
using methods like the Hausman test or two-stage least squares (2SLS) can be conducted
to check for the presence of endogeneity and assess the robustness of the results. By
employing these advanced statistical techniques and sensitivity analyses, the framework’s
ability to accurately model the causal relationships can be enhanced, mitigating potential
biases introduced by endogeneity in the allocation of budgets.

5. Conclusions

In the world of infrastructure development, asset management in a sustainable man-
ner could affect people in different communities, environments, and economic growth.
However, achieving sustainable asset management has many challenges when trying to
balance economic, environmental, and social equity objectives.

Balancing the economic, environmental, and social aspects of pavement management
involves making careful choices. On the economic front, efforts to enhance social and
environmental equity may necessitate significant initial financial investments. For instance,
initiatives like constructing new roads in underserved areas or electrifying vehicle fleets to
mitigate environmental impact can strain already limited transportation budgets due to
high upfront infrastructure and operating costs.

However, certain pavement management strategies demonstrate that economic goals
need not always conflict with environmental and social equity objectives. These approaches
often yield both environmental and social benefits at lower financial costs.
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Policies solely focused on social equity in pavement management may result in overall
efficiency losses, potentially leading to greater environmental impacts, higher user costs,
and strained budgets for agencies. Nevertheless, well-designed investments targeting
traditionally underserved groups have the potential to unlock productivity gains and
catalyze economic growth.

This research aimed to develop a prototype decision-support framework for allocating
budgets in transportation asset management projects, covering all three equity aspects si-
multaneously. The focus was on pavement maintenance, rehabilitation, and reconstruction
projects. The framework proposed in this study consists of three steps. The first step was
defining the research objective, followed by some analysis to investigate key factors in defin-
ing underserved areas based on a case study dataset, and then developing an optimization
model and finalizing by evaluating the model with some metrics. The optimization model
aims to minimize the assets’ condition gap between underserved areas and the rest of the
network, minimize greenhouse gas emissions, and maximize road network conditions.

The case study was a comprehensive dataset for California’s Bay Area, containing
sociodemographic and local pavement condition data. The analysis of this dataset re-
vealed that areas with different poverty rates and air quality experience varying pavement
conditions. Areas with higher poverty rates and worse air quality tend to have a higher
percentage of pavement in poor condition. The Lasso regression method also provided
more precise results, confirming the positive correlation between poor air quality and
higher poverty rate with the percentage of pavement in poor condition. Furthermore, it
revealed a slight increase in poor pavement conditions in areas with an older population.
These results highlight that these factors should be considered in the decision-making
process to establish an equitable pavement management system.

The findings indicate that land use type might also be an important factor to consider in
decision-making process conditions and should be investigated in further studies. Moreover,
it shows that poor pavement condition itself might contribute to environmental issues by
causing traffic disruptions, increased fuel consumption, and higher emissions, influencing
environmental equity assessments. In conclusion, this study’s integrated decision-support
framework offers valuable insights for sustainable pavement management.

It should be noted that the correlation between poor pavement conditions and impov-
erished socioeconomic conditions, as observed in the reviewed data, may not universally
apply. Factors such as geographical location, economic development, and cultural influ-
ences could potentially modify the relationship between pavement conditions and socioe-
conomic conditions. Despite these considerations, the described framework appears robust
and suitable for dissemination to other regions with available data. Considering economic,
environmental, and social equity factors simultaneously allows for more informed budget
allocation decisions, promoting equitable development and enhancing transportation in-
frastructure. Future studies can explore additional factors and land use characteristics to
refine the framework and further enhance its application in real-world scenarios.
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Appendix A

Algorithm A1. Proposed multi-objective pavement management algorithm (pseudocode).

1: #Define objective functions
2: function objective_1(pavement_conditions)
3: underserved_condition ← average_condition (pavement_conditions,
is_underserved=True)
4: other_condition ← average_condition (pavement_conditions, is_underserved=False)
5: return |underserved_condition—other_condition|
6: end function
7: function objective_2(treatment_plan)
8: construction_emissions ← sum (treatment.construction for treatment in treatment_plan)
9: traffic_emissions ← sum (treatment.traffic for treatment in treatment_plan)
10: return construction_emissions + traffic_emissions
11: end function
12: function objective_3(treatment_plan, time_period)
13: total_condition ← sum(section.condition_after_treatment(treatment) for section,
treatment in zip(pavement_sections, treatment_plan))
14: return total_condition/time_period
15: end function
16: #Define constraints
17: function budget_constraint(treatment_plan)
18: total_cost ← sum(treatment.agency_cost for treatment in treatment_plan)
19: return total_cost ≤ available_budget
20: end function
21: function performance_constraint(treatment_plan)
22: for each section, treatment in zip(pavement_sections, treatment_plan) do
23: if section.condition_after_treatment(treatment) < minimum_acceptable_condition
then
24: return False
25: end if
26: end for
27: return True
28: end function
29: #Define the multi-objective optimization problem
30: function optimize_pavement_management(pavement_sections, available_budget,
time_period)
31: all_treatment_plans ← generate_all_treatment_plans(pavement_sections)
32: feasible_plans ← []
33: for each plan in all_treatment_plans do
34: if budget_constraint(plan) and performance_constraint(plan) then
35: feasible_plans.append(plan)
36: end if
37: end for
38: objectives ← []
39: for each plan in feasible_plans do
40: obj1 ← objective_1(plan)
41: obj2 ← objective_2(plan)
42: obj3 ← objective_3(plan, time_period)
43: objectives.append((obj1, obj2, obj3))
44: end for
45: optimal_plan ← select_optimal_plan(objectives)
46: return optimal_plan
47: end function
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