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Preface

This Special Issue presents research on the expanding role of quantum vacuum fluctuations

in understanding Casimir and van der Waals phenomena in microscopic domains (for example,

the use of dispersion forces to manipulate atoms) and in macroscopic domains (for example, the

computation of the vacuum’s permittivity in terms of virtual electron–positron pairs). Vacuum

fluctuations form the fabric of the universe and their manipulation, particularly due to the control

of boundary conditions, has led to many discoveries and applications. This Special Issue discusses

a historical account of Friedmann’s first proposal of an expanding universe due to vacuum energy.

Moreover, it presents a review of the changing concepts of the ether. It also contains papers on Casimir

forces between chiral molecules, the Lamb shift, the asymmetric dynamical Casimir effect, stochastic

electrodynamics, radiation from atoms in squeezed quantum fields, and a model of the electron as

a mirror with constant acceleration. This volume is targeted at researchers wanting to enhance their

understanding of these phenomena that arise from vacuum fluctuations.

G. Jordan Maclay and Roberto Passante

Editors
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Review

Centenary of Alexander Friedmann’s Prediction of the Universe
Expansion and the Quantum Vacuum

Galina L. Klimchitskaya 1,2 and Vladimir M. Mostepanenko 1,2,3,*

1 Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences,
196140 Saint Petersburg, Russia

2 Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
3 Kazan Federal University, 420008 Kazan, Russia
* Correspondence: vmostepa@gmail.com

Abstract: We review the main scientific pictures of the universe developed from ancient times to
Albert Einstein and underline that all of them treated the universe as a stationary system with
unchanged physical properties. In contrast to this, 100 years ago Alexander Friedmann predicted that
the universe expands starting from the point of infinitely large energy density. We briefly discuss the
physical meaning of this prediction and its experimental confirmation consisting of the discovery of
redshift in the spectra of remote galaxies and relic radiation. After mentioning the horizon problem
in the theory of the hot universe, the inflationary model is considered in connection with the concept
of quantum vacuum as an alternative to the inflaton field. The accelerated expansion of the universe
is discussed as powered by the cosmological constant originating from the quantum vacuum. The
conclusion is made that since Alexander Friedmann’s prediction of the universe expansion radically
altered our picture of the world in comparison with the previous epochs, his name should be put on
a par with the names of Ptolemy and Copernicus.

Keywords: quantum vacuum; Friedmann universe; general theory of relativity

1. Introduction

According to Immanuel Kant [1], the starry heavens is one of two things which “fill
the mind with ever new and increasing admiration and awe. . . ” Questions about what
our universe is, how it was created and how long it will exist have always aroused great
interest. In the pre-scientific era, answers to these questions were usually given on the
basis of various myths, religions, and philosophical systems. In ancient Greece, for the first
time in the history of mankind, the foundations of a scientific approach to the study and
attempts to answer these questions were laid.

In this review, we briefly list the main scientific pictures of the universe, developed
during the period of time from ancient Greece to Albert Einstein, and emphasize one
characteristic feature common to all of them. This common feature is that the universe
has always been thought as a stationary system. The concept of a stationary universe
was questioned only 100 years ago in 1922 when Alexander Friedmann, on the basis of
the general theory of relativity, demonstrated that our universe expands with time. This
prediction was confirmed experimentally very soon and became the basis of modern
cosmology given every reason to include the name of Alexander Friedmann on a par with
the names of greatest scientists who completely revised our understanding of the world
around us.

Another important point is that the Friedmann universe exists for a finite time after its
creation at a point “from nothing”. This initial state of the universe called the “cosmological
singularity” makes a link between the Friedmann discovery of expanding universe and
the concept of quantum vacuum. According to modern views, the first moments of the
evolution of the universe were governed by quantum theory. In the framework of a
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Physics 2022, 4

semiclassical model, where the gravitational field remains classical but the fields of matter
are quantum, it is possible to consider the stress-energy tensor of the vacuum of quantized
fields as the source of gravitational field. Under the influence of quantum vacuum the
universe expands exponentially fast which is known as the cosmic inflation. At slightly
later time, inflation gives way to the Friedmann expansion following the power law. At the
present stage, an expansion of the Friedmann universe is accelerating under the impact of
dark energy. One of the most popular explanations of this mysterious substance is again
given by the quantum vacuum which leads to a nonzero cosmological constant.

The paper is organized as follows. After a discussion of various pictures of the uni-
verse from ancient times to Einstein in Section 2, we briefly consider the main facts of
Alexander Friedmann’s scientific biography in Section 3. Section 4 is devoted to Fried-
mann’s prediction of the universe expansion made 100 years ago. The experimental facts
confirming that the universe is really expanding are presented in Section 5. Section 6 is
devoted to the cosmic inflation and creation of the universe from the quantum vacuum.
In Section 7, we consider the accelerated expansion of the universe and its explanation in
terms of dark energy originating from the vacuum of quantized fields. In Section 8, the
reader will find the discussion, and the paper ends with conclusions in Section 9.

2. Pictures of the Universe—From Ancient Times to Albert Einstein

The first scientific picture of the universe based on observations was created by
Claudius Ptolemy in the first century AD. The Ptolemy system was geocentric which means
that the Earth was placed at the center of the world. All remaining celestial bodies, i.e., the
Moon, the Sun and five planets known at that time (Mercury, Venus, Mars, Jupiter, and
Saturn), rotated around the Earth in circular orbits. According to Ptolemy’s system of the
world, beyond Saturn there is a firmament to which the fixed stars are attached. It was
assumed that the stars and the firmament do not obey the same physical laws as all bodies
on the Earth. Despite the presence of some nonscientific elements, the Ptolemy system gave
the possibility to perform calculation of both future and past positions of the Moon, Sun
and all five planets with rather high accuracy. In fact, this system was successfully used
until the 16th century. Needless to say, Ptolemy’s picture of the universe was stationary. It
did not vary with time.

Important change in our picture of the world has been made by investigations of
Nicolaus Copernicus, Johannes Kepler, and Galileo Galilei, performed in the 16th and 17th
centuries. They developed on a scientific basis and supported by observations the long-
proposed hypothesis that our universe is in fact heliocentric. According to the heliocentric
system, the Earth and all five planets orbit the Sun whereas the Moon orbits the Earth.
Johannes Kepler made an important discovery that the orbits of planets are not circles but
ellipses with the Sun at one of the ellipse’s focuses. Both Copernicus and Kepler believed
Ptolemy’s idea that the stars are fixed points attached to the firmament. However, Galilei
elaborated methods to determine the shape of stars and made estimations of their radii. The
radically new picture of the world established by Copernicus, Kepler, and Galilei retains
its validity in the scales of Solar system up to the present. However, they persisted in the
belief that the universe is stationary in a sense that planets followed and will always follow
the same predetermined orbits.

The next dramatic step in our understanding of the universe was made by Isaac New-
ton who developed the first physical theory, Newtonian mechanics, and laid foundations
of the mechanical picture of the world. In his book [2] Mathematical Principles of Natural
Philosophy published in 1687, Newton formulated the three laws of mechanics and the law
of gravitation which must be obeyed by all material bodies on the Earth and in the sky.
Newton arrived to the fundamental conclusion that the inertial mass, mi, of each material
body is equal to its gravitational mass, mg, which is responsible for the gravitational attrac-
tion. This was the first formulation of the equivalence principle used by Einstein as the
basis of general relativity theory 230 years later.
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With the second law of mechanics and the Newton law of gravitation, one finds that
the force acting between the test mass mi = mg and the Earth of the mass M and radius R
can be expressed in two ways:

F = mia =
Gmg M

R2 , (1)

where G is the gravitational constant and a is the acceleration of the test mass. Then, using
the equivalence principle, one obtains from Equation (1):

a =
GM
R2 , (2)

i.e., the conclusion is that all bodies in the vicinity of Earth surface fall down with the same
acceleration independently of their mass. The law that light and heavy bodies falling to
the ground from the same height reach the ground at the same time was experimentally
discovered by Galileo Galilei. Newton derived it theoretically. This fundamental law of
Nature, which defies common sense, was destined to play a huge role in elucidating the
structure and evolution of our universe.

Newton’s concept of the universe pushed its boundaries far beyond the solar system.
According to Newton, the universe is infinitely large in volume and contains infinitely
many stars. The space of the universe is homogeneous (i.e., all points are equivalent)
and isotropic (i.e., all directions are also equivalent). However, keeping unchanged an
important element of the previous pictures of the universe, Newton believed that our
universe is of an infinitely large age and it will exist forever. In this sense he considered the
universe to be stationary.

Newton’s picture of the universe was universally accepted until the early 20th century
despite some unresolved problems. For instance, according to Olbers paradox proposed in
1823, in the case of an infinitely large universe, in every direction one looks, one should
see a star. As a result, the entire night sky would shine like a surface of a star, which is
not true. One more difficulty is the problem of the heat death of the universe discussed
by Bailly in 1777 and elaborated on by Lord Kelvin in 1851 on the basis of the laws of
thermodynamics. Since the Newtonian universe exists for an infinitely large time, it should
already have reached a state where all energy is evenly distributed and all dynamical
processes are terminated. Thus, the observed temperature differences are in contradiction
to an assumption that the universe is infinitely old.

A new era in the study of the universe began in 1915 when Albert Einstein created
the general theory of relativity starting from the equivalence principle. According to this
theory, there is no gravitational force which attracts material bodies to each other. All
bodies move freely along the shortest (geodesic) lines in the Riemann curved space-time of
the universe which becomes curved under the impact of energy and momentum of these
bodies. Thus, the general theory of relativity describes the self-consistent system where the
space-time curvature is determined by the material bodies whereas their motion is caused
by the character of this curvature.

The description of the universe as a whole in the framework of general theory of
relativity is based on Einstein field equations,

Rik −
1
2

Rgik − Λgik =
8πG

c4 Tik, (3)

where Rik is the Ricci tensor characterizing the space–time curvature, R = gikRik is the
scalar curvature, gik is the metrical tensor, Λ is the cosmological constant, c is the speed of
light, and Tik is the stress-energy tensor of matter. The indices i and k here take the values
0, 1, 2, 3 and there is a summation over the repeated indices.

The term Λgik was absent in the original Einstein’s equations, published in 1915 [3]
(see [4] for English translation). Einstein introduced it when applying his field equations
to the universe as a whole in order to compensate the effect of gravity and make the
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universe stationary [5] (see [6] for English translation). This means that he shared the
opinion of Ptolemy, Copernicus, Galilei and Newton that the universe does not vary with
time. Using the basic concepts of Newton’s picture of the world, Einstein also assumed
that the 3-dimensional space of the universe is homogeneous and isotropic. Based on this
assumptions, he obtained the model of the stationary universe of finite spatial volume.
This universe exists forever. It has never been created. There is a finite number of stars in
the Einstein universe.

Thus, all the greatest scientists from Ptolemy to Einstein, who determined the views
of mankind on the universe for two millennia believed that it is stationary. A new era
in the understanding of the universe began with the paper by Alexander Friedmann [7],
published 100 years ago, in 1922, in which he first proved that the universe expands.
Before considering Friedmann’s discovery, we briefly present the main facts of his scientific
biography, making it clear how he came to such a radical conclusion.

3. Brief Scientific Biography of Alexander Friedmann

Alexander Friedmann (see his photo in Figure 1) was born on 6 June, 1888 in Saint
Petersburg (the capital of Russian Empire) in the artistic family (a full description of his
life can be found in [8,9]). Alexander Friedmann’s father’s name was also Alexander. He
was an artist at the Court Ballet of the Imperial Theater and a ballet composer. Alexan-
der Friedman’s mother’s maiden name was Lyudmila Voyachek, she was a pianist. She
graduated from the Saint Petersburg Conservatoire. Nothing indicated that a child born in
such a family will become an eminent mathematician and physicist. After the divorce of
Friedmann’s parents in 1897, he lived with his father. In the same year, he started to study
at the Second Saint Petersburg High School which was known for the highly qualified
teachers in the field of mathematics and physics.

Figure 1. Alexander A. Friedmann (6 June 1988–16 September 1925), the founder of modern cosmology.

While still a schoolboy, Alexander Friedmann, in collaboration with his schoolmate
Yakov Tamarkin (in the future, a famous mathematician), wrote his first paper, devoted
to Bernulli numbers. In 1906, this paper was published in Mathematische Annalen by the
recommendation of David Hilbert [10].

Alexander Friedmann graduated from High School in 1906 with a gold medal and
was admitted to the first course of the Department of Mathematics belonging to the Faculty
of Physics and Mathematics at the Saint Petersburg University. During his student years at
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the university, Alexander Friedmann obtained an intimate knowledge in different fields of
mathematics and physics and his successes were always evaluated as “excellent”.

After a graduation from the Department of Mathematics in 1910, Alexander Fried-
mann stayed at the same department as a Postgraduate Researcher and to prepare to the
Professor position. His supervisor was the famous mathematician academician Vladimir
Steklov. From 1910 to 1913, Alexander Friedmann solved several complicated problems in
mathematical physics, published many papers and delivered lectures in mathematics for
students. Although he successfully passed examinations for a Master degree, he formally
defended the Master thesis only in 1922. By that time, he was already Full Professor at
the Perm University (1918–1920), at the Petrograd University, Petrograd Polytechnic In-
stitute, and at the Institute of Railway Engineering (Petrograd, formerly Saint Petersburg,
1920–1925).

In 1913, Alexander Friedmann was employed by the Saint Petersburg Physical (later
renamed in Geophysical) Observatory. During the work at this institution, he obtained
several fundamental results in dynamical meteorology, hydrodynamics, and aerodynamics.
His results retain their significance to the present day, and Friedmann’s name is well known
to everyone working in these fields. Several important results were obtained by him during
the visit to Leipzig University in the first part of 1914.

During the three years of the World War I, from 1914 to 1917, Friedmann served
in the Air Force of the Russian Empire. During this period of his life, he personally
piloted airplanes, organized the aerological service, and created the mathematical theory of
bombing. His service during the war was marked with several military awards.

The period of Alexander Friedmann’s life from 1920 to 1925 was especially productive.
During these years, he published several books and obtained outstanding results in the
field of dynamical meteorology. As a recognition of his scientific merits, in 1925 Alexander
Friedmann was appointed Director of the Geophysical Observatory of the Russian Academy
of Sciences. Just during this period of time, he published two papers [7,11] containing
an extraordinary prediction that our universe expands. Although on 16 September 1925
Alexander Friedmann tragically died of typhus at the age of 37, these papers made his name
immortal. In the next section, we briefly discuss the essence of the obtained results and
how the distinctive features of Friedmann’s scientific career helped him make a discovery
that even the great Einstein himself missed.

4. Friedmann’s Prediction of Expanding Universe

In his approach to the description of the universe in the framework of general relativity
theory, Friedmann assumed that the three-dimensional space is homogeneous and isotropic.
In this regard, he followed his predecessors Newton and Einstein. The assumption of
homogeneity and isotropy alone gives the possibility to find the metric, i.e., the distance,
ds, between two infinitesimally close space-time points, xi and xk, using the standard
mathematical methods:

ds2 = gikdxidxk = c2dt2 − a2(t)[dχ2 + f 2(χ)(dθ2 + sin2 θdϕ2)]. (4)

Here, t is the time coordinate whereas χ, θ, and ϕ are analogous to the spherical
coordinates in the three-dimensional space. In doing so, the usual Cartesian coordinates
and the radial coordinate are expressed as

x1 = r(t) sin θ cos ϕ, x2 = r(t) sin θ sin ϕ, x3 = r(t) cos θ,

r(t) = a(t) f (χ). (5)

The function f (χ) = sin χ, 0, and sinh χ depending on whether the constant curvature of
the three-space is equal to κ = 1, 0, and −1, respectively.

The function a(t) is called the “scale factor”. It has the dimension of length. In the
case of f (χ) = sin χ (the space of positive curvature), a(t) has the meaning of the radius
of curvature. The space of positive curvature has the finite volume V = 2π2a3(t). The
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spaces of zero and negative curvature have an infinitely large volume. In his first paper [7],
Friedmann considered the space of positive curvature, κ = 1, whereas his second paper [11]
is devoted to the space of negative curvature κ = −1.

In the Friedmann approach to the problem, it is important that he was a mathematician
who used the rigorous analytic methods. He wished to see what is contained in the
fundamental Einstein’s equations (3) in the case of a homogeneous isotropic metric (4)
independently of our historical and methodological preferences. This approach, which
proved to be very fruitful in all Friedmann’s diverse scientific activities, was based on the
long-standing traditions of the Saint Petersburg mathematical school.

Substituting Equation (4) in Equation (3) and calculating Rik and R by the standard
expressions of Riemann geometry, Alexander Friedmann obtained two equations, which
were later named after him:

d2a
dt2 = −4πG

3c2 a(ε + 3P) +
1
3

c2aΛ,(
da
dt

)2
=

8πG
3c2 a2ε − κc2 +

1
3

c2a2Λ. (6)

In these equations, it was taken into account that in the homogeneous isotropic space
the stress-energy tensor, Tik, is diagonal and that its component T 0

0 = ε has the meaning of
the energy density of matter, whereas its components, T 1

1 = T 2
2 = T 3

3 = −P, describe the
pressure P of matter. Note also that in his papers [7,11] Friedmann considered the so-called
“dust matter” for which the relative velocities of its constituents are small as compared to
the speed of light. This leads to the zero pressure, P = 0, but does not affect any of the
fundamental conclusions following from Equation (6).

Friedmann found that for κ = 1 Equation (6) admits the stationary solution in the
special case when

ε + 3P =
c4Λ
4πG

,
4πGa2

c4 (ε + P) = κ. (7)

In this case, from Equation (6) one has:

d2a
dt2 =

da
dt

= 0, a = a0 = const. (8)

This is the stationary universe obtained earlier by Einstein [5,6]. The stationary solution
exists only in the case κ = 1, Λ �= 0. If Λ = 0, the first equality in Equation (6) leads to
d2a/dt2 < 0 because for the usual matter it holds ε + 3P > 0. For κ = −1 the stationary
universe containing matter with ε > 0 is impossible [11]. Thus, the cosmological solution
found by Einstein is an exceptional case, whereas in all other cases (i.e., with Λ = 0 or
Λ �= 0 but with conditions (7) violated), the universe is nonstationary so that the scale
factor a(t) depends on time.

Friedmann derived one more specific solution of Equation (6) for which the scale factor
a depends on time but the scalar curvature R is constant. This is the solution previously
found by de Sitter [12]. It is most simple to illustrate the de Sitter solution, which is
determined by only the cosmological constant in the absence of usual matter, ε = P = 0,
for the case κ = 0. Then Equation (6) is simplified to one equation:

da
dt

=

√
Λ
3

ca, (9)

which has the solution

a(t) = a0 exp

(
c

√
Λ
3

t

)
. (10)

6
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The scalar curvature of the homogeneous isotropic spaces is given by

R = − 6
a2

{
1
c2

[(
da
dt

)2
+ a

d2a
dt2

]
+ κ

}
. (11)

Substituting Equation (10) in Equation (11) for κ = 0, one obtains the constant scalar
curvature of the de Sitter space–time R = −4Λ. We will return to the consideration of the
de Sitter scale factor (10) in Section 6 in connection with the quantum vacuum.

As to the general solution of Friedmann equation (6), it is characterized by the zero
initial value of the scale factor a(0) = 0 and by the infinitely large values of the initial
scalar curvature R(0) and energy density ε(0). Thus, at the initial moment the space of the
universe was compressed to a point and the time period from the creation of the world to
the present moment is finite [7]. The initial state of the universe is called the cosmological
singularity; see [13,14] for details about the solutions of Friedmann equation (6) for different
types of matter and corresponding equations of state.

It should be noted that the first reaction of Einstein to Alexander Friedmann’s results
was completely negative. Shortly after the publication of Friedmann’s paper [7], Einstein
published a note [15] (see English translation in [16]) claiming that the cosmological solu-
tions, found by Friedmann, do not satisfy the field equations of general relativity theory. In
response to this criticism, Friedmann wrote the explanation letter [17] (for English transla-
tion, see [18]), which was put in Einstein’s hands by Yurii A. Krutkov during his visit to
Germany. This letter contained exhaustive explanations which cannot be ignored. As a
result, Einstein published one more note where he recognized that his criticism “was based
on an error in calculations” [19] (see [20] for English transaltion). Even after Einstein had
realized that his original criticism was incorrect, this did not make him a supporter of the
concept of an expanding universe. For a long time Friedmann’s discovery went largely
unnoticed. Its importance became obvious only after the publications by Georges Lemaêtre
and others (see below).

In fact, Alexander Friedmann did not construct a new physical theory for the de-
scription of the universe. This was performed by Albert Einstein, who created the general
theory of relativity. The greatness of Alexander Friedmann lies in the fact that he was the
first to believe that the mathematical solution of Einstein equations, corresponding to an
expanding universe, can indeed apply to the real world at the time when this idea was not
considered plausible. In doing this, he changed our picture of the universe and gave start
to grandiose cosmological investigations of the last century.

Although Friedmann himself believed that the observational data at our disposal
are completely insufficient for choosing the solution of his equations that describes our
universe [7], the first experimental confirmation of the universe expansion came very soon.

5. Experimental Confirmations of the Universe Expansion

For all nonstationary solutions of the Friedmann equation (6) distances between
any two remote bodies in the observed universe increase with time. This is seen from
Equation (4), where the spatial distance is proportional to the scale factor a(t). As a result,
if the universe expands, all observable galaxies should move away from the Earth. The
galaxies are observed due to the light emitted by them. According to the Doppler law, the
frequency of an electromagnetic wave emitted by a source moving away from the observer
is decreased. This is the so-called “redsqhift” of the emitted light to the red end of the
visible spectrum.

Actually, the first observation of the redshift of Andromeda Nebula was made by
Slipher in 1913 [21], i.e., before the development of the general theory of relativity by
Einstein. He interpreted this observation in the spirit of Doppler effect that the Andromeda
Nebula moves away from the Earth. The universal law which connects the redshift in the
spectra of remote galaxies with the universe expansion was experimentally discovered in
1927 by Georges Lemaêtre [22] and in 1929 by Edwin Hubble [23] who finally validated that
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the nebulas are the galaxies outside the Milky Way. According to this law, the velocity of a
remote galaxy is proportional to a distance to it, v = HD, where H is the Hubble constant
which can be expressed via the scale factor as

H = H(t) =
1

a(t)
da(t)

dt
, (12)

i.e., it is in fact time-dependent.
The discovery of the redshifts in the spectra of remote galaxies was the first experi-

mental confirmation of the universe expansion predicted by Alexander Friedmann. The
next important step was made by George Gamow who elaborated the theory of a hot
universe which provided a possibility to explain the creation of chemical elements and the
formation of galaxies [24]. The basic point of Gamow’s theory was an assumption that the
early universe was dominated not by the dust matter but by radiation with the equation of
state P(t) = ε(t)/3. In the framework of Gamow’s theory of hot universe, Ralph Alpher
and Robert Herman predicted the existence of the background relic radiation [25]. The
discovery of this radiation served as the second most important experimental confirmation
of the expansion of the universe.

The cosmic microwave background electromagnetic radiation, called also the “relic
radiation”, was discovered in 1965 by Arno Penzias and Robert Wilson [26]. It fills all
space and was created in the epoch of formation of first atoms. The observation of relic
radiation confirmed the origin of the universe from the cosmological singularity predicted
by Alexander Friedmann as a result of the so-called “Big Bang”. Based on the theory of
the hot universe, it became possible to describe the various eras in the universe evolution
starting from the Electroweak Era followed by the Particle Era, the Era of Nucleosynthesis,
Eras of Nuclei, Atoms, and, finally, by the Era of Galaxies. This covers the period of the
universe evolution from approximately 10−33 s after the cosmological singularity to about
14 billion years which is the present age of the universe. As to the very early stage from 0
to 10−33 s, it remained a mystery and could not be explained on the basis of the general
theory of relativity.

6. Cosmic Inflation and Creation of the Universe from Quantum Vacuum

As was noted above, the basic assumption, used in Friedmann’s cosmology and in the
theory of hot universe, is that the space is homogeneous and isotropic. This assumption
was confirmed by the approximately homogeneous and isotropic large-scale distribution
of galaxies and, more importantly, by the properties of relic radiation. It was found that
the relic radiation has a blackbody thermal spectrum at T = 2.726 ± 0.001 K average
temperature and the variations of this temperature measured from different directions in
the sky do not exceed ΔT/T ∼ 10−5.

As discussed in Section 5, at the early stages of its evolution the universe was filled
with radiation possessing the equation of state P = ε/3. In this case the solution of
Friedmann equation (6) is given by a(t) ∼

√
t and the respective energy density behaves as

ε(t) ∼ 1/t2 when t goes to zero.
These behaviors, however, create a problem. The point is that if t is decreased down

to the Planck time defined as

tPl =

√
h̄G
c5 = 5.39 × 10−44 s, (13)

the size of the universe turned out to be unexpectedly large a(tPl) ∼ 10−3 cm as compared
to the Planck length,

lPl = tPlc =

√
h̄G
c3 = 1.62 × 10−33 cm , (14)

traveled by light during the Planck time.
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Thus, if the above scale factor were applicable down to t = 0, at Planck time the
universe would consist of the 1089 causally disconnected parts. This is in contradiction
with the fact that the relic radiation in all places and all directions in the sky has the same
temperature—the so-called “horizon problem”.

The horizon problem cannot be solved in the framework of the general theory of
relativity. The point is that this is the classical theory and the space-time scales of the order
of Planck length and Planck time are outside the region of its applicability. In the absence
of quantum theory of gravitation, which is still unavailable in spite or repeated attempts to
develop it undertaken during several decades, some semiclassical approaches are believed
to lead to at least a partial solution of the problem.

In 1981, Alan Guth [27] found that the symmetry breaking caused by the scalar fields
introduced in particle physics can cause the period of exponentially fast expansion of the
universe. During this period, the scale factor varies as exp(t) rather than

√
t. As a result,

at the Planck time the universe has the Planck size which solves the horizon problem.
It was Guth who introduced the term “inflation” for the exponentially fast expanding
universe. The scalar field responsible for the inflation process was called the “inflaton
field”. The theory of inflation was further developed by Andrei Linde [28]. Actually, the
possibility of an early exponential expansion of the universe was predicted before Guth by
Sergey Mamaev and one of the authors of this paper [29] and, independently, by Alexei
Starobinsky [30] based on the semiclassical Einstein’s equations (see below). In doing so,
the scale factor was expressed either via the proper synchronous time t [30] or, equivalently,
via the conformal time η [29].

Due to a very fast expansion of the universe during the inflationary stage, the energy
density of matter becomes very low. The conversion of the energy density of oscillating
inflaton field into that of usual matter is called “reheating” after inflation. The theory of
reheating was developed by Lev Kofman, Anfrei Linde, and Alexei Starobinsky [31] using
the effect of resonant particle production in the time-periodic external field revealed earlier
by one of the authors and Valentin Frolov [32].

The weak point of the theory of inflation is that the physical nature of inflaton field
remains unclear. In this situation, the question arises of whether there are other possibilities
for obtaining the period of exponentially fast expansion in the evolution of the early
universe. The possible answer to this question was given by the theory of quantum matter
fields in curved space-time [33,34]. This theory is applicable under the condition that the
gravitational field can be considered as the classical background, i.e., at t � tPl, which is
already well satisfied at t � 10−40 s. One can assume that at t ∼ 10−40 s all quantum matter
fields are in the vacuum state |0〉, i.e., the number of particles of different kinds is zero. This
does not mean, however, that the vacuum energy density and pressure are zero because
vacuum is polarized by the external gravitational field.

The vacuum stress-energy tensor of quantum matter fields with different spins in the
homogeneous isotropic space was calculated in the 1970s by several groups of authors.
It is common knowledge that the quantities 〈0|Tik|0〉 contain the ultraviolet divergences.
These divergences can be interpreted in terms of the bare cosmological constant which
is connected with the infinitely large energy density of the zero-point oscillations, the
bare gravitational constant, and the bare constants in front of the invariant quadratic
combinations of the components of Ricci tensor. The finite expressions for the renormalized
values of 〈0|Tik|0〉ren, obtained after the removal of divergencies, can be found in [33,34].
Based on these results, the so-called “self-consistent” Einstein equations were considered:

Rik −
1
2

Rgik =
8πG

c4 〈0|Tik|0〉ren. (15)

In these equations, the vacuum of quantized matter fields |0〉 is polarized by the
gravitational field of the homogeneous isotropic space with metric (4) determining the
left-hand side of Equation (15). In free Minkowski space-time, the physical energy density
and pressure in the vacuum state obtained after discarding of infinities are equal to zero.
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However, in an external field (regardless of whether it is electromagnetic or gravitational)
after discarding of infinities the vacuum state is polarized, such as a dielectric in an electric
field, i.e., it is characterized by some nonzero stress-energy tensor. On the other hand, the
gravitational field described by the left-hand side of Equation (15) is created as a source
by the vacuum energy density and pressure on the right-hand side. By solving the self-
consistent equations (15), one can find the scale factor of the homogeneous isotropic space
determined by the quantum vacuum of the matter fields.

It should be stressed that the theoretical approach based on Equation (15) is semi-
classical. This means that the gravitational field and the corresponding metrical tensor
in Equation (4) are still treated as the classical ones. It is assumed that only the fields of
matter (scalar, spinor, vector, etc.) exhibit a quantum behavior. Recall that this approach is
applicable at t � 10−40 s. At earlier moments down to the Planck time and to the domain
of singularity in the solution of the classical general theory of relativity, one should take
into account the effects of quantization of space-time, i.e., the effects of quantum gravity.

The solutions of Equation (15) for the massless matter fields were obtained in [29,30].
As an example, for a scalar field in the space of positive curvature the self-consistent scale
factor is given by

a(t) =

√
h̄G

360πc3 cosh

(
t

√
360πc5

h̄G

)
. (16)

Using Equations (13) and (14), one can see that for t > tPl the scale factor (16) takes
the form

a(t) =
lPl√
360π

exp

(√
360π t
tPl

)
, (17)

i.e., it is the exponentially increasing with time scale factor of the de Sitter space (cf. with
Equation (10)). This is the scale factor describing the cosmic inflation obtained on the
fundamental grounds of quantum field theory without introducing the inflaton field.

Actually, in this approach the inflationary universe is spontaneously created from
the quantum vacuum. It should be noted that the expressions for 〈0|Tik|0〉ren contain the
third and fourth derivatives of the scale factor, which lead to scalar and tensor instabilities.
As a result, the de Sitter solution becomes unstable relative to the spatially homogeneous
massive scalar modes (scalarons). Using this fact, Alexei Starobinsky [30] constructed
the nonsingular cosmological model where the de Sitter universe describing inflation is
spontaneously created from the quantum vacuum. Then, due to the generation of scalarons
and the decay of scalarons into usual particles, the exponentially fast expansion of the infla-
tionary stage is replaced by the power-type expansion law a(t) ∼

√
t of the theory of hot

universe. According to current concepts, the inflationary stage of the universe expansion
lasts from t ∼ 10−36 s to ∼ 10−33 s. More precise measurements of the spectrum of relic radi-
ation, planned for the near future, should provide information concerning the gravitational
radiation generated during the exponentially fast expansion. This will help to conclusively
establish the main properties of the inflationary stage of the universe evolution.

7. Accelerated Expansion of the Universe, Dark Energy and the Quantum Vacuum

According to the commonly accepted views formed by the end of the 20th century,
the present stage of the universe evolution is described by the Friedmann equations (6)
with Λ = 0 and a predominance of dust matter having the energy density ε(t) = ρ(t)c2,
where ρ(t) is the mass of matter per unit volume, and zero pressure P = 0. In doing so, the
fraction of visible matter is by a factor of 5.4 smaller than that of invisible matter, which
possesses the same properties as the visible one and is called the “dark matter”. We know
about the existence of dark matter due to its gravitational action on visible bodies. In this
situation, it was expected that due to the gravitational attraction of matter the expansion of
the universe should be decelerating.

It was quite unexpected, however, when in 1998 two research teams (Supernova
Cosmology Project and High-Z Supernova Search Team) observed clear evidence that, by
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contrast, the expansion of the universe is accelerating (see the references and discussion
below). This means that the velocities of remote galaxies moving away from the Earth
increase with time. Actually, the inflationary stage of the universe evolution was also the
period of accelerated expansion which, however, lasted for an infinitesimally short period
of time. As to the accelerated expansion observed at present, it has already been going on
for several billion years.

The matter which causes acceleration of the universe expansion was called “dark
energy”. Unlike the dark matter, which is not seen but gravitates like ordinary matter,
dark energy acts against the gravitational attraction, i.e., it is characterized by the negative
pressure. The observed acceleration rate of the universe expansion requires that 68% of
the universe should consist of dark energy. As to dark matter and usual visible matter,
they constitute approximately 27% and 5% of the universe’s energy, respectively. There
were many attempts in the literature to understand the physical nature of dark energy by
introducing some new hypothetical particles with unusual properties [35]. However, the
most popular explanation of the accelerated expansion returns us back to the concept of
cosmological constant and quantum vacuum.

As discussed in Section 4, in the absence of background matter, ε = P = 0, the
cosmological term Λgik in the Einstein’s equations (3) determines the de Sitter space-time
with a scale factor (10). In the homogeneous isotropic space, the presence of this term just
corresponds to the energy density and pressure,

εΛ =
c4Λ
8πG

> 0, PΛ = − c4Λ
8πG

= −εΛ, (18)

i.e., results in some effective negative pressure. When the cosmological term is considered
along with the stress-energy tensor of the ordinary matter Tik, it just leads to the required
acceleration of the universe expansion. Calculations show that an agreement with the
observed rate of acceleration is reached for Λ ≈ 2 × 10−52 m−2 and the corresponding
energy density εΛ ≈ 10−9 J/m3 [36,37].

The question arises what is the nature of the cosmological constant. Actually, it can
be considered as one more fundamental constant closely related to the concept of the
quantum vacuum [38]. This statement is based on the geometric structure of the vacuum
stress-energy tensor of quantized fields,

〈0|Tik(x)|0〉 = Igik, (19)

where I is the infinitely large constant depending on the number, masses, and spins
of quantum fields (see the pedagogical derivation of this equation by the method of
dimensional regularization in [39]). The structure of Equation (19) is the same as the
cosmological term in Einstein’s equation (3).

The only difficulty is that the constant I is diverging. By making the cutoff at the Planck
momentum pPl = (h̄c3/G)1/2, one obtains the enormously large value of I ≈ 2 × 1068 m−2

which exceeds the observed cosmological constant Λ by 120 orders of magnitude [36,40].
This discrepancy was called the “vacuum catastrophe” [37].

One can argue, however, that the large value of I is determined by the contribution
of virtual particles and, thus, is of no immediate physical meaning. The energy density
c4 I/(8πG) determined by the constant I does not gravitate as the bare (non-renormalized)
electric charge in quantum electrodynamics is not a source of the measurable electric field.
This is also in some analogy to the Casimir effect [41] where only a difference between
two infinite energy densities in the presence and in the absence of plates is the source of
gravitational interaction [42,43] and gives rise to the measurable force. The quantity I takes
the physical (renormalized) value of Λ ≈ 2 × 10−52 m−2 only after the renormalization
procedure. These considerations have already received some substantiation in the frame-
work of quantum field theory in curved space-time, but could obtain the fully rigorous
justification only after a construction of the quantum theory of gravitation.
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There is a lot of different approaches to the problem of cosmological constants in
connection with the origin and physical nature of dark energy. The number of articles
devoted to this subject is large and we do not aim to review them here (see [44] for an
introduction to the field).

8. Discussion

In previous Sections, we reviewed the main scientific concepts regarding the structure
of the universe developed in the history of mankind from Ptolemy to Einstein. All of these
concepts imply that the universe is stationary and its properties do not vary with time.
Although Copernicus and Newton’s pictures of the universe are significantly different from
Ptolemy’s picture, all of these pictures are similar in one basic point: each is time-invariant.
This characteristic point was remained untouched by Einstein, who has had in his mind
the predetermined aim to obtain the stationary cosmological model in the framework of
the general theory of relativity developed by him. Actually, the mathematical formalism
of this theory presumed a much more broad spectrum of cosmological models describing
the expanding universe. However, the power of tradition was so strong that even a great
innovator like Einstein chose to modify his equations by introducing the cosmological term
for the sole purpose of keeping the universe stationary.

This gives us an insight into the fundamental importance of the scientific results
obtained by Alexander Friedmann 100 years ago. By solving the same equations of the
general relativity theory as Einstein, Alexander Friedmann demonstrated that their general
cosmological solution describes the expanding universe whereas the stationary solution is
only a particular case. This result was so unexpected that Einstein rejected it as a mathe-
matical error, and only after a detailed written explanations passed to him by Friedmann,
Einstein had to recognize that, in fact, he himself made an error.

We considered the main facts of Alexander Friedmann’s scientific biography which
provides an explanation why a mathematician, educated in the traditions of Saint Peters-
burg mathematical school, was able to make such a fundamental discovery in the field
of theoretical physics. After the brief exposition of the properties of expanding universe
based on the Friedmann equations, we discussed the main experimental confirmations of
the universe expansion, i.e., the discoveries of redshifts in the spectra of remote galaxies
and the relic radiation.

Although the theory of the hot universe raised the possibility to describe the main
stages of its evolution, the problem of cosmological singularity and the problem of horizon
remained unsolved. The solution of these problems suggested by the theory of cosmic
inflation links them to the concept of the quantum vacuum. There are reasons to believe
that the inflationary stage of the universe expansion is caused by the vacuum quantum
effects of fields of matter rather than by some special inflaton field. This point of view may
find confirmation in further developments of the quantum theory of gravitation, on the
one hand, and by measurements of the spectrum of relic gravitational radiation, on the
other hand.

The discovery of the acceleration in the universe expansion resumed an interest to the
cosmological term in the Einstein equations originally introduced with a single aim to make
the universe stationary. The point is that this term has the same geometrical form as the
vacuum stress-energy tensor of quantized matter fields and provides a possible explanation
of the observed acceleration of the universe expansion with some definite value of the
cosmological constant. There is a great discrepancy between this value and theoretical
predictions of quantum field theory which created a discussion in the literature. However,
independently of the resolution of this issue, one can argue that the quantum vacuum bears
a direct relation to both the earliest and modern stages of the evolution of our universe.

9. Conclusions

To conclude, Alexander Friedmann made a prediction of the universe expansion which
radically altered our scientific picture of the world as compared to the previous epochs.
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Later, this prediction was confirmed experimentally, and Friedmann equations became the
basis of modern cosmology. Because of this, the Friedmann name should be put on a par
with the names of Ptolemy and Copernicus, who created the previous, stationary, pictures
of the world around us.

Friedmann’s discovery was based on the classical general relativity theory and could
not take into account the quantum effects. Nowadays, we know that the quantum vacuum
plays an important role in the problem of the origin of Friedmann’s universe from the initial
singularity, governs the process of cosmic inflation, and can be considered as a possible
explanation of the observed acceleration of the universe expansion. Future development
of quantum gravity will make our current knowledge more complete but the concept of
expanding universe created by Alexander Friedmann will forever remain the cornerstone
of our picture of the world.
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New Insights into the Lamb Shift: The Spectral Density of
the Shift

G. Jordan Maclay

Quantum Fields LLC, 147 Hunt Club Drive, St. Charles, IL 60174, USA; jordanmaclay@quantumfields.com

Abstract: In an atom, the interaction of a bound electron with the vacuum fluctuations of the
electromagnetic field leads to complex shifts in the energy levels of the electron, with the real part
of the shift corresponding to a shift in the energy level and the imaginary part to the width of the
energy level. The most celebrated radiative shift is the Lamb shift between the 2s1/2 and the 2p1/2

levels of the hydrogen atom. The measurement of this shift in 1947 by Willis Lamb Jr. proved that
the prediction by Dirac theory that the energy levels were degenerate was incorrect. Hans Bethe’s
non-relativistic calculation of the shift using second-order perturbation theory demonstrated the
renormalization process required to deal with the divergences plaguing the existing theories and
led to the understanding that it was essential for theory to include interactions with the zero-point
quantum vacuum field. This was the birth of modern quantum electrodynamics (QED). Numerous
calculations of the Lamb shift followed including relativistic and covariant calculations, all of which
contain a nonrelativistic contribution equal to that computed by Bethe. The semi-quantitative models
for the radiative shift of Welton and Power, which were developed in an effort to demonstrate
physical mechanisms by which vacuum fluctuations lead to the shift, are also considered here. This
paper describes a calculation of the shift using a group theoretical approach which gives the shift as
an integral over frequency of a function, which is called the “spectral density of the shift.“ The energy
shift computed by group theory is equivalent to that derived by Bethe yet, unlike in other calculations
of the non-relativistic radiative shift, no sum over a complete set of states is required. The spectral
density, which is obtained by a relatively simple computation, reveals how different frequencies of
vacuum fluctuations contribute to the total energy shift. The analysis shows, for example, that half
the radiative shift for the ground state 1S level in H comes from virtual photon energies below 9700
eV, and that the expressions of Power and Welton have the correct high-frequency behavior, but not
the correct low-frequency behavior, although they do give approximately the correct value for the
total shift.

Keywords: Bethe; radiative shift; shift spectral density; spectral density; vacuum fluctuations;
vacuum field; mass renormalization; Lamb shift; QED; radiative reaction; zero point fluctuations;
hydrogen atom

1. Introduction

In astronomy, in quantum theory, and in quantum electrodynamics (QED), there have
been periods of great progress in which solutions to challenging problems have been
obtained, and the fields have moved forward. However, in some cases getting the right
answers can still leave fundamental questions unanswered. The Big Bang explained the
origin of cosmic background radiation but left the problem of why the universe appears
to be made of matter and not equal amounts of matter and antimatter [1]. In quantum
theory, physicists can compute the behavior of atoms yet cannot describe a measurement
in a self-consistent way [2], or make sense of the collapse of a photon wavefunction from
a near infinite volume to a point [3]. In quantum electrodynamics, we can compute the
Lamb shift of the H atom to 15 decimal places [4], yet we are left with the paradox of
using perturbation theory to remove infinite terms or to understand a quantum vacuum
with infinite energy. In this paper, several different approaches to the computation of the
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non-relativistic Lamb shift are examined. For these approaches, the Lamb shift can be
expressed in different ways as an integral over the frequency of a spectral density. This
paper analyzes of the differences in the non-relativistic spectral densities for the different
approaches as a function of frequency and compares the spectral densities to those obtained
using a group theoretical analysis. The integral of the spectral density over all frequencies
gives the corresponding value of the non-relativistic Lamb shift.

Feynman called the three-page long 1947 non-relativistic Lamb shift calculation by
Hans Bethe the most important calculation in quantum electrodynamics because it tamed
the infinities plaguing earlier attempts [5,6]. When the sum over all states is evaluated
numerically, it gives a finite prediction that agreed with experiment [7,8]. Dirac said it
“fundamentally changed the nature of theoretical physics” [6]. Quoting the classic text
of Quantum Electrodynamics, Volume 4 in the Landau and Lifshiftz series on Theoretical
Physics: “This work provided the initial stimulus for the whole subsequent development of
quantum electrodynamics” [5]. Yet when this calculation is explored more deeply, questions
arise about it and about other fundamentally different calculations of the Lamb shift, for
example, those by Welton [9] and Power [10], that employ different conceptual approaches
that have similar high-frequency but different low-frequency behavior from Bethe’s result
yet give approximately the same value for the level shift [6]. These three approaches to
the Lamb shift and the corresponding vacuum energy densities have also been considered
in [11].

There is an intimate relationship between radiative shifts and vacuum fluctuations.
The shift can be interpreted as arising from virtual transitions induced by the quantum
fluctuations of the electromagnetic field. Since the vacuum field contains all frequencies,
virtual transitions to all states, bound and scattering, are possible. These short-lived virtual
transition result in a slight shift in the average energy of the atom, a shift which is the Lamb
shift [12]. The Lamb shift can also be described as an interaction of the electron with its
own radiation field, yielding the same results as the vacuum field [6].

Shortly after Bethe’s calculation, Dyson published, as a problem assigned by Bethe, a
calculation of the Lamb shift for a spinless electron [13]. Formal and rigorous relativistic
perturbation theory calculations to first-order in the radiation field and to fourth order in
the ratio of the velocity of the atomic electron to the velocity of light, based on the Dirac
equation, including spin and relativistic effects, were carried out independently in 1949 by
J. French and V. Weisskopf [14] and N. Kroll and W. Lamb [15]. They used a high-frequency
cutoff for the non-relativistic contribution which also acted as a low-frequency cutoff for
the relativistic portion, and when both contributions were added together, the sum was
independent of the cutoff, and equaled a term corresponding to the Bethe log plus constants
corresponding to relativistic corrections. Although these calculations were difficult and
cumbersome, they have stood the test of time [16]. These relativistic calculations gave a
value of 1052 MHz for the Lamb shift, compared to Bethe’s result of 1040 MHz, about a 1%
difference. The determination of the second-order corrections for the Lamb shift is quite
complicated. The most complete tabulation and systematic derivation was carried out by
Erickson and Yennie [17]. Today the Lamb shift is computed precisely to over 10 decimal
places to be about 1057 MHz, the largest error being due to the uncertainty in the radius of
the proton [4].

At about the same time as the first relativistic calculations were published, Schwinger
published a general covariant approach to quantum electrodynamics which he applied to
the Lamb shift computation [18]. Within a year, three different approaches to quantum
electrodynamics were independently developed that were relativistic and could deal with
divergences with some success. Schwinger, Tomonaga, and Feynman each had proposed a
manifestly covariant method, and shown its capability to address a broader range of QED
problems than just the energy levels of the H atom [19]. Freeman Dyson showed that these
three methods had essential similarities and were mutually consistent [20].

The classic text, Quantum Electrodynamics, Volume 4 of the Landau and Lifshitz series
on Theoretical Physics, second edition published in 1979, does the Lamb shift calculation
by dividing the vacuum energy spectrum into a low and high-frequency region with a
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cutoff [5]. For the high-energy region, they use scattering theory based on Schwinger’s
approach. For the low-frequency region they use non-relativistic kinematics and start
with the expression for dipole radiation, which they transform with some mathematical
operations on delta function; then they integrate over frequency and obtain essentially
the same result as Bethe plus constants corresponding to vacuum polarization and other
corrections that are not considered here. When the high and low-frequency results are
added, the cutoff cancels. The final result contains the Bethe log. A slightly different
approach is taken but with similar results in [21]. Another important text, published in
1980 by Itzykson and Zuber, starts with a modified Dirac equation with a fictitious photon
mass, and that includes vacuum polarization and vertex corrections for an electron in a
slowly varying external field [22]. This equation yields a level shift with two terms that
correspond to the high-energy region and low-energy region. After evaluation, the sum of
the terms is taken, the fictitious mass cancels, and the result is the Bethe log and a constant.

Modern QED texts use similar approaches. Weinberg uses a fictitious photon mass in
the photon propagator which leads to a high and low-energy term [16]. When added, the
fictitious mass cancels, yielding a constant and the Bethe log term. The evolution of Lamb
shift calculations is outlined in [12] and the detailed status is in [23].

For the purposes of the present paper, which is a non-relativistic calculation of the
radiative Lamb shift, not including vacuum polarization, it is important to note that
Bethe’s non-relativistic result and the numerically evaluated Bethe log have been obtained
in virtually all Lamb shift calculations, including all relativistic calculations [5,6,16,22].
The Bethe log represents the non-relativistic radiative contribution in all these diverse
calculations. The Lamb shift spectral density obtained here can be integrated to obtain
the non-relativistic Lamb shift, a quantity given by the Bethe logarithm. Furthermore, the
integral can be taken to the desired energy to be consistent with a particular relativistic
calculation. Thus, the spectral density computed is a standalone fundamental quantity that
relates to all Lamb shift calculations described in the literature. Consequently, there is no
need to consider the numerous relativistic calculations further in this paper.

Bethe’s non-relativistic calculation to order α in the vacuum field (one virtual photon)
was based on second-order perturbation theory applied to the minimal coupling of the atom
with the vacuum field, (e/mc)A · p, and a dipole approximation; here m, e, and p are the
mass, charge and momentum of the electron, respectively, c is the speed of light in a vacuum,
and A is the vector potential. This interaction leads to the emission and absorption of
virtual photons corresponding to virtual transitions. The shift is expressed as a sum over the
infinite number of intermediate states, bound and scattering, reached by virtual transitions.
The predicted shift is divergent, but Bethe subtracted the term that corresponded to the
linearly divergent vacuum energy shift for a free bare electron, essentially doing a mass
renormalization to remove this higher-order divergence in the spectral density for the shift.
For S states, the resulting spectral density has a 1/frequency behavior for frequencies above
about 1000 eV/h̄, (with h̄ the reduced Planck’s constant) giving a logarithmic divergence in
the shift. Bethe used a high-frequency cutoff of ω = mc2/h̄.

The models of Welton and Power embody different perspectives on the role of vac-
uum fluctuations than the Bethe calculation. Itzykson and Zuber note: “Charged particles
interact with the fluctuations of the quantized electromagnetic field . . . we may give, fol-
lowing Welton, a qualitative description of the main effect: the Lamb shift” [22]. Welton’s
semi-quantitative model for computing the Lamb shift was based on the perturbation of the
motion of a bound electron in the H atom due to the quantum vacuum fluctuations altering
the location of the electron, which resulted in a slight shift of the bound state energy [6,9,12].
This simplified intuitive model predicts a spectral density proportional to 1/frequency for
all frequencies and a shift only for S states. The approach of Feynman [24], interpreted by
Power [10], considers a large box containing H atoms and is based on the shift in the energy
in the quantum vacuum field due to the change in the index of refraction arising from the
presence of H atoms. This approach predicts that the shift in the energy in the vacuum field
around the H atoms exactly equals the radiative shift [6,11]. It gives a spectral density with
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the same high-frequency dependence as Bethe, but a different low-frequency dependence.
A similar calculation to Power’s models the Lamb shift as a Stark shift [6].

The Lamb shift has been previously computed using O(4) symmetry [25] and by using
SO(4,2) symmetry [26] using a different approach from that presented here. In both these
cases, the Bethe log is obtained for low-lying states as a converging series. The results
presented here describe a calculation of the Lamb shift for all states that is based on a SO(4,2)
group theoretical analysis of the H atom that allows us to determine the dependence of
the shift on the frequency with no sum over states [27]. The spectral shift due to all virtual
transitions is computed analytically.

The degeneracy group of the non-relativistic H atom is O(4), with generators angular
momentum operator L and Runge-Lenz vector A. A representation of O(4) of dimension
n2 exists for each value of the principal quantum number n, where the angular momen-
tum L has values from 0 to n − 1, and there are 2L + 1 possible values of Lz = m, the
azimuthal quantum number. If this group is extended by adding a 4-vector of generators
the non-invariance group SO(4,1) results, which has representations that include all states
of different n and L and operators that connect states with different principal quantum
numbers. Adding a 5-vector of additional generators produces the group SO(4,2) and
allows us to express Schrödinger’s equation in terms of the new generators, and to make
effective group theoretical calculations [27]. The basis states used permit both bound and
scattering states to be included seamlessly [28] and no sum over states appears in the
final expression for the spectral density. One advantage of this approach is that for each
energy level it is possible to readily compute a spectral density for the shift whose integral
over frequency from 0 to mc2/2πh̄ is the radiative shift that includes transitions to all
possible states. This reveals how different frequencies of the vacuum field contribute to the
radiative shift.

In this paper, the different results of Bethe, Welton and Power are compared to the
group theoretical spectral density for the non-relativistic Lamb shift for the 1S ground state,
and the 2S and 2P levels. With this new picture of the Lamb shift, differences between
the various approaches are seen. Knowing the spectral density of the shift provides new
insights into understanding the Lamb shift.

2. Background of Radiative Shift Calculations

The first calculation of the Lamb shift of a hydrogen atom was carried out by Bethe in
1947 [8], who assumed the shift was due to the interaction of the atom with the vacuum
field. He calculated the shift using second-order perturbation theory, assuming that there
was minimal coupling in the Hamiltonian

Hint = − e
mc

A · p +
e2

2mc2 A2, (1)

where A is the vector potential in the dipole approximation for the vacuum field in a large
quantization volume V:

A = ∑
k,λ

(
2πh̄
ωkV

)1/2(ak,λ + a†
k,λ)ekλ , (2)

where the sum is over the virtual photon frequency ωk, and the polarization λ; ak,λ and
a†

k,λ are the annihilation and creation operators, and ekλ is a unit vector in the direction of
polarization of the electric field. The shift from the A2 term is independent of the state of
the atom and is therefore neglected. The total shift ΔEnTot for energy level n of the atom in
state |n〉 is given by second-order perturbation theory as

ΔEnTot = − 2
3π2

α

m2c2 ∑
m
|pmn|2

∫ EdE
Em − En + E

, (3)
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where the quantum vacuum field energy is E = h̄ω and the momentum matrix elements
are |pmn| = |〈m|p|n〉|. The sum is over all intermediate states |m〉, scattering and bound,
where m �= n and the integral is over the energy E of the vacuum field. The fine structure
constant is α = e2/h̄c.

The integrand in Equation (3) has a linear divergence. Bethe observed that this
divergence corresponded to the integral that occurs when the binding energy vanishes so
(Em − En) → 0 and the electrons are free:

ΔEfree = − 2
3π2

α

m2c2 ∑
m
|pmn|2

∫
dE. (4)

He subtracted this divergent term ΔEfree from the total shift ΔEnTot,

ΔEnL = ΔEnTot − ΔEfree , (5)

to obtain a finite observable shift ΔEnL for the state |nL〉:

ΔEnL =
2α

3π(mc)2

s

∑
m
|pmn|2

∫ h̄ωc

0
dE

(Em − En)

Em − En + E − iε
, (6)

where ωC is a cutoff frequency for the integration that Bethe took as h̄ωc = mc2. Using an
idea from Kramers [6,29], Bethe did this renormalization, taking the difference between
the terms with a potential present and without a potential present, essentially performing
the free electron mass renormalization. He reasoned that relativistic retardation could be
neglected and the radiative shift could be reasonably approximated using a non-relativistic
approach and he cut the integration off at an energy corresponding to the mass of the
electron. He obtained a finite result that required a numerical calculation over all states,
bound and scattering, that gave good agreement with measurements [7,8,30].

The spectral density in the Bethe formalism, which is analysed in this paper, is the
quantity in Equation (6) being integrated over E. It includes the sum over states m and
the constants. The term for m represents the contribution to the Lamb shift for the virtual
transition from state n to state m. Note that since the ground state is the lowest state, all
intermediate states have higher energies so the ground state shift has to be positive.

For the purposes of comparison to the other calculations of the Lamb shift, it is helpful
to show the next steps Bethe took to evaluate the shift ΔEn for S states, which have the
largest shifts. Note that the spectral density in Equation (6) that will be analyzed is not
affected by the subsequent approximations Bethe made to evaluate the integral. First, the
E− integration is carried out:

ΔEBethe
n =

2α

3π
(

1
mc

)2 ∑
m
|pnm|2(Em − En) ln

(mc2 + Em − En)

|Em − En|
. (7)

To simplify the evaluation Bethe assumed |Em − En| 
 mc2 in the logarithm and that the
logarithm would vary slowly with the index m so it could be replaced by an average value,

Δ̂E
Bethe
n =

2α

3π

(
1

mc

)2
ln

mc2

|Em − En|ave
∑
m
|pnm|2(Em − En) , (8)

where the hat over the ΔE indicates this is an approximation to Equation (7). Now that the
E-integration is done, the spectral density is no longer manifest. The summation can be
evaluated using the dipole sum rule:

2
s

∑
m
|pnm|2(Em − En) = h̄2

〈
n
∣∣∣∇2V

∣∣∣n〉. (9)
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where 〈...〉 indicates an expectation value. The Laplacian with a Coulomb potential V =
−Ze2/r is ∇2V(r) = 4πZe2δ(r) which gives〈

n
∣∣∣∇2V

∣∣∣n〉 = 4πZe2|ψn(0)|2, (10)

where Z is the positive charge of the nucleus, ψ(r) is the wave function for the Coulomb
potential and |ψn(0)|2 is zero except for S states,

|ψn(0)|2 =
1
π

(
Zαmc

nh̄

)3
. (11)

For S states, this gives an energy shift equal to [6]

Δ̂E
Bethe
n =

4mc2

3π
α(Zα)4 1

n3 ln
mc2

|Em − En|ave
. (12)

The so-called “Bethe log” for an S state with principal quantum number n is

ln
mc2

|Em − En|ave
=

∑m |pnm|2(Em − En) ln mc2

|Em−En |
∑m |pnm|2(Em − En)

, (13)

where the sum is over all states, bound and scattering. Bethe also has extended the
formalism for shifts for states that are not S states [30].

Regarding the approximations Bethe made to obtain Equation (8) from Equation (7)
and the use of the Bethe log Equation (13) he commented: “The important values of
|Em − En| will be of the order of the ground state binding energy for a hydrogenic atom.
This energy is very small compared to mc2 so the log [in Equation (7) here] is very large
and not sensitive to the exact value of (Em − En). In the numerator we neglect (Em − En)
altogether and replace it by an average energy [30]”. This study shows that Bethe was
correct that the relative contribution from energies of the order of the ground state is very
important, but the contribution from higher energy scattering states is quite significant,
and therefore the approximation |Em − En| 
 mc2 is not valid for higher energy scattering
states for which Em increases to the value mc2. I am not aware of any quantitative estimates
of the error in the approximation. The difference, 0.3%, between the value obtained here
for the total 1S shift and that of Bethe may be due to this approximation, although this
has not been verified. On the other hand, Bethe’s approximation may have made his
non-relativistic approach viable.

To provide a more intuitive and qualitative physical picture of the shift, Welton
considered [9] the effect of a zero-point vacuum field on the motion of an electron bound in
a Coulomb potential V(r) at a location r. The perturbation ξ=(ξx, ξy, ξz) in the position of
the bound electron due to the random zero-point vacuum field E0 causes a variation in the
potential energy,

V(r + ξ) = V(r) + ξ · ∇V(r) +
1
2
(ξ · ∇)2V(r) + · · · . (14)

Because of the harmonic time dependence of the vacuum field 〈ξ〉 vanishes and the radiative
shift is given approximately by the vacuum expectation value of the last term:

ΔEWelton
n =

〈ξ2〉
6

〈
∇2V(�r)

〉
n
. (15)

Since the potential has spherical symmetry 〈ξ2
x〉 = 〈ξ2

y〉 = 〈ξ2
z〉 = 〈ξ2/3〉. Equation (15)

gives ΔEWelton
n as the product of two factors, the first depending on the nature of the

fluctuations in the position of the bound electron due to the vacuum field and the second
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depending on the structure of the system. ξ is determined by mξ̈=eE0, where top double-dot
denotes the second order time derivative.

With a Fourier decomposition of E0 and ξ, and integrating over the frequency distri-
bution of the vacuum field, the vacuum expectation value can be computed[6,12]:

〈(�ξ)2〉 = 2α

π

(
h̄

mc

)2 ∫ mc2

0

dE
E

. (16)

With the results in Equations (10) and (11) the Laplacian in Equation (15) can be evaluated
giving a shift for S states equal to [6]:

ΔEWelton
n =

4mc2

3π
α(Zα)4 1

n3

∫ mc2

0

dE
E

. (17)

Equation (17) shows that the spectral density for the Welton approach is proportional to
1/E. For the upper limit of integration, we assume the maximum wavelength equals the
Compton wavelength corresponding to an energy mc2, which Bethe used. The lower limit
of 0 gives a divergent shift, clearly showing that the model of the bound state is deficient at
low energies. To give an approximate lower limit, note that the large wavelength modes
are sensitive to low-lying electronic states, which suggests a wavelength cutoff about
equal to the radius a of the ground state so E = h̄c/a = αmc2 = 4.01 keV. For the n = 2
level of hydrogen, this gives a shift of 660 MHz, about 60% of the observed shift [22],
which confirms the model is reasonable. On the other hand, if one happens to compare
Equation (17) to Equation (12) it is clear that with the lower limit |Em − En|ave, as defined
in the Bethe log Equation (13), Welton’s model gives exactly the same total S state shift as
in the approximate Bethe formalism Equation (12). With these limits, the RMS (root mean

square) amplitude of oscillation of the electron bound in the Coulomb potential,
√
〈(�ξ)2〉,

is about 60 fm, which is about 0.037% of the mean radius of the 2S electron orbit.
Feynman proposed another approach for computing the Lamb shift based on a funda-

mental observation about the interaction of matter and the vacuum field [24]. He considered
a large box containing a low density of atoms in the quantum vacuum. The atoms cause a
change in the index of refraction, which leads to changes in the frequencies of the vacuum
field. The wavelengths remain the same. Feynman maintained that the change in the energy
of the zero point vacuum field in the box due to the frequency changes resulting from a
weak perturbing background of atoms acting as a refracting medium would correspond to
the self energy of the atoms, which is precisely the Lamb shift.

Power, based on the suggestion by Feynman, considered the change in vacuum
energy when N hydrogen atoms are placed in a volume V using the Kramers-Heisenberg
expression for the index of refraction n(ωk) [6,10]. The H atoms cause a change in the index
of refraction and therefore a change in the frequencies of the vacuum fluctuations present.
The corresponding change in vacuum energy ΔE is

ΔE = ∑
k

1
n(ωk)

1
2

h̄ωk −
1
2

h̄ωk , (18)

where the sum is over all frequencies ωk present. For a dilute gas of atoms in a level n, the
index of refraction is [6]

n(ωk) = 1 +
4πN

3h̄ ∑
m

ωmn|d|2mn

ω2
mn − ω2

k
, (19)

where ωmn = (Em − En)/h̄ and dmn = exmn, the transition dipole moment. Substituting
n(ωk) into Equation (18) gives a divergent result for the energy shift . Following Bethe’s
approach, Power subtracted from ΔE the energy shift for the N free electrons, which equals
the shift when ωmn → 0, with no binding energy. After making this subtraction and
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converting the sum over ωk to an integral over ω, and letting NV → 1 the observable shift
in energy is obtained [6]:

ΔEPower
n = − 2

3πc3 ∑
m

ω3
mn|dmn|2

∫ mc2/h̄

0

ω dω

ω2
mn − ω2 . (20)

Noting that

〈m| p

m
|n〉 = i

h̄
〈m|[H, x]|n〉 = i

h̄
(Em − En)〈m|x|n〉 , (21)

it follows

|pmn|2 = m2ω2
mn|xmn|2 =

m2ω2
mn

e2 |dmn|2. (22)

This allows us to write Power’s result Equation (20) as

ΔEPower
n = − 2e2

3πm2c3 ∑
m

ωmn|pmn|2
∫ mc2/h̄

0

ω dω

ω2
mn − ω2 . (23)

Writing this equation in terms of E = h̄ω instead of ω yields:

ΔEPower
n = − 2α

3π

(
1

mc

)2

∑
m
|pmn|2(Em − En)

∫ mc2

0

EdE
(Em − En)2 − E2 . (24)

Below, in Section 5, this equation will be used to analyze the spectral density for Power’s
method, showing the spectral density is different from Bethe’s at low frequencies but the
same at high frequencies. When Equation (24) is integrated with respect to E, taking the
principal value, one obtains

ΔEPower
n =

2α

3π

(
1

mc

)2

∑
m
|pmn|2(Em − En) ln

[
mc2 + (Em − En)

Em − En
· mc2 − (Em − En)

Em − En

]1/2

. (25)

Except for the argument in the ln function, which corresponds to the upper limit of integra-
tion, this is the same as Bethe’s expression (7) for the shift. Assuming mc2 � Em − En, as
Bethe did, then both expressions for the total shift are identical. It is clear, however, that
this approximation is not valid at high energies since the second factor in the ln function
in Equation (25) may even become less than one making the ln term negative. Feynman’s
approach highlights the changes in the vacuum field energy due to the interactions with
the H atoms.

One assumption in the computation by Power is that the index of refraction in the box
containing the atoms is spatially uniform. In Section 6, this assumption will be revisited
and a model suggested that predicts for a single atom the changes in the vacuum field
energy as a function of position for each spectral component of the radiative shift.

3. Spectral Density of the Lamb Shift

Our goal is to develop an expression for the energy shift of a level, in terms of the
generators of the group SO(4,2), that is an integral over frequency. Then the integrand
will be the spectral density of the shift, and group theoretical techniques can be used to
evaluate it [27]. This approach yields a generating function for the shifts for all levels. The
initial focus is on the ground state 1S level as an illustration of the results. At ordinary
temperatures and pressures, most atoms are in the ground state. The radiative shift for the
1S level is [27]

ΔE1 =
4mc2α(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dsese−φ d

ds
1(

coth s
2 + cosh φ

)2 , (26)
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where the dimensionless normalized frequency variable φ is defined as

φ =
1
2

ln
[

1 +
h̄ω

|E1|

]
, (27)

and E1 is the ground state energy of the H atom −13.6 eV. The cutoff φc corresponds to
E = h̄ωc = mc2 = 511 keV corresponding to the electron mass.

The group theoretical expression for the Lamb shift (26) is directly derived from the
Klein-Gordon equations of motion using a non-relativistic dipole approximation, assuming
infinite proton mass, and minimal coupling with the vacuum field. Basis states of (1/Zα)
are used since they have no scattering states and have the same quantum numbers as the
usual bound energy eigenstates [27]. The level shift is obtained as the difference between
the mass renormalization for a spinless meson bound in the desired state and the mass
renormalization for a free meson. Second-order perturbation theory is not used. Near the
end of the derivation, an equation that is equivalent to Bethe’s result (6) for the radiative
shift can be derived by inserting a complete set of Schrödinger energy eigenstates. Thus,
we expect the fundamental results from Bethe’s spectral density (with no approximations)
and the group’s theoretical spectral density to be in agreement [12,27]. For convenience, in
Appendix A an explanation of the basis states used to derive Equation (26) is given, and in
Appendix B, the derivation of Equation (26) is given, since the derivation in [27] is spread
in steps throughout the paper as the group theory methods are developed.

Equation (26) can be written as an integral over E = h̄ω, which is the energy of the
vacuum field in eV. The definite integral over s can be evaluated analytically for different
values of φ or E = h̄ω. The ground state Lamb shift ΔE1 is measured in eV so the spectral
density of the shift dΔE1/dE is measured in eV/eV which is dimensionless:

ΔE1 =
∫ mc2

0

dΔE1

dE
dE , (28)

where the ground state spectral density from Equation (26) is

dΔE1

dE
=

4α3

3π
e−2φ sinh φ

∫ ∞

0
ds ese−φ 1

sinh2( s
2 )

1(
coth s

2 + cosh φ
)3 . (29)

Figure 1 shows a logarithmic plot (ordinate is a log, abscissa is linear) of the spectral
density dΔE1

dE of the ground state Lamb shift with Z = 1 over the entire range of energy E
computed from Equation (29) using Mathematica. The spectral density is largest at the
lowest energies, and decreases monotonically by about 4 orders of magnitude as the energy
increases to 511 keV. The ground state shift is the integral of the spectral density from
energy 0 to 511 keV.

Figure 2 is a log-log plot of the same information. The use of the log-log plot expands
the energy range for each decade, revealing that for energy above about 1000 eV the slope
is approximately −1, indicating that the spectral density is nearly proportional to 1/E. For
energy below about 10 eV, the spectral density in Figure 2 is almost flat, corresponding to
a linear decrease with E, with a maximum at the lowest energy computed, as shown in
Figure 3. Figure 2 shows that there are essentially two different behaviors of the spectral
density, one for values of the energy E of the vacuum field that are less than 10 eV, which is
less than Em − En, the energy difference for all bound state transitions, and another region
where E is much larger than the bound state energies, and the spectral density goes as 1/E.
The origin of this behavior is clear mathematically from the factor B = 1/(Em − En + E).
In the expression for the spectral shift (6) for E < Em − En, B ∝ 1 − E/(Em − En) and for
E > Em − En, B ∝ 1/E.

Figure 3 shows linear plots of the spectral density of the shift for the ground state
computed from Equation (29) for several lower energy regions. Figure 3a shows a linear
increase in the spectral density as the energy decreases over the small energy interval
plotted. Figure 3b show a linear increase of about 15% as the energy decreases from 3 eV to
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0 eV. Figure 3c shows that the spectral density increases by a factor of about 4 as the energy
decreases from 100 eV to 0 eV. In the low-frequency limit, the spectral density increases
linearly to a constant value as the energy is reduced.

Figure 1. Plot of the log of the spectral density of the ground state Lamb shift from the group
theoretical expression (29) versus the energy from 0 to 510 keV.

Figure 2. Log-log plot of the spectral density of the ground state shift from the group theoretical
expression (29) versus the energy. For energies above about 1000 eV, the behavior is dominated by a
1/energy dependence. From about 10 eV to 0 eV, there is a slow linear increase in the spectral density.

From explicit evaluations, Section 4 shows that for shifts in S states with princi-
pal quantum number n, the asymptotic spectral density for large E is proportional to
α(Zα)4(1/n3)/E, and Section 5 shows that as the energy E goes to zero, the spectral density
increases linearly, reaching a maximum value that is proportional to α(Zα)2(1/n2). An
approximate fit to the ground state data in Figure 1 is

dΔEfit
1

dE
= D

(1 + e−HE)

(E + C)
, (30)

where D = 4.4008 × 10−6, H = 0.08445/ eV, C = 106.79 eV. The fit is quite good at the
asymptotes and within 10% over the entire energy range.

The spectral density shown in Figures 1 or 2 can be used to determine the contribution
to the total ground state shift from different energy regions. Integrating the spectral density
from 0 eV to energy E gives the value of the partial shift Δ1(E) that these energies (0 eV
to E eV) contribute to the total shift ΔE1 for the ground state. In Figure 4, Δ1(E)/ΔE1,
which is the fraction of the total shift ΔE1 due to the contributions from energies below
E, is plotted as a function of E. Figure 4a shows that almost 80% of the shift comes from
energies below about 100,000 eV. Figure 4b shows that about half the total shift is from
energies below 9050 eV. Figure 4c shows that energies below 100 eV contribute about 10%
of the total shift. Energies below 13.6 eV contribute about 2.5% while energies below 1
eV contribute about 1/4% of the total. As Figure 4c shows, the fraction of the total shift
increases linearly for E < 10 eV, corresponding to the nearly horizontal portion of the shift
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density for E < 10 eV, as shown in Figure 2. The contribution to the total 1S shift for the
visible spectral interval 400–700 nm (1.770 eV to 3.10 eV) is about 1.00342 × 10−7 eV or
about 3/10 % of the total shift.

(a)

(b)

(c)

Figure 3. Linear plots of the ground state spectral density calculated from group theory as a function
of energy for low and mid energies. From about 10 eV to 0 eV, the spectral density increases linearly
to its maximum value. The value of the abscissa at the origin is 0 eV for all graphs. (a): Linear change
in ground state spectral density at very low energies. (b): Near linear change in ground state spectral
density for visible and near infra-red energies. The contribution to the total shift for energies below
3 eV is about 0.7%. (c): Ground state spectral density calculated for energies below 80 eV, which
contribute about 8.6% to the total shift.
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(a)

(b)

(c)

Figure 4. The ordinate is the fraction of the ground state shift ΔE1 due to vacuum field energies
between 0 and E, plotted as a function of E. This plot is obtained by integration of the spectral
density Equation (29), shown in Figure 1. The plot is linear in the ordinate and abscissa. The
origin corresponds to (0,0) for all plots. (a): Fraction of the 1S shift due to energies from 0 to E
for 0 < E < 510 keV. (b): Fraction of the 1S shift due to energies below E, for 0 < E < 9000 eV.
(c): Fraction of the 1S shift due to energies from 0 to E, for 0 < E < 100 eV. Energies below 30 eV
account for about 0.05 of the total shift. The variation is linear for E < 10 eV.

The relative contribution to the total shift per eV is much greater for lower energies.
For example, half the 1S shift corresponds to energies 0 to 9000 eV, but only about 0.2%
corresponds to 500,000 to 509,000 eV. The largest contribution to the shift per eV is at the
lowest energies, which have the steepest slope of the spectral density curve in Figure 1,
about 1000 times greater than the slope for the largest values of the energy. However, the
total range for the large energies, from 9050 to 510,000 eV is so large that the absolute
contribution to the total shift for large energies is significant.

For the ground state, Figure 5 shows how the dominant terms for different m in
the Bethe sum over states in Equation (6) contribute to the full spectral density obtained
from group theory Equation (29). Each such term in the Bethe sum could be interpreted as
corresponding to the shift resulting from virtual transitions from state n to state m occurring
due to the vacuum field. Each term shown has a behavior similar to that of the full spectral
density, but the magnitudes decrease as the transition probabilities decrease.
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Figure 5. Log-log plot of the 1S spectral density from group theory Equation (29) in black, and the
contributions to this shift in the Bethe formalism for the transition 1S → 2P (blue), 1S → 4P (red),
1S → 8P (green). The dashed blue line shows the high-frequency 1/E asymptote. The black line is
the complete spectral density which is the summation of the contributions from all transitions.

Figure 6 shows the spectral densities for 1S (black) and 2S (orange) shifts. The shapes
are similar but the spectral density for the 1S shift is about eight times as large at high
frequencies and about four times as large at low frequencies, factors that are derived
explicitly in Sections 4 and 5 by considering the asymptotic forms of the spectra density for
S states with different principal quantum numbers. Both S states have a 1/E high-frequency
behavior. The s-integration in the group theoretical calculation for the 2S state diverges for
energies below 10.2 eV due to a non-relativistic approximation, but the spectral density of
the shift can be obtained from a low-energy approximation (48) to the group theory result,
which is derived in Section 5.

Figure 6. A log-log plot of the group theoretical spectral density for the 1S (black) and 2S (orange)
shifts versus energy. The dashed orange curve below 1 eV is a 2S low-energy approximation (47) from
group theory or the Bethe formula. The blue is the largest single contribution in the Bethe formalism
to the 2S shift for the transition 2S → 3P.

The spectral density dΔEn/dE for a state n can be defined in a convenient form
suggested by Equation (29),

dΔEn

dE
=

4α3

3π

∫ ∞

0
ds Wn(s, φn), φn = ln

[
1 +

E
|En|

]
, (31)

where the energy for state n is En = −mc2(Zα)2/2n2. The group theoretical results give a
spectral density for the 2S–2P Lamb shift [27]:

W2S−2P(s, φ2) =
4e(2se−φ2+φ2) sinh3(φ2)csch2( s

2
)[

cosh(φ2) + coth
( s

2
)]5 , (32)
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and for the 2P shift [27]:

W2P(s, φ2) = − e(2se−φ2+φ2) sinh(φ2)csch4( s
2
)
[cosh(φ2) sinh(s) + cosh(s)− 3]

2
[
cosh(φ2) + coth

( s
2
)]5 . (33)

The spectral density of the 2P shift has a very different behavior from the spectral
density of the 2S shift (Figure 7). It is negative and and it falls off as 1/E2. The shift is
negative because the dominate contribution to the shift is from virtual transitions from the
2P state to the lower 1S state, with an energy difference of about 10.2 eV. For energies below
about 20 eV, the absolute value of the spectral density of the 2P shift increases rapidly in
magnitude as the energy is reduced and is much bigger than the spectral density for the
2S shift. The 2S shift cannot have a negative contribution from the lower 1S state since
the transition 2S→1S is forbidden by the conservation of angular momentum. The classic
Lamb shift arises from the difference between the two spectral densities, so the negative 2P
spectral density actually increases the 2S–2P Lamb shift as the energy decreases (Figure 8).
In effect, the 2S–2P shift is dominated by vacuum energies below about 100 eV. The total 2P
shift is about 0.3% percent of the 2S shift. Bethe also computed a negative contribution for
the shift from the 2P state [30].

Figure 7. Log-log plot of the absolute value of the spectral density versus the energy for the 2S shift
(orange), which goes as 1/E for large E, and for the 2P shift (green), which goes as 1/E2 for large E.
At 511 keV, the 2P spectral density is about 5 orders of magnitude smaller than the 2S spectral density.
Below 20 eV, the absolute value of the 2P spectral density is greater than the 2S spectral density. Note
that the 2P spectral density is actually negative and the 2S spectral density is positive.

Figure 8. Log-log plot of the spectral density for the 2S shift (orange) and the 2S–2P Lamb shift (blue)
versus energy. The solid black line is the 1/E asymptote.

Comparing the Ground State Group Theoretical Lamb Shift Calculations to Those of Bethe, Welton,
and Feynman

Integrating the group theoretical spectral density Equation(29) from near zero energy
(5.4 × 10−7 eV) to 511 keV, about the rest mass energy of the electron, gives the 1S shift of
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3.4027 × 10−5 eV, in agreement with the numerical result of Bethe and Salpeter summing
over states and using the Bethe log approximation, 3.392 × 10−5 eV, to about 0.3% [8].

Bethe and Salpeter [30] reported that the ground state Bethe log, as defined in Equation
13, which is a logarithmically weighted average value of the excitation of the energy
levels contributing to the radiative 1S shift, was equivalent to |Em − En|ave of 19.77 Ry or
269 eV [30]. Because of the weighting, it is not clear how to interpret this value, other than
it indicates that high-energy photons and scattering states contribute significantly to the
shift. The group theoretical method does not provide an equivalent weighted average value
for direct comparison.

Although the methods of Bethe, Welton, and Power as defined all give approximately
the same value for the 1S shift, which equals the integral of the spectral density, they differ
significantly in their frequency dependence, which is examined in Section 4.

4. The Spectral Density of The Lamb Shift at High Frequency

The form for dΔEn/dE, which is the Lamb shift spectral density for level n, can be
obtained at high energies from (i) the classic calculation by Bethe using second-order pertur-
bation theory; (ii) the calculation by Welton of the Lamb shift; (iii) the calculation by Power
of the Lamb shift based on Feynman’s approach; and (iv) the group theoretical calculation.

The spectral density for level n can be written from Bethe’s expression (6):

ΔEBethe
n

ΔE
=

2α

3π

(
1

mc

)2

∑
m
|pmn|2(En − Em)

1
En − Em − E

. (34)

For the ground state spectral density n = 1, Z = 1, E1 = −13.613 eV, and for the bound
states with principal quantum number m, Em = −13.613 eV/m2. For scattering states, Em
is positive. Hence the denominator is negative for all terms in the sum over m and never
vanishes, and the spectral density is positive so the ground state shift is positive as it must
be. For large values of E, we can make the approximation,

ΔEBethe
n

ΔE
|E→∞ =

2α

3π

(
1

mc

)2

∑
m
|pmn|2(Em − En)

1
E

. (35)

The summation can be evaluated using the dipole sum rule (9)–(11) for the Coulomb S state
wavefunction, obtaining the final result for the high-frequency spectral density for S states
with the principal quantum number, n:

dΔEBethe
n

dE
|E→∞ =

4mc2

3π
α(Zα)4 1

n3
1
E

. (36)

The result highlights the 1/E divergence at high frequencies and shows the presence of
a coefficient proportional to 1/n3. To put a scale on the coefficient, the high-frequency
spectral density can be written as (8/3π)(α(Zα)2/n)(En/E).

The spectral density for all frequencies from Welton’s qualitative model, Equation (17),
is identical to this high-frequency limit of Bethe’s calculation. Thus, at low frequencies,
the spectral density for Welton’s semi-quantitative calculation diverges as 1/E. Because of
the expectation value of the Laplacian, Welton’s approach predicts a shift only for S states.
Its appeal is that it gives a physical picture of the primary role of vacuum fluctuations in
the Lamb shift and shows the presence of the 1/E characteristic behavior. Its treatment of
bound states at low energies is incomplete and inaccurate. To obtain a level shift, it requires
providing a low-energy limit for the integration. As noted previously, if the lower limit
is Bethe’s log average excitation energy, 269 eV for n = 1, and the upper limit mc2 then
Welton’s total 1S shift agrees with Bethe’s. A choice of this type works since: (i) it does
not include any contributions from energies below 269 eV and (ii) it gives a compensating
contribution for energies from 269 eV to about 1000 eV that is larger than the actual spectral
density, as shown in Figures 4 and (iii) above about 1000 eV, Welton’s model gives the same
1/E spectral density as Bethe.
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The spectral density for Power’s model can be obtained from Equation (24):

ΔEPower
n
dE

= − 2α

3π

1
(mc)2 ∑

m
|pmn|2(Em − En)

E
(Em − En)2 − E2 . (37)

Letting E become large gives a result identical to the high-frequency limit (35) for the Bethe
formalism and the Welton model, namely

ΔEPower
n
dE

|E→∞ =
4mc2

3π

α(Zα)4

n3
1
E

. (38)

Thus, the models of Bethe, Welton, and Power predict S states with the same 1/E
dependence of the high-frequency spectral density, corresponding to the logarithmic diver-
gence at high-frequency. The asymptotic theoretical result can be written in a form allowing
convenient comparison to the calculated group theoretical spectral density

dΔEBethe
n

dE
|E→∞ =

4mc2

3π

α(Zα)4

n3
1
E

. (39)

The spectral density goes as 1/n3 for S states. For the ground state n = 1, Z = 1, this gives:

dΔEBethe
1

dE
|E→∞ = 4.488 × 10−6 1

E
. (40)

A fit to the last two data points near 510 keV in the group theoretical calculations (GT-
calc) gives:

dΔEGTcalc
1

dE
|E→∞ = 4.4008 × 10−6 1

E
. (41)

The coefficients differ by about 2%. Figure 9 is a plot of the ground state group theoretical
calculated spectral density (red) from Equation (29) and the theoretical asymptotic behavior
from Bethe, Power and Welton, Equation (40) (black), and the difference times of a factor of
10. The asymptotic theoretical result agrees with the full group theoretical calculation from
Equation (29) to within about 2% at 511 keV, and to about 6% at 50 KeV. It is notable that
the high-frequency form is a reasonable approximation down to 50 keV. Indeed, the Welton
qualitative approach is based on this observation; it has the same 1/E energy dependence
at all energies.

Figure 9. Top red curve is the 1S group theoretical calculated spectral density (29), slightly lower
black curve is the 1/E asymptotic model Equation (39), and the bottom green curve is the difference
times 10, plotted for the interval 50–510 keV. Both axes are linear.

5. Spectral Density of the Lamb Shift at Low Frequency

To obtain a low-frequency limit of the spectral density of the Lamb shift from the Bethe
spectral density (34), expand the spectral density to first-order in E, giving
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ΔEBethe
n

dE
|E→0 =

2α

3π

(
1

mc

)2

∑
m
|pmn|2

(
1 − E

Em − En

)
. (42)

Since the sum is over a complete set of states m, including scattering states, the first term in
parenthesis can be evaluated using the sum rule,

∑
m
|pmn|2 = −2mEn = (mc)2 (Zα)2

n2 . (43)

To evaluate the second term, Equation (22) and the Thomas–Reiche–Kuhn sum rule [31]
can be used, giving

∑
m

ωmn|dmn|2 =
3e2h̄
2m

. (44)

The final result for E → 0 is

ΔEBethe
n

dE
|E→0 =

2α

3π

(Zα)2

n2 − α

πmc2 E. (45)

The corresponding spectral density for n = 1, Z = 1, is

dΔEBethe
1

dE
|E→0 =

4α × 13.6
3πmc2

(
1 − 3E

4 × 13.6

)
= 8.253 × 10−8(1 − 0.0551E). (46)

As E decreases to zero, the spectral density increases linearly to a constant value,

4α|En|/3πmc2 = 2α3Z2/3πn2 = 8.253 × 10−8/n2.

The intercept goes as 1/n2, but the slope is α/πmc2, which has a remarkably simple form
and is independent of n.

Taking the low-frequency limit of the group theoretical result analytically gives exactly
the same result as Equation (45) from the Bethe formulation:

dΔEGTcalc
1

dE
|E→0 =

dΔEBethe
1

dE
|E→0 =

2α

3π

(Zα)2

n2 − α

πmc2 E. (47)

Figure 3 shows the results of group theoretical calculations of the spectral density of
the ground state Lamb shift for different energy regions, showing the near linear increase
in the spectral density as the frequency decreases from 80 eV to 10−5 eV. For low values of
E, the slopes and intercept agree with Equation (47) within about two tenths of a percent.

To explore Power’s approach at low frequencies, let E become small in the spectral
density Equation (37), giving

ΔEPower
n
dE

|E→0 = −2NV
3πc3 ∑

m
|pmn|2

E
Em − En

, (48)

which is identical to the second term in the low E approximation to the Bethe result (45) so

ΔEPower
n
dE

|E→0 = − 1
π

α

mc2 E. (49)

The result Equation (49) is identical to the frequency-dependent term in Equation (47)
which is the low-frequency spectral density from the Bethe approach and from the group
theoretical expression. However, in the low-frequency limit based on Power’s expression
for the spectral density, the constant term that is present in the other approaches does not
appear. This is a consequence of the form used for the index of refraction, which assumes
that real photons are present that can excite the atom with resonant transitions. More
sophisticated implementations of Feynman’s proposal may avoid this issue.
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6. Comparison of the Spectral Energy Density of the Vacuum Field and the Spectral
Density of the Radiative Shift

The theory of Feynman proposes that the vacuum energy density in a large box
containing H atoms, which are assumed to be in the 1S ground state, increases uniformly
with the addition of the atoms. Feynman maintains that the total vacuum energy in the
box increases by the Lamb shift times the number of atoms present [6,10]. If there were
only one atom in a very large box, one would not expect the change in energy density to be
spatially uniform but more concentrated near the atom. To develop a model of the spatial
dependence of the change in energy density for one atom, the close relationship between
the vacuum field and the radiative shift can be used. The spectral densities of the ground
state shift and of the quantum vacuum with no H atoms present are both known. In the
box, the vacuum field density must increase so that the integral gives the 1S Lamb shift.
The spectral energy density of the vacuum field with no H atom present is equal to [6]

ρ0(ω) =
h̄ω3

2π2c3 , (50)

where c is in cm/sec and ω is in sec−1. If frequency is measured in eV, so h̄ω = E, then the
vacuum spectral energy density in 1/cc is

ρ0(E) =
E3

2π2h̄3c3
, (51)

and
∫ E2

E1
ρ0(E)dE would be the energy density eV/cc in the energy interval E1 to E2. The

question being addressed is: what volume of vacuum energy of density ρ0(E) is required
to supply the amount of energy needed for the radiative shift? The total radiative shift ΔE1
be expressed as the integral of the vacuum energy density ρ0(E) over an effective volume
V1(E),

ΔE1 =
∫ mc2

0
dEρ0(E)V1(E), (52)

where the same upper limit for E is used as in previous calculations. Recall the definition
(28) of the spectral shift:

ΔE1 =
∫ mc2

0
dE

ΔE1

dE
. (53)

Comparing Equations (52) and (53) and insuring the energy balance at each energy E, gives
the effective spectral volume V1(E)

V1(E) =
dΔE1

dE
1

ρ0(E)
. (54)

The spectral volume V1(E) has the dimensions of cc and contains the amount of vacuum
energy at energy value E that corresponds to the ground state spectral density at the same
energy E. In Figure 10, for the 1S ground state radiative shift, the log of the spectral volume
V1(E), in cubic Angstroms (Å3), is plotted versus the log of the energy, E.

For energies above about 100 eV, the spectral volume is less than 1 Å3, approximately
the volume of the ground state wavefunction. For an energy of 1 eV, the spectral volume is
11850 Å3, corresponding to a sphere of radius about 14 Å. This calculation predicts that
there is a sphere of positive vacuum energy of radius 14 Åaround the atom corresponding
to the 1 eV shift spectral density. Figure 11 shows the radius of the spherical spectral
volume V1(E) for energies from 0.05 eV, with spectral radius of 278 Å, to 23 eV, with radius
0.49 Å.
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Figure 10. Log-log plot of the spectral volume V1(E) as a function of E. The spectral volume V1(E)
contains the free field vacuum energy at energy value E that corresponds to the ground state shift
spectral density at the same energy E.

Figure 11. Log of the radius of the spherical spectral volume V1(E), as a function of the vacuum field
energy E, from 0.05 eV to 23 eV.

7. Conclusions

The non-relativistic Lamb shift can be interpreted as due to the interaction of an
atom with the fluctuating electromagnetic field of the quantum vacuum. We introduce the
concept of a spectral shift density which is a function of frequency ω or energy E = h̄ω of
the vacuum field. The integral of the spectral density from E = 0 to the rest mass energy
of an electron, 511 keV, gives the radiative shift. We report on calculations of the spectral
density of the level shifts for 1S, 2S and 2P states based on a group theoretical analysis and
compare the results to the spectral densities implicit in previous non-relativistic calculations
of the Lamb shift by Bethe, Welton, and Power. The group theoretical calculation provides
an explicit form for the spectral density over the entire spectral range with no summation
over intermediate states. Bethe’s approach requires a summation over an infinite number of
states, including all bound and all scattering states, to obtain a comparable spectral density.
The different approaches for asymptotic cases, for very large and very small energies E,
are compared.

The calculations of the shift spectral density provide a new perspective on radia-
tive shifts. The group theory approach as well as the approaches of Bethe, Power,
and Welton all show the same 1/E high-frequency behavior for S states above about
E = h̄ω = 1000 eV to 511 keV, namely an asymptotic spectral density for S states equal to
(4/3π)(α(Zα)4mc2/n3)(1/E) for principal quantum number n. The group theory calcula-
tion shows that about 76% of the ground state 1S shift is contributed by E above 1000 eV,
which is essentially why all the approaches give approximately the same result for the 1S
Lamb shift.

Only the Bethe and group theory calculations have the correct low-frequency behavior.
For S states the spectral density increases linearly as E decreases to zero. Its maximum
value is at E = 0 and for S states equals (2α/3π)(Zα)2/(n2). This maximum value is about
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1/(Zα)2 or about 2 × 104 larger than the high-frequency spectral density at E = 511 keV.
Thus, low energies contribute much more to the shift for a given spectral interval than high
energies. Energies below 13.6 eV contribute about 2.5 %. Because of the huge spectral range
contributing to the shift, contributions to the shift from high energies are very important.
Half the contribution to the 1S shift is from energies above 9050 eV.

The 2P shift has a very different spectral density from an S state: it is negative and
has an asymptotic behavior that goes as 1/E2 rather than as 1/E. Below about 20 eV, the
absolute value of the 2P spectral density is much larger than the 2S spectral density and it
dominates the 2S–2P shift spectral density, yet the total 2P shift is only about 0.3% of the
total 2S shift.
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Appendix A. Eigenstates |nlm;a) of 1/Zα

To obtain an equation for these basis states |nlm; a), write Schrödinger’s equation for
a charged non-relativistic particle with with momentum p and energy E = − a2

2m [27,28] in
a Coulomb potential: [

p2 + a2 − 2mh̄cZα

r

]
|a〉 = 0. (A1)

Solutions for |a〉 exist for certain critical values of the energy En = − a2
n

2m or equivalently for
critical values of a = an where an

mcZα = 1
n . These are the usual energy eigenstates which are

labeled as |nlm; an〉. Conversely a be fixed in value and Zα may have different values. If
it has certain eigenvalues Zαn then for any value of a there is another set of eigenvectors
corresponding to eigenvalues a

mcZαn
= 1

n . To demonstrate this we start by inserting factors
of 1 =

√
ar 1√

ar in Schrödinger’s Equation (A1) obtaining

(√
ar(p2 + a2)

√
ar − 2amZα

) 1√
ar
|a〉 = 0. (A2)

We can rewrite this equation, multiplying successively from the left by 1√
ar , 1

p2+a2 , and 1√
ar ,

and then multiplying by a2, and dividing by mcZα, multiplying by
√

nh̄ obtaining

[ a
mcZα

− K1(a)
]√nh̄

ar
|a〉 = 0, (A3)

where

K1(a) =
1√
ar

2a2h̄
p2 + a2

1√
ar

. (A4)

Solutions exist to this equation for eigenvalues of 1/Zα such that a
mcZαn

= 1
n :(

1
n
− K1(a)

)
|nlm; a) = 0, (A5)

where √
nh̄
ar

|nlm; a〉 = |nlm; a).
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The nh̄ in the square root insures the new states are also normalized to 1. The kernel
K1(a) is bounded and Hermitian with respect to the eigenstates |nlm; a) of 1/Zα, therefore
these eigenstates of 1/Zα form a complete orthonormal basis for the hydrogen atom.
Because the kernel is bounded, there are no continuum states in this representation. To
show they have the same quantum numbers as the usual states, note that when a = an
the eigenstates of K1(an) becomes |nlm; an) and these corresponds to the usual energy
eigenstates |nlm; an〉. The value of a in Equation (A5) can be changed to obtain these
eigenstates using the dilation operator D(λ) = eiSλ, where the dimensionless operator S,
which is also a generator of transformations of SO(4,2), is

S =
1

2h̄
(p · r + r · p). (A6)

S transforms the canonical variables:

D(λ)pD−1(λ) = e−λr,

D(λ)rD−1(λ) = eλr.

Operating on K1(a) with D(λ) gives:

D(λ)K1(a)D−1(λ) = K1(aeλ).

If λ is chosen as
λn = ln(an/a),

then aeλn = an. Thus, operating with D(λn) on Equation (A5) yields:(
1
n
− K1(an)

)
D(λn)|nlm; a) = 0. (A7)

This is the equation for the usual Schrödinger energy eigenstates, so

D(λn)|nlm; a) = |nlm; an) =

√
nh̄
anr

|nlm; an〉. (A8)

The usual Schrödinger energy eigenstates |nlm; an〉 can be expressed in terms of the eigen-
states of 1/Zα as

|nlm; an〉 =
√

anr
nh̄

D(λn)|nlm; a). (A9)

This relationship shows that the complete basis functions |nlm; a) of 1/Zα are proportional
to the ordinary bound state energy wavefunctions and therefore have the same quantum
numbers as the ordinary bound states [27,28]. A comparable set of 1/Zα eigenstates useful
for momentum space calculations is derived in [27].

Appendix B. Derivation of Group Theoretical Formula for the Shift Spectral Density

The group theoretical approach is based solely on the Schrödinger and Klein-Gordon
equations of motion in the non-relativistic dipole approximation. We obtain a result [27]:

ΔENL =
2α

3π(mc)2

∫ h̄ωc

0
dE〈NL|pi

H − EN
H − (EN − E)− iε

pi|NL〉, (A10)

where E = h̄ω, H = p2

2m − Zαh̄c
r and the states |NL〉 are the usual H atom energy eigenstates.

ωC is a cutoff frequency for the integration that is taken as h̄ωc = mc2. Inserting a complete
set of states in this expression yields Bethe’s result (6) a step avoided with the group
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theoretical approach. Adding and subtracting E from the numerator in Equation (A10), we
find the real part of the shift is

ΔENL =
2α

3π(mc)2 Re
∫ h̄ωc

0
dE[〈NL|p2|NL〉 − EΩNL], (A11)

where
ΩNL = 〈NL|pi

1
H − EN + h̄ω − iε

pi|NL〉. (A12)

The goal is to convert the matrix element ΩNL to a matrix element of a function of SO(4,2)
generators taken between a new set of basis states |nlm; a), which are complete with no
scattering states, where a =

√
2m|E|, and n, l, m have their usual meaning and values. The

new basis states |nlm; a) are eigenstates of (Zα)−1 [27,28]. Sometimes we write them as
|nlm) with the a implicit.

A generator of SO(4,1) is Γ0 = 1/K1(a), defined in Equation (A4), so

(Γ0 − n)|nlm; a) = 0. (A13)

This is Schrödinger’s equation in the language of SO(4,2).
Several more generators need to be defined. Since the algebra of SO(4,2) genera-

tors closes, commutators of generators must also be generators. To find Γ4 calculate
Γ4 = −i[S, Γ0], where the generator S is defined in Equation (A6), obtaining

Γ4 =
1

2h̄

(√
rp2√r

a
− ar

)
, Γ0 =

1
2h̄

(√
rp2√r

a
+ ar

)
. (A14)

The generators (Γ4, S, Γ0) = (j1, j2, j3) form a O(2,1) subgroup of SO(4,2) and S = i[Γ4, Γ0],
Γ0 = −i[S, Γ4] and for our representations, Γ2

0 − Γ2
4 − S2 = L2 = l(l + 1). The scale change

S transforms Γ0 ≡ Γ0(a) according to the equation,

eiλSΓ0(a)e−iλS = Γ0(eλa) = Γ0 cosh λ − Γ4 sinh λ, (A15)

and similarly,
eiλSΓ4(a)e−iλS = Γ4(eλa) = Γ4 cosh λ − Γ0 sinh λ. (A16)

Finally define a three vector of generators proportional to the momentum

Γi =
1
h̄
√

rpi
√

r. (A17)

The quantity Γ = (Γ0, Γ1, Γ2, Γ3, Γ4) is a 5-vector of generators under transformations gener-
ated by SO(4,2). For the representation of SO(4,2) based on the states |nlm), all generators
are Hermitian, and Γ2 = ΓAΓA = −Γ2

0 + Γ2
1 + Γ2

2 + Γ2
3 + Γ2

4 = 1 for our representation, and
gAB = (−1, 1, 1, 1, 1) for A, B = 0, 1, 2, 3, 4. The commutators of the components of the five
vector are also generators of SO(4, 2) transformations.

Inserting factors of 1 =
√

ar 1√
ar and using the definitions of the generators we can

transform Equation (A12) to

ΩNL =
mν

N2 (NL|Γi Γn(ξ)− ν
Γi|NL), (A18)

where

n0(ξ) =
2 + ξ

2
√

1 + ξ
= cosh φ, ni = 0, n4(ξ) = − ξ

2
√

1 + ξ
= − sinh φ, (A19)

and
ξ =

h̄ω

|EN |
ν =

N√
1 + ξ

= Ne−φ. (A20)
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From the definitions, φ = 1
2 ln(1 + ξ) > 0 and nA(ξ)nA(ξ) = −1. The contraction over i in

ΩNL may be evaluated using the group theoretical formula [27]:

∑
B

ΓB f (nΓ)ΓB =
1
2
(nΓ + 1)2 f (nΓ + 1) +

1
2
(nΓ − 1)2 f (nΓ − 1)− (nΓ)2 f (nΓ). (A21)

Applying the contraction formula to the the integral representation,

f (nΓ) =
1

Γn − ν
=
∫ ∞

0
dseνse−nΓ s, (A22)

gives the result

ΓA
1

Γn − ν
ΓA = −2ν

∫ ∞

0
ds eνs d

ds
(sinh2 s

2
e−nΓ s). (A23)

Applying this to Equation (A18) gives:

ΩNL = −2
mν2

N2

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
MNL(s)

)
− m

ν

N2 (NL|Γ4
1

Γn(ξ)− ν
Γ4|NL) + m

ν

N2 (NL|Γ0
1

Γn(ξ)− ν
Γ0|NL)

, (A24)

where
MNL(s) = (NL|e−Γn(ξ) s|NL). (A25)

In order to evaluate the last two terms in Equation (A24) use Γ0|NL) = N|NL) and express
the action of Γ4 on our states as Γ4 = N − (1/ sinh φ)(Γn(ξ)− ν). This expression for Γ4 is
derived from Equations (A18) and (A19): Γn(ξ)− ν = Γ0 cosh φ − Γ4 sinh φ − ν, and then
substituting Equation (A20), ν = Ne−φ. Using the virial theorem (NLM|p2|NLM) = a2

N ,
we find that the term in p2 in Equation (A11) exactly cancels the last two terms in ΩNL,
yielding the result for the level shift:

ΔENL =
4mc2α(Zα)4

3πN4

∫ φc

0
dφ sinh φeφ

∫ ∞

0
ds eνs d

ds

(
sinh2 s

2
MNL(s)

)
(A26)

where

φc =
1
2

ln
(

1 +
h̄ωc

|EN |

)
=

1
2

ln
(

1 +
2N2

(Zα)2

)
. (A27)

To derive a generating function for the shifts for any eigenstate characterized by N
and L multiply Equation (A26) by N4e−βN and sum over all N, N ≥ L + 1. To simplify the
right side of the resulting equation, use the definition (A25) and the fact that Γ4, S, and Γ0
form an O(2,1) algebra, obtaining:

∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j·ψ|NL), (A28)

where
e−j·ψ ≡ e−βΓ0 e−sΓn(ξ). (A29)

Perform a j transformation generated by eiφS, such that e−j·ψ → e−j3ψ = e−Γ0ψ. The trace is
invariant with respect to this transformation, therefore:

∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j3ψ|NL) =
∞

∑
N=L+1

e−Nψ =
e−ψ(L+1)

1 − e−ψ , (A30)

where (NL|Γ0)|NL) = N is used.
In order to find a particular MNL, expand the right hand side of Equation (A30)

in powers of e−β and equate the coefficients to those on the left hand side. Using the
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isomorphism between j and the Pauli σ matrices (Γ4, S, Γ0) → (j1, j2, j3) → ( i
2 σ1, i

2 σ2, 1
2 σ3)

gives the result:

cosh
ψ

2
= cosh

β

2
cosh

s
2
+ sinh

β

2
sinh

s
2

cosh φ. (A31)

Rewriting this equation gives:

e+
1
2 ψ = de

1
2 β + be−

1
2 β − e−

1
2 ψ , (A32)

where
d = cosh s

2 + sinh s
2 cosh φ ,

b = cosh s
2 − sinh s

2 cosh φ .
(A33)

Let β become large, which implies large ψ, and iterate the equation for e−
1
2 ψ to obtain

e−ψ = Ae−β
[
1 + A1e−β + A2e−2β + · · ·

]
, (A34)

where A = 1/d2 and A1 = −(2/d)(b − d−1). To obtain MNL, expand the right side of
Equation (A30) in powers of ψ:

e−ψ(L+1)

1 − e−ψ =
∞

∑
m=1

e−ψ(m+L). (A35)

For large β, it follows from Equations (A30), (A34) and (A35) that

∞

∑
N=L+1

e−βN MNL =
∞

∑
m=1

[
e−β A(1 + A1e−β + A2e−2β + ...

]m+L
. (A36)

Using the multinomial theorem [32] the right side of Equation (A36) becomes

∞

∑
m=1

Am+L ∑
r,s,t,...

(m + L)!
r!s!t!...

As
1 At

2...e−β(m+L+s+2t+··· ), (A37)

where r+ s+ t+ · · · = m+ L. To obtain the expression for MNL, we note N is the coefficient
of β so N = m + L + s + 2t + · · · = r + 2s + 3t + · · · Accordingly we find

MNL = ∑
r,s,t,

A(r+s+t+··· ) (r + s + t + ...)!
r!s!t!

As
1 At

2 · · · , (A38)

where r + s + t + · · · = N and r + s + t + . · · · > L. As Equation (A26) indicates, the 1S
shift corresponds to the matrix element M10, which multiplies e−β, so M10 = A. For the 2S
shift M20 = A2 + AA1, and for the 2P shift M21 = A2. Therefore the radiative shift for the
1S ground state is

ReΔE10 =
4mc2α(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dsese−φ d

ds
1(

coth s
2 + cosh φ

)2 . (A39)

The shift for the 2S–2P level is

Re(ΔE20 − ΔE21) =
mα(Zα)4

6π

∫ φc

0
dφeφ sinh3 φ

∫ ∞

0
dse2se−φ d

ds
1(

coth s
2 + cosh φ

)4 . (A40)
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Abstract: We present a moving mirror analog of the electron, whose worldline possesses asymptotic
constant velocity with corresponding Bogoliubov β coefficients that are consistent with finite total
emitted energy. Furthermore, the quantum analog model is in agreement with the total energy
obtained by integrating the classical Larmor power.

Keywords: acceleration radiation; moving mirrors; radiation by moving charges; quantum aspects of
black holes; Davies-Fulling-Unruh effect

1. Introduction: Fixed Radiation

Uniform acceleration, while attractive and simple enough is not globally physical.
Consider the problem of infinite radiation energy from an eternal uniformly accelerated
charge. The physics of eternal unlimited motions is not only the cause of misunderstandings,
but also the starting point of incorrect physical interpretations, especially when considering
global calculable quantities, such as the total radiation emitted of a moving charge. Infinite
radiation energy afflicts the accurate scrutiny of physical connections between acceleration,
temperature, and particle creation.

More collective consideration should be prescribed to straighten out the issue. One
path forward is the use of limited non-uniform accelerated trajectories that are capable of
rendering finite global total radiation energy. The trade-off with these trajectories is usually
the lack of simplicity or tractability in determining the radiation spectrum in the first place.

In this short paper, we present a solution for finite radiation energy and its correspond-
ing spectrum. Limited solutions of this type are rare and can be employed to investigate the
physics associated with contexts where a globally continuous equation of motion is desired.
For instance, the solution is suited for applications such as the harvesting of entropy from a
globally defined trajectory of an Unruh-DeWitt detector, the non-equilibrium thermody-
namics of the non-uniform Davies-Fulling-Unruh effect, or the dynamical Casimir effect [1],
and the particle production of the moving mirror model [2–4].

Providing a straightforward conceptual and quantitative analog application to un-
derstanding the radiation emitted by an electron, we demonstrate the existence of a cor-
respondence (see similar correspondences in Refs. [5–11]) between the electron and the
moving mirror. At the very least, this functional coincidence is general enough to be
applied to any tractably integrable rectilinear classical trajectory that emits finite radiation
energy. Here, we analytically compute the relevant integrable quantities for the specific
solution and demonstrate full consistency. The analog approach treats the electron as a
tiny moving mirror, somewhat similar to the Schwarzschild [12], Reissner–Nordström [13],

Physics 2023, 5, 131–139. https://doi.org/10.3390/physics5010010 https://www.mdpi.com/journal/physics40



Physics 2023, 5

and Kerr [14] black mirror analogies, but with the asymptotic inertia of a limited accelera-
tion trajectory. Interestingly, the analog reveals previously unknown electron acceleration
radiation spectra, thus helping to develop general but precise links between acceleration,
gravity, and thermodynamics.

2. Elements of Electrodynamics: Energy From Moving Electrons

In electrodynamics [15–17], the relativistically covariant Larmor formula (the speed of
light, c, the electron charge, qe, and vacuum permittivity, ε0, are set to unity),

P =
α2

6π
, (1)

is used to calculate the total power radiated by an accelerating point charge [15]. The Larmor
formula’s usefulness is due in part to Lorentz invariance and proper acceleration, α, is
intuitive, being what an accelerometer measures in the accelerometer’s own instantaneous
rest frame [18].

When any charged particle accelerates, energy is radiated in the form of electromag-
netic waves, and the total energy of these waves is found by integrating over coordinate
time. That is, the time-integral,

E =
∫ ∞

−∞
P dt, (2)

demonstrates that the Larmor power (1) immediately tells an observer the total energy
emitted by a point charge along the point’s entire time-like worldline. This includes
trajectories that lack horizons; see, e.g., [19]. This result is finite only when the proper
acceleration is asymptotically zero, i.e., the worldline must be asymptotically inertial.

The force of radiation resistance, whose magnitude is given relativistically as the
proper time, τ, derivative (notified by the prime) of the proper acceleration,

F =
α′(τ)

6π
, (3)

is known as the magnitude of the Lorentz–Abraham–Dirac (LAD) force, see, e.g., [20].
The power, F · v, associated with this force can be called the Feynman power [21]; here, v
denotes the speed of the point. The total energy emitted is also consistent with the Feynman
power, where one checks:

E = −
∫ ∞

−∞
F · v dt. (4)

The negative sign demonstrates that the total work against the LAD force represents the
total energy loss. That is, the total energy loss from radiation resistance due to Feynman
power must equal the total energy radiated by the Larmor power (1). Larmor and Feynman
powers are not the same, but the magnitude of the total energy from both are identical, at
least for rectilinear trajectories that are asymptotically inertial.

Interestingly, the above results also hold in a quantum analog model of a moving
mirror. A central novelty of this paper is to explicitly connect the quantum moving
mirror radiation spectra with classical moving point charge radiation spectra. Traditionally
(e.g., [2–4,22–24]) and recently (e.g., [25–27]), moving mirror models in (1 + 1) dimensions
are employed to study the properties of Hawking radiation for black holes. Here, we show
that it is also useful to model the spectral finite energy of electron radiation. In particular, a
suitably constructed mirror trajectory (which is quite natural) can produce the same total
energy consistent with Equation (4) via the Bogoliubov energy, (see, e.g., [22])

E =
∫ ∞

0

∫ ∞

0
ω|βωω′ |2 dω dω′. (5)

Here, β are the Bogoliubov β coefficients and ω′ and ω are the two sets of incoming and
outgoing mode frequencies, respectively.
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The final drifting speed, s, of the mirror or electron will be less than the speed of light:
0 < s < 1. We also denote a := ω(1 + s) + ω′(1 − s), b := ω(1 − s) + ω′(1 + s), c := a + b,
and d := a − b; note that then c = 2(ω + ω′).

3. GO Trajectory for Finite Energy Emission

We consider a globally defined, continuous worldline, which is rectilinear, time-like,
and possesses asymptotic zero velocity in the far past, while travelling to an asymptotically
constant velocity in the far future (but asymptotically inertial both to the past and the
future). It radiates a finite amount of positive energy and has Bogoliubov β coefficients that
are analytically tractable. The Good-Ong (GO) trajectory, as defined by the authors [28],
proceeds as follows:

z(t) =
s

2κ
ln(e2κt + 1), (6)

where κ is an acceleration parameter. The GO trajectory’s total power, applying the Larmor
formula (1), is

P =
2κ2

3π

s2e−4κt(1 + e−2κt)2[
(1 + e−2κt)

2 − s2
]3 . (7)

Let us note that the power is always positive and it asymptotically drops to zero, as
Figure 1 illustrates.

Larmor Power

-4 -2 0 2 4

0.00

0.01

0.02

0.03

0.04

t

P

Figure 1. The Larmor power (1) of the Good-Ong (GO) trajectory (6) as a function of time, t, and at
final constant speed, s = 0.9, i.e., Equation (7), with acceleration parameter, κ = 1. This plot illustrates
that the Larmor power never emits negative energy flux (NEF) and asymptotically dies off, consistent
with a physically finite amount of total radiation energy (2).

The Feynman power, F · v, associated with the self-force (3), is

F · v =
2κ2s2e4κt(j1e6κt + j2e4κt + e2κt + 1

)
3π(−j1e4κt + 2e2κt + 1)3 (8)

where j1 = s2 − 1 and j2 = 2s2 − 1. Similar to the Larmor power (7), the Feynman power (8)
asymptotically dies off, but unlike the Larmor power, the Feynman power has a period of
negative radiation reaction, as illustrated in Figure 2.
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Figure 2. The Feynman power, F · v, associated with the self-force, F (3), of the GO trajectory (6), as a
function of time and at final constant speed, s = 0.9, i.e., Equation (8), with κ = 1. This plot illustrates
the Feynman power dies off asymptotically, has a period of negative radiation reaction, and is also
consistent with a physically finite amount of total radiation energy (4).

Let us now compute the total energy using either the Larmor power or Feynman
power, and integrating over time. In terms of the rapidity, η = tanh−1 v, and Lorentz factor,
γ, the total energy is given by

E =
κ

24π

[(
γ2 − 1

)
+
(η

s
− 1

)]
. (9)

The second term, ( η
s − 1) = 1

2s ln 1+s
1−s − 1, is proportional to the lowest-order soft energy of

inner bremsstrahlung in the case of beta decay (see Equation (3) in Ref. [11]), which is the
deep infra-red contribution. One can see that Equation (9) is finite for all 0 < s < 1 and
consistent with both the Larmor power and Feynman power. Below, after we compute the
Bogoliubov β-spectrum (and plot it in Figure 3), we compute the Bogoliubov total energy
(and plot it in Figure 4). We call Equation (9) the Larmor energy to differentiate it from the
Bogoliubov energy (5), while substituting Equation (13) below. The energy is a function of
the final constant speed, s.

Finally, the spectrum given by the Bogoliubov coefficients is best found by first consid-
ering the presence of a mirror in vacuum, e.g., [29,30]. The mode functions that correspond
to the in-vacuum state,

φin
ω′ =

1√
4πω′

[
e−iω′v − e−iω′p(u)

]
, (10)

and mode functions that correspond to the out-vacuum state,

φout
ω =

1√
4πω

[
e−iω f (v) − e−iωu

]
, (11)

comprise the two sets of incoming and outgoing modes needed for the Bogoliubov coef-
ficients. The f (v) and p(u) functions express the trajectory (6) of the mirror, but in null
coordinates, u = t − z and v = t + z. In spacetime coordinates congruent with Equation (6),
one form of the β-integral [19] for one side of the mirror is

βωω′ =
∫ ∞

−∞
dz

eiωnz−iωpt(z)

4π
√

ωω′
[
ωp − ωnt′(z)

]
, (12)
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where ωp = ω +ω′ and ωn = ω −ω′. Combining the results for each side of the mirror [31]
by adding the squares of the Bogoliubov β coefficients ensures that one accounts for all of
the radiation emitted by the mirror [32]. The overall count per double-mode is

|βωω′ |2 =
s2ωω′Z
2πabcdκ

(
e

πd
4κ − 1

e
πc
4κ − 1

)
e

πb
4κ , (13)

where Z = b csch
(

πa
4κ

)
+ a csch

(
πb
4κ

)
. Equation (13) combines the squares, |βR|2 + |βL|2, of

the coefficients for left (L) and right (R) sides of mirror [28]. Figure 3 shows a plot of the
symmetry between the modes ω and ω′.
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1.0

'
Figure 3. A contour plot of the coefficients (13) as a function of in and out modes, ω′ and ω, where
final constant speed, s = 0.444 and κ = 1. The color gradient darkens for lower values of the count.
This plot underscores the symmetry of the modes in the particle per mode squared distribution
spectrum of the Bogoliubov β coefficients (13).

It is then straightforward to verify that the total energy obtained by integrating the
power is the same as by using the Bogoliubov β integral (5). We cannot prove this analyti-
cally, but a numerical integral is quite convincing; see Figure 4 for a plot of the Larmor and
Bogoliubov energies as a function of final constant speed.
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Figure 4. The Larmor energy (9) and Bogoliubov energy (5) as a function of final constant speed, s.
Here, 0 < s < 0.99 and κ = 1. This plot confirms that Larmor and Bogoliubov energies are equivalent,
substantiating the double-sided moving mirror as an analog model of the electron.

4. Discussions: Mirrors, Electrons, and Black Holes

Prior studies of accelerated electrons and their relationship to mirrors are few; however,
several papers, e.g., [33,34], connect electrons to the general Davies-Fulling-Unruh effect
(for example, perhaps the most known one is by Bell and Leinaas [35], which considered the
possibility of using accelerated electrons as thermometers to demonstrate the relationship
between acceleration and temperature). Nevertheless, perhaps an early clue a that func-
tional identity existed was made in 1982 by Ford and Vilenkin [24], who found that the LAD
self-force was the same form for both mirrors and electrons. In 1995, Nikishov and Ritus [5]
asserted the spectral symmetry and found that the LAD radiation reaction has a term that
corresponds to the negative energy flux (NEF) from moving mirrors. Ritus examined [6–8]
the correspondence connecting the radiation from both the electron and mirror systems,
claiming not only a deep symmetry between the two, but a fundamental identity related to
bare charge quantization [10]. Recently, the duality was extended to Larmor power [32]
and deep infrared radiation [11]. The approach has pedagogical application; for instance, it
was used to demonstrate the physical difference between radiation power loss and kinetic
power loss [9].

The GO moving mirror was initially constructed to model the evaporation of black
holes that exhibit a “death gasp” [36–38]—an emission of NEF due to unitarity being
preserved. Therefore, it is a sturdy result that the total finite energy emitted from the
double-sided mirror matches the result from the Larmor formula for an electron. In this
sense, the GO mirror trajectory represents a crude but functional analog of a drifting
electron that starts at zero velocity and speeds away to some constant velocity. A single-
sided moving mirror does not account for all of the radiation emitted by an electron, and
as such, the single-sided mirror radiation spectrum differs from the electron spectrum. A
notable difference: there is no known NEF radiated from an electron.

In the literature, one finds some properties that are shared by black holes and electrons.
For example, the ratio of the magnetic moment of an electron (of mass m and charge e) to its
spin angular momentum is ge/2m with g = 2, which is twice the value of the gyromagnetic
ratio for classical rotating charged bodies (g = 1). Curiously, as Carter has shown [39], a
Kerr–Newmann black hole also has g = 2. This has led to some speculations as to whether
the electron is a Kerr–Newman singularity (the angular momentum and charge of the
electron are too large for a black hole of the electron’s mass, so there is no horizon) [40]
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(see also [41,42]). The no-hair property of black holes is also similar to elementary particle
indistinguishably: all electrons look the same. Certainly, the mirror model considered here
looks too simple to seek certain further connections between particle physics and black
holes; in particular, it does not involve any charge or angular momentum. Nevertheless,
precisely because of this, it is surprising the total emitted energy in the model should be
given by the integral of the Larmor formula.

Near-term possible theoretical applications of electron-mirror correspondence include
extension to non-rectilinear trajectories; notably, the uniform accelerated worldlines of
Letaw [43], which have Unruh-like temperatures [44] and power distributions [45]. Ap-
plying the general study of Kothawala and Padmanabhan [46] to electrons moving along
time-dependent accelerations, and comparing the effect to an Unruh-DeWitt detector may
prove to be fruitful for understanding the thermal response. Moreover, moving mirror
models can be useful in cosmology [47], in particular, in modeling particle production due
to the expansion of space [48]. This expansion is accelerated due to an unknown dark
energy, which may not be a cosmological constant and thus can decay [49,50]. If dark
energy is some kind of vacuum energy, it might be subject to further study from mirror
analogs just like Casimir energy. (Actually, dark energy could be Casimir-like [51].)

Near-term possible experimental applications of electron-mirror holography include
leveraging the correspondence to disentangle effects in experiments like in the Analog
Black Hole Evaporation via Lasers (AnaBHEL) [52] and the RDK II [53,54] experiments
(see also [55]). The former exploits the accelerating relativistic moving mirror as a probe
of the spectrum of quantum vacuum radiation [56,57], and the latter measures the photon
spectrum with high precision as the electron-mirror is subjected to extreme accelerations
during the process of radiative neutron beta decay.
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Abstract: The debate about the emptiness of space goes back to the prehistory of science and is
epitomized by the Aristotelian ‘horror vacui’, which can be seen as the precursor of the ether,
whose modern version is the dynamical quantum vacuum. In this paper, we suggest to change a
common view to ‘gaudium vacui’ and discuss how the vacuum fluctuations fix the value of the
permittivity, ε0, and permeability, μ0, by modelling their dynamical response by three-dimensional
harmonic oscillators.

Keywords: quantum vacuum; quantum electrodynamics; linear response

1. Introduction

When James Clerk Maxwell introduced the displacement current as a property of
empty space and as a source of magnetic field, he struck gold. The result was his famous
set of self-consistent equations, which later even turned out to be Lorentz invariant and
describe electromagnetism with greatest precision.

Maxwell was visualizing the displacement current as part of the ether [1], an all-
pervading medium composed of a subtle substratum. This is a powerful explanatory
concept that goes back to the prehistory of science and helped unify our understanding
of the physical world for centuries [2]. However, the ether was soon abandoned as a
consequence of Albert Einstein’s special theory of relativity, which contradicts an absolute
reference frame, and the vacuum was considered void (nonetheless, Einstein’s relationship
with the ether was complex, and changed over time [3]). However, this move was merely
an elegant paradigm shift rather than a necessity forced by observation.

Electrodynamics was the new theory of electromagnetic fields interacting with the—at
the time—newly discovered elementary particle, the electron. Already then, cumbersome
divergences were looming around the corner and we are struggling with them ever since.
One was the question whether or not the electron has a finite radius, and if it does not, as
hinted by all experiments at higher and higher energies (or, rather, momentum exchange),
then the mass diverges and even the charge of the electron diverges on small enough length
scales [4]. Another such early divergence was discovered by Max Planck [5]. Previously, he
had postulated that the energy had to be quantized in packets of hν per mode to derive
his famous blackbody radiation formula, where h is the Planck constant and ν is the
electromagnetic radiation frequency. However, in 1912, when going to the asymptotic limit
for long wavelengths or high temperatures and match it with the experimental observations,
Planck noticed that there was an additional contribution hν/2 to the energy per mode—this
is the first time the ground state energy of a quantum harmonic oscillator appeared in
the literature.

Later, after Paul Dirac [6] hypothesized the existence of the antielectron, later called
positron, and its subsequent experimental discovery, scientists struggled in vain for years
to formulate a consistent quantum theory of electrodynamics. The breakthrough came
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when Richard Feynman [7] and Julian Schwinger [8] used their approach to first postulate
Maxwell’s equations and then added the interaction with electrons and positrons [9]: mod-
ern quantum electrodynamics (QED) was born. By using the procedure of renormalization,
the divergences were modified to much better behaved logarithmic divergences. More
elementary particles were discovered, including charged ones, and QED is overall highly
successful, but some struggle with divergences remains.

Within the framework of QED, it is understood that the quantum vacuum is not
void. By now, there is ample experimental evidence for the nonzero ground state energies
of quantum fields populating the vacuum, containing the seeds of multiple virtual pro-
cesses [10–12]. Wilczek [13] expresses the fundamental characteristics of space and time
as properties of the ‘grid’, the entity one perceives as empty space. The deepest physical
theories reveal it to be highly structured; indeed, it appears as the primary ingredient of
reality. Several effects manifest themselves when the vacuum is perturbed in specific ways:
vacuum fluctuations lead to shifts in the energy level of atoms [14], changes in the boundary
conditions produce particles [15], and accelerated motion [16] and gravitation [17] can
create thermal radiation. A careful discussion of the nature of these ‘vacuum fluctuations’
can be found in [18], although we think that, perhaps, the ‘vacuum uncertainty’ would be a
better term.

Since this quantum vacuum is not void any more, it is natural to mull over the prospect
of treating it as a medium with electric and magnetic polarizability. This idea can be traced
back as far as Furry and Oppenheimer [19], Weisskopf and Pauli [20,21] (see English
translation in Ref. [22]), Dicke [23], and Heitler [24].

At this point one might wonder about how the linear response of the quantum vacuum,
which one might—but does not have to—relate to a modern Lorentz-invariant ether, is
contained in Maxwell’s [25]. As this linear response is thought to be already included in
Maxwell’s equations and since they were axiomatically postulated, the linear response is
not explicitly considered anymore in QED. Along this line of thinking, Maxwell’s equations
already contain the effect of the bare vacuum and only the so-called off-shell contributions
will still have to be explicitly considered in QED. Details are given below.

Thus, here, we interpret the response of the bare vacuum as caused in full by the
vacuum polarization, i.e., the on-shell contribution. This contribution, however, diverges
when attempting to determine it in the frame of QED: when calculating the bare vacuum
contribution to Maxwell’s equations using the standard QED procedure we do find a closed
mathematical expression dependent only on the off-shell momentum value at which the
electromagnetic coupling strength diverges.

In an attempt to do a back-of-the-envelope calculation, in this paper, we find a reason-
able way to cope with the divergences. This crude derivation uses a relativistic momentum
cutoff [23], similar to the one used by Bethe [26] to calculate the Lamb shift in hydrogen. It
is surprising how well this works. The numbers come out in the right ballpark.

At face value, Maxwell’s equations in vacuum are about electromagnetic fields and the
coupling strength between fields and charged particles should not be relevant. However,
in the spirit of the discussion above, there is interaction with the vacuum uncertainty,
i.e., with virtual electron–positron pairs, and this determines the values of the vacuum
permittivity, ε0, and permeability, μ0. Thus the coupling strength matters also here. Tra-
ditionally, the QED coupling strength is given by Sommerfeld’s fine structure constant,
α = e2/(4πε0h̄crel), in SI units (International System of Units), with e denoting the electron
charge. In Maxwell’s equations it is somewhat hidden, but it is there [27]. The parameter
crel refers to the limiting speed in special relativity and not necessarily denotes the speed of
light, for the purpose of the derivation here. In this paper, we elaborate on the above ideas
and show that ε0 and μ0 can be estimated from first principles and, thus, also the speed
of light.
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2. A Dielectric Model of Vacuum Polarization

In textbooks of electromagnetism it is often implicitly assumed that ε0 and μ0 are
merely measurement system constants. In this vein, they are not considered as fundamen-
tal physical properties, but rather artifacts of the SI units, which disappear in Gaussian
units. However, this quite simplified viewpoint ignores that, irrespective of the method of
allocating a value to ε0 and μ0, they just translate into the prediction of Maxwell’s equations
that, in free space, electromagnetic waves propagate at the speed of light, which has a
very specific value and is certainly associated with units. It is therefore more transparent
if one includes the susceptibility of the vacuum χvac, so that in the vacuum Maxwell’s
displacement reads as D = ε0χvacE. In the SI system all the dimensions and the numerical
value is put into ε0 such that χvac = 1. In comparison, in the Gaussian system of units,
χvac = 1 is likewise chosen to be ‘one’ and one might say that the modified definition of
the electric field absorbs the properties of the vacuum unit in this case. So, for the vacuum
one has D = χvacE = E and the vacuum response is actually hidden in the Gaussian units.
In what follows, we use SI units only and the vacuum response is given by the product,
ε0χvac. Only the product of the two factors has physical significance and writing this as
two factors was a result of the historical development.

In a dielectric, it is customary to define the electric displacement D and the magnetic
field H as

D(r, t) = ε0E(r, t) + P(r, t) , (1)

H(r, t) =
1

μ0
B(r, t)− M(r, t) ,

where P is the polarization and M the magnetization induced by the external fields with r

and t denoting the position and time, respectively. In the literature, one can find the observa-
tion that D(r, t) and H(r, t) are the sum of two completely different physical quantities [28].
However, the authors do not share this view and interpret ε0E(r, t) and −B(r, t)/μ0 as
the polarization and magnetization of the vacuum, in this sense we are adding similar
quantities. This might appear preposterous in classical electromagnetism, but, as declared
in Section 1, the modern view [29] interprets that particle–antiparticle pairs are continu-
ally being created in a vacuum filled with the vacuum fluctuations. They live for a brief
period of time and then annihilate each other. The lifetime of such a virtual particle pair is
governed by its rest energy through the energy–time uncertainty principle [30,31],

ΔE Δτ � h̄ , (2)

where ΔE is the root-mean-square measure of energy nonconservation and Δτ the time
interval, during which this nonconservation is sustained. The creation of this virtual pair
requires a surplus energy of at least 2mc2

rel, where m is the mass of each partner (we stress
again that here crel is the limiting speed appearing in Lorentz transformations. After all, in
this paper, we want to calculate ε0 and μ0 based on the properties of the vacuum, and this
results then in a value of the speed of light based only on these properties of the vacuum. If
the result of the crude model here is found to be close to the known value of the speed of
light, this will be an indication of the relevance of the enough simple model).

Therefore, energy conservation must be violated by ΔE � 2mc2
rel. Equation (2) says

that the violation is not detectable in a period shorter than h̄/(2mc2
rel) (with h̄ the reduced

Planck’s constant), so virtual particles can survive about that long. However, nothing
can move faster than the relativistic speed limit, so the virtual pair must remain within a
distance d = h̄/(2mcrel); that is, a distance of order of the Compton wavelength,

λC =
h̄

mcrel
. (3)
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This also demonstrates that heavy pairs require a larger ΔE and thus their effect is
concentrated at smaller distances. For that reason, let us so far consider only electron–
positron pairs.

In the linear response, one expresses the polarization of matter, Pmat, in terms of the
corresponding matter susceptibility, χmat: Pmat(ω) = ε0χmat(ω)E(ω) (and, similarly, for
the magnetization) with ω the wave angular frequency. Whenever a medium is dispersive,
the linear response is nonlocal in time and integration over past times is required. How-
ever, the linear response is local in the frequency domain. Therefore, in order to account
for dispersion in the simplest way, let us express the linear response in the frequency
domain [32].

As noticed above, in Equation (1), the first term is expected to have an equivalent structure:

Pvac(ω) = ε0χvac(ω)E(ω) . (4)

The vacuum has no resonances and it is homogeneous. The conservation of momentum
prohibits the excitation of a virtual pair to a real pair in free space with a plane wave.
Far away from resonance, the process is allowed because of the quantum uncertainty
of the momentum. In contradistinction, a converging electromagnetic dipole wave may
excite real pairs in the vacuum [33]. So, under normal conditions, χvac has no temporal or
spatial frequency dependence and is considered a constant in classical electromagnetism.
Historically, as emphasized above, it was chosen to be unity and all the property of the
vacuum such as units and numerical value is put into ε0. Therefore, the familiar expression
for D is

D(ω) = ε0χvacE(ω) + ε0χmat(ω)E(ω) = ε0[1 + χmat(ω)]E(ω) . (5)

If the value of ε0 is determined by the structure of the vacuum, it should be possible
to calculate it by examining the (polarizing) interaction of photons introduced into the
vacuum as test particles [18], as sketched in Figure 1. The possibility that a charged pair
can form an atomic bound state (the electron–positron vacuum fluctuation in the lowest
energy level at −2mc2

rel that has zero angular momentum is called parapositronium, which
is a singlet spin state [34,35]), which can, thus, be well approximated by an oscillator, was
discussed by Ruark [36] and further elaborated by Wheeler [37].

B

E

Figure 1. Cartoon view of the particle-antiparticle (denoted by “+” and “−”) pairs continually
created in the vacuum. The arrows indicate the trajectories of the corresponding particles. See text
for more details.

These ideas have recently been readressed [38–41] to calculate ab initio ε0 by using
methods similar to those employed to determine the permittivity in a dielectric. As it is
known [42], when interacting with an electric field, an atom in its ground state interacts
with the electric field as if it were a harmonic oscillator. Here, we adopt the same strategy
to treat the virtual pairs composing the vacuum. This is a reasonable assumption as long
as deviations from the equilibrium under the action of an electric or magnetic field are
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tiny, as they are for the vacuum under normal conditions in a low-energy optics laboratory.
In this situation, one can do a Taylor expansion around the point of equilibrium and
the harmonic response will dominate. The only parameter needed is the charge of the
elementary particles and the effective frequency of the oscillator. The latter is given by the
‘spring constant’, i.e., the energy gap between the ground state of a virtual pair and first
excited level [25,38], where the particles are real. This gap is twice the rest-mass energy,
2mc2

rel, of one of the elementary particles of mass m. No other assumptions are required.
The harmonic oscillator assumption allows one to calculate both the induced electric

dipoles and magnetic dipoles [43], as sketched in the Appendix A. The only two remaining
ambiguities left are (i) whether there are charged elementary particles beyond the ones
accounted for in the standard model and (ii) the volume occupied by a single virtual pair
in the Dirac sea. According to the position variance of the ground state wave function it
should be of the order of the Compton wavelength cubed, but the precise value depends
on how dense these virtual pairs are packed.

Let us stress that any radiative or collisional damping is absent in the consideration
here as soon as vacuum fluctuations cannot radiate energy or lose energy in collisions
with other quanta, because, after these fluctuations vanish, they would permanently leave
behind energy, violating the principle of energy conservation [40].

The resulting electric dipole moment is then

℘ =
e2h̄2

2m3c4
rel

E . (6)

This is the time averaged value of a virtual dipole moment which comes and goes, but
it is induced by the external field. Consequently, all of these induced dipole moments are
in phase with the external field and add up.

Similarly, here, we use the quantum dynamics to calculate the magnetic moment
induced by a magnetic field. An external magnetic field applied to the vacuum induces
an electric field vortex that accelerates the virtual electron and positron in opposite direc-
tions [25]. This yields (see Appendix A):

m =
e2h̄2

2m3c2
rel

B . (7)

These are the microscopic dipole moments. Next, let us calculate the macroscopic
densities of these dipole moments. We start with the electric case; i.e., the polarization of
the vacuum as a dielectric. As mentioned above, the volume occupied by each of these
virtual dipoles should be of the order of λ3

C. As a result, the dipole moment density turns
out to be

P =
℘

λ3
C

λ3
C

V
=

e2

2h̄crel

λ3
C

V
E . (8)

The term dividing the Compton wavelength cubed and the volume is of order unity,
but no a precise value can be obtained, so, we keep showing this term. The quantity multi-
plying the field amplitude E plays the role of an effective vacuum permittivity. Interestingly,
since the mass drops out, different types of elementary particles having the same electric
charge contribute equally to the vacuum polarizability irrespective of their mass. Therefore,
one can write:

ε0 =
1

2h̄crel
∑
s

q2
s

λ3
C,s

Vs
, (9)

where the sum is over all elementary particles with charge qs. Summing over all known
elementary particles in the Standard Model and assuming the volume is the Compton
wavelength (of particle type s) cubed yields a value for ε0 which is 2.4 times lower. Consid-
ering the simplicity of the approach, it is surprising how close this rough estimate comes to
the experimental value of ε0. Alternatively, we can use the result to determine the volume
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per virtual particle pair, yielding V � 0.41λ3
C. Note, that here we furthermore assumed that

the ratio between the Compton wavelength cubed and the volume per pair is the same for
all different types of elementary particles, which seems reasonable.

One may ask whether the zero-point energy actually allows heavier particles to domi-
nate [44]. It has been suggested [45] that instead of a single type of particle pairs involved,
there is a Gaussian distribution of probabilities of the vacuum energy fluctuations, and
consequently a whole range of particle pairs are actually produced, with the center of mass
averaged to anywhere in between.

Next, let us estimate the vacuum magnetization. The calculation is straightforward
and the final result reads (see Appendix A):

1
μ0

=
crel
2h̄ ∑

s

q2
s

λ3
C,s

Vs
, (10)

The vacuum polarization, ε0E, is thus accompanied by vacuum magnetization, −B/μ0,
and the vacuum is paramagnetic. It is remarkable that in this crude model, the product μ0ε0
is indeed exactly equal to the inverse square of the limiting speed of Lorentz transformation,
crel, as required by Lorentz covariance. Let us notice that this result is independent of
the exact value of the volume per pair and of how many types of elementary particles
contribute to the summation over charges in Equations (9) and (10), underlining the general
role, played by the speed of light in physics, far beyond the field of optics.

3. Vacuum Polarization in QED

The virtual pairs discussed qualitatively in Section 2, can be well depicted in terms
of the time-honored Feynman diagrams. Figure 2 is such a representation of vacuum
polarization in the one-loop approximation. In the following we derive an expression for
χvac using the standard technique of QED (those interested in the final result without the
derivation, can go straight to Equation (21)).

Figure 2. Vacuum polarization in the one-loop approximation. The wavy lines represent an electro-
magnetic field (γ), while a vertex represents the interaction of the field with the fermions (electron–
positron pair, e−e+), represented by the loop.The arrows notify the momentum being opposite for
particle (electron) and antiparticle (positron). The resulting polarization is maximal for a free electro-
magnetic field, for which the angular frequency, ω = |k|c, with k the wave vector and c denoting the
speed of light.

QED typically starts with a Lorentz-invariant Lagrangian density that can be written as

LQED = LMaxwell + LDirac + Lint . (11)

Here, LMaxwell represents the free electromagnetic field, LDirac describes the fermions
and the interaction term reads:

Lint = −jμ Aμ , (12)

where jμ is the external current and Aμ = (Φ, A) is the electromagnetic four-potential
with Φ the scalar and A the vector potentials. The Greek letters denote four-dimensional
components and take the values 0 (time), 1, 2, and 3 (space). From this Lagrangian
density, the wave equations for the fields describing photons and fermions are then derived.
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These fields are quantized to permit the creation and annihilation of particles. Charge,
linear momentum, and angular momentum are conserved, so annihilation of a photon is
accompanied by creation of a particle-antiparticle pair, as illustrated in Figure 2.

An important point for the goal of this study is that the current induced in the vacuum
by the four-potential, Aμ, due to virtual pairs can be expressed as [46]

jμvac(k) = c2
relε0χe(k2)k2 Aμ(k) , (13)

where the Lorentz gauge is used here to simplify the equations.
Note that here, the reciprocal k-space is used. The linear response is represented by

the (electron–positron) vacuum susceptibility, χe(k2). Since this response must be Lorentz
invariant, it has to be a function of k2 = ω2/c2

rel − k2. The condition k2 = 0, describing a
freely propagating photon, is referred to as on-shellness in QED: a real on-shell photon
verifies then ω2 = k2c2

rel. However, in collisions and other situations where one has
nonpropagating fields, such as evanescent waves or near fields, k2 will typically not be
zero. The electron–positron contribution to χvac in free space will be χe.

In position space, still in the Lorentz gauge, Equation (13) becomes

jμvac = μ0

(
− 1

c2
rel

∂2

∂t2 +∇2

)
Aμ . (14)

If, now, one substitutes the fields, E = −∂A/∂t −∇Φ and B = ∇×A, and takes into ac-
count that, for the vacuum, D = ε0E and B = μ0H, one obtains the gauge invariant equation,

jvac =
∂D

∂t
−∇× H . (15)

Since it is generally true that in a dielectric, j = ∂P/∂t + ∇ × M, the jvac can be
immediately interpreted as the vacuum current of a medium with polarization D = ε0E and
magnetization H = B/μ0, as was noted above. In Equation (15), the vacuum magnetization
current is equal d but is opposite to the polarization current, therefore leading to jvac = 0.

By making use of the standard technique of Feynmann diagrams, one can show that,
at lowest perturbative order, the susceptibility can be expressed as follows [47]:

χe(k2, Λ) = 8πα
∫ 1

0
ds s(1 − s)

∫ Λ d3 p
(2π)3

[
p2 + (mcrel/h̄)2 + s(1 − s)k2

]−3/2
, (16)

where α = e2/(4πε0h̄crel) is the fine structure constant. The integral over the three-
momentum p, represents the contribution of a photon of wave vector k exciting an electron
with momentum p + sk and a positron with momentum −p + (1 − s)k. This process
conserves the three-momentum p, but not the energy. As discussed above, individual pairs
with quite high |p| do not contribute much because they are too ephemeral to polarize
much. However, there are so many states with large momentum that their net contribu-
tion diverges: the cutoff, Λ, is introduced just to avoid that problem. If one integrates
Equation (16) over momenta and expands the result in powers of 1/Λ, one obtains:

χe(k2, Λ) =
4α

π

∫ 1

0
ds s(1 − s)

[
ln
(

2h̄Λ
mcrel

)
− 1

2
ln

(
1 + s(1 − s)

h̄2k2

m2c2
rel

)]
. (17)

One can see that the susceptibility (17) diverges logarithmically in the Λ → ∞ limit.
This leads to a result that seems to be physically unreasonable: the photon mass is infi-
nite [48], and the contribution of the virtual electron–positron pairs to the vacuum po-
larization diverges. However, on the other hand, this diverging vacuum susceptibility
makes sense because of the screening of a point charge in a dielectric [46]. The observable,
or effective charge, positioned in the vacuum is given by e2

eff = e2
bare/χvac(k2, Λ). Two

arguments can be made to look at the term “squared elementary charge divided by the
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susceptibility”: first, this is the combination in which the quantities appear in the formula
for α, and second, what counts is the interaction energy, which is a probe charge e times the
potential, eΦ(r), resulting in the same combination.

In a way, for k close to zero, the infinitely large bare charge, ebare, of the electron and
the infinitely large vacuum susceptibility cancel each other and yield a finite effective
charge [47]. However, dividing infinities is somehow cumbersome [4]. Alternatively, one
can start with the so-called ‘regularized’ susceptibility and an observable screened charge
‘e’. In the following, the regularized quantities are indicated by a caret: e2

eff = e2/χ̂vac(k2).
Far away from the point charge, for k2 = 0, the regularized susceptibility has the finite
observable value ‘e’, and as one moves towards the point charge the susceptibility will
approach zero, recovering the infinitely large bare charge. However, in the region of interest
one deals with finite values only. The difference between the two approaches is where
one hinges the k2-dependence. In the first approach, one hinges the k2-dependence at the
bare charge, but this makes difficult to carry out any calculation. Therefore, Gottfried and
Weisskopf [4] assumed a very large but not infinitely large charge and a very small but
not zero diameter of the charge distribution. The disadvantage is that as the calculation
moves to an even larger charge and a correspondingly smaller diameter, the resulting
susceptibility, χe(k2), changes drastically in the region far away from the bare charge in
order for the increase of the charge at the origin to be compensated. On the other hand,
when one hinges calculations to a region in space far enough away from the bare charge,
then one deals with finite numbers and functions, and nothing has to be readjusted further
away from the bare charge as the bare charge is approaching. So, here, we prefer the
second approach.

The standard procedure of dealing with such a divergence is to use the experimentally
observed value of the susceptibility at k2 = 0 and use Equation (17) to calculate the k2-
dependence by subtracting two diverging terms to obtain a finite value. Thus, one expresses
the susceptibility relative to its regularized on-shell value, χ̂e(0), i.e., the value determined
experimentally,

χ̂e(k2) ≡ χ̂e(0) + lim
Λ→∞

[χe(k2, Λ)− χe(0, Λ)] (18)

= χ̂e(0)−
2α

π

∫ 1

0
ds s(1 − s) ln

[
1 + s(1 − s)

h̄2k2

m2c2
rel

]
,

as the relevant quantity. This is an archetypal example of a regularization of the theory.
The remaining integral can be readily performed, leading to a cumbersome analyt-

ical expression [49,50]. However, in the interesting limit h̄2∣∣k2
∣∣ � m2

sc2
rel, Equation (18)

simplifies to

χ̂e(k2) = χ̂e(0)−
α

3π
ln

(
h̄2k2

Am2c2
rel

)
, (19)

where A = exp(5/3).
As in a standard dielectric, the linear response of the electron–positron vacuum is

given by P̂e = ε0χ̂e(k2)E. That is, in reciprocal k-space:

D(k) = ε0(k2)E(k) , H(k) = c2
relε0(k2)B(k) . (20)

This is quite similar to the classical electromagnetism, where D = ε0E and H = B/μ0,
but now ε0(k2) = ε0 χ̂e(k2) ≤ ε0 and 1/μ0(k2) = 1/[μ0χ̂e(k2)]. Given the α in the numera-
tor, Equation (19) is a statement about the product ε0χ̂e(k2), not about the separate factors.

Electrons and positrons are not the only types of charged particles. To obtain the
susceptibility contributed by other kinds of spin-1/2 particles, one just needs to replace
m in the previous expressions and to adjust for the electric charge, q, hidden in α, in case
q2 �= e2. Charged particles with spin zero also entail replacing the factor of s(1 − s) in the
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integral (17) by (1 − 2s2)/8 [47]. Summing up over all elementary particle types yields the
permittivity of the vacuum: ε0 = ε0 ∑s χ̂s(0) and χ̂vac(0) = ∑s χ̂s(0) = 1.

In the matter-field coupling constant, α, here, we hold e constant and incorporate the k-
dependence into ε0(k2). Since ε0(k2)−1 contains all powers of e2, it incorporates summation
over all numbers of pairs. When restricted to an energy scale Emax, the sum is over all
fermions of mass less than Emax/c2

rel [51–53]. Considering e2
eff = e2/(1 + χ̂e(k2)− χ̂e(0)) is

in most ways equivalent to running of the square of effective charge in conventional QED,
but the physical interpretation is different.

To obtain χ̂vac(k2), one has to sum up over all particles, all of them contribute to the
constant value at k = 0, summing up to 1, but for small k the running is dominated by
the electron–positron vacuum because they have the largest Compton wavelength. So, in
the limit of small k, one has: χ̂vac(k2) = 1 + χ̂e(k2)− χ̂e(0). In a dielectric, it is possible
to have a negative induced polarization, (χmat < 0), when exciting above the resonance
of the medium, but e2

eff < 0 makes no physical sense, because in the vacuum there is no
such resonance.

The dielectric properties of vacuum differ from those of a material medium in two es-
sential points: ln(k2)-dependence replaces the usual ω-dependence and Lorentz invariance
requires that ε0(k2)μ0(k2) = 1/c2

rel. The speed crel is an universal constant, whereas χe(k2)
and, thus, also the coupling constant, α(k2), runs. On the photon mass shell, k2 = 0, so a
free photon always sees ε0 and there is no running in this case.

Finally, we argue here that the straightforward back-of-the-envelope calculation
sketched in Section 2, is consistent with QED. Actually, the loop in Figure 2 can be thought
of as a single polarizable atom with center-of-mass momentum h̄k. If, for simplicity,
k = 0 is set, the computation of the Feynman diagram involves integrals of the form∫

d4q [q2 + mc/h̄]−2, which entails an exponential decay, exp[−(mc/h̄)|x|], in real space
(x). Therefore, the “radius” of such a virtual atom is of order λC. Alltogether, the above
suggests that virtual pairs can be modelled as oscillating dipoles with frequency mc2

rel/h̄
and volume of order λ3

C.
Indeed, at large k2 and to second order in perturbation theory, Equation (19) gives:

ε0(k2) � ε0 −
1

12π2h̄c ∑
s

q2
s ln

(
h̄2k2

m2
sc2

rel

)
(21)

where a summation over all possible pairs is explicitly included. It is known [54] that at
high-momentum (or energy) scale, the coupling constant, α(k2), in QED becomes infinity.
In physical terms, charge screening can make the “renormalized” charge to adopt the finite
value observed in the experiment. This is often referred to as ‘triviality’ [48]. If ΛL is the
value of that momentum, at which ε0(k2) = 0 and, equivalently, at which the fine structure
constant goes to infinity, usually called the Landau pole [55], then one obtains [27]:

ε0 =
1

12π2h̄crel
∑
s

q2
s ln

(
h̄2Λ2

L
m2

sc2
rel

)
. (22)

While in Equation (21) the dominant term is the one that cannot be calculated, this
ambiguity is shifted in Equation (22) to the momentum value, at which the Landau pole is
located. This allows us to rewrite Equation (21) as

ε0(k2) � 1
12π2h̄c ∑

s

q2
s ln

(
Λ2

L
k2

)
. (23)

Let us note that this equation is only valid for large enough k.
Equation (22) relates ε0 to ΛL. Using the experimentally determined value for ε0,

assuming the Standard Model of QCD and summing up over all elementary particles
from leptons to the W-boson with their respective charges and masses, one finds ΛLh̄/c �
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6 × 1030 GeV/c2, which is much beyond the Planck mass and is probably an unrealistically
high value. Alternatively, one could assume the Minimal Super-symmetric Standard Model
(MSSM), which doubles the elementary particles and thus also the sum in Equation (22).
This brings ΛL down significantly to the value ΛLh̄/crel � 1.6 × 1015 GeV/c2, which is
close to the momentum range, where the coupling constants are supposed to become
equal. Let us note that the QED calculations referred to here are based on the one-loop
approximation (see Figure 2) and, at large momenta near the Landau pole, multiple loop
contributions will be significant. In that sense the concept of the Landau momentum (or
Landau pole) based on the one-loop approximation has limited value. Nevertheless, it well
demonstrates the concept.

If one compares the terms in the sum (22) with the ones in Equation (9), one by one,
one finds that the two equations, provided that

Vs =
h̄3

m3
s c3

rel

6π2

ln
(

h̄2Λ2
L

m2
sc2

rel

) . (24)

To fulfill Equation (24) one would have to give up the assumption that the ratio
of the Compton wavelength cubed and the volume occupied by a single virtual pair is
independent of the type of elementary particle. This may not be reasonable. However,
instead of doing the detailed evaluation of the sum in Equation (22), we can perform here
some estimations: the masses ms differ by a factor 106, but this factor is diminished by
the logarithmic function. As a result, the logarithmic term is almost constant for large
enough cutoff ΛL and, to some approximation, can be taken out of the sum. The term
ln[h̄2Λ2

L/(m2
screl2)] varies only little when assuming the Standard Model and its average is

144. If, as an approximation, all logarithmic terms in the sum are replaced by 144, then one
obtains the condition that〈

Vs

h̄3 m3
s c3

rel

〉
s

=
6π2〈

ln
(

h̄2Λ2
L

m2
sc2

rel

)〉
s

= 0.41. (25)

So, one gets the correct value by adjusting the volume per virtual pair in the model
discussed here to a reasonable value close to the Compton wavelength cubed, or by
choosing the right value for the Landau pole, ΛL.

Let us stress that in the model here, no divergence appears, the only uncertainty is
associated with the volume occupied by each virtual pair. The position variance of the
harmonic oscillator ground state wave function gives a crude value for the volume per
pair in the right ball park, but it does not give a precise value. There is a different way
to estimate this volume in momentum space: in analogy to the derivation of Planck’s
blackbody radiation formula, one can calculate the number of modes (i. e., standing waves)
of the particle’s de Broglie wave pattern in a given larger volume, integrate over momentum
(inversely proportional to the de Broglie wavelength) and divide the larger volume by
the the number of modes obtained. This then determines the volume per mode or per
particle-antiparticle pair. However, this integral diverges and one would obtain Vs = 0.
A crude cure would be to introduce a relativistic cutoff which will also give a volume
per pair of the order of the particle Compton wavelength cubed. Staying in configuration
space as opposed to momentum space, one seems to avoid this divergence, as suggested
by Fried and Gabellini [56], who discuss the advantage of performing QED calculation in
configuration space. It remains to find if a more precise value for the volume per pair can
be derived using a configuration-space description.

The standard approach in QED is to use plane waves to describe the relative motion
of the virtual pairs. In the center of mass reference frame, if the electron has momentum
h̄k, then the positron has momentum −h̄k. However, the uncertainty principle requires
that the lifetime of the pair is quite short, so the distance travelled d is comparably small.
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The plane-wave basis seems not suited well enough in order to describe this situation:
convergence is quite poor, and the divergences arise. What would be needed is a basis
whose ground and first few excited states are of comparable size to d. The merit of the
oscillator model is to provide a suitable basis for description of the relative motion in these
short lived states.

4. Conclusions

The vacuum permittivity has so far been a purely experimental number. Here, we
have worked out a simple enough dielectric model—based just on treating the individual
particle–antiparticle pairs as three-dimensional harmonic oscillators, which approximate
small deviations from the equilibrium induced by an external electromagnetic field—to
point at the intimate relationship between the properties of the quantum vacuum and
the constants in Maxwell’s equations. From this picture, the vacuum is considered to be
understood as an effective medium.

The authors have a hope that, with all the above arguments, the conception that ε0
and μ0 are merely measurement system constants, without any physical relevance, will be
moderated in physical courses and textbooks.
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Appendix A. Vacuum Fluctuations as Harmonic Oscillators

As discussed in the main text (see Equation (5)), a charged particle-antiparticle pair
that results from a fluctuation of the Dirac field will appear in the vacuum as a transient
atom. During the time while such an atom exists, it can interact with a photon. For the
simplest case, the electron–positron vacuum fluctuation in the lowest energy level (at
−2mc2

rel) that has zero angular momentum is called parapositronium, which is a singlet
spin state. However, an atom in its ground state interacts with the electric field as if it
were a harmonic oscillator with the first two energy levels separated by twice the rest-mass
energy, 2mc2

rel, of one of the elementary particles of mass m. Here, we use the standard
wave functions of the quantized harmonic oscillator. Recall that a harmonic oscillator
of two equal moving masses m is like a harmonic oscillator with one moving particle of
reduced mass m/2.

The virtual pair interacts with an external electric field according to the Hamiltonian
Ĥint = −℘ · E. For the full description of the system, three harmonic oscillators are used,
one each for the three Cartesian coordinates. In the electric case, we assume a linearly
polarized external electric field, which induces a one-dimensional dipole. If one makes the
two-level approximation, so that only transitions between the ground (ψ0) and the first
excited (ψ1) states of the oscillator are relevant, one finds that

℘max = e〈ψ1|x̂|ψ0〉, (A1)
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Using the explicit form of these standard harmonic oscillator wave functions, one
immediately obtains the maximum possible electric dipole moment,

℘max =
eh̄√

2mcrel
. (A2)

According to the standard treatment of a two-level system in an external field [43], the
torque vector for this problem is given by Ω = (2〈ψ1|Ĥint|ψ0〉/h̄, 0, Δω)�, where the
subscript � denotes the transpose. The time-averaged induced dipole moment turns out
to be

℘ =
Ωx

Ωz
℘max =

2℘maxE
h̄Δω

℘max =
e2h̄2

2m3c4
rel

E , (A3)

which is actually Equation (6).
Let us now turn to the induced magnetic dipole, with interaction Hamiltonian,

Ĥint = −m · B. The definition of the magnetic moment reads [57]: m = 1
2 er × ṙ, where the

dot denotes time derivative. If, for definiteness, the magnetic field is considered along the z
axis, then m is along the z axis with modulus m = 1

2 e(xẏ − ẋy) = 1
2 eϕ̇(x2 − y2) and ϕ the

polar angle. A magnetic dipole results from a superposition of states of the same parity.
Therefore, using now the full three-dimensional harmonic oscillator with its product wave
functions, the maximum possible magnetic dipole moment is

mmax = 1
2 eϕ̇〈ψ000|x̂2 − ŷ2| 1√

2
(ψ200 − ψ020)〉. (A4)

Using again the explicit harmonic oscillator wave functions, one obtains:

mmax = − 1
2 eϕ̇

h̄2

m2c2
rel

. (A5)

Applying again the two-level atom dynamics, but now between levels 0 and 2, yields
the induced magnetic dipole moment:

m =
Ωx

Ωz
mmax � 2mmaxB

h̄Δω
mmax =

e2h̄2

2m3c2
rel

B , (A6)

as found in Equation (7).
Note that the harmonic oscillator approximation is valid for all physical systems in

equilibrium, as long as the departure from the equilibrium point is small enough, which
is the case here. The point that the excited state spectrum differs greatly is actually not
essential under this condition. What is important is the effective ‘spring’ constant, which is
given by the spacing between the ground and the first excited states.
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to Hydrogen
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Abstract: The position probability density function is calculated for a classical electric dipole
harmonic oscillator bathed in zero-point plus Planckian electromagnetic fields, as considered in the
physical theory of stochastic electrodynamics (SED). The calculations are carried out via two new
methods. They start from a general probability density expression involving the formal integration
over all probabilistic values of the Fourier coefficients describing the stochastic radiation fields. The
first approach explicitly carries out all these integrations; the second approach shows that this general
probability density expression satisfies a partial differential equation that is readily solved. After
carrying out these two fairly long analyses and contrasting them, some examples are provided
for extending this approach to quantities other than position, such as the joint probability density
distribution for positions at different times, and for position and momentum. This article concludes
by discussing the application of this general probability density expression to a system of great
interest in SED, namely, the classical model of hydrogen.

Keywords: stochastic electrodynamics; classical physical dynamics; hydrogen; harmonic oscillator;
nonlinear dynamics

1. Introduction

This paper involves the physics of stochastic electrodynamics (SED) and the explo-
ration of a new approach for analyzing probabilities associated with charged particle
motion due to the interaction with stochastic electromagnetic radiation. SED involves the
movement of classical charged point particles while interacting with a specific form of
fluctuating classical electromagnetic radiation. Despite SED being completely classical,
agreement has been shown between SED and quantum mechanics (QM) and even quantum
electrodynamics (QED), under an interesting range of conditions. The “classical physics”
aspects of SED consist of electromagnetic radiation that obeys Maxwell’s classical, micro-
scopic electromagnetic equations, while the classical charged particles obey the relativistic
Lorentz–Dirac classical equation of motion [1,2]. The physical predictions of SED that
agree with QM and QED hold for classical systems with a linear differential equation of
motion. A very good demonstration of this point is Ref. [3] for the simple harmonic
oscillator (SHO). Even the complicated fully retarded van der Waals forces between atoms
modelled by electric dipole oscillators fulfill this agreement, as do Casimir forces between
continuum materials; this agreement holds in both cases for all temperature conditions.
Interestingly enough, at one point many who have studied and explored SED thought that
SED might form the basis for QM and QED. However, complications have since been found
to persuade most researchers that this is not the case; for more details, see Refs. [3–8].

The disagreement between SED and QM for all arbitrary “atomic systems” has some
bearing for motivating the investigation in this paper. An interesting point to explain
why all “atomic systems” covered by QM do not also hold for SED was first made and
analyzed by Boyer [9] and subsequently followed up in a different way by the present
author [10]. The point was this: the binding force for all atomic systems in nature is due to
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the Coulombic force. Hence, not just any binding force inserted into the SED description,
other than the Coulombic-based one, should be expected to share agreement with real
atomic systems in nature; moreover, SED should not be expected to agree with nonphysical
“atomic systems” containing arbitrary binding forces in QM. The difficulty here is that
such Coulombic-based systems are inherently nonlinear for the equation of motion for the
classical electrons interacting with the classical nucleus; hence, such systems are far more
complicated to analyze in SED than when the differential equation of motion is linear. More
about this point is discussed in the concluding section of Section 4, but this forms much of
the motivation in this study for examining a new way of calculating probabilities in SED.

Key aspects of SED concern classical charged particles interacting with classical elec-
tromagnetic radiation at some temperature T, with the recognition that at T = 0, the
radiation is nonzero, with particular properties that enable a statistical equilibrium between
charged particles and radiation. Some of the specific properties of classical electromagnetic
zero-point (ZP) radiation at T = 0 include that the radiation frequency distribution must
be Lorentz invariant [11,12] and the fundamental definition of T = 0 must be obeyed by
ZP radiation [13–15]. In SED, the T = 0 stochastic radiation is referred to as ZP radiation.
The stochastic radiation for T ≥ 0 is referred here as “ZP plus Planckian” (ZPP) radiation.

This study involves exploring the use of the following expression:

P3x(x) =

∞∫
−∞

dA1 · · ·
∞∫

−∞

dAN · · ·
∞∫

−∞

dB1 · · ·
∞∫

−∞

dBN

× PF,A-B(A1, · · · , AN , B1, · · · , BN)δ
3[x − xA1,··· ,BN (t)

]
, (1)

for the probability density of finding a point charged particle at position x, in the steady
state condition. The restriction to “steady state” can be removed, but that results in a
time dependence P3x(x, t), which is not treated here. Also, beside the above expression for
P3x(x), such as those for the energy and momentum, are discussed in Section 2.2.

The “3x” notation in Equation (1) indicates that the function P3x(x) refers to the
position vector point in 3D space, while the “F,A-B” notation refers to the probability
density function for the Fourier coefficients of the electromagnetic radiation described
next. Specifically, A1, · · · , AN , B1, · · · , BN in Equation (1) represent the coefficients in
the Fourier expression for the electric and magnetic fields that the particle is “immersed”
within. For more details about these Fourier coefficients, see Refs. [4,16]; however, these
coefficients are also explained in Section 2.1 when expressions for the radiation electro-
magnetic fields are introduced. At the end of the calculations, N → ∞ is imposed. Finally,
xA1,··· ,BN ···(t) in Equation (1) is the steady state trajectory of the particle and is a function of
A1, · · · , AN , B1, · · · , BN , while δ3[x − xA1,··· ,BN (t)

]
is the Dirac delta function in 3D.

All “A” and “B” coefficients are real quantities and are integrated from −∞ to +∞.
Their values control the steady state solution for the particle’s trajectory of xA1,··· ,BN (t).
The probability density of these fields, PF,A-B(A1, · · · , AN , · · · , BN) dictates their contribu-
tion to how δ3[x − xA1,··· ,BN (t)

]
“selects” the contribution to the final particle probability

density P3x(x).
Two solution methods are examined in this paper. In Section 2.1, a slight variation to

Equation (1) is used to fully evaluate the analytic probability density P1x(x) for the position
of a one-dimensional (1D) SHO. Here, each Fourier coefficient is explicitly integrated over.
In Section 2.2, a few other examples using expressions similar to Equation (1) are also
discussed for the 1D and 3D SHOs, including the particle’s joint probability densities
of Px,x(x1, t1; x2, t2) and P3x,3p(x, p), where p is the particle’s momentum, as well as the
probability density for the kinetic plus potential energy of the oscillator.

The remainder of this paper has two more Sections. In Section 3, a second method,
different from the direct integration method in Section 2.1, is described for deducing the
analytic expression for P1x(x). This second method uses a partial differential equation
(PDE) approach. Finally, Section 4 provides some concluding remarks, including a dis-
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cussion of generalizing this study to more complicated systems, in particular the classical
hydrogen atom.

2. Calculating Analytic SHO Probability Density Functions from Initial
General Expression

2.1. Direct Integration Method for Analytic Expression of SHO Probability Density, P1x(x)
The use of probability density expressions like Equation (1) has been explored in

Refs. [17,18], but mainly for the stochastic electric field values of the T ≥ 0 radiation fields.
In this paper, the following is analyzed: the stochastic properties of a classical charged point
electron, bound by an SHO potential and bathed in stochastic classical electromagnetic
ZPP radiation.

To start, let us describe the radiation fields by considering a large region of space,
where “large” means as compared to the size of the space that any charged particles,
“bound” by a classical potential, occupy via traversing within the confines of this classical
potential. Let us consider a rectangular parallelepiped region that the radiation fields are
confined within, where the rectangular parallelepiped has dimensions in the space of Lx,
Ly, and Lz, along the x, y, and z axes. Although other shapes can be considered (see, e.g.,
Ref. [19]), the rectangular parallelepiped offers mathematical simplicity, especially since at
the end of the calculations, Lx, Ly, and Lz are typically taken in the limit of infinite in size.

In what follows, the ZP or ZPP radiation fields are represented as an infinite sum of
plane waves, with periodic boundary conditions (bcs) imposed. This imposition enables
the use of Fourier series to describe the fields. For a large region of space, this periodicity
does not effect the physical analysis, but it does simplify the subsequent mathematical
analysis. Hence, the following sum of plane waves is used for the “free” electric E(x, t)
and magnetic B(x, t) radiation fields in this large parallelepiped volume [4] (see p. 76,
Equations (3.65) and (3.66) in Ref. [4]):

Erad(x, t) =
1(

LxLyLz
)1/2

∞

∑
nx ,ny ,nz=−∞

∑
λ=1,2

ε̂kn ,λ

[
Akn ,λ cos(kn · x−ωnt)
+Bkn ,λ sin(kn · x−ωnt)

]
, (2)

Brad(x, t) =
1(

LxLyLz
)1/2

∞

∑
nx ,ny ,nz=−∞

∑
λ=1,2

(
k̂n×ε̂kn ,λ

)[ Akn ,λ cos(kn · x−ωnt)
+Bkn ,λ sin(kn · x−ωnt)

]
. (3)

Here,

kn =
2πnx

Lx
x̂+

2πny

Ly
ŷ+

2πnz

Lz
ẑ , (4)

and nx, ny, and nz are integers. Moreover, ωn = c|kn|, kn · ε̂kn ,λ = kn · ε̂kn ,λ′ = 0, and
ε̂kn ,λ · ε̂kn ,λ′ = 0 for λ �= λ′, where λ and λ′ indicate the linear polarization direction,
and c denotes the speed of light. Here, λ and λ′ are essentially indices that take on only
two values, so each might be represented by the values 1 or 2. Moreover, k̂n = kn/|kn|;
similarly, all other vectors with a hat are meant to be unit vectors, and all quantities in bold
are vectors.

It should be noted that one can show, using the free space Maxwell’s equations, that
Equations (2) and (3) satisfy the wave equations of ∇2E(x, t) = 1

c2
∂2

∂t2 E(x, t) and ∇2B(x, t) =
1
c2

∂2

∂t2 B(x, t). Moreover, the presence of ε̂kn ,λ and
(

k̂n×ε̂kn ,λ

)
in Equations (2) and (3), plus

the cited relationships of kn · ε̂kn ,λ = kn · ε̂kn ,λ′ = 0, and ε̂kn ,λ · ε̂kn ,λ′ = 0 for λ �= λ′, enable
all four free space Maxwell’s equations to be satisfied.

In SED, the stochastic nature of the radiation fields in Equations (2) and (3) arises
from the probability distribution of the Fourier coefficients A1, · · · , AN , B1, · · · , BN over
a large ensemble of equally sized space regions, which in the case considered here has
dimensions Lx, Ly, Lz. The fields within the ensemble of space regions are characterized
by the temperature T ≥ 0; consequently, the Fourier coefficients will have a probabilistic
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distribution over the ensemble. For each member of the ensemble, the Fourier coefficients
are fixed; only when examining each cavity in the ensemble will the Fourier coefficients be
different and follow a probabilistic distribution in values.

Although this description is followed in SED, this basic behavior goes back to Planck
in the first half of Planck’s major treatise [20] and later Einstein and Hopf [21,22] (see
English translations in Refs. [23,24], respectively).The main difference with this much older
studies and SED is that in SED the assumption is not made that the radiation fields fall to
zero at T = 0.

Here, a classical charged point particle, with charge, q, is considered oscillating in one
dimension, namely, the x̂ direction, constrained along the x̂ direction by a SHO potential,
1
2 mω2

0x2, giving rise to a binding force, −mω2
0x(t), along the x̂ direction. If one imagines

a sphere of uniform charge density and net charge −q that the +q point charge oscillates
within, then the SHO force acting on the +q charge can be pictured as originating in this
way. This neutral system will look like an electric dipole oscillator at distances far from the
oscillator system.

As for the oscillating +q charge, one can describe its motion using the nonrelativistic
approximation of the Lorentz–Dirac equation:

mẍ(t) = −mω2
0x(t) + mΓ

...
x (t)+qErad,x(x = 0, t) , (5)

where Γ = 2
3

q2

mc3 , and mΓ
...
x is the nonrelativistic expression for the radiation reaction for

a charged point particle of mass m and charge q. Erad,x is the net electric field in the x̂

direction due to the sum of the radiation fields, assuming them to be either ZP or ZPP. The
reason for Erad,x(x = 0, t) is that the dipole approximation is being made when evaluating
the electric field component of the Lorentz force. The magnetic field component of the
Lorentz force is assumed to be much smaller in magnitude than qErad,x(x = 0, t) and is
ignored here.

Finally, a common approximation to the weak “force” of mΓ
...
x (t), due to the small

magnitude of Γ, is first that mẍ ≈ −mω2
0x, or ẍ ≈ −ω2

0x, so that

...
x =

d
dt

ẍ ≈ d
dt

(
−ω2

0x
)
= −ω2

0 ẋ . (6)

After dividing through by m, Equation (5) becomes:

ẍ(t) = −ω2
0x(t)− Γω2

0 ẋ(t) +
q
m

Erad,x(x = 0, t) . (7)

Using Equation (7) and the properties of the ZP and ZPP radiation fields, Boyer
showed in Ref. [3] that a detailed agreement exists between SED versus QM and QED, for
the stochastic properties of this SHO system, for T ≥ 0.

Rewriting Equation (2) in the dipole approximation,

Erad,x(x = 0, t) =
1(

LxLyLz
)1/2 ∑

p

(
x̂ · ε̂p

)[
Ap cos

(
ωpt

)
− Bp sin

(
ωpt

)]
=

1(
LxLyLz

)1/2 ∑
p

(
x̂ · ε̂p

)
Re
[(

Ap + iBp
)
eiωpt

]
, (8)

where the sum over the index p means the full sum over nx, ny, nz and λ in Equation (2),
and the second line in Equation (8) arises due to the A and B coefficients being real.

The steady state particular solution to Equation (7) can be shown to be

xss(t) =
(q/m)√
LxLyLz

∑
p

(
x̂ · ε̂p

)
Re

⎡⎣ eiωpt(Ap + iBp
)(

−ω2
p + ω2

0 + iΓωpω2
0

)
⎤⎦ , (9)
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as can be checked by substituting Equation (9) into Equation (5) and by looking at times
large enough that the homogeneous solution dies out.

Let us relabel xss(t) as xA1,··· ,BN (t), to emphasize the dependence on the Fourier
coefficients, as in Equation (1). Moreover, to help make better use of Equation (9), let us
make the following definitions:

xA,p(t) ≡
(q/m)√
LxLyLz

(
x̂ · ε̂p

)
Ap Re

[
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

]
(10)

and

xB,p(t) ≡
(q/m)√
LxLyLz

(
x̂ · ε̂p

)
Bp Re

[
ieiωpt

−ω2
p + ω2

0 + iΓωpω2
0

]

= − (q/m)√
LxLyLz

(
x̂ · ε̂p

)
Bp Im

[
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

]
, (11)

Simplifying further, let us define x′A,p(t) and x′B,p(t) via:

xA,p(t) ≡ Apx′A,p(t) (12)

and
xB,p(t) ≡ Bpx′B,p(t) . (13)

In SED, the Fourier coefficients A1, · · · , AN , B1, · · · , BN are assumed to be independent
random variables with Gaussian probability density distribution,

PF
(

Ap
)
=

1√
2π
(

σA
p

)2
exp

(
−

A2
p

2
(
σp
)2

)
. (14)

The same distribution holds for the Fourier coefficient Bp. The label “F” is added to
specify that this probability density function PF refers to the Fourier coefficients. Moreover,
σp depends on kn as in Equation (4), as well as the temperature T. This dependence has
been studied considerably in SED. In particular, the functional form of σp at T = 0 is a
cornerstone for SED and is expressed by [σ(ωn, T = 0)]2 = 2πh̄ωnwhere h̄ is the Planck’s
reduced constant. It is this functional form at T = 0 that was referred to in Section 1
and that is deduced first via the imposition of Lorentz invariance by Marshall [11] and
Boyer [12], and much later by the author by imposing the thermodynamic definition of
T = 0 [13–15].

In general, for T ≥ 0,

σp → [σ(ωn, T)]2 = 2πh̄ωn +
4πh̄ωn

exp
(

h̄ωn
kBT

)
− 1

= 2πh̄ωn coth
(

h̄ωn

2kBT

)
, (15)

where ωn = c|kn|.
Replacing δ3[x − xA1,··· ,BN (t)

]
in Equation (1) with the 1D Dirac delta function of

1
2π

∞∫
−∞

dseis(x−xA1,··· ,BN (t)) ,
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and realizing that PF,A-B(A1, · · · , AN , B1, · · · , BN) equals PF(A1) · · · PF(AN)PF(B1) · · ·
PF(BN) due to the random variable independence of these Fourier coefficients, then the 1D
position probability density function for this 1D SHO is

P1x(x)

=

∞∫
−∞

dA1 · · ·
∞∫

−∞

dAN · · ·
∞∫

−∞

dB1 · · ·
∞∫

−∞

dBN PF,A-B(A1, · · · , AN , B1, · · · , BN)δ
[
x − xA1,··· ,BN (t)

]

=

∞∫
−∞

ds
∞∫

−∞

dA1 · · ·
∞∫

−∞

dBN
1

2π
eis
(

x−xA1,··· ,BN
(t)
)

× 1√
2π(σ1)

2
exp

(
− A2

1
2σ2

1

)
· · · 1√

2π(σN)
2

exp

(
− B2

N
2σ2

N

)

=
1

2π

1
2πσ2

1
· · · 1

2πσ2
N

∞∫
−∞

dseisx

×
∞∫

−∞

dA1 exp

(
− A2

1
2σ2

1
− isA1x′A,1

)
· · ·

∞∫
−∞

dBN exp

(
− B2

N
2σ2

N
− isBN x′B,N

)
. (16)

The evaluation of Equation (16) can be conducted by completing squares. Specifically:

∞∫
−∞

dAp exp

(
−

A2
p

2σ2
p
− isApx′A,p

)

=

∞∫
−∞

dAp exp

⎡⎣−
(

A2
p + 2isApx′A,p σ2

p

)
2σ2

p

⎤⎦

=

∞∫
−∞

dAp exp

⎧⎪⎪⎨⎪⎪⎩−

[
A2

p + 2isApx′A,p σ2
p − s2

(
x′A,p

)2
σ4

p

]
2σ2

p
−

s2
(

x′A,p

)2
σ4

p

2σ2
p

⎫⎪⎪⎬⎪⎪⎭
= exp

⎡⎢⎣− s2
(

x′A,p

)2
σ2

p

2

⎤⎥⎦ ∞∫
−∞

dAp exp

⎧⎪⎨⎪⎩−

(
Ap + isx′A,p σ2

p

)2

2σ2
p

⎫⎪⎬⎪⎭
= exp

⎡⎢⎣− s2
(

x′A,p

)2
σ2

p

2

⎤⎥⎦√2πσ2
p . (17)

The same holds true for the B terms.
Hence, from Equations (16) and (17):

P1x(x) =
1

2π

∞∫
−∞

dseisx

⎧⎪⎨⎪⎩exp

⎡⎢⎣− s2
(

x′A,1

)2
σ2

1

2

⎤⎥⎦ · · · exp

⎡⎢⎣− s2
(

x′
A,N

)2
σ2

N

2

⎤⎥⎦
⎫⎪⎬⎪⎭

×

⎧⎪⎨⎪⎩exp

⎡⎢⎣− s2
(

x′B,1

)2
σ2

1

2

⎤⎥⎦ · · · exp

⎡⎢⎣− s2
(

x′
B,N

)2
σ2

N

2

⎤⎥⎦
⎫⎪⎬⎪⎭

=
1

2π

∞∫
−∞

ds exp

[
isx − s2

2 ∑
p

[(
x′A,p σp

)2
+
(

x′B,p σp

)2
]]

. (18)
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To better identify the significance of this expression, let us calculate

〈[
xA1,··· ,BN (t)

]2
〉
=
〈
[xss(t)]

2
〉
=

〈⎧⎨⎩ (q/m)√
Lx Ly Lz

∑
p

(
x̂ · ε̂p

)
Re

⎡⎣ eiωpt(Ap + iBp
)(

−ω2
p + ω2

0 + iΓωpω2
0

)
⎤⎦⎫⎬⎭

2〉
, (19)

where the angle brackets mean that the ensemble average is to be taken. Let us impose that

〈Akn ,λ〉 = 〈Bkn ,λ〉 = 0 , (20)

from Equation (14), which also holds for the Bkn ,λ variables, and also impose the assumption
of independent random variables,〈

Akn ,λBkn′ ,λ
′
〉
= 0 , (21)

and: 〈
Akn ,λ Akn′ ,λ

′
〉
=
〈

Bkn ,λBkn′ ,λ
′
〉
= 0 , if n �= n′ or λ �= λ′ , (22)

while
〈Akn ,λ Akn ,λ〉 = 〈Bkn ,λBkn ,λ〉 = [σ(ωn, T)]2 , (23)

are assumed to be functions of the frequency of the radiation and of the temperature T,
which were previously labelled as σ2

p .
Continuing with the evaluation of Equation (19), let us first note that:

xss(t) =
(q/m)√
LxLyLz

∑
p

(
x̂ · ε̂p

)⎧⎪⎪⎨⎪⎪⎩
Ap Re

[
eiωpt

(−ω2
p+ω2

0+iΓωpω2
0)

]
−Bp Im

[
eiωpt

(−ω2
p+ω2

0+iΓωpω2
0)

]
⎫⎪⎪⎬⎪⎪⎭ . (24)

Taking the statistical properties into account of Equations (21)–(23), we obtain:

〈
[xss(t)]

2
〉
=

(q/m)2

LxLyLz
∑
p

(
x̂ · ε̂p

)2
σ2

p

⎛⎜⎜⎝
{

Re
[

eiωpt

(−ω2
p+ω2

0+iΓωpω2
0)

]}2

+

{
Im
[

eiωpt

(−ω2
p+ω2

0+iΓωpω2
0)

]}2

⎞⎟⎟⎠
=

(q/m)2

LxLyLz
∑
p

(
x̂ · ε̂p

)2

∣∣∣∣∣∣ 1(
−ω2

p + ω2
0 + iΓωpω2

0

)
∣∣∣∣∣∣
2

σ2
p . (25)

To simplify later expressions, let

σ2
x ≡

〈
[xss(t)]

2
〉

. (26)

Now one just needs to relate the terms ∑
p

σ2
p

[(
x′Ap

)2
+
(

x′Bp

)2
]

in Equation (18) to〈
[xss(t)]

2
〉

. As shown below, they are exactly equal. From Equations (10)–(13):

∑
p

σ2
p

[(
x′A,p

)2
+
(

x′B,p

)2
]

= ∑
p

σ2
p
(q/m)2

Lx Ly Lz

(
x̂ · ε̂p

)2

⎛⎝{Re

[
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

]}2

+

{
Im

[
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

]}2
⎞⎠

= ∑
p

(q/m)2

Lx Ly Lz

(
x̂ · ε̂p

)2 1∣∣∣−ω2
p + ω2

0 + iΓωpω2
0

∣∣∣2 σ2
p =

〈
[xss(t)]

2
〉

. (27)
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Equation (18) then becomes, after completing the square of s and then integrating
over s:

P1x(x) =
1

2π

∞∫
−∞

ds exp
[

isx − s2

2

〈
[xss(t)]

2
〉]

=
1

2π

∞∫
−∞

ds exp

[
−σ2

x
2

(
s2 − 2isx

σ2
x

− x2

(σ2
x)

2

)
− x2

2σ2
x

]

=
1

2π

√
2π

σ2
x

exp
(
− x2

2σ2
x

)
=

1√
2πσ2

x
exp

(
− x2

2σ2
x

)
. (28)

This Gaussian result has been deduced in SED previously by researchers in SED,
but not as far as this author knows, starting via the general probability expression in
Equation (1). Although the above is a much longer derivation than deductions published
earlier, it is still illuminating, as discussed in Sections 2.2, 3 and 4 below.

Moreover, while the expression (28) is connected with QED [3], one can relate it to
the relevant expression in QM as calculated from Schrödinger’s equation when taking
into account the probability density at temperature T, and summing over all probability
density functions |ψn(x)|2, each times 1

Z exp(−En/kT), where Z = ∑
n

exp(−En/kT). To

obtain this agreement, and essentially dropping the QED effects, in SED one would make
what some call the continuum and resonant approximations, where first the sum over n is
approximated as a 3D integral, and then later the charge q is assumed to be small.

More specifically, the continuum approximation consists of the following approxima-
tions, from Equation (4):

dkx = 2π
dnx

Lx
, dky = 2π

dny

Ly
, dkz = 2π

dnz

Lz
, (29)

so that

∑
n

· · · = ∑
n1,n2,n3

· · · ≈
∫

dnx

∫
dny

∫
dnz · · · ≈

LxLyLz

(2π)3

∫
dkx

∫
dky

∫
dkz . . . . (30)

Consequently,〈
[xss(t)]

2
〉
= ∑

p
σ2

p
(q/m)2

LxLyLz

(
x̂ · ε̂p

)2 1∣∣∣−ω2
p + ω2

0 + iΓωpω2
0

∣∣∣2
=

(q/m)2

LxLyLz

∞

∑
nx ,ny ,nz=−∞

σ2
kn ∑

λ=1,2
(x̂ · ε̂kn ,λ)

2 1∣∣∣−ω2
kn

+ ω2
0 + iΓωkn

ω2
0

∣∣∣2
≈ (q/m)2

(2π)3

∞∫
−∞

dkx

∞∫
−∞

dky

∞∫
−∞

dkzσ2
k ∑

λ=1,2
(x̂ · ε̂k,λ)

2 1∣∣−ω2
k + ω2

0 + iΓωkω2
0

∣∣2 . (31)

One can show that

∑
λ=1,2

(x̂ · ε̂k,λ)
2 = ∑

λ=1,2
(ε̂k,λ,x)

2 =

[
1 −

(
k2

x
k

)2]
. (32)

70



Physics 2023, 5

Now, using spherical coordinates in Equation (31) and noting that σk actually depends
only on the magnitude of k, or |k| = k, and likewise, ωk = ωk = ck, one finds:

〈
[xss(t)]

2
〉
≈ (q/m)2

(2π)3

∞∫
0

dk
π∫

0

dθk
2π∫
0

dφk(sin θ)σ2
k

[
1 −

(
k2

x
k

)2
]

[(
−ω2

k + ω2
0
)2

+
(
Γωkω2

0
)2
] . (33)

Integrating over θ and φ and noting by symmetry that

π∫
0

dθ sin θ

2π∫
0

dφ

[
1 −

(
k2

x
k

)2]
= 4π − 4π

3
=

8π

3
, (34)

then: 〈
[xss(t)]

2
〉
≈ (q/m)2

(2π)3
8π

3
1
c3

∞∫
0

dω
ω2σ2(ω, T)[(

−ω2 + ω2
0
)2

+
(
Γωω2

0
)2
] . (35)

For small values of q in Γ = 2
3

q2

mc3 (for an electron, Γ is very small, about 6.27× 10−24 s),[(
−ω2 + ω2

0
)2

+
(
Γωω2

0
)2
]−1

becomes strongly peaked when ω ≈ ω0. The above integral
can then be well approximated by

∞∫
0

dω
ω2

0σ2(ω0, T)

(ω − ω0)
2(2ω0)

2 +
(
Γω3

0
)2 ≈

∞∫
−∞

dω
ω2

0σ2(ω0, T)

(ω − ω0)
2(2ω0)

2 +
(
Γω3

0
)2 . (36)

Making use of the integral,

∞∫
−∞

dω
1

ω2 A2 + B2 =
π

AB
. (37)

Equation (35) becomes:

〈
[xss(t)]

2
〉
≈ (q/m)2

(2π)3
8π

3
1
c3 ω2

0σ2(ω0, T)
π

(2ω0)
(

2
3

q2

mc3 ω3
0

)
=

h̄
2mω0

coth
(

h̄ω0

2kT

)
. (38)

This is more recognizable for QM, and even more so for T → 0, becoming〈
[xss(t)]

2
〉

T=0
=

h̄
2mω0

. (39)

2.2. Examples of Other Analytic SHO Probability Density Functions That Can Similarly
Be Deduced

The method of Section 2.1 can be used to obtain many other types of probability
density functions. Using

mẍ(t) = −mω2
0x(t) + mΓ

...
x (t)+qErad(x = 0, t) , (40)

one can certainly generalize the previous 1D SHO to a 3D SHO with the probability density
function of P3x(x) in Equation (1).
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Moreover, the position and momentum joint probability density function for this 3D
SHO can be expressed by

P3x,3p(x, p)

=

∞∫
−∞

dA1· · ·
∞∫

−∞

dBN PF,A-B(A1, · · · , AN , B1, · · · , BN)δ3[x − zA1...BN (t)]δ
3
[
p − pA1...BN

(t)
]

, (41)

which can be used to find an analytic expression for P3x,3p(x, p) in a similar manner as
carried out in Section 2.1 for the 1D SHO and P1x(x).

In addition, one can express the probability density for the nonrelativistic energy of a
3D SHO via

PE(E) =
∫

dA1· · ·
∫

dBN PF,A-B(A1, · · · , AN , B1, · · · , BN)δ
3{E−[KE(t) + PE(t)]} , (42)

where

KE(t) + PE(t) =
m
2
[ẋss(t)]

2 +
mω2

0
2

[xss(t)]
2 . (43)

As another example, using the same method, one can calculate the following 1D SHO
joint probability position density distribution P1x,1x(x1, t1; x2, t2). The final result reads:

P1x,1x(x1, t1; x2, t2)

=

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF,A-B(A1, · · · , AN , B1, · · · , BN)δ[x1−xA1...BN (t1)]δ[x2 − xA1...BN (t2)]

=

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF,A-B(A1, · · · , AN , B1, · · · , BN)

× 1
2π

∞∫
−∞

ds1eis1(x1−xA1,··· ,BN (t1)) 1
2π

∞∫
−∞

ds2eis2(x2−xA1,··· ,BN (t2))

=

exp
(
− [x2

1〈x2
ss(t)〉+x2

2〈x2
ss(t)〉−2x1x2〈xss(t1)xss(t2)〉]

2[〈x2
ss(t)〉2−〈x(t1)x(t2)〉2]

)
2π

√〈
x2

ss(t)
〉2 − 〈xss(t1)xss(t2)〉2

. (44)

Here, the ensemble average of the square of the steady state solution xss(t), or
〈

x2
ss(t)

〉
,

is independent of t, as shown in Equation (31), and as given in the more familiar continuum
and resonant approximation in Equation (38), as h̄

2mω0
coth

(
h̄ω0
2kT

)
. However, the ensemble

average of the product xss(t1)xss(t2), or 〈xss(t1)xss(t2)〉, depends on the time difference
t1 − t2, and is given by

〈xss(t1)xss(t2)〉

=
q2

m2
(

LxLyLz
) ∑

n,λ
(x̂ · ε̂n,λ)

2(σn,λ)
2 cos[ωn(t2 − t1)](

−ω2
n + ω2

0
)2

+
(
Γω2

0ωn

)2 . (45)

In the continuum and resonant approximation, this simplifies to

〈xss(t1)xss(t2)〉 ≈
h̄

2mω0
coth

(
h̄ω0

2kT

)
cos[ω0(t2 − t1)] . (46)

Thus, the general expressions are quite straightforwad to formulate, as in Equations
(1), (16), (41), (42) and (44), although carrying out all the integrations to arrive at an analytic
expression, as in Equations (28) and (44), can be quite nontrivial.
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3. A PDE Approach for Deducing the SHO Probability Density Function P1x(x)

Rather than directly integrating over all the Ap and Bp radiation Fourier coefficients
in Equation (16) to obtain the analytic expression for P1x(x) in Equation (28), here it is
shown that Equation (16) satisfies a PDE that enables P1x(x) in Equation (28) to be deduced.
In some ways, this approach is less complicated than the direct integration method of
Section 2.1 and might provide insight for more complicated systems than the SHO, such as
the classical hydrogen case.

Without integrating over all A1, · · · , BN variables as in Section 2.1, nor by only showing
that Equation (28) solves Equation (47) below, here, let us directly take the 1D version of
Equation (1) and illustrate how this expression satisfies

∂

∂(σ2
x)

P1x(x) =
1
2

∂2

∂x2 P1x(x) , (47)

where σ2
x is given by Equations (25) and (26), or in the continuum resonant approximations

by Equation (38). More specifically, as is shown below, in order for Equation (47) to hold
with P1x(x) given by the 1D version of Equation (1) (i.e., the top line of Equation (16)), then
σ2

x must be given by Equation (25). Moreover, upon imposing that P1x(x) → 0 as |x| → ∞,
with symmetry about x = 0, and that the function monotonically decreases as |x| increases,
one obtains the solution Equation (28) for Equation (47).

To show that P1x(x) in the 1D version of Equation (1) satisfies Equation (47), let us
start with

∂

∂(σ2
x)

P1x(x)

=
∂

∂(σ2
x)

∞∫
−∞

dA1, · · · ,
∞∫

−∞

dAN

∞∫
−∞

dB1, · · · ,
∞∫

−∞

dBN

PF(A1), · · · , PF(AN), PF(B1), · · · , PF(BN)δ
[
x − xA1,··· ,BN (t)

]
=

∞∫
−∞

dA1, · · · ,
∞∫

−∞

dAN

∞∫
−∞

dB1, · · · ,
∞∫

−∞

dBNδ
[
x − xA1,··· ,BN (t)

]
× ∂

∂(σ2
x)

[PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)] . (48)

Clearly,

∂

∂(σ2
x)

[PF(A1) · · · PF(BN)]

=

[
∂

∂(σ2
x)

PF(A1)

]
PF(A2) · · · PF(AN)PF(B1)PF(B2) · · · PF(BN)

+ PF(A1)

[
∂

∂(σ2
x)

PF(A2)

]
· · · PF(AN)PF(B1)PF(B2) · · · PF(BN)

+ · · ·+ PF(A1)PF(A2) · · · PF(AN)PF(B1)PF(B2) · · ·
[

∂

∂(σ2
x)

PF(BN)

]
. (49)

Moreover, since one can readily show that

∂

∂
(

σ2
p

)
⎧⎨⎩ 1√

2πσ2
p

exp

[
−
(

Ap
)2

2σ2
p

]⎫⎬⎭ =
1
2

∂2

∂A2
p

⎧⎨⎩ 1√
2πσ2

p

exp

[
−
(

Ap
)2

2σ2
p

]⎫⎬⎭ , (50)
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then,

∂

∂(σ2
x)

PF
(

Ap
)
=

∂
(

σ2
p

)
∂(σ2

x)

∂

∂
(

σ2
p

)PF
(

Ap
)

=
∂
(

σ2
p

)
∂(σ2

x)

1
2

∂2

∂A2
p

⎧⎨⎩ 1√
2πσ2

p

exp

[
−
(

Ap
)2

2σ2
p

]⎫⎬⎭ , (51)

and likewise for PF
(

Bp
)
.

From Equations (48)–(51):

∂

∂σ2
x

P1x(x)

=

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂(σ2
1 )

∂(σ2
x)

1
2

d2 PF(A1)

dA2
1

PF(A2) · · · PF(BN)

+PF(A1)
∂(σ2

2 )
∂(σ2

x)
1
2

d2 PF(A2)

dA2
2

PF(A3) · · · PF(BN)

+ · · ·+ [PF(A1) · · · PF(BN−1)]
∂(σ2

N)
∂(σ2

x)
1
2

d2 PF(BN )

dB2
N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭δ
[
x − xA1,··· ,BN (t)

]
. (52)

Each of the 2N terms in the sum within the curly brackets above can be integrated by
parts twice. Considering the pth Ap term,

1
2

∞∫
−∞

dA1PF(A1) · · ·
∞∫

−∞

dAp−1PF
(

Ap−1
)⎧⎨⎩

∞∫
−∞

dAp

∂
(

σ2
p

)
∂(σ2

x )

d2PF
(

Ap
)

dA2
p

⎫⎬⎭
×

∞∫
−∞

dAp+1PF
(

Ap+1
)
· · ·

∞∫
−∞

dAN PF(AN)

∞∫
−∞

dB1PF(B1) · · ·
∞∫

−∞

dBN PF(BN)δ
[
x − xA1,··· ,BN (t)

]
, (53)

and integrating by parts for this pth term yields the following. Note that neither σ2
x

from Equation (25) nor σ2
p from Equation (15) depend on Ap or Bp, so ∂

(
σ2

p

)
/∂
(
σ2

x
)

is not
involved with this integration by parts, for either Ap or Bp.

Hence:

∞∫
−∞

dAp

∂
(

σ2
p

)
∂(σ2

x)

d2PF
(

Ap
)

dA2
p

δ
[
x − xA1,··· ,BN (t)

]

=
∂
(

σ2
p

)
∂(σ2

x)

⎛⎜⎜⎝
∞∫

−∞
dAp

d
dAp

{
dPF(Ap)

dAp
δ
[
x − xA1,··· ,BN (t)

]}
−

∞∫
−∞

dAp

{
dPF(Ap)

dAp
d

dAp
δ
[
x − xA1,··· ,BN (t)

]}
⎞⎟⎟⎠

=
∂
(

σ2
p

)
∂(σ2

x)

⎡⎢⎢⎢⎢⎢⎣
{

dPF(Ap)
dAp

δ
[
x − xA1,··· ,BN (t)

]}∣∣∣∣Ap→∞

Ap→−∞

−
∞∫

−∞
dAp

⎛⎝ d
dAp

{
PF
(

Ap
) d

dAp
δ
[
x − xA1,··· ,BN (t)

]}
−PF

(
Ap
) d2

dA2
p
δ
[
x − xA1,··· ,BN (t)

]
⎞⎠

⎤⎥⎥⎥⎥⎥⎦ . (54)
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From Equation (14), PF
(

Ap
)

and d
dAp

PF
(

Ap
)

both go to zero exponentially as Ap →
±∞, so the first term in the last line above is zero. Continuing:

∂
(

σ2
p

)
∂(σ2

x)

∞∫
−∞

dAp
d2PF

(
Ap
)

dA2
p

δ
[
x − xA1,··· ,BN (t)

]

=
∂
(

σ2
p

)
∂(σ2

x)

⎡⎢⎢⎣ −PF
(

Ap
) d

dAp
δ
[
x − xA1,··· ,BN (t)

]∣∣∣Ap→∞

Ap→−∞

+
∞∫

−∞
dApPF

(
Ap
) d2

dA2
p
δ
[
x − xA1,··· ,BN (t)

]
⎤⎥⎥⎦

=
∂
(

σ2
p

)
∂(σ2

x)

∞∫
−∞

dApPF
(

Ap
) d2

dA2
p

δ
[
x − xA1,··· ,BN (t)

]
. (55)

Thus:

∂

∂σ2
x

P1x(x)

=
1
2

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)

×
N

∑
p=1

∂
(

σ2
p

)
∂(σ2

x)

(
d2

dA2
p
+

d2

dB2
p

)
δ
[
x − xA1,··· ,BN (t)

]
. (56)

Since

d2δ
[
x − xA1...BN (t)

]
dA2

p
=

d
dAp

{(
∂xA1...BN

∂Ap

)
∂δ
[
x − xA1...BN (t)

]
∂xA1...BN

}
, (57)

then with xA1,··· ,BN (t) = xss(t) in Equation (9),(
∂xA1...BN

∂Ap

)
=

(q/m)√
LxLyLz

εp,x Re

(
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

)
, (58)

and (
∂xA1...BN

∂Bp

)
= − (q/m)√

LxLyLz
εp,x Im

(
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

)
. (59)

Both
(

∂xA1...BN
∂Ap

)
and

(
∂xA1...BN

∂Bp

)
are independent of Ap and Bp for all p. This follows

from the linearity of xA1...BN with the A′s and B′s, which in turn is due to the special case
of the SHO obeying the linear ordinary dufferential equation (ODE) in Equation (5).

Hence, from Equation (57):

d2δ
[
x − xA1...BN (t)

]
dA2

p
=

(
∂xA1...BN

∂Ap

)2 ∂2δ
[
x − xA1...BN (t)

]
∂x2

A1...BN

, (60)

and, likewise,

d2δ
[
x − xA1...BN (t)

]
dB2

p
=

(
∂xA1...BN

∂Bp

)2 ∂2δ
[
x − xA1...BN (t)

]
∂x2

A1...BN

. (61)
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Consequently, from Equations (56), (60) and (61):

∂

∂σ2
x

P1x(x) =
1
2

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)

×
N

∑
p=1

∂
(

σ2
p

)
∂(σ2

x)

[(
∂xA1...BN

∂Ap

)2

+

(
∂xA1...BN

∂Bp

)2
]

∂2δ
[
x − xA1...BN (t)

]
∂x2

A1...BN

. (62)

Using Equations (58) and (59),

[(
∂xA1...BN

∂Ap

)2

+

(
∂xA1...BN

∂Bp

)2
]

=

[
(q/m)√
Lx Ly Lz

εp,x Re

(
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

)]2

+

[
− (q/m)√

Lx Ly Lz
εp,x Im

(
eiωpt

−ω2
p + ω2

0 + iΓωpω2
0

)]2

=
(q/m)2(εp,x

)2

Lx Ly Lz

⎡⎢⎣ 1(
−ω2

p + ω2
0

)2
+
(
Γωpω2

0
)2

⎤⎥⎦ . (63)

Hence:

∂

∂σ2
x

P1x(x)

=
1
2

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)

×

⎧⎨⎩ N

∑
p=1

∂
(

σ2
p

)
∂
(
σ2

x
) (q/m)2(εp,x

)2

Lx LyLz

[
1(

−ω2
p + ω2

0
)2

+
(
Γωpω2

0
)2

]⎫⎬⎭ ∂2δ[x − xA1...BN (t)]
∂x2

A1...BN

. (64)

From Equation (25),

∂σ2
x

∂σ2
x
= 1 =

(q/m)2(
LxLyLz

) ∑
p

(
εp,x

)2 1(
−ω2

n + ω2
0
)2

+
(
Γω2

0ωn

)2

∂
(

σ2
p

)
∂(σ2

x)
. (65)

This is where the functional form of σ2
x in Equation (25) enters in to enable Equation (47)

to be solved by the 1D version of Equation (1).
From Equation (65), the quantity in curly brackets in Equation (64) equals unity, and

Equation (64) becomes

∂

∂σ2
x

P1x(x, t)

=
1
2

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)
∂2δ

[
x − xA1...BN (t)

]
∂x2

A1...BN

=
1
2

∂2

∂x2

∞∫
−∞

dA1 · · ·
∞∫

−∞

dBN PF(A1) · · · PF(AN)PF(B1) · · · PF(BN)δ
[
x − xA1...BN (t)

]
=

1
2

∂2

∂x2 P1x(x, t) . (66)

This completes the proof of Equation (47), carried out without the full integration
of PF(A1) · · · PF(AN)PF(B1) · · · PF(BN), as in Section 2.1. In a sense, certainly integrations
were carried out over Ap and Bp via the double integration by parts in Equations (53)–(55).
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However, this was a far simpler task than the more complicated operations in Section 2.1 of
completing squares for all Ap and Bp variables and then integrating them. Here, the double
integration by parts only required that PF

(
Ap
)
→ 0 and d

dAp
PF
(

Ap
)
→ 0 as

∣∣Ap
∣∣ → ∞ in

Equations (54) and (55), and similarly for Bp. This behavior for PF
(

Ap
)

and d
dAp

PF
(

Ap
)

was assured by the Gaussian functional form of PF
(

Ap
)

in Equation (50). Moreover, this
Gaussian form was important in the steps of Equations (50) and (51). In Section 2.1, the
Gaussian form of PF

(
Ap
)

was important for a different reason, namely, to enable the squares
to be carried out when integrating.

4. Concluding Remarks

Two methods were shown in this paper for finding the analytic expression
(i.e., Equation (28)) for the probability density of the position of a classical charged point
particle in an SHO potential, where the charge is bathed in classical electromagnetic random
radiation at a temperature T. Both of these methods used the 1D form of Equation (1)
as the starting point. Section 2.1 obtained the analytic expression by explicitly integrat-
ing over each of the Fourier coefficients; the calculation was fairly lengthy. In contrast,
Section 3 showed that the 1D version of Equation (1) satisfied a PDE, which in turn enabled
Equation (28) to be deduced.

Some other relevant points of this study are the following. First, Equation (1) should
hold for dynamic systems other than the SHO. Moreover, it should also hold for the SHO
in more generality than considered here, namely, not just for the steady state part of the
oscillatory motion, but also including the initial transitory motion. Including the probability
density of the initial conditions in Equation (1) would enable this to be accomplished. The
probability density then changes from P1x(x) to P1x(x, t), as it will now depend on time.

A dynamic system of considerable interest to be considered here is the classical
hydrogen, with a −e classical charged point particle as the classical electron, and a much
more massive nucleus with charge +e for the proton as the nucleus. In SED, this would
again be “bathed” in classical electromagnetic random radiation at temperature T. This
system is of interest as it represents a real atomic system, as opposed to the solvable, but
hypothetical SHO. Hydrogen is the simplest of atomic systems, so it is a suitable system
to be analyzed in detail. Many researchers in SED have tackled this problem, but it still
remains an open problem.

Equation (1) should hold for this classical hydrogen system. The quantity xA1,··· ,BN (t)
in δ3[x − xA1,··· ,BN (t)

]
would become the trajectory of the classical electron given its initial

conditions and how the radiation fields influence the electron’s trajectory, just as occurs
for the SHO treated here. The equation of motion for the classical electron should be the
Lorentz–Dirac equation, where the relativistic version is used, although it would be inter-
esting to obtain and compare the resulting P3x(x) when the nonrelativistic approximation
of the Lorentz–Dirac equation is used. It should be noted that the “easiest” and clearest
situation to be considered for this problem would be the T = 0 case, since we expect that
the electron would be bound and would not move off to |x| = ∞ in space. For T > 0, there
is a nonzero probability that the electron will “ionize” and |x(t)| → ∞, so this situation is
more difficult to analyze with the present scheme.

Despite that Equation (1) should be valid for this classical hydrogen atom, there is
a significant difference in using this P3x(x) formulation for the classical hydrogen atom
versus the SHO model analyzed here. The “success” of Sections 2.1 and 3 came about
because of the following: a nonrelativistic equation of motion was used (Equation (5)), the
dipole approximation was made for the radiation’s electric field, and the radiation magnetic
field effects were ignored. These approximations enabled an analytic result for the motion,
xss(t) = xA1,··· ,BN (t), to be obtained: Equation (9). This expression for xss(t) is linear in the
Fourier coefficients of the radiation’s electric field. This linear analytic expression for the
particle’s motion was used in each of the methods in Sections 2.2 and 3, to arrive at analytic
expressions for P1x(x) and σ2

x : Equations (25), (26) and (28). Without the linear analytic
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expression of Equation (9), the methods in Sections 2.1 and 3 could not have been carried
out in the manners described.

In contrast, an analytic expression is not known for calculating the classical electron’s
probability distribution for the mentioned classical hydrogen atom, whether one treats the
electron’s trajectory relativistically, or even with a simpler nonrelativistic approximation.
Although the expression for P3x(x) in Equation (1) should be correct for this classical
hydrogen atom, other mathematical or numerical methods would need to be developed
to carry out similar approaches in Sections 2.1 and 3 of direct integrations or showing the
expression satisfies an appropriate PDE, from which P3x(x) can be deduced.

To date, no researcher has found an analytic means within SED for deducing P3x(x)
for the classical hydrogen atom. Consequently, the author along with Y. Zou carried
out simulation methods in 2003 for deducing P3x(x) for hydrogen, with some degree of
success [25]. More recently, extensive simulations have been carried out by Nieuwenhuizen
and Liska [26,27] with interesting results, but always with some fraction of the ensemble
of hydrogen systems resulting in electrons leaving, or “ionizing,” away from the classical
nucleus. Despite this problem, all three simulation efforts [25–27] do not result in the
classical electron “falling,” or spiraling, into the nucleus due to energy radiating off from
the classical electron’s orbital motion. Thus, these simulations in SED “solve” the old
atomic collapse problem of the simple classical atomic model by Rutherford.

Although these simulations are insightful, there are reasons for concern. Simulations
in Refs. [25,26] were not relativistic, while Ref. [27] was certainly more relativistic than the
others, but still not completely so, and each have various physical approximations. Perhaps
of even more concern is that all of these studies deal with a chaotic system, where small
errors in electron trajectories cannot of course be avoided numerically, but that build up
to large errors quickly. Could these account for the apparent ionizations of some classical
electrons in the ensemble of systems investigated? No matter how much the numerical
resolutions of the simulations are reduced, this effect cannot go away, as known from
chaos theory.

An analytic solution is indeed ideal for overcoming such problems, but may not be
possible to obtain, whether nonrelativistically or relativistically. Nevertheless, this goal
of exploring Equation (1) for obtaining analytical results was part of the motivation for
this study. What is interesting to note is that using Feynman’s path integral method in
QM [28] was certainly exceptionally successful for a range of systems, but for a long time,
starting from about 1948 [29] until Duru’s and Kleinert’s paper in 1979 [30], the hydrogen
atom was not solved via this path integral method. Moreover, it should be mentioned that
Equation (1) has some resemblance to a “path integral” formulation, although the Fourier
coefficients of the stochastic radiation field are integrated over instead of the possible paths
of the particle.

Recapitulating, in this paper, the general expression of Equation (1) was used to obtain
an analytic expression of P1x(x) for the 1D electric dipole SHO, one of the first systems
analyzed in SED. The calculations were fairly long for each of the two methods discussed,
but certainly tractable. Despite Equation (1) being correct for the classical hydrogen atom,
evaluating Equation (1) for this system is far more complicated task for reasons discussed.
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Abbreviations

The following abbreviations are used in this paper:

ODE ordinary differential equation
PDE partial differential equation
QED quantum electrodynamics
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QM quantum mechanics
SED stochastic electrodynamics
SHO simple harmonic oscillator
1D one-dimensional
3D three-dimensional
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van der Waals Dispersion Potential between Excited Chiral
Molecules via the Coupling of Induced Dipoles

A. Salam

Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109-7486, USA; salama@wfu.edu;
Tel.: +1-336-758-3713

Abstract: The retarded van der Waals dispersion potential between two excited chiral molecules was
calculated using an approach, in which electric and magnetic dipole moments are induced in each
particle by fluctuations in the vacuum electromagnetic field. An expectation value of the coupling
of the moments at different centres to the dipolar interaction tensors was taken over excited matter
states and the ground state radiation field, the former yielding excited molecular polarisabilities and
susceptibilities, and the latter field–field spatial correlation functions. The dispersion potential term
proportional to the mixed dipolar polarisability is discriminatory, dependent upon molecular handed-
ness, and contains additional terms due to transitions that de-excite each species as well as the usual
u-integral term over imaginary frequency, which applies to both upward and downward transitions.
Excited state dispersion potentials of a comparable order of magnitude involving paramagnetic and
diamagnetic couplings were also computed. Pros and cons of the method adopted are compared to
other commonly used approaches.

Keywords: dispersion forces; excited states; vacuum fluctuations; molecular chirality; quantum
electrodynamics

1. Introduction

Classic examples of phenomena that are attributed to vacuum fluctuations of the
electromagnetic field [1] include spontaneous emission [2] and the Lamb shift [3,4]. In the
case of inter-particle interactions, a fundamental coupling that arises from the zero-point
energy associated with the ground state of the radiation field is the well-known Casimir-van
der Waals dispersion force between two or more particles [5–8]. For atoms and non-polar
molecules, this is the only interaction contributing to the inter-particle energy shift, and is
responsible for the manifestation of solid and liquid phases of such forms of matter at low
temperature.

The 1
2�ω of energy per mode possessed by the vacuum field, where ω is the circular

frequency, albeit infinite in magnitude since there are an infinite number of oscillatory
modes, is a direct consequence of quantising electromagnetic radiation, and is a quintessen-
tial feature of quantum electrodynamics (QED) theory [9–15], rigorously accounting for the
photon. Here h̄ is the reduced Planck constant. The exchange of such gauge bosons between
electrons, whether free or bound, mediates the interaction between particles of matter. For
instance, the propagation of a single virtual photon, originating due to spontaneous emis-
sion by an excited entity undergoing decay, and whose excitation energy is captured on
absorption of the photon by an acceptor species in close proximity, describes a multitude of
processes involving the migration of energy between various types of chromophoric units,
processes commonly collected under the umbrella term “excitation energy transfer” [16–19].
This is another example of a vacuum field-induced effect since there are no photons prior
to or after the coupling between particles.

By way of contrast, in a perturbative calculation of the dispersion interaction, in which
both species are in the ground electronic state and no photons are present, the energy shift
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is viewed as arising from the exchange of two virtual photons between the pair of atoms
or molecules [12,13]. Additional computational difficulties arise when using perturbation
theory if one or both of the particles are in excited electronic states [20]. These centre
around the proper identification of terms associated with real photon emission and whether
excitation energy is localised or is in fact exchanged between centres in a reversible manner.
Quite a few recent publications have dealt with these aspects in an attempt to arrive at the
correct functional form for the potential [21–26].

Other calculational techniques have been adopted to further understand the nature
of the dispersion force when not all of the interacting particles are in their ground state.
One approach is to evaluate the quantum electrodynamical radiation fields in the neigh-
bourhood of a charged source and then calculate the response of the second particle, via
its polarisability, to the electromagnetic field emanating from the first particle, with appro-
priate expectation values taken over ground and/or excited states of matter, yielding the
pertinent multipolar contribution to the dispersion energy shift [27,28]. An advantage of
employing this physical picture and calculational method is its straightforward extension
to obtain the result for the N-body electric dipole polarisable [29] or N-body arbitrarily
electric multipole polarisable [30] dispersion potentials.

An especially physically intuitive approach to calculate the Casimir–Polder interaction
energy, in that it highlights the key role played by the vacuum electromagnetic field, is to
consider the energy shift as arising from the coupling of electric dipole moments induced
at each atom or molecule by the ground state of the field to the retarded electric dipole–
dipole interaction tensor [31]. Because this last quantity features in the amplitude for
resonance energy transfer, the method may be employed to readily evaluate the additional
contribution to the dispersion potential that is due to real photon emission when one or
both species are electronically excited. This approach will be employed below to calculate
the dispersion energy shift between two excited chiral molecules, and two other potentials
of a similar order of magnitude. For these cases, the usual electric dipole approximation
needs to be relaxed, and higher multipole moment terms such as the magnetic dipole have
to be included in the treatment. This is because optically active molecules possess fewer
or no elements of symmetry relative to achiral compounds and consequently have less
restrictive spectroscopic selection rules apply to them.

One interesting aspect of the dispersion interaction energy between chiral molecules is
that it is discriminatory, depending on the handedness of the interacting pair. The chirality
dependent ground state dispersion potential has been previously evaluated using the
three methods described above, namely, the perturbation and response theories, and the
induced moment method [32–35], with excited state energies only evaluated using response
theory [36]. Recently, perturbation theory has been employed within the framework of
macroscopic QED theory [6] to calculate the dispersion interactions between one or two
chiral molecules in the presence of a chiral plate [37], or when situated in a magnetodielec-
tric medium [38], with novel features emerging as a result of placing bodies in complex
environments such as altering the sign of the dispersion force as the relative separation
distances are varied. The results obtained will enable an assessment to be made of the
feasibility of applying the fluctuating moment method to systems in excited electronic
states that are characterised by multipoles higher than the electric dipole relative to more
conventional approaches. These results will also complement other studies dealing with
interactions amongst enantiomers.

The paper is organised as follows. A brief overview of the induced moment method
applicable to chiral molecules is presented in Section 2. The calculation of the excited
state dispersion potential between two chiral molecules is detailed in Section 3. An energy
shift of a similar order of magnitude is then obtained in Section 4, that between an electric
dipole polarisable molecule and a paramagnetically susceptible one. The diamagnetic
counterpart to this last contribution, also of an identical order of magnitude to the two
previous potentials, is evaluated in Section 5. A brief summary is given in Section 6.
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2. Moments Induced in a Chiral Molecule by Electromagnetic Radiation

Consider a chiral molecule, ξ, located at the position
→
Rξ . Lacking an improper axis

of rotation, such species may belong to one of the following molecular point groups: C1,
Cn, Dn, T, and O, with n ≥ 2. In the first point group listed, spectroscopic selection rules
permit transitions to all orders of multipole moment distributions between electronic states.
Often, it is sufficient to invoke the dipole approximation to describe chiral molecules
since the vector dot product of an electric dipole moment (

→
μ ) and a magnetic dipole

moment (
→
m) vector yields a pseudoscalar quantity, which changes sign when substituting

one enantiomer by its mirror-image structure. In what follows, only these two multipole

moments are retained and the electric quadrupole moment,
→→
Q, is neglected. Although

→→
Q is

of a comparable order of magnitude to
→
m, with both a factor of the fine structure constant

smaller than
→
μ , mixed electric dipole-quadrupole dependent contributions to the dispersion

interaction vanish for freely tumbling systems, and are not considered henceforth.
Thus, within the dipolar approximation, the electric and magnetic dipole moments

induced in a chiral molecule by electromagnetic radiation of mode
→
k , λ, where

→
k is the

wave vector and λ is the index of polarisation of the propagating radiation fields, are:

μind
i (ξ;

→
k , λ) = ε−1

0 αij(ξ; k)d⊥j (
→
k , λ;

→
Rξ) + Gij(ξ; k)bj(

→
k , λ;

→
Rξ), (1)

and
mind

j (ξ;
→
k , λ) = ε−1

0 Gij(ξ; k)d⊥i (
→
k , λ;

→
Rξ) + χij(ξ; k)bi(

→
k , λ;

→
Rξ), (2)

where the Latin letter subscripts denote Cartesian tensor components in the space-fixed
frame of reference, and the Einstein summation rule is in effect for indices that repeat. Here,
ε0 denotes the permittivity of free space. In the relations (1) and (2), αij(ξ; k) is the dynamic
electric dipole polarisability tensor, Gij(ξ; k) is the mixed electric-magnetic dipole analogue,
and χij(ξ; k) is the magnetic dipole polarisability tensor or the paramagnetic susceptibility
tensor. Their explicit forms are given by

αij(ξ; k) = ∑
t

{
μst

i (ξ)μ
ts
j (ξ)

Ets − �ck
+

μst
j (ξ)μ

ts
i (ξ)

Ets + �ck

}
, (3)

Gij(ξ; k) = ∑
t

{
μst

i (ξ)m
ts
j (ξ)

Ets − �ck
+

mst
j (ξ)μ

ts
i (ξ)

Ets + �ck

}
, (4)

and

χij(ξ; k) = ∑
t

{
mst

i (ξ)m
ts
j (ξ)

Ets − �ck
+

mst
j (ξ)m

ts
i (ξ)

Ets + �ck

}
, (5)

where μst
i (ξ) =< s|μi(ξ)|t > and mst

i (ξ) =< s|mi(ξ)|t > are the transition electric and
magnetic dipole moment matrix elements between electronic states |s> and |t>, with
energies Es and Et, respectively, and Ets = Et − Es symbolizing the energy differences
between these states. Here c stands for the speed of light.

For a specific mode
→
k , λ, the second quantised microscopic Maxwell field operators

appearing in Equations (1) and (2) are the familiar Fourier series mode expansions for the

transverse electric displacement field,
→
d
⊥
(
→
r ), and the magnetic field,

→
b (

→
r ),

→
d
⊥
(
→
k , λ;

→
r ) = i

(
�ckε0

2V

)1/2
[
→
e
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −→

e
(λ)

(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ], (6)

and
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→
b (

→
k , λ;

→
r ) = i

(
�k

2ε0cV

)1/2
[
→
b
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −

→
b
(λ)

(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ]. (7)

These radiation fields are linear functions of the bosonic annihilation and creation
operators for a

→
k , λ-mode photon, a(λ)(

→
k ) and a†(λ)(

→
k ), respectively, with

→
e
(λ)

(
→
k ) and

→
b
(λ)

(
→
k ) as the complex unit electric and magnetic polarisation vectors, and V is the

quantisation volume of the box.
The leading contribution to the interaction energy, ΔE, between two molecules, A and

B, arises from the coupling of the induced electric dipole moments at each centre. Keeping
only the first term of Equation (1),

ΔE = ∑
→
k ,λ

μind
i (A;

→
k , λ)μind

j (B;
→
k , λ)ReVij(k,

→
R), (8)

where the sum is executed over all radiation field modes, the inter-nuclear displacement,

R = |
→
RB −

→
RA|, and Vij(k,

→
R) is the retarded electric dipole–dipole tensor that couples the

two induced dipoles. It is given by the familiar expression [12,13]

Vij(k,
→
R) =

1
4πε0R3 [(δij − 3R̂i R̂j)(1 − ikR)− (δij − R̂i R̂j)k2R2]eikR, (9)

where δij is the Kronecker delta.
Power and Thirunamachandran showed [31] how Equation (8) led to the Casimir–

Polder potential between two ground state atoms or molecules as well as to the energy
shift when one of the pair is in an excited electronic state. In this paper, their method is
extended to chiral molecules and other magnetic systems.

3. Dispersion Potential between Two Excited Chiral Molecules

Let us start with employing the fluctuating moment method to calculate the dispersion
interaction energy between two optically active molecules. Species A is initially in the
excited electronic state |p> and may undergo upward or downward virtual transitions
to level |n>, with B undergoing similar transitions from |r> ← |q>. In addition to
the coupling between two induced electric dipoles as given in Equation (8), there is an
analogous term involving the coupling of two magnetic dipoles, which also interact via
the retarded interaction tensor (9). Furthermore, an electric dipole induced at one site may
interact with an induced magnetic dipole of the second particle. This time coupling occurs
through the interaction tensor [12,13]

Uij(k,
→
R) = − ik

4πε0c
εijk∇k

eikR

R
=

1
4πε0cR3 εijk R̂k[ikR + k2R2]eikR, (10)

where εijk is the Levi–Civita tensor. Hence, the energy shift may be expressed as

ΔE = ∑
→
k ,λ

{[μind
i (A)μind

j (B) + c−2mind
i (A)mind

j (B)]ReVij(k,
→
R)

+[μind
i (A)mind

j (B) + mind
i (A)μind

j (B)]ImUij(k,
→
R)}.

(11)

Equation (11) is the starting point in the evaluation of energy shifts dependent upon
magnetic dipole coupling including chiral molecules to leading order. For terms propor-
tional to the handedness of the two molecules, manifested by the mixed electric-magnetic
dipole polarisability (4), substituting for the second term of Equation (1) and the first term
of Equation (2), yields:
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ΔE = ∑
→
k ,λ

{[Gik(A; k)Gjl(B; k)bk(
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)

+ε−2
0 c−2Gki(A; k)Glj(B; k)d⊥k (

→
k , λ;

→
RA)d⊥l (

→
k , λ;

→
RB)]ReVij(k,

→
R)

+ε−1
0 [Gik(A; k)Glj(B; k)bk(

→
k , λ;

→
RA)d⊥l (

→
k , λ;

→
RB)

+Gki(A; k)Gjl(B; k)d⊥k (
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)]ImUij(k,

→
R)}.

(12)

To evaluate the dispersion potential between two electronically excited chiral molecules,
with the electromagnetic field in the vacuum state, the expectation value of Equation (12)

is taken over the state |pA, qB; 0(
→
k , λ) >. The molecular factors yielded excited state

mixed electric-magnetic dipole polarisabilities of the form given by Equation (4). From
Equation (12), it can be seen that for the radiation field part, four separate field-field spatial
correlation functions need to be evaluated over the ground state of the electromagnetic
field. These are straightforwardly obtained from the Maxwell field operators (6) and (7),

and have earlier been given [39] for an N-photon state of the radiation field, |N(
→
k , λ) >, in

the calculation of the modification of the ground state dispersion force between two chiral
molecules due to an intense radiation field. For the vacuum electromagnetic field, these
correlation functions are:

< 0(
→
k , λ)|d⊥k (

→
RA)d⊥l (

→
RB)|0(

→
k , λ) >=

(
�ckε0

2V

)
e(λ)k (

→
k )e(λ)l (

→
k )e−i

→
k ·

→
R , (13)

< 0(
→
k , λ)|bk(

→
RA)bl(

→
RB)|0(

→
k , λ) >=

(
�k

2ε0cV

)
b(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·

→
R , (14)

< 0(
→
k , λ)|d⊥k (

→
RA)bl(

→
RB)|0(

→
k , λ) >=

(
�k
2V

)
e(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·

→
R , (15)

< 0(
→
k , λ)|bk(

→
RA)d⊥l (

→
RB)|0(

→
k , λ) >=

(
�k
2V

)
b(λ)k (

→
k )e(λ)l (

→
k )e−i

→
k ·

→
R . (16)

3.1. Contribution from Upward and Downward Transitions

For ease of presentation, contributions from both upward and downward transitions
that have identical functional form were distinguished from contributions that solely arise
from downward transitions. We considered the former type of term first. Examining the
first term of Equation (12), substituting Equation (14) produces

∑
→
k ,λ

(
�k

2ε0cV

)
Gik(A; k)Gjl(B; k)b(λ)k (

→
k )b

(λ)
l (k)e−i

→
k ·

→
R ReVij(k,

→
R). (17)

It is worth pointing out that the radiation field part is similar to that featured in
the evaluation of the Casimir–Polder potential [31], with magnetic rather than electric
polarisation vectors appearing in Equation (17). To proceed further, the sum over photon
modes must be performed. For the polarization index sum, the following identities may be
employed:

∑
λ

e(λ)i (
→
k )e(λ)j (

→
k ) = ∑

λ

b(λ)i (
→
k )b

(λ)
j (

→
k ) = δij − k̂i k̂j, (18)

while the wave vector sum is converted to an integral via

1
V ∑

→
k

→ 1

(2π)3

∫
d3

→
k . (19)

In spherical polar coordinates, d3
→
k = k2dkdΩ, with dΩ an element of the solid angle.

Thus, Equation (17) reads:
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�

16π3ε0c

∫
dkdΩk3Gik(A; k)Gjl(B; k)(δkl − k̂k k̂l)e−i

→
k ·

→
R ReVij(k,

→
R). (20)

The angular average is carried out using

1
4π

∫
dΩ(δij − k̂i k̂j)e±i

→
k ·

→
R = (δij − R̂i R̂j)

sin kR
kR

+ (δij − 3R̂i R̂j)

(
cos kR
k2R2 − sin kR

k3R3

)
. (21)

After substituting ReVij(k,
→
R)(9), Equation (20) reads:

�

16π3ε2
0c3

∞∫
0

dkk3Gik(A; k)Gjl(B; k)
[(

δkl − R̂kR̂l
) sin kR

kR
+
(
δkl − 3R̂kR̂l

)(cos kR
k2R2 − sin kR

k3R3

)]
×
[(

δij − 3R̂i R̂j
)
(cos kR + kR sin kR)−

(
δij − R̂i R̂j

)
k2R2 cos kR

]
,

(22)

which holds for A and B in fixed mutual orientation. The isotropic contribution to the
potential may be obtained by applying the result for the random orientational averaging of
the tensor Equation (4) [40]

< Gij(ξ; k) >=
1
3

δijδλμGλμ(ξ; k) = δijG(ξ; k), (23)

where
1
3

δλμGλμ(ξ; k) = G(ξ; k) is the isotropic polarisability, and Greek letter subscripts
denote the Cartesian tensor components in the body-fixed frame of reference. Contracting
the geometric factors in Equation (22) gives:

− �

16π3ε2
0cR2

∞∫
0

dkk4G(A; k)G(B; k)
{

sin 2kR
(

1 − 5
k2R2 +

3
k4R4

)
+ cos 2kR

(
2

kR
− 6

k3R3

)}
= − �

16π3ε2
0R2

∞∫
0

dkk4G(A; k)G(B; k) Im
[

1 +
2i
kR

− 5
k2R2 − 6i

k3R3 +
3

k4R4

]
e2ikR.

(24)

Finally, transforming to the complex variable k = iu, taking the integral into the complex
plane by rotating the line of integration by π/2, yields:

− �

16π3ε2
0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

1 +
2

uR
+

5
u2R2 +

6
u3R3 +

3
u4R4

]
. (25)

where G(ξ; iu) is the isotropic dynamic mixed electric-magnetic dipole polarisability eval-
uated at the imaginary frequency, ω = icu. The second term of Equation (12) produces a
contribution identical to Equation (25), which therefore doubles up.

Considering the third term of Equation (12), substituting Equation (16) gives:

∑
→
k ,λ

(
�k

2ε0V

)
Gik(A; k)Glj(B; k)b(λ)k (

→
k )e(λ)l (k)e−i

→
k ·

→
R ImUij(k,

→
R). (26)

Use is now made of the polarisation sum,

∑
λ

e(λ)i (
→
k )b

(λ)
j (

→
k ) = εijk k̂k, (27)

along with the continuum approximation to the wave vector sum (19). The required angular
integration is given by

1
4π

∫
k̂ke±i

→
k ·

→
R dΩ = ∓i

(
cos kR

kR
− sin kR

k2R2

)
R̂k, (28)

so that Equation (26) becomes, after inserting ImUij(k,
→
R) from Equation (10):
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− i�
16π3ε2

0cR3
εijmεklnR̂mR̂n

∞∫
0

dkk3Gik(A; k)Glj(B; k)
[

cos kR
kR

− sin kR
k2R2

]
[kR cos kR + k2R2 sin kR]. (29)

Performing a tumbling average using Equation (23) and contracting tensors, Equation (29)
becomes:

− i�
16π3ε2

0cR2

∞∫
0

dkk4G(A; k)G(B; k)
{

sin 2kR +
2

kR
cos 2kR − 1

k2R2 sin 2kR
}

= − i�
16π3ε2

0cR2

∞∫
0

dkk4G(A; k)G(B; k)Im
[

1 +
2i
kR

− 1
k2R2

]
e2ikR.

(30)

Substituting the complex variable k = iu and rotating the line of integration as above
yields:

�

16π3ε2
0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

1 +
2

uR
+

1
u2R2

]
. (31)

Recognising that the fourth term of Equation (12) produces an identical contribution to
Equation (31), the u-integral contribution to the excited state dispersion potential between
two chiral (c) molecules is given by twice the sum of Equations (25) and (31),

ΔEu
c−c = − �

8π3ε2
0cR2

∞∫
0

duu4e−2uRG(A; iu)G(B; iu)
[

4
u2R2 +

6
u3R3 +

3
u4R4

]
, (32)

which is applicable to both upward and downward transitions in A and B since there are
no limitations on the intermediate state sums over levels |n> and |r> in the excited state
polarisabilities, G(ξ; iu), ξ = A, B.

3.2. Additional Contribution from Downward Transitions

Let us now examine the terms contributing to the energy shift due to the emission
of a real photon from the excited electronic states of A and B. These are in addition to the
upward transitions captured in the u-integral term (32). The total contribution arising from
de-excitation in each molecule can be written as

ΔERES = ΔEA−RES + ΔEB−RES. (33)

The starting expressions for each of the two terms are easily obtained from Equation (12).
For species A, one has:

ΔEA−RES = ∑
→
k ,λ

{[Gik(A; k)Gjl(B; k)bk(
→
RA)bl(

→
RB)

+ε−2
0 c−2Gki(A; k)Glj(B; k)d⊥k (

→
RA)d⊥l (

→
RB)]VRES

ij (kpn,
→
R)

+ε−1
0 [Gik(A; k)Glj(B; k)bk(

→
RA)d⊥l (

→
RB)

+Gki(A; k)Gjl(B; k)d⊥k (
→
RA)bl(

→
RB)]URES

ij (kpn,
→
R)},

(34)

where VRES
ij (kpn,

→
R) and URES

ij (kpn,
→
R) are the resonant contributions of the coupling ten-

sors (9) and (10), respectively, evaluated at the wave vector of the downward transition
occurring in A, kpn = ωpn/c. An expression similar to Equation (34) may be written for

ΔEB−RES with VRES
ij (kqr,

→
R) and URES

ij (kqr,
→
R) appearing instead, reflecting de-excitation

in B at the resonant frequency ωqr = ckqr for the transition |r> ← |q>. Similar to the
evaluation of the u-integral term, an expectation value was taken over Equation (33) with

the state |pA, qB; 0(
→
k , λ) >. Use was made of the vacuum field–field spatial correlation

functions (13)–(16) for the radiation field part. For species A and B, excited state molecular
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polarisabilities Gij(ξ; k) featured. Examining the first term of Equation (34), and following
similar steps that led to Equation (20), yields:

1
8π3ε0c2 ∑

n

∫
dkdΩk4 μ

pn
i (A)mnp

k (A)

k2
np − k2 Gjl(B; k)(δkl − k̂k k̂l)e−i

→
k ·

→
R VRES

ij (kpn,
→
R), (35)

after substituting Gik(A; k) (4). Instead of Equation (21), it is convenient to use the following
form for the integration over the solid angle dΩ:

1
4π

∫
dΩ(δij − k̂i k̂j)e±i

→
k ·

→
R =

1
2ik3 (−∇2δij +∇i∇j)

1
R
(eikR − e−ikR). (36)

Equation (35) then becomes, after carrying out the integral over k,

1
4πε0c2 ∑

n
Ep>En

μ
pn
i (A)mnp

k (A)Gjl(B; kpn)(−∇2δkl +∇k∇l)
e−ikpnR

R
VRES

ij (kpn,
→
R)

= − 1
16π2ε2

0c2 ∑
n

Ep>En

μ
pn
i (A)mnp

k (A)Gjl(B; kpn)[(−∇2δij +∇i∇j)
eikpnR

R
][(−∇2δkl +∇k∇l)

e−ikpnR

R
],

(37)

where in the last line, VRES
ij (kpn,

→
R) (9) is inserted. Interestingly, B responds through its

polarisability, Gjl(B; kpn), to the excitation energy of the downward transition in A at the
frequency ωpn = ckpn. The energy shift term (37) applies for A and B in fixed relative orien-
tation and the sum is restricted to states for which Epn > 0. Performing an orientational
average, absorbing the constant 1/3 into each molecular factor, and contracting, produces

− 1
8π2ε2

0c2R6 ∑
n

Ep>En

[
→
μ

pn
(A)·mnp(A)]G(B; kpn)[3 + k2

pnR2 + k4
pnR4]. (38)

Let us now evaluate the fourth term of Equation (34), this time with the help of
Equation (15), which yields

1
8π3ε0c

εklm ∑
n

∫
dkdΩk4 μ

pn
k (A)mnp

i (A)

k2
np − k2 Gjl(B; k)k̂me−i

→
k ·

→
RURES

ij (kpn,
→
R). (39)

Employing an alternative form for the angular average (28),

1
4π

∫
dΩk̂ke±i

→
k ·

→
R = ∓ 1

2k2 ∇k
1
R
(eikR − e−ikR), (40)

and performing the k-integration, Equation (39) becomes:

− i
4πε0c ∑

n
Ep>En

μ
pn
k (A)mnp

i (A)Gjl(B; kpn)kpnεklm∇m
e−ikpnR

R
URES

ij (kpn,
→
R)

= − 1

(4πε0c)2 ∑
n

Ep>En

μ
pn
k (A)mnp

i (A)Gjl(B; kpn)k2
pnεijnεklm∇m

e−ikpnR

R
∇n

eikpnR

R
,

(41)

where in the last line URES
ij (kpn,

→
R) is substituted. After random averaging, accounting for

the factor (1/3)2 that arises, Equation (41) becomes:

− 1
8π2ε2

0c2R6 ∑
n

Ep>En

[
→
μ

pn
(A)·→mnp

(A)]G(B; kpn)[k2
pnR2 + k4

pnR4]. (42)
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Noting that the second and third terms of Equation (34) produce contributions identical
to Equations (38) and (42), respectively, adding these two terms and doubling, results in
the additional contribution arising from downward transitions having the form,

ΔEA−RES
c−c = − 1

4π2ε2
0c2R6 ∑

n
Ep>En

[
→
μ

pn
(A)·→mnp

(A)]G(B; kpn)[3 + 2k2
pnR2 + 2k4

pnR4]. (43)

From Equation (43), the additional contribution arising from downward transitions in
excited B, the second term of Equation (33), can be written down immediately as

ΔEB−RES
c−c = − 1

4π2ε2
0c2R6 ∑

r
Eq>Er

G(A; kqr)[
→
μ

qr
(B)·→mrq

(B)][3 + 2k2
qrR2 + 2k4

qrR4], (44)

where now species A responds via its excited state polarisability, G(A; kqr), to the decay
occurring due to the emission in B at the frequency ωqr = ckqr. Just like the u-integral
(32), the two terms of ΔERES are discriminatory, dependent upon the chirality of A and
B, changing sign when a mirror-image counterpart replaces one enantiomer. The two
contributions (43) and (44), are added to Equation (32) to give the total dispersion potential
between two excited chiral molecules, namely,

ΔEc−c = ΔEu
c−c + ΔEA−RES

c−c + ΔEB−RES
c−c . (45)

The result of Equation (45) agrees with an earlier evaluation using response theory [36].

4. Dispersion Energy Shift between an Electric Dipole Polarisable Molecule and a
Paramagnetically Susceptible One

For the leading order, chirality in a molecule is characterised by the presence of electric
and magnetic dipole moments. A contribution to the dispersion potential of an identical
order of magnitude to that between two chiral molecules considered in the previous section
is that between an electric dipole polarisable molecule and a magnetic dipole susceptible
one. Both of these interaction energies contain a total of two electric and two magnetic
dipole moments across the two sites. On letting A be an excited electrically polarisable
species and B an excited paramagnetically susceptible entity, the relevant induced dipoles
from Equations (1) and (2) to be used in the method deployed arise from the first term of
Equation (1) and the second term of Equation (2), which couple to the interaction tensor
(10), producing an energy shift:

ΔE = ∑
→
k ,λ

μind
i (A;

→
k , λ)mind

j (B;
→
k , λ)ImUij(k,

→
R)

= ∑
→
k ,λ

ε−1
0 αik(A; k)χjl(B; k)d⊥k (

→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)ImUij(k,

→
R).

(46)

Taking the expectation value of Equation (46) over the state |pA, qB; 0(
→
k , λ) >, and

making use of the field-field correlation function (15), one obtains:

ΔE = ∑
→
k ,λ

(
�k

2ε0V

)
αik(A; k)χjl(B; k)e(λ)k (

→
k )b

(λ)
l (

→
k )e−i

→
k ·

→
R ImUij(k,

→
R). (47)

Performing the polarisation sum using Equation (27), converting the
→
k -sum to an

integral using Equation (19), and carrying out the angular integral using Equation (28), one
arrives at
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ΔE =
i�

4π2ε0
εklmR̂m

∞∫
0

dkk3αik(A; k)χjl(B; k)
[

cos kR
kR

− sin kR
k2R2

]
ImUij(k,

→
R)

=
i�

16π3ε2
0cR3

εijnεklmR̂mR̂n
∞∫
0

dkk3αik(A; k)χjl(B; k)
[

cos kR
kR

− sin kR
k2R2

]
[kR cos kR + k2R2 sin kR],

(48)

by inserting Equation (10) for ImUij(k,
→
R). This result holds for a pair of anisotropic

molecules. To obtain the isotropic potential, we make use of the orientational averages for
the second rank tensors,

< Xij(ξ; k) >=
1
3

δijδλμXλμ(ξ; k) = δijX(ξ; k), (49)

for X(ξ; k) = α(ξ; k) or χ(ξ; k). Contracting the tensors and simplification using trigono-
metric identities relating single and double angle arguments yields:

ΔE =
i�

16π3ε2
0R2

∞∫
0

dkk4α(A; k)χ(B; k)
{

sin 2kR +
2

kR
cos 2kR − 1

k2R2 sin 2kR
}

=
i�

16π3ε2
0cR2

∞∫
0

dkk4α(A; k)χ(B; k) Im
[

1 +
2i
kR

− 1
k2R2

]
e2ikR

. (50)

Rotating the integral from the real to the imaginary axis and substituting the complex
variable k = iu, Equation (50) results in the u-integral contribution to the dispersion potential
between an excited electric dipole polarisable molecule and an excited magnetic dipole
susceptible molecule being given by

ΔEu
e−m =

�

16π3ε2
0cR2

∞∫
0

duu4e−2uRα(A; iu)χ(B; iu)
[

1 +
2

uR
+

1
u2R2

]
, (51)

where α(A; iu) and χ(B; iu) are the excited state polarisabilities evaluated at the imaginary
frequency ω = icu and is straightforwardly obtained from expressions (3) and (5), respec-
tively. The result (51) is identical in form to the expression obtained previously for the
ground state interaction energy using perturbation and response theories [34,41,42], and is
likewise repulsive.

The resonant terms are evaluated from

ΔERES
e−m = ΔEA−RES

e−m + ΔEB−RES
e−m

= ∑
→
k ,λ

ε−1
0 αik(A; k)χjl(B; k)d⊥k (

→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)[URES

ij (kpn,
→
R) + URES

ij (kqr,
→
R)] . (52)

The evaluation of Equation (52) in a manner similar to the chiral–chiral example, using
Equation (40) for the angular average, leads to the isotropic contributions,

ΔERES
e−m = − 1

8π2ε2
0c2R6 ∑

n
Ep>En

|→μ pn
(A)|2χ(B; kpn)[k2

pnR2 + k4
pnR4]

− 1
8π2ε2

0c2R6 ∑
r

Eq>Er

|→mqr
(B)|2α(A; kqr)[k2

qrR2 + k4
qrR4],

(53)

neither of which, like the u-integral, are discriminatory. The two terms in Equation (53)
apply only to downward transitions from the excited state. Each susceptibility responds to
the emission frequency of the other particle, with the energy shift exhibiting inverse square
dependent far-zone behaviour. The total excited state dispersion potential between electric
and magnetic dipole polarisable systems is given by the sum of Equations (51) and (53),

ΔEe−m = ΔEu
e−m + ΔERES

e−m, (54)
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agreeing with an earlier study [36].

5. Contribution from Diamagnetic Coupling

In Section 4, the paramagnetic contribution to the excited state dispersion interaction
between an electric dipole polarisable molecule and a magnetic dipole susceptible molecule
was studied. No account, however, was taken of the diamagnetic coupling term, which
produces a contribution of identical order of magnitude to both the potentials evaluated
thus far. This contribution is now considered. As previously stated, particle A is let
to be an excited electric dipole polarisable species. However, here, B is selected to be
an excited diamagnetic molecule. In the multipolar coupling scheme of non-relativistic
QED [12–15,43,44], the diamagnetic coupling term of particle ξ is

Hd(ξ) =
e2

8m ∑
a
{(→q a(ξ)−

→
Rξ)×

→
b (

→
Rξ)}

2
, (55)

where
→
q a(ξ) is the position of electron a relative to the centre of molecule ξ,

→
Rξ . For an

isotropic diamagnetic source located at the origin, Equation (55) reduces to
e2

12m ∑
a

q2
a(ξ)

→
b

2
(0).

Therefore, in the presence of a magnetic field, the induced electronic coordinate of molecule
B is given by

qind
j (B) = χd

jl(B; 0)bl(0), (56)

where the isotropic frequency independent excited state diamagnetic susceptibility is
defined as

χd(ξ; 0) = − e2

12m ∑
a
< q2

a(ξ) >
qq, (57)

where the excited state matrix element of q2
a(ξ) over the state |q> is < q| < q2

a(ξ) >
|q >=< q2

a(ξ) >qq. The induced electric dipole moment arising from the first term of
Equation (1) and Equation (56) couple, yielding an energy shift,

ΔE = ∑
→
k ,λ

μind
i (A;

→
k , λ)qind

j (B)ImUij(k,
→
R)

= ∑
→
k ,λ

ε−1
0 αik(A; k)χd

jl(B; 0)d⊥k (
→
k , λ;

→
RA)bl(

→
k , λ;

→
RB)ImUij(k,

→
R).

(58)

Next, the expectation value of Equation (58) was taken over the state |pA, qB; 0(
→
k , λ) >,

giving the p-th and q-th excited state electric dipole polarisability and diamagnetic sus-
ceptibility, respectively, and the electric-magnetic field–field spatial correlation function
(15):

ΔE = ∑
→
k ,λ

(
�k

2ε0V

)
αik(A; k)χd

jl(B; 0)e(λ)k (
→
k )b

(λ)
l (

→
k )e−i

→
k ·

→
R ImUij(k,

→
R), (59)

after omitting the molecular state labels. The remainder of the calculation follows that
given in Section 4 when evaluating the paramagnetic contribution to the dispersion energy.
For A and B in fixed relative orientation,

ΔE =
i�

16π3ε2
0cR3

εijnεklmR̂mR̂n

∞∫
0

dkk3αik(A; k)χd
jl(B; 0)

[
cos kR

kR
− sin kR

k2R2

]
[kR cos kR + k2R2 sin kR]. (60)

Utilising the result for the rotationally averaged diamagnetic susceptibility, < χd
jl(B; 0) >=

δjlχ
d(B; 0), the isotropic diamagnetic contribution to the dispersion potential is

ΔEu
e−d =

�

16π3ε2
0cR2

∞∫
0

duu4e−2uRα(A; iu)χd(B; 0)
[

1 +
2

uR
+

1
u2R2

]
, (61)
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when expressed in terms of the complex variable k = iu.
Combining the diamagnetic u-integral term (61) with the corresponding paramagnetic

term (51), gives:

ΔEu
p+d =

�

16π3ε2
0cR2

∞∫
0

duu4e−2uRα(A; iu)χm(B; iu)
[

1 +
2

uR
+

1
u2R2

]
, (62)

where the magnetic susceptibility tensor, χm, is a sum of paramagnetic (p) and diamagnetic
(d) components, recalling that the latter is frequency independent,

χm(B; iu) = χp(B; iu) + χd(B; 0), (63)

with the isotropic paramagnetic susceptibility given by

χp(B; iu) =
2
3 ∑

r

|→mqr
(B)|2Erq

E2
rq + (�cu)2 , (64)

and with the diamagnetic susceptibility χd(B; 0) given by (57). A functional form similar to
Equation (62) was obtained using perturbation and response theories for the ground state
dispersion potential [13,34,41,45].

For the additional contributions to the u-integral term arising solely from de-excitation,
diamagnetic B does not respond to the downward transitions in A, |n> ← |p>, so that
from the first term of Equation (53),

ΔEA−RES
e−d = − 1

8π2ε2
0c2R6 ∑

n
Ep>En

|→μ pn
(A)|2χd(B; 0)[k2

pnR2 + k4
pnR4]. (65)

Particle A, on the other hand, responds to the downward transitions occurring in
B, |r> ← |q>, modifying the second term of Equation (53) to give for diamagnetic B the
contribution,

ΔEB−RES
e−d = − e2

48π2ε2
0c2mR6 ∑

r
Eq>Er

< |qqr(B)|2 > α(A; kqr)[k2
qrR2 + k4

qrR4], (66)

with
ΔERES

e−d = ΔEA−RES
e−d + ΔEB−RES

e−d , (67)

a sum of Equations (65) and (66). Hence, the total dispersion potential between an excited
electric dipole polarisable molecule and an excited diamagnetic one is given by

ΔEe−d = ΔEu
e−d + ΔERES

e−d (68)

with ΔEu
e−d given by Equation (61).

6. Summary

Within a quantum field framework, retarded van der Waals dispersion potentials be-
tween atoms or molecules in the ground state are commonly evaluated using diagrammatic
time-dependent perturbation theory. This method, however, gives rise to computational
difficulties when one or both of the pair are electronically excited, since resonant terms have
to be accounted for. An alternative treatment of this problem involved employing response
theory, in which each particle responds, through its electric or magnetic susceptibility, to the
source Maxwell fields of the other entity. However, this method requires first calculating the
second quantised electric and magnetic radiation fields in the vicinity of a source multipole
moment before the energy shift can be evaluated, with the additional burden that fields
second order in the moments are needed at the very least [27,34,46].
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To overcome some of these problems, in this paper, the excited state dispersion poten-
tial between optically active molecules is examined from a different physical point of view,
one that was previously considered for the calculation of the Casimir–Polder potential.
Fluctuations in the vacuum electromagnetic field induce multipole moments in atoms or
molecules, which in turn couple through pertinent retarded interaction tensors. Expectation
values are taken over excited matter states and the ground state of the radiation field. The
latter yielded known expressions for the field–field spatial correlation functions and serve
to highlight the prominent role played by the electromagnetic vacuum when calculating
dispersion forces.

For two excited chiral molecules characterised by electric and magnetic dipole mo-
ments, all three terms contributing to the dispersion interaction energy—the familiar
u-integral term involving excited state mixed electric-magnetic dipole polarisabilities of
each particle, and two extra contributions arising from downward only transitions in each
species—are found to be discriminatory, depending on the handedness of molecules A and
B. Two other dispersion potentials involving magnetic interactions that were of a similar
order of magnitude to the chiral–chiral energy shift are also computed. These included
the potential between an electric dipole polarisable molecule and a second that is either
paramagnetically or diamagnetically susceptible. Neither energy shift contribution changes
sign on interchanging enantiomers, with the second coupling term being independent of
frequency, but which may be combined with the paramagnetic part to produce an overall
magnetically susceptible contribution, as found earlier for the ground state [34,38,42].

Interest in dispersion energies between chiral molecules lies in their discriminatory
behaviour as well as in outlining the role played by magnetic and diamagnetic coupling.
It complements other research areas that involve optically active species such as chiral
light–matter interactions, analytical based methods for achieving enantiomer excess and
separation, and the synthesis of chiral compounds and drugs in organic chemistry and the
pharmaceutical industry [35–38].
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Abstract: Casimir–van der Waals forces are important in the self-assembly processes of nanoparticles.
In this paper, using a hybrid approach based on Lifshitz theory of Casimir–van der Waals interactions
and corrections due to the shape of the nanoparticles, it is shown that for non-spherical nanoparticles,
the usual Hamaker approach overestimates the magnitude of the interaction. In particular, the study
considers nanoplates of different thicknesses, nanocubes assembled with their faces parallel to each
other, and tilted nanocubes, where the main interaction is between edges.

Keywords: self-assembly; Casimir force; van der Waals force; Hamaker constant; nanoparticles

1. Introduction

The self-assembly of nanoparticles has become an attractive area of research since it
can be used to construct materials with novel properties by arranging nanoparticles of
different geometries in arrays that mimic crystalline structures with a given periodicity [1].
Unlike usual crystals with an atom in each site, in self-assembled supracrystals, a nanopar-
ticle is placed in the crystalline sites [2]. The assembly and bonding of the nanoparticles
happen due to a combination of forces and, in many cases, ligands such as strands of
nucleic acids [3]. Several physical properties can be modified in self-assembled systems,
such as the optical response using plasmonic nanoparticles, as well as electrical and thermal
conductivity properties, making self-assembly a practical way for building nanocompos-
ites [4]. The potential use of nanocomposites as biosensors and nano-biomaterials has been
studied [5], as well their therapeutic delivery of drugs at the nanoscale [6].

Self-assembly typically occurs in a solvent, such as water, and the interactions are
described by the DLVO theory, named after Derjaguin, Landau, Verwey, and Overbeek.
The DLVO theory includes the screened electrostatic interaction via the Poisson-Boltzman
equation and the van der Waals interaction, assuming they are additive [7–10]. Depletion
forces, that are attractive, due to the presence of micelles can also be present [11]The van
der Waals force is usually calculated using the Hamaker approach, which assumes a pair-
wise summation [12]. Based on the fluctuation–dissipation theorem and Rytov’s theory of
fluctuating electrodynamics [13], Lifshitz [14,15] developed the theory of generalized van
der Waals forces between macroscopic bodies. The Lifshitz equation for the Casimir–van
der Waals interaction energy can be written as in the Hamaker’s approach; however, now
the Hamaker constant can be explicitly calculated if the dielectric functions of the particles
and the surrounding media are known.

Of interest to the calculations presented in this paper is the equilibrium formation
of colloidal Au nanoprisms. Young et al. synthesized and self-assembled triangular
nanoprisms in a one-dimensional periodic array [16]. The periodicity of these lamellar
superlattices depends on the solution’s temperature and ionic strength. The equilibrium
condition comes from the balance of the attractive van der Waals force, the repulsive elec-
trostatic potential from the solution of the Poisson–Boltzmann equation, and the attractive
depletion force that comes from the formation of micelles, since surfactants are added to
avoid aggregation. A similar work by Munkhbat et al. [17] designed tunable self-assembled
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Casimir microcavities made of parallel Au nano palettes and showed that only the electro-
static and Casimir–van der Waals interactions play a dominant role. Both above-described
systems yield equilibrium periodic structures. The possibility of having optical cavities
with a high-quality factor by combining the repulsive Casimir and buoyancy forces has
also been considered [18]. A suitable choice of the dielectric functions of the plates and the
media between them yields a repulsive force.

Finite-size effects due to the shape of the interacting bodies have been a challenge
to the precise calculation of the Casimir–van der Waals force. Hamaker introduced [12] a
pair-wise summation to calculate the interaction energy between two spheres, resulting in
an expression that includes the energy of interaction multiplied by a factor that depends
on the geometry of the objects. Other geometries have also been considered, such as
the interaction between spheres and shells, as well as shells and walls [19]. Dantchev
and Valchev presented [20] a surface integration approach generalizing the Derjaguin or
proximity theorem approximation for the interaction between a three-dimensional object
and a half-space. In particular, Dantchev and Valchev considered the case of spheres,
cylinders, and the interaction of liposomes and lipid bilayers. The problem of extending
the original theory of Hamaker is well described in an extensive review by Rusanov and
Brodskaya [21], where they present the interaction of many systems of interest in colloidal
science, such as spherical particles, wedges, and cylinders of different lengths.

Furthermore, we are interested in the self-assembly of polymer-grafted metal nanocubes
into arrays of one-dimensional strings with well-defined interparticle orientations and
tunable electromagnetic properties [22]. The nanocubes are assembled in two configura-
tions: one considering the edge–to-edge interactions of the nanocubes, and the second one
considering the face-to-face interactions. Unlike spherical nanoparticles characterized by
one dipolar plasmonic resonance, cubes have several dipolar modes [23].

Since Lifshitz theory provides a more accurate description than the simple Hamaker
approximation, a hybrid approach is preferred. In this paper, the interaction energy between
two parallel surfaces is calculated using Lifshitz theory, adjusting for geometrical effects [24].
Within this approach and using the results of de Rocco and Hoover [25], we evaluate the
Casimir–van der Waals interaction in several systems of interest in self-assembly.

2. Lifshitz Theory and the Hamaker Constant

Lifshitz theory considers two parallel slabs separated by a distance L and a temperature
T. The plates have lateral dimensions that are much larger than L. The dielectric function
of the plates is ε(ω) in a medium with a dielectric function εm(ω). After making the
rotation to imaginary frequencies (ω → iω) and introducing the Matsubara frequencies
ζn = 2πnKBT/h̄, where KB is Boltzmann constant, h̄ is the reduced Planck’s constant, and n
is a natural number, the Casimir–van der Waals energy per unit area is written as [14,15,26]

E(T, L) =
KBT
2π

∞

∑
n=0

′
∞∫

0

dQQ ln[Dp(Q, ζn, L)Ds(Q, ζn, L)]. (1)

The prime in the sum indicates that the n = 0 term has to be multiplied by 1/2.

The wave vector in the gap is K0 = (Q, k0), with the z-component, k0 =
√

εmζ2
n/c2

0 + Q2,
where c0 denotes the speed of light in vacuum. Within the material, the corresponding

z component of the wave vector is k =
√

εζ2
n/c2

0 + Q2. These definitions of the normal
components of the wave vectors are evaluated in the Matsubara frequencies. The function
Dν(Q, ζ, L) is

Dν(Q, ζn, L) = 1 − r2
νe−2k0L, (2)

where rν are the reflection coefficients of the plates for either ν = p or ν = s polarization.
For clarity, it is important to notice that the reflection coefficients depend on the frequency
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and parallel component of the wave vector Q through the definitions of k0 and k, defined
above. For a slab of thickness d, one has

rν = ρν
1 − e−2δ

1 − ρ2
νe−2δ

, (3)

where the phase δ is defined as δ = (d/c0)
√

ζ2
n(ε(iζn)− 1) + c2

0k0, and the Fresnel coeffi-
cients ρν are

ρs =
k0 − k
k0 + k

, (4)

and

ρp =
k − ε(iζn)k0

k + ε(iζn)k0
. (5)

In general, Equation (1) is correct for half-spaces, finite-width plates, layered sys-
tems [27], or nonlocal dielectric functions [28] provided that the appropriate reflection
coefficients are calculated [29]. The only restriction is that Lifshitz theory assumes that the
plate extension is infinite.

The interaction energy given by Equation (1) can be rewritten in the form of the
Hamaker formula. Defining the variable x = 2k0L, the energy per unit area reads:

E(T, L) = − AH(T)
12πL2 , (6)

where the Hamaker constant, AH(T), is

AH(T) = −3kT
2

∞

∑
n=0

′
∞∫

x0

dxx ln[Dp(x, ζn)Ds(x, ζn)], (7)

and the lower limit of integration is x0 = ζn
√

εmL/c0.
For two equal plates facing each other of surface area S, the total energy is EH(L) = E(L)S.

3. Finite-Size Effects

When dealing with finite-size effects, the energy of interaction between the bodies can
be, in general, written as E(L, T) = AHK(a, b, d), where K(a, b, d) is a geometric correction
that depends on the dimensions of the body indicated by a, b, d. However, AH is calculated
from Equation (7), which, as explained before, is for parallel plates strictly of infinite length
or with dimensions much larger than the separation L. In what follows the following
notation is used: E is the total energy between the bodies, and E is the energy density (see
Equation (6)).

For the case of finite-size plates, the geometric factor was derived by De Rocco and
Hoover [25]. For two parallel plates of size a × b and thickness c, the geometric factor is

Kpl(x, a, b) =
1
4

ln
(

x4 + x2a2 + x2b2 + a2b2

x4 + x2a2 + x2b2

)
+

x2 − a2

4ax
tan−1

( a
x

)
+

x2 − b2

4bx
tan−1

(
b
x

)
+

x(a2 + b2)3/2

6a2b2 tan−1
(

x√
a2 + b2

)
+

(
1

6x2 +
1

6a2

)
b
√

x2 + a2 tan−1

(
b√

a2 + x2)

)

+

(
1

6x2 +
1

6b2

)
a
√

x2 + a2 tan−1
(

a√
b2 + x2

)
.

(8)
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The variable x is a dummy variable that represents the position of the body where the
geometric factor is evaluated. The corresponding interaction energy between the plates is

E(L, a, b, c) = − AH

π2 [Kpl(L + 2c)− 2Kpl(L + c) + Kpl(L)]. (9)

The other case of interest is the self-assembly of cubes (see Ref. [22]). Equations (8) and (9)
are correct for two cubes with parallel faces, setting a = b = c. When the cubes are tilted
and the interaction is edge-to-edge, the geometric factor of the interaction ( denoted as Kcb)
is

K(x, d, c)cb =
1
8

ln
(

d2 + x2

c2 + d2 + x2

)
+

1
8

(
x
d
− d

x

)
tan−1

(
d
x

)
+

(c2 + d2)3/2x
12c2d2 tan−1

(
x√

d2 + c2

)
+

c
√

d2 + x2

12

(
1
d2 +

1
x2

)
tan−1

(
c√

d2 + x2

)
+

d(c2 + x2)1/2

12

(
1
c2 +

1
x2

)
tan−1

(
d√

c2 + x2

)
,

(10)

In this case, the separation L is between the edges of the cubes and d = L/
√

2, and the
energy is

E(d, a, b, c) = − AH

π2 (Kcb(d + 2a, d, b, c)− 2Kcb(d + a, d, b, c) + Kcb(d, d, b, c)). (11)

4. Results

To evaluate the finite-size effects, consider that the nanoparticles are made of Au with a
dielectric function given by a Drude model: ε(iζn) = 1 + w2

p/(ζ2
n + ζnγ), where wp = 9 eV

and γ = 0.02 eV. The plates (and cubes) are surrounded by water. The dielectric function of
the water used here is the data reported in Ref. [30] calculated along the rotated frequency
space (ω → iζn).

To understand the effect of finite-size effects, let us compare the energy between the
plates EH and the energy predicted using Equation (9) and Equation (11). As was stated
above, the energy for the plates EH is given by EH = SE = SAH/12πL2. , where S is the
surface of the plates. The value of the Hamaker constant in Refs. [16,17] was calculated
assuming semi-infinite plates, which is rs,p in Equation (2)—the knownFresnel coefficients.
Let us define the ratio Er = E(L; a, b, c)/EH(L). If Er ∼ 1, then finite-size effects are not
significant. Figure 1 shows Er as a function of the separation for the case of parallel plates.
The blue curve represents plates of size a = b = 2000 nm and thickness c = 30 nm, roughly
the size reported in Ref. [17], and the red line corresponds to plates of size a = b = 145 nm
and thickness c = 7.5 nm as in Ref. [16]. In both cases, one can observe that the Casimir–van
der Waals interaction is underestimated when using Equation (6). As L decreases, the value
of Er increases, since L 
 a, b.
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Figure 1. The energy ratio, Er, for two sizes of square plates of size a = b and thickness c. The lines
correspond to the value a/c as indicated. The sizes correspond to those used in Refs. [16,17]. See text
for details.

For completeness, Figure 2 shows how Er changes with thickness c while the other
dimensions are kept fixed (a = b = 2000 nm).

Figure 2. The variation of Er as a function of the separation, L, of the two plates for different values
of the thickness c of each as indicated, and a = b = 2000 nm. Even for large enough values of c,
the energy ratio is less than unity.

At a fixed separation L, the dependence of Er with the thickness, c, increases linearly
for small values of c and levels off asymptotically to the value expected for half-spaces.
Keeping the area of the plates constant and at two arbitrary separations of L = 50 nm and
L = 100 nm, Figure 3 shows the variation with the thickness. Thus, one can quantify the
correction needed for Equation (6).
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Figure 3. For two fixed separations between the plates, L = 50 nm and L = 100 nm, the ratio Er

increases with increasing the value of the thickness c, leveling-off asymptotically to the value expected
for half-spaces. The dimensions of the plate are a = b = 2000 nm.

The interaction energy Er for cubes is presented in Figure 4. The face–face and edge–
edge interactions are considered with edge lengths of a = b = c = 80 nm as reported in
Ref. [22]. The face–face interaction is just a particular case of parallel plates with a = b = c,
and the behavior is the same. As L decreases, the ratio a/L increases, and Er increases.
For all separations L, since Er < 1, one can see that using Equation (6) overestimates the
interaction. The ratio Er is calculated using Equation (11) for the edge–edge interaction.
The behavior of Er is different from the other cases. For the tilted cubes, the behavior is
different, and the interaction increases with increasing separation until it reaches a maxima.
To further understand this behavior, Er is plotted Figure 5 for the edge–edge interaction for
cubes of different sizes. The behavior of the curves is the same for different sizes except
that, depending on the size of the cube, there are different values of the maxima,but it
occurs when the separation between the edges is the same as the size of the cube L = c. It
should also be noted that the maximum value attained by Er is independent of the size of
the cube. Whether this is an artifact of the Hamaker approach or due to the singularity of
having the interaction between two edges is an issue that needs further exploration.

L

 a

L

Figure 4. Energy ratio, Er between two cubes facing each other and for two tilted cubes, as a function
of the separation L. The nanocubes have dimensions a = b = c = 80 nm.
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Figure 5. Energy ratio, Er, between two tilted nanocubes of different sizes. The sizes considered are
20 nm (blue line), 80 nm (red line), and 150 nm (orange line). The maximum in each curve happens
when the separation equals the size of the cube.

5. Discussion

The results presented in this study assumed that the surrounding medium was water.
No effect of electrolytes that screen the van der Waals interaction [31,32] was considered.
The screening will change the magnitude of the interaction energy. The dielectric func-
tion of the nanoparticle is assumed to be that of bulk Au. In the case of small metallic
nanoparticles, the damping has to be corrected to consider the change in the electronmean-
free path. For silver, this correction implies a change in the Hamaker constant of 138%
nanoparticles [33].

In the case of plates and nanoparticles, there is another effect that has not been
considered: spatial dispersion or nonlocal effects. For plates whose thickness is less than
the electron mean-free path, or with nanoparticles with an average size smaller than the
mean-free path, the dependence of the dielectric function with the wave vector has to
be taken into account. As shown in Ref. [34], introducing spatial dispersion affects the
Hamaker constant’s value at short separations. The difference in the Hamaker constant
between the local and nonlocal cases can be as large as two orders of magnitude. Nonlocal
effects become relevant when the size of the bodies is of the order of magnitude of the
skin depth. For Au (depending on the frequency), the skin depth is ∼40 nm. Thus,
the nanoplates used for self-assembly in the literature [16,17] fall in the range of thickness
where spatial dispersion has to be taken into account.

6. Conclusions

The ability to synthesize nanoparticles of different shapes and use them in self-
assembly requires understanding all the interactions, particularly the Casimir–van der
Waals interaction. The simplified approach not taking into account the shape overestimates
the force. The use of Equations (6) and (7) is not the only procedure available in the lit-
erature for estimating the Casimir–van der Waals interaction. Numerical simulations for
arbitrary 3D objects have been reported earlier [35] but require more computer-intensive
calculations. The procedure presented in this paper can be considered a first approach to
estimating the influence of the geometry for the case of nanoplates and nanocubes. The in-
teraction energy obtained, considering finite-size effects, is smaller than that predicted by
the conventional Hamaker approach. Geometric effects and other considerations, such
as spatial dispersion, should provide a better prediction of the Casimir–van der Waals
interaction for an accurate design of self-assembled structures.
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Abstract: A mirror with time-dependent boundary conditions will interact with the quantum vacuum
to produce real particles via a phenomenon called the dynamical Casimir effect (DCE). When asym-
metric boundary conditions are imposed on the fluctuating mirror, the DCE produces an asymmetric
spectrum of particles. We call this the asymmetric dynamical Casimir effect (ADCE). Here, we inves-
tigate the necessary conditions and general structure of the ADCE through both a waves-based and a
particles-based perspective. We review the current state of the ADCE literature and expand upon
previous studies to generate new asymmetric solutions. The physical consequences of the ADCE are
examined, as the imbalance of particles produced must be balanced with the subsequent motion of
the mirror. The transfer of momentum from the vacuum to macroscopic objects is discussed.

Keywords: quantum vacuum; vacuum fluctuation; dynamical Casimir effect; asymmetry; asymmetric
excitations; asymmetric dynamical Casimir effect

1. Introduction

In 1948, Hendrik Casimir introduced the notion that the macroscopic boundaries of
enclosed cavities impose strict limitations on the quantum vacuum and restrict fundamental
vacuum modes of the background free scalar field [1]. The physical interaction between
the quantum mechanical vacuum and surfaces with various geometries and boundary
conditions (or physically, the properties of the materials constituting that surface) is known
as the Casimir effect. This is commonly referred to as a physical manifestation of the
quantum vacuum [2–8]. Perhaps one of the most remarkable consequences of modern
quantum theory is the extension of this phenomenon into the case of an open cavity with
time-varying boundary conditions. When this occurs, the coupling between vacuum
quantum fields and time-dependent boundaries results in particle production from the
quantum vacuum. This was first introduced in Gerald T. Moore’s 1969 doctoral thesis [9],
in which he demonstrated that a moving cavity in one dimension produces nonzero
energy photonic modes from the initial vacuum state. Over the following decade, this
phenomenon would be more thoroughly examined by many others, including additional
studies by DeWitt [10] and Fulling and Davies [11,12], although it was not until 1989 that
the now commonplace name dynamical Casimir effect (DCE) was first introduced [13].

There is now an abundance of literature on the DCE; see [14–16] for several detailed
reviews of this topic. In these, the following definition of the DCE is given: “a macroscopic
phenomena caused by changes of vacuum quantum states of fields due to fast time vari-
ations of positions (or properties; e.g., plasma frequency or conductivity) of boundaries
confining the fields (or other parameters)” [16]. Most notably, the DCE will result in the gen-
eration of quanta (photons) of the electromagnetic field directly due to the time-dependent
interaction of a macroscopic process with the quantum vacuum.

While the DCE has also been investigated in various three-dimensional configurations,
such as cylindrical waveguides [17], parallel plates [18], and spherical [19], cylindrical [20],
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and rectangular cavities [21,22], we focus our attention on a (spatially) one-dimensional
model. Specifically, it is a (1+1)D (dimensional) spacetime permeated by a massless scalar
quantum field in the presence of a point mirror with certain optical properties. The (1+1)D
model provides an excellent proving ground by which the underlying fundamental physics
can be explored. This lets us directly examine the effects of altering the properties and
configurations of the mirrors and allows for the analysis of the general nature of the type of
time fluctuations needed to induce particle production from the vacuum [22–30]. We avoid
using a perfectly reflective mirror [9] as it produces an undesirable result: the renormalized
energy can be negative when the mirror starts moving [11,31]. With this in mind, we are
interested in the specific case of a partially reflective mirror, which has positive definite
(renormalized) radiative energy [31,32]. For a review of the physics of partially reflective
mirrors, see [33–42].

Our particular method of modeling a partially reflective mirror uses the established
δ − δ′ potential [35,39,41,43]. When constructing a δ − δ′ mirror (here δ′ is the spatial
derivative of the Dirac δ) [44,45], spatial asymmetry is built in, causing the quantum
vacuum to act unequally on either side of the mirror. Moving δ − δ′ mirrors [46] and
δ − δ′ mirrors with time-dependent boundary conditions [47,48] all lead to the creation
of an asymmetric distribution of particles due to the unequal vacuum interactions with
either side of the mirror. Specifically, this is due to the combination of broken spatial
symmetry and fast time fluctuations of the positions or properties of the mirror. We call
this phenomenon the asymmetric dynamical Casimir effect (ADCE).

This paper sets out to review the relevant literature on this topic and to put forward a
complete analysis of the necessary general conditions to generate this asymmetry, expand-
ing on previous analyses of the δ − δ′ mirror. We compare several different models and
examine the similarities between them to formulate a general approach to producing the
ADCE. Specifically, we show that both the scattering-based approach for an asymmetric
mirror in (1+1)D and the quantum-particles-based approach, in which we build in asym-
metry into a known DCE solution via an asymmetric Bogoliubov transformation, both lead
to remarkably similar asymmetric particle distributions. Lastly, we discuss some physical
consequences of the ADCE. Specifically, that an asymmetric production of particles results
in net motional forces on previously stationary objects.

Natural units are used throughout this paper, with c = h̄ = 1, where c denotes
the speed of light and h̄ is the reduced Planck constant. Here, we occasionally make
use of the Einstein summation notation, where Greek indices run over time and 1D space
coordinate pair, {t, x}. We normalize the Fourier transform following the wave propagation
convention, keeping a 1/2π factor on the forward transform. We note that some of the
literature cited here utilize other conventions and so caution is warranted when utilizing
these transforms.

2. Scattering Approach for Mirror in 1+1 Vacuum

Here, we review the scattering framework used to analyze the effect of mirrors on
quantum scalar fields [46]. We start with a massless scalar field, which we take to initially
be interacting with a (partially reflecting, possibly time-varying) mirror. Since this mirror’s
position is allowed to vary in time, one must exercise caution when introducing coordinates.
If the mirror is not moving relative to the laboratory frame, the laboratory and co-moving
coordinates are identical, so one is safe to not distinguish them. In the case of moving
mirrors, we introduce all of our formalism and fields in a frame co-moving with the mirror,
then transform back to a laboratory frame when calculating physical quantities of interest.
In this case, we denote the co-moving time coordinates with primes and the laboratory
frame coordinates without primes. In the limited cases where we must work with moving
objects in the frequency domain, we prime the functions themselves, so as to not confuse
them with Green’s function parameters.

105



Physics 2023, 5

The massless scalar field, φ(t, x), is a solution to the Klein–Gordon equation,[
∂2

t − ∂2
x + 2U(t, x)

]
φ(t, x) = 0, (1)

where U(t, x) is some general potential modeling a mirror with various properties and ∂α

denotes the partial derivative with respect to α. This has the corresponding Lagrangian,

L = L0 − U(t, x)φ2(t, x), (2)

where L0 is the (1+1)D scalar Lagrangian,

L0 =
1
2
[
(∂tφ(t, x))2 − (∂xφ(t, x))2]. (3)

The corresponding Euler–Lagrange equation is

∂L

∂φ
− ∂ν

(
∂L

∂(∂νφ)

)
= 0. (4)

The fields resulting from these equations may be decomposed as

φ(t, x) = Θ(x)φ+(t, x) + Θ(−x)φ−(t, x), (5)

where Θ(x) is the Heaviside step-function and φ± is the solution on either side of the mirror.
Since both of φ± obey the Klein–Gordon equation individually, they can be represented by
the sum of two freely counterpropagating fields in the frequency domain,

φ+(t, x) =
∫ dw√

2π

[
ϕout(ω)eiwx + ψin(ω)e−iwx

]
e−iwt (6)

and
φ−(t, x) =

∫ dw√
2π

[
ϕin(ω)eiwx + ψout(ω)e−iwx

]
e−iwt, (7)

where the amplitudes of the incoming and outgoing fields are labeled accordingly, and ω
denotes the frequency.

The incoming fields, ϕin and ψin, are unaffected by the mirror and take the form

ϕin(ω) = (2|w|)−1/2[Θ(ω)aL(ω) + Θ(−w)a†
R(−w)

]
(8)

and
ψin(ω) = (2|w|)−1/2[Θ(ω)aR(ω) + Θ(−w)a†

L(−w)
]
, (9)

where aj(ω) and a†
j (ω) (j = L, R) are the annihilation and creation operators for the left (L)

and right (R) sides of the mirror, which obey the commutation relation

[ai(ω), a†
j (ω

′)] = δ(ω − ω′)δij, (10)

where δij is the Kronecker delta.
The ingoing and outgoing counterpropagating fields may be related using a scattering

matrix with possibly frequency dependent reflection (r±(ω)) and transmission (s±(ω))
coefficients. In this case, the scattering matrix is

S(ω) =

(
s+(ω) r+(ω)
r−(ω) s−(ω)

)
, (11)

with
Φout(ω) = S(ω)Φin. (12)
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Here, we are making use of the vectorized shorthand

Φin(ω) =

(
ϕin(ω)
ψin(ω)

)
and Φout(ω) =

(
ϕout(ω)
ψout(ω)

)
(13)

to represent ingoing and outgoing counterpropagating fields. In any situation where Φ(ω)
is used without a subscript, it can be assumed that the given relation holds for both ingoing
and outgoing fields. The S-matrix is required to be unitary and causally consistent. For a
complete analysis of the properties of the S-matrix, see [46,49,50]. Calculating the reflection
and transmission coefficients determines the scattering system and completely defines the
relationship between incoming and outgoing fields interacting with the mirror.

To solve for the components of the S-matrix, matching conditions between incoming
and outgoing fields must be calculated. This gives a system of equations, which can be
solved to obtain the reflection and transmission coefficients [44,51–53]. These matching
conditions are found by minimizing a variation on the action, which is to say, the resulting
system of equations is equivalent to solving the above Euler–Lagrange equation.

2.1. The Static Asymmetric δ − δ′ Mirror

The first step in adding in the necessary asymmetry needed to produce the ADCE is
to introduce an asymmetric δ − δ′ potential,

U(x) = μδ(x) + λδ′(x), (14)

into the Lagrangian, where μ is related to the plasma frequency of the mirror and λ is a
dimensionless factor. This potential models a partially reflective mirror [44,46,47]. The
Lagrangian in this case becomes

L = L0 −
[
μδ(x) + λδ′(x)

]
φ2(t, x). (15)

This potential results in the Klein–Gordon Equation (1), taking the form[
∂2

t − ∂2
x + 2μδ(x) + 2λδ′(x)

]
φ(t, x) = 0. (16)

In the frequency domain, this becomes[
−∂2

x + 2μδ(x) + 2λδ′(x)
]
Φ(ω, x) = ω2Φ(ω, x), (17)

which can be used to find the matching conditions [46],

Φ(w, 0+) =
1 + λ

1 − λ
Φ(w, 0−) (18)

and
∂xΦ(w, 0+) =

1 − λ

1 + λ
∂xΦ(w, 0−) +

2μ

1 − λ2 Φ−(w, 0−). (19)

These matching conditions govern the relationship between Φ±, which can be written
in terms of the reflection and transmission coefficients,

Φ+(ω, x) = s−(ω)e−iωxΘ(−x) + (e−iωx + r−(ω)eiωx)Θ(x) (20)

and
Φ−(ω, x) = (eiωx + r+(ω)e−iωx)Θ(−x) + s+(ω)eiωxΘ(x). (21)

Applying the matching conditions, the explicit forms for the components of the
scattering matrix are

r±(ω) =
−iμ0 ± 2wλ0

iμ0 + w(1 + λ2
0)

(22)
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and

s±(ω) =
w(1 − λ2

0)

iμ0 + w(1 + λ2
0)

, (23)

where we now include the notations μ0 and λ0 to explicitly denote these as the zeroth-order
terms. This distinction becomes important as we start to include perturbative effects below.
The inequality between r+(ω) �= r−(ω) is due to the underlying asymmetry of the potential
itself, i.e., it is a direct consequence of the δ′ term.

Note that, when λ0 = 1, the mirror is perfectly reflective and the left and right sides
now possess Dirichlet and Robin boundary conditions, respectively. Additionally, the
change λ0 −→ −λ0 will swap these properties from one side of the mirror to the other.

2.2. The Time-Varying Asymmetric Mirror
2.2.1. Particle Creation from Fluctuations in Boundary Conditions

Here, we make a digression to address the mechanism for particle creation resulting
from fluctuating boundary conditions. Thus far, we have not worried about such effects as
it can easily be shown that it is necessary to introduce time fluctuations to generate particle
production. Recall from Equation (12) that Φout(ω) = S(ω)Φin. Then, knowing Φout(ω)
allows for the computation of the spectrum of created particles as the spectral distribution
of created particles is given by [37]

N(ω) = 2ω Tr
[
〈0in|Φout(−ω)ΦT

out(ω)|0in〉
]
, (24)

where Tr[M] denoted the trace of a some matrix M, and the number of created particles is

N =
∫ ∞

0
dωN(ω). (25)

From Equation (24), one can see that, regardless of the asymmetry in S(ω), there are
no zeroth-order contributions to particle creation. Thus, it is necessary to introduce some
perturbation in time as the mechanism to cause particle production. One also sees that
spatial asymmetry leads to asymmetry in the spectrum of created particles.

We quantify this asymmetry by splitting both the spectral distribution and total
number of particles into their right (+) and left (−) components as

N(ω) = N+(ω) + N−(ω) (26)

and
N = N+ +N−, (27)

respectively. One can then make use of the quantities N∓/N±, N∓/N±, and ΔN =
N− − N+ as a means of comparing and quantifying the asymmetry between the two sides
of the mirror. We refer to the quantities N∓/N±, N∓/N±, and ΔN as the spectral ratio,
particle creation ratio, and spectral difference, respectively. Specifically, these quantities are
useful in evaluating and understanding the functional form of the asymmetry present in
the system. In particular, ΔN (and subsequently ΔN ) can be used to calculate potential
energy fluxes and force differentials that will play a part in the dynamics of the system.
More on this point is discussed in Section 5. When the mirror no longer exhibits asymmetric
interactions with the vacuum the ratios become unity and the difference vanishes.

Demonstrating and observing these physical quantities is an active area of research
for experimentalists in search of better tools to understand and quantify the real-world
limitations of the theory. While there have been experimental proposals of mechanically
induced DCE [54–59], there are many difficulties to overcome in the creation of a physically
realizable high-frequency mechanically oscillating mirror [16,60,61]. This issue has led
to the proposal of alternate methods for observing the DCE [13,54,60,62–69] and exper-
imental evidence supports the real production of particles from time-varying materials
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[70–72]. Most notably, the first experimental DCE detection used a superconducting circuit
whose electrical length is changed by modulating the inductance of a superconducting
quantum interference device (SQUID) at high frequencies [61]. These experiments can be
effectively modeled with a time-dependent μ(t) in a single δ mirror, with the entire mirror’s
properties varying in time. This was a motivating factor for the investigation into time-
dependent material properties in the δ− δ′ mirror, specifically μ(t) [47,48], which we review
in Section 2.2.3. In addition to this solution, it is also convenient to model a δ − δ′ mirror
with perturbative fluctuations on λ, the scale factor attached to the δ′ term that determines
the magnitude of asymmetry. This is akin to altering the surface structure of the material, as
opposed to effectively changing the bulk material properties with the time-varying μ. This
solution provides a potentially better model for real-world applications and experimental
setups. For example, Mott insulators that undergo metal–insulator transitions can have
their surface properties change on picosecond timescales with a multiple-order magnitude
change in surface conductivity [73,74]. Experimentally, this can be performed through the
use of ultrahigh-frequency pulsed lasers to alter the surface structure on incredibly short
timescales [75–78].

2.2.2. Fluctuations in Position: q(t)

One of the standard methods for inducing time fluctuations to generate the DCE is to
have the position of a mirror change in time. From [46], there is a moving asymmetric δ − δ′

mirror, whose position is given by x = q(t) in the laboratory frame. The movement is taken
to be nonrelativistic (|q̇(t)| 
 1) and limited by a small value ε, such that q(t) = εg(t) with
|g(t)| ≤ 1. Scattering is assumed to be

Φ′
out(ω) = S(ω)Φ′

in(ω) (28)

in the co-moving frame where the mirror is instantaneously at rest (tangential frames). To
solve this in the laboratory frame, we use the relation

Φ′(t′, 0) = Φ(t, εg(t)) = [1 − εg(t)η∂t]Φ(t, 0) +O(ε2), (29)

where

Φ(t, x) =
(

ϕ̃(t − x)
ψ̃(t + x)

)
. (30)

Here, ϕ̃ and ψ̃ are components of the field in the temporal domain and η = diag(1,−1).
Taking advantage of the fact that dt = dt′ to the second order, Equation (29) can be
rewritten as

Φ′(t, 0) = [1 − εg(t)η∂t]Φ(t, 0). (31)

One finds that applying this transform to Equation (28) in the frequency domain yields

Φout(ω) = S0(ω)Φin(ω) + ε
∫ dω′

2π
δSq(ω, ω′)Φin(ω

′), (32)

where we suppress the evaluation of x = 0 in Φ(ω, 0) going forward for compactness. One
also has:

δSq(ω, ω′) = iω′G(ω − ω′)[S0(ω)η − ηS0(ω
′)], (33)

with G(ω) being the Fourier transform of g(t). We refer to δSq as the delta-S matrix, a
perturbative term that arises from the first-order perturbation in Equation (29) due to
the time-varying fluctuations of the mirror’s position. This term is of particular physical
importance, as it carries the asymmetry that will result in the asymmetric production of
particles on each side of the mirror.

Due to the introduction of the small deviation in mirror position g(t), a first-order term
emerges that will give rise to particle production. As it is shown below, the introduction of
the δ − δ′ potential leads to an asymmetric production of particles about the two sides of
the mirror.
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We now prescribe a specific form to the motion,

g(t) = cos(ω0t) exp(−|t|/τ), (34)

where τ is the effective oscillation lifetime and ω0 is the characteristic frequency of oscilla-
tion. Only the monochromatic limit is considered, with ω0τ � 1. In this limit, the system
undergoes (effectively) spatially symmetric motion about its starting position. The Fourier
transform of Equation (34) is approximately

|G(ω)|2
τ

≈ π

2
[δ(ω + ω0) + δ(ω − ω0)]. (35)

One can also obtain the right and left spectral distributions as

N±(ω)

τ
=

ε2

π
ω(ω0 − ω)Λ±(ω, ω0 − ω)Θ(ω0 − ω), (36)

where the asymmetry in the distribution of particles of the two sides can be seen in

Λ±(ω, ω − ω0) =
1
4

Re

[
8λ2

0ω(ω0 − ω)− 2μ2
0 + iμ0ω0(1 ∓ λ0)

2

(iμ0 + ω(1 + λ2
0))[iμ0 + (ω0 − ω)(1 + λ2

0)]

]
. (37)

A change from λ0 −→ −λ0 flips Λ± −→ Λ∓ and therefore also flips N± −→ N∓ [35,36].
For a detailed analysis of the spectrum of particles created and the interplay between

different combinations of μ0 and λ0, see [46]. Highlighting a few key points, one can
see that setting λ0 = 1 produces the largest difference in magnitude between the spectra
emitted by the two sides with a spectral ratio of

N−
N+

=
[μ2

0 + 4ω(ω0 − ω)]2

(μ2
0 + 4ω2)[μ2

0 + 4(ω0 − ω)2]
. (38)

Additionally, when λ0 = 1, Λ− = 1/2, which corresponds to a Dirichlet spectrum. The
maximum spectral difference occurs when μ0/ω0 ≈ 1, where the mirror imposes perfectly
reflecting Dirichlet and maximally suppressed Robin conditions on the field about the
left and right sides of the mirror, respectively. The Robin side exhibits strong suppression
at this point, corresponding to a value of γ0ω0 ≈ 2.2, where γ0 is the Robin parameter,
γ0 = 2/μ0 [79–81]. The vast majority of the particles are produced on the left side of the
mirror. When λ0 = 0, the asymmetry vanishes and the results simplify to those of a δ
mirror [35,36]. This spectrum increases monotonically with μ0. As μ0 −→ ∞, the spectrum
asymptotically approaches a Dirichlet spectrum.

The spectral difference for the moving δ − δ′ mirror obeying the oscillation function (34),
shown in Figure 1, becomes

ΔN
τ

=
ε2

π
λ0ω2

0(1 + λ2
0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω), (39)

with
Υ(ω) =

μ0ω

μ2
0 + ω2(1 + λ2

0)
2

, (40)

which again indicates that more particles are produced on the left side of the mirror
(λ0 > 0).
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Figure 1. The plot of (ε2τ/π)−1 × ΔN, the difference between the spectral distributions of particles
created on the two sides of a δ − δ′ mirror as a function of ω/ω0 for different values of λ0, with
μ0 = 1. See text for details.

2.2.3. Fluctuations in Properties: μ(t)

As discussed in Section 2.2.1 above, while it is theoretically possible to oscillate a
thin mirror at high frequencies, current technological limitations prevent this from being
experimentally viable. Thankfully, the oscillation of a boundary’s position is not the
only option for introducing time dependence in surface interactions. In the δ − δ′ model,
it is possible to modify the fundamental properties of the mirror [47,48]. Now, we are
interested in modifying the plasma frequency (through the modification of μ), such that
μ −→ μ(t) = μ0[1 + ε f (t)], where μ0 ≥ 1 is a constant and f (t) is an arbitrary function
with | f (t)| ≤ 1 and ε 
 1. As done in Section 2.1 when deriving the matching conditions
in Equations (18) and (19), it is convenient to work in the frequency domain, where the
derivative matching condition term (19) now becomes

∂xΦ(ω, 0+) =
1 − λ0

1 + λ0
∂xΦ(ω, 0−) +

2
1 − λ2

0

∫ dω′

2π
M(ω − ω′)Φ−(ω′, 0−), (41)

where
M(ω) = μ0(δ(ω) + εF (ω)) (42)

is the Fourier transform of μ(t) and F (ω) is the Fourier transform of f (t). The matching
conditions now contain perturbative terms that modify the S-matrix.

To the first order, the final form of Φout(ω) = S(ω)Φin becomes

Φout(ω) = S0(ω)Φin(ω) +
∫ dω′

2π
δSμ(ω, ω′)Φin(ω

′), (43)

where S0 is the zeroth-order scattering matrix found from Equations (22) and (23). The asym-
metric correction that originates from the introduction of f (t) takes the form δSμ(ω, ω′) =
εα(ω, ω′)Sμ(ω′), where

αμ(ω, ω′) = − iμ0F (ω − ω′)
iμ0 + ω(1 + λ2

0)
(44)

with

Sμ(ω
′) =

(
s+(ω′) 1 + r+(ω′)

1 + r−(ω′) s−(ω′)

)
. (45)
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Using Equation (43), the spectrum of particles (24) can be calculated. The left and right
components of this spectrum are

N±(ω) =
ε2

2π2 (1 ± λ0)
2(1 + λ2

0)
∫ ∞

0
dω′n(ω, ω′) +O(ε2), (46)

where
n(ω, ω′) = Υ(ω)Υ(ω′)

∣∣F (ω + ω′)
∣∣2. (47)

The spectral distribution ratio and particle creation ratio are

N−
N+

=
N−
N+

=

(
1 − λ0

1 + λ0

)2
. (48)

Thus, one sees a constant, frequently independent difference between the spectrum of
particles created when the asymmetric mirror with time-dependent properties interacts
with the vacuum.

For positive (negative) values of λ0, the right (left) side has a greater production of
particles. When λ0 = ±1, only one side of the mirror experiences the creation of particles.
The asymmetry vanishes when λ0 = 0 as expected, once again highlighting the necessary
combination of spatial and temporal perturbations needed to produce the ADCE.

When f (t) takes the form (34), the spectral distribution becomes

N±
τ

=
ε2

4π
(1 ± λ0)

2(1 + λ2
0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω), (49)

and the spectal difference between these two sides is now

ΔN
τ

= − ε2

π
λ0(1 + λ2

0)Υ(ω)Υ(ω0 − ω)Θ(ω0 − ω). (50)

This is, remarkably, identical to the the spectral difference of the moving δ − δ′

mirror (39) up to an overall minus sign and factor of ω2
0. This is due to the fact that

ΔN removes the symmetric background of the two fields and isolates the purely asym-
metric component of the spectrum, which amounts to calculating the difference between
Re[r+] and Re[r−].

More on this is the general form of the scattering is addressed.

2.3. General Form of Asymmetric Scattering

There are apparent similarities between the two given examples of time-dependent
δ − δ′ mirrors; thus, one may propose a general form of asymmetric time-dependent pertur-
bations on objects in (1+1)D that are capable of generating ADCE photons. The mechanism
that drives the time-dependent perturbations is arbitrary, but we specify that it is bounded
by | f (t)| ≤ 1 where f (t) is some (usually, but not necessarily, periodic) driving function of
the fluctuation. There must also be some spatial delineation that manifests in the boundary
conditions to produce the asymmetry on opposite sides of the object. This asymmetry
will show itself in the transmission and reflection coefficients of the S-matrix, where either
r+(ω) �= r−(ω) or s+(ω) �= s−(ω). Starting as before, we seek the first-order perturbative
effects on the scattering matrix, governing the relationship between the incoming and out-
going fields interacting with an object Φout(ω) = S(ω)Φin(ω). Fluctuations in time yield

Φout(ω) = S0(ω)Φin(ω) + ε
∫ dω′

2π
δS(ω, ω′)Φin(ω

′) +O(ε2), (51)

where the S0 is the zeroth-order, time-independent scattering matrix for the system. Here,
the matrix δS takes the form

δS(ω, ω′) = α(ω, ω′)F (ω − ω′)S(ω, ω′), (52)
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where S(ω, ω′) and α(ω, ω′) are the first-order scattering matrix and amplitude, respec-
tively, found by imposing the correct boundary conditions. While both terms can be
functions of both ω and ω′, this is not necessary, as is quite evident from the analysis on the
fluctuations in properties from Section 2.2.3. Additionally, F (ω) is the Fourier transform
of f (t).

The two examples just above follow this form. The same is true for a system that
modifies the mirror’s reflectivity by introducing a kinetic term in the δ − δ′ potential [48].
Adding the term 2χ0δ(x)(∂tφ(t, x))2 to Equation (15), where χ0 is a constant parameter, and
varying the parameter μ(t) changes the transmission and reflection coefficients (22) and (23)
such that μ0 −→ μ0 − χ0ω2 in the denominator of these terms. Solving for Equation (52)
leads to

αχ(ω, ω′) = − iμ0

iμ0 − iχ0ω2 + ω(1 + λ2
0)

(53)

and

Sχ(ω
′) =

(
s+(ω′) 1 + r+(ω′)

1 + r−(ω′) s−(ω′)

)
, (54)

which are nearly identical to Equations (44) and (45). Additionally, while the spectrum of
particles is slightly modified by the addition of the χ0 term, the spectral ratio between the
two sides of the object are the same as Equation (48). In Section 2.4, one again observes
perturbations of the form (51) when we investigate what happens when the λ0 term of the
δ − δ′ mirror fluctuates in time.

To investigate the asymmetry of the particle production, we make use of the following
formula:

〈0in|Φin(ω)ΦT
in(ω

′)|0in〉 =
π

ω
δ(ω + ω′)Θ(ω). (55)

The spectral distribution becomes

N(ω) =
1

2π

∫ ∞

0

dw′

2π

w
w′ Tr

[
δS(ω,−ω′)δS†(ω,−ω′)

]
=

ε2

2π

∫ ∞

0

dω′

2π

ω

ω′
∣∣α(ω,−ω′)

∣∣2|F (ω + ω′)|2 Tr
[
S(ω,−ω′)S†(ω,−ω′)

]
,

(56)

which can be integrated over ω to find the total number of particles created, N .
The decomposition of Equation (56) into its left and right pieces is

N±(ω) =
ε2

2π

∫ ∞

0

dw′

2π

ω

ω′
∣∣α(ω,−ω′)

∣∣2|F (ω + ω′)|2Λ±(ω,−ω′), (57)

where Λ± = Tr[SS†]±.
Prescribing Equation (34) to Equation (57), we arrive at the general form of the spectral

decomposition when the time fluctuations are in the approximately symmetric monochro-
matic limit,

N±(ω) =
ε2

8π

(
ω

ω0 − ω

)
|α(ω, ω0 − ω)|2Λ±(ω, ω0 − ω)Θ(ω0 − ω), (58)

where one can see that the ratio N−/N+ is equal to Λ−/Λ+. The general spectral difference
ΔN is now proportional to ΔΛ, the difference between Λ− and Λ+. The quantity ΔN is
useful not only because of its ability to isolate the difference in the asymmetric outputs
of the mirror, but also because it corresponds to the physically meaningful quantities
and this can manipulate the dynamics of the system. The asymmetry of the mirror is
the foundational element that produces asymmetric quantum effects, whereby vacuum
excitations give rise to a non-null mean final velocity and cause a stationary object to begin
to move [47]. Keeping this in mind, within the framework of the scattering approach we
can make some general comments on the form of ΔN when the fluctuation takes the form
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f (t) = cos(ω0t) exp(−|t|/τ). Since ΔN is proportional to ΔΛ, one can see that its solution
originates from the difference between the real part of Tr[SS†], which amounts to calculating
the difference between the asymmetric components of the first-order scattering matrix.
Specifically, since this matrix can be expressed in terms of the zeroth-order transmission and
reflection coefficients, it is really the fundamental asymmetry of the unperturbed S-matrix
that carries over into the asymmetry of the first-order fluctuations and thus into ΔN.

The specific form of the S-matrix can be constructed in such a way that its components
possess some sort of asymmetry, such as what we have seen thus far with the δ − δ′ poten-
tials in the Lagrangian. Actually, it is possible to analyze asymmetric systems without a
pre-described Lagrangian. As long as the the scattering matrix obeys its necessary condi-
tions [46,49,50], numerous asymmetric objects can be constructed. With the δ− δ′ mirrors in
Sections 2.2.2 and 2.2.3, the asymmetry is present due to the inequality, r+ �= r−. Thus, the
quantity ΔN for the mirror will be some function of Re[r− − r+]. As remarked before in
Section 2.2.3, this is the origin of the near equality between ΔN of the two δ − δ′ mirrors
with fluctuations in the position q(t) and the material property μ(t).

In general, there are three asymmetric forms of the S-matrix:

• when r+ �= r− and s+ = s−,
• when s+ �= s− and r+ = r−,
• when both r+ �= r− and s+ �= s−.

Thus, ΔN can ultimately be expressed as a function of the following, for the previous
forms:

• α Re[r− ± r+],
• β Re[s− ± s+],
• α Re[r− ± r+] + β Re[s− ± s+],

where α and β are calculable scale factors with functional dependence on variables that
define the S-matrix (μ0 and λ0 for the δ − δ′ mirror).

There is an important caveat we must address with regard to general scattering. These
similarities only hold when the mechanism driving scattering affects the position or some
material property related to the plasma frequency. This is because such mechanisms act
by causing the strength of the δ function in the potential to become time-dependent. Such
considerations do not extend straightforwardly to allowing the strength of the δ′ term,
which is addressed in Section 2.4 just below.

2.4. Fluctuations in Properties: λ(t)

Having already explored the consequences of making μ0 time-dependent in the δ − δ′

mirror, we now calculate the effects of taking λ0 −→ λ(t) = λ0[1 + ε f (t)]. Starting with the
field equation of the system,[

∂2
t − ∂2

x + 2μδ(x) + 2λ(t)δ′(x)
]
φ(t, x) = 0, (59)

we take the Fourier transform as conducted in Section 2.1. Then, one has;[
−∂2

x + 2μ0δ(x)
]
Φ(ω, x) + 2

∫ dω′

2π
L(ω − ω′)δ′(x)Φ(ω′, x) = ω2Φ(ω′, x), (60)

where L(ω) is the Fourier transform of λ(t). Using the same machinery as before, one
arrives at the continuity equations needed to solve for the matching conditions,

−∂xΦ(ω, 0+) + ∂xΦ(ω, 0−) + μ
[
Φ(ω, 0+) + Φ(ω, 0−)

]
−
∫ dω′

2π
L(ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0,

(61)
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and

−Φ(ω, 0+) + Φ(ω, 0−) +
∫ dω′

2π
L(ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0. (62)

From these continuity equations, it becomes understandable that unlike the matching
conditions in Equations (18) and (19), general matching conditions for λ(t) cannot be
found using this approach. This is due to the presence of the convolution integral between
L(ω − ω′) and ∂xΦ(ω′) in Equation (61). This convolution ultimately leads to nonlinear
mixing of different frequency terms.

To illustrate this difficulty straightforwardly, the form of f (t) used in prior Sections
(see Equation (34)) was employed in the continuity equations to investigate the resulting
scattering coefficients, assuming the preservation of linearity a priori. The result is that
the scattering coefficients in the frequency domain become dependent on ω ± ω0 modes
(s±(ω ± ω0), r±(ω ± ω0)). A detailed derivation of these scattering terms can be seen in
Appendix A. To that end, work is currently underway to apply the Bogoliubov approach to
this problem; however, those results are reserved for a future paper.

3. Bogoliubov Approach for Mirror in 1+1 Vacuum

In contrast to the waves-based scattering approach of Section 2 whereby the pertur-
bative effects of time fluctuations are present in higher-order terms of the S-matrix, in the
particle-based framework the perturbative effects can be calculated by investigating the
higher-order terms present in the Bogoliubov transform between the input and output
creation and annihilation operators of the field. The scattering approach is convenient
when looking at the consequences of adding a potential (i.e., mirror) to a background
vacuum field in a Lagrangian (3). However, it is often of interest to understand how the
vacuum interacts with mirrors that directly impose specific boundary conditions on the
field. The Robin boundary condition (henceforth Robin b.c.) is a suitable example of this,
as shown below. This approach allows for specific boundary conditions to be imposed on
the underlying field itself without directly knowing or specifying a generating potential.

The particles-based perturbative procedure introduced by Ford [82] has been used
extensively to describe the effects of small changes in simple mirror geometries that produce
radiative effects. Here, we draw from two separate instances of perturbative corrections on
a mirror with Robin boundary conditions: the first incorporates time-dependent changes in
properties of the boundary [83] and the second uses a moving boundary with an oscillating
position [79]. To illustrate how different manifestations of time-dependent fluctuations
produce the same effect, we first review [79,83] side-by-side, deriving the Bogoliubov
transformation for the different cases. These Bogoliubov transformations encode the
difference between the input/output creation and annihilation operators and provide a
parallel way of demonstrating the transformation of the scattering matrix seen in Section 2.
Following this, we demonstrate the ability to build in asymmetry to generate ADCE photons
from the originally symmetric moving Robin boundary in a similar manner to before.

3.1. Fluctuating Robin Boundary Condition

The Robin b.c. for a mirror in (1+1)D is

γ0

[
∂φ(t, x)

∂x

]
x=0

= φ(t, 0), (63)

where γ0 is the parameter that allows for continuous interpolation between Dirichlet
(γ0 −→ 0) and Neumann (γ0 −→ ∞) boundary conditions. The Robin b.c. is a useful tool
for representing phenomenological models that describe penetrable surfaces [84] as the
Robin parameter is related to the penetration depth into the metallic boundary by the field.
The parameter γ−1

0 corresponds to the plasma frequency of the material and γ0 acts as the
plasma wavelength.
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FLUCTUATIONS IN POSITION FLUCTUATIONS IN PROPERTIES

For a moving mirror, the Robin b.c. only holds
in the co-moving frame, where δq(t) is the time-
dependent position of the mirror. In the labora-
tory frame, this equation is

γ0

[
∂

∂x
+ δq̇(t)

∂

∂t

]
φ(t, δq(t)) =

φ(t, δq(t)),
(64)

where γ0 is the zeroth-order time-independent
Robin parameter.

A mirror with time-dependent boundary con-
ditions modifies the Robin b.c. with first-order
corrections to the Robin parameter, giving[

γ0 + δγ(t)
] ∂φ

∂x
(t, 0) = φ(t, 0), (65)

where δγ(t) is a smooth time-dependent func-
tion satisfying the condition |δγ(t)| 
 γ0.

Adopting a perturbative approach and following Ford [82], we take φ(t, x) = φ0(t, x)+
δφ(t, x), where φ0 is the unperturbed field of a static, time-independent mirror at x = 0 and
δφ is the small perturbation from the fluctuations on the static boundary.

This is equivalent to expansions in δq and its
derivatives to the first order:

γ0

[
∂δφ(t, x)

∂x

]
x=0

− δφ(t, 0) =

δq(t)
[

∂φ0
∂x

(t, 0)− γ0
∂2φ0

∂x2 (t, 0)
]

−δq̇(t)γ0
∂φ0
∂t

(t, 0).

(66)

Using the fact that both φ0 and δφ satisfy the
Klein–Gordon equation, we have

γ0

[
∂δφ(t, x)

∂x

]
x=0

− δφ(t, 0) =

− δγ(t)
∂φ0
∂x

(t, 0). (67)

It is now useful to work in the frequency domain; thus, we employ the following
Fourier transforms:

Φ(ω, x) =
∫

dt φ(t, x)eiωt, δQ(ω) =
∫

dt δq(t)eiωt,

δΦ(ω, x) =
∫

dt δφ(t, x)eiωt, δΓ(ω) =
∫

dt δγ(t)eiωt.
(68)

The normal mode expansion of the unperturbed field for x > 0 is

Φ0 =

√
4π

|ω|
(
1 + γ2

0ω2
) [sin (ωx) + γ0ω cos (ωx)

][
Θ(ω)a(ω)− Θ(−ω)a†(−ω)

]
, (69)

where a(ω) and a†(ω) are the bosonic annihilation and creation operators, respectively,
which satisfy the commutation relation

[
a(ω), a†(ω′)

]
= 2πδ(ω − ω′). To solve for Φ, one

must first calculate δΦ, which can be found by introducing the following Green’s function:(
∂2

x − ω2
)

G(ω, x, x′) = δ
(
x − x′

)
. (70)

By employing Green’s theorem, one obtains the following as the solution for the
outgoing field:

Φout(ω, x) = Φin(ω, x)+
[

G ret
R (ω, 0, x)− G adv

R (ω, 0, x)
]
×
[

∂δΦ
∂x

(ω, 0)− δΦ(ω, 0)
γ0

]
(71)
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where G ret
R (G adv

R ) is the retarded (advanced) Robin Green function, given by

G ret
R (ω, 0, x) =

γ0

1 − iγ0ω
eiωt (72)

and
G adv

R (ω, 0, x) =
γ0

1 + iγ0ω
e−iωt. (73)

Using the following equality

γ0
∂δΦ
∂x

(ω, 0)− δΦ(ω, 0) =∫ dω′

2π

[
∂

∂x
+ ωω′

]
Φ0(ω

′, 0)

× δQ(ω − ω′) (74)

in the equation for Φout, the resulting Bogoli-
ubov transformation then becomes

aout = ain+

2i

√
ω

1 + γ2
0ω2

∫ dω′

2π

√
ω′

1 + γ2
0ω′2

×
[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
×(1 + γ2

0ωω′)δQ(ω − ω′).

(75)

Using the following equality

γ0
∂δΦ
∂x

(ω, 0)− δΦ(ω, 0) =

−
∫ dω′

2π

∂Φ0
∂x

(ω′, 0)× δΓ(ω − ω′). (76)

in the equation for Φout, the resulting Bogoli-
ubov transformation then becomes

aout = ain−

2i

√
ω

1 + γ2
0ω2

∫ dω′

2π

√
ω′

1 + γ2
0ω′2

×
[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
×δΓ(ω − ω′).

(77)

Thus one finds a relationship between the input/output Bogoliubov transforms of the
moving and time-dependent Robin b.c., whereby they differ by an overall minus sign and
an additional factor of

(
1 + γ2

0ωω′). Note that the two representations coincide when the
boundary reduces to the purely Dirichlet boundary condition (γ0 −→ 0), with the difference
between aout and ain reducing to

aout − ain = ±2i
∫ dω′

2π

√
ωω′

[
Θ(ω′)ain(ω

′)− Θ(−ω′)a†
in(−ω′)

]
δF (ω − ω′) (78)

where δF is the Fourier transform of the parameter that drives the small perturbation.
Here, the difference between aout and ain isolates the terms that encode particle production
and highlights the similarities between different methods of creating particles via unique
ways of generating time-varying perturbations.

3.2. Moving Asymmetric Robin Boundary

Just as it was examined in the Section 2 in order to induce the ADCE, the system must
be set up in such a way that the boundary divides the space and imposes an asymmetry.
This was accomplished by introducing the asymmetric δ − δ′ potential into the Lagrangian
for the free scalar field to simulate a mirror whose two sides possess different properties.
One must be mindful when building asymmetry into these field solutions, as it is possible
for mathematical inconsistencies to arise if the asymmetry is not carefully introduced [85].

Here, we introduce asymmetry into the moving Robin boundary [79] analyzed in
Section 3.1. An asymmetric perturbation on the moving Robin b.c. begins the same way as
the standard moving Robin mirror, with[

∂

∂x
+ δq̇(t)

∂

∂t

]
φ(t, δq(t)) =

1
γ0

φ(t, δq(t)) (79)
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being the Robin boundary condition in the laboratory frame for a small deviation δq(t)
about x = 0.

Following the same procedure as Ref. [79], one finds the first-order field (φ = φ0 + δφ)
satisfies the following equation at x = 0:[

∂δφ(t, x)
∂x

]
x=0

− 1
γ0

δφ(t, 0)

= δq(t)
1

γ0

[
∂φ0(t, x)

∂x
− γ0

∂2φ0(t, x)
∂x2

]
x=0

− δq̇(t)
[

∂φ0(t, x)
∂t

]
x=0

. (80)

It is here that we impose the asymmetry of the mirror. Motivated by the use of the
δ′-potential in the δ − δ′ examples from the scattering section, we take advantage of the
properties of the δ′-potential and incorporate it into Equation (80). Recall the definition of
δ′(x) from Ref. [46],

δ′(x) f (x) = δ′(x)
f (0+) + f (0−)

2
− δ(x)

f ′(0+) + f ′(0−)
2

. (81)

Using the symmetry of the time-independent Robin solution, one finds that

δ′(x)
∂φ0(t, x)

∂x
= δ′(x)

[
∂φ0(t, x)

∂x

]
x=0

− δ(x)
[

∂2φ0(t, x)
∂x2

]
x=0

. (82)

Thus, to build asymmetry into the moving Robin b.c., while at the same time remaining
mathematically consistent with the definition of δ′, we incorporate a δ − δ′ term into the
spatial derivatives at zero in Equation (80) giving the new equality,[

∂δφ(t, x)
∂x

]
x=0

− 1
γ0

δφ(t, 0)

= δq(t)
1

γ0

[
δ′(x)

[
∂φ0(t, x)

∂x

]
x=0

− γ0δ(x)
[

∂2φ0(t, x)
∂x2

]
x=0

]
− δq̇(t)

[
∂φ0(t, x)

∂t

]
x=0

. (83)

This manifests in there being two separate solutions about x = 0,[
∂δφ(t, x)

∂x

]
x=0±

− 1
γ0

δφ(t, 0±)

= δq(t)
1

γ0

[
±∂φ0(t, x)

∂x
− γ0

∂2φ0(t, x)
∂x2

]
x=0±

− δq̇(t)
[

∂φ0(t, x)
∂t

]
x=0±

. (84)

Following the same derivation as in Section 3.1, one arrives at the Bogoliubov trans-
form for the relationship between annihilation operators aout and ain, appropriately labeled
with a positive (negative) superscript for the x > 0 (x < 0) region,

a(±)
out = a(±)

in + 2i

√
ω(

1 + γ2
0ω2

) ∫ dω′

2π

(
±1 + γ2

0ωω′
)√ ω′(

1 + γ2
0ω′2)

×
[
Θ(ω′)a(±)

in (ω′)− Θ(−ω′)a(±)

in (−ω′)†
]
δQ(ω − ω′), (85)

where we see that the positive solution is the same as in Section 3.1 Note that the vacua
solution only accounts for the outgoing solution about either side of the mirror since
δφ(t, x) must describe the contribution from the mirror and not the incoming waves moving
towards the mirror [83].
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3.2.1. Spectral Distribution

The infinitesimal spectral distribution of the particles created on either side of the
mirror, between ω and ω + dω (ω ≥ 0), is given by

N±dω = 〈0in|a(±)

in (ω)†a(±)

in (ω)|0in〉
dω

2π
. (86)

The complete spectrum is found by using Equations (85) in (86), giving

N± =
2ω

π
(
1 + γ2

0ω2
) ∫ ∞

0

dω′

2π

ω′[1 ∓ γ0ωω′]2(
1 + γ2

0ω′2) ∣∣δΓ(ω + ω′)
∣∣2. (87)

One may once again assign a specific form to the time-dependent function that drives
the motion of the mirror. Following the same procedure from Refs. [46,79,83], implemented
for the moving δ − δ′ system in Section 2, we use

δγ(t) = ε cos (ω0t) exp(−|t|/τ), (88)

where, as before in Equation (34), τ is the oscillation lifetime and ω0 is the characteristic
frequency of the oscillation with ω0τ � 1. We denote the Fourier transform of γ(t) with
δΓ(ω). The function δΓ(ω) contains two extremely narrow peaks around ω = ±ω0 and
can therefore be approximated as

|δΓ(ω)|2
τ

≈ ε2 π

2
[δ(ω − ω0) + δ(ω + ω0)]. (89)

The new definition of δΓ(ω) in Equation (89) allows us to explicitly compute the
spectrum on either side of the mirror, which becomes

N±
τ

=
ε2

2π

ω(ω0 − ω)
[
1 ∓ γ2

0(ω0 − ω)ω
]2(

1 + γ2
0ω2

)[
1 + γ2

0(ω0 − ω)2
] Θ(ω0 − ω), (90)

where one sees, as in Refs. [79,83], that no particles are created for frequencies higher than
the characteristic frequency ω0 of the time-dependent perturbation on the Robin b.c. As
expected, the spectrum is invariant under the replacement ω −→ ω0 − ω and is symmetric
about ω = ω0/2. This indicates that particles are created in pairs such that the sum of their
frequencies is ω0.

Once again, one may calculate physically relevant quantities that give us more insight
into the dynamics of the system. The spectral ratio is

N−
N+

=

(
1 + γ2

0ω(ω0 − ω)

1 − γ2
0ω(ω0 − ω)

)2

, (91)

and the spectral difference is

ΔN
τ

=
ε2

π

2[γ0ω(ω0 − ω)]2(
1 + γ2

0ω2
)[

1 + γ2
0(ω0 − ω)2

]Θ(ω0 − ω). (92)

One can see that the spectral ratio and difference for the newly calculated moving
asymmetric Robin boundary closely resembles those found in Section 2.2.2 for the time-
dependent moving δ − δ′ mirror. One sees from Equation (91) that the left half of the mirror
always produces a larger number of particles than the right half, excluding the points ω = 0
and ω = ω0 where the spectrum vanishes. This is also apparent in spectral difference,
as it is positive for all values outside the end points. As expected, in the Dirichlet limit
when γ0 = 0 the asymmetry vanishes. For a closer look at the difference between spectral
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outputs by the two sides of the moving asymmetric Robin b.c., including the influence of
difference values of γ0; see Figure 2.
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Figure 2. The spectral distribution of particles created on the two sides of the mirror as a function
of ω/ω0 for different values of γ0: (a) the plot of (ε2τ/π)−1 × N−; (b) the plot of (ε2τ/π)−1 × N+.
See text for details.

3.2.2. Particle Creation Rate

The total number of particles created, effectively the (average) particle creation rate, is

R± =
N±
τ

=

(
ε2

2π

) ∫ ω0

0

ω(ω0 − ω)
[
1 ∓ γ2

0(ω0 − ω)ω
]2(

1 + γ2
0ω2

)[
1 + γ2

0(ω0 − ω)2
] dω

=

(
ε2ω3

0
2π

)
F±(ξ)

(93)

where ξ = γ0w0 with

F+(ξ) =
ξ(4ξ + ξ3 + 12 arctan(ξ))− 6(2 + ξ2) ln (1 + ξ2)

6ξ4(ξ2 + 4)
(94)

and

F−(ξ) =
ξ(24ξ + ξ3 − 36 arctan(ξ))− 6(−2 + ξ2) ln (1 + ξ2)

6ξ4 . (95)

This particle creation rate is the physically meaningful quantity that can be experimen-
tally measured. One can see that N is proportional to τ (a result of the open geometry of
the cavity). The particle creation rate in the limits of γ0ω0 
 1 (Dirichlet) and γ0ω0 � 1
(Neumann) converge to the same value:

R± ≈
(

ε2ω2
0

12π

)
, (96)

which matches what is found in the literature [23,26,37].

4. Comparison between the Different Approaches

The moving asymmetric Robin boundary solution that we constructed in Section 3.2
bears a striking resemblance to the moving δ − δ′ mirror that originates from the scattering
approach. One can examine the two solutions alongside each other by looking at their
respective spectral distributions in Figures 2 and 3. For the sake of comparison, let us
consider the maximally asymmetric cases for the different solutions, which correspond to
λ0 = 1 and γ0 = 2 (taking μ0 = 1 with γ0 = 2/μ0). The spectrum N+, on right side of
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the mirror, is the same as both the original unperturbed moving Robin b.c. spectrum [79]
and the spectrum produced by the right side of the moving δ − δ′ mirror [46]. This Robin
spectrum, in Figure 2b, is associated with the highest degree of asymmetry as it is maximally
suppressed when γ0 = 2 (or λ0 = 1), with the spectrum completely vanishing at ω0/2.
From Figures 2a and 3a, the spectrum produced by the left half, N−, is a purely reflective
Dirichlet spectrum when λ0 = 1 and γ0 = 0 for the moving δ − δ′ and asymmetric Robin
mirror, respectively. However, in the maximally asymmetric case of the moving asymmetric
Robin mirror, when γ0 = 2, there is an inhibition of modes away from ω0 = 2 that sharpens
the purely reflective Dirichlet peak and leaves the maximum value at ω0/2 unchanged.

The slight inhibition of modes away from ω0/2 in the maximally asymmetric case of
the moving asymmetric Robin b.c. solution, seen in Figure 4b, is what leads to the difference
between the particle production ratio N+/N− of the asymmetric Robin and δ − δ′ mirrors.
This is well seen in the increased asymmetry in the δ − δ′ solution for different values of
w0 when compared to the asymmetric Robin solution. Particle production is maximally
suppressed for γ0ω0 ≈ 2.2, the frequency of maximal asymmetric particle production,
which gives rise to approximately the same minimum in the particle creation ratios seen in
Figure 5. Both minima occur at ω0 ≈ 1.1, where N+/N− ≈ 0.016 for the asymmetric Robin
and N+/N− ≈ 0.013 for the δ − δ′ mirrors. From another view, the left side produces
about 60 and 75 times that of the right side, respectively.
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Figure 3. The spectral distribution of particles created on the two sides of a moving δ − δ′ mirror
as a function of ω/ω0 for different values of λ0, with μ0 = 1: (a) the plot of (ε2τ/π)−1 × dN−/dω;
(b) the plot of (ε2τ/π)−1 × dN+/dω. See text for details. Figure is generated from results within
Ref. [46].
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Figure 5. The particle creation ratio of N+/N− for both the moving asymmetric Robin and δ − δ′

boundaries. For comparison, the asymmetric Robin mirror with γ0 = 2 and the δ − δ′ mirror with
λ0 = μ0 = 1 are shown.

5. Discussion

The means by which macroscopic systems interacting with the quantum vacuum are
able to produce the ADCE are apparent; it is necessary to generate solutions that include
both fluctuations in time and explicitly broken spatially symmetry. Without fluctuations
in time, be it on the object’s position, material properties, etc., the production of particles
vanishes. Unless asymmetric boundary conditions are imposed on either side of an object
in (1+1)D, the production of particles will always be symmetric about the two sides of
the object and the ADCE will not exist. The appearance of the ADCE is independent of
the method used to generate the boundary that interacts with the vacuum. Whether an
asymmetric system is solved in a waves-based scattering interaction framework or with
a particle-based calculation of the creation/annihilation operators, the same asymmetric
effect is present in the solutions of these two approaches. This is especially evident in
our newly constructed moving asymmetric Robin b.c. solution, where the introduction
of spatial asymmetry to an otherwise symmetric mirror obeying the Robin b.c. induced a
change in the particle output of one side of the mirror.

One of the more remarkable consequences of the ADCE is that the unbalanced produc-
tion of particles will cause an otherwise stationary system to be perturbed via its interaction
with the vacuum and induce motion as momentum is “extracted” from the vacuum [47].
The initial state of the object, for t < −τ (τ > 0), is that of a stationary, time-independent
object interacting with a field. It is completely described by the quantum vacuum state as
there are no quantum interactions before the time fluctuations occur. The characteristic
oscillations of the time-dependent boundary begin at −τ, i.e., some generic variable of the
system ε0 −→ ε(t), after which the object is free to move. Note that, once the object is able
to move, the quantum field will cause the object to experience Brownian motion [86–89].
Assuming the object is large enough, this motion can be neglected. At this point, if the object
possesses no spatial asymmetry while undergoing time fluctuations, the object remains in
its starting position as the symmetric production of particles applies an equal and opposite
response to the object. For an asymmetric object, particle production is favored to one
side, which results in a net force on the object, a transfer of momentum to the previously
stationary system, and a dissipation of energy from the mirror. This is expected from the
underlying symmetries of quantum field theory (translational invariance, locality, and
unitarity). A nonzero vacuum momentum, and a nonvanishing total force, are to be found
in any asymmetrically excited system [90].
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The total energy of the created particles, E = E+ + E−, is the sum of the two sides
where E± =

∫ ∞
0 dωN±(ω)ω. The momentum is now P = P+ + P−, where P± = ±E±.

The quantity that determines the asymmetric dynamics is ΔN, as one now has ΔE , ΔP , and
ΔF �= 0. If the system is closed, the energy of the particles emitted comes at the expense
of the internal energy of the object, as energy is needed to drive the time fluctuations,
and the mass of the object will now change in time. To ensure the total momentum of
the system is conserved, the object experiences a net force and now has a nonzero final
momentum since the total momentum of the particles no longer vanishes for asymmetric
objects. For a detailed analysis of the forces and dynamical evolution of an asymmetric
object with time-dependent material properties interacting with the vacuum, see [47]. Here,
it is necessary to not only include the motional contribution from the vacuum’s interaction
with the time-dependent properties of object, but also the interaction due to its newly
perturbed fluctuation in position. Thus, to perform a detailed analysis of the motional
corrective terms introduced in [47], one must account for the interaction term between the
time dependence on μ(t) and the position q(t) in the δ − δ′ example that was explored in
Section 2 (see [91] for this process conducted on a symmetric Robin boundary). Accounting
for every form of time fluctuations is necessary to understand the full dynamics of the
system, an analysis we intend to perform in the future.

Understanding the fundamental mechanisms of asymmetric vacuum interactions
provides the basis to investigate an abundance of vacuum interactions that seek to probe the
extreme limits of physical theory. Already, we have seen an otherwise stationary object gain
momentum out of seemingly nothing, due to its interaction with the vacuum, a surprising
result that actually arises from the conservation of momentum. This is not the only time that
asymmetric systems have gained momentum from vacuum interactions. It has been shown
that a net transfer of linear momentum can occur in a system composed of two excited,
dissimilar atoms [90]. Just as it was seen throughout this paper, a quantum system with
asymmetric excitations leads to an imbalanced production of emitted particles and gives
rise to a net force and transfer of momentum from the vacuum. Linear asymmetry is not
the only means by which to generate some motive force from the vacuum: chiral particles
can also achieve a similar effect. These particles, which do not posses mirror invariance, can
gain kinetic “Casimir” momentum when subjected to a magnetic field [92,93]. There are
claims, albeit controversial [94–97], that the vacuum can impart momentum asymmetrically
on magnetoelectric materials [94]. Asymmetric momentum transfer is said to arise from the
magnetoelectric molecular structure, as it possesses optical anisotropy since the structure
breaks the temporal and spatial symmetries of electromagnetic modes. Even though the
details still need to be fully worked out, it is clear that asymmetric vacuum interactions
play a role in understanding magnetoelectric and other anistropic materials.

6. Conclusions

We reviewed past studies on the δ − δ′ mirror and showed that, regardless of the mech-
anism and form of the time-dependent fluctuations, the ADCE is produced. Fluctuations
on λ0 were explored and we discussed obstructions to analyzing linear scattering in this
case. Experimental motivations were discussed. We showed, in the scattering framework,
that physically relevant quantities originate purely from the difference between right- and
left-half asymmetric transmission and reflection coefficients. A newly formulated solution
using the Bogoliubov transform introduces an asymmetric formulation of the moving
Robin boundary. This solution bears a striking resemblance to the moving δ − δ′ mirror,
demonstrating the ability to break symmetric boundary solutions and build up new forms
of ADCE configurations. Byproducts of the ADCE were explored, namely the transfer
of momentum to otherwise stationary systems, causing an object to move through the
vacuum without any addition external forces beyond the vacuum interactions. Remark-
ably, momentum transfer here emerges from the enforcement of conservation laws, not a
violation of them.
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Within the framework of objects interacting in (1+1)D with the massless scalar quan-
tum field, we have explored the effects of introducing asymmetry to time-dependent
systems interacting with the quantum vacuum and demonstrated general consequences
that asymmetric boundary conditions impart upon these systems. Whether the problem is
approached from the perspective of quantum particles or quantum fields, the end result
is the same: an asymmetric production of photons between the two sides of an object.
An explicit breaking of mirror symmetry about the two sides of an object is necessary to
generate the asymmetry needed to produce different spectra and quantities of particles
about the two sides of the object. Additionally, without time-dependent fluctuations of
object–vacuum interactions the particle production vanishes. It is necessary to have pertur-
bations on both the spatial and temporal domains of the system to break the underlying
symmetry of vacuum interactions.
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Appendix A. λ(t) Linear Scattering

Here, we provide a derivation of the scattering terms for f (t) chosen such that the
resulting expressions for matching conditions are as simple as possible. This allows us
straightforward illustration of the way in which we are obstructed from deriving scattering
matrix elements as we did in the rest of this paper.

Starting from Equations (61) and (62),

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + μ[Φ(ω, 0+) + Φ(ω, 0−)]

−
∫ dω′

2π
L(ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0

and

−Φ(ω, 0+) + Φ(ω, 0−) +
∫ dω′

2π
L(ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0,

it becomes seen that a general form of the matching conditions cannot be derived due to
convolution Fourier transforms. To demonstrate the difficulty these integrals provide for
the matching conditions, we take specific form λ(t) = λ0[1 + ε f (ω0t, |t|/τ)], where f is
assumed for now to have the same type of functional dependence found in Equation (34).
We note, though, that we do not specify an explicit functional definition for f . Instead,
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making the general assumption that in the limit where τ → ∞, one has a “monochromatic-
like” limit where its Fourier transform satisfies

lim
τ→∞

F (ω) = b[δ(ω + ω0) + δ(ω − ω0)], (A1)

where b is some normalization constant for the Dirac delta distributions. Using this, one
then has the Fourier transform of λ(t) as

L(ω) = λ0[δ(ω) + εF (ω)], (A2)

where in what follows we assume we already computed the limit on τ whenever evaluat-
ing integrals.

Substituting L(ω − ω′) into Equations (61) and (62), one has:

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + μ[Φ(ω, 0+) + Φ(ω, 0−)]

− λ0

2π
[∂xΦ(ω, 0+) + ∂xΦ(ω, 0−)]− λ0ε

∫ dω′

2π
F (ω − ω′)(∂xΦ(ω′, 0+) + ∂xΦ(ω′, 0−)) = 0

(A3)

and

−Φ(ω, 0+) + Φ(ω, 0−) +
λ0

2π
(Φ(ω, 0+) + Φ(ω, 0−))

+λ0ε
∫ dω′

2π
F (ω − ω′)(Φ(ω′, 0+) + Φ(ω′, 0−)) = 0.

(A4)

Now, explicitly evaluating these integrals under the above limits and assumptions,
one obtains:

−∂xΦ(ω0+) + ∂xΦ(ω, 0−) + μ[Φ(ω, 0+) + Φ(ω, 0−)]− λ0

2π
[∂xΦ(ω, 0+) + ∂xΦ(ω, 0−)]

−λ0εb
2π

[∂xΦ(ω − ω0, 0+) + ∂xΦ(ω − ω0, 0−) + ∂xΦ(ω + ω0, 0+) + ∂xΦ(ω + ω0, 0−)] = 0
(A5)

and

−Φ(ω, 0+) + Φ(ω, 0−) +
λ0

2π
(Φ(ω, 0+) + Φ(ω, 0−))

+
λ0εb
2π

[Φ(ω − ω0, 0+) + Φ(ω − ω0, 0−) + Φ(ω + ω0, 0+) + Φ(ω + ω0, 0−)] = 0.
(A6)

Next, we further assume that the ingoing and outgoing fields are linearly related as
before, giving

Φ+(ω, x) = s−(ω)e−iωxΘ(−x) + (e−iωx + r−(ω)eiωx)Θ(x)

and
Φ−(ω, x) = (eiωx + r+(ω)e−iωx)Θ(−x) + s+(ω)eiωxΘ(x).

Now, Equations (A5) and (A6) can be re-expressed explicitly in terms of transmission
and reflection coefficients, offering

Φ+:

−iω(1 +
λ0

2π
)(r−(ω)− 1)− iω(1 − λ0

2π
)s−(ω)

+μ[1 + r−(ω) + s−(ω)] =
λ0εb
2π

[i(ω − ω0)(r−(ω − ω0)− 1)

+i(ω − ω0)s−(ω − ω0) + i(ω + ω0)(r−(ω + ω0)− 1) + i(ω + ω0)s−(ω + ω0)],

(A7)
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and

(
λ0

2π
− 1)(1 + r−(ω)) + (

λ0

2π
+ 1)s−(ω)

= −λ0εb
2π

[2 + r−(ω − ω0) + s−(ω − ω0) + r−(ω + ω0) + s−(ω + ω0)].
(A8)

Φ−:

−iω(1 +
λ0

2π
)s+(ω) + iω(1 − λ0

2π
)(1 − r+(ω)) + μ[1 + s+(ω) + r+(ω)]

=
λ0εb
2π

[i(ω − ω0)s+(ω − ω0) + i(ω − ω0)(1 − r+(ω − ω0))

+i(ω + ω0)s+(ω + ω0) + i(ω + ω0)(1 − r+(ω + ω0))],

(A9)

and

(
λ0

2π
− 1)s+(ω) + (

λ0

2π
+ 1)(1 + r+(ω))

= −λ0εb
2π

[2 + s+(ω − ω0) + r+(ω − ω0) + s+(ω + ω0) + r+(ω + ω0)].
(A10)

Equations (A7)–(A10) provide four coupled equations, with 12 unknown terms: four
scattering terms for each frequency argument appearing (ω, ω ± ω0). Therefore, there are
not enough constraints on the fields to produce a definitive solution to the λ(t) pertur-
bation for the (1 + 1)D mirror in this scattering approach. The authors are not aware of
any technique within this linear scattering framework that would allow for one to solve
problems of this type. Additionally, this result seems to suggest that there may be some
general obstruction that prevents this type of linear scattering framework from solution
when the potential contains a δ′ potential with time-dependent strength. This is because
potentials in this form typically couple different frequencies together in a way that prevents
the matching conditions from being solvable. The authors are still optimistic than an
approach based upon Bogoliubov transformations may be more successful, but such an
approach requires substantial development which is reserved for future work.
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Abstract: In this third of a series on quantum radiation, we further explore the feasibility of using the
memories (non-Markovianity) kept in a quantum field to decipher certain information about the early
universe. As a model study, we let a massless quantum field be subjected to a parametric process for
a finite time interval such that the mode frequency of the field transits from one constant value to
another. This configuration thus mimics a statically-bounded universe, where there is an ‘in’ and an
‘out’ state with the scale factor approaching constants, not a continuously evolving one. The field
subjected to squeezing by this process should contain some information of the process itself. If an
atom is coupled to the field after the parametric process, its response will depend on the squeezing,
and any quantum radiation emitted by the atom will carry this information away so that an observer
at a much later time may still identify it. Our analyses show that (1) a remote observer cannot measure
the generated squeezing via the radiation energy flux from the atom because the net radiation energy
flux is canceled due to the correlation between the radiation field from the atom and the free field
at the observer’s location. However, (2) there is a chance to identify squeezing by measuring the
constant radiation energy density at late times. The only restriction is that this energy density is of
the near-field nature and only an observer close to the atom can use it to unravel the information of
squeezing. The second part of this paper focuses on (3) the dependence of squeezing on the functional
form of the parametric process. By explicitly working out several examples, we demonstrate that the
behavior of squeezing does reflect essential properties of the parametric process. Actually, striking
features may show up in more complicated processes involving various scales. These analyses allow
us to establish the connection between properties of a squeezed quantum field and details of the
parametric process which performs the squeezing. Therefore, (4) one can construct templates to
reconstitute the unknown parametric processes from the data of measurable quantities subjected
to squeezing. In a sequel paper these results will be applied to a study of quantum radiations
in cosmology.

Keywords: parametric creation of particles; squeezed state; fluctuations-induced quantum radiation;
radiation reaction; non-Markovianity

1. Introduction

This paper is the third of a series on quantum radiation, in the form of emitted radiation
with an energy flux (distinct from thermal radiance felt by an accelerated atom, as in the
Unruh effect [1]) from the internal degrees of freedom (idf) of an atom, tracing its origin to
the vacuum fluctuations of a quantum field, including its backreaction on the idf dynamics
of the atom, in the form of quantum dissipation. In Ref. [2], two of us considered how
vacuum fluctuations in the field act on the idf of an atom (we may call this the ‘emitter’),
modeled by a harmonic oscillator. We first showed how a stochastic component of the
internal dynamics of the atom arises from the vacuum fluctuations of the field, resulting in
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the emittance of quantum radiation. We then showed how the backreaction of this quantum
radiation induces quantum dissipation in the atom’s idf dynamics. We explicitly identified
the different terms representing these processes in the Langevin equations of motion. Then,
using the example of a stationary atom, we showed how, in this case, the absence of
radiation at a far-away observation point where a probe (or detector—note the so-called
Unruh-DeWitt ‘detector’ [1,3] is an emitter in the present context) is located is actually
a result of complex cancellations of the interference between emitted radiation from the
atom’s idf and the local fluctuations in the free field. By this, we pointed out that the entity
which enters into the duality relation with vacuum fluctuations is not radiation reaction
(in the quantum optics literature, e.g., [4–7], the relation between quantum fluctuations
and radiation reaction is often mentioned without emphasizing the difference between
classical radiation reaction [8,9] and quantum dissipation, which exist at two separate
theoretical levels; only quantum dissipation enters in the fluctuations–dissipation relation
with quantum fluctuations, not classical radiation reaction), which can exist as a classical
entity, but quantum dissipation [10,11]. In the second paper [12], we considered the idf of
the atom interacting with a quantum scalar field initially in a coherent state. We showed
how the deterministic mean field drives the internal classical mean component to emit
classical radiation and receive classical radiation reaction. Both components are statistically
distinct and fully decoupled. It is clearly seen that the effects of the vacuum fluctuations of
the field are matched with those of quantum radiation reaction, not with classical radiation
reaction, as the folklore states, even promulgated in some textbooks. Furthermore, we
identified the reason why quantum radiation from a stationary emitter is not observed, and
a probe located far away only sees classical radiation.

1.1. Quantum Radiation from an Atom in a Squeezed Quantum Field

In this paper, we treat quantum radiation from an atom’s idf interacting with a
quantum field in a squeezed state. The squeezed state is probably the most important
quantum state, next to the vacuum state, with both rich theoretical meanings and broad
practical applications, as well known in quantum optics (see, e.g., [13]). We are particularly
interested in its role in cosmology of the early universe.

Quantum Field Squeezed by an Expanding Universe

Squeezed states of a quantum field are naturally produced in an expanding universe
in fundamental processes which involve the parametric amplification of quantum fluctua-
tions, such as particle creation [14,15], either spontaneous production from the vacuum or
stimulated production from n-particle states, and structure formation [16] from quantum
fluctuations of the inflaton field. From relics such as primordial radiation and matter
contents observed today, with the help of theoretical models governing their evolution, one
attempts to deduce the state of the early universe at different stages of development. In
addition to particle creation and structure formation, we add here another fundamental
quantum process, namely, quantum radiation. One can ask questions such as: If such
radiation of a quantum nature is detected, how can one use it to reveal certain quantum
aspects of the early universe? Uncovering secrets of the early universe by digging out
information stored in the quantum field is in a similar spirit to the quest we initiated about
the non-Markovianity of the universe through memories kept in the quantum field [17].

1.2. Three Components: Radiation, Squeeze, Drive

Towards such a goal we carry out this investigation which involves three components:
(1) quantum radiation, (2) squeezed state, and (3) driven dynamics, either under some
external force or as provided by an expanding universe, which describes how the squeeze
parameter changes in time. Component (1) was initiated in Ref. [2] and continued in
Ref. [12], where the required technical tools for the present investigation can be found.
Component (2) is performed here: we consider a quantum field in a squeezed state with
a fixed squeeze parameter, regarded as the end state of the quantum field after being
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squeezed under some drive protocol or cosmological evolution. For the description of
squeezed states we follow the descriptions in our earlier paper [18]. Under the classification
of the three types of squeezing described there, we adhere to the first type, namely, with
fixed squeezing. The second type of dynamical parametric squeezing will be treated in our
sequel cosmological papers. We set aside the third type of squeezing due to finite coupling
between the system (here, the atom’s idf) and the environment (here, the quantum field)
completely.

To see more explicitly what component (3) entails, consider a situation where the atom
at the initial time ti is in a quantum field in a squeezed state with a fixed squeeze parameter
ζi and the same atom at the final time, t f , in a squeezed field with a different squeeze
parameter, ζ f . If an atom emits quantum radiation at either or both the initial and the final
times, comparing the signals from both should tell us something about how the drive had
affected the atom through the quantum radiation emitted from the atom, or in cosmology,
how the universe had evolved as measured by the parametric squeezing of the field. The
more challenging situation is if it turns out that there is no emitted quantum radiation from
an atom in a squeezed field. This is what our next work intends to find out.

1.3. Our Objectives, in Two Stages

We wish to ask questions in the same spirit as in Ref. [17]: Can we extract information
about the history of the quantum field which had undergone a parametric process from the
responses of an atom coupled to it in the epoch after the parametric process? In particular,
for observers (receivers) situated far away from the atom (emitter), whether they can detect
radiations emitted from the atom of a quantum nature. Quantum radiation is of special
interest as it originates from the vacuum fluctuations of a quantum field, and is expected to
keep some memories of the parametric process it went through. In a cosmological context,
it acts as a carrier of quantum information about the early universe.

We divide our program of quantum radiation in cosmology into two stages, phrased
as two questions. (A): Is there emitted quantum radiation from a stationary atom in a
quantum field with a fixed squeeze parameter? If there is no emitted quantum radiation,
then question (B): Is there emitted quantum radiation from a stationary atom in a quantum
field subjected to a changing squeeze parameter, such as in an expanding universe? If so,
what kind of evolutionary dynamics would produce what types of emitted radiation and
with what magnitudes? The first stage addresses components (1) and (2) listed above, and
the second stage, components (2) and (3), which will be continued in a follow-up paper.

1.3.1. Radiation Pattern as Template for Squeezing

This paper operates in the first stage, with a setup meant for a statically-bounded uni-
verse, not the continuously evolving type such as in the Friedmann–Lemaître–Robertson–
Walker (FLRW) or the inflationary universe. The first half answers the first question (A),
and the second half of this paper examines the response of the atom coupled to a field that
had undergone a parametric process earlier. This evokes the template idea, i.e., one can use
the response of the atom, coupled to the field in the out-region, to identify the dependence
of the squeeze parameter on the earlier parametric process before the out-region. In the
cosmology context, this offers a way for a late-time observer of such quantum phenomena
to uncover how the universe had evolved in much earlier times.

1.3.2. Stress–Energy Tensor of Squeezed Field

To answer the central question (A), we use a simplified model in which the quantum
field undergoes a parametric process of finite duration, such as under an external drive for
a definite period of time, or in an asymptotically stationary (statically bounded) universe.
The field could be a quantized matter or graviton field, or an inflaton field whose quantum
fluctuations engender cosmological structures. Then, we calculate the expectation value
of the stress–energy tensor of the radiation field emitted by an atom coupled to a free
field in a fixed two-mode squeeze state. In order to identify the unambiguous signals and
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conform to the typical settings, we focus on the late-time results. We learned from our
earlier invetsigation [2] for a quantum field in the vacuum state that the procedure for
checking this is quite involved, as it entails both the radiation flux emitted from the atom
as detected at the spacetime point of the probe, and an incoming flux from infinity.

1.4. Key Steps and Major Findings

The answer we found after calculating all relevant contributions for an atom in a
quantum field in a squeezed state shows that there is no net radiation flux, the same as
in Ref. [2]. This is a consequence of relaxation dynamics of the atom’s internal dynamics
when it is coupled to the squeezed field [19]. However, if the probe can measure the
radiation energy density, it should obtain a residual constant radiation energy density at
late time. Its value will fall off similar to the inverse cubic power of the distance between the
probe and the atom. Thus, it is more similar to a near-field effect. Nonetheless, this energy
density has an interesting characteristic: it depends on the squeeze parameter, which is
what we are after.

Thus, our investigation turns to whether and how the squeeze parameter of the field
after the parametric process would depend on the details of the process. We first show
that the squeeze parameter can formally be expressed by the fundamental solutions of the
parametrically driven field; the latter contains useful information about the process. Then,
by working out several examples numerically we can make the following observations:

(1) For a monotonically varying process, the squeeze parameter has a monotonic depen-
dence on the duration of this process; it does not depend on when the process starts,
if we fix the duration.

(2) The magnitude of squeezing is related to the rate of change in the process. That is,
large squeezing can be induced from a nonadiabatic transition. This is consistent with
our understanding of spontaneous particle creation from parametric amplification
of vacuum fluctuations [20] and that copious particles can be produced at the Planck
time under rapid expansion of the universe [21]. Thus, we expect that nonadiabatic
processes may contribute to larger residual radiation energy density around the atom.

(3) For a nonmonotonic parametric process, various scales in the process induce richer
structure to the behavior of the squeeze parameter. In particular, if the parametric
process changes with time sinusoidally at some frequency range, it may induce
parametric resonance and yield exceptionally large squeezing in the out-region.

Similar considerations can likewise be applied to the frequency spectrum of the
squeeze parameter of the field in the out-region. One can then examine its dependence on
the parametric process which the field has undergone. This illustrates the way to obtain tem-
plates in how the squeeze parameter is related to the parametric process, and how certain
information of the unknown parametric process can be inferred from these templates.

1.5. Organization

The paper is organized as follows. In Section 2, as a prerequisite, we briefly summarize
our earlier results on the relaxation process of the atom–field interaction, and pose the
questions we would like to answer in this paper. In Section 3, we lay out the formalism
and the essential tools for detailing the nonequilibrium evolution of the atom’s internal
dynamics and the squeezed field when they are coupled together. In Section 4, we study
the general spatial–temporal behavior of the energy flux and the energy density of the
radiation field and examine their late-time behaviors. In Section 5, we turn to the functional
dependence of the squeeze parameter on the functional form of the parametric process.
Several examples are provided to illustrate the formal analysis. In Section 6, we give some
concluding remarks. Appendix A offers a succinct summary of the two-mode squeezed
state. In Appendices B and C, we offer more details on the late-time, large-distance
behaviors of the energy flux and the energy density of the radiation field. In Appendix D,
we discuss the time-translational invariance of the squeeze parameter in the out-region.
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2. Scenario: Quantum Radiation in Atom–Field Systems

Classical radiation is a familiar subject, but what is its quantum field origin? Can one
trace back its link all the way to quantum fluctuations? We obtained partial answers in our
last two papers to this question for a harmonic atom interacting with a quantum field in
a vacuum and in a coherent state. This paper deals with a squeezed field, necessary for
treating cosmological quantum processes. Since fluctuation-induced quantum radiation is
not a household topic, yet it might be useful to first provide a physical picture of the global
landscape of quantum radiation based on our understanding from previous studies, setting
the stage for the current paper.

It has been shown that [19] when the internal degree of freedom, modeled as a
harmonic oscillator, of an atom (called a harmonic atom) in any initial state is linearly
coupled to a massless linear scalar field in the stationary state, its motion will settle down
to an equilibrium state. The presence of this equilibrium state, from the perspective of the
atom, implies a balance of energy exchange between the atom and the environmental field.
Expectantly, the radiation generated by the nonequilibrium motion of the atom’s internal
degree of freedom propagates outward to spatial infinity. It is lesser known whether and
how, from the perspective of the field, the radiation energy from the atom is balanced.
In our previous study [2], we demonstrated that the correlation between the outward
radiation field and the local free field at spatial infinity constitutes an inward energy flow
to balance the outward radiation energy flow. Furthermore, this inward flux serves to
supplement the needed energy around the atom for the field to drive the atom’s internal
motion. Thus, we clearly see how energy flows from the atom to spatial infinity and then
backflows to the atom. This is a consequence of the nonequilibrium fluctuation–dissipation
relations [2,22] for the atom’s internal degree of freedom and the free field, which is a
stronger condition than the conservation of energy. This point is better appreciated once
we take the global view of the total system, composed of the atom and field. The entire
system is closed and the total energy is conserved, but this does not guarantee that the
energy exchange between two subsystems is balanced unless the reduced dynamics is fully
relaxed to an equilibrium state.

If, instead, the internal degree of freedom of the atom is initially coupled to the
quantum field in a nonstationary state, similar to the squeezed state, then will the nonsta-
tionary nature of the field prevent the internal degree of freedom from approaching an
equilibrium state? We showed that [19] when the (mode-dependent) squeeze parameter is
time-independent, the atom’s internal degree of freedom still settles down to an equilibrium
state in the long run. The stationary components of the covariance matrix elements or the
energy flows decay exponentially fast to time-independent constants as in the previous
case, but the additional nonstationary components fall off to zero. The mechanisms that
account for the late-time behavior of the stationary and the nonstationary components
seem to be quite distinct. For the stationary components, it is a consequence of dissipation
dynamically adapting to the driving fluctuations from the environment, but for the nonsta-
tionary components, cancellation due to fast phase variations in the nonstationary terms
plays the decisive role. In contrast, from the viewpoint of the squeezed field, what is the
nature of radiation emitted from the atom, and can this outward energy flux at distances
far away from the atom find a corresponding inward flux at late times such that there is no
net energy output to spatial infinity, as proven for the case of a stationary field? If so, what
makes it possible?

These questions are of particular interest in a cosmological setting for the consideration
of fundamental issues described in Section 1. There, evolution of the universe parametri-
cally drives the ambient quantum field into a squeezed state. The extent of squeezing may
depend on the characteristics of the parametric process actuated by the evolution of the
background universe. When an atom is coupled to such a field, emitted radiation from the
atom should carry the information of squeezing of the field, which in turn may reveal the
evolution history of the universe.
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As a prerequisite to addressing these issues, in this paper we are going to examine
a simpler configuration that may cover the essential features. Consider, in Minkowski
spacetime, a massless scalar field that undergoes a parametric process such that each mode
frequency changes smoothly from one constant value, for example, ωi to another ω f , as
shown in Figure 1. The parametric process occurs during the time interval ta ≤ t ≤ tb. In
the out-region (t ≥ tb) of the process, an atom is coupled to the squeezed field at time t0.
The nonequilibrium evolution of the internal degree of freedom of the atom then generates
outward radiation, which after time r will reach a detector (such as a satellite around the
Earth) at a distance r away from the atom. The detector may measure the time variation of
the energy flux. The corresponding signal will be extracted and amplified to sieve out the
information regarding the parametric process of the field occurred earlier.

Figure 1. The configuration of the parametric process of the field. The process changes one of the
mode frequencies from ωi at time t ≤ ta to ω f at t ≥ tb. The transition is assumed to happen
continuously. The interaction between an atom and the field is turned on at t0 > ta and radiation is
generated by the internal motion of the atom. For a receiver at distance r away from the atom, it will
take another time r to meet the radiation. The relaxation time of the atom’s internal motion is of the
order of the inverse of the damping constant, γ−1.

3. Massless Scalar Field Interacting with a Harmonic Atom

For the case of a massless scalar field φ coupled to a static atom, with its internal degree
of freedom, χ, represented by a harmonic oscillator, one has the following Heisenberg
equations of motion:

¨̂χ(t) + ω2
Bχ̂(t) =

e
m

φ̂(0, t) , (1)(
∂2

t −∇2)φ̂(x, t) = e δ(3)(x)χ̂(t) , (2)

where the atom is located at the origin of the spatial coordinates x in a 3 + 1 Minkowski
spacetime. The parameter e denotes the coupling strength between the internal degree of
freedom of the atom and the field, and ωB and m is the bare frequency and the mass of the
oscillator, respectively. The overhead dot of a variable represents its time derivative with
respect to t; if this variable is promoted to an operator, we add an overhead hat. δ(3)(x) is
the three-dimensional delta function, and we often use the shorthand notation, ∂a = ∂/∂a,
for the partial derivative with respect to a.

Solving the equation of motion of the field (2) yields

φ̂(x, t) = φ̂h(x, t) + e
∫ t

0
ds G(φ)

R,0 (x, t; 0, s)χ̂(s) , (3)
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where the homogeneous part φ̂h(x, t) gives the free field while the integral expression
represents the radiation field emitted by the atom. The retarded Green’s function G(φ)

R,0 (x, x′)
of the free field is defined by

G(φ)
R,0 (x, x′) = i θ(t − t′)

[
φ̂h(x), φ̂h(x′)

]
=

1
2π

θ(τ)δ(τ2 − R2) , (4)

where x = (x, t), τ = t − t′, R = |x − x′|, and θ(τ) is the Heaviside unit-step function. In
the special case R → 0, which is met for a single Brownian oscillator, we instead have

G(φ)
R,0 (t, t′) = − 1

2π
θ(τ)δ′(τ) . (5)

Here, we suppressed the trivial spatial coordinates 0, and the prime of a function
denotes the derivative with respect to its argument. The superscript of the Green’s function
indicates the operator by which the Green’s function is constructed, while the 0 in the
subscript reminds us that the Green’s function of interest is associated with a free operator;
otherwise it is an interacting operator. For example, G(φ)

R,0 (τ) refers to the retarded Green’s

function of the free field, while G(χ)
R (τ) is the retarded Green’s function of the interacting χ.

Plugging Equation (3) into the equation of motion (2) for the atom’s internal degree of
freedom, one obtains:

¨̂χ(t) + ω2
Bχ̂(t)− e2

m

∫ t

0
ds G(φ)

R,0 (t, s)χ̂(s) =
e
m

φ̂h(0, t) . (6)

This is the generalized quantum Langevin equation for χ̂(t)—it includes backreactions
of the environmental field in terms of the noise force on the righthand side and the integral
expression on the left hand side. As was identified in Equation (3), the latter is the reaction
force due to emitted radiation, which retards the motion of the atom’s internal degree of
freedom.

Supposing the free field has a Markovian spectrum, we can reduce Equation (6) into a
local form:

¨̂χ(t) + 2γ ˙̂χ(t) + ω2
R χ̂(t) =

e
m

φ̂h(0, t) , (7)

and the oscillation frequency is renormalized to a physical value ωR. Since we want to
examine the nature of radiation and its late-time behavior in relation to the atom’s internal
dynamics in a self-consistent way, we need the field expression (3) written in terms of the
solution to the equation of the reduced dynamics (7):

χ̂(t) = χ̂h(t) + e
∫ t

0
ds G(χ)

R (t − s)φ̂h(0, s) , (8)

where the retarded Green’s function associated with χ̂ has the form

G(χ)
R (τ) =

1
mΩ

e−γτ sin Ωτ , (9)

with Ω =
√

ω2
R − γ2, γ is the damping constant, and χ̂h(t) is the homogeneous part.

Equation (7) always implies that

d
dt

[m
2
〈 ˙̂χ(t)〉+ mωR

2
〈χ̂2(t)〉

]
= Pξ(t) + Pγ(t) , (10)

where Pξ(t) is the power delivered by the free field fluctuations:

Pξ(t) =
e
2
〈
{

φ̂h(0, t), χ̇(t)
}
〉 , (11)
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and Pγ(t) represents the rate of energy lost due to dissipation:

Pγ(t) = −2mγ 〈χ̇2(t)〉 . (12)

We showed [19] that even if the scalar field is initially in a nonstationary squeezed
thermal state, the internal dynamics of the atom will still settle down to an asymptotic
equilibrium state, where, in particular,

Pξ(t) + Pγ(t) = 0 . (13)

This is a stronger condition than Equation (10), which reflects energy conservation of
the reduced dynamics.

From Equations (3) and (8), the full interacting field is then given by

φ̂(x) = φ̂h(x) + e
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′)
[

χ̂h(t′) + e
∫ t′

0
ds G(χ)

R (t′ − s)φ̂h(0, s)
]

. (14)

It turns out convenient to split the full interacting field into three physically distinct
components, φ̂(x) = φ̂h(x) + φ̂TR(x) + φ̂BR(x), with

φ̂TR(x) = e
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′) χ̂h(t′) , (15)

φ̂BR(x) = e2
∫ t

0
dt′ G(φ)

R,0(x, t; 0, t′)
∫ t′

0
ds G(χ)

R (t′ − s)φ̂h(0, s) , (16)

where φ̂TR(x) is the transient term associated with the atom’s transient internal dynamics
and φ̂BR(x) is the backreaction field correlated with φ̂h(x) everywhere.

Hadamard Function

At this point, we have not specified the state of the field. For the reason that is
explained in Section 5, we assume that the initial state of the field the atom interacts with is
a time-independent two-mode squeezed thermal state, for which the field’s density matrix
has the form

ρ̂TMST = ∏
k

Ŝ2(ζk)ρ̂βŜ†
2(ζk) (17)

where ρ̂β is the thermal density matrix of the free field at temperature TB = β−1, and Ŝ2(ζk)

is the two-mode squeeze operator, with the squeeze parameter, ζk = ηkeiθk , defined by

Ŝ2(ζk) = exp
[
ζ∗k â+k â−k − ζk â†

+ka†
−k

]
. (18)

Here, the † sign denotes the hermitian conjugate, ηk ≥ 0, 2π > θk ≥ 0, and k is
the wave vector. For convenience, we collected the essential properties of the two-mode
squeezed state in Appendix A. Here, we assume that the squeeze parameter is mode-
independent to simplify the arguments.

If the free field has the plane-wave expansion,

φ̂h(x) =
∫ d3k

(2π)
3
2

1√
2ω

[
âkeik·x + â†

ke−ik·x
]

, (19)

with k · x = −ωt + k · x, k = (ω, k), and ω = |k|, then the free field’s Hadamard function
for this two-mode squeezed thermal state has the form,

G(φ)
H,0(x, x′) =

∫ d3k
(2π)3

1
4ω

coth
βω

2
eik·(x−x′)

[
cosh 2η e−iω(t−t′) − sinh 2η eiθe−iω(t+t′)

]
+ C.C. . (20)
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Here, “C.C.” represents the complex conjugate term. After carrying out the angular
integration, one arrives at the following decomposition:

G(φ)
H,0(x, x′) = G(φ),ST

H,0 (x, x′) + G(φ),NS
H,0 (x, x′) , (21)

with

G(φ),ST
H,0 (x, x′) =

∫ ∞

−∞

dω

2π
cosh 2η coth

βω

2
sin(ω|x − x′|)

4π|x − x′| e−iω(t−t′) , (22)

G(φ),NS
H,0 (x, x′) = −

∫ ∞

0

dω

2π
sinh 2η coth

βω

2
sin(ω|x − x′|)

4π|x − x′| e−iω(t+t′)+iθ + C.C. (23)

Observe that the Hadamard function has an extra component that is not invariant
under time translation, so we call it the nonstationary component of the Hadamard function.
This is distinct from the case we consider in Ref. [2]. The emergence of this component is a
consequence of the field being squeezed. We discuss its dynamical origin in Section 5. This
nonstationary nature of the free field’s Hadamard function will impact on the dynamical
evolution of the atom’s internal dynamics because the Hadamard function governs the
statistics of the noise force sourcing (6), which naturally raises the concern as to whether the
internal dynamics can ever equilibrate. As was mentioned earlier, it turns out the atom’s
internal motion can still relax to an equilibrium, meaning a time-translation-invariant state.
Details of derivations and discussions on this point can be found in Ref. [19].

Equations (20) or (21) are the essential ingredient used to express the Hadamard
function G(φ)

H (x, x′) of the interacting field, which is needed to evaluate the stress–energy
tensor. Following the decomposition (15), the interacting field’s Hadamard function is
given by

G(φ)
H (x, x′) =

1
2
〈
{

φ̂h(x), φ̂h(x′)
}
〉+ 1

2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉+ 〈

{
φ̂BR(x), φ̂h(x′)

}
〉
]

+
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉+ 1

2
〈
{

φ̂TR(x), φ̂TR(x′)
}
〉 , (24)

where

1
2
〈
{

φ̂h(x), φ̂h(x′)
}
〉 = G(φ)

H,0(x, x′) , (25)

1
2
〈
{

φ̂h(x), φ̂BR(x′)
}
〉 = e2

∫ t′

0
ds′1 G(φ)

R,0 (x′, t′; 0, s′1)
∫ s′1

0
ds′2G(χ)

R (s′1 − s′2)G
(φ)
H,0(x, t; 0, s′2) , (26)

1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉 = e4

∫ t

0
ds1

∫ t′

0
ds′1 G(φ)

R,0 (x, t; 0, s1)G
(φ)
R,0 (x′, t′; 0, s′1)

×
∫ s1

0
ds2

∫ s′1

0
ds′2 G(χ)

R (s1 − s2)G
(χ)
R (s′1 − s′2)G

(φ)
H,0(0, s2; 0, s′2) , (27)

1
2
〈
{

φ̂TR(x), φ̂TR(x′)
}
〉 = e2

2

∫ t

0
ds
∫ t′

0
ds′ G(φ)

R,0 (x, t; 0, s)G(φ)
R,0 (x′, t′; 0, s′) 〈

{
χ̂h(s), χ̂h(s′)

}
〉 . (28)

The second group inside the square brackets in Equation (24) is of special interest
because it describes the correlation between the radiation field and the free field at any
location outside the atom. We do not see such counterpart in classical electrodynamics
because in classical field theory, there is no vacuum state to establish any correlation with
the radiation field. Here, the correlation must be present because (1) the internal dynamics
of the atom, which emits the radiation, is driven by the free field at the atom’s location and
(2) the free field has nonvanishing correlation among any spacetime interval. Note that we
are in the Heisenberg picture, so the expectation values are evaluated with respect to the
initial state of both subsystems. The contribution in Equation (28) can be ignored at late
times due to its transient nature. In addition, we also note that these four components are at
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most linearly proportional to G(φ)
H,0(x, x′). Thus, at least before t − r � γ−1, where r = |x|,

the interaction field is expected to behave similar to a squeezed field to some extent.
For later convenience, we introduce a shorthand notation for an expression which

comes up frequently:

Lω(x, t) =
∫ t

0
ds1 G(φ)

R,0 (x, t − s1)
∫ s1

0
ds2 G(χ)

R (s1 − s2)e−iωs2 . (29)

After we carry out the integrations, we find its explicit form is given by

Lω(x, t) = θ(t − r) G̃(χ)
R (ω)

{
G̃(φ)

R,0 (x; ω) e−iωt − e−γ(t−r)

4πΩr

[
(ω + iγ) cos Ω(r − t) + i Ω sin Ω(r − t)

]}
, (30)

where we used the identity for the Fourier transform of G(φ)
R,0 (x, τ; 0, 0):

G̃(φ)
R,0(x; ω) =

eiωr

4πr
. (31)

The convention of the Fourier transformation we adopt is

f (t) =
∫ ∞

−∞

dω

2π
f̃ (ω) e−iωt . (32)

At times t � r, we find that the dominant term in Equation (30) is given by

Lω(x, t) = θ(t − r) G̃(χ)
R (ω) G̃(φ)

R,0 (x; ω) e−iωt , (33)

because in this case, the factor e−γ(t−r) causes the second term in the curly brackets in
Equation (30) to be exponentially small. These are convenient snippets that greatly sim-
plifies the analysis of the late-time behavior of the expectation values of the energy–
momentum stress tensor of the interacting field. Henceforth, we proceed with the analysis
separately for the contributions due to the stationary and the nonstationary components of
G(φ)

H,0(x, x′).
At late times, the explicit expressions for the stationary and nonstationary components

of the Hadamard functions of the free field and the interacting field φ become relatively
simple. The interacting field’s Hadamard function can likewise be decomposed into a
stationary and a nonstationary component, G(φ)

H (x, x′) = G(φ),ST
H (x, x′) + G(φ),NS

H (x, x′), and

G(φ),ST
H (x, x′) = G(φ),ST

H,0 (x, x′) + e2
∫ ∞

−∞

dω

2π

[
G̃(φ),ST

H,0 (x, 0; ω) G̃(χ)∗
R (ω) G̃(φ)∗

R,0 (x′; ω) (34)

+ G̃(φ),ST
H,0 (x′, 0; ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]
e−iω(t−t′) + C.C.

+ e2
∫ ∞

−∞

dω

2π
cosh 2η coth

βω

2
G̃(φ)

R,0 (x, ω) G̃(φ)∗
R,0 (x′, ω) Im G̃(χ)

R (ω) e−iω(t−t′) + C.C. ,

and

G(φ),NS
H (x, x′) = G(φ),NS

H,0 (x, x′)− e2
∫ ∞

0

dω

2π
sinh 2η coth

βω

2
G̃(χ)

R (ω) (35)

×
[

sin(ω|x|)
4π|x| G̃(φ)

R,0 (x′; ω) +
sin(ω|x′|)

4π|x′| G̃(φ)
R,0 (x; ω)

]
e−iω(t+t′)+iθ + C.C.

− e4
∫ ∞

0

dω

2π

ω

4π
sinh 2η coth

βω

2
G̃(χ)2

R (ω) G̃(φ)
R,0 (x; ω) G̃(φ)

R,0 (x′; ω) e−i(ω(t+t′)+iθ + C.C. ,

where
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G̃(φ),ST
H,0 (x, 0; ω) ≡ G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2
sin(ω|x|)

4π|x| = cosh 2η coth
βω

2
Im G̃(φ)

R,0 (x; ω) . (36)

The energy–momentum stress tensor of the interacting field is then constructed via
the Hadamard function, G(φ)

H (x, x′). Analyses of the late-time energy flow of the field at
distances far away from the atom resulting from the atom–field interaction are contained in
Appendices B and C. A general discussion of the spatial–temporal behavior of the stress–
energy tensor due to the radiation field emitted from the atom follows in the next section.

4. Stress–Energy Tensor Due to the Radiation Field

The expectation value of the energy–momentum stress tensor due to the radiation
field is defined by

〈ΔT̂μν(x)〉 = lim
x′→x

(
∂2

∂xμ∂x′ν
− 1

2
gμνgαβ ∂2

∂xα∂x′β

)[
G(φ)

H (x, x′)− G(φ)
H,0(x, x′)

]
(37)

with the signature of the metric gμν being (−,+,+,+). Here, we subtracted off the contri-
bution purely from the free field, which is irrelevant to the atom–field interaction. Due to
symmetry, it has no dependence on the azimuthal angle, ϑ, and the polar angle, ϕ, of the
spherical coordinate system, so the stress–energy tensor already reduces to

〈ΔT̂μν〉 =

⎛⎜⎜⎝
0
0

〈ΔT̂rt〉
〈ΔT̂tt〉

0
0

〈ΔT̂rr〉
〈ΔT̂tr〉

0
0
0
0

0
0
0
0

⎞⎟⎟⎠ . (38)

Then, we focus on the components 〈ΔT̂tr〉 and 〈ΔT̂tt〉 that are relevant to our follow-
ing discussions.

Here, the analysis is not limited to the large-distance and the late-time limits, so that
we can have a more complete, global view of the energy flow and energy density of the field
caused by the atom–field interaction. We will place the analysis in those specific regimes in
Appendices B and C.

Since in our configuration the coupling between the harmonic atom and the massless
scalar field takes a different form from that between the point charge and the electromag-
netic fields, it would be more illustrative if we first quickly cover the elementary derivations
of the continuity equation and the total atom–field Hamiltonian in the classical regime to
highlight their differences.

From the equation of motion of the scalar field (2), if we multiply both sides by ∂tφ,
we obtain a local form of the continuity equation

∂tuφ +∇ · Sφ = p ∂tφ , (39)

where p(x, t) = e δ(3)(x)χ(t) serves as the point dipole associated with the atom, and we
identify the field energy density, uφ, and the field momentum density, Sφ, respectively, by

uφ(x, t) =
1
2

[
∂tφ(x, t)

]2
+

1
2

[
∇φ(x, t)

]2
, Sφ(x, t) = −∂tφ(x, t)∇φ(x, t) . (40)

The unusual issue with the right hand side of the continuity Equation (39) is best ap-
preciated when we compare with the corresponding equation for the electromagnetic fields:

∂tu +∇ · S = −J · E , with u =
1
2

E2 +
1
2

B2 , S = E × B , (41)
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where J is the current density and the corresponding current is equal to eẋ for a point charge
at the location x. The electric field, E, is defined by E = −∇A0 − ∂t A and the magnetic
field B by B = ∇× A. Here, A0 is the scalar potential and A is the vector potential. Thus,
the right hand side of Equation (39) should bear a similar interpretation to −J · E, which is
usually understood as the dissipation of the field energy due to the work performed by the
field on the charge. That is, it is the opposite of the power delivered by the Lorentz force.
However, there are a few subtle catches: (1) In classical field theory, we seldom consider the
free field component of the field equation, and we never have vacuum field fluctuations,
so the electromagnetic fields in Equation (41) are often assumed to be the field generated
by the charge. In contrast, the quantum scalar field φ under our consideration is a full
interacting field, comprising the free field and the radiation field emitted by the atom. Thus,
the right hand side of Equation (39) will contain an extra contribution associated with the
free field fluctuations. (2) The right hand side of Equation (39) does not correspond to
the net power delivered by the field to the internal degree of freedom of the atom, which
is e φ(0, t) ∂tχ(t), apart from a renormalization contribution, according to the right hand
side of Equation (1). Then the interpretation of the right hand of Equation (39) is not so
straightforward, even though it has a form of the dipole interaction, similar to the right
hand side of Equation (41).

We may trace such a feature to the Hamiltonian. The Hamiltonian Hχφ associated
with the Lagrangian of the atom–field interacting system,

Lχφ =
m
2

χ̇2 − mω2
B

2
χ̇2 +

∫
V

dV e δ(x)χ(t)φ(x, t) +
∫

V
d3x

{1
2
[
∂tφ(x, t)

]2 − 1
2
[∇φ(x, t)

]2
}

, (42)

under our consideration is given by

Hχφ =
m
2

χ̇2 +
mω2

B

2
χ̇2 − e χ(t)φ(0, t) +

∫
V

d3x
{1

2
[
∂tφ(x, t)

]2
+

1
2
[∇φ(x, t)

]2
}

, (43)

where we implicitly assume that χ̇(t) and φ̇(x, t) are functions of the respective canonical
momenta, p(t) and π(x, t). The quantity V denotes the whole spatial volume on a fixed
time slice. Since the whole atom–field system forms a closed system, the total energy is
conserved, so one has dH/dt = 0,

d
dt

Hχφ(t) = 0 = χ̇(t)
{

mχ̈(t) + mω2
Bχ(t)− e φ(0, t)

}
(44)

+
∫

V
d3x

[
−e δ(x)χ(t) ∂tφ(x, t) +

d
dt

{
1
2
[
∂tφ(x, t)

]2
+

1
2
[∇φ(x, t)

]2
}]

.

Note how the derivative of the interaction term is distributed, and further observe that
the contribution inside of the first pair of curly brackets gives zero, following the equation
of motion (1). It actually has an attractive interpretation. Following the derivations of
Equations (6) and (7), it accounts for the reduced dynamics of the atom’s internal degree
of freedom, and, from the atom’s perspective, describes the energy exchange between the
atom and the surrounding quantum field.

The integral on the right hand side of Equation (44), on the other hand, describes the
energy exchange from the field’s perspective, and thus gives zero too. In the integrand,
we see the presence of the same dipole interaction term e δ(x)χ(t) ∂tφ(x, t) that appears
on the right hand side of Equation (39). At first sight, it may seem odd that the dipole
interaction term is solely responsible for the change of the field energy; however, we can
further show that

d
dt

Hχφ(t) = 0 =
∫

V
d3x ∇ · [∇φ(x, t) ∂tφ(x, t)

]
= −

∮
∂V

dA · S(x, t) , (45)

where dA is the area element on the boundary ∂V. It says that there is no flux entering
from or leaving to spatial infinity because the boundary ∂V of the space volume V lies
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at spatial infinity. It is a rephrase of energy conservation in a closed system, so there is
no inconsistency. On the other hand, Equation (45) is too restrictive because V is the total
volume. The differential form of the continuity Equation (39) is more suitable to observe
the energy distribution in the field.

In contrast to Equation (43), the Hamiltonian for the interacting system of a point
charge and the electromagnetic field is

HxA =
mB

2
ẋ2 +

mBω2

2
x2 +

1
2

∫
V

d3x
(
E2 + B2) . (46)

It does not have the interaction term manifestly if the Hamiltonian is not expressed
in terms of the canonical momentum of the charge; however, it is consistent with the
observation that −J · E is opposite to the power delivered by the Lorentz force.

Now, let us discuss the general result of 〈ΔT̂μν〉 that will be valid for t > r at any
location distance r away from the atom, so we come back to the manipulation of quantum
operators. We first compute 〈ΔT̂tr〉.

4.1. General Behavior of Field Energy Flux 〈ΔT̂tr〉
If we write φ̂R(x, t) as

φ̂R(x, t) = e
∫ t

0
ds G(φ)

R,0 (x, t; 0, s) χ̂(s) =
e

4πr
θ(t − r) χ̂(t − r) , (47)

which explicitly shows that the radiation field is a retarded Coulomb-like field emitted by a
source at an earlier time t − r. Note that the quite simple expression of the radiation field
such as Equation (47) is not obtainable if the field has a nonMarkovian spectrum.

With the help of Equation (47), one obtains:

1
2
〈
{

∂tφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −

(
e

4πr

)2

〈χ̂′2(t − r)〉 −
(

e
4πr

)2 1
2r

〈
{

χ̂′(t − r), χ̂(t − r)
}
〉 , (48)

for t > r, where a prime denotes taking the derivative with respect to the function’s
argument. If we compute the energy flow associated (48), across any spherical surface of
radius r centered at the atom, we obtain∫

∂V
dA 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −2mγ 〈χ̂′2(t − r)〉 − mγ

r
〈
{

χ̂′(t − r), χ̂(t − r)
}
〉

= Pγ(t − r)− mγ

r
∂t〈χ̂2(t − r)〉 , (49)

where we used the substitution e2 = 8πγm. The first term has a special significance.
From Refs. [2,18,22], one knows that Pγ(t) is the energy that the atom’s internal degree of
freedom loses to the surrounding field due to damping. Thus, the first term tells us that the
energy lost by the atom at time t − r takes time r to propagate to a location at a distance r
away from the atom. It is the only contribution in Equation (49) that may survive at spatial
infinity.

The contribution from the cross-terms need a little more algebraic manipulations, but
it gives:

1
2
〈
{

∂tφ̂h(x, t), ∂rφ̂R(x, t)
}
〉+ 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂h(x, t)
}
〉

=
1

4πr2 Pξ(t − r)− e2

4πr2
∂

∂t

∫ t−r

0
ds G(χ)

R (t − r − s) G(φ)
H,0(x, t; 0, s) , (50)

in which the integral in the last expression is nothing but

e2
∫ t−r

0
ds G(χ)

R (t − r − s) G(φ)
H,0(x, t; 0, s) =

e
2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉 . (51)
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Here, Pξ(t) is the power that the free quantum field fluctuations deliver to the atom’s
internal dynamics at time t at the atom’s location. Then we find the incoming energy flow
given by

∫
∂V

dA
[

1
2
〈
{

∂tφ̂h(x, t), ∂rφ̂R(x, t)
}
〉+ 1

2
〈
{

∂tφ̂R(x, t), ∂rφ̂h(x, t)
}
〉
]

= Pξ(t − r)− ∂

∂t

[e
2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]

. (52)

Combining Equations (49) and (52), one thus has:

〈ΔT̂tr〉 =
1

4πr2

{
Pξ(t − r) + Pγ(t − r)− ∂

∂t

[mγ

r
〈χ̂2(t − r)〉+ e

2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]}

, (53)

From the relaxation of the reduced dynamics of the atom’s internal degree of freedom,
outlined in the beginning of Section 3, we learn that the internal dynamics will reach
equilibrium, where Pξ(t) + Pγ(t) = 0 for t � γ−1. Hence, from Equation (53), we easily
conclude that, for a fixed r, when t − r is much greater than the relaxation time scale, the
sum of the dominant terms Pξ(t − r) + Pγ(t − r) vanishes. At large distances away from the
atom, the remaining terms are quite small, decaying at least similar to 1/r3. It is consistent
with our results in Appendix B, where we explicitly show that they actually give zero at
late times. Alternatively, we may deduce the same conclusion here, since (1) 〈χ̂2(t)〉 will
approach a constant at late times as the atom’s internal dynamics asymptotically reach an
equilibrium, and (2) with the help of the explicit expression,

e
2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉 = − e2

4πr

∫ ∞

0

dω

2π
coth

βω

2
cosh 2η

∫ t−r

0
ds G(χ)

R (t − r − s)
sin ωr
4πr2 cos ω(t − s) ,

it is not hard to see that the time derivative of the last term inside the square brackets in
Equation (53) vanishes at late times.

Thus, the detector away from the atom will not measure any radiation energy flux
from the stationary atom at late times even though the atom is coupled to a nonstationary
squeezed state.

4.2. General Behavior of Field Energy Density 〈ΔT̂tt〉
It is also of interest to examine the change of the field energy density at distances far

away from the atom resulting from their mutual interactions. Conceptually, the atom’s
internal dynamics will send out spatial infinity spherical waves centered at the location
of the atom. Due to the quantum nature of the internal dynamics, this radiation wave, in
general, has a random phase and its magnitude is inversely proportional to the distance to
the atom. Following our previous discussion, a detector at a large but fixed distance away
from the atom will receive a net outward energy flux in the beginning, and then it will find
that the magnitude of the flux rapidly falls off to zero with time. After all these activities
settle down, will the earlier energy flux leave any footprint in the space surrounding the
atom, say, by shifting the local field energy density, albeit almost imperceptibly? This is
what we try to find out in this section.

In the same manner, we rewrite 〈ΔTtt〉, following Equation (47). Other than the overall
factor 1/2, we first show:

1
2
〈
{

∂tφ̂R(x, t), ∂tφ̂R(x, t)
}
〉+ 1

2
〈
{

∂rφ̂R(x, t), ∂rφ̂R(x, t)
}
〉 = −2 × 1

4πr2

{
Pγ(t − r) +

∂

∂r

[mγ

r
〈χ̂2(t − r)〉

]}
,

where ∂tχ(t − r) = −∂rχ(t − r). Here, due to the minus sign up front, this contribution
tends to grow to a positive value at late times. We further note that the same expression
Pγ(t − r) also appears in the component (49) of 〈ΔT̂tr(t)〉 that is purely caused by the
radiation field. Thus, we see the outward energy flux due to Equation (49) that imparts
field energy into the space around the atom.
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For the cross-terms, we obtain:

2 × 1
2
〈
{

∂tφ̂h(x, t), ∂tφ̂R(x, t)
}
〉+ 2 × 1

2
〈
{

∂rφ̂h(x, t), ∂rφ̂R(x, t)
}
〉

= −2 × 1
4πr2

{
Pξ(t − r) +

∂

∂r

[e
2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]}

. (54)

Following the same argument, the inward energy flux from Equation (50), on the other
hand, is prone to take away the field energy in the surrounding space.

Altogether, we thus find that the net field energy density outside the atom is given by

〈ΔT̂tt〉 = − 1
4πr2

{
Pξ(t − r) + Pγ(t − r) +

∂

∂r

[mγ

r
〈χ̂2(t − r)〉+ e

2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]}

, (55)

for t > r > 0. This looks similar to Equation (53), and can be the consequence of the continu-
ity equation. The dominant term in Equation (55) will vanish at late times, as a consequence
of the relaxation of the internal dynamics of the atom, and the behavior of Equation (53)
due to the appearance of t − r. Following our earlier arguments, the remaining term,
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉, on the other hand, becomes a time-independent constant at late

times, which falls off at least similar to 1/r3, as is explicitly shown in Appendix B.2.
Indeed, Equations (53) and (55) enable us to verify the continuity equation,

1
r2

∂

∂r

(
r2〈ΔT̂tr〉

)
=

1
4πr2

{
∂rPξ(t − r) + ∂rPγ(t − r)− ∂2

∂t∂r

[mγ

r
〈χ̂2(t − r)〉+ e

2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]}

=
1

4πr2

{
−∂tPξ(t − r)− ∂tPγ(t − r)− ∂2

∂t∂r

[mγ

r
〈χ̂2(t − r)〉+ e

2
〈
{

χ̂(t − r), φ̂h(x, t)
}
〉
]}

=
∂

∂t
〈ΔT̂tt〉 , (56)

for r > 0. To include r = 0, the location of the atom, we need the form (39), which also takes
into account the energy flow into and out of the atom, from the scalar field perspective.

From the considerations presented so far we may now see better how the radiation
flux, generated by the internal dynamics of the atom, propagates outward and at the same
time intakes the field energy in space outside the atom. Meanwhile, due to the remarkable
correlation between the quantum radiation field and the free quantum field, there exists an
inward flux. On its way toward the atom, it pulls out field energy stored in the proximity
of the atom. From this hindsight, it can be understood that the net power e φ(0, t)χ̇(t)
delivered by the quantum field to the atom is not equal to the rate of work performed on the
field e φ̇(0, t)χ(t), as can be inferred from Equation (44). Otherwise, 〈ΔT̂tr〉 in Equation (53)
will just be proportional to Pξ(t − r) + Pγ(t − r). Their difference accounts for the field
energy density stored in the space for the configuration we have studied.

In summary, the results in this section tell us that at late times the observer will not
measure any net energy flow associated with the radiation emitted from the atom driven
by the squeezed quantum field, but the observer can still detect a constant radiation energy
density, which is related to the squeeze parameter. However, a restrictive condition is
that the residual radiation energy density is of the near-field nature, and it falls off with
the distance to the atom similar to 1/r3. Thus, its detection can be challenging at large
distances, unless the squeeze parameter is large.

Even with these difficulties, one can still locally identify the squeezing via the response
of the atom interacting with the squeezed field.

In the next Section, we discuss how the squeeze parameter depends on the parametric
process the quantum field has experienced, such that one may acquire certain information
about the process once one has measured the squeeze parameter.
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5. Functional Dependence of the Squeeze Parameter on the Parametric Process

Now we turn to how one may possibly extract from the behavior of the squeeze
parameter the information of the parametric process that occurs earlier. To be specific,
consider the simple case that a massless quantum Klein–Gordon field in flat spacetime
undergoes a parametric process such that the frequency of mode k transits smoothly from
one constant value ωi for 0 ≤ t ≤ ta to another constant ω f for t ≥ tb > ta.

We would first like to show that the quantum field in the out-region behaves as if it is
in its squeezed thermal state with a time-independent squeeze parameter, ζk, if the initial
state of the field at t = 0 is a thermal state. Then, we express the squeeze parameter in
terms of the Bogoliubov coefficients, a common tool to treat the dynamics of the quantum
field in a parametric (time-varying) process. We also link the squeeze parameter to the
fundamental solutions of the equation of motion of the field, in which information of the
parametric process is embedded.

We work with the Heisenberg picture, so the field state remains in its initial state at
t = 0. Formally, we can expand the field operator φ̂(x) in terms of different sets of mode
functions. In the out-region, two convenient choices are

uIN
k (x) =

1√
2ωi

eik·x
[
d(1)k (t)− i ωi d(2)k (t)

]
, uOUT

k (x) =
1√
2ω f

eik·xe−iω f t , (57)

where d(i)k (t) satisfies the equation d̈(i)k + ω2(t) d(i)k (t) = 0, and uOUT
k (x) is the standard

plane-wave mode function in the out-region, while uIN
k (x) represents the mode function

which evolves from the plane-wave mode function in the in-region. Thus, the field operator
may have the expansions,

φ̂(x) =

⎧⎪⎪⎨⎪⎪⎩
∑
k

âkuIN
k (x) + â†

kuIN∗
k (x) ,

∑
k

b̂kuOUT
k (x) + b̂†

kuOUT∗
k (x) ,

∑
k

=
∫ d3k

(2π)
3
2

, (58)

in the out-region.
We further suppose that (b̂k, b̂†

k) are related to (âk, â†
k) by

b̂+k = α+k â+k + β∗
−k â†

−k , (59)

whence the completeness condition |αk|2 − |βk|2 = 1 implies that the Bogoliubov coeffi-
cients, αk and βk, can be parametrized by

αk = cosh ηk , β∗
−k = −eiθk sinh ηk , (60)

such that
b̂+k = cosh ηk â+k − eiθk sinh ηk â†

−k = Ŝ†
2(ζk) â+k Ŝ2(ζk) . (61)

The parametrization (60) can be alternatively implemented by the two-mode squeeze
operator Ŝ†

2(ζk). We summarize its properties in Appendix A.
Then, a quantity of the field similar to the Hadamard function in the out-region can be

cast into
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1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ω f

[
1
2
〈IN|

{
b̂k, b̂k

}
|IN〉 eik·(x+x′)e−iω f (t+t′) +

1
2
〈IN|

{
b̂k, b̂−k

}
|IN〉 eik·(x−x′)e−iω f (t+t′)

+
1
2
〈IN|

{
b̂k, b̂†

k
}
|IN〉 eik·(x−x′)e−iω f (t−t′) +

1
2
〈IN|

{
b̂k, b̂†

−k
}
|IN〉 eik·(x+x′)e−iω f (t−t′) + C.C.

]
= ∑

k

1
2ω f

eik·(x−x′)
[

1
2
〈ζTMSQ

k,IN |
{

âk, â−k
}
|ζTMSQ

k,IN 〉 e−iω f (t+t′) +
1
2
〈ζTMSQ

k,IN |
{

âk, â†
k
}
|ζTMSQ

k,IN 〉 e−iω f (t−t′) + C.C.
]

, (62)

where |ζTMSQ
k,IN 〉 = Ŝ2(ζk) |IN〉 is the two-mode squeezed state of the initial in-state |IN〉. Thus,

Equation (62) gives a Hadamard function in the two-mode squeezed in-state. Although
here we use the pure state form, the result can be easily adapted for a mixed state.

On the other hand, the same Hadamard function can be expressed in terms of the
in-mode functions, by the expansion

1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ωi

eik·(x−x′)
(

N(β)
k +

1
2

)[
d(1)k (t)− i ωi d(2)k (t)

][
d(1)k (t′) + i ωi d(2)k (t′)

]
+ C.C. . (63)

If the in-state is a thermal state, then 〈IN|
{

âk, â†
k
}
|IN〉 is understood in terms of the

trace average, and gives 2N(β)
k + 1, with N(β)

k being the average number density of the
thermal state at temperature, β−1,

N(β)
k =

1
eβωi − 1

. (64)

Observe the structural similarities between Equations (62) and (63).
To make them more revealing, we evaluate the expectation values on the right hand

side of Equation (62),

〈IN|
{

b̂+k, b̂+k
}
|IN〉 = 0 , 〈IN|

{
b̂+k, b̂−k

}
|IN〉 =

(
α+kβ∗

+k + α+kβ∗
−k
)(

2N(β)
k + 1

)
,

〈IN|
{

b̂+k, b̂†
−k
}
|IN〉 = 0 , 〈IN|

{
b̂+k, b̂†

+k
}
|IN〉 =

(
|α+k|2 + |β−k|2

)(
2N(β)

k + 1
)

.

Thus, Equation (62) becomes

1
2
〈IN|

{
φ̂(x), φ̂(x′)

}
|IN〉

= ∑
k

1
2ω f

eik·(x−x′)
(

N(β)
k +

1
2

)[
2αkβ∗k e−iω f (t+t′) +

(
|αk|2 + |βk|

)
e−iω f (t−t′) + C.C.

]
. (65)

Comparing this equation with Equation (63), we find that

|αk|2 + |βk|2 =
1
2

[
ω f

ωi
d(1)2k (t f ) + ω f ωi d(2)2k (t f ) +

1
ω f ωi

ḋ(1)2k (t f ) +
ωi
ω f

ḋ(2)2k (t f )
]

, (66)

2αkβ∗
k =

1
2ωiω f

[
+i ω f d(1)k (t f ) + ωiω f d(2)k (t f )− ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
×
[
−i ω f d(1)k (t f ) + ωiω f d(2)k (t f ) + ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
. (67)

These results easily enable us to find the Bogoliubov coefficients αk and βk once we
have the fundamental solutions d(i)k (t) with i = 1, 2.
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Following the same arguments leading to Equations (62) and (63), if we compute
〈φ̂2(x)〉, 〈π̂2(x)〉 and 〈

{
φ̂(x), π̂(x)

}
〉 in the out-region, one obtains that, for each mode,

cosh 2ηk =
1
2

[
1

ω f ωi
ḋ(1)2k (t) +

ωi
ω f

ḋ(2)2k (t) +
ω f

ωi
d(1)2k (t) + ω f ωi d(2)2k (t)

]
, (68)

cos(θk − 2ω f t) sinh 2ηk =
1
2

[
1

ω f ωi
ḋ(1)2k (t) +

ωi
ω f

ḋ(2)2k (t)−
ω f

ωi
d(1)2k (t)− ω f ωi d(2)2k (t)

]
, (69)

sin(θk − 2ω f t) sinh 2ηk = −
[

1
ωi

d(1)k (t)ḋ(1)k (t) + ωi d(2)k (t)ḋ(2)k (t)
]

, (70)

explicit relations occur between the squeeze parameters and the fundamental solutions.
Here, π̂(x) is the canonical momentum conjugated to φ̂(x). Equations (68)–(70) tell us how
squeezing may dynamically arise from the parametric process of the field.

As a consistency check, we substitute the coefficients αk and βk on the right hand side
by Equation (59), and obtain:

|αk|2 + |βk|2 = cosh 2ηk , 2αkβ∗
k = −eiθk sinh 2ηk . (71)

Actually, Equations (66) and (67) only determine αk, βk up to a phase factor or a
rotation, which we have been ignoring. For example, from (67), we may let

αk =
1

2√ωiω f

[
+i ω f d(1)k (t f ) + ωiω f d(2)k (t f )− ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
, (72)

βk =
1

2√ωiω f

[
−i ω f d(1)k (t f ) + ωiω f d(2)k (t f ) + ḋ(1)k (t f ) + i ωi ḋ(2)k (t f )

]
, (73)

and then we can directly show that Equation (66) is recovered and that

|αk|2 − |βk|2 = d(1)k (t f ) ḋ(2)k (t f )− ḋ(1)k (t f )d
(2)
k (t f ) = 1 . (74)

However, in this case αk is not real, as Equation (60) implies.
We may recover the missing phase by returning back the rotation operator that we

have ignored all along. To be more specific, for example, let the rotation operator R̂ be
given by

R̂(Φi) = exp
[

iΦi

(
â†

i âi +
1
2

)]
. (75)

We find R̂†(Φi) â1R̂(Φ1) = â1 eiΦ1 . Then, depending on the order of the rotation
operator and the squeeze operator, we may have either

Ŝ†
2(ζ)R̂†(Φi) â1R̂(Φi)Ŝ2(ζ) = eiΦ1 cosh η â1 − eiΦ1 eiθ sinh η â2 ,

or

R̂†(Φi)Ŝ†
2(ζ) â1Ŝ2(ζ)R̂(Φi) = eiΦ1 cosh η â1 − eiΦ2 eiθ sinh η â2 .

One can see that there is always a phase ambiguity. In both cases, from Equations (60)
and (61), one finds that αk will be complex in general, but actually, one may factor out the
overall phase factor for each mode to render αk real.

Before we proceed further with our analysis, let us examine a few illustrative examples.
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5.1. Case 1

Consider the parametric process, in which the squared frequency ω2(t) varies with
time according to

ω2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω2

i , 0 ≤ t ≤ ta ,

ω2
i +

(
ω2

f − ω2
i
) t − ta

tb − ta
, ta ≤ t ≤ tb ,

ω2
f , t ≥ tb ,

(76)

That is, ω2(t) is a piecewise-continuous function of time. The time evolution of d(1)k (t),

d(2)k (t) are shown in Figure 2b,c, where one observes that the oscillation amplitudes of
the two fundamental solutions change by different amounts, implying the occurrence of
quantum squeezing. Notice in Figure 2d that, as t ≥ tb the squeeze parameter ηk becomes a
constant, squeezing is quite small because cosh 2ηk ∼ 1. This small squeezing results from
the slow transition rate in the parametric process. The plots Figure 2e,f show oscillations
of frequency 2ω f , consistent with expectation. However, from these plots it is hard to tell
whether θk is time-independent. We take another approach to show it in this section.
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Figure 2. An example of a parametric process described by Equation (76): (a) the time dependence of

the frequency ω; time evolutions of the two fundamental solutions, (b) d(1)k and (c) d(2)k , and (d–f) the
time dependence of the squeeze parameters. ωi = 3, ω f = 8, ta = 10, and tb = 20 are chosen.

5.2. Case 2

In the second example, we choose a nonmonotonic parametric process,

ω2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω2

i , 0 ≤ t ≤ ta ,

ω2
i +

(
ω2

f − ω2
i
)

sin2
(

t − ta

tb − ta

nπ

2

)
, ta ≤ t ≤ tb ,

ω2
f , t ≥ tb .

(77)

Here, n, an odd integer, gives the number of oscillations of the transition process; thus,
the frequency variation is not monotonic. The corresponding plots are shown in Figure 3.
Since both processes, though continuous, are not smooth, it allows us to see when the
transitions start and end. Compared with case 1, the nonmonotonic transition introduces
tumultuous behavior in the fundamental solutions d(i)k during the transition, in Figure 3b,c,
but right after t = tb, the out mode immediately oscillates at frequency ω f . Again, one can
see the time-independence of ηk in the out-region.
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Figure 3. An example of a parametric process described by Equation (77): (a–f) same as in Figure 2.
ωi = 3, ω f = 8, ta = 10, tb = 20, and n = 11 are chosen.

For the simple case we consider here, let us carry out some analysis about the time
dependence of the squeeze parameter in the out-region. We may write d(i)k (t) for t ≥ tb as

d(1)k (t) = d(1)k (tb) cos ω f (t − tb) + d(2)k (tb)
1

ω f
sin ω f (t − tb) , (78)

d(2)k (t) = d(1)k (tb)
1

ω f
sin ω f (t − tb) + d(2)k (tb) cos ω f (t − tb) . (79)

The amplitudes of d(i)k (t) in the out-region are determined by

d(1)k (t) :

[
d(1)2k (tb) +

d(2)2k (tb)

ω2
f

] 1
2

, and d(2)k (t) :

[
d(1)2k (tb)

ω2
f

+ d(2)2k (tb)

] 1
2

, (80)

which, in turn, are determined by the values of the fundamental solution at the end of the
parametric process. We readily find that d(1)k (t)ḋ(1)k (t)− ḋ(1)k (t)d(1)k (t) = 1 for all t even
for the parametric process via the Wronskian of the differential equation that the mode
function satisfies.

According to Equation (67), we can show that

|αk(t)|2 + |βk(t)|2 = |αk(tb)|2 + |βk(tb)|2 (81)

for all t ≥ tb. Since |αk|2 + |βk|2 is proportional to cosh 2ηk, Equation (81) then shows
that ηk is a time-independent constant for all t ≥ tb. On the other hand, with the help of
Equations (78) and (79), one finds:

1
ω f ωi

ḋ(1)2k (t) +
ωi
ω f

ḋ(2)2k (t)−
ω f

ωi
d(1)2k (t)− ω f ωi d(2)2k (t) = Ak sin(2ω f tb − 2ω f t) + Bk cos(2ω f tb − 2ω f t)

=
√

A2
k + B2

k cos(ϑk + 2ω f tb − 2ω f t) , (82)

with

Ak = 2
[

1
ωi

d(1)k (tb) ḋ(1)k (tb) + ωi d(2)k (t) ḋ(2)k (t)
]

, (83)

Bk =

[
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb)−
ω f

ωi
d(1)2k (tb)− ω f ωi d(2)2k (tb)

]
. (84)
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and

cos ϑk =
Bk√

A2
k + B2

k

, sin ϑk = − Ak√
A2

k + B2
k

. (85)

From Equations (69) and (70), we see that
√

A2
k + B2

k is proportional to sinh 2ηk, and
thus is a time-independent constant. One can immediately identify ϑk in Equations (82)–(84)
to be the same θk in Equations (68)–(70). Finally, we may note that Equation (82) still
looks slightly different from the left hand sides of Equations (68)–(70) in the arguments
of the trigonometric functions. It results from the choice of the out mode function in
Equation (61). The reason for such a choice is that for an observer in the out-region, he
has no reference to identify the origin of time coordinate. In addition, the choice of a fixed
time origin at most amounts to an absolute phase, which in most cases is of no significance.
However, in the current case we are comparing two formalisms; thus, for consistency’s
sake, we may define the origin of the time coordinate in the out-region at tb rather than
0. By only shifting t in Equation (61) to t → t − tb, Equation (82) looks the same as those
in Equations (68)–(70). At this point, we have shown that in the out-region an observer
may report on having experienced a quantum field in a squeezed thermal state, with a
time-independent squeeze parameter.

The squeeze parameter, ηk, we showed earlier is quite small because cosh 2ηk ∼ 1.
This results from the fact that the parametric processes in the previous cases vary mildly.
Now we show a case similar to that in Figure 3 but with a much sharper transition with
ωi = 1, ω f = 100, ta = 3π/2, tb = 3π/2 + 0.05 and n = 1. The plot for cosh 2ηk is shown
in Figure 4. We see in this case that cosh 2ηk = 25.62206 in the out-region, much larger than
the previous two cases. Therefore, it is consistent with the understanding that to generate
large squeezing, the parametric process had better not be adiabatic. This is corroborated by
our prior knowledge of cosmological particle production.
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Figure 4. An example of a parametric process described by Equation (77): (a), (b), and (c) same as in
Figure 3b, c, and d, respectively, but with ωi = 1, ω f = 100, ta = 3π/2, tb = 3π/2 + 0.05, and n = 1.

Finally, as a contrast to the previous piecewise-continuous parametric processes, we
consider a sufficiently smooth ω2(t), such as the thrice-differentiable function ω2(t)

ω2(t) = − (t − ta)4

(tb − ta)7

[
20t3 − 10(7tb − ta) t2 + 4(21t2

b − 7tbta + t2
a) t − (35t3

b − 21t2
bta + 7tbt2

a − t3
a)
]

, (86)

between t = ta and t = tb. The corresponding results are shown in Figure 5. We do not
discern any difference in the generic behavior, so for the quantities of interest in our present
study, the piecewise-continuous ω2(t) suffices.
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Figure 5. An example of a parametric process described by Equation (86): (a–f) same as in Figure 2.
with ωi = 2, ω f = 10, ta = 3, and tb = 4 are chosen.

The fact that the squeeze parameter becomes time-independent in the out-region
implies that this result is time-translation-invariant. To be more precise, if we shift the
parametric process along the time axis, then as long as the conditions that (1) the observation
time t is still in the out-region of the shifted process and (2) the initial time ti remains in
the in-region of the shifted process are satisfied, the observer at time t will still see the
same squeeze parameter. In other words, the observer in the out-region cannot extract
from the squeeze parameter any information about when the parametric process starts
or ends. At first, it sounds odd that there exists such a time-translation invariance for
a nonequilibrium, nonstationary process. We show this in Appendix D; however, after
seeing these examples, this result may not appear that dubious. The full evolution from
the initial time ti to the observation time t is not invariant under time translation, but after
the parametric process has ended at tb, the mode functions in the out-region reverts to a
sinusoidal time dependence. The time translation in a sinusoidal function of time amounts
to a phase shift. Thus, if the quantity of interest is independent of this phase shift, it appears
to possess time-translation invariance.

Although in the current configuration the detector in the out-region will sense the
same squeeze parameter when the parametric process is shifted along the time axis, the
measured results in the detector still depend on the duration tb − ta and the functional
form of the process. Actually, this can be expected from Equations (68)–(70), where the
squeeze parameters are expressed in terms of the fundamental solutions, which in turn
depend on the functional form of the parametric process in their equation of motion.

For illustration, Figure 6a shows the dependence of the squeeze parameter, ηk, on the
duration of the parametric process, given by Equation (76). We fix the starting time, ta, of
the parametric process and the moment t the measurement in the out-region is performed.
We find that the squeeze parameter ηk, defined in Equation (68), is oscillatory but decreases
with increasing ending time, tb. Except for the small oscillations, the curve in Figure 6a
gives the general trend that the squeezing (as manifested, e.g., in particle pair production),
is subdued with a slower transition rate or longer transition duration tb − ta. This example
shows that this kind of parametric process gives a lower production of particles as it moves
toward the adiabatic regime. The mild oscillations may be related to the kinks at ta and
tb due to the nonsmoothness of ω(t). This may be seen from the observation that the
oscillations, as shown in the blow-ups in Figure 6a, appear shallower with larger tb − ta
because the kinks are less abrupt. This argument also find its support from Figure 7b,d.
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Figure 6. (a) The tb-dependence of the squeeze parameter, ηk for the parametric process described
by Equation (76) with ωi = 3, ω f = 8, ti = 0, and ta = 10. A fictitious detector is placed at t = 20,
and tb varies from 10.5 to 19.5. For comparison, the time dependence of ηk when (b) tb = 10.5 and (c)
tb = 15 are shown. These two cases are highlighted in (a) by red circles.
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Figure 7. The dependence of the squeeze parameter η on the functional form of ω2(t). The functional
form of the parametric process is described by (a) Equation (76) and (b) Equation (86). The same
Equation (77) is used with (c) n = 11 and (d) n = 1. The relevant parameters are ωi = 3, ω f = 8,
ti = 0, and ta = 10. The measurement is carried out at t = 20, and tb varies from 10.5 to 15.

In Figure 7, the dependence of the squeeze parameter ηk on the functional form
of the parametric process is shown. We choose three different parametric processes of
ω2(t) for examples. In Figure 7a, the process has the piecewise-continuous form given by
Equation (76), so it gives the same result as Figure 6a. Figure 7b is described by the smooth
transition, Equation (86). We have the same process, Equation (77), for Figure 7c,d, but
with different choices of n. We choose n = 11 for Figure 7c and n = 1 for Figure 7d. Thus,
in Figure 7c, the transition does not monotonically vary with time.

Since both Figure 7b,d are associated with smooth parametric processes, when we
prolong the duration of the parametric processes by fixing ta and increasing tb, we see
that the value of ηk monotonically decreases without any ripples. Thus, together with the
behavior of the curve in Figure 6a, they imply that the ripples in Figure 7a may originate
from the nonsmoothness of the parametric process at the transition times ta and tb.

Among the plots in Figure 7, Figure 7c shows a more interesting behavior. The
transition described by Equation (77) with n = 11 is sinusoidal, as shown in Figure 3a.
The squeeze parameter ηk in Figure 7c then reveals more structures, and may signify the
presence of resonance, shown by a large peak. It seems to imply that the particle production
can be greatly enhanced if the transition duration is tuned to the right value for fixed ωi
and ω f , as in parametric resonance. This may constitute a mechanism to generate stronger
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squeezing, in addition to the common one in a runaway setting [23,24]. Another unusual
feature is that ηk in Figure 7c is not significantly reduced when we have a larger tb.

Actually, this resonance feature can be traced back to parametric instability. We write
the equation of motion for a parametric oscillator with the frequency given by Equation (77)
into the canonical form

x′′(τ) +
[
a − 2q cos(2τ)

]
x(τ) = 0 , (87)

where a prime represents taking the derivative with respect to τ, Ω t = 2τ, and

a =
4A2

Ω2 , q =
2B2

Ω2 , Ω =
nπ

tb − ta
, A2 =

ω2
f + ω2

i

2
, B2 =

ω2
f − ω2

i

2
. (88)

Now, comparing the stability diagram Figure 8a of Equation (87) with Figure 7c,
one immediately notices that the portion of the curve in Figure 8b that corresponds to
exceptionally high squeezing is essentially located within the unstable region (white area)
of the stability diagram in Figure 8a. Thus, the large squeezing in the mode driven by a
nonmonotonic ω(t) is caused by instability in parametric resonance.
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Figure 8. Comparison between the stability diagram of Equation (87) (a) with Figure 7c (b). The
motion of the parametric oscillator (87) is stable in color-shaded regions. We highlight a few peaks
and valleys of the curve in (b), and the corresponding points are shown in the stability diagram (a).
The straight line in (a) with varying hues of red, yellow, green, cyan, blue, and magenta corresponds
to the time tb = 10.5 to 15 in (b). The parameters in this plot are the same as in Figure 7.

The above examples illustrate a point that the dependence of the squeeze parameter ηk
on the duration of the parametric process does reflect qualitative features of the parametric
process. Actually, we can apply the same idea to the spectral dependence of the squeeze
parameter for various functional forms of the parametric processes. These will serve as
templates from which we may extract qualitative information about the parametric process
that the quantum field has experienced.

6. Summary

A major task of theoretical cosmology is to find ways to deduce the state of the early
universe from relics observed today such as features of primordial radiation and matter
contents. In addition to particle creation at the Planck time and structure formation after
the GUT (grand unified theory) time, we add here another fundamental quantum process:
quantum radiation from atoms induced by of quantum fields.

A massless quantum field in Minkowski space is subjected to a parametric process
which varies the frequencies of the normal modes of the field from one constant value to
another over a finite time interval. The initial (in-) state of the field will become squeezed
after the process. In the out-region we couple an atom to this field in the out-state; the
response of the atom certainly depends on this squeezing. Meanwhile, the radiation
generated by the interacting atom will send out signals outwards, such that an observer or
a probe at a much later time may still be able to identify the squeezing via the signatures in
the radiation.
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Once we have identified the squeezing, locally or remotely, we then ask how the
squeezing may depend on the details of the parametric process the field had been subjected
to. If we can work out templates that relate these quantities, then measurements of certain
features of squeezing can tell us something about the parametric process.

The salient points in our results are summarized below. In the first part of this paper
we showed the following:

• The radiation field at a location far away from the atom looks stationary; its nonsta-
tionary component decays with time exponentially fast.

• The net energy flow cancels at late times, similar to the case discussed in Ref. [2]. These
features are of particular interest considering that the atom that emits this radiation
is coupled to a squeezed field, which is nonstationary by nature. However, they are
consistent with the fact that the atom’s internal dynamics relaxes in time.

• This implies that we are unable to measure the extent of squeezing by measuring the
net radiation energy flow at a location far away from the atom.

• On the other hand, one can receive residual radiation energy density at late times,
which is a time-independent constant and is related to the squeeze parameter. How-
ever, it is of a near-field nature, so the observer cannot be located too far away from
the atom.

Note that there is always an ambient free component of the same squeezed quantum
field everywhere, in addition to the above radiation component generated by the atom’s
internal motion.

In the second part of this paper we focused on the dependence of the squeeze parame-
ter on the parametric process and obtained these results:

• Formally it can be shown that the squeeze parameter depends on the evolution of the
field in the parametric process.

• In the current configuration, for a given parametric process, the squeeze parameter
depends only on the duration of the process; it does not depend on the starting or the
ending time of the process.

• In general, for a monotonically varying process, the value of the squeeze parameter
decreases with increasing duration of the process.

• This implies that, for an adiabatic parametric process, the squeezing tends to be quite
small, but it can be quite significant for nonadiabatic parametric processes. These
results are consistent with studies of cosmological particle creation in the 1970s as
parametric amplification of vacuum fluctuations.

• If the parametric process changes with time sinusoidally, then the dependence of the
squeeze parameter on the duration of the process shows interesting additional struc-
tures. For certain lengths of the process, the squeeze parameter can have unusually
large values.

• This nonmonotonic behavior turns out to be related to parametric instability. The
resulting large squeeze parameter is caused by the choice of the parameter that falls
within the unstable regime of the parametric process.

Our results in this second part indicate that not much information about a monotonic
parametric process can be gleaned from the squeeze parameter. On the other hand, for a
nonmonotonic parametric process, the squeeze parameter shows nontrivial dependence on
the duration of the process. The latter is expected to be the typical case in nature in which
various scales are involved in a transition. Moreover, to conform to realistic measurements,
we can apply similar considerations to examine the mode dependence of the squeeze
parameter. Thus, the current scenario seems to offer a viable means to extract partial
information about the parametric process a quantum field has undergone.

As a final remark, we comment on applying the discussions in Section 4 to the case of
the atom coupled to quantized electromagnetic fields. To begin with, in conventional sense,
such a configuration has supra-Ohmic, Markovian dynamics. It is inherently unstable, as
discussed in Ref. [25]. It has runaway solutions, so it makes no sense to discuss the late-time
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behavior, relaxation, energy balance, or the fluctuation–dissipation relation of such a system.
Although we may render such a system to have stable dynamics by resorting to order
reduction [26] via the critical manifold argument, this approach is not satisfactory from
the viewpoint of open systems because order reduction only asymmetrically changes the
behavior of the dissipation on the atom side; it does not accordingly modify the fluctuation
noise force on the atom. Thus, the resulting nonequilibrium fluctuation–dissipation relation
associated with the atom’s internal dynamics will not take the elegant form we usually
see for the Ohmic, Markovian dynamics. Furthermore, this relation will depend on the
parameters of the reduced system, and thus loses its universality for interacting linear
systems and for some nonlinear systems.

To restore the stable dynamics of the atom’s internal dynamics [25] and the beauty
of the associated nonequilibrium fluctuation–dissipation relation, it is probably easier if
we generalize the Markovian spectrum of the quantized electromagnetic field to the non-
Markovian one. However, this introduces additional complexity to the analysis presented
in Section 4 because the radiation field will not have a simple local (apart from retardation)
form similar to Equation (47). Thus, it is not clear yet whether the rather general prop-
erties we expounded in Section 4 for a quantum scalar field also convey to a quantized
electromagnetic field; this is a topic saved for future investigation.
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Appendix A. Two-Mode Squeezed State

Here, we outline the properties of the two-mode squeezed operator Ŝ2(ζ) associated
mode 1 and 2,

Ŝ2(ζ) = exp
[
ζ∗ â1 â2 − ζ â†

1 â†
2

]
, (A1)

such that the two-mode squeezed thermal state is defined by

ρ̂TMST = Ŝ2(ζ) ρ̂β Ŝ†
2(ζ) . (A2)

where ρ̂β is a thermal state. The creation and annihilation operators satisfy the standard
commutation relation [â, â†] = 1. It is convenient to place the squeeze parameter ζ into a
polar form ζ = η eiθ , with η ∈ R+ and 0 ≤ θ < 2π. We thus have

Ŝ†
2 â1 Ŝ2 = cosh η â1 − e+iθ sinh η â†

2 , Ŝ†
2 â2 Ŝ2 = cosh η â2 − e+iθ sinh η â†

1 (A3)

such that

〈â2
i 〉TMST = Tr

{
ρβ Ŝ†

2 â2
i Ŝ2

}
= 0 , 〈â†2

i 〉TMST = 0 , (A4)

〈â1 â†
1〉TMST =

(
n̄1 + 1

)
cosh2 η + n̄2 sinh2 η , 〈â†

1 â1〉TMST = n̄1 cosh2 η +
(
n̄2 + 1

)
sinh2 η , (A5)

〈â2 â†
2〉TMST =

(
n̄2 + 1

)
cosh2 η + n̄1 sinh2 η , 〈â†

2a2〉TMST = n̄2 cosh2 η +
(
n̄1 + 1

)
sinh2 η , (A6)

〈â1 â2〉TMST = − e+iφ

2
(
n̄1 + n̄2 + 1

)
sinh 2η , 〈â†

1a†
2〉TMST = − e−iφ

2
(
n̄1 + n̄2 + 1

)
sinh 2η , (A7)
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where n̄i is the mean particle number of the thermal state associated with mode i,

n̄i = Tr
{

ρ̂β â†
i âi
}

(A8)

It is interesting to compare with the single-mode squeezed thermal state ρ̂ST, defined by

ρ̂ST = Ŝ(ζ) ρ̂β Ŝ†(ζ) . (A9)

Here, Ŝ(ζ) is the squeezed operator,

Ŝ(ζ) = exp
[1

2
ζ∗ â2 − 1

2
ζ â†2

]
. (A10)

We then find:

〈â〉ST = 0 = 〈a†〉ST , (A11)

〈â2〉ST = −e+iθ sinh 2η
(

n̄ +
1
2

)
, 〈a†2〉ST = −e−iθ sinh 2η

(
n̄ +

1
2

)
, (A12)

〈â† â〉ST = cosh 2η
(

n̄ +
1
2

)
− 1

2
= cosh 2η n̄ + sinh2 η , (A13)

where n̄ is the mean particle number of the thermal state. Both the two single-mode
squeezed state and the two-squeezed state are connected. We first write two modes in
terms of their normal modes i = ±,

â1 =
â+ + â−√

2
, â2 =

â+ − â−√
2

, (A14)

with [â+, â−] = 0. Then we can write the two-mode squeeze operator, Ŝ2 in (A1), as

Ŝ2 = exp
[ ζ∗

2
(
â+ + â−

)(
â+ − â−

)
− ζ

2
(
â†
+ + â†

−
)(

â†
+ − â†

−
)]

= exp
[ ζ∗

2
â2
+ − ζ

2
â†2
+

]
× exp

[
− ζ∗

2
â2
− +

ζ

2
â†2
−
]

= Ŝâ+(ζ)× Ŝâ−(−ζ) . (A15)

That is, in terms of the normal modes, it can be decomposed into a product of two
single-mode squeezed operators.

In the current setting, the connection is even closer because the pair of modes in
Ŝ2 have the opposite momenta ±k. Since the two-mode squeeze operator, Ŝ2 in (A1)
symmetrically contains the annihilation and the creation operators of both modes, during
the mode counting, contributions from each pair (k,−k) will appear twice, and the resulting
expressions may look similar to that given by two single-mode squeezed state. For example,
let us compute the Hadamard function of the scalar field φ in the two-mode squeezed
thermal state in spatially isotropic spacetime,

G(φ)
H,0(x, x′) =

∫ d3k

(2π)
3
2

1√
2ω

∫ d3k′

(2π)
3
2

1√
2ω′

[
1
2
〈
{

âk, âk′
}
〉TMST eik·x+ik′ ·x′ e−iωt−iω′t′

+
1
2
〈
{

âk, â†
k′
}
〉TMST eik·x−ik′ ·x′ e−iωt+iω′t′ + H.C.

]
=
∫ d3k

(2π)3
1

2ω

[
1
2
〈
{

âk, âk
}
〉TMST eik·(x+x′)e−iω(t+t′) +

1
2
〈
{

âk, â−k
}
〉TMST eik·(x−x′)e−iω(t+t′)

+
1
2
〈
{

âk, â†
k
}
〉TMST eik·(x−x′)e−iω(t−t′) +

1
2
〈
{

âk, â†
−k
}
〉TMST eik·(x+x′)e−iω(t−t′) + H.C.

]
=
∫ d3k

(2π)3
1

2ω
eik·(x−x′)

[(
nω +

1
2
)

cosh 2ηω e−iω(t−t′) − eiθω
(
nω +

1
2
)

sinh 2ηω e−iω(t+t′) + H.C.
]

, (A16)
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with ω = |k| and the help of Equations (A4)–(A7). This is the same as the Hadamard
function of the field in the squeezed thermal state, consistent with Equation (A15).

Appendix B. Late-Time Behavior of 〈ΔT̂μν〉
Appendix B.1. Late-Time Energy Flux Density 〈ΔT̂tr〉

Here, we examine the late-time net radiation flux of the field at distance r sufficiently
far away from the atom, so that only the dominant contribution, independent r, is of our
interest. The energy flux density is given by

〈ΔT̂rt(x)〉 = lim
x′→x

∂2

∂r∂t′
[

G(φ)
H (x, x′)− G(φ)

H,0(x, x′)
]

. (A17)

Let us first look at the stationary component.

Appendix B.1.1. Stationary Component 〈ΔT̂tr〉ST

We assume that t � r, but place no other restrictions on r for the moment. Following
the decomposition in Equation (24), the stationary part of the contribution purely from the
radiation field is given by

lim
x′→x

∂2

∂r∂t′
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉ST = −e2

∫ ∞

−∞

dω

2π
ω2 G̃(χ)

H (ω) |G̃(φ)
R,0 (x; ω)|2 , (A18)

with the help of

∂

∂r
G̃(φ)

R,0 (x; ω) =
(

iω − 1
r

)
G̃(φ)

R,0 (x; ω) , (A19)

∂

∂r
G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2

[
ω Re G̃(φ)

R,0 (x; ω)− 1
r

Im G̃(φ)
R,0 (x; ω)

]
, (A20)

where the stationary part of the free-field Hadamard function is

G̃(φ),ST
H,0 (x, 0; ω) ≡ G̃(φ),ST

H,0 (x; ω) = cosh 2η coth
βω

2
sin ωr

4πr
. (A21)

To arrive at Equation (A18), we observe that the term proportional to r−1 is odd in
ω, thus, vanishing, and that Re G̃(χ)

R (ω) is an even function of ω. At time greater than the
relaxation time scale we may make the identification

G̃(χ)
H (ω) = cosh 2η coth

βω

2
Im G̃(χ)

R (ω) , (A22)

by the nonequilibrium fluctuation–dissipation relation [18,19,22] of the internal dynamics
of the atom if it is initially coupled to a squeezed thermal field.

On the other hand, for the cross-term, containing the correlation between the radiation
field and the free field at large distance from the atom, its stationary part is

lim
x′→x

∂2

∂r∂t′
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉ST + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉ST

]
= −i e2

∫ ∞

−∞

dω

2π
ω2 ρ(ST)(ω) G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2 . (A23)

Hereafter, it is convenient to introduce the shorthand notations

ρ(ST)(ω) = cosh 2η coth
βω

2
, and ρ(NS)(ω) = sinh 2η coth

βω

2
. (A24)
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Since the contribution from Re G̃(χ)
R (ω) is an even function of ω, one immediately

notices that it is the opposite of Equation (A18) by Equation (A22), and thus cancels with
Equation (A18). We already know from the case of the unsqueezed thermal state that
the corresponding contributions of Equations (A18) and (A23) cancel with one another.
Therefore, here, we showed that at late times the stationary part of the net energy flux
density far away from the atom vanishes even though the field is initially in the squeezed
thermal state, a nonstationary configuration.

Here, it is worth emphasizing the significance of vanishing stationary component of
the net radiation flux. This is a unique feature of self-consistent quantum dynamics. The
cancellation between Equations (A18) and (A23) is not possible if the radiated field φR(x)
is not correlated with the free field φh(x). This correlation is established because the atom
that sends out the radiation field is driven by a free field, as seen by the Langevin equation
(7). It still holds when the field state is a vacuum state [2], so a pure classical system will
not have such correlation. Secondly, our system is distinct from the classical driven dipole
because the latter has a net outward radiation flux supplied by the external driving agent
and is then independent of the field state. This is best seen from the component (A18) of
the flux that is solely composed of the radiation field. This flux is field-state-dependent
because the internal dynamics of the atom are driven by the quantum fluctuations of the
field, rather than an external agent.

Appendix B.1.2. Nonstationary Component 〈ΔT̂tr〉NS

Now we turn to the nonstationary contribution in 〈ΔT̂rt(x)〉. The component purely
from the radiation field is given by

lim
x′→x

∂2

∂r∂t′
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉NS

= i e4
∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
iω − 1

r

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. , (A25)

while the counterpart from the cross-term is

lim
x′→x

∂2

∂r∂t′
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉NS + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉NS

]
(A26)

= i e2
∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
ω G̃(φ)

R,0 (x; ω)− 2
r

Im G̃(φ)
R,0 (x; ω)

]
e−i2ωt+iθ + C.C. .

Contrary to the stationary contribution, in general, Equation (A25) does not cancel
Equation (A26). This can be explicitly shown by examining the sum of the expressions
which are proportional to ω inside the curly brackets in both equations. We find that these
terms together give

i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω) G̃(χ)

R (ω)
[

G̃(φ)
R,0 (x; ω)

]2[
i e2 ω

4π
G̃(χ)

R (ω) + 1
]

e−i2ωt+iθ + C.C.

= i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω) Re G̃(χ)

R (ω)
G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

[
G̃(φ)

R,0 (x; ω)
]2

e−i2ωt+iθ + C.C. , (A27)

where we use the fact that e2 = 8πγm and

Im G̃(χ)
R (ω) = 2mγω |G̃(χ)

R (ω)|2 . (A28)
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Apparently, Equation (A27) does not vanish in general. If the squeeze angle θ is really
a mode- and time-independent constant, we may set θ = 0 without loss of generality and
further simplify the nonstationary contribution (A27), in 〈ΔT̂rt(x)〉 to

i e2
∫ ∞

0

dω

2π
ω2ρ(NS)(ω)

[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω) e−i2ωt . (A29)

Equation (A27), or the special case Equation (A29), in general, is time-dependent and
is not identically zero.

For completeness, let us write down the sum of the terms proportional to 1/r in the
square brackets in Equations (A25) and (A26), which is

− i
e2

r

∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
e2 ω

4π
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω) + 2 Im G̃(φ)

R,0 (x; ω)
]

e−i2ωt+iθ

= −e2

r

∫ ∞

0

dω

2π
ω ρ(NS)(ω)

{[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω) + G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2

}
e−i2ωt+iθ , (A30)

plus its complex conjugate. Here, again, we used Equation (A28) to recast the expression
into a more compact form. This will be useful later to check the consistency via the
continuity equation.

The sum of Equations (A25) and (A26) gives the only contribution of the net radiation
flux that is likely to survive after the relaxation time scale. However, in Appendix C, we
can argue that although Equations (A25) and (A26) do not cancel in general, their sum
still decays with time and, furthermore, it actually falls off to zero exponentially fast,
proportional to e−2γt.

Thus, combining the discussions about the stationary component, we show that at
late times no net radiation flux exudes to spatial infinity from a static atom even though
the internal degree of freedom of the atom is driven by the quantum fluctuations of the
squeezed field caused by its parametric process. At late times it leaves no trace of detectable
signal to a detector at distance much greater than the typical scales in the atom’s internal
dynamics, except for the case of extremely large squeezing where we might have the
chance to see a trace of the net flux since it will take a longer time to decay. However,
the information of the squeeze parameter η can still be read out from the asymptotic
equilibrium state of the atom’s internal dynamics.

Appendix B.2. Late-Time Field Energy Density 〈ΔT̂tt〉
The energy density is given by

〈ΔT̂tt(x)〉 = lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)[
G(φ)

H (x, x′)− G(φ)
H,0(x, x′)

]
. (A31)

That is, we subtract off the energy density of the free field in the squeezed state, and
Equation (A31) tells us the change in energy density due to the atom–field interaction.

Appendix B.2.1. Stationary Component 〈ΔT̂tt〉ST

We first consider the stationary component of Equation (A31). Following the decom-
position (24), the part purely caused by the radiation field is given by

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉ST

= e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

(
ω2 +

1
2r2

)
Im G̃(χ)

R (ω) |G̃(φ)
R,0 (x; ω)|2 . (A32)

The contribution from the cross-term is then
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lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉ST + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉ST

]
(A33)

= −e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

{(
ω2 +

1
2r2

)
|G̃(φ)

R,0 (x; ω)|2 Im G̃(χ)
R (ω) +

ω

r
Re
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]

− 1
2r2 Im

[
G̃(χ)

R (ω) G̃(φ) 2
R,0 (x; ω)

]}
,

with the help of Equations (A19) and (A20) to re-express the term

2 Re
[

G̃(χ)
R (ω) G̃(φ)

R,0 (x; ω)
]

Im G̃(φ)
R,0 (x; ω) = −|G̃(φ)

R,0 (x; ω)|2 Im G̃(χ)
R (ω) + Im

[
G̃(χ)

R (ω) G̃(φ) 2
R,0 (x; ω)

]
.

Adding both contributions together gives

〈ΔT̂tt〉ST = −e2
∫ ∞

−∞

dω

2π
ρ(ST)(ω)

{
ω

r
Re
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]
− 1

2r2 Im
[

G̃(χ)
R (ω) G̃(φ) 2

R,0 (x; ω)
]}

, (A34)

at late times and at large distance away from the atom. The dominant contribution of
the stationary component of the local field energy density vanishes, so Equation (A34) is
subdominant since it is proportional to 1/r3. It comes from the correlation between the
radiation field and the free field at the location far away from the atom, and it decays faster
with r. Note that there are two type of 1/r3 contributions in the cross-terms (A33) but
one of them cancels with its counterpart in Equation (A32). The residual energy density
(A34) has a relatively short range by nature. We note that it is proportional to e2, which is
proportional to the damping constant, γ. Since this is a time-independent constant, it means
that this may be an unambiguous aftereffect of the transient peregrinating radiation field.

Next, we turn to the nonstationary component.

Appendix B.2.2. Nonstationary Component 〈ΔT̂tt〉NS

We first examine the late-time contribution purely from the radiation field,

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2
〈
{

φ̂BR(x), φ̂BR(x′)
}
〉NS

= e4
∫ ∞

0

dω

2π

ω

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

) [
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. . (A35)

On the other hand, the corresponding contribution from the cross-term gives

lim
x′→x

1
2

(
∂2

∂t∂t′
+

∂2

∂r∂r′

)
1
2

[
〈
{

φ̂h(x), φ̂BR(x′)
}
〉NS + 〈

{
φ̂BR(x), φ̂h(x′)

}
〉NS

]
= −e2

∫ ∞

0

dω

2π
ρ(NS)(ω)

{
i
(

ω2 + i
ω

r

)
G̃(χ)

R (ω)
[

G̃(φ)
R,0 (x; ω)

]2

+
1
r2 G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω) Im G̃(φ)

R,0 (x; ω)
}

e−i2ωt+iθ + C.C. , (A36)

Now we use the same trick (A28) to combine both contributions, and we obtain:

〈ΔT̂tt〉NS = −i e2
∫ ∞

0

dω

2π
ρ(NS)(ω)

{
−i
(

ω2 + i
ω

r
− 1

2r2

)[
G̃(φ)

R,0 (x; ω)
]2 G̃(χ)

R (ω)

G̃(χ)∗
R (ω)

Re G̃(χ)
R (ω)

+
1

2r2 G̃(χ)
R (ω) |G̃(φ)

R,0 (x; ω)|2
}

e−i2ωt+iθ + C.C. . (A37)

The dominant term in Equation (A37) has the same form as Equation (A27), and thus
will vanish at late times at distance far away from the atom.
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Therefore, at late times, 〈ΔT̂tt〉 settles down to a constant value whose value decays
similar to 1/r3 away from the atom.

Appendix B.3. Continuity Equation

Here, in passing, we would like to examine the consistency of our results of the
nonstationary components of 〈ΔT̂μt〉 in terms of the continuity equation ∂μTμt = 0. It turns
out convenient to list the previous results for the relevant components

〈T̂rt〉(RR)
NS = i e4

∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
iω − 1

r

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

〈T̂rt〉(HR)
NS = i e2

∫ ∞

0

dω

2π
ω ρ(NS)(ω) G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

[
ω G̃(φ)

R,0 (x; ω)− 2
r

Im G̃(φ)
R,0 (x; ω)

]
e−i2ωt+iθ + C.C. ,

〈T̂tt〉(RR)
NS = e4

∫ ∞

0

dω

2π

ω

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

) [
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

〈T̂tt〉(HR)
NS = −e2

∫ ∞

0

dω

2π
ρ(NS)(ω) G̃(χ)

R (ω)
{

i
(

ω2 + i
ω

r

)[
G̃(φ)

R,0 (x; ω)
]2

+
1
r2 G̃(φ)

R,0 (x; ω) Im G̃(φ)
R,0 (x; ω)

}
e−i2ωt+iθ + C.C. .

The superscript “RR” represents the contributions purely from the radiation field such
as Equations (A25) and (A35), while the superscript “HR” denotes those from the cross-terms
such as Equations (A26), and (A36). For our configuration, we do not have Tϑt and Tϕt
where ϑ and ϕ are, respectively, the polar angle, and azimuthal angle, so, explicitly, the
continuity equation can be written in the form

∂μT̂μt = 0 = ∂tTtt −
1
r2 ∂r

(
r2Trt

)
. (A38)

Thus, we find:

1
r2 ∂r

(
r2〈T̂rt〉(RR)

NS

)
= −2i e4

∫ ∞

0

dω

2π

ω2

4π
ρ(NS)(ω)

(
ω2 + i

ω

r
− 1

2r2

)[
G̃(χ)

R (ω) G̃(φ)
R,0 (x; ω)

]2
e−i2ωt+iθ + C.C. ,

which is equal to ∂t〈T̂tt〉(RR)
NS , and

1
r2 ∂r

(
r2〈T̂rt〉(HR)

NS

)
= 2e2

∫ ∞

0

dω

2π
ρ(NS)(ω) G̃(χ)

R (ω)
{

i
(

ω2 + i
ω

r

)[
G̃(φ)

R,0 (x; ω)
]2

+
1
r2 G̃(φ)

R,0 (x; ω) Im G̃(φ)
R,0 (x; ω)

}
e−i2ωt+iθ + C.C. .

It is exactly ∂t〈T̂tt〉(HR)
NS . Thus, the continuity equation is satisfied.

Appendix C. Late-Time Behavior of the Nonstationary Contribution in 〈ΔT̂rt〉
It turns out that the nonstationary contribution in 〈ΔT̂rt(x)〉 still decays with time.

To begin with, it proves useful to quote the late-time expressions of the energy exchange
between the atom and the surrounding field [2,22]. For times greater than the relation time,
the nonstationary contribution of the energy flow into the atom from the field has the form,

P(NS)
ξ (t) = i e2

∫ ∞

0

dω

2π

ω2

4π
sinh 2η coth

βω

2

{
G̃(χ)

R (ω) e−i2ωt+iθ − C.C.
}

, (A39)

and the corresponding contribution of the energy flow out of the atom due to friction is

P(NS)
γ (t) = −e4

∫ ∞

0

dω

2π

ω3

(4π)2 sinh 2η coth
βω

2

{[
G̃(χ)

R (ω)
]2

e−i2ωt+iθ + C.C.
}

. (A40)
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For comparison, let us place the terms proportional to ω inside of the curly brackets of
(A26) and (A25) here,

(A26) : i e2
∫ ∞

0

dω

2π

ω2

(4π)2r2 sinh 2η coth
βω

2

{
G̃(χ)

R (ω) e−i2ω(t−r)+iθ − C.C.
}

, (A41)

(A25) : − e4
∫ ∞

0

dω

2π

ω3

(4π)3r2 sinh 2η coth
βω

2

{[
G̃(χ)

R (ω)
]2

e−i2ω(t−r)+iθ + C.C.
}

. (A42)

One can see correspondence between Equations (A39) and (A41), as well as between

Equations (A40) and (A42). For example, the integrand of Equation (A41) is
ei2ωr

4πr2 times
the integrand of Equation (A39). The same applies to the pair of Equations (A40)–(A42).
For a fix r and at times t � r, we may shift or redefine t in Equations (A41) and (A42) by
t − r → t such that the integrals in both equations are essentially proportional to those in
Equations (A39) and (A40). We numerically showed in Ref. [19] that Equations (A39) and (A40)
vanish as t → ∞, so we conclude that the terms proportional to ω inside of the curly brack-
ets of Equations (A25) and (A26) will also vanish at late times. For example, as shown in
Figure A1, generated by numerical calculations, the contribution in Equation (A25) actually
decays exponentially fast to zero.

15 20 25 30

- 1.5×10- 6

- 1.×10- 6

- 5.×10- 7

5.×10- 7

1.×10- 6

Figure A1. The time -dependence of Equation (A25), one of the nonstationary components of the
radiation flux. The curve falls off to zero exponentially fast. Here, β−1 = 0, γ = 0.2, r = 10, and
ωR = 1 are chosen.

For terms that are proportional to 1/r inside of the curly brackets of
Equations (A26) and (A25), we immediately see that if we take the time derivative of
Equation (A25), we obtain an expression which is 2/r times Equation (A42). Likewise, the
time derivative of Equation (A26) gives

2
r
× i e2

∫ ∞

0

dω

2π

ω2

(4π)2r2 sinh 2η coth
βω

2

{
G̃(χ)

R (ω)
[
e−i2ω(t−r)+iθ − e−i2ωt+iθ

]
− C.C.

}
. (A43)

Following the previous arguments, for a fixed r, it vanishes in the limit t → ∞ too.
Thus, we have demonstrated that the time derivatives of the terms proportional to 1/r
inside of the curly brackets of Equations (A26) and (A25) vanish, so these terms must be
constants for sufficiently large time. On the other hand, these terms are time-dependent
and are not sign-definite, so the asymptotic constants must be zero.

Placing these results together, we reach the conclusion that the nonstationary terms of
the net radiation flux vanish eventually at large distance away from the atom. However,
this does tell us how slowly the nonstationary terms decay. Actually, at least for the
zero-temperature limit β → ∞, we can carry out the above integrals analytically, and
the brute-force calculations show that for fixed r, these integrals give results that decay
exponentially fast to zero in a form proportional to sinh 2η e−2γt. Thus, at late times, no net
radiation energy flux leaks to the spatial infinity from the atom even though the internal
degree of freedom of the atom is coupled to a nonstationary squeezed quantum field.
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Appendix D. Time-Translational Invariance of the Squeeze Parameter in

the Out-Region

Next we argue that if we shift the parametric process by Δ along the time axis, as
shown in Figure A2, then we have

d
(II)
i (t + Δ, ta + Δ) = d(II)

i (t, ta) (A44)

where i = 1, 2, and d
(II)
i (t + Δ, ta + Δ), in sans serif style, is the fundamental solution

in-region II for the shifted case described by the orange curve in Figure A2.
Since the fundamental solutions d(II)

i (y, ya) in-region II for the orange curve satisfy the
equation of motion

d̈
(II)
i (y, ya) + ω2(y) d(II)

i (y, ya) = 0 , (A45)

with the standard initial conditions given at ya = ta + Δ, while the fundamental solutions
d(II)

i (y, ya) in-region II for the blue curve satisfy the equation of motion

d̈(II)
i (t, ta) + ω2(t) d(II)

i (t, ta) = 0 , (A46)

with the standard initial conditions given at ta, one can immediately notice that both cases
are related by y = t + Δ, and thus we arrive at Equation (A44), and in particular,

d
(II)
i (tb + Δ, ta + Δ) = d(II)

i (tb, ta) . (A47)

Here below, we use this result.

Figure A2. The parametric process described by a piecewise continuous function. The transition
begins at ta, and ends at tb, region II. Between ti and ta, region I, the frequency ω(t) takes on a
constant value ωi and is given by another constant ω f after t ≥ tb, region III. We consider a shift Δ
of the parametric process along the timeline while keeping the functional form, the duration tb − ta

of the process, and the initial time ti of the motion unchanged. We displace these two cases by a
horizontal displacement for discernibility. See text for details.

Now we would like to explicitly show that a detector, in the out-region with t > tb + Δ,
will find the same squeeze parameter for both cases described in Figure A2, independent of
the shift Δ, even if it carries out the measurement at the same time t. Note that in both cases
the motion starts at the same ti = 0. We focus on the moment t = tb + Δ, since afterward,
the squeeze parameter is a constant. Before we start, let us first note that d(I)

i (t) is essentially
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the same as d(I)
i (t), except that the former applies to the time interval 0 = ti ≤ t ≤ ta + Δ

while the latter only to 0 = ti ≤ t ≤ ta. With this recognition, we can write d
(I)
i (ta + Δ) as

d
(I)
i (ta + Δ) = d(I)

1 (Δ) d(I)
i (ta) + d(I)

2 (Δ) ḋ(I)
i (ta) . (A48)

Now we write di(tb + Δ, 0) in terms d(X)
i with X = I, II, and III of the unshifted

process; see Figure A2. We show the calculations explicitly for d1(tb + Δ), and the result for
d2(tb + Δ) follows similarly. Pretty straightforwardly, we have:

d1(tb + Δ, 0) = d
(II)
1 (tb + Δ, ta + Δ) d(I)

1 (ta + Δ) + d
(II)
2 (tb + Δ, ta + Δ) ḋ(I)

1 (ta + Δ) (A49)

= d(II)
1 (tb, ta)

[
d(I)

1 (Δ) d(I)
1 (ta) + d(I)

2 (Δ) ḋ(I)
1 (ta)

]
+ d(II)

2 (tb, ta)
[
ḋ(I)

1 (Δ) d(I)
1 (ta) + ḋ(I)

2 (Δ) ḋ(I)
1 (ta)

]
with the help of Equations (A44) and (A48). We use a trick that only applies to the un-
damped harmonic oscillator. For in-region I, we have the identities,

ḋ(I)
2 (t) = d(I)

1 (t) , ⇒ d(I)
2 (Δ) ḋ(I)

1 (ta) = d(I)
2 (ta) ḋ(I)

1 (Δ) , (A50)

and it allows us to rewrite Equation (A49),

d1(tb + Δ, 0) = d(II)
1 (tb, ta)

[
d(I)

1 (Δ) d(I)
1 (ta) + ḋ(I)

1 (Δ) d(I)
2 (ta)

]
+ d(II)

2 (tb, ta)
[
ḋ(I)

1 (Δ) d(I)
1 (ta) + d(I)

1 (Δ) ḋ(I)
1 (ta)

]
=
[
d(II)

1 (tb, ta) d(I)
1 (ta) + d(II)

2 (tb, ta) ḋ(I)
1 (ta)

]
d(I)

1 (Δ) +
[
d(II)

1 (tb, ta) d(I)
2 (ta) + d(II)

2 (tb, ta) d(I)
1 (ta)

]
ḋ(I)

1 (Δ)

= d1(tb, 0) d(I)
1 (Δ) + d2(tb, 0) ḋ(I)

1 (Δ) . (A51)

Similarly, for d2(tb + Δ, 0), we have

d2(tb + Δ, 0) = d1(tb, 0) d(I)
2 (Δ) + d2(tb, 0) ḋ(I)

2 (Δ) . (A52)

Now we plug these results into the expressions in Equations (68)–(70) to find the
corresponding squeeze parameter in out-region III,

1
ω f ωi

ḋ
(1)2
k (tb + Δ) +

ωi
ω f

ḋ
(2)2
k (tb + Δ) +

ω f

ωi
d
(1)2
k (tb + Δ) + ω f ωi d

(2)2
k (tb + Δ)

=
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb) +
ω f

ωi
d(1)2k (tb) + ω f ωi d(2)2k (tb) , (A53)

1
ω f ωi

ḋ
(1)2
k (tb + Δ) +

ωi
ω f

ḋ
(2)2
k (tb + Δ)−

ω f

ωi
d
(1)2
k (tb + Δ)− ω f ωi d

(2)2
k (tb + Δ)

=
1

ω f ωi
ḋ(1)2k (tb) +

ωi
ω f

ḋ(2)2k (tb)−
ω f

ωi
d(1)2k (tb)− ω f ωi d(2)2k (tb) , (A54)

1
ωi

d
(1)
k (tb + Δ)ḋ(1)k (tb + Δ) + ωi d

(2)
k (tb + Δ)ḋ(2)k (tb + Δ)

=
1

ωi
d(1)k (tb)ḋ

(1)
k (tb) + ωi d(2)k (tb)ḋ

(2)
k (tb) , (A55)

due to

d(I)
1 (Δ) ḋ(I)

1 (Δ) = −ω2
i d(I)

2 (Δ) ḋ(I)
2 (Δ) , d(I)2

1 (Δ) + ω2
i d(I)2

2 (Δ) = 1 ,
1

ω2
i

ḋ(I)2
1 (Δ) + ḋ(I)2

2 (Δ) = 1 .

The results for the shifted process are the same as those for the unshifted process.
Thus, both cases generate the same squeezing at t ≥ tb + Δ.
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Abstract: We give a vacuum description with zero-point density for virtual fluctuations. One of
the goals is to explain the origin of the vacuum permittivity and permeability and to calculate
their values. In particular, we improve on existing calculations by avoiding assumptions on the
volume occupied by virtual fluctuations. We propose testing of the models that assume a finite
lifetime of virtual fluctuation. If during its propagation, the photon is stochastically trapped and
released by virtual pairs, the propagation velocity may fluctuate. The propagation time fluctuation is
estimated for several existing models. The obtained values are measurable with available technologies
involving ultra-short laser pulses, and some of the models are already in conflict with the existing
astronomical observations. The phase velocity is not affected significantly, which is consistent with
the interferometric measurements.

Keywords: virtual pair; virtual fluctuations; light velocity fluctuation

1. Introduction

With the concept of virtual fluctuations composed of two photons, several effects can
be introduced and numerically estimated. This includes the known Lamb shift measured in
the Lamb–Retherford experiment, the measured Casimir effect [1], the observed dynamic
Casimir effect [2], and the predicted Unruh effect, as well as Hawking radiation. There
is no general consensus, however, whether the virtual fluctuations are rather a physical
phenomenon than just a useful mathematical tool [3].

Quantum mechanics (QM) is based on postulated equations which do not have an
intuitive introduction despite and because of the more than a dozen quite contradictory
interpretations available [4,5]. The attempts to derive some of the principles of QM through
classical stochastic processes are ongoing in order to provide a deeper understanding of the
(experimental) phenomena from a wider point of view and context. In particular, in stochas-
tic electrodynamics (SED), the interaction of the zero-point field (ZPF) with real particles is
evaluated. This interaction may explain several, if not all, of the quantum phenomena (for
one of the most recent papers; see [4]). The energy density of the ZPF, w(ω) ∝ ω3, can be
derived from the condition that there is no average force of the ZPF acting on any physical
harmonic oscillator with a frequency ω (Einstein–Hopf formula [6] (Appendix)). Thus,
this energy density has the same form as ZPF in quantum electrodynamics (QED). Some
of the quantum relations, such as the canonical commutation relation, [x̂; p̂] = ih̄, with x̂
and p̂ the coordinate and momentum operators, respectively, and h̄ the reduced Planck’s
constant, h/(2π), can be obtained in SED only if the interaction with ZPF is treated in a
non-perturbative way [5,7]. This is true in particular for free particles: the transition from a
classical deterministic behaviour to an indeterministic quantum one happens in SED once
the interaction with ZPF takes the leading role and the information on the initial condition
is lost [8].
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In QED, the virtual fluctuations or ZPF manifest themselves as an additional 1/2h̄ω
term of the total energy stored in a single oscillation mode. That term appears for each of
the light modes for the photons in the box, and the number of modes becomes continuous
once the infinite box size limit is considered for Planck’s law derivation [9]. Conventionally,
the 1/2h̄ω term is omitted in order to evaluate the energy difference with respect to the
so-called zero-point level. This is sufficient for most applications, where only the energy
difference matters. Nevertheless, the zero-point energy is not null even in the absence of
real particles (photons), and it affects gravity at the cosmological scales. Moreover, the
mode’s energy density is w(ε) ∝ ε3, infinite for ε → ∞. In the framework of quantum field
theory (QFT), generally, the energy upper limit at the Planck scale, Λ, is hypothesized. As a
result, the zero-point energy density w ∝ Λ4 has up to 120 orders of difference with the
observed energy density—an issue known as the cosmological constant problem.

In the present study, the concept of virtual fluctuations composed by virtual fermion–
antifermion pairs is explored. The motivations to enrich virtual fluctuations with fermion–
antifermion pairs are not new, and overviews can be found in Refs. [10–12]. Here, we use
virtual fluctuations as a synonym for virtual pairs and mostly consider only fermions and
antifermions.

In Refs. [10,12], it is assumed that the virtual pairs may appear for a short lifetime
connected with their energy by the Heisenberg uncertainty relation. The pairs are CP-
symmetric, what permits them to have zero values for the total angular momentum, colour,
and spin. In the presence of the electromagnetic field, the pairs should polarise, and thus the
vacuum has dielectric behaviour. The vacuum’s dielectric properties, i.e., the permittivity,
ε0, and the permeability, μ0, are already axiomatically postulated in Maxwell’s equations.
One can, however, take a step back and reconsider this by looking at the following equations
of the electric displacement field, �D, and the magnetic field strength, �H, for dielectrics:

�D = ε0�E + �P, (1)

�H =
1

μ0
�B − �M, (2)

with �E and �B being electric field strength and magnetic flux density, respectively.
Polarisation, P, and magnetisation, M, induced by the external field at the microscopic

level correspond to the sum of electric and magnetic moments in a unit of volume, respec-
tively. Following Refs. [10,12], one can consider that the first terms in Equations (1) and (2)
are due to the vacuum polarisation and magnetisation, i.e., these terms can also be estimated
as the sums of electric and magnetic moments of the virtual fermion pairs.

In order to calculate ε0 and 1/μ0, the moments generated by a virtual pair are needed,
along with the volume occupied by each pair. For the moments’ estimation, the calculations
in Refs. [11–13] take a shortcut by assuming the oscillation model for the virtual pair with
two states separated by 2mc2 with m the particle mass and c the speed light in the vacuum.
The calculations in Ref. [10] start from the dipole moment of a pair with opposite charges
and fermion magnetic moment and then assume that the pair lifetime is modified in the
presence of the field. For the volume estimation, the typical size of a Compton length is
commonly involved. In particular, in [12], this is motivated by the assumption that in order
for the virtual pair to interact with the external field, the energy conservation should be
violated locally by Δε � 2mc2, which is non-detectable in a period shorter than h̄/(2mc2).
If the speed of particles is at the maximum, i.e., at the speed of light, c, the pair must remain
separated by a distance λC = h̄/mc. In order to obtain a measured value of ε0, the average
volume of V � 0.41λ3

C is required, and it is equally occupied by the virtual fermions of all
known types.

In the study presented here, we address the assumptions on the volume occupied
by virtual fluctuations in the above mentioned models. We consider that a self-consistent
and intuitive way to introduce the occupied volume is to go back to the assumed origin
of virtual fluctuations, i.e., ZPF which appears in solutions of QED equations or which

167



Physics 2024, 6

is introduced from the beginning in SED. One already knows the ZPF energy density
and the energy per mode. Thus, the ZPF itself already provides the modes’ density, ρ(ε).
The mode’s density can be used in order to obtain any property density if the expression
of the property per mode is known. The assumption of the infinity of the modes and a
distinct energy associated with each mode is incompatible with the assumption that virtual
fluctuations appear only with total energy, ε = 2mc2. Another feature is that by introducing
ZPF density, one does not need to further assume that the virtual pairs become real for the
time related to their energy following the Heisenberg uncertainty. The only assumption
needed is that at the ground state the energy of virtual fluctuation is ε = 1/2h̄ω, while after
interaction, it becomes ε = (1/2 + n)h̄ω. In QED, this means that before the interaction, no
real particles were present, while after the interaction, n particles were produced. In SED,
the virtual fluctuations are part of the ZPF, which is real even before or in the absence of
an interaction.

In Section 2, we review the Planck’s law derivation in order to introduce the density
of virtual fermions and to explain their mathematical origin. We show how ε0 can be
estimated using vacuum density in Section 3.

One may further assume that the photon propagation speed is actually finite only
because the photon is delayed at each interaction with virtual fluctuations by their anni-
hilation time. The real photon propagation then fluctuates, without affecting the phase
velocity measured by interferometers [14], and the arrival time spread can be estimated by
knowing the average lifetime of a virtual pair and the distance travelled. This is performed
for several theories in Section 4, and such spread presents a new prediction, measurable
with the available technologies.

2. Statistics for Virtual Pairs

The conventional derivation of the Planck’s law is briefly summarised in this Section
with the explicit assumptions needed. In many textbooks, these calculations are oriented to
provide a measurable energy density, so the vacuum-related terms are often hidden and
the physical origins behind some assumptions are not reported properly.

2.1. Density of Modes for a Particle in a Box

A particle in a box may only have modes respecting the boundary conditions ψ(0) = ψ(L) = 0,
where L is the size of a box. This is satisfied for standing waves which have half-wavelength
(λ/2) multiplets equal to a box size:

li
λi
2

= Li, (3)

for every space coordinate i. This condition shows that states are discrete for a box with a
limited size. Each set of non-negative integer numbers li defines a mode. The wavelength
is connected with momentum pi as:

λi = h/pi . (4)

So, the number of states in the mode space corresponds to the number of the states in
the momentum space as follows:

dlxdlydlz =
8LxLyLz

h3 dpxdpydpz =
8V
h3 d3 p, (5)

for a box with volume V.
For a relativistic particle,

ε2 = (mc2)2 + (pxc)2 + (pyc)2 + (pzc)2. (6)

Thus, the number of states (discrete points) in a sphere of radius ε corresponds to the
number of states inside an ellipsoid with volume 4/3πpx py pz. The non-zero mass only
shifts the ellipsoid’s centre without affecting its volume. To determine a mode’s space
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with positive numbers li and momentums pi, only one octant should be considered, so the
number of modes can be evaluated as:

dN = 1/8dlxdlydlz =
LxLyLz

h3 dpxdpydpz =
V
h3 4πp2dp. (7)

Thus, the mode density becomes:

dρ =
4πp2dp

h3 . (8)

This is valid for massive and massless particles in a general (relativistic) case even for
an infinite box size. In the case of L → ∞, the mode distribution becomes continuous.

This result is also valid if a boundary condition ψ(0) = ψ(L) = 0 of an isolated box is
relaxed to a continuity condition ψ(0) = ψ(L). In such a condition, negative values of li
are allowed, and �p becomes a vector with values in a full space (and not just one octant).
However, only wavelength multiplets being equal to the size of the box are now allowed
(opposite to the half-wavelength multiplets). This gives a (1/2)3 reduction in the number
of modes that is numerically equal to one octant condition.

2.2. Mode Energy

The electromagnetic field can be quantized starting from Maxwell’s equations and
performing Fourier analysis for modes in the box with periodic conditions [15]. For such
systems, the Hamiltonian becomes equivalent to an infinite set of oscillators. The mode
energy levels are, as for a harmonic oscillator:

E = h̄ω

(
1
2
+ n

)
, (9)

where n is the number of quanta with energy h̄ω—the smallest value of energy that can be
taken or added to the mode with ω frequency. For the electromagnetic field, a quantum is
associated with a single photon; thus, ε = h̄ω = pc.

2.3. Statistics

For this part, it is worth mentioning that conventionally and historically, black-body
radiation is described for a closed box in thermodynamical equilibrium with the tempera-
ture T and the volume V being fixed. In statistical mechanics, this is, however, ambiguous
since it may correspond to any of the following.

• The grand canonical ensemble (T, V,μ fixed), where μ is the chemical potential: The
system can exchange energy and particles with a reservoir, so that various possible
states of the system can differ in both their total energy and the total number of
particles.

• The canonical ensemble (T, V, N fixed): The system can exchange energy with the heat
bath, so that the states of the system will differ in total energy; the number of particles
is fixed.

In the equilibrium, the probability of a state with energy distribution Ei is described
by the following relations. For canonical ensemble,

pi =
e−Ei/(kT)

Z
, (10)

where Z is the partition function assuring probability normalisation,

Z = Σie−Ei/(kT), (11)

and k is the Boltzmann constant.
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The most powerful and general way to obtain this probability is using the information-
theoretic Jaynesian maximum entropy approach [16,17].

Similarly, for the grand canonical ensemble:

pi =
e(Niμ−Ei)/(kT)

Z
, (12)

Z = Σie(Niμ−Ei)/(kT). (13)

For the black-body radiation, the number of photons is not conserved, so it is consid-
ered that the grand canonical ensemble is the right choice, although even in some recent
studies the opposite choice is made (see critiques in Ref. [18], for example). The confusion
is supported by the feature that for black-body radiation, μ = 0 is assumed, so both prob-
abilities become identical. The choice of μ = 0 is a consequence of the property that the
black-body radiation in a closed cell should be completely defined by only two macroscopic
parameters: T and V. As a result, the system pressure is defined only by temperature, and
the Gibbs free energy G = μN becomes 0 (actually, not well-defined), so for a system with
a non-zero N, it is required to have μ = 0 [19].

In a case of non-interacting bosons, each available single-particle level (mode) forms
a separate thermodynamic system in contact with the reservoir. Thus, the analysis of the
system behaviour can be conducted within a single mode, and then the properties of the
whole system can be obtained by integrating it over the modes with their densities. For a
single mode, the grand canonical partition function becomes (omitting μ term):

Z = Σ∞
n=0e−h̄ω(n+1/2)/(kT) = e−h̄ω/(2kT) 1

1 − e−h̄ω/(kT)
. (14)

And each state probability within a mode is:

pi = p(n) =
e−h̄ω(n+1/2)/(kT)

Z
= e−h̄ωn/(kT)(1 − e−h̄ω/(kT)). (15)

Interestingly, the probability does not contain the zero-point energy term, i.e., the
probability would be identical if this term was omitted from the beginning. For the average
energy evaluation, it is convenient to use the following property of the partition function:

〈E〉 = Σ∞
n=0Ene−En β

Z
=

dZ
dβ

1
Z

= −d(logZ)
dβ

= h̄ω

(
1
2
+

1
eh̄ω/(kT) − 1

)
, (16)

where β = 1/(kT) is introduced for simplicity. The average number of particles can be
obtained from the average property:

〈E〉 = 〈h̄ω

(
1
2
+ n

)
〉 = h̄ω

(
1
2
+ 〈n〉

)
, (17)

and by comparing Equations (16) and (17), it can be expressed as follows:

〈n〉 = 1
eh̄ω/(kT) − 1

. (18)

For the canonical ensemble of bosons, the number of particles, N, is fixed (the system
cannot exchange particles with a reservoir) and the modes cannot be considered as inde-
pendent thermodynamical systems. In the limit of ni → ∞ (the number of particles in each
mode is extremely large), one can, however, obtain a surprisingly similar average number
of particles for each mode (energy level) as in the case of the canonical ensemble [20].
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2.4. Degeneracy

In the above considerations, the feature that each mode for the electromagnetic field
has a degeneracy g = 2 corresponding to the two polarisations was omitted. This, effec-
tively, makes the mode density twice as high.

2.5. Energy Density

Combining the results from Section 2, one obtains the Planck’s law:

w(p)dp = 2
4πp2dp

h3 ε

(
1
2
+

1
eε/(kT) − 1

)
, (19)

from where the vacuum density can be deduced:

ρ(p)dp =
4πp2dp

h3 . (20)

Following the derivation, let us summarise some features.

• The vacuum density is numerically equal to the density of the modes—its 1/2 factor
from the zero-level is compensated by the degeneracy g = 2;

• Modes and their zero-point energies appear for the electromagnetic field after Fourier
transformation, so, strictly speaking, assuming a mode occupies some volume (even
on average) is improper;

• Derivation of the statistical distribution for modes assumes they are independent and
that the number of quanta in each mode is high: this may leave some speculation
whether the vacuum density is described by Equation (20) in cases when there are few
or no quanta (associated with real photons);

• The vacuum density is temperature- and energy-independent (non-thermal, linear);
in current derivation, this appears as a consequence of several features: modes are
independent and each mode’s microstate energy has a zero-level energy that is pro-
portional to the mode quantum’s energy with the same factor for each mode;

• The vacuum density and its energy density are infinite if there is no cutoff at high
energies/frequencies; the introduction of such an ultraviolet cutoff is a viable option,
for example, in doubly special relativity [18].

Similarly to photons, one may apply the discussed derivation to fermions. The mode
density, as discussed in Section 2.1 above, is the same for massive and massless particles.
The degeneracy for fermions is g = 2. Quark fermions have additional factor 3 degeneracy
due to their colour. The vacuum density should also follow Equation (20) since Bose–
Enstein or Fermi–Dirac statistical terms are not relevant. The quantum energy of each
mode is actually ((mc2)2 + (pc)2)1/2, where m is the mass of a fermion. Assuming now
that virtual fluctuations should appear as fermion–antifermion pairs with opposite spin
and momentum, their density should also be described by the same equation, in which p
always refers to the momentum of a single fermion or antifermion. Finally, let us note that
for boson pairs (W+W−) the vacuum density expression is also the same as for fermions
since the statistical term is relevant only for real quanta; however, degeneracy g = 3 for a
spin of 1 should be used.

3. The Vacuum Permeability and Permittivity

3.1. Calculation with ZPF Density Using Oscillator Model

In order to perform vacuum permittivity calculations, we consider some of the as-
sumptions of Ref. [12], in particular:

• each virtual fermion–antifermion pair behaves as a harmonic oscillator with the levels
separated by h̄ω; specifically, this is the energy gap between the ground state of a
virtual pair and the excited state where both particles become real.
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This assumption is compatible with the mode energy (9) of a quantised electromagnetic
field. We further try to make the calculation in Ref. [12] more consistent with modes and
their quanta. This brings the following assumptions:

• a virtual fermion–antifermion pair becomes real if ε = 2((mc2)2 + (pc)2)1/2 is added
to the mode so the oscillator frequency is actually h̄ω = ε(p) instead of 2mc2;

• we use the vacuum (mode) density for the estimation of ε0 instead of the average
volume following the alternative proposed at the end of [12].

Following the study in Ref. [12], if one arranges the two-level approximation, so that
only transitions between the ground and the first excited states of the oscillator are relevant,
one finds that the maximum possible induced dipole moment becomes:

dmax = qe〈ψ1|x̂|ψ0〉 = qe

∫ ∞

−∞

(mω

πh̄

)1/4
e−

mωx2
2h̄

(mω

πh̄

)1/4
e−

mωx2
2h̄

√
2
(mω

h̄

)1/2
xdx

= qe

∫ ∞

−∞

√
2
π

(mω

h̄

)
e−

mωx2
h̄ x2 = qe

√
2
π

√
h̄

mω

∫ ∞

−∞
e−z2

z2dz = qe

√
h̄

2mω
. (21)

Here, qe denotes the electron charge.
The time-averaged induced dipole moments following calculations in Ref. [12]

(Equation (A3)) can be expressed as follows:

d =
2d2

max
h̄ω

E =
q2

e
mω2 E. (22)

The expressions for dmax and d here differ from Equations (A2) and (A3) of Ref. [12]
by factors 1/

√
2 and 1/2, respectively, as soon as h̄ω = 2mc2 is assumed. Equation (22) is

same as Equation (25) obtained in Ref. [13] within a semiclassical treatment.
The vacuum permittivity calculation then can be estimated as follows, while assuming

only one type of fermion so far:

ε0 =
∫ pmax

0

4πp2 dp
h3

q2
e

mω2 =
q2

e
4πh̄c

1
2π

1
mc2

∫ A

0

(pc)2d(pc)
(pc)2 + (mc2)2 , (23)

where the cutoff on pc at A is introduced in order to have a finite integral. The introduction
of the cutoff is just instrumental here, and its possible physical origin is discussed below in
this Section and in Section 5. One can rewrite the above equation by using fine-structure
constant, α:

1
α
=

1
2π

1
mc2

∫ A

0

(pc)2d(pc)
(pc)2 + (mc2)2 =

1
2π

[
A

mc2 − tan−1
(

A
mc2

)]
. (24)

One can see that in order to obtain 1/α ≈ 137, a value of A should be on the order of
A ≈ (2π/α)mc2 ≈ 861mc2, where the factor 2π/α resembles the inverted QED correction
needed for the electron magnetic moment (one-loop result for the anomalous magnetic
moment). If all known charged elementary particles are considered, the ε0 and 1/α expres-
sions contain a sum over charged fermions, or more generally, over all charged elementary
particles:

1
α
=

1
2π ∑

i
Q2

i ci
gi
2

[
A

mic2 − tan−1
(

A
mic2

)]
, (25)

where charge scale Qi = 1 for leptons and W-bosons, Qi = −1/3 for d, s, b quarks, and
Qi = 2/3 for u, c, t quarks; the degeneracy, gi, due to a spin is 2 for fermions and 3 for
W−W+ pairs, while the degeneracy, ci, due to a colour is 3 for quarks and 1 for the other
types. If one keeps the upper energy value the same for each type, a value of the threshold
A ≈ 292 MeV is needed to reach the measured value of ε0 or α. The most important
contribution is coming from electrons and the second contribution from u quarks, for which
mu = 1.5 MeV was used. Other contributions are at the percent level and below. The
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threshold, A, is much higher than mec2, and the greatest contribution is coming from the
ultra-relativistic pairs since, for A = mec2, only 0.1%ε0 is reached. This poses doubt if the
used non-relativistic harmonic oscillator model is reasonable. One possibility to lower the
threshold, A, and to avoid relativistic pairs is to assume that instead of the real charges,
one should use bigger, unscreened charges.

The obtained value of A is above or on a level of the chiral symmetry breaking
value (≈100 MeV or pion mass), the energy above which the quark condensate should
disappear [21]. One should investigate how to incorporate this effect. A possible solution
could be to consider that for the quarks the A threshold is set to this level. Since the
quark contribution to 1/α is sub-dominant, this should not strongly affect the evaluation in
Equation (25). The current threshold is three orders of magnitude below the electroweak
unification (246 GeV). Such a threshold could be a physically motivated choice for the
leptonic virtual pairs; however, ε0 would not be matched with the measured value.

It is possible to make the above calculations with vacuum density consistent with
the calculations in Ref. [12], which exploit the concept of the average volume occupied by
virtual pairs. In this paper, we can numerically estimate the average virtual pair volume as
the inverted density. In order to make both calculations compatible, one needs to assume
that the separation of energy levels is energy independent, and it is equal to 2mc2, as
in Ref. [12]. This allows one to split the constant multiplication in Equation (23) from
the integral, which becomes just the vacuum density, ρ =

∫ A/c
0 4πp2dp/h3. In order the

average volume to be proportional to λ3
C = (h̄/(mc))3, one needs to set the limit, A,

proportional to mc2: A = amc2, i.e., to assume a different threshold for each elementary
particle type.

With A = amc2 thresholds and h̄ω = 2mc2, the expression for 1/α reads:

1
α
=

1
2π ∑

i
Q2

i ci
gi
2

1
(mc2)3

∫ amc2

0
(pc)2d(pc) =

1
2π ∑

i
Q2

i ci
gi
2

a3

3
. (26)

With this threshold, one obtains a factor a = 3
√

6π/(∑i Q2
i ci(gi/2)α) ≈ 6.5 (we

consider gi = 3 for W+W−, so ∑i Qici(gi/2)2 = 9.5, and not 9 as in Ref. [12]) and the
average volume reads:

〈V〉 = 1/n = 1/
∫ A/c

0

4πp2dp
h3 =

6π2

a3

(
h̄

mc

)3
≈ 0.22

(
h̄

mc

)3
, (27)

what is consistent with the calculations in Ref. [12], considering the difference in the dipole
moment by a factor of 2 and the differences in gi for W-bosons.

3.2. Relations between Magnetic and Electric Dipole Moments of Virtual Pairs

Here, we reiterate to avoid the oscillator approximation approach and to start from
a magnetic moment of each fermion in the pair along with an electric dipole moment of
a pair in order to arrive at the evaluation of ε0 and μ0. We provide below an ansatz for
calculating magnetic and electric dipole moments for virtual pairs that keeps the c, ε0, and
μ0 interrelation.

First, it is worth mentioning that in some models of vacuum description [10] and
for real fermion gas (Equations (59.4) and (59.12) in Ref. [22]), there are the following
dependences for permittivity and permeability:

1/μ0 = ∑
i

f (β2
i ), (28)

ε0 = ∑
i

f ((di/2)2), (29)
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where β is a magnetic moment of a single fermion, d is an electric dipole moment of a
fermion–antifermion pair, and function f is of the same dependence in Equations (28) and (29)
as soon as the corresponding potentials are of the same expression, namely, U = −�d�E
and U = −�β�B. Given c = 1/

√
ε0μ0, one finds that this leads to the following relationship

between β and d:
β = (d/2)c. (30)

The magnetic moment can be obtained by comparing relativistic energy for an electron
in a magnetic field [23] (in SI units):

EM =
√

m2c4 + p2
zc2 + 2qeh̄c2B(n + 1/2 − gs/2) ≈ ε f +

qeh̄c2B
2ε f

(2n + 1 − gs), (31)

where we consider the first order approximation as valid for common fields: βBB 
 mec2

(here, βB is the Bohr magneton).
This approximation can be compared to the non-relativistic energy levels in Ref. [22]

(in SI units):

ENR
M =

p2
z

2m
+

qeh̄B
2m

(2n + 1 − gs). (32)

Comparing relativistic and non-relativistic expressions, one can see that they match
if mc2 is substituted with fermion energy, ε f . Thus, the following relativistic magnetic
moment can be used instead of the Bohr magneton, βB = qeh̄/(2m):

β =
qeh̄

2ε f /c2 . (33)

For electric dipole moments, one can use the following classical expression:

d = Qqex, (34)

where x is considered a “distance” between fermions.
By comparing expressions (33) and (34), one can realise that Equation (30) is satisfied

if:

• the magnetic moment, β, for fermions with charge Qqe has an additional factor Q;
• for electric dipole moment, d, the “distance”, x, is defined as x = h̄/(ε f /c).

If the last point is seen as the Heisenberg uncertainty, this requires that the fermions
travel at a speed of light or they are of zero mass.

3.3. Other Considerations for the Virtual Pair Models

If a virtual electron–positron pair is seen as a positronium [11] it is worth establishing
a connection with an up-to-date description of the positronium states. In the classical
description of such a system, similarly to the electron in hydrogen, it is assumed that the
electron and positron are orbiting around the centre of mass. Thus, the energy levels are
quantised as in the Bohr model but using a reduced mass equal to me/2. The precise
calculation of the bound states comes from the Bethe–Salpeter equation. Noticeably, there
are two solutions with the orthogonal states: one in which particles can be bound at atomic-
like distances, similarly to the Bohr model, and the other with the nuclear-like quantised
distances [24]. The latter states have zero energy, and thus they could be very promising
for describing virtual pairs.

It is worth mentioning that the optical properties, namely, polarisation and nonquan-
tum entanglement [25], can be described using the mechanical model analogy [26]. This
mechanical model for a photon or a 2-dimensional (2D) beam consists of two masses,
each representing the eigenvalue of a polarisation coherence matrix. The polarisation and
entanglement are then quantitatively associated with mechanical concepts of the centre
of mass and the moment of inertia through the Huygens–Steiner theorem for rigid body
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rotation. Although it may be a mere coincidence of this analogy, one may want to search
for a deeper physical meaning.

4. Photon Propagation and Propagation Time Dispersion

Most theories explaining electromagnetic vacuum properties with virtual fluctuations
assume that particle–antiparticle pairs are continuously appearing in the vacuum and their
lifetimes are limited by the Heisenberg uncertainty. We detail here several theories and the
lifetimes assumed:

• τ ≈ h̄/(2mc2), where this time, in particular, serves to define the size/volume of the
virtual pair [12];

• τ = h̄/(K × 2mc2) with the best fit for K ≈ 31.9, where the lifetime modified in the
presence of electromagnetic field serves to evaluate ε0 and μ0 [10];

• τ = h̄/(α5mc2) since, after interaction with the photon, the virtual pair forms a
quasi-stationary state in Ref. [11].

In a bare vacuum, the dielectric and magnetic moments of the virtual fermion pairs
are absent, and thus ε0 and 1/μ0 become 0. The speed of light in the Maxwell equations in
a vacuum is c = [(1/μ0)/ε0]

1/2] and becomes not well defined [27]. This indicates that the
photon propagation is tightly connected with the presence of virtual fluctuations. It is quite
natural then, to assume that the photon propagation speed is actually finite only because
the photon is delayed at each interaction with virtual fluctuations by their annihilation
time, i.e., there is no additional propagation delay in the bare vacuum. By knowing the
average lifetime of a virtual pair, τ, and the total time T = L/c needed to cover a distance
L, one can straightforwardly estimate the total number of interactions, N = T/τ, and its
fluctuation, N1/2, which gives an approximate fluctuation time estimate:

σT = N1/2τ =

√
τ

c

√
L . (35)

Thus, for the three theories mentioned above, this fluctuation time becomes:

• σT ≈ 1.5 fs
√

L[m] for consideration in Ref. [12];
• σT ≈ 0.26 fs

√
L[m] for for consideration in Ref. [10] (this can be compared with a more

precise estimation at σT ≈ 0.05 fs
√

L[m] given in Ref. [10]);
• σT ≈ 0.46 ns

√
L[m] for for consideration in Ref. [11].

Let us note that the above calculations are meant to provide an order of magnitude.
For a better estimate, one may assume that the photon is delayed at each interaction only
by a portion of a lifetime since the photon interaction can occur at a random moment of the
pair’s appearance from the vacuum, and one can consider a smooth distribution for the
possible lifetimes. The fluctuation in propagation time can actually be removed completely
if one assumes that during each interaction with time τi, a photon propagates for a distance
of cτi, which may look less intuitive. Indeed, one would need to explain the photon energy
transfer in space inside a virtual pair that absorbs the photon.

Nowadays, the strongest constraints on the photon propagation time fluctuation
are established by astrophysical observations, mainly GRBs (gamma ray bursts) and pul-
sars [28,29]. The current limits are at 0.2 − 0.3 fs m−1/2. This means that if the estimate
presented here is correct, at least at the order of magnitude, the model in Ref. [11] to be
excluded, while the other two considered models are still viable.

The dependence of the fluctuations as L1/2 shows that for the measurement, the
time resolution has a stronger impact compared to the photon path length. Actually,
the astrophysical measurements are based on the observation of events with a duration
of the order of 10−3 s at distances of megaparsecs, and these measurements are hardly
improvable due to the finite size of the Universe and the intrinsic event durations. Instead,
the current state of the art of laser technologies allows the generation of femtosecond
and even attosecond light pulses, and a pulse duration evaluation is conducted using the
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autocorrelation, i.e., probing the pulse by its own copy, so the precision is better than the
pulse width.

An experiment able to reach the required sensitivity can be realised with femtosecond
laser pulses propagating over a few kilometres in a vacuum tunnel without reflections. In
the end of the tunnel, the beam is measured with the autocorrelation system. A minimal
realisation of the autocorrelation system can consist of a beam splitter, beam routing
with three unprotected, gold, single-layer mirrors per split beam and a second harmonic
crystal. The mirror system generates a variable delay between the two beam parts. Using
a commercially available laser source with T = 2 fs pulse width (∼5 fs full-width half-
maximum, FWHM), the vacuum optical path of L = 10 km (such tunnels are routinely used
in modern gravitational wave detectors) and a pulse duration measurement device with
σT = 1% precision, one could already set a limit that is two orders of magnitude lower
compared to the existing ones, as is estimated below:√

T 2 + σ2L − T = σT T , (36)

σ = T
√

σT (2 + σT )
L

≈ 2

√
0.02
104 fs m−1/2 ≈ 0.003 fs m−1/2. (37)

If one considers the laser with an attosecond pulse duration, the generated pulse would
be broadened up to a 16-as duration after only a 1-cm propagation with σT ≈ 0.05 fs

√
L[m].

Interestingly, the world’s shortest pulse generated is measured at the FWHM of 43 ± 1
as [30]. Such a pulse already after 1 cm would be at the FWHM of 57 as or, alternatively, a
pulse with a negligible duration would have a duration of 43 as after 13 cm. If fluctuations
at such scales are real, currently measured attosecond pulses could be already close to the
limit of the generation of shortest pulses and the measurement of their duration. Setting
limits to the fluctuations in the speed of light with the best available attosecond laser and
a 1–50 cm path can be a viable alternative for such measurement. Finally, let us note that
since the fluctuation in propagation time is frequency-independent, the frequency-resolved
optical gating pulse characterisation in the time and frequency domains should provide
robust effect measurements and enable its discrimination from the matter effects. This effect
also has distinct dependence from the distance, so performing additional measurements
with a shorter path is another way to control the systematic effects.

5. Conclusions and Discussions

There is certainly an interest in the physics community concerning the idea of virtual
fluctuations being at the origin of vacuum electromagnetic properties. As it is shown,
similarly to �P, polarisation of the medium, ε0�E, can be associated with the polarisation
of the vacuum, and similarly, 1/μ0�B can be associated with vacuum magnetisation. This
view can clarify the historical controversy between �H versus �B and �D versus �E [31]. In the
absence of matter, �H becomes the response of the vacuum to the external field �B, while in
the presence of matter, it is a combination of the vacuum response to the external field and
the matter’s magnetisation (permanent, or induced by the field �B). This follows Faraday
and Maxwell, which makes �H the cause of �B and similarly for �D and �E.

The authors of [12] show how one can evaluate vacuum polarisation, namely ε0 and
1/μ0, within QED from the interactions of photons with electron pairs using the Feyman
diagrams description. In this approach, one should deal with a high momentum cutoff, as
this prevents the exact calculation of ε0 without the introduction of a new variable.

A tempting approach to avoid infinite integrals that require cutoffs or renormalisations
is to use a constant or an average volume occupied by virtual pairs along with average
magnetic and electric moments. Here, we revisit the mathematical origin of zero-point
energy appearing in Planck’s law derivation in order to stress the feature that this energy
appears in the mode space associated with particle momentum. Actually, it is impossible
to estimate the volume occupied by a virtual pair with a known momentum due to the
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Heisenberg uncertainty. The evaluation of ε0 and μ0 can be performed using vacuum
density in the form ρ(p) = 4πp2/h3 instead of using an averaged pair volume. Moreover,
from the mathematical expression of Plank’s law, each mode has its own frequency, ω,
or energy quanta, h̄ω; thus, it is more logical to assume that the zero-point energy, 1

2 h̄ω,
should generate virtual pairs of fermions with non-zero momentum per fermion. Here, we
show how these calculations can be performed starting from the ideas in Ref. [12]. In order
to obtain a finite value for ε0, a threshold on the maximum fermion momentum is needed.
The value of this threshold in our calculation does not provide any intriguing coincidence;
however, the calculation shows that most of the fermions should be relativistic. Thus, the
use of a non-relativistic quantum harmonic oscillator as a model could be argued. One
could use, however, bigger, unscreened charges in order to lower this threshold. We do
not propose any physical explanation of the obtained threshold at 292 MeV. A physically
motivated choice for such threshold for quarks could be a chiral symmetry breaking energy
(≈100 MeV), while for leptons, it could be the electroweak unification energy (≈256 GeV).
This indicates an incompleteness of our model. An understanding of how to incorporate
the breaking of symmetry and the generation of mass, i.e., the Higgs mechanism, could
be the key to explaining the threshold. We note here for completeness that calculating ε0
within QFT requires knowledge of the Landau pole energy. Its value, obtained in [12], does
not provide any intriguing coincidence either.

As it is shown, dealing with infinite integrals in the calculations involving virtual pair
density takes two distinct paths. In one approach, explored in Ref. [12], it is considered
that the volume occupied by virtual pairs has a finite, momentum-independent value, and
the vacuum properties are evaluated using this volume scale as a parameter. In [12], it
is demonstrated that this approach is consistent with a calculation within QFT, which, in
turn, requires the Landau pole energy as a parameter. In another approach, in this study,
the density of virtual pairs is used, following its zero-point field origin. The calculations
require a cutoff at a high momentum value, which becomes a parameter. The average
volume per pair can still be estimated as the inverted density. In a particular case of
momentum-independent transition between the virtual fluctuation states, the calculation
with the average volume and the density become equivalent. The predictive power of both
approaches should be quantified by the number of properties that can be estimated based
on such parameters (pair volume or momentum cutoff) and a consistency with the existing
observations. The properties may include the vacuum permeability, the vacuum density,
and the cosmological vacuum energy density. Meanwhile, the observations should include
quantum phenomena such as the interference patterns in double slit experiments and the
stability of atoms and their energy levels. In particular, the presence of virtual fluctuations
in the vacuum must have an impact on the cosmological scales.

The introduction of the negative gravitational mass for the antiparticles makes each
massive virtual pair a gravitational dipole. This model solves several cosmological issues at
once, including effects ascribed to dark matter and the cosmological constant problem [32].
The recent results from the ALPHA-g experiment on antihydrogen atoms show that an-
timatter accelerates towards the Earth with 0.75 ± 0.13 g (statistical+systematic) ±0.16 g
(simulation) [33], so the theories involving antigravity for antimatter are hardly viable.

Several theories that describe photon interactions with virtual pairs include the pair
lifetime [10–12]. We speculate that one of the consequences of this assumption is that at
each interaction, the photon is trapped until the pair is annihilated, and this may give
rise to a fluctuation in the photon propagation time. This fluctuation can be estimated for
the mentioned theories. In particular, the theory in Ref. [11] could already be in conflict
with the available measurements. For the fluctuations predicted for theories in Ref. [10,12],
one needs measurements to be made with available ultrafast laser technologies. The
observation of the fluctuation in photon propagation time would certainly be incompatible
with quantum field theory.
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Abbreviations

The following abbreviations are used in this manuscript:

GRB Gamma-ray burst
FWHM Full-width half-maximum
SED Stochastic electrodynamics
QED Quantum electrodynamics
QFT Quantum field theory
QM Quantum mechanics
ZPF Zero-point fluctuations
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