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Preface

With the increase in global energy demand, global climate change, environmental pollution, and

energy shortages have become increasingly serious. The development of new energy represented by

wind power and photovoltaic power is the key way to achieve low-carbon and green development.

The scale of global new energy power generation continues to grow, and the integration of

high-penetration new energy will become the basic feature and development trend of power systems

worldwide. The power generation principle, control strategy, and grid connection mode of new

energy units such as wind power and photovoltaic power are significantly different from those of

traditional power units. The fluctuation in new energy and the high proportion of power electronic

devices bring new challenges to new energy power systems, including the spatio-temporal mismatch

of power supply and load, as well as the stability and security of power systems.

In order to overcome these challenges, some new technologies such as demand response, energy

storage, and power electronics devices have been introduced into power systems to promote the

integration of new energy. They require that the modeling, analysis, and control methods of power

systems can adapt to the transformation of power systems.

This reprint aims to promote state-of-the-art research in this promising area. Seventeen original

articles were recommended for acceptance and publication. These published articles mainly cover

original research on the economic planning and operation of new energy power systems, the stability

analysis and control of new energy power systems, and the modeling of power equipment. We hope

that the research achievements presented in the following reprint can contribute to a transition from

current power systems to low-carbon and green ones in the future.

We would like to express our thanks to all authors who have contributed to this reprint and, in

particular, the editorial staff of Processes for their support and assistance.

Haoming Liu, Jingrui Zhang, and Jian Wang

Editors
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Special Issue on “Modeling, Analysis and Control Processes of
New Energy Power Systems”

Haoming Liu 1,*, Jingrui Zhang 2 and Jian Wang 1

1 College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
2 Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
* Correspondence: liuhaom@hhu.edu.cn

1. Introduction

In recent years, global climate change, environmental pollution, and energy shortage
have become increasingly serious. Countries all over the world regard the development
of new energy, represented by wind power and photovoltaics, as the key to achieving
low-carbon and green development. The scale of global new-energy power generation
continues to grow, and the high penetration of new energy will inevitably become one of the
basic features and development trends in future power systems. New energy units, such as
converter-interfaced wind power and photovoltaics, significantly differ from traditional
power units in the perspectives of the power generation principle, control strategy, and
grid connection mode. The variability of new energy and the high proportion of associated
power electronic devices have brought profound challenges to the new energy power
system, including the spatial–temporal mismatch between variable power supply and load,
and the stability and security of electronic-enabled power systems.

In order to overcome these challenges, some new technologies such as demand re-
sponse, energy storage, and FACTs (flexible AC transmission systems) devices have been
introduced into the power systems to promote the integration of new energy. Facilitating
these new technologies requires adapting the modeling, analysis, and control methods to
the transformation of new energy power systems.

This Special Issue on ‘Modeling, Analysis and Control Processes of New Energy Power
System’ aims to promote state-of-the-art research in this promising area. Seventeen original
articles were recommended for acceptance and publication. These published articles mainly
cover original research on the economic planning and operation of new energy power
systems, the stability analysis and control of new energy power systems, and the modeling
of power equipment.

2. Brief Synopsis of Papers in the Special Issue

Lei et al. [1] established a two-stage majorization configuration model to identify
and understand how variable energy affects a hybrid energy storage system in active
distribution networks. Chen et al. [2] proposed a two-stage layout method for the met
mast based on discrete particle swarm optimization zoning and micro-sitting. This study
provided a quantitative planning method for met mast layout in practical projects with
improved wind-monitoring accuracy. Yang et al. [3] constructed a framework that is
suitable for city regional integrated energy systems to participate in the energy market,
and proposed an evaluation index system for low-carbon capabilities in the energy market.
Li et al. [4] analyzed the life-cycle cost of synchronous condensers and introduced the blind
number theory into the cost calculation model to quantify the impacts of various uncertain
pieces of information on the cost of the synchronous condenser projects. Li et al. [5]
proposed a multi-energy transaction decision-making strategy for a community-level
integrated energy system considering user interaction, and the proposed strategy improved
both the profit of the community operator and the value-added benefit of energy users.

Processes 2023, 11, 235. https://doi.org/10.3390/pr11010235 https://www.mdpi.com/journal/processes1
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Yang et al. [6] presented an optimal day-ahead scheduling model for a multi-renewable
energy power system with distributed generations while satisfying flexibility constraints.
Yuan et al. [7] proposed a time-of-use pricing strategy for integrated energy suppliers and
integrated energy users in the integrated energy systems based on game theory.

Hu et al. [8] studied the transient behavior and stability issues of a direct-drive wind
turbine during fault recovery in a DC-link voltage control timescale. Zhu et al. [9] defined
the static voltage stability assessment problem as a regression problem and constructed an
artificial neural network for online assessment. Fu et al. [10] proposed a double-layer fault
diagnosis model for the main bearing of a wind turbine that combines the auxiliary classifier
generation adversarial network and the deep residual shrinkage network. Zhang et al. [11]
used the virtual vector-based model predictive current control to select the optimal virtual
vector and apply it to five-phase induction motors. Liu et al. [12] proposed a predictive
commutation failure suppression strategy considering multiple harmonics of commutation
voltage considering the distortion characteristics of AC voltage of HVDC systems. Yang
et al. [13] considered the transmission loss reduction of the HVDC system and established
a multi-order fitting function of transmission loss under joint impacts of line-commutated
converter stations, voltage source converter stations, and DC lines.

Chen et al. [14,15] proposed an improved magnetic-noise prediction model of a five-
phase induction motor through large-slot opening and pole-slot schemes. Luo et al. [16]
used an extended Kalman filter algorithm for the parameter identification of the five-phase
squirrel cage induction motor. Finally, Xue et al. [17] established an analytical model of an
unequal-pitch linear phase-shifting transformer by combining the distributed magnetic
circuit method and the Schwartz–Christopher transformation.

Author Contributions: Writing—Original draft preparation, J.W.; Writing—Revision, H.L. and J.Z.
All authors have read and agreed to the published version of the manuscript.
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Optimal Current Allocation Strategy for Hybrid Hierarchical
HVDC System with Parallel Operation of High-Voltage and
Low-Voltage DC Lines

Zhichao Yang, Bingtuan Gao * and Zeyu Cao

School of Electrical Engineering, Southeast University, Nanjing 210096, China; seuyangzhichao@seu.edu.cn (Z.Y.);
tozy_study@126.com (Z.C.)
* Correspondence: gaobingtuan@seu.edu.cn; Tel.: +86-025-8379-2260

Abstract: For long-distance and bulk-power delivery of new energy, high-voltage direct current
(HVDC) is a more effective way than high-voltage alternative current (HVAC). In view of the current
capacity disparity between line commutated converter (LCC) and voltage source converter (VSC),
a hybrid hierarchical HVDC topology with parallel operation of 800 kV and 400 kV DC lines is
investigated. The optimal current allocation method for hybrid hierarchical HVDC is proposed
distinct from the same rated current command configuration method of high-voltage and low-voltage
converters in traditional topology. Considering the transmission loss reduction of the HVDC system,
a multi-order fitting function of transmission loss including LCC converter stations, VSC converter
stations and DC lines is established. To minimize the transmission loss and the voltage deviation
of key DC nodes comprehensively, a multi-objective genetic algorithm and maximum satisfaction
method are utilized to obtain the optimal allocation value of rated current command for high-
voltage and low-voltage converters. Through the optimization model, an improved constant current
controller based on the current allocation strategy is designed. The hybrid hierarchical HVDC system
model is built in PSCAD software, and simulation results verify the effectiveness of the proposed
topology and optimal current allocation strategy.

Keywords: hybrid hierarchical HVDC; high-voltage and low-voltage converters; transmission loss
function; voltage deviation; optimal current allocation

1. Introduction

HVDC is a critical technology for grid interconnection and massive energy transmis-
sion with the increasing conversion of fossil fuel-based grids to renewable energy-based
grids [1–3]. In 2020, global renewable energy increased by 260 gigawatts (GW), mainly
composed of wind power (127 GW) and photovoltaic power (111 GW) [4]. To deliver new
energy from resource-rich areas to load-concentrated areas, HVDC is more cost-effective
than HVAC. Throughout the development of HVDC technology over the last decade, it has
overcome many technical obstacles faced by HVDC grids [5,6].

The application of HVDC can realize the interconnection of multiple new energy power
grids. In Figure 1, the new energy power system based on HVDC is composed of thermal
power plants, photovoltaic power stations, wind farms, sending-end converter stations, DC
lines, receiving-end converter stations, and receiving-end grids. Conventional LCC-HVDC
technology is widely used, but it presents many disadvantages, such as commutation
failure, consumption of a large amount of reactive power, and so on. Although VSC-
HVDC can avoid the technical bottlenecks of LCC-HVDC, the short-boards for smaller
transmission capacity and lower voltage level also limit its development for new energy
integration [7]. Therefore, some scholars proposed hybrid HVDC, which combines LCC-
HVDC and VSC-HVDC [8]. However, there are some differences between LCC and VSC
in the current capacity and control method. Therefore, it is critical to design the topology

Processes 2022, 10, 579. https://doi.org/10.3390/pr10030579 https://www.mdpi.com/journal/processes4
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and control strategy of the hybrid HVDC, which can make full use of their advantages in
this paper.

Figure 1. New energy power system via HVDC.

With the development of VSC converter technology, hybrid HVDC transmission tech-
nology integrating LCC and VSC converter has attracted extensive attention. The existing
literature focuses on the topology of hybrid HVDC transmission systems [9–11], control
and protection strategies [12–14], small-signal stability analysis [15–17], experimental plat-
forms [18–20], etc. In November 2020, China approved the Baihetan-Jiangsu HVDC project,
which adopts hybrid cascade multi-terminal technology for the first time in the world. The
receiving-end station of the transmission project adopts three modular multi-level con-
verters (MMC) in parallel and then connected in series with LCC, which may cause MMC
power imbalance and reverse transmission risk after AC or DC faults. The literature [21]
proposes an AC fault ride-through strategy for Baihetan HVDC based on a modified DC
chopper and enhanced VDCOL (voltage-dependent current order limiter), which can real-
ize stable fault ride-through of HVDC in commutation failure mitigation and overvoltage
suppression. In December 2020, the Kunliulong HVDC project was put into operation
as the first multi-terminal hybrid HVDC project of 800 kV in the world. Since different
converters present various fault characteristics, the literature [22] studied the traveling
wave characteristics and verified the adaptability of traveling wave protection in software
PSCAD. For HVDC fault detection, the literature [23] designed an improved identification
scheme by comparing current polarity with transient current limiting boundary on the
basis of full-utilizing capacity of the converter, and intensive simulation is carried out to
prove the accuracy and coordination of the proposed scheme.

The above research results enrich the theoretical basis of the hybrid HVDC, but most
of the existing topologies cannot make full use of the current capacity of LCC. The cascade
technology of the Baihetan HVDC project has high requirements for the current coordinated
control of three VSC converters in [24]. To coordinate the current capacity of LCC and VSC, a
hybrid hierarchical HVDC is designed in this paper, which can not only make full use of the
current capacity of LCC but also improve the ability to connect weak systems by utilizing
VSC. The coordination control method is the focus of this paper for its consideration of
different converters, different DC lines and loss reduction of HVDC transmission involved
in this topology, differing from the same rated current command configuration method of
high-voltage and low-voltage converters in traditional topology. The main contributions of
this paper are summarized as follows:

(1) A hybrid hierarchical HVDC topology with parallel operation of 800 kV and 400 kV
DC lines is designed. By considering the LCC converter station, VSC converter station and
DC line, the HVDC transmission loss model is established.

5
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(2) To minimize the transmission loss and the voltage deviation of key DC nodes
comprehensively, a multi-objective genetic algorithm and maximum satisfaction method
are used to obtain the optimal allocation value of rated current command for high-voltage
and low-voltage converters. An improved constant current controller based on optimal
current allocation strategy is designed and validated in PSCAD.

The topology of the hybrid hierarchical HVDC system is depicted in Section 2. In
Section 3, the HVDC transmission loss model based on the multi-order fitting method is
formed in detail. In Section 4, improved HVDC control based on the current optimal alloca-
tion method considering the multi-objective optimization method is designed. Simulation
results based on PSCAD software and discussion are presented in Section 5. Finally, we
conclude this paper in Section 6.

2. Model of Hybrid Hierarchical HVDC System

2.1. Selection of System Topology

To reduce transmission loss and increase transmission capacity, an HVDC with a high-
voltage level of 800 kV or higher is utilized [25]. For the 800 kV HVDC system in topology 1
in Figure 2, the rated current of the LCC converter is set as 5 kA, so the DC power is
4000 MW. In consideration of the flexible transformation scheme for integration of new
energy, the upper LCC converter is replaced with an MMC converter to form topology 2.
Limited by the current capacity (3 kA) of MMC, the transmission power is reduced from
the original 4000 MW to 2400 MW. If a 400 kV DC line is added in topology 2, topology 3 is
established, and we can calculate that the transmission power of the hybrid HVDC system
is improved from 2400 MW to 3200 MW.
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Figure 2. Comparison for different HVDC topologies.

For hybrid hierarchical HVDC, shown in Figure 3, hierarchical structure means that
two DC lines are led out from point A at the high-voltage side and point B at the medium-
voltage side, respectively. The 800 kV lines and 400 kV lines operate in parallel, and
the system contains four DC lines. For ease of description, the converter between point
A and point B on the rectifier side is called a high-voltage converter, and the converter
between point B and point C is called a low-voltage converter. A 12-pulse LCC converter
is adopted for the low-voltage converter, and an MMC converter is adopted for the high-
voltage converter. The bipolar HVDC system is symmetrically equipped with the same
converter stations.
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Figure 3. Structure of hybrid hierarchical HVDC system.

2.2. LCC and VSC Station

The low-voltage converter in Figure 3 adopts a 12-pulse converter. The quasi-steady
mathematical model of the LCC converter is shown in Figure 4. The formulas of the
mathematical model are as follows:

Ud = 2.7Er cos α − 6
π

Xd Id (1)

Id =
Er√
2Xd

(cos α − cos(α + μ)) (2)

Pd = Ud Id (3)

Qc = Pd tan ϕ (4)

where Er is the effective value of line voltage at the rectifier valve side. Ud is the DC voltage,
Id is the DC current, and Pd is the DC power. Qc is the reactive power absorbed by the
converter, and Xd is the commutation reactance in phase. φ is the power factor angle. α is
the trigger delay angle, and μ is the commutation overlap angle.
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Figure 4. Schematic diagram of 12-pulse LCC converter.
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For the high-voltage converter in Figure 3, VSC is adopted. As shown in Figure 5,
the VSC converter includes six bridge arms, and each bridge arm is equipped with n
sub-modules (SMs). The on, off or locking state of SMs is judged by the on/off signal state
of switch T1/T2.
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Figure 5. Schematic diagram of VSC.

According to Figure 5, the mathematical model of VSC is described as:⎧⎪⎨⎪⎩
Ls

disa
dt = usa − Rsisa − uca

Ls
disb
dt = usb − Rsisb − ucb

Ls
disc
dt = usc − Rsisc − ucc

(5)

where ucm (m = a, b, c) is the electromotive force in VSC. usm (m = a, b, c) is the network-side
voltage, and ism (m = a, b, c) is the network-side current. Ls and Rs are the equivalent
inductance and equivalent resistance of the VSC station, respectively.

2.3. System Equivalent Circuit

Since a hybrid hierarchical HVDC system contains LCC and VSC converters, it is
necessary to establish the system equivalent circuit to study the coordinated control strategy.
As pole 1 and pole 2 operate symmetrically, we choose pole 1 as the research object.
According to the mathematical models of LCC and VSC, the simplified equivalent circuit
of hybrid hierarchical HVDC is established.

In Figure 6, α1 is the trigger delay angle of LCC at the rectifier side, and β2 is the trigger
advance angle of LCC at the inverter side. Xd1 and Xd2 are the commutation reactance
of the rectifier and inverter station, respectively. Um1(t) represents the sum of unbalanced
voltage and voltage change of bridge arm reactor caused by charging or discharging of the
sub-module in the rectifier-side MMC. Um2(t) represents the sum of unbalanced voltage
and voltage change of bridge arm reactor caused by charging or discharging of the sub-
module in the inverter-side MMC. R1 and R2 are the equivalent resistances of 400 kV and
800 kV DC lines, respectively. Id1 and Id2 are the DC current of 400 kV and 800 kV lines,
respectively. IUp and ILo are the DC current of the high-voltage and low-voltage converters,
respectively. Udr1 and Udi1 are the DC voltage of the rectifier-side LCC and inverter-side
LCC, respectively. Udr2 and Udi2 are the DC voltage of the rectifier-side MMC and the
inverter-side MMC, respectively.
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Figure 6. Equivalent circuit of simplified system.

Thus, the steady-state mathematical model of hybrid hierarchical HVDC system is
established as:

Udr = Udr1 + Udr2 ≈ 2.7Er cos α1 − 6
π

Xd1(Id1 + Id2) + n1uc1 (6)

Udi = Udi1 + Udi2 ≈ 2.7Ei cos β2 − 6
π

Xd2(Id1 + Id2) + n2uc2 (7)

Id1 = (Udr1 − Udi1)/R1 (8)

Id2 = (Udr2 − Udi2)/R2 (9)

Pr = Udr1(Id1 + Id2) + Udr2 Id2 (10)

Pi = Udi1(Id1 + Id2) + Udi2 Id2 (11)

where N1 and N2 are the number of sub-modules of the MMC converter at the rectifier side
and inverter side, respectively. uc1 and uc2 are the voltage of a single sub-module of the
MMC converter at the rectifier and inverter, respectively. Pr and Pi are the active power of
the rectifier and inverter, respectively.

3. HVDC Transmission Loss Model Based on Multi-Order Fitting Method

To lower the cost of the HVDC system, transmission loss is an important assessment
factor, mainly including LCC station loss, MMC station loss and DC line loss.

3.1. Loss Model of LCC Station

The loss model of the LCC station involves a converter valve, converter transformer,
smoothing reactor and AC filter. Among them, the converter valve and converter account
for more than 85% of the total loss. The specific formulas of various equipment losses are
described specifically in existing references. To facilitate the objective optimization, the loss
model of the LCC converter station can be expressed as:

PLCCLoss = an In
d + an−1 In−1

d + · · ·+ a1 Id + a0 (12)

where PLCCLoss is the loss of LCC station. Id is DC current of the LCC converter. an, . . . , a1,
a0 are the loss coefficients. n is the order of the fitting polynomial.

Based on the CIGRE model, the rated DC voltage UdN of the LCC converter station is
set as 400 kV and the rated DC current IdN is 5.0 kA by selecting 22 operation data between
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[0, 1.1 p.u.] in the simulation model, and using the multi-order fitting method to fit this
group of data. The 1st-order, 2nd-order, 3rd-order and 4th-order fitting functions are shown
in Figure 7. According to the error analysis, the fitting effect of the 4th-order fitting function
is the best. Therefore, the LCC loss model adopts the 4th-order fitting function.
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Figure 7. Loss fitting curve of LCC station.

3.2. Loss Model of MMC Station

The loss model of the MMC station involves a converter valve, converter transformer
and smoothing reactor. Among them, the converter valve and converter account for more
than 80% of the total loss. Reference [19] studies the loss of a 201-level MMC under fre-
quency conditions from 50 to 1000 Hz. The detailed loss model and loss approximate model
are adopted, respectively, and the calculation error is less than 6%. The loss approximation
model characterizes the quadratic relationship between the MMC converter station and
current. In order to improve the fitting effect, the approximate expression of the MMC loss
is established as:

PMMCLoss = bn In
d + bn−1 In−1

d + · · ·+ b1 Id + b0 (13)

where PMMCLoss is the loss of MMC station. Id is the DC current of the MMC converter.
bn, . . . , b1, b0 are the loss coefficients. n is the order of the fitting polynomial.

Similarly, referring to the multi-order fitting method of the LCC converter station,
the detailed MMC model is traversed and simulated to determine the fitting order of the
MMC converter station loss model. As shown in Figure 8, according to the error analysis,
the fitting effect of the 4th-order polynomial function is the best, so the MMC loss model
adopts the 4th-order fitting function.
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Figure 8. Loss fitting curve of MMC station.

3.3. Loss Model of Transmission Line

Since the corona loss of the DC line is small and negligible, only the resistance loss is
considered. The expression of the DC Line is:

PLineLoss = PL1Loss + PL2Loss = R1 I2
d1 + R2 I2

d2 (14)

where PLineLoss is the total loss of DC lines. PL1Loss and PL2Loss are the loss of the 400 kV
and 800 kV DC lines, respectively.

3.4. Loss Model of Hybrid Hierarchical HVDC

Based on the above analysis, the loss function of the hybrid hierarchical HVDC
including the LCC converter station loss, MMC converter station loss and DC line loss is
established as:

PLoss = PLCCLoss + PMMCLoss + PLineLoss =
N1

∑
i=1

PLCCiLoss +
N2

∑
j=1

PMMCjLoss +
N3

∑
p=1

PLinepLoss (15)

where N1, N2, N3 are the number of LCC converter stations, MMC converter stations and
DC lines, respectively. PLCCiLoss is the loss of the LCC station i. PMMCjLoss is the loss of the
MMC station j. PLinepLoss is the loss of the DC line p.

4. Current Allocation Strategy considering Multi-Objective Optimization Method

Due to the different resistance values of the high-voltage and low-voltage DC lines,
and the loss difference between the LCC station and the MMC station, the same rated
current command configuration method for high-voltage and low-voltage converters is
unsuitable in the proposed topology. Therefore, considering the perspective of transmission
loss reduction and voltage deviation optimization of key nodes, the constant active power
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controller of the high-voltage converter and the constant current controller of the low-
voltage converter are designed based on the optimal current allocation strategy. The
strategy introduces the hybrid HVDC loss function and voltage deviation function of
the key node, and utilizes a multi-objective genetic algorithm and maximum satisfaction
method to determine the optimal compromise value of the DC current for high-voltage
and low-voltage converters, so as to ensure the coordinated control and economy of the
proposed HVDC system.

4.1. Multi-Objective Optimization Model

A hybrid hierarchical HVDC system includes multiple converter stations and multiple
DC lines. Combined with each loss model, the objective function F1 is determined, and the
objective function F2 is determined by considering the minimum voltage deviation of key
nodes. The multi-objective optimization model can be expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

F1 = PLoss =
N1
∑

i=1
PLCCiLoss +

N2
∑

j=1
PMMCjLoss +

N3
∑

p=1
PLinepLoss

F2 =
N
∑

m=1
|Um − UmN|

(16)

where Um and UmN are the actual voltage values and the rated voltage values of the key
node j, respectively. N is the number of key nodes.

Active power, DC current, and key node voltage are selected as constraints:⎧⎪⎪⎨⎪⎪⎩
Pref = Udr1(Id1 + Id2) + Udr2 Id2
0 ≤ Id1 ≤ I1max, 0 ≤ Id2 ≤ I2max
0 ≤ Id1 + Id2 ≤ ILCCmax
(1 − k)UmN ≤ Um ≤ (1 + k)UmN

(17)

where PLoss is the total loss of HVDC. I1max and I2max are the maximum currents allowed
for the 400 kV line and 800 kV lines, respectively. Pref is the rated power. ILCCmax is the
maximum current of the LCC. k is the node voltage deviation coefficient.

4.2. Optimal Current Allocation Strategy Based on Multi-Objective Genetic Algorithm

After the Pareto solution set of the optimization model is obtained by a multi-objective
genetic algorithm, the optimal compromise values of the DC current (Id1opt and Id2opt) need
to be selected according to the operation of the hybrid hierarchical HVDC system. In this
paper, the maximum satisfaction method is considered in [26]. The optimization function
is Formula (16), and the optimization objective is to minimize the transmission loss and
voltage deviation of the key node. Therefore, the partial small satisfaction function is used
for the calculation, as shown in Formula (18). For the objective function corresponding
to each optimal solution in the Pareto solution set of multi-objective genetic algorithms,
the membership function is used to calculate its satisfaction. After standardization, the
solution with the largest satisfaction value is the optimal compromise value of the DC
current in Formula (19).

μi
n =

⎧⎪⎨⎪⎩
1, fn ≤ fnmin

fnmax − fn
fnmax − fnmin

, fnmax ≤ fn ≤ fnmin

0, fn ≥ fnmax

(18)
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where fn is the value of the nth objective. fnmin and fnmax are the minimum and maximum
values in the Pareto solution set, respectively.

μi =

N
∑

n=1
μi

n

M
∑

i=1

N
∑

n=1
μi

n

(19)

where μi is the standardized satisfaction of the ith optimal solution. M is the number of
Pareto optimal solutions, and N is the total number of objective functions.

After determining the optimal values Id1opt and Id2opt of the DC current, we calculate
the active power order of the high-voltage MMC converter (PRef_Up) and the DC current
order of the low-voltage LCC converter (ILCC_Lo) according to Formulas (20) and (21):

PRef_Up = IRef_Up · Udr2 = Id2opt · Udr2 (20)

IRef_Lo = Id1opt + Id2opt (21)

Based on the optimal current allocation model for the high-converter and the low-
voltage converter, the constant active power controller of the high-voltage converter and
the constant current controller of the low-voltage converter are designed, as shown in
Figure 9. Firstly, the input parameters are the HVDC power order Pref, rectifier DC voltage
Udc, voltage deviation coefficient k, etc. The DC current order of the high-voltage MMC
converter (IRef_Up) and the low-voltage LCC converter (IRef_Lo) are obtained through the
multi-objective optimization model considering the optimization of the hybrid HVDC
transmission loss and voltage deviation. The active power order PRef_Up is obtained
according to Formula (15) and then put into the outer loop of the constant active power
controller for the high-voltage converter. The measured current value of the LCC converter
is compared with the reference value, and then βLCC_Up is obtained by PI modular. Finally,
by subtracting βLCC_Lo, the trigger delay angle (αLCC_Lo) of the low-voltage LCC converter
can be obtained.
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5. Case Study

5.1. Results of Optimal Current Allocation Strategy

The resistance of the 400 kV line and the 800 kV line in the hierarchical HVDC system
are 0.024 Ω/km and 0.018 Ω/km, respectively, and the length of the transmission line is
200 km. Due to the limitation of the current capacity, the maximum current capacity of
the MMC converter and LCC converter are 3.125 kA and 5.45 kA, respectively. The DC
voltage node, of which the DC voltage is greater than or equal to 400 kV, is regarded as the
key node, and the transmission power of the single-pole system is 3000 MW. Based on the
multi-objective optimization model, MATLAB is used for optimal calculation. Figure 10
shows the Pareto set result obtained by the multi-objective genetic algorithm.
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Figure 10. Result of multi-objective genetic algorithm.

According to Formulas (20) and (21), the maximum satisfaction method is used to
obtain the optimal compromise value of the DC current. The optimal compromise command
value of the DC current flowing through the high-voltage converter and the low-voltage
converter is 3.12 kA and 4.38 kA, respectively. A total of 15 groups of typical data were
taken for comparison, as shown in Table 1. U1’and U2’ represent the DC voltage of the
low-voltage line and high-voltage line at the inverter side, respectively. With the increase
in the DC current of the low-voltage line, the power loss decreases. When Id1 increases,
the DC voltage of the high-voltage line at the inverter side increases. Compared with
the traditional control method (No. 6 in Table 1), the proposed control method (No. 13
in Table 1) can reduce the transmission loss by 7.67% and the voltage deviation drops
by 17.71%.
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Table 1. Comparison of power loss and voltage variation.

Number Id1(kA) Id2(kA) PLoss(MW) U1’ (kV) U2’ (kV)

1 5.450 2.050 112.38 383.68 776.30
2 5.400 2.100 109.84 384.16 776.60
3 5.300 2.200 105.16 385.12 777.20
4 5.200 2.300 101.01 386.08 777.80
5 5.100 2.400 97.39 387.04 778.40
6 5.000 2.500 94.30 388.00 779.00
7 4.900 2.600 91.75 388.96 779.60
8 4.800 2.700 89.73 389.92 780.20
9 4.700 2.800 88.24 390.88 780.80
10 4.600 2.900 87.28 391.84 781.40
11 4.500 3.000 86.87 392.80 782.00
12 4.400 3.100 86.98 393.76 782.60
13 4.380 3.120 87.07 393.95 782.72
14 4.375 3.125 87.10 394.00 782.75
15 4.300 3.200 87.63 394.72 783.20

5.2. Steady Characteristics

The detailed electromagnetic transient model of the hybrid hierarchical HVDC system,
shown in Figure 3, is constructed based on PSCAD software. The rectifier side adopts
the 12-pulse converter model of the CIGRE standard system. The specific parameters are
shown in the literature [27], and the basic operating parameters of the proposed HVDC
system are shown in Table 2. According to the optimization results, the optimal current
of the high-voltage MMC converter and the low-voltage LCC converter is 3.12 kA and
4.38 kA, respectively. The optimal current of the high-voltage DC line and the low-voltage
DC line is 3.12 kA and 1.26 kA, respectively. The LCC converter on the rectifier side adopts
the constant DC current control mode, and the MMC converter on the rectifier side adopts
the constant active power and reactive power control method equipped with the optimal
current allocation strategy proposed in this paper. The LCC converter on the inverter side
adopts the constant DC voltage control mode, and the MMC converter on the inverter side
adopts the constant DC voltage and reactive power control method.

Table 2. Basic operating parameters of proposed system.

Parameters Rectifier Inverter

AC voltage/kV 380 220
Rated capacity/MW 3000 3000

DC voltage/kV 800 782.72
Converter type LCC MMC

Number of sub-modules / 100
Transformer ratio 380/172 161/220

The simulation time is set as 6 s for depicting the steady-state characteristics of the
hybrid hierarchical HVDC with the high-voltage and low-voltage DC lines operating
in parallel.

It can be seen from Figure 11 that the start-up process of the HVDC is relatively stable.
On the rectifier side, the DC voltage of the high-voltage DC line and low-voltage DC line
is 800 kV and 400 kV, respectively. On the inverter side, considering the voltage drop
of the converter stations and DC lines, the high-voltage DC line can realize the power
transmission of 782.72 kV and 3.12 kA, and the low-voltage DC line can realize the power
transmission of 393.95 kV and 1.26 kA, according to Figure 11b,c. According to Figure 10,
since the electrical power of the low-voltage converter flows into the high-voltage DC
line and low-voltage DC line, the current of the low-voltage converter is 4.38 kA, while
the DC current of the high-voltage converter is 3.12 kA. In Figure 11e, the active power
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of the sending-end system and the receiving-end system is 3000 MW and 2912.93 MW,
respectively. The transmission loss is 87.07 MW, which is the result of the optimal allocation
of high-voltage and low-voltage converters. During the stable operation, the voltage of SM
is 4 kV, according to Figure 11f. The above simulation results verify the effectiveness of
the optimal current allocation strategy. The coordination strategy can not only ensure the
stable start-up of the system but also achieve the goal of minimizing transmission loss and
reducing the withstand voltage requirements of converter devices.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

1 2 3 4 5
0

200

400

600

800

1000

t/s

High-voltage DC line at rectifier

Low-voltage DC line at rectifier

400

800

D
C

 v
ol

ta
ge

 /k
V

1 2 3 4 50

200

400

600

800

1000

D
C

 v
ol

ta
ge

 /k
V

t/s

393.95

782.72

High-voltage DC line at inverter

Low-voltage DC line at inverter

1 2 3 4 50

1

2

3

D
C

 c
ur

re
nt

 /k
A

t/s

High-voltage DC line

Low-voltage DC line1.26

3.12

4

1 2 3 4 5
0

1.2

2.4

3.6

D
C

 c
ur

re
nt

 /k
A Low-voltage converter

High-voltage converter3.12

4.38

t/s

4.8

0 1 2 3 4 5
-1200

0

1200

2400

3600

A
ct

iv
e 

p
ow

er
/M

W

t/s

3.8 3.9 4 4.1 4.2
2865

2910

2955

3000

3045

Sending-end system
Receiving-end system

1 2 3 4 50

1

2

3

4

5

V
ol

ta
ge

 /k
V

t/s

Voltage of sub-modular in VSC

Figure 11. Steady-state waveform of the proposed system. (a) DC voltage at rectifier side. (b) DC
voltage at inverter side. (c) DC current of transmission line. (d) DC current of converter. (e) Active
power of HVDC. (f) DC voltage of sub-module in VSC.

5.3. Step Characteristics

We set the active power command as 1.0 p.u. (3000 MW), and introduced an active
power command module including three stages: (1) the initial power command is 1.0 p.u.,
and then drops to 0.8 p.u. from 3.0 to 3.5 s; (2) from 3.5 to 4.0 s, the power command
remains unchanged; (3) from 4.0 to 4.5 s, the power recovers to 1.0 p.u. Figure 12 is the
response result of the hybrid hierarchical HVDC under the variation of power command.
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Figure 12. Response under system power command. (a) Power command of system. (b) DC current
of transmission line. (c) DC voltage of system at the inverter side.

According to Figure 12, when the active power order issued by the active power
command module decreases step by step from 3.0 s, the current commands of the high-
voltage line and low-voltage line decrease accordingly. When the active power command
increases at 4.0 s, the current command increases. At 4.5 s, the active power order recov-
ers to 1.0 p.u., and the DC current fluctuates with the active power order rapidly. The
DC voltage of the high-voltage DC line and low-voltage DC line at the inverter side is
782.72 kV and 393.95 kV, respectively. Therefore, the proposed HVDC system presents
good response characteristics.

5.4. AC Fault at Rectifier Side

A three-phase fault occurs at the rectifier side in 3 s with a duration of 0.1 s, and the
grounding resistance is 8 Ω. The simulation results are shown in Figure 13.

When the three-phase fault occurs in the sending-end system, as shown in Figure 13a,
the AC system at the rectifier side drops to 60% of the normal value, and the DC parameters
drop accordingly. In Figure 13b–d, the DC current of the transmission line drops greatly,
the high-voltage DC line drops from 3.12 kA to 1.87 kA, the low-voltage DC line drops
from 1.26 kA to 0.33 kA. The active power transmitted by the HVDC system decreases from
3000 MW to 1628 MW, which returns to the normal level after 0.33 s. Due to the regulating
effect of the DC voltage regulator in the MMC, the drop range of the DC voltage is smaller
than that of the DC current, and the rated voltage can be restored in a short time. Therefore,
the optimal current allocation method of the hybrid hierarchical HVDC system can respond
to the rectifier-side fault in time. Meanwhile, the DC current is always continuous without
dropping to zero. After the fault is cleared, the system can quickly return to its normal
operation state.
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Figure 13. Waveform diagram under fault at rectifier side. (a) AC voltage at rectifier side. (b) DC
voltage at rectifier side. (c) DC current of transmission line. (d) Active power of system.

5.5. AC Fault at Inverter Side

A three-phase fault occurs at the inverter side in 5 s with a duration of 0.1 s, and the
grounding resistance is 8 Ω. The simulation results are shown in Figure 14.
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Figure 14. Waveform diagram under fault at inverter side. (a) AC voltage at inverter side. (b) DC
voltage at rectifier side. (c) DC current of transmission line. (d) Active power of system.

Figure 14a shows the voltage curve of the receiving-end system. When the three-phase
fault occurs, the AC voltage at the inverter side drops from the rated value of 220 kV to
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132 kV. Figure 14b–d depicts the curves of the DC voltage, DC current and active power
during an inverter-side fault, respectively. The AC system fault on the inverter side causes
the drop of the AC voltage amplitude and the power transmitted to the receiving-end
system decreases. At this time, the MMC converter can activate its DC voltage regulation
ability and provide reactive power support. Due to the mismatch of active power between
the rectifier side and the inverter side, the unbalanced power enters the capacitance of the
sub-module in the MMC, which further reduces the drop degree of the DC voltage. During
the whole fault process, the system recovers quickly and returns to normal operation by
0.20 s. In the simulation scenario, there is no commutation failure that occurs in the inverter
station. The DC current and voltage of the hybrid hierarchical HVDC system remain well-
regulated during the AC fault, which depends on the optimal current allocation strategy.

6. Conclusions

This study proposes an optimal current allocation method for a hybrid hierarchical
HVDC with several DC lines with different voltage grades. By considering the current
capacity difference between LCC and VSC, the hybrid hierarchical HVDC scheme, with
parallel operation of 400 kV and 800 kV DC lines, is designed for massive energy trans-
mission. We establish the multi-order fitting function of transmission loss including LCC
converter stations, MMC converter stations and DC lines. The current optimal allocation
strategy based on a multi-objective genetic algorithm is proposed to form an improved
constant current controller suitable for the proposed HVDC topology to realize the stable
operation goal of the high-voltage and low-voltage converters. The transient-state and
steady-state characteristics are verified in the PSCAD simulation. According to the simula-
tion results, the current optimal allocation strategy has better performance for reducing
HVDC transmission loss by 7.67% and dropping voltage deviation by 17.71% compared to
the traditional control method.

The following works will focus on a detailed station loss model considering multiple
operating conditions of converter valves and the transient coordinated control strategy of
the HVDC system with the integration of massive renewable energy.
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Nomenclature

General and Abbreviation
HVDC High-voltage direct current.
HVAC High-voltage alternative current.
LCC Line commutated converter.
VSC Voltage source converter.
DC Direct current.
kV Kilovolt.
GW Gigawatt.
MW Megawatt.
MMC Modular multilevel converter.
SM Sub-module.
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E Effective value of line voltage.
U DC voltage.
I DC current.
P Active power.
Q Reactive power.
X Commutation reactance.
α Trigger delay angle of LCC.
β Trigger advance angle of LCC.
L Equivalent inductance.
R Equivalent resistance.
PSCAD Power systems computer-aided design.
Subscripts
a, b, c Quantities of a, b and c-phase.
r, i Quantities of rectifier and inverter side.
max, min Quantities of maximum and minimum.
Ref_Up Quantity of high-voltage converter.
Ref_Lo Quantity of low-voltage converter.
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Abstract: Transient stability during grid fault is experienced differently in modern power systems,
especially in wind-turbine-dominated power systems. In this paper, transient behavior and stability
issues of a direct drive wind turbine during fault recovery in DC-link voltage control timescale
are studied. First, the motion equation model that depicts the phase and amplitude dynamics of
internal voltage driven by unbalanced active and reactive power is developed to physically depict
transient characteristics of the direct drive wind turbine itself. Considering transient switch control
induced by active power climbing, the two-stage model is employed. Based on the motion equation
model, transient behavior during fault recovery in a single machine infinite bus system is studied,
and the analysis is also divided into two stages: during and after active power climbing. During
active power climbing, a novel approximate analytical expression is proposed to clearly reveal the
frequency dynamics of the direct drive wind turbine, which is identified as approximate monotonicity
at excitation of active power climbing. After active power climbing, large-signal oscillation behavior
is concerned. A novel analysis idea combining time-frequency analysis based on Hilbert transform
and high order modes is employed to investigate and reveal the nonlinear oscillation, which is
characterized by time-varying oscillation frequency and amplitude attenuation ratio. It is found
that the nonlinear oscillation and even stability are related closely to the final point during active
power climbing. With a large active power climbing rate, the nonlinear oscillation may lose stability.
Simulated results based on MATLAB® are also presented to verify the theoretical analysis.

Keywords: direct drive wind turbine; grid fault; nonlinear oscillation; transient stability; time-
frequency analysis; transient switch

1. Introduction

With an increasing penetration of wind power integrated into modern power systems,
the dynamic issue of part grid tends to be dominated by wind turbines instead of tradi-
tional synchronous generators. Wind turbines have different dynamic characteristics than
synchronous generators, resulting in the system experiencing different dynamic issues.
Among different types of wind turbines, direct drives that have superior grid-connected
performance are increasingly installed. However, due to the reverse distribution of wind
resources and load centers, a large scale of direct drive wind turbines is installed in a weak
AC grid, bringing in strong interaction between the wind turbine and AC grid. The strong
dynamic interaction significantly challenges the safe and stable operation of the system,
necessitating the analysis.

Existing studies have paid much attention to the stability issue resulting from the
connection of wind turbines [1]. In [2–8], a small-signal oscillation problem related to wind
turbines integrated into a high impedance AC grid is investigated. Due to a wide band
control of equipment, oscillation is characterized by a multi-time scale, and oscillation
frequency ranges from hundreds of Hz to several Hz. Previous works have carried out
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detailed analyses about this. However, these works address the small-signal stability issue
with disturbance around the equilibrium point, and a linearized system is applicable for
analysis. In practice, faults, including wind turbine system faults and grid faults, are
common. Fault diagnosis and resilient control for a wind turbine system is a research
hotspot that has attracted massive research in recent years [9,10]. Except for this, transient
issue analysis during grid fault is also worthy of research. In [11], the rotor angle stability
of the synchronous generator affected by the dynamical characteristics of a wind turbine
is analyzed. The work is carried out from the viewpoint that synchronous generators are
dominant equipment, and the dynamics of wind turbines are only influential factors. This
is reasonable at a relatively low penetration of wind power. However, with the increasing
penetration of wind power, the dynamic issue of the part grid is dominated by wind
turbines instead of synchronous generators. Transient issue faces new challenges and
begins to be paid attention to. Transient stability dominated by the control of renewable
energy generating units are investigated in [12–17]. Analysis results show that similar
transient instability that is common in traditional synchronous generators also exists in
PLL-synchronized converters. The transient stability can be explored from the accelerating
and decelerating areas method. These analyses are based on a simplified control structure
and attempt to reveal transient instability mechanisms. Yet, practical control of wind
turbines is complex, even on a single time scale [3,8–11]. In this paper, transient behavior
during fault recovery in DC-link voltage control timescale is studied, with complex practical
control considered.

A deep understanding of an equipment’s characteristics is the precondition of dynamic
issue analysis. In order to investigate the dynamic behavior of a system dominated by
renewable energy, kinds of equipment models are proposed [18–21]. The impedance model
is developed and widely used in small-signal oscillation analysis. External characteristics
of equipment are investigated through impedance frequency spectrum with specific control
structure packing treatment [22–24]. At the time of bringing convenience, it has some
difficulty in mechanism explanation of the relationship between specific control loop and
oscillation. Based on this consideration, the motion equation model from the idea of
Newtonian mechanics is proposed to deeply study equipment’s characteristics [20,21]. By
establishing the relationship between unbalanced powers and dynamics of internal voltage,
the form of the motion equation model is similar to the rotor motion of a synchronous
generator, and equivalent inertia and damping can be obtained. Thus, oscillation with
increasing amplitude can be physically explored from the viewpoint of insufficient damping.
However, the two models are both applicable for small signal analysis. Under large-signal
disturbance, a new model is needed to study equipment’s transient characteristics. Based
on the advantage of the motion equation model in studying the equipment’s characteristics,
it is necessary to be popularized for the condition of large-signal disturbance. In this paper,
the transient motion equation model in the DC-Link voltage control time scale is developed
with transient switch control considered.

Although large signal analysis is difficult due to the non-negligible influence of non-
linearity, kinds of meaningful methods are proposed to address the issue [25–32]. The
methods based on computational intelligence may be powerful for the analysis and control
of a complex, large-scale system [25–27]. However, they may have difficulty explaining
the stability mechanism and influence factor concerned by this paper. Time-frequency
analysis based on the Hilbert transform is usually employed to analyze low-frequency and
sub-synchronous nonlinear oscillation in traditional power systems [28,29]. Based on data
from transient simulations, instantaneous attributes of oscillation behavior can be identified.
In addition to numerical analysis, the inclusion of higher-order terms is usually used to
evaluate accurate modal characteristics that linear analysis can not provide [30,31]. Based
on the Normal Form theory, higher-order modal interactions resulting from the influence
of nonlinearity can be revealed. By combining the two methods, nonlinear oscillation can
be deeply investigated [32]. This paper draws lessons from the two methods and carries
out large-signal oscillation analysis during fault recovery.
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The rest part of this paper is organized as follows. In Section 2, transient switch control
of direct drive wind turbine is investigated. Then motion equation model during fault
recovery is developed in Section 3. Based on the developed model, transient behavior
analysis in a simple system is carried out in Section 4. Finally, conclusions are drawn in
Section 5.

2. Transient Switch Control of Direct Drive Wind Turbine

When grid faults occur, the wind turbine usually undergoes complex transient switch
control to support the grid or protect the wind turbine itself. Figure 1 shows the typical
auxiliary control and circuit referred to [33,34]. Due to this concerning issue, the control in
electromagnetic time scale receives special attention.
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Figure 1. Typical auxiliary control and circuit in response to grid faults.

As shown in Figure 1, the whole process in response to grid faults can be divided
into three stages according to that grid faults are detected and then cleared, which is as
shown in Figure 2. Each stage employs a different control structure in order to satisfy
different requirements.
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Figure 2. Transient switch control in response to grid fault.
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Before grid fault, active and reactive current orders are controlled by DC-Link voltage
control and terminal voltage control, respectively. Due to the limited capacity of the grid
side converter, active power priority is usually utilized in current limit logic.

In the case that grid faults are detected, states of DC-Link voltage control and terminal
voltage control before the grid fault are frozen first. Grid side converter takes the role of
supporting grid voltage and injects reactive current as required by grid codes. In order
to reduce the system stress during grid faults, the active current order is limited by a
cap (upper limit) through Low Voltage Power Logic (LVPL) [34]. In normal operating
conditions, there is no cap. When the voltage falls, a cap is calculated and applied. Thus,
the dynamics of the active current order are influenced by the amplitude of terminal
voltage during a deep grid fault. Referring to possible DC-Link overvoltage resulting from
limited active power transfer, a hysteresis controller based on chopper-controlled resistors
is employed to stabilize DC-Link voltage in the set narrowband.

When grid faults are cleared, active and reactive current orders are re-controlled by
DC-Link voltage control and terminal voltage control, respectively. However, a ramp rate
limit is applied to the active current order rate of increase to reduce system stress [34].
Since active current order during the grid fault is usually very small, it increases with time
according to the ramp rate limit in a short time during fault recovery. When it reaches
about the frozen value before the grid fault, the active current order begins to be adjusted
by DC-Link voltage control. As a result, the transient process during fault recovery can
be further divided into two stages: during and after active power climbing. A switched
system should be employed to portray the transient behavior during fault recovery.

3. Developed Motion Equation Model

Since direct drive wind turbines employ a power electronic converter as a grid-
connected interface, their transient characteristic is dominated by complex control. In
order to physically study the transient characteristic, a motion equation model based on
Newton mechanics is proposed, which establishes the relationship of internal voltage dy-
namics induced by unbalanced powers. Then the transient characteristic of the direct drive
wind turbine can be explored from the equivalent motion driven by unbalanced powers.
Concerning the transient switch control during fault recovery, the transient analysis should
be divided into two stages: during and after active power climbing. The switched system
should be employed to depict transient characteristics. During active power climbing,
active current order increases with time according to the ramp rate limit, and DC-Link
voltage control does not take effect. After active power climbing, active current order
begins to be adjusted by DC-Link voltage control.

3.1. Motion Equation Model in Stage of Active Power Climbing

Based on Figure 1, the dynamics of the wind turbine’s internal voltage in the stage
of active power climbing are dominated by terminal voltage control and a phase-locked
loop, as shown in Figure 3. Since the two control loops are in response to dynamics of
terminal voltage and then adjust current orders, the modeling work is mainly composed of
two parts. One is that the phase and amplitude dynamics of terminal voltage should be
obtained through active and reactive power (P,Q). Based on this, a model can be developed
in the form that dynamics are induced by unbalanced powers, and the model has good
portability due to no relationship with the information of the network. The other is that
internal voltage should be calculated through current orders since the internal voltage is
selected to represent the external characteristic of the wind turbine.
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First, the relationship of terminal voltage with active and reactive power output is
calculated. According to the circuit topology in Figure 1, the output power is represented by

P =
EVt sin(θe − θt)

X f
(1)

Q =

[
E2 − EVt cos(θe − θt)

]
X f

(2)

Then, combining (1) and (2), phase and amplitude dynamics of terminal voltage can
be obtained by

θt = θe − arctan

⎡⎣ PX f(
E2 − QX f

)
⎤⎦ (3)

Vt =

√
P2X f

2 +
(

E2 − QX f

)2

E
(4)

Thus, information on terminal voltage can be replaced by internal voltage and active
and reactive power output.

Second, the internal voltage should be calculated through current orders. It is known
that current orders adjusted by control loops are in the PLL reference frame. Based on the
circuit relationship in Figure 1, the dq component of internal voltage can be calculated by

Ed = Vt cos θ
p
t − X f Iq (5)

Eq = Vt sin θ
p
t + X f Id (6)

Through polar coordinates transformation, amplitude and phase (that is, relative to
d-axis of PLL) of internal voltage can be obtained by

E =
√

Ed
2 + Eq2 (7)

θ
p
e = a tan

(
Eq

Ed

)
(8)

Due to the employed PLL synchronization, the phase of internal voltage is composed
of two parts: the synchronous phase provided by PLL and the phase that is relative to PLL,
as represented by

θe = θ
p
e + θp (9)
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Based on the above deduction, the developed motion equation mode during active
power climbing is shown in Figure 4. It is clearly seen that the dynamics of internal voltage
can be studied from the equivalent motion driven by unbalanced active and reactive power.

tθ

++

+−

Id
E

pθP

V +
−

E
+

V
−

eE θ∠

( )rvT s + Xf

Xf

vk s pθ
p

Eθ

t

Id

p
tθ

p
t tV θ

p
t tV θEq

Eq
refV

Figure 4. Motion equation mode in stage of active power climbing.

3.2. Motion Equation Model after Active Power Climbing

When the active current order approaches frozen value before grid fault, ramp rate
limit will be out of action, and DC-Link voltage control begins to take effect. Thus the
influence of DC-Link voltage control on dynamics of internal voltage should be considered
after active power climbing.

In this case, when electromagnetic power injected into the power grid is not equal
to feed power from the machine side, the DC-link capacitor will go through charging
or discharging. Then the active current will be adjusted and thus significantly influence
phase dynamics. This indicates that unbalanced active power drives the motion of phase,
although the relationship between them is complex. Moreover, when DC-Link voltage
exceeds the limit value, the chopper will take effect, and consumed power by the chopper
should be taken into account. Based on Figure 4, the motion equation model after active
power climbing can be easy to be obtained, as shown in Figure 5.
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Figure 5. Motion equation model after active power climbing.

3.3. Equipment’s Transient Characteristic Analysis

Based on the developed motion equation model in Figures 4 and 5, it is known that
wind turbine is very different from traditional synchronous generators and its transient
characteristic are much more complex, which can be concluded as

(1) Discontinuity. Unlike the synchronous generators that can employ a unified
model for electromechanical transient analysis in different fault stages, the developed
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motion equation model of the direct drive wind turbine is discontinuous due to transient
switch control.

(2) Nonlinearity. In transient stability analysis of traditional power systems, nonlinear-
ity mainly results from the network, which lies in the power angle curve, and the linear
rotor motion model is used to depict the equipment’s transient characteristic. However, the
wind turbine’s motion equation model is characterized by strong nonlinearity, and nonlin-
earity is mainly embodied in the following three aspects: polar transformation, PLL, and
replacing terminal voltage information. The main types of nonlinearity are trigonometric
and square functions.

(3) High order. Due to the complex control of wind turbines, the relationship be-
tween unbalanced power and internal voltage is characterized by high order. As a result,
the inertia that is used to depict the relationship between unbalanced active power and
phase dynamics is variable. This is different from a synchronous generator, which has
constant inertia.

(4) Strong Coupling. In a wind turbine, phase dynamics are strongly coupled with
amplitude dynamics, and the coupling that mainly results from the control of the wind
turbine is implemented in an orthogonal coordinate system, while amplitude and phase
are obtained from the polar coordinate system. Compared with a synchronous generator
that directly controls amplitude and phase, the coupling in a wind turbine is stronger.

4. Transient Analysis in Single-Machine Infinite-Bus System

Based on the developed motion equation model, transient analysis during fault recov-
ery in a typical single-machine infinite-bus (SMIB) system shown in Figure 6 is carried out.
A three-phase ground fault is set at one line, and after a certain time, the faulted line is cut
off. In this paper, we assume that a stable operating point has been achieved during a grid
fault, and transient behavior during fault recovery is mainly concerned.

X
GSCMSC

E
X

X XfX

Figure 6. Single type-4 wind turbine infinite-bus (SMIB) system.

The transient analysis idea during fault recovery is shown in Figure 7. It is assumed
that the system achieves a stable state at point a during grid fault. When the fault is cleared,
the system goes through the transient process from point a to equilibrium point c after grid
fault. However, due to the transient switch control introduced by active power climbing,
the transient process is divided into two stages: during and after active power climbing. In
the two stages, the network equations are the same. However, the motion equation models
of direct drive wind turbines are different, resulting in state trajectories that are dominated
by different dynamic equations. In the stage of active power climbing, the state trajectory
moves from point a driven by the motion equation model and network equation in the
stage of active power climbing. When the active current order reaches about the frozen
value before grid fault, the stage ends, and the final state is the initial state of the second
stage. After active power climbing, the system goes through the transition process from
the final state in the stage of active power climbing to a stable equilibrium point after a
grid fault. Due to the strong nonlinearity, the dynamic behavior and even stability issue in
the second stage is significantly influenced by the final state in the stage of active power
climbing. According to the attraction region theory of nonlinear system, there exists an
attraction region in state space for the stable equilibrium point. Only if the initial state lies
in the attraction region can the system keep transient stable. Otherwise, transient instability
will occur. Since the initial state in the second stage during fault recovery is determined by
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the final state in the first stage, the dynamic behavior in the stage of active power climbing
will have much influence on the dynamic behavior and transient stability issue after active
power climbing.

P Q P QeE θ∠
 

c

a

b
b

Figure 7. Transient analysis idea during fault recovery.

4.1. Transient Analysis in Stage of Active Power Climbing

In the stage of active power climbing, closed-loop dynamics of internal voltage can
be investigated by combining the motion equation model and network model. Simpli-
fied network topology is shown in Figure 8, and the grid is represented by its Thevenin
equivalent circuit. When considering transient behavior in the DC-link voltage control
time scale, fast dynamics of the network are neglected, and an algebraic equation is used to
calculate power through voltage vectors [8]. In Figure 9, it is shown that phase dynamics of
internal voltage are induced by time-varying excitation from the active current order. In
the model, the time-varying excitation can be further replaced by the integral calculus of
constant kramp.

 

Xf UgVt
XgE

I
Figure 8. Simplified network topology.
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Figure 9. Phase dynamics of internal voltage in stage of active power climbing.

It is known that phase of internal voltage is composed of two parts: θp that is dom-
inated by PLL and θ

p
E of internal voltage relative to PLL. Both of them are induced by

active current order excitation. Since θp is directly related with Vtq, its dynamics can be
investigated based on the relationship of Vtq and the active current order. Utilizing terminal
voltage Vt and grid voltage Ug in Figure 8, active power can be represented by

P =
VtUg sin θt

Xg
(10)

In addition to this, active power can also be calculated through d-axis and q-axis
current, which is obtained by

P = Ug Ip
d cos θp − Ug Ip

q sin θp (11)

Since the phase of terminal voltage is also composed of two parts: θp and θ
p
t of terminal

voltage relative to PLL, Vtsinθt in (10) has another form represented by

Vt sin θt = Vt sin θ
p
t cos θp + Vt cos θ

p
t sin θp (12)

Combing (10)–(12), relationship of Vtq and active current order excitation is obtained by

Vtq = Xg

∫
krampdt − Ug sin θp (13)

Further, differentiating (13), the following expression can be obtained.

dVtq

dt
= krampXg − ωpUg cos θp (14)

Then the frequency dynamics of internal voltage dominated by PLL can be shown in
Figure 10. It is a step response of a third-order nonlinear dynamical system, and excitation
is related with Xg and kramp. Nonlinearity exists in red dashed line frame in Figure 10.
In addition to these, the initial states in Figure 10 reflect the influence of states during
grid fault on the step response, and the initial states of θp and Vtq are represented by
(15) and (16), which is calculated based on the state-equation during grid fault [13]. Since
it is assumed that steady states are achieved during grid fault, the initial integral state of
PLL’s PI controller is usually zero.

θp_initial = a sin

(
Xg f Id f 0

Ud f

)
(15)

Vtq_initial = Xg Id f 0 − Ug sin
(

θp_initial

)
(16)

30



Processes 2022, 10, 774

where Ud f and Xg f are Thevenin equivalents of grid and Id f 0 is the active current order,
which are all during grid fault.

+

+
pθ

VtqkrampXg
pω

Ug

Figure 10. Frequency dynamics of internal voltage dominated by PLL.

For convenience, assume that deep voltage sag is considered and the active current
order during grid fault is zero. Thus, Vtq will not jump and keep zero at the beginning
of fault recovery. Since the initial state of θp is also zero, Vtq begins to increase driving
by krampXg − ωpUgcosθp, and then ωp and θp both increase from the zero initial state.
However, in a short period of time, θp is very small and Ugcosθp is approximate to be
constant Ug. Thus, the nonlinear part in the red dashed line frame can be replaced by
a constant and ωp is approximate to be the step response of the second-order system as
represented by

ωp_approximation = L−1

[
kp_plls + ki_pll

s2 + kp_plls + ki_pll

krampXg

s

]
(17)

As time prolongs, θp becomes large, and the influence of the nonlinear part should be
considered. At this time, due to the fast response of PLL, dynamical regulation resulted in a
large deviation of krampXg and ωpUgcosθp can be thought to be finished and approximation
of krampXg ≈ ωpUgcosθp is reasonable. Thus, the dynamics of ωp can be represented by the
quasi-steady-state solution shown below.

ωp_quasi_steady_state =
krampXg

Ug cos
(∫

ωp
) (18)

Based on the above, the dynamics of ωp, in the whole stage of active power climbing,
can be approximately represented by

ωp ≈ ωp_approximation + ωp_quasi_steady_state − krampXg (19)

In the initial stage, it can be depicted by the step response of the second-order system,
and then the quasi-steady-state solution reflects the subsequent dynamics. Further, the
quasi-steady-state solution also has an approximate relationship represented by∫ (

krampXg
)
dt ≈

∫ (
ωpUg cos θp

)
dt (20)

Then θp at the end of active power climbing can be estimated by

θ1s = a sin
(

Xg Id0

Ug

)
(21)
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ωp reaches the maximum at this time, which is represented by

ωp_max ≈
(
krampXg

)(
Ug cos θ1s

) (22)

Simulated results verified the analysis is shown in Figure 11. Since θp is integral of ωp,
dynamics of θp is charactered by monotonous increase. Further analysis reveals that the
influence of states of amplitude branch on the oscillation in the second stage is very small.
Thus dynamics of the amplitude branch in the first stage will not be deeply investigated.
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Figure 11. Frequency response of internal voltage dominated by PLL.

From Figure 10, active power climbing rate kramp has much influence on frequency
response of internal voltage dominated by PLL. By numerical calculation, the frequency
response at different active power climbing rates is shown in Figure 12. It is seen that the
frequency offset tends to be large at the end of active power climbing with the increase in
active power climbing rate. Since the final state in the stage determines the initial state after
active power climbing, it is indicated that the initial state in the second stage will deviate
from the equilibrium point far away with the increase in active power climbing rate, which
will deteriorate the transient behavior and even bring transient instability issue after active
power climbing.
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Figure 12. Influence of kramp on frequency response of internal voltage.
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4.2. Nonlinear Oscillation Analysis after Active Power Climbing

Based on the motion equation model in Figure 5, it is known that the open-loop
characteristics of a wind turbine are depicted by two input and two output nonlinear
transfer functions. In order to qualitatively investigate the influence of nonlinearity on
large-signal oscillation behavior, single input and single output dynamical equation are
employed for convenience based on a hypothesis. Here open-loop phase dynamics induced
by unbalanced active power are investigated, as shown in Figure 13.
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+
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dcU− XfCs
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−

dcU

Xf
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+− + eθp
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Figure 13. Open-loop phase dynamics with amplitude dynamics neglected.

The nonlinear function has three types: sin, asin, and square root. The influence
of nonlinear function on open-loop characteristics can be reflected by (23). The small
increase in the amount of output relative to the small increase in the amount of input at
different operating points at a disturbed trajectory is different. The complexity induced by
nonlinearity has resulted from this.

sin(xi + Δx) = sin xi + (cos xi)Δx (23)

However, based on the geometric interpretation of the Euler integral, short time
window dynamics around any operating point at a disturbed trajectory can be represented
by a time-varying linear equation and constant excitation. The linear equation is obtained
by linearization at the studied operating point, which usually is not the equilibrium point.
Thus, open-loop characteristics in a short time window can be represented by (24).

Δθe = G(s, Xi)ΔP (24)

Since G(s, Xi) is related with operating point Xi, it is not constant and changes with
time. When the disturbance is small, it means that Xi is very close to the equilibrium point
Xe and the influence of change of Xi on G(s, Xi) is so small that it can be neglected. As a
result, G(s, Xi) is fixed, and small-signal dynamics have constant oscillation modes. Ampli-
tude attenuation and the oscillation frequency are fixed. However, when the disturbance
is large, G(s, Xi) changes a lot with time. It is known that short time window oscillation
characteristics are related with G(s, Xi). Thus large-signal oscillation characteristics may be
very different from small-signal oscillation, and its amplitude attenuation and oscillation
frequency are not fixed.

sin(xe + x) = sin xe + (cos xe)x − 0.5(sin xe)x2 + O
(

x2
)

(25)

Further, the influence of nonlinear function on open-loop characteristics can be inves-
tigated from the viewpoint of Taylor’s high-order expansion. From (25), it is known that
the output of a nonlinear function has other frequency components even if the input is a
single frequency sinusoidal signal, and as the amplitude of the input signal increases, other
frequency components in the output signal tend to be large. Due to these characteristics,
closed-loop oscillation behavior will be more complex.

In order to study closed-loop oscillation behavior, the motion equation model in
Figure 5 is combined with the network model in Figure 8. Oscillatory modes of linearized
system at equilibrium point are listed in Table 1. It is shown that the linearized system
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is poor damping and mode three dominates the small-signal oscillation. Comparative
simulated results shown in Figure 14 reveals that large signal oscillation characteristics
(amplitude attenuation and oscillation frequency) are different from that of linear oscillation.
In order to further investigate the large-signal oscillation characteristics, time-frequency
analysis based on the Hilbert transform [31] is employed.

Table 1. Oscillatory modes of equilibrium point after active power climbing.

Mode Eigenvalue Freq.(Hz) Damping Ratio

1 −100 ± 99j 15.8 71%
2 −29.4 ± 35j 5.6 64%
3 −0.6 ± 67.9j 10.8 1.3%

Figure 14. Comparative simulated results of internal voltage’s angular velocity between original
nonlinear system and linearized system at equilibrium point.

Since damping ratios of modes one and two are large, the oscillation component
dominated by them will attenuate quickly, and the obtained simulated responses can
be thought to be a single component from the viewpoint of a nonstationary signal. The
single-component large-signal oscillation has the unified form represented by

x(t) = Ae
∫

α(t)dt cos
(∫

ω(t)dt
)

(26)

Here α(t) and ω(t) are defined as instantaneous amplitude attenuation ratio and
oscillation frequency, respectively. If the oscillation is linear, α(t) and ω(t) are constantly
determined by mode three. However, due to nonlinearity, α(t) and ω(t) change with
time. In order to obtain α(t) and ω(t), Hilbert transform of x(t) is utilized and y(t) can be
attained represented by

y(t) = Ae
∫

α(t)dt sin
(∫

ω(t)dt
)

(27)

Based on x(t) and y(t), the amplitude dynamics A(t) and phase dynamics θ(t) can be
represented by

A(t) = Ae
∫

α(t)dt =

√
x(t)2 + y(t)2 (28)

θ(t) =
∫

ω(t)dt = arctan
(

y(t)
x(t)

)
(29)
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Then α(t) and ω(t) can be calculated by

α(t) =
dA(t)/dt

A(t)
(30)

ω(t) =
dθ(t)/dt

θ(t)
(31)

Based on the Hilbert transform, the obtained instantaneous amplitude attenuation
ratio α(t) and oscillation frequency ω(t) are shown in Figure 15. It is known that α(t) and
ω(t) are both not constant and change with time. Further, α(t) and ω(t) oscillates around
mode 3. This also verifies the idea of piecewise linearization with short time window. Since
the short time window open-loop characteristics are determined by G(s, Xi) and states
Xi oscillates around equilibrium point, instantaneous amplitude attenuation ratio, and
oscillation frequency are inevitable to change around mode three with time. Figure 15 also
shows that α(t) varies a lot around real part of mode three. This reveals that α(t) is very
sensitive to change of states. Integral of α(t) reflects attenuation of amplitude. Figure 16
shows that

∫
α(t)dt tends to be larger than

∫
α0dt as time increases. This reveals that the

nonlinearity deteriorates amplitude attenuation.

ω π

Figure 15. Instantaneous frequency and amplitude attenuation ratio characteristic.

dt

( )t dt

Figure 16. Integral of instantaneous amplitude attenuation ratio.
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Time-frequency analysis digs deep into the nonlinear oscillation characteristics. In
order to further carry out the mechanism explanation, Taylor’s high-order expansion joint
with the analysis idea of Normal Form is employed. From (25), it is known that Taylor’s
high-order expansion can achieve a good approximation of nonlinear function, and the
order of high order term is related to the disturbance. Here second-order approximation is
considered, and dynamics of the jth state can be represented by

dxj

dt
≈ f j(Xe) + Aj(X − Xe) + 0.5(X − Xe)

T Hj(X − Xe) (32)

Where Aj is the jth row of the Jacobian matrix [∂ f /∂X], and Hj is the Hessian ma-
trix. Comparative simulated results among the original nonlinear system, first-order and
second-order approximated systems are shown in Figure 17. It is known that second-
order approximation almost achieves the same dynamical response as that of the original
nonlinear system.

Figure 17. Comparative simulated results among original nonlinear system, first order and second
order approximated system at equilibrium point.

Inspired by the analysis idea of Normal Form, analysis of the second-order approx-
imated system can further explain nonlinear oscillation characteristics. The idea of Nor-
mal Form is that by the nonlinear transform of state variables, second-order terms in
a state-space equation can be eliminated and an approximate solution of the nonlin-
ear system is obtained, and the oscillation behavior is dominated by individual system
modes, λ1, λ2, · · · , λn that are calculated by Jacobian matrix and second-order modes,
λ1 + λ1, λ1 + λ2, · · · , λn−1 + λn, λn + λn. However, the base of the solution of Normal
Form is still eigenvalues of the linearized system at the equilibrium point, and the obtaining
of an approximate solution is under the condition that the influence of higher-order terms
is neglected. These are reasons for the approximate solution’s error. Since the approxi-
mate solution is not the target here and just an analysis idea is employed, the base of the
solution can be selected in aid of Fourier and prony analysis, and oscillation behavior is
still dominated by individual system modes and second-order modes. Fourier spectra
in Figure 18 reveal that the second-order mode exists, and its frequency is almost twice
the base dominant mode’s. The second-order mode results from the nonlinear modal
interaction of the base dominant mode. Due to the existence of the second-order mode
component, the instantaneous oscillation frequency changes with time can be explained,
which can also be understood from (33) and Figure 19. Further, prony analysis results in
Table 2 show that the nonlinear oscillation is dominated by two modes: poor damping base
mode and second-order mode, which is the combination of the poor damping base mode.
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The real part of the base mode is smaller than that of the linear system. This further verifies
that nonlinearity deteriorates amplitude attenuation.

x(t) = Ae
∫

α(t)dt cos(
∫

ω(t)dt)
≈ A1e−α1t cos(ω1t + θ1) + A2e−2α1t cos(2ω1t + θ2)

(33)

Figure 18. Fourier spectra of simulated results.
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Figure 19. Mechanism explanation of instantaneous oscillation frequency changing with time.

Table 2. Prony analysis results of nonlinear oscillation response.

Mode Eigenvalue Freq.(Hz) Damping Ratio

3 −0.32 ± 60j 10 0.53%
3,3 −0.75 ± 127j 21 0.59%

4.3. Influence of Ramp Rate Limit in First Stage on Oscillation Behavior in Second Stage

Based on the above analysis, it is known that the large signal oscillation behavior
after active power climbing is very different from linear oscillation. Due to the influence
of nonlinearity, its instantaneous amplitude attenuation ratio and oscillation frequency
change with time, and the size of fluctuation is related to the state at the end of active
power climbing. The above analysis further reveals that the comprehensive effect of the
time-varying amplitude attenuation ratio is to deteriorate amplitude attenuation. When
the initial state is far away from the equilibrium point in the second stage, oscillation with
increasing amplitude may occur.
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Since the initial state after active power climbing is dependent on the final state
during active power climbing, transient behavior during the stage of active power climbing
influences the subsequent oscillation. Based on the analysis in Section 4.1, it is known that
initial states after active power climbing tend to be far away from the equilibrium point
when kramp increases. As a result, when kramp is large, the influence of nonlinearity on
large-signal oscillation behavior is strong. Since the comprehensive effect of nonlinearity is
to deteriorate amplitude attenuation based on the analysis in Section 4.2, it is indicated that
the nonlinear oscillation after active power climbing decays slowly and even diverges with
the increase in active power climbing rate. Comparative simulated results at different ramp
rate limit based on MATLAB® is shown in Figure 20. It is seen that the frequency offset
at the end of active power climbing tends to be large, and then the subsequent oscillation
after active power climbing tends to decay slowly and even diverges with the increase of
active power climbing rate, which verifies the above theoretical analysis.

k

k

Figure 20. Comparative simulated results at different ramp rate limit.

5. Conclusions

In this paper, transient stability of direct drive wind turbine in DC-link voltage control
timescale during LVRT is studied, with practice transient switch control considered. A
novel two-stage motion equation model that depicts the phase and amplitude dynamics
of internal voltage driven by unbalanced active and reactive power is developed firstly
to physically study the transient characteristics of a direct drive wind turbine. Then the
transient behavior during fault recovery is explored based on the developed model. When
considering discontinuity resulting from the transient switch control, the whole transient
process during fault recovery is divided into two stages: during and after active power
climbing. In the first stage, frequency dynamics of a direct drive wind turbine at the
excitation of active power climbing are studied. A novel approximate analytical expression
is proposed to clearly reveal the transient frequency response and the influence of the active
power climbing rate on it. After active power climbing, a novel analysis idea combining
time-frequency analysis based on the Hilbert transform and high order modes is employed
to investigate and reveal the nonlinear oscillation. The influence of transient behavior in
the stage of active power climbing on the nonlinear oscillation after active power climbing
is also explored. The conclusions and key findings are as follows.
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(1) During active power climbing, an approximate monotonic increase in the wind
turbine’s angular frequency is identified at the excitation of active power climbing. With
the increase in active power climbing rate, the frequency offset at the end of active power
climbing tends to be large.

(2) After active power climbing, nonlinear oscillation characterized by time-varying
oscillation frequency and amplitude attenuation ratio is revealed. It is found that the
comprehensive effect of the time-varying amplitude attenuation ratio is to deteriorate
amplitude attenuation. When the initial state tends to be far away from the equilibrium
point in this stage, the nonlinear oscillation tends to decay slowly and even diverge,
bringing in transient instability.

(3) The final state during active power climbing determines the initial state after active
power climbing. With the increase in active power climbing rate, the final state during
active power climbing will deviate from the equilibrium point after active power climbing
far away. Then the amplitude attenuation of the nonlinear oscillation deteriorates, and
oscillation with increasing amplitude is easier to occur.
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Nomenclature

Symbol Explanation

E GSC internal voltage vector
V t Terminal voltage vector
Ug Equivalent grid voltage vector
I Current vector across filter inductor
P,Q Active and reactive power output of GSC
Xg Equivalent grid inductor
Xf Grid-side filter inductor
θp PLL output angle relative to grid voltage
ωp Angular velocity of PLL relative to grid voltage
kramp Ramp rate limit
Trv, kv Parameters of AVC’s controller
kp_dc, ki_dc Parameters of DVC’s PI controller
kp_pll, ki_pll Parameters of PLL’s PI controller
Subscripts: dq components in PLL reference frame

References

1. Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—
An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [CrossRef]

2. Hu, Q.; Fu, L.; Ma, F.; Ji, F.; Zhang, Y.; Wang, G. Small Signal Synchronizing Stability Analysis of PLL-based VSC Connected to
Weak AC Grid. Proc. CSEE 2021, 41, 98–108. (In Chinese) [CrossRef]

3. Zhao, M.; Yuan, X.; Hu, J.; Yan, Y. Voltage Dynamics of Current Control Time-Scale in a VSC-Connected Weak Grid. IEEE Trans.
Power Syst. 2016, 31, 2925–2937. [CrossRef]

4. Hu, J.; Hu, Q.; Wang, B.; Tang, H.; Chi, Y. Small Signal Instability of PLL-Synchronized Type-4 Wind Turbines Connected to
High-Impedance AC Grid During LVRT. IEEE Trans. Energy Convers. 2016, 31, 1676–1687. [CrossRef]

39



Processes 2022, 10, 774

5. Harnefors, L.; Bongiorno, M.; Lundberg, S. Input-Admittance Calculation and Shaping for Controlled Voltage-Source Converters.
IEEE Trans. Ind. Electron. 2007, 54, 3323–3334. [CrossRef]

6. Chen, X.; Du, W.; Wang, H. Analysis on Wide-range-Frequency Oscillations of Power Systems Integrated with PMSGs Under the
Condition of Open-loop Modal Resonance. Proc. CSEE 2019, 39, 2625–2635. (In Chinese) [CrossRef]

7. Wu, W.; Pu, T.; Chen, Y.; Luo, A.; Zhou, L.; Zhou, X.; Yang, L.; He, Z. Megawatt Wide-bandwidth Impedance Measurement Device
Design and its Control Method. Proc. CSEE 2018, 38, 4096–4106. (In Chinese) [CrossRef]

8. Hu, J.; Yuan, H.; Yuan, X. Modeling of DFIG-Based WTs for Small-Signal Stability Analysis in DVC Timescale in Power
Electronized Power Systems. IEEE Trans. Energy Convers. 2017, 32, 1151–1165. [CrossRef]

9. Gao, Z.; Liu, X. An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems. Processes 2021,
9, 300. [CrossRef]

10. Fu, Y.; Gao, Z.; Liu, Y.; Zhang, A.; Yin, X. Actuator and Sensor Fault Classification for Wind Turbine Systems Based on Fast Fourier
Transform and Uncorrelated Multi-Linear Principal Component Analysis Techniques. Processes 2020, 8, 1066. [CrossRef]

11. Ying, J.; Yuan, X.; Hu, J. Inertia Characteristic of DFIG-Based WT Under Transient Control and Its Impact on the First-Swing
Stability of SGs. IEEE Trans. Energy Convers. 2017, 32, 1502–1511. [CrossRef]

12. Taul, M.G.; Wang, X.; Davari, P.; Blaabjerg, F. An Overview of Assessment Methods for Synchronization Stability of Grid-
Connected Converters Under Severe Symmetrical Grid Faults. IEEE Trans. Power Electron. 2019, 34, 9655–9670. [CrossRef]

13. Hu, Q.; Fu, L.; Ma, F.; Ji, F. Large Signal Synchronizing Instability of PLL-Based VSC Connected to Weak AC Grid. IEEE Trans.
Power Syst. 2019, 34, 3220–3229. [CrossRef]

14. Hu, Q.; Fu, L.; Ma, F.; Ji, F.; Zhang, Y. Analogized Synchronous-Generator Model of PLL-Based VSC and Transient Synchronizing
Stability of Converter Dominated Power System. IEEE Trans. Sustain. Energy 2021, 12, 1174–1185. [CrossRef]

15. Ma, S.; Geng, H.; Liu, L.; Yang, G.; Pal, B.C. Grid-Synchronization Stability Improvement of Large Scale Wind Farm During
Severe Grid Fault. IEEE Trans. Power Syst. 2018, 33, 216–226. [CrossRef]

16. He, X.; Geng, H.; Li, R.; Pal, B.C. Transient Stability Analysis and Enhancement of Renewable Energy Conversion System During
LVRT. IEEE Trans. Sustain. Energy 2020, 11, 1612–1623. [CrossRef]

17. Wu, H.; Wang, X. Design-Oriented Transient Stability Analysis of PLL-Synchronized Voltage-Source Converters. IEEE Trans.
Power Electron. 2020, 35, 3573–3589. [CrossRef]

18. Sun, J. Small-Signal Methods for AC Distributed Power Systems–A Review. IEEE Trans. Power Electron. 2009, 24, 2545–2554.
[CrossRef]

19. Zhou, J.Z.; Ding, H.; Fan, S.; Zhang, Y.; Gole, A.M. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the
Small-Signal Behavior of a VSC-HVDC Converter. IEEE Trans. Power Deliv. 2014, 29, 2287–2296. [CrossRef]

20. Zhao, M.; Yuan, X.; Hu, J. Modeling of DFIG Wind Turbine Based on Internal Voltage Motion Equation in Power Systems
Phase-Amplitude Dynamics Analysis. IEEE Trans. Power Syst. 2018, 33, 1484–1495. [CrossRef]

21. Lu, J.; Yuan, X.; Hu, J.; Zhang, M.; Yuan, H. Motion Equation Modeling of LCC-HVDC Stations for Analyzing DC and AC
Network Interactions. IEEE Trans. Power Deliv. 2020, 35, 1563–1574. [CrossRef]

22. Wang, X.; Harnefors, L.; Blaabjerg, F. Unified Impedance Model of Grid-Connected Voltage-Source Converters. IEEE Trans. Power
Electron. 2018, 33, 1775–1787. [CrossRef]

23. Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters. IEEE
Trans. Power Electron. 2016, 31, 675–687. [CrossRef]

24. Liao, Y.; Wang, X. Impedance-Based Stability Analysis for Interconnected Converter Systems with Open-Loop RHP Poles. IEEE
Trans. Power Electron. 2020, 35, 4388–4397. [CrossRef]

25. Tavoosi, J.; Mohammadzadeh, A.; Pahlevanzadeh, B.; Kasmani, M.B.; Band, S.S.; Safdar, R.; Mosavi, A.H. A Machine Learning
Approach for Active/Reactive Power Control of Grid-Connected Doubly-Fed Induction Generators. Ain Shams Eng. J. 2022,
13, 101564. [CrossRef]

26. Cao, H.; Yu, T.; Zhang, X.; Yang, B.; Wu, Y. Reactive Power Optimization of Large-Scale Power Systems: A Transfer Bees Optimizer
Application. Processes 2019, 7, 321. [CrossRef]

27. Mohammadi Moghadam, H.; Mohammadzadeh, A.; Hadjiaghaie Vafaie, R.; Tavoosi, J.; Khooban, M.-H. A Type-2 Fuzzy Control
for Active/Reactive Power Control and Energy Storage Management. Trans. Inst. Meas. Control 2022, 44, 1014–1028. [CrossRef]

28. Messina, A.R.; Vittal, V. Nonlinear, Non-Stationary Analysis of Interarea Oscillations via Hilbert Spectral Analysis. IEEE Trans.
Power Syst. 2006, 21, 1234–1241. [CrossRef]

29. Andrade, M.A.; Messina, A.R.; Rivera, C.A.; Olguin, D. Identification of Instantaneous Attributes of Torsional Shaft Signals Using
the Hilbert Transform. IEEE Trans. Power Syst. 2004, 19, 1422–1429. [CrossRef]

30. Sanchez-Gasca, J.J.; Vittal, V.; Gibbard, M.J.; Messina, A.R.; Vowles, D.J.; Liu, S.; Annakkage, U.D. Inclusion of Higher Order
Terms for Small-Signal (Modal) Analysis: Committee Report-Task Force on Assessing the Need to Include Higher Order Terms
for Small-Signal (Modal) Analysis. IEEE Trans. Power Syst. 2005, 20, 1886–1904. [CrossRef]

31. Lin, C.-M.; Vittal, V.; Kliemann, W.; Fouad, A.A. Investigation of Modal Interaction and Its Effects on Control Performance in
Stressed Power Systems Using Normal Forms of Vector Fields. IEEE Trans. Power Syst. 1996, 11, 781–787. [CrossRef]

32. Liu, S.; Messina, A.R.; Vittal, V. Characterization of Nonlinear Modal Interaction Using Normal Forms and Hilbert Analysis. In
Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004; Volume 2,
pp. 1113–1118. [CrossRef]

40



Processes 2022, 10, 774

33. Tsili, M.; Papathanassiou, S. A Review of Grid Code Technical Requirements for Wind Farms. IET Renew. Power Gener. 2009,
3, 308–332. [CrossRef]

34. Western Electricity Coordinating Council. WECC Second Generation Wind Turbine Models. Available online: https://www.wecc.
org/Reliability/WECC%20Second%20Generation%20Wind%20Turbine%20Models%20012314.pdf (accessed on 3 June 2021).

41



Citation: Yang, L.; Huang, W.; Guo,

C.; Zhang, D.; Xiang, C.; Yang, L.;

Wang, Q. Multi-Objective Optimal

Scheduling for Multi-Renewable

Energy Power System Considering

Flexibility Constraints. Processes 2022,

10, 1401. https://doi.org/

10.3390/pr10071401

Academic Editor: Jie Zhang

Received: 28 June 2022

Accepted: 15 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Multi-Objective Optimal Scheduling for Multi-Renewable
Energy Power System Considering Flexibility Constraints

Lei Yang 1, Wei Huang 2, Cheng Guo 3, Dan Zhang 2, Chuan Xiang 3, Longjie Yang 1 and Qianggang Wang 1,*

1 State Key Laboratory of Power Transmission Equipment and System Security and New Technology,
Chongqing University, Chongqing 400044, China; 15911577929@139.com (L.Y.);
20191101333@cqu.edu.cn (L.Y.)

2 Electric Power Dispatching and Control Center of Yunnan Power Grid Co., Ltd., Kunming 650200, China;
haxwell@163.com (W.H.); 6950704@foxmail.com (D.Z.)

3 Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China;
gc325@126.com (C.G.); 1091930966@foxmail.com (C.X.)

* Correspondence: qianggang1987@cqu.edu.cn; Tel.: +86-136-4055-8474

Abstract: As renewable energy penetration increases, the lack of flexibility in a multi-renewable
power system can seriously affect its own economics and reliability. To address this issue, three
objectives are considered in this study: power fluctuations on tie-line, operating cost, and curtailment
rate of renewable energy. Presented also is an optimal day-ahead scheduling model based on the
MREPS for distributed generations with flexibility constraints. The multi-objective particle swarm
optimization (MOPSO) algorithm can be applied to obtain a set of Pareto non-dominated solutions
for the day-ahead scheduling strategy with the proposed model. By using fuzzy comprehensive
evaluation, the optimal compromise solution is determined in the set. The presented method sacrifices
a small amount of economy and power fluctuation, but it can reduce the deviation between forecast
and realized power fluctuations on the tie-line, while improving the utilization of renewable energy.

Keywords: flexibility constraints; fuzzy comprehensive evaluation method; MOPSO; MREPS; optimal
day-ahead scheduling

1. Introduction

In modern power systems, the scarcity of fossil fuels and increasing pollution of the
environment contribute to the development of renewable energy sources, such as solar and
wind. Despite this, the stochastic nature of renewable energy generation is likely to have
significant effects on system reliability and economy [1–3].

When operating a multi-renewable energy power system (MREPS), it is necessary
to develop an optimal schedule to cope with the stochasticity of renewable energy gener-
ation [4,5]. MREPS scheduling is divided into two categories: day-ahead and real-time
scheduling. There are several strategies for achieving various operational objectives using
day-ahead scheduling. Reference [6] used a two-stage stochastic optimization model for
an MREPS for minimizing the short-term operation cost, which introduces uncertainty
in renewable generation, and showed that stochastic scheduling can provide significant
reliability benefits to multi-energy supply systems. Reference [7] presented a day-ahead
scheduling model that considers the seasonal uncertainty of renewable energy for a micro-
grid equipped with multi-renewable energy units. An improved optimization algorithm
was proposed to solve optimization problems that focus on minimizing the operation cost.
The results indicate that day-ahead scheduling based on the proposed algorithm can pro-
vide an efficient solution for managing MREPS energy. An MREPS is highly influenced by
both economic indicators and the rate at which renewable energy is utilized, as illustrated
in [8–10]. Furthermore, power fluctuations on the tie-line serve as relevant indicators for
the main grid connected to an MREPS [11,12]. In the current MREPS scheduling process,
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the impact of these power fluctuations on the main grid is rarely considered. Although
operating costs, curtailment rates of renewable energy, and power fluctuations on the
tie-lines are all commonly considered in current studies on optimal dispatch [4–15], few
studies consider these three indicators simultaneously. This can lead to a situation where,
while some of these indicators are optimal, the other indicators may be poor. As a result,
the present study proposes a day-ahead scheduling strategy based on operating costs,
curtailment rates of renewable energy, and power fluctuations on the tie-lines.

In the case of real-time scheduling, the schedule is amended if the actual renewable en-
ergy output differs from the forecasted output. An improved particle swarm-optimization
(PSO)-based strategy for managing energy over a two-time scale was presented in [16]. In
day-ahead scheduling, one of the primary objectives is to achieve the most cost-effective
schedule, and in real-time scheduling, the primary goal is to track day-ahead schedul-
ing, compensate for power fluctuations, and maintain system stability. According to the
experimental results, the proposed method could minimize the cost of generated elec-
tricity and maximize the efficiency of renewable energy systems. Real-time scheduling,
however, relies on day-ahead scheduling. It is possible to increase the utilization rate of
renewable energy if uncertainties associated with the generation of renewable energy can
be properly incorporated into day-ahead scheduling. To address uncertainties in power
systems [17–19], flexibility has been proposed. In [20], an optimal scheduling model for
flexible resources was presented from both the generation and load sides. According to the
results, a dynamic line rating model that incorporates optimal scheduling can maximize the
utilization of flexible resources without curtailing wind power and minimize dispatch costs.
Consequently, we propose a day-ahead scheduling strategy for an MREPS that accounts for
flexibility constraints and concentrates on operation costs, renewable energy curtailment
rates, and power fluctuations on the tie-line.

In this study, we attempt to solve a multi-objective optimization problem. It is pos-
sible to solve a multi-objective optimization problem in several ways. Among them, the
linear weighted sum method and intelligent algorithms are frequently adopted. The linear
weighted sum method is simple and fast, but it usually gives unclear physical results. In
addition, the resulting error is typically large because several targets are of different dimen-
sions and orders of magnitude. These factors remarkably impact the results and conclusions
of practical problems [21]. Intelligent algorithms, which have clearer physical meaning, out-
perform the linear weighted sum method in accuracy, flexibility, and effectiveness in solving
multi-objective problems. A number of intelligent algorithms have been successfully ap-
plied to engineering optimization, such as multi-objective particle swarm optimization
(MOPSO) due to its unique search mechanism, excellent convergence performance, and
convenient calculation capabilities [22,23]. As a result, MOPSO is adopted in this study to
identify the Pareto non-dominated set of objective functions. Following the determination
of the Pareto non-dominated solution set, a fuzzy comprehensive evaluation method [24] is
adopted to determine the optimal compromise solution. The optimal day-ahead scheduling
strategy can be determined based on the optimum compromise solution.

The contributions of this paper are summarized as follows:

1 Considering the operation cost, renewable energy curtailment rates, and power fluc-
tuations on the tie-line, a day-ahead scheduling model for the MREPS is established.

2 MOPSO and a fuzzy comprehensive evaluation method are used to evaluate the
day-ahead scheduling model, and a day-ahead scheduling strategy for the MREPS
considering flexibility is proposed.

Following is the remainder of this paper. The MREPS presents the day-ahead optimal
scheduling model in Section 2, along with its constraints, taking flexibility into account.
In Section 3, MOPSO and fuzzy comprehensive evaluation are discussed. An analysis of
the experimental results is presented in Section 4, which simulates an actual MREPS. In
Section 5, the conclusions are summarized.
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2. Model for Multi-Objective Optimal Scheduling

The MREPS, consisting of wind turbines (WTs), photovoltaic (PV) arrays, diesel
generators (DGs), energy storage systems (ESSs), and loads, only purchases electricity from
the main grid. Figure 1 illustrates the details of the MREPS.

 
Figure 1. MREPS model.

2.1. Objective Function
2.1.1. Operation Cost

A major consideration in the MREPS’s day-ahead scheduling is the operation cost. The
operation cost mainly includes fuel cost, operation and maintenance, pollutant control, and
purchased power cost. The daily operation cost of the MREPS can be expressed as follows:

F1 = Cfuel + COM + CPC + CPP (1)

where Cfuel, COM, and CPC are the total fuel, operation and maintenance (OM), and pollutant
control (PC) costs associated with each distributed power generation in one day and CPP is
the total cost of the purchased power (PP) from the main grid in one day. The formulas for
Cfuel, COM, CPC, and CPP are as follows:

Cfuel =
N

∑
n=1

T

∑
t=1

ξf.DG.n · PDG.n(t) · Δt (2)

COM =
M

∑
m=1

T

∑
t=1

ξOM.m · Pm(t) · Δt (3)

CPC =
M

∑
m=1

J

∑
j=1

T

∑
t=1

ξm.j · Pm(t) · Δt (4)

CPP =
T

∑
t=1

ξPP(t) · PPP(t) · Δt (5)

where N is the total number of DGs; T is the total scheduling time; ξf.DG.n is the consumption
cost per kW·h of the nth DG; PDG.n(t) is the output power of the nth DG in period t; Δt is
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the scheduling interval; M is the total number of distributed generation types; ξOM.m is
the cost of operation and maintenance per kW·h of the mth type of distributed generation
variety; Pm(t) is the output power of the mth type of distributed generation during period t;
J is the total number of pollutant types; ξm.j is the emission cost factor for the jth type of
pollutants generated by the mth type of distributed power generation; ξPP(t) and PPP(t) are
the power purchased by the MREPS from the main grid for the period t, respectively.

2.1.2. Renewable Energy Curtailment Rate

The renewable energy curtailment rate is the ratio of the power curtailed by all
renewable energy units to the total power that can be generated by renewable energy
units during the dispatching period. The lower the value, the higher the utilization rate of
renewable energy is. Utilization of the renewable energy is ideally increased while reducing
the operation cost of the MREPS [15]. Thus, this study considers the curtailment rate of
renewable energy. Following is the daily curtailment rate of the MREPS’s renewable energy:

F2 =
T

∑
t=1

H

∑
h=1

Ph.c(t)/
T

∑
t=1

H

∑
h=1

Ph.all(t) (6)

where H represents the total number of the renewable energy types; Ph.c(t) and Ph.all(t) re-
flect the power curtailment and the available power generation of the hth type of renewable
energy in period t, respectively.

2.1.3. Tie-Line Power Fluctuations

The frequent power exchange between the MREPS and the main grid can be attributed
to the stochastic nature of renewable energy. In general, the unit commitment and economic
load dispatch of the main grid have no impact on the MREPS. This is because the MREPS
can be self-sufficient. Only when the MREPS is not self-sufficient, it is necessary for the
main grid to help the MREPS to achieve power balance through unit commitment or
economic load dispatch. As a consequence, the significant fluctuation in power on the
tie-line has a negative impact on the main grid. The MREPS day-ahead scheduling must be
designed to take into account power fluctuations across the tie-line.

As the square root of the variance, the standard deviation is a metric used to measure
how dispersed a dataset is relative to its mean. Consequently, the standard deviation is
typically used to describe the fluctuation of a data series. However, the standard deviation
lacks comparability for different objects or samples with varying means of the same object.
Hence, the coefficient of variation is used in this study to avoid these problems.

As a measure of data dispersion around the mean, the coefficient of variation represents
the ratio of the standard deviation to the mean for a series of data points. The degree
of variation from one data series to another can be compared, although the means are
remarkably different from one another. A small variation indicates a small fluctuation
degree [11]. On the tie-line, the power fluctuation can be defined as follows:

F3 =

√√√√ 1
T
·

T

∑
t=1

(PTL(t)− μTL)
2/μTL (7)

where PTL(t) represents the transmission power of the tie-line during period t and μTL
represents the average transmission power of the tie-line during one day, which can be
expressed as follows:

μTL =
1
T
·

T

∑
t=1

PTL(t) (8)
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Based on the above three objectives, the total objective function for the multi-objective
optimal scheduling model is as follows:

minF = [F1, F2, F3] (9)

2.2. Constraint Conditions
2.2.1. Constraints on the Power Balance

During the operation of the MREPS, at the end of each period, the sum of the output
power of the DGs, the charging and discharging power of the ESS, and the purchased
power from the main grid should be equal to the net load (NL) power of the system. As a
result of this relationship, we may state:

PDG(t) + PESS(t) + PTL(t) = PL(t)− PWT(t)− PPV(t) = PNL(t) (10)

where PDG(t) is the sum of the output power of the DGs in period t; PESS(t) is the charge
and discharge power of the ESS in period t and becomes negative when the ESS is being
charged; PTL(t) is the transmission power of the tie-line in period t; PL(t), PWT(t), PPV(t),
and PNL(t) are the load power, output of WTs, output of PV arrays, and net load power in
period t, respectively.

2.2.2. Constraints of Output Power for DGs Considering Flexibility

In light of the uncertainty associated with renewable energy generation, it is imperative
that the MREPS be flexible. The DG is a commonly used flexible resource in MREPSs
because of its satisfactory controllability and fast response speed. Therefore, flexibility
should be considered and exploited in the output power constraints of DGs.

The uncertainty of renewable energy generation leads to prediction errors in net
load power and the MREPS’s flexibility requirements. These flexibility requirements are
provided by DGs in the MREPS. DGs are typically restricted in their output power range as
follows [7]: {

PDG(t) ≥ PDG.min
PDG(t) ≤ PDG.max

(11)

where PDG.min and PDG.max represent the minimum and maximum output power of
DGs, respectively.

In terms of conventional constraints, DGs are only considered for their minimum and
maximum output. Due to these constraints, the output power of DGs may be inflexible
during operation. When large prediction errors occur, DGs output power fails to meet
the flexibility requirements. Therefore, new constraints that consider flexibility based on
conventional constraints can be expressed as follows:{

PDG(t) ≥ (PDG.min + FNL.D(t))
PDG(t) ≤ (PDG.max − FNL.U(t))

(12)

where FNL.U(t) and FNL.D(t) represent the maximum upward and downward flexibility
requirements of the MREPS in each period t.

Because of the error in predicting net load power, the MREPS is required to be flexible.
Variables such as wind, solar, and load power are among the factors that affect the prediction
errors of the net load power. As a result, wind, solar, and load power prediction errors are
assumed to follow a normal distribution with a zero mean [25]. σPV(t), σWT(t), and σL(t)
have the following standard deviations:⎧⎨⎩

σPV(t) = 0.2WPV.F(t) + 0.02WPV.C
σWT(t) = 0.2WWT.F(t) + 0.02WWT.C

σL(t) = 0.02WL.F(t)
(13)
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where WPV.F(t), WWT.F(t), and WL.F(t) are the predicted wind, solar, and load power in
period t, respectively, and WPV.C and WWT.C are the total installed capacity of PV arrays
and WTs, respectively.

There are no correlations among wind, solar, and load power prediction errors. Ac-
cording to the basic characteristics of the normal distribution, the sum of two independent
normally distributed random variables is normal, with the sum of the two means as the
mean and the sum of the two variances as the variance. Hence, prediction errors of the net
load power also follow the normal distribution with mean zero and standard deviation
σNL(t), as shown below:

σNL(t) =
√

σ2
PV(t) + σ2

WT(t) + σ2
L(t) (14)

The MREPS must offer flexibility equal to the forecast errors of net load power. How-
ever, in the prediction of net load power, there is a very small probability of maximum
errors. Hence, the scenario where the flexibility requirement and forecast error are equal is
uneconomical and wasteful. As a result, we need to consider the confidence intervals of
these prediction errors. If the confidence level is 1 − α, then FNL.U(t) and FNL.D(t) can be
expressed as: {

FNL.U(t) = u1−α/2 · σNL(t)
FNL.D(t) = −u1−α/2 · σNL(t)

(15)

where u1−α/2 is the upper (1 − α/2) critical value for the standard normal distribution.
Conventional ramping-rate constraints of DGs are expressed as follows:{

PDG(t)− PDG(t − Δt) ≥ −RD
DG.max · Δt

PDG(t)− PDG(t − Δt) ≤ RU
DG.max · Δt

(16)

where RD
DG.max and RU

DG.max are the maximum downward and upward ramping rates of
DGs, respectively, with both values positive, and Δt is the time interval.

Conventional constraints only consider the minimum and maximum ramping rates.
The maximum ramping rate of DGs may occur in some periods under these constraints.
The output power of DGs fails to meet the fluctuation of the net load power in this situation
when DGs lack the ramping rate. Consequently, ramping-rate constraints should take
flexibility into consideration.

As shown in Figure 2, A0, B0, and C0 are the prediction output power values of DGs
at different times. DGs must reduce their output power to A2 if the maximum downward
prediction errors of the net load power occur at time t − Δt. According to Equation (15),
the reduced output power should be equal to FNL.D(t − Δt). It is imperative that the DGs
increase their output power to B1 if they experience maximum upward prediction errors at
time t. According to Equation (15), the increased output power should be equal to FNL.U(t).
Therefore, the margin of the ramping rate that DGs should reserve is the sum of FNL.D(t −
Δt) and FNL.U(t) from time t − Δt to time t. Similarly, the margin of the ramping rate that
DGs should reserve is the sum of FNL.U(t) and FNL.D(t + Δt) from time t to time t + Δt. As a
result, new constraints that consider flexibility can be expressed as follows:{

PDG(t)− PDG(t − Δt) ≥ −RD
DG.max · Δt+(FNL.D(t) + FNL.U(t − Δt))

PDG(t)− PDG(t − Δt) ≤ RU
DG.max · Δt − (FNL.U(t) + FNL.D(t − Δt))

(17)
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Figure 2. Output power of DGs.

2.2.3. Constraints of the ESS Considering Flexibility in Charging and Discharging

In this study, the main function of the ESS is to provide assistance to DGs and ensure
that DGs have adequate flexibility. Thus, the ESS and its conventional constraints are
similar in terms of charging and discharging power:⎧⎪⎨⎪⎩

SESS(t + Δt) = (1 − δ) · SESS(t)− Δt·αESS(t)·PESS(t)
EESS

SESS.min ≤ SESS(t) ≤ SESS.max
|PESS(t)| · Δt′ ≤ ηESS · EESS

(18)

where SESS(t) represents the state of charge (SOC) of the ESS in period t; δ represents the self-
discharge efficiency of the ESS; EESS represents the maximum capacity of the ESS; SESS.min and
SESS.max represent the minimum and maximum SOC of the ESS, respectively; Δt′ represents
an hour; ηESS represents the percentage of the maximum charge–discharge capacity per hour
to the maximum capacity of the ESS; αESS(t) represents the charge–discharge efficiency of the
ESS in period t. The following formula can be used to calculate αESS(t):

αESS(t) =
{

αc, ∀PESS(t) < 0
1/αd, ∀PESS(t) > 0

(19)

where αc and αd are the charge and discharge efficiencies of the ESS, respectively.
DGs, however, fail to achieve the maximum prediction error of the net load power.

Because of this, we should take into account flexibility in the power constraints of the ESS
when charging and discharging. This is because the secondary function of the ESS is to
meet these maximum prediction errors. Here are the revised constraints:⎧⎪⎨⎪⎩

SESS(t + Δt) = (1 − δ) · SESS(t)− Δt·αESS(t)·PESS(t)
EESS

(SESS.min + FESS.U) ≤ SESS(t) ≤ (SESS.max − FESS.D)
|PESS(t)| · Δt′ ≤ ηF.ESS · EESS

(20)

where FESS.U and FESS.D are the reserved SOC of the ESS and ηF.ESS is the percentage of the
maximum charge–discharge capacity per hour to the maximum capacity of the ESS after
considering flexibility.

If the maximum prediction error of the net load power occurs, DGs are capable of
meeting most of these prediction errors. There is only a small portion of these prediction
errors that must be met by the ESS. As a result, the constraints of FESS.U, FESS.D, and ηF.ESS
are as follows: ⎧⎨⎩

0 ≤ FESS.U ≤ 0.1
0 ≤ FESS.D ≤ 0.1

0.8 · ηESS ≤ ηF.ESS ≤ ηESS

(21)
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Since the ESS operation is periodic, the initial SOC should be equal to the final SOC in
a day and expressed as follows:

SESS(t = 0) = SESS(t = T) (22)

where T represents the total scheduling time.

2.2.4. Tie-Line Transmission Power Constraints in Consideration of Flexibility

In the MREPS, DGs and the ESS can sometimes fail. In this case, the tie-line must be
flexible to facilitate the normal functioning of the MREPS. Therefore, the power limitation
for tie-line transmission considering flexibility is expressed as follows:

PTL.min ≤ PTL(t) ≤ PTL.max − FTL.U(t) (23)

where PTL.min and PTL.max represent the minimum and maximum transmission power of
the tie line, respectively, and FTL.U(t) represents the reserved transmission power of the
tie-line that can be increased in period t.

Load shedding is prohibited in the operation of the MREPS. In the event that DGs and
the ESS fail, it is necessary to reserve the transmission power on the tie-line, which may be
increased in case of a breakdown. However, if the load power decreases, then we may be
able to achieve power balance by reducing the output power of DGs or curtailing the use of
renewable energy sources. As a consequence, it is not necessary to reserve the transmission
power of the tie-line.

3. Algorithm for the Solution of the Multiobjective Optimization Model

3.1. MOPSO

The multi-objective optimization problem in the presented model is solved via MOPSO
in this study. Although MOPSO is one of the commonly used intelligent optimization
algorithms [22,23], it is briefly introduced since it is the core of the algorithm in this paper.
MOPSO updates the position and the velocity of each particle in every iteration and
searches for the local and global best positions of particles. The velocity is modified and
updated as follows:

vk+1
i = ωvk

i + c1r1(pk
l − xi) + c2r2(pk

g − xi) (24)

where vk
i and xi are the velocity and position of the ith particle in the kth iteration; pk

l is the
local optimal position of the ith particle; pk

g is the global optimal position of particles; ω is
the inertia weight that influences the local and global exploitation abilities for MOPSO; c1
and c2 are the cognitive and social learning factors that maintain the movement of particles
to the local and global optimal positions, respectively; r1 and r2 are two uniform random
functions in the range [0,1].

Constraints of the velocity are expressed as follows:{
vk+1

i = vmax, ∀vk+1
i > vmax

vk+1
i = vmin, ∀vk+1

i < vmin
(25)

where vmin and vmax are the minimum and maximum velocities of particles, respectively.
The position of particles is indicated as follows:

xk+1
i = xk

i + vk
i (26)

MOPSO obtains the non-dominated solution set, unlike the single-objective PSO
algorithm. Therefore, an external file is needed to store the set. The flowchart of MOPSO is
shown in Figure 3.
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Figure 3. Flowchart of MOPSO.

The SOC of the ESS, the output power of DGs, and the tie-line transmission power are
unknown in this study. Therefore, the SOC of the ESS and the output power of DGs in each
period are considered decision variables. The tie-line power of transmission in each period
can be obtained using Equation (10). Due to the fact that the set of Pareto non-dominated
solutions is determined by these decision variables, each solution in the set corresponds to
an operation state of the MREPS. Therefore, if we wish to determine the optimal day-ahead
scheduling strategy, then we need to first identify the optimum compromise solution from
the set of non-dominated Pareto solutions.

3.2. Fuzzy Comprehensive Analysis Methodology

This study employs the fuzzy comprehensive evaluation method to determine the
most appropriate compromise solution. An effective and widely adopted method for
evaluating hierarchical and integrated problems is a fuzzy comprehensive evaluation. The
top two critical steps of this method are determining the weight vector of each evaluation
objective appropriately and selecting the appropriate fuzzy membership function. Figure 4
illustrates the fuzzy comprehensive evaluation method flowchart.

 

Figure 4. Flowchart of the fuzzy comprehensive evaluation method.

Assume that X is the Pareto non-dominated solution set, which is expressed as follows:

X =

⎡⎢⎢⎢⎢⎢⎢⎣

x11 · · · x1j · · · x1n
...

. . .
...

. . .
...

xi1 · · · xij · · · xin
...

. . .
...

. . .
...

xm1 · · · xmj · · · xmn

⎤⎥⎥⎥⎥⎥⎥⎦ (27)
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where m is the total number of objectives, n is the total number of the Pareto non-dominated
solutions, and xij is the value of the ith objective of the jth Pareto non-dominated solution.
To determine the most effective compromise solution from the Pareto non-dominated
solution set, follow the steps outlined below:

(1) For determining the membership degree of each objective in each Pareto non-dominated
solution, a single-factor fuzzy evaluation is adopted. The fuzzy relation matrix can
then be obtained as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎣

r11 · · · r1j · · · r1n
...

. . .
...

. . .
...

ri1 · · · rij · · · rin
...

. . .
...

. . .
...

rm1 · · · rmj · · · rmn

⎤⎥⎥⎥⎥⎥⎥⎦ (28)

where rij is the membership degree of the ith objective in the jth Pareto non-dominated
solution. rij can be calculated as follows:

rij =

⎧⎪⎨⎪⎩
1 , xij ≤ Xi

Xi−xij

Xi−Xi
, Xi < xij < Xi

0 , xij ≥ Xi

(29)

where Xi and Xi are the minimum and maximum expectations of the decision-maker
for the ith objective, respectively.

(2) The analytic hierarchy process (AHP)-entropy weight method (EWM) can be em-
ployed to determine the comprehensive weight vector for each objective. Assume that
the comprehensive weight vector is:

A = [ω1, ω2, · · · , ωi, · · · , ωm]
T (30)

where ωi is the comprehensive weight vector of the ith objective. A can then be
calculated using the following equation:

ωi =
ω′

i · ω
′′
i

m
∑

i=1
(ω′

i · ω
′′
i )

(31)

where ω′
i and ω

′′
i are the objective weights based on AHP and EWM, respectively.

The discussion on AHP [26] and EWM [27] is excluded from this paper given that
both have been extensively analyzed in the literature.

(3) The comprehensive fuzzy evaluation vector B can be calculated as follows:⎧⎨⎩
B = A 	 R = [b1, b2, · · · , bj, · · · , bm]

bj =
m
∑

i=1
(ωi · rij)

(32)

where bj is the membership degree of the jth Pareto non-dominated solution.

When bj is close to 1, we can evaluate the jth Pareto non-dominated solution com-
prehensively. Therefore, from the set of Pareto non-dominated solutions, the optimal
compromise solution corresponds to the maximum bj.

4. Case Study

Practical MREPS data are presented in this study within a simulation and analysis
environment. The parameters of each power supply unit in the MREPS are listed in Table 1.
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The cost of each distributed generation is presented in Table 2. Table 3 presents the pollutant
emission coefficients generated by each distributed generation. Table 4 shows the electricity
purchase price of the MREPS from the main grid [15].

Table 1. Parameters of each power supply unit in the MREPS.

Power Supply Unit Type Parameter Type Parameter Value

Photovoltaic array Power rating 100 kW

Wind turbine Power rating 33 kW

Lead-acid battery
Rated capacity
Range of SOC

Maximum charge and discharge power

100 kW·h
0.2–1

25 kW

Diesel generator
Power rating

Maximum upward ramping rate
Maximum downward ramping rate

200 kW
120 kW/h
120 kW/h

Tie line Maximum transmission power 90 kW

Table 2. Cost coefficient of each distributed generation.

Generation Unit Type
Fuel Cost

(CNY·(kW·h)−1)
Operation Management Coefficient

(CNY·(kW·h)−1)

Photovoltaic array — 0.0096
Wind turbine — 0.0296

Lead-acid battery — 0.0322
Diesel generator 0.81 0.0880

Table 3. Pollutant emission coefficient generated by each distributed generation.

Pollutant Type CO2 SO2

Handling Expense (CNY·kg−1) 0.21 14.842

Pollutant emission coefficient
(g·(kW·h)−1)

Photovoltaic power generation 0 0
Wind power generation 0 0
Diesel power generation 649 0.206

Table 4. Electricity purchase price of the MREPS from the main grid.

Type of Period Period (h) Purchase Price (CYN)

Peak period
8:00–11:00

13:00–15:00
18:00–21:00

1.25

Ordinary period

6:00–8:00
11:00–13:00
15:00–18:00
21:00–22:00

0.80

Valley period 0:00–6:00
22:00–0:00 0.40

This study adopts a simulation of the load and output date of a typical day in the
MREPS for WTs and PV arrays. To determine an optimal scheduling strategy, the forecast
values of these data are used. Utilizing the realized values of these data, the optimal
scheduling strategy is evaluated. Figures 5 and 6 present the predicted and realized curves
for the load and output from WTs and PV arrays in the MREPS for a typical day, respectively.
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Figure 5. Forecast curves of the load and output of WTs and PV arrays.

Figure 6. Realized curves of the load and output of WTs and PV arrays.

As shown in Section 4, it is possible to determine the optimal scheduling strategy of
a typical day after obtaining the non-dominated solution set. On the basis of the models,
constraints, data, and decision variables of this study, the non-dominated solution set
of objectives can therefore be obtained using MOPSO. Figures 7 and 8 illustrate non-
dominated solutions based on the conventional and proposed strategies, respectively. From
Figures 7 and 8, we can see that the three objectives cannot reach the optimal solution at the
same time for the non-dominated solution set obtained by MOPSO. The distribution of the
non-dominated solution set shows a narrow shape at both ends and is wide in the middle.

Figure 7. Three-objective non-dominated solution set based on the conventional strategy.
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Figure 8. Three-objective non-dominated solution set based on the proposed strategy.

Furthermore, Figures 7 and 8 indicate that the non-dominated solution set of the
proposed strategy is larger than that of the conventional strategy. According to this finding,
after evaluating the flexibility constraints, the MREPS will sacrifice a portion of the economy,
the utilization rate of renewable energy, and power fluctuations.

We must then determine the optimal compromise solution from the Pareto non-
dominated solution set to find the optimal day-ahead scheduling strategy for a typical day.
The fuzzy comprehensive evaluation method can be used to obtain optimal compromise
solutions from non-dominated Pareto solution sets, based on the conventional and proposed
strategies, as discussed in Section 4. By the fuzzy comprehensive evaluation method, Point
A and Point B are the solutions with the highest evaluation scores in the respective non-
dominated solution sets of Figures 7 and 8, respectively. Therefore, Points A and B represent
optimal compromise solutions in Figures 7 and 8, respectively.

Finally, based on the relevant decision variables, the optimal day-ahead schedul-
ing strategy for a typical day according to every optimal compromise solution can be
determined. These are illustrated in Figures 9 and 10.

Figure 9. Optimal scheduling strategy of the typical day based on the conventional strategy.
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Figure 10. Optimal scheduling strategy of the typical day based on the proposed strategy.

Using the conventional and proposed strategies, Strategies A and B provide an optimal
scheduling strategy for the typical day based on what has been denoted, respectively, for
ease of use. Figures 9 and 10 illustrate Strategy A’s preference for purchasing electricity
from the main grid. It was found that the tie-line transmission power of Strategy A is close
to its average. The consequence is a relatively low level of power fluctuations at the tie-line
under Strategy A, whereas Strategy B prefers to generate electricity from DGs. It is more
expensive to generate electricity through DGs than to purchase electricity from the main
grid; therefore, Strategy B has a higher operation cost.

To better compare Strategies A and B, they were both applied in the context of a realistic
scenario based on a typical day. Figure 5 shows such a situation. In Figures 11 and 12, the
realized operation results under Strategies A and B are presented, respectively.

Figure 11. Realized operation results under Strategy A.
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Figure 12. Realized operation results under Strategy B.

The realized output of WTs and PV arrays is larger than the predicted value, as
depicted in Figures 5 and 6. Consequently, the realized output power of DGs in both
Figures 11 and 12 is smaller than the predicted value. However, DGs based on Strategy A
generally have a minimum output power. DGs fail to reduce the output power in this case.
Hence, curtailing renewable energy is the most economical way to maintain power balance
after the ESS absorbs the excess power to the extent possible. By comparison, DGs based
on this strategy are able to reduce the output power because Strategy B takes flexibility
constraints into account. Therefore, the MREPS can decrease the output power of DGs to
increase the utilization rate of renewable energy. In addition, Strategy B reduces the power
purchased from the main grid during peak load periods from 18:00 to 22:00 in comparison
to Strategy A. This phenomenon significantly eases the demand for power on the main
grid during peak load periods.

The simulation results of Strategies A and B are listed in Table 5. It can be seen that
Strategy A has a lower forecast operation cost, forecast curtailment rate of renewable energy,
and forecast power fluctuations on the tie-line. All three indicators are higher for Strategy
B. However, the IFR is 31.47% higher, the FSR is 45.83% lower, and the AIF is 13.36 kW/h
higher for Strategy A compared to Strategy B. This indicates that Strategy A is less capable
of coping with uncertainties during the real-time operation of the MREPS compared to
Strategy B. This is corroborated by the real-time operation results of the two strategies.

Table 5. Simulation results of Strategies A and B.

Parameters and Units Strategy A Strategy B

Insufficient flexibility rate of the day-ahead scheme (IFR) (%) [15] 46.21 14.74
Flexibility sufficiency rate (FSR) (%) [28] 4.17 50.00

Average insufficiency of flexibility (AIF) (kW·h) [28] 28.458 15.098
Forecast operation cost (CNY) 1503.96 1598.37
Realized operation cost (CNY) 1756.52 1794.48

Forecast curtailment rate of renewable energy (%) 0 6.96
Realized curtailment rate of renewable energy (%) 37.58 19.55

Forecast power fluctuations on the tie-line (%) 59.71 69.65
Realized power fluctuations on the tie-line (%) 60.18 69.70

Deviation rate of forecast and realized power fluctuations on the tie-line (%) 29.17 14.58

What is more, the MREPS is operating at a higher cost under Strategy B, and the
tie-line power fluctuations are 9.52% higher than they are under Strategy A. However, the

56



Processes 2022, 10, 1401

rate of utilization of renewable energy for the MREPS under Strategy B is 18.03% higher
than that under Strategy A. In addition, the deviation rate of forecast and realized power
fluctuations of power under Strategy B is 14.59% lower than that under Strategy A. These
findings indicate that Strategy B can reduce the deviation between forecast and realized
power fluctuations on the tie-line and increase the utilization of renewable energy at the
expense of a small amount of economy and power fluctuations at the same time. Moreover,
the realized values of the three objectives under Strategy A increased by 16.79%, 37.58%,
and 0.47% compared with their forecast values. In comparison with their forecast values,
the realized values of the three objectives under Strategy B increased by 12.27%, 12.59%,
and 0.05%. Based on this finding, the results formulated by Strategy B are more consistent
with the realized operation results.

5. Conclusions

In this study, a day-ahead scheduling strategy designed to account for flexibility
constraints was presented. A multi-objective problem was solved using MOPSO, and a
set of the non-dominated solutions was derived for the three objectives. Using the fuzzy
comprehensive evaluation method, the optimal compromise solution of the non-dominated
solution set was determined. In addition, the optimal strategy proposed in this study was
the day-ahead scheduling strategy corresponding to the optimal compromise solution.
During peak load periods, the simulation results showed that the proposed strategy was
effective in relieving the main grid’s pressure on power supply. Moreover, compared with
those formulated using the conventional strategy, the results obtained from day-ahead
scheduling formulated using the proposed strategy were closer to the results obtained from
the MREPS. Although the economy and power fluctuations on the tie-line were slightly
higher under the revised strategy, renewable energy usage was significantly higher, and the
differences between forecast and realized power fluctuations on the tie-line were relatively
small. This finding showed that the revised strategy has the potential to significantly
improve the flexibility and reliability of the MREPS’s operation at the cost of a small
amount of economy and fluctuations in power supply.
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Abstract: For the reduction in the electromagnetic noise level of three-phase induction motors, many
empirical rules and analytical models have been established to select the matching scheme of pole
and slot, but they are not fully applicable to five-phase squirrel cage induction motors (FSCIM). In
this paper, combined with the slot-number phase diagram (SNPD), and the electromagnetic force-
vibration-acoustic analytical model deduced in Part I, the influence of pole-slot schemes, including
five-phase regular-size phase-belt and fractional-slot winding, on magnetic noise is analyzed. The
feasibility of electromagnetic noise prediction is verified by finite element simulation and experiments.
Taking a 4 kW FSCIM as a prototype, noise prediction is carried out for all the slot-number matching
schemes with pole pairs not exceeding three. For two noise reduction targets, which reduce the
maximum single-frequency noise in the steady-state operation and the average noise during startup,
the pole-slot numbers matching rule of FSCIM is given. This improved model is also applicable in
different power ranges for the noise reduction design of five-phase motors.

Keywords: five-phase induction motor; magnetic noise; pole-slot numbers; electromagnetic vibration

1. Introduction

With the promotion and popularization of new energy vehicles, in addition to power
density and fault tolerance performance, the electromagnetic vibration noise of electric
motors, which is closely related to the noise, vibration, and harshness (NVH) characteristics
of electric vehicles, has also received more and more attention. Similar to the three-phase
motor, the pole-slot coordination is an important factor affecting the electromagnetic
vibration characteristics of the motor. Some of the original rules are in [1], and numerous
empirical rules have been developed in the ensuing decades. An exhaustive list of these
laws can be found in Timar’s book [2]. However, these results mainly focused on three-
phase motors, without the consideration of the natural frequency and modal characteristics
of the motor structure. Additionally, some of them are based on electromagnetic torque
pulsation as the limiting condition, which may not be suitable for reducing audible magnetic
noise [3]. Due to the difference in the number of phases, the air-gap magnetic density and
electromagnetic force harmonic of the five-phase squirrel cage induction motors (FSCIM)
are various.

To design an FSCIM for driving, it is necessary to enhance NVH characteristics. In
almost all induction machines, noise originates from aerodynamic, mechanical, and elec-
tromagnetic problems [4–6]. Aerodynamic and mechanical problems, which mainly result
from turbines and assembly errors, can be ignored in the design stage. However, electro-
magnetic vibration levels can directly affect the NVH characteristics and cause failures, such
as bearing failure and insulation breakdown [7]. Magnetic pull force [8], torque ripple [9],
cogging torque [9], and unbalanced magnetic force [8] are the main electromagnetic sources
of NVH characteristics. Improvement of the overall force characteristics is required for
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improving the NVH characteristics. Additionally, optimizing the individual force charac-
teristics while improving the overall electromagnetic force characteristics is a better choice
to improve the NVH characteristics. The electromagnetic vibration characteristics of the
five-phase motors are similar to those of the three-phase motors. The pole-slot number
scheme has a decisive effect on the magnetic noise [10–13]. Obviously, it is not suitable to
directly apply the pole-slot matching of the three-phase motor to FSCIM.

A 40/30 slot, four poles, and an FSCIM are used to study the influence of saturation on
the air-gap flux density waveform [14]. Wang Dong et al. selected three five-phase motors
with 60/38 slots to form a fifteen-phase induction motor, and analyzed the air-gap magnetic
potential of the induction motor under non-sinusoidal power supply conditions [15]. A
comparative analysis of the operating characteristics between the three-phase and five-
phase induction motors under the same structural size, that is, 30/44 slots and 2-poles
induction motor, is discussed in [16]. Pereira LA et al. analyzed the mathematical model
of the five-phase induction motor, deduced the self-inductance and mutual inductance
of the stator and rotor, and calculated the time and space harmonics of the air-gap flux
density [17,18]. The effect of applying stator shifting to five-phase winding to suppress
the effect of the slot harmonics by doubling the number of slots is investigated [19]. Based
on the measured sample data, a new radial vibration model is proposed, consisting of a
vibration acceleration impulse model and a natural oscillation model [20]. The vibration
and noise levels in a permanent magnet synchronous motor with different slot-pole combi-
nations are discussed, mainly through the FEM to establish the analytical model [21]. An
analytical model of the acoustic behavior of pulse-width modulation (PWM) controlled
induction machines is applied to a three-phase fractional-slot winding machine. However,
the acoustic radiation is simplified as a 2D cylindrical shell model [22,23]. Reference [24]
established the electromagnetic vibration and noise model of the three-phase induction mo-
tor based on the acoustic model of the infinitely long ring, and carried out the optimization
study of the slot-number scheme, but did not consider the influence of the pole-pair-number
and the axial modes of the stator frame in an acoustic radiator. Reference [25] aimed at
reducing the resonance noise of an evaporative cooling motor induced by an electromag-
netic and two-phase flow based on the fluid-structure coupling theory. The subdomain
method is used to optimize the noise, vibration, and harshness (NVH) characteristics of a
permanent magnet synchronous motor. The predecessors mainly analyzed the operating
characteristics and control strategies of the existing five-phase motor or those created by
re-embedding the stator winding of the three-phase motor. However, there rarely are
selection basis and parameter optimization processes of pole-slot number schemes for
five-phase induction motors.

This paper aims at the optimization design of the electromagnetic noise of an FSCIM,
as shown in Figure 1. Firstly, the slot-number assignment of the five-phase regular-size
phase-belt winding is detailed via the slot-number phase diagram (SNPD) [26,27]. Then,
the expression of stator magnetomotive force (MMF) can be given by the superposition
of a single conductor or a coil. Next, an improved analytical model of the induction
machine’s electromagnetic force-vibration-acoustic radiation is proposed. Based on these
mathematical models, the influence of time and space harmonics of electromagnetic forces
on vibro-noise will be considered as a whole. The accuracy of this model for predicting
magnetic noise phenomena is validated by a prototype at different stages (natural frequency,
vibration, and sound power level) by numerical methods and tests. Finally, focused on
two different low electromagnetic noise targets, the magnetic noise level of every pole-
slot number scheme of five-phase induction motors with less than four pole pairs is
simulated. Taking a 4 kW FSCIM with an outer diameter of 175 mm as a prototype allows
for recommending schemes for low-noise slot matching.
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Figure 1. Model of five-phase cage induction motor.

2. Electromagnetic Noise Analytical Prediction Model

2.1. Subordination of Slot-Numbers and Phase

SNPD is a useful method for expressing the winding MMF that quickly obtains the
multi-phase symmetrical winding distribution and is convenient for nested programming.
The tabular form (including Z1 positive slots and Z1 negative slots) presents the unit space
vector distribution of the MMF generated in each slot. For the five-phase winding, the
normal connection winding can be divided into 36◦ phase-belt winding, regular-size phase
band winding, and 72◦ phase-belt winding. As shown in Figure 2, the positive phase-belt
is expanded by L slots, as the negative phase-belt reduces L slots. When L = 0, the common
36◦ phase-belt winding is given.

 
(a) 

 
(b) 

Figure 2. SNPD of five−phase fractional slot size phase−belt winding. (a) M1 motor; (b) M2 motor.

Assuming that the slot-number J is located at the R-th cell of the phase diagram when
the phase of the slot-number is represented by R, the following formula should be satisfied:

R∗(J) = D(|J| − 1) + 1 + m1N
1 − sgn(J)

2
(1)

R(J) = mod(R∗(J), 2m1N) (2)
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where q = N
D , N, and D are co-prime, mod( ) indicates the remainder, sgn( ) is the signum

function, and sign of J only indicates the current flow in the slot.
In terms of Figure 2, the phase of the slot can be determined according to the phase

R of the slot-number. If the number of cells occupied by the positive and negative phase-
belt are Np + L and Np − L, respectively, the slots-number that belong to the β-th phase
(1–5 corresponding to the A–E phase, respectively) J, can be assigned according to the
following rules:

2(β − 1)N + L
1 − sgn(J)

2
≤ R(β, J) ≤ (2β − 1)N + L

1 + sgn(J)
2

(3)

According to the aforementioned, the expression of the winding coefficient can be
deduced for each pole-slot match. Taking the two motors shown in Table 1 as an example,
the phase-belt distribution can be obtained as shown in Figure 2 by (3).

Table 1. Generic five-phase fractional slot motors M1 and M2.

Symbol M1 M2

Number of stator slots Z1 30 40
Number of rotor slots Z2 26 32
Number of pole pairs p 2 3

Number of slots moved L 1 2

It can be seen from Figure 2 (a) that for the M2 motor, the subordinations of the
slot-numbers of L = 0 and L = 1 are consistent. So far, by combining (1), (2), and (3), the
symmetrical distribution of the five-phase normal windings and the affiliation of each slot-
number can be determined only via Z1 and p. If the center line of the A-phase winding is
taken as the origin, the winding function of the five-phase normal winding can be obtained
from the slot-number distribution R(m) and (4) by the superposition principle.

WFs(θs) =

⎧⎪⎪⎨⎪⎪⎩
∞
∑

v=1

ksv
πv sin vθs, single conductor

∞
∑

v=1

2Nc
πv ksvkyv cos vθs, single coil

(4)

where Nc is the number of turns of the coil; ksv and kyv are the slotting coefficient and short
distance coefficient of v pair poles harmonics, respectively.

2.2. Analytical Calculation of Electromagnetic Force

For induction motors, the MMF generated by the rotor is often much smaller than the
stator in the case of no load, not resulting in new electromagnetic resonance phenomena [28].
Therefore, the radial component Br of the magnetic flux density can be expressed as [29,30]:

Br(t, θs) = f s
mm f (t, θs)Λ(t, θs) (5)

Λ(t, θs) = Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2 (6)

The specific expressions of each part of Λ have been given in detail in [29,31]. Notice-
ably, the effects of both sides slotting in Λ are proportional to the width of the slot opening.
Both λk1 and λk2 are inversely proportional to the harmonic order of the permeance k1
and k2. The MMF of the stator is obtained when the sequential five-phase currents pass
through the windings. Substituting (3), (4) and (5) into Maxwell’s radial force expres-
sion (7), the radial electromagnetic forces generated by all radial magnetic flux harmonics
can be determined.

PeR(t, θs) = B2
r (t, θs)/2μ0 (7)
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Considering only the major force waves in magnetic noise, that is, the low-order force
waves Pbelt sourced from the interaction between the harmonics of phase-belt of stator
MMF and the tooth harmonics of air-gap permeability. The main force characteristics are
given in Table 2.

Table 2. Characteristics of phase belt force wave Pbelt.

Symbol Frequency fP Force Wave Mode m Remark

Pbelt fn[k2Z2(1- − s)/p + l] k2Z2- − 2m1pk1 + lp l = 0, ±2

It can be seen from Table 2 that the pole-slot matching scheme has a decisive influence
on the force wave characteristics. The number of stator and rotor slots together affects
the force wave order, while the frequency is mainly affected by the Z2, p, s, and supply
frequency f 1. Furthermore, five-phase motors are mostly powered by PWM with rich
harmonics, so the frequency range of Maxwell forces is likely to cover the natural frequency
of lower modes of the stator system.

2.3. Electromagnetic Vibration-Acoustic Radiation Model

The stator system mainly consists of an iron core, windings–tooth, and housing, which
can be regarded as equivalent rings, respectively. The equivalent model can be divided
into finitely and infinitely cylindrical shells for analytical calculation of vibration and noise
based on Table 3.

Table 3. Criteria for type of analytical model.

Condition Type of Equivalent Shells

ml ≥ 10 aR Infinitely cylindrical shell
ml < 10 aR Finitely cylindrical shell

For an infinite cylindrical shell, the analytical expressions for vibration and acoustics
are given in [32,33]. In another case, a more detailed description of the finite shell can be
found in the submitted paper Part I.

Due to the large stiffness of the motor shaft, the natural frequencies of the same
circumferential mode are relatively close, and the influence of the axial mode on the natural
frequency is smaller than that of the circumferential mode. Therefore, the sound power
of different axial modes under the same circumferential mode excited by the m-order
force wave can be considered uniformly. The noise of the low axial orders of the same
circumferential mode is summed up by using the principle of modal superposition:

LW(n, m) = 10 log10(
3

∑
a=1

Wm(n, a, m)/W0) (8)

LWA(n, m) = 10 log10(∑
n

100.1(Lw(n,m)+ΔLA(n))) (9)

where ΔLA(n) is sound frequency dependent A-weighting factor.

2.4. Model Validation

The model has been validated at different stages (natural frequency, vibration, and sound
power level) by numerical methods and tests in the submitted paper Part I and [22,28,34].

Furthermore, in this paper, the experimental measurement and analysis of the vibration-
noise of the prototype in the transient process are carried out, and the results further verify
the accuracy of the analytical model. The layout of the vibration acceleration sensors
(#A1–#A5) and sound sensors (#S1–#S3) is shown in Figure 3, and an overall layout of the
test platform is given in Figure 4.
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Figure 3. Schematic diagram of sensors layout.

  
(a) (b) 

Figure 4. FSCIM drive control and noise measurement platform. (a) Five-phase PWM drive system;
(b) vibration-noise measurement system.

According to the principle of frequency conversion speed regulation, the starting
process is divided into 10 equal processes for vibration and noise measurements. The
five-phase currents and speed curves over time are shown in Figure 5.

Theoretically, the stable speed of 10 stages should be proportional to the power supply
frequency, but due to the idling loss, the speed is not strictly proportional to the frequency. The
stator current shows a trend of increasing-decreasing-increasing. Meanwhile, the vibration and
noise results obtained by sensors placed as in Figure 3 are shown in Figures 6–9.

As shown in Figure 6, acceleration amplitudes and trends between the top and bottom
are basically consistent. However, the side vibration amplitude is almost half of the top,
and the change trend with the supply frequency is different, but consistent with the trend
of the current.

The natural frequency of the stator system is given in the submitted paper Part I, so
this paper will use it as known data. Through spectrum analysis of the acceleration at
each stage in Figure 7, it is found that the main vibration frequency is concentrated at
approximately 5000 Hz and 1000 Hz, which corresponds to the modes (3, 1), (3, 2), (1, 4),
(2, 4) and (3, 4) of the stator system. For vibration acceleration, it is mainly reflected in the
circumferential modem, that is, m = 1, 2, and 4. In terms of Figure 7j, the analytical model is
used to calculate the vibration acceleration of the test motor in main modes. From Table 4,
it is obvious that mode (3, 2) contributes the most to the vibration, while mode (3, 1) is the
opposite, even though the natural frequencies of both are very close. Furthermore, all three
modes with m = 4 have contributions to the vibration, hence the main modes are confirmed
to m = 2 and 4 for the test motor, which is consistent with Figure 10.
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Figure 5. Five−phase current and speed curves from start−up to steady-state.

 

Figure 6. Vibration acceleration of three measuring points on the frame.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 7. The vibration acceleration spectrum of the top point #A1 in 10 stages. (a) Stage 1, f = 0.1 f 1;
(b) Stage 2, f = 0.2 f 1; (c) Stage 3, f = 0.3 f 1; (d) Stage 4, f = 0.4 f 1; (e) Stage 5, f = 0.5 f 1; (f) Stage 6,
f = 0.6 f 1; (g) Stage 7, f = 0.7 f 1; (h) Stage 8, f = 0.8 f 1; (i) Stage 9, f = 0.9 f 1; (j) Stage 10, f = f 1.
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Figure 8. Vibration acceleration of three measuring points on the frame.

Table 4. Frame surface vibration acceleration aa,m (unit is m/s2) by improved analytical method.

aa,m (m/s2) Mode a

Mode m 1 2 3
0 1.88 1.11 0.41
1 0 0 0
2 3.65 3.49 13.96
3 0 0 0
4 4.69 2.10 3.57

From Figure 8, it is found that the sound pressure intensities and trends in the top,
side, and axial directions are more consistent than they are in vibration. Focused on side
sensor #S2, 10 stages of spectrum analysis are performed in Figure 9.

With the increase in the power supply frequency and rotation speed, the noise in the
low-frequency region (500–2000 Hz) gradually increases and fluctuates. This frequency
band that does not appear in the frequency spectrum of vibration acceleration is related to
the supply frequency and speed. The mechanical noise corresponding to speed is mainly
generated by the bearing connection, and the part related to supply frequency is the result
of the resonance of the PWM module and the heat sink. Additionally, the magnetic noise of
the test motor also fluctuates with the operation condition, and the amplitude spectrum
also agrees with the vibration in both the analytical model and experiment.

  
(a) (b) 

Figure 9. Cont.
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 9. The sound pressure spectrum of the top point #S2 in 10 stages. (a) Stage 1, f = 0.1 f 1;
(b) Stage 2, f = 0.2 f 1; (c) Stage 3, f = 0.3 f 1; (d) Stage 4, f = 0.4 f 1; (e) Stage 5, f = 0.5 f 1; (f) Stage 6,
f = 0.6 f 1; (g) Stage 7, f = 0.7 f 1; (h) Stage 8, f = 0.8 f 1; (i) Stage 9, f = 0.9 f 1; (j) Stage 10, f = f 1.
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(a) (b) 

Figure 10. A Z1 = 30 FSCIM electromagnetic sound power level in function Z2 for both operation
conditions. (a) Rated condition; (b) start-up condition.

3. Low-Noise Pole-Slot Optimal Combination

3.1. Low-Noise Targets

At present, the five-phase motor mainly adopts PWM variable frequency speed control.
During the process from start-up to stable operation, the power supply frequency rises
linearly from 0 to f 1, during which a rich force wave will be generated. In order to avoid the
resonance between the low-order force wave Pbelt shown in Table 2 and the circumferential
mode of the stator, the following conditions must be fulfilled:

f1[k2Z2(1 − s)/p + l] < fm, m =|k2Z2 − k1Z1 + lp| (10)

According to the noise reduction requirements in different environments, two noise
optimization goals are set, respectively:

(1) The minimum total sound power level of each frequency in rated condition:

min(∑
m

LWA( fm)) (11)

(2) The sound power amplitude of the maximum noise generated during the start-up is
the smallest:

min(max(LWA( fm))) (12)

For the pole-slot matching scheme, the above two optimization objectives should
be considered, and it should be determined according to the application environment of
the motor.

3.2. Pole-Slot Matching Strategy

When the power demand of a certain type of motor is determined, its outer diameter
is also determined according to the national standard. On the basis of the aforementioned
analytical model, all possible slot matching schemes are traversed, and the noise radiation
in the process of frequency conversion and speed regulation is analyzed and calculated.
The low-noise slot fit solution can be screened out. This paper takes the test motor shown
in Table 3 as the object, and comprehensively considers the outer diameter of the motor,
the principle of fewer slots and near-slots, and the symmetry conditions of multi-phase
motor windings [10]. All cases of symmetrical distribution of stator windings in the range
of Z1 ∈ [5, 50], Z2 ∈ [2, Z1], and p ∈ [1, 3], and the following assumptions are made:
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(1) The slip ratio changes linearly.
(2) In each case, five-phase sequential currents of the same amplitude are passed through

the stator windings.
(3) The magnitude of the air-gap MMF generated by the stator winding remains un-

changed, so the N1kw1 under various schemes remains approximately unchanged. It
should be noted that the weight of the winding and the stiffness will change.

N1kw1 = const (13)

(4) In order to control the variables, the influence of slot opening and slot type is not
considered when changing the number of stator and rotor slots. It can be known
from the amplitude of air-gap permeability [29,31]. It is necessary to keep Z1b01 and
Z2b02 unchanged.

Z1b01 = const, Z2b02 = const (14)

(5) Excluding the influence of magnetic saturation, the air-gap permeance does not contain
the harmonic content caused by saturation.

(6) The slot number Z1 is greater than Z2.

The electromagnetic noise results of the slot fitting scheme are obtained by calcula-
tion, which include the maximum and average noise levels radiated by the motor during
operation under each scheme, and the noise radiation under each modal resonance. The
predicted results of the test motor are shown in Figure 10.

As can be seen from Figure 10, the sound power level in (b) during the starting process
is higher than that in (a) under steady-state. This is because the frequency of force waves is
much more abundant during the starting process, which is more likely to result in stator
system resonance. Firstly, consistent with the previous experiment’s results, the magnetic
noise is mainly generated from modes m = 2 and 4 on the test motor with 30/26 slots. In
addition, both the average magnetic noise level in the starting process and the maximum
noise level in the steady-state show discrete changes with the increase in the number of
rotor slots. As expected, each stator mode has different effects on the overall noise level.
For the five-phase motor with Z1 = 30 and p = 1, the resonance effect at m = 2 (that is, the
elliptical mode) is the strongest and dominant in both operating conditions. It is worth
noting that for steady-state operation, the effects of modes m = 2 and 4 tend to have the
same trend, which is also consistent with the previous conclusions of the test motor, but
the effects of the two modes are quite the opposite during start-up. In summary, the initial
design should focus on avoiding the slot matches that produce such modal resonance.

3.3. Optimal Pole-Slot Scheme

By analyzing the noise prediction results of all schemes, for the two different optimiza-
tion objectives in Section 3.1, the quietest combinations between Z2 and p in each five-phase
symmetrical stator winding are screened out, as shown in Tables 5–7. According to the
noise level, the rotor slots number are arranged in increasing order from left to right. From
the above three tables, it can be found that no matter what the parity of Z1 and Z2 are, there
will always be some low-noise combinations. For inter-slot motors (underlined in the table),
the quiet slot combinations will be significantly different from the fractional-slot situation
due to the change in the flux density harmonics content. Generally speaking, the quietest
rotor slot number of a fractional-slot winding will be less than that of the integer-slot case.
If Z1 and Z2 are both a multiple of 2p, the expression of force wave order in Table 2 can be
transformed into (15), hence the main force orders should be a multiple of 2p which is in
agreeance with Figure 10.

m = 2p(k2q2 − k1q1 + 0.5l) (15)
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Table 5. Low-noise pole-slot numbers scheme for p = 1.

Z1 Z2 of Target (10) Z2 of Target (11)

5 4, 2, 3 3, 2, 4
10 5, 9, 3, 6, 4 7, 3, 8, 4, 2
15 5, 14, 6, 9, 10 5, 10, 4, 12, 13
20 16, 13, 2, 17, 9 13, 19, 18, 9, 3
25 24, 5, 21, 12, 19 23, 7, 18, 14, 9
30 21, 13, 17, 26, 27 19, 23, 21, 18, 27
35 34, 32, 5, 26, 4 34, 28, 22, 25, 5
40 32, 38, 24, 2, 37 31, 38, 23, 36, 39

Table 6. Low-noise pole-slot numbers scheme for p = 2.

Z1 Z2 of Target (10) Z2 of Target (11)

5 2, 3, 4 2, 3, 4
10 2, 5, 7, 3, 8 8, 2, 4, 6, 7
15 2, 8, 13, 4, 6 10, 9, 2, 4, 11
20 12, 4, 18, 10, 8 12, 4, 16, 8, 10
25 23, 15, 20, 18, 10 24, 20, 23, 10, 8
30 20, 10, 24, 23, 15 10, 20, 23, 29, 18
35 23, 24, 30, 32, 7 23, 30, 16, 32, 10
40 36, 32, 30, 23, 12 32, 36, 12, 4, 16

Table 7. Low-noise pole-slot numbers scheme for p = 3.

Z1 Z2 of Target (10) Z2 of Target (11)

5 2, 4, 3 3, 2, 4
10 6, 2, 8, 4, 3 2, 5, 6, 4, 8
15 12, 4, 2, 14, 8 5, 3, 10, 2, 11
20 19, 10, 18, 6, 12 10, 12, 13, 5, 11
25 23, 19, 18, 24, 6 13, 3, 6, 11, 2
30 24, 19, 10, 25, 23 10, 24, 20, 22, 3
35 19, 25, 29, 34, 17 3, 13, 34, 26, 6
40 19, 30, 25, 38, 10 30, 10, 12, 24, 20

It should be noted that the several limitations of the pole-slot combination mentioned
above are: it only considers the symmetrical winding with a number of pole pairs less
than four, and it calculates the magnetic noise level without consideration of the effects
of saturation, slot shape, and PWM harmonics. However, there is no doubt that this
prediction model can be applied to five-phase induction motors with other power, size,
and power supply conditions, in the initial design process to avoid strong magnetic noise
and vibrations due to slotting harmonics.

4. Conclusions

Aiming at the relationship of the FSCIM between the electromagnetic noise charac-
teristics and the pole-slot numbers match, this paper deduces and improves the radial
electromagnetic force-vibration-noise radiation model based on the analysis of the five-
phase symmetrical windings and the acoustic model in finite cylindrical shells. This model
can comprehensively consider the natural frequency of the system composed of the three
parts of the stator superimposed, as well as the acoustic radiation characteristics of the cir-
cumferential and axial modes of the finite cylindrical shell. Therefore, the results are more
in line with the real situation of the electromagnetic noise of the motor. The accuracy of the
improved model was verified by simulation and experiments at multiple stages under the
conditions of a given power, supply frequency, and slot type. The noise prediction of as
many slots as possible was carried out, and some quiet pole-slots for the FSCIM test were
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selected by different noise optimization objectives. The results reflect the effects and rules
of pole-slot matching for noise reduction in five-phase induction motors.

Although the matching results in this paper have some limitations, which are that the
results only reflect the effect of pole-slot numbers without the consideration of the slot geometries
and PWM harmonics. However, they can still be applied to motors with similar natural
frequencies, and the analytical noise prediction model can be applied to FSCIM with other
requirements. To avoid severe resonance and noise caused by electromagnetic force waves, the
model is still beneficial for the selection of pole-slot numbers during motor initial design.

Future works should focus on the multi-objective optimization algorithms for low-noise
optimization design, comprehensively considering the pole-slot scheme, and slot geometries.
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Nomenclature

Electrical notations:
Br radial air-gap magnetic density
θs angular position on the circumference
μ0 air magnetic permeability
fn frequency of electromagnetic force
m force wave order, circumferential mode
f1 fundamental supply frequency
f s
mm f stator magnetomotive force

WFs stator winding function
Pbelt major electromagnetic force
Mechanical and acoustic notations:
Z1 stator slots number
Z2 rotor slots number
D1 stator core outer diameter
Di1 stator core inner diameter
p pole pair number
v harmonic pole pairs
ksv slotting coefficient
kyv short distance coefficient
s slip
δ air-gap length
m1 phase number, m1 = 5
q number of slots per pole per phase
b01 stator slots opening width
b02 rotor slots opening width
Nc number of turns
a axial mode
l length of the housing
R radius of the housing
Wm sound power
W0 reference sound power
LW sound power level
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Abstract: The use of multiphase electric drives in industrial applications has increased in the last
few years. These machines’ advantages over the three-phase system make them appropriate for
harsh working situations. To increase their inherent reliability, some authors have been working in
sensorless control schemes, where the absence of an encoder ensures proper system performance.
Nevertheless, these sensorless control systems present some problems due to the uncertainties of the
parameters. In this regard, using extended Kalman filters overcomes this situation, since Kalman
filters consider the system error and measurement error in the estimation process. However, when
the three-phase Kalman filters are extended to the five-phase case of study, the complexity of the
problem increases substantially. In this work, the authors propose an extended Kalman filter, which
discomposes the original state equation, reducing the complexity of the estimation stage. In addition,
the system suppresses the third-harmonic injection, which enhances the overall phase-current quality.

Keywords: five-phase induction motor; extended Kalman filter; speed sensorless control;
parameter identification

1. Introduction

Induction motors are widely used in wind power generation, train traction, the auto-
motive industry, ship propulsion, and other fields because of their low maintenance cost,
good dynamic response, better speed–torque characteristics, and higher efficiency [1–4].
With the development of power electronics technology, the electrical system has overcome
the restriction of power supply phase numbers. The increase in phase number also brings
many advantages to the motor drive system. Compared with the traditional three-phase
motor, the five-phase motor has lower phase voltage, smaller torque ripple, and higher
reliability under the same power [5,6]. Nowadays, the multiphase motor possesses the
trend of gradually replacing the traditional three-phase motor.

Speed closed-loop control is indispensable in high-performance vector control of
induction motors. Generally, speed sensors, such as photoelectric encoders, are coaxially
connected with the motor to observe the speed. In harsh working environments, speed
sensors are prone to failure. In order to realize the accurate control of speed without speed
sensors, speed sensorless vector control has become an important subject in the field of
AC drive. The traditional speed sensorless vector control method for induction motors
uses stator current and voltage to estimate rotor flux linkage and slip [7]. In addition,
model-based speed sensorless induction motor drive technology, which combines the state
equation of the induction motor with the signal injection method, is also considered to be
a good method to achieve speed sensorless control [8]. These control methods based on
signal injection can realize speed sensorless control, but they have high complexity and
poor adaptability to the drive system [9]. Traditional speed sensorless control still has some
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problems due to the uncertainty of the parameters during the operation of the motor. In
order to overcome these uncertainties, several methods based on model estimation, such
as a model reference adaptive system, full-order observer, extended Luenberger observer,
sliding mode observer, and the extended Kalman filter, have become the main research
focuses [10–13]. Different from the deterministic method used in observer designs in model
reference adaptive system technology, the extended Kalman filter takes the system error
and measurement error into account in the estimation process. The ability to adjust the
Kalman filter according to the noise characteristics of measurement and initial disturbance
highlights the advantages of the stochastic method over the deterministic method [14,15].

Different from the three-phase induction motor, the vector control of the five-phase
induction motor with centralized winding should consider both the fundamental space and
the third-harmonic space, and it generally adopts the control method of third-harmonic
current suppression [16]. Therefore, when designing an EKF observer, the order of the state
equation of the five-phase induction motor is higher than that of the three-phase induction
motor. Considering the difference in the state equation of the five-phase induction motor,
if the fundamental space and the third-harmonic state-space variables of the five-phase
induction motor are controlled at the same time, the state equation of the system will reach
the ninth order [17]. If other state variables are introduced, it will be higher and increase
the complexity of the system. Therefore, a double EKF structure is proposed in this paper,
which can decompose the original ninth-order state equation into a fourth-order and a
fifth-order state equation when the third-harmonic current is small. The EKF observer
based on this structure can simultaneously observe the rotor angular velocity, fundamental
space rotor flux linkage, and third-harmonic space rotor flux linkage.

The rest of this paper is structured as follows: in Section 2, the linear and discrete state
equations of the fundamental spatial components of the five-phase squirrel cage induction
motor are derived; Section 3 introduces the EKF algorithm and the double EKF structure;
then, the results of speed prediction and flux linkage prediction are discussed in Section 4;
finally, Section 5 summarizes the research of this paper.

2. Linear, Discrete State-Space Model for Five-Phase Squirrel Cage Induction Motors

Similarly to the three-phase induction motor, the five-phase induction motor can also
transform the five-phase voltage and current into the two-phase stationary coordinate
system and the two-phase synchronous rotating coordinate system through coordinate
transformation. The Clark conversion formula from the five-phase rotating coordinate
system to the two-phase stationary coordinate system can be written as [18]:
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The Park conversion equation from a two-phase stationary coordinate system to a
two-phase simultaneous rotational coordinate system can be written as [19]:[
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xq

]
=

[
cos θ sin θ
− sin θ cos θ

][
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]
, x = u, i, ψ (2)
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where x is voltage, current, or flux linkage. The fundamental space-stator current and rotor
flux linkage in the two-phase stationary coordinate system are selected as state variables,
and the corresponding state equations are as follows [20]:

disα1
dt = L2

r Rs+L2
mRr

Lr(L2
m−Ls Lr)

isα1 − LmRr
Lr(L2

m−Ls Lr)
ψrα1 − Lmωr

(L2
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ψrβ1 − Lr
(L2

m−Ls Lr)
usa1

disβ1
dt = L2
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ψrβ1 − Lr

(L2
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Lr

ψrα1 − ωrψrβ1
dψrβ1

dt = LmRr
Lr

isβ1 + ωrψrα1 − Rr
Lr

ψrβ1

(3)

where Lm, Ls, and Lr are the equivalent mutual inductance, stator-side equivalent self-
inductance, and rotor-side equivalent self-inductance, respectively, whose values are
2.5 times the mutual inductance, stator-side self-inductance, and rotor-side self-inductance
in the fundamental space of the five-phase squirrel cage induction motor.

The dynamic state-space model of the fundamental space of the five-phase induction
motor has four state variables. In order to realize vector control without a speed sensor,
the rotor angular velocity is added as a state variable so that the expanded-order system
equations of the five-phase induction motor are obtained. Since the Kalman filter algorithm
is applicable to linear systems, the digitalization of the algorithm requires the discretization
of the algorithm, while the state-space equations of the five-phase squirrel cage induction
motor are nonlinear and continuous. Therefore, the state-space equations of the five-phase
motor should be linearized and discretized. Consider the linear system shown in Figure 1,
whose state and measurement equations can be written as:

dx(t)
dt = f [x(t)] + Bu(t) + w(t)

y(t) = h[x(t)] + v(t)
(4)

B H

w(t)

+

+
x(t)

f

+

v(t)
+ y(t)u(t)

Figure 1. Linear system block diagram.

The Taylor expansion of Equation (4) at x̂(t), retaining the constant and primary terms
and rounding off the higher terms, yields:

dx(t)
dt = f [x̂(t)] + ∂ f [x(t)]

∂x(t) |x(t)=x̂(t)Δx + Bu(t) + w(t)

y(t) = h[x̂(t)] + ∂h[x(t)]
∂x(t) |x(t)=x̂(t)Δx + v(t)

(5)

where Δx = x(t)− x̂(t). w(t) and v(t) represent system noise and measurement noise,
respectively, which are Gaussian white noise with the average expectation of 0.

The linearized state equation is discretized, and assuming that the sampling period Ts
is sufficiently small, the following approximation can be made at the moment k:

dxk
dt

≈ xk − xk−1
Ts

(6)

From Equation (4) to (6), the state equations of the discretized five-phase induction
motor base-wave space linear system can be obtained as:{

xk = xk−1 + [Akxk−1 + Bu]Ts + wk−1
yk = Hxk + vk

(7)
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where:
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is the magnetic flux leakage coefficient and

Tr = Lr
Rr

is the rotor time constant. Define the system noise matrix w(k) as a 5 × 1 or-
der matrix, and the covariance matrix Q = cov(w) = E

{
w, wT} as a 5 × 5 order ma-

trix. The measurement noise v(k) is a matrix of order 2 × 1, and its covariance matrix
R = cov(v) = E

{
v, vT} is a matrix of order 2 × 2.

3. Extended Kalman Filtering Algorithm

The application of the extended Kalman filter in the state estimation of the five-phase
induction motor is shown in Figure 2. The red dotted box is the prediction part of the
extended Kalman filter algorithm, and the blue dotted box is derived from the state-space
equation of the motor. The function of the prediction part is to cause the error between the
estimated value and the real value to be close to zero through a large number of calculations,
so as to achieve the purpose of real-time tracking.

Bk Hk

Wk

+

+

Ak

+

Bk Hk

Ak

+

+

Kk

+

Z −

Z −
x k

x k

Five-phase induction motor

 

Figure 2. EKF observer.

Assuming that the state estimate x̂k−1 at the moment k − 1 is a known quantity, the
calculation steps of the extended Kalman filter can be written as follows:

A priori prediction step: the state estimate at moment k is predicted based on
the state estimate at moment k − 1, which is called a priori estimation and has the
following expression: {

x̂k|k−1 = x̂k−1|k−1 +
(

Ak|k−1 + Bkuk

)
Ts

ŷk|k−1 = Hkx̂k|k−1
(8)
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Calculate the predicted covariance matrix:

Pk|k−1 = Fk|k−1Pk−1|k−1FT
k|k−1 + Q (9)

where:

F = I + TsA =
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Calculate the Kalman gain Kk|k−1:

Kk|k−1 = Pk|k−1HT
(

HPk|k−1HT + R
)−1

(10)

A posteriori correction step: The optimal solution obtained x̂k|k from the gain Kk|k−1
calculated by Equation (6) is called the posterior value, and its expression is as follows:

x̂k|k = x̂k|k−1 + Kk|k−1

(
yk − ŷk|k−1

)
(11)

Calculate the covariance matrix Pk|k for the next moment:

Pk|k =
(

I − Kk|k−1H
)

Pk|k−1 (12)

If the fundamental magnetic chain, the third-harmonic magnetic chain, and the rotor
angular velocity are to be observed simultaneously, the equation of state of the system as a
whole is a matrix of order 9, and a general microcontroller or DSP cannot handle such a
huge amount of data. In fact, after suppressing the current in the third-harmonic space,
its electromagnetic torque generated in the third-harmonic space can be approximated
as 0, and the effect on the rotor angular velocity can be negligible. Based on this, two
EKF observers are used to observe the fundamental magnetic chain, the third-harmonic
magnetic chain, and the rotor angular velocity. The first EKF observer is used to observe
the fundamental magnetic chain and rotor angular velocity, and the second EKF observer is
used to observe the third-harmonic magnetic chain. The predicted rotor angular velocity of
the first EKF observer is used as the input to the second EKF observer, which is structured
as follows.

As shown in Figure 3, EKF1 observes the rotor magnetic chain in the fundamental
space and the rotor angular velocity, and EKF2 observes the rotor magnetic chain in the
third-harmonic space. The equation of state in the third-harmonic space can be written as:
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(13)

where ψ̂rα1 and ψ̂rβ1 are the predicted flux linkage in the fundamental space in the two-
phase stationary coordinate system. ω̂r is the predicted angular velocity. ψ̂rα3 and ψ̂rβ3
are the predicted flux linkage of the third-harmonic space in the two-phase stationary
coordinate system.
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EKF1

EKF2

αψ 3ˆr

βψ 3ˆr

ω̂r

ω̂r

αψ 1ˆr

βψ 1ˆr

α 1si
β 1si

α 3si
β 3si

αsu
βsu

αsu
βsu

Figure 3. Double EKF observer.

Similarly, the equation of state in the third-harmonic space after linearizing and
discretizing Equation (13) can be written as:{

xk
′ = xk−1

′ + [Ak
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is the magnetic flux leakage coeffi-

cient of the third-harmonic space, and Tr3 = Lr3
Rr3

is the torque constant of the third-harmonic
space. Define the system noise matrix w(k)′ as a 4 × 4 order matrix and the covariance
matrix Q′ = cov(w′) = E

{
w′, w′T

}
as a 4 × 1 order matrix. The measurement noise v(k)′

is a matrix of order 2 × 1 and its covariance matrix R′ = cov(v′) = E
{

v′, v′T
}

is a matrix
of order 2 × 2.

The initial parameter settings of the EKF observer are critical, especially the initial
values of the system noise matrix Q, the measurement noise covariance matrix R, and the
prediction covariance matrix P. The selection of these initial parameters directly determines
the overall performance of the algorithm, and the improper selection of initial values can
lead to scattering of the whole system.

For the system noise covariance matrix Q, it mainly includes the system external dis-
turbances, motor parameter variation effects, and errors in the linearization discretization
process. If Q becomes larger, it means that the system noise becomes stronger, indicating
that the weighting effect of the measurement feedback is enhanced, and the EKF transient
response becomes faster [21].

For the measurement noise covariance matrix R, it mainly includes the actual sensor
measurement error, microcontroller sampling error, and other factors. If R is increased, it
corresponds to a larger deviation in the current measurement, weakening the weight of the
algorithm’s predicted value, which will lead to a slower transient response [21].

For the error covariance matrix P, its initial state is generally chosen to be a diagonal
array with all elements equal, which has a large effect on the convergence rate of the EKF
and the amplitude of the transient state, with little effect on the steady state [22].
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The selection of these matrices is related to the parameters of the motor body and is
generally obtained using a trial-and-error approach. After a large number of trial-and-error
values, the initial values were taken as follows:

Q = diag[0.5 , 0.5 , 5 × 10−5 , 5 × 10−5 , 5 × 10−3]
R = diag[0.05 , 0.05]
P = diag[1 , 1 , 1 , 1 , 1]
Q′ = diag[0.5 , 0.5 , 5 × 10−5 , 5 × 10−5]
R′ = diag[0.05 , 0.05]
P′ = diag[1 , 1 , 1 , 1]

In the EKF speed sensorless control system, SVPWM modulation is used [23].The
control strategy is IRFOC (indirect field-oriented control) [24,25]. The five-phase inverter is
an H-bridge structure, and the overall flow chart is shown in Figure 4.
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Figure 4. EKF speed sensorless control flow chart.

The current voltage conversion module includes two PI controllers, which use the
difference between the measured current and the reference current. The PI controller
estimates the voltage necessary to minimize this current difference. For the fundamental
space, the current given signals i*sd1 and i*sq1 are calculated from the given torque signal
T*

em1 and the given flux signal ψ*
r1, respectively. The given torque signal is derived from

the predicted speed and the error signal of the given speed through a PI controller. For
the third-harmonic space, the given current signals i*sd3 and i*sq3 are set to 0 to achieve the
effect of restraining the third-harmonic current.
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4. Results and Discussion

In order to verify the effectiveness of the EKF algorithm in the control of a five-phase
motor without a speed sensor, a simulation model of it was built in Matlab/Simulink in
this study, and the EKF speed sensorless vector control system shown in Figure 4 was
established. Among them, the motor parameters used were as seen in Table 1, and its
modeling in Simulink is shown in Figure 5.

Table 1. Motor parameters.

Parameter Symbol Value

Stator resistance Rs 0.95 Ω
Fundamental space rotor resistance Rr1 0.78 Ω

Third-harmonic space rotor resistance Rr3 0.52 Ω
Fundamental space spatial mutual inductance Lm1 99.35 mH

Third-harmonic space mutual inductance Lm3 11.04 mH
Fundamental space-stator leakage inductance Lsloss1 6.87 mH
Fundamental space rotor leakage inductance Lrloss1 4.04 mH

Third-harmonic space stator leakage inductance Lsloss3 3.86 mH
Third-harmonic space rotor leakage inductance Lrloss3 3.76 mH

Magnetic pole pairs np 2
Rotational inertia J 0.056 kg·m2

Rated speed nN 1410 rpm
Rated voltage UN 380 V

Rated frequency fN 50 Hz
Rated field current Ism 3.86 A

Figure 5. The simulation model of the five-phase induction motor.
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The model is mainly divided into five modules: coordinate transformation modules,
voltage–magnetic chain modules, magnetic chain–current modules, current–electromagnetic
torque modules, and electromagnetic torque-speed modules. The coordinate transfor-
mation module is based on the five-phase Clark transformation matrix and its inverse
transform matrix. The five-phase voltage is decoupled to the fundamental space and three-
harmonic space of the αβ coordinate system, and then the transformation is converted them
into the ABCDE five-phase voltage. In the voltage–magnetic chain module, the magnetic
chain is calculated using the input voltage, current, and motor resistance. The magnetic
chain–current module uses the inductive matrix and each phase magnetic chain to obtain
the current. The torque–speed module mainly calculates motor rotor rotation speed.

4.1. Speed Prediction under Different Working Conditions

In order to verify whether the EKF algorithm can replace the traditional speed sensor,
first, the feedback value of the speed loop was changed to the real speed of the motor. Here,
EKF was used as an observer. The whole system adopted indirect field-oriented control
structure. At that time, the comparison between the predicted speed of the EKF algorithm
and the speed of indirect field vector control with a speed sensor is shown in Figure 6.

Figure 6. The performance of the EKF observer.

As shown in Figure 6, different from the vector control, the EKF algorithm introduced
an error matrix in the iterative operation process, so the pulsation of speed waveform
given by the EKF algorithm was larger than the real speed of IRFOC. Under the rated
working condition, the EKF algorithm was accurate in observing the change in the rotating
speed. Therefore, the EKF algorithm can replace the traditional speed sensor. Based on this
premise, the structure of Figure 4 was adopted in the subsequent simulation, and the speed
predicted by EKF was directly substituted into the speed closed-loop.

To verify the speed tracking performance of the algorithm, four working conditions
shown in Table 2 were selected for simulation:

Table 2. Different working conditions.

Working Condition Rotor Angular Speed Setting Load Torque Setting

1 0~4 s:100 rad/s 0~4 s:0 N·m
2 0~4 s:100 rad/s 0~4 s:6 N·m

3 0~1.5 s:60 rad/s1.5~3 s:90
rad/s3~4 s:30 rad/s 0~4 s:0 N·m

4 0~1.5 s:100 rad/s1.5~4 s:−100
rad/s 0~4 s:0 N·m
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The four working conditions in Table 2 were used to test the speed prediction perfor-
mance of the EKF algorithm under no-load, on load, acceleration and deceleration, and
forward and reverse rotation. It can be seen from Figure 7 that the EKF algorithm had a
good speed prediction performance under these four working conditions. It can be seen
from Figure 7a that, when the speed reached the given speed, there was a steady-state error
of about 0.5 rad/s between the EKF algorithm and the actual speed. It can be seen from
Figure 7b–d that, when the given speed changed suddenly or the load was added, a small
error occurred between the predicted speed and the real speed, and then the predicted
speed quickly converged to the actual speed. This showed that the overall robustness of
the system was good, and it can be applied to the conditions requiring a wide range of
speed regulation.

 
(a)  (b)  

 
(c) (d) 

Figure 7. Speed prediction under different working conditions. (a) Condition 1; (b) Condition 2;
(c) Condition 3; (d) Condition 4.

4.2. Rotor Flux Identifications

The rated field current of the motor used in this simulation was 3.86 A, so the rated
fundamental space given flux linkage can be calculated as 0.96 Wb from Equation (15). In
order to verify the flux linkage prediction ability of the EKF algorithm, the simulation was
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conducted by changing the field current to 50%, 64%, 84%, and 100% of the rated field
current under condition 1 in Table 2.

ψre f = 2.5IsmLm1 (15)

Similarly, according to formula (15), when the field current was 50%, 64%, and 84% of
the rated value, the corresponding fundamental space given flux linkage was 0.48 Wb, 0.61
Wb, and 0.81 Wb. For the third-harmonic spatial flux linkage, its given value is always 0,
so its predicted flux linkage was also about 0.

It can be seen from Figure 8 that the EKF algorithm could accurately predict the
change in rotor flux linkage in the fundamental space in a steady state. Table 3 lists the
predicted values and error values in four cases. It can be seen that the prediction error
of flux linkage accounted for about 10% of the given value. In addition, the estimated
value of the flux linkage fluctuated slightly in the steady state. This is because the rotor
position angle in the IRFOC method estimated the position of the magnetic flux relative
to the stator by integrating the slip frequency and the actual rotor angular speed. In the
simulation experiment, the predicted rotor angular velocity was used instead of the actual
rotor angular velocity. However, there was a small error between the predicted speed and
the actual speed. Therefore, the calculated rotor position angular velocity also deviated
from the reality, resulting in a small pulsation of the flux linkage in the steady state.

 
(a)  (b) 

 
(c) (d) 

Figure 8. The prediction of fundamental space rotor flux linkage. (a) 50% of rated field current;
(b) 64% of rated field current; (c) 84% of rated field current; (d) rated field current.
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Table 3. Prediction error of fundamental space rotor flux linkage.

Working Condition (Flux Linkage Amplitude) Predicted Flux Linkage Value Error Value

50% of rated field current (0.48 Wb) 0.54 Wb 0.06 Wb
64% of rated field current (0.61 Wb) 0.68 Wb 0.07 Wb
84% of rated field current (0.81 Wb) 0.89 Wb 0.08 Wb

Rated field current (0.96 Wb) 1.06 Wb 0.10 Wb

It can be seen from Figure 9 that the predicted flux linkage of the third-harmonic in
four cases was about 0, which also indicated that the third-harmonic current was effectively
suppressed when the field current was changed.

 
(a) (b)  

 
(c) (d)  

Figure 9. The prediction of third-harmonic space rotor flux linkage. (a) 50% of rated field current;
(b) 64% of rated field current; (c) 84% of rated field current; (d) rated field current.

4.3. Third-Harmonic Current Suppression Effect

Figures 10 and 11 show the stator current waveform and the stator third-harmonic
current waveform under condition 1 in Table 2. It can be seen from Figure 10 that the overall
sinusoidal degree of the stator current was good, and its FFT analysis is shown in Figure 12.
According to Figure 12, when the given speed was 100 rad/s, the corresponding stator
current frequency was 31.83 Hz, and the THD of the stator current was 8.58%, indicating
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that the third-harmonic current had been effectively suppressed. It can be seen from
Figure 10 that most of the third-harmonic currents were distributed below the amplitude of
0.6 A in the steady state.

Figure 10. Stator current.

Figure 11. Stator current (third-harmonic space).

Figure 12. FFT analysis of stator current.
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5. Conclusions

In this study, the EKF algorithm was extended to the parameter identification of the
five-phase squirrel cage induction motor, and the theoretical part was derived in detail.
On the premise of restraining the third-harmonic current of the motor, a new double EKF
structure was proposed, which simplified the state equation of the system. The simulation
results showed that the EKF algorithm was accurate in predicting the rotor angular speed,
and the algorithm was suitable for the sensorless control of the five-phase squirrel cage
induction motor, which needs a wide range of speed regulation. The EKF algorithm could
observe the rotor flux linkage, but there was an error between the predicted value and the
given value, which was about 10% of the given value. In view of the shortcomings of this
paper, the follow-up research direction could be to reduce the order of the state equation of
the whole system without the third-harmonic current suppression.
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Abstract: Based on the winding function considering the slot width and the air-gap permeability
considering the slot opening width, the main radial electromagnetic force wave expressions of the
induction motor are determined. The electromagnetic force-vibration prediction model of the in-
duction motor is established. The natural frequency and acoustic radiation model of a finite-length
cylindrical shell with two ends clamped is deduced. On this basis, an improved magnetic noise
prediction model of cage induction motor is improved, which can calculate the combined effects of
electromagnetic force on the axis and circumferential modes of the stator system. Aiming at two
different noise reduction targets, an optimization method is proposed to reduce the overall electro-
magnetic noise of the motor without sacrificing efficiency and output torque. The feasibility of the
model for electromagnetic noise prediction is verified by finite element simulation and experiments.
For a 30/26 slots five-phase induction motor, low-noise analysis and optimization schemes of the
opening width for two different targets are given. The results show that the larger slot opening
scheme can also result in less magnetic noise for the right selection, which is contrary to the common
design rule that recommends minimizing slot opening to reduce magnetic noise.

Keywords: five-phase induction motor; magnetic noise; slot optimization; electromagnetic vibration

1. Introduction

In the environment of prominent energy problems, new energy vehicles ushered in un-
precedented broad prospects. In addition to power density and fault-tolerant performance,
the +electromagnetic vibration and noise of electric vehicles, which are closely related to
NVH characteristics, are also attracting more and more attention. The same as three-phase
motors, the active noise reduction technology [1–4] of harmonic current injection into
multiphase motors can only eliminate the electromagnetic force space harmonics of order
0 and 2p. However, the stator elliptic mode is usually the mode with the most vibration
noise radiation, so this technology cannot be applied to four-pole or six-pole motors. Other
active noise suppression techniques often require more complex closed-loop control and
electromechanical equipment [5], so it is necessary to find some low-noise rules that can be
applied at the motor design stage. Rotor closing groove, increasing air gap length and rotor
chute are commonly used in low noise design methods, but the side effect is to significantly
reduce the performance of the motor.

Literature [6] mainly aimed at the tooth harmonic content of the three-phase induction
motor electromagnetic wave [7,8], i.e., the interaction of air-gap permeance harmonics and
fundamental magnetomotive force (MMF). The slot opening width of the optimization
design principles are given, but due to the different phase number, the air-gap flux density
characteristics and the electromagnetic harmonic content of the five-phase squirrel cage
induction motor (FSCIM) are also different from that of the three-phase motor. Therefore,
the electromagnetic vibration characteristics of the five-phase motor needs to be studied
separately.
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Aimed at reducing the magnetic noise of the FSCIM, an improved optimization method
of low electromagnetic noise is proposed, which does not weaken the electromagnetic
torque at the cost of changing the stator and rotor slot openings. Firstly, the five-phase
winding function is derived from the superposition of a single conductor or a single coil,
which includes the slot width. Then, combined with the stator and rotor current calculated
by the single-phase harmonic expansion circuit [9–11] and the air-gap permeance function
considering the slot openings, the radial air-gap flux density distribution is obtained.
Furthermore, an improved analytical model of electromagnetic force, vibration and noise
radiation was established to further consider the joint effect of electromagnetic force on the
axial and radial modes of the stator system, and the feasibility of the model was verified
by finite element simulation and noise measurement experiments. Next, on the basis
of [6], the qualitative analysis of the rotor slot width and noise suppression basis was
conducted. Finally, the slot opening width was optimized for the two kinds of integrated
noise optimization objectives. Taking the five-phase cage induction motor with stator and
rotor 30/26 slots as an example, the recommended schemes of low-noise slot opening
design are given.

2. Analytical Model of Electromagnetic Vibration

2.1. Electromagnetic Force Basis

The electromagnetic force of the motor mainly includes magnetostriction and Maxwell
force. Magnetostriction generally does not cause high-frequency magnetic noise [12,13], so
that the impact on noise radiation is negligible. Maxwell force is composed of radial and
tangential components, but since the radial component is usually an order of magnitude
larger than the tangential component, and the tangential component mainly causes reso-
nance in asymmetric windings and single-phase motors. In a five-phase induction motor
with normal windings, electromagnetic noise due to radial components of Maxwell stress
can be considered only [9,14]. The distribution of the exciting force in the air gap is mainly
expressed in the form of electromagnetic force waves per unit area [15–17].

PeR(t, θs) = B2
r (t, θs)/2μ0 (1)

where Br is the radial component of the air-gap flux density; μ0 is the air permeability; θs
is the mechanical angular position on the circumference. The two-dimensional Fourier
decomposition of the electromagnetic force density can be expressed as a superposition
of a series of harmonics of the frequencies fn and the m-th order in space, where m also
represents the number of pole pairs of the harmonic:

PeR(t, θs) = ∑
n

∑
m

Pn,m cos( fnt − mθs + ϕnm) (2)

where Pnm is the electromagnetic force wave amplitude.
If the rotor skew and end effect are ignored, the Maxwell stress will only cause the

modal resonance in the circumferential direction of the stator system (composed of the
stator yoke, stator teeth and stator windings). At this time, the stator system can be
equivalently regarded as a ring for modal analysis. When the frequency of the m-th space
harmonic of the electromagnetic force is equal to or similar to the natural frequency of the
m-th order circumferential mode of the stator system, the vibration will resonate and the
electromagnetic noise radiation will have a maximum value. Especially in the operating
speed range of the induction motor, this situation should be avoided. As is known, the
electromagnetic force amplitude is inversely proportional to the fourth power of the force
wave order [7,18], so for small and medium-sized motors, only force waves with m less
than 4 need to be considered.
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2.2. Current Computation

The stator and rotor phase currents, including all spatial and time harmonics, can be
calculated using the single-phase harmonic expansion circuit [19]. As shown in Figure 1,
each voltage harmonic US,n with frequency fn generated by the five-phase PWM inverter
circuit corresponds to an equivalent circuit containing the influence of v stator winding
space harmonics.

Figure 1. Harmonics expansion circuit.

According to Figure 1, the n main loop equations can be obtained as:

US,n = IS,n(RS + jXSσ,n) + ∑
v

jXμ
S,n,v Iμ

S,n,v

= ZS,n IS,n + ∑
v

Zμ
S,n,v Iμ

S,n,v
(3)

the n × v node equations are:
IS,n + IR,n,v = Iμ

S,n,v (4)

the n × v small loop equations are:

0 = IR,n,v
(

RR,v
′ + jXRσ,n,v

′)+ jXμ
S,n,v Iμ

S,n,v

= IR,n,vZR,n,v + Zμ
S,n,v Iμ

S,n,v
(5)

where RS and RR,v
′ are stator and rotor resistance, XSσ,n is the leakage reactance of stator to

n-th time harmonic, Xμ
S,n,v is the harmonic magnetizing reactance of the stator with respect

to the n-th time harmonic and v-th space harmonic [18,20] and XRσ,n,v
′ is the leakage

reactance of the rotor with respect to n-th time harmonic and v-th space harmonic. The
detailed expressions of the above circuit parameters can be calculated from [18].

Xμ
S,n,v = 2π fnLμ

S,v (6)

Lμ
S,v = Lμ

S,p

(
pKwv

vKwp

)2
(7)

where Lμ
S,v is v-th space harmonic leakage inductance, p is pole pair and Kwv is v-th wind-

ing factor.
For a certain time harmonic, the 2v + 1 Equations (3)–(5) can be combined to obtain

the following matrix:
Un = Zn · In (8)
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Un =

⎛⎝ US,n
0
0

⎞⎠, In =

⎛⎝ IS,n
Iμ
S,n

IR,n

⎞⎠, Zn =

⎛⎜⎝ZS,n Zμ
S,n 0

1 −I I
0 Dμ

S,n DR,n

⎞⎟⎠ (9)

where I is an identity matrix, 0 is a zero matrix, Zμ
S,n is the Zμ

S,n,v column vector and Dμ
S,n

and DR,n are Zμ
S,n,v and ZR,n,v diagonal matrixes, respectively. The time and space harmonic

currents of the stator and rotor can be obtained by substituting the parameters of each
motor into the matrix (9).

2.3. Analytical Calculation of Electromagnetic Force

Air-gap flux density is the basis of motor energy exchange, and the radial component
of flux density Br can be expressed as [7,9,11,21]:

Br(t, θs) =
(

f s
mm f (t, θs) + f r

mm f (t, θs)
)

Λ(t, θs) (10)

where f s
mm f and f r

mm f are stator and rotor MMF, Λ is the air-gap permeability taking the
slotted effects into account.

Λ(t, θs) = Λ0 + ∑
k1

λk1 + ∑
k2

λk2 + ∑
k1

∑
k2

λk1 λk2 (11)

The specific expressions of each part of air-gap permeability have been given in detail
in [7] and [10]. The influence of stator and rotor slots is proportional to the width of the slot
opening. λk1 and λk2 are inversely proportional to the number of magnetic conductivity
harmonics k1 and k2. Based on the known distribution of windings, the winding function of
single conductor or single coil WFs(θs) [11,22] can be used to obtain the expression of stator
winding function of each phase by using the superposition principle, as shown in Figure 2.
Then the stator/rotor MMF can be obtained by multiplying the winding function (12) by
the current obtained from Section 2.2.

WFs(θs) =

⎧⎪⎪⎨⎪⎪⎩
∞
∑

v=1

ksv

πv
sin vθs, a conductor

∞
∑

v=1

2Nc

πv
ksvkyv cos vθs, a coil

(12)

where ksv and kyv are the slotting coefficient and short distance coefficient of v pair poles
harmonics, respectively.

(a) (b)

Figure 2. Winding function relation between coil and conductor at different pitch. (a) Whole pitch
winding; (b) short pitch winding.
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By substituting (9)−(11) into (1), the Maxwell force wave generated by all magnetic
density harmonics can be determined, if only the force wave that plays a major role in
noise is considered, that is, the low order force wave Pbelt generated by the interaction
between harmonics of phase belt of stator and rotor MMF and tooth harmonics of air-gap
permeability. The characteristics of force waves are given in Table 1.

Table 1. Characteristics of phase belt force wave Pbelt.

Symbol Frequency fP Force Wave Mode m Remark

Pbelt fn[k2Z2(1 − s)/p + l] k2Z2 − 2m1pk1 + lp l = 0, ±2

By analyzing the expression of air-gap permeability, it can be seen that, regardless of
the value of l, the amplitude of the phase belt force wave of slot effect and the width of slot
opening always satisfy [6,23]:

PfP ,m ∝ PSPR ∝
sin(πk1β1)

k1

sin(πk2β2)

k2
(13)

β1 = 1 − b01

τ1
, β2 = 1 − b02

τ2
(14)

where PS and PR are the amplitude of harmonics of stator and rotor air gap permeability,
β1 and β2 are the slot opening ratio. The slot parameters are shown in Figure 3.

Figure 3. Schematic diagram of stator and rotor slots.

The slot size of the rotor and the rotor directly influence the amplitude of wave, while
the number of pole slots influences the order of wave. The frequency of force wave is
mainly influenced by the number of rotor slots Z2, pole pair p, slip rate s and power supply
frequency fn. Generally speaking, in an induction motor from starting to stable operation,
the slip ranges from 1 to less than 0.05. As the five-phase PWM power supply contains
many rich time harmonics, the frequency range of the Maxwell force wave is too wide to
cover the natural frequency of the stator system.

2.4. Natural Frequency of Stator System

The stator system is mainly composed of an iron core and windings—tooth and
housing—which can be regarded as equivalent rings, respectively. The natural frequencies
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of the core and windings (tooth) can be obtained by solving the second-order characteristic
equation of the cylindrical shell motion according to the Donnel–Mushtari theory [7,10].

It is worth noting that the vibration characteristics of the housing can be equivalent to
a closed cylindrical shell with both ends constrained [24]. As to common motors, both ends
are clamped (C). For the magnetic bearing motor, boundary conditions can be regarded as
a simply supported (SS). The axial vibration mode a will be introduced in both cases, and
the natural frequency of each (a, m) mode should be calculated.

The frequency and stiffness of the frame with end bells can be obtained, such as with
the iron core; however Ω2

a,m is redefined as the solution of the third-order characteristic
motion equation of the cylindrical shell [15]. According to the Donnel–Mushtari theory, the
characteristic motion equation is:

Ω6
a,m − C2Ω4

a,m + C1Ω2
a,m − C0 = 0 (15)

with the constants as shown below:

C2 = 1 +
1
2
(3 − ζ3)

(
m2 + λ2

)
+ κ2

(
m2 + λ2

)2
(16)

C1 =
1
2
(1 − ζ3)

⎡⎢⎣ (3 + 2ζ3)λ
2 + m2 +

(
m2 + λ2)2

+
3 − ζ3

1 − ζ3
κ2(m2 + λ2)3

⎤⎥⎦ (17)

C0 =
1
2
(1 − ζ3)

[(
1 − ζ2

3

)
λ4 + κ2

(
m2 + λ2

)4
]

(18)

for both boundary constraints:

λ =

⎧⎪⎪⎨⎪⎪⎩
aπ

R3

l3
SS

(a + 0.3)R3π

l3
C

(19)

Only the smallest real root from (15) is related to the natural frequency of vibration,
and the stiffness and natural frequency of the frame (a, m) mode are:

Ka,m,3 =
Ω2

a,mE3V3

R3
(
1 − ς2

3
) (20)

For small and medium induction motors, the manufacturing tolerance between the
outer diameter of the stator core and the inner diameter of the frame is ±0.02 to ±0.1 mm,
with the ends connected by an interference fit. There is no relative displacement between
the core, winding, teeth and housing, which can be regarded as a whole. At this time, the
stiffness and mass of the stator system can be approximately regarded as the algebraic
sum of the mass and stiffness of each part [15], so the stator system (a, m) mode natural
frequency can be expressed as:

fa,m =
1

2π

√
Ka,m

Mdz
≈ 1

2π

√
Km,1 + Km,2 + Ka,m,3

Mdz,1 + Mdz,2 + Mdz,3
(21)

ωa,m = 2π fa,m (22)

The subscripts 1, 2, and 3 represent the iron core, windings and tooth and housing,
respectively.
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2.5. Vibration Characteristics

The radial electromagnetic force wave of the motor acts on the inner surface of the
stator core. When the m-order force wave with frequency fP is close to the natural frequency
of the stator system (a, m) mode, the resonance condition is satisfied, and the surface of the
motor casing will generate a severe vibration, and its dynamic displacement amplitude can
be expressed as:

YD
P,a,m =

πDi1l1PfP ,m

Mdz(2π fa,m)
2 AP,a,m (23)

AP,a,m =
1√

[1 − ( fP/ fa,m)
2]

2
+ [2ξa,m( fP/ fa,m)]

2
(24)

where An,a,m is the dynamic amplification factor, ξa,m is the damping coefficient, l1 is the
length of the stator core and Mdz is the mass of the stator system.

2.6. Model Validation

Taking a five-phase motor as the prototype, the analytical model is verified by the
finite element method. The basic parameters of the motor are shown in Table 2, and the
slot shape is shown in Figure 3.

Table 2. Prototype parameters.

Symbol Value Symbol Value

Z1 30 b02 1 mm
Z2 26 b11 6.1 mm
p 1 b21 8.1 mm

PN 4 kw τ1 πDi1/Z1
f 1 50 Hz τ2 πD2/Z2
D1 175 mm l1 106 mm
Di1 98 mm l2 146 mm
D2 97.4 mm l3 219 mm
b01 3.2 mm - -

The main low-order modal natural frequencies of the motor stator system are calcu-
lated using the analytical model and Ansys finite element software, respectively. As shown
in Table 3 (the finite element results in parentheses), the root mean square error (RMSE) is
330.1 Hz, and the mean absolute percentage error (MAPE) was 4.38%. The results show
that the analytical model in this paper can calculate the modal characteristics well and
provide the basis for noise analysis. In order to consider the main low-order force wave
characteristics, according to the force wave characteristics of Table 1, the main low-order
force waves in the range from 2 to 10 for k1 and k2 are given in Table 4.

Table 3. Results of the natural frequency of stator system.

fa ,m Mode a RMSE MAPE

Mode m 1 2 3

330.1 4.38%

0
8671 8961 9661

(8338) (8875) (9806)

1
2481 3763 4385
(—) (—) (4554)

2
2805 3667 4880

(2403) (3410) (4939)

3
5884 6197 6697

(5432) (6252) (6954)

4
10,582 10,736 11,031

(10,151) (11,302) (—)
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Table 4. Prototype parameters.

k1 k2 fP m

5 2 fn(2Z2(1 − s)/p + 2) = 2570 Hz 2Z2 − 10m1 + 2p = 4
8 3 fn(8Z2(1 − s)/p + 2) = 3805 Hz 3Z2 − 16m1 + 2p = 0
5 2 fn(2Z2(1 − s)/p − 2) = 2325.8 Hz 2Z2 − 10m1 − 2p = 0
8 3 fn(6Z2(1 − s)/p − 2) = 3538.7 Hz 3Z2 − 16m1 − 2p = −4
10 4 fn(7Z2(1 − s)/p − 2) = 4751.6 Hz 4Z2 − 20m1 − 2p = 2
5 2 fn(2Z2(1 − s)/p) = 2425.8 Hz 2Z2 − 10m1 = 2
8 3 fn(3Z2(1 − s)/p) = 3638.7 Hz 3Z2 − 16m1 = −2
10 4 fn(4Z2(1 − s)/p) = 4851.6 Hz 4Z2 − 20m1 = 4

3. Magnetic Noise Radiation Calculation

3.1. Noise Radiation Model

For the reason that the motor noise is generally measured in the near field, the acoustic
radiator cannot be treated as an infinite cylindrical model. Therefore, the sound power
resulted from (fn, m) order force wave acting on (a, m) mode can be expressed as:

Wm(n, a, m) = 0.5ρ0c0v2
a,mScσI(n, a, m) (25)

where Sc is the surface area of the housing and σI is the relative acoustic emissivity depend-
ing on the mode (a, m) and the ratio of the length to the width of the housing.

For an infinitely long cylindrical shell, σI can be simplified as [15]:

σI( fn, m) =
2

πk0R3

∣∣∣dH(2)
m (k0R3)/d(k0R3)

∣∣∣2 (26)

where H(2)
vm is the second kind of Hankel equation of m-th order and k0 is the acoustic

wave number.
For different boundary conditions at both ends, the relative acoustic emissivity can be

obtained by substituting the axial wave number kz0 into the sound-wave radiation equation:

σI(n, a, m) =

k0∫
−k0

2k0|Γa(kz)|2dkz

π2R3l3
∣∣∣dH(2)

m (krR3)/d(krR3)
∣∣∣2 (27)

|Γvn(kz)|2 =

k2
z0

[
1 +

k2
z

k2
z0

− 2kz

kz0
sin(kzl3 − vnπ)

]
(
k2

z − k2
z0
)2 (28)

kz0 =
(2vn + 1)π

2l3
(29)

where z is the axial coordinate; kr and kz are the radial and axial components of the acoustic
wavenumber; and k2

0 = k2
r + k2

z [15].
Then the numerical solution of the analytical model can be obtained via Matlab, so as

to further predict the sound power level of magnetic noise:

LW(n, a, m) = 10 log10(Wm(n, a, m)/W0) (30)

LWA(n, a, m) = 10 log10(∑
n

100.1(Lw(n,a,m)+ΔLA(n))) (31)

where W0 = 10−12 W is the reference sound power and �LA(n) is a frequency (fn)-dependent
A-weighting factor [7,15,25].
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3.2. Noise Prediction Verification Experiment

For the motors shown in Table 2, the five-phase SPWM control circuit is used to supply
power to the motors to conduct actual noise measurement experiments. There are three
vibration acceleration sensors at the top, side and bottom on the surface of the casing, and
three sound pressure sensors are set at the top, axial and side 1.5 times the axial length of
the motor. The overall layout of the specific test platform is shown in the Figure 4 is shown.

Figure 4. Five-phase motor vibration and noise measurement platform.

In terms of Figure 5, it can be found that the change trend of the vibration acceleration
at the top and bottom of the casing is consistent, while the change trend at the side is just
the opposite, which reveals that the electromagnetic force mainly excites the resonance
of the 2-nd mode of the stator system. The Fourier spectrum analysis of the vibration
acceleration and noise results under steady state conditions are given in Figure 6. It is
found that the vibration frequency is mainly concentrated around 5000 Hz, which just
corresponds to (m = 2, a = 3) the natural frequency of the modal. It is obviously consistent
with the judgment of the macroscopic result in Figure 6. In addition, the high frequency
belt in the noise spectrum is consistent with the vibration spectrum, but many components
that do not exist in the vibration spectrum appear in the low frequency band, which is
probably caused by the mechanical noise of the rotating shaft and the power switching.

(a) (b)

Figure 5. Vibration and noise transient measurement results. (a) Vibration acceleration in three
directions at the top, bottom and sides of the enclosure; (b) Sound pressure in three directions: top,
axial and side.
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(a) (b)

Figure 6. Comparison of vibration and noise spectrum in steady state. (a) Vibration acceleration
spectrum; (b) sound pressure spectrum.

4. Low Noise Slot Opening Design

4.1. Low Noise Fundamental Analysis

According to Table 1, there are two main methods to reduce electromagnetic vibration
noise in the design stage. One is to choose the pole-slot combination to avoid resonance
between the electromagnetic force of (fp, m) and motor structure of (fa,m, m); the second is to
reduce the amplitude of the electromagnetic force wave by correctly selecting the slotting
strategy of the stator and the rotor, thereby reducing the electromagnetic vibration noise.
In this paper, based on the given pole-slot match, the electromagnetic vibration noise can
be reduced by changing the width of the slot opening without the reduction of output
performance.

According to (13), when k1β1 or k2β2 is an integer, the electromagnetic force of
m = k2Z2 − 2m1pk1 + lp will decrease to 0. Therefore, the amplitude of electromagnetic force
of a certain order can be further expressed as [6]:

k1β1 = Z01, k2β2 = Z02 (32)

b01
∗ = τ1

(
1 − Z01

k1

)
, Z01 ∈ [1, k1 − 1] (33)

b02
∗ = τ2

(
1 − Z02

k2

)
, Z02 ∈ [1, k2 − 1] (34)

where Z01 and Z02 are integers and the superscript * represents the slot width value of
exactly weakening force wave.

If k1 or k2 is equal to 1, then the width of the rotor slot opening cannot weaken any
force wave. Therefore, to weaken the electromagnetic force amplitude through the width of
the slot opening, k1 and k2 should be integers greater than 2. Substituting the value range
of Z01 and Z02 into (33) and (34), the slot width optimization range for the electromagnetic
force of order m = k2Z2 − 2m1pk1 + lp can be obtained:

b01
∗ ∈

[
τ1

k1
, τ1

(
1 − 1

k1

)]
(35)

b02
∗ ∈

[
τ2

k2
, τ2

(
1 − 1

k2

)]
(36)

The optimal design of motor is a nonlinear, multi-physical field coupling and anisotropic
problem, so focusing on the weakening of one order of force wave is likely to lead to the
increase of the amplitude of other order of force wave. In addition, the five-phase motor is
mainly controlled by PWM frequency conversion. In the process from start-up to stable
operation, the power supply voltage contains abundant time harmonics, so the radial
electromagnetic force wave and the stator mode are likely to resonance. To sum up, the
optimal slot opening width is not necessarily the value that makes a certain order of force
wave 0 in (33) and (34) but may be a value within the continuous range of (35) and (36).
Therefore, two noise optimization objectives are set in this paper:
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(1) The minimum total sound power level of each frequency on rated condition:

min(∑
m

LWA( fm)) (37)

(2) The sound power amplitude of the maximum noise generated during the start-up
is the smallest:

min(max(LWA( fm))) (38)

4.2. Slot Opening Width Schemes

For the optimization of the slot opening width, the optimal slot opening scheme with
overall electromagnetic noise can be obtained by combining the above two optimization
objectives in the range of fixed and rotor slot opening width determined by (35) and (36).
In this paper, the test motor shown in Table 2 is taken as the object. In order to consider the
influence of as many low-order force waves as possible, the vibration and noise prediction
is made for the width of slot opening under all conditions from k1 and k2 from 2 to 10, and
the following assumptions are made:

(1) The slip ratio changes linearly, ranging from 1 to 0.05.
(2) In each case, five-phase sequential currents of the same amplitude are passed through

the stator windings.
(3) The pole-slot numbers are given, and the range of b01 and b02 are shown in Table 5.
(4) Without the consideration of saturation, the air-gap permeability does not contain

harmonic content caused by saturation.

Table 5. Value range of stator and rotor slots opening width.

Symbol Max Min Step

b01 Max (1 − τ1/Max(k1), b11) τ1/Max(k1) 0.01 mm
b02 Max (1 − τ1/Max(k2), b21) τ2/Max(k2) 0.01 mm

For the test motor shown in Table 2, the control variable method was used to calculate
the curve of electromagnetic noise by taking the width of the stator and rotor slot opening
as independent variables. From Figure 7, we can see that for a certain mode, changing
the width of the slot opening can indeed weaken the vibration noise. Furthermore, slot
opening width is significantly different for noise suppression sensitivity during start-up
and steady-state. That is because, in addition to the amplitude of the electromagnetic force,
the vibration noise is also affected by the natural frequency of the stator. In terms of the
magnetic noise, the influence of the slot opening width shows a discrete and non-monotonic
trend. Actually, it is closer to sinusoidal and there are periodic changes in the sensitivity
with a large span, especially in the target (38). It is worth noting that the jitter in the
waveform is caused by the same m from different k01, k02, because the curve reflects the
total sensitivity of b01 to all k01, k02 combinations, which result in not strictly sine.

It can be seen from the above that the amplitude, phase and period of the sensitivity
curve of the slot opening width vary significantly with modes. So, it is reasonable to think
that the slot width with the smallest overall magnetic noise is not necessarily the smallest.
The top four quietest slot opening schemes of targets (37) and (38) for the test motor are
given in Figure 8, which are different from conventional knowledge. Considering the
engineering practice, b01 and b02 are set smaller than b11 and b21.
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(a) (b)

Figure 7. Curve of sound power level with b02 varying from 0.1τ2 to 0.9τ2. (a) Sound power level
radiated by b02 associated with main mode for target (37); (b) Sound power level radiated by b02

associated with main mode for target (38).

(a) (b)

Figure 8. Top four quietest slot opening schemes. (a) For target (37); (b) for target (38).

By analyzing the noise prediction results of all schemes, the quietest scheme of the
rotor slot opening is screened for the two different optimization objectives in Section 4.1.
As expected, the main quiet slot opening schemes are not the smallest, and b02 shows a
non-monotonic and discrete trend with the change of b01. Furthermore, with the increase of
b01, the optimal solution of b02 gradually tends to be stable. Due to space limitations, only
some quiet slot opening schemes are shown in Table 6.

Table 6. Main quiet slots opening width schemes (unit: mm).

b01 b02 of (37) b02 of (38)

0.1τ1 0.236τ2, 0.117τ2, 0.168τ2, 0.1τ2 0.211τ2, 0.414τ2, 0.576τ2, 0.219τ2
0.139τ1 0.236τ2, 0.117τ2, 0.168τ2, 0.1τ2 0.211τ2, 0.414τ2, 0.219τ2, 0.194τ2
0.178τ1 0.117τ2, 0.236τ2, 0.168τ2, 0.1τ2 0.211τ2, 0.414τ2, 0.194τ2, 0.185τ2
0.217τ1 0.117τ2, 0.185τ2, 0.236τ2, 0.134τ2 0.406τ2, 0.194τ2, 0.593τ2, 0.185τ2
0.256τ1 0.117τ2, 0.185τ2, 0.134τ2, 0.126τ2 0.406τ2, 0.194τ2, 0.593τ2, 0.185τ2
0.295τ1 0.117τ2, 0.134τ2, 0.185τ2, 0.126τ2 0.406τ2, 0.194τ2, 0.593τ2, 0.185τ2
0.334τ1 0.117τ2, 0.134τ2, 0.185τ2, 0.126τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
0.373τ1 0.117τ2, 0.134τ2, 0.185τ2, 0.126τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
0.412τ1 0.117τ2, 0.126τ2, 0.134τ2, 0.143τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
0.451τ1 0.117τ2, 0.126τ2, 0.134τ2, 0.143τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
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Table 6. Cont.

b01 b02 of (37) b02 of (38)

0.49τ1 0.117τ2, 0.126τ2, 0.134τ2, 0.143τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
0.529τ1 0.117τ2, 0.126τ2, 0.134τ2, 0.143τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2
0.568τ1 0.117τ2, 0.126τ2, 0.134τ2, 0.143τ2 0.406τ2, 0.593τ2, 0.194τ2, 0.185τ2

5. Conclusions

The analytical relationship between the electromagnetic–vibration–noise characteris-
tics of the five-phase cage induction motor and stator/rotor slot opening widths is demon-
strated and validated. Based on this, a method for magnetic noise reduction is improved,
including the overall harmonics, to optimize the stator/rotor slot opening widths. This
method can be applied to the design stage of a low-noise induction machine without the
expense of increasing the slot leakage inductance or sacrificing the output performance.

In this paper, the optimization database of slot opening widths is given for a 30/26 slot
five-phase induction motor prototype. The results show that the quietest scheme is not
always the smallest slot opening, regardless of aims towards noise reduction during start-
up or the steady state operation, which is different from common design rules. Because of
the periodic sensitivity curve, a wider slot opening can inversely reduce the overall sound
power level even more. In terms of the future work, the pole-slot scheme and slot opening
width can be considered together to carry out multi-dimensional noise reduction research.
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Abstract: With the rapid development of new power systems, various new power devices have
also been developed. It is very important to establish analytical models of new power devices to
ensure or even improve the reliability and stability of the power system. A linear phase-shifting
transformer (LPST) is a new type of power device that mainly relies on air gaps to transfer energy, so
establishing an accurate air-gap magnetic field model is very important for improving the efficiency
of this system. In this paper, an analytical model of an unequal-pitch linear phase-shifting transformer
(UP-LPST) was established by combining the distributed magnetic circuit method (DMCM) and
Schwartz–Christopher transformation (SCT). Taking the magnetic field strength as a variable, an
accurate magnetic field analysis model for a UP-LPST considering saturation, cogging, and edge
was established. Taking a 1 kw UP-LPST as a prototype, the accuracy of the model was verified by
the finite element method and experiments. This modeling method could also be used to establish
magnetic field models of other similar structures in new energy power systems, especially those with
cogging structures.

Keywords: linear phase-shifting transformer (LPST); distributed magnetic circuit method (DMCM);
cogging effect; Schwarz–Christoffel transformation (SCT); magnetic field

1. Introduction

The operation of a new energy power system must have a high level of reliability.
However, ensuring the stable operation of any line component of a power system is
complex. Its stability and reliability are determined by different characteristic parameters
of the system. The main influencing factors include different impedances of parallel lines in
the system, the power factor, changes in the input power, and changes in the load [1–3]. A
variety of electrical devices have been developed, with the phase-shifting transformer being
one of the most important technologies. This device can control the current distribution
between the branches of a parallel power system through the adjustment of the phase angle.
At the same time, it can solve the overload problem caused by the unbalanced impedance
of parallel transmission lines and improve the stability and efficiency of the power system,
so it has received extensive attention from scholars at home and abroad [4–6].

As a new type of phase-shifting transformer, the linear phase-shifting transformer
(LPST) has many advantages. Compared with the traditional phase-shifting transformer,
its core structure is simple, the air gap adjustment is easy, the phase-shifting angle is wide,
and the volume is small [7–9]. At the same time, it can effectively eliminate low-order
harmonics, improve the quality of output waveforms, and reduce power grid harmonic
pollution [10]. The LPST is a power device that mainly relies on air gaps to transfer energy,
and there are several rectangular slots on the primary and secondary sides of the LPST to
hold winding coils. This slotted structure produces a degree of cogging, which results in a
significant increase in the tooth harmonic amplitude and distorts the air-gap magnetic field.
More seriously, it reduces the quality of the output waveform and increases the energy
loss [11], thereby reducing the stability and efficiency of the power system. Furthermore,
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because of the linear structure of an LPST, its core is not continuous. Therefore, the end
effect is also an important factor affecting the output of the system, and it is particularly
important to establish an accurate LPST magnetic field analysis model.

Due to the particularity of the LPST’s structure, traditional modeling methods are
not fully applicable. Therefore, we referred to the modeling method of linear motors
to conduct our research. At present, the most common research methods include the
direct method and the indirect method. In the direct method [12–14], the whole magnetic
field is divided into the slot, the air gap, and the other subdomains using the method of
partition modeling, and the expressions for each part of the magnetic field are obtained
by solving the Laplace equation. The indirect method [15–17] involves multiplying the
slotless air-gap magnetic field model by the air-gap’s specific permeability to obtain the
analytical formula of the cogging air-gap magnetic field. In [18], a combination of a linear
and a sinusoidal air-gap ratio permeability function was used to represent the air-gap ratio
permeability in a single slot to consider the influence of motor stator slotting. The authors
of [19] determined the actual air-gap flux distribution on permanent magnets through the
superimposed relative permeability algorithm. In [20], the air-gap permeability function
on the surface of a smooth rotor was obtained using the mirror image method, which
considered the interaction of slots. The authors of [21] designed a new air-gap relative
permeability formula by applying an offset at the outer diameter of the rotor. In [22], the
distribution of the air-gap magnetic field at the edge of a linear rotating permanent-magnet
synchronous motor was calculated, and the relative permeability function of the air gap
was solved using SCT. In [23], an analytical model of a fractional-slot linear phase-shifting
transformer was established by the precise subdomain method. The model considered
the influence of magnetic permeability, structural parameters, and the interaction between
tooth slots on the magnetic field distribution. However, the analytical formula was too
complicated and could not consider the influence of saturation.

In this paper, the slotless magnetic field and saturation were determined by the
DMCM [24–27]. Taking a single slot on the primary side as an example, the single slot area
was selected as the smallest unit. The irregular magnetic field was mapped into a regular
magnetic field pattern by SCT. The air-gap relative permeance in the whole length range
of the linear phase-shifting transformer was calculated by the above procedure. Then, the
edge end was taken as an independent analytical model, and the distribution function
of the air-gap relative permeance at the edge end was obtained. Based on the analytical
model, the UP-LPST was taken as an example to analyze the effect of the slot on the air-gap
magnetic field. At the same time, a UP-LPST with different slot spacing ratios was modeled
and analyzed. The accuracy of the proposed model was verified by a comparison of the
results obtained by the FEM and those obtained through experiments.

2. Analytical Model of Slotless Magnetic Field

The structure of a UP-LPST is basically the same as that of a linear motor. A diagram
of its main structure is shown in Figure 1. The difference is that the length of the core on the
primary and secondary sides of the UP-LPST is the same, and its core is symmetric about
the air gap. Four groups of three-phase windings are distributed longitudinally along the
core on the primary side, and one group of three-phase windings on the secondary side. In
contrast to conventional phase-shifting transformers, the energy conversion of a UP-LPST
is mainly realized by an air-gap traveling-wave magnetic field. When the primary winding
of the UP-LPST is energized, a linear traveling-wave magnetic field can be generated in the
core, and then a three-phase electromotive force is induced in the secondary side.
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Figure 1. Schematic diagram of UP-LPST structure.

The UP-LPST studied in this paper comprised a pair of poles, as shown in Figure 1.
The primary side was composed of four groups of three-phase bridge inverter circuits with
a twelve-phase input (a1-x1, a2-x2, . . . , c3-z3, c4-z4), and the windings were distributed
with full pitch. The secondary side comprised a three-phase output (A1-X1-A2-X2-A3-
X3-A4-X4, . . . ), and the windings were distributed in a combination of long-distance
winding and short-distance winding. This winding distribution could effectively improve
the three-phase asymmetry caused by the discontinuity of the core. The core structures of
the primary and secondary sides were completely consistent and symmetric with respect
to the air gap.

Firstly, in order to obtain the magnetic field without grooves, the following basic
assumptions were made [26]:

1. The primary and secondary side end flux leakage is ignored.
2. The flux lines in the virtual teeth are all arranged in the longitudinal direction, and

the flux lines in the yokes are all arranged in the normal direction.
3. The size of the primary- and secondary-side virtual teeth is the same.
4. The interaction of adjacent slots (virtual slots) is ignored.

The overall model was divided into five regions along the longitudinal direction for
magnetic circuit calculation, as shown in Figure 2, where I is the air-gap region; II and III
are the primary-side virtual teeth and the yoke region, respectively; and IV and V are the
secondary-side virtual teeth and the yoke region, respectively.

Figure 2. Schematic diagram of the block model of the UP-LPST.

For the loop shown in Figure 2:

F∑(m) = Fδ_n(m + 1) + Fj2_l(m) + Ft1_n(m + 1) + Ft2_n(m + 1)− Fδ_n(m)− Fj1_l(m)− Ft1_n(m)− Ft2_n(m) (1)

where Fδ_n (m) and Fδ_n (m + 1) are the air-gap normal magnetic pressure drops at node m
and node m + 1, respectively; Fj1_l (m) and Fj2_l (m) are the longitudinal magnetic pressure
drops of the yoke at the core node m on the primary and secondary sides, respectively; and
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Ft1_n (m), Ft1_n (m + 1), Ft2_n (m), and Ft2_n (m + 1) are the normal magnetic pressure drops
of the virtual teeth at the core node m and node m + 1 on the primary and secondary sides,
respectively. The positive direction of the coordinate axis is the positive direction of the
magnetic pressure drop of each section.

Because the primary and secondary sides of the straight-line phase-shifting trans-
former were symmetric about the center line of the air gap, the model could be simplified
to a one-sided model, as shown in Figure 3 [27].

Figure 3. Diagram of the simplified model.

The total magnetic pressure drop of the circuit could be simplified as:

F∑(m) = Fδ_n(m + 1) + Ft1_n(m + 1)− Fδ_n(m)− Fj1_l(m)− Ft1_n(m) (2)

Each MMF could be expressed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Fδ_n(m) = Hδ_n(m)δ =
Bδ0_slotless_n(m)

μ0
δ

Ft1_n(m) = Ht1_n(m)ht1 =
Bt1_n(m)
μt1(m)

ht1

Fj1_l(m) =
Hj1_l(m)+Hj1_l(m+1)

2 dx = dx
2

[ Bj1_l(m+1)
μj1(m+1) +

Bj1_l(m)

μj1(m)

] (3)

where Hδ_n is the magnetic field intensity in the normal direction of the air gap; Bt1_n and
Ht1_n denote the flux density and magnetic field intensity in the normal direction of the
primary-side virtual teeth, respectively; Bj1_l and Hj1_l denote the flux density and magnetic
field intensity in the longitudinal direction of the primary yoke, respectively; δ is the length
of the air gap; ht1 is the virtual tooth height of the primary core; μ0 is the air permeability;
and μj1 denotes the permeability of each node of the primary yoke.

When the tooth is not saturated, the main flux within a pitch can be considered to pass
entirely through the tooth. At this point, the tooth magnetic flux densities at node m are
as follows:

Bt0_n(m) =
Bδ0_slotless_n(m)Ht1

KFeLbt
(4)

where H and L are the height and length of the core of the UP-LPST, respectively; bt is the
tooth width of the UP-LPST; t1 is the tooth pitch; and KFe is the superposition coefficient of
the core.

However, when the teeth are saturated, most of the main flux passes through the teeth,
and the rest enters the yoke through the slot. At this time, the actual magnetic flux in the
tooth becomes smaller, so it was necessary to revise (5) as follows:

Bt_n(m) = B′
t_n(m)− μ0Ht_n(m)kδ (5)

where B′
t_n (m) is the normal apparent magnetic flux density of the tooth at node m, repre-

senting the magnetic flux density when all the flux enters the tooth; Bt_n (m) is the actual
normal magnetic flux density of the tooth at node m; Ht_n (m) is the actual normal magnetic
field intensity of the tooth at node m; and kδ is the slot coefficient, kδ = (H·bs)/(KFe·L·bt).
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According to the continuity of magnetic flux, the longitudinal magnetic flux density
of the yoke at node m is equal to the total normal magnetic flux density of the air gap from
node 1 to node m. The magnetic flux density of the yoke was calculated as follows:

Bj1_l(x) =
φj(x)

KFehj1D
=

L
KFehj1D

∫ 0

x
B(x)dx (6)

where D is the thickness of the UP-LPST.
Therefore, the magnetic flux density of the yoke of the primary core could be repre-

sented as follows:

Bj1_l(m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 m = 1

Ldx
m−1
∑

k=1

Bδ0_slotless_n(k)+Bδ0_slotless_n(k+1)
2

KFehj1D m = [2, N]

(7)

Meanwhile, it could be shown that the total air-gap flux in the whole length range of
the UP-LPST is 0:

φg(N) = Ldx
N

∑
k=1

Bδ_n(k) + Bδ_n(k + 1)
2

= 0 (8)

For the UP-LPST, the harmonic frequency of the fundamental wave current is 24k ± 1,
so the lowest is the 23rd harmonic. Due to the high harmonic order, only the fundamental
MMF was considered to simplify the calculation. Thus, the MMF of each air-gap node was
calculated as:

F(m) =
τ

π
J1 cos

[
ωt − τ

π
x(m) +

π

2

]
(9)

where ⎧⎨⎩ J1 = 12
√

2N1kw1 I1
pτ

x(m) = (m − 1)dx
(10)

In this equation, N1 is the number of turns on the primary side, I1 is the primary
measured current, kw1 is the winding coefficient, p is the polar logarithm, τ is the polar
distance, and dx is the length of each block after segmentation. The normal magnetic flux
density of the air gap at node m was calculated as follows:

Bδ0_slotless_n(m) =
F(m)μ0

δKs
(11)

where Ks is the preset saturation coefficient and μ0 is the vacuum permeability.
Finally, we judged whether the iteration precision value was satisfied:

N

∑
m=1

[
F(m)− F∑(m)

F(m)

]2

< ε (12)

When the actual error was greater than the accuracy requirement, the air-gap flux
density was corrected as follows [26]:

Bδ0_slotless_n(m) = Bδ0_slotless_n(m)

[
1 + ks

F(m)− F∑(m)

F(m)

]
(13)

where ks is the iterative coefficient.
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The iteration flow chart is shown in Figure 4. Firstly, select the DC bus voltage and
calculate the effective value of the primary current. Then, calculate the initial air-gap flux
density Bδ0_slotless_n (m) according to Equation (11). Calculate the magnetic density Bj1_l (m)
and Bt1_n (m) of each node of the primary yoke and teeth according to Equations (6) and (8).
Determine the magnetic permeability μj1(m) and μt1(m) of each node of the primary yoke
and teeth using the B-H curve. Finally, carry out the iterative calculation until the judgment
conditions are satisfied.

Figure 4. The iterative flowchart of the UP-LPST based on the DMCM.

By extending the DMCM to the LPST, the magnetic field distribution of the air gap
and iron core yoke could be obtained. This paper only describes the air gap in detail. The
final result is shown in Figure 5:
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Figure 5. The slotless air-gap magnetic field within the length range of the UP-LPST.

3. Air-Gap Relative Permeance Based on SCT

3.1. Cogging Effect

According to [20], when the ratio of teeth width to air-gap length is greater than 2.44,
the influence between adjacent slots can be ignored. However, the ratio of teeth width
to air-gap length of the model used in this paper was much higher than 2.44. In order to
facilitate the analysis, a single-slot model was adopted in this paper. Firstly, the following
assumptions were made [20]:

1. The primary side is slotted, and the secondary side is a smooth plane.
2. The magnetic conductivity of the core on the primary and secondary sides is infinite.
3. Both the primary and secondary sides of the iron core are planes with equal magnetic

potential, one of which is 0 and the other ϕ0.

When the slot depth of the UP-LPST had been determined, the polygon of the z plane
could be obtained, as shown in Figure 6a.

   
(a) (b) (c) 

Figure 6. SCT analysis diagram of UP-LPST cogging effect. (a) z plane; (b) w plane; (c) t plane.

The relationship between the z plane and the w plane could be obtained from Table 1. below:

z = S
∫ √

w2 − a2
√

w2 − 1(w2 − b2)
dw + K = S′

∫ √
1 − w2

a2√
1 − w2(1 − w2

b2 )
dw + K (14)

where
S′ = −S

a
b2
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Table 1. SCT table of z plane and w plane of finite slot depth model.

z Plane
θ *

w Plane

Point Coordinate Point Coordinate

z1 −bs/2 + j(h + δ) π/2 w1 −1
z2 −bs/2 + jδ 3π/2 w2 −a

z3
−∞ + j0

0 w3 −b−∞ + jδ

z4
+∞ + j0

0 w4 b+∞ + jδ
z5 bs/2 + jδ 3π/2 w5 a
z6 bs/2 + j(h + δ) π/2 w1 1

* The interior angle of a polygon.

Introducing the Jacobian elliptic function, let w be the inverse function of the interme-
diate variable k, as follows:⎧⎨⎩ w = snk

dw = cnk · dnk · dk = cnk
√

1 − sn2k
a2 dk (15)

Then (14) can be expressed as:

z = S′
∫ k

0

(1 − sn2k
a2 )

(1 − sn2k
b2 )

dk = S′
∫ k

0

[
1 + (

1
b2 − 1

a2 )
sn2k

(1 − sn2k
b2 )

]
dk (16)

The transformation between the z–w plane is:

z =
2δ

π

[
snαdnα

cnα
sn−1w − Π(k, α)

]
(17)

where snα, cnα, and dnα are Jacobian elliptic functions; Π (k, α) is the elliptic integral of
the third kind; and δ is the air-gap length. Through the corresponding relation of the z–w
plane, the relation between a, α, bs, and δ could be obtained as follows:⎧⎪⎪⎨⎪⎪⎩

bs
δ − 4K( 1

a2 )

π

[
snα·dnα

cnα − Z(α)
]
= 0

h
δ − 2K′( 1

a2 )

π

[
snα·dnα

cnα − Z(α)
]
− α

K( 1
a2 )

= 0
(18)

where K(1/a2) is the elliptic integral of the first kind; K′(1/a2) is the elliptic integral of
the first kind of complementary modules; and Z(α) is the Jacobian zeta function. The
abovementioned expressions are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Π(k, α) =
∫ sin φ

0
dt

(1−kt2)
√

(1−k2t2)(1−t2)

K( 1
a2 ) = F(1, 1

a )

E(x, 1
a ) =

∫ x
0

√
1− t2

a2

(1−t2)
dt

⎧⎪⎪⎨⎪⎪⎩
Z(α) = E(α)− E( 1

a )

K( 1
a )

K(α)

F(x, 1
a ) =

∫ x
0

dt
(1−t2)(1− t2

a2 )

(19)

where F(x,1/a), E(x,1/a), and E(1/a2) are the incomplete elliptic integral of the first kind,
incomplete elliptic integral of the second kind, and complete elliptic integral of the second
kind, respectively.
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After logarithmic transformation, the corresponding relation of the t-w plane was
written as:

t =
ϕ0

π
[In(w − b)− In(w + b)] =

ϕ0

π
In
(

w − b
w + b

)
(20)

When the slot depth had been determined, the magnetic field density distribution of
the air gap and slot in the UP-LPST was calculated as:

Bδ_slot = μ0

∣∣∣∣ dt
dw

· dw
dz

∣∣∣∣ = μ0 ϕ0

δ

∣∣∣∣∣∣ cnα

bsnα · dnα

√√√√1 − w2

1 − w2

a2

∣∣∣∣∣∣ (21)

λYB_cogging_n =
Bδ_slot_n

Bδ_slotless_n
(22)

3.2. End Effect

Because the core of the UP-LPST is not continuous, the end effect as its inherent
property also needed to be analyzed. The specific SCT analysis model is shown in Figure 7.

   
(a) (b) (c) 

Figure 7. SCT analysis diagram of UP-LPST end effect. (a) z plane; (b) w plane; (c) t plane.

The relationship between the z plane and the w plane could be obtained from Table 2 below:

Table 2. SCT table of z plane and the w plane at the primary-side end.

z Plane
θ *

w Plane

Point Coordinate Point Coordinate

z1 jδ 3π/2 w1 −1

z2
−∞ + j0

0 w2 0−∞ + jδ

z3
+∞

0 w3 ±∞
+jδ

* The interior angle of a polygon.

Similarly, the relationship of side z–w–t is:

z =
δ

π
(2
√

w + 1 + In
√

w + 1 − 1√
w + 1 + 1

) (23)

t = ϕ0 − ϕ0

π
In w (24)
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After considering the end effect, the magnetic flux density on the primary core was
determined to be:

Bend = μ0H = μ0

∣∣∣∣ dt
dw

· dw
dz

∣∣∣∣ = μ0 ϕ0

δ
√

w + 1
(25)

The magnetic flux density reached its maximum at point z2 in the z plane:

Bmax =
μ0 ϕ0

δ
(26)

With Bmax as the base value, the magnetic field density at any point is as follows:

Bend
Bmax

=

∣∣∣∣ 1√
w + 1

∣∣∣∣ (27)

By inserting certain w values, the magnetic field density distribution curve could be
drawn as shown in Figure 8.

 
Figure 8. Distribution of air-gap magnetic field density at the UP-LPST end.

The relative permeability distribution function of the primary side considering the
end effect could be obtained by fitting the curve in Figure 8.

λ′
YB_end(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e

1
2δ (x+ L

2 ) x < − L
2

1 − L
2 < x < L

2

e
1
2δ (x− L

2 ) L
2 < x

(28)

The relative permeability of the air gap obtained when the secondary side was slotted
separately was similar to that of the primary side, because the core structures of the primary
and secondary sides of the UP-LPST are exactly the same. According to the above analysis,
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the air-gap magnetic field density B(x) of the UP-LPST along the length direction could be
calculated as follows:

B(x) = Bδ_slotless_n(x) · λYB_cogging_n · λYB_end · λFB_cogging_n · λFB_end (29)

4. Results

4.1. Analytical Results

In this paper, an unequal-pitch linear phase-shifting transformer was taken as an
example. The specific parameters are shown in Table 3.

Table 3. Parameters of the UP-LPST.

Symbol Value Meaning

h 24 mm Depth of the slot
bs 12 mm Width of the slot
t1 18 mm Tooth pitch
δ 0.3 mm Air-gap length
L 216 mm Longitudinal length of core
D 100 mm Normal width of core
τ 105 mm Pole pitch

Based on the equations presented in Section 2, the air-gap relative permeance at
different normal positions within a range of tooth pitch could be obtained. In order to
analyze the variation trend of the air-gap relative permeance λ in a single slot, four different
positions were selected: the center line of the air gap (y = 0 mm), the outer surface of the
primary side (y = δ/2 mm), the center of the primary-side slot (y = δ/2 + h/3 mm), and
the bottom of the primary-side slot (y = δ/2 + hmm). Figure 9 shows that the air-gap
permeability distribution was different for different air-gap radii. The closer to the opening
surface of the slot, the greater the influence of the opening slot on the air-gap magnetic
field, that is, the deeper the pit.

 

Figure 9. Air-gap relative permeance at different positions in a single slot.

114



Processes 2022, 10, 1596

The air-gap relative permeance in a single slot was decomposed by Fourier trans-
formation with the tooth pitch as the period. In this way, the air-gap relative permeance
across the whole length range of the UP-LPST could be obtained, as shown in Figure 10a.
Figure 10b shows that the magnetic field density distribution at the center of the air gap
considering the effects of cogging and end could be obtained by multiplying the calculated
air gap relative permeability by the slotless magnetic field. The air-gap magnetic field was
not highly sinusoidal when considering the effect of slot and end and was not affected by
slot openings that were opposite teeth. However, when the slots were opposite each other,
the air-gap magnetic field was affected by the interaction of the iron cores on both sides,
presenting a concave shape. At the same time, due to the influence of “out and in”, the
magnetic flux density distribution at both ends was different.

 
(a) (b) 

Figure 10. Distribution of air-gap relative permeance and flux density within the length range of the
UP-LPST. (a) Air-gap relative permeance; (b) distribution of air-gap flux density under the influence
of cogging and end.

Figure 11 presents the schematic diagram of harmonic amplitude and flux density
distribution under different slot spacing ratios. The main harmonic amplitudes could be
obtained by the Fourier decomposition of the air-gap magnetic fields with different slot
spacing ratios. When the slot opening increased, the harmonic amplitude of the basic teeth
increased significantly, which reduced the performance of the straight-line phase-shifting
transformer. In Figure 11b, the lengths of the slot openings are 10 mm, 11 mm, 12 mm, and
13 mm. The minimum flux density was located in the middle of the slot opening, while the
maximum flux density was located in the tooth, and the large slot opening had a greater
impact on the flux density.

4.2. FEM Verification

To verify the correctness of the analytical results, an FEM model of the UP-LPST was
constructed according to Table 1, as shown in Figure 12. A 100V DC voltage was applied
to the FEM model, and the magnetic field distribution data at the center line of the air
gap were extracted and compared with the analytical results. The comparison results are
shown in Figure 13. The results showed that the overall distribution fitted well, but the
details were slightly different. The errors were mainly focused on the top and edge of the
sawtooth wave. This was because the magnetic field lines at the teeth and air gap were
assumed to have only normal components. However, near the opening of the slot, the
effect of magnetic focusing on the air-gap magnetic field was great, which was one of the
reasons for the error. At the same time, this method did not consider the magnetic flux
leakage effect of the UP-LPST, so there was a 2% error between the analytical results and
the FEM results.
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(a) (b) 

Figure 11. Distribution of harmonic amplitude and magnetic field density at different slot spacing
ratios. (a) Harmonic amplitude value; (b) single-slot flux density distribution.

 

Figure 12. The 2D FEM simulation model.

Figure 13. The air-gap flux density distribution of the UP-LPST.
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Compared with the exact subdomain method (ESM) in [28], the error of the DMCM–SCT
method was smaller due to the consideration of the influence of core saturation and edge,
and the specific performance results are shown in Table 4.

Table 4. Comparison of the three methods.

Method Core Saturation End Effect Calculation Dimension Error

FEM
√ √

109,506 -
ESM × × 1136 <5%

DMCM–SCT
√ √

1300 <2%

According to Table 4, compared with ESM, the results obtained by DMCM–SCT were
closer to those obtained by the finite element method. Although a certain calculation
dimension was added, the overall effect was still better than ESM. However, the influence
of end magnetic flux leakage was not considered in the calculation method, so there were
still some errors in the results.

4.3. Test Verification

According to the data in Table 1, a prototype of the UP-LPST was manufactured, as
shown in Figure 14. The test platform was mainly composed of a power supply driver
module, a DSP, a signal amplification control circuit, a rectifier bridge, an inverter module, a
terminal, and a UP-LPST. Since the air gap of the experimental prototype was only 0.3 mm,
it was difficult to directly measure the actual air-gap flux density. Therefore, we carried out
indirect verification by testing the no-load output voltage and current of the prototype.

Figure 14. Experimental transformer.

Figure 15 shows the experimental waveform of the no-load output voltage of the
prototype and the waveform of the FEM simulation calculation. By comparison, it could be
found that the waveforms of the no-load output voltage calculated by FEM were basically
the same as those measured by the experiment, but there were still slight differences. The
main reason was that the manufacturing technology of the prototype was not ideal and the
precision of core was not sufficient. At the same time, in the actual processing experiment,
it was difficult to ensure that the length of the air gap was 0.3 mm, so the length of the air
gap was not completely equal. However, the overall waveform direction was consistent,
which indirectly verified the effectiveness of the analysis method in this paper.

117



Processes 2022, 10, 1596

  
(a) (b) 

Figure 15. No-load phase-A output voltage diagram of finite element model and experiment. (a) FEM
waveform; (b) experimental waveform.

5. Conclusions

The impact of connecting new energy sources to a power system on the power quality
of the grid is mainly reflected in the voltage and current. The new power system will
consume more reactive power during operation, which will cause a serious drop in the grid
voltage. Therefore, a large number of rectifier and inverter devices need to be used in the
grid connection. The existence of these devices will inevitably inject harmonic currents into
the grid, resulting in the distortion of grid voltage and current waveforms. While affecting
the power supply quality, it will also cause additional load losses to the power equipment
flowing through the distorted current. The special structure and phase-shifting method of
the linear phase-shifting transformer can effectively eliminate low-order harmonics and
improve the output waveform quality. For the LPST, which mainly relies on air gaps for
energy transfer, the establishment of an accurate magnetic field model has an important
influence on the calculation and even the improvement of the system efficiency.

By focusing on the specifics of LPST energy transfer and analyzing its structure, the
DMCM and SCT were extended to the LPST, and a magnetic field analysis model for the
LPST was established. The model can simultaneously consider the effects of saturation,
cogging, and edges on the magnetic field. Therefore, the model is more in line with the
actual situation of the linear phase-shifting transformer. Under the conditions of a given
input DC bus voltage, the accuracy of the model was proven by means of direct verification
using a finite element model and indirect verification via an experiment. There was a degree
of error in the results, because the magnetic leakage at the end of the linear phase-shifting
transformer was not considered. However, the model can still be applied to phase-shifting
transformers with similar structures, and even other power devices. Our model could play
an important role in improving the efficiency of transformers and new power systems and
reducing losses. However, this paper only analyzed the model under no-load conditions.
An analysis under load conditions is the next step.
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Abstract: In order to promote the wind monitoring accuracy and provide a quantitative planning
method for met mast layout in practical projects, this paper proposes a two-stage layout method
for met mast based on discrete particle swarm optimization (DPSO) zoning and micro quantitative
siting. Firstly, according to the wind turbines layout, rotational empirical orthogonal function and
hierarchical clustering methods are used to preliminarily determine zoning number. Considering
the geographical proximity of wind turbines and the correlation of wind speed, an optimal macro
zoning model of wind farm based on improved DPSO is established. Then, combined with the grid
screening method and optimal layout evaluation index, a micro quantitative siting method of met
mast is proposed. Finally, the rationality and efficiency of macro zoning method based on improved
DPSO, as well as the objectivity and standardization of micro quantitative siting, are verified by an
actual wind farm.

Keywords: met mast layout; REOF; DPSO macro zoning; micro quantitative siting

1. Introduction

1.1. Motivation of This Research

In order to achieve carbon neutrality and boost the construction of power system with
a high proportion of renewable energy, wind power and other clean energy are developing
rapidly, and the number and scale of wind farm constructions is increasing recently [1].
Met mast represents the basic equipment for wind resource monitoring and evaluation
and plays an important role in the planning, construction and operation stage of wind
farm [2,3]. The data of met mast not only represent an important basis for deciding whether
to build a wind farm, but also the support for wind power prediction and closed-loop
assessment of wind farms [4,5]. However, at present, some wind power enterprises are
lack of emphasis on met mast. Meanwhile, the problem of setting up met mast arbitrarily is
prominent, which greatly reduces the original value creation of met mast [6]. Therefore, it
is necessary to arrange the met mast scientifically and rationally.

1.2. Literature Review

The layout of met mast in a wind farm is mainly concerned with two issues, namely the
determination of the number of met mast and representative wind zone scope of each met
mast and the micro siting of met mast within corresponding wind zones. For the first issue,
it is mostly processed with methods based on macro zoning of wind farm. The number of
met masts is consistent with zoning number of wind farm, and representative wind zone
scope is presented through zoning result [7,8]. Currently, there are some studies on the
macro zoning of wind farms. In [9,10], zoning of wind farms is conducted in the practical
engineering field considering the empirical reference radius of a representative area range
of met mast under different terrains. In [11], based on the spatial distribution density of
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wind turbines, density based spatial clustering of applications with noise (DBSCAN) is
used to cluster wind turbines to realize zoning of wind farm. However, input parameters of
DBSCAN algorithm are not easy to be selected, which greatly affects zoning results. In [12],
considering wind speed correlation of wind turbines, rotational empirical orthogonal
function (REOF) method is used to obtain spatial distribution characteristics of wind speed
to achieve zoning of wind farm. However, this zoning method may lead to problem with
zoning overlapping of wind turbines. For the second issue of micro siting of met mast, the
related work at present is mostly based on qualitative analysis. In [13,14], alternative wind
monitoring points are preliminarily selected out based on empirical layout principle, and
computational fluid dynamics (CFD) tool is used to obtain important wind flow parameters
of alternative wind monitoring points, then optimal met mast location is determined by
correlation analysis. In [15], met mast location is screened out by landform similarity, wind
climate similarity and other judging indexes. However, wake effect is rarely considered,
which may select inappropriate met mast location considering real incoming wind speed
cannot be obtained.

The existing problems in the current research are summarized as follows.

(1) The determination of the number of met mast is mostly dependent on engineering
experience, and this method lacks reasonable quantitative calculation.

(2) The current zoning methods can not directly and automatically get zoning results,
and human subjective judgment accounts for a certain proportion in the process.

(3) In the process of micro siting of met mast, the wake effect of wind turbines is ignored
so the final selected met mast location cannot be guaranteed to be optimal. Meanwhile,
quantitative layout indexes and the systematic siting method of met mast are absent
in recent studies.

1.3. Contributions and Innovations

To fill research gaps, this paper proposes a relatively objective and efficient quantitative
layout method of met mast. Firstly, the number of zoning is preliminarily determined based
on REOF decomposition and hierarchical clustering (HC) method. The distance between
wind turbines is redefined considering location proximity and wind speed correlation,
successively a wind farm optimization zoning model based on inter-class dispersion degree
and intra-class aggregation degree is established and solved by discrete particle swarm
optimization (DPSO). Then, the micro quantitative siting strategy of alternative wind
monitoring points based on grid screening method is proposed, and the optimal location of
met mast is determined by the layout evaluation index. Finally, a real wind farm is used for
simulation verification. The results demonstrate that the proposed method can reasonably
determine the layout of met mast and has certain practicability.

The main contributions of this paper include the following:

(1) A quantitative calculation method of zoning number based on REOF and HC is proposed.
(2) Based on newly defined distance between wind turbines considering geographical

location proximity and wind speed correlation, a DPSO zoning model is established,
which helps to get zoning results directly.

(3) Considering various wind flow factors, including wake effect, a quantitative siting
strategy for met mast is proposed and an evaluation index of micro siting is designed.

1.4. Organization of This Paper

The remainder of this paper is organized as follows. Optimal zoning of wind farms
for the determination of the number of met mast and representative wind zone scope of
each met mast is presented in Section 2. The micro quantitative siting method of met mast
in each wind zone is proposed in Section 3. Simulation verification is given in Section 4,
followed by the conclusion in Section 5.
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2. Optimal Zoning of Wind Farm Based on Geographical Location Proximity and Wind
Speed Correlation

2.1. Zoning Number Determination Based on REOF Decomposition and HC Method

At present, the zoning number of wind farm is mostly determined artificially by
combining the site scope and topographic changes of wind turbine locations, which lacks
objective basis [16]. Therefore, in this paper, REOF method considering wind speed
distribution is combined with the agglomerative HC algorithm considering the placement
of wind turbines to determine the zoning number of wind farms.

REOF decomposition is an effective method to analyze the regional structure of climate
variable field [17]. REOF decomposition is achieved by varimax rotation, based on the
calculation results of empirical orthogonal function (EOF) analysis. The spatial modes
decomposed by REOF are rotation factor load vectors, and the high value of load vectors is
concentrated in local area, so the spatial types are easier to identify. From the perspective
of the variable field, after the varimax rotation, only a small area has high load in terms of
decomposed typical spatial mode, and load value of the rest area is close to 0. The spatial
structure of the climate variable field is simplified by REOF analysis. Based on the wind
speed data of all wind turbine positions over the years, REOF is used to analyze the spatial
distribution characteristics of wind speed. The steps include:

Step 1: The time-spatial matrix V containing the information of annual average wind
speed at the locations of n wind turbines over t years, is anomaly processed, that is, all
elements in original matrix minus the mean of elements of corresponding row, and acquired
results are as new elements of processed matrix. V is shown in Equation (1). Then, EOF
decomposition is performed;

V =

⎡⎢⎢⎢⎣
v11 v12 . . . v1t
v21 v22 . . . v2t

...
...

...
...

vn1 vn2 . . . vnt

⎤⎥⎥⎥⎦ (1)

Step 2: By calculating error range of eigenvalue in Equation (2) and cumulative
variance contribution rate, the double test of significance is carried out to judge whether
the decomposed spatial mode is a valuable signal or noise.

e = λ

√
2

T∗ (2)

where: e represents the error range of eigenvalue λ; T∗ represents effective degrees of
freedom of data.

Step 3: The cumulative variance contribution rate is used to determine the number of
high load vector, and the varimax rotation of selected high load vectors is made to obtain
REOF decomposition result. According to the load value of the vector field obtained by
REOF, the corresponding heat map is drawn to find several high load zones with significant
characteristic differences.

The range of zoning number can be predicted according to REOF heat map, and then
the zoning number can be further determined based on HC method.

Agglomerative HC is one of the typical unsupervised clustering algorithms, which
adopts the bottom-up clustering strategy. In the process of initialization, each sample
point is regarded as an independent cluster, and then clusters are continuously merged
dependent on the principle of minimum distance until termination condition is reached [18].
Based on the actual space distance between wind turbines, the agglomerative HC algorithm
is used to conduct coarse clustering for all wind turbine positions. The specific steps are as
follows:

Step 1: n wind turbine positions are first divided into n clusters, and then the distance
matrix between n clusters is calculated by adopting Euclidean distance based on three-
dimensional data of the latitude, longitude and altitude of wind turbine positions.
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Step 2: According to the distance matrix, the two clusters with the smallest distance
are merged into one cluster, and the total number of clusters is reduced by 1.

Step 3: Based on cluster average algorithm in [18], the distance between any two
clusters is calculated and a new distance matrix is obtained. If the number of clusters is 1 at
the moment, clustering is already finished and go to the next step. Otherwise, Step 1 and 2
are repeated.

Step 4: Draw hierarchical pedigree diagram reflecting the kinship relationship between
elements, according to the above clustering process.

According to the REOF heat map and hierarchical pedigree diagram, the optimal
zoning number is determined considering some constraints. The constraints include that:
The distances between different clusters should be relatively large. The number of wind
turbines contained in a single cluster is generally between 10% and 80% of the total number
of wind turbines, which can be adjusted slightly according to actual wind farm situation.
The zoning number determined finally should conform to the range of zoning number
estimated by REOF.

In addition, the coarse clustering result obtained by agglomerative HC can be used
in the initialization of the DPSO algorithm in Section 2.3, which is beneficial for fast
convergence of the algorithm.

2.2. The Distance Definition Considering Geographic Location Proximity and Wind Speed
Correlation

Macro zoning of the wind farm mainly considers the correlation degree of wind flow
distribution of different wind turbine positions, and wind turbines with strong correlation
are divided into the same wind zone. The correlation degree can be judged from two
aspects: one is based on the proximity of the geographical location of wind turbines; the
other is based on the wind speed correlation of wind turbine positions. The zoning problem
of wind farm can be regarded as the clustering problem of wind turbines. For clustering
of data sets, the “distance” between samples is often used as an important classification
standard. In principle, samples with large “distance” are divided into different clusters, and
samples with small “distance” are divided into the same cluster. While the measurement of
“distance” can actually be regarded as a measurement of similarity between samples. The
higher the similarity between samples is, the smaller the distance is. In this paper, every
wind turbine position is taken as a sample point. Moreover, in comprehensive consideration
of geographical location proximity and wind speed correlation of wind turbines, a new
distance is defined to measure the similarity of wind flow distribution between different
wind turbine positions.

The coordinate matrix X of wind turbines is shown in Equation (3).

X =

⎡⎢⎢⎢⎣
x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

...
...

xm1 xm2 . . . xmn

⎤⎥⎥⎥⎦ (3)

where: m is the dimension number of coordinates; n is the number of wind turbines in the
wind farm. m is usually equal to 3, representing three dimensions of longitude, latitude,
and altitude

In order to eliminate dimensional differences, mean-variance normalization is carried
out for each dimension. The normalized Euclidean distance between any two wind turbines
is calculated by Equation (4).

d1,ij =

√√√√ m

∑
k=1

( xki − xkj

S(xk)

)2
(4)
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where: d1,ij represents dominant distance between wind turbine i and wind turbine j. S(xk)
is the standard deviation of all elements in row k of the matrix X.

Next from the perspective of wind speed correlation, considering the wind speed
correlation coefficient between two wind turbine positions, the correlation distance is calcu-
lated. Wind speed information is included in matrix V, and Pearson similarity coefficient
rij is calculated by Equation (5).

rij =

t
∑

m=1
(vim − E(vi))

(
vjm − E

(
vj
))

√(
t

∑
m=1

(vim − E(vi))
2
)
·
(

t
∑

m=1

(
vjm − E

(
vj
))2

) (5)

where: E(vi) and E(vj) respectively represent the mean values of all elements in row i and
row j of the matrix V.

After the wind speed matrix is anomaly treated, all E(vi) are 0, i ∈ [1, n], and Pearson
similarity coefficient is degenerated into cosine similarity, as shown in Equation (6). The
distance d2,ij that characterizes wind speed correlation is calculated by Equation (7).

cos
(
θij
)
=

vivT
j

‖vi‖ · ‖vj‖ =

t
∑

m=1
vimvjm√(

t
∑

m=1
vim

2
)
·
(

t
∑

m=1
vjm

2
) (6)

d2,ij = 1 − ∣∣cos(θij)
∣∣ (7)

where: cos
(
θij
)

represents cosine similarity; d2,ij represents recessive distance between
wind turbine i and wind turbine j

In order to make influence weight of dominant and recessive distance consistent, d1,ij
and d2,ij are processed by maximum and minimum normalization method, as shown in
Equation (8). A comprehensive distance between wind turbine positions is defined by
Equation (9).

d′z,ij =
dz,ij − min

{
dz,ij

}
max

{
dz,ij

}− min
{

dz,ij
} , z = 1, 2 (8)

dij = max
{

d′1,ij, d′2,ij

}
(9)

where: max
{

dz,ij
}

represents the maximum of dominant distance (when z = 1) or recessive
distance (when z = 2) between two wind turbines; min

{
dz,ij

}
represents the minimum of

dominant distance (when z = 1) or recessive distance (when z = 2) between two wind
turbines; dij represents comprehensive distance between wind turbine i and wind turbine j.

2.3. Optimal Zoning of Wind Farm Based on Improved DPSO

Assuming the wind farm is divided into g clusters, C =
{

C1, C2, . . . , Cg
}

, |C1|,|C2|,
. . . ,

∣∣Cg
∣∣ are defined as the number of samples contained in the corresponding cluster.

Considering the cohesion within clusters and dispersion between clusters, the evaluation
indexes of zoning are established as shown in Equations (10) and (11).

1. Strong aggregation within zones

f1a =
∑i∈Ca ,j∈Ca dij

|Ca| · (|Ca| − 1)
, i �= j (10)

where: f1a represents convergence degree of wind turbines in zone a. The smaller the
value of f1a is, the higher the aggregation degree in this zone.
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2. Strong dispersion between zones

f2a =
∑i∈Ca

(
min

Cb

{
∑j∈Cb , dij

|Cb |

})
|Ca| , 1 ≤ b ≤ k, b �= a (11)

where: f2a represents separation degree from zone a to other zones. The larger the
value of f2a is, the more discrete this zone is from other zones.

Silhouette coefficient is a parameter used to evaluate clustering method model and
clustering result itself, which combines the degree of aggregation and the degree of dis-
persion beneficially [19]. Based on the modeling idea of silhouette coefficient, the paper
establishes an optimization zoning model combined with evaluation indexes, and the
objective function is shown in Equation (12).

minF =

k
∑

a=1

(
f1a− f2a

max{ f1a , f2a} + 1
)

k
(12)

The value range of objective function F is [0, 2]. The closer F value is to 0, the better
zoning result. Because the zoning result contains such information: stronger aggregation
within zones and stronger dispersion between zones. Constraint conditions are shown in
Equation (13): ⎧⎪⎨⎪⎩

g > 1
|Ca| > 1, a ∈ [1, g] and a ∈ Z
|Ca| ≤ 0.8n, a ∈ [1, g] and a ∈ Z

(13)

In order to solve optimal zoning model, an improved DPSO algorithm is adopted. The
constraint conditions are processed by penalty function, that is, the penalty term is added
to objective function, so that the particles which do not meet the constraint conditions
cannot converge due to poor fitness. The solving process based on the improved DPSO
algorithm is shown in Figure 1.

In order to improve the computational efficiency, on the basis of conventional DPSO
algorithm, some improvements involving particle swarm initialization and particle position
updating method are made as follows:

1. Particle swarm initialization considering reverse learning and HC result

The initial particle swarm based on conventional DPSO algorithm is generally gener-
ated randomly and it is difficult to ensure uniform distribution of initial particle swarm in
the solution space. In order to overcome the above defects, the improved DPSO algorithm
considers adopting the method of reverse learning to initialize particle swarm [20–22], and
the specific steps are as follows:

• Generate χ (particle number) initial spatial solutions in the feasible search domains
randomly;

Suppose g represents the number of clusters and n is the dimension number of solution,
which is the same as the number of wind turbines, the feasible solution of the ith particle is
expressed in Equation (14). All elements in Pi satisfy pij ∈ [1, g], pij ∈ Z (j = 1, 2, . . . , n).

Pi = [pi1, pi2, . . . , pin] (14)

• Calculate and generate the inverse solution of each initial solution;

The calculation of each dimensional component of the reverse solution is shown in
Equation (15).

qij = 1 + g − pij (15)

where: qij represents the reverse solution in the jth dimension of the ith particle.
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• The coarse clustering solution of HC algorithm in Section 2.1 is incorporated into the
initial solution set of particle swarm.

• Based on the union set generated by the above random solutions, reverse solutions,
and coarse clustering solution, the objective function value is calculated and solutions
with lower value are selected preferentially to form the initial population.

2. Particle position updating of DPSO algorithm

The updating of particle position is shown in Equations (16) and (17). The definition
of relevant operators in the process of location updating is referred to [23].

Ui+1 = wUi + o1(Wpbest − Wi) + o2(Wgbest − Wi) (16)

Wi+1 = Wi + Ui+1 (17)

where: Ui is the updated particle velocity of the ith iteration; Wi is the updated particle
position of the ith iteration; Wpbest is the current individual optimal particle position; Wgbest
is the current global optimal particle position; w is inertial weight; o1 and o2 are cognitive
learning factor and social learning factor respectively, whose value range is [0, 1].

After solving optimal zoning model of a wind farm, which wind turbines belong to
the same cluster can be determined. For the convenience of calculation, each cluster of
wind turbines is processed into rectangular zone. The maximum distance between east and
west and the maximum distance between north and south of each cluster are extended by
5% as the length and width of the rectangular zone respectively, and finally the specific
scope of each rectangular wind zone can be obtained.

i=i

 i=

Fi 

 

Figure 1. Improved DPSO algorithm.
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3. Micro Quantitative Siting of Met Mast Based on Grid Screening Method

3.1. Select Alternative Met Mast Positions by Gridding

When macro zoning of wind farm is completed, micro siting of met mast is carried
out in each zone. In order to simplify calculation, each rectangular zone is divided into
many grids and the shape of grids is square. In order to ensure that every possible location
suitable for building met mast can be obtained as much as possible, the side length L of grid
should meet Equation (18), and the intersection points of grids are seen as the alternative
wind monitoring points.

L = min
{

Lij|i ∈ [1, n], j ∈ [1, n], i �= j
}

/
√

2 (18)

where: Lij is the actual distance between wind turbine i and wind turbine j in wind farm.
Then the optimal wind monitoring point should be determined among all alternative

grid points. The best wind monitoring point should have a good representation of the
wind resources in the corresponding wind zone. The representativeness of wind moni-
toring points is mainly based on the following principles: spatial consistency principle,
representativeness principle of wind condition parameters in prevailing wind direction,
and screening principle considering wind speed reduction caused by wake effect. Based on
these principles, this paper establishes six indicators, namely horizontal distance from wind
turbines, altitude difference from wind turbines, wind acceleration factor of prevailing
wind direction, turbulence intensity of prevailing wind direction, inflow angle of prevailing
wind direction, and wind speed reduction rate caused by wake effect. The screening process
of alternative wind monitoring points is shown in Figure 2.

 
Figure 2. Location screening process of alternative met mast.

The wind condition parameters of prevailing wind direction and wind speed reduction
rate caused by wake effect in each grid can be calculated by CFD software [24]. The steps
of quantitative screening of alternative wind monitoring points are as follows.

Step 1: Exclude the alternative wind monitoring points within a distance away from
wind turbines considering wake effect, as shown in Equation (19). The distance is equal to
α times of rotor diameter.

R < αD (19)
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where: D is the rotor diameter; R is the distance between the alternative wind monitoring
points and wind turbines.

This screening index is mainly in response to standard [25]. Considering the wake
effect of wind turbines, correction of free flow wind speed in front of wind turbines and so
on, the value range of α is generally [2,4].

Step 2: Exclude alternative wind monitoring points whose altitude difference Δh from
wind turbines is more than reference value H, as shown in Equation (20).

Δh > H (20)

Step 3: Calculate the average wind acceleration factor u of the prevailing wind direc-
tion at all wind turbines in the wind farm, and keep alternative wind monitoring points
whose wind acceleration factor is within the fluctuation range of plus or minus 5% of the
average, as shown in Equation (21).

ui ∈ [0.95u, 1.05u)], i = 1, 2, . . . , m (21)

where: ui is the wind acceleration factor in prevailing wind direction of ith alternative wind
monitoring point; m is the number of alternative wind monitoring points reserved based
on previous screening work.

Step 4: Calculate average turbulence intensity l in the prevailing wind direction
of all alternative wind monitoring points reserved by above screening work, and keep
the alternative wind monitoring points with turbulence intensity below l, as shown in
Equation (22).

li < l (22)

where: li is the turbulence intensity in prevailing wind direction of the reserved ith alterna-
tive wind monitoring point.

Step 5: Calculate average ε of absolute value of inflow angle in prevailing wind
direction of all alternative wind monitoring points reserved by above screening work, and
keep the alternative wind monitoring points with absolute value of inflow angle below ε,
as shown in Equation (23).

εi < ε (23)

where: εi is the absolute value of inflow angle in prevailing wind direction of the reserved
ith alternative wind monitoring point.

Step 6: Calculate average wind speed reduction rate ω of all alternative wind monitor-
ing points reserved by above screening work, and keep the alternative wind monitoring
points with wind speed reduction rate below ω, as shown in Equation (24).

ωi < ω (24)

where: ωi is the wind speed reduction rate caused by wake effect of the reserved ith

alternative wind monitoring point.

3.2. Micro Siting Evaluation of Met Mast in Wind Farm

The siting index is established to select the best position point of met mast from above
finally reserved alternative wind monitoring points. Average wind speed distribution
provides important information of wind resources. Meanwhile, the Weibull distribution,
represented by shape parameters k and scale parameters c, is the most common wind speed
distribution. The Weibull distribution is expressed by Equation (25).

P(v) =
k
c
(

v
c
)

k−1
e−( v

c )
k

(25)

where: P(v) is the probability density of wind speed distribution.
As met mast should be representative of the wind resources in wind farm as much

as possible, the average wind speed distribution of met mast should be as consistent as
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possible with the average wind speed distribution of wind turbines. That is, Weibull
distribution parameters of met mast should be as consistent as possible with average
Weibull distribution parameters of wind turbines in each wind zone.

In order to evaluate the representativeness of the reserved alternative wind monitoring
points in the corresponding zone, the evaluation index Y of met mast siting is defined by
Equation (26).

Y = 1 −
( |vave − vmo|

vave
+

|kave − kmo|
kave

+
|cave − cmo|

cave

)/
3 (26)

where: vmo, kmo, and cmo are respectively the wind speed, the shape parameter, and
the scale parameter of the alternative wind monitoring points; vave, kave, and cave are
respectively the mean of wind speed, the mean of shape parameter, and the mean of scale
parameter of all wind turbine positions.

The value of index Y is within the range of [0, 1]. The closer the Y value of the
alternative wind monitoring point is to 1, the more suitable its location is for building a
met mast.

In summary, the research framework of this paper is shown in Figure 3.

Determining met mast number 
(zoning number) based on REOF 

and HC method

 Determining  representative wind 
zone scope of each met mast based 

on optimal zoning model

Selecting alternative met mast 
positions  in each wind zone based 

on micro quantitative siting strategy  

Selecting out optimal position of met 
mast in each wind zone based on 

layout evaluation index

Section 2: Macro zoning of wind farm

Section 3: Micro siting of met mast
 

Figure 3. The research framework of this paper.

4. Simulation Verification

An island wind farm in Zhejiang province is selected. The wind farm is located in the
range of east longitude 121◦55′24′′ ∼ 121◦57′44′′ and north latitude 29◦47′17′′ ∼ 29◦48′12′′,
with altitude of 0~255 m. There are 17 wind turbines in the wind farm and the prevailing
wind direction is about 300o. The topography of the wind farm is shown in Figure 4.
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Figure 4. The topography of island wind farm.

Based on historical wind speed information of all wind turbine positions, the REOF
method is used to analyze the spatial distribution characteristics of wind speed. Table 1
shows the variance contribution rate and cumulative variance contribution rate of the
first two feature vectors of wind speed based on EOF and REOF. The cumulative variance
contribution rate of the first two feature vectors is 99.95%, i.e., the first two feature vectors
can effectively represent the overall characteristics of wind speed changes in wind farms.
After rotation, the variance contribution of each load vector is more evenly distributed
than before rotation. The total variance contribution does not change, and the rotation
effect is significant. However, the variance contribution rate of the first feature vector is
74.93%, which still account for a large proportion of the total variance. It implies that the
first vector takes majority responsibility for representing wind speed characteristics of
wind farm. According to the spatial distribution information of rotating load vector field
obtained by REOF, the corresponding heat map is made, as shown in Figure 5. It is obvious
that there are two load centers with significantly different wind speed characteristics in
wind farms. One is mainly concentrated at #7 wind turbine, and the other load center is
mainly concentrated at #1 wind turbine.

Table 1. The Variance Contribution rate and Cumulative Variance Contribution Rate of the First
Two Feature Vectors of Regional Wind Speed Based on EOF and REOF.

Serial Number
EOF Variance

Contribution Rate
REOF Variance

Contribution Rate
Cumulative Variance

Contribution Rate

1 96.27% 74.93% /
2 3.68% 25.02% 99.95%

Figure 5. Heat map of load vector field spatial distribution based on REOF.
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Based on location information (latitude, longitude and altitude) of wind turbines, HC
algorithm is used to draw hierarchical pedigree diagram, as shown in Figure 6. Combined
with the REOF information, it can be preliminarily judged the wind farm is suitable to be
divided into two zones, and coarse clustering result of wind turbines is obtained based on
the pedigree diagram.

Figure 6. Hierarchical pedigree diagram of wind turbines clustering process.

Inertia weight coefficient w = 0.7 and the parameters o1 = 0.2, o2 = 0.3 in DPSO
algorithm are taken to calculate the optimal zoning result. Meanwhile, DBSCAN zoning
method is compared with DPSO method and respective result is shown in Figure 7 (Wind
turbines with the same symbol are in the same wind zone in Figure 7b–d). Although
DBSCAN as a classical clustering algorithm can automatically determine zoning number,
the output zoning results are different when input parameters such as cluster density
threshold d are set to different values. In this paper, two DBSCAN results when zoning
number is 2 are selected and presented. As can be seen from Figure 7, under different
d values, #8, #9, #10, #15, #16, and #17 wind turbines (the serial number of wind turbines
is shown in Figure 4) are divided into completely different zone, indicating that the final
zoning result of DBSCAN is very sensitive to parameter selection.

d d  
Figure 7. Comparison of zoning results based on DBSCAN and DPSO algorithm.

For clustering zoning without label, silhouette coefficient is generally considered to
objectively evaluate zoning results [19]. The value range of silhouette coefficient is [–1, 1],
the closer it is to 1, the better zoning effect is. Comparison of silhouette coefficient based
on DBSCAN and DPSO algorithm is shown in Table 2. It can be seen that the silhouette
coefficient of the DPSO zoning result is the largest, which proves that the zoning result
is the optimal objectively. In addition, when d = 4, the DBSCAN zoning result is close to
DPSO zoning, and the corresponding silhouette coefficient is suboptimal. The results of
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two zoning methods mirror each other to some extent, which further verifies the rationality
of DPSO zoning.

Table 2. Comparison of silhouette coefficient based on DBSCAN and DPSO algorithm.

Serial Number
DBSCAN Algorithm

d = 3
DBSCAN Algorithm

d = 4
DPSO Zoning

Silhouette coefficient 0.5240 0.6163 0.6285

Compared with DBSCAN algorithm, DPSO zoning has the following advantages:

(1) In DBSCAN algorithm, parameters are very important, which is difficult to select and
has a great influence on zoning results. However, the parameter selection of DPSO
zoning has no influence on final optimization results, but only plays a role in the
calculation efficiency. Moreover parameter selection is relatively simple.

(2) In the DBSCAN algorithm, different input parameters lead to different zoning results.
Every result needs to be evaluated by a silhouette coefficient. The evaluation work is
relatively heavy because of lots of repetitive work, and the optimality of the evaluated
zoning result cannot be guaranteed because of the diversity of input parameters.
However, the DPSO zoning model takes the evaluation index into account, which
makes evaluation work easier. Moreover, the final optimal zoning result is presented
directly by a clear and concise algorithm. The final zoning result of this wind farm is
shown in Figure 8.

Figure 8. Zoning result of the island wind farm.

On the other hand, according to the REOF heat map, the first load center concentrated
at #7 wind turbine corresponds to No. 2 wind zone in DPSO zoning result. The second
load center concentrated at #1 wind turbine corresponds to No.1 wind zone. The reliability
of DPSO zoning results is verified.

To further verify the superiority of the improved DPSO algorithm, Zhushan wind
farm in Zhejiang province with 50 wind turbines is selected. The terrain and DPSO zoning
result are shown in Figures 9 and 10 (Wind turbines with the same symbol are in the same
wind zone in Figure 10b). It can be seen that Zhushan wind farm covers a large area and
optimal zoning result is obviously related to the geographical location proximity between
wind turbines, in line with practical experience. The convergence curves of the algorithm
applied to island wind farm and Zhushan wind farm are shown in Figure 11. It can be
found that:

(1) The convergence speed of the improved DPSO algorithm is faster than that of the
conventional DPSO algorithm.
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(2) In the island wind farm, when converging, there is a difference of about seven iter-
ations between improved DPSO and conventional DPSO algorithm. Meanwhile, in
the larger Zhushan wind farm, there is a difference of almost 70 iterations between
improved DPSO and conventional DPSO algorithm. That is to say, the convergence
speed of the improved DPSO algorithm is improved more obviously for wind farms
with larger scale.

−

 
Figure 9. The topography of Zhushan wind farm.

 
(a) Wind turbines arrangement (b) DPSO zoning 

Figure 10. Optimal zoning result of Zhushan wind farm.

The results show that the improved DPSO algorithm can effectively improve the
computational efficiency, and the larger the data scale is, the more obviously the efficiency
of algorithm improves.

Micro siting of met mast is carried out in two zones of the island wind farm. The
design of relevant parameters is referred in [26]. Firstly, Windsim software is used to
simulate spatial wind flow distribution by the CFD numerical method. Wind condition
parameters in the prevailing wind direction, including wind acceleration factor, turbulence
intensity, inflow angle, and reduced wind speed considering wake effect, are obtained
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by gridding the calculation of the target area of the wind farm. Next based on obtained
grid information, alternative wind monitoring points are screened out according to micro
quantitative siting strategy of met mast. Finally, the optimal locations of met mast in
each zone are obtained based on the calculation of siting evaluation index. The screening
results of alternative wind monitoring points are shown in Table 3. The optimal location of
wind monitoring point is shown in Figure 12. The two optimal locations of met masts in
respective zones are relatively consistent with the above two load centers based on REOF
method, which verifies the representativeness of met mast in final selected position.

(a) Island wind farm (b) Zhushan wind farm 

Figure 11. Convergence curves of discrete particle swarm optimization algorithm.

Table 3. Screening results of alternative wind monitoring points.

Alternative Wind
Monitoring Points

Index
Selection of Wind
Monitoring Points

No.1 wind zone P1
P2

0.923761
0.825439 P1

No.2 wind zone
P3
P4
P5

0.905465
0.796873
0.846572

P3

 
Figure 12. Optimal location of wind monitoring point.

To further prove the effectiveness of the proposed micro siting method, the met mast
positions determined by proposed method (met mast at points P1, P3, corresponding longi-
tude, latitude are respectively 121◦55′49.2′ ′ E, 29◦47′18.2′ ′ N/121◦56′50.3′ ′ E, 29◦47′13.4′ ′ N)
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and common method based on engineering experience in [14] (met mast at points P6, P7, cor-
responding longitude, latitude are respectively 121◦56′10.1′ ′ E, 29◦47′80.3′ ′ N/121◦56′59.6′ ′ E,
29◦48′17.4′ ′ N) are respectively used as CFD simulation inputs, and estimated results and
errors regarding the annual power generation of wind farms are shown in Table 4. It can
be seen that taking met mast positions (P1, P3) as input, the error of estimated power
generation is the smallest. In addition, the error of estimated power generation with two
met masts is smaller, compared with one met mast. It is indicated that two met masts
are more representative for wind resources of the island wind farm. The reliability of the
proposed method is verified to some extent.

Table 4. Annual energy production and error analysis of wind farm.

Input Data Average Annual Power Generation/(104 kW·h) Relative Error/%

12,540.32 (actual measured power generation)
(P1, P3) 12,314.59 −1.8
(P6, P7) 12,101.41 −3.5

P1 11,449.31 −8.7
P3 13,079.55 +4.3
P6 11,474.39 −8.5
P7 13,154.80 +4.9

5. Conclusions

In this paper, a method for the optimal layout of met mast in the wind farm is proposed.
Firstly, a representative wind zone scope and the number of met mast are determined by
macro zoning of wind farm. Then, a micro quantitative siting strategy is proposed and the
optimal layout evaluation index is established to realize micro siting of met mast in each
wind zone. The main conclusions are drawn as follows:

(1) The proposed optimal zoning method based on discrete particle swarm optimization
provides a new zoning idea, which can provide a reliable zoning result for wind farms
more directly and quickly compared with general zoning methods, such as the density
based spatial clustering of applications with noise algorithm method.

(2) In the studied cases, the selected met mast position based on the proposed micro
quantitative siting method is proven to be more accurate and representative by the test
of wind farm power generation estimation, compared with the traditional qualitative
analysis method.

The optimal layout method for met mast proposed in this paper has certain practical
applicability, especially for wind farms with large scale or complex terrain. It can help to
obtain more accurate data regarding wind resources, which means a lot for wind farm
operation. In future work, the layout evaluation index will be further discussed and
designed considering different functions of met mast, which will serve to improve micro
siting work of met mast.
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Nomenclature

|Ca| Number of samples contained in zone a.
cos

(
θij

)
Cosine similarity about wind speed of wind turbine i and j.

d1,ij Dominant distance between wind turbine i and j.
d2,ij Recessive distance between wind turbine i and j.
dij Comprehensive distance between wind turbine i and j.
E(vi) Mean value of all elements in row i of the matrix V
e Error range of eigenvalue.
F Objective function for optimization.
f1a Convergence degree of wind turbines in zone a.
f2a Separation degree from zone a to other zones.
g Zoning number.
Δh Altitude difference between the alternative wind monitoring points and wind turbines.
L Side length of grid.
li Turbulence intensity in prevailing wind direction of the reserved ith alternative wind

monitoring point.
m dimension number of space coordinates
n Number of met mast.
o1/o2 Cognitive/social learning factor and learning factor.
P(v) Probability density of wind speed distribution.
Pi Feasible solution of the ith particle.
qij Reverse solution in the jth dimension of the ith particle.
R Horizontal distance between the alternative wind monitoring points and wind turbines.
rij Pearson similarity coefficient of wind speed of wind turbine i and j.
S(xk) Standard deviation of all elements in row k of the matrix X.
Ui Updated particle velocity of the ith iteration.
ui Wind acceleration factor in prevailing wind direction of ith alternative wind monitoring

point.
V Time-spatial wind speed matrix at all wind turbine positions.
Wi Updated particle position of the ith iteration.
Wpbest Individual optimal particle position.
Wgbest Global optimal particle position.
w Inertial weigh.
X Coordinate matrix of wind turbines.
Y Siting evaluation index of met mast.
α Multiples of rotor diameter
εi Absolute value of inflow angle in prevailing wind direction of the reserved ith

alternative wind monitoring point.
ωi Wind speed reduction rate caused by wake effect of the reserved ith alternative wind

monitoring point.
χ Particle number in DPSO algorithm.
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Abstract: With the gradual liberalization of China’s energy market, the distributed characteristics
of each entity in the community integrated energy system are more and more obvious, and the
traditional centralized optimization is difficult to reveal the interaction between the entities. This
paper aims to improve the profit of the community operator and the users’ value-added benefit of
energy use, and proposes a multi-energy transaction decision of a community integrated energy
system considering user interaction. First, a refined model of user interaction, including energy
conversion, is established, and then the optimization model of multi-energy transaction decision
between the community operator and the users is constructed based on the master–slave game. The
upper layer aims to maximize the profit of the community operator according to the energy use
strategies’ feedback from the users, decides the retail energy prices of the community operator to
the users, and optimization variables include equipment output and energy purchased from the
power grid and natural gas grid. The lower layer aims to maximize the value-added benefit of
energy use for users. The users optimize their energy use strategies based on the retail energy prices
published by the community operator. The model is solved by the differential evolution algorithm
combined with the CPLEX solver. Finally, different scenarios are analyzed in a numerical example,
and the results show that the strategy proposed in this paper to set community prices increases the
community operator’s profit and profit margin by 5.9% and 7.5%, respectively, compared to using
market energy prices directly. At the same time, the value-added benefit to users also increases by
15.2%. The community operator and users can achieve a win–win situation.

Keywords: integrated energy system; multi-energy trading; consumer psychology; convertible load

1. Introduction

With the disadvantages of low economic benefits and high energy consumption of
traditional energy systems becoming increasingly prominent, integrated energy systems
(IES) that can realize flexible energy conversion and efficient utilization have become the
focus of energy research and development [1]. The community integrated energy system
(CIES) near the user side contains a variety of energy coupling equipment, which couples
and complements electricity, heat, natural gas, and other energy sources, enabling local
consumption of renewable energy and providing users with comprehensive energy services.
It is an important direction for the future development of the intelligent community [2].
Therefore, it has become a hot research issue to study how to improve the economics of the
community integrated energy system, and to formulate transaction strategies between the
community operator and the users to guide the users to rationally use energy to achieve a
win–win situation [3,4].

At present, domestic and foreign scholars have focused on improving the economics of
the integrated energy system, mainly on the refined modeling of equipment on the power
supply side and demand side management. In terms of refined equipment modeling, this
technology proposes a general dynamic energy efficiency model of an integrated energy
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system, which lays the foundation for the optimization of integrated energy system opera-
tion and the formulation of trading strategies [5]. Chen et al. established an optimization
model considering coupled dynamic energy efficiency, and the results showed that con-
sidering the dynamic energy efficiency of equipment can improve the energy utilization
rate, which is more consistent with the actual optimization results [6]. In demand side
management, Wang Yongli et al. considered the electric and heating demand response,
and the established source–load interactive model can reduce the operating cost of the
service provider and improve wind power consumption [7]. Guo Zihao et al. considered
the multi-energy flow coupling characteristics and the users’ flexible load and considered
the source–load interaction to optimize the operator’s benefit [8]. Liu et al. considered the
controllable degree of flexible load in the scheduling process and the constraint of user
satisfaction to give full play to the demand response ability of the users. The results show
that the proposed scheduling scheme can reduce the cost of the community operator [9]. It
can be seen that coordinated optimization on both sides of supply and demand can improve
the system economy. However, the references [7–9] are mostly centralized optimization
and do not consider the energy trading and pricing problems of the operator in the market
environment. There is a lack of research on the impact of the operator’s retail energy prices
on users’ energy-use strategies.

With the development of the electricity market, the community operator can be re-
garded as a distribution-side entity or retail entity with self-production and self-selling
capabilities [10]. It can guide users to participate in interaction by formulating reasonable re-
tail energy prices, adjusting energy use strategies, and achieving demand side management.
Aiming at the transaction problem between the operator and the users, Li Yuan et al. used
the master–slave game method to establish an operator energy pricing model, including
electric vehicles and P2G, which can improve the system economy [11]. References [12,13]
analyzed the interaction mechanism between the community operator and the users in the
electricity market based on the master–slave game model, with the operator as the leader
and the users as the follower. In reference [14], the master–slave game model of the trans-
action between the community operator and consumers was established, and transaction
strategies considering the demand response ability of consumers were proposed. Fu et al.
constructed a user model containing four types of loads: electricity, heat, cold, and gas.
Combined with the operator revenue optimization model, a master–slave game pricing
mechanism between operators and users is proposed [15]. Fleischhacker et al. proposed
an energy value allocation and stabilization algorithm based on a cooperative game. By
investing in distributed energy, community operators can share value among their mem-
bers [16]. Based on the master–slave game, Anoh et al. constructed an energy trading
strategy between operators and consumers in the microgrid to optimize the interests of
producers and consumers [17]. Wei et al. proposed a multi-leader and multi-follower
Stackelberg game approach to solve the multi-energy trading problem. Multiple energy
operators act as leaders to determine real-time energy prices, while multiple consumers
act as followers to optimize their energy usage strategies [18]. However, the above models
do not consider the role of convertible load in the process of user interaction. Li Peng
et al. included convertible loads in consideration of integrated demand response, which
improved user interaction but did not consider the impact of energy prices on convertible
load [19]. Under the incentive of multiple retail energy prices, users will preferentially
use energy with lower prices to meet the same energy demand. The actual amount of
interaction will be influenced by consumer psychology [20], so considering the convertible
load can further tap into the potential of user interaction.

Based on the above research, this paper establishes a refined model of user interaction
considering energy conversion and constructs an optimization model of multi-energy
transaction decisions between the community operator and the users based on the master–
slave game. Taking the community operator as the leader, the optimization goal is the
maximum daily profit, and the optimization variables are retail energy prices, equipment
output, etc. The users are the followers, the optimization goal is the maximum value-added
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benefit of energy use, and the optimization variables are the users’ energy use strategies of
electricity, heat, and natural gas. Finally, the validity of the proposed model is verified by
an example.

The rest of this paper is organized as follows. Section 2 summarizes the models of
community integrated energy system and of user interaction. Section 3 establishes the
optimization model for the multi-energy transaction decision between the community
operator and the users. Section 4 sets up different scenarios to analyze the trading strategy
proposed in this paper. Finally, the conclusions are drawn in Section 5.

2. Models of Community Integrated Energy Systems and User Interactions

2.1. CIES Model Based on Energy Hub

The concept of an energy hub (EH) was first proposed by Geidl et al. [21], it simplifies
the energy flow relationship. An EH with multiple input and output ports is modeled by
a coupling matrix that can easily describe the transformation and coupling relationship
between energy input and output [22]. Therefore, to analyze the energy coupling and
input–output energy flow relationship in the system, the energy hub model is used to
describe the CIES model abstractly, as shown in Figure 1. In this paper, the electricity, heat,
and natural gas demanded by the users in winter are supplied by the community operator
in CIES, who has certain renewable energy units according to natural and geographical
conditions. In the actual operation process, the community operator purchases electric
energy and natural gas energy from the energy market and uses the energy conversion
equipment to convert the energy into the energy required by the users according to the
multi-energy complementary characteristics. The renewable energy equipment of CIES
includes wind turbines (WT) and photovoltaic (PV); energy conversion equipment includes
combined heat and power (CHP) units, gas boilers (GB), and electric heat pumps (EHP);
energy storage devices include electricity storage and heat storage.

Figure 1. Community Integrated Energy System Model.

According to the energy flow, the community energy supply model can be represented
by the following matrix:⎡⎣Pe

out,t
Ph

out,t
Pg

out,t

⎤⎦ =

⎡⎣ 1 − r1 0 r2ηCHP,e
r1ηEHP 1 r2ηCHP,h + r3ηGB

0 0 1 − r2 − r3

⎤⎦
⎡⎢⎣Pe

in,t
Ph

in,t
Pg

in,t

⎤⎥⎦−

⎡⎢⎣PES,n
c/d,e,t

PES,n
c/d,h,t

0

⎤⎥⎦ (1)

In the above formula: Pe
out,t, Ph

out,t, and Pg
out,t are the electricity, heat, and natural gas

power supplied by the community to the users, respectively; Pe
in,t is the sum of purchased

power Pe
net,t, wind power Pe

w,t, and photovoltaic power Pe
v,t; Ph

in,t is the heat power pur-
chased by the community. This paper considers that the heat energy is only supplied
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by the community, so it is taken as 0; Pg
in,t is the power of the community to purchase

natural gas; PES,n
c/d,e,t and PES,n

c/d,h,t are the actual charging and discharging power of electric
and thermal energy storage respectively; r1, r2, and r3 are dispatch factors, which represent
the proportion of heterogeneous energy flow into energy conversion equipment; ηEHP
and ηGB are the efficiency of electric heat pump and gas boiler; ηCHP,e and ηCHP,h are the
electrical and thermal efficiencies of the CHP unit.

2.2. The Models of User Interaction That Account for Energy Conversion

User interaction in energy communities makes sense and can improve the economy
of the community operator [8,11]. In this paper, the community operator guides users to
adjust energy use strategies by formulating reasonable retail energy prices. In general, user
interaction strategies are often limited to responses in a single form of energy, such as load
reduction and transfer, which have a greater impact on users’ actual energy use. With the
development of user terminal equipment, the user side can realize the conversion of energy
forms. When the community operator publishes retail energy prices, the multi-energy
complementary users consider the energy conversion efficiency of the terminal equipment
to obtain the difference in equivalent energy prices. Users can use the corresponding
terminal equipment to achieve secondary energy conversion and choose the appropriate
way to meet their own load demand. For example, users can choose to use electric heating
or natural gas heating to achieve the same hot water demand according to the equivalent
electricity price and the equivalent natural gas price, etc. At the same time point, the users’
actual energy use demands do not change, and the users’ actual energy use has little impact,
which can improve the flexibility and economy of the users’ energy use. Therefore, it is
of great significance to construct user-interactive models that consider the conversion of
energy use.

According to the above analysis, multi-energy complementary users can choose to
convert, reduce, transfer, and other ways to achieve interaction.

2.2.1. Convertible Load Model

This paper considers the users’ electricity–gas convertible load and improves the
convertible model of reference [23]. That is, the influence of consumer psychology is con-
sidered when optimizing the convertible load model. Based on the principle of consumer
psychology, the difference between the equivalent electricity price and the equivalent nat-
ural gas price affects the response of the user’s convertible load. The users’ interactive
response range is divided into saturation zone, linear zone, and dead zone [24,25]. When
the difference between the equivalent electricity price and the equivalent natural gas price
is lower than the dead zone threshold, users are unwilling to respond interactively. When
it exceeds the threshold, users start to respond interactively. In the linear zone, the users’
convertible load increases with the difference between the equivalent electricity price and
the equivalent natural gas price, and it shows a linear upward trend. When the compensa-
tion limit is exceeded, the users’ electricity–gas convertible amount tends to be saturated.
In this paper, the energy use rate λ

g,e
con,t of the users’ gas load to electric load and the energy

use rate λ
e,g
con,t of the users’ electric load to gas load are used to characterize the influence of

the difference between the equivalent electricity price and the equivalent natural gas price
πcon,t on the users’ mode of energy use.

λ
g,e
con,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 πcon,t ≤ −π

g,e
con,max

πcon,t+π
g,e
con,min

π
g,e
con,min−π

g,e
con,max

−π
g,e
con,max < πcon,t < −π

g,e
con,min

0 −π
g,e
con,min ≤ πcon,t ≤ 0

(2)
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λ
e,g
con,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 ≤ πcon,t ≤ π

e,g
con,min

πcon,t−π
e,g
con,min

π
e,g
con,max−π

e,g
con,min

π
e,g
con,min < πcon,t < π

e,g
con,max

1 π
e,g
con,max ≤ πcon,t

(3)

In the above formula:πg,e
con,min, π

e,g
con,min, π

g,e
con,max, and π

e,g
con,max are the dead zone thresh-

old and saturation zone limit of the difference between the equivalent electricity price and
the equivalent natural gas price when the users respond to convertible load.

According to the calorific value equivalence theorem and the energy conservation
theorem, the constraints that the convertible load needs to satisfy are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Le
con,t = Le,n

con,t − μ
e,g
con,tΔLe

con,t + μ
g,e
con,tΔLg,e

con,t
Lg

con,t = Lg,n
con,t − μ

g,e
con,tΔLg

con,t + μ
e,g
con,tΔLe,g

con,t
ΔLe

con,t = λ
e,g
con,tL

e,n
con,t

ΔLg
con,t = λ

g,e
con,tL

g,n
con,t

ΔLg,e
con,t = ΔLg

con,t/I, ΔLe,g
con,t = IΔLe

con,t
μ

e,g
con,t + μ

g,e
con,t ≤ 1

(4)

In the above formula: Le,n
con,t and Lg,n

con,t are the power before the convertible electrical
load and convertible natural gas load response; Le

con,t and Lg
con,t are the power after the

response of the convertible electrical load and convertible natural gas load; μ
e,g
con,t and μ

g,e
con,t

are 0–1 auxiliary variables for interactive response; ΔLe
con,t and ΔLg

con,t are convertible
electrical load and convertible natural gas load response quantities; ΔLg,e

con,t and ΔLe,g
con,t

are the increased power of the convertible electrical load and convertible natural gas load
after the response; I is the electricity–gas conversion coefficient, which is taken as 1.25 in
this paper.

2.2.2. Reducible Electrical Load Model

The reducible electrical load is the load that users can partially reduce [7]. The model
is as follows: {

Le
adj,t = Le,n

adj,t − μe
adj,tΔLe

adj,t
0 ≤ ΔLe

adj,t ≤ Le,n
adj,t

(5)

In the above formula: Le,n
adj,t is the load power that can be reduced before the users

respond; μe
adj,t is a 0–1 variable of whether to reduce; ΔLe

adj,t is the load power actually
reduced by the users.

Considering that power load reduction has a great impact on user satisfaction, the
maximum duration of power load reduction is constrained in this paper:

t+te
adj,max

∑
τ=t

(1 − μe
adj,τ) ≥ 1 t = 1, 2, · · · , T − te

adj,max (6)

In the above formula: te
adj,max is the maximum duration of electrical load reduction.

2.2.3. Transferable Electrical Load Model

After the community publishes the electricity price, users will transfer part of the
electrical load from higher to lower hours to reduce the cost of energy use, such as washing

143



Processes 2022, 10, 1794

machines, electric vehicles, and other loads. This part of the load is called a transferable
power load [7]. The transferable electrical load model is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Le
tran,t = Le,n

tran,t + Le,in
tran,t − Le,out

tran,t
T
∑

t=1
Le,in

tran,t =
T
∑

t=1
Le,out

tran,t

0 ≤ Le,in
tran,t ≤ Le,in

tran,max
0 ≤ Le,out

tran,t ≤ Le,out
tran,max

(7)

In the above formula: Le,n
tran,t and Le

tran,t are the power before and after the response
of the transferable electrical load at time t; Le,in

tran,t and Le,out
tran,t are the actual transfer-in and

transfer-out power of the transferable electrical load at time t; Le,in
tran,max and Le,out

tran,max are the
maximum load that can be transferred in and out at time t.

2.2.4. Heat Load Model

Some users in the community have high requirements for thermal comfort, the indoor
temperature cannot be adjusted, and they are willing to bear the additional cost of thermal
comfort. This part of the heat load is a fixed heat load. Another part of the user is willing
to adjust the thermal comfort range, which is an adjustable heat load.

The adjustable heat load adopts the first-order building thermodynamic model [26]:

Lh
adj,t = N1

1
R
(

Tin,t+1 − e−Δt/τ1 Tin,t

1 − e−Δt/τ1
− Tout,t) (8)

In the above formula: N1 is the number of users with adjustable heating temperature;
τ1 = RCair, Cair is the heat capacity of indoor air, which can be taken as 1.2 kWh/◦C,
R is the equivalent thermal resistance of the house, which can be taken as 6.8 ◦C/kW;
Tin,t is the indoor temperature of the heating that can be adjusted at time t; Tout,t is the
outdoor temperature.

The interactive response potential of heat load is mainly related to the human body’s
heat-using psychology for temperature perception, which has a certain elasticity. To better
describe the user’s thermal response potential, this paper introduces predicted mean vote
(PMV), and the relationship between room temperature and PMV index value λPMV,t is as
follows [27]:

Tin,t = Tcom,s − M(2.43 − λPMV,t)(λclo + 0.1)
3.76

(9)

In the above formula: Tcom,s is the average temperature of human skin in a comfortable
state, which can be taken as 33.5 ◦C; λclo and M are the thermal resistance of the clothes
and the metabolic rate of the human body, take 0.11 (m2·◦C)/W and 80 W/m2 respectively.

Considering the recommendations of the ISO-7730 standard and the daily routine of
the users, this paper limits the time sharing of the PMV index value, which is expressed as:{ |λPMV,t|≤ 1, t ∈ [1, 7] ∪ [21, 24]

|λPMV,t|≤ 0.5, t ∈ [8, 20]
(10)

The fixed heat load model is:

Lh
fir,t = N2

1
R
(

Tset − e−Δt/τ1 Tset

1 − e−Δt/τ1
− Tout,t) (11)

In the above formula: N2 is the number of users with non-adjustable heating tempera-
ture; Tset is the most comfortable indoor temperature of the users who cannot be adjusted.
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To prevent the indoor temperature of adjustable users from being lower than the most
comfortable temperature, the following constraints are imposed on the indoor temperature:

T

∑
t=1

Tin,t

T
= Tset (12)

To sum up, the refined model of interaction considering user-side energy conversion
is described as a matrix as follows:⎡⎣Le

t
Lh

t
Lg

t

⎤⎦ =

⎡⎣Pe
out,t

Ph
out,t

Pg
out,t

⎤⎦ =

⎡⎢⎣Le
fir,t

Lh
fir,t

Lg
fir,t

⎤⎥⎦+

⎡⎢⎣Le
adj,t

Lh
adj,t
0

⎤⎥⎦+

⎡⎣Le
tran,t
0
0

⎤⎦+

⎡⎣Le
con,t
0

Lg
con,t

⎤⎦ (13)

In the above formula: Le
t , Lh

t and Lg
t are the electricity load, heat load, and natural gas

load of the users; Le
fir,t and Lg

fir,t are fixed electrical load and natural gas load; Lh
fir,t is the

fixed heat load.

3. Optimization Model of Multi-Energy Transaction Decision between the Community
Operator and the Users

3.1. Model Architecture of the Multi-Energy Transaction between the Community Operator and the
Users Based on the Master–Slave Game

The master–slave game is an effective method to solve the problem of how to make
decisions when there is an interest relation or conflict. The master–slave game is a dynamic
non-cooperative game, and the unequal status of participants is the most fundamental
difference between the master–slave game and the classical game. In the master–slave
game, each subject has a different status and decision-making sequence. The leader has a
leadership advantage and can occupy the first or advantageous position in the game, and
the follower must follow the leader to make decisions. Not only does the retail price of
energy set by the community operator affect consumer demand, but demand also affects
price. Both parties have independent interest demands, and both make decisions with
the goal of maximizing their own interests and influencing each other, and there is a
master–slave game relationship.

The interaction relationship between the community operator and the users based
on the master–slave game is shown in Figure 2. In the energy market environment, the
community operator guides users to interactively use energy by setting reasonable retail
energy prices. The energy purchase strategies of the energy market and equipment output
are optimized under the maximum profit, and the users adjust the interactive energy use
strategies according to the energy sales price of the community operator. In the master–
slave game, the community operator, as the leader, guides users to interactively use energy
by adjusting the retail prices of electricity and heat energy. As followers, users who receive
retail prices of electricity and heat energy released by the community operator will change
their energy usage habits to a certain extent and adjust their interactive energy usage
strategies. At the same time, the users’ changes in their own energy use needs will affect
the retail energy price formulation strategies of the community operator. Additionally,
the cycle goes back and forth when neither the community operator nor the users can
improve their own interests by changing their own strategies; the equilibrium solution of
the master–slave game model is reached. Finally, the community operator determines the
final retail energy prices, the energy purchased in the energy market, and the output of
each device. The users determine the interactive energy use strategies according to the
retail energy prices released by the community operator.
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Figure 2. Multi-energy transaction decision-making model architecture between the community
operator and the users.

3.2. Pricing Model of Community Operator’s Retail Energy Prices
3.2.1. Objective Function

The community operator guides users to interact, optimize energy transactions, and
maximize daily profit by formulating reasonable retail energy prices in the upper-level
model. The objective function is:

C1 = max(Csell + Cadd − Cob − Cmend − Cwv) (14)

In the above formula: C1 is the daily profit of the community operator; Csell is the
energy retail income; Cadd is the additional income for thermal comfort; Cob is the cost of
purchasing energy; Cmend is the cost of equipment operation and maintenance; Cwv is the
cost of renewable power abandonment.

(1) Energy retail income

Csell =
T

∑
t=1

∑
i∈E

Fi,tLi
t (15)

In the above formula: Fi,t is retail energy prices of the community; E is the load type
of the users, E = {e, h, g}.

(2) Additional income for thermal comfort

Cadd =
T

∑
t=1

FaddLh
fir,t (16)

In the above formula: Fadd is the additional unit service price at which the heating
load is not adjustable for the users to maintain the most comfortable temperature.

(3) Cost of purchasing energy

Cob =
T

∑
t=1

[Fnet,e,tPe
net,t + Fnet,g,tP

g
in,t] (17)
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In the above formula: Fnet,e,t and Fnet,g,t are the unit cost of purchasing electricity and
natural gas at time t.

(4) Cost of equipment operation and maintenance

Cmend =
T

∑
t=1

J

∑
j=1

Fm,jPj,t (18)

In the above formula: Fm,j is the unit operation and maintenance costs of equipment j;
Pj,t is the output of equipment j at time t.

(5) Cost of renewable power abandonment

Cwv =
T

∑
t=1

[ΔPw,tFw + ΔPv,tFv] (19)

In the above formula: ΔPw,t and ΔPv,t are the amount of abandoned wind and light at
time t; Fw and Fv are the unit cost of abandoned wind and light.

3.2.2. Multiple Energy Price Constraints

To prevent the community operator from maliciously raising prices and ensuring the
benefit of users, multiple energy prices need to be constrained:

Fi,t,min ≤ Fi,t ≤ Fi,t,max (20)

T

∑
t=1

Fi,t

T
≤ Fi,av (21)

In the above formula: Fi,t,max and Fi,t,min are the maximum and minimum prices for
electricity and heat prices to protect the benefits of the users and the operator; Fi,av is the
average price of electricity and heat in the energy market.

3.2.3. Energy Conversion Equipment Constraints

The traditional energy conversion equipment model considers the output efficiency of
the equipment to be a fixed value. To ensure the accuracy of the equipment output, this
paper adopts the dynamic energy-efficiency model of energy conversion equipment. The
output efficiency of energy conversion equipment is mainly related to the load rate [28,29].
It is expressed by means of polynomial fitting, as shown in Formula (22).

ηx,n =
n

∑
k=0

αx,k

(
Px

Px,N

)k
(22)

In the above formula: ηx,n is the dynamic energy efficiency of equipment x using
n-order polynomial fitting; αx,k is the fitting coefficient; Px and Px,N are the actual output
power and rated output power of the equipment.

The input–output relationship of energy conversion equipment considering dynamic
energy efficiency is as follows:

(1) Combined heat and power unit

The output power efficiency of the CHP unit can be fitted by a fourth-order fitting [28]:

Pe
CHP,t = ηCHP,4Pg

CHP,t (23)

In the above formula: Pg
CHP,t is the natural gas power entering the CHP unit; Pe

CHP,t is
the output electric power of the CHP unit.
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In this paper, the strategy of determining the heat by electricity is adopted, and the
thermoelectric ratio ψCHP can be described by the second-order fitting of the electrical load
rate of the CHP unit:

ψCHP =
2

∑
k=0

(αψ,k Nk
CHP,e) (24)

In the above formula: NCHP,e is the electrical load rate of the CHP unit.
Therefore, the output thermal power Ph

CHP,t of the CHP unit is:

Ph
CHP,t = ψCHPPe

CHP,t (25)

(2) Gas boiler

The output thermal efficiency of the gas boiler can be fitted by the first-order:

Ph
GB,t = ηGB,1Pg

GB,t (26)

In the above formula: Pg
GB,t is the natural gas power entering the gas boiler; Ph

GB,t is
the output thermal power of the gas boiler.

(3) Electric heat pump

The output thermal efficiency of the electric heat pump is related to the load rate
and temperature. In this paper, only the influence of the load rate is considered, and
second-order fitting can be used [29]:

Ph
EHP,t = ηEHP,2Pe

EHP,t (27)

In the above formula: Pe
EHP,t is the electric power entering the electric heat pump;

Ph
EHP,t is the output heat power of the electric heat pump.

3.2.4. Device Operation Constraints

(1) Energy Conversion Equipment Constraints

{
Pmin

i ≤ Pi,t ≤ Pmax
i

−Pdown
i ≤ Pi,t − Pi,t−1 ≤ Pup

i
(28)

In the above formula: Pmax
i and Pmin

i are the upper and lower limits of the output of
the coupling device at time t; Pup

i and Pdown
i are the upper and lower limits of the climbing

power of the coupling device at time t.

(2) Energy Storage Device Constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

SES
i,t = (1 − σES

i )SES
i,t−1 + PES,n

c/d,i,tΔt
PES,n

c/d,i,t = ηES
c,i PES

c,i,t − 1
ηES

d,i
PES

d,i,t

CES
i,min ≤ SES

i,t ≤ CES
i,max

0 ≤ PES
c,i,t ≤ εc,i,tPmax

c,i,t
0 ≤ PES

d,i,t ≤ εd,i,tPmax
d,i,t

SES
i,0 = SES

i,T

(29)

In the above formula: SES
i,t is the energy storage value of the energy storage device at

time t; σES
i is the self-loss rate of the energy storage device; ηES

c,i and ηES
d,i are the charging

and discharging efficiency of the energy storage device; PES
c,i,t and PES

d,i,t are the charging
and discharging power of the energy storage device; CES

i,max and CES
i,min are the upper and

lower limits of the capacity of the energy storage device; εc,i,t and εd,i,t are 0–1 auxiliary
variables; Pmax

c,i,t and Pmax
d,i,t are the upper limit of energy storage charging and discharging

power respectively.
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3.2.5. Renewable Energy Output Constraints

In the below formula: Pe,pre
w,t and Pe,pre

v,t are the predicted power values of wind power
and photovoltaic. {

0 ≤ Pe
w,t ≤ Pe,pre

w,t
0 ≤ Pe

v,t ≤ Pe,pre
v,t

(30)

In addition, the upper-layer model also needs to satisfy the power balance constraint of
Equation (13). The above nonlinear model can be approximated by piecewise linearization.

3.3. Energy Use Strategies Model Considering User Interaction

According to the retail energy prices released by the community operator, users
consider increasing or decreasing load, converting load, and transferring load. For details,
see the refined model of user interaction considering energy conversion in Section 2. The
users’ goal is to optimize their own interactive energy-use strategies and maximize the
value-added benefit of energy use. This paper defines the value-added benefit of a users’
energy use, which is the users’ total energy use utility Cben minus the total cost. The
total cost includes the cost of purchasing energy Cub and the additional cost of thermal
comfort Capp.

C2 = max[Cben − (Cub + Capp)] (31)

Cben =
T

∑
t=1

∑
i∈E

[ f i
1Li

t −
f i
2

2
(Li

t)
2
] (32)

Cub = Csell =
T

∑
t=1

∑
i∈E

Fi,tLi
t (33)

Capp = Cadd =
T

∑
t=1

FaddLh
fir,t (34)

In the above formula: f i
1 and f i

2 are the constant coefficients of the users’ preference
for type i energy, reflecting the users’ preference for energy demand.

3.4. Model-Solving Process

According to the reference [30], it is easy to prove that there is a unique equilibrium
solution for the optimization model of multi-energy transaction decisions between the
community operator and the users based on the master–slave game in this paper.

This paper uses MATLAB software programming, and the method of combining the
differential evolution algorithm and CPLEX solver is used to solve the proposed model.
The solution process is as follows:

(1) Initialize the parameters of the community operator and the users, k = 0, set the
maximum number of iterations kmax = 100, use the differential evolution algorithm
to randomly generate retail energy prices of 10 groups of the community operator,
and transmit them to the energy use strategies model considering user interaction.

(2) k = k + 1.
(3) The users receive retail energy prices published by the community operator. Use

the CPLEX solver to solve the energy use strategies model and the optimal value-
added benefit Ck

2, and return the energy use strategies to the model of the community
operator.

(4) The community operator optimizes the output of equipment and the amount of
electricity and gas purchased in the market according to the energy use strategies of
the users and calculates the optimal profit Ck

1 of the community operator.
(5) Use the variation and crossover of the differential evolution algorithm to generate a

group of new retail energy prices and repeat the processes in (3) and (4). Additionally,
calculate the optimal value-added benefit Ck∗

2 of the users and the optimal profit Ck∗
1

of the community operator under the new retail energy prices.
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(6) Perform selection operation: compare the optimal solutions of the community opera-
tor before and after mutation and crossover; if Ck∗

1 ≥ Ck
1, then Ck+1

1 = Ck∗
1 , Ck+1

2 = Ck∗
2 ;

if Ck∗
1 < Ck

1, then Ck+1
1 = Ck

1, Ck+1
2 = Ck

2.
(6) If k ≥ kmax, end the program; otherwise, return to flow (2).

4. Case Analysis

4.1. Parameter Settings

This paper selects a community integrated energy system in the northern winter of
China as the research object. The forecasting curves of the renewable energy output, initial
load, and outdoor temperature curves are shown in Figure 3. Other required parameter data
are shown in the table in the Appendix A. The equipment parameters of the community
operator are shown in Table A1, which is used to deal with the community operator’s device
model. The data parameters for the users are shown in Table A2, which is the parameter
data required by the user model. The equipment efficiency fitted from Table A2 is shown in
Figure A1. The time-of-use electricity price in the energy market is shown in Table A3 [31],
it is the price that the community operator trades with the energy market. To protect the
benefit of the users, the upper limit of the electricity price set by the community operator is
not higher than the time-of-use electricity price in the energy market; the lower limit is not
less than 0.2 RMB/(kWh). The heat price of the energy market is 0.35 RMB/(kWh) [32],
and the thermal price range set by the community ranges from 0.2 to 0.5 RMB/(kWh).
The natural gas price within the community is the same as the market gas price, which is
0.34 RMB/(kWh) [33].

Figure 3. Forecasting curves of renewable energy output, initial load, and outdoor temperature.

4.2. Scene Settings

To illustrate that the multi-energy trading strategies proposed in this paper can im-
prove the profit of the community operator and the value-added benefit of the users, and
can improve renewable energy utilization, three scenarios are set for comparative analysis:

• Scenario 1: Regardless of user interaction [6], the energy price sold by the community
operator to the users is the market price.

• Scenario 2: Considering user interaction [15] and ignoring the influence of the users’
electricity–gas convertible load, the community operator and the users compete to
determine the electricity price and heat price of the community.
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• Scenario 3: Considering user interaction, using the refined model of user interaction
considering energy conversion and considering the impact of electricity–gas convert-
ible load, the community operator and the users play games to formulate the internal
electricity price and heat price in the community.

4.3. Simulation Analysis
4.3.1. Analysis of the Multi-Energy Transaction Results of the Community Operator

Under the model proposed in this paper in Scenario 3, the electricity and heat prices
traded between the community operator and the users are shown in Figure 4.

Figure 4. The price of electricity and heat that the operator trades with users.

The electricity price trend set by the community operator basically follows the elec-
tricity price in the energy market, and the peak electricity price is in the peak energy use
period, which is in line with the actual situation. The heat price set by the community
operator fluctuates within the limit of the heat price. Judging from the electricity and heat
prices traded by the community operator and the users in Figure 4, the average price of
electricity set by the community operator in Scenario 3 is 0.5 RMB/(kWh), the average price
of electricity in the energy market is 0.56 RMB/(kWh). The average price of heat within
the community is 0.33 RMB/(kWh), and the average price of heat in the energy market is
0.35 RMB/(kWh). Based on the above analysis, the average electricity price and average
heat price set by the community operator are 10.7% and 5.7% lower, respectively, than in
the market. In Figure 4, in Scenario 3, the electricity and heat prices traded between the
community operator and the users can protect the benefit of the users and promote energy
transactions between the users and the community operator.

Figure 5 shows the results of electricity and gas transactions between the community
operator and the energy market in different scenarios. Taking the peak period of electricity
price as an example, the following analysis is made: from Figure 5, it can be seen that
in Scenarios 2 and 3, compared with Scenario 1, the community operator purchases less
electricity from the power grid during the peak period of electricity price, which effectively
reduces the power supply pressure on the large power grid, indicating that user interaction
can indirectly participate in the power market and reduce the peak power consumption
of the large power grid. Compared with Scenario 2, Scenario 3 considers the convertible
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load, and part of the electricity load demand of the users is supplied by natural gas during
the peak electricity price period. The energy market has the least amount of electricity
purchased and the largest amount of gas during the corresponding period.

Figure 5. Electricity and natural gas trading results between the community operator and the energy
market in different scenarios.

4.3.2. Analysis of Energy Use Strategies for User Interaction

Figure 6 shows the results of electricity and natural gas transactions between the
community operator and the users in different scenarios. Scenario 1 does not consider user
interaction, and its electricity and natural gas loads are all original loads. As shown in
Figure 6, in both Scenarios 2 and 3, considering user interaction, the electrical load peak
smoothed to varying degrees. Scenario 1 has the highest electrical load peak, followed by
Scenario 2. Scenario 3 adopts the strategies of this paper, with the smallest electrical load
peak and the largest gas load fluctuation.

Considering the limitations of space, this paper will focus on the analysis of the
interactive energy use strategies of users’ electricity–gas convertible load. In Scenario 3, the
amount of the convertible load interaction, including consumer psychology, is shown in
Figure 7, which shows the relationship between the users’ actual convertible load response
and the equivalent energy price difference. This is consistent with the optimized results in
Figure 6. For users, when the electricity price is lower than the equivalent natural gas price
(the natural gas price multiplied by the electricity–gas conversion coefficient). For example,
to meet the same demand for hot water, the electricity cost of the users is lower than the
natural gas cost. When the natural gas price is high, the cost of electricity is higher than
the cost of natural gas. Therefore, when the electricity price is lower than the equivalent
natural gas price, users replace part of the convertible natural gas load with electricity,
and when the electricity price is higher than the equivalent natural gas price, users replace
part of the convertible electricity load with natural gas. Compared with Scenario 2, the
convertible load is considered in Scenario 3, and the electricity load curve during the peak
period of the electricity price during the periods of 11:00~14:00 and 18:00~21:00 is lower
than that of Scenario 2. In the low electricity price period from 1:00 to 7:00, the power load
curve of Scenario 3 is higher than that of Scenario 2. After considering the convertible load,
the electrical load curve of the users in Scenario 3 is smoother, and the outline of the electric
load curve is optimized.
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Figure 6. Electricity and natural gas loads of users in different scenarios.

Figure 7. The relation between the convertible load and the equivalent energy price difference.

When the users’ heat load does not participate in the interaction, that is, the original
heat load (Scenario 1), the indoor temperature is kept at the most comfortable temperature.
When considering the users’ adjustable heat load, the indoor temperature is kept in a
suitable range (Scenario 3 is used as an example). The heat load and indoor temperature of
Scenarios 1 and 3 are shown in Figure 8.
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Figure 8. Heat load and indoor temperature in Scenarios 1 and 3.

According to Figure 8, the indoor temperature of users in Scenarios 1 and 3 cannot
be adjusted at room temperature and is always maintained at about 22.6 degrees Celsius.
The indoor temperature of users in Scenario 3 can be adjusted to maintain the indoor
temperature within 20.5 to 24.5 degrees Celsius, ensuring the users’ thermal comfort. From
time period 1 to time period 9, the heat load provided by Scenario 3 is lower than the
original heat load, and coupled with heat loss, the temperature decreases. At the same time,
to keep the temperature of the first and last sections consistent, the heat load adjustment in
the last few periods is relatively large.

4.3.3. Cost-Benefit Analysis of the Community Operator and Users

To show the superiority of the model and trading strategy proposed in this paper, the
profit and profit rate of the community operator, the cost of the users, and the value-added
benefit are compared in different scenarios. The comparison results are shown in Table 1.

Table 1. Comparative Study 1.

Compare Items Scenario 1 Scenario 2 Scenario 3

Community operator

Cost (RMB) 13,940 12,486 11,976
Profit (RMB) 4459 4329 4720

Profit margin (%) 31.9 34.7 39.4
Renewable energy utilization (%) 88 93 96

Community users Total cost (RMB) 18,399 16,815 16,690
Value-added benefit 15,121 16,993 17,412

Overall, it can be seen from Table 1 that, compared with Scenarios 1 and 2, Scenario 3
is the establishment of the multi-energy prices within the community under the model
proposed in this paper, the profit and profit margin of the operator, the value-added benefit
of the users’ energy use, and the renewable energy utilization have increased significantly.

The specific analysis is as follows: In terms of on-site consumption of renewable
energy, the on-site renewable energy utilization in Scenario 2 and Scenario 3 has increased
by more than 5% compared with Scenario 1. Scenario 3 has the highest renewable energy
utilization, followed by Scenario 2 and Scenario 1. Therefore, user interaction can improve
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on-site renewable energy utilization. In terms of the community operator’s profit and the
energy value-added benefit of the users, compared with Scenario 1, Scenario 2 reduces
the community operator’s profit by 130 RMB. The cost of the users’ energy use has been
reduced by 1584 RMB, and the value-added benefit of the users’ energy use has been greatly
improved. This is because Scenario 1 is sold to the users at the market energy prices, the
retail energy prices are relatively high, and the users are not given preferential energy
prices. Scenario 2 considers user interaction and gaming, the retail price of energy in the
community is determined, and the energy prices are constrained within an appropriate
range, which can greatly improve user satisfaction with energy use. Compared with
Scenario 2, the community operator’s profit in Scenario 3 has increased by 391 RMB. After
converting the load, the operator reduces the penalty cost of renewable energy curtailment
and the power supply cost during peak power consumption. For the users, the total cost is
reduced by 125 RMB after considering the convertible load. At the same time, the value-
added benefit of the users’ energy use in Scenario 3 compared with Scenario 2 has been
improved, and the satisfaction with energy use has been further improved. Compared
with Scenarios 1 and 2, Scenario 3 has the highest profit for the community operator, the
lowest total energy use cost for the users, and the highest value-added benefit. Although
the community operator in Scenario 3 has the lowest turnover, it has the lowest cost. From
the profit side, the profit in Scenario 3 is 5.9% and 9% higher than that in Scenario 1 and
Scenario 2, respectively. In terms of profit margin, Scenario 3 has the highest profit margin,
which is 7.5% and 4.7% higher than Scenario 1 and Scenario 2, respectively. Meanwhile, the
value-added benefit of the users in Scenario 3 is 15.2% and 2.5% higher than that in Scenario
1 and Scenario 2, respectively. Scenario 3 can maximize the benefits of the community
operator and the users. The community operator can actively guide user interaction during
pricing by optimizing retail energy prices, improving the users’ value-added benefit of
energy use, and at the same time increasing the community operator’s own profit and
making the users more satisfied with the services provided by the community operator to
consolidate and expand the user base and provide other value-added services. To sum up,
Scenario 3 can consider the benefits of the community operator and the users and achieve a
win–win situation.

To further clarify the work of this paper, Scenario 4 is added: a centralized optimization
method is adopted to optimize the maximum profit of a community operator with a single
objective [9], considering user interaction, but not considering the convertible load. The
comparison results are shown in Table 2.

Table 2. Comparative Study 2.

Compare Items Scenario 3 Scenario 4

Community operator
Cost (RMB) 11,976 13,153
Profit (RMB) 4720 4957

Profit margin (%) 39.4 37.6

Community users Total cost (RMB) 16,690 -
Value-added benefit 17,412 -

The optimization method The master–slave game The centralized optimization
Whether user interaction is considered

√ √
Whether the convertible load is considered

√ ×
Whether the retail energy prices have been optimized

√ ×
Whether a win–win situation has been achieved

√ ×

As can be seen from Table 2, Scenario 4 adopts the centralized optimization with the
single goal of maximizing the profit of the community operator, without considering the
interests of the users. From the optimization results, the profit of the community operator in
Scenario 4 is higher than that in Scenario 3 because the community operator does not offer
preferential energy prices to the users and fails to balance the interests of users in Scenario 4.
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Meanwhile, the cost of the community operator in Scenario 3 is lower than that in Scenario 4,
and the profit margin of the community operator in Scenario 3 is 1.8% higher than that
in Scenario 4. In Scenario 3, the community operator can optimize the energy prices and
balance the value-added benefit of the users through appropriate profit sharing. Although
the profit is reduced, it can improve the users’ satisfaction with the use of energy and
improve the profitability of the community operator. In terms of user interaction, Scenario 3
considers the convertible load, which can enrich the way users use energy. Under the
optimization method of the master–slave game in Scenario 3, the community energy prices
can be optimized, and the win–win situation between the community operator and the
users can be realized.

Through the above comparative analysis, using the multi-energy transaction decision
optimization model of the community operator and the users considering user interaction
proposed in this paper, it is possible to formulate reasonable retail energy prices for the
community, guide the users to interact, and improve the community operator’s profit and
value-added benefit of the users’ energy use to achieve a win–win situation.

5. Conclusions

The master–slave game model constructed in this paper describes the energy trans-
action between the community operator and the users and proposes the optimization
model of the multi-energy transaction decision between the community operator and the
users. The upper model considers the maximum profit of the community operator, while
the lower model aims for the maximum value-added benefit of the users. The model is
effectively analyzed by an example, and the relevant conclusions are as follows:

(1) The retail energy prices of the community determined by the decision in this paper are
reasonable and acceptable to the users. The average price of electricity and the average
price of heat set by the community operator are 10.7% and 5.7% lower, respectively,
than the market, which protects the interests of the users. The model is extensible.
By modifying the corresponding model, more user groups can be promoted. For
different countries and regions, the model of the upper community operator can be
modified according to the actual situation, including the type of equipment and the
type of renewable energy, which can be adjusted according to the needs. The lower
user model can determine the types of user interaction load (including reducible,
transferable, transferable, etc.) according to the living habits of residents in different
countries and regions. At the same time, the lower model has variable data related
to the users and can be applied to residential communities with different energy
preferences.)

(2) With the continuous improvement of the user side equipment, convertible load be-
comes possible. Users can choose appropriate energy modes to meet their energy
needs according to different energy prices. The refined user interaction model that
considers energy conversion constructed in this paper can reduce user costs.

(3) The optimization model of the multi-energy transaction decision between the commu-
nity operator and the users proposed in this paper considers the energy conversion on
the user side, which can not only improve the profit of the community operator, but
also increase the value-added benefit of energy use and realize a win–win situation for
the community operator and the users. Using the strategy proposed in this paper to
set the community prices increases the community operator’s profit and profit margin
by 5.9% and 7.5%, respectively, compared to using market energy prices directly. At
the same time, the value-added benefit to users also increases by 15.2%. In addition,
user interaction can indirectly reduce the peak value of the grid, which is beneficial to
grid security.

The model established in this paper mainly formulates the retail prices of community
energy from the dimensions of the community and the users, ignoring the energy connec-
tion between the community and the community. At the same time, the impact of load
and renewable energy uncertainty is ignored. The next step will continue to study the
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energy transaction strategies between the community and the community, and the impact
of uncertainty. In terms of the community and the community, a single community may
have an energy surplus or a shortage at some time. Multi-communities can trade surplus
or shortage energy according to a certain mode to realize the efficient use of resources.
Uncertainties also affect the decisions of the community operator. We will continue to study
these two aspects in future research.
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Appendix A

Table A1. The equipment parameters.

Equipment Parameter Type Parameter Value

CHP

Rated Capacity 300 kW
Minimum output power 100 kW

Electrical efficiency fitting coefficient αCHP,0 = 0.09, αCHP,1 = 0.44, αCHP,2 = −0.14,
αCHP,3 = −0.11, αCHP,4 = 0.06

Thermoelectric ratio fitting coefficient αψ,0 = 3.82, αψ,1 = −5.84, αψ,2 = 3.6
Operation and maintenance cost 0.04 RMB/(kWh)

EHP
Rated Capacity 200 kW

Thermal efficiency fitting coefficient αEHP,0 = 2.61, αEHP,1 = 0.36, αEHP,2 = 0.026
Operation and maintenance cost 0.06 RMB/kWh

GB
Rated Capacity 1000 kW

Thermal efficiency fitting coefficient αGB,0 = 0.81, αGB,1 = 0.13
Operation and maintenance cost 0.02 RMB/kWh

Electricity storage

Rated Capacity 500 kW
Charge/Discharge efficiency 0.98

Attrition rate 0.02
Operation and maintenance cost 0.01 RMB/kWh

Heat storage

Rated Capacity 500 kW
Charge/Discharge efficiency 0.95

Attrition rate 0.02
Operation and maintenance cost 0.01 RMB/kWh

157



Processes 2022, 10, 1794

Table A2. Data parameters for users.

Parameter Meaning Value Parameter Meaning Value

π
e,g
con,min

Dead threshold for
electrical energy

conversion
0 π

e,g
con,max

Saturation value of
electrical energy

conversion
0.2

π
g,e
con,min

Dead threshold for natural
gas conversion 0 π

g,e
con,max

Saturation value of natural
gas conversion 0.15

f e
1

First power coefficient of
electrical energy

preference
1.5 f e

2

Quadratic coefficient of
electrical energy

preference
0.0009

f h
1

First power coefficient of
thermal energy preference 1.1 f h

2
Quadratic coefficient of

thermal energy preference 0.0011

f g
1

First power coefficient of
natural gas preference 1.2 f g

2
Quadratic coefficient of
natural gas preference 0.001

N1

Number of the users with
adjustable heating

temperature
500 N2

Number of the users with
non-adjustable heating

temperature
300

Le,out
tran,max

Maximum load that can be
transferred out 80 kW Le,in

tran,max
Maximum load that can be

transferred in 80 kW

te
adj,max

Maximum duration of
electrical load reduction 4 h Tset

The most comfortable
indoor temperature 22.6 ◦C

Table A3. Time of use electricity prices.

Period Market Electricity Price (RMB/kWh)

Valley period: 01:00—07:00 0.35
Normal period: 08:00—10:00; 15:00—17:00;

22:00—24:00 0.5

Peak period: 11:00—14:00; 18:00—21:00 0.8

Figure A1. Fitting curve of equipment efficiency.
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Abstract: This study aims to address the issues of volatile energy access to the active distribution
network (ADN), which are the difficulty of frequency regulation, the increased voltage deviation of
the ADN, the decrease in operational security and stability, etc. In this study, a two-stage majorization
configuration model is established to identify and understand how volatility energy affects a hybrid
energy storage system (HESS). The ADN and HESS with lead-acid batteries and supercapacitors
(SC) are examined using day forecast data for wind, solar, and load. In this planning stage, the
integrated cost, network loss, and node voltage deviation are considered as optimal objectives in a
multi-objective optimization model, while the revised multi-objective optimization particle swarm
approach is used to solve the initial value of capacity configuration. In the operation stage, optimizing
objectives like wind output power fluctuations, the frequency deviation of HESS is used to solve the
modified value of the configuration capabilities of the SC, and the output of different types of units in
ADN is further optimized by the quantum particle swarm with the addition of a chaotic mechanism.
The simulation study is conducted to determine the best configuration result based on case 33 node
examples, and the simulation results demonstrate the model’s viability.

Keywords: ADN; HESS; operation strategy; optimal configuration; frequency regulation

1. Introduction

Under the background of the worldwide “Carbon Double”, the development of a
series of volatile energy [1], like tidal energy and solar energy, has received unprecedented
attention. Under the pressure of a high proportion of instability volatility energy consump-
tion, multiple countries have put forward supporting development policies of “volatility
energy + ESS”, and the significance of energy storage devices for the heavy penetration of
volatility energy sources is totally mirrored. The optimal configuration of ESS incorporates
a direct effect on the active control ability of ADN, which makes the ADN preferable to the
traditional distribution network (TDN), and realizes the volatile energy interoperability
between the grid and the electricity consumption side [2,3].

At present, the configuration strategy of the ESS of the distribution network has been
observed in many studies at home and abroad. Wang et al., according to the data from
load-side transformers and solar power, established an energy storage capacity allocation
scheme with optimal economic efficiency based on intelligent algorithms and energy
storage allocation strategies for customer power consumption characteristics [4]. Chen et al.
established a model with the highest wind-storage combined system power sales revenue as
the optimization objective and used the Ant-Lion algorithm to solve the optimal allocation
scheme for wind generation (WG) cluster power backup and energy storage power and
capacity [5]. Using dynamic solar planned output data as a constraint and the maximum
average annual benefit over the life cycle as the optimization objective, Hong et al. used
particle swarm algorithms (PSO) and time-series simulation calculations to solve for the
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best configuration of ESS [6]. They also considered the energy storage investment cost,
operation and maintenance, penalty costs for deviating from the planned output, and
revenue from PV plants. Liu et al. analyzed the influence of fluctuations of load power
on the distribution network and proposed a model predictive control-based optimization
strategy for energy storage allocation and scheduling with the goal of economic efficiency
of user-side energy storage operation [7].

However, the above models only formulate the configuration of the ESS in terms of
operational economics and none of them take into account the dynamic characteristics of
the ESS. Shi et al. analyzed the characteristics of historical wind and solar power output
fluctuations at two durations of 15 min and 10 min and studied the capacity allocation
strategies of ESSs based on smoothing energy output fluctuations and participating in
system frequency regulation [8]. Wu et al. analyzed the output characteristics of the
combined power generation farms with wind and solar, and proposed a project comparing
the stabilization index and smoothing effect evaluation index to analyze the filtering effects
of the sliding average method and least-squares procedure, to decide the output power level
of ESS configuration [9]. Wang et al., resting on the historical information characteristics
of the WG and PV, proposed a capacity optimization configuration method based on
the analysis of the wind and PV output volatility under different capacity allocation
schemes to guarantee the chance that the system output change rate satisfies the maximum
requirements [10]. In Ref. [11], the ADN energy storage operating approach to smooth out
the system’s power fluctuation is suggested. An ESS configuration scheme is structured
with fixed expenses and operating expenses in the cycle as the optimization targets, and
the dynamic programming arithmetic is needed to calculate the energy storage installation
capacity, power, and installation location. The above model takes into consideration the
dynamic characteristics of the ESS and additionally smoothed out the volatility to a definite
extent; however, the improvement of the configuration results is not obvious when solely
one layer model is employed for designing.

In Ref. [12], the authors described the design of a two-level estimate model for allo-
cating storage capacity. The outer layer determines the in-out power and capacity of the
ESS with the calculated goal of minimizing the expense to invest in the storage system, the
inner layer determines the charging and discharging power of the ESS to minimize the
system transit line’s power fluctuation, and a probabilistic approach to multiple scenarios
is adopted to calculate the conclusions of the ESS allocation. In Ref. [13], a HESS two-layer
planning scheme on account of the operational life span in the operation phase was con-
structed. In the upper layer, with the objectives of the lowest investment cost, the linear
programming algorithm is adopted to estimate the total action domain of HESS, which pro-
vides a reference range for the actual operation of HESS and formulates the energy storage
operation strategy considering the storage charging and discharging capacity; the lower
layer takes the maximum operational life span of the battery during the operation phase as
the objective function, and the PSO algorithm is taken to calculate the best configuration
of battery and supercapacitor capacity. The works of Refs. [11,12] are based on the use
of ESSs within the distribution network for double-layer configuration, purely with the
support of the distribution network; however, they did not consider that the role of WG
in the configuration of the ESS is the existence of a negative correlation, and provide no
analysis on the aspects of wind generation concerned in system frequency.

With the increase of penetration power of wind and PV, the proportion of conventional
generating sets is gradually reduced, and the power grid inertia and FM intensity are con-
stantly reduced, which can have an effect on the security and stability of operation within
the ADN with comparatively high volatile energy proportion [14]. To take full advantage
of the ESS and cut down the cost, this paper takes into account the optimal configuration
of the ESS on the ADN side and the energy side, and considers the investment to study
the optimal configuration of the HESS of lead-acid batteries and supercapacitors with the
idea of “integrated planning of energy storage capacity configuration and dispatching
strategy” [15]. It is also contrasted with various battery types used for energy storage
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and serves as a guide for user-side energy storage designs. Based on the initial values
of capacity and power provided by the traditional energy storage allocation method, an
operational strategy for volatility energy utilization value enhancement is introduced at
the planning level, and an optimal scheduling strategy to take into account the system
frequency deviation is introduced at the dispatching level, using the output of WG and
ESSs to take part in FM to correct the configuration of planning level supercapacitors energy
storage capacity’s initial values. The contributions of this paper are summarized as follows:

(1) The problem of the impact of fluctuating energy output on the configuration of energy
storage systems is analyzed, laying the foundation for the subsequent development
of operational dispatching strategies based on equivalent load curves.

(2) A hybrid energy storage system using lead-acid batteries and supercapacitors is
utilized to diversify the types of energy storage and expand the scope of optimization.

(3) By considering both the distribution grid side and the energy side, a two-tier en-
ergy system optimization strategy with joint participation of wind storage in system
frequency regulation is proposed. Through day-ahead optimization and intra-day
correction multi-timescale hybrid energy storage configuration optimization, the
distribution grid economy and renewable energy utilization are improved.

2. Impacts of Volatility Energy Power on ESS and Mathematical Model

2.1. Analysis of the Impact of Volatility Energy Power on ESS

In this paper, volatility energy mainly adopts WG generation and PV. The sum of
actual load and negative load (each power generation) is taken as the equivalent load of
volatility energy access to ADN, and the period of charging and discharging of HESS is
segmented by the extremal variation of the equivalent load figure.

Equation (1) presents the specific calculation procedure.

Pe,load(t) = Pload(t)− PWG(t)− PPV(t) (1)

where Pe,load(t), Pload(t), PWG(t) and PPV(t) illustrate the equivalent load, realistic load,
WG power, and PV power in period t, respectively.

Currently, the fluctuation of photovoltaics often takes place in intervals of less than
1 min; when considering how to smooth out fluctuations in PV power, control using the
energy storage system’s output is frequently used [16]. When PV power fluctuations do not
exceed the maximum permissible power of the HESS, the HESS’s power is often employed
to smooth these power variations while keeping the PV converter operating in MPPT mode.
To put it another way, downward power fluctuations are tamed by discharging (when
the power value of HESS greater than 0), and upward power variations are tamed by
charging (when HESS power is negative). The details of the coordinated control strategy
are discussed in Section 3. Wind power and load fluctuations follow the same pattern.

The variations in PV power throughout a minute is discussed in this paper. The power
fluctuations are the interval size between the utmost and minimum power values measured
at the purpose of common coupling over the course of 1 min, as described in Figure 1.

The comparison of typical daily PV output and wind output curve and actual load
curve in a certain place is shown in Figure 2.

From Figure 1, it is obvious that the peak period of PV output is 9:00–14:00, while the
typical daily load curve peaks at around 12:00 and 20:00, indicating that the peak period
of PV and the peak period of the load curve during the day coincide. Thus, the peak-to-
valley’s distances of the equivalent load curve will be curtailed after the superposition of
PV output with realistic load, and PV power generation is positively correlated with the
peak-to-valley difference. On the contrary, the peak period of wind and the valley period
of load curve at night are similar; the peak-to-valley’s distances after the superposition of
wind output and realistic load will be increased, and its influence is negatively correlated.
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t=5s  
Figure 1. PV power fluctuations in one minute.

 

Figure 2. Comparison of the load curve and the volatile energy output.

To sum up, PV output reduces the necessity of energy storage configuration, and wind
output increases the necessity. While the HESS is configured with the equivalent load
curve, the access of volatility energy will realize peak cutting and valley filling and affect
the HESS’s operation strategy.

2.2. Mathematical Model of ESS

The usage of energy storage devices can help to reduce network losses and power
quality fluctuations [17] that are brought on by unstable energy sources linked to ADN as
well as some of the energy consumption and utilization rate fluctuations. It is challenging to
fulfill this need with a single kind [18] of energy storage device, though. The double-layer
planning model established in this paper can fully utilize the complementary characteristics
of lead-acid batteries and supercapacitors [19] to effectively extend the service life of the
system, save cost, improve the overall performance of energy storage, and solve the
problem to the greatest extent. This is demonstrated by the low frequency of lead-acid
battery charging and discharging and the high frequency of supercapacitor charging and
discharging [20].

It is mathematically modeled from the State of Charge (SOC) and the charging/
discharging power.

SOC(t) =

{
(1 − η)SOC(t − 1) + Pc(t)•Δt•γ

Ee
, charge

(1 − η)SOC(t − 1) + Pd(t)•Δt
Ee•λ , discharge

(2)

where SOC(t) evaluates the SOC level in period t, η delineates the loss rate of remaining
power per hour, Pc(t) and Pd(t) clarify charging and discharging power, γ and λ are
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charging and discharging efficiencies, Ee is the rated capacity, Δt is the sampling interval,
and the value of this paper is 1 h.

3. A Double-Layer Multi-Objective Optimization Model

This study uses the two-layer decision optimization model to solve the ESS configu-
ration scheme. The two-layer model can comprehensively consider the problems of the
configuration of ESS and various problems in the and.

3.1. Planning Layer Optimization Model

According to the load situation of the ADN, the maximum capacity value of the ESS
is initially calculated, the day forecasts of wind, solar, and load are used to carry out the
preliminary planning of the ESS, and an optimization model is built with the combined
cost, network loss, and nodal voltage deviation as the optimal objectives.

3.1.1. Objective Functions

• Comprehensive cost of a full-day life cycle;

minF1 = Cinv + Crun + CPV + CWG + Cbuy + Cploss (3)

where F1 introduces the daily comprehensive expenses of HESS, Cinv and Crun are the daily
investment expenses and daily operation and maintenance expenses of HESS, CPV , CWG
represent the operation and maintenance expenses of PV and wind farms, Cploss describes
the network loss expenses, and Cbuy describes the daily power purchase expenses, which
to some extent characterizes the ability of “Peak cut and fulfill valleys”. The calculation
formulas of each component are as follows:

Cinv =
N
∑

j=1

τ(1+τ)l(cpPess+ceEe)
24
(
(1+τ)l−1

) •T

Crun =
N
∑

j=1

∫ T
0 (comPess(t))dt

CPV =
∫ T

0 (cPV PPV(t))dt

CWG =
∫ T

0 (cWGPWG(t))dt

Cbuy =
∫ T

0 mg(PLAB,c(t) + PSC,c(t))dt

Cploss =
∫ T

0 ma

(
Pploss(t)

)
dt

(4)

where N indicates energy storage units’ amount, Pess indicates the HESS’s power rating,
cp and ce evaluate power and capacity cost coefficients, com, cPV , and cWG denote HESS’s,
PV’s, and WG’s operation and maintenance cost factor, Pess(t) indicates the actual power
level of the HESS in period t, PLAB,c(t) and PSC,c(t) describe the charge powers of lead-acid
batteries and supercapacitors, mg and ma evaluate unit electricity price and unit network
loss cost, and Pploss(t) denotes the network active loss power.

• Network loss

minF2 =
T

∑
t=1

I

∑
i=1

Ploss,i,t (5)

where F2 delineates the network loss for 24 h, T defines the dispatching time, I is the nodes’
amount of the ADN, and Ploss,i,t denotes the power loss of line i at time t.

• Node voltage deviation

minF3 =
I

∑
i=1

|Vi − VN | (6)
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where VN denotes the node’s rated voltage, Vi is the voltage on node i, and F3 is smaller,
meaning the node voltage is more stable.

3.1.2. Constraint Condition

• SOC of energy storage constraint;

To avoid over-charging and over-discharging, SOC has a certain range limit, which
cannot be fully discharged or fully charged.

SOCmin ≤ SOC(t) ≤ SOCmax (7)

where SOCmin and SOCmax are the minimum charge level and maximum residual charge
level, respectively.

• Node voltage constraints

Ui,min ≤ Ui ≤ Ui,max(i = 1, 2, 3 · · · , I) (8)

where Ui,min and Ui,max are the minimum and maximum voltages at node i, respectively.

• Branch circuit current constraints

To guarantee the HESSs can operate well and stably.

Ii ≤ Ii,max(i = 1, 2, 3 · · · , m) (9)

where Ii,max is the upper limit of the current in the i-th branch, and m is the number of
branches.

• Power balance constraints⎧⎪⎪⎪⎨⎪⎪⎪⎩
PG,i − PN,i = Ui

N
∑

j=1
Uj
(
Xij cos φij + Yij sin φij

)
QG,i − QN,i = Ui

N
∑

j=1
Uj
(
Xij sin φij − Yij cos φij

) (10)

where PG,i and QG,i indicate the power output of active and reactive to the power supply at
nodes i, PN,i and QN,i indicate the power output of active and reactive at nodes i, Ui and Uj
are the voltage amplitude at nodes i and j, Xij and Yij evaluate real and virtual parts of the
node-admittance matrix elements, and Φij evaluates the voltage angular phase difference
of nodes i and j.

3.2. Operation Layer Optimization Model

Due to the access of WG and load, there is frequency fluctuation in the distribution
network system. This study adds 120 MW of WG in the operation layer to adjust the energy
storage system output, using the energy storage output to suppress the fluctuation [21,22];
5% of the WG output is used for system frequency regulation. When the fluctuation
frequency range exceeds 0.2 Hz, the whole capacity of WG is added to the distribution
network; otherwise, the energy storage capacity calculated under the optimal strategy is
used. In turn, the value of the additional capacity to the operation layer needed for the
supercapacitors is calculated.

3.2.1. Objective Function

• Minimal fluctuations in WG output

minF4 =

√
1
n

n

∑
t=1

[
PWG(t)− PWG

]2 (11)

where PWG is the average active power of the all-day life cycle.
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• Minimal system frequency deviation

minF5 =
f (t)− fe

fe
•100% (12)

where f (t) is system frequency at time t, and fe is system-rated frequency.

3.2.2. Constraint Condition

• Charge and discharge power constraint

− PLAB,c,max ≤ PLAB(t) ≤ PLAB,d,max (13)

− PSC,c,max ≤ PSC(t) ≤ PSC,d,max (14)

where PLAB,c,max and PLAB,d,max reflect the lead-acid batteries’ charging/discharging pow-
ers crest values, PSC,c,max and PSC,d,max reflect the supercapacitors’ charging/discharging
powers crest values.

• Charge and discharge times constraint

The life span of energy storage units increase and the costs reduce by reducing the
number of charging and discharging occurrences during operation.

0 ≤ x ≤ N
0 ≤ y ≤ M

(15)

where x, y, N, and M are the number of charging and rated charging of lead-acid batteries
and supercapacitors, respectively.

4. Scheduling Strategy and Solution Algorithm

4.1. Scheduling Strategy for Energy Storage Systems

The two components of the scheduling strategy are as follows: the division of con-
tinuous charging and discharging periods following the “time-of-day tariff” [23]. The
segmentation of charging and discharging periods is used to determine the power of the
ESS to charge and discharge in each period.

1© HESS is configured according to the load curve, charging at the curve trough,
and discharging at the peak. To improve the utilization of the energy storage system,
for the flat tariff period, if the period before and after it is a high tariff period then the
charging time is Te; if both the preceding and following periods are low tariff periods,
then the discharge time is Td. The charging/discharging periods are distinguished on
account of the time-of-day tariff strategy, and the high and low electricity price periods
corresponding to the charging and discharging periods; Te,1 and Te,2 are the charging
periods and Td,1, Td,2 and Td,3 are the discharging periods. The results of the charging and
discharging time periods are delineated in Figure 3. The times of 4:00–9:00 and 15:00–19:00
are low electricity prices, while 10:00–14:00 and 20:00–3:00 are high electricity prices, in the
known charging and discharging period, considering the SOC.

2© The variable power charging/discharging mode is adopted to determine the power
values of multiple ESSs when charging and discharging. The specific process is as follows.

The smaller the equivalent load within Δt, the more energy storage charging is re-
quired. The equivalent load values within Δt for each sampling interval of period T are
sorted in order from smallest to largest, and the size of the charging power level of the
HESS within Δt corresponding with the equivalent load is determined, respectively. To
make the fluctuation of the equivalent load curve of the HESS after charging as small as
possible (except for the HESS within Δt with the smallest equivalent load, which is charged
by the maximum power), the storage system is charged at a variable power less than the
maximum power. The calculation is shown in Equation (16).
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Charging:

Pc(t) =
{

α•(Pc,max + PL,min − PL(t))
Pc,e

, PL(t) < (Pc,max + PL,min)
, PL(t) ≥ (Pc,max + PL,min)

(16)

For each determined charging power, the SOC also increases, and undetermined
sampling intervals are charged at zero power until the power magnitude of all sampling
intervals is determined and all charging power values for the HESS are output. In contrast,
the SOC decreases during the discharging process.

The process of determining the magnitude of the discharge power is similar to the
above process. The differences are the larger the equivalent load in Δt, the greater the need
for energy storage discharge, and in order of equivalent load from largest to smallest to
determine its corresponding the size of the discharge power of the HESS within Δt. Except
for the Δt with the largest equivalent load, the HESS is discharged by the maximum power
value; during other Δt the HESS is discharged at a variable power that is less than the
maximum power. The calculation is shown in Equation (17).

Discharging:

Pc(t) =
{

β•(PL(t) + Pd,max − PL,max)
Pd,e

, PL(t) > (PL,max − Pc,max)
, PL(t) ≤ (PL,max − Pc,max)

(17)

where Pc,max, Pd,min, Pc,e, Pd,e are charging/discharging powers in period t, maximum charg-
ing power, minimum discharge power, and rated charging/discharging power, respectively.
PL(t), PL,min, PL,max, α, β are large equivalent load values during the sampling period t,
minimum, and maximum, equivalent load values at the sampling interval, and charging
and discharging power weights, respectively.

 
Figure 3. The strategy of charging and discharging.

4.2. The Computational Flow of Multi-Objective Chaotic Particle Swarm Algorithm

A mathematical optimization methodology for dealing with multi-layer analytical
processes is called Chaos Particle Swarm Optimization (CPSO). According to how well it
fits its surroundings, each particle is gradually shifted to a better location. After solving
each sub-step or step’s requirement’s part-optimal solution in the correct order, the optimal
prescription from the set of local optima is then employed as the optimization’s final output.

Therefore, a modified Chaos Particle Swarm Optimization (MCPSO) is used to solve
this problem. The chaotic property is used to improve the diversity of the population and
the ergodicity of the particle search, and the inclusion of chaotic states into the optimization
variables gives the particles the ability to search continuously. The specific flow chart is
presented in Figure 4.
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Figure 4. An MCPSO flow chart for solving the optimal HESS configuration.

The detailed operations are shown as follows.
Step 1: The maximum allowable times of iterations the range of fitness error values,

and the algorithm-related parameters: inertia weights, and learning factors are initialized.
Step 2: Chaotic initialization of particle positions and velocities are determined.
(1) An n-dimensional vector x1 = (x11, x12, · · · , x1n) between [0,1] is randomly gen-

erated, using the Logistic chaotic system equation by Equation (18) to obtain N vectors
x1, x2, · · · , xN .

xn+1 = ∂xn(1 − xn), n = 0, 1, 2, · · · (18)

(2) After calculating the fitness function for all particles, Z initial velocities are gen-
erated at random from Y initial populations by choosing the Z initial solutions with the
best performance.

Step 3: pBest is set as the new position if the particle fitness is greater than the
individual extreme.

Step 4: The global extreme gBest is set to the new position if the particle fitness is
greater than it.

Step 5: Dynamically update learning factor.
(1) Take the average value of the particle adaptation value.
(2) The particle adaptation value is compared with the average value. When the

average value is more than the adaptation, the learning effect maximum value is taken.
Otherwise, the learning factor is solved by using Equation (19).

w = wmin +
wmax − wmin

x − x1
(xi − x1) (19)

169



Processes 2022, 10, 1844

where wmin, wmax are the learning factor’s minimum and maximum values, and x1, xi, x
are the average of the adaptation values of the 1st and ith particle, and the population
adaptation values.

Step 6: Redefine the particles’ positions and velocities.
Step 7: Chaos optimization to get the best position.
Calculate the adaptation value for each feasible solution experienced by the chaotic

variables in the original solution space, and select the feasible solution with the best
performance. Map the vectors in the optimal position to the definition domain of the
Logistic equation [0,1], iterate with the Logistic equation to generate a sequence of chaotic
variables, then return the generated sequence of chaotic variables to the original solution
space through the inverse mapping.

Step 8: Substitute for any one particle’s position present in all particles with p*.
Step 9: The search terminates and the global optimal position is output if the halting

condition is met. If not, go back to Step 3.

5. Case Study

5.1. Basic Parameters for the Case

In this research, the modified case 33 node examples system was used as an arithmetic
example, and 300 kw WG and 300 kw PV were added to nodes 19 and 26. The system
structure is delineated in Figure 5 for the HESS configuration. The WG output, PV output,
and load curves for a typical day at a site are described in Figure 2.

 

Figure 5. Example system of PV, WG, and HESS access in ADN.

A time-of-day tariff was set, with a tariff of RMB 1.0/kWh during peak hours (HESS
discharging periods), RMB 0.35/kWh during low hours (HESS charging periods), and a flat
tariff of RMB 0.55/kWh for the rest of the day. The parameters related to supercapacitor
and lead-acid battery units are expressed in Table 1.

5.2. Analysis of the Impact of Energy Storage System Access Nodes

As shown in Figure 6, when the same capacity (400 kW) energy storage device was
connected to different nodes, the voltage stability and minimum voltage difference were
obvious. In nodes 8 to 18 and nodes 29 to 33 access, the node voltage was lower but the
corresponding voltage stability index was also not high, thus the voltage lifting effect was
not obvious. Therefore, it is not conducive to voltage safety and stability. Thus, if only the
voltage stability indicators are considered, the nodes in Table 2 can be connected.

Assuming access to one of the nodes first, the size of the active network loss of the
energy storage device at different access points of the network-wide 33 nodes is derived, as
shown in Figure 7. As can be seen from the figure, the network-wide active network loss
values are relatively low at nodes 1, 2, 6, 19–22, 28, and nodes 31–33, so it is possible to
choose between these nodes.
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Table 1. Related parameters of the energy storage unit.

Parameters Lead-Acid Batteries SC

SOCmin 0.4 0.1
SOCmax 0.8 0.9

charging and discharging efficiency (%) 98 98
capacity cost factor (RMB/kW) 1500 2400

capacity maintenance cost factor (RMB/year) 0.045 0.015
service life (year) 10 20

power cost factor (RMB/MW) 300 300
initial volume of SOC 0.4 0.1

discount rate (%) 10 10
power factor (%) 98 98
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Figure 6. Voltage stability index for different access points.

Table 2. Effect of different access points on grid voltage and stability. VBN: Voltage of the
branch node.

Access Nodes Stability Index VBN

1 1 1
2 0.99 0.99
3 0.98 0.98
20 0.98 0.99
21 0.97 0.99
22 0.96 0.99

After considering both the stability index curve and the active network loss curve, the
energy storage device is connected to the above nodes, the tidal current calculation is carried
out, and finally node 6 and node 30 are selected. Due to the three branches of the IEEE
33 node distribution system, the position of node 6 can be made the Interaction of energy,
generating information faster and more economically secure, which is the interaction
between the wind generation systems, PV systems, and loads of the individual nodes.
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Figure 7. Effect of different access points on active power network loss.

5.3. Interpretation of Result
5.3.1. Capacity Configuration Results and Economic Analysis

This paper takes a comparison under three scenes and thus judges the validity and
reliability of this study. Scene 1 is a single layer multi-objective improved particle swarm
optimization algorithm for configuration, without consideration of lower layer optimization.
In scene 2, a double-layer optimization configuration model, the upper layer is optimized by
a multi-objective chaotic particle swarm algorithm but does not consider that the operation
layer wind power does not participate in the impact of system frequency modulation on
the configuration. Scene 3 is the proposed solution of this study.

Table 3. Configuration results in the three scenarios (KW).

Parameters Scene 1 Scene 2 Scene 3

capacity of lead-acid batteries 464.55 425.32 157.34
capacity of supercapacitors 1100 926.93 695.64

correction of supercapacitors 0 5.25 5.95
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Figure 8. Charging and discharge strategy of the HESSs in Scene 3.

In addition to lead-acid batteries, other types of hybrid batteries such as Li-Ion batteries
and NaS batteries were also tested, demonstrating that the simulation results are rather
different. This was done to diversify the forms of energy storage and widen the scope
of optimization.
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Table 4. The cost profiles of the configuration schemes (RMB).

Parameters Scene 1 Scene 2 Scene 3

Investment costs 3.34 × 106 2.86 × 106 1.91 × 106

operation and maintenance costs 201.62 176.61 84.23
network loss costs 3.49 3.27 2.67

wind and PV operation and maintenance costs 80.34 80.34 80.34
power purchase costs 52.27 50.25 45.29

correction costs 0 71.14 61.06
total costs 3,337,137.73 2,934,047.53 1,844,656.99

From Tables 3 and 4 it can be concluded that:

(1) In Scene 1, a hybrid energy storage equipment is added to the system, and although
the operation layer energy storage dispatching strategy does not take into account
the system frequency deviation, it has a certain soothing effect on the equivalent
load curve, achieving a certain effect of “Peak cut” and optimizing the operation of
the grid.

(2) Scene 2 is based on Scene 1, using a double-layer planning model, with only the lower
layer of ESS taking part in the system’s FM. Therefore, the lower layer is used to
correct the capacity of supercapacitors, with a correction value of 5.2456 kw, reducing
the total cost by RMB 403,090.20. The cost reduction rate is about 12.08%, which
achieves integrated planning of capacity dispatch and further improves the effect of
peak and valley reduction.

(3) Scene 3 is an optimized configuration of the HESS based on a double-layer planning
model, with WG added to the lower layer to participate in system FM, correcting the
supercapacitor capacity value of the improvement. The charging and discharging
strategy for hess in Scene 3 is introduced in Figure 8. The total costs of Scene 3 relative
to Scene 1 and Scene 2 are RMB 1,492,480.74 and RMB 1,089,390.54 saved, respectively.
The reduction rates are approximately 44.72% and 37.13%, with a total cost reduction
while the effect of network loss optimization is also more obvious.

Table 5. Comparison of the three battery storage costs in Scene 3 (RMB).

Parameters NaS Li-Ion

Investment costs 3.40 × 106 3.75 × 106

operation and maintenance costs 249.38 343.32
network loss costs 3.26 3.36

wind and PV operation and maintenance
costs 61.60 61.60

power purchase costs 50.93 49.93
correction costs 63.12 56.97

total costs 3,399,028.28 3,748,015.17

The analysis of lithium batteries and sodium-sulfur batteries in Scene 3 of this paper
reveals that the life-cycle costs of lithium batteries are RMB 3,747,958.20 and the life-cycle
costs of sodium-sulfur batteries are RMB 3,398,965.16, like Table 5, which leads one to
the conclusion that lead-acid batteries are more cost-effective than other energy storage
batteries because their price per unit capacity and power are lower.

5.3.2. Network Loss Analysis after Optimization

The net loss can be greatly improved after the hybrid energy storage device in node 6 is
delineated in Figure 9. The network loss before the configuration optimization is 4.72 MW,
after is 4.19 MW, and the net loss is reduced by about 0.53 MW. At node 14, the network
loss reduction is the largest, at about 0.045 MW.
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Figure 9. Network loss comparison after adding HESS to ADN.

5.3.3. Optimum Voltage Analysis of Distribution Network

After energy storage optimization, the minimum voltage values of multiple nodes of
the distribution network system are increased, and the minimum voltage increase at node
11 is the most obvious, which is described in Figure 10. To some extent, it can be explained
that the energy storage system configuration has significantly improved the voltage of
the network.
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Figure 10. Optimized voltage comparison curve after distribution network.

5.3.4. Analysis of the Frequency Bias after Optimization

Under normal frequency fluctuations (within the range of [−0.2,0.2]), the wind gener-
ator is effectively adjusted according to the reserved 20% output margin. In emergencies
with large fluctuations (outside the range of [−0.2,0.2]), the maximum capacity of the wind
generator is used to adjust the system frequency and the load side is demand-responding,
with an adjustment factor within the rated value of 1.5.

The WG output during the system frequency modulation is displayed in Figure 11. The
supercapacitor energy storage outputs during system frequency modulation are described
in Figure 12.
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Figure 11. The output of WG participation in frequency regulation.
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Figure 12. The output of HESS participation in frequency regulation.

The frequency fluctuation range after optimization is obviously reduced by extend-
ing the time for system frequency regulation to 96 h, which is described in Figure 13,
with the frequency fluctuating within −0.032~0.042 Hz before optimization and within
−0.024~0.016 Hz after optimization. To some extent, the frequency fluctuations of the ADN
are abated.
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Figure 13. Comparison of frequency response before and after each period.

6. Conclusions

This paper studies the effect of energy storage charging/discharging tactics and WG
participation in frequency modulation on HESS configuration and operation in ADN
containing volatile energy sources, which is solved in MATLAB using a dynamic chaotic
particle swarm algorithm. Through the simulation analysis of the improved case 33 nodes
power distribution system, the three conclusions are obtained.
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(1) The first layer is developed according to the equivalent load curve and proposes a
charging and discharging strategy for the HESS considering the “time-of-day tariff”,
while the second layer adopts WG and HESS to suppress fluctuations in the operation
strategy, which can achieve better economic results and “Peak cut and fulfill valleys”
with less investment and operation costs.

(2) Optimizing the configuration of the HESS with “integrated planning of the config-
uration capacity and dispatching strategy” and establishing a mathematical model
for the optimal configuration of the capacity ensures that research of energy stor-
age configuration can be more reasonably and accurately grasped, and the risk of
over-investment or under-investment can be reduced.

(3) Consideration of the dynamic characteristics of HESS operation, which can achieve
the goal of smoothing fluctuating energy’s power fluctuation, as well as improving
the voltage quality of the distribution network and reducing network losses, which is
of more practical significance.
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Abstract: With the development of large-scale renewable energy consumption and multi-infeed high
voltage direct current (HVDC) systems, the demand of a system for the synchronous condensers
with a strong dynamic reactive power support capacity and a strong short-time overload capacity is
increasing. Meanwhile, with the reuse of a large number of retired thermal units, the most practical
and economic way is to transform thermal units into synchronous condensers. The cost difference
in the life-cycle of the synchronous condenser transformed from a thermal unit (SCTTU) and the
newly established synchronous condenser (NESC) is a key factor that affects the decision-making
and construction of the transformation from thermal unit to synchronous condenser. However, the
life-cycle cost (LCC) of the synchronous condenser transformed from a thermal unit and the newly
established synchronous condenser contains many uncertain factors, which affect the accuracy of
the LCC estimation value. In order to quantify the impact of the blind information on the cost of the
synchronous condenser station, blind number theory is introduced to establish the blind number
model of the LCC of the synchronous condenser transformed from a thermal unit and the newly
established synchronous condenser. Additionally, the LCC of the NESC and SCTTU with a different
life-cycle under the capacity of 2 × 300 MVar are estimated. The results show that the cost of the
SCTTU with a long service life of more than 15 years is significantly lower than that of the NESC and,
thus, the SCTTU has better economic performance. The economic performance of the SCTTU with
a life-cycle of less than 15 years is not better than that of the NESC. Compared with the traditional
calculation method of a single cost value, the blind number model can obtain the possible distribution
interval of LCC and the reliability of the corresponding interval, which makes the estimation results
more valuable for practical engineering reference.

Keywords: synchronous condenser transformed from thermal unit (SCTTU); newly established
synchronous condenser (NESC); life-cycle cost (LCC); blind number theory

1. Introduction

Building a novel power system with renewable energy as the main body is an impor-
tant way for China to achieve the goal of “carbon peaking and carbon neutrality”. With
the State Grid Corporation further accelerating the construction of a novel power system
and fully promoting the realization of the “dual carbon” goal, the dominant position of
novel energy power generation with “weak support” will become increasingly prominent.
The output space of traditional thermal power units with “strong support” will be limited,
the reactive power demand of the power system will rise sharply, and the voltage stability
will face great challenges [1–3]. In order to increase the proportion of dynamic reactive
power supply, optimize the utilization rate of thermal power units, and improve the stable
operation level of the power grid, the new large capacity synchronous condenser has
been widely used in HVDC transmission and reception terminals in recent years, and has
played an important role in suppressing the DC commutation failure and improving the
voltage stability of the system [4]. Up to now, 47 new large-capacity 300 MVar synchronous
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condensers have been built, and 39 have been put into operation in China. However, the
new large capacity synchronous condenser faces a series of problems, such as high cost,
high operation and maintenance costs, and great construction difficulties.

Compared with the NESC, there are two advantages in transforming the thermal units
into synchronous condensers. One is the advantage of economic cost, and the other is the
advantage of improving the utilization rate of thermal units. The SCTTU can save the
investment cost of the synchronous condenser unit itself and, at the same time, the retired
thermal unit can be reconstructed and reused, which will improve the utilization rate of
the thermal units [5]. Therefore, power systems should make full use of the existing retired
thermal units, transform them into synchronous condensers, and conduct long-term grid
connected operation, which makes use of to its characteristics of strong overload capacity
and fast response speed, and provides sufficient dynamic reactive power support for the
power grid without occupying active space. In doing so, it is possible to reduce investment
and operation costs, improve the utilization rate of thermal units, and solve the survival
problems of thermal power plants. This has significant practical value and social and
economic benefits [6].

At present, there have been relevant studies on synchronous condensers and syn-
chronous condensers transformed from thermal units. With the large-scale access to HVDC
transmission and new energy, the domestic research on the synchronous condensers and
the synchronous condensers transformed from thermal units is gradually enriched. Jiang
Zhe et al. [6] demonstrated the feasibility of the technical transformation of retired thermal
units to synchronous condensers, and took Shandong power grid as an example to verify
the ability of the synchronous condensers transformed from thermal units to improve the
voltage stability of the power grid and the new energy grid connection characteristics.
D. K. Chaturvedi [7] proposed the transformation scheme of transforming a 500 MW re-
tired thermal unit into a 300 MVar synchronous condenser, and demonstrated the ability of
SCTTU to provide dynamic compensation, improve system inertia, and improve system
power quality. Karan et al. [8] proposed the steps of transforming retired thermal units
into synchronous condensers to provide reactive power support for the system, so as to
meet the reactive power demand of the Indian power grid under large-scale new energy
access. J. An et al. [9] proposed an optimal configuration method for the conversion of
thermal power units to synchronous condensers and verified the feasibility of the proposed
scheme from the perspectives of technology, economy, and operation mode in combination
with engineering cases. J. Kaur and N. R. Chaudhuri [10] put forward the transmission
scheme from thermal units to synchronous condensers in the weak interconnection system
and analyzed the supporting ability of synchronous condensers transformed from thermal
units in the system. In addition, in terms of cost estimation, the China Qaidam converter
station 2 × 300 MVar synchronous condenser project adopts a single value estimation
method to estimate the cost of the NESC [11]. The cost estimation of the NESC of the
China Jiangsu Taizhou 2 × 300 MVar synchronous condenser station is also a single value
estimation method [12]. Huang Z et al. [13] proposed that the cost estimation of replacing
the retired thermal power unit with new energy power station and synchronous condenser
also adopts a single value estimation method. Most of the above studies focus on the
aspects of technical feasibility, transformation methods, and the improvement of power
grid stability after the transformation. Few economic studies are only the estimation of
a single value of the cost of synchronous condensers. Therefore, there is still a lack of
comprehensive analysis, both in terms of foreign and domestic circumstances, for the cost
analysis of synchronous condensers transformed from thermal units.

In this paper, a cost calculation method based on LCC is proposed. At the same time,
blind number theory is introduced into the cost calculation model to solve the influence
of various uncertain information on the cost of the synchronous condenser project, and
the distribution range of the life-cycle cost of the synchronous condenser is obtained. The
life-cycle cost of the NESC and the SCTTU with different service life are compared and
analyzed. Combined with the operation mode of the reactive power equipment in the
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market, the reactive power pricing under different operation modes of the NESC and the
SCTTU is formed. The analysis results show that the life-cycle cost of the SCTTU with a
long life-cycle of more than 15 years is significantly lower than that of the NESC, and the
SCTTU has lower market reactive power pricing and better economy. At the same time,
the cost range and the corresponding confidence of the SCTTU are obtained. Compared
with the single value of the traditional prediction, these results have more engineering
reference value.

The remained of this paper is organized as follows. In Section 2, the life-cycle cost
model of a synchronous condenser is established. In Section 3, blind number theory is
introduced, and the processing and calculation methods of blind information are introduced.
In Section 4, the LCC model of the synchronous condenser based on the blind number
theory is established. In Section 5, based on the existing market, a reactive power pricing
model with coverage cost as the objective is constructed. In Section 6, a detailed case study
proves that the proposed SCTTU is economical. In Section 7, several important conclusions
are summarized.

2. Life-Cycle Cost Analysis of SCTTU

The connotation of life-cycle cost can be summarized as follows: the generalized life-
cycle cost refers to all expenses incurred by all stakeholders, such as producers, consumers,
and the public, in the life-cycle of the project from the perspective of the whole society. In a
narrow sense, the life-cycle cost refers to the cumulative sum of the costs of the project at
each stage of its life-cycle after discounting [14].

This paper is based on the life-cycle cost theory in a narrow sense, and more intuitively
reflects the cost of the synchronous condenser project. According to the life-cycle stage, the
life-cycle cost of the construction project mainly includes the cost of the decision-making
stage, the cost of the design stage, the cost of the construction stage, the cost of the operation
and use stage, and the cost of the scrapping and dismantling stage [15]. These are as follows:

(1) Cost of the decision-making stage. The cost in the decision-making stage mainly
refers to the expenses incurred in the process of project planning, feasibility studies, market
investigation, fundraising, scheme optimization, land acquisition, etc. [3];

(2) Cost of the design stage. The cost in the design stage accounts for a small proportion
in the total investment of the project, but the design stage is an important stage in the cost
control of the construction project;

(3) Cost of construction stage. The cost of this stage mainly includes labor, materials,
equipment, management, and various taxes;

(4) Cost of the operation and use stage. The cost in the use stage refers to various
expenses that the user needs to pay in the process of using the project, mainly including
energy consumption expenses, maintenance expenses, management expenses, etc. [6];

(5) Cost of scrapping and dismantling stage. The scrapping and dismantling stage is
the last stage of the project life-cycle. In this stage, the demolition of the project and the
disposal of wastes are mainly carried out, and the costs are mainly demolition costs and
cleaning costs.

The change in the life-cycle cost of the construction project at different stages is shown
in Figure 1. Life-cycle cost analysis is an auxiliary tool for investment decision-making.
Its core aim is to identify the cost items at each stage of the life-cycle, and to conduct
quantitative estimation and analysis of the cost according to a certain cost estimation model
and method. Finally, the Life-cycle cost of the project is obtained, and the project decision
is made on this basis.
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Figure 1. Diagram of cost trend at each stage of the life-cycle.

2.1. Life-Cycle Cost Analysis of SCTTU and NESC

According to the stage division of the construction project based on the life-cycle
theory, combined with the engineering characteristics of the synchronous condenser, this
paper brings the design decision into the construction cost. Considering that, in addition
to operation and maintenance costs, overhaul and technical transformation costs, as well
as market penalty costs caused by power failure, are not able to be included in operation
and maintenance costs during the operation phase of the SCTTU and the NESC, they are
calculated separately. The final scrapping stage is the residual value cost of the equipment.
Since the residual value of the equipment is the residual value of the project, its cost
calculation is negative. Therefore, the life-cycle cost of the SCTTU and the NESC can be
divided into five parts.

The present value of the initial construction cost Sb (i.e., the total construction invest-
ment from year 0 to year k) is expressed as follows:

Sb =
k

∑
t=0

Sbt

(1 + i)t (1)

where Sbt is the construction investment in the year t, and i is the discount rate.
Assuming that the operation cost is generated from the year l, the present value

expression of the operation and maintenance cost is as follows:

Su =
T

∑
t=l

Sut

(1 + i)t (2)

where Sut is the operation and maintenance cost of the year t, and T is the service life of
the synchronous condenser.

Assuming that the overhaul cost is generated from the year m, the present value
expression of the overhaul and technical transformation cost is:

Sr =
T

∑
t=m

Srt

(1 + i)t (3)

where Srt is the overhaul and technical transformation cost of the year t.
Assuming that the penalty cost is generated from the year x, the present value expres-

sion of the penalty cost is as follows:

Sp =
T

∑
t=x

Spt

(1 + i)t (4)
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where Sp is the penalty cost incurred in the year t.
The present value expression of the residual value at the end of the year T is as follows:

Sq = Sqt/(1 + i)T (5)

where Sqt is the residual value at the end of the year T.
Therefore, we can obtain the calculation formula of the life-cycle cost of the syn-

chronous condenser project as follows:

SLCC = Sb + Su + Sr + Sp + Sq (6)

2.2. Uncertainty Analysis of Cost in Each Stage

(1) Uncertain influencing factors of initial construction cost Sb.
Here,Sb is the costs and expenses incurred in the process of planning, design, imple-

mentation, and the completion of project construction of a synchronous condenser or a
synchronous condenser transformed from a thermal unit. At present, most Chinese assets
are estimated according to industry regulations, and the traditional quota is used as the
pricing basis. Now, the estimation theory is relatively mature, the cost change range is
not large, and the influence of uncertain factors on it is not great. Therefore, this model
mainly considers the uncertain factors of operation and maintenance in the calculation.
Here, Sb is determined by the budget estimate of the corresponding project and treated as a
deterministic factor.

(2) Uncertain influencing factors of operation and maintenance cost Su.
Here, Su corresponds to the annual cycle cost, which is the cost that will occur every

year in the research cycle. Most of the daily operation and maintenance costs are related
to the functions and custody services of the equipment in the synchronous condenser,
mainly including energy consumption costs, maintenance costs, labor costs, environmental
costs, etc. The energy consumption cost refers to the energy consumption required by the
operation of the project equipment. Maintenance cost refers to the cost of maintenance,
overhaul, and the replacement of parts for the project equipment. Labor cost refers to
the labor cost generated by the operation and management of a synchronous condenser.
Environmental cost refers to the cost required to establish the equipment operation envi-
ronment. According to the above analysis, among the influencing factors of Su, personnel
factors constitute the main uncertain factors, resulting in large changes in maintenance and
operation management costs.

(3) Uncertain influencing factors of overhaul and technical transformation cost Sr.
Here, Sr is divided into overhaul cost and technical transformation cost. It corresponds

to the non-annual cycle cost, which is not a cost that will occur every year. Overhaul cost
refers to the cost of major maintenance measures that must be taken to maintain the normal
operation of equipment. The cost of technological transformation is the cost incurred
by introducing advanced technology, equipment, and materials to improve, update and
transform the existing backward production equipment and supporting auxiliary facilities.
The costs of these two parts will be affected by the environment or the development of
social technology and economy, with strong uncertainty. The occurrence of overhaul cost
is a random probability event, while the occurrence of technical transformation cost is a
kind of unknown information and grey information, which makes it difficult to accurately
estimate a certain value in actual work. This paper will introduce blind number theory to
solve this problem.

(4) Uncertain influencing factors of penalty cost Sp.
Here, Sp is the power shortage cost on the demand side and the direct economic

reflection of the power supply reliability level of the power grid. Its magnitude is related to
the outage probability, outage duration, average outage power, and maintenance cost after
outage. The empirical value shall be adopted according to the actual station operation.

(5) Uncertain influencing factors of equipment residual value Sq.
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Residual value Sq is the residual value of the equipment or the whole project at the end
of the analysis period. Unlike other costs mentioned above, Sq can be a positive cost or a
negative value. There is a strong subjective uncertainty in the estimation of Sq, but because
of its small proportion in the total cost, it is often ignored or estimated as a percentage of
the initial construction investment. The uncertainty is ignored here and is estimated as a
function of initial construction cost.

From the above analysis, it can be seen that Su, Sr, and Sp are all regarded as functions
of the running time of the synchronous condenser in the calculation equation (6) of the
synchronous condenser LCC. This expression is inaccurate and does not conform to the
actual situation. Because Sr and Sp do not occur every year, their occurrence is affected by
many uncertain factors. Later, blind number theory is introduced into Equation (6) and
corrected to reasonably deal with the uncertain information in the cost analysis.

3. Blind Number Reliability Model

Objective uncertainty information may be expressed in two or more forms of uncer-
tainty. Complex information with the above four forms of uncertainty at most is called
blind information. For such uncertain information, blind number theory can be used to
express and process it.

3.1. Definition of a Blind Number

Let αi ∈ g(I), where g(I) is an interval grey number set, αi ∈ [0, 1], i = 1, 2 . . . , n,
f (x) is a grey function defined on g(I), and f (x) is the following:

f (x) =

{
αi, x = xi(i = 1, 2, 3, . . . , n);
0, x = other

(7)

When i �= j, xi �= xj,
n
∑

i=1
αi = α ≤ 1, then function f (x) is called a blind function.

In the expression of the blind function f (x), αi is the reliability of xi value, α is the
total reliability of f (x), and n is the order of f (x) [16].

3.2. Operation of Blind Numbers

Let * denote four operations (add, subtract, multiply, and divide) of blind numbers,
and set the blind numbers as A and B. The four operations for defining blind numbers are
as follows:

A = f (x) =

{
αi, x = xi(i = 1, 2, 3, . . . , m);
0, x = other

B = g(y) =

{
β j, y = yj(j = 1, 2, 3, . . . , n)
0, y = other

(8)

Then, the following can be calculated:

x1
...

xi
...

xm

⎡⎢⎢⎢⎢⎢⎢⎣

x1 ∗ y1 · · · x1 ∗ yi · · · x1 ∗ yn
...
...
...

xi ∗ y1 · · · xi ∗ yi · · · xi ∗ yn
...
...
...

xm ∗ y1 · · · xm ∗ yi · · · xm ∗ yn

⎤⎥⎥⎥⎥⎥⎥⎦
y1 yi yn

(9)

Equation (9) is called the matrix of the confidence band edge product of A with
respect to B, α1, α2, . . . , αm, and β1, β2, . . . , βn are the confidence sequences of A and B,
respectively. The m ∗ n-order matrix is called the confidence product matrix of A on B,
which is referred to as the confidence product matrix for short. The element xi ∗ yi in the
possible value *matrix of A with respect to B and the element αi ∗ βi in the confidence
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matrix of A with respect to B are called corresponding elements, and their positions are
called corresponding positions [17].

If A, B, and C are blind numbers, and the operation between blind numbers satisfies
the following properties [18]:

A + B = B + A
A × B = B × A
(A + B) + C = A + (B + C)
(A × B)× C = A × (B × C)
(A + B)× C = A × C + B × C

(10)

3.3. Mean Value of Blind Number

Define a and b as real numbers, and a ≤ b, (a + b)/2 is the center of rational grey
number [a, b], denote 	[a, b]=(a+ b)/2, and it is a first-order unascertained rational number,
then the following is true:

E( f (x)) =

⎧⎨⎩α, x = 1
α (	)

n
∑

i=1
αixi

)
0, x = other

(11)

Here, E(f(x)) is the mean value of blind number f (x), which reflects the average value
of blind number f (x) [19].

If the blind numbers f (x) and g(y) are known, the mean value of the blind numbers
has the following properties:

E( f (x) + g(y)) = E( f (x)) + E(g(y))
E( f (x)− g(y)) = E( f (x))− E(g(y))
E( f (x) · g(y)) = E( f (x)) · E(g(y))

(12)

4. Life-Cycle Cost of SCTTU and NESC Based on Blind Number Theory

After collecting and sorting out the actual data of the previous synchronous condenser
projects, we can know that in the actual construction of the synchronous condenser project,
the estimation method and theory of the initial construction cost Sb are very mature, so Sb
can be expressed by the first-order blind number Sb(x). The residual value Sq is usually
expressed as a percentage of the initial construction cost, so the blind number expression of
Sq is also first-order and can be expressed as Sq(v) = rSb(x), where r is the percentage of
the residual value in the initial construction investment. The operation and maintenance
cost Su is related to the service life T of the synchronous condenser and is a continuous
cost that occurs every year. Therefore, it can be expressed by the cost Su(y) that occurs
every year. As for the overhaul and technical transformation cost Sr and the penalty cost
Sp, they do not occur every year. In order to express them more scientifically and rationally,
two variables f and nm are introduced, where f represents the frequency of occurrence
of Sr in the life-cycle T of the synchronous condenser, and nm represents the number of
occurrences of Sp in the full life-cycle T. Thus, the blind number expression of each cost
can be obtained.

The initial construction cost can be obtained as follows:

Sb(x) =
k

∑
t=0

Sbt(x)
(1 + t)t (13)

The operation and maintenance cost can be obtained as follows:

Su(y) =
T

∑
t=l

Sut(y)
(1 + i)t (14)
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The overhaul and technical transformation cost can be obtained as follows:

Sr(z) =
T/ f

∑
t=1

Crt(z)(
1 + i f

)t (15)

Where i f = (1 + i)1/ f − 1, which represents the actual discount rate of the overhaul
and technical transformation cost.

The penalty cost can be obtained as follows:

Sp(w) =
nm

∑
t=1

Spt(w)

(1 + im)
t (16)

where im = (1 + i)T/nm , which represents the actual discount rate of penalty cost.
The residual value can be obtained as follows:

Sq(v) =
rSq(x)

(1 + i)T (17)

Thus, the blind number expressions of the SCTTU and the NESC are obtained as
follows:

S(LCC) = Sb(x)

[
1 − r

(1 + i)T

]
+ Su(y) + Sr(z) + Sp(w) (18)

5. Reactive Power Pricing Mechanism Based on Cost of Synchronous Condenser

5.1. Reactive Power Quotation Mechanism of Synchronous Condenser

To establish the reactive power market, all reactive power participants shall provide
their quotation curves to the independent system dispatcher. The synchronous condenser
can obtain the corresponding economic compensation when its quotation curve is basically
consistent with the comprehensive cost curve. Therefore, the life-cycle cost of the syn-
chronous condenser needs to be subdivided to obtain the reactive power quotation. China’s
reactive power market is not complete. By analogy with the cost curve of generator reactive
power generation participating in market auxiliary services [20], the reactive power cost
curve of the synchronous condenser can be obtained, as shown in the Figure 2.

Cost A

B

0 QQAQBQmin

C

Figure 2. Comprehensive cost curve of the synchronous condenser.

The comprehensive cost curve of the synchronous condenser can be divided into three
sections, as follows:

(1) In order to maintain the system voltage, the generator in this area operates in the
leading phase to absorb reactive power. Similar to the generator, a certain proportion of the
reactive power and quantity of the synchronous condenser can be compensated. Since the
leading phase operation will cause great damage to the generator and affect the service life
of the generator, the absolute value of the slope in this section is larger than that of sections
QA to QB;

185



Processes 2022, 10, 1887

(2) Different from the traditional generators, the reactive power output of the section
from 0 to QB is relative to the installed capacity of the synchronous condenser. Most of its
capacity will be used as cold and hot standby, and there is no actual output. Therefore, the
cost slope is larger than that of the QA to QB sections with normal output, and the rising
speed is faster. Therefore, appropriate economic compensation is required;

(3) The section from QB to QA belongs to the normal output section of the synchronous
condenser. The slope of the cost curve is small and the cost increases linearly. A certain
proportion of the generator can be paid for.

According to the above analysis of the comprehensive cost curve of the synchronous
condenser, the reactive power quotation curve of the reactive power participant is shown
in Figure 3.

Quoted 
price

L2

L1

0 QQAQBQmin

b0

b1

Figure 3. Reactive power quotation curve of the synchronous condenser.

It can be seen from Figure 3 that b0 compensates the reactive power investment cost of
the synchronous condenser to encourage it to invest in reactive power and ensure that the
system has sufficient reactive power sources. Here, (b1 − b0) is the compensation for the
leading phase operation of the synchronous condenser, and L2 and L1 are the reactive power
quotations under two conditions when the synchronous condenser normally generates
reactive power.

5.2. Reactive Power Market Pricing Mechanism

At present, there are the following two kinds of electricity price models: two-part
electricity price and single electricity ladder electricity price. The two-part electricity price
consists of the basic electricity price (capacity electricity price) and the electricity price. The
basic electricity price is calculated based on the customer’s electricity capacity or maximum
demand, and the electricity price is calculated based on the customer’s actual monthly
electricity consumption. The electricity charges calculated by the two kinds of electricity
prices are added together, and the electricity charges adjusted by the power factor are all
the fees payable by the customer. The single step electricity price divides the monthly
electricity consumption of urban and rural residents into several levels, and the electricity
price is increased by levels [21]. Aiming at the cost recovery method of reactive power
compensation device, combined with the electricity price recovery mode of different power
grid equipment, it is proposed that reactive power compensation device can recover the
cost in the following three ways [22].

(1) Unified operation of power grid. The dynamic reactive power compensation device
is not an independent entity, and its asset ownership and operation right belong to the
power grid company. The power grid uniformly bears the costs, principal and interest
repayment, profits and taxes of the reactive power compensation device, and performs
unified dispatching and unified operation. Under this management mode, the cost of
the synchronous condenser is recovered by incorporating it into the transmission and
distribution electricity price.

(2) Independent operation. As an independent entity, the asset ownership and opera-
tion right of the reactive power compensation device belong to the dynamic reactive power
compensation device company, and the company will uniformly bear the cost, interest
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payment, profit, tax and other expenses of the reactive power compensation power station,
and conduct unified dispatching and unified operation. The power grid company pays for
the reactive service by purchasing it, and the operation and maintenance expenses can be
recovered by the reactive service expenses paid by the power grid company. Under this
management mode, the dynamic reactive power compensation device recovers the cost
through two modes of single electricity price and two-part electricity price [23].

Under the single electricity price mode, the government competent department verifies
the feed-in tariffs of the dynamic reactive power compensation device, and the power grid
company uniformly pays its costs and profits, and is responsible for the repayment of
principal and interest. The power station is only responsible for operation according to the
power grid dispatching requirements, and the operating income of the power station is
realized through the electricity price during the operation period [24]. The capacity price is:

Pca =
Pa × α + Cf

(1 − ηz × (ηc + ηe))× Eo
(19)

where Pa is the total investment, α is the capital utilization rate, Cf is the fixed cost, ηz, ηc
and ηe are value-added tax rate, urban construction maintenance tax rate and education
additional tax rate, Eo is the total online capacity.

Under the two-part electricity price mode, reactive power compensation price is the
sum of average cost price (capacity price) and marginal cost price (electricity price) [25]. As
shown in Equation (20).

Pe =
Ck

(1 − ηz × η f ))× Fo
(20)

where Pe is the electricity price, Ck is the variable cost, η f is the additional tax rate, and Fo
is the on grid electricity.

(3) Lease operation. The established dynamic reactive power compensation device
operating company leases the equipment to the power grid company or other operating
entities for operation, so as to collect the lease fee to ensure its own principal and interest re-
payment and appropriate profit [22], and its calculation method is similar to the calculation
method of electricity price during the operation period.

6. Case Study

6.1. Case Data

This paper takes 2 × 300 MVar SCTTU and NESC as examples. The service time of
the generator after the transformation is calculated according to the transformation level
and the unit capacity in three cases of 20, 15, and 10 years. According to the engineering
experience, the ending residual value is 5% of the initial construction cost. The overhaul
and technical transformation period are generally 4–6 years according to the generator
maintenance regulations, and the period for the main transformer is generally 10 years.
Since the generator is to be reconstructed, the interval of 4 years is taken. The fault rate
is taken as the engineering experience value of 0.643 times/year, from which the number
of occurrences of penalty cost are 13, 10, and 7. According to the provisions on the social
discount rate in the ‘Economic evaluation methods and parameters of construction projects
(Third Edition)’ issued by the National Development and Reform Commission and the
Ministry of Construction in 2006, the benchmark discount rate is set as i = 8% in this paper.

The service time of the 2 × 300 MVar NESC can be up to 40 years or even 60 years, and
the general service time is 30 years. From the engineering experience, the ending residual
value is 5% of the initial construction cost. The overhaul and technical transformation
period are based on the generator maintenance regulations, and the interval of 5 years
is taken as the intermediate value. The fault rate takes the engineering experience value
of 0.433 times/year, from which the number of occurrences of penalty cost is 13. The
benchmark discount rate is i = 8%.
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According to the engineering calculation, the cost corresponding to the NESC and the
SCTTU with different service life after transformation is shown in Table 1.

Table 1. Life-cycle cost of the NESC and the SCTTU with different service life.

Construction
Type

Construction
Cost/104 Yuan

Operation and Maintenance Cost/104 Yuan
Overhaul and Transformation

Cost/104 Yuan
Penalty Cost/104 Yuan

Reliability Cost Range Reliability Cost Range Reliability Cost Range

Newly
established

26,002
0.15 2058.5–2166.8 0.25 736.7–758.3 0.23 541.7–563.4
0.65 2166.8–2383.5 0.65 758.3–780 0.55 563.4–585
0.2 2383.5–2708.5 0.1 780–801.7 0.22 585–650

Transformed (20
year service life) 4802

0.15 1874.4–2003.7 0.3 884.1–909.9 0.13 650–676.1
0.75 2003.7–2040.6 0.55 909.9–936.2 0.68 676.1–702
0.1 2040.6–2273.5 0.15 936.2–962.1 0.19 702–780

Transformed (15
year service life) 4523

0.2 1780.68–1903.5 0.13 928.3–955.3 0.1 656.5–682.8
0.6 1903.5–1938.5 0.76 955.3–983 0.85 682.8–709
0.2 1938.5–2159.8 0.11 983–1,010.2 0.05 709–787.8

Transformed (10
year service life) 4039

0.05 1593.2–1703.2 0.18 946–973.6 0.25 663.1–689.7
0.8 1703.2–1734.5 0.7 973.6–1,001.7 0.57 689.7–716.1
0.15 1734.5–1932.5 0.12 1001.7–1029.5 0.18 716.1–795.7

Taking a city in China as example, the electricity consumption of the whole society is
98.385 billion kWh, the electricity price level is 0.4 yuan/kWh, the value-added tax rate is
13%, the urban construction and maintenance tax rate is 7%, the education additional tax
rate is 3%, the on-line capacity of the synchronous condenser is subject to the rated capacity,
and the on-line capacity is calculated as 80% of the occupied capacity per hour.

6.2. Result Analysis

The costs of NESC and the SCTTU with different service life are brought into the
calculation formula of blind number cost in the life-cycle, and the 27th order blind number
expression (reliability band edge product matrix) of the four life-cycle costs of NESC and
the SCTTU with different service life can be obtained from Equation (18). Take the SCTTU
with a service life of 20 years as an example, and the results are shown in Equation (19).

0.0242
0.1268
0.0354
0.0964
0.5045
0.1410
1.0093
0.0488
0.0136

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28, 083.0 − 29, 501.9, 28, 107.8 − 29, 526.6, 28, 132.5 − 29, 600.8
28, 206.7 − 29, 628.9, 28, 232.5 − 29, 653.6, 28, 257.2 − 29, 727.8
28, 333.7 − 29, 754.1, 28, 359.5 − 29, 778.8, 28, 384.2 − 29, 853.0
29, 351.4 − 29, 864.2, 29, 377.2 − 29, 888.9, 29, 401.9 − 29, 963.1
29, 476.1 − 29, 991.2, 29, 501.9 − 30, 015.9, 29, 526.6 − 30, 090.1
29, 603.1 − 30, 116.4, 29, 628.9 − 30, 141.1, 29, 653.6 − 30, 215.3
29, 713.7 − 32, 150.8, 29, 739.5 − 32, 175.5, 29, 764.2 − 32, 249.7
29, 838.4 − 32, 277.8, 29, 864.2 − 32, 302.5, 29, 888.9 − 32, 376.7
29, 965.4 − 32, 402.8, 29, 991.2 − 32, 427.5, 30, 015.9 − 32, 501.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0.13 0.68 0.19

(21)

The 27th order blind number expressions of the NESC and the SCTTU with different
service life are optimized and calculated, and the results are shown in Figure 4.

Furthermore, the blind number mean value of annual average cost of NESC and the
SCTTU with different service life can be obtained, as shown in Figure 5.

From the above results, it can be seen that the reference average value of the project cost
of the NESC and the SCTTU is obtained based on the life-cycle cost analysis of the dimmer
based on blind number theory, and the reliability of each interval is given. Compared with
the deterministic single value obtained by the deterministic algorithm, it gives the project
decision-makers greater reference value.
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(a) (b)

(c) (d)

Figure 4. Life-cycle cost of NESC and the SCTTU with different service life: (a) NESC (30 year service
life); (b) SCTTU (20 year service life); (c) SCTTU (15 year service life); (d) SCTTU (10 year service life).

Figure 5. Blind number mean value of annual average cost of NESC and SCTTU.

The average 30 year total cost of the NESC with the same capacity is 5213.86 × 104 yuan,
with an annual average of 1737.95 × 104 yuan. The average total cost of the SCTTU (20 year
service life) is 2998.78 × 104 yuan, with an annual average of 1499.39 × 104 yuan; the average
total cost of the SCTTU (15 year service life) is 2646 × 104 yuan, with an average annual
average of 1764.7 × 104 yuan; the average total cost of the SCTTU (10 year service life) is
19,711.6 × 104 yuan, with an annual average of 1971.2 × 104 yuan. Although the service life
of the four units is different, it can be seen from the average annual cost and the cost of each
stage that the average annual cost of the SCTTU (20 year service life) is significantly lower
than that of the NESC, meaning that the SCTTU has better economic efficiency. However, it is
not certain that the entirety of the SCTTU is economical. As can be seen from Figure 5, the
average annual cost of the SCTTU increases with the reduction in the service life. The average
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annual cost of the SCTTU with a 15 year service life is basically the same as that of the NESC.
The average annual cost of the SCTTU with a 10 year service life is significantly higher than
that of the NESC.

In order to analyze the reasons for the cost difference, this paper analyzes the following
four aspects: investment cost (excluding residual value cost), operation cost, overhaul and
technical transformation cost, and penalty cost.

We start with the annual average cost. It can be seen from Table 1 that the invest-
ment cost of the NESC is 2602 × 104 yuan, which is significantly higher than that of the
SCTTU with the following three service lives: 4802 × 104 yuan, 4523 × 104 yuan, and
4039 × 104 yuan. However, the investment cost of the three types of SCTTU will gradually
increase with the increase in the longevity of the service life, but the difference is in the
order of one million yuan, which has advantages over the new established one. The average
value of operation cost, overhaul and technical transformation cost, and penalty cost is
shown in Figure 6.

Figure 6. Average annual cost comparison of three costs between NESC and SCTTU.

It can be seen from Figure 6 that the three costs of the NESC are lower than those of
the SCTTU. However, due to the high investment cost, the annual average of the life-cycle
cost is higher than that of the SCTTU (20 year service life). With the increase in the service
life of the transformed one, the operation cost, overhaul and technical transformation cost,
and penalty cost decreases. In view of this result, this paper compares the annual change
curves of the three costs, as shown in Figures 7–9.

Figure 7. Comparison of operation cost curve between NESC and SCTTU.
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Figure 8. Comparison of overhaul and technical transformation cost curve between NESC and
SCTTU.

Figure 9. Comparison of penalty cost curve between NESC and SCTTU.

It can be seen that with the increase in the service year after the transformation, the
average annual operation cost, and the average penalty cost decrease at the speed of
the negative exponential function, resulting in the gradual increase in the accumulated
cost, which largely averages the life-cycle cost. However, the overhaul and technical
transformation cost has little impact on the average annual operation cost due to the low
frequency of occurrence. From this, it can be concluded that, the longer the operation
life-cycle of the transformed one, the better its economy. In this paper, the 20-year-old
SCTTU has the best economy. It can be inferred that after 15 years of service life, the SCTTU
has better economy than the NESC.

Combining the quotation curve and the market pricing mechanism, the pricing results
can be obtained, as shown in Table 2.

Table 2. Price summary for unified operation, independent operation, and lease operation
(yuan/(kVarh)).

Management
Model

Unified Operation
of Power Grid

Independent Operation Lease Operation

Price form Increment price Electricity price Capacity price Electricity price Capacity price
NESC 0.000530 0.0416 55.871 0.0161 92.34

SCTTU (20) 0.000459 0.0341 47.167 0.0129 77.06
SCTTU (15) 0.000547 0.0425 58.495 0.0131 93.85
SCTTU (10) 0.000672 0.0521 67.323 0.0143 97.46

From the quotation of the three management modes, the quotation change trend
and cost change trend of the four kinds of synchronous condensers are similar. Due to
its cost advantage, the SCTTU with a 20 year service life has the lowest quotation in the
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vertical comparison of the three management modes, which once again proves the economic
advantage of the SCTTU with a 20 year service life.

7. Conclusions

In this paper, a cost calculation method based on the life-cycle cost of the synchronous
condenser is proposed, and the blind number theory is introduced into the cost calculation
model to solve the influence of various uncertain information on the cost of the synchronous
condenser project. The distribution range of the life-cycle cost of the synchronous condenser
is also obtained. At the same time, the life-cycle cost of the newly established synchronous
condenser is compared with that of the synchronous condenser transformed from thermal
units with different service life, the reactive power pricing based on the market mechanism
is calculated for the established synchronous condenser and the synchronous condenser
transformed from thermal unit, and the following conclusions are obtained:

(1) Under the “dual carbon” background, for the large-scale grid connection of new
energy and HVDC transmission with power electronic converter equipment, and with the
reuse of a large number of retired thermal units, the synchronous condenser transformed
from a thermal unit can provide sufficient dynamic reactive power support for the power
grid. According to the analysis of the life-cycle cost, it can be concluded that a synchronous
condenser transformed from a thermal unit can reduce investment and operation costs,
and improve the utilization rate of the retired thermal units, which has significant practical
value and social and economic benefits.

(2) Compared with the traditional single value cost estimation method, the life-cycle
cost calculation method based on the blind number theory proposed in this paper gives
the cost interval range and its confidence of the synchronous condenser. Combined with
engineering cases, the calculation results are reasonable and reliable. This method can help
investors summarize the expected costs, help investors identify the probability risks of
different costs, and more clearly estimate the cost–return cycle. The clear cost interval range
and corresponding reliability provide more valuable reference for the decision-making and
construction of the project.

(3) By comparing the life-cycle cost of the newly established synchronous condenser
with that of the synchronous condensers transformed from thermal units with different
service life, it can be concluded that the life-cycle cost of the synchronous condenser
transformed from a thermal unit with a long service life of more than 15 years is lower
than that of the newly established synchronous condenser, so its economy is better. In this
paper, the 20-year-old transformed thermal unit has the best economy, which proves the
economic feasibility of the construction of the synchronous condenser transformed from a
thermal unit.

(4) Three types of management pricing are obtained in four different operation modes
for the cost recovery of synchronous condenser. Through the comparison of management
modes, the impact of management modes on reactive power price can give investors a
clearer reference and help investors grasp the lowest price of cost recovery under the
corresponding mode. Through the comparison of pricing of a synchronous condenser with
four operation modes, it is confirmed that SCTTU with a long service life of more than 15
years has a lower reactive power pricing, and better economy and competitiveness.
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Abstract: In the context of the “carbon peaking and carbon neutrality” goal and energy marketization,
the City Regional Integrated Energy System (CRIES), as an important participant in the energy
market, pursues low-carbon development as its most important goal. Without a reasonable market
participation structure and a comprehensive low-carbon evaluation system, it will be difficult to meet
the needs of CRIES for low-carbon development in the energy market. Therefore, this paper first
proposes a framework suitable for CRIES to participate in the energy market, and under the influence
of the operating characteristics of the energy market, proposes an evaluation index system suitable
for CRIES’ low-carbon capabilities in the energy market. The analytic network process–criteria impor-
tance through intercriteria correlation (ANP-CRITIC) method is used to determine the subjective and
objective weights of each indicator, and the comprehensive weight of each indicator is calculated by
the principle of moment estimation to achieve a quantitative evaluation of the low-carbon capability
of CRIES in the energy market. Finally, taking a CRIES as an example, the analysis verifies that
the proposed evaluation model and method can scientifically and comprehensively evaluate the
low-carbon capability of CRIES in the energy market. The results show that the CRIES low-carbon
capability evaluation results of different market schemes can be improved by up to 24.9%, and a
fairer market transaction mechanism can promote the low-carbon development of CRIES.

Keywords: low-carbon capacity; city regional integrated energy system; energy markets; ANP-CRITIC; evaluation

1. Introduction

In recent years, how to improve energy utilization and reduce carbon emissions has
become the focus of energy development in various countries. The single traditional energy
supply system has the defects of low energy efficiency and high emission, which cannot
meet the current needs of low-carbon energy development [1,2]. The regional integrated
energy system (RIES) can couple different energy types and promote the consumption of
renewable energy, which has become a key technology for low-carbon energy development
in recent years [3]. From small industrial parks to large cities, they all belong to the category
of RIES. The City Regional Integrated Energy System (CRIES) is an important form of
RIES [4]. It has numerous distributed energy systems and multienergy complementary
systems, which are the bridge connecting the upper energy main network and the energy
load side.

With the advancement of energy marketization [5], CRIES has become an important
participant in the energy market due to its advantages of high economic benefits, strong
low-carbon capabilities, high system reliability, and high energy utilization rates [6,7].
Among them, the low-carbon capability is an important factor that CRIES must consider
when participating in the energy market. Evaluating the low-carbon capability of CRIES
after participating in the energy market is an important theoretical support for promoting
the consumption of renewable energy in CRIES, improving the comprehensive energy
utilization rate of CRIES, scientifically planning the operation plan of CRIES participating
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in the energy market, and improving the low-carbon development of CRIES. Therefore, it
is necessary to conduct scientific and comprehensive research on the low-carbon capability
evaluation model of CRIES in the energy market.

Some scholars have carried out related research on this and obtained rich research
results. Reference [8] introduced the carbon trading mechanism into the energy market
clearing of integrated energy and studied the impact of the carbon trading mechanism
on the RIES auction clearing strategy. References [9,10] study the low-carbon clearing
strategy of IES participating in the market with uncertain demand response and new
energy output. References [11,12] based their studies on the carbon emission flow (CEF)
theory for low-carbon and the economical optimal scheduling of IES. References [13,14]
studied the low-carbon optimization of RIES through carbon capture and carbon trading.
However, most of the existing research focuses on considering RIES as a distributed energy
system for the market clearing, optimal scheduling, and design planning of the system.
However, in the face of RIES, such as CRIES, which covers a wide area, has a wide variety
of energy sources, and has many distributed energy sources, existing research methods will
not be able to satisfy CRIES’ reasonable participation in the energy market.

In terms of the RIES evaluation, Reference [15] proposed a comprehensive evalua-
tion index with universal applicability to RIES from the links of energy, installation, the
distribution network and users, and thereby proposed a scientific method for evaluating
the development level of RIES. Reference [16] established a comprehensive evaluation of
integrated energy systems through six characteristics of multidimensional, multivector,
systematic, future, systematic, and applicability. Reference [17] proposed a decision-making
method for integrated energy participation in energy market transactions, and evaluated
the system considering four aspects of economy, fairness, environmental protection, and
safety. Reference [18] evaluated the integrated energy system from different aspects of the
integrated energy system, such as reliability under the consideration of user thermal com-
fort, power transaction performance, and system energy efficiency analysis. Reference [19]
proposed an alternative model-assisted IES quantitative evaluation method to evaluate
the operation of the IES. However, the existing evaluation system only takes low-carbon
capability as a part of the evaluation system, and lacks a comprehensive evaluation model
for CRIES’ low-carbon capability. If there is no comprehensive evaluation system, it will
not be able to meet the development process of CRIES, which will bring great challenges to
the low-carbon development of CRIES after participating in the energy market.

So, for the above two aspects, this paper proposes a CRIES low-carbon capability
evaluation model under the energy market. First, by fully considering the difficulties
faced by CRIES’ participation in the energy market, and then establishing a reasonable
structure for CRIES to participate in the energy market; secondly, based on the operating
characteristics of the energy market, an evaluation index system for CRIES’ low-carbon
capability in the energy market is proposed. The ANP-CRITIC method is used to assign
the objective and subjective weights of the indicators, and the moment estimation principle
is used to obtain the comprehensive weight so as to realize the quantitative evaluation
of the low-carbon capability of CRIES in the energy market, and provide a reference for
promoting the low-carbon development of CRIES in the energy market in the future.

2. CRIES Structure under the Energy Market

CRIES is different from other RIES in that it has a vast area, a wide variety of energy
sources, and the locations of distributed energy sources are scattered, which cannot be
traded with the energy market according to the traditional system architecture [20]. There-
fore, this paper proposes a three-tiered structure and a multisubject CRIES to participate in
the energy market structure. The three-layer structure is divided into the market layer, the
CRIES layer, and the load layer. As shown in Figure 1, it involves energy transactions such
as electricity, natural gas, and heat.
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Figure 1. CRIES structure under the energy market.

The market layer includes the electricity market and the natural gas market. The
electricity market consists of four main entities: the Power Trading Center (PTC), the Power
Generator (PG), the City Regional Integrated Energy Trading Center (CRIETC), and the
Electricity Retailer (ER). The function of each participant is that PG sells electricity, CRIETC
can sell electricity or buy electricity, and ER buys electricity. PTC is the backbone of the
power market, and determines the clearing and settlement results of the power market by
accepting bidding information from PG, CRIETC bidding and power purchase information,
and its ER power purchase information. The natural gas market consists of four main
entities: Natural Gas Trading Centers (NGTC), Natural Gas Producers (NGP), CRIETC,
and Natural Gas Retailers (NGR). As the price of natural gas is relatively stable, the natural
gas trading center conducts clearing and settlement according to the average bidding price
of NGPs.

The CRIES layer includes CRIETC and various comprehensive energy producers
(CEPs). CRIETC is the hub and settlement center for CRIES to participate in the energy
market, and is the link between the upper-level energy market and CEPs. It determines the
purchase of energy at the market layer according to the load information and affects the
clearing of the market layer and the bidding and clearing results of the decision-making
CEPs. The CEPs contains the gas boiler (GB), combined heat and power (CHP), wind
turbine (WT), energy storage systems (ESS), photovoltaic (PV), vapor-driven absorption re-
frigerating machine (VAR), etc. It is a collection of distributed nergy conversion equipment
which can make bidding decisions to CRIETC according to their respective unit information.

The load layer is a collection of energy-consuming entities such as electric energy,
natural gas, and thermal energy in the region. Each energy-consuming entity has the
functions of energy monitoring and communication, and provides load information in the
region to CRIETC.
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3. CRIES Low Carbon Capacity Evaluation Index System under Energy Market

3.1. Construction of the Low-Carbon Capability Index System

The low-carbon capability evaluation of the CRIES under the energy market involves
two aspects. On the one hand, considering the interior of the CRIES, which includes
a variety of renewable energy equipment which can output lower-carbon clean energy
to the load. The low-carbon situation indicator is the embodiment of the low-carbon
state and form in the development of the RIES, including system energy consumption,
efficiency, carbon dioxide emissions, and participation in the carbon market, etc. The
low-carbon situation can be used as the basic element of CRIES’ low-carbon capability
evaluation to characterize the low-carbon development capability of CRIES. On the other
hand, CRIES participates in the exchange of external energy through the medium of energy
market. As the main body of energy supply on the load side, CRIES is an indispensable
part of the energy market. Therefore, the participation of CRIES in the operation of the
energy market is defined as the market structure. This indicator can reflect the low-carbon
capability of CRIES under the market behavior. Since the natural gas market has not formed
a competitive market environment, this paper only selects the electricity market as the
evaluation object.

This paper takes the low-carbon situation and market structure of the CRIES under
the energy market environment as the objects of evaluation. A low-carbon capability
evaluation index system consisting of two first-level indicators, six second-level indicators,
and fourteen basic indicators is constructed under the principles of systematicness, science,
and independence. One first-level indicator includes the summative indicators with no
specific meaning, as shown in Figure 2. The basic indicator system includes three types of
indicators: cost type, benefit type, and intermediate type. For the cost-type evaluations, the
smaller the value is, the better the evaluation is, and for the benefit-type evaluation, the
larger the value is, the better. For the intermediate type, the closer the evaluation value is
to a certain value, the better the rating.
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Figure 2. CRIES low-carbon capability indicator system.
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3.2. Quantification and Overview of Evaluation Indicators
3.2.1. Low-Carbon Transition

1. (S1-1): The energy exergy efficiency of system energy is based on the second law of
thermodynamics [21,22], which focuses on the conversion efficiency corresponding to
the quality of energy. Compared with the comprehensive utilization rate of energy,
which focuses on the quantity of energy, its exergy efficiency can better reflect the loss
of energy and the level of stepped utilization, which is defined as the output of the
system. The ratio of the revenue exergy to the input cost exergy.

ηex =

Ee
os + Eh

os + Ec
os +

N
∑

n=1
ξEn

s

Ee
is + Egas

is + Ew
is + Es

is +
N
∑

n=1
(1 − ξ)En

s

(1)

where EE
os, Eh

os, Ec
os is the electrical, hot, and cold exergy of the total output of the system,

respectively; En
s is the exergy of energy type; n is for the energy storage; Ee

is, Egas
is , Ews

is is the
exergy of electricity, natural gas, and new energy input to the system; ξ is the 0–1 state of
the energy storage device.

2. (S1-2): The value-added rate of energy conversion is the profitability of the CRIES
in the process of coupling different energy sources through its own energy coupling
equipment and then selling it.

V =

(
Crl
ηex

)/
Cs (2)

where V is the value-added rate of energy conversion, Cs is the selling price for the system,
and Crl is the total profit converted for the system.

3. (S1-3): The energy conversion boundary is restricted by the CRIES hardware con-
ditions, resource conditions, and external conditions. For example, the capacity of
system equipment, the ability to absorb new energy such as wind and solar, and
equipment operation constraints. In addition, it also includes factors such as the
selection of system operation electric–heat ratio, demand restrictions, safety, and
environmental protection restrictions. Therefore, this indicator uses relevant experts
to score the qualitative evaluation.

3.2.2. Low-Carbon Technology

1. (S2-1): In the CRIES, the energy storage device is the link between different energy
sources, mainly used in the energy storage inside power systems and thermal systems.
It has good spatiotemporal coupling and balancing capabilities of different energy
sources. In addition, it can reduce the energy waste of the system and enhance the
system regulation. The energy storage configuration ratio ηse is the proportion of the
energy storage capacity connected to the system to the installed capacity of the system.

ηse =

N
∑

n=1
Wac.n

S
∑

s=1
Wec.s

(3)

where Wac.n is the energy storage equipment capacity corresponding to the energy storage
energy type n. There are a total of S devices in the system, and Wec.s is S-th device capacity.

2. (S2-2): The proportion of new energy installed capacity is the proportion of the
installed capacity of new energy units to the installed capacity of the entire system.
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ηni =

I
∑

i=1
Wrn.i

S
∑

s=1
Wec.s

(4)

3.2.3. Low-Carbon Benefits

1. (S3-1): The return-on-investment in carbon emission reduction can better judge the
emission reduction intensity of the CRIES, and can intuitively reflect the income gen-
erated by the investment in carbon emission reduction of the system. It is expressed
as the ratio of value to the sum of investment in system projects.

ηeb =

K
∑

k=1
ΔCEj · Cj

V
(5)

where ΔCEj is the emission of the k-th pollutant in the system, Cj is the price charged for
the emission of type k pollutants, and V is the total investment of the system.

2. (S3-2): Participating in the carbon trading market is to put the excess carbon emis-
sion credits of the system into the carbon trading market, and then obtain carbon
rights benefits. It is assumed that in the carbon trading market, the carbon emission
allowances are obtained for each capacity unit through the baseline method, and the
carbon trading market income is calculated through the stepped carbon price.

CEqu
co2 =

S

∑
s

Psζs (6)

where CEqu
co2 is the total amount of carbon emission quota of the system; Ps, ζs is the carbon

emission quota for the output power and unit active power output of the equipment.

CEco2 =
S

∑
s=1

λsPs (7)

where λs is the carbon emission factor of the s-th emitting device and Ps is the output power
of the s-th device.

fco2 =

{ −30 − 3a,−(1 + 0.1a)CEqu
co2 ≤ CEco2 < 0

30 + 3a, 0 ≤ CEco2 < (1 + 0.1a)CEqu
co2

(a = 0, 1, 2 . . .) (8)

In the carbon trading market, the carbon trading price is set through the stepped
carbon price, and the stepped carbon price is shown in Equation (8).

Cco2 = fco2(CEco2 − CEqu
co2) (9)

where Cco2 is the benefit of the carbon trading market; when the total amount of carbon diox-
ide emitted by the system is greater than the total amount of carbon emission allowances,
the system needs to purchase carbon emission allowances from the carbon market. On the
contrary, get the benefit.

3.2.4. Market Subject

1. (S4-1): The market concentration index can reflect the energy concentration of the
CRIES in the energy market environment and the overall competition level of the mul-
tienergy market. This paper adopts the Herfindahl–Hirschman Index (HHI), which is
commonly used in industrial economics, as an indicator of market concentration.
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MHHI =
D

∑
d=1

R2
d · 10, 000 (10)

where Rd is the CRIES d’s share in the multienergy market; for HHI, the value is between
[0–10,000]. The larger the value, the more concentrated the market. According to the
differentiation rule, when the HHI value is [500, 1800], the market is a competitive market.

2. (S4-2): The market fairness index is to evaluate the fairness of the energy trading results
of the CRIES under different market mechanisms, and to characterize whether the CRIES
has the same trading status as other market entities in the participating market.

S =
1
L

(
G
∑

g=1
Cg

)2

G
∑

g=1

(
Cg
)2

(11)

where S is the market fairness index. The larger the value is between [0, 1], the fairer the
market; Cg is the operational benefit of the CRIES; G is the total number of CRIES;L is the
number of evaluation systems.

3.2.5. Market Operation

1. (S5-1): The new energy clearing ratio is the proportion of the system’s renewable
energy clearing energy to the total system clearing energy. By default, the electricity
purchased from the upper-level power grid is generated by thermal power units.

ηne =

I
∑

i=1
Ei

rn

Ee
load + αhQh

load + αcQc
load

(12)

where Ee
load, Qh

load, Qc
load is the demand side electricity, heating, and cooling loads corre-

sponding to the system; αh, αc is the energy conversion factor for heat and cold; Ei
rn is the

power generation of new energy equipment i.

2. (S5-2): Clearing price and new energy indicators can analyze the relationship between
market energy prices and renewable energy clearing capacity. This paper uses the
Spearman correlation coefficient in statistics for characterization.

ϑn,p = 1 − 6∑ X2

n(n2 − 1)
(13)

where ϑn,p is the Spearman correlation coefficient; X is the difference between the data of
clearing price and renewable energy output arranged from small to large; n is the total
number of both data; for ϑn,p, its value exists between [−1, 1]. The larger the absolute value
of the value, the stronger the correlation, and the closer it is to 0, the weaker the correlation.

3. (S5-3): The equivalent utilization rate of the system is the ratio of the operating power
of each device in the system to the total operating power that can be dispatched by
each device in the system when the system participates in the energy market. It can
effectively reflect the utilization degree of the CRIES resources under the participation
in the energy market.

ηur =

S
∑

s=1
Pao

s

S
∑

s=1
Pto

s

(14)
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where Pao
s , Pto

s is the actual operating power and the maximum operating power of the
device S.

3.2.6. Market Benefit

1. (S6-1): The market price volatility is the fluctuation of the market clearing price in
the energy market. When the value is large, the market price may fluctuate violently,
causing the energy market risk to increase. When it is too small, it is not conducive to
a reasonable response to the market supply and demand relationship.

ηp f =
Pstd,T

Pav,T
(15)

where Pstd,T , Pav,T is the standard deviation of the market price and the average price of the
market during the evaluation period.

2. (S6-2): The social net income index refers to the economic benefits brought by CEPs
satisfying the load-side demand under market rules and deciding on energy purchase
and clearing decisions according to their own and market clearing rules. It can be
reflected in the social welfare level under the energy market.

4. Evaluation and Calculation of CRIES Low-Carbon Capability under Energy Market
Environment Based on ANP-CRITIC

4.1. Subjective Weight Calculation

The Analytic Network Process (ANP) [23,24] is a subjective empowerment method. It
consists of two layers: a control layer and a network layer. It can analyze and calculate the
network structure that is mutually influenced and dependent on the principle of the super
matrix, so that it can obtain more scientific index weights.

Since the first-level indicators are summative indicators, no weight assignment is
performed. The secondary and tertiary indicators are the main body of the evaluation
indicators, and the ANP is used for weighting. Therefore, the second layer is subordinate
to the control layer, and the 14 interdependent indicators constitute the network layer. The
set of control layers for the evaluation of the low-carbon capability of the CRIES under
the energy market environment is S = {S1, S2, · · · S6}. The network layer factor group
should be Si =

{
Si1, Si2, · · · Sij

}
(i = 1, 2, . . . 6) . The subjective weight calculation steps are

as follows:
Firstly, the control layer Si is used as the criterion, the element Sil(l = 1, 2 · · · ni) in

Si is the secondary criterion, and the elements in the control layer Sj are used to compare
the dominance of Sil by the 1–9 scale method according to their influence. Moreover,
through the consistency test, the influence judgment matrix of the network layer element
corresponding to the control layer Si on the network layer element corresponding to Sj is
obtained. If the two indicators are not affected by each other, then wij = 0 will be used, and
the initial supermatrix W will be finally constructed, as shown in Formula (16) shown.

W =

⎡⎢⎢⎢⎣
w11 w12 · · · w1n
w21 w22 · · · w2n

...
... · · · ...

wn1 wn2 · · · wnn

⎤⎥⎥⎥⎦ (16)

Since W is not a column normalization matrix, it needs to be weighted and normalized,
and the weighted matrix A is obtained by comparing each column pairwise, as shown in
Formula (17).

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

⎤⎥⎥⎥⎦ (17)
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The weighted supermatrix W is obtained by processing A·W. In order to calculate the
relationship between the factors, it is necessary to stabilize W by Formula (18), calculate
the limit relative sorting vector, and if it converges and is unique, the result obtained is the
limit matrix, and finally calculate the normalized eigenvectors to obtain the indicators of
each network layer weight w′.

lim
k→∞

(
1
n
)

n

∑
k=1

wk (18)

4.2. Objective Weight Calculation

The CRITIC method determines the objective weight of each indicator by quantifying
the dispersion of each indicator value [25]. Compared with the traditional entropy method,
it not only considers the contrast strength between the indicators, but also considers
the contradiction between the indicators to deal with the mutual influence between the
indicators. Make the weight results more scientific and reasonable. The steps are as follows:

First, it is necessary to perform dimensionless processing on the original data matrix
S = [sij]m×n, assuming that the number of evaluation samples is m and the number of
evaluation indicators is n. The benefit-type index and the cost-type index are, respectively,
processed by Formulas (19) and (20) to obtain a dimensionless evaluation matrix S′.

s′ ij =
sij − min(sj)

max(sj)− min(sj)
(19)

s′ ij =
max(sj)− sij

max(sj)− min(sj)
(20)

CRITIC determines the amount of information by calculating the variability and
conflict so as to determine the objective weight of each indicator.

The index variability is expressed by the standard deviation, as shown in Formula (21),
where ζ j is the standard deviation of the j-th index.

ζ j =

√
[

n

∑
i=1

sij − sj
′]/(n − 1) (21)

The index conflict is expressed by the conflict coefficient Cj as in Equation (22), where
cij is the correlation coefficient between the i-th index and the j-th index, expressed by
Equation (23).

Cj =
n

∑
i=1

(1 − cij) (22)

cij =

m
∑

u=1
(s′ui − s′ui)(s′ui − s′ui)√

m
∑

u=1
(s′ui − si

′)2 n
∑

i=1
(suj − sj

′)2
(23)

The amount of information of the j-th index is Ij, and its calculation is shown in
Formula (24). Ij is the fusion of index variability and index conflict. The greater the amount
of information, the greater the weight it occupies.

Ij = ζ jCj (24)

Finally, the objective weight w′′ of the j-th index is obtained by Formula (25).

w′′ = Ij

[
n

∑
j=1

Ij

]−1

(25)
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4.3. Comprehensive Weight and Scoring Mechanism

After the subjective and objective weights are obtained by ANP-CRITIC, the moment
estimation principle is used to calculate the comprehensive weight. According to the
principle, the coupling coefficient corresponding to the subjective weight and the objective
weight is first calculated by Formula (26).{

ς j = w′
j/
(
w′

j + w′′
j
)

�j = w′′
j/
(
w′

j + w′′
j
) (26)

where ς j is the subjective coupling coefficient; �j is the objective coupling coefficient; the
comprehensive weight χj can be obtained from Formula (27).

χj = (ς jw′
j + �jw′′ )/

n

∑
j
(ς jw′

j + �jw′′ ) (27)

In order to display the evaluation results more intuitively in the actual project, this
paper multiplies and sums the actual data of each indicator and the comprehensive weight
of each indicator, and finally obtains the final score of the low-carbon capability evaluation
of the CRIES under the energy market environment.

5. Case Study

This paper takes a CRIES in a certain area as an example. The basic structure is shown
in Figure 3, which includes a nine-node power network and a seven-node thermal network.
G1, WP1, GB1, ESS1, and G2, as well as WP2, GB2, and ESS2 are the CHP units, wind
and solar units, gas boilers, and energy storage equipment belonging to CEP1 and CEP2,
respectively. CHP operates in the way of constant heat and electricity, and the system
heat load is supplied by the CHP unit and the GB unit. The cooling load of the system is
supplied by an absorption chiller, so the heat load node can be replaced with a cooling
load node. Select the typical daily operation data in this area, and use MATLAB to fit the
electricity, heating, and cooling loads. The fitting curve is shown in Figure 4.
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Figure 3. CRIES architecture.
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Figure 4. Typical daily load information.

The region is currently in the transitional stage of the CRIES participating in the market
and has all the hardware conditions and policy support for participating in the market.
Combined with the actual situation in the region, the operation plan of reference [26] and
equipment constraints [7] are used to calculate the index data of each system. Tables 1 and 2
show the specific schemes.

Table 1. CRIES specific scheme.

Scheme CEPs Participate in the Market Scheme

1 CEP1 A
2 CEP2 A
3 CEP1 B
4 CEP2 B
5 CEP1 C
6 CEP2 C

Table 2. The parameters of each device in CEPs.

CEPs WT ESS CHP GB

CEP1 70 MW 40 MW 240 MW 200 MW
CEP2 180 MW 80 MW 240 MW 200 MW

For the design of the market participation scheme: the clearing price of Scheme A is
calculated using the peak–valley electricity price, and the reverse power sales to the power
grid is not considered; the clearing price of Scheme B is calculated using the real-time
electricity price, and the reverse power selling to the power grid is not considered; Scheme
C adopts the market real-time electricity price and sells excess electricity to the grid. From
Scheme A to Scheme C, the market opening degree has gradually deepened, gradually

204



Processes 2022, 10, 1906

transitioning from not participating in the market to fully participating in the market. The
unit price of natural gas is 2.70 CYN/m3.

5.1. Calculation Results of Each Indicator under Different Market Participation Schemes

Due to the limited space, only a brief analysis of the power system output is made
here. Figures 5–7 is the power system output diagram under different market participation
schemes. In the vertical comparison, with the deepening of the market openness, the power
purchased from outside the system gradually decreases. The output of wind turbines
continues to increase, and the system gradually changes from a single load mode to a
power mode to sell electricity to the upper-level power grid.
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Figure 5. Power operation diagram under Scheme A.
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Figure 6. Power operation diagram under Scheme B.
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Figure 7. Power operation diagram under Scheme C.

According to the calculation method of each indicator in the low-carbon capability
evaluation system (Formulas (1)–(15)), the indicators of the low-carbon situation and
market structure are calculated, respectively, and the calculation results are shown in
Tables 3 and 4.

Table 3. Calculation results of low-carbon situation indicators under each scheme.

Scheme 1 2 3 4 5 6

S1-1/% 56.113 57.95 58.454 64.184 62.928 66.803
S1-2/% 36.231 42.265 45.848 48.367 48.213 54.268

S1-3 74.16 84.23 74.12 84.22 74.11 84.24
S2-1/% 7.1 11.5 7.1 11.5 7.1 11.5
S2-2/% 12.7 25.7 12.7 25.7 12.7 25.7
S3-1/% 7.2 13.42 7.41 13.65 7.64 13.71

S3-2/KCNY -72 12.1 -34 62 17.5 71

Table 4. Calculation results of market structure indicators under each scheme.

Scheme 1 2 3 4 5 6

S4-1 4800 4800 3500 3500 1600 1600
S4-2 0.667 0.671 0.756 0.761 0.891 0.868

S5-1/% 18.94 24.07 22.82 30.46 23.62 34.98
S5-2/% 21.46 25.1 28.17 32.64 46.18 48.82
S5-3/% 75.21 78.16 78.64 80.12 83.41 85.13
S6-1/% 23.6 24.1 42.5 41.9 56.4 56.7

S6-1/KCYN 243.0 267.8 275.4 305.9 321.8 349.6

5.2. Analysis of Indicator Results

Through the comparative analysis of the data in Table 3 in Section 5.1, under the same
market participation scheme, the energy exergy efficiency of CEP2 can be improved by up
to 9.8% compared with CEP1 because CEP2 has larger capacity new energy units, and new
energy units rely on renewable energy such as wind energy instead of consuming fossil
energy. Therefore, the input exergy of the new energy unit is considered to be zero [27],
so the CEP2 with a large installed capacity of the new energy units has a higher exergy
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efficiency. Under different market participation schemes, from Scheme A to Scheme C, the
system can sell more electric energy generated by clean energy in the region to the energy
market, reducing the occurrence of energy waste and improving the exergy efficiency of
the system. CEP2, with larger energy storage capacity, can sell electricity when the load
is high and generate electricity when the load is low. It has a stronger energy translation
ability and reduces the cost of electricity, so it can obtain higher income and improve
the value-added rate of energy conversion. In the face of different CEPs, the qualitative
evaluation results of relevant experts on the energy conversion boundary are consistent
with the actual situation, and CEPs with more new energy and energy storage equipment
capacity obtain higher qualitative evaluation results. For CEP2, from Scheme A to Scheme
C, the profit obtained in the carbon market increased from 12.1 KCYN to 71 KCYN. This is
because, with the deepening of the market opening, it can promote the consumption of new
energy, thus increasing the emission rights sold in the carbon market. However, for CEP1
under Scheme A, due to the low capacity of new energy and energy storage equipment,
and the inability to sell electricity to the upper power grid, the wind and solar energy
are seriously abandoned, not only unable to make profits in the carbon market, but also
needing to purchase carbon emission rights in the carbon market. With the deepening of
market openness, it can improve the consumption of new energy, so that it has more carbon
emission rights, and carbon benefits can be obtained under the final Scheme C.

From the data in Table 4 in Section 5.1, the Herfindahl–Hirschman Index for Scheme
A is higher. This is because, at this time, the energy market only takes the role of CEPs as
energy receivers, and they do not have the ability to compete in the energy market. With
the deepening of the market openness, the HHI index value gradually decreases, and the
HHI index value is within the range of the competitive market in the case of Scheme C.
With the deepening of the market openness, its market fairness also becomes relatively
fair. The proportion of new energy clearing has a positive correlation with the capacity of
new energy equipment, and a more open market is more conducive to the increase in the
proportion of new energy clearing. For CEP2, the proportion of new energy clearing in
Scheme C has increased by 45.3% compared to Scheme A. The increase in the proportion of
energy storage equipment can promote the space–time coupling and balancing ability of
different energy sources, thereby improving the equivalent utilization rate of the system.
The degree of market openness affects the relationship between supply and demand in the
market, and the relationship between supply and demand guides the fluctuation of market
prices. Therefore, the price volatility of a market with a high degree of openness maintains
a higher level than other market solutions. Under Scheme C, CEPs can participate in
the market competition as the main body of the energy market and obtain more social
benefits in the energy market, while under Scheme A, CEPs can only passively act as energy
receivers to obtain lower social benefits.

5.3. Calculation Results of Index Weights Based on ANP-CRITIC

Through the ANP-CRITIC indicator weight calculation method proposed in Section 4,
and the actual indicator data of each scheme, the subjective and objective weights and
comprehensive weights of the secondary and tertiary indicators are obtained, as shown in
Table 5 and Figure 8.

From the weight distribution of secondary indicators, it can be seen that market
benefit accounts for the highest proportion. This is because the CRIES first pursues the
maximization of social welfare in the process of participating in the market, so that the
main body of integrated energy can be motivated to improve the energy service level,
optimize the system operation plan and upgrade, and invest in lower-carbon and efficient
equipment good positive cycle. The high proportion of low-carbon transition and low-
carbon technical indicators reflects higher energy coupling efficiency, stronger energy
space–time translation capability, and lower-carbon and efficient equipment, which can
minimize primary energy consumption and build a green energy consumption model to
improve the system low-carbon capacity. The market operation indicator is the embodiment
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of the system’s low-carbon capability in the market transaction mechanism, which can
reflect the relationship between the system’s new energy output, supply and demand,
and energy prices in the energy market. A reasonable market transaction mechanism
can promote the system’s low-carbon capability improve. Each weight is consistent with
the actual low-carbon performance of the system, which also verifies the scientificity and
rationality of the indicators proposed in this paper.

Table 5. Calculation results of three-level indicator weights.

Indicator Number Type Subjective Weight Objective Weight Comprehensive Weight

S1-1 benefit-type 0.0892 0.0397 0.0737
S1-2 benefit-type 0.0230 0.0369 0.0769
S1-3 benefit-type 0.0067 0.0386 0.0289
S2-1 benefit-type 0.0173 0.0781 0.0872
S2-2 benefit-type 0.0552 0.0826 0.0704
S3-1 benefit-type 0.0222 0.1054 0.0775
S3-2 benefit-type 0.1081 0.1181 0.1104
S4-1 cost-type 0.0196 0.0830 0.0605
S4-2 benefit-type 0.0589 0.0786 0.0399
S5-1 benefit-type 0.1172 0.0384 0.0835
S5-2 intermediate-type 0.0245 0.0599 0.0423
S5-3 benefit-type 0.0710 0.0439 0.0518
S6-1 benefit-type 0.0556 0.0794 0.0592
S6-2 benefit-type 0.3339 0.1185 0.1571
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technology

low carbon 
benefi ts

market 
subject

market 
operation

market 
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W
eig

ht
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Secondary indicator we ight

Figure 8. Weight distribution of secondary indicators.

5.4. Analysis of Evaluation Results

Based on the index calculation results calculated above, the comprehensive evaluation
results of the six schemes and the second-level index evaluation results are shown in Table 6
and Figure 9.
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Table 6. Valuation results and ranking.

Scheme 1 2 3 4 5 6

Fraction 2.186 2.4305 2.3268 2.601 2.516 3.037
sort 6 4 5 2 3 1

market operation

low carbon technology

 low carbon transition

market benefit

low carbon benefits

Figure 9. Radar chart of secondary index evaluation results.

It can be seen from Table 6 and Figure 9 that the comprehensive evaluation results
under different market schemes are, from high to low, Scheme 6, Scheme 4, Scheme 5,
Scheme 2, Scheme 3, Scheme 1. Among the six schemes, Scheme 1 cannot conduct energy
interaction with the energy market, and due to the small energy storage capacity and
insufficient energy translation capability, the phenomenon of energy abandonment is
relatively serious. Therefore, the low-carbon capacity evaluation result is the lowest.
Scheme 5 has a higher degree of market openness, so the market subject indicator it has a
higher score, but due to the small capacity of new energy and energy storage equipment
and serious energy abandonment, the evaluation results of low-carbon technology and
market operation are low. So, the final evaluation result is in the third place. In contrast,
Scheme 4 has a high proportion of new energy and energy storage, which can promote the
coupling efficiency and space–time translation capability of different energy sources in the
system, so that low-carbon transition, low-carbon technology, and market operations have
high scores. So, it comes in second. For Scheme 6, it can participate in the competition in the
energy market and sell the new energy that cannot be absorbed in the region in the energy
market to reduce the occurrence of energy waste in the system. Therefore, the evaluation
result is the best. For CEP1 and CEP2 from Scheme A to Scheme C, the low-carbon capacity
assessment results increased by 15.08% and 24.9%, respectively.
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5.5. Comparative Analysis of Evaluation Methods

In order to verify the effectiveness and superiority of the ANP-CRITIC method, the
original data were compared with three traditional methods of the fuzzy analytic hierarchy
process (Fuzzy-AHP) [28], entropy weight method (EWM) [29], and AHP–antientropy
weight method (AHP-AEWM) [30]. The final comprehensive evaluation results are shown
in Table 7.

Table 7. Results and rankings under different methods.

Evaluation Methodology
Fraction/Sort

1 2 3 4 5 6

Fuzzy-AHP 5.424 6 6.361 4 6.184 5 6.764 2 6.657 3 7.154 1
EWM 0.473 6 0.697 4 0.618 5 0.748 3 0.794 2 0.869 1

AHP-AEWM 0.846 6 1.268 4 1.195 5 1.593 2 1.386 3 1.895 1
ANP-CRITIC 2.1862 6 2.4305 4 2.3268 5 2.601 2 2.516 3 3.037 1

It can be seen from Table 7 that the results obtained by the other methods, except
EWM, are the same, which also verifies the effectiveness of the evaluation model proposed
in this paper. The EWM relies too much on objective indicator data. Although it can reflect
the correlation between indicators, it ignores the guiding role of decision-makers in the
low-carbon development of CRIES, which leads to deviations in the evaluation results.
Although the Fuzzy-AHP and AHP-AEWM are the same as the comprehensive evaluation
results of the method proposed in this paper, the Fuzzy-AHP is too much affected by the
subjective factors of decision-makers and cannot reflect the objective impact of system data
on the evaluation of CRIES low carbon capacity in the energy market, which will adversely
affect the final evaluation result. Although the AHP-AEWM considers both subjective and
objective factors, it lacks the consideration of the correlation between the indicators. The
method proposed in this paper makes up for the shortcomings of traditional methods, and
can obtain more detailed and comprehensive scientific evaluation results for the CRIES
low-carbon capability evaluation model in the energy market.

6. Conclusions

This paper fully considers the impact of the energy market on the low-carbon capability
of CRIES and takes into account the characteristics of low-carbon development and energy
market operation to construct a low-carbon capability evaluation system for CRIES under
the energy market. The ANP-CRITIC comprehensive empowerment method is used to
evaluate the low-carbon capacity of CRIES under six different schemes. The following
conclusions are drawn from the analysis:

(1) The low-carbon capacity evaluation system and comprehensive empowerment method
constructed in this paper can quantitatively analyze and compare the low-carbon
capacity of the CRIES, and then provide the system construction and policies for the
CRIES to participate in the energy market under the low-carbon target. It provides a
useful reference for the formulation and improvement of market rules.

(2) Improving the installed capacity and consumption level of new energy, promoting the
coupling efficiency and translation ability of different energy sources in the system,
and a more open energy market are the key factors for improving the low-carbon
capability of the CRIES.

(3) Establishing a fairer market transaction mechanism and taking CRIES as a participant
in the energy market to participate in the energy market competition rather than just
the role of energy receiver. It can enable CRIES to obtain more market benefits in
the energy market. Promoting the low-carbon upgrade of CRIES equipment has a
positive effect on the low-carbon development of CRIES.

This paper establishes the CRIES low-carbon capability index under the current energy
market. However, with the continuous development of the CRIES and the advancement of
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energy marketization, it is necessary to continuously improve and refine the index system
for the evaluation of the CRIES low-carbon capability in the energy market environment in
the future.
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Abstract: The high-performance control technology of multi-phase motors is a key technology for
the application of multi-phase motors in many fields, such as electric transportation. The model
predictive current control (MPCC) strategy has been extended to multi-phase systems due to its high
dynamic performance. Model-predictive current control faces the problem that it cannot effectively
regulate harmonic plane currents, and thus cannot obtain high-quality current waveforms because
only one switching state is applied in a sampling period. To solve this problem, this paper uses the
virtual vector-based MPCC to select the optimal virtual vector and apply it under the premise that the
average value of the harmonic plane voltage in a single switching cycle is zero. Taking a five-phase
induction motor as an example, the steady-state and dynamic performance of the proposed virtual
vector MPCC and the traditional model predictive current control were simulated, respectively.
Simulation results demonstrated the effectiveness of the proposed method in improving waveform
quality while maintaining excellent dynamic performance.

Keywords: five-phase induction motor; model predictive current control; virtual voltage vectors

1. Introduction

Due to the massive consumption of fossil energy and the increasingly serious air
pollution problems caused by the exhaust emissions of fuel vehicles, new energy systems
focusing on green and low-carbon development have achieved great progress. Vehicles
utilizing new forms of energy with low pollution emissions are an important application of
new energy systems in transportation; as an example, pure electric vehicles and hybrid ve-
hicles are gradually gaining favor in the market [1,2]. The motor is a key component of new
energy vehicles; excellent motor control technology directly affects the operation and safety
performance of electric vehicles, so a high-performance motor and its control technology
are very important for the development of electric vehicles [3,4]. Usually, variable-speed
AC drives are powered by power electronic converters, but with the development of power
electronic technology, the phase number of the motor is no longer restricted by the tradi-
tional three-phase power supply. The multi-phase motor drive system has received a lot
of attention and research in the fields of ship power propulsion, aerospace and so on [5,6].
Compared with the traditional three-phase system, the multi-phase motor drive system
has the following advantages: (1) high reliability and strong fault tolerance [7,8]; (2) low
voltage and high power drive can be realized by the reduction of per-phase current [9];
and (3) low torque ripple reduces vibration and noise [10]. Among the various multi-phase
drive system solutions, the five-phase system is a typical representative, which has the
typical advantages of the multi-phase system and a relatively simple structure [11].

Model predictive control (MPC) first appeared in the 1960s and was applied in the
chemical industry. With the rapid development of microprocessors, MPC schemes have
been extended to the fields of power electronics and have been widely researched and
applied [12,13]. As one of the most commonly used schemes, finite-control-set model
predictive control (FCS-MPC) has the advantages of simple structure, fast dynamic response,
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simple concept, and easy handling of nonlinear multivariable constraints [14,15]. FCS-MPC
uses the discrete characteristics of the inverter output to enumerate all the alternative
voltage vectors and select the optimal voltage vector as the output by minimizing the cost
function, eliminating the need for pulse width modulation [16,17]. For motor systems,
FCS-MPC can be further divided into two categories, namely model-predictive current
control (MPCC) and model-predictive torque control (MPTC). Since the cost function in
the model-predicted torque includes two variables with different physical units, torque
and flux linkage, it is difficult to select the weight coefficients [18]. Therefore, the MPCC
scheme is more widely used.

Due to its high dynamic performance and flexibility to handle constraints, MPCC is
replacing the most commonly used field-oriented control (FOC) in the field of motor con-
trol [19]. MPCC has been successfully extended from the three-phase motor drive system to
the multiphase motor drive system, which proves the feasibility of model predictive current
control in the multiphase system [20,21]. However, in the MPCC scheme of multiphase
motors, it is often faced with the problem that too many alternative vectors lead to the
complexity of the algorithm and an increase of the calculation amount. At the same time,
due to the use of a single inverter-switching state, generating voltage in the harmonic plane
of the multiphase motor is inevitable, so as to bring harmonic current, resulting in excess
harmonic loss and affecting the performance of the system [22,23].

In order to solve the problem of the large computational load of model predictive
control in multiphase systems, a simplified algorithm using adjacent voltage vectors was
proposed in the literature [24], which reduced the number of alternative voltage vectors
and was applied in multilevel cascade inverters. The literature [25] limited the number of
switches in adjacent sampling periods in advance, so as to exclude some voltage vectors
with a large number of switches and narrow the range of voltage vector candidates. In
order to reduce the harmonic current of the multi-phase motor, the traditional MPC uses
a cost function including two plane current tracking errors, but this method introduces
a weighting factor, and the selection of the weighting factor is very troublesome and the
harmonic current suppression effect is relatively general [15,22].

In order to eliminate the harmonic current of the multiphase motor from the source,
this paper uses virtual voltage vectors (VVs) to solve this problem. The basic voltage vector
is synthesized according to the fixed ratio of VVs, and the VVs are used as the set of selected
vectors to carry out the model predictive current control of five-phase induction motor.
In the literature [26], large vectors and medium vectors were used to synthesize virtual
vectors and construct switching tables, and voltage vectors were selected for direct torque
control according to torque, flux error and speed range. The literature [27] redefined a new
virtual vector to realize fault-tolerant operation of the five-phase induction motor on the
premise of open-circuit induction motor. The literature also [28,29] introduced the concept
of virtual vectors into the model predictive current control of the six-phase induction motor,
and proved that the use of virtual vectors can effectively reduce the loss and improve the
quality of current waveform.

The remaining chapters are organized as follows. In the second part, the model of
the five-phase induction motor and the two-level five-phase voltage source inverter is
introduced, and the distribution characteristics of the basic voltage vector are given. The
third part introduces the traditional model predictive current control scheme. The fourth
part explains the process of virtual vector synthesis and implementation, and introduces the
virtual vector MPC scheme proposed in this paper in detail. In the fifth part, the simulation
results and analysis are presented. Finally, the sixth part gives the conclusion.

2. Five-Phase Induction Motor Drive

2.1. Five-Phase Induction Motor Model

Before using the model predictive current control strategy for the five-phase induction
motor, it is necessary to establish the mathematical model of the five-phase inverter and the
five-phase induction motor. The topology of the five-phase voltage source inverter and the
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five-phase induction motor connection system is shown in Figure 1. The motor windings
are star-connected and the DC side voltage Vdc is considered constant.

 

Figure 1. Diagram of five-phase induction motor system.

Applying the decoupling transformation matrix of the five-phase system defined in (1),
variables in the stationary coordinates of five-phase can be transformed into three normal
subspaces in (2). They are the α-β subspace (fundamental subspace), the x-y subspace
(third harmonic subspace), and the o1-o2 subspace (zero-sequence harmonic subspace),
respectively:

T =

√
2
5

⎡⎢⎢⎢⎢⎣
1 cos α cos 2α cos 3α cos 4α
0 sin α sin 2α sin 3α sin 4α
1 cos 3α cos 6α cos 9α cos 12α
0 sin 3α sin 6α sin 9α sin 12α
1 1 1 1 1

⎤⎥⎥⎥⎥⎦ (1)

[
xα xβ xx xy xo

]T
= [T] · [x1 x2 x3 x4 x5

]T (2)

where α = 2π/5.
Therefore, the control of the five-phase motor can be realized through the control

of these two two-dimensional spaces. The five-phase system includes four degrees of
freedom and zero-sequence components. For a five-phase induction motor, the α-β subspace
corresponds to the first and second rows of the decoupling matrix, x-y subspace corresponds
to the third and fourth rows of the decoupling matrix, and the o1-o2 subspace corresponds
to the last row of the decoupling matrix, respectively. These subspaces have the following
characteristics:

(1) The three subspaces are orthogonal subspaces to each other.
(2) The α-β subspace generates rotating magnetomotive force, and the fundamental

wave and (10n ± 1) harmonics in the magnetic flux of the motor winding are projected into
this space, which is the electromechanical energy conversion subspace.

(3) The motor variable in the x-y subspace is the (10n ± 3) harmonic in the motor
winding flux. This harmonic component does not generate rotating magnetic motive force
and does not participate in electromechanical energy conversion, which will generate
harmonic current and cause harmonic loss.

(4) The 5k (k = 1, 3, 5. . . ) harmonics in the motor variables are projected into the
zero-sequence harmonic subspace, which is usually negligible for a five-phase induction
motor.
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After decoupling transformation, the stator voltage equation of the five-phase induc-
tion motor is:

vsα = (Rs + Ls
d
dt )isα + Lm

dirα
dt

vsβ = (Rs + Ls
d
dt )isβ + Lm

dirβ

dt

vsx = (Rs + Lls
d
dt )isx

vsy = (Rs + Lls
d
dt )isy

(3)

The rotor voltage equation is:

0 = (Rr + Lr
d
dt )irα + Lm

disα
dt + ωrLrirβ + ωrLmisβ

0 = (Rr + Lr
d
dt )irβ + Lm

disβ

dt − ωrLrirα − ωrLmisα

(4)

The torque equation is:

Te = npLm(isβirα − isαirβ) (5)

where Lm is the equivalent mutual inductance between stator and rotor windings, and
Ls and Lr are the equivalent self-inductance of the stator winding and stator winding,
respectively. Lls is the stator leakage inductance. np is the number of pole pairs. ωr is the
rotor electrical speed. Rs, Rr are the stator resistor and the rotor resistor. The subscripts “s”
and “r” represent the stator-side and rotor-side variables, respectively.

2.2. Voltage Vectors Distribution

The switch function can be defined as Sx, x∈{A,B,C,D,E}, where x = A,B,C,D,E repre-
sents the switching state of the inverter bridge arm, Sx = 1 represents that the upper arm
of the bridge opens and the lower arm closes, while Sx = 0 represents that the lower arm
opens and the upper arm closes. A total of 25 = 32 switching states can be generated by the
inverter phase number. Therefore, the stator phase voltage represented by switching state
(Sx) and DC bus voltage (Vdc) is:⎡⎢⎢⎢⎢⎣

Uao
Ubo
Uco
Udo
Ueo

⎤⎥⎥⎥⎥⎦ =
1
5

Vdc

⎡⎢⎢⎢⎢⎣
4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
SA
SB
SC
SD
SE

⎤⎥⎥⎥⎥⎦ (6)

By the decoupling transformation matrix (1), the stator phase voltage is mapped to
two orthogonal subspaces and an additional zero-order subspace, and the voltage vector
can be written as a switching state in two separate spaces:

Vα-β = Vα + jVβ = 2
5 Vdc

(
Sa + aSb + a2Sc + a3Sd + a4Se

)
Vx-y = Vx + jVy = 2

5 Vdc
(
Sa + aSc + a2Se + a3Sb + a4Sd

) (7)

where a = exp(jπ2/5).
The distribution of 32 voltage vectors generated by the five-phase voltage source

inverters in these two subspaces is shown in Figure 2.
These 32 voltage vectors consist of 2 zero vectors and 30 non-zero vectors, which

can be grouped into three groups based on the magnitude of the voltage vector in the
fundamental wave space: large vectors, medium vectors and small vectors. The specific
groupings are shown in Table 1. The amplitudes of each group of voltage vectors in the
fundamental wave space are: 0.6472 Vdc, 0.4 Vdc, 0.2472 Vdc. Therefore, the voltage vector
in α-β subspace can be divided into three decagons. From the outside to the inside, the
ratio of the radius amplitudes of two adjacent decagons is 1.618.
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Table 1. Space vector and vorresponding switching states.

Group Switching States

Large V25 (11001) V24(11000) V28 (11100)V12 (01100) V14 (01110)
V6 (00110) V7 (00111) V3 (00011) V19 (10011) V17 (10001)

Medium V16 (10000) V29 (11101) V8 (01000) V30 (11110) V4 (00100)
V15 (01111) V2 (00010) V23 (10111) V1 (00001) V27 (11011)

Small V9 (01001) V26 (11010) V20 (10100) V13 (01101) V10 (01010)
V22 (10110) V5 (00101) V11 (01011) V18 (10010) V21 (10101)

 
(a) (b) 

Figure 2. Voltage space vectors in two subspaces. (a) α-β subspace. (b) x-y subspace.

3. Traditional FCS-MPCC Scheme

3.1. Prediction Model of Induction Motor

In general, MPCC controls the stator current in the d-q coordinate system [22,30,31],
but considering that there are 32 alternative voltage vectors for the two-level five-phase
inverter, if the control is still carried out in the d-q coordinate system, there are 32 candidate
voltage vectors needed to carry out the rotation transformation into the d-q coordinate
system. In order to reduce the number of rotation transformations, the control is carried
out in the α-β two-phase stationary coordinate system [14,17]. It is necessary to transform
the generated given current from the d-q coordinate system to the α-β two-phase stationary
coordinate system, and the number of rotation transformations is reduced to only once.
The structure of traditional FCS-MPCC scheme is shown in the Figure 3.
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Figure 3. Traditional FCS-MPCC scheme for a five-phase IM (Induction Motor) drive.

In the α-β two-phase coordinate system, the stator current and rotor flux linkage of
the motor are selected as state variables:

Xαβxy =
[
isα isβ isx isy ψrα ψrβ

]T (8)

where isα, isβ are the α-β axis components of the stator phase current in the fundamental
wave plane, isx, isy are the α-β axis components of the stator phase current in the harmonic
plane, ψrα, ψrβ are the α-β axis components of the rotor flux linkage in the stationary frame.

The input variables are the α-β axis components of the stator voltage in the fundamen-
tal wave plane and the α-β axis components in the harmonic plane:

Uαβxy =
[
usα usβ usx usy

]T (9)

The state equation of the motor can be obtained as follows:

p · Xαβxy = A · Xαβxy + B · Uαβxy (10)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 0 A2 −A3
0 A1 0 0 A3 A2
0 0 − Rs

Lls
0 0 0

0 0 0 − Rs
Lls

0 0
Lm
Tr

0 0 0 − 1
Tr

−ωr

0 Lm
Tr

0 0 ωr − 1
Tr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
σLs

0 0 0
0 1

σLs
0 0

0 0 1
Lls

0
0 0 0 1

Lls
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
;

σ = 1 − Lm
2

Ls Lr
; A1 = σ−1

σTr
− 1

σTs
; A2 = 1−σ

σLmTr
; A3 = (σ−1)ωr

σLm

In the formula: σ is the flux leakage factor, and Tr is the rotor time constant, Tr = Lr/Rr.
The sampling period is selected as Ts, and the first-order Euler method is used to

discretize the Equation (10). Since the electrical time constant is usually much smaller
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than the mechanical time constant, the motor speed is assumed to remain approximately
constant during a single sampling period. The motor model is described by discrete state
space equations: ⎡⎢⎢⎢⎢⎢⎢⎣

isα(k + 1)
isβ(k + 1)
isx(k + 1)
isy(k + 1)
ψrα(k + 1)
ψrβ(k + 1)

⎤⎥⎥⎥⎥⎥⎥⎦ = (ATs + I)

⎡⎢⎢⎢⎢⎢⎢⎣

isα(k)
isβ(k)
isx(k)
isy(k)
ψrα(k)
ψrβ(k)

⎤⎥⎥⎥⎥⎥⎥⎦+ TsB ·

⎡⎢⎢⎣
usα

usβ

usx
usy

⎤⎥⎥⎦ (11)

where I is the sixth-order identity matrix.

3.2. Cost Function

MPCC needs to establish a cost function after obtaining the prediction model. In
the cost function, not only the error between the α-β plane current reference value, but
also the predicted value needs to be considered. At the same time, the current of the
harmonic plane will cause unnecessary loss, so it needs to be suppressed, and therefore the
reference value of the harmonic plane current is set to 0. Since the cost function includes
the currents in both the fundamental plane and the harmonic plane, a weighting factor
is introduced to represent the importance of the harmonic plane current tracking error
relative to the fundamental plane current tracking error. However, there is no perfect
theory for the selection of weight factors at present. In practice, it can be selected through
multiple experiments, so as to choose appropriate weight factors to better balance the
influence of fundamental wave plane current and harmonic plane current on the quality
of current waveform. In the model predictive control, the switching state of the inverter
finally selected has the smallest cost function; that is to say, the value of the cost function
corresponding to different switching states directly determines what switching state will
be selected. The established cost function is:

J =
[
(isα

∗ − isα)
2 + (isβ

∗ − isβ)
2
]
+ Wxy ∗

[
(isx

∗ − isx)
2 + (isy

∗ − isy)
2
]

(12)

where the superscript * of i represents the current reference value.

3.3. Delay Compensation

Ideally, the sampling and computation time is negligible, but in the actual system [32],
since the current and rotational speed sampling and current prediction process take a certain
time, the calculated optimal voltage vector cannot be used immediately at the current k time,
but will be applied at the k + 1 time. Therefore, the predictive control needs to consider
the delay effect; that is, after the sampling at the current time k is completed, based on the
switch state used at the time k, calculate the current I (k + 1) at the time k + 1 firstly. This
current is used as the starting point for all switching states to be predicted, then the current
at time k + 2 is predicted, and the optimal vector is selected to be used at time k + 1.

Therefore, in the actual system, the following discrete state equation is used as:

X(k + 2) = FX(k + 1) + GU(k + 1) (13)

where, the F = ATs + I, G = BTs.
The cost function at this time is:

J =
[
(isα

∗(k + 2)− isα(k + 2))2 + (isβ
∗(k + 2)− isβ(k + 2))2

]
+ Wxy ∗

[
(0 − isx(k + 2))2 + (0 − isy(k + 2))2

]
(14)

4. Proposed VV-MPCC Schemes

4.1. Prediction Model of Induction Motor

The prediction model can be obtained from the distribution of vectors in Figure 2.
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The outermost large vector in the α-β subspace is mapped as the innermost small
vector in the x-y subspace, and the median vector in the α-β subspace is still a median
vector in the x-y subspace after mapping. However, the direction of small vectors and
middle vectors mapped to x-y subspace are opposite to each other.

Since the third harmonic plane current is generated by the third harmonic plane
voltage, if the third harmonic plane voltage can be eliminated, the third harmonic plane
current can also be eliminated. Therefore, as long as the large vector and the medium vector
in the same direction in the fundamental wave plane are combined by a certain ratio, the
virtual voltage vector with an average harmonic voltage of 0 in the third harmonic plane
can be obtained to achieve the effect of eliminating harmonic current. Figure 4 shows the
synthesis process of virtual voltage vector VV1 by taking medium vector V16 and large
vector V25 as examples.

 
(a) (b) 

Figure 4. Schematic of virtual voltage vector synthesis (a) α-β subspace; (b) x-y subspace.

Select the large vector and the medium vector of the fundamental wave space, accord-
ing to the principle of volt-second balance, the relationship satisfies{

0.6472VdcλTs + 0.4Vdc(1 − λ)Ts = |VVL|Ts
0.6472Vdc(1 − λ)Ts − 0.4VdcλTs = 0

(15)

In Equation (15), |VVL| represents the amplitude of the synthesized virtual volt-
age vector, and λTs represents the action time of large vectors in a single period. From
Equation (15), we could achieve: {|VVL| = 0.5527Vdc

λ = 0.618
(16)

According to the above calculation time, the large vector and the medium vector are
applied respectively in one cycle. In the fundamental wave space, the new voltage vector
synthesized by the large vector and the medium vector in the same direction is called the
virtual vector, whose direction is in the same direction with the large and medium vector, and
the amplitude is 0.5527Vdc (0.618 × 0.6472Vdc + 0.382 × 0.4Vdc). However, compared with
the traditional MPCC, the bus voltage utilization rate is reduced, and the speed regulation
range is reduced. Figure 5 shows the distribution of virtual vectors in α-β subspace.

For any virtual vector, the ratio of action time between a large vector and medium
vector is constant. No matter whether the virtual vector is synthesized in the order of first
large vector followed by a medium vector, or first medium vector followed by a large vector,
the waveform symmetry of the virtual vector cannot be guaranteed, so it is difficult to
implement in hardware, and it will bring certain high-order harmonics. Therefore, under
the condition that the average value of the output voltage remains unchanged, the effective
pulse sequence is rearranged according to the principle of centrosymmetry. Figure 6 shows
the pulse sequence of VV1 before and after optimization according to the central symmetry
principle, where t25 = λTs, t16 = (1 − λ)Ts. That is, in a single cycle, the inverter first outputs
the switching state of 10,000 with a duration of t16/2, then outputs the switching state of
11,001 with a duration of t25, and then outputs the switching state of 10,000 with a duration of
t16/2. The optimized pulse sequence of the remaining nine virtual vectors is similar to this.
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Figure 5. Virtual voltage vectors in α-β subspace.

  

(a) (b) 

Figure 6. Schematic diagram of the virtual vector implementation method (VV1). (a) Initial mode;
(b) Symmetrical mode.

4.2. Cost Function Optimization

When applying virtual vector MPCC, because the third harmonic voltage has been
eliminated theoretically, there is no need to predict the harmonic current in the prediction
process, and there is no need to include the harmonic current term in the cost function.
Therefore, the prediction model and the cost function are simplified. The simplified
prediction block diagram is shown in Figure 7. The part in the red dotted line box in the
figure shows the difference from the traditional MPCC. The simplified prediction model is:

p · Xαβ = A · Xαβ + B · Uαβ (17)

where
Xαβ =

[
isα isβ isx isy ψrα ψrβ

]T

Uαβ =
[
usα usβ 0 0

]T
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Because the virtual vector is used as the alternative vector set, the number of voltage
vectors is also reduced to 10, which reduces the computational burden. The simplified cost
function is:

J =
[
(isα

∗ − isα)
2 + (isβ

∗ − isβ)
2
]

(18)

Because the average harmonic plane voltage value is 0 only in a single period, and the
dead zone effect exists and the motor winding is impossible to make perfectly symmetric,
the harmonic plane current will still exist, but the harmonic plane current value will be
very small.

Figure 7. Proposed FCS-MPCC with VVs scheme for a five-phase IM drive.

5. Simulation Results

In order to prove the effectiveness of the proposed virtual vector MPCC, the motor
model and its control system were built in MATLAB/SIMULINK, and the simulation
comparison between the proposed method and the traditional MPCC was carried out.
The traditional MPCC was written as T-MPC, and the proposed method was denoted as
VV-MPC. The parameters of the five-phase induction motor used are shown in Table 2.

Table 2. Parameters of five-phase induction motor.

Parameter Symbol/Unit Value

Stator resistance Rs[Ω] 1.9
Rotor resistance Rr[Ω] 3.4

Stator leakage inductance Lls[mH] 35
Rotor leakage inductance Llr[mH] 20

Mutual inductance Lm[mH] 530
Rotational inertia J[kg·m2] 0.04

Pole pairs np 2
Rated speed [r/min] 1500
Rated power [kW] 2.2
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5.1. Performance of T-MPC with Different Weighting Factors

The first set of simulations verified the effect of weighting factors on motor dynamic
performance and harmonic current suppression. The preset speed of the motor was
500 r/min at 0 s, and the speed command suddenly changed to 1000 r/min at 0.5 s, running
with no load. The left side of Figures 8–11 represent the operation when the weighting
factor was 0.5, and the right side the operation when the weighting factor was 0.1.

 
(a) (b) 

Figure 8. Speed performance of T-MPC scheme with different weighing factors at same sampling
frequency (10 kHz). (a) Wxy = 0.1; (b) Wxy = 0.5.

 
(a) (b) 

Figure 9. Torque performance of T-MPC scheme with different weighing factors at same sampling
frequency (10 kHz). (a) Wxy = 0.1; (b) Wxy = 0.5.

Figure 8 shows that the dynamic performance of the motor is similar with different
weighting factors. Figure 8 shows that the motor speed is accelerated to 500 r/min within
0.2 s, and then it only requires 0.15 s (0.65 s–0.5 s) to accelerate from 500 r/min to 1000 r/min
when it accelerates again. Figure 9 shows that both weighting factors demonstrate fast
torque responses, and the torque ripple is smaller when the weighting factor is larger.
Figure 10 shows that when the weighting factor is 0.5, the harmonic current is concentrated
within ±0.5A, while when the weighting factor is 0.1, the harmonic current is concentrated
between ±1A. This indicates that when the weight factor is larger, more attention is paid
to the influence of the harmonic plane current and its suppression effect is enhanced, so
the amplitude of harmonic current decreases. Figure 11 demonstrates harmonic analysis
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of phase currents with different weight factors during 1000 r/min operation, and total
harmonic distortion (THD) decreases from 23.42% to 18.76%, which further illustrates the
improvement effect of larger weighting factors on waveform quality.

 
(a) (b) 

Figure 10. Harmonic currents of T-MPC scheme with different weighing factors at same sampling
frequency (10 kHz). (a) Wxy = 0.1; (b) Wxy = 0.5.

 

(a) (b) 

Figure 11. Total harmonic distortion (THD) performance of T-MPC scheme with different weighing
factors at same sampling frequency (10 kHz). (a) Wxy = 0.1; (b) Wxy = 0.5.

This set of simulations shows that although the weighting factor is effective in regu-
lating harmonic currents, since T-MPC only uses a single basic voltage vector in a single
switching period, it always generates voltage in the harmonic plane and thus generates
large harmonic currents. T-MPC has inherent defects in suppressing harmonic current and
improving waveform quality, and it is always unable to obtain better current sinusoids.

5.2. Performance of Different Control Strategies

The T-MPC and VV-MPC strategies were used, respectively, to make the motors run at
1200 r/min, and a load of 5 N·m was suddenly applied at 0.5 s.

Figure 12 shows that the motor can run stably at the set speed under different control
strategies. When the load is suddenly added, the speed drop is small and the motor can
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recover previous speed quickly. The superscript * of “Torque” in Figure 13 represents
the reference torque. Figure 13 shows that when the load is suddenly added, the output
torque of the motor under the two strategies rises rapidly, in which the torque overshoot of
VV-MPC is larger and the response is more rapid. Figure 14 shows that the phase current
waveform of VV-MPC is less glitchy and the current is more sinusoidal. Figure 15 shows
the harmonic currents under different strategies. It can be seen that during the whole
loading process, the harmonic currents of VV-MPC are smaller than those of T-MPC under
this working condition.

 
(a) (b) 

Figure 12. Performance of speed when loaded for two FCS-MPCC schemes at same sampling
frequency (10 kHz). (a) T-MPC; (b) VV-MPC.

 
(a) (b) 

Figure 13. Performance of torque when loaded for two FCS-MPCC schemes at same sampling
frequency (10 kHz). (a) T-MPC; (b) VV-MPC.
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(a) (b) 

Figure 14. Performance of phase current in steady-state for two FCS-MPCC schemes at same sampling
frequency (10 kHz). (a) T-MPC; (b) VV-MPC.

 
(a) (b) 

Figure 15. Performance of harmonic current for two FCS-MPCC schemes at same sampling frequency
(10 kHz). (a) T-MPC; (b) VV-MPC.

Figure 16 shows the trajectories of fundamental and harmonic plane currents, where
the outer ring is the fundamental current trajectory and the inner ring is the harmonic
current trajectory. The fundamental current trajectory of VV-MPC is smoother, and the circle
formed by the harmonic current has a smaller radius than that of T-MPC, indicating that
VV-MPC has an obvious suppressing effect on harmonic currents during steady operation.

This set of simulation shows that after the virtual voltage vectors were adopted, the
voltage average value of the harmonic plane was 0, so the current value of the harmonic
plane in the VV-MPC method is smaller than that of the T-MPC method. Compared with
T-MPC, VV-MPC also has good torque response characteristics when the load is suddenly
added, and has a good harmonic current suppression effect when running with load at a
steady state.

In order to compare the steady-state performance of the two methods at different
speeds, the THD analysis of the phase current of VV-MPC and T-MPC in steady-state
operation with load was carried out, respectively. Table 3 shows the THD analysis of phase
current of the two methods at different speeds. It can be seen from Table 3 that, at the
same speed, the THD of VV-MPC is about half smaller than that of T-MPC, indicating that
VV-MPC has a better suppression effect on harmonic currents and thus obtains a better
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sinusoidal current. The THD of T-MPC does not change much at different speeds, and
the minimum THD is achieved in the medium speed range (750 r/min). VV-MPC can
effectively suppress the harmonic current in the whole rate range, and the current quality
is better at medium and low speed (300–750 r/min).

Table 3. THD analysis of T-MPC and VV-MPC.

Scheme 1200 r/min 750 r/min 300 r/min

T-MPC 10.67% 9.91% 10.77%

VV-MPC 6.65% 5.68% 5.82%

 
(a) (b) 

Figure 16. Performance of current trajectories of fundamental and harmonic currents for two FCS-
MPCC schemes at same sampling frequency (10 kHz). (a) T-MPC; (b) VV-MPC.

5.3. Forward and Reverse Performance under the Proposed Strategy

In order to further test the dynamic performance of the proposed VV-MPC, the sim-
ulation of forward-to- reverse switching under no-load condition was carried out. After
acceleration in advance, the motor was stable at 1000 r/min at 0.5 s, and the reference
speed became −1000 r/min at 2.5 s. The superscript * of “ωm” in Figure 17 represents
the reference speed. Figure 17 shows that the actual speed of the motor quickly tracks the
reference speed and runs stably at −1000 r/min after 0.6 s. The d-q axis current and its ref-
erence value during the whole switching period are shown in Figure 18. The superscript *
in Figure 18 represents the reference d-axis current and reference q-axis current. It can
be seen that the reference current of the d-axis keeps constant, while the actual current
value of the d-axis fluctuates more than during the steady-state operation only during the
conversion process of 2.5 s–3.1 s, but the reference value can still be tracked. When the
speed reference command changes, in order to force the motor to decelerate rapidly and
reverse, the reference value of the q-axis current quickly changes to −8A, and the actual
value is immediately tracked, which reflects that it still has good dynamic performance in
the extreme case of forward and reverse switching. Figure 19 shows that during the entire
operation process, the harmonic current is always maintained between −0.3A and 0.3A,
and the harmonic suppression ability is not affected by the working conditions.
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Figure 17. Performance of speed when used VV-MPC in speed reversal simulation.

Figure 18. Performance of d-q current tracking error when used VV-MPC in speed reversal simulation.

Figure 19. Performance of harmonic current when used VV-MPC in speed reversal simulation.

5.4. The Performance of the Proposed Strategy under All Operating Conditions

In order to compare the performance differences between the proposed VV-MPC and
T-MPC at different speeds and different loads, the speed values used were 300 r/min,
600 r/min, 900 r/min, 1200 r/min, and the loads used were 2 N·m, 4 N·m, 6 N·m, 8 N·m,
10 N·m. Multiple sets of simulations were performed, and the results are displayed in
three-dimensional diagrams as shown in Figures 20 and 21.
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Figure 20. Effects of torque and speed on phase current.

Figure 21. Effects of torque and speed on switching frequency.

Figure 20 shows that the THD-plane of VV-MPC and T-MPC does not overlap at full
speed and under full working conditions, which fully shows that VV-MPC can effectively
suppress harmonic current at any speed and load compared with T-MPC. At the same time,
it can be seen that for these two control strategies, the THD of the motor with light load is
greater than that of the motor with heavy load, indicating that the waveform quality of the
two strategies under load is improved compared with that of no load. With the same load,
THD does not change much with the increase of the motor speed, indicating that the speed
has little influence on the phase current THD of the motor.

Figure 21 shows that the switching frequency of T-MPC changes slowly and does not
change greatly with the change of load. The switching frequency at low speed is slightly
lower than that at high speed. At 300 r/min and no load, the minimum switching frequency
is 1.4 kHz and the maximum is 1.8 kHz at 1200 r/min and no load. This indicates that the
same voltage vector will be used for a long period of time, which means that the switching
device will not act. The switching frequency of VV-MPC varies greatly with the speed. The
switching frequency is low at low speeds, about 2.1 kHz at 300 r/min, and high at high
speeds, about 5 kHz at 1200 r/min. It can be speculated that when the speed increases,
the stator current frequency also increases, so that the switching frequency increases. For
these two strategies, the control frequency is set to 10 kHz, and the switching frequency of
VV-MPC, which has the highest switching frequency, is only about 5 kHz, indicating that
the MPC has the characteristic of low switching frequency.

6. Conclusions

Although T-MPC still has good dynamic performance when extended to multiphase
systems, it lacks effective suppression of harmonic plane currents. The single switching
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state used in T-MPC will inevitably bring the problem of high harmonic plane currents. In
this paper, ten new virtual vectors were synthesized from the large and medium vectors in
the same direction in α-β space according to the fixed ratio by using the vector distribution
characteristics of five-phase inverter. Taking the virtual vector set as the alternative vector
set, the VV-MPC method based on the virtual vector set was proposed and applied to a
five-phase induction motor. The advantages of the proposed VV-MPC can be summarized
as follows:

(1) Compared with the traditional method, the proposed method has excellent dynamic
performance, and the harmonic plane current value is greatly reduced, so as to achieve the
purpose of suppressing harmonic current, reducing harmonic loss and improving power
quality.

(2) Due to the reduction of the number of vectors in the alternative vector set, the
calculation amount of MPC in each cycle is reduced.

(3) In the proposed method, the theoretical average value of the harmonic plane
voltage is 0, so there is no need to predict the harmonic plane currents in the prediction
process, the weighting factor is omitted, and the prediction model is simplified.
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Abstract: The increase in demand and generator reaching reactive power limits may operate the
power system in stressed conditions leading to voltage instability. Thus, the voltage stability as-
sessment is essential for estimating the loadability margin of the power system. The grid operators
urgently need a voltage stability assessment (VSA) method with high accuracy, fast response speed,
and good scalability. The static VSA problem is defined as a regression problem. Moreover, an
artificial neural network is constructed for online assessment of the regression problem. Firstly, the
training sample set is obtained through scene simulation, power flow calculation, and local voltage
stability index calculation; then, the class imbalance problem of the training samples is solved by the
random under-sampling bagging (RUSBagging) method. Then, the mapping relationship between
each feature and voltage stability is obtained by an artificial neural network. Finally, taking the
modified IEEE39 node system as an example, by setting up four groups of methods for comparison,
it is verified that the proposed method has a relatively ideal modeling speed and high accuracy, and
can meet the requirements of power system voltage stability assessment.

Keywords: static voltage stability; machine learning; class imbalance problem; random under-
sampling; bagging; artificial neural network

1. Introduction

Voltage stability [1] is the main limiting factor for the safe and reliable operation of
power systems. With continued load growth and the penetration of new energy sources,
modern power systems have been pushed to operate closer to their voltage stability limits.
Over the past few decades, great efforts have been devoted to investigating the mecha-
nisms of voltage instability and developing effective voltage stability assessment (VSA)
methods [2].

Generally, voltage profiles show no anomalies before undergoing a voltage collapse
due to load changes. Voltage stability margin (VSM) is a static voltage stability index that
quantifies how “close” a particular operating point is to the point of voltage collapse [3].
Therefore, the VSM can be used to estimate the steady-state voltage stability limit of a
power system. Knowing voltage stability margins is critical for utilities to operate their
systems safely and with reliability. The system operator must provide an accurate and fast
method to predict the voltage stability margin to initiate the necessary control actions [4].

That proposed a static voltage stability prediction method based on gradient boosting,
which has better prediction accuracy [5]. However, its training set data are obtained through
the calculation of the cumulative probability function (CPF), which is only applicable to a
fixed load power factor case. Ghiocel et al. [6] proposed a new method to directly eliminate
the singularity by reformulating the power flow problem. The central idea is to introduce
an AQ bus in which the bus angle and the reactive power consumption of a load bus are
specified. However, the computation burden is still heavy, and the solution speed cannot
meet the requirement of real-time assessment.
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With the boom of wide-area measurement systems in smart grids [7–9], the availability
of large amounts of data acquired by phasor measurement units (PMUs) presents a huge
opportunity for data-driven stability assessments. Great efforts have been made to perform
such tasks through machine learning techniques.

In [10], a static stability assessment method for a power system based on a decision
tree algorithm is proposed, which improves the assessment speed. However, there is
no countermeasure for the decision tree over-fitting problem. Lai et al. [11] proposed
a transient voltage stability assessment model based on convolutional neural networks,
which improves the assessment speed by using statistical analysis for data dimensionality
reduction. However, relying only on statistical analysis for data dimensionality reduction,
it is easy to ignore individual features. Liang et al. proposed a random forest model for
static voltage stability assessment, which makes up for the assessment defects of a single
decision tree [12]. However, the selection of features is based on subjective judgment.
The voltage stability assessment problem is treated as a classification problem of machine
learning, making it difficult to accurately know the degree of voltage stability.

A common feature of these machine learning-based efforts is that they assume that
the learning dataset can be generated by system simulations in the desired quantity [13].
Since accurate simulation and modeling, especially load modeling, are considered a great
challenge in power systems, errors are inevitably introduced into the learning dataset.
Preferably, the learning dataset can be obtained from PMU records, which will significantly
improve the quality and reliability of the knowledge base. However, learning machines
are likely to suffer from severe class imbalance problems. The system remains stable after
most disturbances and becomes unstable only in a few cases. If not handled properly,
this imbalance can greatly deteriorate the performance of the learning machine, and the
minority class will be ignored and thus leading to misjudging. The class imbalance problem
exists not only in the field of power systems, but also widely in other academic and
industrial contexts, such as credit fraud detection, biomedical diagnosis, equipment fault
diagnosis, and Internet intrusion [14].

Faced with class imbalance problems [15], considerable efforts have been made by
machine learning researchers to deal with them [16,17]. Synthetic sampling is the most
commonly used method for rebalancing class distributions. However, it cannot be directly
applied to voltage stability assessment. Because datasets created by naive replication or
linear interpolation may not exist in practice. Besides sampling-related techniques, some
cost-sensitive tricks are proposed to build cost-sensitive classifiers. By attaching costs to
different classes, these techniques manage to enhance minority learning by drawing more
attention to minority classes [18].

To meet the requirements of voltage stability assessment and solve the problem of
class imbalance and poor model generalization in machine learning, an online assessment
method of static voltage stability using the RUSBagging method is proposed. The method
differs from other methods in that:

The problem of VSA is defined as a machine learning regression problem, which is
helpful for grid operators to observe the voltage stability state of the power system.

The bagging method of the ensemble framework is used to build the model to improve
the generalization ability of the model.

The random under-sampling method is added to bagging, which solves the class
imbalance problem to a certain extent and improves the assessment accuracy on minority
class samples.

2. Local Voltage Stability Index

Commonly used static voltage stability indexes are [19,20]: the Jacobi singular value
index, voltage sensitivity index, load margin index, VCPI index, and local voltage stabil-
ity index. Compared to other voltage stability indices, the local voltage stability index
(L index), which can give normalized index values for different systems, and which is
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not limited by the randomness of the direction of load growth, are highly applicable and
highly accurate.

By the KCL law (Kirchhoff’s current law) there is YV = I, where Y stands for node
admittance, V stands for node voltage, and I stands for node current. In addition, according
to the value of the node injection current, the network nodes are divided into generator
nodes, load nodes, and contact nodes, and the equations of the node network after the
division are as follows. ⎡⎣ IG

IL
0

⎤⎦ =

⎡⎣Y′
GG Y′

GL Y′
GK

Y′
LG Y′

LL Y′
LK

Y′
KG Y′

KL Y′
KK

⎤⎦⎡⎣ VG
VL
VK

⎤⎦ (1)

where VG and IG are the voltage and current vectors at the generator node, VL and IL are the
voltage and current vectors at the load node, and VK is the voltage vector at the contact node.

By eliminating the contact nodes, the remaining nodes in the network are divided
into the set of generator nodes (αG) and the set of load nodes (αL), and Equation (1) can be
transformed as: [

IG
IL

]
=

[
YGG YGL
YLG YLL

][
VG
VL

]
(2)

where YGG = Y′
GG − Y′

GKY′−1
KK Y′

KG, YGL = Y′
GL − Y′

GKY′−1
KK Y′

KL, YLG = Y′
LG − Y′

LKY′−1
KK Y′

KG,
YLL = Y′

LL − Y′
LKY′−1

KK Y′
KL.

Substituting ZLL = Y−1
LL into Equation (2) converts to:[

IG
VL

]
=

[
YGG − YGLZLLYLG YGLZLL

−ZLLYLG ZLL

][
VG
IL

]
(3)

Reference [15] gives the local voltage stability index Lj for load node j:

Lj =

∣∣∣∣∣ ∑
i∈αL

∣∣∣∣∣ Z∗
ji S̃i

Z∗
jj

.
Vi

∣∣∣∣∣ .
Vj

∣∣∣∣∣
V2

j Yjj
=

∣∣∣∣∣ ∑
i∈αL

Z∗
ji S̃i
.

Vi

∣∣∣∣∣
Vj

(4)

where
.

Vi,
.

Vj are the voltage phases of nodes i, j respectively. S̃i is the equivalent load of
node i. Z∗

ji is the mutual impedance conjugate between loads j,i of the equivalent load

impedance matrix ZLL. Yjj is the self-conductance of the jth node of the equivalent load
conductance matrix YLL.

The local voltage stability index for all load nodes in the network forms the overall
system stability index vector L = [L1, L2, · · · Ln], n ∈ αL and the maximum index value for
the load is selected to define the voltage stability index for the system.

L = ‖L‖∞ (5)

The relationship between local voltage stability index and system voltage stability
is [21]:

L < 1, system voltage stability.
L = 1, system voltage critical stability.
L > 1, system voltage instability.

3. Random Under-Sampling Bagging BP Method for VSA

3.1. BP Neural Network for Regression of VSA

Since the VSA problem is defined as a machine learning regression problem in this
article, a model is built to implement the regression. The back-propagation (BP) neural
network model is easy to build, has a wide range of adaptability, and the algorithm is easy
to implement. Hence, BP neural network is selected to solve this regression problem.
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3.1.1. Model of BP Neural Network for Regression of VSA

Neural networks have an adaptive character, changing the weight values during the
training process to suit different requirements [22,23]. The internal neural network can be
divided into input, hidden and output layers according to the different functional layers.

For regression of the VSA problem, the input variables are the operating states of the
power system, such as nodal voltage, branch power flow, and load demand. The output of
the model is the L index, which is the result of the voltage stability assessment.

Where X is the input column vector; xi is the element in row i. W is the weight matrix;
specifically, an element of W can be represented by w f ,ij. The subscript f indicates the
corresponding layer, and the subscript ij indicates the connection between node i in this
layer and node j in the next layer. Y is the output column vector; yi is the element in row i.
Σ is the summation symbol, which sums multiple input signals; ϕi is the activation function
of the i-th neuron in the hidden layer and φi is the i-th neuron activation function in the
output layer; θi is the i-th neuron threshold in the hidden layer and bi is the i-th neuron
threshold in the output layer.

Neural networks use a large number of hidden layer neurons for data flow processing
and network training. Without loss of generality, the neural network data stream processing
process is briefly described using a single neuron in Figure 1 as an example.

Figure 1. Structure diagram of typical BP neural network.

Assuming that the output of the i-th neuron in the hidden layer is, the output of the
ith neuron can be represented by Equation (6) from Figure 1.

oi = ϕi(
n

∑
j=1

w1,ij · xj + θi) (6)

Similarly, it can be deduced that the output of the ith neuron in the output layer is:

yi = φi(
m

∑
j=1

w2,ij · oj + bi) (7)

3.1.2. Algorithm of BP Neural Network for Regression of VSA

The learning process consists of two processes: forward propagation of the signal
and backward propagation of the error. The forward propagation process is shown in
Equations (6) and (7). If the actual output of the output layer is not equal to the label
value, then it is transferred to the error backpropagation process. The core of the BP neural
network is the error back propagation process.

The error back propagation is to backpropagate the output error in a certain form
through the hidden layer, and the error is apportioned to all neurons in each layer according
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to certain rules. To obtain the error signal of the neurons in each layer, and use it as the
basis for correcting the weights of each neuron, the specific correction method is shown in
Equations (8) to (11). The process of weight correction is also the learning process of the
network. In general, this process continues until the network output error is within the set
range or until a predetermined learning time or iterations.

Δw2,ij = η
P

∑
p=1

K

∑
k=1

(
Tp

k − op
k

)
φ′

ioj (8)

Δbi = η
P

∑
p=1

K

∑
k=1

(
Tp

k − op
k

)
φ′

i (9)

Δw1,ij = η
P

∑
p=1

K

∑
k=1

(
Tp

k − op
k

)
ϕ′

iw2,ijφ
′
jxj (10)

Δθi = η
P

∑
p=1

K

∑
k=1

(
Tp

k − op
k

)
ϕ′

iw2,ijφ
′
j (11)

where Δw2,ij is the weight correction between the i-th neuron in the hidden layer to the j-th
neuron in the output layer. Δbi is the threshold correction for the i-th neuron in the output
layer. Δw1,ij is the weight correction between the i-th neuron in the input layer to the j-th
neuron in the hidden layer. Δθi is the threshold correction for the i-th neuron in the hidden
layer. p is the sample index and P is the total number of training samples. η is the weight
correction learning rate. Tp

k is the expected output value of the kth output neuron for the
pth sample data.

3.2. Random Under-Sampling Bagging for Improving Model Accuracy of VSA

In the actual operation of the power system, the system is in a stable state in most cases.
Stable data is far more than unstable data or critically stable data, which is a typical data
imbalance problem. In fact, for the stable operation of the power system, the value of unstable
or critically stable sample data is higher than that of stable sample data. Therefore, solving the
data imbalance problem in the voltage stability assessment of the power system has a positive
effect on improving the accuracy of the model in the critical stable operating state.

3.2.1. Random Under-Sampling Method for Solving Class Imbalance Problem in VSA

Data sampling is a type of data preprocessing method, which can solve the learner
bias problem caused by data imbalance to a certain extent. Data sampling is generally
divided into two categories: under-sampling and over-sampling. Over-sampling achieves
the balance of original skewed data by introducing a new minority of instances, while
under-sampling does the opposite. However, the over-sampling method will generate the
wrong samples, which damages the learning result of minority samples [23]. Therefore,
an under-sampling method is selected in this article. The schematic diagram of random
under-sampling is shown as Figure 2.

To generate a balanced data set for training, the under-sampling method is used to
resample the original set. Assuming that the size of the resampled data sets is S, where
S ≤ NP × 2, NP is the size of the majority set P. Randomly sample the number of instances
from both the majority set P and the minority set N without replacement and put them into
the new training data set D [24].
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Figure 2. Schematic diagram of random under-sampling.

To make sure that every subset Di for training is relatively independent and as many
instances of the original sets as possible are covered, a concept of overlap rate was proposed
in [25]. The overlap rate of two data sets is defined as follows:

Given two data sets D1, D2 with the size of M, MS is the number of the same samples
in D1 and D2, so the overlap rate R0 of D1 and D2 is:

R0(D1, D2) =
MS

M
(12)

The threshold value RThreshold is set to limit the subset Dt obtained from the t under-
sampling by:

R0(Dt, Di) < RThreshold , i = 1, 2, . . . , t − 1 (13)

3.2.2. Bagging with Random Under-Sampling for Improving Model Accuracy of VSA

Bagging is the abbreviation of bootstrap AGGregatING, the representative of the
parallel ensemble learning method. Multiple different training sets are constructed by
the method of bootstrap sampling (re-sampling). Then the corresponding weak learners
are trained in each training set. Finally, the final model after the aggregation of the weak
learners is obtained [26].

For the bagging method, each weak learner uses the same model. It is necessary to
distinguish the training data sets of each weak learner. If the training data set is directly
divided and different weak learners are trained on each subset, the weak learner will miss the
key information in the original training set, which limits the performance of the weak learner.

The proposal of bootstrap sampling solves the above problems well. This sampling
method ensures the independence of different training subsets as much as possible while
using more samples. Specifically, the method of repeatable sampling is adopted. There
are repeated samples in these samples, so they are the true subset of the original data set.
Assuming that the probability of each sample being sampled during the sampling process
is equal, it is not difficult to calculate that when the number of samples n is large, about
63.2% of the original samples will be drawn in one bootstrap. Use bootstrap to sample M
times to obtain M sample sets, and build a basic learner on each sample set to obtain M
different learners.

Another step in bagging is model aggregation. For classification problems, the one with
the largest proportion of the results of M weak learners is selected as the final classification
result by voting; for regression problems, the outputs of M weak learners are averaged. Table 1
is a brief flow of the bagging method, which can be used for both classification and regression.

However, the original bagging does not take into account the imbalance problem. The
data set of every training group is still imbalanced, and integration does not contribute to
solving the imbalance problem. After the bootstrap sampling method, the random under-
sampling method is added to improve the applicability of bagging to imbalanced data.
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Table 1. Algorithm of the random under-sampling bagging method.

Input: dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, weak learner algorithm, number of weak
learner M
For i = 1, 2, . . . , M:
Using the bootstrap sampling method on the dataset D to generate a subsampled set Di
Using the random under-sampling method on the dataset Di to generate a balanced subsample
set D′

i
Training the ith weak learner Gi(x) with a balanced subsample set D′

i
End
Output: the final model

Figure 3 shows a schematic diagram of the framework of the RUSBagging method.
First, the training set is randomly sampled to form multiple training subsets with differences
in data characteristics. Then, using random under-sampling to obtain balanced data
subsets. The weak learner is trained based on each balanced subset. Finally, the results are
synthesized to obtain the final comprehensive result. After training, the test set is used to
test the training effect of the model.

 

Figure 3. Schematic diagram of the random under-sampling bagging method.

4. Modeling of Static Voltage Stability Assessment Based on Machine Learning

Based on power flow calculation and local voltage stability index calculation, the
static voltage stability assessment problem of the power system is treated as a supervised
machine learning problem. With the help of the machine learning method, the mapping
relationship between the operating state and voltage stability is mined. The idea frame
diagram is shown in Figure 4.

In the framework shown in Figure 4, there are mainly four parts: scene generation,
sample generation, model building, and model training. The scene simulation is carried
out considering the characteristics of the actual operation scene. In addition, the power
flow calculation is performed on the simulated scene. The power flow calculation result
is a feature variable of the sample corresponding to the scene. Based on the power flow
calculation result, the local voltage stability index is calculated too. The index value is the
corresponding label value (true value) of the sample in the scene.
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Figure 4. The framework for static VSA of power system based on RUSBagging.

The scenario simulation mainly considers the following factors: load demand, genera-
tor status, and new energy output power. Specifically, for the load demand, there are heavy
load demand and light load demand. For the generator status, the generator does not reach
the limit of reactive power and the reactive power of some units reaches the limit. There are
two reasons for considering this factor: First, when the generator node transforms into a PQ
node, the voltage stability state of the system will change abruptly. Second, the calculation
of the L index needs to determine the type of system nodes in advance. When the type of
node changes, the L index calculation model needs to be updated. For the output of new
energy, the node where the unit is located is regarded as the PQ node. The load side also
considers the batch connection to the grid and withdraws from the grid of electric vehicles.

The above factors only consider typical scenarios, so the number of scenarios is limited.
Therefore, in the simulation, a mixed simulation of various factors is adopted to expand the
number of scenarios. After the scenario simulation is completed, the power flow calculation
is carried out for each scenario to obtain the voltage amplitude and phase angle of each
node, the active and reactive power output of the generator, and the line power flow. These
power flow calculation results and the load demand together constitute the features of
samples. The L index corresponds to the features of samples packaged into complete
training data. Since the L index can be directly calculated based on the power flow state,
it does not require continuous power flow calculation like PV analysis, so the sample
collection speed is very fast. The training set, validation set, and test set are randomly
selected according to the ratio of 90%, 5%, and 5%.

BP network belongs to supervised learning [27]. In the process of neural network
modeling, the selection of activation function, loss function, and the optimization algorithm is
required. In the design of hyperparameters, such as the number of hidden layers, the number
of neurons in the hidden layer, the number of parallel BP networks, etc., it needs to be set
according to specific problems, and these hyperparameters rely more on empirical values.
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(1) Activation function

The activation function is the key to the nonlinear mapping function of the neural
network. Common activation functions include Sigmoid, ReLU classes (ReLU, LReLU,
RReLU), Tanh and Softmax. Through the nonlinearization of the input data by the above
activation function, combined with the deep superposition of the neural network, the
fitting of the nonlinear function is realized. In this paper, the LReLU activation function
is selected as the activation function of the BP network, because the dead zone of LReLU
has a small range. At the same time, LReLU can effectively avoid the problem of gradient
disappearance, and also alleviate the problem of neuron death of ReLU, which is beneficial
to the neural network. The curve of LReLU is shown in Figure 5. The expression of the
LReLU activation function is:

f (x) = max{0.1x, x} (14)

Figure 5. The curve of LReLU.

The domain of the LReLU function is negative infinity to positive infinity. LReLU
alleviates the problem of ReLU neuron death and solves the problem that some neurons
cannot be activated.

(2) Loss function

The loss function is used to measure the difference between the output value of the
model and the true value of the sample. Through the back-propagation process, the loss
function is minimized, the weight of the network is corrected, and the gap between the
output value of the model and the true value of the sample is continuously narrowed to
achieve network convergence.

For different learning models, such as regression models and classification models, the
type of loss function needs to be selected. For the classification model, the cross-entropy loss
function is generally used. For the regression model, the mean square error loss function is
generally used. In this paper, the problem of voltage stability assessment is defined as a
regression problem, so the mean square error function is chosen as the loss function.

E =
1
N

N

∑
i=1

(yi − ŷi)
2 (15)

where E represents the output value of the loss function, N represents the number of
samples used in a parameter update process, and yi and ŷi represent the true value and
predicted value of the ith sample label, respectively.
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(3) Optimization algorithm

After completing the construction of the loss function, it is necessary to implement
parameter correction through the optimization algorithm. The deep learning optimization
algorithm mainly includes the basic optimization algorithm and the adaptive parameter
optimization algorithm. The representative algorithm of the basic optimization algorithm
is the stochastic gradient descent method, which keeps the learning rate unchanged during
the training process. It cannot dynamically adapt to the training requirements. In addition,
it is easy to fall into the local optimum point. The representative algorithm of the adaptive
parameter optimization algorithm is Adam. The learning rate is gradually attenuated to
better adapt to the training requirements as the learning progresses, shorten the training
time, and improve the training effect. In this paper, the Adam algorithm [28] is used as the
optimization algorithm for network training.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mt = μ · mt−1 + (1 − μ) · gt
nt = v · nt−1 + (1 − v) · g2

t
m̂t = mt/(1 − μ)
n̂t = nt/(1 − v)
Δθt = −m̂t · η · gt/

√
nt + ε

(16)

In the formula, gt represents the gradient, mt represents the first-order moment esti-
mation of the gradient, nt represents the second-order moment estimation of the gradient,
m̂t and n̂t represent the corrected values of mt and nt, respectively. μ and v represent the
first-order momentum and the second-order momentum, respectively. Momentum coeffi-
cient, ε means avoiding smoothing terms with 0 denominators, η means learning rate. The
standard settings for μ and v are 0.9 and 0.999, respectively, and the default value for η is
0.001. A satisfactory training effect can be obtained by applying this set of hyperparameters
during the training process, and no special adjustment is generally required.

5. Results

To verify the effectiveness of the proposed model, the modified IEEE39 system case is
taken as an example, as shown in Figure 6. The IEEE39 system [29] has 39 nodes, 19 load
nodes, 10 thermal power units, and 46 branches (including transformers) with the following
modifications: replacing the thermal power generator on bus-39 with wind turbines with a
capacity of 650 MVA and removing the load of bus-39.
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Figure 6. Modified IEEE 39 bus system.

The neural network model is built based on the Pytorch framework, and the power
system simulation is performed based on the PSSE simulation platform. An analysis is
developed from the perspectives of model training time, mean square error (MSE), and
mean absolute percentage error (MAPE).

In machine learning, MSE is generally used as the error of model training, and it is
used as the objective function to update the parameters. The expression of MSE is shown
in Formula (17):

MSE =
1
n

n

∑
i=1

(y′i − yi)
2 (17)

where y′i is the predicted value of the ith sample, and yi is the true value of the ith sample. The
advantage of MSE is to amplify extreme errors and avoid huge deviations in the model. The
disadvantage is that it is not intuitive and it is difficult to explain its meaning after squaring.

In order to intuitively reflect the difference between the actual value and the predicted
value, there is MAPE, which is expressed as Formula (18):

MAPE =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣

yi
(18)

The value of MAPE is intuitive and has a clear meaning, but when the actual value is
very small, it is easy to produce misleading information. Therefore, MAPE is generally not
used for the loss function of regression problems with small real values, but it can be used
as a more intuitive method to measure the model error.

In summary, MSE is used to evaluate the overall performance of the model, and MAPE
is used to evaluate the performance of the model on batch instances.

The training time of different methods and the MSE and MAPE error of each method
on the test set are shown in Table 2.
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Table 2. Comparison of the performance of different methods on the whole test set.

Num Methods Train-Time/s MSE MAPE

1 BP-RUSBagging 312.44 6.0252 × 10−7 0.0011
2 BP-Bagging 290.35 4.7632 × 10−7 0.0014
3 BP 213.54 2.2391 × 10−6 0.0018
4 SVR 564.21 9.3797 × 10−6 0.0022

SVR stands for support vector regression. The test set is divided into multiple batches
of data, and each batch of data is calculated to obtain the batch MAPE index and plot the
results, as shown in Figure 7.

As shown in Figure 7, the errors of the four methods on the test set are all small, and the
advantage of method 1 is not obvious. This is because the test set is also a class-imbalanced
data set, so the advantage of the under-sampling method is not prominent on the whole
test set.

To further illustrate the applicability of the proposed method to the class imbalance
problem, the minority class samples in the test set are screened out, and then four methods
are used for comparison based on the minority test set. The results are shown in Table 3.

As shown in Figure 8, on the screened test set, the proposed method has obvious
advantages over other methods. It has a lower error on minority class samples. Compared
with methods 3 and 4, method 2 also shows the adaptability to the class imbalance problem
to a certain extent. This should be credited to the bagging framework.
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Figure 7. MAPE results of each method on the whole test set.

Table 3. Comparison of the performance of different methods on the minority test set.

Num Methods Train-Time/s MSE MAPE

1 BP-RUSBagging 312.44 1.7763 × 10−5 0.0167
2 BP-Bagging 290.35 8.1022 × 10−5 0.0284
3 BP 213.54 2.2391 × 10−4 0.0411
4 SVR 564.21 1.4397 × 10−3 0.0622
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Figure 8. MAPE results of each method on the minority test set.

6. Conclusions

The comparative analysis proves that the proposed static voltage stability assessment
method not only has high accuracy, strong adaptability, and short modeling time but also
has the following advantages:

(1) In the sample preparation stage, various operating scenarios such as load demand,
new energy output power, and EV status were considered, which greatly improved
the scenario applicability of the model.

(2) Defining the static voltage stability assessment problem as a regression problem
of machine learning, which essentially improves the model assessment accuracy,
provides voltage stability information with a quantitative index, and helps grid
operators to better observe the grid state.

(3) Using the random under-sampling bagging framework provides a method to solve
the problem of imbalanced data in the field of power system operating, which com-
prehensively improves the accuracy of the model.
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Abstract: In order to solve the problem that the fault classification accuracy of the main bearing of the
wind turbine is not high due to the unbalanced vibration signal data of the main bearing of the wind
turbine under the background of noise, this article proposes a double-layer fault diagnosis model for
the main bearing of the wind turbine that combines the auxiliary classifier generation adversarial
network (ACGAN) and the deep residual shrinkage network (DRSN). First, the wind turbine main
bearing data is sent into the ACGAN to learn the distribution features of fault data, and a particular
type of fault data is generated to expand the original dataset to achieve balance conditions, and then
the expanded dataset is sent to the DRSN to reduce noise to improve the fault classification accuracy.
The simulation results show that, compared with the traditional deep learning model, the model
proposed in this article can significantly improve the classification accuracy of the main bearing fault
of wind turbines under noise conditions, and also has a strong diagnosis ability in a state of datasets
with different loads.

Keywords: wind turbine; main bearing; fault diagnosis; noise; deep residual shrinkage network;
auxiliary classifier generative adversarial network

1. Introduction

As an important green renewable energy, wind energy has become a research hotspot
in recent years, and the wind power industry has also developed rapidly. By the end
of 2021, the cumulative installed capacity of wind turbines in the world has reached
328 million kilowatts, of which the installed capacity of offshore wind power has reached
26.39 million kilowatts [1]. If calculated according to the 5-year warranty period of wind
turbines, about 3 GW capacity of offshore wind turbines are about to or have already gone
out of the warranty period [2]. Therefore, the market potential for wind turbine operation
and maintenance is huge. The operating environment of wind turbines is harsh, and the
wind turbines are exposed to sand and snow for a long time [3]. In addition, there is also
severe weather such as thunderstorms and fog at sea. According to statistics, the operation
and maintenance cost of onshore wind farms is as high as 15% to 20% of the total wind farm
revenue, while the operation and maintenance cost of offshore wind farms is much higher
than that of onshore wind farms, accounting for about 20% to 25% of the total wind farm
revenue [4]. The high fail rate of wind turbines brings great difficulties to the operation
and maintenance of wind farms, and the failure to discover potential faults in time and
repeated maintenance of components with a high fail rate will increase the operation and
maintenance costs of wind farms.

During the operation stage of the wind farm, the faults of the generator, the gearbox,
the transmission system, and the blades are the most common [5], of which the main
bearing of the wind turbine plays a role in transmitting energy to the wind turbine [6].
As a rotating component, the main bearing is more prone to failure, and the entire unit
will stop running after the failure, causing huge economic losses. The vibration signal
contains all the useful information about the components and it is also one of the important
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indicators for analyzing the operating state. The fault diagnosis technology for analyzing
the vibration signal of the main bearing is currently the most effective and widely used [7].
In recent years, some domestic and foreign scholars have introduced artificial intelligence
methods into the field of fault diagnosis of rotating components of wind turbines, such
as deep learning and so on. Compared with traditional fault diagnosis methods based
on statistical analysis methods, the fault diagnosis method based on the neural network
does not rely on a large number of signal processing related knowledge and rich expert
experience, but the essential characteristics of faults are extracted from massive historical
data, avoiding the randomness of manual selection of parameters, and the diagnosis process
is more intelligent [8]. Cao et al. [9] use Long-Short Term Memory (LSTM) neural network
to extract the fault characteristics of vibration signal of wind turbines and perform fault
classification and compare this method with the support vector machine method to verify
the superiority of the algorithm, the method proposed in this article achieves 97.2% of
the classification accuracy of the gearbox. Wu et al. [10] adopt a convolutional neural
network to study the one-dimensional vibration signal of the planetary gearbox. The
conclusion shows that the accuracy of the one-dimensional convolutional neural network
model for fault diagnosis of planetary gearbox is higher than that of traditional diagnosis
methods. Yao et al. [11] propose a fault diagnosis method for rolling bearings based on
a convolutional neural network and recurrent neural network.

The one-dimensional vibration signal is converted into a two-dimensional image
signal by the Gram angle field method, and the image signal is input into the model for
training, which has a higher fault classification accuracy, experiments show that the method
proposed has an accuracy of more than 98.15% for the classification of rolling bearing
faults. However, these references ignore that the fault data of offshore wind turbines is
often difficult to be obtained, and there is a general problem of insufficient fault samples.
In particular, the main bearing fault data of wind turbines accounts for a relatively low
proportion of all fault data, and there is a serious unbalanced dataset problem. Therefore, it
is difficult for deep learning methods to achieve high fault classification accuracy in this
case. Zhou et al. [12] believe that when most classification algorithms classify unbalanced
data, the obtained classification hyperplane will be biased toward a few types of data,
which leads to the algorithm misjudging the minority type of data as the majority type of
data. In order to obtain sufficient and balanced vibration signal samples, some scholars
refer to generative adversarial networks in the field of rolling bearing fault diagnosis.
Lu et al. [13] propose a data enhancement method for the vibration signal of the main bear-
ing of wind turbines based on an auxiliary classification generation adversarial network,
which can effectively extract the original data distribution characteristics and generate
high-quality vibration signal samples, after using ACGAN to expand the original dataset,
the fault classification accuracy of various models is improved by about 2%. Li et al. [14]
improve the auxiliary classification generative adversarial network based on Bayesian opti-
mization and Wasserstein distance, realize data enhancement, and obtained a higher fault
classification accuracy of wind turbine planetary gearboxes. The classification accuracy of
WAC-GAN could remain above 94% for various types of failures. In addition, due to the
harsh operating environment of offshore wind turbines, the signal samples collected by
sensors often contain noises. These noises will affect the feature extraction performance of
neural networks during training. Traditional signal denoising methods often require a lot of
statistical knowledge. Different noise interference is targeted for different noise reduction
processing. Zhao et al. [15] propose a deep learning-based feature learning algorithm for
noisy data, which integrates the attention mechanism and the idea of a soft threshold,
effectively reducing the impact of noise interference on the model, experiments show that
in the case of inserting various types of noise, the accuracy of DRSN with channel-wise
thresholds (DRSN-CW) is about 3.32% higher than that of ResNet. In [16], a deep residual
shrinkage network is added to the convolutional neural network to achieve signal noise
reduction and solve the degradation problem of the multi-layer model. This method has
a higher fault classification accuracy reaching 99.5% than the traditional neural network
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method. However, the above studies do not take into account the unbalanced data of the
main bearing of the actual wind turbine, which limited the fault diagnosis capability of
the model.

In order to improve the performance of the fault diagnosis model in practical appli-
cations, this article focuses on the research on the fault diagnosis method of wind turbine
main bearing under noise conditions and proposes a fault diagnosis method of the main
bearing of the wind turbine based on the auxiliary classification generate adversarial net-
work and the deep residual shrinkage network. First, the auxiliary classification generative
adversarial network is adopted to learn the data distribution of vibration signal samples
with different signal-noise ratios, and the datasets of each fault are expanded. Then, the
expanded dataset is sent to the deep residual shrinkage network for training. Finally, the
test set is fed into the trained deep residual shrinkage network to test the fault classification
accuracy of the model. Experimental results show that the proposed method has good
fault diagnosis performance in the face of the vibration signal sample of the main bearing
of the wind turbine when the actual operation contains noise interference, and the data
is unbalanced.

The first chapter of this article is an introduction, the second chapter gives the struc-
ture of the model proposed in this article, the third chapter describes the basic principle
of the auxiliary classification generative adversarial network, and the fourth chapter de-
scribes the basic principle of the deep residual shrinkage network, the fifth chapter uses
two experiments to verify the effectiveness of the method proposed in this article, and the
sixth chapter gives some conclusions and suggestions.

2. Fault Diagnosis Model of Wind Turbine Main Bearing

In this article, a fault diagnosis model of the main bearing of a wind turbine with
a double-layer network structure is used, and the model is shown in Figure 1. The upper
layer is a generative network based on the auxiliary classification generative adversarial
network. The generator learns the data distribution characteristics of the original vibration
signal dataset during training. Then, particular types of fault data are generated to expand
the dataset to a balanced state. That is, the ratio of the sample of each type of fault data to
health status data is 1:1; then the expanded dataset is fed into the classification network
based on the deep residual shrinkage network, and the attention mechanism and soft
threshold are used in the classification network to reduce the redundant noise in the signal
adaptively, and the classifier can accurately identify the fault samples of the main bearing
of the wind turbine through the training of the expanded dataset.

Figure 1. Fault Diagnosis Model of the Main Bearing of Wind Turbine.

3. Generative Adversarial Network

In 2014, Lan Goodfellow et al. proposed Generative Adversarial Networks (GAN) [17].
Since GAN can generate data with a specific distribution, it is an unsupervised deep
learning model, so it is widely used in image inpainting, text generation, audio generation,
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and other fields, and is the research hotspot in the image field in recent years. Because the
fault classification algorithm based on deep learning needs a large amount of fault data,
and the actual wind turbine main bearing fault data samples are scarce, there is a serious
sample imbalance problem between fault data and normal data. In order to improve the
accuracy of fault classification, some scholars have introduced the generative adversarial
network into the field of fault diagnosis. The generative adversarial network can learn
the data distribution of real fault samples to generate new fault samples to supplement
the original dataset. Studies have shown that [18], this method has great potential in the
application of time series data generation.

3.1. Generative Adversarial Network Principle

GAN contains two networks, Generator and Discriminator. The application of the
generator is to convert the random noise into data that is close to the one-dimensional
vibration signal data distribution of the main bearing of the wind turbine as much as
possible. The function of the discriminator is to judge the authenticity of the input samples.
During the training, the generator and the discriminator game alternately. The game
mechanism continuously improves the generation ability of the generator, so that the data
generated by the generator is as real as possible and deceives the discriminator to achieve
the purpose of being a genuine one.

The training of GAN mainly includes two stages: discriminator training and generator
training. In each round of iteration, the generator and the discriminator compete with
each other and finally reach the Nash equilibrium, that is, the discriminator classification
accuracy rate reaches 50%. The real fault data of the main bearing of a wind turbine or
the fake data generated by the generator has a 50% chance of being misjudged, and the
generator completes the training. The structure of GAN is shown in Figure 2.

Figure 2. Generative Adversarial Network Structure Diagram.

In the initial stage of training, the capabilities of the generator and the discriminator
are very weak. First, the random noise vector is sent to the generator to generate fake

249



Processes 2022, 10, 2006

samples, fake samples, and the real signal samples are passed through the discriminator to
generate scores. The loss function consists of samples and the labels corresponding to these
samples, and the gradient is calculated to update the discriminator; then, the parameters of
the discriminator are fixed, and fake samples will be sent to the discriminator to get the
score since it is hoped that the samples generated by the generator are as real as possible
and deceive the discriminator, The optimization goal at this time is to make the score reach
1 to update the generator by calculating the gradient. In the iteration, the generator and
the discriminator have trained alternately, and finally, the two networks reach a Nash
equilibrium state. At this time, the discriminator cannot distinguish between real samples
and fake samples, and the accuracy of the discriminator is 50%. The network objective
function is (1):

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

D(x) =
pdata(x)

pdata(x) + pg(x)
(2)

where E is the mathematical expectation, pdata(x) and pg(x) is the probability that the
sample is true or false, respectively, z is the random noise vector, and G(z) is the fake
sample generated by the generator. Our mission is to train the discriminator to maximize
log D(x) and log(1 − D(G(z))), and train the generator to minimize log(1 − D(G(z))).

The generative model is essentially a maximum likelihood estimation. It is assumed
that the initial distribution of the generator is Pg(x|θ), where θ is the parameter of the distri-
bution. In order to make the generated data distribution close to the real data distribution,
it is necessary to calculate the value θ̂ to maximize (3). Therefore, the calculation formula
is (4):

Lg =
n

∏
i

pg

(
xi
∣∣∣θ) (3)

θ̂ = argmax
θ

∏n
i=1 pg

(
xi
∣∣∣θ) = argmin

θ
KL
(

Pdata(x) ‖ Pg(x|θ)) (4)

where pg
(
xi
∣∣θ) is the likelihood function of the real data, Pdata(x) is the real data distribu-

tion, and Pg(x|θ) is the generated data distribution. GAN adopts KL divergence to measure
the distance between two distributions. If the KL divergence reaches the minimum value 0,
then the distribution Pdata(x) and Pg(x|θ) are equal everywhere.

3.2. Auxiliary Classifier Generative Adversarial Networks

Unlike traditional GAN, Auxiliary Classifier Generative Adversarial Networks
(ACGAN) add labels to the random noises which are input to the generator and gen-
erate fake fault samples with a specific type of label. Then the true and false fault data
samples are input into the discriminator to get the output results, and the output results
include both true or false labels and classification labels. The network can be used to
generate different types of wind turbine main-bearing fault data in a targeted manner, and
the original fault dataset can be expanded into a balanced dataset.

It can be seen from Figure 3 that ACGAN not only outputs the probability that the
fault sample is real data or not but also outputs the fault class probability of the sample.
Since ACGAN has category labels when generating and judging samples, it makes the
generated fault samples more controllable. The true or false judgment and classification
loss functions are (5) and (6), respectively:

Ls = Ex∼Pdata [log2 D(x)] + Ez∼Pz [log2(1 − D(G(z)))] (5)

Lc = Ec∼Pdata [log2 D(c)] + Ec∼Pz [log2(1 − D(G(c)))] (6)
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where, Ls is the probability that the sample is real, and Lc is the probability that the sample
is correctly classified. Therefore, in training, the discriminator is trained to maximize
Ls + Lc, and the generator is trained to maximize Lc − Ls.

Figure 3. ACGAN Structure Diagram.

4. Deep Residual Shrinking Networks

The collected vibration signals of the main bearing of the wind turbine are often
accompanied by noise actually, and the fault signal features are difficult to be extracted.
The traditional signal noise reduction method is to transform the noisy signal (wavelet
transform, empirical mode decomposition, etc.), and then use a soft threshold to reduce
the noise, and finally, the signal is inverse transformed to obtain the signal after noise
reduction. However, the noise signal of wind turbines may be different under different
working conditions, and the selection of threshold is more complicated and requires a lot
of relevant knowledge of signal processing. Therefore, this article selects the Deep Residual
Shrinkage Network [15] as the classifier to diagnose the fault of the main bearing of the
wind turbine. With the deepening of network layers, the ordinary convolutional neural
network model training is difficult, the accuracy may be reduced. The residual network
introduces the idea of an identity shortcut, the output of the previous layer of the network
is directly transmitted to the next layer to achieve a smaller training error in the case of
a larger number of network layers [19]. The DRSN is improved on the basis of the residual
network to realize the function of noise reduction.

4.1. Attention

Attention Mechanism is widely used in the fields of natural language processing
and pattern recognition. Its essence is similar to the human visual attention mechanism,
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that is, it selects the key information of the target task from many targets and suppresses
useless information. Since the one-dimensional vibration data of the main bearing of the
wind turbine is highly time-varying and the composition is complex, the introduction
of an attention mechanism can adaptively weight different feature channels to highlight
useful information. In this article, the channel threshold attention mechanism is used to
apply weights to the signals on each channel to improve the fault classification ability
of the network under various working conditions. For example, Squeeze-and-Excitation
Networks (SENet) is a network that sets an attention mechanism for channels.

Figure 4 is a schematic diagram of the Squeeze-and-Excitation Networks module. The
number of input channels is c1, the number of output channels of the second layer is c2, and
then be compressed into a feature map of size c2 × 1 × 1 by global average pooling. Finally,
the So f tmax activation function is used to obtain the weight of each channel and the second
layer is weighted to obtain the output result. (7) is the So f tmax function expression.

f (xk) =
exp(xk)

c
∑

k=1
exp(xk)

(7)

where f (xk) represents the weight prediction value of the kth channel by the activation
function So f tmax, and c is the number of channels.

Figure 4. SENet Structure Diagram.

4.2. Soft Threshold Noise Reduction

The noise in the actual vibration signal greatly reduces the ability of model feature
extraction. On the basis of the residual network, the DRSN adopts the method of soft
threshold to denoise the signal. The soft threshold is to set a threshold, set the signal below
the threshold to 0, and adjust the signal above the threshold to 0, that is, “shrink”. The core
of the DRSN is to notice the vibration of the main bearing of the wind turbine through the
attention mechanism. The unimportant features in the signal are set to zero by the soft

252



Processes 2022, 10, 2006

threshold, which enhances the neural network’s ability to extract fault features from noisy
signals. The selection of the threshold size has a direct impact on the noise reduction effect.
(8) is the expression of the soft threshold.

S(x, τ) =

⎧⎨⎩
x − τ x > τ

0 −τ < x < τ
x + τ x < −τ

(8)

where τ represents the size of the threshold, it can be seen from (8) that when the signal is
within the threshold, the derivative is 0, otherwise, the derivative is 1.

4.3. Residual Shrinkage Module

In this article, a DRSN with a channel-wise thresholds module is used to build
a classifier network. Different from ordinary DRSN, this module has independent thresh-
olds in each channel [15]. The overall structure of the residual shrinkage module is shown
in Figure 5.

Figure 5. DRSN Module.

This module adds a denoising function to the traditional deep residual module. After
the input data is passed through two layers of convolution, a one-dimensional vector
is obtained after the global mean pooling layer. The attention weight of each channel
is obtained by this vector through the two fully connected layers and the Sigmoid acti-
vation function, and the threshold is obtained by multiplying it with the corresponding
average value of each channel. (9) is the expression of the threshold of the deep residual
shrinkage module.

τc = ωc · average|xc| (9)

where τc is the threshold of channel c, ωc is the weight of channel c, and average|xc| is the
average value of the absolute value of each element of channel c.

5. Example Analysis

5.1. Model Framework

In order to test the effectiveness of the method mentioned above, the rolling bearing
dataset [20] of Case Western Reserve University (CWRU) was selected as the simulation
analysis object. The dataset comes from the sampled vibration data of the driving end
of the wind turbine. The sampling frequency is 12 kHz, and each sample in the dataset
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contains 2048 sampling points. The final data is shown in Table 1. The simulation includes
one normal state and nine different types of fault states, each state sample contains four
different operating motor speeds. The dataset is randomly shuffled and divided into
training and test sets.

Table 1. CWRU experimental data classification.

Fault Label
Bearing Status

(Wear)
Fault Location

Fault
Diameter/mm

Motor Load
Number of

Training Samples
Number of

Test Samples

0 Normal / 0 0~3 700 120

1 Slight
Inner Race

0.18 0~3 160 70
2 Moderate 0.36 0~3 160 70
3 Heavy 0.54 0~3 160 70

4 Slight
Ball

0.18 0~3 160 70
5 Moderate 0.36 0~3 160 70
6 Heavy 0.54 0~3 160 70

7 Slight
Outer Race

0.18 0~3 160 70
8 Moderate 0.36 0~3 160 70
9 Heavy 0.54 0~3 160 70

Four different fault diagnosis models were implemented using TensorFlow 2.8.0,
which is a machine learning toolkit released by Google. Experiments are conducted on the
computer in which the CPU is AMD Ryzen 6 4800H, the GPU is Nvidia GeForce RTX 2060,
and the memory is 32 GB.

In Table 1, load 0 represents the motor speed of 1797 rpm, load 1 represents the motor
speed of 1772 rpm, load 2 represents the motor speed of 1750 rpm, and load 3 represents
the motor speed of 1730 rpm.

The input of the generator in the generation network is a 100-dimensional normally
distributed random vector and a label value. The label and the random vector are sent
to the generator at the same time and become a fake sample of the same size as the input
signal through a series of one-dimensional convolution operations. Each one-dimensional
convolutional layer in the generator uses LeakyReLU as the activation function, adding
a Dropout layer and a batch normalization layer to prevent overfitting and make the
network easier to be trained. The structure of the discriminator is basically identical
to the generator. The input data is a vibration signal sample, and the data after multi-
layer one-dimensional convolution is passed through the fully connected layer and the
So f tmax activation function to obtain the true or false probability and the sample category
probability respectively. The classification network structure is obtained by improvement
on the basis of literature [15]. The improvement ideas are: (1) Appropriately reduce the
depth of the network, which can significantly improve the training speed of the model
and prevent the model from overfitting to a certain extent; (2) Increase the network width.
It is found that increasing the number of channels of one-dimensional convolution can
effectively improve the accuracy of the model. The RMSprop optimization algorithm is
used in the model training, the hyperparameter is set to 0.9, and the adjustable learning
rate with a lower limit of 0.00001 is used to speed up the convergence of the model.

5.2. Fault Diagnosis Ability under Noise Conditions

In order to test the denoising ability of the model in the condition of the unbalanced
dataset, this experiment adds Gaussian white noise with different signal-noise ratios of
−5 db, −2 db, 0 db, 2 db, and 5 db on the basis of the original dataset. CNN trained on
the original dataset, DRSN trained on the original dataset, CNN trained on the dataset
expanded by ACGAN, and DRSN trained on the dataset expanded by ACGAN are used
to compare the classification accuracy for the test set. The CNN, DRSN, and ACGAN
structures of different experimental groups in the simulation are the same, respectively.
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The simulation results are shown in Figure 6a–e. The ordinate in the figure represents the
model accuracy, and the abscissa represents the number of iterations.

 
(a) 

 
(b) 

 
(c) 

Figure 6. Cont.
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(d) 

(e) 

Figure 6. (a) Model fault classification accuracy in the condition of −5 db noise; (b) Model fault
classification accuracy in the condition of −2 db noise; (c) Model fault classification accuracy in
the condition of 0 db noise; (d) Model fault classification accuracy in the condition of 2 db noise;
(e) Model fault classification accuracy in the condition of 5 db noise.

As can be seen from Figure 6a–e, in the initial stage of training, the training speed of
the dataset improved by ACGAN is significantly faster than that of the ordinary dataset.
When the noise in the original signal reaches −5 db, the fault classification accuracy of the
model proposed in this article is improved by about 9.20% compared with the accuracy
of the method only using CNN, and when the noise in the original signal is 5 db, the
fault classification accuracy of the model proposed in this article is improved by about
4.53% compared with the accuracy of the method only use CNN. Therefore, the higher
SNR of the noise contained in the original signal, the more obvious the improvement of the
fault classification accuracy of the model proposed in this article compared with the model
based on ordinary CNN only.

It can be seen from Figure 7 that when the vibration signal contains more noise, the
classification accuracy of the three networks all has different degrees of degeneration in
general. First, using DRSN to train a noisy fault dataset has a significant improvement in
classification accuracy compared to the traditional CNN-based method. The classification
accuracy of using traditional CNN to train the dataset expanded by ACGAN is significantly
better than that of directly training the original dataset by CNN, and it implies the effec-

256



Processes 2022, 10, 2006

tiveness of training the dataset expanded by ACGAN; In addition, using DRSN and CNN
to train the dataset expanded by ACGAN are comparable in fault classification accuracy
with different signal-noise ratios. Reference [21] added noise with a signal-to-noise ratio of
−5~5 db to the vibration signal to simulate the complex working environment of rolling
bearings in industrial production. It had concluded that when the signal-noise ratio is
higher than 0 db, the model with DRSN and the ordinary model had a good performance
of noise reduction, and when the signal-to-noise ratio reaches −5 db, the classification accu-
racy of CNN is only 79%, which is much lower than 86% of DRSN. Reference [22] proved
by experiments that the expansion of the original unbalanced dataset by ACGAN can
reduce the influence of unbalanced data on the classification accuracy and the misjudgment
rate of fault diagnosis. Therefore, previous studies are consistent with the experimental
results in this article. In the case of training the dataset expanded by AC-GAN, the classifi-
cation accuracy is obviously better compared with using CNN when selecting the DRSN as
a classifier. For vibration signals with different signal-noise ratio noises, the classification
accuracy of the model proposed in this article changes relatively gently. The accuracy can
be maintained above 90%. Generally, the classification accuracies of the other three methods
are inferior to the method proposed in this article. Table 2 shows the fault classification
accuracy of each model in conditions of different noises. The fault classification accuracy
of the model proposed in this article is the highest under different noises, and the fault
classification accuracy changes smoothly in the condition of −5~5 db noises. In conclusion,
the ACGAN + DRSN model has good classification accuracy and stability.

 

Figure 7. Fault classification ability under the circumstance of different noise.

Table 2. Fault classification accuracy in the condition of different noises.

SNR
Mean Failure Recognition Rate

CNN ACGAN + CNN ACGAN + DRSN

−5 db 84.133% 91.067% 93.333%

−2 db 89.600% 91.867% 96.133%

0 db 91.733% 96.400% 97.733%

2 db 92.800% 96.933% 97.733%

5 db 93.600% 97.467% 98.133%
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5.3. Fault Diagnosis Capability under Variable Working Conditions

In this example, a high amount of noise by −10~−5 db is randomly added to the
original vibration signal to simulate the actual working conditions of the main bearing
of the offshore wind turbine [6]. The vibration data with the motor speed of 1797 rpm,
1772 rpm, and 1750 rpm are used as the training set, and the vibration data with the motor
speed of 1730 rpm are used as the test set to compare the generalization ability of the
three fault classification models in the noise background. Figure 8a–d is the accuracy
confusion matrices of the four models which use traditional CNN to train the original
dataset, using DRSN to train the original dataset, using traditional CNN to train ACGAN-
expanded data, and using DRSN to train ACGAN-expanded data.

  
(a) (b) 

  
(c) (d) 

Figure 8. (a) CNN model fault classification ability; (b) DRSN model fault classification ability;
(c) ACGAN + CNN model fault classification ability; (d) ACGAN + DRSN model fault classification
ability. The darker the blue squares in these figures, the higher the probability that the fault will be
correctly classified.

It can be seen that when training the unbalanced dataset of the vibration signal
of the main bearing of the wind turbine under the noise conditions, the classification
accuracy of the health state samples of the main bearing of the wind turbine is the highest,
and the classification accuracy of the remaining samples are low. When using CNN
alone to diagnose a test set, the accuracy of each fault sample is difficult to maintain
above 50%, and the accuracy of the test set is about 71%; Compared with the method
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only using traditional CNN, the classification accuracies of the other two methods have
been significantly improved; While the accuracy of each fault classification of the model
proposed in this article is higher than 52%, and the accuracy of the test set is higher than 89%.
Therefore, the ACGAN + DRSN model still has stronger fault classification ability when
tested under different working conditions, and the classification accuracy is significantly
higher than that of the ordinary CNN model. In order to visually demonstrate the fault
classification ability of ACGAN+DRSN, the dimensionality reduction visualization of the
model feature extraction effect is carried out.

Figure 9a–d is the effect diagrams of dimensionality reduction visualization using
t-SNE for the original dataset, the output dataset of the last layer of the traditional CNN
model, the traditional DRSN model, the ACGAN + CNN model, and the ACGAN + DRSN
model, respectively. In Figure 9a, all the fault states of the main bearings of wind turbines
are crossed and difficult to be classified; Figure 9b shows that after using the traditional
CNN model, the health data of the main bearing of the wind turbine has been effectively
classified, and the fault data initially shows the boundary, but it is still difficult to be
classified; Figure 9c,d show that various types of fault samples have obvious boundaries,
but each cluster obviously contains more than two different fault states, and it’s hard to
see which approach is better; In Figure 9e, with the model proposed in this article, various
states clustering is enhanced. The red area is the healthy state of the main bearing of the
wind turbine, this area has the best clustering effect. The slight wear and heavy wear of the
rolling elements are not very separable in this example, but the rest of the fault states can
be well classified effectively.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 9. (a) Visualization of Raw dataset; (b) Visualization of CNN model dataset; (c) Visualization
of DRSN model dataset; (d) Visualization of the dataset of ACGAN + CNN; (e) Visualization of the
dataset of ACGAN + DRSN.
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Table 3 shows the fault classification accuracy under different motor speeds. The
motor speed of the test set of Experiment 1, Experiment 2, Experiment 3, and Experiment 4
are 1730 rpm, 1750 rpm, 1772 rpm, and 1798 rpm, respectively. The other three motor
speeds are used as the training set. The accuracy of the model proposed in this article is
higher than the other models obviously. The accuracy is always maintained above 85%.

Table 3. Fault classification accuracy under variable working conditions.

Experiment CNN DRSN ACGAN + CNN ACGAN + DRSN

1 71.13% 86.22% 75.16% 89.34%
2 74.71% 87.35% 75.23% 91.13%
3 72.49% 86.57% 79.53% 88.66%
4 78.62% 83.85% 81.85% 87.38%

6. Discussion

In order to solve the problem that the vibration fault data of wind turbine main bearing
is difficult to be obtained in the condition of noise, resulting in the low fault diagnosis
accuracy, this article proposes a fault classification method for wind turbine main bearing
based on ACGAN and DRSN. This method has the following advantages:

(1) In view of the problem that the model training accuracy is not high due to in-
sufficient fault data of the main bearing of the wind turbine, this article uses ACGAN to
learn the distribution characteristics of fault data from the limited vibration signal samples,
and generate high-quality fault samples to achieve data enhancement and improve the
classification accuracy of the model;

(2) The use of attention mechanism and soft threshold of deep residual shrinkage
network as a classification network can effectively reduce the different degrees of noise
interference contained in the dataset, and fully explore the data fault characteristics of the
main bearing of the wind turbines;

(3) Compared with the traditional CNN model, the ACGAN + DRSN model still has
a stronger fault classification ability in the face of an unbalanced dataset containing noise
under the variable working motor speed of the main bearing of the wind turbine.

The limitations of the methodological approach adopted are as follows:
(1) The research in this article is based on ACGAN. Many scholars have found that the

original GAN has the problem of unstable training and poor ability to generate data.
(2) This model needs to train two models successively, which takes a longer time, so

the training efficiency needs to be improved.
The simulation data of this experiment is still based on laboratory data and artificially

added random noise. Considering the slight error of the wind turbine itself and changes
in the operating environment, it is recommended that the wind turbine operation and
maintenance manufacturers fully collect the different types of actual vibration data of
the main bearing of the wind turbine when using the model proposed by this article. In
addition, since the fault classification accuracy of the model decreases when the wind
turbine runs at a new motor speed, the different working conditions of the wind turbine
should be fully considered based on the model to improve its robustness of the model.
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Abstract: The integrated energy system is the mainstream energy utilization form of integrating
a power system, natural gas system and thermal system, which provides a new way to solve the
problem of renewable energy accommodation. The integrated energy system includes a variety of
energy generation and conversion equipment, and its internal electricity, gas, cooling and thermal
systems must balance the multiple energy supplies required by users. The integrated energy sup-
plier (IES) and integrated energy user (IEU), as different stakeholders, pursue the maximization of
their own profit. However, integrated energy suppliers should consider their market share and the
sustainability of participating in market competition. Based on the constraints of energy access, con-
version and accommodation, and the equipment for energy generation, conversion and consumption,
we established an energy flow model. Constrained by the dynamic equilibrium of the supply of
integrated energy suppliers and the demand of integrated energy users, a Stackelberg game model
of integrated energy suppliers and users was established, and the existence of a Nash equilibrium
solution of the game was proved. A genetic algorithm was used to solve the Nash equilibrium
solution under two conditions aiming at the integrated energy supplier’s maximum profit and target
profit. Considering the demand of integrated energy users in different time periods, we analyzed the
time-of-use pricing strategy of the integrated energy based on the balance of the energy supply and
demand. The results of a case study show that if integrated energy suppliers adopt the time-of-use
pricing strategy of maximum profit, the energy load distribution of integrated energy users can be
smoothed, and energy utilization and economic benefits of the system can be improved. If integrated
energy suppliers adopt the time-of-use pricing strategy of target profit, enlarge the market by limiting
their own profit and obtain the purchase willingness of integrated energy users by reducing the
energy price, they can have a larger market share, a more reliable profit and a guarantee of long-term
participation in market transactions.

Keywords: integrated energy system; Stackelberg game; time-of-use pricing; demand response;
Nash equilibrium

1. Introduction

With the expansion of the scale of renewable energy development, power systems
have new requirements on the intermittent and fluctuating nature of renewable energy.
Traditional power systems usually increase investment on both the supply and demand
sides, such as the use of deep peak shaving technology, and distributed energy storage
technologies and the allocation of renewable energy based on demand-side response allevi-
ate the intermittent and fluctuation problems of renewable energy, and high investment
costs and insufficient energy consumption should be faced at the same time. Therefore,
improving energy utilization and realizing the large-scale use of renewable energy have
become the inevitable choices in the process of integrated energy system development [1].

The integrated energy supplier (IES) is based on an integrated energy system and
uses renewable energy as the main energy source. The energy supply methods tend to
diversify, which provides great power supply flexibility to the traditional power system.
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The grid power supply, renewable energy system power supply and gas-driven combined
cooling and heating and power (CCHP) system are conducive to the use of energy in
the cascade transfer process, while improving the integrated energy utilization rate and
reducing pollutant emissions [2]. After considering the needs of the integrated energy users
(IEUs), the supply and demand relationship can be balanced through the price incentive
mechanism. While stimulating the IEU to adjust the allocation of energy demand to achieve
a balanced optimization of the supply and demand side, the utility function is maximized
to ensure IEU satisfaction. IEU uses different energy sources in different periods of time.
According to IEU’s demand for integrated energy, IES obtains the current maximum profit
through the establishment of time-of-use prices.

With the continuous improvement of the Energy Internet [3], IES can supply energy
to multiple groups of IEUs at the same time, achieving energy interconnection [4–6]. In
traditional research, energy consumption is optimized separately from the perspective of
the participants, without considering the interaction between them. The game strategy can
solve the rational optimal strategy set of market participants, which is of great significance
to the formulation of energy prices and the planning and operation of IES. Reference [7]
pointed out the effectiveness and validity of price linkage in the game. Reference [8] pro-
posed a regional integrated energy game optimization strategy considering load demand
response and aiming at optimal comprehensive profits. Reference [9] proposed a double-
layer Stackelberg game model aiming at maximizing the profits of IES and minimizing
the costs of IEU. Reference [10] proposed to take potential function as the solution method
and obtained the game strategy of a multi-energy market including electricity, thermal
and gas. Reference [11] took the maximum profit as the comparison index, and analyzed
different operation strategies under the non-cooperative game, semi-cooperative game and
cooperative game of the integrated energy system. Reference [12] established a game model
by using two-level optimization, and compared and analyzed the profit difference of IES in
the retail and wholesale markets. Reference [13] proposed a two-level collaborative control
strategy model of “electricity–thermal–gas” integrated energy system based on multi-agent
deep reinforcement learning to improve the energy efficiency of the integrated energy
system and reduce costs. Reference [14], taking energy efficiency and cost as optimization
objectives, proposed a two-stage energy management method of a thermal–electricity inte-
grated energy system considering dynamic pricing of the Stackelberg game and operation
strategy optimization. However, the above dynamic game models related to energy trading
are all aimed at maximizing profits or minimizing costs. They only consider economics
without considering the energy trading volume of IES after the game or analyzing the
willingness of IEU to purchase energy in the face of energy prices after the game. These
two are related to whether IES can participate in the market operation and maintain reliable
profit for a long time. In order to analyze this problem, we consider the demand response
of IEU and the time-of-use price of IES, and compare the profit, energy trading volume and
price dynamic curve after equilibrium pricing from the perspective of maximum profit and
target profit.

When considering IEU demand response, IES first initializes the energy price. As
a follower, IEU can determine the energy consumption according to the price strategy
and its own demand constraints [15]. The game relationship between IES and IEU is
in order. According to this characteristic, this paper focuses on the equilibrium pricing
and quantitative energy interaction between IES and IEU. Firstly, a multi-energy flow
Stackelberg game model with a master–slave relationship is established, and then the
objective functions with the maximum profit and target profit of IES are constructed.
Secondly, it is proved that the equilibrium solution of the established game model exists in
the process of multi-agent participation. Finally, the time-of-use pricing strategy is solved
for different time periods under the two different objective profits. Integrated energy
trading volume and pricing curves are obtained and the integrated energy interaction
between IES and IEU is analyzed. If the IES adopts the time-of-use pricing strategy of
maximum profit, the load distributions of IEUs are smoothed, and the energy utilization
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rate and economic efficiency of the system are improved. If IES adopts the time-of-use
pricing strategy of target profit, integrated energy trading volume is increased and energy
unit price is decreased. For IES, increased integrated energy trading volume means more
market share. For IEU, decreased energy unit price means more energy trading volume
at the same price. This strategy is helpful for integrated energy suppliers to participate in
market operations for a long time and maintain reliable profit.

The remainder of this paper is organized as follows. In Section 2, game model subjects
of IESs and IEUs are established. In Section 3, the Stackelberg game model is presented and
the existence of a Nash equilibrium solution is proved. In Section 4, a case study is detailed
to demonstrate the proposed game strategy. In Section 5, several important conclusions
are summarized.

2. The IES and IEU Model

2.1. IES Model

The profit of IES is determined by operating costs, spot market price and integrated
energy trading volume as IES enters the integrated energy market. In this study, energy
trading between IES and IEU was treated as a completely competitive market behavior, and
the bidding behavior within IESs was not considered. The IES formulates a price strategy
based on the IEU’s demand for integrated energy. The interaction between IES (leader)
and IEU (follower) was based on Stackelberg game theory [16–18]. An integrated energy
interaction Stackelberg game model considering IEU’s energy consumption behavior was
established. Figure 1 is the decision model of IES.

Electricity Demand

Cooling Demand

Thermal Demand

IEU1

Price
Load

Energy
demand

Decision Objectives:
Minimum deviation between 
energy supply and demand

Nash 
Equilibrium

Energy 
supply

 Electricity Supply

Cooling Supply

Thermal Supply

IES1

Electricity Supply

Cooling Supply

Thermal Supply

IESk

Electricity Demand

Cooling Demand

Thermal Demand

IEUN

Decision Variables:
Electricity/cooling/thermal price 

Figure 1. Framework of decision model of IES.

2.1.1. Multi-Energy Flow Modeling of Integrated Energy Systems

The integrated energy system studied in this paper is mainly composed of an energy
supply network, energy exchange link and terminal integrated energy consumption unit.
It is a multi-energy flow system consisting of cooling, thermal energy and electricity. The
system has low cost, high flexibility and reliability in the actual application process. When
the integrated energy system is operating, the waste thermal generated during electricity
generation can be reused. The gas turbine consumes the natural gas input from the gas
supply system to generate electricity and high-temperature steam. The steam is recovered
by the waste heat boiler to generate high-pressure steam and low-pressure steam. The
former enters the unit steam turbine to generate electricity, and the latter is used by the
deaerator of the waste heat boiler. There is a heating surface at the end of the waste heat
boiler, which can generate heat medium water to meet the heating energy requirements. In
addition, steam turbines provide extraction services for thermal power needs. The heating
medium water is first supplied with hot water, and the remaining absorption refrigeration
unit is used for cooling. The extracted steam can be used for cooling the hot water heat
exchanger. The electricity generated by gas and steam turbines is used to meet electrical
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loads. In addition, electric refrigeration equipment and absorption refrigeration machines
supplement the insufficient cooling. The combined cooling, heating and electricity system
based on natural gas can effectively improve the integrated energy utilization rate by
combining electric generation and heating. The input power of the grid power supply
system and the renewable energy power supply system is used for the user’s electricity
demand. At the same time, the insufficient cooling/thermal demand of the IEU can be
supplemented by electric refrigeration equipment and electric heating equipment through
energy allocation.

In order to accurately reflect the characteristics of the system energy flow conversion, the
energy flow function is used to characterize the balance between electricity/cooling/thermal
energy [19]. A regional integrated energy system based on grid power supply, renewable
energy supply and natural gas input is shown in Figure 2.

 
Figure 2. Schematic diagram of regional integrated energy system.

Equation (1) is the energy conversion equation of the regional integrated energy system.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where Oe,Oc and Oh are electricity output, cooling output and thermal output of the
integrated energy system, respectively. αe

E is the energy distribution coefficient of direct
electricity output, and αch

E is the energy distribution coefficient supplementing cooling and
thermal supply. αh

E is the energy distribution coefficient of electric heating equipment, and
αc

E is the energy distribution coefficient of electric refrigeration equipment. αc
H is the energy

distribution coefficient of the thermal exchanger supplying the absorption chiller, and αh
H is

the energy distribution coefficient of the thermal exchanger directly outputting thermal
energy. ηe

GT and ηh
GT are the electrical efficiency and thermal efficiency of the gas turbine,

respectively. ηs
HR and ηh

HR are the steam efficiency and thermal efficiency of the waste
heat boiler, respectively. ηe

ST and ηh
ST are the electrical efficiency and thermal efficiency of

the steam turbine, respectively. ηHE is the thermal energy efficiency of the heat transfer
machine. ηh

HE is the thermal energy conversion efficiency of electric heating equipment, ηc
FR
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is the cooling energy conversion efficiency of electric refrigeration equipment and ηc
AB is the

conversion efficiency of thermal energy to cooling energy of the absorption refrigeration
machine. GGT is the volume of natural gas input to the gas turbine, and GHR is the volume
of natural gas input to the waste heat boiler. EGR is the power supply of the grid, and ERE

is the power supply of the renewable energy.

2.1.2. IES Objective Function

As the energy producer and converter in the integrated energy system, the IES needs
to price the unit-integrated energy. We consider the pricing strategy of IES under the
conditions of maximum profit and target profit.

(1) Maximum profit. IES adjusts the input of power supply and natural gas according
to users’ demand, prices unit-integrated energy and obtains maximum profit. Equation (2)
represents the objective function of IES with maximum profit.

maxUIES = peOe + pcOc + phOh − (creERE+

f re + cgrEGR + f gr + cg(GGT + GHR)+ f g)
(2)

where pe is the unit electricity price, pc is the unit cooling price, ph is the unit thermal price,
cre is the variable cost coefficient of the renewable energy system and f re is the fixed cost of
the renewable energy system. cgr is the variable cost coefficient of the grid system, f gr is
the fixed cost of the grid system, cg is the variable cost coefficient of the gas supply system
and f g is the fixed cost of the gas supply system.

(2) Target profit. IES adjusts the power input and volume of natural gas required for
production according to users’ demand, appropriately reduces the overall energy price,
enlarges the market and obtains the target profit. Equation (3) represents the objective
function of IES with the target profit.

min|UIES − UIES∗| = |peOe + pcOc + phOh − (creERE + f re+

cgrEGR + f gr + cg(GGT + GHR)+ f g)− UIES∗| (3)

where UIES∗ is the target profit. IES can maintain its own operation under the target profit.
IES supplies integrated energy to satisfy the energy demand of IEUs after the energy loss
in the transmission and conversion.⎧⎪⎨⎪⎩

Oe = (1 + αe)de

Oc = (1 + αc)dc

Oh = (1 + αh)dh

(4)

where αe,αc and αh are network loss parameters of electrical, cooling and thermal energy,
respectively. de is electricity demand, dc is cooling demand and dh is thermal demand.

2.2. IEU Model

The IEU is different from traditional electrical energy users. The energy consumption
pattern is more complicated, and it requires the supply of multiple types of energy (cool-
ing/thermal/electricity). From the perspective of the IEU’s own interests, on the premise of
ensuring satisfaction with energy consumption, energy prices will affect the IEUs’ initiative
to adjust their energy consumption strategy to minimize energy costs [20].

The implementation of price incentive strategy enables IEUs to maximize the sat-
isfaction of energy consumption. A quadratic function UIEU

n is used to represent the
consumption satisfaction of IEUs. The quadratic utility function UIEU

n is described as
Equation (5) [21].

UIEU
n =

[
ve

nde
n −

ue
n

2
(de

n)
2
]
+

[
vc

ndc
n −

uc
n

2
(dc

n)
2
]
+

[
vh

ndh
n −

uh
n

2

(
dh

n

)2
]

(5)
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where ve
n and ue

n are the constant coefficients of preference of IEU n concerning electricity,
vc

n and uc
n are the constant coefficients of preference of IEU n regarding cooling and vc

n and
uc

n are the constant coefficients of preference of IEU n in terms of thermal energy, which are
used to describe the relationship between utility function and demand. de

n is the electricity
demand of IEU n, dc

n is the cooling demand of IEU n and dh
n is the thermal demand of

IEU n.
Each IEU determines the demand for electricity supply, cooling supply and thermal

supply based on unit electricity price pe, unit cooling price pc and unit thermal price ph.
For IEUs, the consumption function CIEU

n of purchasing energy is described as Equation (6).

CIEU
n = pede

n + pcdc
n + phdh

n (6)

The objective function of IEUs, Wn, is defined as the difference between the consump-
tion function and the quadratic utility function.

minWn = CIEU
n − UIEU

n (7)

Calculating the first-order partial derivative of Wn, the optimal demand of IEU is
obtained as Equation (8). ⎧⎪⎪⎪⎨⎪⎪⎪⎩

de
n = ve

n
ue

n
− 1

ue
n

pe

dc
n = vc

n
uc

n
− 1

uc
n

pc

dh
n = vh

n
uh

n
− 1

uh
n

ph

(8)

s.t.

⎧⎪⎪⎨⎪⎪⎩
de

n � de
n, f

dc
n � dc

n, f

dh
n � dh

n, f

(9)

where de
n, f , dc

n, f and dh
n, f are the user’s base load on electricity, cooling and thermal

energy, respectively.

3. Stackelberg Game Model

In the process of solving the Stackelberg equilibrium solution, the game subjects
restrict each other to coordinate the equilibrium state of the Stackelberg game model. When
IES evaluates the original integrated energy price, the base energy demand of the IEU
in each time period is fully considered. Energy prices are updated continuously until
the supply and the demand are balanced. The i-th integrated energy price is updated as
Equation (10). ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pe
i+1 = max{pe

i + τe
i

[
(1 + αe)

N
∑

n=1
de

n,i − Oe
i

]
, pe

min}

pc
i+1 = pc

i + τc
i

[
(1 + αc)

N
∑

n=1
dc

n,i − Oc
i

]
ph

i+1 = ph
i + τh

i

[(
1 + αh

) N
∑

n=1
dh

n,i − Oh
i

] (10)

where pe
min is the IEU’s willingness price of electricity, and τi

e, τi
c and τi

h are the dynamic
speed adjustment parameters of electricity price, cooling price and thermal price, respec-
tively. N is the number of IEUs. dc

n,i, de
n,i and dh

n,i are the cooling demand, electricity demand
and thermal demand of IEU n in the i-th update, respectively. Oc

i , Oe
i and Oh

i are the cooling
output, electricity output and thermal output of the integrated energy system in the i-th
update, respectively. pc

i , pe
i and ph

i are the unit cooling price, unit electricity price and unit
thermal price of the integrated energy system in the i-th update, respectively. pc

i+1, pe
i+1 and
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ph
i+1 are the unit cooling price, unit electricity price and unit thermal price of the integrated

energy system in the i + 1-th update, respectively.
Dynamic speed adjustment parameters related to the current number of iterations are

used as Equation (11) [21] to improve the convergence speed of the algorithm.⎧⎪⎪⎨⎪⎪⎩
τe

i = 1
λe+μei

τc
i = 1

λc+μci

τh
i = 1

λh+μhi

(11)

where λe, μe, λc, μc, λh and μh are constants.

3.1. Equilibrium Existence in Stackelberg Game

In a multi-subject strategic game, if the utility function of each participant is continu-
ous, and the utility function of its own strategy is quasi-concave, then the Nash equilibrium
of pure strategy must exist [22].

The utility function of the IEU is continuous. There is an optimal response strategy for
the utility function of IEU UIEU

n (pe
n, pc

n, ph
n), if the unit electricity price pe

n, the unit cooling
price pc

n and the unit thermal price ph
n are satisfied (Equation (12)).

UIEU
n (pe∗, pc∗, ph∗) � UIEU

n (pe, pc, ph), ∀pe, pc, ph ∈ R+ (12)

where UIEU
n is the quadratic utility function value of IEU n. pc

n, pe
n and ph

n are the unit
cooling price, unit electricity price and unit thermal price of IEU n, respectively. pe∗, pc∗
and ph∗ are the target unit electricity price, cooling price and thermal price, respectively.

The Hessian matrix of UIEU
n (pe, pc, ph) is as in Equation (13).
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(13)

Then,

∇2
pe ,pc ,ph(UIEU) = diag

⎡⎣−ue
n 0 0

0 −uc
n 0

0 0 −uh
n

⎤⎦N

n=1

(14)

According to Equation (14), the Hessian matrix of utility function is a negative definite
matrix; that is, the utility function of IEU is strictly a concave function of pe

n, pc
n and ph

n.
Therefore, the equilibrium solution of the Stackelberg game model exists.

3.2. Algorithm Flow

Under the constraints of price and renewable energy output, IES maximizes the profit
by adjusting the power supply of the grid, the renewable energy output, the gas volume of
the gas turbine and the waste heat boiler. The energy demand of IEU adjusts the overall
energy price. A genetic algorithm (GA) was used to solve the game model. The number
of populations is set to 10, the maximum number of iterations is 5000, the crossover rate
between chromosomes is 60% and the random mutation rate is 1% to prevent the model
from falling into a local optimum solution. The game model updates the next integrated
energy unit price based on the difference in the integrated energy price for each iteration,
and accelerates convergence through dynamic speed adjustment parameters related to the
number of iterations. According to the existence of the Nash equilibrium solution, there is
a solution balance the integrated energy demand and supply, and the corresponding unit
price of the integrated energy is the transaction price at that moment.
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Based on the above process, the algorithm flowchart of the Stackelberg game model is
shown in Figure 3.

Figure 3. Flowchart of decision model of IES.

The unit prices are initialized randomly before the game begins. IEU balances con-
sumption behavior based on the base load in various time periods and different preferences
of integrated energy. For IES, the output of renewable energy is uncertain and fluctuating,
so it is assumed that the power supply of power grid and the gas supply of the gas supply
system are sufficient to satisfy the energy demand of the IEU at any time. IES iterates on
the target of profit after each price adjustment.

In order to verify the correctness and effectiveness of the model and algorithm pro-
posed in this paper, 200 IEUs were set for simulation analysis on a typical day with a unit
operation period of 1 h. We analyzed the changes in energy trading volume and price after
the game model reaches the Nash equilibrium considering the IEU’s energy consumption
behavior.

4. Case Study

4.1. Case Data

For the renewable energy system, the IES has a 150 kW wind farm and a 50 kW
photovoltaic farm as electricity supply. Assuming the system has sufficient capacity, the
renewable energy output is shown in Figure 4.

The main types and efficiency parameters of the production equipment of the inte-
grated energy system are shown in Table 1.

The energy distribution coefficient, cost coefficient of equipment, loss coefficient in
the process of energy transmission and user preference constant for integrated energy are
shown in Table 2 [21].
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Figure 4. Hourly power output curve of the wind and photovoltaic farms on a typical day.

Table 1. Experimental data classification of cooling, thermal and electricity-generating units.

Equipment Parameter Value

Gas turbine
Capacity /kW 400

Electricity generation efficiency ηe
GT 0.35

Heat production efficiency ηh
GT 0.5

Waste heat boiler
Capacity /kW 200

Boiler steam efficiency ηs
HR 0.1

Heat production efficiency ηs
HR 0.7

Steam turbine
Capacity /kW 160

Electricity generation efficiency ηe
ST 0.42

Heat production efficiency ηh
ST 0.38

Heat transfer machine
Capacity /kW 300

Heat production efficiency ηHE 0.8

Absorption refrigerator Capacity /kW 100
Cooling efficiency ηc

AB 1.3

Electric heating equipment Capacity /kW 250
Heat production efficiency ηh

HE 0.8

Electric refrigeration equipment Capacity /kW 200
Cooling efficiency ηc

FR 4

Table 2. Loss, cost and preference coefficients.

αc
H 0.15 cg 0.18 αe 0.04 λe 0.05 ve 0.05

αh
H 0.85 cre 0.05 αc 0.08 λc 0.04 vc 0.03

αc
E 0.5 cgr 0.25 αh 0.06 λh 0.03 vh 0.04

αh
E 0.5 f g 10 - - μe 4 ue 4

αe
E 0.9 f re 2 - - μc 4 uc 4

αch
E 0.1 f gr 5 - - μh 4 uh 4

Figure 5 is the base load of the IEU for electrical/cooling/thermal energy on a typical
day. During the day, the IEU has a high demand for electricity between 9:00 and 18:00, and
the demand for electricity peaks at 12:00. Cooling/thermal demands of IEU rise from 6:00
to 12:00 and stabilize after 12:00. The demand for the thermal load decreases after 19:00
and the demand for the cooling load declines after 22:00.
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Figure 5. Hourly base load curves of IEU on a typical day.

4.2. Result Analysis in the Case of IES Maximizing Profit

From the perspective of the power grid, during the peak period of the electrical
demand of the IEU, the power output of renewable energy is constrained by the equipment
itself, and cannot fully satisfy the demand of the IEU. The shortage of power can be
supplemented by the power grid.

The cooling/thermal demand of the IEU is mainly a transferable load in the valley
period, and the electric refrigeration equipment and electric heating equipment with electric
energy as input can dynamically adjust the input gas turbine and waste heat for part of
the cooling/thermal demand of the IEU. The natural gas volume in the boiler is adjusted.
Figure 6 shows the natural gas volume input into the gas turbine and waste heat boiler.

Figure 6. Hourly gas input volume of IES.

After considering the balance of the game model of the demand-side response, the
energy use of the integrated energy system appears in the form of complementary mutually
beneficial. The cost of renewable energy generation is extremely low, and the supply of
energy is preferentially based on renewable energy. For the insufficient demand, when
the electricity price is high, natural gas is used first, and the power grid is used for power
supply assistance. When the electricity price is low, the power grid is used first, and natural
gas is used for assistance.

In the process of energy supply, IES’s energy input and output are always in a dynamic
balance. Figure 7 shows the amount of interactive energy in the integrated energy system
in a game.
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Figure 7. Input and output volume of the integrated energy system in a game.

As energy prices continue to adjust, the IEU responds optimally with the goal of maxi-
mizing the utility function, thereby determining the amount of energy demand. IES for-
mulates time-of-use pricing of integrated energy for maximum profit. The unit-integrated
energy price changes before and after the game equilibrium are shown in Figure 8.

  
(a) (b) 

Figure 8. Comparison of optimal unit electricity/cooling/thermal price before and after Nash
equilibrium. (a) Optimal unit electricity/cooling/thermal price before Nash equilibrium. (b) Optimal
unit electricity/cooling/thermal price after Nash equilibrium.

The IEU has a small demand for energy from 0:00 to 8:00, and the overall unit energy
price is lower. The IEU’s base load grows from 6:00 to 12:00. The IES maximizes profit by
satisfying IEU’s consumer demand satisfaction and increasing unit energy prices. During
the period from 12:00 to 22:00, the IEU’s energy demand is high, and IES maintains the
balance between supply and demand by maintaining a high overall unit energy price
during that period to maximize profit. During the period from 22:00 to 24:00, the IEU’s base
load gradually decreases, while the unit price of integrated energy gradually decreases
and stabilizes. After the game reaches equilibrium, the unit-integrated energy price during
the peak period of IEU demand rises, and the unit-integrated energy price during the low
period of IEU demand declines.

Considering the demand for integrated energy and the base load of IEU in different
time periods, IES adopts the strategy of time-of-use pricing to maximize profit. Figure 9
shows the integrated energy volume on a typical day before and after the game equilibrium.
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(a) (b) 

Figure 9. Comparison of integrated energy trading volume before and after Nash equilibrium.
(a) Integrated energy trading volume before Nash equilibrium. (b) Integrated energy trading volume
after Nash equilibrium.

In this case, the IEU’s demand for electrical load is mainly concentrated in the pe-
riod from 12:00 to 22:00. Due to the formulation of the time-of-use electricity price, the
IEU changes the electricity demand of the low valley period, and the electricity volume
decreases during the peak demand period.

The IEU’s demand for thermal energy and cooling is mainly distributed between
11:00 and 24:00. During this period, the trading price of cooling/thermal energy has little
fluctuation, and both sides of the game need to trade as much cooling/thermal energy as
possible to balance the supply and demand. The IEU’s cooling/thermal demand declines
during the 0:00–11:00 time period, and the total trading volume of cooling/thermal energy
also declines.

After the game balance, due to the low-price strategy incentives during the low
demand period and the high price strategy during the peak demand period, on a typical
day, the energy volume curves of IES and IEU are relatively smoother than before the
game balance. After the game reached equilibrium, the peak-to-valley difference between
electricity volume decreased by 44.3%, the peak-to-valley difference between cooling
volume decreased by 36.9% and the peak-to-valley difference between thermal volume
decreased by 49.5%, effectively achieving peak shaving and valley filling so that the energy
supply in each period tends to be balanced.

In order to verify the impact of IEU’s demand on economic benefits, the profits are
compared before and after game equilibrium. Figure 10 is the hourly profit of IES in a
typical day. Figure 11 is the hourly consumption of IEU in a typical day.

Figure 10. Comparison of IES profit before and after equilibrium in a typical day.
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Figure 11. Comparison of IEU consumption before and after equilibrium in a typical day.

Before and after the game equilibrium considering IEU’s behavior, and on the premise
of meeting the IEU’s energy demand, by implementing the time-of-use pricing strategy,
IES improves the profit by 8.9% while smoothing the load distribution. IEUs reduce
consumption by 11.4% while guaranteeing their own satisfaction.

4.3. Result Analysis in the Case of IES Target Profit

When the objective function of the integrated energy system is different, the equilib-
rium state of the game model will change. At the beginning of the game, the IES in the
multi-subject game can also enlarge the market by reducing the unit energy price to gain a
greater share in the market. At this time, the IES strategic objectives have changed, from
maximizing profit to acquiring target profit to maintain daily operations. If the maximum
daily target profit is set to 10 million yuan, Figure 12a,b show the changes in unit-integrated
energy prices before and after the Nash equilibrium.

  
(a) (b) 

Figure 12. Comparison of optimal unit electricity/cold/thermal prices in the case of IES target
profit. (a) Optimal unit electricity/cold/thermal prices before Nash equilibrium. (b) Optimal unit
electricity/cold/thermal prices after Nash equilibrium.

After the game balance, the unit price of electric energy decreases, and the unit prices
of cooling energy and thermal energy basically remain unchanged. There are two ways
for IES to control profit by adjusting the integrated energy price, raising the integrated
energy price or reducing it. For IEU, the decline in unit-integrated energy price means that
more integrated energy can be traded at the same price. The increase in integrated energy
trading volume helps IES to enlarge the market. Changes in integrated energy trading
volume before and after the game balance are shown in Figure 13a,b.
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(a) (b) 

Figure 13. Comparison of integrated energy trading volume before and after Nash equilibrium.
(a) Integrated energy trading volume before Nash equilibrium. (b) Integrated energy trading volume
after Nash equilibrium.

IES reduces prices appropriately to increase integrated energy trading volume. After
the game balance, the trading volume of electricity increased by 37.04%, the trading volume
of cooling increased by 10.65% and the trading volume of thermal energy decreased by 0.6%.
The price of electricity has a large reduction, the IEU’s demand for electricity increased
and more electricity was purchased in the interaction with IES. The prices of cooling and
thermal have little changes, and the IEU only makes appropriate adjustments according to
the corresponding prices and demand. After the game reached balance, the peak-to-valley
difference between electricity volume decreased by 23.45%, the peak-to-valley difference
between cooling volume decreased by 3.9% and the peak-to-valley difference between
thermal volume decreased by 7.1%. The peak sharing and valley filling are not as effective
as the strategy under the objective of maximizing profit, but they also have a certain effect.

The profit function of IES and the consumption function of IEU before and after the
game balance are shown in Figures 14 and 15.

Figure 14. Comparison of IES profit before and after equilibrium.

While IES expanded the energy trading volume, the profit decreased by 3.5%. In the
case of IES fixing the profit and reducing the price, IEUs reduce consumption by 17.5%.

The main purpose of the IES controlling profit is to expand the trading volume of
integrated energy and become the target of energy purchase priority for users in the game.
As the final trading volume is difficult to determine directly, IES participates in the game by
controlling the target profit. Finally, the unit price of integrated energy decreased in each
time period. Due to the target profit, the unit price of integrated energy and the trading
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volume mainly showed a negative correlation. Part of the trading volume of the integrated
energy in the peak time period shifts to the valley time period.

Figure 15. Comparison of IEU consumption before and after equilibrium.

Comparing Figures 8 and 9 with Figures 12 and 13, the unit electricity price, unit
cooling price and unit thermal price after game balance under the objective of target
profit are reduced by 58.54%, 46.37% and 60.09%, respectively, and the total energy trading
volume is increased by 32.06% compared with the objective of maximum profit. It is obvious
that the energy price of the game strategy aimed at maximizing profit is significantly higher
than that of the game strategy aimed at target profit, and the energy trading volume is also
significantly lower than the latter. It can be concluded that the IES with target profit as
objective function of the game strategy can enlarge the market by limiting its own profit,
and can obtain the purchase willingness of IEUs by reducing the energy price, so that it can
have a larger market share, ensure its participation in market transactions for a long time
and ensure reliable profit.

5. Conclusions

We analyzed and modeled the game linkage between IES and IEU, which are the
participants in the integrated energy market, and constructed the objective functions with
maximum profit and target profit of IES. It is proved that the equilibrium solution of
the established game model exists in the process of multi-agent participation. Finally,
the time-of-use pricing strategy is solved for different time periods under two different
objective profits. Integrated energy trading volume and pricing curves are obtained under
the two different profit objectives. According to the comparison and analysis of the game
strategies under the two different objectives, several conclusions can be drawn.

(1) IES and IEU are linked by participating in the game. Typical energy equipment is
used as the basic unit, and the energy input/output model of the IES is established.
The time-of-use pricing strategy is the IES’s strategy, and the objective function is
to maximize its own profit. When the game reaches the Nash equilibrium, IES’s
operating profit significantly increases.

(2) As the main body of energy consumption, consumption function and utility function
of IEU are considered to establish the IEU model. While satisfying the utility function,
the IEU influences the time-of-use pricing strategy of IES by changing its own energy
consumption behavior. When the game reaches the Nash equilibrium, the utility
function of the IEU is satisfied and the consumption is reduced.

(3) Under the two objectives, the peak and valley difference in the electricity/cooling/thermal
trading volume after the game balance decreased by 30–50%. It can be concluded
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that time-of-use pricing will reduce peak load and fill valley load, smooth the load
distribution and improve the stability of IES’s energy supply.

(4) The game strategy aiming at target profit has a larger market share and user audience,
and it has the potential to participate in the market operation for a long time and
obtain reliable profit. The case results show that the energy trading volume of the
game strategy with target profit is about 32.06% higher than that of the strategy with
the maximum profit, and the pricing is also 54% lower than the latter. The IES can fix
its own profit to improve market competitiveness.
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Abstract: The commutation failure of high voltage direct current (HVDC) systems could lead to
unstable operation of the alternating current/direct current (AC/DC) hybrid power grid. The com-
mutation voltage distortion caused by harmonics is a considerable but unclear factor of commutation
failure. According to the control switching process of HVDC systems, the commutation voltage-time
area method is employed to analyze and reveal the influence mechanism of harmonic components
of commutation voltage on first and subsequent commutation failures. Considering the distortion
characteristics of AC voltage, a predictive commutation failure suppression strategy considering
multiple harmonics of commutation voltage is proposed. In this strategy, the new extinction angle
and the zero-crossing offset angle after voltage distortion are calculated considering the harmonic
components so as to obtain the compensation margin of the lag trigger angle by combining the correc-
tion margin with the voltage change rate. Moreover, the tuning method of parameters of extinction
angle and voltage prediction variables are provided. Finally, a case study based on CIGRE standard
HVDC system is performed and analyzed by using power systems computer-aided design (PSCAD)
software. Compared with the International Council on Large Electric systems (CIGRE) standard test
model and traditional commutation failure prevention (CFPREV) control model, the results verify
that the proposed strategy can effectively reduce the risk of first and subsequent commutation failures
and improve the sensitivity of CFPREV control.

Keywords: high voltage direct current; harmonic components; voltage prediction; commutation
failure suppression; commutation failure prevention

1. Introduction

High voltage direct current (HVDC) transmission with grid converters are widely
used in long-distance power transmission, underground and submarine cable power
transmission and regional power grid interconnection due to their advantages, such as long
transmission distance, small transmission loss and good economy. They are an important
means to solve the uneven distribution of energy load in China [1–3]. Semi-controlled
thyristors are mostly used as the converter elements. When the AC system at the sending
and receiving ends fails, it is easy to cause commutation failure [4]. The commutation
failure will lead to a sharp increase in DC current and a sharp drop in DC voltage. In
serious cases, it will cause a DC blocking fault, which will interrupt the DC transmission
power and eventually crash the system [5,6]. If the fault is not cleared in time after the
first commutation failure, it is easy to cause subsequent commutation failure. After the
subsequent commutation failure, the DC voltage, current, power and other electrical
quantities change dramatically, which will have multiple impacts on the AC system. When
the AC system is weak, it will cause a DC blocking fault and even cascading failure,
bringing great risks and challenges to the safe and stable operation of AC/DC hybrid
system [7].
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There are many reasons for commutation failure. Considering the fundamental volt-
age, the increase of DC current, the decrease of AC voltage, the increase of commutation
reactance and the decrease of lead trigger angle β will lead to the decrease of extinction
angle γ. When γ is less than the inherent critical trigger angle γmin, the commutation
failure will occur [8,9]. After an AC system fault, the harmonic component and phase angle
offset of commutation voltage will also cause commutation failure. Therefore, voltage
distortion is also an important reason for commutation failure [10]. At present, the optimal
control of HVDC transmission is mostly based on the protection control modules of con-
verter stations, including voltage dependent current order limiter (VDCOL), commutation
failure prevention (CFPREV), constant extinction angle control and power coordination
control. The control system has a poor response ability to commutation voltage distortion
at present [11,12].

Most of the existing methods to suppress commutation failure are based on improving
the converter topology or optimizing the system control strategy [13]. Connecting capaci-
tors and inductors in series and parallel on both sides of the AC transformer and adding
reactive power compensation devices to change the structure of the converter can improve
the ability to suppress commutation failure to a certain extent. However, adding power elec-
tronic devices has the disadvantages of high investment cost and high operation risk [14].
VSC-HVDC uses fully controlled devices to construct converters that are not dependent
on AC system commutation, which can effectively inhibit the subsequent commutation
failures, but it is not economical and operable [15,16]. Therefore, the optimization control
strategy comes more from improving VDCOL and CFPREV modules, with less investment
and greater operability. The basic principle of CFPREV is that when an AC fault is detected,
a trigger angle margin is generated as the decrease of the lag trigger angle to achieve early
triggering and reduce the risk of commutation failure. The harmonic component of the
converter bus in the inverter side can cause frequent fluctuation of the CFPREV output,
which leads to abnormal fluctuation of DC power. By distinguishing the zero-sequence
component of inrush current and AC fault, the output of CFPREV can be controlled to be
constant [17]. The literature [18] points out that CFPREV can exacerbate the negative impact
of the initial fault voltage angle on commutation failure. When the fault phase voltage
crosses zero, the single-phase short-circuit fault will significantly delay the start of CFPREV.
Based on this, a calculation method of commutation failure probability is proposed. The
literature [19] designs a coordinated controller, which can change the output of CFPREV
according to the change of the extinction angle of the remote inverter, so that the trigger
angle can be adaptively adjusted. But the accuracy is affected by signal transmission. The
existing CFPREV control module has the problems of low output margin accuracy and poor
flexibility of parameter adjustment, which may aggravate the subsequent commutation
failure in the actual system.

In the process of commutation failure, the control behavior of the controller is affected
by many factors. Therefore, the comprehensive effect of various electrical quantities after
fault should be considered in the formulation of control and protection strategies. By
suppressing the drop of DC current after faults, a control strategy for optimizing VDCOL is
proposed in the literature [20], which can suppress AC overvoltage to a certain extent, but
the effect of commutation failure suppression needs to be verified. The literature [21] points
out that the waveform distortion of commutation voltage is the main reason for commuta-
tion failure under slight fault. By considering the time-domain effects of harmonics and
DC current, the literature [22] proposes a prediction method of commutation voltage and
current to realize the prediction of commutation failure, but the fault suppression strategy
needs further study. A trigger angle prediction algorithm is proposed in the literature [23]
by using the harmonic component to calculate the extinction angle to detect whether the
commutation failure occurred. The commutation-time area method can be used to analyze
the influence of harmonics on the commutation process. In the literature [24], the control
parameters of each harmonic are calculated by using the commutation-time area method,
and an additional harmonic control module is added to VDCOL module. But it cannot
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suppress the first commutation failure. Based on the commutation-time area, the dynamic
adjustment of the extinction angle command value is realized in the literature [25] and the
virtual resistor is used to trigger VDCOL in advance, but the suppression effect for some
fault scenarios needs to be verified.

In view of the above research deficiencies, this paper analyzes the influence mechanism
of the harmonic component of the commutation voltage on the commutation failure and
proposes a predictive commutation failure suppression strategy considering the multiple
harmonics of the commutation voltage based on the variation characteristics of the AC
voltage after the fault. When it is applied to different AC fault scenarios, it can reduce the
risk of the first and subsequent commutation failures more sensitively by considering the
harmonic component of the voltage distortion and the dynamic change of the AC voltage.
Finally, the simulation comparison between the proposed strategy and the traditional
CFPREV strategy shows that it can reduce the number of commutation failures.

The main contributions of this paper are summarized as follows:

1. Based on the commutation-time area method, the critical commutation area of har-
monic components in fault recovery process is provided. And the mechanism of first
and subsequent commutation failures is analyzed in combination with the change of
electrical quantity.

2. A novel commutation failure suppression strategy considering multiple harmonics of
commutation voltage and voltage prediction is proposed. The new extinction angle
and zero-crossing offset angle after voltage distortion are given based on the harmonic
components, so as to obtain the compensation margin of the lag trigger angle by
combining the correction margin with the voltage change rate.

3. Tuning method of parameters of extinction angle and voltage prediction variables
are provided. Extensive case studies based on a CIGRE standard HVDC system
are performed and analyzed and compared with a CIGRE standard test model and
commutation failure prevention (CFPREV) control model. Simulation results verify
that the proposed strategy can suppress the first and subsequent commutation failures
and reduce the number of commutation failures effectively when different degrees of
faults occur.

The rest of this paper is organized as follows: Section 2 analyzes the principle of the
inverter under the influence of harmonics. In Section 3, a commutation failure suppression
strategy considering harmonics and voltage prediction is proposed. Based on the strategy,
the tuning method of parameters are provided in Section 4. Simulation results based on
PSCAD software and discussion are presented in Section 5. Finally, we conclude this paper
in Section 6.

2. Commutation Failure and Harmonic Influence

The topology of the line-commutated converter based HVDC (LCC-HVDC) system
is depicted in Figure 1, including sending-end grid, rectifier station, DC transmission
lines, inverter station and receiving-end grid. Semi-controlled thyristors are widely used
as the converter elements in HVDC, which can easily cause commutation failure at the
receiving-end grid. Commutation failure is a common fault for HVDC systems, and it
is easily affected by harmonics of commutation voltage during the AC fault occurrence.
Therefore, it is meaningful to investigate the principle of commutation failure affected by
the harmonics.
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Rectifier station Inverter stationDC transmission line
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Load

AC fault

Figure 1. Topology of LCC-HVDC.

2.1. The Principle of Commutation under the Influence of Harmonics

When the AC fault occurs in the sending and receiving end power grid, the converter
station near the fault point will fail at commutation. The essence of commutation failure
is that the extinction angle is smaller than the minimum extinction angle γmin (about 7◦)
corresponding to the recovery blocking time of the converter valve at the reverse voltage
(about 0.4 s for high-power thyristor). In engineering, the converter unit is generally a
six-pulse converter. Figure 2a analyzes the commutation process of thyristor VT3 to VT5,
and Figure 2b is the simplified diagram of the inverter commutation process.
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Figure 2. Mechanism analysis of commutation process. (a) Equivalent model of inverter side 6-pulse
converter. (b) Simplified diagram of inverter commutation process.

Before commutation, the thyristor VT3 and VT4 are turned on to form a DC current
circuit. When VT5 receives the trigger pulse, VT3 begins to convert to VT5 and the three
thyristors are simultaneously turned on. Ignoring the resistance of the large capacity trans-
former, the default three-phase commutation inductance is equal. The positive directions
of current ia, ib and ic are the conduction directions of thyristor. The positive directions of
voltage ua, ub and uc are shown in Figure 2a. The voltage equation during the commutation
from valve VT3 to valve VT5 can be written as [26]:

Lc
dib
dt

− Lc
dic
dt

= −ub + uc (1)
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where Lc is the commutation inductance. The commutation voltage ubc can be represented
by the line voltage amplitude UL on the side of the commutation valve:

ubc = UL sin(ωt) (2)

Considering the effect of flat wave reactor, the DC current Id before and after commuta-
tion is basically unchanged. By substituting id = ib + ic into Formula (1) and integrating both
sides from t1 to t2, the expression of commutation voltage time area (S) can be obtained:

S = 2Lc Id =
∫ t2

t1

ubcdt =
∫ (π−γ)/ω

(π−β)/ω
UL sin(ωt)dt (3)

where t1 is the trigger time and can be expressed by (π − β)/ω; t2 is the end time of
commutation, which can be expressed by (π − γ)/ω.

By further simplification, the following formula can be obtained:

γ = arccos
(

cos β +
2ωLc Id

UL

)
(4)

The critical extinction angle γmin is the minimum extinction angle required for normal
turn-off of the thyristor. If the extinction angle corresponding to the commutation end time
t2 is the critical extinction angle γmin, namely (π − γmin)/ω, the maximum commutation
area that the system can provide is defined as Smax =

∫ (π−β)/ω

(π−γmin)/ω
UL sin(ωt)dt. The re-

quired commutation area for normal commutation of the system is defined as Sneed = 2LcId.
When the required commutation area Sneed > Smax, the extinction angle γ will be less than
the critical extinction angle γmin, the system cannot provide enough of a commutation
margin, and commutation failure will occur. When the commutation voltage is distorted,
the voltage distortion waveform is shown in Figure 3. During normal operation of the
system, the commutation voltage is U. After an AC fault, the voltage waveform is distorted,
the commutation voltage changes from U to U′, the amplitude decreases and the phase
angle shifts ϕ. According to the parameter changes in Figure 3, the commutation area
before the fault is Sx + Sy. After the fault, the commutation area provided by the system is
reduced to Sy due to the distortion of voltage waveform. In order to provide sufficient a
commutation margin, it is necessary to increase the commutation area Sz. At this time, γ
decreases to γ′. When the extinction angle is smaller than the critical extinction angle γmin,
commutation failure occurs.

LU U

U

xS

yS

zS

t

Figure 3. Diagram of voltage waveform distortion.

After the voltage distortion occurs, the commutation voltage ubc will contain the
harmonic components:

ubc = U1L sin(ωt) +
N

∑
n=2

UnL sin(nωt + ϕn) (5)
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Substitute Formula (5) into Formula (3) can get the following formula:

2Lc Id =
∫ (π−γ)/ω

(π−β)/ω
[U1L sin(ωt) +

N

∑
n=2

UnL sin(nωt + ϕn)]dt = S1 +
N

∑
n=2

Sn (6)

where S1 and Sn are defined as the commutation area provided by the fundamental voltage
and the harmonic voltage, respectively, and further simplification of Formula (6) can be
obtained:

S1 = U1L[cos(π − β)− cos(π − γ)] (7)

Sn =
UnL

n
[cos(nπ − nβ + ϕn)− cos(nπ − nγ + ϕn)] (8)

The condition for the normal switching off of thyristors is as follows: the commutation
area provided by the system is larger than the required commutation area. Therefore, under
the influence of harmonics, the condition for the normal commutation of the system is as
follows:

Sneed ≤ S1 +
N

∑
n=2

Sn (9)

2.2. Influence of Harmonics on Subsequent Commutation Failure

When faults occur in the AC system of the HVDC transmission system, the control
system at the rectifier and inverter side switches the control blocks to increase the trigger
angle and ensure a certain commutation margin. As shown in Figure 4, the basic control
blocks of the inverter side of the HVDC transmission system include the voltage dependent
current order limiter (VDCOL), constant current (CC), constant extinction angle (CEA) and
current error control (CEC) [27].

CEA

VDCOL

CC

Udi Min

Iord1

Iord

CEC

Idi
+

+
Max

CEC

min

ref

cc

CEA

i
i

CFPREV

1
G
Ts

1
G
Ts

Figure 4. Control block diagram of HVDC inverter side.

In Figure 4, Udi and Idi are the measured values of DC voltage and DC current on the
inverter side after passing through the first-order low-pass filter; Iord1 is the DC current
instruction of the upper level; when the DC voltage is lower than the low-voltage current
limiting control threshold value, VDCOL starts and outputs the DC current command value
Iord; γmin and γref are the minimum measured extinction angle and the reference value
of extinction angle (15◦), respectively; when the DC current reaches the current deviation
control starting threshold, CEC outputs ΔγCEC, which is added to the input of CEA as an
increase. In the actual control of the system, CEA and CC control are started at the same
time, and output βCEA and βCC, respectively. The maximum values of the two angles are
taken as the output of the inverter side advance trigger angle βi, and αi is obtained through
transformation.

When a short-circuit fault occurs in the AC system on the inverter side, the second
commutation failure will occur if the fault degree is deeper. Take the CIGRE standard test
system as an example, the three-phase short-circuit grounding fault on the inverter side
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is set up. The starting time of the fault is 2 s and lasts for 0.2 s. The changes of electrical
quantities during the fault process are shown in Figure 5.

t

γ
β

I
β

U

I
I

β
β

Figure 5. Response waveform of inverter side after three-phase short-circuit grounding fault.

On the one hand, it can be seen from Figure 5 that in the fault recovery process of
the first commutation failure (process between green dotted lines), the advance trigger
angle βcc > βCEA, and the system switches from CEA control to CC control. After the
first commutation failure, the DC voltage decreases and the DC current rises sharply,
which makes the inverter side enter the VDCOL control and the DC current command
value decreases. When the DC current decreases to a certain extent, the system is normally
commutated, and the DC current command value Iord rises slowly. Therefore, in the process
of fault recovery, the DC current Id increases slowly with Iord, resulting in the increase of
commutation demand area Sneed. On the other hand, in the process of fault recovery, AC
voltage and DC current are basically restored to the standard value, but a large number of
harmonic components appear at the receiving end. Therefore, it can be preliminarily judged
that the subsequent commutation failure is not due to the commutation voltage drop caused
by insufficient reactive power, but the commutation voltage distortion caused by harmonics.
The critical area of commutation voltage time (γ is 7◦) calculated by Formulas (7) and (8)
in the fault process is shown in Figure 6. S1 is the commutation area of fundamental
voltage, S1–15 and S2–15 are the commutation areas of 1st–15th and 2nd–15th harmonic
voltages, respectively. It can be seen that after the fault occurs, although the 2nd–15th
harmonic commutation area increases, the fundamental voltage commutation area S1
drops greatly, which causes the S1–15 to drop sharply, so that the Formula (9) cannot be
satisfied and the subsequent commutation failure of the system occurs. The waveforms
of critical commutation area S1 and S1–15 before the first and subsequent commutation
failure are amplified, as shown in Figure 6b,c. One can see that before the first commutation
failure occurs, the harmonic deteriorates the commutation condition and the insufficient
commutation margin leads to commutation failures. In the process of fault recovery after
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the first commutation failure, the harmonics reduce the commutation area, and, finally, the
subsequent commutation failure occurs.
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Figure 6. Commutation voltage time area after commutation bus fault. (a) Commutation voltage
time area of the whole simulation. (b) Commutation voltage time area before the first commutation
failure. (c) Commutation voltage time area before the subsequent commutation failure.

3. Suppression Strategy Considering Harmonics and Voltage Prediction

The key idea of CFPREV is that after the AC system fault is detected, the reduction
of the output angle margin is triggered in advance to increase the extinction angle γ, so
as to avoid the abnormal extinction of the thyristor and the commutation failure of the
system. The basic control block diagram of CFPREV is shown in Figure 7, including zero
sequence detector and abc-αβ three-phase fault detector. The traditional CFPREV has the
disadvantages of single detection, insufficient prevention accuracy and lack of flexibility in
parameter adjustment. Under some fault conditions, it may even aggravate the fault and
cause subsequent commutation failure [28,29].
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Figure 7. Schematic diagram of CFPREV control.

In order to alleviate the problem of poor speed and sensitivity caused by traditional
CFPREV, a commutation failure suppression strategy considering harmonic and voltage
prediction is proposed.
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3.1. Suppression Strategy Considering Multiple Harmonics of Commutation Voltage

The commutation voltage distortion caused by harmonics will lead to voltage am-
plitude decrease, phase angle change and even zero-crossing offset. The three-phase
short-circuit grounding fault at the inverter side is set in the CIGRE standard test system.

The fault time is 2 s and the duration is 0.2 s. The voltage distortion rate of 2nd–15th
and 2nd–31st harmonics (the fundamental voltage distortion rate is 100%) can be obtained
by the fast Fourier transform (FFT) decomposition of the commutation voltage, as shown
in Figure 8. It can be seen that the voltage has a large harmonic distortion after the fault
occurs, and the distortion rate reaches 42.4%. After the fault, the second large harmonic
distortion rate appeared, reaching 26.1% at 2.24 s. The two harmonic distortions are both
caused by the saturation of converter transformer caused by the substantial increase of DC
current. By amplifying the waveform of Figure 8, it can be seen that there is little difference
between 2nd–15th harmonic distortion rate and 2nd–31st harmonic distortion rate, the
maximum is only 2.07%. Therefore, the subsequent calculation can consider the harmonic
number to 15 times.
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Figure 8. Harmonic voltage distortion rate under fault.

According to Formulas (7) and (8), the commutation voltage-time area corresponding
to fundamental wave and each harmonic can be calculated and the total commutation area
can be obtained by the summation:

N

∑
n=2

Sn =
N

∑
n=2

UnL

n
[cos(nπ − nβ + ϕn)− cos(nπ − nγ + ϕn)] (10)

The extinction angle γ can be obtained by Formula (4). Harmonics not only bring
changes in the voltage amplitude and phase, but also cause zero crossing offset. If the offset
angle is Δϕ, the extinction angle should meet the Formula (11) to turn off normally:

arccos(cos β +
2ωLc Id

UL
)− Δϕ ≥ γmin (11)

It is assumed that the voltage variation vector diagram of single-phase short-circuit
fault occurs on the inverter side of the AC system, as is shown in Figure 9 [18], and the
harmonics distort the voltage of each phase. UA, UB and UC are the three-phase voltage
amplitudes before the fault; UA

′ and UB
′ are the voltage amplitudes of phase A and phase

B, respectively, after fault; UAB and UAB
′ are line voltage amplitude before and after fault;

ΔϕA and ΔϕB are the voltage phase deviation of phase A and phase B before and after the
fault; ΔϕAB is phase deviation of the line voltage. Expression of ΔϕAB can be obtained by
cosine theorem and phasor relation:

ΔϕAB =

∣∣∣∣∣arccos
U2

AB + U2
B − U2

A
2UABUB

− (30◦ − ΔϕB)

∣∣∣∣∣ (12)
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Figure 9. Three-phase voltage phasor diagram of short circuit fault.

In the same way, the formulas for calculating the phase deviation of other line voltages
can be obtained:

ΔϕBC =

∣∣∣∣∣arccos
U2

BC + U2
C − U2

B
2UBCUC

− (30◦ − ΔϕC)

∣∣∣∣∣ (13)

ΔϕCA =

∣∣∣∣∣arccos
U2

CA + U2
A − U2

C
2UCAUA

− (30◦ − ΔϕA)

∣∣∣∣∣ (14)

It can be seen from Formulas (12)–(14) that the voltage distortion will cause the phase
shift of the commutation voltage, which will be unfavorable to the commutation process of
the converter valve. In order to ensure the normal switching off of the thyristor, it should
be triggered in advance to ensure a certain commutation margin.

3.2. Compensation Correction Based on Voltage Change Rate

If the output trigger angle margin of CFPREV is too large, it will lead to an increase
in the reactive power consumption of the converter at the inverter side, thus causing
the voltage drop of the converter bus, which is not conducive to the recovery of the DC
system [30]. If the change trend of voltage can be considered in the fault process, the
CFPREV output trigger angle can be compensated and corrected, which can promote the
recovery of voltage. The design of dynamic voltage prediction variable Ki is shown in
Formula (15):

Ki = 1 − dUaci

dt
·B, B =

{
B1 Uaci ≥ Ulevel
B2 Uaci < Ulevel

(15)

where Uaci is the effective value of the line voltage of the AC system at the inverter side; B1
and B2 are correction coefficients; Ulevel represents the reference value of AC voltage.

When the voltage drops, the voltage change rate is negative. At this time, Ki is
greater than 1, and the output trigger angle is increased, that is, the commutation margin is
increased; when the voltage rises, the voltage change rate term is positive, and Ki is less
than 1, which reduces the output trigger angle and promotes the voltage recovery. In the
subsequent commutation failure process, the coefficient can also dynamically adjust the
commutation margin according to the voltage variation trend.

3.3. Suppression Strategy Considering Harmonic and Voltage Prediction

The principle block diagram of commutation failure suppression strategy considering
harmonic and voltage prediction is shown in Figure 10, which mainly includes three links:
start-up block, voltage prediction block and trigger block.
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Figure 10. Principle block diagram of commutation failure suppression strategy considering harmonic
and voltage prediction.

Considering the start-up link of the multiple harmonics of the commutation voltage,
the commutation voltage-time area corresponding to the 2nd–15th harmonics is calcu-
lated by Formula (10). Then, it is substituted into Formula (16) to obtain the calculated
values γref_AB, γref_BC and γref_CA corresponding to the extinction angles of each commu-
tation voltage in the fault process, and take the minimum value of the extinction angle
corresponding to each commutation voltage to obtain γm:

γ = arccos

⎛⎜⎜⎜⎝cos β +

2ωLc Id − N
∑

n=2
Sn

UL

⎞⎟⎟⎟⎠ (16)

γm = min{γref_AB, γref_BC, γref_CA} (17)

Combined with the zero-crossing offset after the distortion of the commutation voltage,
the zero-crossing offset of each commutation voltage is calculated by Formulas (12)–(14),
and the maximum value is taken to obtain Δϕm. The difference between γm and Δϕm is
defined as the risk judgment value of commutation failure considering the distortion of
commutation voltage after fault, as shown in Formula (18):

γm − Δϕm < γmin (18)

where γmin is the critical extinction angle of thyristor (7◦). After meeting the starting
criterion, the comparator output A1 is equal to 1, and A2 is obtained as the starting criterion
of the trigger link after broadening.

In the voltage prediction link, the effective value Uaci of the line voltage of the AC
system on the inverter side is collected in real time, compares the voltage at the current time
with the voltage value passing through the first-order inertia section to obtain the voltage
change rate, which is substituted into Formula (15) to calculate the compensation coefficient
Ki. In the actual simulation process, Uaci will have a small range of fluctuations, a low-pass
filter can be used to reduce noise. When the startup criterion is established, the output of
A2 is 1, which determines that the system has the risk of commutation failure and starts the
trigger link to achieve early trigger. The trigger margin Δα is shown in Formula (19), where
Δγ is the compensation margin.

Δα = Ki·(γm − Δϕm − Δγ) (19)
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After detection of commutation failure risk, start the trigger link and output the lag
trigger angle margin Δα, as CFPREV output trigger angle reduction. The index of the
proposed control strategy is more sensitive to the harmonic component generated by the
commutation voltage distortion, and the response speed is faster.

4. Tuning Method of Parameters

4.1. Calculation of Reference Value of Extinction Angle

In order to determine the pre-trigger time and pre-trigger margin of this strategy, the
fast Fourier transform FFT is used to decompose each commutation voltage and the UnL
and phase angle ϕn of each harmonic voltage is obtained. The commutation-time areas
corresponding to 2nd–15th harmonic voltage are calculated by substituting Formula (10).
The reference value γ0 of the extinction angle here is taken as the critical value γmin (7◦).
Due to the controller switching requiring a certain time, in order to achieve early trigger,
the pre-trigger angle takes the actual value of the trigger angle of the previous cycle β0.

After summing the commutation area corresponding to each harmonic, the calculated
value of the corresponding extinction angle is substituted into Formula (16), where UL
takes the amplitude of the fundamental commutation voltage U1L. The relevant formulas
are shown in (20) and (21):

N

∑
n=2

Sn =
N

∑
n=2

UnL

n
[cos(nπ − nβ0 + ϕn)− cos(nπ − nγ0 + ϕn)] (20)

γ = arccos(cos β0 +

2ωLc Id − N
∑

n=2
Sn

U1L
) (21)

4.2. Voltage Change Rate Module Parameter Tuning

Collect the effective value Uaci of the converter bus voltage in real time and make a
difference between the voltage value at the current moment and the voltage value after the
first-order low-pass filter [31], so as to obtain the calculated value of the change rate of the
converter bus voltage, as shown in Figure 10.

The reason for the first commutation failure is that the commutation margin is in-
sufficient due to the commutation bus voltage drop. In order to suppress the occurrence
of the first commutation failure, the value of B2 should be increased to obtain a larger
trigger margin, and trigger in advance to suppress the failure. When the voltage exceeds
the converter bus voltage threshold Ulevel, the value of B1 is reduced to avoid too small a
margin to suppress subsequent commutation failure. After the simulation test, the reference
values of B1 and B2 are 3–10 and 11.5–18.5, respectively. The actual parameters will be
adjusted according to the fault scenario. The voltage threshold Ulevel is 0.928 p.u.

When the fault occurs, the measurement time of FFT is 2–3 ms [32], and the calculation
time of voltage change rate of the converter bus is about 1 ms. The calculation and
discrimination of the advanced firing angle can be realized by a multi-core digital signal
processor (DSP) with a nanoseconds processing speed [33,34]. The time scale from the
fault of the converter bus to the local commutation failure is generally 6–8 ms, so the
proposed control strategy can meet the requirements of the rapidity of commutation failure
suppression.

5. Case Study

Based on the PSCAD/EMTDC simulation platform, the proposed suppression strategy
is built on the CIGRE standard test model. The CFPREV parameters are consistent with the
literature [35]. The CIGRE model parameters are shown in Table 1.
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Table 1. Test system parameters.

Parameter Rectifier Inverter

AC voltage/kV 345 230
DC voltage/kV 507 497
DC current/kA 2 2

trigger angle/(◦) 20 18
DC power/MW 1014 994

5.1. Validation of Commutation Failure Suppression

A three phase short-circuit fault is set on the AC bus at the inverter side, the fault
occurs in 2 s and lasts for 0.2 s. The aim is to compare and analyze the fault response
of the following three control strategies: control strategy I: CIGRE standard test system;
control strategy II: CFPREV control; control strategy III: the strategy proposed in this paper.
The responses of extinction angle, AC voltage, trigger angles of inverter side, predictive
variable of dynamic voltage Ki and currents at valve side of converter transformer under
three strategies are shown in Figure 11.
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Figure 11. Waveforms of three-phase short-circuit fault under different strategies. (a) Extinction angle
γ under three strategies. (b) Current at valve side of converter transformer under strategy I. (c) Trigger
advance angle β under three strategies. (d) Current at valve side of converter transformer under
strategy II. (e) Trigger delay angle α under three strategies. (f) Current at valve side of converter
transformer under strategy III. (g) Predictive variable of dynamic voltage Ki. (h) AC voltage at
inverter side.
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According to the valve side currents of converter transformer in Figure 11, after a
three-phase short-circuit fault in inverter side of AC system, both control strategies I and II
failed to commutation failure once and the extinction angle decreased to 0. The reason for
the commutation failure of the CFPREV strategy at 2.21 s is that the CFPREV output leads
to the small trigger angle α at the inverter side, the increase of reactive power consumption
of the converter and the voltage drop of the AC system, which deteriorate the commutation
conditions. The strategy in this paper suppresses the first commutation failure and the
system has no subsequent commutation failure. When the fault occurs, the voltage change
rate is less than 0, the predictive variable of dynamic voltage Ki is greater than 1 and the
trigger angle margin is increased to suppress the first commutation failure. By comparing
the lag trigger angle of Figure 11, it can be seen that the strategy in this paper realizes the
early trigger and the trigger margin is greater than the other two strategies, which can
suppress commutation failure to a certain extent.

In order to further verify the adaptability of the strategy in this paper, single-phase
short-circuit and three-phase short-circuit grounding faults are set on the inverter side
and the electrical responses are shown in Figures 12 and 13. It can be seen from Figure 12
that the single-phase short-circuit fault leads to two consecutive commutation failures
in the original CIGRE system, and both CFPREV and the proposed strategy inhibit the
first and subsequent commutation failures. However, the trigger angle margin of this
strategy is obtained in advance compared with CFPREV strategy, and the advance trigger
angle margin increases and the voltage recovery speed is faster. At the same time, in the
steady state of the fault, the value of the extinction angle of the strategy in this paper does
not increase, and the converter consumes less reactive power, which is conducive to the
rapid recovery of the DC system. It can be seen from Figure 13 that under the three-phase
short-circuit grounding fault, strategy I has two commutation failures and the CFPREV
strategy has deteriorated the commutation conditions, resulting in one commutation failure.
The proposed strategy realizes the early triggering and obtains a large trigger angle margin,
which inhibits the first and subsequent commutation failures.

5.2. Subsequent Commutation Failure Suppression Verification

In order to fully verify the ability of the proposed strategy to suppress the first and
subsequent commutation failures at different fault levels, further simulations are performed
in different fault scenarios. First, it is necessary to define the fault level FL as shown in (22).
The larger the FL value is, the more serious the fault is.

FL =
U2

L
ωLf

1
PdN

× 100% (22)

where PdN is the rated DC transmitted power; UL is the AC bus voltage on the inverter
side; Lf is the grounding inductance; and ω is the rated angular frequency.

Two fault scenarios of three-phase short-circuit fault and single-phase short-circuit
fault are set up with different fault severity levels to compare and analyze the fault suppres-
sion capability of the strategy in this paper, the CFPREV strategy and the original CIGRE
system. The results are shown in Figure 14.
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Figure 12. Waveforms of single-phase short-circuit fault under different strategies. (a) Extinction
angle γ under three strategies. (b) Current at valve side of converter transformer under strategy I.
(c) Trigger advance angle β under three strategies. (d) Current at valve side of converter transformer
under strategy II. (e) Trigger delay angle α under three strategies. (f) Current at valve side of
converter transformer under strategy III. (g) Predictive variable of dynamic voltage Ki. (h) AC
voltage at inverter side.
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Figure 13. Waveforms of three-phase short-circuit grounding fault under different strategies. (a)
Extinction angle γ under three strategies. (b) Current at valve side of converter transformer under
strategy I. (c) Trigger advance angle β under three strategies. (d) Current at valve side of converter
transformer under strategy II. (e) Trigger delay angle α under three strategies. (f) Current at valve
side of converter transformer under strategy III. (g) Predictive variable of dynamic voltage Ki. (h) AC
voltage at inverter side.

The simulation results show that the CFPREV and the proposed strategy can suppress
the subsequent commutation failure compared with the original CIGRE system when the
three-phase short-circuit fault occurs in the inverter side AC system, but the suppression
effect of the proposed strategy is better. CFPREV control and the strategy in this paper
begin to fail in the first commutation when FL is 17.9% and 23.8%, respectively. Therefore,
the strategy in this paper can inhibit the first commutation failure to a certain degree of
failure. When a single-phase short-circuit fault occurs, the original CIGRE system and
CFPREV strategy have different degrees of single and subsequent commutation failures,
while the strategy in this paper has no commutation failure below 67.28% of the fault
level. When FL exceeds 67.28%, the single-phase short-circuit fault is more serious, and the
restraining ability of commutation failure of the strategy in this paper is the same as the
other two strategies.
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Figure 14. The suppression ability under different strategies to commutation failure. (a) Frequency
of commutation failure under three-phase short-circuit fault. (b) Frequency of commutation failure
under single-phase short-circuit fault.

Compared with CFPREV control, the proposed strategy can track the dynamic changes
of voltage in real time. When the commutation voltage drops, the compensation margin
of the trigger angle is increased, so as to realize the early trigger and suppress the first
commutation failure. In the stage of fault recovery, the compensation margin of the trigger
angle is dynamically adjusted to reduce, which is conducive to the rapid recovery of the
DC system and inhibits the occurrence of subsequent commutation failures.

6. Conclusions

In this paper, a predictive commutation failure suppression strategy considering multi-
ple harmonics of commutation voltage is proposed combined with the first and subsequent
commutation failure mechanisms in HVDC transmission. The proposed strategy compre-
hensively considers the harmonic component of commutation voltage distortion and the
dynamic change of AC bus voltage, and triggers in advance to increase the commutation
supply area. Through theoretical and simulation analyses, the conclusions are as follows:

1. During the fault recovery process after the first commutation failure, the voltage dis-
tortion of the commutation bus caused by harmonics leads to a significant reduction in
the commutation supply area, which is an important factor leading to the subsequent
commutation failure.

2. The proposed strategy calculates the extinction angle and offset angle based on the
harmonic components and constructs a comparator to judge whether there is a risk of
commutation failure. It is more accurate to obtain the early trigger amount in advance
and improves the sensitivity of commutation failure suppression.

3. The prediction module of proposed strategy considers the dynamic change rate of AC
bus voltage during the process of faults and suppresses the first and subsequent com-
mutation failures by calculating different indicators. Compared with the traditional
control methods, the strategy in this paper can suppress the first commutation failure
under the three-phase short-circuit fault degree of 23.8% and the subsequent commu-
tation failure, and the first and subsequent commutation failures with single-phase
short-circuit fault degree below 67.28%.

The future works will focus on interaction principle and suppression strategy of
commutation failure in multi-infeed HVDC system.
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Nomenclature

α Trigger delay angle of LCC.
β Trigger advance angle of LCC.
γ Extinction angle.
μ Overlap angle.
u Alternating voltage.
Lc Equivalent inductance.
U Commutation voltage.
UL Amplitude of commutation voltage.
I Direct current.
S Commutation area.
i Alternating current.
ϕ Current error control.
Δ Perturbational component of variables.
B Correction coefficients of voltage change rate.
IY/D Current at valve side of converter transformer.
K Dynamic voltage prediction variable.
FL Fault level.

Superscripts and Subscripts
N Maximum harmonic numbers.
ref Reference value of variables.
d Variables at direct current side.
level, 0 Steady-state value of variables.
ac Variables at alternating current side.
n Harmonic numbers.
ord Command value of variables.
i Variables at inverter side.
ab,bc,ca/AB,BC,CA Phase to phase of variables.
a,b,c/A,B,C Phase to neutral of variables.
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