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Edge Cloud Computing and Federated–Split Learning in
Internet of Things
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* Correspondence: qduan@psu.edu

The wide deployment of the Internet of Things (IoT) necessitates new machine learning
(ML) methods and distributed computing paradigms to enable various ML-based IoT
applications to effectively process huge amounts of data. Federated Learning (FL) is
a new collaborative learning method that allows multiple data owners to cooperate in
ML model training without exposing private data. Split Learning (SL) is an emerging
collaborative learning method that splits an ML model into multiple portions that are
then trained collaboratively by different entities. FL and SL each have unique advantages
and limitations and may complement each other in facilitating effective collaborative
learning in an IoT environment. On the other hand, the rapid development of edge cloud
computing technologies enables a distributed computing platform in IoT upon which
FL and SL frameworks can be deployed. Therefore, the deployment of FL and SL in
an edge cloud platform in an IoT environment has become an active area of research,
attracting interest from both academia and industry. This Special Issue aims to present
the latest research advances in this interdisciplinary field of edge cloud computing and
federated–split learning.

This Special Issue includes twelve research articles addressing various aspects of edge
cloud computing and federated–split learning, including technologies for improving the
performance and efficiency of both FL and SL in edge cloud computing environments,
mechanisms for protecting data privacy and enhancing system security in FL and SL
frameworks, and ways to exploit FL-/SL-based ML methods and edge cloud computing
technologies in order to support various IoT applications.

The constrained computing and communication resources available in IoT constitute
the main challenge to high-performance federated and split learning. Therefore, tech-
nologies for computation and communication efficiency play a crucial role in the effective
deployment of FL/SL frameworks in IoT. In [1], Nikolaidis et al. investigate the resource
allocation problem in virtualization-based edge cloud computing systems in order to maxi-
mize the efficiency of the FL process. The authors consider factors such as computational
and network capabilities, the complexity of datasets, and the specific characteristics of the
FL workflow. They explore two scenarios: (i) running FL over a finite number of nodes
and (ii) hosting multiple parallel FL workflows on the same set of nodes. The research
findings indicate that the default configurations of state-of-the-art cloud orchestrators
are sub-optimal when orchestrating FL workflows, demonstrating that different libraries
and ML models exhibit diverse computational footprints. Building upon these insights,
the authors discuss methods to mitigate computational interference and enhance the overall
performance of the FL pipeline’s execution.

Task scheduling is another key technology that has been explored to enhance FL
efficiency and performance. In [2], Cai et al. study two problems of task scheduling for FL in
edge computing: (1) transmission power allocation (PA) and (2) the dual decision-making
problems of joint request offloading and computational resource scheduling (JRORS).
The authors propose an adaptive greedy dingo optimization algorithm (AGDOA) based
on greedy policies and parameter adaptation in order to solve the PA problem. They
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also construct a binary salp swarm algorithm (BSSA) that introduces binary coding to
solve the discrete JRORS problem. Their simulation results verify that the proposed
algorithms improve FL convergence speed, shorten the system response time, and reduce
energy consumption.

Future networking technologies such as the 6G network may greatly enhance edge-
based IoT; however, they also introduce diverse and heterogeneous devices that present new
challenges for FL and SL. In [3], Ridolfi and co-authors analyze FL processes tailored for 6G
standards, implementing a practical FL platform that employs Raspberry Pi devices and
virtual machines as client nodes and hosts the FL server on a Windows PC. Their analysis
delves into the impact of computational resources, data availability, and heating issues
across heterogeneous device sets.

The limited bandwidth for data transmission in edge-based IoT makes communication
efficiency a critical aspect of deploying FL and SL in this domain. Optimal client selection
and model aggregation offer promising approaches to achieving communication-efficient
FL. In [4], the authors propose a Federated Learning via Clustering Optimization (FedCO)
scheme to optimize model aggregation and reduce communication costs. In FedCo, par-
ticipating clients are clustered based on the similarity of their model parameters; the
best-performing client is selected from each group as a representative to communicate with
the central server. The proposed FedCO approach updates clusters by repeatedly evaluat-
ing and splitting them, improving worker partitioning. The experimental results indicate
that the FedCO approach is effective in reducing communication costs and improving
model accuracy.

Client selection and model aggregation technologies have also been leveraged in [5]
for reducing model training time while improving model accuracy in FL. The authors of
this paper introduce the Latency-awarE Semi-synchronous client Selection and mOdel
aggregation for federated learNing (LESSON) method, which allows clients to participate
at different frequencies, thus mitigating straggler issues and expediting model convergence.
Their simulation results show that LESSON outperforms two baseline methods, FedAvg and
FedCS, in terms of convergence speed and maintains a higher model accuracy than FedCS.

Although FL is seen as a privacy-preserving distributed machine learning method,
recent research has shown it to be vulnerable to some privacy attacks. Homomorphic
Encryption (HE) and Differential Privacy (DP) are two promising techniques for privacy
protection in FL. In [6], Aziz et al. first present consistent attacks on privacy in FL and then
provide an overview of HE and DP techniques for securing FL in next-generation internet
applications. This paper discusses the strengths and weaknesses of these techniques in
different settings, as described in the literature, with a particular focus on the trade-off
between privacy and convergence, as well as the computation overheads involved.

Blockchain technologies have been employed as an effective approach to improving
FL performance in a variety of ways, including protecting data privacy and system security.
In [7], Liu et al. examine the EIFFeL framework, a protocol for decentralized real-time
messaging in continuous integration and delivery pipelines. The authors introduce an
enhanced scheme that leverages the trustworthy nature of blockchain technology. The pro-
posed scheme eliminates the need for a central server and any other third party, thereby
mitigating the risks associated with any potential breach.

Combining federated and split learning may aid in fully exploiting the advantages
of both while mitigating their respective shortcomings. Thus, this matter has recently
become an active research topic attracting extensive interest. In [8], the authors propose a
multi-level split–federated learning (multi-level SFL) framework that merges the benefits
of both SL and FL. This framework leverages the Message Queuing Telemetry Transport
(MQTT) protocol to geographically cluster IoT devices, employing edge and fog computing
layers for the initial model parameter aggregation. Their simulation experiments verify
that the multi-level SFL framework outperforms traditional SFL by improving the model
accuracy and convergence speed in large-scale IoT environments.
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The aforementioned research primarily focuses on addressing the challenges of de-
ploying FL/SL frameworks in edge cloud computing-based IoT environments. Another
active theme of research is employing FL-/SL-based machine learning techniques together
with edge cloud computing technologies to solve various problems in a broad range of
IoT applications.

In [9], Zhou and co-authors design an image pre-processing method and propose a
lightweight neural network model called LINGE (Lightweight Neural Network Models
for the Edge). This paper proposes an FL-based distributed intelligent edge computing
technology for disease risk prediction. The proposed scheme performs prediction model
training and inference at the edge without increasing storage space, reduces communication
load on the network, and releases computing pressure on the server.

The authors of [10] present a edge cloud collaborative banking data open applica-
tion scenario, focusing on the critical need for an accurate and automated sensitive data
classification and categorization method. In this paper, the authors propose a scheme,
UP-SDCG, for automatically classifying and grading financial data and develop a financial
data hierarchical classification library. The results of their experimental analysis indicate
that UP-SDCG achieves a precision of over 95%, outperforming the baseline models.

In [11], the authors propose a dynamic watermarking service framework, E-SAWM,
designed for edge cloud scenarios. This framework incorporates dynamic watermark
information at the edge, allowing for the precise tracking of leakage throughout the data-
sharing process. E-SAWM utilizes semantic analysis to generate highly realistic pseudo
statements that ensure resistance to removal or destruction. Their experimental results
demonstrate the effectiveness and efficiency of the proposed scheme.

Various FL-based methods have been proposed for security protection in edge-based
IoTs, including intrusion detection systems (IDSs) in Internet of Vehicles (IoVs). In [12],
Alsamir et al. present a comprehensive review of FL-based IDSs in an IoV environment.
Their paper introduces a general taxonomy to describe FL systems in order to ensure a
coherent structure and guide future research. Then, the authors identify the relevant state
of the art in FL-based IDS technologies in the IoV domain, covering the years from FL’s
inception in 2016 through to 2023, discussing challenges and future research directions
based on the existing literature.

As Guest Editors, we would like to take this opportunity to thank all the authors
who submitted their manuscripts to this Special Issue. Furthermore, we would like to
acknowledge all the reviewers whose thorough reviews have helped improve the quality
of the manuscripts in this Special Issue. Last but not least, we would like to express
our appreciation to the MDPI Editorial Team, who have provided unwavering support
throughout this project.
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Towards Efficient Resource Allocation for Federated Learning in
Virtualized Managed Environments
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Abstract: Federated learning (FL) is a transformative approach to Machine Learning that enables the
training of a shared model without transferring private data to a central location. This decentralized
training paradigm has found particular applicability in edge computing, where IoT devices and edge
nodes often possess limited computational power, network bandwidth, and energy resources. While
various techniques have been developed to optimize the FL training process, an important question
remains unanswered: how should resources be allocated in the training workflow? To address this
question, it is crucial to understand the nature of these resources. In physical environments, the
allocation is typically performed at the node level, with the entire node dedicated to executing a
single workload. In contrast, virtualized environments allow for the dynamic partitioning of a node
into containerized units that can adapt to changing workloads. Consequently, the new question that
arises is: how can a physical node be partitioned into virtual resources to maximize the efficiency
of the FL process? To answer this, we investigate various resource allocation methods that consider
factors such as computational and network capabilities, the complexity of datasets, as well as the
specific characteristics of the FL workflow and ML backend. We explore two scenarios: (i) running
FL over a finite number of testbed nodes and (ii) hosting multiple parallel FL workflows on the
same set of testbed nodes. Our findings reveal that the default configurations of state-of-the-art
cloud orchestrators are sub-optimal when orchestrating FL workflows. Additionally, we demonstrate
that different libraries and ML models exhibit diverse computational footprints. Building upon
these insights, we discuss methods to mitigate computational interferences and enhance the overall
performance of the FL pipeline execution.

Keywords: federated learning; machine learning; edge computing; Internet of Things

1. Introduction

Federated Learning (FL) is transforming the field of Artificial Intelligence (AI) by
allowing collaborative training of statistical models in decentralized environments [1]. It
enables multiple devices or entities to contribute their local data for training a shared model
without requiring the raw data to be transferred to a central server [2]. Instead, the models
are trained locally on each device, and only the model updates, which are lightweight and
privacy-preserving, are exchanged with a central server or coordinator [3]. This approach
ensures data privacy, as sensitive information remains on the local devices, and it also ad-
dresses challenges associated with data silos and data transmission costs. FL is particularly
useful for organizations operating in collaborative and cross-border settings, such as health
and financial institutions, as they are subject to regulatory and legal frameworks like the
EU’s General Data Protection Regulation (GDPR) [4]. These frameworks mandate strict
data governance policies for managing, processing, and exchanging data among different
administrative sites [5].

Future Internet 2023, 15, 261. https://doi.org/10.3390/fi15080261 https://www.mdpi.com/journal/futureinternet5
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Federated learning workloads, which involve communication, synchronization, and ag-
gregation of model updates, are typically implemented using specialized frameworks like
Flower [6]. These frameworks not only handle the complexities of the FL process but
also establish standardized APIs, protocols, and conventions, promoting interoperability
and compatibility among different components of the FL ecosystem. However, migrating
ML training from centralized cloud data centers to distributed environments presents
significant challenges that frameworks alone cannot easily address [7]. In these distributed
settings, heterogeneity is common, with federated clients run on hardware with varying
levels of capabilities and availability [8]. Additionally, clients may differ in network capa-
bilities and geographic distance from the server [9], which can cause bottlenecks that affect
the overall duration of the FL training process [10].

Moreover, as deployments scale up and organizations add more clients and administra-
tive sites, managing the system becomes increasingly complex. This can become a nightmare
for organizations. Cloud-native technologies such as Docker (a virtualized container execution
runtime) and Kubernetes [11] (a cluster management service) are frequently considered to
tackle these challenges [12]. Virtualization offers two main benefits: (i) it abstracts physical
resources like compute, memory, and storage, allowing them to be shaped according to
deployment needs; and (ii) it provides essential isolation when multiple models are trained
simultaneously on the same set of nodes. The cluster management service, also known as the
cluster orchestrator, automates the deployment of FL clients on the available compute nodes
and provides a global view of the deployment’s operating conditions [13,14].

However, the different objectives and requirements between cluster orchestrators and
FL frameworks can lead to conflicting resource management schemes. Cluster orchestrators
rely on predefined specifications for resource requests and limits, prioritizing fairness and
fault tolerance in their task-scheduling algorithms. Their aim is to minimize resource
wastage and enhance the Quality Of Service (QoS) [15]. In contrast, FL frameworks have
their own scheduling mechanisms for distributed model training, considering factors like
dataset size, data freshness, and model synchronization requirements. Typically, their goal
is to minimize model loss and achieve convergence in fewer training rounds [3]. This
misalignment between cluster orchestrators and FL frameworks can lead to inefficient
resource allocation, impacting the timely execution and convergence of FL workflows.

Despite the existence of several FL frameworks (i.e., Flower, FATE) and plethora of
studies in relevance to FL performance [16,17], the impact of the underlying computing
system to FL deployments is significantly overlooked. Our work fills this gap by providing
a comprehensive overview of the impact of resource allocation schemes on FL deployments.
The focus is on a single organization that manages multiple administrative sites through
a shared control plane. For this scenario, we investigate two challenge vectors related
to the Quality of Service (QoS) of FL deployments: “resource fitting” and “multi-tenancy”.
Resource fitting involves aligning available resources with the specific requirements of FL
clients, while multi-tenancy focuses on running multiple FL workloads concurrently on
a shared cluster of resources. To study the scenario in real-world settings, we utilize two
widely used open-source frameworks: Kubernetes for cluster orchestration and Flower
for FL execution. For the observability of experiments, we extend Flower’s codebase by
introducing a monitoring module that captures performance metrics from physical clients,
containerized services, and FL workloads. To enhance reproducibility and streamline
experimentation, we containerize Flower and provide abstractions for configuring FL
deployments, eliminating the need for rebuilding containers.

Towards this, the main contributions of our work are as follows:

• We present an FL use-case for a healthcare provider with geographically distributed
branches, highlighting the challenge vectors of resource fitting and deploying mul-
tiple FL workflows. These challenges are fundamental and remain relevant across
numerous other applications considering FL adoption.

• We document the experimental setup designed for rapid and reproducible bench-
marking of the FL infrastructure and deployment configuration. This includes con-
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tainerizing the FL framework (Flower), using Kubernetes as the cluster orchestrator,
employing a testing toolkit (Frisbee) to adjust Kubernetes’ placement policies, and ex-
tensively monitoring infrastructure, virtual, and FL execution metrics.

• We conduct a comprehensive experimentation study, systematically analyzing perfor-
mance, scalability, and resource efficiency. We evaluate different combinations of or-
chestrator policies and FL configurations using popular ML/FL datasets (MNIST [18]
and CIFAR [19]) and frameworks (PyTorch [20] and TensorFlow [21]). We explore
various resource configurations, server/client co-location, pod placement policies,
and investigate the effects of running multiple FL training workloads simultaneously.

The remainder of this paper is organized as follows: In Section 2, we provide a
short introduction to Federated Learning. In Section 3, we describe a high-level problem
statement, including a critical evaluation of the associated challenges that exist nowadays.
In Section 4, we provide an overview of our testing infrastructure, tools, and experiment
methodology. In Section 5 we provide an in-depth performance analysis for a single
workflow, whereas in Section 6 we provide an analysis for two concurrently executed
workflows. Section 7 presents a literature review including a critical evaluation of the
strengths and limitations of existing approaches. Finally, in Section 8, we summarize
the key findings of our experiments, discuss their implications on Federated Learning
deployments, and suggest future research directions.

2. Background
2.1. Federated Learning Applicability

The origins of Federated Learning date back to a set of seminal papers in 2015–2016 [22,23]
with Google’s GBoard (Android keyboard) one of the early and prominent production systems
that FL was tested and still in use today [24]. There are several real-world cases where FL
is an appealing setting. First, as the premises of FL is to avoid overwhelming, and often
sensitive, volumes of data moving from the edge to the cloud for training, organisations
such as hospitals and financial institutes can take advantage of distributed learning without
sharing patient (i.e., bio-signals, imaging) and customer data (i.e., credit scores) with other
branches and third-party organisations [9]. Second, model training is feasible on data collected
from geo-distributed devices (i.e., smart phones, IoTs, wearable, voice assistants) where the
generation rate and high communication cost makes it impractical to send data to centralized
data centers for processing [16]. Third, it allows for the training of models to be achieved on
larger datasets (the “big data multiplier”), since the data from multiple parties are aggregated
and used to achieve intelligence far greater than what a single entity could achieve [25].
Fourth, the central server does not exercise control over the clients and hence, clients can go
offline willingly or due to unreliable network links, and participate in the model training
process only if they desire with the server selecting clients based on availability and resource
capacity criteria.

2.2. The Federated Learning Process

Figure 1 depicts a typical FL training flow where a FL central server obtains a set of
available clients (c1, c2, . . . , ck) that meet certain criteria (i.e., availability) and subsequently
broadcasts to the clients the training program and an initial model parameterization Wt0

with t0 denoting the initial training round. At this point, the clients update the model
locally wci ,t1 , based on their data and current knowledge without exchanging (sensitive)
data among themselves. The local data of each client and the number of samples sk ∈ S
used during local training can differ per client. When finished, the server collects an
aggregate of the client updates, creating a new global model Wt1 . This process is repeated
for several rounds until it reaches a max number of rounds or the convergence exceeds a
certain accuracy/loss for early termination.

7
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Figure 1. FL example where initial model Wt0 is disseminated to clients for round t0 (step 1), clients
update their local model state at t1 (step 2) and afterward the central FL server employs a global
aggregation to infer a new model state Wt1 (step 3) where in this case a weighted average is used.

2.3. Federated Learning Algorithms

Algorithm 1 provides an overview of FL, where at a high level, FL boils down to the
coordination process overseeing the distributed training of a model on data that never
leaves its origins. That said, both the aggregation function applied by the server and the
client selection can take many forms.

Algorithm 1 High-Level Federated Learning Process

Input: Training rounds T, Clients K, local training epochs E, public dataset D for initial training
Output: Trained model WT
Ensure: Central Server is running

1: W0 ← initialize(D)
2: for each training round t in T do
3: for each ck in K in parallel do
4: wt,ck ← ClientUpdate(Wt−1, E)
5: end for
6: Wt ← Aggregate(wt,c1 , . . . , wt,cK )
7: end for
8: return WT

As an example, one may consider FedAvg [1], the most well-known FL algorithm and
often considered the baseline for FL. After model initialization, FedAvg embraces local
training where each client employs, in parallel, E epochs of Stochastic Gradient Descent
(SGD), where the weights of the local model are updated to optimize the model loss based
on the local data. At the end of the round, the central server collects the derived model
weights per client. Aggregation is then performed using a weighted average where sk is
the number of samples used by each client during local training and S = ∑k sk:

Wt = ∑
k

sk
S

wt,ck (1)

With this, clients that have used more samples have a larger influence on the new state
of the model. Hence, despite the simplicity of FedAvg, the literature has shown that for non-
IID data, there are no convergence guarantees [26]. To compensate, FedProx [3] has been
proposed as a generalization of FedAvg where the clients extend the SGD process so that
clients optimize a regulated loss with a proximal term that enforces the local optimization
of the loss in the vicinity of the global model per training round. Similarly, SCAFFOLD is a
FL algorithm that attempts to optimize the training process for non-IID data by providing
a “correction” mechanism for the client-drift problem during local training [27]. In brief,
SCAFFOLD estimates the update direction for the global model at the FL server and the
update direction for each client with the difference used to correct the local model versions.
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To reduce the significant communication overhead imposed by FL, FedDyn is an algorithm
that “pushes” to the client level more processing and optimization to reduce the overall
communication burden and the number of training rounds [28]. For this, FedDyn adopts
a regularization optimizer per round that dynamically modifies the client side objective
with a penalty term so that, in the limit, when model parameters converge, they do so to
stationary points of the global empirical loss.

In terms of client selection, the aforementioned algorithms employ a common strategy
where the FL server opts for a random selection from the pool of available clients via a
uniform distribution. On the other hand, two notable studies show that performing a biased
selection of clients can yield faster global model convergence and reduce communication
overhead. For example, after a few initial training rounds, the Power-of-Choice [29] opts for
a biased selection towards clients with higher local loss. This way, the algorithm achieves
faster error convergence by 3× and 10% higher test performance. In turn, FedCS [30]
requires clients to send updates of their resource availability (i.e., computational power,
network bandwidth) to estimate the time required to complete a training round that fits a
large sample of clients. Subsequently, it only considers local model updates from those that
actually meet the estimated deadline, penalizing the stragglers.

3. Motivation

This section introduces a use case and challenges that motivate the experimentation
part of this article. The use case involves a large-scale Healthcare Provider with mul-
tiple branches (such as hospitals and clinics) spread across an association of countries
(i.e., the European Union). Each branch of the Healthcare Provider is the bearer of its
patients’ data, with data governance obeying regional legislation. The goal is to develop
medical AI applications trained on the available data. Researchers focus on various areas
like cancer tumor detection in MRIs and abnormalities detection in patient electrocardio-
grams (ECGs). Although each branch can initiate ML model training using its own data,
training complex medical models requires abundant data and computational resources.
While computational resources can be shared among branches, data are unshareable due to
regulatory restrictions.

Therefore, federated learning (FL) is the preferred training paradigm, where models
are trained collaboratively on distributed data without sharing it. To facilitate FL implemen-
tation, the healthcare provider’s IT team adopts a Kubernetes cluster management service.
This service manages the diverse computational resources available at each branch, linking
them through a common control plane (Figure 2). Kubernetes enables provisioning of the
FL workflow by containerizing Flower server and client instances for distributed training.
By establishing a single administrative domain, the healthcare provider can effectively
offer an FL system to multiple researchers, providing them with sufficient computational
resources to train complex models on their localized data. However, as more researchers
adopt FL and resources are divided among them, resource allocation and workload dis-
tribution become critical challenges. Hence, from the Healthcare Provider’s perspective,
the interest is in reducing the FL model training time when utilizing a fixed set of (compu-
tational) resources. Subsequently, the throughput for multiple FL workloads will increase
by reducing the training completion time.

Next, we highlight two main challenges faced in this deployment:resource fitting and
parallel FL workflow execution.
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Figure 2. Healthcare provider use-case with containerized FL (Flower server and clients) employed
over Kubernetes managed cluster administering common control plane and resource pool.

3.1. Challenge 1: Resource Fitting

Resource fitting refers to the process of mapping the available resource pool to the
application services so that the use of the available resources meets the specific application
demands as expressed by the user requirements. This process requires evaluating resource
characteristics, capabilities, and availability, and assigning them to appropriate tasks [31].
To achieve effective resource fitting in FL, users must undergo an extensive and rigorous
process that includes training with different properties, evaluating their impact on resource
utilization and training performance, and revealing the inter-component dependencies.

Defining Application Requirements. While orchestrators like Kubernetes can automate
the deployment of containerized FL workflows, they are generally agnostic to the specific
requirements of each application. Users are responsible for specifying the desired amount
of resources for their application to run smoothly. However, different FL workflows have
varying computational requirements. For example, a time series prediction model may require
significant memory but fewer computations, while a cancer image detection model relies
heavily on computational power. Furthermore, ML models can have diverse parameters,
structures, and libraries such as TensorFlow [21] and PyTorch [20]. To finely tune the resource
requests, researchers need to extensively profile each component of the FL workflows and
identify the application’s actual needs.

Increasing Resource Utilization And Minimizing Wastage. Even when users understand
the workflow profile and resource requirements, they may face limitations in allocating the
desired resources due to quotas or allocation requests from other users in a multi-tenant
environment. It is therefore important to consider the effects of resource saturation and
starvation on submitted FL workflows. Such effects may also be caused by opportunis-
tic schedulers who allocate fewer resources than is necessary, thus causing bottlenecks.
Oppositely, conservative schedulers tend to allocate more resources than is necessary (over-
provision), thus wasting precious resources and minimizing the potential for multi-tenancy.

Revealing Inter-Component Dependencies. Despite the decentralized nature of FL, the train-
ing is still a synchronous process that requires all clients to synchronize with the server
at the end of each training round. This synchronization introduces a dependency among
participating clusters, as rigorous clients have to wait for latent ones, introducing straggling
task effects. To address this, users need to consider the computation- and network-aware
placement of FL clients across managed nodes. By optimizing the placement of clients,
the system can mitigate the impact of stragglers and improve overall efficiency, even with
varying numbers of clients and data sizes.
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3.2. Challenge 2: Parallel Workflows

Multi-tenancy and the implications of parallel FL workflow execution on a single
administrative domain is another point of consideration for our healthcare provider use
case. When users opt to run parallel FL workflows on the same physical resource pool,
complexities arise that can impact the convergence speed and overall efficiency of the FL
process or even cause unexpected system failures. To alleviate these threats, users need to
consider the Resource Contention of parallel workloads, the Communication overhead that
may be caused due to the repeatable patterns of FL workloads, and possible optimization
opportunities for Workflows Synchronization.

Resource Contention. When multiple users choose to run parallel FL workflows on
the same physical resource pool, resource contention issues arise. In limited resources,
lightweight virtualization technologies like containers are used to share the resource pool
among multiple users. However, when multiple FL workflows run simultaneously, the ca-
pacity of the nodes to handle the resource requirements becomes a bottleneck. If multiple
workflows request the same constrained resources, they face resource starvation and
contention problems. This conflict over shared resources (i.e., CPU, memory) hampers
performance, impacts training efficiency, and hinders convergence rates.

Communication Overhead On Synchronization. FL involves frequent communication
between the central server and the distributed client services. This interaction becomes
critical when training models with a large number of parameters. Communication overhead
and contention must be carefully examined to identify potential bottlenecks during FL
cycles. For example, in a scenario where FL clients from different workloads attempt
to update the global model simultaneously, the network remains idle while the clients
are training the model locally, with network spikes occurring at the end of the round,
during which the clients submit the training results to the central server. This strain on the
network impacts overall performance and saturates the network bandwidth. By analyzing
the communication overhead, optimization opportunities can be identified. For instance,
shifting the starting point of one FL workflow or isolating FL servers and clients on different
nodes may help avoid bandwidth congestion and minimize peak network traffic.

4. Testbed Design

FL experiments face challenges due to their distributed nature and reliance on multiple
components and backend systems. These challenges hinder experiment reproducibility,
making it difficult to evaluate performance under different configurations, assess scalability,
and capture the dynamic behavior of FL algorithms. To address these issues, a testbed is
necessary. This testbed should allow experiment replication, facilitate the comparison of
approaches, and streamline the identification of performance bottlenecks and issues. In this
section, we present the design of a Kubernetes-based testbed that provides a controlled
environment for researchers and developers to conduct reproducible FL experiments with
consistent settings, configurations, and data.

4.1. Building Parameterizable Containers for Federated Learning

Containers have proven to be effective in providing lightweight and isolated environ-
ments for testing distributed applications [12,32]. However, incorporating FL workflow
components into containers presents challenges due to the need for dynamic parameteriza-
tion, dependency injection, and complex networking requirements between clients and a
central server, which can be difficult to manage within the scope of the containerized envi-
ronment. These obstacles hinder the direct usability of FL frameworks within containerized
environments, limiting their portability and scalability benefits. Therefore, there is a need
for an FL framework able to interact with an external cluster orchestrator responsible for
managing the execution order, network connectivity, and resource allocation to ensure the
effective management of the distributed training process while maintaining the portability
and scalability benefits offered by containerization in a cloud-edge continuum.
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To address these challenges, we built a tool based on the Flower FL execution frame-
work to interact with an external cluster orchestration system, out-of-the-box models,
parametrizable configurations, and fine-grained monitoring. Our approach wraps Flower’s
configuration into a generic frontend script. This script serves two purposes: (i) defining the
container’s runtime environment, including model type, number of rounds, aggregation
algorithm, etc., and (ii) configuring Flower’s parameters accordingly and invoking the
appropriate backend implementation. Currently, we support two deep-learning backends,
PyTorch and TensorFlow, and two dataset types, MNIST and CIFAR-10. More information
about the ML datasets and backends can be found in Sections 4.5 and 4.6, respectively. We
also introduced code breakpoints for measuring the execution duration of ML training,
evaluation, round duration, and code for capturing overall accuracy and loss of the FL
pipeline. For building the containers, we utilized Dockerfiles [33]. These Dockerfiles in-
clude the code of the Flower FL framework and provide all the necessary instructions and
environment variables for running the FL services. The resulting Docker image contains
the required service codes, dependencies, and files and is uploaded to a private Docker
repository. This allows us to download the image at runtime on the compute node, which
can function as either an FL client or server.

4.2. Multi-Node Container Orchestration

Kubernetes is an open-source platform that streamlines the deployment, scaling,
and management of containerized applications, relieving users from infrastructure concerns.
It comprises two main components: the centralized control plane (Kubernetes master) and
the decentralized data plane. The control plane consists of modular services like the K8s
API, scheduler, and controller. The data plane is made up of distributed node agents called
Kubelets [34], which act as local executors following commands from the master, such
as starting or stopping containers. This separation allows users to define their desired
application state, with Kubernetes striving to maintain that state. Figure 3 provides a
high-level overview of our Kubernetes-enabled testing environment.

ContainerContainerPhysical Node

KubeletDockerMonitoring Agent

FL Framework Pod 

FL Service

FL Datasets

FL Framework Pod 

FL Service

Kubernetes
Master

API

Scheduler

Controller

Figure 3. High-level overview of multi-host Kubernetes deployment.

A notable feature of Kubernetes is its ability to schedule the deployment and execution
of containers across a node cluster using a scheduling algorithm. However, the default
scheduler is designed to optimize node utilization and remain application-agnostic. For ex-
ample, it may not consider data locality in scenarios like federated learning, where training
data are distributed across edge devices or clusters. This can increase network traffic
and latency due to unnecessary data movement. Moreover, federated learning requires
frequent communication between edge devices/clusters and the central server for model
updates. The default scheduler does not optimize scheduling decisions with regard to
communication overhead, potentially increasing latency and impacting the training pro-
cess. Additionally, each edge device or cluster in federated learning has its own resource
constraints, such as limited computation power, memory, and network bandwidth.

In our analysis, we examine the default policies of Kubernetes for federated learning
applications. We specifically assess the performance of the default scheduler under two
scenarios: one with user-defined constraints that cater to the application’s specific require-

12



Future Internet 2023, 15, 261

ments, and another without any user-defined constraints. Our analysis revolves around
three key user-based constraints:

• Placement constraints: dictate the selection of nodes for scheduling FL clients, specifying
which nodes should be chosen.

• Resource constraints: determine the minimum and maximum amount of resources,
such as CPU and memory, that an FL client can consume.

• Timing constraints: define when a new training workflow will be instantiated.

Our analysis aims to deliver insights into the impact of user-defined constraints and
the potential for automatically inferring these constraints, rather than proposing a new
scheduling algorithm.

4.3. Testing Workflows in Kubernetes

Kubernetes is a powerful platform, but it has a steep learning curve. Testers need
to acquire knowledge of its concepts, configuration, and management, which can be
challenging. Moreover, the dynamic nature of Kubernetes deployments can pose challenges
when executing specific testing scenarios, especially those involving conditional executions.

To simplify testing on Kubernetes, we utilized the Frisbee platform, a Kubernetes-
native framework specifically designed for testing distributed systems [35,36]. Frisbee offers
several advantages over vanilla Kubernetes, such as orchestrating the testing actions and
providing abstractions for managing containers as logical groups (e.g., servers, clients). This
way, we can easily create complex placement schemes, as shown in Listing 1. Additionally,
we take advantage of Frisbee’s volume-sharing feature to enhance dataset acquisition from
clients. Instead of each client downloading the dataset locally, we create a virtual shareable
folder and pass it to the virtualized environment. FL clients are then programmed to read
the datasets from this shared folder, reducing network pressure as the number of clients
increases. Furthermore, to ensure reproducibility and flexibility for future experiments, we
have incorporated the testing patterns for Federated Learning into the GitHub repository of the
Frisbee platform [37]. This allows researchers to easily repeat and configure the experiments
for different frameworks and datasets.

4.4. Monitoring Stack

Our testing environment incorporates a transparent monitoring stack (Figure 4) ca-
pable of extracting various utilization metrics from the system under test. These metrics
encompass CPU, memory, network utilization, and FL-level metrics, including model accu-
racy/loss and training time per round (Table 1). To achieve this, we deploy a containerized
monitoring agent on each node that follows a probe-based multi-threaded paradigm [38].
The agent, namely cAdvisor [39], collects performance metrics by initiating different probes
for each sub-component, such as the cgroup probe and OS probe. It then exposes an http
endpoint for Prometheus [40] to periodically retrieve and store the metrics in its embedded
timeseries databases. Prometheus is integrated with Grafana [41] to provide real-time
inspection of our experiments through its dashboard-as-a-service software.

As for the performance and FL monitoring metrics, the challenging part is to expose
fine-grained metrics from the running FL workloads. To do that, we enhance the existing
codebase of Flower to record accuracy, loss, and duration data into well-organized files,
which are stored locally on each client. To capture performance metrics, we employ timers
that intersect with the existing methods to extract the duration of training time. As for
accuracy and loss, we extract these metrics from the FL master. At the end of the experiment,
these files are automatically transferred into a central repository and combined with the
performance metrics collected by Prometheus.
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Figure 4. Monitoring stack for repeatable FL experimentation.

Listing 1. Snippet of a Frisbee scenario showing placement policies for groups of clients.

1 ---
2 apiVersion: frisbee.dev/v1alpha1
3 kind: Scenario
4 metadata:
5 name: node -placement
6 spec:
7 actions:
8 # Step 1: Create FedBed server
9 - action: Service

10 name: server
11 service:
12 templateRef: frisbee.apps.fedbed.server
13 inputs:
14 - { min_fit_clients: 20, min_available_clients: 20 }
15
16 # Step 2: Place clients [0,4] to Node -1
17 - action: Cluster
18 name: group -a
19 depends: { running: [ server ] }
20 cluster:
21 placement:
22 nodes: [ k8s -node1 ] # Change values here
23 templateRef: frisbee.apps.fedbed.client
24 inputs:
25 - { fl_server: server , total_nodes: 20, node_id: 0 }
26 - { fl_server: server , total_nodes: 20, node_id: 1 }
27 - { fl_server: server , total_nodes: 20, node_id: 2 }
28 - { fl_server: server , total_nodes: 20, node_id: 3 }
29 - { fl_server: server , total_nodes: 20, node_id: 4 }
30
31 # Step 2: Place clients [5,9] to Node -2
32 - action: Cluster
33 name: group -b
34 depends: { running: [ server ] }
35 cluster:
36 placement:
37 nodes: [ k8s -node2 ] # Change values here
38 templateRef: frisbee.apps.fedbed.client
39 inputs:
40 - { fl_server: server , total_nodes: 20, node_id: 5 }
41 - { fl_server: server , total_nodes: 20, node_id: 6 }
42 - { fl_server: server , total_nodes: 20, node_id: 7 }
43 - { fl_server: server , total_nodes: 20, node_id: 8 }
44 - { fl_server: server , total_nodes: 20, node_id: 9 }
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Table 1. Experimental Testbed Metric Description.

Metric Category Description

Accuracy FL/ML The model accuracy per round

Loss FL/ML The model loss per round

Round Duration Performance The overall round duration

Overall Duration Performance The overall FL duration

CPU Utilization Utilization The CPU utilization of FL client or server

Memory Utilization Utilization The memory utilization of FL client or server

Network I/O Utilization The network data (both incoming and outgoing)
of FL client or server in bytes

Disk I/O Utilization Disk I/O of FL client or server in bytes

4.5. ML Datasets for Experimentation

Driven by our motivating example of a healthcare provider in the field of imaging
diagnostics (i.e., MRI-based research), we have based our evaluation on two widely recognized
databases in computer vision: MNIST [18] and CIFAR-10 [19].

The fundamental difference between them lies in the complexity and characteristics
of the images they contain. MNIST is a simple database that consists of grayscale images
of handwritten digits. It includes 60,000 training images and 10,000 test images, each
measuring 28 × 28 pixels. The dataset is divided into 10 different classes representing
digits from 0 to 9. CIFAR10 is more complex and contains colored images of everyday
objects like airplanes, cars, and animals. These images are larger, measuring 32 × 32 pixels,
and contain three color channels (RGB). CIFAR-10 consists of 50,000 training images and
10,000 test images, spanning 10 distinct object classes.

Albeit both databases are common in the benchmarking of computer vision algorithms,
the choice between MNIST and CIFAR-10 depends on the complexity of the task and
the specific application scope. MNIST, with its simplicity and small image size, serves
as a foundational dataset for evaluating and prototyping machine learning algorithms.
It is commonly used to explore different classification techniques and benchmark the
performance of new models. On the other hand, CIFAR-10 presents a more challenging
task for algorithms due to its higher complexity and inclusion of color images. It serves as
a stepping stone to more advanced computer vision tasks and is often used to assess the
performance of deep learning architectures. Working with CIFAR-10 allows researchers to
tackle the challenges posed by color information and gain insights into developing more
robust and accurate models for image classification.

4.6. ML Backends and Models

PyTorch and TensorFlow are popular deep learning frameworks with distinct features
capable of serving as the ML backend for FL deployments. Both libraries are open-source
and utilize data flow graphs, where nodes represent mathematical operations and edges
represent tensors (multi-dimensional arrays) carrying data. However, they differ in their
programming interfaces. TensorFlow, developed by Google, initially adopted a declarative
programming model with a static computational graph. On the other hand, PyTorch follows
an imperative programming model, allowing computations to be defined and executed
dynamically. Despite this distinction, both frameworks enable the seamless deployment of
models on CPUs or GPUs without needing code modification.

To assess their performance on the MNIST dataset, we construct a Convolutional Neu-
ral Network (CNN) with connected layers using both PyTorch and TensorFlow. The net-
work architecture includes multiple layers, with six trainable layers: two 2D convolutional
layers, two 2D dropout layers, and two linear layers. Additionally, there are non-trainable
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layers for activation and transformation operations, such as a ReLU activation layer after
the first and second convolutional layers, a MaxPool2D layer following the second ReLU
layer, and a Log-Softmax activation function for generating the final output. For CIFAR
datasets, we implement the well-known MobileNetV2 model architecture in both Tensor-
Flow and PyTorch. In brief, MobileNetV2 adopts a CNN model commonly used for image
classification, comprising 53 layers. More details about the MobileNetV2 architecture can
be found in [42].

4.7. Experimental Testbed

For the experimentation, we consider a bare-metal Kubernetes cluster with four
server-grade physical nodes, each equipped with 24 cores over 2 Intel Xeon E5-2630v3
processors, 128 GB of DDR3 ECC main memory, and 250 GB of locally attached NVMe
storage. The four nodes are connected via 1Gbps links to the top-of-rack switch. On top of
the physical infrastructure, we deploy the rest of our end-to-end evaluation software stack,
which operates as our main evaluation tool and automates the submission of FL systems,
algorithms and ML models.

5. Case-Study: Resource Fitting
5.1. Experiment 1: Comparison of Native Performance of ML Backends

This experiment compares the performance and resource utilization of different ma-
chine learning (ML) libraries and models within a Federated Learning (FL) pipeline. We
focus on TensorFlow and PyTorch as ML backends and evaluate their performance using
the MNIST and CIFAR-10 datasets. We consider various factors such as model accuracy,
completion time per training round, and resource utilization, including CPUs, memory,
and network traffic. The FL workloads are executed for five rounds, utilizing an FL client
and server with unrestricted resources. We determine the round duration by measuring
the average duration of the last five rounds, while the accuracy of the fifth round serves
as the representative value. To calculate CPU utilization we average the rate of change
of cumulative CPU time consumed over a sampling window. Equally, we use the same
formula for calculating the network throughput. In this case, the cumulative count of bytes
that is transmitted and received. The term “window” refers to a specific time interval
or data range over which the rate of change is calculated. To minimize the impact of
monitoring on actual performance, we set the sampling interval to 15 s.

5.1.1. Training Round Duration and Model Accuracy

Firstly, we investigate if there is a significant variance in the duration of training
rounds and the accuracy of the ML model, depending only on the dataset and ML backend.
Figure 5a shows that both TensorFlow and PyTorch have comparable accuracy on the
MNIST dataset, while PyTorch outperforms TensorFlow by 5% on the CIFAR-10 dataset.
However, the average round duration varies significantly between the two ML backends
and is an aspect for consideration (Figure 5b). Despite the 5% accuracy gain, training
the MobileNetV2 model on PyTorch has a round duration of slightly over 5 min, while
TensorFlow takes up to 140 s. Similarly, TensorFlow outperforms PyTorch, in terms of
training round completion, by a large margin (around 60 s) for the CNN model on the
MNIST dataset. Hence, the absence of a dominant implementation across all cases, highlights the
need to finely tune the ML backend and model architecture on a per-case basis, in order to improve
the duration and accuracy of the FL pipeline.
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Figure 5. FL-level performance overview for different ML backends and datasets. (a) Model accuracy
after 5 training rounds. (b) Mean training round duration after the completion of 5 rounds.

5.1.2. Resource Utilization for FL Clients and Server

Next, we elaborate on the reasons for the differences in the per-round time dura-
tion by analyzing the resource utilization of FL clients and servers for each ML backend.
In Figure 6a, we compare the CPU utilization, memory allocation, and network traffic for
different models, frameworks, and datasets on the client services. For clarity, we note that
for the network, we account only for the outgoing traffic from the clients to filter noise,
such as downloading the dataset. Interestingly, all examples utilize a comparable number
of CPUs, with the only exception being the TensorFlow CNN model for the MNIST dataset.
We attribute this behavior to the simple data layout of MNIST and the asynchronous capa-
bilities of TensorFlow, which aims to load up the CPUs with as much work as possible and
process a larger number of images in a parallel and vectorized fashion.

(a) Resource reservation as requested by PyTorch and TensorFlow clients.

(b) Resource reservation as requested by PyTorch and TensorFlow server.

Figure 6. Resource reservation for different Datasets/Framework/Models.

Moving now to the FL server resource consumption (Figure 6b), we first observe that
PyTorch features a slightly higher CPU utilization than TensorFlow. Another observation is
that TensorFlow consistently requires more memory and network bandwidth than PyTorch.
This suggests that TensorFlow may not be suitable for FL training on extremely constrained
IoT or edge devices. Additionally, the TensorFlow deployment exhibits higher memory
utilization and network traffic on the server side than PyTorch, as shown in Figure 6b.
These findings indicate that TensorFlow-based FL pipelines are memory- and network-intensive,
while PyTorch-based FL servers require more processing power.
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5.1.3. FL Network Usage Pattern

Although the previous remark effectively highlights the divergence in performance
profiles between ML implementations, an important question arises regarding the domi-
nance of recurrent or episodic events in these profiles. The network traffic patterns depicted
in Figure 7a reveal that both ML backends exhibit recurring patterns, characterized by
alternating periods of (a) relative inactivity, attributed to the initiation of local training on
clients; and (b) high activity, attributed to the communication among clients and the server
for the exchange of model updates and parameterization between rounds.
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Figure 7. Network profiles profile for different framework/datasets/models. (a) Outbound Network
Traffic for the CIFAR10 dataset. (b) Outbound Network Traffic for the MNIST dataset. The ratio
between the sampling interval and the local processing can affect the visualization.

Specifically, after the initial model dissemination, the communication among clients
and the server unfolds in three distinct steps. In the first step, the client transmits the local
training results (model weights) to the server. In the second step, the server aggregates
the outcomes from all clients and computes performance metrics (i.e., entropy) to assess
if additional rounds are required. Finally, in the third step, the server sends the updated
weights back to the clients to initiate a new round of local training.

As illustrated in the PyTorch plot of Figure 7b and in the zoom box of Figure 7b,
the interval between the two peaks depends on the duration required for the server to
aggregate and evaluate the results. A shorter duration results in the peaks appearing
closer to each other. If the distance between peaks is less than twice the sampling interval,
the synchronization step exhibits a “rectangular” shape. If the distance is less than one
sampling interval, the peaks are calculated within the same interval, creating a “triangle”
shape (as observed in TensorFlow-MNIST). In addition to the visualization artifacts, it
is worth noting that TensorFlow demonstrates steeper peaks and valleys compared to PyTorch,
indicating larger communication messages and consequently higher demands for network bandwidth.
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5.2. Experiment 2: FL Clients’ and Server Collocated vs. Isolated

In this experiment, we investigate the performance implications when collocating the
FL server with the client services. For this, we explore two configurations: (i) the client and
server share the same physical node and resources; and (ii) the client and server run on
separate nodes. The purpose of this experiment is to establish a baseline for subsequent
experiments that involve multiple clients. Our goal is to determine whether it is feasible
to schedule the server on the same testbed node as the clients without affecting their
performance, or if a dedicated physical node for the server is necessary.

5.2.1. Collocation Impact on Training Round Duration

We found that the difference in per-round duration between the co-located and iso-
lated configurations was negligible. For TensorFlow, the co-located execution took about
40.7 s per round, while the isolated execution took 41.4 s per round, resulting in a mere
1.6% difference. Similarly, for PyTorch, the co-located execution took 90.8 s per round,
and the isolated execution took 92.4 s per round, resulting in a 1.7% difference. Hence, the
duration of a training round is not impacted by the collocation of the FL server and clients.

5.2.2. Collocation Impact on Resource Utilization

We also examined the resource utilization for the two setups. The results in Figure 8a
present a similar negligible difference in compute and memory footprint. However, we
observed a significant difference in network traffic for the TensorFlow framework. When
the clients and server are deployed on different machines, the network throughput is
higher and more stable than the collocated configuration. At the same time, we can notice
a relationship between memory and network. The faster the network, the less the allocated
memory. This relation can be attributed to buffering effects on the clients, who need to store
packets locally before sending them to the server. Additionally, this observation suggests a
correlation between TensorFlow as a network-intensive framework and the overhead of
network virtualization in Kubernetes. In summary, our findings indicate that the co-location
and isolation of client and server do not significantly impact the deployment’s performance or
resource utilization metrics, except for the network traffic of network-intensive ML models/backends
like TensorFlow.

(a)

(b)

Figure 8. Analysis of collocations effects for PyTorch and TensorFlow. (a) Resource utilization for
PyTorch client, in collocated and isolated setups. No apparent variation between the two setups.
(b) Resource utilization for TensorFlow client, in collocated and isolated setups. Insignificant variation
between the two setups.
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5.3. Experiment 3: Performance of ML Backends under Constrained Resources

In previous experiments, we assessed the performance of FL deployments on fully
allocated “server-grade” machines. In such a configuration, the containerized FL clients
can use all of the CPU resources available on the node where the container is running.
However, this scenario is uncommon at the edge, where devices have limited resources
or share them among multiple applications. To understand how resource allocation can
affect FL performance, we now focus on investigating FL deployments under different
CPU allocation policies.

While resource management (reservation or limitation) can apply to other resources
like memory and network, there are some distinctions. Memory management requires a
static definition of the desired capacity, as dynamically shrinking or expanding memory
can lead to application crashes (due to invalid memory addresses causing segmentation
faults) or frequent swapping to disk, which harms overall performance. Network band-
width can be limited, but end-to-end reservation is impossible without complete access to
the network’s switches and routers. Therefore, our investigation focuses solely on CPU
adjustments, which can be made without affecting the application’s correctness. For our
FL deployment, we specifically consider the PyTorch CNN model applied to the MNIST
dataset, and study the effects CPU policies may have on the training performance and the
utilization of memory and network resources.

5.3.1. Resource Configurations for Containerized Services

Figure 9 presents the results of studying the round duration and average CPU utiliza-
tion for different resource reservation policies. These policies represent various scenarios
that a user may encounter in an FL deployment:

• Native: This configuration serves as the baseline, where no resource capping policies
are applied. Because this represents what a non-expert user might consider first, we
use it interchangeably with the term “Native performance”.

• Extreme over-provisioning: Users aim for optimal training time without much con-
cern for resource spending. This involves reserving more CPUs than what the ML
frameworks require. For our setup, this configuration entails reserving 16 CPUs.

• Best Resource Fitting: This configuration reserves the number of CPUs that the ML
framework can fully utilize without significantly extending the training time. In our
setup, this is eight CPUs.

• Resource Constrained Environments: This configuration examines how FL frameworks
perform in execution environments with limited resources. This can be motivated by
cost reduction or resource-constrained edge devices (like single-board computers).
The available CPUs for the client are limited to four or two.

We note that in all configurations, the accuracy remains consistent (as shown in
Figure 5a) and thus, we omit the respective plots.

Starting from the Native and Extreme Over-Provisioning configurations, we observe
that the FL workflow only utilizes nine CPUs, demonstrating that the training time matches
the native performance in both cases (left plot). However, for Extreme Over-Provisioning,
six CPUs remain unused (right plot). This highlights that FL/ML systems may not fully
utilize available resources, leading to unnecessary resource spending. Next, we examine
the Best Resource Fitting scenario. Compared to Extreme Over-Provisioning, this configu-
ration reduces the number of required resources by 50% (from 16 to 8) but with a modest
22% increase in training time. Therefore, it becomes crucial to develop a Kubernetes scheduling
mechanism that dynamically adjusts the capping to match the native value of ML frameworks.
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Figure 9. Correlation between training time (left) and resource allocation strategies (right).

Now, for Resource Constrained environments, there is a trade-off between increased
training time and reduced processing power. Reserving four CPUs increases the training
time by a factor of three (from 100 s to 300 s) but reduces the CPU allocation by a factor of
eight compared to the native performance (from 24 to 4). In the extreme case of two CPUs,
the training duration is doubled compared to four CPUs and is six times higher than the
native performance. This indicates that the training time increases inversely exponential to the
available processing power.

5.3.2. Inter-Winded resources

Figure 10 examines the impact of capped CPUs on memory and network metrics.
In terms of memory, we observe minimal impact as the used memory remains unchanged.
However, the network is significantly affected. While the total number of transferred bytes
remains the same, the transmission of can vary significantly. In particular, the outliers are
caused by the fewer reserved CPUs (four CPUs and two CPUs), resulting in increased per-
round training time as now the processor becomes more strained due to handling both the
computations and the network I/O coordination. We also observe a significant reduction
in the number of transmitted packets when reservation (capping) policies are applied.
In conclusion, CPU capping can influence resource utilization of other uncapped resources, such as
network traffic or packets.

Native 8CPUs 4CPUs 2CPUs Native 8CPUs 4CPUs 2CPUs Native 8CPUs 4CPUs 2CPUs16CPUs 16CPUs16CPUs

Figure 10. Correlation between CPU allocation strategies (x-axis) and utilization of memory and
network resources (y-axis).

5.4. Experiment 4: Service Placement for Multi-Client Deployments

In this experiment, we build upon the previous experiment and investigate the FL per-
formance using a single server and multiple clients. We employ 20 clients with no resource
capping and evaluate how the distribution of clients across physical nodes can affect the
performance of an FL deployment. As a baseline, we employ the default placement policy
of Kubernetes, and compare it against a manual placement, where five client containers are
fairly distributed to each physical node. For thoroughness, we repeat this experiment three
times to assess the determinism of the Kubernetes placement strategy along with its impact
to the predictability of the FL training time.

Default Placement Is Unbalanced and Unpredictable

Figure 11a depicts the distribution of client containers across the physical nodes of the
Kubernetes cluster when adopting a manual placement compared to the default placement
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strategy employed by Kubernetes. From this, we immediately observe that the default
Kubernetes placement strategy exhibits two undesirable characteristics. First, it results in an
uneven load distribution among nodes. Second, the distribution is unpredictable because
clients may be assigned to different physical nodes during each execution. In contrast,
the manual strategy ensures an equal and deterministic distribution of client containers
among the physical nodes. It is important to note that with 20 clients and 4 physical nodes,
one would expect the manual distribution to be split, with each node hosting 25% of the
total clients. However, we see a <23.8%, 23.8%, 23.8%, 28.6%> split. The difference is
attributed to the fact that 1 physical node must also run the FL server, effectively deploying
21 containers. As demonstrated in the experiment referenced in Section 5.2, the collocation
of clients and the server does not impact overall performance.

(a)

+11.4% + 24.5% + 25%

Se
co
nd
s

(b)

Figure 11. Training performance for different placement strategies. (a) Pod Placement strategies.
The default strategy causes an unbalanced load among nodes. (b) FL round duration for different FL
clients’ placement strategies. The default strategy is non-deterministic and less performant than the
manual strategy.

To assess the impact of the placement strategies on the FL training performance,
we measure the duration of the FL rounds for each strategy, as depicted in Figure 11b.
The manual strategy achieves the best performance, with a round duration of approxi-
mately 200 s. The default strategy performs worse than the manual strategy and is less
deterministic. The first trial of the default strategy exhibits an 11.4% longer duration, while
the subsequent trials (Default-2 and 3) with more uneven distributions increase the training
time by about 25%. We observe that over-provisioned nodes, where multiple clients share
limited resources, resulting in each client receiving fewer resources compared to clients on
under-provisioned nodes. To further investigate this issue, we analyze the CPU profiles of
the clients in Figure 12. The clients assigned through the manual strategy consume roughly
the same CPU resources. In contrast, the default placement strategy of Kubernetes creates
imbalances among the clients, which leads to straggling nodes [43] that become bottlenecks
and prolong the training time. Examples of straggling clients are c1, c9, and c18 of the
Default-3 run.

Based on our analysis, we draw two key takeaways: (i) Evenly distributed FL clients
contribute to improved performance (reduced training time) and predictable resource profiles of
FL clients; (ii) the default Kubernetes scheduler creates an unbalanced FL deployment and may
potentially introduce stragglers.
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Manual

Default-1

Default-2

Default-3

Figure 12. CPU utilization for different FL clients’ (c0–c19) placement strategies. The default strategy
is non-deterministic (different CPU per execution) and with significant variation among clients.

6. Case-Study: Parallel Workflows
6.1. Experiment 1: Evaluating Performance of Parallel Workflows

This experiment evaluates the overall performance when employing two FL workflows
in parallel, meaning both are scheduled for execution concurrently on the same physical
resources. By studying multiple parallel workflows instead of just one, we can differentiate
factors specific to individual workflows from those with broader implications. Two different
configurations are employed to conduct this experiment. At first, the workflows run
unrestricted, allowing them to utilize their full native performance capacity. Next, each
client is limited to two CPUs, thus enabling workflows with a larger number of clients
while maintaining the training time within a reasonable timespan (as seen in Figure 6).

6.1.1. Enhanced Performance Stability with Capping

In the absence of resource capping, clients consume resources on a physical node arbi-
trarily, resulting in undesirable consequences. Firstly, the chaotic CPU usage (see Figure 13)
leads to frequent context switching and cache invalidation at the operating system level,
resulting in increased overheads and longer training times. Secondly, without explicit
placement or resource requirement hints, the Kubernetes scheduler tries to maximize
CPU utilization by fitting as many containers as possible onto a single physical machine.
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However, as demonstrated in previous experiments, this approach creates a significantly
imbalanced load among nodes. As a result, the performance profile becomes highly unsta-
ble (see Figure 14), making it challenging to differentiate between different training phases
(e.g., local training and client-to-server communication) within the same workflow. On the
other hand, enforcing resource-capping policies brings about several benefits. It leads to more
regular CPU utilization and improves the placement of containers on nodes, thereby enhancing the
stability and performance of workflows.

Native In-Sync

Capped In-Sync 

C
PU

s
C
PU

s

Figure 13. Average CPU utilization across all clients of parallel workloads. Properly capping the
CPU can yield more predictable and stable utilization profiles.
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Intervals

Capped In-Sync

Native In-Sync

Figure 14. Per-client CPU utilization for parallel workloads.

6.1.2. Potential Deadlocks Caused by Capping

While resource capping offers benefits, there is a potential drawback in the context
of Federated Learning: the possibility of deadlocks. This arises from the combination of
three factors. First, training rounds commence only when all clients have joined the server.
Second, resource reservation employs “thick-provisioning”, allocating the full requested
resources upon creation. Third, each workflow requires the total available resources from
the node. The problem occurs when the shared physical resources become insufficient
to serve both workflows simultaneously. If a node from workflow B interferes with the
scheduling of workflow A, the resources on the node may deplete before all clients of
workflow A are scheduled. Consequently, the federated learning server will not dispatch jobs to
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the scheduled clients, rendering them idle or wasting resources, and mitigation of the deadlock risks
needs careful resource management and allocation strategies.

6.2. Experiment 2: Analyzing Network Behavior of Parallel Workflows

In Figure 14 we observe that, when two capped workflows are started simultaneously,
their performance patterns align perfectly, resulting in synchronized peaks and valleys.
However, the synchronization of communication phases (valleys) doubles the requirements
for network bandwidth, which is ironic given that the network remains largely idle for
most of the training time. Unfortunately, dividing network bandwidth is more challenging
than dividing CPUs or memory because network operations are influenced by external
factors such as congestion and latency.

In this experiment, we investigate the possibility of reducing peak demand for band-
width by spreading out the network operations over time. To do so, we examine the
behavior of parallel workflows in two scenarios: (i) simultaneous execution, denoted as
in-sync; and (ii) the execution with a time offset, denoted as shifted. These scenarios are
compared against a baseline where workflows are started simultaneously without any cap-
ping (native). We note that to determine an optimal time offset, we leverage the predictable
performance profile of capped workflows and attempt to find an offset that minimizes
overlap during communication phases. In our setup, a time offset of 3 min proved to
be near-optimal.

Predicting Workload Shifts for Reduced Bandwidth

Figure 15 demonstrates the highly predictable performance profiles of capped work-
flows, with actual CPU utilization closely matching the theoretical estimation. Furthermore,
Figure 16 reveals that by carefully scheduling the start times of workflows, we can achieve
the same training time while utilizing only half of the network bandwidth compared to
the in-sync execution. Though somewhat arbitrary, the 3 min offset between workflows
effectively reduces bandwidth requirements by minimizing overlap during communication
phases. Consequently, an important area for future investigation involves exploring techniques
to determine the optimal shift between workflows, aiming to further minimize communication
phase overlaps.

Intervals

Theoretical Shifted

C
PU

s

Capped Shifted

C
PU

s

Figure 15. Performance prediction and performance upon actual deployments. Federated learning
workloads can be highly predictable.
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Figure 16. Duration per round and Peak network traffic of FL Servers. Capped and Shifted workloads
have smaller round duration, with shifted workloads needing less bandwidth to be optimal.

7. Related Work

Due to its large-scale distributed nature, Federated learning (FL) presents unique
challenges in creating FL orchestration systems including the minimization of communi-
cation cost, node heterogeneity, and unreliable network links [2,9]. Evaluating FL system
performance requires stress testing the infrastructure with representative workloads and
analyzing a wide range of quantitative and qualitative performance metrics [44].

Several FL frameworks exist in the ML community. LEAF offers FL training workloads
and datasets [45], while FedML [46] and Flower [47] provide interoperability and extensibil-
ity across ML models. However, these frameworks often overlook the implications related
to computing systems. Simulation-based studies like FedScale [17] examine the system-
based performance of FL at scale by simulating realistic data partitioning approaches,
network delays, and resource constraints. This approach, however, is only effective for
theoretical estimations rather than benchmarking actual implementations. Oppositely,
studies like EdgeTB [16] combine distributed learning techniques with virtualized testbed
but do not explore the full range of implications related to FL and ML frameworks, such as
resource fitting or parallel FL workflow execution. As a result, no evaluation framework
currently examines resource fitting and co-location of FL workloads in cloud and edge
environments while providing configurable workloads and datasets.

Performance profiling on cloud-based environments with virtualized resources has
been explored from various perspectives, such as resource allocation, workload co-location,
and interference analysis in cloud data centers [48–50]. Existing efforts often extract traces
from entire data centers without considering the performance of specific applications.
PANIC focuses on extracting insights from complex applications and creating their re-
source profiles [51]. BenchPilot [44] automates the deployment and evaluation of big data
streaming analytics frameworks on edge data centers, aiming for repeatability and repro-
ducibility. Unfortunately, these frameworks do not provide specialized functionalities for
FL workloads and primarily focus on general-purpose applications running on virtualized
cloud or edge resources.

Another aspect of research involves extracting performance insights from co-located
FL workloads and analyzing how native cloud-based orchestrators place FL services
in virtualized environments. Chen et al. [52] analyze interference impact on hardware
and application-level behaviors in co-located online and offline workloads on the cloud.
Researchers also try to exploit this information to create more efficient workload schedulers.
Frameworks like Perph [53] and Perphon [54] employ ML-based methods for performance
prediction and resource inference, while CTCL scheduler [55] aims to improve resource
utilization and minimize task evictions in containerized cloud computing environments.
While these papers contribute to resource allocation, workload co-location, and interference
analysis in cloud data centers, they lack a specific focus on FL pipelines.

8. Key Takeaways and Future Work

The article presented a comprehensive and reproducible experimentation process
that aimed to understand the relationship between deployment configurations and the
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performance of Federated Learning workflows. The study integrated Kubernetes for cluster
orchestration and Flower for distributed training, both of which are widely used open-
source frameworks. The benchmarking analysis focused on assessing the performance of
the default scheduler with and without user hints regarding the specific requirements of a
Federated Learning deployment. We experimented using two popular ML/FL datasets
(MNIST, CIFAR10) and two ML backends (PyTorch, TensorFlow).

Our experiments provided many takeaways that we divide into three classes:

1. Native Performance of ML Frameworks:

• TensorFlow requires more memory and network resources per FL training round,
but demands less computational processing power compared to PyTorch.

• The performance and accuracy of these frameworks can vary depending on the
model architecture and dataset.

2. Performance over Constrained Resources:

• Training time increases exponentially as processing power decreases.
• Implementing resource-capping policies can improve workflow stability, but CPU

capping may impact the utilization metrics of other uncapped resources like
network traffic.

• Resource homogeneity leads to faster training times and more predictable re-
source utilization.

3. Scheduling across Multiple Nodes:

• Using the default Kubernetes scheduler without user hints can result in imbal-
anced deployment and introduce stragglers in a Federated Learning deployment.

• Deadlocks can occur when multiple concurrent training workflows have resource-
capping constraints.

• Introducing time skew among concurrent workflows can significantly reduce
network bandwidth requirements.

• Co-locating clients and servers does not affect performance and resource utilization.

Based on the aforementioned findings, it is clear that local optimization alone, whether
at the FL framework or orchestrator level, is insufficient. To achieve globally optimal
decision-making, information exchange across layers is necessary. For example, FL frame-
work client-selection algorithms should consider Kubernetes information, while Kubernetes
should incorporate FL-level metrics like entropy loss and completion time. Furthermore,
since FL involves geo-distributed deployments with unpredictable runtime conditions,
continuous updating of information is crucial. Fortunately, FL exhibits highly predictable
performance patterns that can reduce the need for continuous profiling and enhance de-
ployment performance.

Building upon these insights, our future work focuses on two main objectives. Firstly,
we aim to develop a recommendation service that provides (near-) optimal scheduling
policies and configurations for federated learning. This service will be particularly valuable
for novice users, offering a solid starting point to minimize resource wastage and prevent
resource starvation and contention in the presence of multiple workloads. Additionally,
our second goal is to create a runtime module specifically designed for profiling the current
state of a dedicated FL cluster. This module will dynamically adjust configurations based on
current demand and user-defined policies. By leveraging data from ongoing runs, we can
fine-tune the selected parameterization to ensure efficient resource allocation and meet the
evolving requirements of the FL environment. We aspire that such an adaptive approach
will ultimately lower the adoption barrier for FL by reducing the time and monetary efforts
involved in the design, testing, and runtime management.
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22. Konečnỳ, J.; McMahan, B.; Ramage, D. Federated optimization: Distributed optimization beyond the datacenter. arXiv 2015,

arXiv:1511.03575.
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Abstract: With the development of computationally intensive applications, the demand for edge
cloud computing systems has increased, creating significant challenges for edge cloud computing
networks. In this paper, we consider a simple three-tier computational model for multiuser mobile
edge computing (MEC) and introduce two major problems of task scheduling for federated learning
in MEC environments: (1) the transmission power allocation (PA) problem, and (2) the dual decision-
making problems of joint request offloading and computational resource scheduling (JRORS). At the
same time, we factor in server pricing and task completion, in order to improve the user-friendliness
and fairness in scheduling decisions. The solving of these problems simultaneously ensures both
scheduling efficiency and system quality of service (QoS), to achieve a balance between efficiency
and user satisfaction. Then, we propose an adaptive greedy dingo optimization algorithm (AGDOA)
based on greedy policies and parameter adaptation to solve the PA problem and construct a binary
salp swarm algorithm (BSSA) that introduces binary coding to solve the discrete JRORS problem.
Finally, simulations were conducted to verify the better performance compared to the traditional
algorithms. The proposed algorithm improved the convergence speed of the algorithm in terms of
scheduling efficiency, improved the system response rate, and found solutions with a lower energy
consumption. In addition, the search results had a higher fairness and system welfare in terms of
system quality of service.

Keywords: edge cloud computing; Internet of things; dingo optimization algorithm; salp swarm
algorithm; federated learning

1. Introduction

With the arrival of the era of the Internet of things (IoT), there is an emerging demand
for various types of portable smart devices and IoT services. In modern society, IoT
technology has greatly facilitated the development of healthcare, autonomous driving,
social entertainment, etc. and has become a necessity in people’s lives, which has gradually
transformed traditional cities into smart cities [1–3]. Federated learning (FL) has received
attention recently for its cutting-edge uses in industries like health, finance, and Industry
4.0. FL makes it possible for numerous mobile devices to work together in training machine
learning models without transferring raw data, safeguarding the privacy of users. FL is
limited, though, because it must rely on mobile devices having the appropriate CPU power
to solve the challenges faced by the millions of parameters in machine learning models in
real applications [4]. FL has a substantial number of client nodes—possibly millions—each
with a significantly varied data distribution. High communication latency and instability
between the client and the central server are present at the same time [5].

Currently, mobile devices produce a lot of data every day, and the available local
computation and storage resources are scarce. There are numerous IoT applications that
simultaneously have strong criteria for high accuracy and low latency. Utilizing remote
clouds with high-speed processing and abundant storage resources to offload activities
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and data from compute-intensive applications, the potential of mobile devices can be more
fully exploited [6]. Data storage and compute demands are growing rapidly as a result of
people’s growing reliance on IoT. The conventional approach of directly offloading to the
cloud may result in network congestion, accompanied by unavoidable response delays, and
a lower overall quality of service (QoS) [7]. In addition, these resource-intensive computing
and storage tasks come at a significant cost.

Distributed edge computing makes full use of distributed resources at the edge of
the network, including routers, network gateways, and base stations, to provide real-time
and context-aware services, which perform better when processing tasks with low latency
or complex computation. The application of edge computing can effectively alleviate the
problem of network delays, share the load of local devices, and improve the overall perfor-
mance. However, it is important to point out that edge computing has some limitations in
terms of resource and functional scalability compared to cloud computing [8].

Therefore, edge cloud computing was introduced to solve latency-sensitive computing
tasks, in place of cloud computing [9]. Edge cloud computing shows a better balance
between overcoming the limited computational speed of mobile devices on the one hand
and reducing the too-long computational latency when offloading to remote clouds on the
other hand [10,11]. However, determining which tasks are suitable for running locally or
offloading to a node is a very challenging NP-hard dilemma [12].

To solve this problem, Hu and Li [13] used a subgradient-based non-cooperative
game model to solve the transmission power allocation problem and the MO-NSGA
algorithm to solve the joint request offloading and computational resource scheduling
problems. However, the non-cooperative game model usually lacks global coordination,
and each device only focuses on maximizing its own interests, resulting in insufficient
overall system performance. Meanwhile, the system involves the edge system cost when
considering the JRORS problem, but does not take into account the cost of cloud servers,
which affects the overall cost of the system operation. In this study, when we study the task
scheduling of a federated mobile edge computing (MEC) three-layer computing model, we
not only consider the decisions regarding request offloading and computational resource
scheduling, but also incorporate the budget constraints of the users, to improve the QoS. In
addition, we consider the degree of completion of the computational request offloading
task, which makes the system network fairer, and introduce a scheduling dominance
degree to determine the fairness metrics. Such improvements can simultaneously improve
user-friendliness and fairness.

The main contributions of this paper are as follows:

• We propose an adaptive dingo optimization algorithm (DOA) based on greedy strate-
gies to search for the optimal solution to the PA problem, called AGDOA. The DOA
incorporates a greedy algorithm, to optimize the initial value of the DOA, which
improves the convergence speed. It also makes its parameters adaptively adjusted
according to the convergence speed of the algorithm, to prevent it from falling into a
local optimum;

• We advocate utilizing a binary salp swarm algorithm (SSA) method, known as BSSA,
for the JRORS problem. We can use our approach for federated learning tasks in edge
cloud computing environments;

• Simulations showed that the individual improvements of AGDOA significantly im-
proved on the original algorithm, in terms of optimization results and convergence
speed, while the search results outperformed the traditional algorithm. BSSA had a
superior performance compared to the conventional algorithm for different numbers
of mobile users, different workloads, and different configurations.

The rest of this study is organized as follows: Section 2 reviews related work on task
allocation in edge cloud computing. Section 3 introduces the network architecture and
problem analysis. Section 4 describes the original structure and construction process of
the BSSA algorithm and the AGDOA algorithm. Section 5 details the configuration of the
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experiment, and Section 6 presents the results and a discussion of the experiment. Finally,
Section 7 presents our conclusions and makes recommendations for future research.

2. Related Work

In this section, we summarize the latest research related to our proposed algorithm.
The International Data Corporation (IDC) predicts that spending within the IoT ecosystem
will exceed USD 1 trillion in 2060, with an expected compound annual growth rate (CAGR)
of 10.4% from 2023 to 2027 [14]. One of the key elements determining the price of mobile
computing in FL is communication overheads. Therefore, a major concern when implement-
ing joint learning for IoT and mobile computing scenarios is how to lower the computation,
storage, and communication costs of joint learning privacy protection approaches and
how to improve the efficiency of joint learning [15]. In order to reduce the cost of the IoT
ecosystem, the key issue is how to optimize the task computation strategy based on the
specific user requirements of mobile devices. Based on the process of task allocation, we
can categorize most of the existing research on edge cloud computing scheduling problems
into two groups. In one category, we need to consider the decision problem for joint
request offloading and resource scheduling (JRORS) before task execution, and in the other
category, we need to consider the transmission power allocation problem (PA) during task
communication.

The rational allocation of computational resources prior to the start of a task, in order
to achieve optimal performance or efficiency during execution, is the focus of JRORS.
This involves the task scheduling arrangement, resource allocation, offloading strategy,
etc. Tran and Pompili [16] integrated the problems of co-optimizing the task offloading
strategy, transmission capacity of mobile users, and resource allocation of edge servers into
two separate problems of joint task offloading (TO) and resource allocation (RA), which
they solved using convex and quasi-convex optimization techniques. However, making
the entire system bandwidth available to a mobile device to transmit data may lead to
network congestion and increase the energy consumption of the mobile device. Du and
Tang [17] constructed a data placement model that dynamically allocates newly generated
datasets to appropriate data centers and removed exhausted datasets during workflow
execution. Ra [18] proposed a greedy staged offloading algorithm to solve the problem of
task offloading. Although Odessa is fast, its offloading strategy is not optimal. Chen [19]
developed a simple architecture for offloading information-centric IoT applications based
on task classification and computation functions. However, the architecture does not
consider communication latency. Chang and Niu [20] provided a task offloading approach
using power as a constraint, emphasizing the energy consumption and measurement
latency factors in the optimization problem. Alazab et al. [21] proposed an optimal routing
algorithm that determines the optimal route by modifying Dijkstra’s algorithm under
real-time dynamic traffic flow conditions, allowing the users to interactively determine
the optimal path and identify destinations efficiently. Pham et al. [22] proposed a method
for allocating resources in wireless networks using the whale optimization algorithm
(WOA) and improving it as a binary version based on specific scenarios. ABdi et al. [23]
proposed a modified particle swarm optimization algorithm (MPSO) for task scheduling,
in order to achieve the goal of shortening the completion time of a task in cloud computing.
Mao et al. [24] and Shojafar et al. [25] studied the joint computation offloading and resource
scheduling (RS) problem; however, they only considered a base station (BS), to accomplish
the computational tasks in IoT systems.

During the task of carrying out the communication process, PA mainly solves the
problem of how to allocate the transmission power appropriately to optimize the com-
munication quality, energy consumption, and other factors during the communication
process.

Haxhibeqiri [26] reported a study of LoRaWAN uplink traffic, in which the packet
delivery rate decreased exponentially with the increase in the number of end nodes in
the network. Mikhaylov et al. [27] presented an estimation of the throughput of the
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LoRa technology taking into account the broadcast time of the packet transmission. As
a result, the maximum number of end nodes that could communicate with the gateway
could be determined. Tang et al. [28] proposed an efficient coordinate-based indexing
mechanism to solve the fast lookup problem, using a superposition jump to minimize
the index lookup delay. Rajab et al. [29] considered a dense network deployment of
IoT devices and propose a time scheduling algorithm and a distance spreading factor
algorithm to reduce the probability of collisions, thus achieving higher throughput and
lower transmission power. Rodrigues et al. [30] proposed a deployment strategy for 6 G IoT
environments utilizing the machine learning algorithms particle swarm optimization (PSO)
and k-means clustering (KMC), and considering processing, transmission, and backhaul
communication to improve the transmission power. All of the above studies considered
the system operational efficiency without taking into account factors such as fairness, user
friendliness, and user budget related to QoS.

Hu and Li [13] considered a system with one macro BS and several micro BSs
and solved the transmission power allocation problem using a subgradient-based non-
cooperative game model and solved the dual decision-making problem of request offload-
ing and computational resource scheduling using MO-NSGA. The system operation cost
was minimized and QoS improved by solving both PA and JRORS in the same network
system. However, a non-cooperative game model usually lacks global coordination, and
each device only focuses on maximizing its own interest, which may lead to the degradation
of the overall system performance. Meanwhile, the system involves the edge system cost
when considering the JRORS problem but does not consider the cost of cloud servers, and
the overall cost of system operation is not sufficiently involved.

Many heuristic algorithms are suitable for solving the edge cloud computing schedul-
ing problem. Kishor [3] proposed a nature-inspired meta-heuristic scheduler smart ant
colony optimization (SACO) task offloading algorithm for offloading IoT sensor application
tasks in a foggy environment. Vispute et al. [31] proposed particle swarm optimization
(EETSPSO) for fog computing for energy efficient task scheduling. Xia et al. [32] used
ant colony optimization (ACO) and the genetic algorithm (GA) to maximize the system
utility and to meet various quality requirements of latency sensitive and computationally
intensive applications for mobile users.

Referring to the above related works, in this paper, we focus on taking into account
the whole process of task scheduling when solving PA and JRORS problems. In order to
improve QoS, the pricing and task completion of cloud servers are added to the JRORS
problem, which ensure the system efficiency and consider the budget constraints and
fairness of users. Meanwhile, we propose AGDOA and BSSA to better solve the PA and
JRORS problems, respectively. In addition, we introduce a scheduling dominance degree
(SDD) to measure the fairness of the algorithm.

3. Preliminaries and Definitions

This section introduces the network structure and related definitions, and describes
the specific construction of the JRORS problem and the PA problem.

3.1. Network Architecture

In this paper, we consider a simple three-layer edge cloud computing model for multi-
user MEC, as shown in Figure 1. The first layer is the IoT layer, which consists of a set of
mobile devices. After the user decides the request offloading and computational resource
scheduling, the IoT layer sends the request from mobile devices to the second edge layer
or the third cloud layer. The edge layer is closer to the IoT layer and consists of a set of
miniature base stations with edge servers. The cloud layer is further away from the IoT
layer and consists of a macro base station with one deep cloud for processing large amounts
of data and storing them for future use.
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Figure 1. A three-layer edge cloud computing model.

We assume that there is one macro base station with a cloud server, n micro base
stations (BSs) with edge servers, and that the total number of mobile users is n. The
locations and heights of all BSs are fixed. The average power consumption Pma and
computational power Rma of the macro base station are two times the average power
consumption Pmi and computational power Rmi of the micro base station, respectively.
The maximum transmission power of a mobile user is Pmax. Each mobile user u generates
one computational request at a time, and the request includes Qu = <Wq, Sg, Prg, Tgq,
Tbq>, where Wq represents the workload of request q, i.e., the amount of computation
required to fulfill the request, and Sg represents the size of the request input data. We use
Prg to denote the request priority that represents the importance of different requests. Tgq
and Tbq are the desirable latency threshold and tolerable latency threshold, respectively.
The average delay Tavg = (Tgq + Tbq)/2 for request q. The location of the mobile user is
denoted by put and the location of the base station is denoted by pnt.

3.2. Definition of JRORS

The JRORS problem is integrated as a system welfare maximization problem, and the
goodness of solutions to the resource offloading and computational resource scheduling
problems is summarized as the system welfare (W). In order to optimize the system
efficiency, W takes into account the request response time, edge system utility, edge system
cost, and extra cost. Moreover, to improve QoS, we add application completion and cloud
server pricing to the considerations. We formulate the PA problem as in Equations (1) and
(2). Request q is obtained from all request queues Q, and the base station n belongs to all
BSs. Where xqn denotes an indication whether request q is assigned to the base station
or not, where 0 denotes assignment to a macro base station and 1 denotes assignment
to a micro base station. Rn represents the computing power of base station n, and Rqn
represents the computing resources allocated by base station n to request q, kq denotes
the edge system utility, cq denotes the edge system cost of processing request q, and eq
denotes the additional cost of offloading request q to the macro base station. In Equation (3),
c_r denotes the computation of the application completion rate, and in Equation (4), cost
denotes the server pricing, which consists of the edge server pricing costMi and the cloud
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server pricing costMa. λ1 and λ2 are the weights of the program completion rate and the
server pricing.

s.t.
maxW

∑
n∈N

xqn ≤ 1 , ∀q ∈ Q

xqn ∈ {0, 1} ∀q ∈ Q, n ∈ N

∑
q∈Q

Rqn ≤ Rn ∀n ∈ N

Rqn > 0, ∀q ∈ Q, n ∈ N.

(1)

W =

N

∑
n

Q

∑
q

[
xqn
(
kq − cq

)
−
(
1− xqn

)
eq
]
+ λ1 × c_r− λ2 × cost (2)

c_r =
∑n∈N xqn

cost
(3)

cost = costMa + costMi (4)

3.3. Definition of PA

The PA problem is a key issue in IoT that involves rationally distributing the limited
transmission power to different users to maximize the system performance. To minimize
the energy E consumed by the entire system in transmitting data, we formulate the PA
problem as Equation (5). Where, pun (t) represents the transmission power from mobile
user u to base station n, and this is limited by the upper power limit pmax.

minE = ∑N
n ∑U

u Etra
u (t) (5)

Etra
u (t) = pun(t)·tq

up
s.t. 0 ≤ pun (t) ≤ pmax ∀n ∈ N, ∀u ∈ U

(6)

where Etra
u (t) is the transmission energy consumption for each data offload from mobile

user u to the BS n, described by Equation (6). The constraint on pun (t) guarantees the
transmission power of each mobile user. tq

up represents the uplink transmission time from
request q to base station n.

The solution of the power allocation problem can help optimize network performance
and improve communication quality and energy efficiency. However, due to the complex
channel characteristics, interference, and power constraints involved, the problem is a
nonconvex, nonlinear, and multidimensional optimization problem that requires the use of
appropriate optimization algorithms to find the optimal solution.

4. Proposed Approach

This section describes the detailed construction process of the two proposed algorithms
AGDOA and BSSA.

4.1. BSSA Algorithm
4.1.1. SSA Model

SSA is an optimization algorithm inspired by the migratory and collaborative be-
haviors of a salp swarm in nature, and solves optimization problems by simulating these
behaviors. After initializing the population, each bottlenose sea squirt is evaluated for
fitness and ranked in the chain according to its fitness value. The top ranked bottlenose
sea squirts in the chain are called leaders, and the remaining part are called followers [33].
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They update their positions according to different principles, and the position xi
j of the

leader is updated using Equation (7).

xi
j =

{
Fj + c1

((
ubj − lbj

)
·c2 + lbj

)
c3 ≥ 0

Fj − c1
((

ubj − lbj
)
·c2 + lbj

)
c3 < 0

, (7)

where Fj is the position of the food source in the jth dimension; ubj is the upper bound
of the jth dimension; lbj is the lower bound of the jth dimension; and c1, c2, and c3 are
random numbers.

The updating of the follower’s position is borrowed from the idea of Newtonian
motion and is represented by Equation (8).

xi
j =

1
2 at2 + v0t,

a = vfinal
v0

,
v = x−x0

t .
(8)

where i ≥ 2 denotes the position of the ith follower bottle sea squirt in the jth dimension,
and t is the time. v stands for velocity, where v0 is the initial velocity, vfinal is the final
velocity, x and x0 represent the current and initial locations, respectively. The pseudo-code
for SSA is shown in Algorithm 1.

Algorithm 1: Salp Swarm Algorithm (SSA)

Input: ub, lb
Output: fitness

1: xi←initial salp population considering ub and lb
2: function SSA()
3: while end condition is not satisfied do
4: Calculate the fitness of each search agent (salp)
5: Set F as the food source
6: for each salp (xi) do
7: if The salp population is in the top half then
8: Update the position of the leading salp using Equation (7)
9: else
10: Update the position of the follower salp using Equation (8)
11: end if
12: end for
13: end while
14: return F
15: end function

The movement and interaction of virtual sheaths in the search space give SSA a strong
global search capability; meanwhile, the diversity characteristics of SSA make it perform
well in dealing with multi-peak optimization problems, which is suitable for searching for
the optimal workload allocation scheme.

4.1.2. Proposed BSSA Algorithm

SSA has wide applicability and can solve continuous or discrete optimization problems.
The load allocation problem we are going to solve is also a discrete optimization problem,
this problem requires finding a set of binary schemes for power allocation that maximizes
the fairness of the whole system. When we decide to allocate or not to allocate a certain
workload to a particular base station, this is represented by 1 or 0. If this decision variable
is represented using binary, it can be better adapted to the characteristics of the problem
and the problem complexity can be reduced, to improve the performance of the algorithm.
Therefore, we introduce binary coding into SSA, as in BSSA.
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The pseudo-code for the key parts of the BSSA algorithm is reported in Algorithm 2.
The fval_BSSA is the optimal fitness value, i.e., the maximum welfare value for searching
for load assignments using BSSA. BSSA uses the pseudo-code of the binary modified
procedure for Algorithm 2.

Algorithm 2: BSSA

Input: user_profile , na_min, na_max, max_lter, N
Output: fval_BSSA
Initialize parameters

1: lb← 0
2: ub← 1
3: thres← 0.5
4: max_lter← 600
5: convlter← 0
6: dim← length(user_profile)
7: Q← 0.7
8: beta1←−2 + 4 × rand()
9: beta2←−1 + 2 × rand()
10: nalni← 2
11: na← round(na_min + (na_max − na_min) × rand())
12: while t <= max_lter do
13: for i← 1 to N do
14: Calculate fitness fit(i) using JRORS function
15: Negate fit(i)
16: if fit(i) > fitF then
17: Set Xf = X(i,:) and fitF = fit(i)
18: End if
19: End for
20: Update X as Leader Salp or Follower Salp
21: Set curve(t)← fitF
22: Increment t
23:End while
24: Convert binary positions to feature subsets
25: Determine Sf, Nf based on Xf
26: Calculate sFeat from user_profile and Sf
27: return fval_BSSA← fitF

According to Algorithm 2, the detailed steps of BSSA are as follows:

1. Initialize the population. Within the upper bound 1 and lower bound 0 of the search
space, a salp swarm of size N × D whose position is binary is randomly initialized;

2. Calculate the initial fitness. According to Equation (1), the fitness values of N salps in
the JRORS problem are calculated;

3. Choose food. The salp swarm is sorted according to the fitness value, and the position
of the salp swarm with the best fitness in the first place is set as the current food
position;

4. Choose leaders and followers. After the food location is selected, there are N − 1
remaining salps in the group, and according to the ranking of the salp groups, the
salps in the first half are regarded as leaders and the rest as followers;

5. Location update. First, the position of the leader is updated according to Equation (7),
and then the position of the follower is updated according to Equation (8);

6. Calculate the fitness. Compute the fitness of the updated population. The updated
fitness value of each individual salp sheath is compared with the fitness value of the
current food. If the fitness value of the updated salp sheath is higher than that of
the food, the salp sheath position with the higher fitness value is taken as the new
food position;
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7. Repeat steps 4–6 until a certain number of iterations is reached, and the current food
position is output as the estimated position of the target.

4.2. AGDOA Algorithm
4.2.1. DOA Model

The DOA is a group intelligence optimization algorithm inspired by the hunting
strategy of the Australian dingo, and the algorithm implements three strategies based on
the dingo’s social behaviors, which are group hunting, individual attack, and scavenging
behavior. Meanwhile, considering the species endangerment of the Australian dingo, a
survival probability strategy is added to this algorithm [34].

The trajectory of the group hunting is modeled by Equation (9):

→
x i(t + 1) = β1

na

∑
k=1

[→
ϕk(t)−

→
xi(t)

]

na
− →x∗(t), (9)

The trajectories of individual attacks are modeled by Equation (10):

→
x i(t + 1) =

→
x∗(t) + β1 ∗ eβ2 ∗

[ →
xr1(t)−

→
xi(t)

]
, (10)

The trajectory of the sweeping behavior is simulated by Equation (11):

→
x i(t + 1) =

1
2

[
eβ2 ∗ →xr1(t)− (−1)σ ∗→xi(t)

]
, (11)

When in low survival, Equation (12) will be used to update the position:

→
x i(t) =

→
x∗(t) +

1
2

[ →
xr1(t)− (−1)σ ∗ →xr2(t)

]
, (12)

Table 1 summarizes the key notations of DOA. The dingo in the algorithm chooses the
strategy for updating the position based on a specific probability. The DOA relies on its
strategy for updating the diversity of strategies to have an advantage in solving NP-hard
puzzles to find a globally optimal solution.

Table 1. Key Notations of DOA.

Symbol Description
→
x i(t + 1) New location for dingoes
→
ϕk(t) Subset of search agents
→
xi(t) Current search agent, i.e., subset of wild dogs being attacked
→
x∗(t) Iteration of the best subset of dingoes so far

→
xr1 (t),

→
xr2 (t)

Randomly selected r1, r2 search agent, i.e., subset of dingoes,
where r1 6= i

SizePop Total size of the dingo population
σ Randomly generated binary numbers, σε{0, 1}

β1, β2 Randomly generated scale factor

r1, r2
Random numbers generated from [1, maximum search agent size]

with r1 6= r2;
→
xr1 (t)

4.2.2. DOA Considering Greedy Strategies

A population intelligence optimization algorithm’s optimization performance is, in
part, determined by how well it is initialized. The initialization of the population position of
the DOA is generated in a random way. It is quite challenging to find the optimal solution
around the feasible solution when the objective value is modest in relation to the data and
the first solution chosen at random is considerably far from the ideal solution. The usual
methods of optimization initialization are greedy algorithm initialization [35], sampling
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initialization [36], and heuristic rules initialization [37]. In practice, sampling initialization
and heuristic rules initialization are often used in combination. Sampling initialization can
provide diversity and help the algorithm better explore the search space, while heuristic
rules initialization can provide better quality initial solutions, which helps accelerate the
convergence of the algorithm and improves the quality of the final solution. The greedy
algorithm constructs the solution step by step in a locally optimal way and tries to satisfy
the constraints as much as possible. This method can obtain a better initial solution. We
will use the greedy principle to optimize the initialization process of DOA. The pseudocode
for the greedy strategy is shown in Algorithm 3.

Algorithm 3: Greedy Initialization

Input: alloted_bs, U, punt
Output: initial_profile
Initialize parameters:

1: initial_profile← Create a matrix of size (|U| × |n|) with initial values as pmax
2: function greedy_initialization(alloted_bs, U, punt)
3: for each user u in U do
4: Get the current allocated base station index n for user u
5: Set initial_profile[u,n] to punt[u,n]
6: end for
7: return initial_profile
8: end function

This greedy initialization procedure receives some input parameters: alloted_bs, gunt,
U, punt, and pmax. These parameters denote the assigned base station for each user, the
channel power gain, the set of mobile users, the transmission power, and the maximum
transmission power, respectively. The allocation assigns the user power allocation scheme
to the nearest base station, while the initial power of the other base stations remains
unchanged. Finally, the initial power allocation scheme for each user to each base station is
returned.

The greedy algorithm, as a concise method for optimizing the initial value, can provide
an initial solution closer to the global optimal solution for the PA problem, reduce the
number of iterations of the DOA, speed up the convergence of the algorithm, and improve
the search performance of the DOA on the PA problem.

4.2.3. Proposed AGDOA Algorithm

The PA problem is a complex non-convex problem, and as it requires nonlinear
computation, taking into account the data demand, channel gain, noise level, etc., this
optimization method is more likely to find a local optimum. Therefore, in order to reduce
the possibility of DOA falling into local optimality, we introduce the convergence speed
adaptive adjustment mechanism.

We judge the convergence speed of the algorithm by monitoring the change in the
optimal fitness, and then dynamically adjust the parameter na of the number of wild dogs
involved in the attack strategy in DOA to balance the exploration and exploitation strategies
of the algorithm. When the continuous change in the optimal fitness is small, this indicates
that the algorithm may be converging, at which time, na is multiplied by 0.9 to reduce
the number of dingoes participating in the attack, thus slowing down the search speed,
with a view to better converging in the local search space; when the continuous change
of the optimal fitness is large, na is multiplied by 1.1 to increase the number of dingoes
participating in the attack, thus speeding up the search speed, with a view to better search
the global space.

The pseudo-code for the adaptive tuning scheme is reported in Algorithm 4. Where tol
is the convergence criterion, max_counter is the maximum number of convergence counts,
and na_min and na_max are the minimum and maximum values of na, respectively. In
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each iteration, the optimal fitness change diff_vMin is computed, based on which the value
of na is adaptively adjusted.

Algorithm 4: Adjust Parameters Adaptively

Input: Max_iter, Curve, tol, max_counter, vMin
Output: Adjusted value of na based on adaptive mechanism
1: tol_counter← 0
2: for t← 1 to Max_iter do
3: Calculate vMin for current iteration
4: if t > 1 then
5: Calculate diff_vMin = abs(Curve(t) − Curve(t + 1))
6: if diff_vMin < tol then
7: Increase tol_counter by 1
8: else
9: Reset tol_counter to 0
10: if tol_counter >= max_counter then
11: Decrease na
12: else
13: Increase na
14: end for
15: return na

The pseudo-code for the key parts of the AGDOA algorithm is reported in Algorithm 5.
SearchAgents_no is the number of search agents, Max_iter is the maximum number of
iterations, fobj is the fitness function, positions is the initial individual position matrix,
ub and lb are the upper and lower bounds of the solution space, and vMin is the optimal
fitness value. In order to facilitate an intuitive understanding, Figure 2 shows an algorithm
flow chart. Figure 2 shows the process of the DOA algorithm integrating the greedy
strategy to obtain the initial solution and dynamically changing the parameter adaptive
strategy according to the degree of convergence, thus forming the operation flow of the
AGDOA algorithm.

According to Algorithm 5 and Figure 2, the specific steps of AGDOA are as follows:

1. Use Algorithm 3 to initialize the dingo population position through the greedy strategy;
2. Calculate the survival probability;
3. If the survival probability is greater than the set point, jump to step 4, otherwise jump

to step 9;
4. If the random value is less than P, jump to step 5, otherwise jump to step 8;
5. If the random value is less than Q, jump to step 6, otherwise jump to step 7;
6. Perform a group attack according to Equation (9) to update the agent location;
7. Perform individual persecution according to Equation (10) to update the agent location;
8. Perform the clearance strategy according to Equation (11) to update the agent location;
9. Update the position of the group with low survival rate according to Equation (12);
10. Update the fitness value and the agent location;
11. If the maximum number of iterations is not reached, update the adaptive parameters

according to Algorithm 4 and repeat steps 2–10, otherwise output the optimal fitness;
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Algorithm 5: AGDOA

Input: Max_iter, Curve, conver_tol, conver_counter, na_min, na_max
Output: vMin
Initialize parameters

1: threshold← 0.005
2: converged← false
3: consecutive_iterations← 10
4: iteration_count← 0
5: convlter← 0
6: P← 0.5
7: Q← 0.7
8: beta1←−2 + 4 × rand()
9: beta2←−1 + 2 × rand()
10: nalni← 2
11: na← round(na_min + (na_max − na_min) × rand())
12: Positions← initialize from Algorithm 3
13: for each position i in Positions do
14: Calculate Fitness(i)
15: end for
16: for each iteration t from 1 to Max_iter do
17: for each agent r from 1 to SearchAgent_no do
18: sumatory← 0
19: if random number() < P then
20: Calculate sumatory using Attack function
21: if random number() < Q then
22: Update Agent position using strategy for group attack by Equation (9)
23: else
24: Update agent position using strategy for persecution by Equation (10)
25: end if
26: else
27: Update agent position using strategy for scavenging by Equation (11)
28: end if
29: if survival rate is below 0.3 then
30: Execute survival process to update agent position by Equation (12)
31: end if
32: Calculate Fnew
33: if Fnew <= Fitness(r) then
34: Update agent position and fitness value
35: end if
36: if Fnew <= vMin then
37: Count and update convlter
38: Update theBestVct and vMin
39: end if
40: end for
41: Update na by Algorithm 4
42: end for
43: return vMin
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5. Experimental Setup

In this section, computer simulations were used to evaluate the performance of the
proposed AGDOA algorithm and BSSA algorithm. The performance of the proposed
algorithms was evaluated under different system parameters in comparison with the
existing schemes.

5.1. Simulation Settings

To evaluate the performance of the algorithms, we ran the AGDOA algorithm and
the BSSA algorithm using MATLAB R-2021a. The simulation device PC was configured
with 16 GB of memory, and a 2.6 GHz Intel Core i7. The simulation parameters are
shown in Table 2.
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Table 2. Simulation Parameters.

Parameter Value

Number of Mobile Users u {12,20,32,40,52,60,72,80,92,100}
Number of Micro-BSs n {3,5,8,10,13,15,18,20,23,25}
The fixed bandwidth B 20 (MHz)

The fixed height of BSs H 10 (m)
Workload of request wq 600–1000 (MHz)
Input data of request lq 300–1500 (KB)

Ideal delay of request q Tgq 0.5 ± 0.1 (s)
Tolerable delay of request q Tbq Tgq + [0.1, 0.15] (s)

Maximum transmission power for mobile users Pmax 5 (w)
Background Gaussian noise power Sig −100 (dBm)

Average power consumption of microbase station Pmi 7500 (w)
Average power consumption of macrobase station Pma 15,000 (w)

The computing power of edge servers Rmi 70 (GHz)
Computing power of the cloud server Rma 140 (GHz)

5.2. Comparative Experiments
5.2.1. Comparative Experiments of BSSA

We compared the performance of the BSSA algorithm with the following methods:

1. Northern Goshawk Algorithm (NGO): NGO is a relatively new algorithm that has
the advantage of diverse search strategies that may help to better explore the solution
space [13];

2. Genetic Algorithm (GA): The GA performs well in dealing with discrete problems
and can effectively represent and manipulate discrete decision variables through the
use of binary or integer coding [38].

3. Binary Particle Swarm Optimization Algorithm (BPSO): BPSO is suitable for discrete
optimization problems and it can represent the decision variables of the problem in
binary [39].

5.2.2. Comparative Experiments with AGDOA

We compared the performance of the AGDOA algorithm with the following methods:

1. Greedy Particle Swarm Optimization (GPSO): The PSO application has advantages
for multivariate problems and is suitable for solving PA problems involving power
allocation decisions among multiple mobile users and multiple base stations. Mean-
while, the initialization of the particle swarm was optimized using a greedy strategy
to obtain GPSO [40];

2. Simulated Annealing PA: Simulated annealing (SA) is suitable for complex problems
and can effectively solve discrete NP-hard problems [41];

3. Subgradient-based non-cooperative game model (NCGG): the NCGG algorithm is
usually used to solve the problem of optimal decision making for multiple participants
in a game, and is suitable for optimizing the multi-user PA problem [42].

5.3. Performance Metrics
5.3.1. Convergence Speed

To evaluate the convergence speed of the algorithm, we used the successive absolute
change magnitude to determine whether the change in the objective function value was
stabilizing or not. The absolute change in the objective function value between adjacent
iterations was calculated, i.e., r = |f(i) − f(i − 1)|, and the magnitude threshold e was set
to 0.005. The algorithm was judged to have stabilized when the absolute change in the
magnitude of r was less than the magnitude threshold e. The algorithm was also evaluated
to prevent the algorithm from falling into a local optimum. At the same time, in order to
prevent the algorithm from being misjudged as converging when it fell into a local optimum,
when the algorithm’s r was less than e for 10 consecutive iterations, we considered that the
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algorithm had reached convergence, and the mobile user was considered to have found the
best solution.

5.3.2. System Response Rate

To evaluate the efficiency and performance of the system, we considered the number
of tasks completed within a tolerable delay time for the request versus the total number of
requested tasks, defined as the system response rate.

5.3.3. Scheduling Dominance Degree (SDD)

In order to evaluate the task completion degree, i.e., the fairness, we used SSD in the
performance evaluation. SSD is a metric used to evaluate the fairness of a task resource
allocation scheme, and there is an inverse relationship between it and the fairness metric.
SSD is expressed by Equation (13). F is the fairness metric, and ri indicates the resource
allocation for user i. In general, a larger SSD value indicates better fairness, while a smaller
SSD value indicates worse fairness. We calculated SSD based on the fairness indicator Jain’s
fairness index.

SSD =
1
F

F =
(∑N

i=1 ri)
2

N×∑N
i=1 ri

2

s.t. ri ∈ {0, 1}

(13)

6. Performance Evaluation and Analysis

In this section, we performed a simulation and analyzed the results of the experiment.

6.1. Performance of BSSA
6.1.1. Impact of the Number of Mobile Users

In this section, we set the base station with the same computational power, i.e.,
Rn = 70 GHz, and all mobile user offloading tasks were configured with the same re-
quest conditions, wq = 1500 (Megacycles), lg = 700 KB, Tgq = 0.5 (s), Tbg = 0.65 (s). We
output the welfare of the system after it had run, in order to assess the effectiveness of the
solution to the resource offloading and computational resource scheduling problem; that
is, the performance of the fitness function JRORS, under the influence of various numbers
of mobile users. To assess the efficiency and performance of the system, we took into
account the system response rate, and to assess the fairness of the system, we took into
account the SSD. NGO, BPSO, GA, and BSSA are all suitable algorithms for solving discrete
optimization problems.

From Figure 3a, we can observe that NGO and GA showed an overall increasing
trend in welfare with the increase in the number of mobile users, but there was oscillating
instability. BPSO and BSSA showed a flat increase in welfare with the increase in the
number of mobile users. This was because, as the number of users increased, more requests
may be generated in the system, and when these requests are reasonably handled and
satisfied, the total utility of the system may increase. In terms of welfare performance,
NGO performed poorly, which means that NGO cannot achieve good results for the JRORS
problem. BSSA had a larger welfare with a different number of mobile users, which means
that BSSA can obtain a better solution when multiple factors are considered for scheduling
computational resources. Compared to GA, the proposed BSSA improved by about 100%
for welfare when the number of mobile users was 12 and by about 20% when the number
of mobile users was 100. The complexity of the problem grows exponentially as the number
of users increases. Both BSSA and GA needed to search the large-scale solution space, and
hence the size of the BSSA boost became smaller. However, due to the addition of binary,
the complexity of BSSA decreased on the discrete problem JRORS, so it was easier to search
for a better resource allocation scheme for welfare. Figure 3b illustrates that BPSO and BSSA
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had a larger system responsiveness, and BPSO’s system responsiveness did not change
much for different numbers of mobile users. Compared with BPSO, BSSA had almost a 1x
improvement in the corresponding rate when the number of mobile users was 12. BSSA’s
response rate naturally decreased slightly with the increase in the number of mobile users,
due to the consequent increase in the search space and the complexity of the problem, but it
still managed to maintain a higher response rate, which also reflects the scalability of BSSA.
Compared with BPSO, at a mobile user number of 100, BSSA improved in its response rate
by about 40%, which was due to the fact that the search strategy of BSSA is more suitable
for the JRORS problem. From Figure 3c, it can be seen that the SSD of BSSA and GA was
larger in most of the cases in the comparison experiments, which proved that the fairness of
BSSA was better. Moreover, the SSD of BSSA decreased smoothly with the increase in the
number of mobile users, which proved that BSSA had the best fairness when the number
of mobile users was small. This is due to the fact that competition among a large number
of users may lead to more competitive resource allocation. This may result in certain users
always having a dominant position, while other users are unable to obtain a fair share,
thus reducing the fairness. At the same time, since the SSA algorithm has the unique
advantage that the group tends to move in the direction of greater comfort, this leads to a
smooth, progressive search process that avoids drastic fluctuations, and the experiments
yielded smooth changes for each of the performance metrics as the number of mobile users
was varied.
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6.1.2. Impact of Request Workloads

In this section, we set the base station with the same computational power, i.e.,
Rn = 70 GHz, and all mobile users had offloading tasks configured with the same re-
quest conditions lg = 700 KB, Tgq = 0.5 (s), Tbg = 0.65 (s), except for the workload wq being
set to a different request q. The performance of the BSSA was evaluated at wq = 1500,
2000, 2500.

From Figure 4a, it can be observed that the system welfare decreased as the request
workload increased. When the workload increased from 1500 to 2000, welfare decreased
by about 4% on average; when the workload increased from 2000 to 2500, the welfare
decreased by about 2% on average. This is due to the fact that when the computational
task requests from the BS exceed the scheduling load that the base station can handle, it
becomes under-resourced and reduces the system welfare value. Figure 4b shows that
when the number of mobile users is small, different request workloads have essentially
no effect on the SSD. When the number of mobile users was high, the SSD decreased by
3% on average as the request workload increased; i.e., an appropriate request workload
had a benign effect on the system fairness. At high loads, the system’s resources became
saturated and resource allocation delays increased, leading to a decrease in fairness when
the system performed offloading tasks.
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6.1.3. Impact of Request Workload Configuration

In this section, different workload requests (wq) and different amounts of work input
data requests (Iq) were configured, to evaluate the performance of the BSSA and compare
the experiments with other optimization algorithms. The following figure shows the system
welfare and SSD used for evaluating the system with different wq when the number of
mobile users (u) was 40 and 100, respectively.

From Figure 5a,b, it can be observed that the welfare of the BSSA was consistently
higher than other methods at different wq values when the number of mobile users was
small. When the number of mobile users was 40, the proposed BSSA improved the welfare
of GA by 36.2% on average. For SSD, the values of BSSA and GA were significantly larger
than the other methods, and BSSA was inferior to GA for smaller wq. This implied that, at
this point, BSSA sacrificed part of the system fairness to maintain a higher system welfare
during the optimization process. From Figure 6a,b, it can be seen that the welfare of BSSA
and GA became larger as the number of mobile users u increased, and the proposed BSSA
improved the welfare of GA by only 29.4% on average, while at this time, the SSD of BSSA
had a significant advantage at different wq. Meanwhile, the SSD of BSSA showed an overall
decreasing trend with the increase in wq. Obviously, as the number of mobile users u
increased with the increase in wq, more and more tasks could not be completed in time,
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resulting in a decrease in the fairness of the system. Similarly, as shown in Figure 7a,b,
BSSA consistently performed the best in terms of system welfare for different amounts
of Iq. The proposed BSSA’s welfare improved by 35.7% and 16.0% on average under the
conditions of 40 and 80 mobile subscribers, respectively. Thus, we can say that BSSA
showed the best performance for the system welfare problem, even under different request
work configurations.
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6.2. Performance of AGDOA
6.2.1. Ablation Experiments

The following figure shows a comparison of the energy consumption of DOA, GDOA,
ADOA, and AGDOA for the same number of mobile users, number of server base stations,
and maximum power. We can see from Figure 8a that a using greedy strategy to optimize
the initial value of DOA, the initial energy consumption was significantly reduced, which
was conducive to faster convergence. We can see from Figure 8b that after making the
parameter na adaptive change, the iteration frequency was perturbed, and the speed of
each descent became faster, which helped to prevent the DOA from falling into a local
optimum. We can see from Figure 8c that after using the greedy strategy to optimize
the initialization process of DOA and making the parameter na change adaptively, the
optimized DOA algorithm obtained a better initial value, while descending faster. The
overall ablation experiment results in Figure 8d showed that the greedy algorithm and the
adaptive strategy improved the DOA significantly, bringing about a lower initial value,
speeding up the iteration speed, and preventing from falling into a local optimum.
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Figure 8. A direct comparison of the energy consumption results of the different algorithms as the
number of iterations increased. (a) DOA versus GDOA; (b) DOA versus ADOA; (c) GDOA versus
AGDOA; (d) DOA, GDOA, ADOA, AGDOA.

In order to assess the convergence properties of the AGDOA in the ablation experi-
ments, we used the number of iterations required for the algorithm to reach the converged
state as the convergence rate for comparison. The number of convergence iterations for
the different numbers of mobile users in DOA, GDOA, ADOA, and AGDOA are listed in
Table 3. As shown in Table 3, the greedy strategy contributed more to the convergence
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speed of DOA than parameter adaptation, and AGDOA exhibited the maximum conver-
gence speed in the ablation experiments. In terms of the quantity of iterations required to
obtain convergence, AGDOA was at least 11.2% faster than GDOA. This was the result of
the joint involvement of the greedy strategy and the adaptive tuning parameter strategy.

Table 3. The converged iteration of each algorithm under different numbers of mobile users.

Algorithm
Number of Mobile Users

12 20 32 40 52 60 72 80 92 100

DOA 166 75 62 91 94 119 95 159 165 127
ADOA 125 69 97 69 76 111 90 110 142 142
GDOA 71 66 78 77 82 80 125 99 102 146

AGDOA 57 53 51 66 34 66 71 89 80 74

6.2.2. Energy Consumption vs. Number of Mobile Devices

We set the maximum transmission power Pmax for mobile users uniformly at
5 W. Figure 9 shows a comparison of the energy consumption of the proposed AGDOA
compared to GPSO and NCGG for different numbers of mobile users. It is clear that
the energy consumption increased as the number of mobile users increased. The energy
consumption of AGDOA was always smaller than that of GPSO and NCGG for different
numbers of mobile users, and the gap between the energy consumption of AGDOA and
the comparison algorithms gradually increased as the number of mobile users increased.
The proposed AGDOA increased the degree of improvement in energy consumption from
8.3% to 163.9% compared to the GPSO. This suggests that the AGDOA outperforms GPSO
and NCGG in the PA problem and performs better when there are a lot of mobile users.
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6.2.3. Convergence Properties of AGDOA

To determine the convergence characteristics of AGDOA, we similarly compared the
number of iterations required for the algorithms to reach a converged state. The conver-
gence characteristics of AGDOA were evaluated by setting the maximum transmission
power Pmax of mobile users to 5 w with the same number of mobile users u and the
number of base stations of edge servers n. The convergence characteristics of AGDOA
were evaluated by setting the maximum transmission power Pmax of mobile users to 5 w.
As shown in Figure 10a, when u was 12 and n was 3, AGDOA needed only 61 iterations to
converge, while NCGG and GPSO needed 107 and 200 iterations, respectively; as shown
in Figure 10b, when u was 40 and n is 10, AGDOA needed only 61 iterations to converge,
while NCGG and GPSO needed 107 and 200 iterations, respectively; AGDOA required
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only 72 iterations to converge, while NCGG and GPSO required 168 and 229 iterations,
respectively. As can be seen from Figure 10a,b below, AGDOA reached convergence in
fewer iterations, even with larger initial values. This indicates that our proposed AGDOA
has good convergence properties.
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7. Conclusions

In this paper, we studied a MEC network consisting of a macro BS, a set of micro
BSs, and a large number of mobile users, aiming to solve two main problems in task
scheduling with federated learning in a network. For the JRORS dual decision problem, we
incorporated the consideration of server pricing and task completion factors to improve
user-friendliness and fairness. Meanwhile, a BSSA was proposed to solve this problem
based on the discrete nature of JRORS, to reduce the problem complexity. Then, for the PA
problem, an AGDOA was proposed to find the optimal power allocation scheme.

The simulation results validated the proposed algorithm, in which the BSSA main-
tained a good performance for welfare, response rate, and SSD for the JRORS problem.
Compared with the heuristic algorithms NGO, BPSO, and GA, the proposed BSSA could
find better solutions and obtained a higher welfare under different numbers of mobile
users, workloads, and input data amounts. This was due to the addition of binaries, which
reduced the complexity of the BSSA on discrete problems such as JRORS. In addition, the
BSSA had a higher system response rate, and the number of tasks completed within a
tolerable delay time of the request was more than the total number of requested tasks.
Moreover, compared with the other heuristics compared, the BSSA paid more attention to
fairness in task offloading.

In addition, compared with the other algorithms, on the PA problem, each improved
module of AGDOA showed a significant improvement in convergence speed and initial
performance over the DOA. Compared with the optimization algorithms GPSO and NCGG,
the energy consumption of the AGDOA was significantly lower under different numbers
of mobile users. At the same time, the AGDOA could reach a convergence state in fewer
iterations for different numbers of mobile devices.

In the future, we will conduct experiments using real data, make improvements based
on real applications, and apply the proposed algorithms to real applications to improve the
MEC scheduling efficiency and the comprehensive level of QoS.
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Abstract: With the advent of 6G technology, the proliferation of interconnected devices necessitates a
robust, fully connected intelligence network. Federated Learning (FL) stands as a key distributed
learning technique, showing promise in recent advancements. However, the integration of novel
Internet of Things (IoT) applications and virtualization technologies has introduced diverse and
heterogeneous devices into wireless networks. This diversity encompasses variations in computation,
communication, storage resources, training data, and communication modes among connected
nodes. In this context, our study presents a pivotal contribution by analyzing and implementing FL
processes tailored for 6G standards. Our work defines a practical FL platform, employing Raspberry
Pi devices and virtual machines as client nodes, with a Windows PC serving as a parameter server.
We tackle the image classification challenge, implementing the FL model via PyTorch, augmented
by the specialized FL library, Flower. Notably, our analysis delves into the impact of computational
resources, data availability, and heating issues across heterogeneous device sets. Additionally, we
address knowledge transfer and employ pre-trained networks in our FL performance evaluation.
This research underscores the indispensable role of artificial intelligence in IoT scenarios within the
6G landscape, providing a comprehensive framework for FL implementation across diverse and
heterogeneous devices.

Keywords: federated learning; transfer learning; virtual machines; raspberry PI; proof-of-concept

1. Introduction

The upcoming 6G technology is expected to create an intelligent, fully connected,
and digitized society through large-scale deployments of distributed intelligent networks [1].
This is expected to create a plethora of new intelligent services and applications with specific
demands. Internet of Things (IoT) technology has foreseen great success through enabling
5G solutions and is expected to play a key role in 6G society [2]. With the integration
of IoT subcases into different wireless scenarios, many sensory nodes are expected to be
deployed in the 6G world, with the ability to sense nearby environments and produce tons
of high-quality data. This data can be extremely important to enable intelligent solutions in
the 6G networks [3].

Machine Learning (ML) is another important technology that has acquired a central
role in the 6G vision; in particular, to enable intelligent services [4,5]. Various ML methods
are expected to be deployed in different wireless scenarios to enable intelligent solutions.
ML can be extremely useful for analyzing the 6G network data and harnessing its intel-
ligence. The Centralized Learning (CL) method is one of the most common approaches
to generating AI algorithms in distributed communication scenarios. This involves con-
centrating all training data on a single server, which can complete the model’s training
individually due to its high computing power. However, this solution may not be particu-
larly efficient when analyzed from a 6G perspective. Next-generation networks will need
to handle large amounts of information, most of which will be produced by devices at the

Future Internet 2023, 15, 358. https://doi.org/10.3390/fi15110358 https://www.mdpi.com/journal/futureinternet
54



Future Internet 2023, 15, 358

network’s edge. In this scenario, moving data to a central server is expensive in terms of
communication resources and represents a potential risk of network overload. It can induce
large communication overheads and has limited applicability in the resource-constrained
and time-critical 6G world. Furthermore, privacy and security restrictions can also limit
the possibility of data transmissions to server nodes.

A more efficient alternative is offered by Distributed Learning (DL), which is based
on decentralization of training [5]. In this approach, the training phase will be carried out
directly on end devices or possibly on specific nodes located strategically on the edge of
the network. DL allows for the training of models by processing the local data of each
device directly within it. This approach enables the use of large amounts of heterogeneous
data scattered throughout the vast network, involving a larger audience of users than the
centralized variant. This approach also introduces additional advantages. First, it makes it
possible to significantly reduce data flow, communication overhead, and network traffic.
Second, there is greater protection for end-user privacy as data are processed directly on
personal terminals. Finally, by distributing the computational load among the multitude of
devices, it is also possible to obtain essential improvements in terms of energy management.
Several forms of distributed learning, such as Federated Learning (FL), collaborative
learning, split learning, and multi-agent reinforcement learning, are widely considered in
wireless networks for enabling intelligence-at-the-edge. Among others, FL has achieved
great success in building high-quality ML models based on dispersed wireless data [6,7].
FL is also a candidate for next-generation 6G communication standard allowing for setting
up an intelligence-at-the-edge framework [8].

The traditional FL approach includes a set of devices with datasets and a server
node [6]. The server node initiates the learning process by defining the learning task,
and corresponding model, which is then transmitted to FL devices. With the help of
received model parameters from the server node (also called the global model), their
datasets, and onboard computation capabilities, each FL device is expected to train the
ML model locally. Then, the updates to the ML model from each device are sent to
the server. After receiving the updates from the devices, the server node can use the
aggregation function (e.g., Federated Averaging (FedAvg)) to create a new global model.
This aggregation phase allows devices to share their training knowledge. The devices then
use the new global model in the next round of model local training. The process lasts for
several rounds till some predefined stopping criteria are fulfilled. Though this approach
has several advantages in terms of reduced data transmission costs, enhanced data privacy,
etc., and several new challenges have emerged. One of the major challenges in the FL
framework is the presence of heterogeneous nodes with different capabilities, in terms
of available datasets, computation power, etc. The presence of heterogeneous nodes can
be common in different 6G scenarios. Also, the amount of time required to achieve the
convergence of the FL model can be unaccepted in latency-critical 6G use cases. Therefore,
it is important to analyze the performance of the traditional FL approach in the presence of
heterogeneous devices to have a common understanding of their behaviors and possible
solutions to tackle the challenges.

1.1. Technological Background

ML technology has gained a lot of attention for enabling intelligent solutions in wire-
less networks including mobile communication networks [9], wireless sensor networks [10],
transportation systems [6], non-terrestrial networks [11]. Complex wireless communication
problems such as resource management [12], data offloading toward edge networks [13],
spectrum management [14], routing [15], user-server allocation [7], etc., can effectively solve
through different ML techniques. Among others, FL is widely considered a distributed
learning approach to provide efficient learning solutions. In one paper [16], the authors pro-
posed energy-efficient FL solutions in wireless communication environments. Work in [17]
discusses the applicability of FL solutions in smart city environments. FL is also widely
used to solve vehicular network problems, especially in edge computing environments [6].
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FL solutions are also considered over different satellite networks [18]. However, these
works have analyzed the performance of FL solutions in different wireless environments,
without considering the practical implementations.

Recently, several authors considered a learning testbed implemented through different
sensory nodes to measure the ML solution’s performances. Raspberry Pi devices are
commonly considered to analyze the performance of ML solutions proposed to solve
different wireless networking problems. In [19], the authors proposed Reinforcement
Learning (RL)-based solutions for efficient routing processes in software-defined wireless
sensor networks. The testbed includes Raspberry Pi devices as sensor nodes to analyze
the performance of RL solutions. In one paper [20], the proposed deep learning-based
solutions for detecting a speed bump in an intelligent vehicular system to assist drivers
are tested with the help of Raspberry Pi devices and associated camera modules. In one
paper [21], an approach called Distributed Incremental Learning (DIL) was introduced to
mitigate “Catastrophic Forgetting” in healthcare monitoring. However, the large model
size (49 KB) poses challenges for Raspberry devices, and there is a lack of data batch quality
details affecting convergence. In one paper [22], the proposed communication-efficient FL
solutions are tested with the help of Raspberry Pi devices in edge computing environments.
However, to the best of our knowledge, the most recent literature lacks the study associated
with the analysis of FL performance in the presence of heterogeneous clients. Given the
importance of different IoT subsystems with heterogeneous nodes, such studies can be
extremely useful from the 6G network’s perspectives. This is one of the main motivations
behind this experimental analysis of the FL process in the presence of diverse sets of clients.

1.2. Contributions and Novelties

In this study, we present an in-depth exploration of Federated Learning (FL) method-
ology within the context of 6G technology, delving into its intricacies and challenges across
heterogeneous nodes. Our work uniquely integrates hardware and software components,
utilizing a distinctive combination of Raspberry Pi devices and virtual machines as FL
clients, each equipped with diverse datasets sourced from the CIFAR10 dataset—a widely
acknowledged benchmark in image classification. Our contributions and innovations can
be outlined as follows:

• Cooling Mechanism Impact (Section 4.1): We meticulously investigate the influence
of cooling mechanisms on training accuracy, underscoring their practical significance
in accelerating model convergence, especially in resource-constrained environments.
This detailed analysis, expounded on in Section 4.1, elucidates the pivotal role of
cooling mechanisms, providing valuable insights into optimizing FL performance.

• Heterogeneous Client Compensation (Section 4.2): Through a thorough exploration
of asymmetric data distribution scenarios, both with and without random selection,
we dissect the intricate dynamics of FL performance. Our study highlights the delicate
balance necessary in distributing training data among diverse nodes, revealing the
complexities of FL dynamics in real-world scenarios. These findings, presented in
Section 4.2, offer critical insights into the challenges and solutions concerning data
heterogeneity in FL setups.

• Overfitting Mitigation Strategies (Section 4.2): We tackle the challenge of overfitting
in FL by implementing meticulous strategies. By integrating random selection tech-
niques, we effectively mitigate overfitting risks, optimizing model generalization and
ensuring the resilience of FL outcomes. This contribution, outlined in Section 4.2,
underscores our commitment to enhancing the robustness of FL models.

• Scalability Analysis (Section 4.3): Our study provides a comprehensive exploration
of FL scalability, assessing its performance with an increasing number of users. This
analysis, detailed in Section 4.3, offers crucial insights into FL’s scalability potential,
essential for its integration in large-scale, dynamic environments. It emphasizes the
system’s adaptability to diverse user configurations, laying the foundation for FL’s
applicability in real-world scenarios.
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• Pretraining Effectiveness (Section 4.4): We delve into the effectiveness of pretraining
techniques in enhancing accuracy rates. Pretraining emerges as a potent tool, signifi-
cantly boosting the model’s performance and showcasing its potential in optimizing
FL outcomes. This contribution, discussed in Section 4.4, highlights the practical
implications of pretraining in FL applications, providing actionable insights for future
implementations.

• Transfer Learning Impact (Section 4.5): In Section 4.5, we investigate the potential
of Transfer Learning, evaluating its impact under diverse client configurations. Our
results,underscore Transfer Learning’s capacity to enhance FL model performance,
especially in the face of varied client scenarios. This analysis showcases Transfer
Learning’s adaptability in real-world applications, emphasizing its role in improving
FL outcomes across dynamic and heterogeneous environments.

These contributions collectively form a comprehensive and innovative exploration of
FL dynamics, addressing key challenges and offering practical solutions essential for the
advancement of Federated Learning technologies in complex, real-world settings.

1.3. Limitations

Despite these contributions, our study acknowledges certain limitations. While our
findings offer valuable insights, the scope of this research is confined to specific FL con-
figurations and dataset characteristics. Further exploration of different FL architectures,
diverse datasets, and real-world deployment challenges remains an area ripe for future
investigation. Additionally, the scalability analysis, while comprehensive, focuses on a
limited range of users and could benefit from further exploration with more extensive user
groups in practical scenarios.

2. Distributed Machine Learning

The traditional ML approach was based on the centralized structure, where distributed
wireless nodes, a potential data source, were needed to transmit their data samples to the
centralized, more powerful node with a large amount of storage and computation power.
With growing interest in the 5G system and the upcoming 6G technology, the wireless world
is filled with tiny devices capable of sensing the environment and generating tons of high-
quality data. Such data can be extremely large, and if a traditional centralized approach
is adopted, it can induce a huge communication overhead. On the other hand, with the
presence of such a large number of devices, the global dataset generated at the centralized
server node (i.e., through the accumulation of data from the distributed nodes) can be
extremely large, inducing much higher training costs. In addition to this, novel intelligent
services and applications are based upon stringent requirements in terms of latency, privacy,
reliability, etc. This presents challenges when considering centralized ML model training
for wireless scenarios. However, with recent innovations in hardware/software domains,
the end devices’ onboard capabilities have increased by several folds. With this new
capability, these devices can train fairly complex ML models locally with their own datasets.
This can omit the requirements for long-distance data communication and additional
training overhead. In addition to this, devices can communicate with each other and server
nodes to fine-tune the ML models with improved performances. This has opened a new
trend of ML model training called distributed learning, for countering the drawbacks of
traditional centralized methods. There are various forms of distributed learning methods
considered in the recent past.

There are two main approaches available for performing distributed learning: with
data in parallel or with models in parallel [23]. The former involves distributing train-
ing data on several servers, while the latter divides the model’s parameters between
different servers. However, implementing the parallel model approach is difficult due
to the complexity of dividing machine learning models into distinct groups of parame-
ters. Therefore, most distributed machine learning implementations work through data
distribution. Federated Learning (FL), collaborative learning, Multi-agent Reinforcement
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Learning (MARL), and split learning are some of the most important distributed learning
methods. Among others, FL has been widely used in wireless networks to enable intelligent
solutions efficiently.

FL is a framework for distributed machine learning that protects privacy by operating
through decentralized learning directly on end devices. It involves a certain number of
clients, distributed throughout the network, each of whom trains their local model using
the data at their disposal. After training, the clients send their models to a central server,
which aggregates them into a single neural network and then transmits it to the end devices.
This is an iterative process, with each iteration called a federated round. The objective of
federated learning is to minimize a function and ensure efficient FL, several variables must
be considered [24].

For the efficient implementation of FL, it is imperative to take into account several
variables, encompassing the following:

• Selection of devices for learning
• Disparities in performance levels among the clients in use
• Management of heterogeneous training data
• Potential algorithms for local models’ aggregation
• Selection of a proper aggregation Strategy at the Parameter Server
• Resource allocation

Concerning the choice of devices, specific parameters, including the quality and
quantity of local data, connection performance with the central server, and computational
performance of the client, need to be evaluated.

In a heterogeneous environment that involves wireless nodes with various onboard
capabilities, it is crucial to pay attention to differences in the computing capabilities of the
devices. In fact, a client with reduced computational capabilities will require a longer time
to train the model locally, thereby risking the deceleration of the entire learning process.
The following two FL approaches are widely considered to enable distributed learning [25]
and can be impacted by the heterogeneous nature of the computational capabilities of
the devices:

• Synchronous FL: All devices participate in training the local models for a specific
period, sending the parameters to the central server. In this case, the server receives the
client models simultaneously and aggregates them with the certainty that it is using
the contribution of all the devices. However, this approach poses some challenges,
in the case of heterogeneous client nodes having different capabilities. In such cases,
the less-performing clients are compelled to invest more resources to complete the
training within the expected timeline. To match the latency performance of other, high-
performing clients with more resources, devices can only use a subset of their data.

• Asynchronous FL: In this case, there are no time restrictions for local training opera-
tions, with each device training its model based on its own capabilities, after which
it sends the parameters to the server that proceeds with aggregation. This approach
is more appropriate even in the presence of unstable network connections, where
a device without network access can continue to train its model until it reconnects.
Such an asynchronous approach can potentially reduce the number of FL devices
participating in the individual FL rounds. This also requires more complex server-side
operations to manage the devices according to their needs.

In Section 4, we explore these FL approaches when evaluating the system performance;
more specifically, we employ asynchronous FL in heterogeneous client compensation
(Section 4.2), to tackle the challenge posed by the discrepancy between the relatively
sluggish Raspberry PIs and the swift Virtual Machines, which ultimately leads to a decline
in the overall accuracy of the aggregated data. This measure shall be taken to restore the
balance between the two.

In another case, the presence of heterogeneous amounts of data on FL devices can also
largely impact FL performance. In one paper [26], the authors propose federated continual
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learning to improve the performance of Non-IID data by introducing the knowledge of the
other local models; however, the paper does not address the scalability of the proposed
method for large-scale distributed learning systems. In such scenarios, locally generated
models at different FL nodes may have distinct characteristics from each other and may not
lead to proper convergence when aggregated into a single neural network. The convergence
problem can directly impact the algorithm chosen for the aggregation. In particular, the tra-
ditional federated average (FedAvg) approach can have limited performance since it does
not distinguish the model parameters from different devices (i.e., simple averaging) [25].
In another case, proper weights can be assigned to each device’s models according to their
quality (i.e., weighted average). In some cases, device selection policies can be adapted to
avoid the participation of FL devices with imperfect models.

The use cases mentioned above indicate the importance of defining a proper FL
framework in heterogeneous environments based on the properties of the FL device and the
characteristics of the environment. A one-fit-all FL approach can have reduced performance
in different cases. Therefore, it is vital to analyze the performance of FL models in various
scenarios and to select a proper FL model.

3. Implementation of the System

The primary goal of this work is to design and analyze a comprehensive and well-
structured FL framework to train machine learning algorithms using a federated approach
involving heterogeneous FL clients. Here, we outline the important steps considered during
the implementation of the FL process.

The considered FL system is based on a client-server architecture, with the server repre-
sented by a Windows PC and a set of Raspberry Pi devices acting as FL clients. In addition,
a set of virtual clients are also considered, to build an FL framework with heterogeneous
clients. Given the importance of network programmability and virtualization technologies
in the 5G/6G networks, defining the FL framework with a set of hardware/software clients
can have added advantages. Finally, inter-device communication is carried out through the
local network, to which all hardware nodes are connected via Wi-Fi.

As mentioned above, the main objective is to evaluate the efficacy of FL in the context
of devices with limited and heterogeneous resources.

We have considered a typical image classification problem and aim to build a proper
Deep Neural Network (DNN) with the help of the considered FL framework. The well-
known CIFAR10 dataset is considered during model training operations. It should be
noted that to induce data heterogeneity over different FL clients, the original dataset is
split into different datasets. Also, though the analysis is performed with a specific ML task
with predefined datasets, this can be extended to any generic ML problem. The FL frame-
work is built with the help of Python programming language. In particular, the PyTorch
library is considered to train the neural network model, while Flower, a specialized library
for federated machine learning, is considered to automate the client-server interactions
more efficiently.

In the following, we describe in detail the various configurations used in client/server
parts of the considered FL model. Figure 1, presents the basic elements of the considered FL
framework that includes a set of Raspberry Pi devices, virtual machines, and an FL server.
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Figure 1. Considered FL Framework with Heterogeneous Clients.

3.1. Server Configurations and Functionalities

Here we introduce the main steps required to configure the server part of the FL system
and the corresponding software employed. The FL server is installed on a Windows computer,
which exhibits high-performance levels compared to the client devices. Specifically, the server
is an Asus ROG Zephyrus S GX502GV with an Intel Core i7-9750H 6 x 2.6–4.5 GHz, Coffee
Lake-H processor, NVIDIA GeForce RTX 2060 Mobile (6 GB VRAM, GDDR6 graphics card)
and 16 GB DDR4–2666 Hz RAM. Furthermore, Wi-Fi connectivity is 802.11 a/b/g/n/ac
with Intel Wireless-AC 9560.

We used the Anaconda platform, which allows the development of Python-based solu-
tions with advanced package and library management. The current project was developed
using the basic Anaconda environment, which includes Python 3.9.13. We downloaded
and installed two further libraries, namely PyTorch version 2.0.0 and Flower version 1.3,
through the integrated terminal. The framework is built around three Python scripts: one
to run the server, another to run the client, and a third to define specific neural network
training methods. It should be noted that the system can only communicate on the local
network. Data are transmitted and received between the various devices using specific
methods defined in the scripts.

The FL server needs to perform several functions to enable the FL. At first, the server
establishes communication with a considered set of clients through the local network.
Next, it initializes the global DNN model. DNN model can be initialized through random
parameters or pre-trained models saved in memory based on the considered scenarios.
After that, the network parameters are transmitted to all clients to have a common starting
point for federated training.

Throughout the federated training process, clients train their models locally for a
specified number of local rounds; then, they send the respective local model parameters to
the server. The server then aggregates the parameters of all the models received from clients
into a single neural network. For this implementation, the chosen algorithm for aggregating
the parameters of all models received from clients into a single neural network is the
federated average (FedAvg). FedAvg is an FL algorithm that enables collaborative model
training across multiple devices or clients while preserving data privacy. It aggregates local
model updates from individual clients to create a global model. Its procedure and formula
are described in Algorithm 1.
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Algorithm 1: Federated Averaging (FedAvg) Algorithm
Input: Global model parameters θ
Output: Updated global model parameters θ
Initialization: Initialize θ with random values;
while not converged do

for each client i in the federated network do
Compute local model update wi using client’s local data;
Send wi to the server;

end
Aggregation (FedAvg):

Compute updated global model parameters θ as the average of received
local updates;

θ = 1
N ∑N

i=1 wi;
end

The performance of the aggregated model is then assessed in terms of accuracy and
losses using a pre-loaded test data set on the server. The results of this assessment are
then recorded in a CSV file. After that, the new aggregated model is returned to the clients
to repeat the training procedure with the next federated round. The described process is
reiterated until the designated number of iterations is reached. Each of these functions is
important for enabling the FL process.

3.2. Client Configurations and Functionalities

Client devices include a set of Raspberry Pi devices along with the virtualized clients
in the form of virtual machines. In particular, Raspberry Pi 3B+ is considered as a client
during the experiments. The Raspberry Pi 3B+ is equipped with a Broadcom BCM2837B0
processor, Cortex-A53 (ARMv8) 64-bit SoC with a clock speed of 1.4 GHz, a 1GB LPDDR2
SDRAM, and 2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac wireless LAN. Moreover, it has
Bluetooth 4.2, BLE, Gigabit Ethernet over USB 2.0 (max throughput 300 Mbps), a 40-pin
GPIO header, Full-size HDMI, 4 x USB 2.0, DSI, a Micro SD slot, and a power supply of
5V/2.5A DC.

To facilitate the experiment, the Raspberry PI OS 64-bit operating system was installed
on each Raspberries through the official imager. The 64-bit system is necessary for the
proper functioning of PyTorch, which currently does not support 32-bit variants. Configur-
ing the devices via SSH enabled the Virtual Network Computing (VNC) service, which uses
the local network to transmit the Raspberry desktop to the connected Windows computer.
The remote connection via the cloud could further extend the functionality of VNC. Such a
procedure allowed interaction with the Raspberry desktop directly on the notebook that
hosts the server, facilitating monitoring of the simulation’s progress from a single screen.

The client-side code was executed in the Python environment pre-installed on the
Raspberry Pis and updated to version 3.9.2. Moreover, the installation of the PyTorch
and Flower libraries was necessary. The clients are based on the client.py script, which
inherits all the contents of the file cifar.py. This file is essential for generating, training,
and evaluating the neural network. Such a configuration allowed the devices to participate
in the training process by sharing their computational power with the server. In this way,
training time and computational costs can be reduced. The Raspberry Pi 3B+ devices
were a suitable choice for this experiment due to their low cost and high customizability.
They allow users to modify the hardware and software configurations, facilitating the
implementation of ML models and algorithms. Raspberry Pi devices can also be used
in various applications, such as robotics, automation, and the Internet of Things (IoT).
The proposed setup could be replicated in various scenarios where training machine
learning models on devices with limited resources could be beneficial.
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In addition to the Raspberry devices, up to eight virtual clients are also considered
during the experimentation. It should be noted that all the virtual clients were installed on
the same PC. However, this can be easily extended to multi-PC scenarios to enable more
diverse sets of clients. Such an approach is beyond the scope of this work. In general,
virtual clients have more resources compared to hardware clients. The virtual clients are
based on the same scripts used in the implementation of the physical clients, and their
execution simultaneously is facilitated using multiple Python terminals open on different
screens. A cooling fan was necessary to prevent excessive degradation of computational
performance in the Raspberry devices due to overheating. The fan was operational during
all the tests conducted to maintain the optimal performance of the devices, as indicated in
Figure 2. Later, in the simulation and performance evaluation section, we explore the effect
of cooling on accuracy and convergence rate.

Figure 2. Cooling Mechanism for Raspberry Pi Devices.

In the FL framework, client nodes are required to perform a distinctive set of functions.
In the beginning, each client should establish a communication channel with the server
through a local network. At the beginning of each FL round, the client should receive the
updated global model parameters from the server machine. These parameters along with
the local data should be used to update the ML model through local training operations.
Client devices should train the neural network on local data, iterating for a certain number
of periods, i.e., local epochs. Furthermore, it is important to evaluate the performance of the
newly trained local model using a local test data set and send the obtained metrics to the
server. Finally, the client should transmit the parameters of the trained model back to the
server. Figure 3, provides a detailed experimental setup used during the implementation
of FL with the help of Raspberry Pi nodes, a virtual machine, and an FL server installed on
a Windows PC.

Figure 3. Experimental Setup Used During the FL Implementation.
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4. Simulations and Performance Evaluations

In this section, with the help of the Python simulation environment, we analyze the
performance of the FL framework proposed before. For a considered image classification
problem, the CIFAR10 dataset is used. It contains 60,000 colorful pictures, with a resolution
of 32 × 32 pixels, separated into 10 classifications with 6000 pictures in each category.
The CIFAR10 incorporates 50,000 samples for training and the remaining 10,000 samples
for verification. The images are randomly arranged while maintaining a perfectly uni-
form distribution of the classes. In the training set, each client has precisely 5000 images.
In the experimental setup considered, two Raspberry Pi devices are considered as well
as up to 8 virtual clients. In our setup, each virtual client was allocated an equal share
of CPU resources on the 8-core host machine. This means that the CPU resources were
evenly distributed among the virtual clients, ensuring a fair and consistent experimental
environment. By allocating an equal portion of the available 8-core CPU to each virtual
client, we maintained a balanced and representative simulation, allowing us to assess the
FL framework’s performance accurately. This approach ensures that the results obtained
were not influenced by uneven resource distribution among the virtual clients, providing
a reliable basis for our experimental findings. At first, the CIFAR10 training set was dis-
tributed among the clients. The 10 FL iterations are considered with 3 local training epochs.
The server uses the test data of 10,000 CIFAR10 samples throughout the simulation. The
accuracy of the model was determined using a metric that calculated the percentage of
correct predictions among all predictions. The accuracy values presented in our figures are
indeed normalized, ranging from 0 to 1, and not represented in percentages. For example,
an accuracy value of 0.7 corresponds to 70 percent. Note that, to avoid the extensive
training process we have limited the number of training iterations and the overall data size.
However, this also upper-bounds the overall performance of DNN. In the experimental
studies considered, DNN can only achieve an accuracy of up to 65%. However, the per-
formance can be improved with additional resources, i.e., data samples, devices, training
iterations, etc.

Figure 4, presents the performance of the FL framework considered in the basic
settings, that is, a set of users having the same amount of data and onboard capabilities.
This simulation is limited to Raspberry PI devices only. Both centralized and FL models
are trained for 30 epochs. To have an adequate comparison over different training epochs,
both models’ performance in terms of accuracy is plotted with respect to the incremental
values of the training epoch. It should be noted that in a considered simulation, the
overall epochs represent the overall training process iterations, and therefore for the case
of FL, the epochs are based on the number of FL iterations (rounds) times the local epoch
performed. From Figure 4, it can be visualized that the FL framework can emulate the
performance of a centralized approach in close proximity. Though FL can have a slightly
reduced performance compared to the centralized case, the added advantage in terms of
reduced communication overheads, and enhanced data privacy can be crucial advantages
in the novel wireless scenarios. It also highlights that all the components of the proposed
FL framework are configured properly and thus the platform is ready to perform the
additional experimental steps.

In the next parts, to evaluate the performance of the models trained with FL, they are
compared with a centralized learning benchmark with the same neural network. Some
of the key variables considered during the experimentation are the number of clients
participating in the simulation, the amount of data used for learning, and the selection and
partitioning of the training data. Simulations are conducted to assess the impact of a single
variable as well as different combinations. Additionally, performance differences between
virtual clients implemented on Windows computers and hardware clients of Raspberry PI
are carefully analyzed. The introduction of pre-trained models and alternative learning
paradigms such as Transfer Learning (TL) are also considered.
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Figure 4. Accuracy of FL for 2 clients compared to the centralized benchmark vs. epochs.

4.1. Effect of a Cooling Mechanism

The excessive amount of heat generated by the computation hardware can have a
severe impact on the environment and is underlined quite often. Such issues can also affect
the performance of the device, which can impact the model training performance. For the
case of FL, it is important to analyze the impact of such heating issues on the training
performances given the involvement of a large number of sensory devices. Therefore,
in Figure 5, we have presented the performance of two FL models with similar tasks
and training environments. One of the FL studies involves the utilization of a cooling
fan to reduce the heating issues of Raspberry Pi clients. As is evident from this figure,
accuracy can be improved with the use of cooling devices, which can help to achieve
model convergence rapidly. This highlights the importance of incorporating novel cooling
mechanisms into end devices to enable efficient intelligent solutions in wireless networks.
As such, all subsequent simulations were conducted in the presence of a cooling fan.

Figure 5. The effect of a cooling fan on the accuracy of training.

4.2. Heterogeneous Client Compensation

One of the significant challenges in implementing distributed learning techniques such
as FL is the presence of heterogeneous client devices with different amounts of resources,
i.e., computational capabilities, training data, etc. In a considered FL implementation two
sets of clients are considered. While implementing the FL solutions, a significant disparity
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in performance was promptly observed between clients operating as virtual machines
and those operating on Raspberry Pis. In the case of the traditional FL approach with
heterogeneous sets of clients, the server node waits until it receives the updates from all
the clients in question. In a considered FL setup, Specifically, it has been observed that the
server waits until even the Raspberry Pi clients complete their training, even after the most
powerful clients have finished their training. We have implemented two approaches to
mitigate this waiting time and make the best use of the highest-performing clients. The first
approach involves training the best devices for several rounds before transmitting the
model to the server. In contrast, the second approach involves training all clients with
the same number of periods but using more data for high-performance clients. Raspberry
Pi devices with their limited capabilities often take longer duration to communicate their
model updates adding a large amount of communication overhead. On the other hand,
virtual clients with a significant amount of resources are able to conclude the learning
process promptly, they suffer due to the poor behavior of hardware clients. To counter this
issue, we have adopted two different strategies. In the first case, we have normalized the
FL iteration time by inducing the harsh local training conditions over the virtual machine-
based clients by increasing the number of local epochs performed. With this approach,
instead of staying in an idle state and waiting for the parameter updates from the slow-
performing clients, the virtual clients try to optimize the local model performance through
more training. In the second approach, we have normalized the FL iteration time through
different data splits. In this case, each node performs the same amount of training epoch;
however, the number of data samples considered at a virtual machine is significantly higher
than the Raspberry Pi clients.

The FL data split can be performed with different methods. In Figure 6, we have
presented the FL model performance with asymmetric data split between heterogeneous
clients. Each subfigure includes a centralized benchmark with 50 K samples, an FL approach
with a 4:1 split, and another FL case with a 3:2 split. The subfigure on the left is based
on the deterministic data split approach, where the repetition of data samples at different
nodes is avoided. While in the subfigure on the right, a random data selection approach is
adopted, without taking into account the repetitions of data samples at different devices.
There is a significant gap between the performance of deterministic and random selection
approaches. The deterministic approach can improve the accuracy of the FL model by up
to 3.3% compared to the random case.

Figure 6. Simulations with asymmetric data distribution, without and with random selection com-
pared to the Centralized Benchmark.

In the next case, we varied the local training epoch over different clients to analyze
the performance. In this case, all devices use the same amount of training samples, while
varying the nature of the local training process. In particular virtual machine-based clients
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perform more local epochs compared to the hardware nodes, before communicating their
updates to the parameter server. Figure 7 compares the accuracy of different data split
options along with the differing local training processes. In this case, asynchronous data
split achieves higher accuracy, compared to the two FL cases where the same amount of
data is used by the FL clients while normalizing the FL process time through the adaptive
local training operations. To verify this trend and lend it further credence, it was deemed
necessary to perform several similar tests. These tests were carefully arranged so that
their execution times were identical, thus rendering it feasible to obtain a more precise
comparison in the time domain. This is demonstrated in Figure 8, which compares the two
aforementioned methods for distributing the workload between two heterogeneous clients
through several simulations. These simulations entail the following conditions:

• Two clients, each with 25,000 images. The first client undergoes two local epochs,
while the second undergoes eight.

• Two clients, each with five local epochs. The first client is assigned 10,000 images,
while the second is assigned 40,000.

• Two clients, each with 25,000 images. The first client undergoes three local epochs,
while the second undergoes twelve.

• Two clients, each with seven local epochs. The first client is assigned 10,000 images,
while the second is assigned 40,000.

Figure 7. Accuracy with asymmetric distribution of data vs different numbers of local epochs.

Figure 8. Accuracy for asymmetric data distribution vs. different numbers of local epochs, in
time domain.
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In our study, we intentionally introduced inhomogeneous and asymmetric data dis-
tribution to mimic real-world scenarios where data across users can vary significantly.
Specifically in Figure 8, the yellow line corresponds to a balanced data distribution, where
the dataset was evenly split between users (i.e., Raspberry Pis), with each user having
20,000 images. In contrast, the orange line illustrates an uneven data distribution. In this
scenario, one user was allocated 10,000 images, while the other user had 40,000 images.
This intentional variation allows us to evaluate the FL framework’s ability to handle dis-
parate data quantities among users. In all cases, the aforementioned trend is consistently
observed. This underscores the efficiency of adapting asynchronous data splitting across
heterogeneous FL clients, rather than modifying the overall training process to enforce
synchronization of FL updates from diverse devices.

Another issue that frequently impacts the DNN performance is the concept of overfit-
ting especially for the case of unbalanced datasets with a large number of local training
epochs. While modifying the local training process for the case of FL with heterogeneous
nodes, the data available at different nodes should be taken into account. When examining
the final parts of the two simulations, in Figure 9, it is possible to observe the effect of
overfitting. The accuracy has somewhat lessened due to excessive training of the model on
a small amount of data, leading to a decrease in universality for examples that were not
utilized for training.

Figure 9. Overfitting for different numbers of local epochs.

It is worth mentioning that compensating for performance by distributing unequal
amounts of data between devices is a challenging approach to implement. This is because it
may not be possible to control the volumes of data collected by different clients. Conversely,
increasing the workload of the highest-performing devices by increasing their local epochs
can be easily achieved with communications from the server.

After defining the scenarios mentioned above, further exploration was conducted to
determine the impact of a random selection of data compared to an ordered split without
overlaps. It is important to note that the CIFAR10 dataset samples are inherently unordered,
with images following one another irrespective of their class.

The initial approach involved dividing the dataset among multiple clients without
repetition, resulting in a total of 50,000 samples between all clients, which is the complete
training data. Imagine a circumstance where a pair of patrons are tasked with handling the
preparation assortment of CIFAR10, with one individual managing the initial 25,000 sam-
ples and the other in command of the residual 25,000 samples. These two data groups do
not overlap, thus utilizing the entire training set.

Expanding this approach to five clients would require dividing the data set into five
categories, each with 10,000 samples, with no overlaps or sample duplications. The second
approach, however, was based on the random selection of samples from the dataset,
allowing for a single data piece to be chosen several times within the same client. Moreover,
data could be common to different clients, even if the sum of the samples from both clients
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exceeds the total number of samples from the training set. Thus, this method may yield a
generally substandard model performance that aligns more with actual situations.

It is essential to consider that performance may vary from simulation to simulation,
even with the same conditions, due to the random variables of these tests. As a result,
the tests involving random samples were repeated multiple times, and the results presented
represent their average. The impact of random selection, with identical data amounts and
epoch numbers, is evident in Figure 10, which compares two centralized learnings.

Figure 10. Centralized Learning with and without random data selection.

The aforementioned phenomenon is similarly observed in a federated scenario, as il-
lustrated in Figure 11 by comparing two basic FLs involving two clients, each containing
25,000 images. The likelihood of encompassing a greater portion of the dataset and sub-
sequently enhancing the ultimate accuracy increases as the number of randomly selected
training samples increases.

Figure 11. Federated Learning of 2 clients with and without random data selection.

As the quantity of randomly selected samples utilized for training increases, the prob-
ability of encompassing a more significant portion of the dataset also increases. This
subsequently results in an enhancement of the final accuracy. This correlation is visually
depicted in Figure 12, showcasing three FL evaluations conducted on two devices. The num-
ber of samples on each client has been progressively augmented from one simulation to the
next, positively impacting the accuracy metric at the conclusion of each federated round.
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Figure 12. FL with different amounts of randomly chosen samples for two clients.

4.3. Increasing the Number of Clients

The subsequent phase, aimed at enhancing the observance of FL and its scalability,
entailed increasing the number of clients participating in the simulation to a maximum of 10.
Of these, 2 were Raspberry clients, and 8 were virtual clients, coexisting with the server on
the computer. The 10-client threshold could not be exceeded due to the restricted RAM on
the laptop and the considerable resources required to train neural networks. Nevertheless,
this number of clients proved adequate in inducing a noteworthy decline in the model’s
performance as the number of devices involved escalated. In addition, it can be seen that
the accuracy calculated by the server of the global model after each federated round is
progressively sluggish as the number of clients used grows.

Figure 13 portrays the accuracy value for each federated round for five different simu-
lations, each divided equally across all clients, using the internal training set (50,000 images).
The specific parameters for each test are as follows: two clients with 25,000 samples each,
four clients with 12,500 samples each, five clients with 10,000 samples each, eight clients
with 6250 samples each, and ten clients with 5000 samples each. The simulation employing
only two clients is the best, whereas the test with ten devices yields the worst performance,
requiring 40 federated rounds before achieving accuracy comparable to the former. How-
ever, it should be noted that, in the first case, Raspberries must operate with 25,000 samples
each, resulting in relatively slower local periods, while in the second case, each client uses
only 5000 samples, thereby completing its local epochs much faster.

Figure 13. FL with different amounts of randomly distributed samples among different number
of clients.
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Examining Figure 14, representing the same performance while in the time domain,
it is evident that the actual difference in performance between the simulations is much
lower and sometimes even nonexistent. For instance, the test with ten clients completed its
40 rounds at a time, close to the tenth round of the test with only two clients. The same
applies to the other curves, with the simulation involving four clients overlapping perfectly
with that of two. This implies that, in the context of a system with limited computational
capacity, as represented by the Raspberry Pi, a federated approach generates relatively
similar performance to centralized ones.

Figure 14. Accuracy vs. the number of rounds for different numbers of clients.

A similar pattern can be witnessed even with random samples, as illustrated in the
two simulations depicted in Figure 15. The clients work with 30,000 and 12,000 images
randomly selected from the dataset, and the algorithm trained with five clients obtains
lower accuracy per round. However, since these simulations are completed twice as fast as
the two-client simulation, the result is that the accuracy values are very similar moment
by moment.

Figure 15. Accuracy with random samples and different numbers of clients.

4.4. Effect of Pretraining

Upon completion of the previous phase, the training framework was further explored,
emphasizing the introduction of pre-trained models. In all tests conducted thus far, the ini-
tial accuracy starts at approximately 0.1 (i.e., 10%), which aligns with a randomly initialized
model. In this FL implementation, at the beginning of each simulation, the server randomly
selects a client to transmit its original model, a neural network with randomly assigned
node weights, generating a very low accuracy of approximately 10%. This model is then
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disseminated from the server to all clients to establish a common starting point for training.
Alternatively, it may be feasible to directly preserve a fundamental model on the server that
is conveyed to all users during the initial stage. This method allows for using a pre-trained
neural network already on the server, resulting in enhanced performance for FL.

For this specific scenario, the model pre-training was conducted centrally on 30,000 sam-
ples randomly selected by CIFAR10, with data processing for 3, 6, or 9 periods, leading
to three pre-trained models with varying levels of accuracy. This approach observed how
pretraining at different intensities contributes to FL’s performance. As demonstrated in
Figure 16, each test has a distinct initial accuracy value, followed by training through a
straightforward implementation of federated learning with two clients, each with half a
dataset and three local epochs per round. The impact of pretraining is discernible in the
initial rounds, where trained simulations exhibit a significant advantage over cases without
pretraining. This discrepancy weakens as the federated rounds continue until all curves
converge around the tenth round, resulting in a final accuracy value that is relatively high,
especially considering that the previous centralized benchmark on the internal training set
had a score of 65%.

Figure 16. Accuracy with 2 clients and different pretraining levels.

Similar examinations were replicated in a federated context comprising five clients,
each trained on a fifth of the dataset to extend the findings. Once again, as can be seen
in Figure 17, a trend similar to the previous one is discernible, with a substantial effect of
pretraining in the initial stages that diminishes until the curves converge. The incorporation
of pre-trained models thus represents a commendable strategy to accelerate the federated
learning of the network. This technique is particularly advantageous in situations with
limited time available for training, as in this case, FL could be stopped before converging
to maximum accuracy, and pretraining would bring significant benefits, as observed in the
first part of the graph.

Figure 17. Simulations with 5 clients and different pretraining levels.
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To further emphasize the impact of pretraining, FL was conducted again with 10 clients
who had previously exhibited reduced performance compared to other simulations. How-
ever, this time a starting model already trained with 30,000 random samples for six periods
was used. The outcome is shown in Figure 18, where the new simulation has substantially
higher accuracy than the previous test with 10 clients and even surpasses the scenario with
only two devices. This exemplifies how one can compensate for the decline in the accuracy
of FL due to the increase in the number of devices involved by incorporating pretraining.

Figure 18. 2 simulations with 10 clients with or without pretraining vs. simulation with 2 clients
without pretraining.

However, we must recognize the deficiencies of this approach. Pretraining a model
demands time and energy. Ideally, the optimal solution would be to conduct the pretraining
directly on the server in a centralized manner. In this case, the reduced number of periods
required to obtain a good starting model and the high computing capacity of the server
would render the pretraining time almost negligible compared to the duration of the
subsequent federated training. Nonetheless, this solution may not be feasible in a practical
scenario as it implies the presence of a certain amount of training data directly on the server
when, in several cases, FL is chosen precisely to circumvent the transfer of the local data
collected by the various devices. A possible alternative could be the utilization of a more
generic dataset for pretraining, then leaving clients with the task of integrating the model’s
specific features with their local data, akin to what occurs for TL.

4.5. Transfer Learning

Drawing inspiration from the aforementioned analogy of TL, executing its function-
ality in the present framework has been feasible. However, it is imperative to specify
that the measures implemented to achieve this outcome do not facilitate the attainment
of the same level of automation as federated simulations. The practical principle is akin
to pretraining, wherein an initial model is trained through centralized machine learning.
Subsequently, this model is disseminated to various devices that conduct local training
with their unique dataset.

In the first part of Figure 19, the fundamental model training is depicted, followed by
the curves of multiple models obtained by the clients. The two models produced in the
first scenario are almost identical, as both clients have 25,000 images of data and have been
trained for the same number of epochs.
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Figure 19. TL with 2 clients.

In contrast, in Figure 20, differences in terms of accuracy and training time between
the three devices are apparent, which is expected since all the clients have trained for
21 periods. However, each client had varying sample sizes available, with the first client
having 10,000, the second having 20,000, and the third having 30,000 elements of CIFAR10.
Thus, clients with more data will exhibit slower periods that guarantee greater accuracy.

Figure 20. TL with 3 clients.

5. Discussion

In this study, we conducted an in-depth exploration of Federated Learning (FL)
methodology across heterogeneous nodes, offering critical insights into its application
within the context of 6G technology. Our investigation revolved around a hardware-
software integrated FL model, ingeniously leveraging a combination of Raspberry Pi
devices and virtual machines as FL clients, each equipped with unique datasets sourced
from the CIFAR10 dataset, a widely accepted benchmark in image classification. The exper-
iments were meticulously designed to mirror real-world scenarios, addressing multifaceted
challenges including varying computation resources, uneven dataset distributions, and the
heating issues inherent in wireless devices.

A pivotal aspect of our research involved examining the impact of cooling mechanisms
on training accuracy, elucidated in detail in Section 4.1. The insights garnered from Figure 5
underscore the significance of cooling devices in expediting model convergence, highlight-
ing their practical relevance, especially in resource-constrained environments. Additionally,
we delved into the complexities of heterogeneous client compensation, meticulously ex-
amining asymmetric data distribution scenarios, both with and without random selection,
compared to a Centralized Benchmark, as delineated in Section 4.2 (Figures 6–8). These
analyses illuminated the nuanced dynamics of FL performance, emphasizing the intricate
balance required in distributing training data among disparate nodes. Furthermore, our
study probed the issue of overfitting in FL, a critical concern often encountered in decentral-
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ized learning paradigms. Through Figure 9, we identified the challenge and subsequently
addressed it by incorporating random selection strategies, showcased in Figures 10–12,
thereby mitigating overfitting risks while optimizing model generalization. A compre-
hensive exploration into the scalability of FL was presented in Section 4.3, analyzing the
impact of increasing the number of users on the system’s performance (Figures 13–15). This
analysis provided valuable insights into FL’s scalability potential, crucial for its adoption
in large-scale, dynamic environments. The effectiveness of pretraining in enhancing accu-
racy rates was explored in Section 4.4, revealing significant improvements showcased in
Figures 16–18. Pretraining emerged as a powerful technique, elevating the model’s perfor-
mance and showcasing its potential for optimizing FL outcomes. Finally, in Section 4.5, we
delved into Transfer Learning’s potential, evaluating its impact with varying numbers of
clients (Figures 19 and 20). The results underscored Transfer Learning’s capacity to enhance
FL model performance, particularly when faced with diverse client configurations.

6. Conclusions

In this work, we have investigated the performance of the FL method including a
group of heterogeneous nodes. In particular, a hardware-software integrated FL model
is developed by using a set of Raspberry PI devices and virtual machines acting as an FL
client with their datasets. Performance is analyzed for the case of an image classification
problem with a widely known CIFAR10 dataset. Given the importance of distributed
intelligence with heterogeneous wireless nodes in the upcoming 6G technology, a set of
experiments are performed to analyze the FL performance in different cases. Main issues
such as differing computation resources, uneven distributions of datasets, and heating
issues of wireless devices were considered while performing the experiments. In addition,
novel technologies such as the users of pre-trained networks for knowledge transfer, were
also considered. A more pro-analysis and concluding remarks are also presented during
the discussion of simulation results. This study can be highly useful when considering the
deployments of FL methods over heterogeneous 6G environments to enable large-scale,
connected, cost-efficient, and reliable distributed intelligence.

In conclusion, our study’s multifaceted approach, spanning cooling mechanisms,
heterogeneous compensation strategies, overfitting mitigation, scalability analyses, and the
integration of pretraining and Transfer Learning, provides a holistic understanding of
FL’s dynamics across heterogeneous nodes. These nuanced findings not only contribute
significantly to the academic discourse but also hold practical implications for real-world
6G deployments. By illuminating the complexities and offering viable solutions, our
research empowers the seamless integration of FL in diverse, large-scale, connected, cost-
efficient, and reliable distributed intelligence systems, laying the foundation for the future
of intelligent wireless networks.

Author Contributions: Conceptualization, D.T. and S.S.S.; methodology, S.S.S.; software, L.R. and
D.N.; validation, L.R., S.S.S. and D.N.; formal analysis, S.S.S. and D.N.; investigation, L.R.; resources,
D.T.; data curation, L.R.; writing—original draft preparation, D.N.; writing—review and editing,
D.T., D.N, and S.S.S.; visualization, L.R.; supervision, D.T.; project administration, D.T.; funding
acquisition, D.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the ECOSISTER project funded under the
National Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5—
NextGenerationEU, Call for tender n. 3277 dated 30 December 2021, Award Number: 0001052 dated
23 June 2022 and by the European Union under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommunications of the Future” (PE00000001—
program “RESTART”).

Data Availability Statement: Data available on request due to restrictions e.g., privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

74



Future Internet 2023, 15, 358

References
1. Letaief, K.B.; Shi, Y.; Lu, J.; Lu, J. Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications. IEEE J. Sel.

Areas Commun. 2022, 40, 5–36. [CrossRef]
2. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A

Comprehensive Survey. IEEE Internet Things J. 2022, 9, 359–383. [CrossRef]
3. 6G Technology Overview, 2nd ed.; one6G White Paper; 2022. Available online: https://one6g.org/download/2699/ (accessed on

27 September 2023).
4. Tang, F.; Mao, B.; Kawamoto, Y.; Kato, N. Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G:

From Network Access, Routing to Traffic Control and Streaming Adaption. IEEE Commun. Surv. Tutor. 2021, 23, 1578–1598.
[CrossRef]

5. Muscinelli, E.; Shinde, S.S.; Tarchi, D. Overview of Distributed Machine Learning Techniques for 6G Networks. Algorithms 2022,
15, 210. [CrossRef]

6. Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the Design of Federated Learning in Latency and Energy Constrained
Computation Offloading Operations in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 71, 2041–2057.
[CrossRef]

7. Shinde, S.S.; Tarchi, D. Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems. IEEE Trans.
Intell. Transp. Syst. 2023, 24, 9996–10011. [CrossRef]

8. Duan, Q.; Huang, J.; Hu, S.; Deng, R.; Lu, Z.; Yu, S. Combining Federated Learning and Edge Computing Toward Ubiquitous
Intelligence in 6G Network: Challenges, Recent Advances, and Future Directions. IEEE Commun. Surv. Tutor. 2023, in press.
[CrossRef]

9. Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential,
Limitations, and Future Directions. IEEE Access 2019, 7, 137184–137206. [CrossRef]

10. Praveen Kumar, D.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf.
Fusion 2019, 49, 1–25. [CrossRef]

11. Fontanesi, G.; Ortíz, F.; Lagunas, E.; Baeza, V.M.; Vázquez, M.; Vásquez-Peralvo, J.; Minardi, M.; Vu, H.; Honnaiah, P.; Lacoste, C.;
et al. Artificial Intelligence for Satellite Communication and Non-Terrestrial Networks: A Survey. arXiv 2023, arXiv:2304.13008.

12. Lee, H.; Lee, S.H.; Quek, T.Q.S. Deep Learning for Distributed Optimization: Applications to Wireless Resource Management.
IEEE J. Sel. Areas Commun. 2019, 37, 2251–2266. [CrossRef]

13. Huang, J.; Wan, J.; Lv, B.; Ye, Q.; Chen, Y. Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in
Internet of Vehicles via Deep Reinforcement Learning. IEEE Syst. J. 2023, 17, 2500–2511. [CrossRef]

14. Song, H.; Liu, L.; Ashdown, J.; Yi, Y. A Deep Reinforcement Learning Framework for Spectrum Management in Dynamic
Spectrum Access. IEEE Internet Things J. 2021, 8, 11208–11218. [CrossRef]

15. Nayak, P.; Swetha, G.; Gupta, S.; Madhavi, K. Routing in wireless sensor networks using machine learning techniques: Challenges
and opportunities. Measurement 2021, 178, 108974. [CrossRef]

16. Yang, Z.; Chen, M.; Saad, W.; Hong, C.S.; Shikh-Bahaei, M. Energy Efficient Federated Learning Over Wireless Communication
Networks. IEEE Trans. Wirel. Commun. 2021, 20, 1935–1949. [CrossRef]

17. Jiang, J.C.; Kantarci, B.; Oktug, S.; Soyata, T. Federated Learning in Smart City Sensing: Challenges and Opportunities. Sensors
2020, 20, 6230. [CrossRef] [PubMed]

18. Matthiesen, B.; Razmi, N.; Leyva-Mayorga, I.; Dekorsy, A.; Popovski, P. Federated Learning in Satellite Constellations. IEEE Netw.
2023, 1–16. in press. [CrossRef]

19. Younus, M.U.; Khan, M.K.; Bhatti, A.R. Improving the Software-Defined Wireless Sensor Networks Routing Performance Using
Reinforcement Learning. IEEE Internet Things J. 2022, 9, 3495–3508. [CrossRef]

20. Dewangan, D.K.; Sahu, S.P. Deep Learning-Based Speed Bump Detection Model for Intelligent Vehicle System Using Raspberry
Pi. IEEE Sens. J. 2021, 21, 3570–3578. [CrossRef]

21. Cicceri, G.; Tricomi, G.; Benomar, Z.; Longo, F.; Puliafito, A.; Merlino, G. DILoCC: An approach for Distributed Incremental
Learning across the Computing Continuum. In Proceedings of the 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), Irvine, CA, USA, 23–27 August 2021; pp. 113–120. [CrossRef]

22. Mills, J.; Hu, J.; Min, G. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet Things J.
2020, 7, 5986–5994. [CrossRef]

23. Farkas, A.; Kertész, G.; Lovas, R. Parallel and Distributed Training of Deep Neural Networks: A brief overview. In Proceedings
of the 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES), Reykjavík, Iceland, 8–10 July 2020;
pp. 165–170. [CrossRef]

24. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

75



Future Internet 2023, 15, 358

25. Hong, C.S.; Khan, L.U.; Chen, M.; Chen, D.; Saad, W.; Han, Z. Federated Learning for Wireless Networks; Springer: Singapore, 2022.
26. Zhang, Z.; Zhang, Y.; Guo, D.; Zhao, S.; Zhu, X. Communication-efficient federated continual learning for distributed learning

system with Non-IID data. Sci. China Inf. Sci. 2023, 66, 122102. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

76



Citation: Al-Saedi, A.A.; Boeva, V.;

Casalicchio, E. FedCO:

Communication-Efficient

Federated Learning via Clustering

Optimization. Future Internet 2022, 14,

377. https://doi.org/10.3390/

fi14120377

Academic Editors: Qiang Duan and

Zhihu Lu

Received: 4 November 2022

Accepted: 8 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

FedCO: Communication-Efficient Federated Learning via
Clustering Optimization †

Ahmed A. Al-Saedi 1,∗, Veselka Boeva 1 and Emiliano Casalicchio 1,2,∗

1 Department of Computer Science, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
2 Department of Computer Science, Sapienza University of Rome, 00185 Rome, Italy
* Correspondence: ahmed.a.al-saedi@bth.se (A.A.A.-S.); emiliano.casalicchio@uniroma1.it (E.C.)
† This paper is an extended version of our paper “Reducing Communication Overhead of Federated Learning

through Clustering Analysis” published in Processing of the 2021 IEEE Symposium on Computers and
Communications (ISCC), Athens, Greece, 5–8 September 2021.

Abstract: Federated Learning (FL) provides a promising solution for preserving privacy in learning
shared models on distributed devices without sharing local data on a central server. However, most
existing work shows that FL incurs high communication costs. To address this challenge, we propose
a clustering-based federated solution, entitled Federated Learning via Clustering Optimization
(FedCO), which optimizes model aggregation and reduces communication costs. In order to reduce
the communication costs, we first divide the participating workers into groups based on the similarity
of their model parameters and then select only one representative, the best performing worker, from
each group to communicate with the central server. Then, in each successive round, we apply the
Silhouette validation technique to check whether each representative is still made tight with its current
cluster. If not, the representative is either moved into a more appropriate cluster or forms a cluster
singleton. Finally, we use split optimization to update and improve the whole clustering solution.
The updated clustering is used to select new cluster representatives. In that way, the proposed FedCO
approach updates clusters by repeatedly evaluating and splitting clusters if doing so is necessary to
improve the workers’ partitioning. The potential of the proposed method is demonstrated on publicly
available datasets and LEAF datasets under the IID and Non-IID data distribution settings. The
experimental results indicate that our proposed FedCO approach is superior to the state-of-the-art
FL approaches, i.e., FedAvg, FedProx, and CMFL, in reducing communication costs and achieving a
better accuracy in both the IID and Non-IID cases.

Keywords: federated learning; Internet of Things; clustering; communication efficiency; convolu-
tional neural network

1. Introduction

With recent advances in Internet of Things (IoT) devices and the fast growth of high-
speed networks, the need to collect and process vast amounts of distributed data generated
by these devices is significantly increasing. Furthermore, Artificial Intelligence (AI) has
concurrently transformed the discovery of knowledge methods with cutting-edge success
in several applications, including text prediction, facial recognition, natural language pro-
cessing, document identification, and other tasks [1,2]. However, those applications require
IoT devices to send sensitive information to a remote cloud server for centralized model
training, which raises data privacy concerns [3,4]. These privacy concerns of IoT devices
are supposed to be reduced by introducing an alternative setting, i.e., Federated Learning
(FL). The main idea of FL is to collaboratively train a shared machine learning model
across distributed devices, where the data are stored locally on devices [5,6]. However, a
naive implementation of the FL setting requires that each participant has to upload a full
model update to a central server during each iteration. For large updates with millions
of parameters for deep learning models and thousands of iterations [7], this step is likely
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to be a major hindrance in FL when the network bandwidth is limited. Thus, Federated
Learning can become completely impractical [8].

Over the past few years, there has been a growing consensus that the more data
that can be guaranteed, the better and higher accuracy that will be achieved. It should
not be assumed, however, that blindly introducing more data into a model will improve
its accuracy, but only that ensuring high-quality data will guarantee a higher degree
of accuracy.

Our Contributions: In this paper, we propose a novel FL framework, entitled Fed-
erated Learning via Clustering Optimization (FedCO), to lessen the challenges described
above during the training process. In particular, FedCO draws inspiration from our previ-
ous work, Cluster Analysis-Based Federated Learning (CA-FL), presented in [9]. In the
CA-FL framework, the server only communicates with the representative who achieved a
higher level of accuracy in each cluster.We implemented a regression model in machine
learning and evaluated and compared the CA-FL model using only the federated average
(FedAvg) [6] for human activity recognition (HAR) datasets. In the current work, we have
enhanced the original CA-FL framework with a dynamic clustering scheme that reduces
communication costs and more quickly ensures global model convergence. The result of
the improvements is a new version of a deep learning-based framework called FedCO. In
contrast to the original framework and compared to related work studies, discussed in
Section 2, FedCO incorporates the following amendments.

• We propose a deep learning-based FL framework, FedCO for short, that employs
a dynamic adaptation procedure to new data, which evaluates representatives tied
to their clusters at each learning round and redistributes them among the clusters if
necessary. In addition, the quality of the obtained adapted clustering is evaluated at
each round, and over-represented clusters of workers undergo a splitting procedure if
this improves the whole clustering (Section 4).

• We provide a convergence analysis for our proposed FedCO algorithm (Section 6.2).
• We initially evaluate the proposed FedCO by comparing its performance with that of

three baseline FL methods—FedAvg [6], FedProx [10], and CMFL [11]—on MNIST,
CIFAR-10, and Fashion-MNIST under two different data-distribution scenarios, Inde-
pendent and Identically Distributed (IID), and Non-IID.

• In addition, since our proposed FedCO algorithm is intended as a communication-
mitigated version of FedAvg, we further study and assess the robustness of the FedCO
with respect to FedAvg on two LEAF datasets under IID and Non-IID data.

• The conducted experiments have demonstrated the efficiency of FedCO over the
FedAvg, FedProx, and CMFL algorithms in terms of convergence rate and communi-
cation overhead (Section 6).

The rest of the paper is structured as follows. Section 2 reviews the previous studies
related to our work. The methodology used in our paper is presented in Section 3. Section 4
is devoted to the proposed FedCO and its strategy. The practical applications of those
experimental settings are discussed in Section 5. The conducted experiments and the
obtained results are analyzed and discussed in Section 6. The conclusions of our study and
potential future works are presented in Section 7.

2. Related Work

This section mainly reviews the published research works aimed at reducing commu-
nication overheads in FL. In general, Federated Learning requires massive communication
between the central server and the workers to train a global model [6]. Such an overhead
is imputed to the size of the model exchanged and to the number of rounds to converge.
Many works aim at reducing communication costs; e.g., HeteroFL [12] utilizes models
of different sizes to address heterogeneous clients equipped with different computation
and communication capabilities, while the work in [13] uses decentralized collaborative
learning in combination with the master–slave model.
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Among many of the published FL solutions, there are few existing FL works that use
clustering techniques [14–18]. For example, in [14] the study proposes clustering algorithms
based on clients’ similarities. The authors have tried to find a cluster structure of data to
collect clients with similar data distributions and to perform baseline FedAvg training per
cluster. In [15], the authors introduce clustering techniques to partition the clients with
similar data distribution using a measure of distance between the weight updates of the
clients. A dynamic clustering through generative adversarial network-based clustering
(GAN) is designed to obtain a partition of the data distributed on FL clients in [16]. The
authors in [17] introduced a new framework, namely the Iterative Federated Clustering
Algorithm (IFCA), in which clusters of users also aggregate their data with others in the
same cluster (the same learning task) and optimize model parameters for the user clusters
via gradient descent. Finally, Ouyang et al. [18] present clustering algorithms to cluster
the heterogeneous data across clients into various clusters to participate in global model
learning. The authors grouped the data after reducing its dimensions using PCA, and they
measured the similarity of local updates.

Although the studies discussed above [14–18] have applied clustering techniques to
FL scenarios, all of them have clustered the clients based on the distribution of their own
data, while our proposed technique partitions the clients based on their training model
parameters, i.e., in a way that ensures that each cluster will contribute to the model by
learning different aspects (different model parameters’ values) of the studied phenomenon.
Evidently, our solution for mitigating communication costs of FL is conceptually different
from the approaches discussed above, despite it also being based on clustering.

The majority of the studies in the field of resource-aware FL can be distributed into
two main categories: a reduction in the total number of bits transferred, and a reduction in
the number of local updates. Table 1 summarizes the techniques proposed by the research
community, classifying them according to the categorization mentioned above.

Table 1. Summary of recent studies to minimize communication overhead in FL.

Categories Existing Studies ML Model Used Datasets

First category

Chen et al. [19] CNN, LSTM MNIST, HAR

Fed-Dropout [20] DNN CIFAR-10, MNIST, EMNIST

Lin et al. [21] CNNs, RNNs Cifar10, ImageNet,
Penn Treebank

STC [22] VGG11, CNN CIFAR-10, MNIST

PowerSGD [23] ResNet-18, LSTM CIFAR10, WIKITEXT-2

FedOpt [24] NN, LM CIFAR10, MNIST

FEDZIP [25] CNN, VGG16 MNIST, EMNIST

FetchSGD [26] NN CIFAR-100, CIFAR-10,
FEMNIST

T-FedAvg [27] MLP, ResNet-18 MNIST, CIFAR-10

FedAT [28] CNN, Logistic CIFAR-10, Fashion-MNIST,
Sentiment140, FEMNIST,

Reddit
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Table 1. Cont.

Categories Existing Studies ML Model Used Datasets

Second category

CMFL [11] CNN, LSTM MNIST, NWP

FedMed [29] LSTM PTB, WikiText-2, Yelp

CEEP-FL [30] CNN MNIST, CIFAR-10

FedCS [31] NN CIFAR-10, FashionMNIST

FedPSO [32] CNN MNIST, CIFAR-10

AdaFL [33] MLP, CNN MNIST, CIFAR-10

MAB [34] NN, CNN MNIST, Video QoE

FedAtt [35] GRU WikiText-2, PTB, Reddit

FedPAQ [13] CNN, Logistic MNIST, CIFAR-10

Ribero et al. [36] CNN, Logistic, RNN Synthetic, EMNIST,
Shakespeare

CA-FL [9] SGD mHealth, Pamap2

Proposed (FedCO) CNN MNIST, Fashion-MNIST,
CIFAR-10, FEMNIST, CelebA

2.1. Reduction of the Total Number of Bits

The first category incorporates works that reduce the total number of bits transferred
for each local update through data compression. Chen et al. [19] propose an enhanced
Federated Learning technique by introducing an asynchronous learning strategy on the
clients and a temporally weighted aggregation of the local models on the server. Different
layers of the deep neural networks are categorized into shallow and deep layers, and
the parameters of the deep layers are updated less frequently than those of the shallow
layers. In addition, a temporally weighted aggregation strategy is applied on the server
to make use of the previously trained local models, thereby enhancing the accuracy and
convergence of the central model. Caldas et al. [20] design two novel strategies to reduce
communication costs. The first relies on lossy compression on the global model sent from
the server to the client. The second strategy uses Federated Dropout, which allows users to
efficiently train locally on smaller subsets of the global model and reduces client-to-server
communication and local computation. Lin et al. [21] propose Deep Gradient Compression
(DGC) to significantly reduce the communication bandwidth. Sattler et al. [22] introduce
a new compression framework, entitled Sparse Ternary Compression, that is specifically
designed to meet the requirements of the Federated Learning environment. Asad et al. [24]
implement a Federated Optimization (FedOpt) approach by designing a novel compression
algorithm, entitled Sparse Compression Algorithm (SCA), for efficient communication,
and then they integrate the additively homomorphic encryption with differential privacy
to prevent data from being leaked. Malekijoo et al. [25] develop a novel framework that
significantly decreases the size of updates while transferring weights from the deep learn-
ing model between the clients and their servers. A novel algorithm, namely FetchSGD,
that compresses model updates using a Count Sketch and takes advantage of the merge-
ability of sketches to combine model updates from many workers, is proposed in [26].
Xu et al. [27] present a federated trained ternary quantization (FTTQ) algorithm, which
optimizes the quantized networks on the clients through a self-learning quantization factor.
Vogel et al. [23] design a PowerSGD algorithm that computes a low-rank approximation
of the gradient using a generalized power iteration. A novel Federated Learning method,
entitled FedAT, with asynchronous tiers under Non-IID data, is presented in [28]. Fe-
dAT synergistically combines synchronous intra-tier training and asynchronous cross-tier
training. By bridging the synchronous and asynchronous training through tiering, FedAT
minimizes the straggler effect with improved convergence speed and test accuracy. Our
research does not consider methods that leverage data compression techniques because of
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reduced scalability in scenarios such as edge and fog computing, and 5G networks, where
hundreds of thousands of nodes cooperate in updating global models on the central server.
Moreover, these approaches strictly depend on the application field.

2.2. Reduction of the Number of Local Updates

The second category includes studies that aim at reducing the number of local updates
during the training process. For example, Wu et al. [29] have proposed a novel FedMed
method with adaptive aggregation using the topK strategy to select the top workers who
have lower losses to update the model parameters in each round. Likewise, Asad et al. [30]
have provided a novel filtering procedure on each local update that allows transferring
only the significant gradients to the server. The authors in [11] identify the relevant updates
of the participants and upload only them to the server. In particular, at each round, the
participants receive the global tendency and check the relevancy of their local updates with
the global model, and only upload them if they align. Nishio and Yonetani in [31] propose
an FL protocol of two-step client selection based on their resource constraints instead of the
random client selection. In addition, a global model update algorithm, namely FedPSO,
proposed transmitting the model weights only for the client that has provided the best
score (such as accuracy or loss) to the cloud server [32].

Notice that our proposed FL model falls into the second category. We have been
inspired by the studies discussed above, especially by CMFL [11] and FedProx [10], and we
explored an approach that applies clustering optimization to bring efficiency and robustness
in FL’s communication. The most representative updates are uploaded only to the central
server to reduce network communication costs.

The state-of-the-art solutions analyzed mainly conduct experiments considering a
CNN model, except for FedMed, which uses an LSTM model, and FedCS, which uses an NN
model (cf. Table 1, second category). Hence, we have chosen to assess the performance of
our approach (FedCO) by using a CNN model. While there are many datasets used for the
evaluation of FL solutions in the literature, the recurrent ones are MNIST, FashionMNIST,
and CIFAR-10. Hence, we have evaluated the performance of FedCO training the FL model
on the three datasets mentioned above. Additionally, we used datasets from the LEAF FL
repository (FEMNIST and CelebA) to benchmark the performance of our FL algorithm
against FedAvg [6] and FedProx [10].

3. Preliminaries and Definitions

In this section, we first briefly present the communication model and describe some
preliminaries of a naive method of FL [37]. We then describe three state-of-the-art FL
algorithms used for the comparison of our solution. Finally, we introduce the techniques
used to conduct clustering optimization, i.e., the k-medoids clustering algorithm, and
the Silhouette Index validation method. Table 2 summarizes the main notations used in
the paper.

Table 2. Main notations.

Notation Description

W Set of available workers

Wt Set of selected workers at tth communication round

wi A worker, i.e., wi ∈W

Di The local data in worker wi

ni The size of data in worker wi

n Total size of data

kt The number of clusters in round t
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Table 2. Cont.

Notation Description

C = {C1, . . . , Ckt} The clustering solution in round t

M The global model

M∗ The optimal global model

Mt The global model at tth round

Mi
t The local model of worker wi at round t

F(.) The objective function of the global model

Fi(.) The objective function of the local model of worker wi

T Maximal number of communication rounds

E The number of local epochs

η Learning rate

gi
t The gradients computed using back-propagation

s(.) Silhouette Index score

3.1. Communication Model

In the proposed FL environment, FL is split into two major parts: workers and the
central server. Our work aims to reduce communication overhead without sacrificing
accuracy value during the training process. In this setting, the server coordinates a network
of workers, controls the training progress of the model, broadcasts the original model to
all participating workers, and then executes all the aggregation processes of the model
updates. All workers are share model updates instead of sending their private data to a
central server for global model aggregation. Figure 1 outlines the overall operations of the
Federated Learning procedure.

Figure 1. The general operations of the Federated Learning process.
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Data are protected, with private access for each worker. Thus, model training occurs
locally on each worker’s side. In this context, we assume that each worker agrees on the
same learning task and the model parameters throughout the training process. In particular,
the proposed FL model updates the global model only with local model parameters from a
few workers that are considered representative. Such workers are selected at each training
round by identifying the highest quality of the local model produced of the worker. The
selection policy is assumed to be implemented in a server, i.e., a central node selects a
representative of the cluster with the highest accuracy. Furthermore, we assume that the
server is always reachable by the workers. Finally, our proposed technique works by
following this iterative collaboration between the central server and the workers.

3.2. Problem Description

In this work, we mainly concentrate on synchronous Federated Learning algorithms.
A Federated Learning system consists of a global modelM and a set of workers W. At
each communication round t, the server deploys the current model Mt to a subset of
workers Wt ⊂W that dynamically participate in the global aggregation at round t. Each
worker wi ∈ Wt locally keeps its personal data Di = {xij}ni

j=1, (j = 1, 2, . . . , ni), where
xij is the jth training sample in Di. The size of the local dataset Di varies with different
real-world applications.

In standard centralized Stochastic Gradient Descent (SGD), the local updates of each
wi are calculated according to Equation (1) to optimizeMi

t, where η is the learning rate
and gi

t refers to the gradients computed:

Mi
t+1 =Mi

t − ηgi
t
. (1)

Then, each worker wi sends the local model changesMi
t+1 to the central server after

the number of E local step, where pi is the relative weight of worker wi, and the global
model is computed by applying Equation (2):

Mt+1 =Mt +

∑
wi∈Wt

piMi
t+1

∑
wi∈Wt

pi

. (2)

These are iterated until a certain stop criterion is met.
The corresponding local loss function ofMi of each worker wi is defined as

Fi(Mi) =
1
|Di| ∑

xij∈Di

f (Mi, xij), (3)

where f (Mi, xij) is the loss function for data point xij using (1). Each worker wi indepen-
dently updates the model over its own data Di to optimize its local loss function Fi(Mi).
The aim of improving the communication efficiency of Federated Learning is to minimize
the cost of sendingMi

t to a central server while learning from the data distributed over a
large number of decentralized edge devices. Similarly, the global loss function on all the
distributed datasets is defined as:

F(M) =
1
|W | ∑

wi∈Wt

Fi(Mi), (4)

whereM is the aggregated global model, and the overall goal is to decrease the global loss
function F(M), namely,

M∗ = arg min F(M). (5)
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Other issues related to Federated Learning problems, such as system heterogeneity or
privacy, are beyond the scope of this paper. Specifically, the proposed FedCO algorithm
does not account for heterogeneity, which for example could affect the selection of workers
that have enough power to transmit the model parameters. In the worst case, heterogeneity
could increase the convergence time or reduce the accuracy, if for example, workers that
achieve a higher accuracy cannot be selected because they have short battery lifetimes.

3.3. FL State-of-the-Art Algorithms

Most of the work on the convergence of compared FL algorithms such as FedAvg,
CMFL, and FedProx centers around minimizing (4). We compare the proposed FedCO with
the following state-of-the-art algorithms in the FL setting:

3.3.1. FedAvg

FedAvg, proposed by McMahan et al. in [6] can be viewed as a communication-light
implementation of the standard centralized SGD, wherein the local updates are aggregated
in the server after E local steps, where E ≥ 1.

3.3.2. FedProx

FedProx [10] is a distributed algorithm, wherein a round-varying proximal term is
introduced to control the deviation of the local updates from the most recent global model.
A participating worker uses a proximal update that involves solving a minimization
problem.

3.3.3. CMFL

Communication-Mitigated Federated Learning (CMFL) [11] improves the communica-
tion efficiency of Federated Learning while at the same time providing guaranteed learning
convergence.

3.4. K-Medoids Clustering Algorithm

K-medoids is a robust clustering algorithm. It is used to partition a given set of data
points into k disjoint clusters [38]. In contrast to the k-means, which use the mean value
of the data points in each cluster as a cluster centroid, k-medoids chooses an actual data
point, called a medoid. The medoid is the most centrally located point in a given cluster.
Therefore, k-medoids are more robust to outliers and noise than other points. The algorithm
works by arbitrarily choosing a set of k initial cluster medoids from a given set of data
points, where k is preliminarily specified. Then, each data point is assigned to the cluster
whose center is the nearest, and the cluster centers (medoids) are recomputed. This process
is repeated until the points inside every cluster become as close to the center as possible,
and no further item reassignments take place.

In our FedCO algorithm, we use k-medoids for partitioning the available workers into
groups of similar workers with respect to their local updates. Furthermore, 2-medoids are
used in the iteration phase of the algorithm for conducting cluster splitting.

3.5. Silhouette Index

The Silhouette Index (SI) is a widely used internal cluster validation technique, in-
troduced in [39]. SI can be used to judge the quality of any clustering solution C =
{C1, C2, . . . , Ck}. It assesses the separation and compactness between the clusters. Suppose
that ai represents the average distance of item i from all the other items in the cluster
to which item i is assigned, and bi represents the minimum of the average distances of
item i from the items of the other clusters. Then, the Silhouette score s(i) of item i can be
calculated as

s(i) = (bi − ai)/max{ai, bi}. (6)

s(i) measures how well item i matches the clustering at hand. s(i) ∈ [−1, 1], and if s(i) is
close to 1, this means that item i is assigned to a very appropriate cluster. The situation is
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different when s(i) is near zero. Specifically, item i lies between two clusters. The worst
case is when s(i) is close to −1. Evidently, this item has been misclassified.

In addition, the overall Silhouette score for the whole clustering solution C of n items
is determined as

s(C) =
1
n

n

∑
i=1

(bi − ai)

max{ai, bi}
. (7)

The SI can also be calculated for each cluster Cj (j = 1, 2, . . . , k) of nj objects as follows:

s(Cj) =
1
nj

nj

∑
i=1

s(i). (8)

The FedCO algorithm proposed in this study uses the Silhouette Index at each itera-
tion round for assessing the current workers’ partitioning and, based on this assessment,
selects what optimizing actions to conduct. For example, we used SI to check whether a
representative is still firmly tied to its current cluster of workers. It may happen that some
representatives will change their clusters. If we have a worker that produces a negative SI
value for all clusters, this means that this worker cannot be assigned to any of the existing
clusters, and it will form a new singleton cluster; i.e., a new concept appears. In addition,
SI is applied to assess whether an intended splitting of a cluster will improve the quality
of the whole clustering solution, i.e., whether it should be conducted. For more details,
see Section 4. Note also that in the implemented version of our FedCO algorithm, we use
Euclidean distance to measure the similarity between each pair of workers. In particular,
the Euclidean distance between the worker (the representative) and the cluster centers
(medoids) has been computed.

4. Proposed Approach

Our proposed FedCO algorithm foresees two distinctive phases: initialization and
iteration. These phases are described in what follows, along with cluster optimization
algorithms. In addition, the algorithm pseudo-code is reported in Algorithms 1 and 2.

Let W = {w1, w2, . . . , wn} be the set of all available workers, and Wt is a subset of W
that contains the workers selected at round t. The workers in Wt can be the representatives
of the clusters Ct = {Ct1, Ct2, . . . , Ctkt} obtained by applying a clustering algorithm to W,
or a set of randomly selected workers, and |Wt |< n.
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Algorithm 1 Federated Learning Using Clustering Optimization (FedCO)
Output: The FEDCO procedure updates the global modelMt for T iterations

1: procedure FEDCO(M0, Wt ⊆W, kt, T)
Initialization Phase

2: t← 0
3: ∀ wi ∈Wt, SEND(wi,Mt)
4: for each worker wi ∈Wt in parallel do
5: Mi

t+1 ← WORKERUPDATE(i,Mt)
6: end for
7: Mt+1 = ∑

wi∈Wt

ni
n
Mi

t+1 following (2)

8: Ct ← KMEDOIDS(kt, {Mi
t+1 | wi ∈Wt}, Wt)

Iteration Phase
9: while t ≤ T do

10: t← t + 1
11: Wt ← SELECTTOPRANKED(p, Ct)
12: ∀ wi ∈Wt, SEND(wi,Mt)
13: for each worker wi ∈Wt in parallel do
14: Mi

t+1 ← WORKERUPDATE(wi,Mt)
15: end for
16: Mt+1 = ∑

wi∈Wt

ni
n
Mi

t+1

17: Ct+1 ← SILHOUETTE(kt, Ct, Wt)
18: while | Ct+1 |<| Ct | do
19: Ct+1 ← CLUSTERINGOPTIMIZATION(kt+1, Ct+1)
20: end while
21: end while
22: end procedure

23: function SILHOUETTE((kt, Ct, Wt)) . Check whether each cluster representative still belongs
to its cluster

24: for wi ∈Wt do
25: for j = 1, 2, . . . , k do
26: compute s(wi) . According to Equation (6)
27: end for
28: if s(wi) < 0, ∀j ∈ {1, 2, . . . , k} then
29: kt ← kt + 1
30: Ctkt ← wi
31: else
32: Assign wi to the nearest cluster Ctj
33: end if
34: end for
35: ∀ Ctj (j = 1, 2, . . . , k) recompute the cluster center
36: return Ct+1 . The new set of clusters
37: end function

38: function WORKERUPDATE((wi,Mt)) . Local update
39: while True do
40: RECEIVE(wi,Mt)
41: LOCALTRAINING(wi,Mt)
42: Mi

t+1 ←Mi
t − ηgi

t . Local update, (1)
43: SEND(i,Mi

t+1)
44: end while
45: end function
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Algorithm 2 ClusteringOptimization
Output: updated kt and Ct

1: procedure CLUSTERINGOPTIMIZATION(kt, Ct)
2: s(Ct)← SILHOUETTESCORE(kt, Ct, Wt)
3: C′t ← ∅
4: for Ctj ∈ Ct s.t. | Ctj |> 1 do
5: s(Ctj)← SILHOUETTECLUSTER(Ctj, Wt)
6: while s(Ctj) < 0 do
7: (C1

tj, C2
tj)← KMEDOIDS({Mi

t+1 | wi ∈ Ctj}, k = 2) . run 2-medoids to
generate two new clusters

8: C̄t ← {Ct \ {Ctj}} ∪ {C1
tj, C2

tj}
9: s(C̄t)← SILHOUETTESCORE(kt, Ct, Wt)

10: if s(C̄t) > s(Ct) then
11: C′t ← C′t ∪ C̄t
12: kt ← kt + 1
13: end if
14: end while
15: end for
16: return (C′t, kt)
17: end procedure

18: function SILHOUETTESCORE(kt, Ct, Wt) . Silhouette score of whole cluster solution Ct
19: Compute s(wi) between each wi ∈ Wt and each medoid ctj ∈ Ctj (j = 1, 2, . . . , kt)

according to (6)
20: Compute the average Silhouette score over all representatives wi ∈ Wt according

to (7)
21: return s(Ct)
22: end function

23: function SILHOUETTECLUSTER(Ctj, Wt) . Silhouette Score of cluster Ctj ∈ Ct
(j = 1, 2, . . . , k)

24: Calculate Silhouette score s(wi) for each wi ∈ Ctj according to (6)
25: Compute the mean over Silhouette scores of all cluster members {s(wi) | wi ∈ Ctj}

according to (8)
26: return s(Ctj)
27: end function

4.1. Initialization Phase

1. At time t = 0, the Server initializes the inputs for the FedCO algorithm (Algorithm 1).
These are the modelM0, the set of representative workers Wt, the number of clusters
kt, and the number of iterations T. t = 0 (line 1 in Algorithm 1).

2. A central Server transmits the initial global modelMt to a set of workers Wt (Wt ⊂W).
These are selected to be used for initial training in round t = 0 of Federated Learning
(lines 3 in Algorithm 1).

3. Each worker wi ∈ Wt receives the global modelMt and optimizes its parameters
locally; i.e., theMi

t initial update is produced and sent back to the Server (Equation (1))
(lines 4–6 and lines 38–45 in Algorithm 1).

4. The Server aggregates the parameters {Mi
t | wi ∈Wt} uploaded by the selected work-

ers Wt to update the global modelMt through the FedAvg algorithm (Equation (2))
(line 7 in Algorithm 1).

5. The local updates {Mi
t | wi ∈ Wt} of the workers in Wt are analyzed by using the

k-medoids clustering algorithm (function KMEDOIDS, line 8 in Algorithm 1)). As a
result, kt clusters of workers with similar updates are obtained; i.e., an initial clustering
Ct = {Ct1, Ct2, . . . , Ctkt} of the workers in Wt is produced.
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4.2. Iteration Phase

1. At each iteration round t (t ≥ 0), the Server evaluates each local updateMi
t, wi ∈Wt

by using an evaluation measure that is suitable for the task under consideration. It
ranks the workers in each cluster Ctj, j = 1, 2, . . . , kt with respect to their evaluation
scores and selects the top-ranked worker, i.e., the representative (function SELECT-
TOPRANKED, line 11 in Algorithm 1). The selected representatives form a new set of
workers Wt+1, where |Wt+1 |= kt and kt <<|W0 |. Each selected worker wi ∈Wt+1
will check in with the Server.

2. The Server sends the global modelMt to each representative wi ∈ Wt+1 (line 12 in
Algorithm 1).

3. Each representative wi ∈ Wt+1 receives the global model Mt and optimizes its
parameters locally; i.e., theMi

t+1 update is produced (Equation 1) and sent back to
the Server (lines 13 and 15 in Algorithm 1).

4. The Server aggregates the received local models {Mi
t+1 | wi ∈ Wt+1} uploaded by

the representatives to update the global model through the FedAvg algorithm; i.e., an
updated global modelMt+1 is produced (Equation (2)) (line 16 in Algorithm 1).

5. The Server adapts Ct to the newly arrived local updates by conducting the following
operations:

(a) SI invokes the SILHOUTTE function (lines 17, 23–37 in Algorithm 1), which
assesses whether each representative wi ∈Wt+1 is still adequately tight with its
current cluster (Equation (6)). The updated clustering Ct+1 of Wt is produced,
and the clusters in Ct+1 may contains a set of workers different from Ct. Note
that k(t+1) ≥ kt, where k(t+1) =| Ct+1 |, since new singleton clusters may
appear due to the updating operation. This happens when the Silhouette
coefficient s(wi) of a representative for all clusters gives a negative value (lines
28–30 in Algorithm 1), which means that this representative cannot be assigned
to any existing cluster. Hence, this representative could be considered as a new
cluster with a single item (singleton).

(b) If there is a cluster C(t+1)j ∈ Ct+1, such that C(t+1)j = ∅, then Ct+1 =
Ct+1 \ {C(t+1)j}, and therefore, | Ct+1 |<| Ct |. This condition/event triggers
the optimization of the number of clusters by invoking the CLUSTEROPTIMIZA-
TION function (lines 18–20 in Algorithm 1). This operation is repeated for each
empty cluster of Ct+1.

A schematic illustration (flowchart) of the overall processes of the proposed FedCO
algorithm is given in Figure 2.

Figure 2. A schematic illustration of the entire process of the FedCO algorithm in two global
communication rounds: Initialization Phase and Iteration Phase.
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4.3. Cluster Optimization

The CLUSTEROPTIMIZATION algorithm works in what follows (cf. Algorithm 2):

1. Firstly, the SI score of the whole clustering solution Ct+1 is computed. This score
is used to check whether the splitting operation really improves the quality of the
clustering solution (line 2 in Algorithm 2).

2. Then, the SI score is calculated for each cluster C(t+1)j ∈ Ct+1, such that | C(t+1)j |> 1
using Equation (8). If s(C(t+1)j) < 0, then this cluster is a candidate to be split into
two clusters, and the following operations are performed (lines 4–6 in Algorithm 2):

(a) The two most distant points in the cluster C(t+1)j are found. They are used to
seed 2-medoids clustering, which is applied to split the cluster C(t+1)j into two
clusters (function KMEDOIDS at line 7 in Algorithm 2).

(b) The clustering solution Ct+1 is updated by replacing cluster C(t+1)j with the
two clusters obtained due to the splitting operation (line 8 in Algorithm 2),
and stored in the set C̄t+1.

(c) The SI score of the updated clustering solution C̄t+1 is computed (line 9 in
Algorithm 2 (7)).

(d) If the SI score of the new clustering solution C̄t+1 is higher than the one before
splitting, the new clustering solution is adopted and stored in the set C′t+1;
otherwise, the clustering solution Ct+1 is kept (lines 10–13 in Algorithm 2).

Steps 1–5 of the iteration phase are repeated until a certain number of training rounds
T is reached. Figure 3 shows a flowchart depicting the cluster optimization algorithm in a
single round of communication.

Figure 3. Flowchart depicting Cluster optimization algorithm.

The proposed FedCO implementation, at each training round, always selects the top
performing representative; i.e., the size of the clusters is not reflected in the aggregated
global model, and the size of the cluster does not impact the selection/importance of
the representative. The FedCO design, however, allows from each cluster the selection
of several top-ranked representatives, i.e., more than one, proportionally to the cluster
size. In that way, the bigger clusters will have more weight in the building of the global
model. It is also possible to assign explicit weights to the clusters representing their relative
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importance, and calculated based on their size. Our future plans include the investigation
of an optimized version of the FedCO algorithm where the importance of clusters will be
considered in the aggregated model.

5. Datasets and Experimental Setup

This section describes the datasets, the distribution of the data across the edge nodes,
the model selected and related parameters, and the performance metrics used for evaluat-
ing FedCO.

5.1. Datasets

We conducted experiments using a wide range of datasets. Firstly, we selected three
benchmark datasets widely used for image classification: MNIST [40], Fashion MNIST [41],
and CIFAR-10 [42].

• The MNIST dataset contains a 60,000-point training set and a 10,000 point test set with
10 classes. Each sample is based on a grayscale image of handwritten digits with a
size of 28 × 28 pixels.

• The Fashion MNIST dataset comprises a 60,000-point training set and a 10,000 point
testing set of images of fashion items with 10 different classes. Each image has
dimensions of 28 × 28 in grayscale.

• The CIFAR-10 dataset consists of a 50,000-point training set and a 10,000-point testing
set with images of objects from frogs to planes, where each image is 32 × 32 pixels in
10 classes.

Secondly, we considered two LEAF datasets [43], an open-source benchmark for
Federated Learning.

• FEMNIST for 62-class image classification, which serves as a more complex version of
the popular MNIST dataset [44].

• CelebA for determining whether the celebrity in the image is smiling, which is based
on the Large-scale CelebFaces Attributes Dataset.

5.2. Data Distribution

In an FL context, the performance is affected by the distribution of the training data
stored on the various workers. Interestingly, unlike other FL studies using clustering
techniques, different degrees of non-IID data do not affect the clustering results, as FedCO
clustering occurs based on the model parameters and not on the data themselves. In order
to assess the impact of different data distribution scenarios, we generated two experimental
datasets for each dataset introduced above:

• The IID dataset: Each worker holds the local data equal in size and label distribution.
• The Non-IID dataset: Each worker holds different data distributions in size and label

distribution compared to the global dataset.

5.3. Model Selection and Parameters

We have compared the proposed FedCO algorithm against the FedAvg, CMFL, and
FedProx algorithms using the Convolutional Neural Network (CNN) classifier as a training
model. The CNN model we used consists of two 5 × 5 convolution layers with a ReLU
activation and a final softmax output layer.

The baseline configuration parameters’ values listed in Table 3 are shared among the
four compared algorithms.
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Table 3. Hyper-parameter configuration.

Hyper-Parameter Value

Workers 100
Optimizer SGD

Classes 10
Batch Size 50

Learning rate 0.15
Local epochs 10

Global rounds 200
Clusters 8

Non-IID degree 0.5

5.4. Performance Metrics

FL typically relies on a large number of edge devices, sometimes in the magnitude
of millions, and due to the limited computing capabilities of those devices, decreasing the
communication rounds or communication overhead is crucial during the training process.
Hence, the performance metrics selected are the Number of Communication Rounds, the
Communication Overhead, and the model Accuracy. The Communication Overhead is defined
in [9] as

(N× |Ws |)× (2× T + 1),

where N is the size of the trained model in bytes, |Ws | is the number of selected workers,
and T is the total number of training rounds. We assume the size of the model updates to
be fixed. However, other communication costs are negligible.

It is worth mentioning that the total communication overhead of FedCO can be
calculated as the summation of the communication costs of the initialization stage and the
iteration stage together.

6. FedCO Performance Evaluation and Analysis

In this section, we first study the clustering optimization scheme used for the dy-
namic adaptation of partitioning of workers’ updates at each communication round. This
adaptive behavior contributes to achieving robust communication in FL. The performance
of the proposed FedCO is then evaluated and compared to three other existing FL ap-
proaches (FedAvg, FedProx, and CMFL) in terms of accuracy, communication rounds, and
communication overhead.

Our proposed FedCO algorithm is a communication-optimized version of FedAvg.
Therefore, we further evaluate these two algorithms by benchmarking them on two datasets
from the LEAF Federated Learning repository, namely FEMNIST and CelebA. In addition,
we further study our FedCO algorithm for two different scenarios for selecting cluster
representatives: a performance threshold-based worker selection versus the single (top-
performer) cluster representative selection, explained in Algorithm 1.

6.1. Clustering Optimization Behavior

Our clustering optimization algorithm assesses the local updates of clusters’ represen-
tatives at each communication round, and as a result, it assigns some workers to different
clusters. An output of this cluster-updating procedure is that clusters may appear or
disappear. Our solution is capable of catching and handling these scenarios. In addition, it
implements a splitting procedure that performs a further fine calibration of the clustering
for the newly uploaded updates.

In order to illustrate the properties of the clustering optimization scheme discussed
above, we show in Figure 4 the clustering updates in the first five global communication
rounds of the FedCO algorithm applied to the Non-IID FashionMNIST dataset. In the
example, in round 2, cluster 5 has disappeared and cluster 3 is a singleton, i.e., it cannot be a
candidate for splitting. Almost all of the remaining clusters (except cluster 6) have negative
SI scores. The remaining clusters (0, 1, 2, 4, and 7) have been split into two new clusters and
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their cluster labels are replaced. Interestingly, in round 3, the unique number of clusters
is 17. However, in round 4, five clusters have turned out empty and have disappeared (1,
4, 10, 13, and 16). Furthermore, eight clusters have positive SI scores (0, 2, 5, 6, 9, 12, 14,
and 15), while four have negative SI scores (3, 7, 8, and 11). The algorithm did not split the
clusters 7, 8, and 11 because this did not improve the quality of the clustering solution; i.e.,
it did not increase its SI score. Cluster 3 is still a singleton. The worker belonging to this
cluster may be considered as one that provides unique model parameters due to its training
data. Consequently, in round 5, we have only 12 clusters. Two clusters disappeared (2 and
14), and four new clusters appeared (1, 6, 12, and 17), while clusters 3 and 9 were singletons.

The cluster optimizations discussed above will continue in the same fashion for the
upcoming communication rounds. The workers’ partitioning is dynamically adapted at
each communication round to reflect the new local updates of the representatives.

Figure 4. The clustering updates in the first five global communication rounds of the proposed
FedCO algorithm applied on the Non-IID FashionMNIST dataset. Notice that the number in the
circle represents the cluster label.

6.2. Convergence Analysis

In this section, we provide a convergence analysis of the proposed FedCO algorithm and
theoretically show that it ensures a faster convergence than the baseline FedAvg algorithm.

Our analysis is based on two assumptions. The first one supposes that the data are
non-IID. Secondly, we assume that there is a partial involvement of workers; this strategy
is much more realistic as it does not require all of the worker output. Therefore, at each
iteration, we can calculate the global update by aggregating the local updates by using those
cluster representatives, which have reached a high accuracy level at this iteration phase.
Two scenarios are considered to this end: (i) a global model is trained by FedAvg based
on updates made by randomly selected workers, regardless of their accuracy value; (ii) a
global model is trained by applying FedCO, and in that way, at each training round, only
workers (cluster representatives) that have achieved the highest accuracy values are used.

Let us briefly summarize the working mechanism of the proposed FedCO algorithm.
In the tth global training iteration, each worker involved (wi ∈Wt) calculates the average gi

t
gradients using the optimization algorithms in the local dataset in the current global model
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Mt. Note that according to Equation (5), high-quality data and a high accuracy of the
workers’ models can lead to a faster convergence of the local loss functions (Equation (3))
and the global loss function (Equation (4)) [45]. Both the local model updateMi

t of the
worker in Equation (1) and the shared global model updateMt+1 in Equation (5) can be
more quick to converge to the target value with fewer iterations. Consequently, the training
time of a worker in a global iteration is decreasing. Therefore, highly accurate workers’
models can significantly improve the learning efficiency of Federated Learning; e.g., it
can ensure less training time [31,46]. This process is iterative until a global accuracy ε
(0 ≤ ε ≤ 1) is achieved. Specifically, each update of the local model has a local accuracy
wε

i that corresponds to the local quality of the worker wi data. A higher local accuracy
leads to fewer local and global iterations [46,47]. FedCO uses an iterative approach that
requires a series of communication rounds to achieve a level of global accuracy ε. Server
and representative communications occur during each global round of the iteration phase.
Specifically, each representative minimizes its objective Fi(Mi) in Equation (3) using the
local training data ni. Minimizing F(M) in Equation (4) also requires multiple local
iterations up to a target accuracy. Then, the global rounds will be bounded as follows:

O(log ( 1
ε ))

1− wε
i

Thus, the global rounds are affected by both the global accuracy ε and the local
accuracy wε

i . When ε and wε
i are high, FedCO needs to run a few global rounds. On the

other hand, each global round consists of both computation and transmission time. Our
primary motivation in this work is to consider the communication overhead, discussed and
analyzed in detail in Section 6.3. The computation time (wcmp

i ), however, depends on the
number of local iterations. When the global accuracy ε is fixed, the computation time is
bound by log( 1

wε
i
) for an iterative algorithm to solve Equation 1; here, (SGD) is used [46].

Therefore, the total time of one global communication round for a set of representatives is
denoted as

Tcom = ∑
wi∈Wt

log(
1

wε
i
)wcmp

i + wcom
i ,

where wcom
i represents the transmission time of a local model update. As a result, a high

local accuracy value of wε
i leads to fewer local iterations wcmp

i and eventually to lower
global communication rounds Tcom. Unlike FedCO’s convergence rate, FedAvg does not
necessarily guarantee a faster convergence speed. This is because FedAvg uses a much
larger number of workers compared to the FedCO model. Therefore, if there are more
workers with poor data quality, the convergence will be reached at a slower rate than when
much fewer workers with high data quality are used. However, at each global round,
FedCO may have selected a different set of workers. Those, however, are not selected
randomly, but each one is a representative of a cluster of workers having modeled similar
parameters, and in addition, it achieves the highest accuracy among the cluster members.
Let TFedAvg and TFedCO represent the number of global rounds for which convergence has
been reached by FedAvg and FedCO, respectively. Then, Tables 4 and 5 demonstrate
that the inequality TFedCO < TFedAvg is valid in the experiments aiming to reach the same
accuracy using the two algorithms.
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Table 4. The number of communication rounds to reach a target accuracy for the three compared
FL algorithms.

IID
MNIST FashionMNIST CIFAR-10

Rounds Saving Rounds Saving Rounds Saving

FedAvg 190 (ref) 200 (ref) 200 (ref)
FedProx 185 26% 190 5% 188 6%
CMFL 50 73% 60 70% 80 60%
FedCO 25 86% 50 75% 30 85%

Non-IID
MNIST FashionMNIST CIFAR-10

Rounds Saving Rounds Saving Rounds Saving

FedAvg 170 (ref) 200 (ref) 200 (ref)
FedProx 167 17% 186 7% >200 -
CMFL 60 64% 150 25% 160 20%
FedCO 30 82% 70 65% 60 70%

Table 5. The number of communication rounds to reach a certain accuracy level for the two compared
FL algorithms on each LEAF dataset.

IID
FEMNIST CelebA

Rounds Saving Rounds Saving

FedAvg 140 (ref) 110 (ref)
FedCO 12 91% 30 72%

Non-IID
FEMNIST CelebA

Rounds Saving Rounds Saving

FedAvg 100 (ref) 150 (ref)
FedCO 14 86% 10 93%

6.3. Communication Rounds versus Accuracy

In this subsection, we present the results related to the evaluation of the accuracy
of our distributed deep learning (DL) model. Figures 5–7 show how the compared FL
(FedAvg, FedProx, CMFL, and FedCO) algorithms perform in terms of Accuracy versus the
Number of Communication Rounds. For the MNIST dataset (see Figure 5), we can observe
that the FedCO algorithm converges faster than with the state-of-the-art approaches. As is
shown in Figure 5a (IID data distribution setting), FedAvg and FedProx use 100 rounds
to obtain an accuracy of 85%. The CMFL reaches the same accuracy in 30 rounds, while
our FedCO algorithm achieves this result with only 10 rounds. Furthermore, in Figure 5b,
FedCO dramatically decreases the communication rounds with respect to FedAvg, FedProx,
and CMFL. Indeed, in Non-IID data, a learning accuracy of 90% is achieved by FedCO in
40 rounds, FedAvg has conducted 160 rounds, FedProx requires 200 rounds, and CMFL
needs 60.

In Figure 6a, we compare the accuracy of the four FL approaches in the case of the IID
data distribution scenario of FashionMNIST. The FedCO outperforms FedAvg, FedProx,
and CMFL in this experimental setting. Within 25 communication rounds, CMFL, FedAvg,
and FedProx reach 81%, 69%, and 74% accuracy, respectively, while our FedCO algorithm
achieves an accuracy of 90% with the same number of communication rounds. Notice that
under the Non-IID data distribution setting, our FedCO algorithm outperforms the other,
reaching an accuracy of nearly 79% with only 11 rounds; this costs 100 communication
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rounds for FedAvg and 80 rounds for FedProx. CMFL considerably minimizes this cost to
60; see Figure 6b.

(a) (b)
Figure 5. Learning accuracy versus the number of communication rounds for MNIST data. The
top plot presents the results produced in the case of the IID data distribution scenario, while the
bottom plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

(a) (b)
Figure 6. Learning accuracy versus communication rounds for FashionMNIST data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom
plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

Finally, for the CIFAR-10 IID data, the required communication costs of the FedAvg
and FedProx to achieve 85% accuracy is 150 rounds, while CMFL obtains the same result
for 75 rounds. Our FedCO algorithm outperforms the others, needing only nine rounds
to reach this accuracy value (cf. Figure 7a). In the case of the CIFAR-10 Non-IID data (see
Figure 7b), in 25 communication rounds, FedCO obtains an accuracy of 85%, while FedAvg
and FedProx reach 79% and 80%, respectively. On the other hand, CMFL achieves a close
result 82% of accuracy in the same number of rounds.

(a) (b)
Figure 7. Learning accuracy versus communication rounds for the CIFAR-10 data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom plot
depicts the results generated in case of the Non-IID data distribution scenario. (a) IID; (b) Non-IID.
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FedCO differs from the Federated Learning baseline FedAvg as follows: our algorithm
uses a much smaller number of nodes while the aggregation procedure is the same. Thus,
if we have a smaller number of workers, convergence is reached faster than in FedAvg,
where all the available workers are used. At each round, FedCO selects and uses a different
set of workers, and each worker is a representative that achieves the highest accuracy in
each cluster. Hence, the accuracy is not sacrificed.

Table 4 shows the number of communication rounds to achieve the maximum model
accuracy (i.e., to converge) for the datasets considered. Specifically, the target accuracy
values are 90% for MNIST and FashionMNIST and 85% for CIFAR-10. FedAvg is the
baseline benchmark, and the iterations saved for algorithm X (X = FedProx, CMFL, or
FedCO) is computed as

1− num_o f _iteration_X
num_o f _iteration_FedAvg

.

FedCO saves from 75% to 86% of iterations to converge with respect to FedAvg for IID
data distribution setting, and it saves from 65% to 82% iterations for the Non-IID data
distribution scenario. Moreover, FedCO always converges with at least half of the iteration
rounds needed by CMFL. In more detail, one can observe that the model on the MNIST IID
data distribution setting converges to an accuracy of 90% in 190 rounds with the FedAvg
algorithm, and in 25 rounds for our FedCO algorithm, providing savings of 86%, and
in 185 rounds for FedProx, and in 50 rounds for CMFL, providing savings of 26% and
73%, respectively. The model trained on the FashionMNIST IID data distribution scenario
converges to a target accuracy of 90% in 200 rounds for FedAvg, and in 50 rounds for FedCO,
saving 75% of communication rounds, while it requires 190 and 60 rounds for FedProx (5%
saving) and CMFL (70% saving), respectively. Furthermore, in the FashionMNIST Non-IID
data distribution scenario, the model converges to an accuracy of 90% in 200 rounds for
the FedAvg algorithm, and in 186 rounds for FedProx, saving only 7%. In contrast, it
requires 70 and 150 communication rounds for FedCO and CMFL, with savings of 65%
and 25%, respectively. The experimental results on the CIFAR-10 data show that the model
trained in the IID and Non-IID data settings need 200 rounds for FedAvg to reach 85% of
the accuracy, while it requires 188 rounds for FedProx to reach 85% in IID, and more than
200 rounds in Non-IID to obtain target accuracy. On the other hand, FedCO and CMFL
require 30 and 80 rounds, respectively, to converge under the IID data distribution scenario.
Furthermore, within the Non-IID data distribution setting, the model converges to an
accuracy of 85% in 200 rounds for the FedAvg, while it requires 60 and 160 communication
rounds for FedCO and CMFL, respectively. Similarly, in the Non-IID data distribution
setting, the FedCO communication costs are reduced to 82% with the MNIST data, 65%
with the FashionMNIST data, and up to 70% with the CIFAR-10 dataset, compared to
the FedAvg.

Although FedProx is considered to be an optimized version of FedAvg, we can observe
from the results discussed above that FedProx behaves very similarly to FedAvg and shows
only a slightly better performance than FedAvg in the conducted experiments. In addition,
as we mentioned earlier, our FedCO algorithm can also be interpreted as an optimized
version of FedAvg. Therefore, we further study these two algorithms (FedCO and FedAvg)
by conducting experiments and benchmarking their performance on two datasets from the
LEAF repository, namely FEMNIST and CelebA. Figure 8 shows the final accuracy scores
after several rounds of communication for the FEMNIST dataset. Comparing the results
produced by the two methods, it is evident that FedCO performs significantly better than
FedAvg, on both the IID and Non-IID data scenarios. Specifically, FedCO ensures a higher
accuracy than that of FedAvg within a smaller number of communication rounds. For
example, in Figure 8a, FedCO can reach 90% in only 110 iterations, while the FedAvg never
reaches that level within 200 iterations.
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(a) (b)
Figure 8. Learning accuracy versus number of communication rounds for FEMNIST data. The
top plot presents the results produced in the case of the IID data distribution scenario, while the
bottom plot depicts the results generated in the case of the Non-IID data distribution scenario. (a) IID;
(b) Non-IID.

Analyzing the results in Figure 9, we can observe the following: (1) FedCO consistently
outperforms FedAvg in both data distribution scenarios; (2) FedCO generally achieves
better accuracies than FedAvg in most cases (see Figure 9b), considering that both of them
have been trained with only 200 rounds.

(a) (b)
Figure 9. Learning accuracy versus number of communication rounds for CelebA data. The top plot
presents the results produced in the case of the IID data distribution scenario, while the bottom plot
depicts the results generated in case of the Non-IID data distribution scenario. (a) IID; (b) Non-IID.

Table 5 reports the number of communication rounds that the FedAvg and FedCO
algorithms need in order to converge, for the considered datasets. Specifically, the target
accuracy values are 70% for FEMNIST and 65% for CelebA, respectively. In addition,
FedAvg is considered as the baseline.

Note that these results again verify the faster convergence of FedCO compared to that
of FedAvg. Notice that we have also studied and compared FedProx and FedAvg on the
same LEAF datasets, and they again have demonstrated very similar behaviors.

6.4. Communication Overhead Analysis

In this section, we compare the efficiencies of the two compared FL algorithms for
100 communication rounds with respect to different numbers of workers on the CIFAR-10
and the MNIST datasets, under the IID and Non-IID data distribution scenarios. The
obtained results are reported in Figures 10 and 11, respectively. As one can notice, the
FedCO algorithm has performed significantly better than the FedAvg, FedProx, and CMFL.
The reader can also observe that the communication overhead increases linearly with the
number of workers. Hence, to scale in a real scenario with thousands of workers, a FL
algorithm should be capable of reducing the communication cost as much as possible,
and reducing the number of rounds to converge, as with the proposed FedCO algorithm.
Finally, the communication overhead in the IID and Non-IID cases is very close or identical.
The results produced on the FashionMNIST dataset are similar to the other two datasets.
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(a) (b)
Figure 10. The communication overhead for 100 rounds for the CIFAR-10 data. The top plot presents
the results produced in the case of the IID data distribution scenario, while the bottom plot depicts
the results generated in the case of the Non-IID data distribution scenario. (a) IID. (b) Non-IID.

(a) (b)

Figure 11. The communication overhead for 100 rounds for the MNIST data. The top plot presents
the results produced in the case of the IID data distribution scenario, while the bottom plot depicts
the results generated in the case of the Non-IID data distribution scenario. (a) IID. (b) Non-IID.

The communication cost savings for algorithm X (X = FedProx, CMFL, or FedCO) is
computed as

1− Communication_overhead_X
Communication_overhead_FedAvg

.

As can be seen in Figure 10a,b, the FedCO costs on the CIFAR-10 IID data are 1 MB
for 20 workers, which is a reduction in communication costs by 83% in comparison with
FedAvg, while FedProx and CMFL are allowed to save only 12% and 36% in communication
costs, respectively. In an experiment involving 100 workers on the CIFAR-10 dataset,
FedAvg, FedProx, and CMFL exchange 32.5, 31.04, and 20 MB of data, while the proposed
FedCO consumes only 5.4 MB, which means that FedCO reduces the communication
overhead by 84% with respect to FedAvg, and CMFL reduces the communication overhead
by 38%, while FedProx saves only 3% in communication costs.

Figure 11a,b report the communication costs under the MINIST IID and Non-IID data
distribution scenarios, respectively. The trend is similar to the results of the CIFAR-10
data experiments. Both the IID and Non-IID data distribution settings confirm that our
FedCO algorithm ensures a significantly smaller communication overhead in comparison
with FedAvg, FedProx, and CMFL, by substantially reducing the required number of
bytes exchanged. As can be noticed, FedCO allows a saving of between 80% and 85%
with respect to FedAvg. In Figures 10 and 11, the communication costs increase linearly
with the increasing number of workers for all of the compared algorithms. It is obvious
that FedCO consistently outperforms FedAvg, FedProx, and CMFL in terms of reducing
communication costs.
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6.5. Threshold-Based Worker Selection

We also study scenarios in which we use an accuracy threshold to select the number
of workers. The threshold is the specified cut-off of accuracy value for the selection of
representatives of a cluster of workers. We select any worker where the local update ensures
an accuracy of greater than or equal to the predefined threshold as a representative of a
cluster. In this section, we report the results produced by testing four different threshold
values for FedCO, namely 70%, 75%, 80%, and 85%. The network threshold for the selection
of workers varies from bandwidth, transmission speed, or packet loss [48].

Table 6 reports the number of the top-ranked workers that the FedCO algorithm has
selected to communicate with the server when the predefined threshold is met within 100
communication rounds.

Table 6. The number of selected representatives with respect to four different threshold values on the
LEAF datasets CelebA (top) and FEMNIST (bottom) for 100 global rounds.

CelebA

Threshold Accuracy IID Non-IID

≥70% 853 826
≥75% 673 515
≥80% 600 245
≥85% 257 226

FEMNIST

Threshold Accuracy IID Non-IID

≥70% 912 844
≥75% 806 694
≥80% 730 604
≥85% 408 380

In the case of the CelebA data, the highest number of representatives has been selected
when the accuracy of the local models is equal to or above 70%, namely 853 and 826 workers
under IID and Non-IID, respectively. In the experiments conducted on the FEMNIST data,
when the threshold of the local models was greater than or equal to 70%, 912 workers
were selected as representatives for the IID scenario, and 844 workers for the Non-IID one.
Similarly, these two values represent the highest numbers of selected workers. It is obvious
from the number of representatives reported in Table 6 that the low threshold value implies
the greater number of representatives to be selected for global training in FL and vice versa.
Thus, we can observe that the proposed algorithm substantially reduces the accumulated
communication overhead when FedCO selects only k representatives (i.e., one per cluster),
rather than selecting a variable number of representatives based on a predefined threshold
to train a global model.

Table 7 presents how many workers per round have been selected as representatives
when various thresholds are applied for CelebA under the IID and Non-IID data scenarios,
respectively.

We can see that until 10 communication rounds, the FedCO selects only k represen-
tatives, since there are no local models where the accuracy has reached 70% at 10 rounds.
Thus, the number of representatives increases from 10 to 97 at round 12 due to the selec-
tion of all the clusters’ workers, ensuring an accuracy that is equal to or above the given
threshold. Notice that there are 97 workers of different clusters that reach the value of
accuracy of their local models of 70% or above. We can see that FedCO needs 30 rounds
to have a number of workers whose accuracy is greater than or equal to 80% and to meet
this condition under IID data. Furthermore, to meet the threshold of 85%, FedCO requires
100 rounds to have a number of workers (98) such that their accuracy of the local models
meets this condition under IID. On the other hand, for Non-IID, FedCO never meets this
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condition, since no local models have a accuracy value of higher than or equal to 85%; thus,
FedCO selects only 36 workers to represent the different clusters.

Table 7. Total number of selected representatives when the given accuracy threshold is reached in
CelebA dataset at different rounds.

IID Non-IID

Round ≥70% ≥75% ≥80% ≥85% ≥70% ≥75% ≥80% ≥85%

1 10 10 10 10 10 10 10 10
10 10 12 16 14 14 16 18 16
12 97 13 16 16 14 18 22 18
20 102 103 20 20 104 26 25 24
30 105 104 95 18 104 30 28 24
40 102 108 98 20 110 32 30 26
50 106 108 100 22 112 96 32 28
60 106 110 104 24 114 99 34 28
70 107 111 106 26 116 102 36 32
80 108 114 108 22 120 104 38 35
90 110 116 110 26 118 106 38 34
100 112 116 112 98 122 108 97 36

Figure 12 provides communication overheads for various thresholds. It is obvious
to the reader that a higher number of selected representatives implies a higher values of
communication costs to the server.

(a) (b)
Figure 12. The communication overhead for 100 rounds for the two LEAF datasets. The top plot
presents the results produced for CelebA dataset, while the bottom plot depicts the results generated
on FEMNIST dataset. (a) CelebA; (b) FEMNIST.

The above results suggest that our proposed FedCO algorithm can substantially reduce
the communication overhead by using a higher accuracy threshold. In general, FedCO can
be considered as being robust to different application scenarios by being able to tune its
parameters (e.g., the accuracy threshold or the number of top-ranked representatives per
cluster) to find a trade-off between the application-specific resource constraints and the
accuracy requirements.

7. Conclusions

This paper proposes a clustering-based FL approach, entitled Federated Learning
using Clustering Optimization (FedCO). The proposed FedCO approach partially builds
upon our previous work and extending further towards proposing a dynamic clustering
scheme that improves global accuracy and that reduces the communication overhead in
a Federated Learning context. The proposed approach dynamically identifies worker
participants in each communication round by initially clustering the workers’ local updates
and selecting a representative from each cluster to communicate with the central server,
thus minimizing the communication cost. The proposed FedCO method is evaluated
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and benchmarked to three other state-of-the-art FL algorithms (FedAvg, FedProx, and
CMFL) on five publicly available and widely exploited datasets for studying distributed
ML algorithms. The experimental results have shown that the proposed FedCO algorithm
significantly reduces communication rounds without sacrificing accuracy. In addition, the
experimental evaluation has demonstrated that our FedCO algorithm outperforms the
three other FL algorithms under the two studied data distribution scenarios. We have also
shown that the FedCO algorithm can dynamically adapt the workers’ partitioning at each
communication round by relocating the representative workers and conducting the cluster
splitting needed for the clustering improvement.

Our future plans include the enhancement of the FedCO approach through using
other data distillation techniques; e.g., an interesting future direction could be made
by applying computational topology methods for studying data topology and selecting
representatives based on this. Another direction is the translation of the FedCO concept to
unsupervised learning settings, i.e., developing a resource-efficient FL algorithm based on
the unsupervised ML model.
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Abstract: Federated learning (FL) is a collaborative machine-learning (ML) framework particularly
suited for ML models requiring numerous training samples, such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Random Forest, in the context of various applica-
tions, e.g., next-word prediction and eHealth. FL involves various clients participating in the training
process by uploading their local models to an FL server in each global iteration. The server aggregates
these models to update a global model. The traditional FL process may encounter bottlenecks, known
as the straggler problem, where slower clients delay the overall training time. This paper introduces
the Latency-awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing
(LESSON) method. LESSON allows clients to participate at different frequencies: faster clients
contribute more frequently, therefore mitigating the straggler problem and expediting convergence.
Moreover, LESSON provides a tunable trade-off between model accuracy and convergence rate by
setting varying deadlines. Simulation results show that LESSON outperforms two baseline methods,
namely FedAvg and FedCS, in terms of convergence speed and maintains higher model accuracy
compared to FedCS.

Keywords: federated learning; client selection; model aggregation; semi-synchronous; IoT

1. Introduction

With the development of the Internet of Things (IoT), numerous smart devices, such
as smartphones, smartwatches, and virtual-reality headsets, are widely used to digitize
people’s daily lives. Traditionally, a huge volume of data generated by these IoT devices is
uploaded to and analyzed by a centralized data center that generates high-level knowledge
and provides corresponding services to users, thus facilitating their lives [1]. A typical
example is smart homes, where various IoT devices, such as smart meters, thermostats,
motion detectors, and humidity sensors, are deployed to monitor the status of the smart
homes. The data generated by the IoT devices would be uploaded to a centralized data cen-
ter, which applies a deep reinforcement learning model to intelligently and autonomously
control, for example, the smart bulbs and air conditioners in smart homes, to improve the
quality of experience and reduce the energy usage of smart homes [2].

On the other hand, sharing data with third-party data centers may raise privacy
concerns as data generated by IoT devices may contain personal information, such as users’
locations and personal preferences [3]. As a result, various policies have been made, such as
General Data Protection Regulation (GDPR) made by the European Union [4], to regulate
and hinder data sharing. To fully utilize these personal data while preserving privacy
(i.e., without sharing the data), federated learning (FL) is proposed to distributively train
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machine-learning models by enabling different IoT devices to analyze their data locally
without uploading them to a central facility [5]. A typical example of using FL is to train
a next-word prediction model, which is used to predict what word comes next based on
the existing text information [6]. Basically, as shown in Figure 1, an FL server would first
initialize the parameters of the global model and then broadcast the global model to all the
clients via wireless networks. Each client would train the received global model based on
its local data sets (i.e., their text messages) and upload the updated model to the FL server
via wireless networks. The FL server then aggregates the received models from the clients
to generate a new global model and then starts a new iteration by broadcasting the new
global model to the clients. The iteration continues until the model is converged.

Figure 1. Wireless federated learning.

The traditional FL method can resolve the privacy issue to allow the clients to train
the model locally, and it applies the synchronous strategy, where the FL server must wait
until it receives the models from all the clients in each global iteration. This may lead to
the straggler problem when the configurations of clients are heterogeneous, meaning that
they have different computing and communications capabilities. Hence, some stragglers
take much longer time to train and upload their models in a global iteration because of
their lower computing and communications capabilities, and thus significantly prolong the
model training process. To resolve the straggler problem, many client selection methods
have been proposed [7–12], which would select the qualified clients that can finish their
model training and uploading before a predefined deadline. Normally, client selection
and resource allocation are jointly optimized to maximize the number of selected qual-
ified clients. Selecting qualified clients can resolve the straggler problem but may raise
other issues. First, the proposed client selection may significantly reduce the number of
participating clients, which may slow down the convergence speed [13], thus leading to
longer training latency (which equals the sum of the latency for all the global iterations).
Second, the proposed client selection may result in the model overfitting issue caused by
the reduction of data diversity, i.e., if the FL server only selects the qualified clients to
participate in the model training, then the generated model can only fit the data samples
in these qualified clients, but not the non-qualified clients. The model overfitting issue
would be compounded if the data samples of the qualified clients are not sufficient [14].
The other solution to solve the straggler problem is to apply asynchronous FL, where the
FL server does not need to wait until the deadline expires for each global iteration but
would update the global model once it receives a local model from a client [15]. However,
the asynchronous FL may suffer from (1) the high communications cost since both the FL
server and clients will more frequently exchange their models and (2) the stale issue, where
some slow clients are training based on an outdated global model, which may lead to slow
convergence rate or even global model divergence [16,17].

To solve the slow convergence and model overfitting issues in the synchronous FL
while avoiding model divergence in the asynchronous FL, we propose a semi-synchronous
FL method, i.e., Latency awarE Semi-synchronous client Selection and mOdel aggregation
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for federated learNing (LESSON). The basic idea of LESSON is to allow all the clients to
participate in the whole learning process with different frequencies. Specifically, the clients
are clustered into different tiers based on their model training and uploading latency. The
clients in a lower tier (i.e., lower model training and uploading latency) would participate
in the learning process more frequently than those in a higher tier (with higher model
training and uploading latency). As a result, the straggler problem can be resolved (since
the FL server does not need to wait for stragglers in each global iteration), and the model
overfitting problem can be fixed (since all the clients join the learning process to provide
high data diversity). The main contributions of the paper are summarized as follows.

1. A new semi-synchronous FL algorithm, i.e., LESSON, is introduced. LESSON intro-
duces a latency-aware client clustering technique that groups clients into different tiers
based on their computing and uploading latency. LESSON allows all the clients in the
system to participate in the training process but at different frequencies, depending
on the clients’ associated tiers. LESSON is expected to mitigate the straggler prob-
lem in synchronous FL and model overfitting in asynchronous FL, thus expediting
model convergence.

2. LESSON also features a specialized model aggregation method tailored to client
clustering. This method sets the weight and timing for local model aggregation for
each client tier.

3. The proposed LESSON algorithm also integrates the dynamic model aggregation and
step size adjustment according to client clustering and offers flexibility in balancing
model accuracy and convergence speed by adjusting the deadline τ.

4. Extensive experimental evaluations show that LESSON outperforms FedAvg and
FedCS in terms of faster convergence and higher model accuracy.

The rest of this paper is organized as follows. The related work is summarized in
Section 2. System models are described in Section 3. Section 4 elaborates on the proposed
LESSON algorithm, which comprises client clustering and model aggregation. In Section 5,
the performance of LESSON is compared with the other two baseline algorithms via
extensive simulations, and simulation results are analyzed. Finally, Section 6 concludes
this paper.

2. Related Work

Solving the straggler issue is one of the main challenges in synchronous FL. The
existing solutions mainly focus on jointly optimizing client selection and resource allocation.
Nishio and Yonetani [18] aimed to maximize the number of selected clients that can finish
their model training and uploading before a predefined deadline in each global iteration.
By assuming that the selected clients must iteratively upload their models to the FL server,
they designed FedCS that jointly optimizes the uploading schedule and client selection
to achieve the objective. Abdulrahman and Tout [19] designed a similar client selection
method FedMCCS. The goal of FedMCCS is to maximize the number of selected clients
who can not only finish the model training and uploading before a predefined deadline but
also guarantee the resource utilization is less than the threshold to avoid device dropout.
Albelaihi et al. [11] proposed a client selection method that tries to achieve the same
objective as FedCS, but they argued that the latency of a client in waiting for the wireless
channel to be available for model uploading should be considered; otherwise, the selected
clients may not upload their local models before the deadline. Yu et al. [20] proposed
to dynamically adjust and optimize the trade-off between maximizing the number of
selected clients and minimizing the total energy consumption of the selected clients by
picking suitable clients and allocating appropriate resources (in terms of CPU frequency
and transmission power) in each global iteration. Shi et al. [21] also jointly optimized the
client selection and resource allocation for FL. However, the objective is to minimize the
overall learning latency (which equals the product of the average latency of one global
iteration and the number of global iterations) while achieving a certain model accuracy.
They formulated a system model to estimate the number of global iterations given the global
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model accuracy requirement. All the mentioned client selection methods for synchronous
FL can alleviate the straggler problem but may lead to a slow convergence rate and model
overfitting issues, as we illustrated previously.

Instead of selecting qualified clients to avoid stragglers, Li et al. [22] proposed to let
fast clients train their local models by running more gradient descent iterations in each
global iteration. In this way, the fast and slow clients could upload their models at a
similar time, but the fast clients may provide better models to fit their local data samples,
thus potentially speeding up the model convergence. This method, however, may lead
to local model overfitting issues when some fast clients run too many gradient descent
iterations over the limited data samples. The overfitted local models would significantly
slow down the global model convergence. Wu et al. [23] proposed to perform spilt learning,
where a global neural network is divided into two parts. The parameters in the former
and latter layers are trained in the clients and the FL server, respectively. As a result, the
computational complexity of the clients is reduced, thus potentially reducing the training
time and energy consumption of the clients.

Other works aim to design asynchronous FL, where the FL server does not need to
wait for the selected clients to upload their local models; instead, once the FL server receives
a local model from a client, it would aggregate the received local model to update the
global model, and then send the updated global model to the client [24–27]. However,
as mentioned before, the fast clients and the FL server must exchange their models more
frequently, thus leading to higher communications costs for both the fast clients and FL
server [28,29]. Meanwhile, in asynchronous FL, the slower clients may train their local
models based on an outdated global model, which results in slow convergence or even
leads to model divergence [30,31].

To overcome the drawbacks in synchronous and asynchronous FL, we propose the
semi-synchronous FL to allow all the clients to participate in the whole learning process
with different frequencies. Although the term “semi-synchronous FL” has been used
by the existing works, the definitions are different from what we defined in this paper.
For example, Stripelis and Ambite [32] defined semi-synchronous FL as the clients train
their local models over different sizes of local data sets, depending on their computing
capabilities. The semi-synchronous FL proposed in [33] periodically re-selects a number
of clients and follows the same method as asynchronous FL to aggregate and update the
global model.

3. System Models
3.1. Federated Learning Preliminary

The idea of FL is to enable distributed clients to cooperatively train a global model
such that the global loss function, denoted as F (ω), can be minimized. That is,

arg min
ω

F (ω) = arg min
ω

∑
i∈I

|Di|
|D| fi(ω), (1)

where ω is the set of the parameters for the global model, I is the set of the selected clients,
|D| is the number of the training data samples of all the clients, |Di| is the number of the
training data samples at client i (where D =

⋃
i∈I

Di), and fi(ω) is the local loss function of

client i, i.e.,

fi(ω) =
1
|Di| ∑

n∈Di

f (ω, ai,n, bi,n). (2)

Here, (ai,n, bi,n) is the input-output pair for the nth data sample in user i’s data set,
and f (ω, ai,n, bi,n) captures the error of the local model (with parameter ω) over (ai,n, bi,n).

In each global iteration, FL comprises four steps.

1. Server broadcast: In the k-th global iteration, the FL server broadcasts the global model
generated in the previous global iteration, denoted as ω(k−1), to all the selected clients.
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2. Client local training: Each client i trains its local model over its local data set Di, i.e.,

ω
(k)
i = ω

(k−1)
i − δ∇ fi

(
ω

(k−1)
i

)
, where δ is the learning rate.

3. Client model uploading: After deriving the local model ω
(k)
i , client i uploads its local

model to the FL server.
4. Server model aggregation: The FL server aggregates the local models from the

clients and updates the global model based on, for example, FedAvg [5], i.e., ω(k) =

∑
i∈I

|Di |
|D| ω

(k)
i .

The global iteration keeps executed to update the global model ω(k) until the global
model converges.

3.2. Latency Models of a Client

There are four steps in each global iteration for FL, and so the latency of a global
iteration equals the sum of the latency among these four steps. The local model training
latency in Step (2) and local model uploading latency in Step (3) are different among the
clients, depending on their computing and communications capacities. In addition, the
global model broadcast latency in Step (1) and model aggression latency in Step (4) are the
same for all the clients and are normally negligible as compared to local model training and
uploading latency. Thus, we define the latency of client i in a global iteration as follows.

ti = tcomp
i + tupload

i , (3)

where tcomp
i is the computing latency of client i in training its local model over its local data

samples in Step (2), and tupload
i is the uploading latency of client i in uploading its local

model to the FL server in Step (3).

3.2.1. Computing Latency

The computing latency of client i in a global iteration can be estimated by [34]

tcomp
i = θ log2

(
1
ε

)
Ci|Di|

fi
, (4)

where θ is a constant determined by the structure of the desired model; θ log2

(
1
ε

)
indicates

the estimated number of local iterations to achieve the required training accuracy ε; Ci in
cycles/sample is the number of CPU cycles required for training one data sample of the
local model; |Di| is the number of training samples used by client i; fi in cycles/second is
CPU frequency of client i, which is determined by the device hardware.

3.2.2. Uploading Latency

The achievable data rate of client i can be estimated by

ri = b log2

(
1 +

pgi
N0

)
, (5)

where b is the amount of bandwidth allocated to each participating client, p is the transmis-
sion power of the client, gi is the channel gain from client i to the BS calculated, and N0 is
the average background noise and inter-cell interference power density. We assume that
the size of the local model is s, and so the latency of client i in uploading its local model to
the BS is

tupload
i =

s
ri

=
s

b log2

(
1 + pgi

N0

) . (6)
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4. Latency-awarE Semi-Synchronous Client Selection and mOdel Aggregation for
Federated learNing (LESSON)

In contrast to synchronous FL, the proposed LESSON method aims to allow all the
clients to participate in the whole learning process while avoiding the straggler problem.
The basic idea of LESSON is to cluster the clients into different tiers based on their latency
and the deadline. The clients in different tiers would train and upload their local models at
different frequencies.

4.1. Latency-Aware Client Clustering

We denote τ as the deadline of a global iteration. The FL server would accept all the
models uploaded from the clients before the deadline τ and reject the rest in each global
iteration. Hence, we cluster the clients into several tiers, and xij is used to indicate whether
client i is in Tier j (i.e., xij = 1) or not (i.e., xij = 0). Basically, if client i can finish its local
model training and uploading before deadline τ, i.e., ti ≤ τ, then client i is in Tier 1, i.e.,
xi1 = 1. Similarly, if client i can finish its local model training and uploading between τ
and 2× τ, i.e., τ < ti ≤ 2× τ, then client i is in Tier 2, i.e., xi2 = 1. The following equation
provides a general mathematical expression to cluster client i into a specific tier.

xij =

{
1, if τ × (j− 1) < ti ≤ τ × j,
0, otherwise,

(7)

where j is the index of tiers.

4.2. Semi-Synchronized Model Aggregation

In each global iteration, clients from different tiers upload their local models, and the
FL server can estimate when a client may upload its local model according to its associated
tier. Figure 2 provides one example to illustrate the scheduling of the clients from four tiers
in LESSON. For example, the clients in Tier 1 are expected to upload their local models in
each global iteration, and the clients in Tier 2 are expected to upload their local models in
every two global iterations. Denote k as the index of the global iterations, and let yjk be the
binary variable to indicate whether the clients in Tier j are expected to upload their local
models by the end of kth global iteration, where

yjk =

{
1, if k%j = 0,
0, otherwise,

(8)

where % is the modulo operation, and so k%j = 0 indicates k is divisible by j. Meanwhile,
let zik be the binary variable to indicate whether client i is expected to upload its local
model by the end of kth global iteration (zik = 1) or not (zik = 0), where

zik = xijyjk. (9)

Based on the value of zik, the FL server would expect which clients will upload their
local models in global iteration k, and then aggregate all the received local models based on

ω(k) = ∑
i∈I

|Di|
∑

i∈I
|Di|zik

ω
(k)
i zik, (10)

where ∑
i∈I
|Di|zik indicates the total number of the data samples among all the clients, who

would upload their local models in global iteration k.
Please note that, in synchronous FL (e.g., FedAvg), each selected client would update

its local model ω
(k)
i based on Equation (11) in each global iteration.

ω
(k)
i = ω

(k−1)
i − δ∇ fi

(
ω

(k−1)
i

)
, (11)
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where δ is the step size, which is the same for all the selected clients. In LESSON, different
clients update their local models in different frequencies, depending on their associated
tiers, so it is reasonable to adopt different step sizes for the clients in different tiers [24].
Here, we adjust the step size of a client proportional to its tier (i.e., δ× j). Thus, when
k%j = 0, client i in Tier j would update its local model based on

ω
(k)
i = ω

(k−j)
i − jδ∇ fi

(
ω

(k−j)
i

)
(12)

Figure 2. Illustration of client scheduling in LESSON.

4.3. Summary of LESSON

Algorithm 1 provides an overview of the LESSON algorithm. Initially, the FL server
estimates the latency of all the clients and clusters the clients into different tiers based on
Equation (7), i.e., Steps 1–2 in Algorithm 1. Then, the FL server broadcasts the initial global
model ω(0) to start the collaborative model training process, which unfolds over numerous
global iterations.

Within each global iteration k, each client trains and updates its local model ω
(k)
i based

on Equation (12). If zik = 1, client i should upload its local model to the FL server by the
end of global iteration k. Then, client i would wait until it receives the updated global
model ω(k) from the FL server to start the next round of local model training.

Concurrently, the FL server keeps receiving the local models from the clients in global
iteration k. Once the deadline expires, the FL server updates the global model ω(k) based
on Equation (10), and then broadcasts the new global model ω(k) to the clients, who just
uploaded their local models in global iteration k.

Please note that the deadline of a global iteration, i.e., τ, is a very crucial parameter
to adjust the performance of LESSON. Specifically, if τ → +∞, a single tier is employed,
housing all clients. This setup operates akin to the FedAvg. Here, the FL server must
patiently await the arrival of local models from all clients during each global iteration.

Conversely, if τ → 0, LESSON acts as asynchronous FL, where clients with varying
latency (i.e., ti) are distributed across distinct tiers. The FL server will promptly aggregate
the local models from the clients with low latency, subsequently updating and broadcasting
the global model. This adaptability in τ constitutes one of LESSON’s strengths, and we
will delve into how different values of τ impact LESSON’s performance in Section 5.
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Algorithm 1: LESSON algorithm

1 Estimate the latency of all the clients based on Equation (3).
2 Cluster the clients into different tiers based on Equation (7).
3 The FL server initializes the global model ω(0) and broadcasts to all the clients.
4 Initialize the global iteration index, k = 1;
5 for each global iteration k do
6 Client side:{
7 if zik = 1, derived with Equation (9) then
8 Receive the broadcast global model ω(k) as the local model ω

(k−j)
i with

klocal := kglobal + j, ω(k) k:=k+j−−−→ ω
(k−j)
i ;

9 Perform local model training based on Equation (12) over j global
iteration;

10 Upload its local model ω
(k)
i to the FL server;

11 end
12 }
13 FL server side:{
14 Receive all the local models uploaded from the clients during kth global

iteration, with time length of τ;
15 Update the global model ω(k) based on Equation (10);
16 Broadcast the updated global model ω(k) to the corresponding clients;
17 k := k + 1;
18 }
19 end

5. Simulation

In this section, we conduct extensive simulations to evaluate the performance of LESSON.

5.1. Simulation Setup
5.1.1. Configuration of Clients

We assume that there are 50 clients that are uniformly distributed in a 2 km× 2 km area,
which is covered by a BS located at the center of the area. All the clients upload their local
models to the FL server via the BS. The pathloss between the BS and client i is calculated
based on 128.1 + 37.6× di, where di is the distance in kilometer between the BS and client
i. Then, the channel gain is calculated based on gi = 10−(128.1+37.6×di)/10 [35]. Meanwhile,
the transmission power pi is set to be 1 Watt for all the clients, and the amount of available
bandwidth for each client in uploading its local model is 30 kHz. In addition, each client
has around |Di| = 1000 data samples (i.e., 50,000 combined for all clients) to train its
local model. The number of CPU cycles required for training one data sample (i.e., Ci)
among clients is randomly selected from a uniform distribution, i.e., Ci ∼ U (3, 5)×105 CPU
cycles/sample. The CPU frequency of a client fi is also randomly selected from a uniform
distribution, i.e., fi ∼ U (0.8, 3) GHz. Other simulation parameters are listed in Table 1.

Figure 3 shows the probability density function of the latency (i.e., ti) among all the
clients in a specific time instance. The median value in the clients’ latency is around 10 s, so
we initially set up the deadline τ of a global iteration to be 10 s, and we will change the
value of τ, later, to see how it affects the performance of LESSON.
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Table 1. Simulation parameters.

Parameter Value

Noise and inter-cell interference (N0) −94 dBm
Bandwidth B 30 kHz
Transmission power 0.1 watt
Size of the local model (s) 100 kbit
Number of local iterations (θ log2(

1
ε )) 1× log2(

1
0.05 )

Number of local samples |Di| 1000
CPU cycles required for training one data sample Ci U (3, 5)×108

CPU frequency fi U (0.8, 3) GHz
Number of local epochs 1
Number of local batch size 20
Non-IID Dirichlet distribution parameter β [0.1, 1, 10]
Client Learning Rate δ, 0.02

Figure 3. Clients’ latency distribution.

5.1.2. Machine-Learning Model and Training Datasets

We will use two benchmark datasets to train the corresponding machine-learning
model.

1. CIFAR-10 [36] is an image classification dataset containing 10 labels/classes of images,
each of which has 6000 images. Among the 60,000 images, 50,000 are used for model
training and 10,000 for model testing.

2. MNIST [37] is a handwritten digit dataset that includes many 28× 28 pixel grayscale
images of handwritten single digits between 0 and 9. The whole dataset has a training
set of 60,000 examples and a test set of 10,000 examples.

We apply the convolutional neural network (CNN) to classify the CIFAR-10 images.
The CNN model has four 3 × 3 convolution layers (where the first layer has 32 channels,
and each of the following three layers has 64 channels. Also, only the first two layers are
followed with 2× 2 max pooling), followed by a dropout layer with rate of 75%, a fully
connected 256 units ReLU layer, and a 10-unit SoftMax output layer. There are a total of
1,144,650 parameters in this CNN model.

With respect to MNIST, which is a much simpler image dataset than CIFAR-10, a
smaller CNN model has been used. Specifically, the CNN model has two 5 × 5 convo-
lution layers (where the two layers have 6 and 16 channels, respectively, each of which
is followed with a 2× 2 max pooling), followed with two fully connected ReLU layers
with 120 and 84 units, respectively, and a 10-unit SoftMax output layer. There are a total of
61,706 parameters in this CNN model.
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In addition, we partition the MNIST/CIFAR-10 dataset among the 50 clients based on
the non-independent and identical distribution (Non-IID), and the probability of having
ηm images in label class m at client i is assumed to follow a Dirichlet distribution [38], i.e.,

f (η1, η2, . . . , ηM; β) =
Γ(βM)

Γ(β)M

M

∏
m=1

η
β−1
m , (13)

where M is the total number of label classes (i.e., M = 10 for both CIFAR-10 and MNIST),
Γ() is the gamma function (Γ(z) =

∫ ∞
0 xz−1e−xdx), and β is the concentration parameter

that determines the level of label imbalance. A larger β results in a more balanced data
partition among different labels within a client (i.e., much closer to IID) and vice versa.
Figure 4 shows how different labels of images are distributed by varying β. In addition, we
assume each client would train its CNN model over |Di| = 20 data samples locally based
on stochastic gradient descent (SGD) with base learning rate δ = 0.1 [39] and epoch equal
to 1.

Figure 4. Probability distribution of 10 categories samples for 5 clients with different β.

5.1.3. Baseline Comparison Methods

The performance of LESSON will be compared with the other two baseline client
selection algorithms, i.e., FedCS [18] and FedAvg [13]. FedCS only selects the clients that
can finish their model uploading before the deadline τ in each global iteration, i.e., only the
clients in Tier 1 will be selected to participate in the training process. In FedAvg, all the
clients in the network will be selected to participate in the training process for each global
iteration, i.e., the FL server will wait until it receives the local models from all the clients
and then update the global model for the next global iteration. In addition, the source code
of LESSON can be found in https://github.com/fzvincent/FL_AoR/tree/master (accessed
on 29 September 2023).

5.2. Simulation Results

Assume that β = 1 and τ = 20 s. Figure 5 shows the test accuracy of the three
algorithms over the global iterations and simulation time for CIFAR-10 and MNIST. From
Figure 5a,b, we can find that LESSON and FedAvg have similar test accuracy, i.e., ∼70%
for CIFAR-10 and ∼95% for MNIST. However, the test accuracy achieved by FedCS is
lower than LESSON and FedAvg, i.e., ∼60% for CIFAR-10 and ∼90% for MNIST. This is
because FedCS only selects fast clients to participate in the training process, and so the
derived global model can only fit the data samples for fast clients, not slow clients, thus
reducing the model accuracy. Meanwhile, the convergence rate with respect to the number
of global iterations for LESSON and FedAvg is also very similar, which is slightly faster
than FedCS. However, by evaluating the convergence rate with respect to the time, as
shown in Figure 5c,d, we find out that LESSON is faster than FedAvg. For example, the
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global model in LESSON has already converged at 20,000 s for MNIST, but the global model
in FedAvg is still under-trained. This is because the FL server in FedAvg must wait until
the local models from all the clients have been received in each global iteration, and thus,
the latency of a global iteration incurred by FedAvg is much higher than that incurred
by LESSON. Table 2 shows the average delay of a global iteration incurred by different
algorithms, where the average latency of a global iteration incurred by LESSON is 48 s
faster than FedAvg. As a result, FedAvg only runs around 588 global iterations at 20,000 s
in Figure 5d, respectively, but LESSON runs 2000 global iterations.

Table 2. Average latency per global iteration for different algorithms.

Algorithms Average Latency of a Global Iteration

FedAvg 68 s
FedCS 20 s

LESSON 20 s

Figure 5. Test accuracy of different algorithms for CIFAR-10 and MNIST with β = 1, where (a) test
accuracy vs. the number of global iterations for CIFAR-10, (b) test accuracy vs. the number of global
iterations for MNIST, (c) test accuracy vs. time in CIFAR-10, and (d) test accuracy vs. time in MNIST.

We further investigate how the data sample distribution affects the performance of
the algorithms based on CIFAR-10. As mentioned before, β is used to change the data
sample distribution, i.e., a larger β implies a more balanced data partition among the
labels in a client or data sample distribution much closer to IID, and vice versa. Assume
τ = 20 seconds, and Figure 6 shows the test accuracy of different algorithms over the
number of global iterations by selecting different values of β. From the figures, we can
see that if the data sample distribution exhibits non-IID, i.e., β = 0.1, FedAvg has higher
test accuracy than LESSON and FedCS. As β increases, i.e., the data sample distribution
is growing closer to IID, the test accuracy gap between FedAvg and LESSON is growing
smaller, while the test accuracy of FedCS remains unchanged. On the other hand, Figure 7
shows the test accuracy of different algorithms over time by selecting different values of
β. From the figure, we can see that LESSON achieves 2× faster convergence rate than
FedAvg under different values of β. Therefore, we conclude that LESSON achieves a faster
convergence rate at the cost of slightly reducing the model accuracy, especially when the
data distribution exhibits non-IID.

Figure 6. Test accuracy over the number of global iterations for CIFAR-10, where (a) β = 0.1,
(b) β = 1.0, and (c) β = 10.0.
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Figure 7. Test accuracy over the time for CIFAR-10, where (a) β = 0.1, (b) β = 1.0, and (c) β = 10.0.

As mentioned in Section 4.3, the deadline of a global iteration, i.e., τ, is a very important
parameter to adjust the performance of LESSON. Basically, if τ → +∞, LESSON acts as
FedAvg, and if τ → 0, LESSON acts as asynchronous FL. Figure 8 shows the test accuracy
of LESSON by having different values of τ and β for CIFAR-10 over global iterations, where
we can find that τ = 60 seconds incurs the highest test accuracy for both β = 0.1 and β = 1.
This is because a larger τ (1) reduces the number of tiers in the system, thus alleviating the
performance degradation caused by stale issues, and (2) increases the average number of
clients in uploading their local models in a global iteration, which can mitigate the impact
caused by non-IID. Also, we can see that the blue curve, i.e., τ = 10 s, is more sensitive to
the change in β than the other two curves. This is because as τ reduces, LESSON acts more
like asynchronous FL, which has the convergence issue under non-IID. Figure 9 shows the
test accuracy of LESSON by having different values of τ and β for CIFAR-10 over time.
From Figure 9a, we can find that τ = 60 exhibits the slowest convergence rate with respect
to the time because a larger τ implies a longer latency of a global latency, i.e., τ = 60 runs
the fewest global iterations than τ = 10 and τ = 20 within a time period. Therefore, we
conclude that changing τ can adjust the trade-off between the model accuracy and model
convergence rate with respect to time. A large τ can increase the model accuracy but reduce
the model convergence rate, and vice versa. Meanwhile, as the data distribution is closer to
IID (i.e., as β increases), the difference in the convergence rate among the three algorithms
increases, as shown in Figure 9b.

Figure 8. Test accuracy over the number of global iterations for CIFAR-10, where (a) β = 0.1 and
(b) β = 1.0.

Figure 9. Test accuracy over the time for CIFAR-10, where (a) β = 0.1 and (b) β = 1.0.
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The two foundational approaches select clients based on their availability. FedAvg
emphasizes the importance of client presence but suffers from delays caused by slow
participants, known as stragglers. On the other hand, FedCS prioritizes models that have
been recently updated. LESSON integrates the strengths of both approaches: it places
stragglers in higher tiers to minimize system disruption and effectively incorporates less
up-to-date models to enhance the global model’s generalization capability. When dealing
with clients who drop out intermittently, FedAvg can experience significant delays, and
FedCS does not account for the contributions of clients with unstable connections in the
first place. Although LESSON cannot offer guarantees, it provides an opportunity for such
disconnected clients to make a partial contribution to the global model.

6. Conclusions

To address challenges related to data diversity and stragglers in synchronous Fed-
erated Learning (FL) while also minimizing the risk of model divergence found in asyn-
chronous FL, we introduce LESSON. This novel approach blends semi-synchronous client
selection with model aggregation, ensuring the participation of all clients in the FL process,
albeit at differing frequencies.

The simulation results show that LESSON and FedAvg have comparable model test
accuracy, both of which outperform FedCS at least 10% under different non-IID scenarios. In
addition, LESSON reduces the test accuracy by around 5% but accelerates convergence rate
at least 2× faster as compared to FedAvg. The adaptability of LESSON is further highlighted
through its deadline parameter τ, which allows for adjusting the trade-off between model
accuracy and convergence rate, that higher τ can improve model accuracy. Due to the high
convergence rate, LESSON can be applied to applications that require quickly deriving a
reasonable model adaptive to dynamic environments, such as autonomous drone swarm
control [40,41], where actor-critic networks that can be adaptive to be the current wind
perturbation should be quickly trained and derived to, for example, avoid collisions.

Future work is poised to delve into the adaptive modification of the τ parameter to
augment LESSON’s performance. This paper has demonstrated that a lower τ accelerates
the model convergence rate, whereas a higher τ achieves a better model accuracy, especially
in non-IID data scenarios. As such, dynamically calibrating τ to achieve a resilient and
practical FL algorithm is critical but unexplored. In addition, the computing and uploading
latency of a client may change over time. If a client moves towards the edge of a base
station’s coverage area, the uploading latency of this client will be significantly increased.
As a result, this client will finally be clustered into a higher tier to train and upload its
local model at a lower pace but with a higher learning rate. Yet, how LESSON dynamically
adjusts the client clustering based on the updated computing and uploading latency and
how the client clustering adjustment affects the performance of LESSON is still unveiled
and will be part of our future work.
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Abstract: The trend of the next generation of the internet has already been scrutinized by top analytics
enterprises. According to Gartner investigations, it is predicted that, by 2024, 75% of the global
population will have their personal data covered under privacy regulations. This alarming statistic
necessitates the orchestration of several security components to address the enormous challenges
posed by federated and distributed learning environments. Federated learning (FL) is a promising
technique that allows multiple parties to collaboratively train a model without sharing their data.
However, even though FL is seen as a privacy-preserving distributed machine learning method, recent
works have demonstrated that FL is vulnerable to some privacy attacks. Homomorphic encryption
(HE) and differential privacy (DP) are two promising techniques that can be used to address these
privacy concerns. HE allows secure computations on encrypted data, while DP provides strong
privacy guarantees by adding noise to the data. This paper first presents consistent attacks on privacy
in federated learning and then provides an overview of HE and DP techniques for secure federated
learning in next-generation internet applications. It discusses the strengths and weaknesses of these
techniques in different settings as described in the literature, with a particular focus on the trade-off
between privacy and convergence, as well as the computation overheads involved. The objective
of this paper is to analyze the challenges associated with each technique and identify potential
opportunities and solutions for designing a more robust, privacy-preserving federated learning
framework.

Keywords: federated learning; differential privacy; homomorphic encryption; privacy; accuracy

1. Introduction
1.1. Background

The trends of advanced internet applications have had an overwhelming impact,
particularly with the introduction of numerous machine learning (ML) algorithms. These
algorithms have exhibited immense potential for a wide range of real-world applications.
However, the success of these applications relies heavily on the establishment of a trust
and secure paradigm. According to Gartner investigations [1], it is predicted that, by 2024,
75% of the global population will have their personal data covered under privacy regula-
tions. Without this foundation trust and security, the future internet and digital economy,
with their unlimited potential, will always be underestimated. To address the security
concerns in federated environments—including the inherent dilution of the internet among
mass usage, common vulnerabilities stemming from the Internet of Things, identity authen-
tication, and significant digital fragmentation—various isolated and separate algorithms
have been developed. However, these algorithms have proven insufficient.

The performance of machine learning algorithms depends on access to large amounts
of data for training. In traditional machine learning, training is centrally held by one orga-
nization that has access to the whole training dataset. In practice, data are often distributed
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across multiple parties, and sharing it for training purposes is not simple due to privacy
policies and regulations like the General Data Protection Regulation [2]. These regulations
impose strict rules about how data can be shared and processed between organizations.

Due to these factors, federated learning (FL) has become a hot research topic on ma-
chine learning since its emergence on 2016 [3]. This promising technique allows multiple
parties to jointly train a global model by only exchanging updates about local models
and without the need to share their private datasets. This offers a promising solution to
mitigate the potential privacy leakage of sensitive information about individuals. Recent
works have demonstrated that FL may not always provide privacy and robustness guar-
antees [4–14]. While the private data never leaves their owner, the exchanged models
are prone to memorization of the private training dataset. Some sensitive information
may be inferred from the shared information using some well-known attacks like gradient
inversion, reconstruction attacks, membership inference, and property inference attacks.

One way to mitigate this type of attacks is to use privacy preserving techniques like
differential privacy (DP) and homomorphic encryption (HE). Differential privacy offers a
way to disrupt data while preserving the statistical properties of the data. This allows us to
have meaningful analysis and statistics while countering some of previous attacks. On the
other hand, homomorphic encryption allows for conducting computation on encrypted
data and then decrypting only the result. This allows FL to access the aggregation of
gradient without accessing the gradient themselves.

Each technique has its own advantages and limitations. In this paper, we focus on
the different works of the literature that use HE and DP techniques in federated learning
context. We aim to analyze the advantages and the limitations of each technique taken
alone before addressing the combination of the two techniques.

1.2. Motivation

A plethora of research efforts have examined privacy concerns in federated learn-
ing. These studies encompassed various aspects and topics including foundational con-
cepts [15–17], identification of threats and corresponding solutions [18–21], exploration
of privacy techniques [22,23], and applications within healthcare [24,25], as well as com-
munications and mobile networks [26,27]. The highlights and the key concepts included
in these studies are listed in Table 1. While these works offer comprehensive surveys of
techniques, they often do not delve into the detailed application of these techniques as
evidenced in the literature. Furthermore, with the exception of [22], these studies have
largely overlooked the hybrid application of privacy methods where multiple techniques
are employed in concert.

Table 1. Comparison with related surveys.

Ref Year Attacks Defenses Detailed Methods and StrategiesDP HE Hybrid (DP + HE)

[17] 2019 X X
[18] 2020 X
[23] 2020 X X
[24] 2020 X X X
[26] 2020 X X X
[21] 2020 X X X
[20] 2021 X X X X
[16] 2021 X X X
[22] 2022 X X X X
[19] 2023 X X
[25] 2023 X X X

Ours 2023 X X X X X

The authors of [22] did acknowledge different combinations of techniques in their
work, but they did not closely examine the specific methods by which these techniques are
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employed. In contrast, our paper focuses on the intersection of homomorphic encryption
(HE) and differential privacy (DP) within the framework of federated learning. The factors
and parameters we take into account while comparing our work with previous studies
are the specific attacks and defenses they discuss. Another aspect we consider is how
thoroughly they explain their methods and strategies. We delve into the advantages and
drawbacks of combining these techniques, as we think that this combination could lead to
better privacy-preserving federated learning systems. This would allow us to leverage the
unique strengths inherent to each individual technique.

1.3. Contribution

Our paper makes a notable contribution by thoroughly exploring and examining
various scholarly sources. The primary scope of this paper revolves around addressing
privacy concerns in federated learning. Consequently, certain related issues, such as
communications, systems heterogeneity, and statistical heterogeneity, are intentionally
excluded from our focus. Within the realm of privacy preservation, our main emphasis
lies on exploring and analyzing differential privacy (DP) and homomorphic encryption
(HE) techniques. While we acknowledge the existence of other privacy techniques in
the literature, such as anonymization, secure multi-party computation, and blockchain,
we do not directly delve into them in this paper. By narrowing our focus to DP and HE
techniques, we can provide a more detailed and comprehensive analysis of their capabilities
and limitations in the context of privacy preservation. This approach allows us to deliver
a focused and valuable contribution to the research community and promotes a deeper
understanding of the pivotal role these techniques play in ensuring secure and privacy-
aware federated learning systems.

The main contributions of this paper are summarized as follows:

1. We scrutinize the array of research addressing privacy-related attacks in federated
learning (FL), demonstrating the practicality and real-world relevance of these threats,
highlighting their potential implications in distributed learning environments. Our
primary focus lies on privacy attacks, where we delve into various techniques that
adversaries can employ to compromise the privacy and security of FL systems.

2. We delve into the role of differential privacy (DP) in FL, detailing its deployment
across various settings: central differential privacy (CDP), local differential privacy
(LDP), and the shuffle model. By providing a comprehensive analysis of these DP
deployment settings, we offer insights into the strengths, limitations, and practical
implications of each approach.

3. We investigate the application of homomorphic encryption (HE) as a powerful tool
to enhance privacy within FL. Our primary focus is on countering privacy attacks
and safeguarding sensitive data during the collaborative learning process. Through
our investigation, we provide valuable insights into the capabilities and limitations of
homomorphic encryption in FL.

4. We examine the body of research that explores the fusion of homomorphic encryption
(HE) and differential privacy (DP) in the context of federated learning (FL). Our
primary objective is to shed light on the motivations behind such integrations and
understand the potential benefits they offer in enhancing privacy and security in
distributed learning environments.

The rest of this paper unfolds as follows: Section 2 provides essential background
knowledge on HE, DP, and FL. Section 3 delves into various privacy attacks within the FL
framework. Section 4 discusses the combination of DP with FL, while Section 5 explores
the use of HE for protecting privacy. In Section 6, this paper explores the combined use
of HE and DP, emphasizing the potential benefits of this fusion. Section 7 is dedicated to
the discussion of the results, offering deeper insight into our findings. Finally, Section 8
presents our conclusions and proposes directions for future research.
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2. Preliminaries

The key concepts that we treat in our paper are federated learning, differential privacy,
and homomorphic encryption. Here, we give an overview of the different techniques.

2.1. Federated Learning

The term federated learning (FL) was introduced in 2016 by McMahan et al. [3]. FL is
a machine learning setting where many clients collaborate to train a centralized ML model.
Each client’s raw data are stored locally and not exchanged with other parties; only updates
needed for immediate aggregation are shared with the central server.

Two main settings are discussed in the literature [16]: the cross-device and the cross-
silo. The difference between the two is simple, cross-device is associated with mobiles
and IoT devices while cross-silo is associated with organizations like hospitals, banks, etc.
In cross-silo, the number of clients is small and they have large computational ability. On the
other hand, cross-device considers a huge number of clients with small computation power.
Another difference between the two settings is reliability. In cross-silo, the organizations
are always available to train, unlike user devices.

FL can also be classified by data partition. We distinguish Horizontal FL, Vertical FL
and Hybrid FL. In HFL, the datasets of the clients have the same features space. In VFL,
the local datasets have the same individuals, but with different features. The hybrid setting
is a combination between HFL and VFL.

A typical federated training process is considered by the algorithm of FedAvg pro-
posed by McMahan et al. [3]. It consists of five steps: The server selects a subset of clients
according to some criteria. The selected client downloads the current model weights and a
training program from the server. Each client locally computes an update to the model by
executing the training program. The server then collects an aggregate of device updates
and updates the central model.

2.2. Differential Privacy

Differential privacy is a widely used standard to guarantee privacy in data analysis.
The main idea of DP is to consider a thought experiment in which we compare how an
algorithm behaves on a dataset D1 with the way it behaves on a hypothetical dataset D2, in
which one person’s record has been removed or added. These two datasets are considered
“neighbors” in the dataset space. Hence, we say that an algorithm is differentially private if
running the algorithm on two neighboring datasets yields roughly the same distribution
of outcomes. In other words, differential privacy ensures that the outcomes of M are
approximately the same whether or not the person i joins the dataset. Formally, DP is
defined by Dwork et al. in 2006 [28] as follows.

Definition 1. A randomized function M gives (ε, δ)-differential privacy if for all datasets D1 and
D2 differing on at most one element, and all S ⊂ Range(M),

Pr[M(D1) ∈ S] ≤ eε × Pr[M(D2) ∈ S] + δ (1)

In the Definition 1, ε is a non-negative real number that determines the level of privacy
protection provided by the algorithm. A lower value of ε corresponds to a stronger privacy
guarantee. The value of δ is a small positive real number that represents the probability of
any failure of the definition. When δ is set to 0, it is referred to as pure differential privacy.

Three major properties arise directly from this definition: composition, post-processing,
and group privacy. These properties are the key to design powerful algorithm from
basic mechanisms:

• Composition: offers a way to bound privacy cost of answering multiple queries on the
same data.

• Post-processing: ensures that the privacy guarantees of a differential privacy mecha-
nism remain unchanged even if the output is further processed or analyzed.
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• Group privacy: this definition can be extended to group privacy by considering two
datasets differing on at most k records instead of 1 record.

As stated in the definition, DP is a property of an algorithm M. There are several
methods to achieve DP based on adding noise to the input data, the output data, or the
intermediate result. The noise can be generated using different mechanisms, the well-
known ones are the Laplace mechanism, the Gaussian mechanism, and the exponential
mechanism.

Two main settings are discussed in the literature for differential privacy: the centralized
DP (CDP) and the local DP (LDP). In CDP, the noise is added by a centralized server that
collects first the data then applies the mechanism. In LDP, the noise is added at the client
level before collecting the data. LDP offers stronger privacy guarantees, as the noise is
added closer to the source of the data. Additionally, a hybrid setting called the shuffle
model is also explored in the literature. The shuffle model aims to combine the benefits of
both CDP and LDP. In this setting, privacy is enhanced through anonymization achieved
by shuffling the data. The noise is added centrally by a shuffler before passing the data to
the analyst server, which enables the system to attain the performance advantages of CDP
while maintaining the privacy guarantees provided by LDP.

2.3. Homomorphic Encryption

Homomorphic encryption is a cryptographic primitive that allows third parties to
perform arithmetic operations on ciphertexts without decrypting them. It provides the
same result as encrypting after operating in cleartext messages.

More formally, an encryption scheme is called homomorphic over an operation ∗ if it
supports the following property:

E(m1) ∗ E(m2) = E(m1 ∗m2)

where E is the encryption algorithm and m1, m2 belong to M the set of all possible messages.
An HE scheme consists of four algorithms [29]: KeyGen, Enc, Dec, and Eval. KeyGen gen-

erates a pair (public key, private key) for the asymmetric configuration and a secret key for
the symmetric version. Enc is the encryption algorithm and Dec is the decryption algorithm.

While the three algorithms (KeyGen, Enc, Dec) are common to conventional cryptosys-
tems, an additional algorithm is needed for homomorphic encryption schemes, called the
Eval algorithm. This algorithm is defined as follows:

Eval( f , C1, C2) = f (m1, m2)

where Dec(C1) = m1, Dec(C2) = m2 and f is a function that can be addition or multiplication.
Based on the number (limited or unlimited) and the type of operation (addition or mul-

tiplication), HE is classified into three types of schemes: Partially Homomorphic encryption
(PHE), Somewhat Homomorphic Encryption (SWHE), and Fully Homomorphic Encryption
(FHE). PHE allows only to perform one type of operation on unlimited way. When the
operation is addition, like in the Paillier Scheme [30], we say it is an Additive Homomorphic
Encryption (AHE). When it is the multiplication, we say that it is a multiplicative scheme,
like in the RSA scheme.

SWHE allows for both operations, but the number of operations is limited. On the
other hand, FHE allows making unlimited operations of both types. This type of scheme
was possible after the Gentry breakthrough in 2009 [31].

3. Privacy Attacks in FL

While federated learning (FL) is generally regarded as a privacy-preserving technique
in machine learning, recent studies have revealed a potential privacy concern (see Figure 1).
This concern arises from the fact that, although FL avoids the need to share private client
datasets during the learning process, the exchange of gradients in FL can inadvertently
disclose sensitive information about the client’s private data. This issue is particularly
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pronounced in FL due to the large number of participants involved and the inherent
white-box setting of the FL framework. An insider may exploit the exchanged gradients to
perform powerful attacks using passive strategy (one that doesn’t influence the learning
process) or an active approach (where they actively influence the learning process)such as
conducting membership inference or launching a reconstruction attack. In this section, we
will see the different attacks on privacy in FL. The goal and the vulnerabilities exploited by
the adversary in these attacks are presented in Table 2.

Figure 1. Attacks on the federated learning process [32].

3.1. Membership Inference

Membership inference is a type of attack in machine learning that aims to figure out
whether a target data point is used to train a certain ML model. More formally, given x as
the target point, M as a trained model, and some external knowledge K, this attack can be
defined by the following function

A : x, M, K → {False, True}

Here, this function returns True if the target x is in the training dataset and False
otherwise. This attack can be made either in a black-box setting, where the attacker has
only access to an API of the model M, or in a white-box setting, where the attacker has
access to the whole model.

As we can remark, the attack model A is a binary classifier, and it can be constructed
using different ways.

The first membership inference attack against machine learning models was presented
by Shokri et al. in 2017 [33]. In this work, they consider a black-box setting and try to
exploit the fact that ML models have a different behavior on the data they were trained
on and the data that they see for the first time. In other words, they are modeling the
membership inference problem as a problem of binary classification and try to train a
model that distinguishes members from non-members of the target model. The idea of this
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work is to train the attack model using a shadow training technique (that was introduced in
this work). They construct multiple shadow models that mimic the behavior of the target
model, but for which the training set is known and have the same structure. Shokri et al.
proposed some methods to generate the shadow training data and then the method used
to train the attack model. The proposed attack was evaluated against neural networks
using different datasets: CIFAR, Purchases, Locations, Texas hospital stays, MNIST, and
UCI Adult. The authors confirm that their results show that models created using MLaaS
can leak a lot of information about their training datasets. The assumptions considered by
Shokri et al. are considered strong, which reduce the scope of the membership inference
attack [34]. This motivated Salem et al. in 2019 [34] to propose relaxations of these assump-
tions. They showed that relaxing the number of shadow models to one shadow model and
assuming that the shadow training data are distributed similarly to target training data
produce performances that are similar to those provided by Shokri et al. [33]. Furthermore,
considering an attack model that is independent of the training data distribution may also
reveal some information, but this is not as efficient as in the previous work.

The two previous works focus on general machine learning (ML) models, but it is
important to consider the unique characteristics of federated learning, which may present
a larger attack surface [35]. Pustozeova and Mayer in 2020 [35] demonstrated that member-
ship attacks performed by an insider in a sequential federated learning setting are more
effective compared to centralized settings. Unlike the work of Shokri et al. [33] that exam-
ines black-box attacks, in the federated learning setting, an insider attacker has knowledge
of the model’s architecture, making the attack more efficient. Additionally, if multiple in-
sider attackers collaborate, the attack can become more sophisticated. Hu et al. [36] further
assert that, through Membership Inference Attacks (MIA), adversaries can even infer which
participant possesses the data. The authors demonstrate that an honest-but-curious server
can estimate the data source without violating federated learning protocols.

In 2019, Nasr et al. [37] introduced a comprehensive Membership Inference Attack
(MIA) that targets the privacy vulnerabilities of the stochastic gradient descent (SGD) algo-
rithm within the context of federated learning. Their study focused on the white-box setting,
wherein the attacker has access to the model’s loss and can compute the gradients of the
loss with respect to all parameters using a simple backpropagation algorithm. The authors
demonstrated that, in deep neural networks, the distribution of the model’s gradients on
members can be distinguished from the distribution of non-members. They explained that
the initial layers of the neural network tend to contain less individual-specific information,
requiring the attacker to devise specific attacks for each layer. The attack model proposed
by Nasr et al. consisted of feature extraction components and an encoder component.
To extract features from the output of each layer, they employed a fully connected net-
work, incorporating the one-hot encoding of the true label and the loss. For the gradients,
a convolutional neural network was utilized. The output from this step was then fed
into an FCN encoder, which provided the membership probability of the input. Through
experimentation with various datasets such as CIFAR100, Texas100, and Purchase100,
the authors demonstrated that even well-generalized models are highly susceptible to
white-box membership inference attacks.

Gu et al. in 2022 [38] proposed a membership inference attack named CS-MIA, which
utilizes prediction confidence series (PCS) in federated learning. This attack takes advan-
tage of the observation that the prediction confidence on training and testing data exhibit
distinct changes over rounds in federated learning. The authors demonstrated that the
variations of models across rounds in federated learning can be leveraged to differentiate
between members and non-members of the target model. They trained a fully connected
network to process the PCS and learn the discrepancies between training and testing data.
The researchers designed membership inference methods for both local and global attackers
and introduced an active global attack to enhance attack performance. To train the attack
model, the authors drew inspiration from the shadow training technique introduced by
Shokri et al. [33]. They generated shadow confidence series for member and non-member
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instances by involving members in a federated learning process. Subsequently, they com-
puted the confidence of the shadow model on both member and non-member instances,
using this information to train the attack model. Experimental results highlighted the
vulnerability of federated learning privacy to the differences between training and testing
confidence series. CS-MIA achieved a membership inference accuracy of over 90% on vari-
ous benchmark datasets, indicating a significant threat to the privacy of federated learning.

3.2. Class Representatives Inference

The inference of class representatives tries to extract generic class representatives of
the global data rather than the real data in the training datasets [39]. This is similar to
the concept of model inversion attack, proposed by Fredrikson et al. in 2015 [40]. In the
special case where all class members are similar, the result of this attack is similar to the
training data. For example, in a facial recognition model, each class corresponds to a single
individual, and the output of this attack is similar to any image that represent this person.

In the realm of federated learning, the utilization of Generative Adversarial Networks
(GANs) allows the execution of such attacks. Hitaj et al. in 2017 [41] designed such an
attack in federated learning using GAN.The attacker, acting as an honest-but-curious client
in the federated learning topology, tries to influence the learning process. In their work [41],
the attacker locally trains a GAN model capable of generating synthetic samples that look
like the samples from the victim’s data but that are supposed to belong into a different
class. In this way, the victim will work harder to distinguish the fake class from his class
and reveal more information about his dataset. The experiment results showed that this
attack is effective and generate representative samples of training datasets.

Furthermore, in 2018, Wang et al. [39] expanded the scope of the attack to breach client-
level privacy. While acknowledging the effectiveness of the GAN-based attack proposed by
Hitaj et al. [41], the authors observed that the adversarial influence of the client could alter
the architecture of the shared model. Moreover, they considered a powerful malicious client
in their analysis. In order to overcome these limitations, Wang et al. introduced a more
practical and inconspicuous attack on the federated learning model, known as mGAN-
AI. In contrast to the previous attack, which was conducted by the client, the authors
of mGAN-AI assumed the presence of a malicious server. They went a step further in
breaching client-level privacy by utilizing a GAN with a multitask discriminator. This
discriminator not only performed the task of a standard GAN, but also distinguished
the real data distribution of the victim from that of other clients. Through experimental
evaluations on datasets such as MNIST and AT&T, the researchers demonstrated that
mGAN-AI could reconstruct samples close to the victim’s training samples.

3.3. Properties Inference

The properties inference attack was introduced by Ateniese et al. in 2013 [42]. It
aims to extract some private statistical information about the training set. This statistical
information is unexpected to be shared and might be irrelevant to the main training
task. This type of attack violates the intellectual property of the model producer, while
it can be used to perform more complex attacks that infer something private about the
individuals. According to the findings presented in [42], the adversary can construct a
meta-classifier capable of categorizing the target classifier based on the presence or absence
of a specific property, denoted as P, that the adversary seeks to infer. In the context of
the study, the application considered was the inference of the ethnicity of a population,
specifically distinguishing between Indian and non-Indian individuals, utilized in the
training process. To accomplish this, shadow classifiers were trained on the same task
and using similar datasets as the target classifier, but constructed to possess or lack the
property P. The parameters of these shadow classifiers were then employed to train the
meta-classifier.

The work presented in [42] focuses on a centralized machine learning (ML) context
using Support Vector Machines (SVM) and Hidden Markov Models (HMM). In contrast,
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Melis et al. in 2018 [43] were the first to explore the unintended feature leakage within
collaborative machine learning and federated learning (FL). They demonstrated that the
exchanged updates during the FL process can inadvertently disclose information about the
participants’ data. By exploiting this leakage, both passive and active property inference
attacks can be executed to infer properties that are unrelated to the original task of the
model. In this scenario, the adversary is a participant in the process of FL that exploits
the periodic updates of the global model to perform the attack. The information leakage
that can be exploited are the leakage from the sparse embedding layer, particularly for
the non-numerical data such as in Natural Language Processing, and leakage from the
gradients. The results suggest that leakage of unintended features exposes FL to powerful
inference attacks.

Ganju et al. in 2018 [44] concentrated on inferring global properties of the training
data by conducting a white-box attack against Fully Connected Neural Networks (FC-
NNs). Their goal was to deduce properties such as the data production environment or
the proportion of data belonging to a specific class. Unlike the approach proposed by
Ateniese et al. [42], which is not practical for FCNNs, Ganju et al. addressed the chal-
lenges posed by FCNNs, particularly the fact that permutations of nodes in each hidden
layer can lead to equivalent FCNNs. This property makes it difficult for meta-classifiers.
To overcome this challenge, Ganju et al. proposed two strategies: neuron sorting and set-
based representation. These strategies enhance the effectiveness of the attack by ensuring
better classification performance. The authors compared their results with the work of
Ateniese et al. [42] and demonstrated the improved performance of their approaches when
applied to FCNNs. The results underscore the challenge posed by FCNNs and highlight
the effectiveness of the neuron sorting and set-based representation strategies in addressing
this challenge.

Several works have studied models other than Fully Connected Neural Networks
(FCNNs) to explore their vulnerability to property inference attacks. Zhou et al. [45] in-
vestigated generative models, particularly generative adversarial networks (GANs). Their
work proposed a general attack pipeline applicable to both the full black-box and partial
black-box settings. This research demonstrated the feasibility of conducting property infer-
ence attacks not only on discriminative models but also on generative models, highlighting
the effectiveness of such attacks across both model types.

3.4. Training Samples and Labels Inference

Training samples and labels inference, also known as reconstruction attacks, aim to
reconstruct the original dataset belonging to a client involved in the federated learning pro-
cess. These attacks focus on recovering the training samples and their corresponding labels
from the aggregated model. By exploiting the information present in the model’s parame-
ters or gradients, adversaries attempt to recreate the client’s original dataset, potentially
compromising the privacy and confidentiality of the client’s data.

Zhu et al. [4] in 2019 demonstrated that it is possible to obtain the private training data
from the publicly shared gradients. Their method, known as Deep Leakage from Gradient
(DLG), utilizes an optimization algorithm to recover pixel-wise accurate information for
images and token-wise matching for texts. The attack is performed by generating “dummy”
inputs, then by performing the forward–backward pass, they compute dummy gradients
from the global model. Instead of updating weights of the dummy model, they update the
dummy inputs and labels by minimizing the distance between dummy gradients and real
gradients. The results show that they can achieve exact pixel-wise data recovering using
just the shared global model and local gradients.

Zhao et al. [5] observed that DLG is unable to extract the ground-truth labels. To ad-
dress this limitation, they proposed a method called iDLG. They demonstrated that the
signs of gradients of the classification loss with respect to correct and wrong labels are
opposite. This enables to always extract the ground truth labels.

127



Future Internet 2023, 15, 310

Geiping et al. [6] in 2020 state that previous works are based on Euclidean cost function
with an optimization via L-BFGS. These choices may not be optimal for realistic architec-
tures. The authors propose to use a cost function based on cosine similarity to catch more
information about the data. They find that, if we decompose the gradient into its norm
magnitude and its direction, then the magnitude captures only information about the state
of the training while the direction can carry significant information about the change in
prediction when taking a gradient step towards another data point. This approach aims to
find images that pursue similar prediction changes, and it was the first work that pushed
the boundary towards ImageNet-level gradient inversion.

Yin et al. [46] introduced in 2021 GradInversion to recover the individual images
that a client possesses within a batch by optimizing the input data to match the gradients
provided by the client. The main challenge is to identify the ground-truth label for each
data point in the batch. The main contribution is the introduction of the group consistency
regularization term by computing a registered mean image from all candidate images. This
allows for the reduction of the variance of the candidates, hence improving the convergence
towards the ground truth images.

Jin et al. in 2021 [9] affirmed that existing approaches do not scale well with large-batch
data recovery and do not provide a strong theoretical justification on the capability of data
recovery. Therefore, they designed CAFE (catastrophic data leakage in vertical federated
learning), an advanced data leakage attack with theoretical analysis on the data recovery
performance. The proposed algorithm consists of three steps: Recover the gradients of
loss with respect to the outputs of the first FC layer, use the recovered gradients as a
learned regularizer to improve the performance of the data leakage attack, and then use the
updated model parameters to perform the data leakage attack. The experimental results
demonstrate that CAFE can recover private data from the shared aggregated gradients
while overcoming the batch limitation problem in previous attacks.

Ren et al. in 2022 [7] proposed a generative regression neural network (GRNN) to
recover images from the shared gradient in FL. The attack recovers a private training image
up to a resolution of 256*256 and a batch size of 256, which surpasses the previous state
of the art. The proposed method addresses three major challenges in existing methods:
model stability, the feasibility of recovering data from large batch size, and fidelity with
high resolution. GRNN consists of a GAN model for generating fake training data and an
FCN for generating the corresponding label. A fake gradient is generated given the shared
model, and the two generators are optimized by approximating this fake gradient to the
true gradient. The extensive experiments conducted by the authors show that their work
outperforms DLG in terms of the addressed challenges.

Table 2. Privacy inference attacks against FL.

Ref Year Assumption Goal ExploitAdversary Active/Passive

[41] 2017 Client Active Class representative inference Influencing the learning process.
[39] 2018 Server Active Class representative inference Influencing the learning process.
[37] 2019 Client Active/Passive Membership inference Vulnerabilities of the SGD algorithm.
[38] 2022 Client/Server Passive Membership inference Prediction confidence series.
[43] 2018 Client Passive Properties inference Global model updates.
[44] 2018 Client Passive Global Properties inference Shared gradients.
[4] 2019 Server Passive Training data inference Shared gradients.
[5] 2020 Server Passive Training data inference Shared gradients and their signs.
[6] 2020 Server Passive Training data inference Shared Gradients and Cosine similarity.
[46] 2021 Server Passive batch data recovery Gradient inversion.
[9] 2021 Server Passive Large batch data recovery Shared aggregated gradients.
[7] 2022 Server Passive Training image recovery Shared gradients.
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4. Federated Learning with Differential Privacy
4.1. Role of DP in FL

As previously stated, DP is a powerful technique that gives strong mathematical
guarantees for privacy protection. Differential privacy in the context of FL was explored at
the early stages of FL by McMahan et al. in 2017 [47]. DP offers several benefits, including:

1. Protecting individual participant’s data: DP achieves this by adding noise to the
shared updates, thereby hiding the contributions of each individual in the FL process.

2. Protecting data against membership inference and reconstructions attacks: DP is
known to be robust to this type of attacks.

3. Encouraging the user to participate in the learning process: DP provides strong
privacy guarantees to the user by offering plausible deniability for them.

4. Facilitating compliance with regulations: DP offers a way for companies to comply
with the requirements of various data protection regulations, such as the General Data
Protection Regulation (GDPR).

In summary, DP in FL provides multiple advantages, including individual data pro-
tection, defense against privacy attacks, enhanced user privacy guarantees, and regulatory
compliance support.

4.2. Related Works

The combination of DP with FL is an active research area. The main challenge in
this field is the trade-off between privacy and utility. This challenge is addressed using
the different setting in DP, including Centralized DP (CDP), Local DP (LDP), and the
shuffle model. Table 3 presents the different selected works, presenting the key ideas and
the shortcoming.

The use of CDP for federated learning was explored in 2017 by McMahan et al. [47].
They were the first to show that it is possible to train large recurrent language models with
CDP. Their proposed algorithm is based on the FedAvg algorithm [3] and the moments’
accountant technique [48], which provides tight composition guarantees for the repeated
application of the Gaussian mechanism. The authors extended the FedAvg and FedSGD
algorithms to provide differential privacy guarantees. Their findings show that achieving
DP comes at the cost of increased computation rather than in decreased utility.

At the same time as McMahan et al. [47], Geyer et al. [49] investigated the use of
CDP to protect participants’ data from other malicious participants while considering
the server honest-but-curious. They proposed an algorithm that aims to hide clients’
contributions during the training while balancing the trade-off between privacy loss and
model performance. The idea is to approximate the averaging of client models with a
randomized mechanism. This mechanism involves random subsampling of clients, clipping
the updates before transmission to the server, and distorting the clipped updates using a
Gaussian mechanism before the aggregation. Experimental results show the feasibility of
using CDP in FL; however, the number of clients has a major impact on the accuracy of
the model.

In 2019, Choudhury et al. [50] studied the performance of CDP in healthcare applica-
tions using real-world electronic health data. They proposed to add noise to the objective
function of the model instead of perturbing the data. They show that using differential
privacy can lead to a significant loss in model performance for this kind of application.

Hu et al. in 2020 [51] emphasized that the research should focus on the trade-off be-
tween privacy loss and accuracy of the model. The authors proposed a privacy-preserving
approach for learning personalized models on distributed data. Their approach consists
of training a personalized model of each client using their local data but also the shared
updates from other clients. They used a Gaussian mechanism to provide (ε, δ)-differential
privacy guarantees for the shared gradient. The added noise is calibrated using the sensi-
tivity of the updates. Hu et al. considered a threat model with an honest-but-curious server
and malicious users. While evaluating their approach, they affirmed that it is robust to
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device heterogeneity and perturbation of noises, offering a good trade-off between accuracy
and privacy.

The use of LDP has also been largely investigated in the context of FL. The motivation
is that, contrary to CDP, LDP protects the user’s data even from a malicious server and
gives more flexibility to the clients to manage their privacy.

Bhowmick et al. in 2019 [52] investigated the use of LDP to defend against recon-
struction attacks in FL. In this work, the privacy was provided through two steps. First,
the LDP was employed at the client side to protect the private individuals’ data. Then,
in the server-side computation, the LDP was used to guarantee the privacy preservation of
the global model update. This approach aimed to mitigate the reconstruction attacks while
maintaining privacy and accuracy.

Liu et al. in 2020 [53] observed that applying LDP is challenging when the dimension
of the data is large, as the injected noise is proportional to the number of dimensions.
Additionally, a large batch size is needed to obtain acceptable accuracy. To overcome
these challenges, the authors proposed a two-stage LDP privatization framework for
federated stochastic gradient descent (SGD). In the first stage, they privately select the top k
dimensions based on their contribution to the gradients. Their idea behind this stage is that
not all the dimensions are equally important. While selecting the Top 1 dimension can be
easily accomplished by the exponential mechanism, extending this to select k dimensions is
more challenging. For this case, the authors proposed two alternative mechanisms. In the
second stage, value perturbation using LDP is applied to ensure privacy while preserving
the utility.

Ni et al. in 2021 [54] proposed an adaptive differential privacy federated learning
model for medical IoT applications. Specifically, they proposed a DNN (named DPFLAGD-
DNN) for adding noise to the model parameters according to the correlation between the
model output and the characteristic of the training data. According to the authors, this
method reduces the unnecessary noise and improves the accuracy. The process is that
each client performs the model training according to the parameters obtained from the
server and adaptively adds noise by DPFLAGD-DNN. After that, the noisy parameters
are sent back to the server. Considering also the leakage from the down link, the authors
proposed to add noise using the same mechanism in the server side before broadcasting
the parameters. Experimental results show that the proposed algorithm can achieve high
accuracy and may be more practical for medical IoT applications.

Sun et al. in 2021 [55] considers again the DNN in a DPFL setting. They addressed
two main challenges, the fixed weight range assumptions in previous work and the privacy
degradation due to high dimensionality of DNN. They proposed a new adaptive LDP
mechanism according to the weight ranges of different DNN layers. They also proposed a
shuffling mechanism for parameters to anonymize the data source. Here, the mechanism of
shuffling considers the parameters and not the models. They assume that this is more effi-
cient against side-channel linkage attacks than in the standard method of shuffling models.

The cross-silos setting of FL was considered by Chamikara et al. in 2022 [56]. The au-
thors addressed the challenge of managing the noise and the privacy budget due to high
dimensionality of parameter matrices in DNN. The method proposed by Chamikara et al.
adds noise to the data input instead of the parameters. By considering a malicious clients
and server, the noise is added in a specific manner. First, the clients locally train a conven-
tional neural network (CNN) using their respective data and then use the convolutional
module of the CNN to obtain flattened vectors of the input. These flattened vectors are
then encoded into binary vectors. After that, the randomized response is applied as a DP
mechanism to perturb the vectors before training the local deep neural network (DNN).
Finally, the clients send their respective trained local models to the server for training the
global model.

Shen et al. in 2023 [57] raised the issue in previous works that consider the same
privacy’s requirements for all clients. This approach fails to acknowledge that each client in
the real world has unique privacy needs. The authors introduced a perturbation algorithm
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that enables personalized LDP. In other words, each client adjusts its privacy parameter εi
according to the sensitivity of its data. The experimental analysis demonstrated that clients
can adjust their privacy parameters while still maintaining high accuracy.

The shuffle model of DP was studied by Girgis et al. in 2021 [58–60]. Their research
aimed to address the challenge of poor learning performance in LDP and tried to enhance
the trade-off between privacy and utility. To achieve this, they propose to amplify the
privacy by self-sampling and shuffling. The main contribution of their work lies on
the concept of self-sampling. Contrary to the standard shuffle model where the server
knows who the participants are, in this setting, the server does not have knowledge of
the participant at each step. This approach avoids the need for coordination in participant
selection during the federated process.

Table 3. Privacy-preserving FL using DP.

Ref Year DP Type Key Idea Trade-offs and Shortcomings

[47] 2017 CDP Adding Gaussian noise by the server before
global aggregation.

Increased computation cost and poor
performance in non-IID setting

[49] 2017 CDP Same as [47], but using subsampling of clients
and clipping before sending updates.

The number of clients has a major impact on
the accuracy of the model.

[50] 2019 CDP Adding noise to the objective function instead
of the updates. Poor performance for healthcare applications

[51] 2020 CDP
Training a personalized model for each client
using local data and the shared updates from
other clients (Protected using DP).

Increased computation and
communication cost

[52] 2019 LDP
Protecting local update from server using DP
in the client side and protect global updates
from clients using DP in the server side.

Increased computation cost

[61] 2020 LDP Reducing noise injection by selecting the top k
important dimension, then applying LDP. Increased computation cost

[54] 2021 LDP Adding adaptive noise to the model
parameters using a deep neural network. Increased computation cost

[55] 2021 LDP
Same as [54], but using adaptive range setting
for weights and adding a shuffling step to
amplify privacy

Increased computation cost

[56] 2022 LDP
Using the randomized response mechanism
instead of the Gaussian and Laplacian
mechanism.

Increased computation cost

[57] 2023 LDP Using personalized privacy budget according
to clients’ requirements

The privacy budget is the same for
all attributes.

[60] 2021 Shuffle
Amplifying privacy by self-sampling and
shuffling. Real participants are unknown
to the server.

Increased system complexity.

4.3. Discussion and Learned Lessons

The use of DP has been widely studied in federated learning using different settings,
including CDP, LDP, and the shuffle model. One of the central challenges addressed in
these settings is balancing between privacy and model performance.

CDP and LDP consider two primary adversaries: the clients and the aggregation server.
CDP offers protection by safeguarding other clients’ data from a malicious client while
considering a trusted server. However, achieving this trust in practice can be challenging.
Using LDP, on the other hand, eliminates the requirement to trust the server as the noise
is added at the client level. However, this security comes at a cost to model performance.
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The independent generation of noise by different clients in LDP adds substantial noise and
requires more data to achieve the same level of accuracy as CDP.

Another issue by CDP and LDP is the anonymity of the clients. The server can track
the source of updates, which widens the attack surface. The solution proposed to have the
benefits of the two worlds of CDP and LDP while also guaranteeing anonymity is to use
the shuffle model. In the shuffle model, the noise is generated by a shuffler, which also
conducts the shuffling of updates to preserve the anonymity of the clients. The model can
achieve a performance similar to CDP while not relying on a trusted server, as in LDP.

Many solutions have been designed in these different settings, going from designing
new suitable mechanisms for DP to proposing alternative definitions of DP in the context of
federated learning. It is also important to consider factors such as data distribution (vertical,
horizontal, or hybrid) and the setting of FL (cross-device or cross-silo). Additionally,
considering the correlation between the different attributes of the data is crucial. In fact,
correlation is considered as a threat and may compromise the process of DP.

Furthermore, it is worth noting that DP alone may not counter all possible attacks.
As a result, some works proposed to amplify DP by anonymization techniques. Other
works also propose to amplify privacy by using other techniques such as secure multiparty
computation and homomorphic encryption.

5. Federated Learning with Homomorphic Encryption
5.1. Role of HE in FL

Homomorphic encryption (HE) enables calculations over an encrypted domain, mak-
ing it a good candidate for collaborative training of joint models in FL. HE can be applied
in various ways within the FL framework, as seen in previous works.

One application of HE in FL is to hide client updates from the server. Instead of
accessing the client’s updates directly, the server will perform the aggregations in the
encrypted domain and only access the final result. This approach provides an added
security layer against eavesdropping and data breaches. By encrypting the updates, even if
an unauthorized person intercepts the data, it will not have access to the raw data or the
model updates.

Another way to utilize HE in FL is to collaboratively train the model without the
need for intermediate decryption. In this scenario, the server conducts aggregations in the
encrypted domain while having no method to decrypt the final result. Only clients having
the decryption key can share the model.

HE can have other applications to counter adversarial attacks that do not deal with
privacy, or auxiliary attacks that are facilitating privacy attacks, such as poisoning attacks.
These attacks aim to compromise the integrity or reliability of the FL process. From security
perspectives, to defend the server from model poisoning attacks, researchers have explored
various variational measures. One such measure is CosDetect, proposed by Yaldiz et al. in
2023 [62], which employs a cosine similarity-based outlier detection algorithm to address
fundamental issues more effectively than existing security solutions. The authors observed
that the weight of the last layer pertaining to the local model update could be more
sensitive to the local data distribution than other layers. This observation is significant, as it
suggests that the last layer of local updates from malicious clients should exhibit outlier
characteristics compared to updates from honest clients, making it more meaningful to a
privacy attack. However, as this paper does not focus on such attacks, we will not delve
deeper into them.

5.2. Related Works

The first-level combination of FL and HE has been initiated by researchers. The main
purpose of HE in the context of privacy preserving is to safeguard the leakage of gradients,
thereby by enabling secure aggregation during the learning process. Table 4 presents the
different selected works, presenting the key ideas and the shortcoming.

132



Future Internet 2023, 15, 310

Zhang et al. in 2020 [63] introduced BatchCrypt, a solution that reduces encryption
and communication overhead when applying HE in cross-silo FL. The authors proposed a
batch encryption technique where clients encode a batch of quantized values of gradients
to a long integer and encrypt it. The main challenge addressed in their work is finding
a feasible batch encryption scheme that allows direct summation of ciphertexts without
intermediate decryption. To achieve this, they proposed a novel encoding technique using
quantization of gradients. They adopt two complement representations with two sign
bits, padding, and advanced scaling to avoid overflow. They also tackle the challenge
of unbounded gradient by proposing an efficient analytical model (named dACIQ) for
clipping. Compared with the stock FATE, their implementation using FATE shows an
acceleration of 81 times and a reduction by 101 times of the traffic overhead.

Fang and Qian in 2021 [64] introduced a multi-party privacy-preserving machine learn-
ing framework called PFMLP (private federated multi-layer perceptron). This framework
is based on partially homomorphic encryption and federated learning to protect privacy.
The main objective is to mitigate membership inference attack. The authors proposed to
counter such attack by hiding the shared gradients from the server using HE. In order to
reduce the computational overhead of homomorphic encryption, they proposed to use an
improved version of the Paillier scheme described by Jost et al. in 2015 [65]. Using this
version, they speed up the training by 25–28% compared to the initial version of the Paillier
scheme [30]. The authors conducted experimentation on MNIST and fatigue datasets and
demonstrated that PFMLP achieves the same accuracy as the standard MLP (multi-layer
perceptron) without HE.

Feng and Du in 2021 [66] proposed FLZip, a framework that uses gradients compres-
sion before encryption, to address the same challenges as BatchCrypt [63]. The key idea
behind FLZip is to reduce the number of gradients to be encrypted by filtering insignificant
gradients by introducing a hyperparameter. Then only the sparse significant gradients are
encrypted. The lock in this scenario is how to design a feasible compression–encryption
scheme that allows direct summation of ciphertexts without decryption. The authors focus
on finding a “mergeable” compression scheme that maintains the addition property of HE.
To achieve this, they proposed to select top-k significant gradients, encode them using key–
value pairs, and then encrypt the values using the Paillier scheme [30]. Comparing their
results to BatchCrypt, FLZip achieves a reduction in encryption and decryption operations
by 6.4 times and 13.1 times, respectively, and shrinks the network footprints to and from
the server by 5.9 times and 12.5 times, respectively, while maintaining model accuracy.

Liu et al. in 2022 [67] addressed the efficiency and the collusion threats in the previous
works. For that, they developed a secure aggregation scheme, called doubly homomorphic
secure aggregation (DHSA). The solution consists of two protocols: the Homomorphic
Model Aggregation protocol (HMA) and the Masking Seed Agreement protocol (MSA).
The HMA protocol utilizes a simple masking scheme based on a seed homomorphic random
generator to hide the model updates. Then the demasking seed is securely calculated using
the MSA protocol, which employs multi-key homomorphic encryption to ensure that the
aggregation is only known by the clients. The work was compared to BatchCrypt [63]
and the results show a speedup of up to 20 times while obtaining a similar accuracy to
non-secure, uncompressed FedAvg.

Shin et al. [68] noticed that previous works do not protect the dataset size of each client.
This information can inadvertently reveal sensitive data, such as the number of patients
in the local hospital, rare diseases among the regions, etc. They considered a healthcare
scenario and proposed a protocol for private federated averaging for the cross-silo setting
using partial homomorphic encryption based on the Paillier scheme. In their protocol,
each client interacts with a randomly selected neighbor to send the encrypted calculation
result, instead of sending them to the server. The final result is then sent to the server for
decryption. In this way, the local results of each client remain hidden from other clients
and from the server.
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Jin et al. in 2023 [69] proposed an HE–FL optimization scheme, named FedML-HE, that
minimizes the size of model updates for encrypted computation while preserving privacy
guarantees. The work addresses challenges related to communication and computation
overhead (e.g., 10× reduction for HE-federated training of ResNet-50 and 40× reduction for
BERT). In their approach, an honest-but-curious server aggregates the encrypted gradients
from clients before decrypting them. Two techniques are introduced: parameter efficiency
and parameter selection. In parameter efficiency, the goal is to reduce the model size
through techniques such as model compression and parameter efficient tuning like in
FLZip [66]. In parameter selection, the idea is to hide parts of the model instead of
encrypting the whole model. The proposed solution was implemented using PALISADE
for HE. The experimentation shows that the communication and computation overheads
are reduced using the optimization techniques. The effectiveness of the parameter selection
defense was also tested against gradient inversion, and the results show that encrypting
42% of the parameters is effective when using random selection mechanism, but using a
more robust selection mechanism by selecting more important parameters is more efficient,
and it is necessary to just encrypt 10% of the parameters to counter the DLG attack.

Table 4. Privacy-preserving FL using HE.

Ref Year Scheme Key Idea Trade-offs and Shortcomings

[63] 2020 Additive Propose a batch additive scheme to reduce
communication and computation overhead. Batchcrypt is not applicable in Vertical FL.

[64] 2021 Additive Hide shared gradients from from the server to
protect against membership inference attack.

Scalability issue, computational and
communication overhead

[66] 2021 Additive Reduce the number of gradients to be
encrypted by filtering insignificant gradients.

Scalability issues, computational and
communication overhead

[67] 2022 Additive
Use a doubly homomorphic secure
aggregation by using homomorphic
encryption and masking technique.

Computational and communication overhead

[68] 2022 Additive
Additionally to previous work, protect the
dataset size by adding interactions between
clients using homomorphic encryption.

Computational and communication overhead

[69] 2023 Additive

Encrypting only a part of the model instead of
the whole model. They showed that
encrypting just 10% of the model parameter
using a robust selection mechanism is
efficient to counter DLG attack.

Need for theoretical analysis of the trade-offs
among privacy guarantee, system overheads
and model performance.

5.3. Discussion and Learned Lessons

The central challenge when using HE in FL is the computation and communication
overhead. Unlike DP, which requires reducing the trade-off between privacy and model
performance, in HE, the focus is on reducing the trade-off between privacy and computa-
tion overhead.

Several techniques have been explored to address this challenge, including batching,
gradient compression, masking, parameter efficiency, and parameter selection. Batching
techniques aim to encode many values within the same ciphertext while ensuring that the
result can be obtained using only one operation on the ciphertext. Gradient compression,
on the other hand, tries to compress the ciphertext to reduce the communication overhead.
Masking is used as a lightweight technique that hides information using a mask seed,
with the demasking seed calculated collaboratively using homomorphic encryption. Pa-
rameter efficiency and parameter selection techniques select only the efficient parameters
and then encrypt only the most significant updates that may reveal much information about
the data, rather than encrypting all the parameters. Previous works affirm that encrypting
only the significant parameter is sufficient to counter privacy attacks.
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Homomorphic encryption is well suited to counter eavesdropping attacks and the
attacks that may exploit the updates coming from the client. It is also a good solution for
anonymization, since the server will not access the updates provided by clients. However,
the security of HE relies on the chosen scheme and the encryption keys. In addition, if the
server accesses the final result, it still has the potential to perform a model inversion attack
against the global model.

One drawback of HE is that the only operations possible are the addition and mul-
tiplication. Most research focus only on additive homomorphic encryption. Moreover,
the computational complexity poses a challenging in terms of term efficiency and perfor-
mance when applying HE in FL.

6. Combining DP and HE in Federated Learning
6.1. Related Works

Each technique has its own advantages and drawbacks in the context of privacy
and security in federated learning. However, by combining these two techniques, we
can potentially mitigate the drawbacks of each and achieve more comprehensive privacy
protection. Several works have tried to combine these two techniques; Table 5 presents the
different selected works, presenting the key ideas and the shortcomings.

Xu et al. in 2019 [70] proposed HybridAlpha, an FL framework that combines additive
homomorphic encryption with differential privacy. The goal is to limit inference attacks
from a curious aggregator during the process of learning and when using the final model.
The system consists of a third-party authority (TPA) that generates the keys and distributes
them, as well as an Inference Prevention Module. The module examines requests for private
keys for specific vectors that may allow a specific curious aggregator to make an inference-
enabling inner product. Hence, after receiving public keys from the TPA, the client will
use LDP to protect their model updates from the server and then encrypt them. The server
will then accomplish the aggregation before decrypting the data. The experimental results
show that HybridAlpha can reduce the training time by 68% and data transfer volume by
92% while having similar privacy guarantees or model performance compared to existing
works that use SMC, DP, and HE.

Wang et al. in 2020 [71] proposed two protocols to improve the utility of the data while
guaranteeing better privacy. They proposed to build their solution based on the shuffler
model proposed in Prochlo [72]. The challenge is to find a mechanism whose utility does
not degrade with the evolution of the size of the data. They proposed a mechanism, named
Shuffler-Optimal Local Hash (SOLH), and compared it to generalized random response
(GRR) and unary encoding (RAPPOR). The results showed that SOLH outperformed GRR
when the size of the data was large. However, when analyzing the security of this method,
the authors found that collusion attacks may reveal information about the clients even
when using DP. Therefore, they proposed a method called “Private Encrypted Oblivious
Shuffle” that uses AHE to counter collusion attacks. The method was compared to various
methods using shuffling, local hashing, and unary encoding.

Gu et al. in 2021 [73] proposed PRECAD, a framework for FL via crypto-aided dif-
ferential privacy. This framework achieves differential privacy and uses cryptography
against poisoning attacks. The author suggested using two non-colluding servers in an
honest-but-curious model. The clients split their updates into two shares and send them to
the servers. Additive secret sharing is used to verify the validity of the sharing, mitigating
poisoning attacks. The servers then add CDP noise and conduct a secure aggregation step.
The goal of this work is to improve the trade-off between privacy and robustness against
poisoning attacks, contrary to previous works that try to improve the trade-off between
privacy and utility. However, the experimentation also included tests on utility in order to
validate the feasibility of the solution.

Sébert et al. in 2022 [74] published a work named “protecting data from all parties”
that combines DP and HE in federated learning. In their work, each client applies successive
transformations to achieve DP (clipping, noising, and quantization) then encrypt the data
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using HE before sending them to the server. HE protects the data from the semi-honest
server, which performs calculations in an encrypted domain, while DP protects the data
from the malicious clients. The challenges raised in this work are the computation cost of HE
and the noise generation in DP. To decrease the computation cost, the authors suggest to use
fixed-point numbers with a limited number of bits instead of floating-point numbers. They
propose a new probabilistic quantization operator called “Poisson quantization” to handle
the noise generation in a distributed manner, preventing the server from sharing the noise
with other clients. In order to prove the feasibility of this framework, the experimentation
was conducted using the FEMNIST dataset, a largely used dataset in previous works on
federated learning.

One remarkable work that combines DP with HE is by Roy Chowdhurry et al. in
2020 [75]. The authors proposed crypt-ε a framework for executing DP programs. However,
the framework is not specifically designed for the context of FL.

Table 5. Privacy preserving FL combining DP and HE

Ref Year Key Idea Trade-offs and Shortcomings

[70] 2019 Add less noise by amplifying privacy by
homomorphic encryption

Trade-off between privacy,
communication, and computation.

[71] 2020 Amplify privacy with the shuffle model and protect data
against collision attacks using Encrypted oblivious shuffle. Increased system complexity.

[73] 2021

Split the updates into two shares and send them to two
non-colluding servers that add CDP and use additive secret
sharing to mitigate poisoning attacks and conduct secure
aggregation.

Increased system complexity.

[74] 2022 Protect updates from the server using homomorphic encryption
and protect global updates from clients using DP Computational overhead.

6.2. Discussion and Learned Lessons

The combination of DP and HE in FL offers the potential to achieve a more comprehen-
sive approach to privacy and security in federated learning. By leveraging the strengths of
each technique, it becomes possible to mitigate their respective drawbacks and achieve en-
hanced privacy protection. HE can amplify the privacy offered by DP to protect the updates
from all the parties, as in Sébert et al. [74]. While HE protects the intermediate updates
from the server, DP also ensures the final model remains secure, preventing adversaries
from performing model inversion attacks.

This combination is interesting also in terms of model performance. In fact, augment-
ing DP with HE can allow adding less noise and, by the way, having more utility of the data.
The authors of the aforementioned work refer to this approach as crypto-aided differential
privacy, emphasizing its potential for balancing between privacy and utility.

HE and DP can effectively mitigate various attacks from curious aggregators and from
clients. By encrypting the data and applying differential privacy mechanisms, the privacy of
the model updates and inference process can be safeguarded, preventing adversaries from
extracting sensitive information. In addition, other attacks like collusion and poisoning
attacks can be addressed using the combination of these techniques.

However, it is essential to acknowledge that the combination of DP and HE in FL
does come with certain trade-offs and complexities. As the number of participants in
the learning process increases, managing these entities can become challenging. Further-
more, the computational overhead associated with HE introduces resource consumption,
impacting communication and computation within the system.

In summary, the integration of DP and HE in federated learning holds immense promise
in enhancing privacy and security while striking a balance between utility and protection.
However, it is crucial to carefully manage the system complexity and consider resource
implications to fully harness the potential of this powerful privacy-preserving approach.
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7. Discussion

While federated learning (FL) is often recognized as a technique that inherently pro-
tects privacy, it can still fall prey to numerous privacy attacks, as discussed in Section 3.
The process of exchanging gradient updates across participating nodes in FL might in-
advertently lead to potential privacy leaks. These leaks can expose sensitive aspects of
the client’s private data even without directly sharing the actual training datasets. This
vulnerability is amplified due to the large number of participants involved in FL and the
transparency of the framework’s operations, which could provide ample opportunity for
adversaries to launch powerful attacks.

In an effort to mitigate these vulnerabilities, our research highlights the potential
of two techniques: differential privacy (DP) and homomorphic encryption (HE). In the
academic community, DP is often split into three main categories: central differential
privacy (CDP), local differential privacy (LDP), and the shuffle model. CDP is designed to
shield raw data from potentially malicious clients, thus preventing unauthorized access.
However, LDP goes a step further by also protecting data against adversarial servers. This
additional layer of security, though, often comes at the expense of model performance due
to the added noise.

This inherent trade-off gave rise to the exploration of the shuffle model, where privacy
is fortified through a process of anonymization and shuffling. This technique severs the
link between client-side updates and their origin, adding a further layer of privacy. Despite
its advantages, the shuffle model requires trusting the shuffler as an ‘honest-but-curious’
server, which could be a potential point of vulnerability.

Balancing privacy and model performance is one of the major challenges when imple-
menting DP. To ensure privacy, noise is added to the data, which can negatively impact the
accuracy of the model. This inevitable trade-off is a critical consideration, prompting our
exploration of other potential solutions, such as HE.

HE, though computationally expensive, has emerged as a promising technique. It
promotes privacy by allowing only aggregated updates to be shared; thus, the aggregation
server does not directly observe individual client updates. This approach minimizes
accuracy loss, a crucial advantage. Yet, there are still concerns. For example, adversaries
might potentially infer useful information from the final model using model inversion
attacks. Further, the security provided by HE relies heavily on the strength of the encryption
key and the security of the underlying encryption scheme. Unlike DP, it also does not offer
plausible deniability, leaving users potentially exposed.

As outlined in Section 6, depending solely on one technique leaves potential gaps
in security coverage. Therefore, an integrated approach, combining DP and HE, might
offer a comprehensive solution. This hybrid model attempts to leverage the strengths of
both DP and HE, offering accuracy from HE and plausible deniability from DP. However,
this integration is far from straightforward. The challenge lies in navigating the trade-off
between privacy, accuracy, and computational complexity to create a robust and efficient
privacy-preserving FL framework.

In brief, the utilization of DP (differential privacy) and HE (homomorphic encryption)
in federated learning can be depicted using Figures 2 and 3. The federated process, utilizing
DP and HE, operates through a sequence of two alternating procedures, as depicted in
Figures 2 and 3. The sequence kicks off with the server transmitting the global model to the
clients. Subsequently, the clients proceed to train a local model and transmit their updates
back to the server following the steps illustrated in Figure 2. After that, the server conducts
secure aggregation and updates the global model based on the outlined process in Figure 3.
These procedures persist until either convergence is reached or the maximum number of
iterations is attained.
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Figure 2. Client process in secure federated learning.

Figure 3. Server process in secure federated learning.
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Ongoing Research

Inspired by recent seminal research on secured federated learning, specifically Time-
varying Hierarchical Gradient Sparsification [76], we propose a novel homomorphic scheme
to insert an additional layer for configuring an encryption mask. We conducted a prelimi-
nary overview analysis to determine the immediate impact of this proposed augmentation
with HE in a secured federated environment.

It is feasible to reconfigure the encryption matrix for HE before applying the spar-
sification scheme. Assuming the idea of blind encryption, we propose configuring it
through the Paillier modulus, while fetching a random value that is relatively prime to
the multiplication modulo. Introducing the concept of relatively prime values can assist
in distributing the masking of the matrix autonomously with less dependency on the
operator. Similarly, to unmask the encryptor, we will evaluate the Paillier encryption with
homomorphic computation. However, we anticipate that this logic may not fully mask the
real value. Therefore, one alternative solution could be to generate two random values,
ensuring that neither is 0. At the time of preparing this article, we have not investigated
the deep-dive impact on the optimization of the double-layered secured matrix for the
federated environment. This will be an extension of the present research.

8. Conclusions and Future Works

The core contributions of this study encompass a comprehensive analysis of recent
implementations of DP and HE to handle privacy concerns within the context of FL. While
FL is commonly perceived as a means of safeguarding privacy, our analysis has brought to
light significant vulnerabilities present in various works. We delve into the spectrum of
privacy attacks, illuminating their real-world relevance and implications for distributed
learning. Furthermore, we offer nuanced insights into DP’s deployment settings, HE’s
potential for safeguarding sensitive data, and the intersection of HE and DP techniques.
Our work significantly augments the understanding of privacy strategies in FL and lays
the groundwork for future advancements in this evolving landscape.

Regarding DP, the main challenge is striking a balance between privacy and accuracy.
Addressing this challenge entails further research into devising more resilient mechanisms
that introduce minimal noise while offering heightened privacy assurances. Furthermore,
alternative relaxations of DP specifically designed for the FL environment or enhancing DP
through auxiliary methods like anonymization, subsampling, or cryptography could offer
novel avenues of investigation.

Concerning HE, the central challenge centers on mitigating the trade-off between
privacy and computational complexity. Attacking this challenge requires a concerted
effort to accelerate HE primitives while identifying algorithmic approaches to reduce the
complexity of certain operations, such as division. By improving the efficiency of HE, we
can simultaneously uphold privacy principles and mitigate computational overhead.

Furthermore, the combination of HE and DP is also an interesting direction. However,
this amalgamation is far from straightforward, necessitating a careful equilibrium between
computational complexity, model precision, and privacy considerations. As suggested in
the work of Sébert et al. [74], combining these two techniques has the potential to safeguard
raw data across all participants in the FL process, thereby showcasing a direction for
future exploration.
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LDP Local Differential Privacy
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Abstract: In this paper, we explore the realm of federated learning (FL), a distributed machine learning
(ML) paradigm, and propose a novel approach that leverages the robustness of blockchain technology.
FL, a concept introduced by Google in 2016, allows multiple entities to collaboratively train an ML
model without the need to expose their raw data. However, it faces several challenges, such as privacy
concerns and malicious attacks (e.g., data poisoning attacks). Our paper examines the existing EIFFeL
framework, a protocol for decentralized real-time messaging in continuous integration and delivery
pipelines, and introduces an enhanced scheme that leverages the trustworthy nature of blockchain
technology. Our scheme eliminates the need for a central server and any other third party, such as
a public bulletin board, thereby mitigating the risks associated with the compromise of such third
parties.

Keywords: federated learning; privacy-preserving; blockchain

1. Introduction

With the advancement of big data and artificial intelligence (AI) technologies, the
challenge of securely and reliably training machine learning (ML) models on distributed
and heterogeneous data sources without compromising privacy and integrity has become
increasingly prominent. The term federated learning (FL) was introduced by Google in
2016, at a time when the use and misuse of personal data were gaining global attention.
The Cambridge Analytica scandal awakened Facebook users and those of similar platforms
to the dangers of sharing personal information online [1]. It also sparked a wider debate on
the pervasive tracking of people on the internet, often without their consent. In response,
many countries and regions have passed or proposed data privacy laws, such as the General
Data Protection Regulation (GDPR) in Europe [2].

FL is a distributed ML paradigm that enables multiple entities to collaboratively train
a model from their local data, without exposing their raw data to each other or a central
server [3]. This approach stands in contrast to traditional centralized ML techniques, where
local datasets are merged into one location. Therefore, FL has the potential to address the
prevalent limitations and challenges in the traditional approach, particularly the critical
issues of data privacy. The main application of FL is to train models on data that are
sensitive, distributed, or heterogeneous, such as personal data on mobile phones or data
from different organizations. For example, FL can be used to improve spam filters and
recommendation tools without accessing users’ emails or preferences. It can also be used to
leverage data from sensors and smart devices for various tasks, such as anomaly detection,
predictive maintenance, and optimization.

Despite the promises of FL, two main risks persist in the distributed and decentralized
nature of the learning process, namely the privacy challenge and model quality. Privacy
concerns arise from adversaries attempting to identify sensitive patterns in local updates,
potentially compromising the global model [4–6]. Lyu et al. [7] provide a general discussion
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about privacy and robustness attacks against FL and provide some direction for mitigat-
ing them. The German BSI published a detailed report on specific privacy risks, such as
membership inference attacks and model inversion attacks [8]. Simultaneously, in terms of
model quality, integrity challenges stem from participants acting maliciously by injecting
poisoned or malformed inputs during the FL process, where even a single malicious input
can have a significant impact [9,10]. Apart from these risks, there are also other related
concerns for FL in practice, and a comprehensive survey on them is provided in [11]. To
mitigate these risks, various solutions have been proposed. For example, with secure
aggregation, instead of sharing the plaintext local update, only masked updates are trans-
mitted, so that the server can aggregate the global model correctly without the knowledge
of individual updates [12,13]. In addition, differential privacy is also widely used, adding
noise to the exchanged values to provide additional robustness [14,15]. In the literature,
one notable contribution to addressing these challenges is the EIFFeL framework [16]. By
leveraging a public bulletin board, EIFFeL aims to preserve the privacy of input data from
different clients as well as guarantee the integrity of the inputs from these clients (e.g., the
value of inputs should be in proper ranges).

Contribution and Organization

As privacy and integrity are two key challenges hindering the widespread adoption of
FL, this paper is dedicated to investigating a rigorous solution to address these challenges.
Referring to [11], FL can be categorized into two categories: cross-silo FL and cross-device
FL. In this paper, we focus on the cross-silo setting, wherein model training occurs on
siloed data belonging to several clients from different organizations. These clients can
communicate with third-party servers in a synchronous manner.

Our first contribution involves investigating the architecture and workflow of the
EIFFeL framework along with analyzing its security guarantees. To this end, we identify
specific areas where the EIFFeL framework exhibits potential risks, such as the compromise
of the central server and/or the public bulletin board. We also highlight other efficiency
concerns.

Our second contribution involves adapting the EIFFeL framework to leverage the
security guarantees of blockchain platforms. To this end, we adapt the operations in
the EIFFeL framework so that the functions of both the central server and the public
bulletin board can be replaced by a blockchain platform. To address the challenge posed by
blockchain’s limitation to only perform deterministic operations and the requirement that
no direct communication among clients is necessary, we integrate the Burmester-Desmedt
group key exchange protocol into our solution, to make sure that the clients can jointly
compute the final parameter update without breaching its confidentiality.

Our last contribution involves implementing our solution and shedding some light on
the computational complexities. Note that the proposed solution is blockchain platform
agnostic, so we omit the implementation details related to the blockchain part. This is
earmarked for future work.

It is worth noting that privacy protection for FL is a very challenging task. Even with
secure aggregation, some privacy risks may still remain [11]. To address this, differential
privacy, particularly local differential privacy, can be applied. Since such measures are used
to secure aggregation and can be applied independently, we leave this out in this paper.

The paper consists of the following sections: we present the background and moti-
vation of FL and blockchain in Section 2. In Section 3, we review the design and analysis
of the EIFFeL framework. Following this, an enhanced scheme is proposed; its security
analysis, along with a demonstration of performance, is presented in Section 4. Finally, we
summarize our work in Section 5.
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2. Preliminary
2.1. Federated Learning Approach

FL represents a decentralized paradigm that is reshaping traditional ML methods. In
this collaborative approach, multiple clients contribute to training a shared model without
divulging raw data. Assuming a central server and n clients Ci (1 ≤ i ≤ n), a high-level
overview of the FL workflow is summarized in Figure 1; we refer to the relevant handbook
for more details, such as [3].

1. Initial phase:
(a). The central server defines an initial model, minit, which can be chosen

based on prior knowledge or domain expertise.
(b). Each client, Ci, synchronizes the initial model, minit, from the server, and

sets its local model to be mi = minit.
2. The following training steps are iterated for a certain number of iterations until a

satisfactory model is achieved. Here, each iteration is called an Epoch.
(a). Local model training: Each client, Ci, trains its local model using its local

dataset, Di, and obtains a new local model with new parameters, ui.
(b). Model parameter sharing: Each client, Ci, sends the newly generated

model parameters, ui, to the central server.
(c). Model parameter aggregation: The central server aggregates the model

updates received from the clients to produce an aggregate update, U , and
sends it back to each client.

(d). Model update: Each client, Ci, resets its local model with the parameters,
U .

Figure 1. Federated learning approach.

As we mentioned in Section 1, while FL enhances privacy by not sharing raw data
with the central server or other devices, a crucial concern arises: the trustworthiness of the
central server. Two major challenges need to be considered: privacy challenge and integrity
challenge, as explained in Section 3.

2.2. Blockchain Overview

A blockchain is a chain of blocks; each block contains a list of transactions. These blocks
are linked and secured through cryptographic hashes, forming a continuous, unalterable
chain. The decentralized nature of a blockchain means that no single entity has control
over the entire network, mitigating the risk of a central point of failure. Transactions in a
blockchain are grouped into blocks, and each block includes a reference to the previous
block, creating a chronological chain of events. Miners, i.e., participants in the network
with computational power, play a crucial role in validating and adding transactions to
the blockchain. This sequential structure ensures the integrity of the data, as altering
information in one block would require changing all subsequent blocks, which is an
impractical and computationally infeasible task. For a more comprehensive review, we refer
to comprehensive references, such as [17–19]. Irrespective of the variations in blockchain
structures, the following properties are anticipated:

– Democracy and decentralized control: In systems utilizing proof of work (PoW) as the
consensus mechanism in permissionless scenarios, everyone has the potential to act as
a miner, possessing equal privileges to generate and approve blocks for the blockchain.
Although variations may exist in different cases, the overarching principle remains:
blockchain technology eliminates the need for a singular, fully trusted entity, thereby
averting the vulnerability of a single point of failure.

– Integrity and immutability: In the absence of an attacker or a coalition of attackers
dominating the consensus process, such as when more than 51% of the computing
power in the Bitcoin blockchain is handled by semi-honest miners, it becomes infeasi-
ble to modify agreed-upon blocks in the consensus.
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– Consistency: Despite potential attacks from robust adversaries, the chain upholds a
singular and consistent perspective, as outlined by the aforementioned assumptions.
However, it is essential to note that deviations from predefined rules by nodes can
lead to the generation of forks, resulting in different perspectives among participants,
as observed in scenarios like Ethereum.

These properties enhance auditability and transparency and improve the overall
trustworthiness of the system. Some have conceptualized blockchain as a social trust
machine (https://www.economist.com/leaders/2015/10/31/the-trust-machine (accessed
on 1 April 2024)). The trust users place in blockchain systems predominantly stems
from the cryptographic viewpoint that the majority of miners will act as semi-honest
participants. The semi-honest assumption essentially asserts that these miners will respect
the predetermined protocols, carrying out actions exactly as specified and programmed in
the blockchain software. In particular, the assumption rules out the possibility of collusion
among miners to disrupt the regular operations of the blockchain.

There is a vast body of literature on utilizing blockchain to address security issues in
FL, more information can be found in recent survey papers, such as [20,21].

3. EIFFeL Framework and Security Analysis

The EIFFeL framework [16] presents an innovative FL approach that effectively tackles
the challenges of data privacy and integrity. Moving beyond the conventional server–
client architecture, as outlined in Section 2.1, EIFFeL incorporates a public bulletin board,
which broadcasts intermediary information for secure aggregation and integrity checks.
This unique architecture positions all clients as verifiers for each other, with the server
playing a collective role. In more detail, secure aggregation enables each client to conceal its
parameter update within the aggregated value, by leveraging secret sharing and encryption
techniques. The integrity property is ensured through non-interactive proof techniques
and the adoption of a public bulletin board. In summary, EIFFeL is designed to tolerate
multiple malicious client interventions while ensuring the proper aggregation of model
parameters.

3.1. Threat Model

In EIFFeL, it assumes that all honest clients correctly follow the protocol and have
properly structured inputs. Two types of malicious adversaries are considered:

– Malicious clients: Multiple malicious clients can arbitrarily deviate from the protocol.
They may (1) compromise the aggregate by submitting malformed updates; (2) cause
the honest clients to complete an integrity check; (3) violate the privacy of honest
clients, which may collude with the server.

– Malicious server: It aims to violate the privacy of clients by trying to recover their raw
updates. A malicious server may (1) mark the inputs from honest clients as invalid;
(2) mark the inputs from malicious clients as valid, so as to decide which one will
be aggregated.

3.2. Scheme Architecture and Workflow

As mentioned previously, EIFFeL consists of a public bulletin board B, a single server
S , and n clients, Ci (1 ≤ i ≤ n). It is designed to tolerate a limited number of malicious
m <

⌊ n
3
⌋
. A high-level sketch of the interactions among a client and other entities is shown

in Figure 2 while a detailed description of the EIFFeL scheme is shown in Figures 3 and 4.
Note that, for simplicity, we only show one client in the diagram. The numbering of the
iteration steps corresponds to the description in Figure 4. In order to ensure (1) privacy
for all honest clients, and (2) input integrity, where the server is motivated to verify if all
individual updates are well-formed, all clients function as verifiers for each other, while
the server also participates collectively in this role. Verification remains achievable even in
the presence of m malicious clients.
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Figure 2. System Architecture of the EIFFeL Scheme.

To achieve the designated security guarantees, EIFFeL relies on several cryptographic
building blocks (we omit the detailed definition of algorithms; refer to [16] for the full
definitions), with each serving a specific purpose in enhancing the scheme’s security:

– Shamir’s t-out-of-n secret sharing scheme [22]: This cryptographic method facilitates
the distribution of a secret among n participants, and it requires at least t participants
(the threshold) to collectively reconstruct the original secret. Two algorithms are de-
fined, SS.share(·) is for generating secret sharing and SS.recon(·) is for reconstructing
the secret. Assuming m malicious clients, t is set as m + 1 in EIFFeL.

– Reed–Solomon error correcting code [23]: It is an error-correcting code used in digital
communication and data storage. Reed–Solomon codes add redundant symbols to the
original data, allowing the receiver to detect and correct errors during transmission.
EIFFeL uses the [n, m + 1, n−m] Reed–Solomon error correcting code, where any set
of shares containing m <

⌊ n
3
⌋

malicious shares can be used to recover the secret with
robustRecon(·).

– Key agreement protocol: It enables two or more parties to agree upon a shared secret
key. It involves three algorithms: KA.param(·) is used to generate the parameters,
KA.gen(·) is used to generate a public/private key pair, and KA.agree(·) is used to
agree on a common secret key.

– Authenticated encryption: A cryptographic process that combines encryption and
message authentication to guarantee the integrity and confidentiality of transmitted
data. It includes the algorithms of key generation AE.gen(·), encryption AE.enc(·),
and decryption AE.dec(·).

– Secret-shared non-interactive proofs (SNIPs) [24]: These are cryptographic protocols
that allow multiple parties to jointly prove the truth of a statement without revealing
their individual inputs. These proofs are constructed in such a way that the validity
of the statement can be verified without requiring interaction between the parties. A
public validation predicate Valid(·) is defined to conduct the integrity check.

The EIFFeL framework includes a setup phase and a model training phase. In the
model training phase, each training epoch consists of four primary steps, as summarized
in Figure 1: (1) local model training, (2) model parameter sharing, (3) model parameter
aggregation, and (4) model update. We briefly recap the set and training phases in Figure 3
and Figure 4, respectively, which visually encapsulate the essence of its mechanism.

– Setup:
• All parties are given the security parameter, k, the number of clients, n,

the threshold for malicious clients, m, and a field F for secret sharing usage.
All clients honestly generate pp← KA.gen(k), and the server, S , initializes
the malicious client list, C∗ = ∅, and lists Flag[i] = ∅ for clients that have
flagged the client, Ci, as malicious.

Figure 3. Setup of EIFFeL scheme.
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1. Local model training:
Each client Ci :

– Generates its key pair (pki , ski)
$← KA.gen(pp) and announces the public key on the public bulletin board B.

Server S :
– Publishes the validation predicate Valid(·) on the public bulletin board B.

2. Model parameter sharing: The following steps are performed:
(a). Each client, Ci , generates its protected parameters as follows:

i. Establishes n− 1 common secret keys ski,j ← KA.agree(pk j , ski) with each of the other clients.

ii. Generates a proof πi = (hi , (ai , bi , ci)), hi ∈ F[X], (ai , bi , ci) ∈ F3, ai · bi = ci for the computation
Valid(ui) = 1, where ui ∈ Fd is its local update with d dimensions.

iii. Creates shares of its update ui for all clients, denoted as {(1, ui,1], · · · , (n, ui,n), Ψui } ← SS.share(u,
[n], m + 1).

iv. Creates shares of its proof πi for other clients: {(1, hi,1], · · · , (n, hi,n), Ψhi } ← SS.share(hi , [n] \
i, m + 1), {(1, ai,1], · · · , (n, ai,n), Ψai } ← SS.share(ai , [n] \ i, m + 1), {(1, bi,1], · · · , (n, bi,n), Ψbi } ←
SS.share(bi , [n] \ i, m + 1), {(1, ci,1], · · · , (n, ci,n), Ψci } ← SS.share(ci , [n] \ i, m + 1).

v. Publishes the encrypted proof strings, ∀Cj ∈ C\i , (j, uj,1)||(j, π j,1) ← AE.encski,j ((j, ui,j)||(j, πi,j)),

πi,j = hi,j ||ai,j ||bi,j ||ci,j on the public bulletin board B with its check strings (Ψui , Ψπi ).

(b). The protected parameters are verified as follows:

(i) Verifying validity of secret shares:
Each client Ci :

(A). Retrieves and decrypts the shares pertaining to it (i, uj,i)||(i, π j,i) ← AE.decpki,j ((i, uj,i)||
(i, π j,i)).

(B). Verifies the shares uj,i(π j,i) using check string Ψui (Ψπi ).
(C). If any share fails to be decrypted or verified, flag its creator on B.

Server S :
(A). Upon receiving a report (e.g., Ci flags Cj), updates Flag[j] = Flag[j] ∪ Ci .
(B). Updates C∗ as follows:

– If |Flag[i]| > m, Ci is marked as malicious: C∗ = C∗ ∪ Ci .
– If any client, Ci , reported more than m clients, it is considered as malicious: C∗ = C∗ ∪ Ci .
– For a client Ci that has been reported, but with |Flag[i]| ≤ m, server S intervenes for

further verification. S requests the shares (in clear) from Ci for the clients who flagged it
(e.g., ((j, ui,j)||(j, πi,j)) generated by Ci for Cj), and verifies the contents with the relevant
check string (e.g., (Ψui , Ψπi )). If the verification fails, Ci is marked as malicious; otherwise,
Cj is instructed to use the released share for its computations.

(C). Announces the updated C∗ on the public bulletin board B.
(ii) Generation of proof summaries by the clients:

Server S :

– Announces a random number, r ∈ F, on the public bulletin board, B.

Each client Ci :

– Generates a summary, σj,i , of the proof string, π j,i , based on r and SNIP, ∀Cj /∈ C∗ , and pub-
lishes it on the public bulletin, B.

(iii) Verification of proof summaries by the server:
Server S :

– Collects and verifies all proof summaries from C \ C∗ with robustRecon(·), and updates C∗
based on the result.

(iv) Each client Ci :

– If Ci ∈ C∗ , it can initiate a dispute by transmitting the transcript of the reconstruction of σi . If
any successful dispute occurs, all clients abort the protocol, since the server, S , is considered
malicious by withholding the valid updates.

– Otherwise, it sends the aggregate Ui = ∑Cj /∈C∗ uj,i to the server S .

3. Model parameter aggregation: Server S recovers the final aggregate, U ← robustRecon({i,Ui)}Cj /∈C∗ , and sends

it to clients.

4. Model update: Each client, Ci , resets its local model with the parameters, U .

Figure 4. One iteration/epoch of the EIFFeL scheme.

3.3. Analysis of the EIFFeL Framework

In [16], the authors performed an analysis of the EIFFeL framework and showed
that the framework achieves the pre-defined privacy and integrity properties. In the
following, we analyze the assumptions made in their analysis and also demonstrate several
observations on the design of the framework.

First of all, the existence of the required public bulletin board and the associated
assumptions is very tricky. To guarantee the security of EIFFeL, the public bulletin board
should offer the following guarantees:
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– It should be corrupt-resistant against all entities, including the server, clients, and
other attackers. The data should not be changed, deleted, or manipulated by malicious
entities in any manner.

– It should be able to validate the identities of clients (and the server) according to some
public key infrastructure (PKI). By default, some PKI information should be stored on
the bulletin board so that it can validate the identity claims of its users.

– It should be able to establish a secure channel with its users so that the integrity and
authenticity of the users’ data can be guaranteed during the transmission.

Public bulletin boards have been used in many scenarios [25], and they can certainly
play an important role in FL. However, how to achieve the last two guarantees is not trivial.
In particular, the involvement of a PKI means that there will be another fully trusted third
party. The trust relationship among all the entities in the solution needs to be clarified in
order to guarantee that all threats are properly present.

Secondly, there is some ambiguity in remark 1 of reference [16]. It states that EIFFeL
prevents the server from “Mark the input of an honest client as invalid and include it in
the final aggregate”. In fact, the server can manipulate the final aggregate without being
noticed, in step 3 of the model parameter aggregation. This is equivalent to invalidating
the input of honest clients, as the final aggregate no longer appears to be an aggregation
of inputs from all honest clients. This implies that EIFFeL cannot guarantee the integrity
of the aggregate in the presence of a malicious server. Note that this observation does not
conflict with the desired security properties, i.e., against the server, only privacy is expected.
In addition, if the server deviates from the protocol, Lemma 4 from [16] will not hold. This
lemma states that “The final aggregate must contain the updates of all honest clients or
the protocol is aborted”. In fact, the server can maliciously change the aggregate without
being detected, as we said before. Although this observation does not show a security flaw
in the EIFFeL framework, we regard it as a drawback, and ideally, we should avoid such
potential “attacks”. This is also motivated by some recent findings (e.g., [26]), which show
that failure of integrity (e.g., data poisoning) can lead to privacy breaches.

Thirdly, there are two inefficient designs in the solution. One is about the parameter
generation in Step 1 and the key agreement at the beginning of Step 2. During the FL
process, all four steps will be iterated hundreds of times in order to reach convergence.
According to the description, the key materials need to be repeated in each iteration. This
unnecessarily increases the complexity of the solution. These parameters can be set up
in the setup phase so that the key materials can be used in all the training iterations (or,
epochs). The other involves the usage of authenticated encryption. In the solution, it is
assumed that the public bulletin board does not allow any manipulation of the stored data;
therefore, the encrypted data in Step 2 will not be manipulated regardless of whether the
encryption is authenticated or not. Therefore, standard symmetric encryption will suffice.

Fourthly, the result of the server’s operation in Step 2 is confusing. For client Ci, which
has been reported but |Flag[i]| ≤ m, server S intervenes for further verification. S requests
the shares (in clear) from Ci for the clients who flagged it (e.g., ((j, ui,j)||(j, πi,j)) generated
by Ci for Cj), and verifies the contents with the relevant check string (e.g., (Ψui , Ψπi )). If the
verification fails, Ci is marked as malicious; otherwise, Cj is instructed to use the released
share for its computations. The server’s operation occurs because either Ci is maliciously
flagged Cj or Cj is sent the wrong ciphertext to Ci, on purpose (note that Cj can disclose
the right plaintext to make the server’s verification pass). However, neither party will be
determined as malicious according to the protocol. It is unclear why this is the case.

4. The Enhanced Scheme

In this section, we describe the enhanced scheme that eliminates the need for any third-
party server or bulletin board by integrating blockchain technology. It is worth emphasizing
that this scheme aims to address the existing privacy and security challenges in the EIFFeL
framework, particularly those related to the third-party bulletin board. Certainly, in our
design, we attempt to minimize the complexity overhead for all the involved entities.
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Our scheme eliminates the need for a central server and any other third party, such
as a public bulletin board, thereby mitigating the risks associated with the compromise of
such third parties.

Similar to EIFFeL, the enhanced scheme assumes a blockchain platform and multiple
(n) clients, and it relies on the same building blocks. In each iteration/epoch, the interactions
are shown in Figure 5, where the setup phase is shown in Figure 6 and the numbering
of steps corresponds to the description in Figure 7. The overall design of the enhanced
scheme is agnostic to any blockchain platform; however, the interaction details between
clients and the blockchain (i.e., the smart contracts) may differ in the implementation. To
keep the generality and simplicity, we skip the details in our description. The design of
smart contracts for the proposed scheme is quite straightforward based on the following
fact: when invoking a smart contract, the requester (i.e., a client) can pass the location of
necessary input parameters (i.e., where these data are located on the blockchain) so that
the smart contract can fetch the data and perform the desired operations in a deterministic
manner.

    1. Local model training

    2.(a). Protected parameter generation

    2.(b). Parameter verification

    2.(c). Dispute resolution and
             parameter sharing

    3. Model parameter aggregation

    4. Model update

N
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Data storage

Data storage & retrieval

Data storage & retrieval 2.(b).

Client 
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Client 
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...

Blockchain

Figure 5. System architecture of enhanced scheme.

To start FL training, the setup phase is depicted in Figure 6, and the training epoch,
shown in Figure 7, will be iterated until a satisfactory global model is achieved. By its nature,
information stored on a blockchain is not supposed to be updated. In our description in
Figure 7, if a piece of information is stored in the blockchain, then it means that a transaction
is made to the blockchain to store the information. When we say that a piece of information
is updated (e.g., C∗), we simply mean that a new version of this information is stored
on the blockchain, and all follow-up computations should be based on this new version
of information.

– Setup:

• Prepare all the necessary smart contracts for the chosen blockchain.
• Generate a security parameter, k, the number of clients, n, the threshold for malicious clients,

m, and a filed F for secret sharing usage. Initialize the malicious client list, C∗ = ∅, and lists
Flag[i] = ∅ of clients that have flagged the client, Ci , as malicious. A validation predicate,
Valid(·), is chosen to guarantee integrity, and a collision-resistant hash function H is chosen. All
the parameters are stored on the blockchain.

• A group, G, and its generator, g, are generated for the Burmester-Desmedt group key agreement
protocol (Burmester et al., 2005); G and g are stored on the blockchain.

• Generate pp← KA.gen(k) for a two-party key agreement scheme, KA. Based on pp, each client,

Ci , generates its key pair (pki , ski)
$← KA.gen(pp) and stores the public key on the blockchain.

Note that pp is also stored on the blockchain. Choose a standard symmetric key encryption
scheme, SE (e.g., AES in the counter mode), and store its information on the blockchain.

• Each client, Ci , establishes n− 1 common secret keys ski,j ← KA.agree(pk j, ski) with every other
client. It stores the hash values H(ski,j||i||j) (1 ≤ j 6= i ≤ n) on the blockchain.

• All clients check the hash values of secret keys generated by others and resolve any mistakes, if
there are any. Note that ski,j can be computed by both clients, Ci , and Cj, so that they can check
each other’s hash values.

Figure 6. Setup of the Enhanced scheme [27].
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1. Local model training:
Each client Ci :

• Generates its local update, ui ∈ Fd , which is a value of d dimensions.

2. Model parameter sharing: The following steps are performed:

(a). Each client, Ci , generates its protected parameters as follows:

i. Generates a proof πi = (hi , (ai , bi , ci)), hi ∈ F[X], (ai , bi , ci) ∈ F3, ai · bi = ci for the computation
Valid(ui) = 1.

ii. Creates shares of its update ui for all clients, denoted as {(1, ui,1], · · · , (n, ui,n), Ψui } ← SS.share(u,
[n], m + 1).

iii. Creates shares of its proof πi for other clients: {(1, hi,1], · · · , (n, hi,n), Ψhi } ← SS.share(hi , [n] \
i, m + 1), {(1, ai,1], · · · , (n, ai,n), Ψai } ← SS.share(ai , [n] \ i, m + 1), {(1, bi,1], · · · , (n, bi,n), Ψbi } ←
SS.share(bi , [n] \ i, m + 1), {(1, ci,1], · · · , (n, ci,n), Ψci } ← SS.share(ci , [n] \ i, m + 1).

iv. Publishes the encrypted proof strings ∀Cj ∈ C\i , (j, uj,1)||(j, π j,1) ← SE.encski,j ((j, ui,j)||(j, πi,j)),

πi,j = hi,j ||ai,j ||bi,j ||ci,j with its check strings (Ψui , Ψπi ) on the blockchain.

(b). The protected parameters are verified as follows:

i. Verifies validity of secret shares:
Each client Ci :

(A). Retrieves and decrypts the shares pertaining to it: (i, uj,i)||(i, π j,i) ← SE.decpki,j ((i, uj,i)||
(i, π j,i)).

(B). Verifies the shares uj,i(π j,i) using the check string Ψui (Ψπi ).
(C). If any share fails to be decrypted or verified, flag its creator on the blockchain.
Blockchain (via smart contract):
(A). Upon receiving a report (e.g., Ci flags Cj), updates Flag[j] = Flag[j] ∪ Ci .
(B). Updates C∗ as follows:

• If |Flag[i]| > m, Ci is marked as malicious: C∗ = C∗ ∪ Ci .
• If any client, Ci , is reported as more than m clients, it is considered malicious: C∗ =

C∗ ∪ Ci .
• For every client Cj that has been reported, but |Flag[j]| ≤ m, suppose that Ci has flagged

Cj ; perform the following steps:

(I). Asks Ci and Cj to publish ski,j and sk j,i on the blockchain.
(II). Compares these keys to the hash values from the setup phase; if some of them do

not match, then flag the owner and update C∗ . Note that these keys should be equal
and their hash values should be equal to that stored in the setup phase.

(III). Uses ski,j to decrypt the encrypted share from Cj to Ci , and verifies the result. If ev-
erything passes, update C∗ = C∗ ∪ Ci ; otherwise, update C∗ = C∗ ∪ Cj .

ii. Generation of proof summaries:
Blockchain (via smart contract):

• Hash the current data on the blockchain to generate a random number r ∈ F.

Each client Ci :

• Generates a summary σj,i of the proof string π j,i based on r and SNIP, ∀Cj /∈ C∗ , and publishes
it on the blockchain.

iii. Verification of proof summaries:
Blockchain (via smart contract):

• Collects and verifies all proof summaries from C \ C∗ with robustRecon(·), and updates C∗
based on the result.

(c). Each client Ci :

i. If Ci ∈ C∗ , it can raise a dispute. If any successful dispute occurs, all clients abort the protocol.
ii. Selects a random number, ri , and generates the Burmester-Desmedt group key agreement material

gri , publishes gri on the blockchain.

iii. Generates tki = ( gri+1

gri−1 )
ri and publishes it on the blockchain.

iv. Computes the Burmester-Desmedt group key as eki = (tki−1)
l·ri · (tki)

n−1 · · · tki−2, supposing l
clients are participating at this stage; publishes H(eki ||i) on the blockchain.

v. Checks that all other clients possess the same ephemeral key as eki .
vi. If so, publishes the aggregate SE.enceki (Ui), where Ui = ∑Cj /∈C∗ uj,i , on the blockchain.

3. Model parameter aggregation: Each client, Ci , recovers the final aggregate U ← robustRecon({x,Ux)}Cx /∈C∗ , af-
ter obtaining all the Ux after decryption.

4. Model update: Each client, Ci , resets its local model with the parameters, U .

Figure 7. Training procedures in one iteration/epoch.

4.1. Security Analysis

Similar to other setup phases in cryptosystems, we assume this phase is performed
in a trusted manner. Depending on the precise FL scenario, some trusted entity might
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be needed to supervise and help carry out this phase. The chosen blockchain platform
should be tamper-resistant and will not collude with any entity in the FL system (i.e., none
of the clients should be able to collude with the blockchain). For simplicity, we assume
there is a secure channel between the blockchain and any client, in the sense that the client
will be authenticated for its access to the blockchain, and the communication is protected
regarding its integrity. Similar to EIFFeL, we assume that, at most, m <

⌊ n
3
⌋

malicious
users are tolerated, and the threshold of Shamir’s t-out-of-n secret sharing scheme is also
set as t = m + 1. We omit attacks with the single purpose of denial of service (DoS). In
practice, such attacks can be prevented by additional security mechanisms.

In comparison to the EIFFeL scheme, the major philosophy of the enhanced scheme
is to use the blockchain platform to replace both the public bulletin board and the server.
To this end, all the actions performed by the blockchain platform are deterministic. Apart
from the new setup phase, the following major changes have been made: (1) regarding
the fourth comment in Section 3.3, a new verification procedure has been proposed for the
blockchain platform to trace the malicious client. (2) Leveraging the blockchain platform,
the clients execute a Burmester-Desmedt group key agreement protocol [27] to generate a
shared group key. The validity of the key is checked as well. (3) Instead of asking a third
party to compute the aggregate, the clients store the encrypted shares under the group key
on the blockchain platform, so that they can recover the aggregate locally. In contrast to the
EIFFeL scheme, the need for a dedicated server has been eliminated. As a result, the risks
following the compromise of the server are also eliminated. By asking the clients to share
the credentials and intermediary results on the blockchain platform, the clients can check
by themselves the validity of the credentials and results from other users. This is facilitated
by making the validation operations deterministic.

It is worth stressing that the enhanced scheme preserves all the privacy and integrity
properties of the EIFFeL scheme due to the fact that all the security and integrity mecha-
nisms have been kept in the new scheme.

4.2. Performance Analysis

We implemented the enhanced scheme in Python with several existing libraries, such
as NumPy [28] and Cryptography [29] (the source code of the enhanced scheme instanti-
ation is available at https://github.com/MoienBowen/Blockchain-Federated-Learning
(accessed on 1 April 2024)). In the experiment, we used a PC as the simulation platform,
with an Intel® Core™i7-4770 CPU @ 3.4 GHz processor with 16 GB RAM.

Dataset. Given our primary focus on 5G security, we selected a dataset tailored to
this domain: the 5G-NIDD dataset [30], a robust compilation of network intrusion data
specifically designed for 5G wireless networks, containing 1,215,890 records. This dataset
was meticulously generated on an operational 5G testbed, part of the 5G test network
(5GTN) at the University of Oulu, Finland. It features an extensive range of simulated
attack scenarios, offering a valuable dataset for AI/ML model training. Detailed categories
and their respective distributions are presented in Table 1.

Setup. Our parameter selection was guided by our goal of 128-bit security. For
example, we used the Secp256r1 curve for the Burmester-Desmedt group key agreement
protocol [27], AES-CTR for encryption, SHA-256 for hashing, and a 256-bit prime field as F.
Moreover, we considered that there were n = 50, 100, 150, and 200 clients, tolerating up to
m = n

10 malicious ones, with d = 1000 as the size of the update gradient vector. Each client
owned 24,053, 12,156, 8100, and 6075 records, respectively (each category of the dataset
was divided equally and randomly into n copies). We omitted the consensus time of the
blockchain but this did not affect the representation of the protocol performance.
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Table 1. The 5G-NIDD dataset attack categories and distribution.

Category Number of Records

Benign 477,737

ICMPFlood 1155

HTTPFlood 140,812

SlowrateDos 73,124

SYNFlood 9721

SYNScan 20,043

TCPConnectScan 20,052

UDPFlood 457,340

UDPScan 15,906

Results. In Table 2, we emphasize the runtime of Step 2—model parameter sharing and
Step 3—model parameter aggregation, as the performance mainly depends on the number
of clients. The values represent the average execution times of single iterations/epochs
over 10 runs.

Table 2. Runtime of proposed scheme in ms.

Step Participant
Runtime (ms)

n = 50 100 150 200

2.(a).
Client 491.37 974.21 1477.88 1990.13

Blockchain - - - -

2.(b).
Client 1073.43 2106.11 3204.75 4283.49

Blockchain 995.14 1997.64 3091.71 4107.93

2.(c).
Client 2079.58 4215.38 6314.49 8284.27

Blockchain - - - -

3.
Client 171.21 354.14 498.87 637.61

Blockchain - - - -

Regarding the blockchain in Step 2, we calculate the computational time on the PC we
use. In practice, the computational time will be based on the mining nodes. Moreover, the
complexity will also come from the consensus protocol used in the blockchain platform.
Obtaining precise running time statistics on chosen blockchain platforms will be looked at
in future work.

5. Conclusions

This paper culminates with an in-depth discussion of the enhanced scheme for FL,
which harnesses the power of blockchain technology. The scheme eliminates the need for a
dedicated server and a public bulletin board in the EIFFeL scheme, thereby reducing the
risks associated with the compromise of these entities. The clients share credentials and
intermediary results on the blockchain platform, allowing them to verify the validity of
credentials and results from other users. This paper provides a performance analysis of the
enhanced scheme, demonstrating its efficiency and effectiveness in the realm of FL. This
paper shows that blockchain technology can enhance the privacy and integrity of FL and
open up new possibilities for collaborative ML in various domains.

There are several directions for future work. Here, we only mention two examples.
One is to fully implement the proposed scheme, particularly by selecting a blockchain
platform, and encoding the desired operations into smart contracts. This will help us
understand the overall complexity of the proposed scheme. The other one is to incorporate
the concept of differential privacy to further reduce the privacy risks. To this end, it

154



Future Internet 2024, 16, 133

is interesting to see how privacy enhancement could affect accuracy and other metrics.
This will help us understand the precise trade-offs between privacy protection and the
performance of FL.

Author Contributions: Conceptualization, Q.T.; formal analysis, B.L. and Q.T.; funding acquisition,
B.L. and Q.T.; investigation, B.L. and Q.T.; methodology, B.L. and Q.T.; project administration, Q.T.;
software, B.L.; supervision, Q.T.; validation, B.L. and Q.T.; writing—original draft, B.L. and Q.T.;
writing—review and editing, B.L. and Q.T. All authors have read and agreed to the published version
of the manuscript.

Funding: Bowen Liu and Qiang Tang are supported by the 5G-INSIGHT bi-lateral project (ANR-20-
CE25-0015-16), funded by the Luxembourg National Research Fund (FNR) and the French National
Research Agency (ANR).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Davies, H. Ted Cruz Using Firm That Harvested Data on Millions of Unwitting Facebook Users. Available online: https:

//www.theguardian.com/us-news/2015/dec/11/senator-ted-cruz-president-campaign-facebook-user-data (accessed on 4
January 2024).

2. European Parliament; Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council.
Available online: https://data.europa.eu/eli/reg/2016/679/oj (accessed on 4 May 2016).

3. Krishnan, S.; Anand, A.J.; Srinivasan, R.; Kavitha, R.; Suresh, S. Federated Learning; CRC Press: Boca Raton, FL, USA, 2024.
4. Boenisch, F.; Dziedzic, A.; Schuster, R.; Shamsabadi, A.S.; Shumailov, I.; Papernot, N. Reconstructing Individual Data Points in

Federated Learning Hardened with Differential Privacy and Secure Aggregation. In Proceedings of the 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P), Delft, The Netherlands, 3–7 July 2023; IEEE Computer Society: Piscataway, NJ,
USA, 2023; pp. 241–257.

5. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 691–706.

6. Yin, H.; Mallya, A.; Vahdat, A.; Alvarez, J.M.; Kautz, J.; Molchanov, P. See through gradients: Image batch recovery via
gradinversion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 16337–16346.

7. Lyu, L.; Yu, H.; Ma, X.; Chen, C.; Sun, L.; Zhao, J.; Yang, Q.; Yu, P.S. Privacy and Robustness in Federated Learning: Attacks and
Defenses. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–21. [CrossRef] [PubMed]

8. Adilova, L.; Böttinger, K.; Danos, V.; Jacob, S.; Langer, F.; Markert, T.; Poretschkin, M.; Rosenzweig, J.; Schulze, J.P.; Sperl, P.
Security of AI-Systems: Fundamentals. Available online: https://doi.org/10.24406/publica-1503 (accessed on 15 March 2024).

9. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.
Adv. Neural Inf. Process. Syst. 2017, 30.

10. Fang, M.; Cao, X.; Jia, J.; Gong, N. Local model poisoning attacks to {Byzantine-Robust} federated learning. In Proceedings of the
29th USENIX security symposium (USENIX Security 20), Boston, MA, USA, 12–14 August 2020; pp. 1605–1622.

11. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]

12. Bell, J.H.; Bonawitz, K.A.; Gascón, A.; Lepoint, T.; Raykova, M. Secure single-server aggregation with (poly) logarithmic overhead.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 9–13 November 2020;
pp. 1253–1269.

13. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

14. Kairouz, P.; Liu, Z.; Steinke, T. The distributed discrete gaussian mechanism for federated learning with secure aggregation. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 5201–5212.

15. Liu, B.; Pejó, B.; Tang, Q. Privacy-Preserving Federated Singular Value Decomposition. Appl. Sci. 2023, 13, 7373. [CrossRef]
16. Roy Chowdhury, A.; Guo, C.; Jha, S.; van der Maaten, L. Eiffel: Ensuring integrity for federated learning. In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November 2022;
pp. 2535–2549.

17. Diedrich, H. Ethereum: Blockchains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations; Wildfire Publishing:
Sydney, Australia, 2016.

155



Future Internet 2024, 16, 133

18. Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction;
Princeton University Press: Princeton, NJ, USA, 2016.

19. Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
20. Qammar, A.; Karim, A.; Ning, H.; Ding, J. Securing federated learning with blockchain: A systematic literature review. Artif.

Intell. Rev. 2023, 56, 3951–3985. [CrossRef] [PubMed]
21. Yu, F.; Lin, H.; Wang, X.; Yassine, A.; Hossain, M.S. Blockchain-empowered secure federated learning system: Architecture and

applications. Comput. Commun. 2022, 196, 55–65. [CrossRef]
22. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
23. Lin, S.; Costello, D.J. Error Control Coding: Fundamentals and Applications; Pearson/Prentice Hall: Upper Saddle River, NJ, USA,

2004.
24. Corrigan-Gibbs, H.; Boneh, D. Prio: Private, robust, and scalable computation of aggregate statistics. In Proceedings of the

14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27–29 March 2017;
pp. 259–282.

25. Suwito, M.H.; Tama, B.A.; Santoso, B.; Dutta, S.; Tan, H.; Ueshige, Y.; Sakurai, K. A Systematic Study of Bulletin Board and Its
Application. In Proceedings of the ASIA CCS ’22: ACM Asia Conference on Computer and Communications Security, Nagasaki,
Japan, 30 May–3 June 2022; Suga, Y., Sakurai, K., Ding, X., Sako, K., Eds.; ACM: New York, NY, USA, 2022; pp. 1213–1215.

26. Tramèr, F.; Shokri, R.; Joaquin, A.S.; Le, H.; Jagielski, M.; Hong, S.; Carlini, N. Truth Serum: Poisoning Machine Learning Models
to Reveal Their Secrets. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, 7–11 November 2022; Yin, H., Stavrou, A., Cremers, C., Shi, E., Eds.; ACM: New York, NY, USA,
2022; pp. 2779–2792.

27. Burmester, M.; Desmedt, Y. A secure and scalable Group Key Exchange system. Inf. Process. Lett. 2005, 94, 137–143. [CrossRef]
28. Python Cryptographic Authority. Python Library NumPy. Available online: https://numpy.org/ (accessed on 13 February 2024).
29. Oliphant, T.; Contributors Community. Python Library Cryptography. Available online: https://cryptography.io/en/latest/

(accessed on 13 February 2024).
30. Samarakoon, S.; Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Chang, S.Y.; Kim, J.; Kim, J.; Ylianttila, M. 5G-NIDD: A

Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless Network. arXiv 2022, arXiv:2212.01298.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

156



Citation: Xu, H.; Seng, K.P.; Smith, J.;

Ang, L.M. Multi-Level Split

Federated Learning for Large-Scale

AIoT System Based on Smart Cities.

Future Internet 2024, 16, 82.

https://doi.org/

10.3390/fi16030082

Academic Editors: Qiang Duan and

Zhihui Lu

Received: 30 January 2024

Revised: 21 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Multi-Level Split Federated Learning for Large-Scale AIoT
System Based on Smart Cities
Hanyue Xu 1,2, Kah Phooi Seng 1,3,4,*, Jeremy Smith 2 and Li Minn Ang 4

1 School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China;
hanyue.xu19@student.xjtlu.edu.cn

2 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK;
j.s.smith@liverpool.ac.uk

3 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
4 School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia;

lang@usc.edu.au
* Correspondence: jasmine.seng@xjtlu.edu.cn

Abstract: In the context of smart cities, the integration of artificial intelligence (AI) and the Internet
of Things (IoT) has led to the proliferation of AIoT systems, which handle vast amounts of data to
enhance urban infrastructure and services. However, the collaborative training of deep learning
models within these systems encounters significant challenges, chiefly due to data privacy concerns
and dealing with communication latency from large-scale IoT devices. To address these issues,
multi-level split federated learning (multi-level SFL) has been proposed, merging the benefits of
split learning (SL) and federated learning (FL). This framework introduces a novel multi-level
aggregation architecture that reduces communication delays, enhances scalability, and addresses
system and statistical heterogeneity inherent in large AIoT systems with non-IID data distributions.
The architecture leverages the Message Queuing Telemetry Transport (MQTT) protocol to cluster
IoT devices geographically and employs edge and fog computing layers for initial model parameter
aggregation. Simulation experiments validate that the multi-level SFL outperforms traditional SFL by
improving model accuracy and convergence speed in large-scale, non-IID environments. This paper
delineates the proposed architecture, its workflow, and its advantages in enhancing the robustness
and scalability of AIoT systems in smart cities while preserving data privacy.

Keywords: federated learning; split learning; split federated learning; artificial intelligent internet of
things; edge computing

1. Introduction

With the acceleration of urbanization, smart cities are proposed to utilize various arti-
ficial intelligence (AI) technologies or urban infrastructure to integrate artificial intelligence
Internet of Things (AIoT) systems, improve resource utilization efficiency, optimize city
management and services, and achieve the idea of the Internet of Everything. By analyzing
and processing the massive historical and real-time data generated by IoT devices such
as sensors, AI technology can make more accurate predictions about future devices and
user habits, such as smart grid [1], smart transportation [2], and smart healthcare [3]. On
the other hand, hyperscale data connected through IoT can also lay the foundation for
deep learning in AI. However, with the continuous development of big data technology,
the meaning of the data generated in smart cities for everyone is no longer insignificant
information but a digital asset. For example, the user driving habits data of smart vehicles
need user authorization to be used for model training and learning of AI technology [4].
Therefore, the need to train deep learning models without aggregating and accessing sensi-
tive raw data on the client side is a major challenge that AIoT systems need to solve for
multi-client collaborative learning.
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In recent years, the concept of distributed collaboration machine learning (DCML) has
been proposed to solve the above challenges, including federated learning [5–7] and split
learning [8–10]. Different from traditional centralized machine learning, DCML addresses
data privacy challenges by collaborating with multiple IoT devices (clients) to train machine
learning or deep learning models in collaboration with a central server, without sharing
local data generated by individual IoT devices. In federated learning (FL), the global model
is constructed by aggregating the model parameters trained by the local model on each
client through the cloud server. In split learning (SL), the deep learning model is split into
two parts: the first few layers are trained by the IoT device (client), and the bottom layer is
calculated by the central server (cloud), which is mainly used to solve the problem of the
limited computing resources of IoT devices. However, the performance of split learning
decreases as the number of clients increases, and federated learning is not suitable for IoT
devices with limited resources, so they all have limitations in large-scale AIoT systems.
Therefore, split federated learning [11–13] is proposed to combine the advantages of SL and
FL to make an AIoT system parallel in data and model training, which not only considers
the problem of limited client resources but also reduces the influence of the number of
clients on the performance of the model. Furthermore, it does not lose the protection of
data privacy and the robustness of the model.

Although split federated learning has become a new paradigm for future collaborative
learning in AIoT systems, the performance and efficiency of model training are greatly
reduced due to the large number of clients contained in large AIoT systems, the different
transmission distances of different clients, and the insufficient stability of single cloud
center server nodes. During the training process, there may be statistical heterogeneity
and system heterogeneity among AIoT devices that have different computing and storage
resources, and the generated data are not independent and identically distributed (non-IID).
These factors all affect the performance of models trained in a split federated learning
framework with only an end-cloud architecture. In addition, it has been found that model
aggregation frequency can significantly affect federated learning performance [14]. This
inspired us to propose a multi-level split federated learning (multi-level SFL) framework in
which the large-scale client model parameters can be initially aggregated at the edge layer,
fog layer, or higher levels, compensating for the scalability of traditional SFL in large AIoT
systems. Since the parameters of the client can be preliminarily aggregated at multiple
levels before being sent to the cloud server, the communication delay between the cloud
server and the client is reduced, the processing speed of the central server is improved,
and the global model can be trained by receiving the model parameters of the client in a
wider range. The current hierarchical federated learning architecture is composed of client–
edge–cloud system, which solves the communication efficiency problem of traditional
cloud-based federated learning [15]. However, in the scenario of large AIoT systems based
on smart cities, it is difficult for hierarchical FL to cover a larger number of IoT devices
and be more widely distributed, so this architecture still limits the number of IoT devices
that can be accessed. Compared to hierarchical FL, multi-level architectures can receive
a wider range of IoT devices and adjust the number of layers of the architecture as the
training task or the number of IoT devices changes, thereby enhancing the generalization of
federated learning in AIoT systems. The multi-level aggregation architecture also reduces
the single point of failure of the cloud server and resolves the problem of the model training
being stuck because the client cannot upload the model information in time due to the
long transmission distance. The addition of split learning balances the problem of system
heterogeneity among clients and enhances the scalability of the system to incorporate
more IoT devices for collaborative learning. Allocating only a portion of the network
for training on the end devices can reduce the processing load compared to running a
full network in multi-level FL. This enables resource-limited IoT devices to participate in
collaborative training, enhancing the diversity of trainable tasks and reducing the impact of
data silos in resource-limited devices. Compared with traditional split federated learning,
our proposed framework can better solve the system and statistical heterogeneity and
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improve the scalability of large-scale AIoT systems. The main contributions of this paper
are as follows:

1. This paper proposes a multi-level split federated learning architecture based on IoT
device location model information aggregation. The architecture reduces the commu-
nication delay between the client and the cloud server. Compared to hierarchical FL,
multi-level SFL improves the scalability of the AIoT system through initial aggregation
in multi-level edge nodes before the cloud server’s aggregation.

2. The split learning algorithm is added to multi-level federated learning, which reduces
the impact of system heterogeneity on client collaborative learning and the possibility
of abandonment due to limited client computing resources.

3. We utilize the Message Queuing Telemetry Transport (MQTT) protocol to aggregate
geographically located IoT devices by sending topics and assigning the nearest master
server for split learning training. The client groups in each region communicate with
the primary server through their respective local networks.

4. Simulation experiments on multi-level split federated learning using Docker verify
that our proposed framework can effectively improve the model accuracy of collabo-
rative training under large-scale clients. In addition, compared with traditional SFL,
multi-level SFL in non-IID scenarios can converge faster and reduce the influence of
non-IID data on model accuracy.

The rest of this article is organized as follows. Section 2 reports some work related to
the article. Section 3 discusses the proposed multi-level split federated learning architecture
and associated workflows. In Section 4, the results of the simulation experiments are
presented and analyzed. Finally, Section 5 summarizes the article.

2. Related Works

Our proposed work is concerned with three primary DCML topics: multi-level FL,
SL, and SFL. Federated learning is an emerging distributed machine learning paradigm
that allows clients to jointly model without sharing data, breaking down data silos. With
the deepening of research, systematic heterogeneity and statistical heterogeneity have
become obstacles to the development of federated learning [16–19]. Karimireddy et al. [20]
proposed that the Scaffold algorithm corrects local model updates by adding variance
reduction techniques to local training to approximately correct the drift of local training on
the client side. In addition to optimizing model parameter aggregation algorithms, there
is a lot of work to solve the above problems through personalization techniques [21]. Xu
and Fan [22] proposed FedDK, which utilized knowledge distillation for model parameter
transmission, and designed the personalized model for each group by using the missing
common knowledge to fill circularly between clients. Traditional federated learning frame-
works also lack scalability in large AIoT systems. Guo et al. designed [23] a multi-level
federated learning mechanism to improve the efficiency of federated learning in device-
heavy edge network scenarios by utilizing reinforcement learning techniques to select
IoT devices for collaborative training. Campolo et al. [24] proposed a federated learning
framework based on the MQTT protocol and lightweight machine-to-machine semantics
(LwM2M) to improve communication efficiency and scalability by optimizing message
transmission. Furthermore, Liu et al. [25] proposed a multi-level federated learning frame-
work, MFL, which combines the advantages of edge-based federated learning to achieve a
balance between communication cost and computational performance for intelligent traffic
flow prediction. Multi-level federated learning can also be combined with personalization
techniques to solve the problem of statistical heterogeneity. Wu et al. [26] proposed a frame-
work that combines self-attention personalization techniques with multi-level federated
graph learning to further capture features of large received signal strength (RSS) datasets
for indoor fingerprint localization.

Split learning (SL) is a distributed learning paradigm for resource-limited devices
that has the same data-sharing constraint as FL. The principle is to split the deep learning
network: each device retains only one part of the network, while the server computes
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another part of the network, and the different devices only carry out forward and backprop-
agation to the local network architecture [27]. SL solves the problem of limited computing
resources of edge devices in FL but also increases the communication overhead of the
system. Chen et al. [10] proposed a loss-based asynchronous training framework for split
learning, which allows the client model parameters to be updated according to the loss,
thus reducing the communication frequency of split learning. Moreover, Ayad et al. [28]
introduced autoencoders and adaptive threshold mechanisms to track gradients in split
learning to reduce the amount of data sent to the client in forward computation and the
number of updates in post-feedback communication. Therefore, hybrid split federated
learning (SFL) is proposed, which combines the advantages of FL and SL, reduces the
communication overhead of split learning, and is suitable for IoT devices with limited
resources. In the framework, each client sends its own cutting layer to the master server,
which trains the split network and sends the fed server to aggregate the gradient of the
split model from each client [29]. Tian et al. [30] split the BERT model according to the
calculated load of the embedded layer and transformer layer of the BERT model under
the FedBert framework so that it could be deployed on devices with limited resources.
Moreover, FedSyL [31], HSFL [32], and ARES [33] frameworks optimized the splitting
strategy of deep learning networks, which select the splitting points that can minimize the
training cost per round through adaptive analysis based on client computing resources.

Although the above studies have made advances in multi-level federated learning
frameworks and split federated learning, they do not take into account collaborative
learning in large-scale AIoT system scenarios. Our work greatly improves the scalability
of large-scale AIoT systems in collaborative learning by combining the advantages of
multi-level federated learning frameworks and the principles of split federated learning.

3. Proposed Framework

In this section, we will introduce multi-level split federated learning in detail, where
we group clients according to their geographic distribution and assign corresponding
master nodes for model training for split learning, as shown in Figure 1.
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Multi-level split federated learning is designed with a combination of cloud- and
edge-based FL and master server-based SL. The cloud server is located in the first level,
and the outer level extends to the end device layer of the Nth level, which can contain
the N − 2 level edge servers and fog nodes for the initial aggregation of the local model
of the IoT devices. The Nth level is the device layer (end layer), which contains a large
number of smart devices and sensors in the smart city, including street lights, sensors,
cameras, etc., responsible for sensing the surrounding environment and generating data
in real time. The number of levels N of the architecture is determined by the number of
IoT devices participating in collaborative training and the area they are located in. As
the number of IoT devices increases, the rate at which the cloud server receives model
parameters also decreases, increasing the time cost of the computing of the cloud server
to some extent. In addition, the larger the range of IoT devices involved in training, the
more uneven the transmission distance between different IoT devices, and cloud servers
also lead to a reduction in training efficiency. Depending on the number of IoT devices and
their geographic location required for different training tasks, the proposed architecture
automatically adds adjacent and idle edge nodes or fog or edge nodes with more computing
power for hierarchical expansion. Since the infrastructure of most smart cities is fixed, we
assume that in this design, the IoT devices will be stable when training collaboratively,
and the geographical location will be constant during training time. The IoT nodes in the
end layer (Nth level) are composed of heterogeneous resource-constrained devices, the
data generated by each IoT node are saved locally and cannot be shared, and each uses its
own local data trainer for the local model. Depending on the geographical location of the
IoT devices, they are divided into different groups, and each group is assigned the nearest
master server, which is the server with high-performance computing resources. All IoT
devices in parallel perform forward propagation on their local model and transmit their
smashed data to the master server. The master server calculates the forward propagation
and backward propagation of the smashed data for each IoT device in its server-side model
and sends the gradient to the respective IoT devices to operate backpropagation. The closer
the edge nodes of each layer of the multi-level SFL are to the cloud server, the stronger the
computing and communication capabilities. For example, edge nodes such as routers and
gateways close to IoT devices have stronger computing performance and storage space
than IoT devices. Higher-level edge nodes or fog nodes that connect to this level, such as
base stations or regional servers, have more computing capabilities than edge nodes closer
to IoT devices. Therefore, the highest level (the first level) consists of one cloud server.
After the edge nodes of each layer initially aggregate the parameters of the local model of
the IoT device through the FedAvg algorithm, the aggregated model parameters are further
uploaded to the cloud server for the aggregation of global model parameters. Compared
with the traditional SFL architecture, multi-level SFL does not need to wait for all clients to
update and upload model parameters to a single cloud server for parameter aggregation,
reducing the communication cost of AIoT system collaborative learning and expanding the
IoT devices available for training. The detailed workflow of multi-level SFL is as follows.

3.1. MQTT Protocol-Based Message Exchange

Message Queuing Telemetry Transport (MQTT) is a lightweight communication pro-
tocol based on the publish/subscribe model, which is built on the TCP/IP protocol and
commonly used in Internet of Things systems. The advantage of MQTT is that it provides
reliable messaging services for connecting remote devices with limited bandwidth, so it is
suitable for low-bandwidth environments consisting of resource-limited end devices. In
the multi-level SFL framework, we use the MQTT protocol for message exchange between
client nodes and server nodes. The server of MQTT is brokered by VerneMQ. Edge nodes
and device nodes find device nodes that split federated learning on the MQTT topic and
control the aggregation operation of model parameters. The specific complete topic is
shown in Table 1.
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Table 1. Topics used in the MQTT protocol.

Message Exchange. Topic Details

Device–Edge

client/group IoT devices are grouped according to the public socket IP they provide, and the
corresponding master server is assigned.

train/start The grouped IoT devices receive the signal from the edge server to start the
model training.

train/update When the server needs to receive the local model weight of the IoT device, the IoT
device receives the signal from the edge server.

Edge–Edge
Edge–Cloud

train/start The edge server receives the signal from the upper-level server and starts to trigger
the model training.

train/update At the beginning of each communication turn, the selected clients are notified that
their weights will be aggregated.

client/join
Receive messages when a new IoT device joins a group. The message includes
contextual information about the newly joining IoT device, including its status
(whether it can participate in training) and its public socket IP.

The MQTT agent publishes the subject client/group, groups IoT devices under the
same LAN by receiving the IP of each IoT device, and assigns the master server node
under the same LAN. The server nodes on the connected edge of each group connect to the
upper-layer edge nodes or cloud servers through the backbone (internet) network. At the
beginning of each round of communication, the edge server will randomly aggregate the
model parameters of the IoT devices by publishing a list of IDs containing the selected IoT
devices to the train/update topic. When an IoT device receives a message published on
this topic, it checks if its ID is in the list, and if so, it sends its local model parameters to the
edge node; otherwise, it receives the average weight of the model parameters from the edge
node. The message exchange between edge nodes at each layer and between edge nodes
and cloud servers is similar. However, when the new IoT device node joins the group, it
receives the message of the new IoT device through the topic client/join, and groups and
evaluates the new IoT devices according to their own information.

To analyze the communication overhead of the proposed framework through MQTT,
we assume M represents the number of parameters for the model, D represents the total
number of IoT devices, s represents the size of the total samples, q is the size of the smashed
layer, E represents the total number of edge nodes in the middle levels, and α represents the
proportion of model parameters on the IoT device side. For instance, the model parameters
in IoT devices can be expressed as αM, and in the master server, they can be expressed as
(1− α)M. Multi-level SFL mainly carries out two parts of information transferred through
MQTT protocol. The first part is the transfer of information between the IoT device and
the master server. The information that the IoT device transfers to the master server is
the smash data from the cutting layer of the local model, and the information that the
master server transfers to the IoT device is the gradient of the smash data. Therefore, the
size of the information transmitted by the split learning section depends on the size of
the private data generated by the local IoT device. The total communication overhead
in the split learning part can be denoted as 2sq. The second part of the communication
overhead comes from the size of the information transmitted by multi-level federated
learning. The information transferred size of FL depends on the number of parameters
in the IoT device’s local model [34], but since the local model is split, the communication
overhead of multi-level FL can be expressed as 2αM(D + E). Therefore, the communication
overhead of a multi-level SFL can be expressed as 2sq + 2αM(D + E). Table 2 shows a
comparison of the size of information transferred by the proposed framework over MQTT
versus that transferred by traditional federated learning. As can be seen from Table 2,
multi-level SFL can reduce the size of information transmitted by the device and improve
the transmission efficiency of the framework when training large deep learning models
with the same size of training data.
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Table 2. Communication overhead of different distributed learning methods.

Method Comms. per IoT Devices Total Comms.

FL 2M 2DM

SL (2s/D)q 2sq

Multi-level SFL (2s/D)q + 2αM 2sq + 2αM(D + E)

3.2. Split Learning Side

After grouping IoT devices according to their geographic location, each group first
performs a split learning algorithm with the assigned master server. The algorithm can be
divided into four main computational parts. The IoT device is responsible for performing
two parts of the deep learning network computation, namely the forward propagation
and backward propagation of the IoT device network. The master server is responsible for
calculating the remaining layers and loss calculations. We define a deep learning network
as a function f , which contains the network layers that can be represented as {l0, l1, . . . , lK}.
For the input local data (local data), the output of the neural network is

lK(lK−1 . . . (l0(local data)))→ f (local data). (1)

Let Loss(output, label) represent the last layer to calculate the loss function of the real label
and the network output. ∆li

T represents the backpropagation process at each network
layer, so the backpropagation of the entire deep learning network can be expressed as

∆lKT
(

∆lK−1
T . . .

(
∆li

T
))
→ ∆ f T . (2)

Therefore, the deep network structure can be divided into two parts according to the
disassembly layer, assuming that the layer ln is the cutting layer of the neural network.
The network layer retained by the IoT device and the master server node is represented
as follows

fc ← {l0, l1, . . . , ln}, n ∈ N, (3)

fm ← {ln+1, ln+2, . . . , lN}, n ∈ N. (4)

The client sends the activation of the cutting layer generated by the forward propagation
of the local network model to the master server for forward propagation of the rest of
the network layers. The master server is responsible for calculating the loss of labels and
outputs and propagating backward to update the master server’s network layer weights.
The client smashed data from the forward propagation of the local network model to the
main server for forward propagation of the rest of the network Assuming a set of D IoT
devices in t time period, the model update of the master server part of the network can be
expressed as follows [29]:

WM
t+1 := WM

t − η
sD
s ∑D

m=1 ∆Lm

(
WM

t ; αM
t

)
, (5)

where η is the learning rate to train the deep learning model, and s is the size of the total
samples. αM

t represents the activation in master server, and ∆LD
(
WM

t ; αM
t
)

denotes the
gradient of backpropagation in the master server’s network layer.

Algorithm 1 shows the exact algorithm flow of the split learning part. The backpropa-
gation gradient received by the client from the master server is sent to the edge server for
aggregation, so Algorithm 1 is only one part of the multi-level SFL, and the entire algorithm
will be presented later.
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Algorithm 1 Split learning part in multi-level split federated learning

Notations: s is the size of total samples; t is time period; αd
t is the smashed data of IoT device at t;

∆Ld is the gradient of the loss for IoT device d; Yd is the true label from IoT device d.
Initialize: for each IoT device d ∈ D in parallel do
fd ← {l0, l1, . . . , ln} , initialize weight fd using Wd

t
end for
In master server: fm ← {ln+1, ln+2, . . . , lN} , initialize weight fm using WM

t

1: for each IoT device in the same group d ∈ D in parallel do
2: while local epoch e 6= E do
3: IoT device received model weight the from cloud server
4: Forward propagation compute activation (smashed data) on cutting layer αd

t ← fd(data)
5: Send activation αd

t and local label Yd to master server
6: end while
7: Master server executes:

8: Forward propagation with αd
t on fm, compute output← fm

(
αd

t

)

9: Calculate Loss Ld ← loss f unction(output, Yd)

10: Backpropagation on fm, calculate the gradient ∆Ld
(
WM

t ; αM
t
)

11: Send gradient of cutting layer dαd
t := ∆Ld

(
WM

t ; αM
t
)

to IoT device for backpropagation

fd ← backPropagation
(

Wd
t , dαM

t

)

12: end for
13: Model fm from master server update WM

t+1 := WM
t − η sd

s ∑d
m=1 ∆Lm

(
WM

t ; αM
t
)

3.3. Multi-Level Federated Learning Workflow

The cloud server publishes topics through the MQTT protocol to match the edge server
to the nearest IoT device group. Then, the edge server publishes topics to receive the tasks
performed by the IoT device, information about the local model, and information about
the respective resources of the IoT device, including computing resources and storage
resources. Based on the IoT device information, the edge server will determine whether
the IoT device meets the requirements of collaborative training (whether it is idle and has
enough computing resources) and send the training task to the cloud server. Depending on
the training task, the cloud server randomly initializes the global model parameters and
sends them to the IoT device. Each group of IoT devices receives the cutting layer gradient
from the master server and backpropagates the local model to update the parameters of
the neural network. The next major step is parameter aggregation in the edge server and
cloud server, where we use the FedAvg aggregation algorithm.

After the IoT devices in each group update the weights of the local model through the
model gradient sent by the master server, they send the model parameters (weights) to the
associated edge server. Each edge node is responsible for collecting updated parameters
from local IoT devices in its region and using the FedAvg algorithm for weighted averaging
to update the weights of the local partial model (initial aggregation). Suppose there are E
edge servers; then, the FedAvg algorithm [35] can be expressed as

We = ∑D
m=1

sm

s
We

d, e ∈ E. (6)

There are two situations when model parameters are sent to an edge server. If the edge
device is in the middle layer of the hierarchy, the aggregation of model parameters can be
expressed as

WeN−1 t+1 =
∑di∈eN−1

SdWd
t

SeN−1
D

, e ∈ E, (7)

where SdεSD, SD denotes the size of the total samples in the IoT device from one group
under the eN−1, which is the edge server located in layer N − 1. The edge node in the
middle layer will forward the aggregated average weight to the upper connected edge
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node to aggregate again. Similarly, the edge server in level N − 2 executes the aggregation
algorithm and can be represented as

WeN−2 t+1 =
∑di∈eN−2

SeN−1Wd
eN−1,t

SeN−2
D

, e ∈ E. (8)

If the edge node is at the top of the hierarchy, that is, the cloud server, the weights from the
edge nodes of the previous layer are aggregated and weighted and then sent back to the
lower level. The cloud server aggregates all the model parameters for each group of IoT
devices. The aggregation operation in the server can be expressed as

WC
t+1 =

∑S
ed
2∈S

Sed
2
Wd

e2,t

SeN−2
D

, e ∈ E. (9)

The final average weight is sent from the cloud server back to the edge server and client in
the same path as the model parameters were previously uploaded, as shown in Figure 2.
After receiving the global parameters, each set of IoT devices updates its local model and
forwards the cutting layer activation to the master server for forward propagation and
loss calculation. The entire multi-level federation learning begins a new iteration until the
model converges. Algorithm 2 illustrates the precise algorithm flow of the multi-level SFL
framework and shows the algorithm of the multi-level FL part in detail.
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Algorithm 2 Multi-level SFL algorithm and multi-level FL workflow

Notations: s is the size of total samples; t is time period; E is the number of edge servers in each
level.
Initialize: level = N; global model in cloud server WC;

1: if t = 0 do
2: send WC to all IoT devices for model weight initialization
3: else
4: master server and IoT device executes split learning part,

fd ← backPropagation
(

Wd
t , dαM

t

)

5: if level = N − 1 do
6: for each IoT device SdεSD in parallel do

7: Send model weight to edge sever WE
t+1 ← backPropagation

(
Wd

t , dαM
t

)

8: end for

9: Aggregate model parameter WeN−1 t+1 =
∑di∈eN−1

SdWd
t

S
eN−1
D

10: end if
11: level --;
12: if level 6= 1 do
13: for edge server e ∈ E do
14: Send model weight to upper-level edge sever WeN−1 t ←WeN−2 t
15: end for
16: Aggregate model parameter utilized FedAvg algorithm
17: level --;
18: end if
19: if level = 1 do
20: for edge server e ∈ E do
21: Send model weight to cloud sever
22: end for
23: Aggregate model parameter from lower-level edge server (all IoT devices model parameter)

WC
t+1 =

∑S
ed
2∈S

Sed
2

Wd
e2,t

S
eN−2
D

24: Send WC
t+1 to all lower-level edge server and all IoT device as previous upload path

25: end if
26: end if

4. Experiment

In this section, we describe the performance of multi-level split federated learning on
different datasets (Fashion MNIST, HAM10000) and different machine learning models
(LeNet, ReNet18). The feasibility of our proposed framework is verified by comparing
the traditional split federated learning, such as SFLV1, multi-level federated learning, and
centralized learning in an independent identically distributed (IID) and balanced dataset,
an unbalanced dataset, and a non-independent identically distributed (non-IID) dataset.
We also tested the performance of multi-level SFL with a different number of clients and
demonstrated that multi-level architecture can reduce the impact of an increasing number
of clients on model training accuracy. Since the aim of the experiments is to simulate the
real smart cities AIoT system in Docker, the model accuracy and the time cost of training
the model will be the evaluation criteria to test the framework we proposed.

4.1. Experiment Setting

The experiment is built on Docker 24.0.7 and API 1.43, using multiple isolated Docker
containers to simulate the end devices in the smart city AIoT system, such as cameras,
indicators, temperature sensors, etc. Docker compose v2.23.3 is used to manage multiple
clusters of Docker containers. To simulate a close-to-real-world scenario, clients have been
assumed to be divided into distinct groups based on their region. Due to each region
having its own WLAN or PAN, the clients in each group are connected through Docker’s
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bridge network built under different IP addresses (local network). The upper-level nodes of
each group, namely edge nodes and fog nodes, are connected to the cloud server through a
global network. The MQTT protocol is used for message transfer between nodes at various
levels, through the publication and subscription of messages to manage the joining of group
nodes, the start and end of model training, and the aggregation of model parameters. We
also use Secure Sockets Layer (SSL) sockets to add a secret key to the transmission of model
weights in the system, so the sent weights will be hashed together with the key, ensuring the
security and privacy of data transmission in the real world. The experiment used SSL single
authentication, that is, the client should authenticate the identity of the cloud server, and
the server does not need to authenticate the client. Once the authentication is complete and
the server and client SSL session is established, the two parties begin an MQTT connection
over the secure SSL channel and communicate over the encrypted channel by publishing
and subscribing context, as shown in Figure 3.
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All programs are written by Python3.6 and TensorFlow1.8 and built on a Windows
computer with an NVIDIA GeForce RTX4090 GPU (Santa Clara, CA, USA) and Intel Core
i9-12900K CPU (Santa Clara, CA, USA). The NVIDA GeForce RTX4090 is a public version
of the card manufactured by NVIDIA, and the device is sourced from the United States.
Intel Core i9-12900K CPU is Boxed Intel® Core™ i9-12900K Processor (30M Cache, up to
5.20 GHz) FC-LGA16A, for China. We selected HAM10000 and Fashion MNIST datasets,
ResNet18 and LeNet, as machine learning network architectures to train these two datasets,
respectively. Both architectures belong to the classical convolutional neural network-type
architectures. ResNet18, consisting of 15 convolutional layers and 2 pooling layers, was
used to test the proposed framework as a large machine learning task. Moreover, LeNet
contains three convolutional layers and 2 pooling layers as machine small learning tasks to
test the proposed framework. In addition, the learning rate of both networks is 0.0001.

In all experiments under the split federated setting, the network is split according
to the following layer: the third layer of ResNet18 (the BatchNormalization layer) and
the second layer of LeNet (the MaxPool layer). Generally, two factors are considered in
the selection of the cutting layer of the machine learning model: one is the proportion of
computing amount between the end device and the master computing node after the model
is split, and the other is the hidden layer feature dimension of the cutting layer. The former
is mainly determined by the processing speed, memory size, and power consumption
budget of the end device. The latter is mainly determined by the bandwidth of the network
connection between the end device and the master server. Since the experiment is set for
training on resource-limited IoT devices and the bandwidth of MQTT protocol is much
less than other protocols [36], the choice of destratification of the model does not need to
consider the size of the feature dimension too much but rather the computing resources of
the IoT devices. Therefore, we chose to train on IoT devices at a model layer with less split
while ensuring that fragmented data do not compromise the privacy of the source data.
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4.2. Experiment Dataset and Simulation

Two public image datasets were used in the experiment: Fashion MNIST [37] and
HAM10000 [38], as shown in Table 3. Fashion MNIST is an image dataset that replaces the
MNIST handwritten numerals set. It includes front images of 70,000 different products from
10 categories. Fashion MNIST’s size, format, and training/test set division are exactly the
same as the original MNIST, with a 60,000/10,000 training test data partition, 28 × 28 gray
scale picture. As the MNIST dataset is too simple and the amount of data is small, Fashion
MNIST is more consistent with the machine learning tests AIoT system based on smart
cities. The HAM10000 dataset consists of 10,015 dermatoscopic images for the classification
of pigmented skin lesions. There are seven labels: Akiec, bcc, bkl, df, mel, nv, and vasc.
The number of samples in each category of the HAM10000 dataset is not the same, so its
sample imbalance is prone to overfitting. We used this dataset to test the performance of
multi-level SFL under unbalanced samples. The dataset is divided by the number of clients,
each client holds a portion of the dataset, and the label of the dataset is stored in the master
server of each client group.

Table 3. Training and testing of dataset.

Dataset Training Samples Testing Samples Image Size

Fashion MNIST [37] 60,000 10,000 28× 28
HAM10000 [38] 9013 1002 600× 450

In order to simulate the limited computing resources of the IoT device and the sufficient
computing resources of the master server used for computing in split learning, part of the
model trained in the client is calculated by the CPU, while the other part of the model
in the server is calculated by the GPU. Since the cloud server only needs to perform the
task of parameter averaging, the cloud server is also simulated by a container in Docker.
Cloud server containers publish task topics to edge nodes over the backbone network, and
multiple containers simulate different groups of IoT devices receiving task selection datasets
from edge nodes. The containers of each group are connected via a local network within
the group, but each container trains the local model independently and communicates
only when a topic is published for new devices to join. MQTT protocol is simulated by
docker-vernemq, and container clusters are deployed by docker-composer. All containers
are independent of each other to simulate the condition that data cannot be shared between
IoT devices.

4.3. Performance of Multi-Level SFL, FL, and Centralized Learning

Centralized learning and multi-level federated learning serve as benchmarks for
testing our proposed multi-level split federated learning. Multi-level federated learning
and multi-level split learning are, respectively, tested in the AIoT system of four levels. The
end layer is set with 50 nodes, which are divided into two groups according to geographical
location, and the edge layer and fog layer are set with 2 nodes, which are, respectively,
responsible for aggregating the model weights of the two groups of end nodes. The cloud
has one node responsible for performing the FedAvg algorithm to aggregate the model
weights of the edge nodes. Table 1 summarizes the accuracy of distributed collaborative
learning over 50 global epochs with a batch size of 32 (Fashion MNIST) or 1024 (HAM10000)
for each local epoch.

As shown in Table 4, multi-level split federated learning and multi-level federated
learning perform well in experimental settings, and there is no significant difference
between centralized learning and multi-level federated learning. Although centralized
learning on both machine large learning tasks (ResNet18) and small machine learning tasks
LeNet) has slightly better convergence results than multi-level split federated learning
and federated learning, only a few accuracy losses are negligible. Moreover, we compare
multi-level SFL and FL, both of which do not overfit on the HAM10000 and Fashion
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MNIST datasets, because multi-level SFL and FL execute the FedAvg algorithm on multiple
upper layers, so the client can reduce the number of local model updates. In addition, as
shown in Table 4, multi-level SFL performs better than multi-level FL in the HAM10000
dataset. Because the sample size of the HAM10000 dataset is unbalanced and multi-
level SFL inherits the properties of SL, machine learning performance is better under the
unbalanced dataset.

Table 4. Train and test result in different distributed setting.

Dataset Architecture Centralized Learning Multi-Level FL Multi-Level SFL

Train Test Train Test Train Test

HAM10000 ResNet18 74.4% 79.6% 76.9% 77.3% 78.6% 79.4%
Fashion MNIST LeNet 88.7% 90.2% 86.1% 87.6% 87.9% 88.9%

In Figure 4, the X-axis represents the epoch of training, the Y-axis on the left represents
the accuracy of training, and the Y-axis on the right represents the training loss. It can be
seen from the experimental results that both multi-level SFL and FL can converge after
50 epochs on the Fashion MNIST dataset, reaching an accuracy of 88.9% and 88.6%. We note
that multi-level SFL and FL converge first, while centralized learning begins to converge
later, presumably because the dataset each client trains on is too small and the data type is
large due to the random allocation of the dataset. Furthermore, the convergence rate of
multi-level SFL is faster, and the model began to converge at about 20 epochs. This shows
that multi-level SFL can reduce the communication overhead during training.
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Figure 4. Testing convergence of LeNet on Fashion MNIST under various learning.

4.4. Effect of Different Clients on Performance

In this section, we will analyze the influence of edge client data on model training
accuracy. For multi-level SFL, we increase the number of nodes on each tier as well as
the number of clients for aggregation of model weights, as shown in Table 5. Considering
that the master server running the split model needs to run the split model for each client
node, we assume that each client group in different regions is equipped with a master
server node, so during the model training and optimization process, we do not consider
the transfer time between the master service node and the client node.
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Table 5. Number of clients and multi-level nodes for training.

The number of clients 5 10 20 50
The number of edge nodes in edge level 2 2 2 4
The number of fog nodes in fog level 1 1 2 2
The number of cloud servers 1 1 1 1
The number of master servers 2 2 2 4

This section will analyze the impact of the number of LeNet users on Fashion MNIST.
Figure 5 shows how the test accuracy and convergence rate vary with the number of epochs
when a multi-level SFL is trained on a different number of clients (5, 10, 20, 50 clients). We
can see that as the number of clients increases, the convergence speed of multi-level SFL
will slow down, but the convergence speed is not obvious, and it is always better than
the convergence speed of centralized learning. Moreover, for multi-level SFL, presumably,
as the number of clients increases, the model accuracy decreases. For example, when the
number of clients reaches 20 and 50, the accuracy of the test is significantly lower than that
of the concentrated learning. However, the accuracy of the model trained on 50 clients is
slightly higher than the accuracy of the model trained on 20 clients because the edge nodes
of the middle layer also increase as the layers of the client are interlayer, so the number of
middle-layer nodes of the multi-level SFL helps the SFL reduce the loss of accuracy.
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Figure 6 shows the time cost required for LeNet to train the Fashion MNIST dataset
with a different number of clients. As can be seen from the figure, the training time required
for centralized learning is always better than the time cost of training the model under
multi-level SFL with different clients. This is because the experiment simulates the MQTT
protocol used by the AIoT system to communicate, so the communication time and the
time spent waiting for all the clients to train will layer the time cost of the multi-level
SFL. The training time of the model decreases first and then increases with the increase in
clients. This is because as the number of multi-level SFL clients increases, the amount of
data locally decreases accordingly, reaching the minimum time overhead with 20 clients.
However, when the number of clients reaches 50, the time overhead for model training
starts to rise because the time for cloud servers and nodes in the middle level to publish
topics and receive requests under the MQTT protocol starts to increase.
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4.5. Impact of Different Level Layer on the SFL Model Training

Traditional split federated learning architecture, such as SFLV1 and SFLV2 [29], has
only two levels: the server executing FedAvg and the clients with the master server. It has
only one operation of model parameter aggregation, and when a client is corrupted, the
FedAvg server will wait and freeze. Multi-level SFL performs model aggregation operations
at multiple levels, and due to the MQTT protocol, nodes performing aggregation operations
can communicate with clients by publishing topics, so there is no need to wait for broken
nodes. Therefore, we set up two SFL scenarios: traditional SFL (SFLV1) and multi-level
SFL, both of which have 20 clients for collaborative learning, and multi-level SFL with
4 edge nodes and 2 fog nodes to perform aggregation of global model weights. In addition,
we make the dataset to which each client is assigned non-independent and identically
distributed (non-IID). Moreover, the local dataset of the clients is divided according to the
label distribution of the sample, which means the sample label distribution on each client
is different.

Figure 7 shows the relationship between epochs and model test accuracy by non-IID
SFLV1 and multi-level SFL architectures under the MQTT communication protocol. After
50 epochs, multi-level SFL and SFLV1-trained LeNet models can achieve approximately 88%
and 86% accuracy, respectively, under non-IID. As can be seen from the figure, in the non-IID
scenario, multi-level SFL is superior to traditional SFL, with faster convergence and higher
model accuracy. This indicates that non-IID has a negative effect on splitting federated
learning, but multi-level SFL can improve this problem. In the federated learning part,
compared with traditional split federation learning, multi-level split federation learning can
aggregate more clients at the same time for model training, so the model convergence speed
will be faster. In the split learning part, since the multi-level SFL performs aggregation
operations at each layer, the multi-level SFL clients undergo more local model updates,
which alleviates the non-IID problem.

4.6. Comparison of Multi-Level SFL and FL Time Cost

This section compares the time overhead of multi-level SFL and multi-level FL when
training large (ResNet18) and small (LeNet) machine learning tasks. Both use a four-level
multi-level architecture, and the number of clients is 20. In order to simulate the limited
computing resources of the client and the efficient computing resources of the master server,
the local training of the client uses the CPU for computing, while the split model trained by
the master server uses the GPU for training. We test the impact of multiple levels of SFL on
resource-limited clients by the time overhead on model training.
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As shown in Figure 8, centralized learning has the lowest time cost for both small
and large machine learning tasks, at 25.32 min and 85.57 min, respectively. In the training
of small model LeNet, the time cost of multi-level FL is slightly lower than that of multi-
level SFL, and the difference in time cost between the two is not obvious. This is because
when training the small network LeNet, the computing cost of the two-layer network
in the local training of the client is relatively small, and the master server only needs to
train the three-layer network, so the impact of split learning on the global training of the
AIoT system cannot be reflected. Furthermore, because the master server and client also
communicate via the MQTT protocol, multi-level SFL has a partial longer topic release time
than multi-level FL. Therefore, in the small network training, multi-level SFL cannot present
its advantage. However, on a large network, such as ResNet18, which has 18 layers, 15 of
which are computed by the master server, the time cost of multi-level SFL is significantly
lower than that of multi-level FL. And because the split learning process of multi-level SFL
is run in parallel in the main server, rather than a linear run similar to split learning, the
time cost of multi-level learning in large machine learning tasks is lower. The experimental
results show that multi-layer SFL is more suitable for clients in AIoT with limited resources
than multi-layer FL.
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5. Conclusions

In this work, we proposed a novel multi-level split federated learning (SFL) framework
for the enhancement of collaborative learning in large-scale AIoT systems. The multi-level
SFL framework addresses the connectivity and data processing challenges that occur in a
large-scale AIoT system with a multitude of clients. Through multiple levels of aggregation
of model parameters, it significantly reduces the communication delay between the cloud
server and the clients, enhancing the processing speed and entire performance of the central
server. By integrating split learning into the framework, it balances the system heterogene-
ity among clients and boosts the system’s scalability to incorporate more IoT devices for
collaborative learning. It also mitigates the single point of failure risk of the central cloud
server and ensures continuous model training even in the event of longer transmission
distances. The use of the Message Queuing Telemetry Transport (MQTT) protocol and
Docker containers in the experimental setup substantiates the practical feasibility of the
proposed multi-level SFL framework. The resulting improvements in model accuracy
under large-scale clients and faster convergence in non-IID scenarios, as evidenced by
the simulation experiments, further validate the effectiveness of the proposed solution.
Although our proposed multi-level SFL architecture has shown some advantages in model
accuracy, it still has some shortcomings in terms of transmission overhead. For example,
we have not further explored the effect of different sized datasets on the size of the in-
formation transferred and how to balance the overall communication overhead through
MQTT generated by federated learning and split learning. Future work will further study
these aspects.

Author Contributions: Conceptualization, H.X., K.P.S. and L.M.A.; methodology, H.X. and K.P.S.;
resources, K.P.S.; data curation, H.X., K.P.S. and L.M.A.; writing—original draft preparation, H.X.,
K.P.S. and J.S.; writing—review and editing, K.P.S., J.S. and L.M.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Fashion MNIST dataset can be found in Kaggle: https://www.
kaggle.com/datasets/zalando-research/fashionmnist (accessed on 15 January 2024). The HAM10000
dataset comes from the paper: “The HAM10000 dataset, a large collection of multi-source dermato-
scopic images of common pigmented skin lesions”, DOI: https://doi.org/10.1038/sdata.2018.161.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Su, Z.; Wang, Y.; Luan, T.H.; Zhang, N.; Li, F.; Chen, T.; Cao, H. Secure and Efficient Federated Learning for Smart Grid With

Edge-Cloud Collaboration. IEEE Trans. Ind. Inform. 2022, 18, 1333–1344. [CrossRef]
2. Xu, C.; Qu, Y.; Luan, T.H.; Eklund, P.W.; Xiang, Y.; Gao, L. An Efficient and Reliable Asynchronous Federated Learning Scheme

for Smart Public Transportation. IEEE Trans. Veh. Technol. 2023, 72, 6584–6598. [CrossRef]
3. Lian, Z.; Yang, Q.; Wang, W.; Zeng, Q.; Alazab, M.; Zhao, H.; Su, C. DEEP-FEL: Decentralized, Efficient and Privacy-Enhanced

Federated Edge Learning for Healthcare Cyber Physical Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3558–3569. [CrossRef]
4. Taïk, A.; Mlika, Z.; Cherkaoui, S. Clustered Vehicular Federated Learning: Process and Optimization. IEEE Trans. Intell. Transp.

Syst. 2022, 23, 25371–25383. [CrossRef]
5. Bebortta, S.; Tripathy, S.S.; Basheer, S.; Chowdhary, C.L. FedEHR: A Federated Learning Approach towards the Prediction of

Heart Diseases in IoT-Based Electronic Health Records. Diagnostics 2023, 13, 3166. [CrossRef]
6. Hsu, R.-H.; Wang, Y.-C.; Fan, C.-I.; Sun, B.; Ban, T.; Takahashi, T.; Wu, T.-W.; Kao, S.-W. A Privacy-Preserving Federated Learning

System for Android Malware Detection Based on Edge Computing. In Proceedings of the 2020 15th Asia Joint Conference on
Information Security (AsiaJCIS), Taipei, Taiwan, 20–21 August 2020; pp. 128–136.

7. Yamamoto, F.; Ozawa, S.; Wang, L. eFL-Boost: Efficient Federated Learning for Gradient Boosting Decision Trees. IEEE Access
2022, 10, 43954–43963. [CrossRef]

8. Jiang, L.; Wang, Y.; Zheng, W.; Jin, C.; Li, Z.; Teo, S.G. LSTMSPLIT: Effective SPLIT Learning Based LSTM on Sequential Time-Series
Data. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 28 February–1 March 2022.

9. Hsieh, C.-Y.; Chuang, Y.-C.; Wu, A.-Y. C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient
Split Learning. In Proceedings of the 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP),
Xi’an, China, 22–25 August 2022.

173



Future Internet 2024, 16, 82

10. Chen, X.; Li, J.; Chakrabarti, C. Communication and Computation Reduction for Split Learning Using Asynchronous Training. In
Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 19–21 October 2021; pp. 76–81.

11. Abedi, A.; Khan, S.S. FedSL: Federated Split Learning on Distributed Sequential Data in Recurrent Neural Networks. Multimed.
Tools Appl. 2023. [CrossRef]

12. Wu, Y.; Kang, Y.; Luo, J.; He, Y.; Yang, Q. FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive
Performance in Federated Learning. arXiv 2022, arXiv:2111.08211.

13. Zhang, Z.; Pinto, A.; Turina, V.; Esposito, F.; Matta, I. Privacy and Efficiency of Communications in Federated Split Learning.
IEEE Trans. Big Data 2023, 9, 1380–1391. [CrossRef]

14. Deng, Y.; Lyu, F.; Ren, J.; Zhang, Y.; Zhou, Y.; Zhang, Y.; Yang, Y. SHARE: Shaping Data Distribution at Edge for Communication-
Efficient Hierarchical Federated Learning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), Washington, DC, USA, 7–10 July 2021; pp. 24–34.

15. Liu, L.; Zhang, J.; Song, S.H.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

16. Mansour, Y.; Mohri, M.; Ro, J.; Suresh, A.T. Three Approaches for Personalization with Applications to Federated Learning. arXiv
2020, arXiv:2002.10619.

17. Hao, M.; Li, H.; Luo, X.; Xu, G.; Yang, H.; Liu, S. Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial
Intelligence. IEEE Trans. Ind. Inform. 2020, 16, 6532–6542. [CrossRef]

18. Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning. In
Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020;
pp. 1698–1707.

19. Guo, J.; Ho, I.W.-H.; Hou, Y.; Li, Z. FedPos: A Federated Transfer Learning Framework for CSI-Based Wi-Fi Indoor Posi-tioning.
IEEE Syst. J. 2023, 17, 4579–4590. [CrossRef]

20. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.J.; Stich, S.U.; Suresh, A.T. SCAFFOLD: Stochastic Controlled Averaging for
Federated Learning. In Proceedings of the 37th International Conference on Machine Learning, PMLR, Online, 13–18 July 2020;
Volume 119, pp. 5132–5143.

21. Tan, A.Z.; Yu, H.; Cui, L.; Yang, Q. Towards Personalized Federated Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34,
9587–9603. [CrossRef]

22. Xu, Y.; Fan, H. FedDK: Improving Cyclic Knowledge Distillation for Personalized Healthcare Federated Learning. IEEE Access
2023, 11, 72409–72417. [CrossRef]

23. Guo, S.; Xiang, B.; Chen, L.; Yang, H.; Yu, D. Multi-Level Federated Learning Mechanism with Reinforcement Learning
Optimizing in Smart City. In Proceedings of the Artificial Intelligence and Security; Sun, X., Zhang, X., Xia, Z., Bertino, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2022; pp. 441–454.

24. Campolo, C.; Genovese, G.; Singh, G.; Molinaro, A. Scalable and Interoperable Edge-Based Federated Learning in IoT Contexts.
Comput. Netw. 2023, 223, 109576. [CrossRef]

25. Liu, L.; Tian, Y.; Chakraborty, C.; Feng, J.; Pei, Q.; Zhen, L.; Yu, K. Multilevel Federated Learning-Based Intelligent Traffic Flow
Forecasting for Transportation Network Management. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1446–1458. [CrossRef]

26. Wu, Z.; Wu, X.; Long, Y. Multi-Level Federated Graph Learning and Self-Attention Based Personalized Wi-Fi Indoor Fingerprint
Localization. IEEE Commun. Lett. 2022, 26, 1794–1798. [CrossRef]

27. Thapa, C.; Chamikara, M.A.P.; Camtepe, S.A. Advancements of Federated Learning Towards Privacy Preservation: From
Federated Learning to Split Learning. In Federated Learning Systems: Towards Next-Generation; Rehman, M.H.U., Gaber,
M.M., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2021; pp. 79–109.
ISBN 978-3-030-70604-3.

28. Ayad, A.; Renner, M.; Schmeink, A. Improving the Communication and Computation Efficiency of Split Learning for IoT
Applications. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December
2021; pp. 01–06.

29. Thapa, C.; Chamikara, M.A.P.; Camtepe, S.; Sun, L. SplitFed: When Federated Learning Meets Split Learning. Proc. AAAI Conf.
Artif. Intell. 2022, 36, 8485–8493. [CrossRef]

30. Tian, Y.; Wan, Y.; Lyu, L.; Yao, D.; Jin, H.; Sun, L. FedBERT: When Federated Learning Meets Pre-Training. ACM Trans. Intell. Syst.
Technol. 2022, 13, 66:1–66:26. [CrossRef]

31. Jiang, H.; Liu, M.; Sun, S.; Wang, Y.; Guo, X. FedSyL: Computation-Efficient Federated Synergy Learning on Heterogeneous IoT
Devices. In Proceedings of the 2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), Oslo, Norway,
10–12 June 2022; pp. 1–10.

32. Deng, R.; Du, X.; Lu, Z.; Duan, Q.; Huang, S.-C.; Wu, J. HSFL: Efficient and Privacy-Preserving Offloading for Split and Federated
Learning in IoT Services. In Proceedings of the 2023 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA,
2–8 July 2023; pp. 658–668.

33. Samikwa, E.; Maio, A.D.; Braun, T. ARES: Adaptive Resource-Aware Split Learning for Internet of Things. Comput. Netw. 2022,
218, 109380. [CrossRef]

174



Future Internet 2024, 16, 82

34. Gao, Y.; Kim, M.; Abuadbba, S.; Kim, Y.; Thapa, C.; Kim, K.; Camtep, S.A.; Kim, H.; Nepal, S. End-to-End Evaluation of Federated
Learning and Split Learning for Internet of Things. In Proceedings of the 2020 International Symposium on Reliable Distributed
Systems (SRDS), Shanghai, China, 21–24 September 2020; pp. 91–100.

35. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, Fort
Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282.

36. Shahri, E.; Pedreiras, P.; Almeida, L. Extending MQTT with Real-Time Communication Services Based on SDN. Sensors 2022,
22, 3162. [CrossRef] [PubMed]

37. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

38. Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of
Common Pigmented Skin Lesions. Sci. Data 2018, 5, 180161. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

175



Citation: Zhou, F.; Hu, S.; Du, X.;

Wan, X.; Wu, J. A Lightweight Neural

Network Model for Disease Risk

Prediction in Edge Intelligent

Computing Architecture. Future

Internet 2024, 16, 75. https://

doi.org/10.3390/fi16030075

Academic Editor: Symeon

Papavassiliou

Received: 22 January 2024

Revised: 13 February 2024

Accepted: 17 February 2024

Published: 26 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Lightweight Neural Network Model for Disease Risk
Prediction in Edge Intelligent Computing Architecture
Feng Zhou 1, Shijing Hu 1,*, Xin Du 1, Xiaoli Wan 2 and Jie Wu 1

1 School of Computer Science, Fudan University, Shanghai 200438, China; 19110240047@fudan.edu.cn (F.Z.);
xdu20@fudan.edu.cn (X.D.); jwu@fudan.edu.cn (J.W.)

2 Information Center, Zhejiang International Business Group, Hangzhou 310000, China; wanxl@zibchina.com
* Correspondence: sjhu21@m.fudan.edu.cn

Abstract: In the current field of disease risk prediction research, there are many methods of using
servers for centralized computing to train and infer prediction models. However, this centralized
computing method increases storage space, the load on network bandwidth, and the computing
pressure on the central server. In this article, we design an image preprocessing method and propose
a lightweight neural network model called Linge (Lightweight Neural Network Models for the
Edge). We propose a distributed intelligent edge computing technology based on the federated
learning algorithm for disease risk prediction. The intelligent edge computing method we proposed
for disease risk prediction directly performs prediction model training and inference at the edge
without increasing storage space. It also reduces the load on network bandwidth and reduces the
computing pressure on the server. The lightweight neural network model we designed has only
7.63 MB of parameters and only takes up 155.28 MB of memory. In the experiment with the Linge
model compared with the EfficientNetV2 model, the accuracy and precision increased by 2%, the
recall rate increased by 1%, the specificity increased by 4%, the F1 score increased by 3%, and the
AUC (Area Under the Curve) value increased by 2%.

Keywords: federated learning; edge computing; deep learning; image classification; disease risk prediction

1. Introduction

Current research on disease risk prediction mainly uses physiological indicators and
risk factors to predict disease risk [1], images to predict disease risk [2], and audio to predict
disease risk [3]. These studies have achieved good results. In these studies, the risk of
diabetes was predicted with 99.8% accuracy, the risk of Parkinson’s disease was predicted
with 98% accuracy, and the risk of laryngeal air cyst was predicted with 98.5% accuracy.
Some researchers use the prediction of mean arterial blood pressure in patients with sepsis
to assist in treating septic shock [4].

The current application scenarios of disease risk prediction models mainly include
hospitals, health management centers, insurance institutions, and elderly care institutions.
Hospitals use disease risk prediction models to assist doctors in providing medical services
to patients. The health management center uses disease risk prediction models to predict
health risks for users and develops health intervention plans based on health analysis
reports. Insurance institutions use disease risk prediction models to assist staff in making
business risk judgments. Elderly care institutions use disease risk prediction models to
periodically provide disease risk predictions to the elderly, improving their health status
and reducing the pressure on public health services.

Although the application scenarios of disease risk prediction models are diverse,
according to our research, these application scenarios also have standard rules. When
designing and implementing disease risk prediction models using centralized computing
methods, these application scenarios must go through model design, sample processing,
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model training, and optimization. In the sample processing stage, when different institu-
tions or enterprises use centralized computing methods, they will summarize the data of
each branch unit. This method increases the overhead of data storage space and brings
hidden dangers to data transmission security and integrity. In the model training and
optimization phase, different institutions or enterprises use central server calculations
when using centralized computing methods. This method increases the burden on the
central server and wastes edge server resources. The usage of our proposed distributed
intelligent edge computing technology for disease risk prediction is shown in Figure 1.
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As shown in Figure 1, the lightweight neural network model Linge (Lightweight
Neural Network Models for the Edge) we designed will be deployed on the enterprise or
institution’s central server and each branch unit’s edge servers. The prediction model’s
training and inference are completed on each branch unit’s edge servers. The prediction
model on the edge server of each branch unit will upload the model weights output to the
central server after training and download the latest model parameters from the central
server. During the inference process of the prediction model, disease risk prediction experts
evaluate and correct the inference results of the model on the central server and each
edge server. Using this distributed intelligent edge computing method to train disease
risk prediction models does not increase data storage space, completely eliminates hidden
dangers in data transmission security and data transmission integrity, and does not increase
computing pressure on the central server.

The research goal of this article is to achieve effective prediction of disease risk in
diverse disease risk prediction application scenarios based on federated learning algorithms,
edge computing, the MRI (Magnetic Resonance Imaging) image preprocessing method
designed in this article, and lightweight neural network models. In this article’s research
on effective disease risk prediction, the main work carried out is as follows:

• To further improve the quality of the data set, reduce the cost of feature extraction by
the model, and improve the model’s accuracy, we designed an MRI image preprocess-
ing method.

• For the configuration attributes of the edge server, we designed a new lightweight
neural network model based on the lightweight attention mechanism.
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• For diverse application scenarios, we propose a distributed intelligent edge comput-
ing technology for disease risk prediction based on federated learning algorithms,
edge computing, the MRI image preprocessing method designed in this article, and
lightweight neural network models.

The introductory section of this article describes the background of our research.
The related work section describes the current research status. The Preliminaries section
describes related techniques. The model design and implementation section describes the
designed image preprocessing method, lightweight neural network model, and distributed
intelligent edge computing technology for disease risk prediction. The experimental results
analysis and conclusion sections describe the experiments during the research process of
this article, summarize the research results, and discuss future research.

2. Related Works

Many current disease risk prediction studies are based on federated learning or edge
computing. For example, to achieve accurate heart disease prediction on the medical Internet of
Things platform, Y. Pan et al. proposed a multilayer perceptron model based on a convolutional
neural network to help doctors effectively diagnose heart disease patients on the cloud plat-
form [5]. This model achieved an accuracy of 94.9% in experiments. To perform training tasks on
wearable devices [6], Yeting Guo et al. proposed a federated edge learning system for efficient
privacy-preserving mobile healthcare based on federated learning. S. Hakak et al. proposed a
conceptual framework for leveraging edge computing to support healthcare analytics based
on user-generated data [7]. This framework can be extended to develop distributed disease
management systems based on personal health data.

To solve the problems of network congestion and low response speed that occur when
implementing clinical decision support systems using traditional methods [8], Z. Xue
et al. proposed a technology that integrates mobile edge computing and software-defined
networks. D. Gupta et al. proposed an anomaly detection model based on federated
learning to solve the anomaly detection problem in centralized healthcare ecosystems [9],
which often suffer from severe response time delays and high-performance overhead. To
reduce the cost of data transmission to the cloud in the healthcare Internet of Things [10],
W. Y. B. Lim et al. proposed a dynamic contract design based on federated learning and
edge computing architecture for innovative medical applications. Since the urban digital
twin system relies on long-term collected data to make appropriate decisions to solve the
limitations when major infectious disease emergencies occur [11], J. Pang et al. proposed
a framework that integrates the urban digital twin system with federated learning. V.
Gomathy et al., based on edge computing methods and linear regression [12], studied
polluted air and mortality caused by COVID-19 (Corona Virus Disease 2019) and concluded
that in areas with air pollution, the mortality caused by COVID-19 is 77% higher. D. Y.
Zhang et al. proposed a new federated learning framework to solve the class imbalance
problem in abnormal health detection [13]. This framework achieves an F1 score of 0.816 in
driver drowsiness detection applications.

Q. Wu et al. proposed a new cloud edge-based federated learning framework for home
health monitoring [14]. This framework learns a global model shared in the cloud from
multiple homes at the network’s edge and achieves data privacy protection by saving user
data locally. This framework achieved an accuracy of 95.87% in experiments. D. C. Nguyen
et al. proposed a new blockchain-based framework to implement COVID-19 detection using
generative adversarial networks in edge cloud computing [15]. This framework implements
the joint design of federated learning and GAN (Generative Adversarial Networks) in a
distributed medical network with edge cloud computing. This framework achieved an
accuracy of 97.5% in experiments.

To solve the problem of high latency in the healthcare system due to its reliance on
central servers [16], V. Hayyolalam et al. used edge computing to move computing and
storage resources closer to end users. This method utilizes a metaheuristic-based feature
selection method of the Black Widow Optimization (BWO) algorithm to detect heart dis-
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ease in patients. Experimental results show that they achieved an accuracy of 90.11%. To
improve the confidence of the prediction model [17], Linardos et al. proposed a simulated
federated learning research method on cardiovascular diseases based on CNN (Convolu-
tional Neural Networks). To realize human motion recognition based on federated learning
through wearable devices in intelligent medical systems [18], Arikumar KS et al. proposed
a federated learning-based human motion recognition method based on bidirectional long
short-term memory (BiLSTM). The accuracy of this method in experiments reached 99.67%.
To protect the data privacy of healthcare applications that rely on the Internet of Things [19],
H. Elayan et al. proposed a deep federated learning framework for healthcare data moni-
toring and analysis using IoT devices. This framework achieved an accuracy of 84.8% and
an AUC (Area Under the Curve) of 97% in experiments on detecting skin diseases.

To solve the privacy and security issues during interactions caused by potential patient
data leakage in the healthcare Internet of Things [20], Z. Lian et al. proposed a decentralized,
efficient, and privacy-enhanced federated edge learning system based on convolutional
neural networks. This system achieved an accuracy of 87% in experiments on the skin cancer
data set. B. T. H. Dang et al. proposed a collaboration framework [21]. This framework is
used to train convolutional neural network-based heart disease prediction models. This
framework uses federated learning to implement model training using distributed data
stored individually on multiple machines. This framework uses the MIT-BIH arrhythmia
data set to train the model. In experiments, this framework achieved an accuracy of 98.92%,
a recall of 97.41%, a precision of 99.23%, and an F1 score of 98.02%.

To solve the security and privacy issues of the medical Internet of Things under
edge intelligent computing [22], R. Wang et al. proposed a privacy protection scheme for
federated learning under edge computing. Xiaomin Ouyang et al. proposed an end-to-
end system integrating multimodal sensors and federated learning algorithms to achieve
digital biomarker detection of multidimensional Alzheimer’s disease in natural living
environments [23]. The system achieved an accuracy of 95% in experiments detecting digital
biomarkers and an average accuracy of 87.5% in experiments identifying Alzheimer’s
disease. L. Zhang et al. proposed a privacy-preserving federated learning method based
on homomorphic encryption and deep neural network (DNN) for the Internet of Things
healthcare system [24]. This method achieved an accuracy of 76.9% in experiments using
the HAM10000 data set.

As can be seen from the above description and Table 1, current research based on
machine learning, federated learning, and edge computing has achieved good results. For
example, the accuracy of predicting the risk of cardiovascular disease reaches 99.67%, the
accuracy of predicting the risk of skin cancer reaches 87%, and the accuracy of predicting
the risk of heart disease reaches 98.92%. However, in the above studies, the neural network
model parameters used are too large when predicting disease risk. In the application
scenarios of federated learning and edge computing, they are limited by hardware resource
requirements and are challenging to promote widely. The lightweight neural network
model designed in this article has only 7.63 MB of parameters and only occupies 155.28 MB
of memory. In the experiment, the accuracy of stroke risk prediction was 96%, the precision
rate was 95%, the recall rate was 93%, the specificity was 95%, the F1 score was 98%, and
the AUC was 97%. This experimental result shows that the distributed intelligent edge
computing technology proposed in this article for disease risk prediction can provide
practical support for disease risk prediction.

Table 1. Related Research Statistics.

Researcher Research Objectives Basic Algorithm Accuracy

Q. Wu et al. [14] Health Monitoring CNN 95.87%
D. C. Nguyen et al. [15] COVID-19 GAN 97.5%

Linardos et al. [17] Cardiovascular Diseases BiLSTM 99.67%
Z. Lian et al. [20] Skin Cancer CNN 87%

B. T. H. Dang et al. [21] Heart Disease CNN 98.92%
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3. Preliminaries

The data sets used in the experiments of this article are the publicly available “Acute
Ischemic Stroke MRI” data set and subject data, which are all image data. Therefore,
when designing the lightweight neural network model structure, this article refers to the
lightweight attention mechanism and the structure of the EfficientNetV2 network model.

3.1. Channel Attention Mechanism

SENET is the champion model of ImageNet 2017 [25]. SENET is used in the core
MBConv module and Fused-MBConv module of the EfficientNetV2 network model to
improve network performance. The SENET module structure is shown in Figure 2.
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Figure 2. The SENET module structure [25].

In Figure 2, given an input X with a feature channel number of C′, a feature with a feature
channel number of C is obtained after a series of convolution and other transformations [25].

ECA-Net (Efficient Channel Attention Network) is an attention model used for com-
puter vision tasks [26], designed to enhance the ability of neural networks to model image
features. The overall structure of the ECA-Net module is shown in Figure 3 below.
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Figure 3 gives the aggregated features obtained through Global Average Pooling GAP
(Global Average Pooling) [26]. ECA-Net generates channel weights by performing fast
one-dimensional convolutions of size k, with a convolution kernel size k representing
the coverage of local cross-channel interactions, where k is adaptively determined by the
mapping of the channel dimension C. After global average pooling without reducing
the dimensionality, ECA-Net captures local cross-channel interactive information by us-
ing each channel and its adjacent channels. This method ensures model efficiency and
computational effect.

3.2. Lightweight Neural Network

Berkeley and Stanford researchers proposed that the parameters of the SqueezeNet
network model are only 1/50 of Alexnet [27], but it achieves similar effects to Alexnet
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on ImageNet. Due to too few parameters, SqueezeNet is less effective in expressing
complex problems. Google researchers proposed the MobileNet network model using
depthwise separable convolutions [28]. MobileNetV2 optimizes the model structure based
on MobileNet, which not only improves the performance of the network model but also
reduces the calculation amount of the model. MNasNet integrates the inverted residual
block designed based on MobileNetV2 as a building block into NAS [29]. Since MNasNet
performs very well in block search but needs to be more comprehensive in the search of
each layer width, MobileNetV3 uses MNasNet to search blocks [30]. For a series of models
using the same building block, refer to the coefficients in MobileNet and MobileNetV2
and quickly obtain models of different sizes by directly increasing the width, depth, and
resolution [31]. However, balancing the relationship between width, depth, and resolution
has become vital.

To balance the relationship between width, depth, and resolution, the EfficientNet
network model came into being [32]. However, this network model consumes much video
memory when the input image is large. In addition, the EfficientNet network model has
a significant overhead in reading and writing data. To further improve the EfficientNet
network model, the EfficientNetV2 network model was born, which combines training-
aware NAS and scaling [33].

4. Model Design and Implementation

This section introduces the MRI image sample preprocessing method, lightweight
neural network model, distributed intelligent edge computing technology implementation,
and model algorithm for disease risk prediction designed in this article.

4.1. MRI Image Sample Preprocessing Method

MRI (Magnetic Resonance Imaging) images provide doctors with clear, high-resolution
images of the internal tissues and organs of the body. These images can reveal abnormal
structures and help doctors accurately diagnose and develop treatment plans. To further
improve the accuracy and reliability of the model, we designed a method to preprocess
MRI image samples. The specific process is summarized as shown in Figure 4.
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Since each MRI image is not entirely aligned, the MRI image sample preprocessing
method we designed is shown in Figure 4. The image is first corrected for head motion.
Since MRI images contain some non-brain structures (such as skulls), we delete non-brain
structures in the images to avoid increasing the computational load and improving model
efficiency. To further improve the training efficiency of the model, we denoise the image and
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use median filtering to denoise the spatial domain of the image. To extract more detailed
features in the image, we equalize the image. Since MRI images are three-dimensional data,
the model designed in this article inputs two-dimensional images. Therefore, in the MRI
image sample preprocessing method we designed, only the coronal, sagittal, and transverse
planes in the MRI images are extracted. To prevent the model from overfitting and improve
the generalization ability of the model, we scale and rotate the MRI images. Finally, the
MRI image sample preprocessing method we designed normalizes the data by traversing
each pixel in the MRI image matrix. The normalization operation formula is summarized
in Formula (1) during the processing process.

Í = log 10(I)/log 10(max(I)) (1)

I in Formula (1) represents the original image, Í represents the normalized image,
log 10(I) represents the logarithmic transformation function with base 10, and max(I)
represents the maximum value in the image data.

4.2. Lightweight Neural Network Model

To improve the feature extraction capability and robustness of the model and focus
more on the information of practical feature areas in the image, this article designed the
EMBConv module and EFused-MBConv module concerning the EfficientNetV2 model
structure. The structures of the EMBConv module and EFused-MBConv module are shown
in Figure 5.
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As shown in Figure 5, this article integrates the lightweight attention mechanism into
the EMBConv module and EFused-MBCon module in the lightweight neural network
model structure. The EfficientNetv2-S network model is the lightest model among the
EfficientNetv2 network models. However, problems like large computational workload,
long training time, and giant model space during training still need to be solved. Consid-
ering the application scenarios of distributed intelligent edge computing for disease risk
prediction to allow model training and inference to be completed at the edge, this article
refers to the backbone network structure of the EfficientNetv2-S network model and designs
the Linge model. Because EMB-Conv has a smaller expansion ratio than EFused-MBConv,
more minor expansion has less memory access overhead. Therefore, in the structure of the
lightweight neural network model Linge designed in this article, EFused-MBConv is used
in the Stage1 and Stage2 stages, and the EMBConv module is used in the Stage3, Stage4,
Stage5, and Stage6 stages. This adjustment increases the size of the model’s receptive field,
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reduces the depth and complexity of the model, and further improves the lightweight of
the model. The structure of the new lightweight neural network model is shown in Table 2.

Table 2. Linge network model structure.

Stage Operator Stride #Channels #Layers

0 Conv3x3 2 24 1
1 EFused-MBConv1, k3x3 1 24 2
2 EFused-MBConv4, k3x3 2 48 4
3 EMBConv4, k3x3 2 64 4
4 EMBConv4, k3x3, ECA0.25 2 128 6
5 EMBConv6, k3x3, ECA0.25 1 160 9
6 EMBConv6, k3x3, ECA0.25 2 256 15
7 Conv1x1 & Pooling & FC - 1280 1

Table 2, ECA0.25 indicates that the number of nodes in the first fully connected layer
in the ECA module is 1/4 of the number of feature matrix channels input to the EMBConv
module. The new lightweight neural network model reduces memory access overhead and
improves feature extraction capabilities and model robustness.

4.3. Implementation of Distributed Intelligent Edge Computing Technology for Disease Risk Prediction

The implementation process of the distributed intelligent edge computing technology
proposed in this article for disease risk prediction is summarized as shown in Figure 6.
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As shown in Figure 6, when implementing distributed intelligent edge computing
technology for disease risk prediction, the image samples at each edge are first processed
using the MRI image preprocessing method designed in this article. Secondly, the pre-
processed image samples train the lightweight neural network model designed in this
article. Then, upload the model weights obtained by training to the central server. Then,
each edge end downloads the most complete model. Finally, the inference is completed by
each edge end.

The model training, verification, and testing of distributed intelligent edge comput-
ing technology for disease risk prediction uses public MRI image data sets. To verify
the versatility of the distributed intelligent edge computing technology proposed in this
article for disease risk prediction, this article uses the subject’s MRI image data set to
verify the designed prediction model. Experimental results show that the distributed
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intelligent edge computing technology proposed in this article for disease risk prediction
has good versatility.

4.4. Model Algorithm

The algorithm process of the distributed intelligent edge computing technology pro-
posed in this article for disease risk prediction is summarized as follows:

In Algorithm 1, {I1, I2, . . . , In} represents the “Acute Ischemic Stroke MRI” data set
published on Kaggle. T represents the training sample data, V represents the verifica-
tion sample data, S represents the test sample data, and epoch represents the number of
training iterations.

Algorithm 1: Algorithms for intelligent edge computing technology

Input: {I1, I2, . . . , In}
Output: Disease Risk Prediction Model

1
T, V, S← use the image feature preprocessing method designed in this article to preprocess
{I1, I2, . . . , In}

2 for n = 0 to epoch do
3 Training a predictive model using Linge network
4 Evaluate training effectiveness
5 Model parameter optimization
6 if the evaluation indicators are qualified:
7 Output prediction model
8 break
9 else:
10 n = n + 1
11 Output the model with the highest evaluation
12 The edge side uploads model weights to the central server
13 The edge downloads the model from the central server and performs inference on the edge.

In Algorithm 1, each edge end uses the image preprocessing method to first preprocess
the data set published on Kaggle. Then, the preprocessed samples were used to train
the lightweight neural network model designed in this article. Secondly, each edge end
uploads the model weight to the central server. The edge then downloads the central server
model. Finally, the edge side completes the inference.

5. Experimental Results and Analysis

This section describes the sample data, evaluation metrics, experimental environment,
prediction results, model performance indicator comparison, and model optimization
comparison used in the experimental process of the proposed distributed intelligent edge
computing technology for disease risk prediction. The federated learning framework we
used in the experiment is TensorFlow Federated, and the deep learning framework is
Tensorflow-GPU 2.6.0.

5.1. Sample Data

The data set used in this article is the “Acute Ischemic Stroke MRI” data set publicly
available on Kaggle. The Neurology Department of Turgut Özal University Medical
College Hospital collected this brain image data set. The Ethics Committee of the Faculty
of Medicine of Turgut Özal University approved this study [34].

The sample data in Table 3 use MRI images of patients with acute ischemic infarction
who were admitted to the hospital in 2021. This data set consists of ischemic acute infarction
and standard images. To further verify the model’s generalization ability, we used subject
data from a nursing home to test the model further [34].
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Table 3. Related Research Statistics [34].

Diffusion MRIs Male Female Total Male Age Female Age Number
of MRIs

Ischemic Acute
Infarction 33 44 77 73.36 ± 13.52 70.39 ± 15.17 1002

Healthy 21 16 37 68.9 ± 8.72 71.43 ± 16.39 1008

5.2. Evaluation Metrics

The indicators used to evaluate the prediction model in this article are accuracy,
precision, recall, specificity, F1 score, and AUC value.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2)

Precision =
TP

TP + FP
× 100% (3)

Recall =
TP

TP + FN
× 100% (4)

Speci f icity =
TN

TP + FN
× 100% (5)

F1 =
2TP

2TP + FP + FN
× 100% (6)

In Formulas (2)–(6), TP means that the correct prediction is a positive example;
that is, the prediction is a positive example and the prediction result is correct [1]. In
Formulas (2)–(6), TP means that the correct prediction is a positive example, and TN
means that the correct prediction is a counterexample. FP means that the wrong pre-
diction is a positive example. For example, FN indicates that the wrong prediction is
a counterexample [2,3].

5.3. Experimental Environment

When conducting experiments in this article, four machines were used, one of which
was used as the central server and three as edge servers. The topology diagram is shown in
Figure 7.
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As shown in Figure 7, in the hardware configuration of the central server during the
experiment, the CPU is i7-13700F, the memory is 32 GB, the SSD is 3 TB, and the graphics
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card is RTX4060Ti. In the hardware configuration of the edge server during the experiment,
the CPU is i5-13400F, the memory is 16 GB, the SSD is 1 TB, and the graphics card is
RTX3060Ti. The operating systems of both the central and edge servers use the Ubuntu
20.04 LTS Server.

5.4. Prediction Results

In image classification prediction research, standard lightweight neural network
models include LeViT, EfficientNetV2, MobileViTv2, EdgeViTs, EdgeNeXt, and AFFNet.
Lightweight neural network models such as LeViT, EfficientNetV2, MobileViTv2, EdgeViTs,
EdgeNeXt, and AFFNet are relatively common lightweight neural network models that
achieve SOTA performance. Therefore, in order to understand the experimental effect of
the lightweight neural network model proposed in this article, we conducted comparative
experiments with network models such as LeViT, EfficientNetV2, MobileViTv2, EdgeViTs,
EdgeNeXt, and AFFNet. The “Acute Ischemic Stroke MRI” data set published on Kaggle
is used in experiments in papers published by researchers such as B. Tasci. Therefore, we
chose to use this data set in the experiment, divided the training set, verification set, and
test set according to the ratio of 8:1:1, and applied it to the comparative experiments of
all models. When conducting experiments, we used all Adam optimizers; the batch_size
settings were all 16, and the learning_rate settings were all 0.0001. The results of the
experiment are shown in Table 4.

Table 4. Comparison of experimental results of various network models on public data sets.

Basic Algorithm Accuracy Precision Recall Specificity F1 AUC

LeViT [35] 0.84 0.83 0.81 0.79 0.85 0.92
EfficientNetV2 [33] 0.94 0.93 0.92 0.91 0.95 0.95
MobileViTv2 [36] 0.86 0.84 0.85 0.83 0.87 0.93

EdgeViTs [37] 0.87 0.85 0.88 0.86 0.91 0.92
EdgeNeXt [38] 0.89 0.87 0.90 0.88 0.93 0.91

AFFNet [39] 0.93 0.92 0.91 0.89 0.94 0.96
Linge 0.96 0.95 0.93 0.95 0.98 0.97

Table 4 shows the experimental results on the public data set “Acute Ischemic Stroke
MRI” introduced in this article. As seen from Table 4, in the experiment using public data
sets to compare various network models, the EdgeNeXt and AFFNet network models
achieved better experimental results. The lightweight neural network model proposed in
this article has the best experimental results. When conducting comparative experiments,
we accepted 350 MRI image data from two categories (with and without stroke risk,
175 images, respectively) provided by a medical institution. We organized them into a
subject data set. This subject data set is used as a test data set for further testing of the
model. To gain an in-depth understanding of the comparative experimental effects, we
further tested each network model using the subject data set. The experimental results are
shown in Table 5.

Table 5. Comparison of experimental results of various network models on the subject data set.

Basic Algorithm Accuracy Precision Recall Specificity F1 AUC

LeViT [35] 0.83 0.82 0.77 0.78 0.81 0.93
EfficientNetV2 [33] 0.95 0.94 0.91 0.93 0.92 0.94
MobileViTv2 [36] 0.85 0.87 0.80 0.81 0.83 0.94

EdgeViTs [37] 0.88 0.89 0.85 0.83 0.84 0.93
EdgeNeXt [38] 0.90 0.91 0.87 0.89 0.86 0.92

AFFNet [39] 0.92 0.93 0.89 0.91 0.90 0.95
Linge 0.97 0.96 0.94 0.96 0.97 0.95
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As shown in Table 5, in the experiment using the subject data set to compare various
network models, the EdgeNeXt and AFFNet network models achieved better experimen-
tal results. The lightweight neural network model proposed in this article has the best
experimental results.

This experiment shows that the lightweight neural network model proposed in this
article can effectively support our proposed intelligent edge computing method for disease
risk prediction.

5.5. Model Performance Indicator Comparison

To gain an in-depth understanding of the various performance effects of the lightweight
neural network we proposed, this article conducted comparative experiments using
lightweight neural network models LeViT, EfficientNetV2, MobileViTv2, EdgeViTs, Ed-
geNeXt, and AFFNet. The experimental comparison results are shown in Table 6.

Table 6. Comparison of model performance indicators with experimental results.

Basic Algorithm Parameter
Quantity/MB

Number of
Operations/G

Memory Capacity
Occupied/MB

LeViT [35] 11.93 11.97 192.97
EfficientNetV2 [33] 11.78 11.39 188.85
MobileViTv2 [36] 11.25 11.26 186.78

EdgeViTs [37] 10.27 10.86 185.63
EdgeNeXt [38] 9.55 9.98 170.35

AFFNet [39] 8.98 6.59 160.79
Linge 7.63 5.91 155.28

Table 6 shows that the proposed lightweight neural network’s performance effects
are significantly better than the lightweight neural network models LeViT, EfficientNetV2,
MobileViTv2, EdgeViTs, EdgeNeXt, and AFFNet. Model performance index comparison
experimental results show that the lightweight neural network model we proposed has
the lowest number of parameters, the smallest number of operations, and the smallest
occupied memory capacity compared to the above six models, and the model’s overall
performance is the best.

To further understand the timing performance of our proposed model, we used the
Android platform to conduct comparative experiments on the inference time of the Linge
model and lightweight neural network models such as LeViT, EfficientNetV2, MobileViTv2,
EdgeViTs, EdgeNeXt, and AFFNet. The comparative experimental results are shown
in Table 7.

Table 7. Model timing performance comparison experimental results.

Basic Algorithm Inference Time (Seconds)/Photo

LeViT [35] 5.38
EfficientNetV2 [33] 4.89
MobileViTv2 [36] 4.61

EdgeViTs [37] 4.57
EdgeNeXt [38] 4.15

AFFNet [39] 3.93
Linge 3.26

Among the hardware platforms used in our inference speed performance comparison
experiments, the operating system is Android 11, the display chip is Mali G52 2EE, the
CPU is Allwinner A133, the running memory is 4 GB, and the memory capacity is 64 GB.
As shown in Table 7, the proposed model has the fastest inference speed on the same
hardware platform.
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5.6. Model Optimization Comparison

To improve the performance of the Linge network model we proposed, this article
adjusted the Linge network model’s relevant parameters in training the prediction model
using the “Acute Ischemic Stroke MRI” data set published on Kaggle. The experimental
comparison results before and after adjusting the Linge network model parameters are
shown in Figure 8.
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In optimizing model parameters in this article, we mainly adjusted the learning rate,
batch size, epochs, activation function, optimization algorithm, and Dropout ratio and
conducted related ablation experiments. When conducting ablation experiments, our
evaluation metrics are accuracy, precision, recall, specificity, F1 score, and AUC value.
To obtain the optimal step size updated in each iteration, we conducted comparative
experiments on learning_rate and finally set the learning rate to 0.0001. To obtain the
optimal number of samples used to update parameters in each iteration, we conducted
comparative experiments on the batch size and set the batch size to 16. During the model
training process, we found that the LOSS of the model began to converge at epochs 6300.
In the comparative experiment of activation functions, we found that when using the SiLU
activation function, the evaluation indicators of the model are relatively the highest. In the
comparative experiment of optimization algorithms, we found that when using the Adam
optimizer, the evaluation indicators of the model are relatively the highest. In the Dropout
proportion comparison experiment, we found that when the random deactivation is set to
0.78, the evaluation indicators of the model are relatively the highest. Figure 8 shows that
various evaluation indicators of the prediction model have improved to a certain extent
after adjusting relevant parameters.

This section describes in detail the experimental process of our proposed distributed
intelligent edge computing technology for disease risk prediction from sample data, evalua-
tion indicators, prediction results, model performance indicators, and model optimization.

6. Conclusions

To meet the diverse application scenarios of disease risk prediction, we propose
distributed intelligent edge computing technology for disease risk prediction. To reduce the
computing pressure on edge and central servers, we propose a lightweight neural network
model. The Linge network model parameter size is only 7.63 MB, and the memory only
takes up 155.28 MB. In experiments on stroke risk prediction, the Linge network model
achieved an accuracy of 96%, a precision of 95%, a recall of 93%, a specificity of 95%, an
F1 score of 98%, and an AUC of 97%. According to the characteristics of MRI images, we
further designed an MRI image preprocessing method to improve the model’s confidence
and generalization ability. The data set used in the experiments of this article is the “Acute
Ischemic Stroke MRI” data set publicly available on Kaggle. To verify the distributed
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intelligent edge computing technology for disease risk prediction proposed in this article,
we conducted verification experiments using subject MRI data. The verification experiment
results show that our proposed distributed intelligent edge computing technology for
disease risk prediction can be well applied to diverse business scenarios. In future research,
we will collect and organize training samples covering more diseases to improve the
prediction range of the model.
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Abstract: The digital transformation of banks has led to a paradigm shift, promoting the open sharing
of data and services with third-party providers through APIs, SDKs, and other technological means.
While data sharing brings personalized, convenient, and enriched services to users, it also introduces
security risks, including sensitive data leakage and misuse, highlighting the importance of data
classification and grading as the foundational pillar of security. This paper presents a cloud-edge
collaborative banking data open application scenario, focusing on the critical need for an accurate and
automated sensitive data classification and categorization method. The regulatory outpost module
addresses this requirement, aiming to enhance the precision and efficiency of data classification.
Firstly, regulatory policies impose strict requirements concerning data protection. Secondly, the sheer
volume of business and the complexity of the work situation make it impractical to rely on manual
experts, as they incur high labor costs and are unable to guarantee significant accuracy. Therefore,
we propose a scheme UP-SDCG for automatically classifying and grading financially sensitive
structured data. We developed a financial data hierarchical classification library. Additionally, we
employed library augmentation technology and implemented a synonym discrimination model. We
conducted an experimental analysis using simulation datasets, where UP-SDCG achieved precision
surpassing 95%, outperforming the other three comparison models. Moreover, we performed real-
world testing in financial institutions, achieving good detection results in customer data, supervision,
and additional in personally sensitive information, aligning with application goals. Our ongoing
work will extend the model’s capabilities to encompass unstructured data classification and grading,
broadening the scope of application.

Keywords: sensitive data; classification and grading; augmentation; synonym mining;
financial scenarios

1. Introduction

With the advent of the big data era, data have been recognized as essential production
factors. To promote the data factor market, ensuring data security is a fundamental
requirement. In this context, sensitive data pertain to information that, if disclosed or
compromised, has the potential to inflict significant harm upon individuals or society.
Sensitive data encompass personal privacy information, such as names, phone numbers,
bank account numbers, ID numbers, addresses, passwords, email addresses, educational
backgrounds, and medical records. Additionally, this includes enterprise data that are not
suitable for public disclosure, such as the company’s operational details, IP address lists,
and network structure.

Effectively addressing the diverse and constantly evolving compliance requirements
poses a formidable challenge. As the digital transformation gains momentum, numerous
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countries’ laws and regulations, coupled with security requirements stipulated by industry
organizations (e.g., PCI DSS [1], SOX [2], HIPAA, GDPR [3], CCPA [4], etc.), underscore
the importance of identifying and classifying sensitive data as the initial step in data
protection. Enterprises are confronted with the task of streamlining their compliance
workflows by leveraging simplified technology environments and pre-built templates. This
necessitates understanding the precise locations of their data and determining whether
additional safeguards are necessary. It also involves identifying both structured and
unstructured sensitive data, both locally and in the cloud, that fall under regulatory scrutiny.
Subsequently, these data must be categorized and cataloged for ongoing vulnerability
monitoring.

In recent years, the financial industry has witnessed a rapid acceleration of the open
banking model, where data applications are shared between banks and third-party service
providers. More than 30 countries and regions worldwide have already adopted or are
in the process of adopting this model [5]. Open banking offers numerous advantages,
including enhanced customer experiences, the creation of new revenue streams, and the
establishment of sustainable service models in markets with limited access to traditional
banking services [5]. However, open banking also presents significant challenges, partic-
ularly concerning data security. The shared data encompass user identity information,
financial transaction details, property, and other sensitive information. This extensive data
sharing deepens the risk of data leakage and misuse [6].

To enhance the security of open banking data, we propose a sensitive data processing
technique in a cloud-edge collaborative environment, as depicted in Figure 1. Firstly,
financial institutions in the central cloud of a bank need to conduct a comprehensive
assessment of their data assets to create a visual map of sensitive data before sharing with
external parties. Secondly, the data application side (third-party organizations) deploys a
regulatory outpost on the edge to ensure the security and compliance of open banking data.
The Regulatory Sentinel is an independent software system designed to monitor every
step of data operations performed by the application side, including storage, retrieval, and
sharing. It also incorporates sensitive data identification, anonymization, watermarking,
and records all user data operations for log auditing, leakage detection, data flow mapping,
and situational awareness of data security [7].

Database

Bank

Application side 1

Customers
Regulatory 
Outposts Edge cloud

Application StaffPersonal data
Sensitive Data 
Identification

Central Cloud 
in Financial Institutions

Rule-based Processing of 
Identified Sensitive Data

Accessing 
Sensitive Data

Database

Regulatory 
Outposts Edge cloud

Application Staff

Rule-based Processing of 
Identified Sensitive Data

Accessing 
Sensitive Data

Application side 2
Data

sharing

Figure 1. Cloud-Edge collaborative framework for sensitive data processing.

From the description of the regulatory outpost, it is evident that it deeply integrates
into the data processing workflow of the application side, leveraging the characteristics of
edge-based data processing. To avoid compromising the overall data processing experience
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and incurring significant costs for the application side, the deployment of the Regulatory
Sentinel should meet the following requirements:

1. Elastic scalability of resources: As data processing by the application side requires
computational resources, which fluctuate with varying data volumes, the deployment
should allow for elastic scalability of resources to minimize investment costs for the
application side.

2. Low bandwidth utilization cost and reduced data processing latency: The data traffic
accessed by the application side needs to pass through the regulatory outpost. It is
crucial to ensure low bandwidth utilization costs and reduced data processing latency
to minimize any impact on the application side’s user experience.

3. Ensuring data compliance: In the context of open banking, the application side tends
to locally store open banking data, necessitating compliance checks on these data
to prevent potential leaks. As shown in Figure 2, a way is given for the application
side to perform operations such as data desensitization and watermarking locally to
enhance data security, in which data classification and grading is the basis.

Regulatory outposts Data Storage & Destruction Data users

Encryption

Short-term 
database 

(desensitization)

Zero trust
Access RequestAuthorized 

access request

Desensitization

Display

Statistical 
Analysis

External 
Sharing

Watermarking

Data flow 
map

Data Security 
Situational 
Awareness

Data 
destruction

Log 
auditing

Leak 
detection

Sensitive data 
classification

Data

Full-volume 
database 

(encryption)

Data Providers

Open 
Banking 
Database

Data asset map 
generation

Desensitization policy 
generation

Permission control 
policy generation

Data destruction policy 
generation

Desensitization

Data input processing
Regulatory outposts

Data export processing

Figure 2. Data processing workflow in regulatory outposts within edge cloud scenarios. We con-
ducted a comprehensive study on various security issues within open banking and proposed a data
security framework. In this paper, our primary focus is on the issue of classifying sensitive data.
Security measures such as watermarking are addressed in other works [7].

Hence, the automated classification and grading of sensitive data in the financial
sector are garnering increasing attention. Firstly, financial institutions should conduct a
comprehensive assessment of their own data landscape to achieve a visualized map of
sensitive data assets before engaging in data sharing. Secondly, for third-party service
providers collaborating with financial institutions, it is imperative that they enhance their
data security management capabilities in accordance with government regulatory require-
ments and contractual agreements with financial institutions, which include encrypting
sensitive data during storage or implementing data anonymization techniques, with the
prerequisite being the prompt identification and classification of sensitive data transmitted
during the collaboration process.

From the aforementioned scenario, the automated classification and categorization of
sensitive data in the financial domain is a fundamental capability of the technology platform.
Currently, the financial industry employs two primary methods for data classification and
grading. One involves manual classification, which spans multiple departments, leading to
a lengthy and inefficient process, and it lacks reusability, posing limitations on its scalability
and adaptability. Another relies on automated classification and grading based on pattern
matching, utilizing internally constructed data dictionaries. However, this approach suffers
from low accuracy rates, especially when dealing with incomplete data dictionaries.
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Building upon the aforementioned challenges, we present a data classification and
grading framework to the financial industry which adheres to the relevant industry stan-
dards. Our framework encompasses both structured and unstructured data classification
and grading. For structured data, we introduce a novel sensitive data classification and
grading algorithm named UP-SDCG, leveraging self-enrichment and broadening tech-
niques. Additionally, we enhance the financial data hierarchical classification by employing
an augmentation model to expand keywords and lexicons, which significantly boosts the
accuracy and recall of data classification and grading. Furthermore, we incorporate a
synonym discrimination model to further expand the keywords and dictionaries in the
industry data hierarchical classification library, resulting in improved accuracy and recall
of data classification and grading. In our future work, we aim to further develop a scheme
for classifying and grading unstructured sensitive data. This scheme will also support the
coarse-grained classification of document data containing sensitive information. Addition-
ally, we will propose a fine-grained classification approach to identify the types of sensitive
data and their corresponding levels within the document.

Our research makes the following contributions:

• We propose a financial data classification and grading framework and a self-enlarging
structured sensitive data classification and grading algorithm named UP-SDCG, with
a synonym discrimination model innovatively introduced to further expand keywords
and lexicons.

• Testing on real-world financial industry data, UP-SDCG outperforms existing public
cloud algorithms in terms of accuracy and recall for sensitive data classification
and grading.

• We further propose unstructured sensitive data classification and grading design
scheme and scenario analysis.

2. Related Work

When it comes to data classification and grading, distinct approaches are employed
to classify and grade various data structures. Data can be categorized into two main
types based on their structure: structured and unstructured. Structured data are typically
stored within databases, encompassing data types and field designations. This structured
nature aids in effective data classification and grading, demanding meticulous categoriza-
tion. Moreover, this process necessitates classifying and grading outcomes for individual
columns. Conversely, unstructured data commonly appear in formats such as logs and
documents, encompassing contextual semantics. Leveraging Natural Language Processing
(NLP) methods facilitate semantic analysis, unveiling concealed sensitive information
within the document. Within this context, the classification granularity can vary between
broad and detailed. Broad classification involves furnishing classification results for the
entire document, while fine-grained classification mandates identifying specific sensitive
data types contained within the document alongside their corresponding levels.

2.1. Structured Sensitive Data Classification

Guan X. et al. [8] conducted a comprehensive investigation into the classification
approach for structured sensitive data in the realm of electric power. They introduced a
hierarchical identification technique, which initially identifies attributes within the database
as sensitive data and subsequently categorizes them based on the specific characteristics of
the sensitive information. Furthermore, different levels of sensitivity are assigned to these
attributes in accordance with the varying permissions of the involved users. On the other
hand, Rajkamal M. et al. [9] focused on safeguarding data stored in the cloud by extracting
sensitive data components and post-encryption using Attribute-Based Encryption (ABE),
and proposed a classification technique based on fuzzy rule analysis to effectively categorize
attributes within structured data. In the healthcare domain, Ray S. et al. [10] combined
domain experts and expert systems to assign sensitivity scores to attributes, enabling the
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identification of sensitive data through techniques such as random sampling and multiple
scanning, eliminating the need for data cleansing before identification.

However, the standalone accuracy of rule-based sensitive data classification methods
presents limitations due to the dynamic nature of industry attributes and linguistic context,
leading to instances where the algorithm may miss identifying the sensitive data. Mouza
C. et al. [11] devised a strategy that involves semantically designating which concepts
constitute sensitive information, thereby ascertaining sensitive content within structured
data. Subsequently, the attributes in the database that semantically correspond to these
concepts are retrieved. While this algorithm exhibits robust performance on smaller
datasets, its scalability to larger datasets is a challenge. In response to the limitations
of individual sensitive attribute detection, Tong Y. [12] introduced correlation rules to
identify interconnected sensitive attributes. Similarly, Xiao Y. [13] proposed determining
the correlation among sensitive attributes in structured data through a multidimensional
bucket grouping technique, which enables the establishment of sensitive categories and
levels based on attribute correlations.

Chong P. [14] employed machine learning techniques, including Bert models and
regular expressions, for real-time active identification, classification, and validation of
sensitive data. Similarly, Silva P. [15] harnessed NLP tools (NLTK, Stanford, and CoreNLP)
to identify and validate personally identifiable information within datasets. Recent ad-
vancements have embraced deep learning-based NER models, showcasing their potential
in automatic feature discovery for enhanced classification or detection [16]. Furthermore,
Park J. et al [17] introduced NER techniques for structured data, constructing the Text
Generation Module (TG Module) and Named Entity Recognition Module (NER Module) to
generate sentences and recognize entities, respectively. While the application of AI models
has indeed enhanced the accuracy of sensitive data recognition to a certain extent, the
models often lack domain-specific knowledge at their inception. For instance, they may
overlook the recognition of synonyms, leading to suboptimal performance in real-world
engineering applications.

2.2. Unstructured Sensitive Data Classification

Jiang H. et al. [18] explored the use of text categorization methods, employing TF-IDF
for feature extraction and initially evaluated Bayesian, KNN, and SVM classifiers for the
classification of medically sensitive data. Adam Považane [19] employed document clas-
sification based on data confidentiality, comparing the performance of commonly used
text classification algorithms across resume, legal document, and court report datasets.
Notably, both Huimin Jiang’s and Považane’s studies limited test data classification to
binary sensitive and non-sensitive categories. In contrast, Yang R. et al. [20] presented a
sophisticated label distribution learning classification approach that aimed to categorize
power data into six main categories and twenty-three subcategories but lacked specific
experimental outcomes. Additionally, Gambarelli G. et al. [21] focused on personal infor-
mation in their study of sensitive data. Their model consisted of three stages: SPeDaC1
for sentence classification as sensitive or non-sensitive, SPeDaC2 for multi-class sentence
categorization, and SPeDaC3 for detailed labeling with 61 distinct personal data categories.
It is important to highlight that empirical findings indicated reduced effectiveness in the
model’s fine-grained classification performance.

Dias M. et al. [22] endeavored to extract and categorize unstructured Portuguese text
containing sensitive data. They constructed a named entity recognition module to identify
sensitive information, such as personal names, locations, emails, and credit card numbers,
within the text. In contrast, García-Pablos A. [23] introduced a deep learning model,
BERT, to identify and categorize sensitive data in Spanish clinical text, aiming to recognize
various types of sensitive information, including dates, hospital names, ages, times, doctors,
genders, kinships, locations, patients, and occupations. However, there exists potential for
further refinement and enhancement of the observed experimental outcomes.
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2.3. Data Classification and Grading Framework

In the realm of data classification and grading, scholars typically commence their en-
deavors by establishing policies to ensure data compliance, which serves as a foundational
step in constructing programs and frameworks for data classification and grading. For
instance, Aldeco-Perez et al. introduced a compliance analysis framework based on data
source and data usage, aligned with the UK Data Protection Act [24,25]. Their approach
focuses on averting the misuse of personal sensitive data and evaluating the propriety of
its utilization. However, they overlooked the potential risk stemming from the exposure of
personal sensitive data under unforeseen circumstances. Subsequently, Yang M presented
the Gen-DT scheme [26], which leverages legal statutes to establish an external knowledge
base. They employed a generalization-enhanced decision tree algorithm to categorize data
into regulatory and non-regulatory types. Nonetheless, this scheme solely dichotomizes
data without specifying the sensitive classification and corresponding levels within regula-
tory data, which poses an inconvenience for implementing distinct protective measures
for varying levels of sensitive data. Addressing the challenge of information extraction
from regulations, Elluri L constructed a knowledge graph by automatically extracting
information from GDPR and PCI DSS [27,28]. Building upon this, Yang M. [29] introduced
the GENONTO framework, which autonomously extracts data classification and grading
information from enacted regulations to construct a knowledge base. These frameworks
expedite the extraction of classification and grading data from regulatory guidelines, facili-
tating their application in our module following calibration. Expanding beyond compliance
considerations, academics have introduced additional metrics to optimize classification
and grading outcomes. For instance, Wang J. et al. [30] introduced data value evaluation
indicators to enhance data grading results within the context of classification criteria. This
optimization was assessed within the new energy automobile industry.

3. Methodology
3.1. Data Classification Framework

Our proposed framework for sensitive data classification and grading consists of four
key modules, as illustrated in Figure 3. These modules are the preprocessing module, the
classification and grading module, the result presentation module, and the comprehensive
analysis module.

Data
Data 

Classification

Structured 
Data

Based on Entity

Based on Text classification

Structured data classification  
and grading

Textualized Data 
Sensitive Recognition Scheme

Contextual Output 
of Sensitive Data Types and Levels

Based on Domain

Based on Category

Based on Entity

Based on column

Unstructured 
Data

High-Sensitivity Data 
User Permissions 

Analysis

Data Asset Mapping

High-Sensitivity Data 
Circulation Diagrams

Classification and Grading Preprocessing Result Presentation  Comprehensive Analysis   

Figure 3. Data classification framework. The highlighted module in the figure is the main focus of
this work.

The preprocessing module is responsible for classifying data into two categories:
structured data and unstructured data. Depending on the data type, the classification and
grading module applies different processes. For structured data, we designed a specialized
model called the structured sensitive data classification and grading model (UP-SDCG).
On the other hand, for unstructured data, we devised both coarse-grained and fine-grained
data classification and grading schemes. The coarse-grained approach is based on text
classification, while the fine-grained approach relies on entity recognition. The result
presentation module displays unstructured data with details such as the Category, Type
and Entity Type of the text, presented with granularity ranging from coarse to fine. For
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structured data, the module inputs the classification and grading results for each column.
Finally, in the comprehensive analysis module, we utilized the obtained classification and
grading results to build data asset maps and other capabilities that provide users with a
deeper understanding of the data landscape.

In the following sections, we present our proposed model, UP-SDCG, which focuses
on the classification and grading of structured sensitive data.

3.2. Structured Data Classification Framework

Figure 4 illustrates the components of the structured data classification and grading
framework, comprising three main modules: the hierarchical classification library build-
ing module, the keyword augmentation module, and the data classification and grading
module. The hierarchical classification library building module is responsible for build-
ing industry-specific data classification and grading libraries, which are designed based
on industry compliance standards. The keyword augmentation module leverages NLP
technology to expand the keywords present in the industry data hierarchical classification
library. Additionally, it trains the synonym discrimination model to enhance the library’s
capabilities. Lastly, the data classification and grading module utilizes the keywords, rules,
dictionaries, and synonymous discriminative models from the hierarchical classification
library. These components collectively enable the module to classify and grade struc-
tured data. The resulting output includes sensitive data types and their respective grades
organized by columns.

Hierarchical Classification 
Library building module 

Keyword augmentation 
module 

Dictionary augmentation 
module 

Data classification and 
grading module 

Figure 4. Structured data classification framework.

3.2.1. Library Building Module

To construct UP-SDCG’s data classification hierarchy for the financial industry, we
followed the guidelines outlined in the Financial Data Security Classification Guidelines
(JR/T 0197-2022) [31]. This library encompasses the standard data commonly found in
financial institutions, which can be categorized into four Level 1 subcategories, thirteen
Level 2 subcategories, seventy-one Level 3 subcategories, and two hundred and seventy-
nine Level 4 subcategories.

To extract entity names from the content, including names, genders, nationalities, and
so on, we utilized pattern-matching technology. Subsequently, the sensitivity level is based
on the identified entity. These entities are categorized into three groups based on expert
knowledge and experience: strong rule entities, weak rule entities, and irregular entities.

• Strong Rule Entities: These entities are characterized by explicit and well-defined
rules, resulting in minimal recognition errors, including Chinese ID numbers and
Chinese cell phone numbers.

• Weak Rule Entities: These entities, including passwords and balances, exhibit some
identifiable patterns, but regular expressions alone cannot guarantee complete matching.

• Irregular Entities: Unlike strong and weak rule entities, irregular entities lack dis-
cernible patterns or rules, making their identification particularly challenging.

We employed distinct recognition methods tailored to various entity types, as illus-
trated in Table 1.
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Table 1. Entity recognition methods for structured data.

Entity Type Structured Recognition Method

Strong Rule Entities Regular Expression
Weak Rule Entities Keyword + Regular Expression
Irregular Entities Keyword + Dictionary

Based on the identification concepts outlined above, we developed the financial data
hierarchical classification library for UP-SDCG. The structure of this library is presented
in Table 2.

Table 2. Illustrative examples of UP-SDCG financial data hierarchical classification library.

Entity Name Sensitivity
Level Entity Type Keywords Features

Name 3 Irregular Entity Name Name
Gender 3 Weak Rule Entities Gender Gender (Broad)
Gender 3 Strong Rule Entities - Gender (Narrow)

Nationality 3 Irregular Entity Nationality Country Name
ID Effective Date 3 Weak Rule Entities ID Effective Date Date
Enrollment Date 2 Weak Rule Entities Enrollment Date Date
Personal Income 3 Weak Rule Entities Personal Income Amount

Deposit 2 Weak Rule Entities Deposit Amount

We constructed the feature library by extracting content characteristics of entities,
including information such as birthdays, the effective date of documents, the expiration
date of documents, the date of enrollment, and other entities represented in date format.
Similarly, personal income, deposit, credit card cash withdrawal amount, product amount,
and other entities are represented in amount format. Additionally, we categorized presen-
tation forms such as name, gender, country, date, and amount to form the comprehensive
“Feature Library”. This Feature Library comprises three distinct modules: Feature Name,
Regular Expression, and Dictionary. The Feature Name within the Feature Library is asso-
ciated with the features found in the Financial Data Hierarchical Classification Library. For
further clarity, please refer to the structure of the Feature Library presented in Table 3.

Table 3. Illustrative examples of UP-SDCG Features Library.

Feature Name Regular Expression Dictionary

Name - Chinese Name
Gender (Broad) Male‖Female‖0‖1‖2 -

Gender (Narrow) Male‖Female -
Country Name - Country Name

Date \d{4}year(1[0− 2]|[1− 9]|0[1− 9])day
\d{4}(1[0− 2]|[1− 9]|0[1− 9])day -

Amount ^(−|\+)?([1− 9]\d{0, 9}|0)(\.\d{1, 10})? -

3.2.2. Keyword Augmentation Module

In the design of the identification scheme, we observed that entity identification
heavily relies on keywords. However, the lack of uniformity in data dictionaries across
different departments and enterprises, as well as the reliance on manual labeling, presented
challenges in achieving comprehensive keyword coverage. For instance, when referring
to the income situation of an entity, keywords such as “monthly salary”, “salary,” “wage,”
“income,” “treatment,” and “remuneration” may be involved. Therefore, we proposed a
keyword augmentation framework with a synonym discrimination model.
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• Keyword Augmentation Framework

Keyword augmentation relies on the fundamental concept of synonym mining, which
can be broadly categorized into two main types: knowledge-based augmentation and
pattern-based augmentation.

As illustrated in Figure 5, knowledge-based augmentation primarily relies on four
types of knowledge bases:

knowledge-based data augmentation scheme

Publicly available financial datasets 

Extended Synonym Thesaurus 

HowNet

Real data of the financial industry   

Figure 5. Knowledge-based keyword augmentation.

(1) Publicly available financial datasets: We used publicly accessible financial structured
data to accumulate keywords. For example, we extracted statistics provided by the
China Banking and Insurance Regulatory Commission;

(2) Extended Synonym Thesaurus: Considering the uniqueness of Chinese synonyms, we
employed the Synonym Thesaurus [32] compiled by Mei J. et al. [33] at the Harbin In-
stitute of Technology Information Retrieval Laboratory as the foundation to construct
the Extended Synonym Thesaurus. This extended version encompasses nearly 70,000
entries organized in a hierarchical tree-like structure, utilizing a five-level encoding
pattern to classify the entries into five tiers: major category, intermediate category, mi-
nor category, word group, and atomic word group. Each atomic word group includes
one or more synonymous words;

(3) HowNet [34]: KnowNet utilizes tree-like sense-principal graphs and net-like sense-
principal graphs to describe lexical properties;

(4) Real data of the financial industry: We incorporated real information from the financial
industry, specifically the banking industry interface.

The central concept behind pattern-based keyword augmentation lies in bootstrapping.
Bootstrapping is a statistical estimation method that involves inferring the distributional
properties of the aggregate by resampling the observed information. The idea of imple-
menting relationship extraction based on semi-supervised learning bootstrapping methods
was proposed in Snowball [35]. We introduced this approach to the domain of keyword
synonym mining, which comprises the following four sub-steps, as shown in Figure 6.

(1) Preparing the seed word set: This step involves collecting a set of high-quality alias
word pairs for the current keyword;

(2) Mining the occurrence patterns: We analyzed the occurrence patterns of both the native
names and aliases in a corpus constructed from Wikipedia and the Baidu Encyclopedia.
These patterns encompass instances like “X, also known as Y.” Furthermore, we
utilized the seed word set to facilitate the identification of these patterns;

(3) Generating pattern sets: Based on the identified occurrence patterns, we generated
sets of patterns that can be used for further analysis;
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(4) Mining synonym pairs: Using the pattern sets, we extracted pairs of synonyms from the
corpus. This step expands the range of synonymous terms associated with the designated
keyword and facilitates a more comprehensive understanding of its semantic variations.

bootstrapping-based data augmentation scheme

corpus    

Seed word set 

Occurrence 
Patterns  

Candidate 
Pattern Sets 

Screening Pattern Sets

Figure 6. Pattern-based keyword augmentation.

• Synonym Discrimination Model

We developed a synonymy discrimination model classifier to determine whether a
word can be added to a certain keyword collection. The construction process is as follows:

(1) We extracted keyword sets {S1, S2, . . . , Sn} from the existing UP-SDCG Financial Data
Hierarchical Classification Library. Each keyword set Si consists of several words with
similar meanings;

(2) For each keyword set Si, we employed knowledge-based and pattern-based keyword
expansion techniques to extract the top five similarity words {ti1, ti2, . . . , ti5}. These
similarity words are used to construct the keyword candidate set;

(3) We labeled the candidate words in the keyword candidate set. Words belonging to
this keyword set were labeled as 1, while those not belonging to it were labeled as 0.
Candidate keywords labeled as 1 were then expanded into the keyword set, resulting
in the expanded keyword set. To train the classifier, we generated a collection of
keyword training set-instance pairs from the pattern-based augmented keyword set.
For each keyword set Si, we randomly retained an instance tpos ∈ Si and constructed a
positive set of instance samples (Si, tpos) where the label ypos was 1. For each positive
sample (Si, tpos), we generated a negative sample (Si, tneg) by randomly selecting
a negative instance tneg where the label yneg was 0. Following the research [36]
experimental analysis, for each positive instance sample, we constructed five negative
instance samples as shown in Table 4.

Table 4. Training data and labeling.

Candidate Keywords Keywords Set Label

t11 S1 0
t12 S1 1
. . . . . . . . .
ti1 Si 1
ti2 Si 1
. . . . . . . . .
tn4 Sn 0
tn5 Sn 0
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(4) Next, we constructed the keyword set-candidate word classifier. We set the keyword
set as Si, the candidate word as tij, and the corresponding label as yij. We followed
work [36] for similar candidate word discrimination through scores. First, we used
q(∗) to quantify the degree of set similarity:

q(Si) = g(
m

∑
i=1

f1(xi)) (1)

where Si = t1, t2, . . . , tm was put into the embedding layer to obtain the embedding
vector f1(Si) = x1, x2, . . . , xm and after that the original score representation was
obtained and g(∗) represents the post-transformer, we then used a fully connected
neural network with three hidden layers to transform the obtained vectors into scores.
Then, we computed the difference between the set Si and the set Si ∪ {tij}, and
transformed it into a probability to determine the similarity between tij and keyword
in Si:

P(tij ∈ Si) = φ(q(Si ∪ tij)− q(Si)) (2)

where φ(∗) is the sigmoid function. The model was optimized by minimizing the
loss function:

loss(tij) =

{
− log(max(1− P(tij ∈ Si), α)) if yij = 0
− log(max(P(tij ∈ Si), α)) if yij = 1

(3)

loss =
n

∑
i=1

5

∑
j=1

loss(tij) (4)

where tij belongs to Si while yij equals to 1, and yij is 0 when tij does not belong
to Si. We set the parameter α to 10−5 to prevent the loss function from yielding
infinite values.

By employing the aforementioned method, we optimized using an Adam optimizer
with an initial learning rate of 0.001 and set the dropout to 0.5.

3.2.3. Dictionary Augmentation Module

In the Financial Data Hierarchical Classification Library of UP-SDCG, the detection
of certain entities using regular expressions presents challenges. To address this issue, we
need to construct specific dictionaries for entities such as names, app names, car brands,
and others. Unlike keywords, the words within these dictionaries do not have exact
semantic matches but tend to appear within similar contextual structures. Leveraging this
characteristic, we propose a word2vec-based augmentation scheme, illustrated in Figure 7,
to enhance the detection capabilities.

corpus    

basic Word 

Chinese Word Vector Corpus

the probability of two words being synonyms increases as their
contextual usage becomes more similar.

Similar words of TOP 𝑲

Word2vec

Measuring Word Vector Similarity  

Training Process

word2vec-based data augmentation scheme

Figure 7. Word2vec-based dictionary augmentation scheme.
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Word2vec [37] is a word embedding technique introduced by Google, which aims to
represent abstract words as vectors in the real number domain. The method comprises
two architectures: Continuous Bag of Words (CBOW) and Skip-gram. CBOW predicts
the current word based on its context, whereas Skip-gram predicts the context given the
current word. To enhance training efficiency, Word2vec introduces two training algorithms:
Hierarchical Softmax and Negative Sampling. Word2vec’s ability to capture synonymy
between words proves advantageous in dictionary construction. In our study, we utilized
word2vec to train a Chinese word vector library specifically tailored to the financial domain.
By combining publicly available Chinese word vectors from the industry, we constructed a
dictionary using word vector similarity. The process is as follows:

(1) Utilize open-source pre-trained word vectors, such as Tencent AI Lab Embedding
Corpus for Chinese Words and Phrases [38], Stanford GloVe Embeddings [39], fastText
word vectors [40];

(2) Load the Embedding model with the selected pre-trained word vectors and fine-
tune it using the financial corpus, which includes financial reports, financial news
messages, etc.;

(3) Subsequently, extract similar words from the fine-tuned word vectors using cosine
distance to calculate the distance between words and construct the dictionary.

3.2.4. Data Classification and Grading Module

In this module, we present the fundamental principle of quantifying information
quantity. Specifically, in structured data, when column A and column B have an equal
number of rows and pertain to the same type of sensitive data, the difference ∈ in the
information they provide falls within a certain range [41]. This can be formulated as follows:

|H(A)− H(B)| 6∈ (5)

Here, we introduce H(∗) as a measure function to quantify the amount of information
provided by each column of data.

H(X) = − ∑
x∈A

P(x) log P(x) (6)

In Equation (6), 0 ≤ P(x) ≤ 1, ∑x∈A P(x) = 1 and P(x) represent the probability of
occurrence for each discrete piece of information.

To apply the basic principle of information quantity quantization, we computed the
average amount of information provided by each subclass {S1, S2, . . . , Sn} in the data
dictionary. This was achieved by defining the equation as follows:

Si = kij
m1
i=1 (7)

where kij represents a single keyword and mi (where mi ≥ 1) denotes the number of
keywords in subclass Si.

To proceed, we identified columns in the dataset with kij as the field name and
extracted 100 rows from each column to form cijk

ri
k=1. Subsequently, we calculated the

number of discrete information elements q and information entropy H in each class.

qi =
1

mi

mi

∑
j=1

(
1
ri

ri

∑
k=1
|cijk|

)
(8)

Hi =
1

mi

mi

∑
j=1

(
1
ri

ri

∑
k=1

H(cijk)

)
(9)
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The process of automatically classifying and grading structured data based on syn-
onym discrimination and information quantification, as illustrated in Figure 8, involves the
following steps:

Data classification and grading module

 

Parsing Structured Data 

Match Success  

Column	

Keyword
matching	

Content
Candidate entity selection	

Synonymy probability calculation

Synonymy Score Calculation	

Regular expression and 
dictionary checking

Record entity name and 
sensitivity level

Match Failure  

Maximum scoring entities 

Library building module

 

Dictionary generation module
Word2vec-based data 

augmentation

Keywords generation module

Synonym 
Discrimination Model 

Training

Bootstrapping-based 
data augmentation

Knowledge-based data 
augmentation

Figure 8. Structured data classification and grading process.

(1) Parsing: Structure the data into two parts: field names and data content;
(2) Field name identification: Utilize the keywords from the financial data hierarchical

classification library to match the field names. If a corresponding field name is found,
proceed to step 6; otherwise, move to step 3;

(3) Candidate entity selection: Randomly select 100 rows of data (denoted as di for
i = 1, 2, . . . , 100) and identify the data types, such as numeric value, English character,
Chinese character, mixed character and date. Consider entities with the same data
type from the Financial Data Hierarchical Classification Library as candidate entities;

(4) Synonym probability calculation: Apply the synonym discriminant model to deter-
mine if the field name is synonymous with the keyword set of the candidate entity.
Input the candidate entity’s keyword set Si and the field name s into the synonym
discriminant model, resulting in the probability P(s ∈ Si) that the field name belongs
to the keyword set. Iteratively traverse all candidate entities to obtain:

{P(s ∈ S1), P(s ∈ S2), . . . , P(s ∈ Si)} (10)

(5) Synonym score calculation: Calculate the number of discrete information q and
information entropy H(d) of the data:

Score = θ1P(s ∈ Si)− θ2|q− qi| − θ3|H(d)− Hi| (11)

θ1 + θ2 + θ3 = 1 (12)

where θi represents the weight share of each index. The entity belonging to the
keyword set with the highest score becomes the classification result, and step (6)
is executed;

(6) Calibration: Perform stratified sampling of the corresponding content of the field
name. Apply sensitive rules belonging to the keywords that match successfully in the
feature library under its regular items and dictionaries for secondary detection of the
sampling results. Recognition is considered successful if the matching rate exceeds
the set threshold; otherwise, it is considered a recognition failure;

(7) Output: Output the corresponding entity name and sensitivity level from the Finan-
cial Data Hierarchical Classification Library if the recognition is successful. If the
recognition fails, output NULL.

4. Experiments

The experiment was divided into two parts. Firstly, we organized a batch of simulation
test data tailored to the data characteristics of financial institutions. Using this dataset,
we compared the performance of our proposed algorithm with that of existing public
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algorithms. Secondly, we conducted a verification of the practical effectiveness of our
algorithm using real business system data from financial institutions.

We present an automatic classification and grading program written in C++ (with
5000 lines of codes) and tested using financial data. The experiments were conducted on
a Windows host with an Intel Core i7-8700 CPU @ 3.20 GHz 3.19 GHz processor. The
synonym determination module in this paper was trained using Python 3.

4.1. Evaluation Metrics

This experiment evaluates the data classification and grading model using Precision,
Recall, and F1-score. Precision, also known as recall, represents the probability of correct
classification results among all the samples classified by the model, and it is calculated
as follows:

Precision =
TP

TP + FP
(13)

where TP is the number of samples with correct classification and grading and FP is the
number of samples with errors in classification or grading.

Recall represents the probability of correctly classifying and grading the samples that
are actually required to be classified and graded from the original sample. It is expressed as:

Recall =
TP

TP + FN
(14)

where FN represents the number of samples that are not classified and graded.
The F1-score considers both Precision and Recall, facilitating their simultaneous maxi-

mization and balance. The F1-score is mathematically represented as follows:

F1 =
2× Precision× Recall

Precision + Recall
(15)

4.2. Comparative Analysis
4.2.1. Datasets

The simulation dataset comprises three primary categories: personnel, projects, and
contracts. Table 5 provides an overview of the experimental data, presenting relevant
details for each category.

Table 5. Overview of simulation data.

Dataset Row
Number

Column
Number

Sensitive
Columns

Non-Sensitive
Columns Sensitive Type

Personnel Information 22,618 111 19 92 Name, gender, phone number, email address,
company name

Project Information 23,208 301 31 270 Information about departments and personnel
involved in the project

Contract Information 6351 37 15 22 Contract payment information

• Personnel information: The personnel dataset consists of 111 variables (columns) and
22,618 data points, encompassing details such as the employee’s name, gender, work
number, cell phone number, email, department, and position.

• Project information: The project dataset contains basic information about the bank’s
projects, comprising 301 variables and 23,208 data points. This dataset includes
information pertaining to project personnel, departments, project budgets, and other
relevant factors. It is noteworthy that the dataset contains a substantial amount of
missing values.

• Contract information: The contract dataset has 37 variables and 6351 data points that
relate to basic contract information as well as supplier information.
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In the simulation dataset, the sensitive information in each column was identified
through expert auditing, and the distribution of sensitive information in this dataset is
illustrated in Figure 9. Among the various data columns, the contract data contained the
highest proportion of sensitive information, accounting for over 40% of the dataset. On
the other hand, the project data exhibited a relatively smaller percentage of sensitive data,
mainly due to a significant number of missing values present in the data.

19

31

15

92

270

22

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Personnel Information

Project Information

Contract Information

Percentage of sensitive items in datasets

Number of sensitive columns Number of Non-sensitive columns

Figure 9. Statistical analysis of sensitive data distribution in simulation dataset.

4.2.2. Experimental Results

Using the test dataset, we conducted a comprehensive comparison of UP-SDCG with
the existing sensitive data recognition models commonly employed in the industry. In the
subsequent sections, we elaborate on the specifics of the comparison model and present the
results of our experiments.

• DSC sensitive data identification model(Alibaba): Including 210 detection rules, the
financial classification template in the DSC sensitive data identification model is
constructed with reference to the industry standard Financial Data Security Data
Security Classification Guide;

• DSGC Sensitive Data Identification Model (Tencent): Use the built-in general classifica-
tion and grading standard template for identification, which contains 41 detection rules;

• GoDLP (Bytedance): ByteDance’s open source tool for sensitive data identification in
2022, which can support structured data and unstructured data identification, with 36
built-in detection rules.

UP-SDCG exhibited exceptional accuracy, surpassing all other three comparison mod-
els with a remarkable accuracy rate of over 95% on all three datasets, as depicted in
Figure 10. Notably, the DSC achieved high accuracy in recognizing personnel information,
boasting a perfect 100% accuracy rate for both personnel information and project informa-
tion. However, its performance in detecting contract dates was subpar, attributed to the
complexity of contract data that often contain various types of date information, such as
contract start and end dates. DSC’s limitations lie in its inability to correctly classify the
granularity of the date categories, resulting in insufficient delineation ability.

In contrast, our model demonstrated fine-grained category classification through the
utilization of keyword augmentation techniques, leading to a significant improvement in
recognition accuracy. By effectively recognizing and classifying sensitive data, including
numerical information like employees’ work numbers and identity IDs, our model outper-
formed DSGC, which has a high misclassification rate for such data. Furthermore, while
GoDLP achieved a higher accuracy rate by adhering to stricter rules, it recognized fewer
sensitive data instances.
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Figure 10. Comparison of precision in data grading and classification models.

UP-SDCG demonstrated a remarkable recall rate of over 94% across all test sets,
resulting in fewer omissions, as depicted in Figure 11. By formulating more than 1100
detection rules based on industry standards, UP-SDCG covered a broader range of sensitive
data compared to other three comparison models. As a result, its recall rate exhibited
significant improvement. A comparison with models DSGC and GoDLP, which utilize
generic sensitive data recognition templates revealed the limitations of current generic data
classification and grading models in the financial domain. This highlights the crucial role
played by domain-specific detection rules in achieving accurate recognition within the
financial context.
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Figure 11. Comparison of recall in data grading and classification models.

By considering both false alarms and leakage cases, we demonstrate the superior
performance of UP-SDCG over existing industry models, as illustrated in Figure 12. Specif-
ically, when compared to DSC, which also leverages financial hierarchical classification
template recognition and detection based on industry standards, our model achieves a
lower leakage rate due to its comprehensive detection rules. Additionally, we incorporated
keyword augmentation and expansion techniques, enabling fine-grained and accurate
hierarchical classification, thus effectively mitigating false alarm situations. Furthermore,
a comparison with generalized sensitive data hierarchical classification models, such as
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DSGC and GoDLP, further underscores the advantages of our financial data recognition
hierarchical classification rule base construction.
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Figure 12. Comparison of F1-score in data grading and classification models.

The comprehensive results of this experiment are presented in Table 6, revealing
significant advantages of our method over existing industry models across the three types
of test data. Our approach excels in terms of Precision, Recall, and F1-score, which are the
three key evaluation metrics used for performance assessment.

Table 6. Performance metrics of different models on various datasets.

Dataset UP-SDCG DSC DSGC GoDLP
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Personnel Information 100.00% 94.44% 97.14% 100.00% 68.25% 81.13% 69.72% 68.25% 68.98% 77.78% 15.88% 26.37%
Project Information 98.00% 100.00% 98.99% 100.00% 53.27% 69.51% 48.61% 38.99% 43.27% 100.00% 4.17% 8.01%

Contract Information 100.00% 95.84% 97.87% 30.01% 12.51% 17.65% 20.01% 8.34% 11.77% 100.00% 0.01% 0.02%

4.3. Practical Validation
4.3.1. Dataset

The dataset utilized in this study comprises real business data from financial insti-
tutions. The experiments were conducted within a secure inner loop environment. The
dataset encompasses four major categories, namely customer information, service data,
operation management, and financial supervision. A comprehensive overview of the
experimental data is presented in Table 7.

Table 7. Overview of the business dataset.

Dataset Row
Number

Sensitive
Columns

Non-Sensitive
Columns Sensitive Type

Customer Information 73 12 61 Personal information, such as name, certificate number,
income, address, phone number,account password, etc.

Service Data 23,208 103 78 Loans, insurance, bonds, cross-border business, etc.
Operation Management 13 0 13 Personal and financial information
Financial Supervision 3 0 3 Risky assets and capital adequacy

• Customer information: The customer dataset comprises 73 variables, encompassing a
wide range of data including customer names, ID numbers, income details, addresses,
phone numbers, and account passwords.

207



Future Internet 2024, 16, 102

• Service data: The service dataset, encompassing information on loans, insurance,
bonds, and cross-border transactions, comprises a total of 103 variables.

• Operation management: The Operation management dataset has 13 variables related
to personal information as well as company financial information.

• Financial supervision: The financial supervision dataset has three variables related to
information on regulatory indicators.

4.3.2. Experimental Results

Our model demonstrated exceptional performance, achieving over 90% precision,
recall, and F1-score across all four types of test data, as presented in Table 8. The false alarm
and omission cases primarily arose from the following two factors:

• Ambiguous content representation: The data content pertaining to real-world busi-
ness scenarios lacked clarity, which leads to certain omissions and false alarms in
our analysis;

• Data quality challenges: In real business scenarios, we encounter issues such as typos,
missing characters, and other irregularities, which contributed to certain omissions in
our data processing.

Table 8. Experimental effects of classification and grading.

Dataset Precison Recall F1-Score

Customer Information 100.00% 98.36% 99.17%
Service data 96.05% 93.59% 94.81%

Operation management 91.67% 92.31% 91.99%
Financial Supervision 100.00% 100.00% 100.00%

UP-SDCG demonstrated greater effectiveness in detecting customer information and
service data, suggesting that it currently outperforms other models for identifying personal
sensitive information. However, when it comes to financial data related to business opera-
tions and management, its performance slightly lagged due to the inherent uncertainty in
the data structure. Nevertheless, UP-SDCG still achieved precision, recall, and F1-scores
surpassing 90%.

4.4. Performance Analysis

We sought to understand the factors influencing the time consumption of UP-SDCG.
To investigate this, we analyzed six key variables, specifically row count, column count,
sensitive column count, non-sensitive column count, sensitive data percentage, and the
computational time taken by the test dataset. These variables are detailed in Table 9.

Table 9. Time consumption examples of the UP-SDCG Model on partial datasets.

Dataset Rows Columns Sensitive Columns Non-Sensitive Columns Sensitive Ratio Time (s)

Personnel Information1 9 50 6 44 0.120 6.351
Personnel Information2 11,280 25 6 19 0.240 5.597
Personnel Information3 11,329 36 8 28 0.222 4.825
Contract Information1 4372 9 3 6 0.333 2.025
Contract Information2 1979 28 12 16 0.429 4.269
Project Information1 20,206 151 10 141 0.066 49.493
Project Information2 3002 150 28 122 0.187 29.860

Bank Data1.csv 48 132 111 21 0.841 6.675
... ... ... ... ... ... ...
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Initially, we utilized the Pearson correlation coefficient to quantify the linear rela-
tionship between variables. The Pearson correlation coefficient is computed using the
following formula:

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
(16)

The resulting correlation values for pairwise variables are computed and presented
in Table 10.

Table 10. Pairwise variable correlations.

Rows Columns Sensitive Columns Non-Sensitive Columns Sensitive Ratio Time (s)

Rows 1.000 −0.305 −0.193 −0.235 0.576 −0.008
Columns −0.305 1.000 0.537 0.834 −0.268 0.779

Sensitive Columns −0.194 0.537 1.000 −0.017 0.429 −0.032
Non-sensitive Columns −0.235 0.834 −0.017 1.000 −0.598 0.944

Sensitive Ratio 0.576 −0.268 0.429 −0.598 1.000 −0.421
Time(s) −0.008 0.779 −0.032 0.944 −0.421 1.000

The strength of the correlation between variables can be determined by the magnitude
of the correlation coefficient ρ. When |ρ| > 0.8, it signifies a strong correlation, while
0.5 ≤ |ρ| < 0.8 indicates a moderate correlation. For |ρ| values falling within 0.3 ≤ |ρ| < 0.5,
the correlation is considered weak, and if |ρ| < 0.3, the variables are essentially uncorrelated.
Analyzing Table 10, we observe that model execution time exhibits a strong correlation
with the number of non-sensitive columns, a moderate correlation with the number of
data columns, a weak correlation with the percentage of data sensitivity, and a negligible
correlation with the number of data rows and sensitive columns. Although both the count
of non-sensitive columns and the number of data columns influence the model’s runtime,
their correlation coefficient stands at 0.83449, signifying a strong linear correlation. In this
context, either one of these factors could be selected for analysis. However, it is important
to note that the Pearson correlation coefficient solely addresses linear correlations between
variables. Our comprehensive analysis is extended further in Figure 13.

Upon analyzing Figure 13, it became evident that a curvilinear relationship exists
between the model’s elapsed time and the data sensitivity ratio, represented by the equation
y = 1

x . Consequently, we performed the reciprocal of the sensitivity ratio to derive the
column 1

sensitivity_ratio . Subsequently, we recalculated Pearson’s correlation coefficient with
the elapsed time, yielding the results presented in the updated Table 11:

Table 11. Model execution time and correlation coefficients with various variables.

Rows Columns Sensitive Columns Non-Sensitive
Columns Sensitive Ratio

Time (s) −0.00756 0.77861 −0.03227 0.94370 −0.80537

Time = a + b · insensitivity_column +
c

sensitivity_ratio
(17)

Through fitting the execution time, we obtained the fitted equation:

Time = −0.578811 + 0.263136 · insensitivity_column + 0.419442/sensitivity_ratio (18)

The R-squared value of this fitted equation is 0.895, and the p-value is 3.02× 10−48,
indicating a favorable fit.
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Figure 13. Scatter plots of pairwise variables.

5. Conclusions

Data security is an important basic condition for financial institutions to build a data-
based ecology, and how to accurately identify massive data for classification and grading
control has become a key issue. Under the overall framework of financial sensitive data
classification and grading research work, we propose a self-enlarging and broadening
financial sensitive data classification and grading method (UP-SDCG), which combines
the traditional recognition technology with NLP technology, effectively solves the problem
of low accuracy rate of the traditional recognition technology. The experimental results
show that it has a significant advantage of effect compared with other publicly available
platform algorithms, and also has been validated in real financial institutions. The results
have also been verified in real financial institution business scenarios. Compared to
existing classification and grading frameworks, our approach offers a finer granularity,
enabling more precise implementation of protective measures tailored to various data types
and levels, which significantly mitigates the risk of high-sensitivity data leakage. Our
subsequent work will focus on the research of Unstructured Financial Data Classification
and Graded Recognition (UP-UDCG), mainly realizing the two major functions of data
classification and grading based on text classification and data classification and grading
based on entities, and essential research methodology can be referred to in Appendix A. By
deploying the sensitive data classification algorithm at the regulatory outposts, we aspire
for our work to contribute to enhancing data security in open banking.
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Appendix A. Unstructured Data Classification and Grading Framework

The framework for unstructured data classification and grading comprises two mod-
ules: text-based data classification and grading, and entity-based data classification and
grading. The text-based module determines the domain and type of the text, while the
entity-based module identifies specific entities embedded within the text. As depicted in
Figure A1, the framework provides information on the domain of the text, the involved
text type (such as diplomas, CVs, insurance policies, etc.), and the sensitive entities present
in the text (e.g., ID card numbers, email addresses, cell phone numbers, etc.).

FileName MD5 Domain Type Sensitivity level Level 1 Sensitive 
Entity Category

Level 2 Sensitive 
Entity Category

Level 3 Sensitive 
Entity Category

Level 4 Sensitive 
Entity Category

Diploma.pdf 4C1B1AF08F0A06EB Academic diploma 4 ... ... Email, cell phone, name ...

Transcript.pdf 9E3CBA4BD8F987CD Academic 3 ... Province, city ... ...

AttendanceRecord.doc 84ABD7194DD3D07D Academic 2 ... ... Email, cell phone, name ...

1213.pdf ED33D2B8CC1BD034 Medical policy 4 ... ... Email, cell phone, name ...

Entity Text classification

Figure A1. Example of classification and grading of unstructured data.

Appendix A.1. Data Classification Based on Text Classification

Various classification algorithms can be chosen depending on the specific context or
scene. We provide an overview of common text classification algorithms, along with their
respective applicable scenarios, advantages, and disadvantages, as shown in Table A1.

Table A1. Applications and Pros/Cons of Common Text Classification Algorithms.

Text Classification
Algorithm Suitable Scenarios Advantages Disadvantages

FastText
Large sample sizes, multiple
categories, tasks with limited
semantic understanding

Fast, low computational
requirements

Limited semantic
understanding

CNN Tasks requiring some
semantic understanding

Captures more, broader, and
finer text features Long training time

Self-Attention Tasks requiring some
semantic understanding

Captures more, broader, and
finer text features, long-term
dependencies within the text

Long training time

Traditional Machine Learning
Short texts (e.g., messages,
microblogs, comments) with
less than 150 words

Fast training Unable to handle long texts

BERT Limited labeled data scenarios High accuracy Long training and prediction
time
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Appendix A.2. Data Classification Based on Entity

Entity-based unstructured data classification and grading builds upon the principles
of structured data classification and grading, employing keywords and patterns to detect
sensitive entities. While structured data utilizes a “keyword+dictionary” approach for
identifying irregular entities, this method is not suitable for unstructured data. Therefore,
we adopt the Named Entity Recognition (NER) model to handle irregular entities. The
specific identification process is illustrated in Figure A2.

Text

Keywords and 
Regular Expressions Regular Expressions Named Entity Recognition 

Entity Types Output by Sensitivity Level

Sensitive data Classification and Grading 

Figure A2. Unstructured Data Classification and Grading Process.

Likewise, the selection of NER models can be tailored to specific scenarios. We provide
an overview of various NER models along with their respective applicable scenarios,
highlighting their individual strengths and limitations, as shown in Table A2.

Table A2. Applicability and Pros/Cons of Common NER Models.

Model Application Scenarios Advantages Disadvantages

BiLSTM + CRF
Large sample data,

multiple label
categories

Simple model structure,
fast training speed

Moderate entity
extraction performance

StructBert Insufficient annotated
data Good entity extraction Lower overall

performance

StructBert + CRF Small data scenarios Good entity extraction
performance

Lower overall
performance

Appendix B. Unstructured Data Classification and Grading Framework

In the module for constructing hierarchical classification libraries, industry experts
have the capability to create data hierarchical classification libraries that align with compli-
ance standards and requirements. Table A3 presents the data security compliance standards
applicable to China’s core industries. This allows for a systematic and structured approach
to organizing and managing data in accordance with industry-specific regulations.

Table A3. Data Security Compliance Standards in Key Chinese Industries.

Industry Compliance Standard Regulatory Authority

General “Guidelines for Cybersecurity Standard
Practice—Network Data Classification and Grading”

National Information Security Standardization Technical
Committee

Industrial “Guidelines for Industrial Data Classification and
Grading”

Ministry of Industry and Information Technology (MIIT)
of China
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Table A3. Cont.

Industry Compliance Standard Regulatory Authority

Financial “Financial Data Security—Data Classification and
Grading Guidelines” People’s Bank of China (PBOC)

Financial “Technical Specifications for Personal Financial
Information Protection” People’s Bank of China (PBOC)

Financial “Guidelines for Securities and Futures Industry
Data Classification and Grading” China Securities Regulatory Commission (CSRC)

Telecommunication “Method for Data Classification and Grading of
Basic Telecommunication Enterprises”

Ministry of Industry and Information Technology
(MIIT) of China

Telecommunication “Guidelines for Identifying Important Data in Basic
Telecommunication Enterprises”

Ministry of Industry and Information Technology
(MIIT) of China

Medical “Information Security Technology—Healthcare Data
Security Guidelines”

China National Information Security
Standardization Technical Committee

Automotive “Regulations on Automotive Data Security
Management”

Ministry of Industry and Information Technology
(MIIT) of China
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Abstract: With the growing demand for data sharing file formats in financial applications driven
by open banking, the use of the OFD (open fixed-layout document) format has become widespread.
However, ensuring data security, traceability, and accountability poses significant challenges. To
address these concerns, we propose E-SAWM, a dynamic watermarking service framework designed
for edge cloud scenarios. This framework incorporates dynamic watermark information at the edge,
allowing for precise tracking of data leakage throughout the data-sharing process. By utilizing
semantic analysis, E-SAWM generates highly realistic pseudostatements that exploit the structural
characteristics of documents within OFD files. These pseudostatements are strategically distributed to
embed redundant bits into the structural documents, ensuring that the watermark remains resistant to
removal or complete destruction. Experimental results demonstrate that our algorithm has a minimal
impact on the original file size, with the watermarked text occupying less than 15%, indicating a
high capacity for carrying the watermark. Additionally, compared to existing explicit watermarking
schemes for OFD files based on annotation structure, our proposed watermarking scheme is suitable
for the technical requirements of complex dynamic watermarking in edge cloud scenario deployment.
It effectively overcomes vulnerabilities associated with easy deletion and tampering, providing high
concealment and robustness.

Keywords: edge cloud; OFD files; semantic analysis; dynamic watermarking

1. Introduction

In the dynamic landscape of the digital economy, commercial banks face the challenge
of sharing a significant amount of financial data with clients’ designated digital applications
in electronic file format [1]. As a novel file format, the open fixed-layout document (OFD)
format has gained popularity within the financial industry [2]. It offers unique advantages
for various financial processes, including electronic receipts and financial statements, which
are in increased demand, leveraging the capabilities of the OFD format in the domain of
financial management.

In addition to the advantages of data sharing, the prevention of data leakage has
emerged as a growing concern [3]. Currently, most banks rely on contractual agreements to
enforce compliance and security measures during the transmission and utilization of data
by application parties, lacking sufficient technical support. In cases of data leakage within
the application scenario, banks encounter difficulties in promptly and accurately assigning
responsibility to the relevant application parties, resulting in detrimental consequences
for customers, banks, and the overall financial system. Given the increasing openness of
the scenario ecosystem, relying solely on contractual agreements becomes increasingly
challenging for banking institutions to mitigate risks associated with data sharing. It is
imperative to incorporate additional technical support to fortify data security measures
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and enable effective prevention and monitoring of data security risks. The integration of
watermarks in OFD files plays a crucial role in ensuring timely traceability and account-
ability following instances of data leakage. Currently, there is a lack of a comprehensive
security framework in the financial industry that effectively addresses the challenges of
data leakage prevention and tracking during the transmission and processing of financial
data between cloud edges. This issue becomes particularly evident in the context of the
OFD file format landscape, where the technology is still in its early stages of application.
Furthermore, there is a dearth of dynamic watermarking algorithms that possess high trans-
parency, concealment, robustness, and the capacity to carry substantial financial antileakage
tracking information.

Banking and financial institutions heavily rely on data centers to facilitate financial
services in conjunction with cloud-based scenarios. Within this service framework, the
banking system is responsible for processing the entire collection of the bank’s financial
documents in the OFD format before transmitting them to the service scenario side for
subsequent business processing. Ensuring the security of financial data during this pro-
cessing stage is of utmost importance. We present E-SAWM, an implicit watermarking
service framework for OFD files based on semantic analysis in an edge cloud computing
scenario. Scenario-side edge cloud computing, an extension of the banking institution-side
cloud computing center, is positioned closer to the user scenarios. In financial data-sharing
scenarios, deploying data protection edge services on the scenario side enables accelerated
and secure data processing. By leveraging the close proximity of edge computing to the
data and utilizing its real-time capabilities, the scenario side allows for the application
of more advanced security algorithms to meet diverse and higher-level financial data
protection requirements, ensuring enhanced data security processing.

In this paper, we propose an OFD implicit watermarking framework, E-SAWM, based
on semantic analysis in edge cloud scenarios. To ensure the security of embedded water-
marks, we leverage the inherent semantic properties of the internal structured files of OFD.
By using semantic analysis techniques, we generate highly authentic pseudostatements that
closely resemble genuine content. These pseudostatements are then distributed efficiently
and seamlessly integrated into the redundant bits of the OFD structured files. The proposed
method offers the following significant advantages:

1. Transparency: E-SAWM ensures zero interference with the structure and display of
the OFD file, preserving its original integrity;

2. Concealment: E-SAWM utilizes transformations and realistic pseudosentences to
effectively conceal the watermark, impeding detection by potential attackers;

3. Robustness: E-SAWM employs distributed embedding of the watermark across multi-
ple structural files and selects distributed redundant bits within the same file. This
approach enhances the robustness of the watermark and hinders attackers from
destroying the watermark information in the OFD file;

4. High capacity: E-SAWM supports unlimited watermark information in terms of length
and quantity, enabling the embedding of a substantial amount of watermark data.

The rest of this paper is structured as follows. In Section 2, we present an overview
of the related work in this field. Section 3 introduces the architecture of the open bank
data service based on edge cloud and presents the OFD implicit watermarking algorithm
scheme that relies on semantic analysis. In Section 4, we present the experimental results
and analyze the outcomes in the context of real-world scenarios in the financial industry.
Finally, in Section 5, we conclude the paper and provide an outlook for future research in
this domain.

2. Related Work
2.1. Application of Edge Computing in the Domain of Financial Data Protection

Since 2015, edge cloud computing has emerged as a prominent technology, positioned
on the Gartner technology maturity curve and experiencing rapid industrialization and
growth. Edge computing represents a distributed computing paradigm that positions
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primary processing and data storage at the edge nodes of the network. According to
the Edge Computing Industry Alliance [4], it is an open platform integrating network,
computing, storage, and application core capabilities at the edge of the network, in close
proximity to the data source. This setup enables the provision of intelligent edge services to
meet crucial requirements for industrial digitization, including agile connectivity, real-time
services, data optimization, application intelligence, and security and privacy protection.
International standards organization ETSI [5] defines edge computing as the provisioning
of IT service environments and computing capabilities at the network edge, aiming to
reduce latency in network operations and service delivery, ultimately enhancing the user
experience. Infrastructure for edge cloud computing encompasses various elements, such
as distributed IDCs, carrier communication network edge infrastructure, and edge devices
like edge-side client nodes, along with their corresponding network environments.

Serving as an extension of cloud computing, edge cloud computing provides localized
computing capabilities and excels in small-scale, real-time intelligent analytics [6]. These in-
herent characteristics make it highly suitable for smart applications, where it can effectively
support small-scale smart analytics and deliver localized services. In terms of network
resources, edge cloud computing assumes the responsibility for data in close proximity to
the information source. By facilitating local storage and processing of data, it eliminates
the need to upload all data to the cloud [7]. Consequently, this technology significantly re-
duces the network burden and substantially improves the efficiency of network bandwidth
utilization. In application scenarios that prioritize data security, especially in sectors such
as finance, edge clouds offer enhanced compliance with stringent security requirements.
By enabling the storage and processing of sensitive data locally, edge clouds effectively mit-
igate the heightened risks of data leakage associated with placing such critical information
in uncontrollable cloud environments.

In the evolving landscape of the financial industry, there is a paradigm shift toward
open banking, often referred to as banking 4.0. Departing from the traditional customer-
centric approach, open banking places emphasis on user centricity and advocates for data
sharing facilitated by technical channels such as APIs and SDKs. Its primary goal is to
foster deeper collaboration and forge stronger business connections between banks and
third-party institutions, which enables the seamless integration of financial services into
customers’ daily lives and production scenarios. The overarching objective is to optimize
the allocation of financial resources, enhance service efficiency, and cultivate mutually
beneficial partnerships among multiple stakeholders. An illustrative example of this
paradigm shift is evident in bank card electronic payment systems, where the deployment of
secure and encrypted POS machines at the edge enables convenient electronic payments [8].

Extensive research has been conducted to address the security challenges in edge
cloud environments. M. Ati et al. [9] proposed an enhanced cloud security solution to
enhance data protection against attacks. Similarly, L. Chen et al. [10] proposed a hetero-
geneous endpoint access authentication mechanism for a three-tier system (“cloud-edge-
end”) in edge computing scenarios, which aimed to support a large number of endpoint
authentication requests while ensuring the privacy of endpoint devices. Building upon
this, Z. Song et al. [11] introduced a novel attribute-based proxy re-encryption approach
(COAB-PRE) that enables data privacy, controlled delegation, bilateral access control, and
distributed access control capabilities for data sharing in cloud edge computing. On the
other hand, G. Cui et al. [6] developed a data integrity checking and corruption location
scheme known as ICL-EDI, which focuses on efficient data integrity checking and cor-
ruption location specifically for edge data. Additionally, Z. Wang et al. [12] introduced a
flexible time-ordered threshold ring signature scheme based on blockchain technology to
secure collected data in edge computing scenarios, ensuring a secure and tamper-resistant
environment. However, to the best of our knowledge, the existing research has not ex-
tensively addressed the topic of leakage tracking techniques for sensitive data in edge
computing scenarios.
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2.2. Edge Cloud-Based Financial Regulatory Outpost Technology

The open sharing of data brings inherent risks to personal privacy data leakage. In
the financial industry, it is crucial to ensure compliance with regulations such as the Data
Security Law and the Personal Information Protection Law while conducting business
operations. To tackle this challenge, we propose the deployment of regulatory outpost at
the edge of the data application side, with a specific focus on third-party institutions, which
aims to enhance the security and compliance of open banking data within the application
side of the ecosystem.

Regulatory outpost is a standalone software system designed to monitor data opera-
tions on the application side, aiming to prevent data violations and mitigate the risk of data
leakage. The system offers comprehensive monitoring capabilities throughout different
stages of the application’s data operations, including data storage, reading, and sharing, as
well as intermediate processing tasks, such as sensitive data identification, desensitization,
and watermarking. In addition, the regulatory outpost maintains meticulous records of all
user data operation logs, facilitating log audits, leak detection, and generation of data flow
maps and enabling situational awareness regarding data security.

In light of the above considerations, regulatory outpost operates at the edge side
of data processing and plays a significant role in the data processing process. To ensure
optimal efficiency and cost-effectiveness, the deployment of regulatory outposts should
satisfy the following requirements in the context of data operations:

1. Elastic and scalable resource allocation: Data processing applications necessitate com-
putational resources, but the overall data volume tends to vary. For instance, during
certain periods, the data volume processed by the application side may increase,
requiring more CPU performance, memory, hard disk space, and network throughput
capacity. Conversely, when the processing data volume decreases, these hardware
resources remain underutilized, leading to wastage. Therefore, it is essential for reg-
ulatory outposts to support the elastic scaling of resources to minimize input costs
associated with data processing operations;

2. Low bandwidth consumption cost and data processing latency: The application’s
data traffic is directed through the regulatory outpost, which can lead to increased
bandwidth consumption costs and higher network latency, especially if the outpost is
deployed in a remote location like another city. The current backbone network, which
is responsible for interconnecting cities, incurs higher egress bandwidth prices, and
its latency is relatively higher compared to the metropolitan area network and local
area network. To minimize the impact on the application experience, it is essential to
maintain low bandwidth utilization costs and minimize data processing latency;

3. Data compliance: Due to concerns about open banking data leakage, the application
side tends to prefer localized storage of open banking data to the greatest extent pos-
sible, which enables the application side to more conveniently monitor the adequacy
of security devices and the effectiveness of security management protocols.

Edge clouds provide significant advantages due to their proximity to data endpoints,
including cost savings in network bandwidth, low latency in data processing, and im-
proved data security. Moreover, they offer the scalability, elasticity, and resource-sharing
benefits commonly associated with centralized cloud computing. Hence, deploying reg-
ulatory outposts in the edge cloud is a logical decision. Figure 1 showcases an example
deployment scenario.

The regulatory outpost consists of two components: “regulatory outpost—data input
processing” and “regulatory outpost—data export processing”. The specific data processing
work flow is illustrated in Figure 2.
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Figure 2. Data processing work flow in regulatory outposts within edge cloud scenarios. Components
of the regulatory outpost data process: (1) Data provider: a bank or transit platform responsible
for data processing and forwarding. (2) Data storage and destruction: a database provided by the
application, subject to audit by regulatory outposts. (3) Data user: terminal equipment or other
business systems accessing the database for tasks such as data display, statistical analysis, and
external sharing.

2.2.1. Regulatory Outpost—Data Input Processing

This component automatically identifies sensitive data on among inflowing data and
generates a data asset map, data desensitization policy, a permission control policy for the
zero trust module, and a data destruction policy based on the identified sensitive data. To
cater to the frequent viewing of short-term data such as logs by application-side users, a
two-tier data storage approach is employed. The desensitized data are saved in a short-term
database, while a full-volume database retains all the data. In cases in which the data
contain highly confidential information, they are encrypted prior to being written into the
full-volume database.

2.2.2. Regulatory Outpost—Data Export Processing

In the data access scenario, the zero trust module of the regulatory outpost plays a criti-
cal role in verifying access privileges for data users. When accessing data from a short-term
database, open banking data are transmitted to the data user after incorporating watermark
information, such as the data user’s identity, data release date, and usage details. However,
if the data are retrieved from the full-volume database, they must undergo desensitization
based on the desensitization policy before the inclusion of watermark information and
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subsequent transmission to the data user. To ensure accountability, the log auditing module
captures and logs all data operations for auditing purposes. The audit results are then
utilized to generate data flow maps, detect instances of data leakage, and provide valuable
insights into data security situational awareness. These insights facilitate the identification
of existing data security risks and offer suggestions for improvement measures.

2.3. Document Watermarking Techniques

The file is a prominent data format used for data sharing. In the process of sharing
files from the cloud (bank side) to the edge cloud (application side), it becomes crucial to
monitor potential data leakage at each step. This concern is particularly relevant for the
edge side, where the development of a watermarking algorithm that possesses high levels
of transparency, concealment, robustness, and capacity has become a subject of significant
academic interest.

Electronic document formats can be categorized into two types: streaming documents
and versioned documents. Streaming documents, such as Word and TXT files, support
editing, and their display may vary depending on the operating system and reader version.
On the other hand, versioned documents have a fixed layout that remains consistent across
different operating systems and readers.

OFD is an innovative electronic document format that conforms to the “GB/T 33190-2016
Electronic Document Storage and Exchange Format—Layout Documents” standard [13]. OFD
was specifically developed to fulfill the demands of effectively managing and controlling
layout documents while ensuring their long-term preservation. By offering a dependable
and standardized format, OFD facilitates the maintenance of consistent layouts and sup-
ports the preservation of electronic documents. Our work primarily concentrates on the
watermarking technology for OFD files, which serves as the prevalent file format utilized
in the financial sector.

The OFD file format adopts XML (Extensible Markup Language) to define document
layout, employing a “container + document” structure to store and describe data. The
content of a document is represented by multiple files contained within a zip package,
as illustrated in Figure 3. A detailed analysis and explanation of the internal structure
components of an OFD file are provided in Table 1.

OFD File

OFD.xml

Doc_N

Document.xml publicRes.xml DocumentRes.xml

Pages

Page_N

Content.xml PageRes.xml

Res

Image_M.png

Res

Image_M.png Font_M.ttf

Figure 3. Structure of OFD.

220



Future Internet 2023, 15, 283

Table 1. Internal Structural file description of OFD.

FLIE/FOLDER Description

OFD.xml OFD file main entry file; describes the basic
OFD file information

Doc_N The Nth document folder

Documcnt.xml
Doc_N folder description file, including

information about subfiles and subfolders
contained under Doc_N

Page_N The Nth page folder
Content.xml Content description on page N
PageRes.xml Resource description on page N

Res Resource folder
PublicRes.xml Document public resources index

DocumentRes.xml Document own resource index
Image_M.png/Font_M.ttf Resource files

In the realm of layout document formats, OFD and PDF are widely utilized. Water-
marking techniques for layout documents can be categorized into several methods:

1. Syntax- or semantics-based approaches: leveraging natural language processing
techniques to replace equivalent information, perform morphological conversions,
and adjust statement structures to facilitate watermark embedding [6,14];

2. Format-based approaches encompass techniques such as line shift coding, word
shift coding, space coding, modification of character colors, and adjustment of glyph
structures [15];

3. Document structure-based approaches leverage PDF structures like PageObject, ima-
geObject, and cross-reference tables, enabling the embedding of watermarks while
preserving the original explicit location [16].

The field of PDF watermarking has reached a relatively mature stage of develop-
ment. However, watermarking algorithms that rely on syntax and format modifications
may alter the original text content, which conflicts with the requirement of preserv-
ing the originality of digital products. Consequently, watermarking algorithms based
on the document structure are commonly employed to add watermarks to PDF files.
ZHONG Zheng-yan et al. [17] presented a novel method for watermarking PDF docu-
ments, which involves embedding watermarks based on the redundant identifier found
at the end of the PDF cross-reference table. By leveraging this technique, the original text
content and display of the PDF remain unaltered, thereby achieving complete transparency
when viewed using PDF readers. Kijun Han et al. [18] added watermarks based on the
PageObject structure within the PDF structure, which offers resistance against attacks such
as adding or deleting text to manipulate the page content. By utilizing these document
structure-based watermarking techniques, PDF files can be effectively watermarked with-
out compromising the original content and maintaining transparency and integrity in
PDF readers.

The field of watermarking in the context of OFD has received limited attention in
both academia and industry. In academia, there is a noticeable dearth of research studies
and published papers specifically dedicated to OFD watermarking. On the industry front,
existing OFD watermarking techniques primarily rely on explicit watermarks, which are
implemented based on the following principles:

The watermark text content, along with relevant information such as position, trans-
parency, size, and color, is defined within the annotation structure file named Annota-
tion.xml. This file is an integral part of the internal structure of the OFD file and is typically
located in the Annots/Page_n folder. The details of watermark addition are depicted in
Figures 4 and 5.
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File header information: 
mark XML file information and watermark logo

Text information

Text content and coordinates information

Page border information

For trading only

Figure 4. OFD annotation file contents for watermarking.

For tr
ading onlyIn addition to the advantages of data sharing, the prevention of data leakage has emerged as a growing 

concern. Currently, most banks rely on contractual agreements to enforce compliance and security measures 
during the transmission and utilization of data by application parties, lacking sufficient technical support. In 
cases of data leakage within the application scenario, banks encounter difficulties in promptly and accurately 
assigning responsibility to the relevant application parties, resulting in detrimental consequences for 
customers, banks, and the overall financial system. Given the increasing openness of the scenario ecosystem, 
relying solely on contractual agreements becomes increasingly challenging for banking institutions to 
mitigate risks associated with data sharing. It is imperative to incorporate additional technical support to 
fortify data security measures and enable effective prevention and monitoring of data security risks. The 
integration of watermarks in OFD files plays a crucial role in ensuring timely traceability and accountability 
following instances of data leakage.

For tr
ading only

For tr
ading only

Figure 5. Illustration of OFD page with added explicit watermark.

Although the structure of the watermark may seem clear and straightforward, it is sus-
ceptible to various attacks. Adversaries have the ability to manipulate the Annotation.xml
folder, leading to vulnerabilities in the watermark’s integrity, decryption, and identification,
with potential for malicious removal. Consequently, the task of tracing compromised data
becomes significantly challenging.

3. Model and Algorithm
3.1. Dynamic Watermarking Implementation

In compliance with regulatory requirements, data users in open banking must possess
data traceability capabilities to effectively trace and determine data leakage incidents.
Watermarking is a widely used technical approach to trace and assign responsibility in
such scenarios.

Based on the aforementioned service architecture, an effective approach for tracking
data and mitigating the risk of data leakage involves leveraging the data proximity pro-
cessing capabilities of the edge cloud, which requires the utilization of the edge cloud’s
computing power to implement data leakage tracking technology. Furthermore, it is essen-
tial to employ a highly efficient and flexible watermarking algorithm on the edge cloud
side to support the tracking of financially sensitive data. Specifically, in the context of OFD
file applications, the edge cloud watermarking service facilitates the dynamic addition of
timely watermarks after file processing on the edge cloud to ensure effective tracking in
the event of data leakage.

Data watermarking in the financial industry encompasses two main approaches: static
watermarking and dynamic watermarking. Static watermarking involves adding a large
number of watermarks to the data during the pre-preparation phase, which is done once
and remains unchanged. On the other hand, dynamic watermarking is performed in real
time during the data access process, including data querying, accessing, real-time exchange,
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and dynamic release. This approach ensures that the watermarks are dynamic and updated
in real time.

Unlike static watermarking, which can be pre-processed in batches on the central
cloud without real-time requirements, dynamic watermarking is primarily deployed in
the edge cloud to meet the demands of real-time data processing. Specifically, in financial
business scenarios, where sensitive data need to be accessed by various platforms via
API interfaces, the bank’s data documents are appended with a unified static watermark
before being shared. Upon reaching the third-party application, a dynamic watermark is
added by the “regulatory outpost” based on the application’s information and document
content. Subsequently, the watermark information is dynamically replaced at each stage of
data usage, ensuring accurate tracking of any potential data file leakage. The following
examples provide a step-by-step illustration of the watermarking process:

1. Adding watermarks during data reception by the application-side database, as de-
picted in Figure 6. As the application side receives open banking data from a bank, a
dynamic watermark is added, either explicitly or implicitly, while the data traverses
a supervisory outpost situated in the edge cloud. This watermarking enables trace-
ability in the event of an open banking data breach, allowing for identification of the
breaching application side. The standard format typically follows: “Received Data
from XXX Bank by XX Organization on xx/xx/xxxx (date). Purpose: XXXX”.;

2. Adding watermarks during the download of data from the database by application-
side employees, as shown in Figure 7. Whenever an application-side employee
retrieves data from the application-side database, a dynamic watermark, typically
implicit in nature, is embedded. This watermark serves the purpose of identifying the
individual responsible for any data leakage when tracing its origin in the context of
open banking. The format commonly follows “On xx/xx/xxxx (date), employee xxx
downloaded open banking data from the database. Purpose: XXXX”. Remarkably, the
newly added watermark can coexist with the original watermark;

3. Adding watermarks when sharing data with external entities on the application side,
as shown in Figure 8. In some cases, the application side needs to desensitize the open
banking data, then share it with a partner, such as in the need for business cooperation.
Hence, it is necessary to add a watermark to identify the specific partner when the
leakage is traced. Typically, the format is “On xx/xx/xxxx (date), xxxx shared open
banking data with the collaborator, xxxx. Purpose: XXXX”.

Dynamic Watermark Format Example

Data
Regulatory 
Outposts

Edge cloud

Application side

Database

Data*

Data

Data*

Open banking data from bank

Open banking data after adding watermark

Received Data from XXX Bank by XX 
Organization on xx/xx/xxxx(date). 
Purpose: XXXX

2

1

Figure 6. Adding watermark to data received from banking applications database.

223



Future Internet 2023, 15, 283

Database

Application side

Regulatory 
Outposts

Edge cloud

Application Staff

Data* Data*

Data* Open banking data after adding watermark

1 2

Dynamic Watermark Format Example

On xx/xx/xxxx(date), receive Data from
xxx Bank by xxx Organization.
Purpose: XXXX

On xx/xx/xxxx (date), employee xxx
downloaded open banking data from
the database.
Purpose: XXXX

Figure 7. Adding watermark when application-side employees download data from the database.

Regulatory 
Outposts

Edge cloud

Application side

Data*
Collaborator

Data

Data

Data*

Open banking data from bank

Open banking data after adding watermark

Dynamic Watermark Format Example

On xx/xx/xxxx(date), receive Data from
xxx Bank by xxx Organization.
Purpose: XXXX

On xx/xx/xxxx (date), xxxx shared open
banking data with the collaborator,
xxxx.
Purpose: XXXX

Database

1

2

Figure 8. Adding watermark when the application side shares externally.

3.2. Dynamic Watermarking Algorithm for OFD

To address the aforementioned scenario, we propose E-SAWM, a watermarking algo-
rithm based on semantic analysis. At the file level, we incorporate a watermark into the key
structural file, Content.xml of OFD. This integration renders the entire OFD page corrupted
if the attacker deletes the content.xml file. At the content level, we leverage semantic
analysis of the structural statements within Content.xml to generate highly realistic pseudo
structural statements. These pseudo structural statements, carrying the watermark, are
distributed and embedded within each Content.xml file. This distributed embedding ap-
proach ensures that the watermark remains concealed, making it challenging for attackers
to identify its existence, location, and content. Furthermore, E-SAWM exhibits robustness
against attempts to destroy or tamper with the watermark fields.

3.2.1. Semantic Analysis Model

In the realm of natural language processing, computers often face challenges when
dealing with complex text systems. Consequently, the conversion of “words” into a form
that computers can easily handle has emerged as a pressing concern. To tackle this challenge,
word2vec has introduced the concept of mapping “words” to real number vectors, known
as word embedding, resulting in word vectors. The Word2Vec model encompasses two
primary variants: Skip-Gram and CBOW (Continuous Bag-of-Words). Intuitively, Skip-
Gram predicts the context given an input word, whereas CBOW predicts the input word
based on the context [19].
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• Skip-Gram model

In the skip-gram model, every word is associated with two d-dimensional vectors,
which are utilized to calculate conditional probabilities. Specifically, for a word indexed as
i in the lexicon, the two vectors are represented by νi ∈ Rd and ui ∈ Rd when it functions
as a central word and a contextual word, respectively. When provided with a central word
(wc) (indexed as c in the dictionary), the conditional probability of generating any context
word (wo) (indexed as o in the dictionary) can be modeled through a softmax operation on
the dot product of the vectors as follows:

P(wo | wc) =
exp(uT

o vc)

∑i∈v exp(uT
i vc)

(1)

where the set of word table indexes is V = 0, 1, ..., |V| − 1. Given a text sequence of length
T, where the words at time step t are denoted as w(t), assume that the context words are
generated independently given any central word. For a context window (m), the likelihood
function of the jump meta model is the probability of generating all context words given
any central word:

T

∏
t=1

∏
−m≤j≤m,j 6=0

log P(w(t+j)|w(t)) (2)

• CBOW model

CBOW is a variation of the skip-word model, with the main distinction being that
CBOW assumes that the central word is generated based on the surrounding contextual
words within the text sequence.

In CBOW, the inclusion of multiple context words is considered. To calculate the
conditional probabilities, the context word vectors are averaged. Let νi ∈ Rd and ui ∈ Rd

represent the vectors corresponding to the context words and central words, respectively,
for any word at index i in the dictionary. The conditional probability of generating a central
word (wc) (indexed by c in the word list) given the context words (wo1, ..., wo2m) (indexed
by o1, ..., o2m in the word list) can be represented using the following equation:

P(wc|wo1, . . . , wo2m) =
exp

(
1

2m uT
c (vo1 + . . . + vo2m)

)

∑i∈v exp
(

1
2m uT

i (vo1 + . . . + vo2m)
) (3)

Let Wo = wo1, ..., wo2m, vo =
vo1+...+vo2m

2m ; then, the above equation can be simplified as

P(wc|Wo) =
exp(uT

c v̄o)

∑i∈V exp(uT
i v̄o)

(4)

Considering a text sequence of length T, where the words at time step t are repre-
sented as w(t) and employing a context window of size m, the likelihood function of the
CBOW expresses the probability of generating all central words given their respective
context words:

T

∏
t=1

P(w(t)|w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)) (5)

• Word-embedding model comparison

Assuming a text corpus with V words and a window size of K, the CBOW model
predicts approximately O(V), which is equivalent to the number of words in the corpus. In
contrast, Skip-gram performs more predictions than CBOW. In Skip-gram, each word is
predicted once using surrounding words when it serves as the central word, resulting in a
time complexity of O(KV).

While CBOW trains faster than Skip-gram, the latter produces superior word vector
representations. When dealing with a corpus containing many low-frequency words,
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Skip-gram provides better word vectors for these words but requires more training time.
Conversely, CBOW is more efficient in such cases. The choice between the models depends
on specific requirements. For higher prediction accuracy and lower training efficiency, the
Skip-gram model is preferred. Conversely, the CBOW model can be chosen [20].

3.2.2. OFD Watermarking Algorithm Based on Semantic Analysis

Word2vec is a widely utilized concept across various domains. Tomas Mikolov intro-
duced doc2vec, an algorithm that enables the representation of sentences or short texts as
vectors by considering sentences of different lengths as training samples [21]. In the field of
biology, Asgari and Mofrad proposed BioVec for the analysis of biological sequence word
vectors [22].

For OFD, the structural documents consist of statements that adhere to specific rules.
Here, we use the term “structural statements” to refer to the structural information present
in OFD files. By treating these statements as natural languages, it becomes possible
to generate a context specific to each structural document. Consequently, we devised
a sophisticated watermark-embedding algorithm by leveraging semantic analysis. In
the case of contextual datasets, the process involves mapping word separation to word
vectors distributed in a high-dimensional space using word2vec. This mapping enables
the evaluation of word similarity. When dealing with known contexts, we utilize the
word2vec model to transform them, resulting in k words that closely resemble the original
context words. Subsequently, these words are distributedly embedded within the original
structural document, serving as watermark carriers. Our approach capitalizes on semantic
analysis to develop a highly covert watermark-embedding algorithm.

The algorithm follows the flow depicted in Figure 9 and is divided into four
main modules:

1. Semantic analysis model trainingConstruct a pseudo structural library based on
the original structural library of OFD. Gather n instances of context data from
structured documents in OFD format. Utilizing these context data, along with the
pseudo structure body library, generate n′ instances of the context dataset with
pseudo structure bodies. These contextual datasets are then trained separately
using the CBOW model and the Skip-gram model to develop the semantic analysis
model. When conducting semantic analysis on an OFD-structured document, the
context is initially extracted. For a context dataset containing a higher frequency
of low-frequency structural bodies, the Skip-gram model is preferred for semantic
analysis due to its improved performance and efficiency. On the other hand, for
the contextual dataset containing a higher frequency of high-frequency structures,
CBOW is used for semantic analysis.
Assume that m structural files with embeddable watermarks are extracted for an OFD
file that requires watermark addition.Vi structural keywords are extracted from file
Fi, and the training window size is K. In such cases, the time complexity for training
using the CBOW model can be calculated as follows:

TCBOW = V0 + V1 + · · ·+ Vm−1 = O(
m−1

∑
i=0

Vi) (6)

The time complexity for training using the Skip-gram model is as follows:

Tskip-gram = K ·V0 + K ·V1 + . . . + K ·Vm−1 = O(K
m−1

∑
i=0

Vi) (7)

Based on the size of the text words, we set the threshold (τ) to select the model with
the best training effect for calculation:

model =
{

skip-gram, ∑m−1
i=0 Vi < τ

CBOW, ∑m−1
i=0 Vi < τ

(8)
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As mentioned in Section 3.2.1, the Skip-gram model exhibited higher accuracy com-
pared to the CBOW model in our experiments. In particular, when the time consumed
is similar, the Skip-gram model outperforms CBOW. In our work, this occurred when
τ had a value of 1000.

c. Watermark embedding d. Watermark Extraction

Extracting Structure Name and 
Coordinates from XML Fields

Rule-based watermark 
embedding in structured data

Enter OFD path

b. Watermark string processing

Input watermarking, 

SM4 encryption

Key
(filename + 

custom strings)

Convert to byte arrays

Comparing Psedo-structured Libraries 
to Identify Embedding Locations

a. Model training

Constructing a Pseudo Structure Library and Labeling 
Genuine Structures with Similar Semantics

XML data collection

Context data generation
Word vector 

model training

Watermark text

Semantic analysis yields top k 
similar pseudo structures

Embedding watermark 
structures in XML Files

Extracting Structure Name and 
Coordinates from XML Fields

Complete byte arrays

Enter OFD path

Parse watermarks by rule and 
merge groups

Compare with corpus to filter 
out pseudo-structures

Watermark textGrouping

Semantic 
Analysis Model

Figure 9. Overview of E-SAWM.

2. Watermark content processing. Encrypt the watermark text (originalInfo) using the
SM4 algorithm with a key derived from the combination of the file name (fileName)
of the watermarked file, and a custom string (myString) provided by the adder. This
encryption process is represented by Equation (9).

SecretWatarmarkMessage = SM4(( f ileNameomyString)|original In f o) (9)

Subsequently, convert the encrypted watermark message into a byte array and per-
form grouping on the byte array;

3. Watermark embedding. For each structural file within the target OFD file, conduct
structure extraction. Combine these structures as contexts in their original order.
Utilize the semantic analysis model trained in step 1 to perform semantic analysis,
then obtain pseudo structures with the top K similarity. Insert these pseudo structures
into the structural files of the OFD, and embed the watermark grouping acquired in
step 2 into each pseudo structure;

4. Watermark Extraction. Extract structure names and contents from all structural files
within the OFD file intended for watermarking, which is compared with the corpus,
and filter out any pseudo structures. Based on the grouping information within the
structure, combine byte array groups associated with the same watermark. This
process results in a complete byte array, which is then parsed into a string and further
parsed using a key. Finally, the complete watermark is obtained.

4. Experiments

To evaluate the effectiveness of our proposed OFD watermarking algorithm that
utilizes semantic analysis, we performed various attack tests, including a robustness test,
steganography, and watermark capacity detection [17,23]. Additionally, we compare our
findings with the results obtained by existing OFD watermarking algorithms commonly
employed in the industry.
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4.1. Steganography

One of the fundamental requirements of an invisible watermark is its imperceptibility.
The embedded watermark in the OFD document must remain completely hidden, ensuring
that no noticeable alterations are made to the visible display interface of the document.
Moreover, users should be unable to detect the presence of the watermark, making it
challenging for attackers to identify its location or develop cracking methods.

The most common watermarking algorithm employed in the industry is categorized as
an explicit watermarking algorithm, relying on annotated files. When a highly transparent
watermark is added, it becomes difficult to visually discern the watermark with the naked
eye. Nevertheless, it is still possible to identify the watermark by converting the OFD
page into an image and adjusting the image’s contrast. In contrast, a low-transparency
watermark is clearly visible to the naked eye. To the best of our knowledge, there is no
existing research on watermarking of OFD files. While some studies have focused on
watermarking PDF files using syntax- and format-based algorithms, these approaches tend
to alter the original text content, which may not comply with the originality requirements
for digital products.

We propose an experiment to test the steganographic potential of E-SAWM. Figure 10
shows the comparison effect of OFD document watermarking. The two documents appear
indistinguishable to the naked eye, and even after converting OFD pages to images, the
watermark information remains hidden. In comparison to traditional watermarking al-
gorithms that rely on annotated documents, the proposed OFD watermarking algorithm
based on semantic analysis exhibits robust steganography capabilities.

(a) Origin OFD page (b) OFD page with watermark

Figure 10. Visual comparison of watermark effects. (a) OFD page before adding watermark. (b) OFD
page after adding watermark.

4.2. Robustness

We provide users with various editing options to test the algorithm’s robustness.
Robustness testing is conducted following the approach outlined in reference [18]. These
options include highlighting, underlining, strikethrough, wavy lines, handwritten scribbles,
and text overlay. Users can apply these edits to randomly selected locations within the
watermarked OFD file.

The visual appearance of the watermark information in the industry’s OFD water-
marking algorithm, which is based on an annotation structure, can be influenced by attacks
like highlighting and underlining, but it does not compromise integrity.

We conducted robustness testing on E-SAWM. Figure 11 illustrates an example of an
attack, while Table 2 presents the results of watermark extraction. E-SAWM introduces
the integration of semantically similar pseudo structures into structured files. Notably,
any structural changes that may arise in the original file when incorporating features like
highlighting or underlining have no impact on the pseudo structural content. Consequently,
the results show that our OFD watermarking algorithm demonstrates effective resistance
against the attacks listed in the table, achieving a 100% success rate in watermark extraction
for OFD files under each attack type.
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Figure 11. Example of each post-attack OFD page. Please note that in the visual representation pre-
sented: Colorful lines symbolize distinct attack methods, with yellow representing “highlight”, blue
indicating “Wavy line”, a green line representing “underline”, and red signifying “Strikethrough”.
Green font signifies “Handwritten graffiti”, while gray font indicates “Text overlay”.

Table 2. Extraction success rate of watermarks following each attack.

Attack Type Example of Attack Content Watermark Extraction
Success Rate

Highlight Left Column—Line 1
Right Column—Lines 2–5 100%

Underline Left Column—Line 2
Right Column—Lines 2–3 100%

Strikethrough Left Column—Line 5
Right Column—Lines 2–3 100%

Wavy line Left Column—Line 6
Right Column—Line 4 100%

Handwritten graffiti Right Column—Lines 2 100%
Text overlay Full Page 100%

4.3. Watermark Capacity

Watermark capacity refers to the proportion of the watermark information size to the
size of the document being watermarked. It can be calculated as follows:

WatermarkCapacity =
watermark data bits

OFD file bits
(10)

By utilizing a watermark algorithm with a higher watermark capacity, the document
can be embedded more effectively within the watermark information. This capability
enables the handling of diverse document lengths and multilevel watermarks, facilitating
the transmission of larger amounts of information in practical applications.

In the annotation structure-based watermarking algorithm, the process of adding a
watermark involves appending both annotation structure information and the watermark
content itself to the corresponding Annot.xml file of the target watermark page. Conversely,
E-SAWM converts and encrypts the watermark information into multiple groups (referred
to as k groups). These k groups, along with their corresponding encrypted watermark
characters, are then added to the Content.xml file of the designated watermark page.
Compared to the annotation structure-based algorithm, our algorithm enriches the original
OFD file with additional information during the watermarking process.

To assess whether the increased information can be accommodated within the accept-
able carrying range, we conducted a watermarking capacity test. For this evaluation, we
randomly selected twenty OFD files of various sizes as samples. Additionally, we generated
twenty watermarks with different information contents. Each watermark was individually
matched with a corresponding file and embedded using the watermark algorithm. To
measure the impact of watermarking on document size, we calculated the rate of change in
the OFD file size by comparing its size before and after the watermark-embedding process,
as shown in Figure 12.
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Figure 12. Watermark capacity tests. (a) Watermark data size in various OFD Files. (b) Variation of
the corresponding OFD files before and after watermark embedding.

The experiments demonstrate that when embedding watermarks of various sizes into
each sample OFD document, the document size experiences minimal fluctuations, which
suggests that E-SAWM effectively handles the embedding of high-capacity watermark
information without significantly impacting the document size. Moreover, it showcases the
algorithm’s ability to accommodate a substantial amount of watermark information.

5. Conclusions

With the rapid development of the Internet, ensuring data security has become a
critical concern within the financial industry. Tracing leaked data plays a crucial role in
safeguarding data integrity. The growing use of OFD documents, particularly in electronic
tax returns and statements, emphasizes their importance in the financial sector.

We propose an innovative OFD watermarking framework, E-SAWM, in the edge
cloud scenario that utilizes semantic analysis to incorporate implicit watermarks into OFD
documents. By encrypting watermarking information into highly simulated structural
statements and securely embedding them within the structural components of OFD files,
E-SAWM provides a robust solution. Experimental evaluations confirm the effectiveness
of the algorithm, demonstrating its high concealment, strong robustness, and substantial
watermarking capacity. Consequently, the proposed algorithm enhances data security
in the financial industry. Overall, our research contributes to the advancement of data
security measures in the financial domain, addressing the pressing need for traceability
and protection against data leakage in an era of rapid technological advancements.
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Abstract: In recent years, the Internet of Vehicles (IoV) has garnered significant attention from
researchers and automotive industry professionals due to its expanding range of applications and
services aimed at enhancing road safety and driver/passenger comfort. However, the massive
amount of data spread across this network makes securing it challenging. The IoV network generates,
collects, and processes vast amounts of valuable and sensitive data that intruders can manipulate.
An intrusion detection system (IDS) is the most typical method to protect such networks. An IDS
monitors activity on the road to detect any sign of a security threat and generates an alert if a
security anomaly is detected. Applying machine learning methods to large datasets helps detect
anomalies, which can be utilized to discover potential intrusions. However, traditional centralized
learning algorithms require gathering data from end devices and centralizing it for training on a
single device. Vehicle makers and owners may not readily share the sensitive data necessary for
training the models. Granting a single device access to enormous volumes of personal information
raises significant privacy concerns, as any system-related problems could result in massive data leaks.
To alleviate these problems, more secure options, such as Federated Learning (FL), must be explored.
A decentralized machine learning technique, FL allows model training on client devices while
maintaining user data privacy. Although FL for IDS has made significant progress, to our knowledge,
there has been no comprehensive survey specifically dedicated to exploring the applications of FL for
IDS in the IoV environment, similar to successful systems research in deep learning. To address this
gap, we undertake a well-organized literature review on IDSs based on FL in an IoV environment.
We introduce a general taxonomy to describe the FL systems to ensure a coherent structure and guide
future research. Additionally, we identify the relevant state of the art in FL-based intrusion detection
within the IoV domain, covering the years from FL’s inception in 2016 through 2023. Finally, we
identify challenges and future research directions based on the existing literature.

Keywords: Federated Learning (FL); intrusion detection systems (IDS); Internet of Vehicles (IoV);
deep learning; machine learning

1. Introduction

The rapid expansion of the Internet of Things (IoT) has led to a number of novel
applications, such as smart cities, smart grids, and the Internet of Vehicles (IoV). When
these smart objects take the form of interconnected vehicles over the internet, the IoT
becomes the IoV. Significant interest in IoV technologies has emerged due to substantial
advancements in the smart automobile industry. IoV networks are integrated and open
network systems that connect vehicles, human intelligence, neighboring environments, and
public networks. These networks aim to increase road safety, reduce human error-related
accidents, and mitigate congestion. This is accomplished by continuously monitoring
traffic congestion. However, despite the numerous benefits offered by the IoV, several
issues must be addressed to safeguard the lives of all road users. The IoV is vulnerable to
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cyberattacks, which threaten its stability, robustness, and can lead to vehicle unavailability
and traffic accidents. Since communication in these networks requires the involvement of
multiple components, they are susceptible to a broad array of attacks. Thus, ensuring their
security requires advanced intrusion detection systems (IDSs) that can address potential
cyberattacks. IDSs excel at identifying anomalies and attacks in the network’s data during
communications between vehicles and various devices. Given that the IoV is a relatively
new network paradigm, new and ever-evolving attacks against it continue to emerge.
The IoV network creates a huge amount of data very quickly, especially when there are
cyberattacks.The accuracy of machine learning and deep learning approaches makes them
a preferred choice in this high-stakes environment [1]. Nevertheless, the need to store and
transmit data to a centralized server may compromise privacy and security. In contrast,
Federated Learning (FL), a decentralized learning approach that protects privacy, trains
models locally before sending only the parameters to the centralized server. Even though
FL for IDS development has made significant progress, a comprehensive survey specifically
exploring the applications of FL for IDS in the IoV environment has yet to be conducted. To
the best of our knowledge, a gap exists in the availability of a study that comprehensively
assesses current IDSs based on FL for IoV, similar to the successful systems research
conducted in deep learning.

To address this gap, the key contributions of our survey can be summarized
as follows:

• We offer a generic taxonomy for describing FL systems (FLSs) to ensure a coherent
structure and guide future research.

• We undertake a well-organized literature review on IDSs based on FL in an IoV
environment. This review identifies the latest advancements in FL-based intrusion
detection within the IoV domain, covering the years from FL’s inception in 2016
to 2023.

• Furthermore, we highlight several challenges and potential future directions based on
the existing literature.

The remainder of the paper is organized as follows. Section 2 explores the background
within this domain, covering IoV, FLSs, and IDSs. Section 3 aims to provide a thorough
overview of FL research within the context of IDSs in IoV environments. Finally, we
conclude the paper by describing open research challenges and outlining possible future
research directions in Section 4. For increased clarity and understanding, abbreviations
section summarizes the abbreviations used in this manuscript.

2. Background
2.1. An Overview of Internet of Vehicles

Transportation has become a significant challenge in many countries due to population
growth. Often, the transportation system itself is outdated, making upgrading a costly
and daunting task. By 2035, the number of vehicles around the globe is estimated to reach
two billion. This substantial number will strain existing transportation systems and most
likely result in more accidents and traffic jams. Therefore, changes must be made in the
transportation system’s framework to adjust to emerging prerequisites of new vehicles,
travelers, and drivers [2]. Technological advancements have motivated the enhancement
of a wide array of gadgets to be used in various fields, including IoT. Additionally, the
Internet is helping societies develop much faster, and people in developed societies, in
turn, are seeking a better way of life [3]. A few of these technologies have resulted in the
further advancement of IoV, a field commonly considered an extension of IoT. IoT is a
universal network of interconnected smart devices equipped with embedded hardware
and software for environmental sensing and data exchange, with the capability to act on
that information. Therefore, including vehicles as devices makes IoV a field with appli-
cations in intelligent transportation, crash prevention, and smart cities [4]. IoV networks
require software applications to monitor vehicle movements and provide security against
malicious attacks. These systems function through interactions with various components,
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including vehicle communication with roads, roadside units, and sensors [5]. IoV brings
together two cutting-edge dreams—the network and intelligent vehicles—while center-
ing around the objects (e.g., humans, vehicles, systems) to create a perceptive system
that relies on information technology and communication features to assist authorities
in huge urban territories and entire countries [3]. IoV enables extensive communication
between vehicles in various forms, including vehicle-to-vehicle, vehicle-to-road, vehicle-
to-human, vehicle-to-infrastructure, and vehicle-to-sensor connections through wireless
communication technologies [6]. Additionally, human-to-human interaction occurs in IoV.
Generally, though, the human component is gaining importance as the services develop.
In their research, Rim et al. [7] view IoV as a worldwide network with three integrated
subnets: the intravehicle network, the intervehicle network, and the vehicular mobile
internet. By contrast, Garg et al. [3] define IoV from the angle of integration of on-board
sensors and communication technologies. These researchers view IoV as intelligent vehicles
with advanced devices that utilize modern communication and networking technology
to provide vehicles with complex environment sensors, intelligent decision making, and
control functions.

2.1.1. Benefits of Internet of Vehicles

IoV has the potential to transform the transportation industry’s landscape, making
travel safer, more efficient, and friendlier to the environment. The IoV provides several
opportunities for improvement and numerous benefits, including the following [3]:

• Lower costs: Improved traffic control results in lower costs, including insurance
premiums and operational costs.

• Time efficiency: Traffic is meticulously monitored, examining the time people spend
on the road.

• Reduced risk of fatalities: Examining the transportation environment can reduce
accidents, such as by helping drivers navigate traffic [8].

• Smart cities development: Smart cities are more organized due to the services they
provide, including enhanced navigation and real-time traffic.

• Greenhouse effect reduction: This limits harm to the world.
• Emergency response: IoV can autonomously notify emergency services in the case of

an accident, potentially diminishing reaction times and saving human lives.
• Autonomous driving: IoV is an essential part of the development of autonomous and

semi-autonomous vehicles, both of which can lower the number of accidents resulting
from human mistakes and enhance general road safety.

• Traffic documentation: Filming traffic accidents using services such as pics-on-wheels
allows any vehicle on the road to act as a witness to any accident. Among other
outcomes, this encourages people to maintain decorum on the road.

In general, IoV offers the potential for safer, more intelligent, and more efficient
mobility for individuals and society as a whole.

2.1.2. Internet of Vehicles’ Characteristics and Challenges

This section elaborates on the characteristics of IoV and discusses various challenges
that IoV faces. Compared to other types of networks, IoV networks are distinguished by
several qualities. IoV is an evolution of traditional vehicular ad hoc networks (VANETs) and
shares many characteristics with VANETs, including dynamic topology, fluctuating network
density, high vehicular mobility, and network obstacles [2]. However, IoV networks possess
the following additional attributes:

• Scalability: Compared to traditional VANETs, IoV networks have the capacity to
incorporate a significantly larger number of interconnected vehicles, ranging from
hundreds to thousands. Furthermore, IoV has the potential to significantly augment
the number of interlinked gadgets to a magnitude of millions, depending on the
utilized application.
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• Multiple wireless access methods: The IoV platform supports several types of wireless ac-
cess methods, including WLANs, WiMAX, cellular wireless, and satellite communications.

• Extended network communication: IoV enables a broader range of communication
options than conventional VANETs, characterized by their restricted communication
capabilities. IoV facilitates vehicle-to-smart object connection, including devices such
as smartphones and tablets.

• Cloud computing: Unlike VANETs, the activities in IoV mostly rely on cloud comput-
ing services.

• Predictable mobility: Vehicular networks differ significantly from other ad-hoc net-
work types because vehicles often move quickly and in any direction. Vehicles are
predictable in their movement due to the topography, roadway layout, use of signal-
received traffic lights, and consideration of other moving vehicles’ distance. Therefore,
vehicles are predicted to possess integrated GPS systems to ascertain information on
their movement.

• Highly dynamic topology: A vehicle network’s topology exhibits a high degree of
dynamism, characterized by intermittent and rapid changes. Hence, the intricate
network topology dynamics must be thoroughly analyzed to advance the IoV envi-
ronment. IoV encompasses a collection of vehicles that exhibit regular variations in
both their velocity and trajectory. As a result, the configuration of the moving vehicles’
topology likewise undergoes alteration. Therefore, IoV supports a highly dynamic
topology, and the routing protocols are designed to consider this [9].

The IoV encounters a multitude of issues that require thorough investigation to en-
hance communication dependability, robustness, and steadiness, including the following:

• Fault tolerance: Because the IoV design is built on cloud connections, some vehicles
could malfunction; nevertheless, these failures should not influence the functioning of
the remainder of the network.

• Latency: The term “latency” refers to the amount of time that passes while a packet is
transferred through a network. Latency must be reduced as much as possible in some
mission-critical applications, such as accident warnings, to ensure that messages are
transmitted quickly.

• Network compatibility: To develop applications and protocols for IoV, researchers
must consider the numerous access technologies supported by IoV. This ensures that
the networks they create are compatible and allows IoV to function with the various
access technologies available today.

• Security: The data shared over the IoV network is sensitive and private, which is
especially important given that users can access the internet. As a result, the process
of protecting these networks is an essential undertaking and a prerequisite for the
implementation of IoV.

• Connectivity: The rapid movement of vehicles can result in frequent fluctuations
in network architecture, impacting connectivity. As a result, a significant portion
of the rate at which nodes arrive and leave can be influenced. The need to contend
with such a restriction depletes an essential amount of communication overhead.
Thus, nodes must often choose a trustworthy route to ensure that data is delivered to
specific destinations to function correctly. The vehicles must be continuously linked to
one another.

2.1.3. IoV Network Requirements and Generic Architecture

The Internet of Vehicles (IoV) is a transformative advancement in the realm of vehicu-
lar communications, merging traditional vehicular networks with cutting-edge information
and communication technologies. This integration not only expands vehicular capabilities
but also introduces intricate challenges and requirements in security, privacy, and func-
tionality. Understanding the architecture and requirements of IoV networks is pivotal for
developing sophisticated solutions like Federated Learning (FL)-based Intrusion Detection
Systems (IDS). In this subsection we provide a summary analysis of the essential security,
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privacy, and functional requirements of IoV networks, alongside a detailed description of a
generic IoV network architecture. Figure 1 shows the essential IoV network requirements.

Figure 1. IoV Network Requirements.

Security Requirements in IoV Networks

Security within Internet of Vehicles (IoV) networks is uniquely complex, given the
dynamic and mobile nature of vehicular communications [10]. Here, data integrity must
go beyond standard concerns—it is critical for safe vehicular operation as vehicles rely on
accurate, real-time shared information for essential functions. Any unauthorized data ma-
nipulation can lead to immediate safety risks. Authentication in IoV networks is also more
challenging than in static networks. It is not just about securing data, but about reliably
verifying the rapidly changing participants in the network—vehicles, road infrastructure,
and other connected entities—to prevent malicious activities [11]. The confidentiality of
data in IoV systems carries additional weight. Protecting user privacy, like location and
travel habits, is not only about privacy rights but also about safeguarding against poten-
tial threats that could exploit this sensitive data for harmful purposes. Non-repudiation,
while important in many digital systems, takes on heightened significance in IoV. Here,
it is crucial for legal and liability reasons, ensuring that a vehicle or network component
cannot deny its actions, especially in incident analysis and forensic investigations following
accidents or security breaches. Lastly, the aspect of continuous availability in IoV networks
is paramount. The challenge is to maintain seamless service in a mobile, high-speed envi-
ronment, where Denial of Service (DoS) attacks or other disruptions not only compromise
data but can directly impact physical safety and traffic efficiency.

Privacy Requirements in IoV Networks

Privacy concerns in Internet of Vehicles (IoV) networks are especially pronounced
due to the continuous and detailed data generation by vehicles. Protecting user identities
and sensitive data here goes beyond typical privacy considerations. Users in an IoV
context should have options for anonymity or pseudonymity [3], crucial for preventing the
real-time tracking of their vehicles, which could lead to physical tracking in the real world.

The principle of data minimization becomes even more critical in IoV environments.
Here, the vast amount of data generated by vehicles, including location, travel routes,
and driving patterns, must be carefully managed. Collecting only the necessary data
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for intended functionalities not only preserves privacy but also reduces the risk of data
breaches with potentially severe real-world consequences. User control over data in
IoV networks is vital. Given the diverse sources of data collection and dissemination in
IoV—from traffic management systems to third-party service providers—users must have
clear and manageable controls over who accesses their data and for what purpose. This
aspect is particularly challenging in IoV due to the interconnected nature of vehicular
networks and the range of stakeholders involved [12]. Moreover, when data sharing
is necessary for the functionality of IoV services, its execution requires robust security
measures. It is essential to ensure that sensitive information, such as real-time location or
travel behavior, is accessible only to authorized entities [4]. This protection is crucial in
preventing the potential misuse of data, which could lead to privacy infringements or even
safety hazards.

Functional Requirements in IoV Networks

The functionality of Internet of Vehicles (IoV) networks is not just about enabling
vehicular communication; it is about doing so in a way that meets the unique demands of
a highly mobile and rapidly evolving vehicular environment. Scalability is more than a
feature here; it is a necessity. The IoV network must seamlessly integrate an ever-growing
number of vehicles and infrastructure elements, each adding to the complexity and volume
of data exchange [13]. Real-time communication in IoV networks is about more than just
speed; it is about life-critical decisions. Low latency is indispensable for enabling timely re-
actions in dynamic driving scenarios, where milliseconds can mean the difference between
safety and danger. Interoperability in IoV extends beyond standard tech compatibility. It
involves harmonizing a myriad of vehicle models, diverse infrastructural technologies, and
varied network protocols to ensure uninterrupted communication, a task that is signifi-
cantly more complex given the varying standards and technologies in the automotive sector.
Effective mobility management in IoV is not just about maintaining network connections;
it is about doing so in a context where vehicles are constantly moving at high speeds, often
transitioning between different network zones, which requires sophisticated handover
mechanisms and robust connectivity management [14]. Furthermore, optimizing energy
usage, especially in the realm of electric vehicles, goes beyond conventional energy man-
agement concerns. In IoV, this is critical for the sustainable operation of not just individual
vehicles, but the entire network, impacting everything from data transmission efficiency to
the overall environmental footprint of the vehicular ecosystem.

Generic Architecture of IoV Networks

The Internet of Vehicles (IoV) is an advanced network architecture that integrates
vehicular technology with information and communication systems to enhance road safety,
traffic efficiency, and driving experiences. The core components of IoV architecture in-
clude [15]:

• Vehicles: The primary entities in IoV are the vehicles themselves, equipped with
sensors, communication modules, and computing capabilities. These vehicles can
collect and share a vast array of data, including speed, location, traffic conditions, and
environmental data.

• Roadside Units (RSUs): These are fixed infrastructural components placed alongside
roads. RSUs facilitate communication between vehicles and the broader network
infrastructure, acting as access points for data transmission and reception [5].

• Central Servers: Central servers provide backend support for data processing, storage,
and advanced computational tasks. They play a critical role in managing the overall
network, including traffic control, data aggregation, and system updates.

• Communication Network: This includes both Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communications, enabled through technologies like Dedicated
Short Range Communications (DSRC) and cellular networks. The network ensures
seamless and continuous connectivity within the IoV.
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• Traffic Management Center (TMC): The TMC acts as the control hub for traffic man-
agement, receiving data from various sources and making decisions to optimize traffic
flow, reduce congestion, and enhance road safety [5].

• Cloud and Edge Computing Resources: Cloud computing provides vast storage and
processing capabilities, essential for handling the large volumes of data generated in
IoV. Edge computing, on the other hand, offers localized processing at the network
edge, enabling real-time data processing and decision-making.

This architecture fosters an interconnected environment essential for various appli-
cations, including IDS. The architecture’s distributed nature, real-time communication
capabilities, and integration of advanced computing technologies are vital for implement-
ing effective FL-based IDS.

2.1.4. Security in Internet of Vehicles

IoV technologies are developing rapidly, and a number of industries investing in
these technologies are in a race to launch state-of-the-art self-driving vehicles. These
rapid advancements in IoV result in security issues that threaten not only the industry
but consumers as well [8]. The challenge lies in preventing security breaches and privacy
violations in IoV, making it less susceptible to cyberattacks [3].

Cyberattacks in Internet of Vehicles Networks

Vehicular sensor networks comprise a variety of vehicle sensors used to monitor and
measure various physical parameters associated with the vehicle and the environment in
which it is located. These sensors contribute to a more comfortable driving experience and
smoother driving operations. Table 1 lists some of the most frequently employed smart
vehicle sensors. Each of these sensors is built using cutting-edge electronic components
and communication systems. Due to their limited available resources, implementing
sophisticated and reliable security algorithms on these sensors directly is impractical.
Consequently, these sensors are susceptible to various cyberattacks [16].

IoVs are susceptible to several types of attacks and threats, including the following:

• The flow of bogus information: Attackers use fake information to make users believe
in a false environment.

• Message injection attack: Attackers send seemingly legitimate messages to gain access
to one or more entities, which they can also utilize to send out malicious messages [16].

• Replay attack: Attackers iterate messages to gain unlawful access to the network’s
services and resources [17].

• Cookie theft attack: Resembling the previous attack, attackers use a copy of the cookies
they stole to reach the network’s resources.

• Sybil attack: Attackers create fabricated vehicles around the vehicle they are targeting
and generate a signal jam, compelling the target to use an alternate path. To do this,
they use a countless number of fake IDs for a single node to create the appearance of
multiple nodes [18].

• Man-in-middle attack: Attackers insert themselves between two communicating
entities. In this type of attack, which can be active or passive, the attackers can receive
messages from one entity and send them to the other [16].

• Denial-of-service and distributed denial-of-service attacks: Attackers attempt to dis-
rupt the network’s efficiency by flooding the target channel with messages that exceed
its handling capacity. This is carried out to use the network’s limited resources ille-
gally [10].

• Dissimulation of GPS attack: Attackers intercept and modulate GPS signals before
the intended receiver receives them. This type of attack can endanger the lives of the
people in the target vehicle as they are given the wrong directions.

• Impersonation attack: As the name implies, attackers impersonate the identity of a
legitimate user on the network to spoof unsuspecting vehicles on the network with
messages that are not only fictitious but dangerous.
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• Masquerading attack: Again, as the name implies, attackers masquerade as authorized
users. Unlike the previous attack, attackers copy the legitimate ID of one of the
network’s nodes and can create two different senders using the same identity.

• Wormhole attack: Attacker nodes fake incorrect information about the distance from
the target node, aiming to obtain every message sent from the receiver to flow through
it. Deadlocks are typically created by these types of attacks [17].

• Eavesdropping attack: Attackers passively listen to the communication on the network.
They become a part of the network, aiming to secretly obtain confidential, sensitive
data and use it unlawfully.

Table 1. Common sensors in vehicle sensor networks.

Sensor Use of Sensors in Vehicles

Camera

Identifies traffic signs, enhances night vision, adapts to the
light system, determines the likelihood of being involved
in a collision, detects lanes, records emergencies, and
provides parking aid.

GPS
Tracks location, provides path direction, minimizes fuel
costs, lowers operational costs, helps with theft recovery
and in an emergency.

Ultrasonic sensors
Include parking assist systems, which monitor the
immediate surroundings of the vehicle and measure
distance to obstacles.

LiDAR Ensures safe navigation by detecting objects and
estimating distances.

Radar

Detects obstacles or pedestrians, deploys automatic
emergency braking, and enables blind-spot monitoring,
lane-keeping assistance, and parking assistance in
autonomous mode.

Inertial sensors
Provide data concerning the rate of acceleration and the
current direction of the vehicle, includes automotive
safety systems like airbag and anti-skidding protection.

Tire pressure monitoring system Monitors tire air pressure and alerts the driver when it
falls dangerously low.

2.2. An Overview of Federated Learning

As the risk of a data breach grows increasingly significant, many governments are
enacting legislation to protect their citizens’ data. Because of a breach that occurred
in 2016 involving the personal information of 600,000 drivers, Uber was forced to pay
USD 148 million to resolve the investigation [19]. In response to these situations, Google
introduced the notion of FL to facilitate on-device learning while ensuring the preservation
of data privacy. FL enables collaborative learning among devices without necessitating
data sharing with a centralized server. In other words, machine learning and deep learning
may be trained across various devices and servers using decentralized data thanks to
the capabilities of the technology [20]. This process can be repeated multiple times. This
section provides an overview of FL, introducing the concept and highlighting its potential
applications and benefits in several domains.

2.2.1. Definition of Federated Learning

FL facilitates the collaborative training of a machine learning model by many parties
without the need for the direct exchange of their respective local data. The subject matter
encompasses a range of methodologies derived from various fields of research, including
distributed systems, machine learning, and privacy. Building on the definitions of FL
provided by previous studies [19,21,22] we propose the following definition for FL. In an
FL framework, numerous entities work together to train machine learning models without
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the need to share their raw data. The result of the process is a machine learning model for
each entity involved (which may be identical or distinct). A crucial restriction of a practical
FLS is that the performance of the model acquired through FL should surpass that of a
model obtained through local training when evaluated using a designated measure, such
as test accuracy, using the same model architecture. FLSs include the following aspects:

• Data privacy: An FLS tackles the issue of data privacy by enabling individual entities
to maintain their data locally, hence avoiding the need to share it with a centralized
server. This is especially crucial when handling private or sensitive data [23].

• Collaborative training: Models are trained collaboratively within the FLS. Based on its
local data, each party or device independently computes updates to the model and
shares them with other participants or a central server.

• Aggregated model: By combining the model updates from each participant, the
central server creates an enhanced global model that gains from everyone’s combined
expertise. The participants then receive a copy of this combined model.

• Iterative process: The iterative nature of the FLS entails the incorporation of several
training rounds. During each iteration, individuals involved in the process update
their respective local models and then contribute to the overall global model. The afore-
mentioned iterative procedure persists until the global model reaches a satisfactory
performance level.

• Customized models: The FLS enables the customization of models to cater to each par-
ticipant’s specific needs and requirements. Participants may have models customized
to their individual needs, depending on the distribution of data and local requirements.

2.2.2. Components of a Federated Learning Framework

In today’s data-driven world, the conventional centralized approach to ML—in which
data from multiple sources is pooled on a single server for training—is encountering
obstacles, particularly regarding privacy and efficiency. This technique collects data from
various sources and then stores it on a server. FL has emerged as a potential solution,
enabling decentralized training while ensuring that data is kept on its original device,
thereby reducing the overhead associated with data transfer [24]. This section discusses the
fundamental elements that comprise an FL framework.

• Client devices: These are edge devices, including smartphones, tablets, IoT devices,
and even personal computers; they can store and process data locally and oversee
local model training.

• Central server: This entity serves as the primary aggregation point in the FL structure.
The central server is responsible for communicating with client devices, collecting
model updates, and disseminating the global model back to the clients [21].

• Local models: Each client device is equipped with its own version of the ML model,
which is trained using the local data available on that device.

• Global model: This model aggregates all the local models stored on the client devices
and is hosted on the central server.

• Communication protocol: The primary objective of the communication protocol is
to establish reliable and effective communication between the client devices and
the central server while ensuring the security of the data sent. It is responsible for
overseeing the transmission of updates to the model and the distribution of the
global model.

• Aggregation algorithm: The algorithm is implemented on the central server, integrat-
ing the model updates received from all client devices to enhance the global model.

• Privacy mechanisms: During model aggregation and communication, additional lay-
ers of data security can be added by integrating various techniques, such as differential
privacy and Secure Multiparty Computation (SMPC).

By gaining a comprehensive understanding of the fundamental components of FL,
one can develop a deeper appreciation for the complexities and possibilities that FL offers
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in addressing contemporary challenges within the field of data science. The significance of
such decentralized techniques is expected to continue expanding as the digital ecosystem
evolves, making FL a cornerstone in the future of ML.

2.2.3. Typical Federated Training Process

The FL process begins with each device developing a localized model using its own
dataset. After completing local training, the device transmits model changes—specifically
weights and gradients—to a central server, rather than sending raw data [16]. This approach
ensures that confidential information remains in its original location, effectively mitigating
various privacy risks commonly associated with traditional data centralization [25]. The
model updates from all participating devices are consolidated on the central server to create
an enhanced global model that incorporates insights derived from all the decentralized
data sources. This aggregated model is then distributed to all devices, allowing them to
leverage the collective intelligence of the entire network. The iterative process involves local
training, model update transmission, aggregation, and global model dissemination, with
each iteration progressively improving the accuracy and resilience of the global model [21].
By employing this innovative methodology, FL addresses the challenges related to data
privacy and ML efficiency, effectively utilizing a wide range of authentic data sources from
the real world while safeguarding the security of individual data [26].

2.2.4. Federated Learning Systems Taxonomy

FLSs facilitate cooperative model training while upholding the principles of data
privacy and security. This approach is especially suitable for situations where data is
distributed across multiple sources, and the parties involved are hesitant to share their data
in a centralized manner. Many new FLSs have emerged since the creation of FL in 2016.
There are a general taxonomy describing the difference of FLS is was presented in [19] and
also replicated in [27]. Even though their taxonomy was very helpful for many researchers,
it had several limitations that need to be addressed. Firstly, the taxonomy primarily focuses
on the most prevalent and widely adopted Federated Learning scenarios, and as such,
does not encompass all possible scenarios. Secondly, there might be gaps in terms of the
different types of data distributions, models, and algorithms presented, indicating that the
taxonomy might not be exhaustive. Thirdly, the taxonomy does not delve deeply into the
specifics of each category, which could lead to overlooking certain nuances. Lastly, it is
worth noting that the taxonomy is a reflection of the state of Federated Learning in 2021
and may require updates.

As the domain progresses, we present a general taxonomy describing the differences
between these FLSs in this section. We use the taxonomy to clarify the distinctions be-
tween different FLSs, which can be categorized according to their essential features and
characteristics. This multidimensional classification considers the most significant com-
ponents of FLSs, such as data sources, privacy, model aggregation techniques, learning
models, scalability, and network topology. Given the prevalent system abstractions and
foundational components employed in various FLSs, we can classify these systems based
on six key aspects: data distribution, model management, privacy method, communication
architecture, FL algorithms, optimization techniques, use cases, and applications. Figure 2
shows this taxonomy of FLSs.

Data Distribution

When discussing the taxonomy of FLSs, the term “data distribution” refers to the
process by which various participants or nodes in an FL environment are given different
portions of the data. It affects the effectiveness and level of privacy maintained during the
learning process, making it an essential component of FL.
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Figure 2. Taxonomy of Federated Learning systems (FLSs).

The following list reviews important factors regarding the distribution of data within
this taxonomy:

• Data partitioning: The concept of data partitioning describes how data is allocated or
divided among entities. Generally, FLSs can be divided into two categories, vertical
and horizontal FLSs, depending on how the data are spread over the sample and
feature spaces. The vertical partitioning strategy involves allocating distinct aspects or
attributes of the dataset to various participants. For instance, a given participant may
possess data pertaining to age and gender, whereas another participant may possess
data on income and location. By contrast, in horizontal partitioning, participants have
access to distinct sections of the data instances. A slice of the dataset with the same
attributes belongs to each participant. For example, one member might have customer
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data for a particular location, whereas another participant might have customer data
for a different location.

• Data imbalance: The notion of data imbalance holds significant importance within
the taxonomy of FLSs as it relates to the uneven allocation of data among the par-
ticipants or nodes within the system. An imbalanced data distribution can have a
substantial impact on the performance, fairness, and effectiveness of FL models [28].
Generally, FLSs can be categorized into systems with an even distribution and those
with an imbalanced distribution. In even distribution, data can be distributed among
participants to ensure an equitable allocation, thereby resulting in each participant pos-
sessing a proportionate share of the data. This methodology is commonly employed
in situations with a reasonably equal distribution of data among participants and
without substantial disparities in the quantity or significance of the data. In contrast,
in imbalanced distribution, participants’ data are not dispersed equally, resulting in
some participants having noticeably more data than others. Managing data imbal-
ance is a crucial factor to consider, as it might impact the FL process’s performance
and fairness.

• Data heterogeneity: A vital component of the FLS taxonomy is data heterogeneity,
which describes the variation in the kinds, forms, and quality of data among nodes or
participants in an FLS [29]. The FL context offers different opportunities and problems
when dealing with heterogeneous data. Homogeneous data refers to particular in-
stances of FL where the data possessed by participants exhibits a considerable degree
of similarity concerning data type, format, and quality. The utilization of homoge-
neous data in the FL process facilitates the training of models by enabling a more
streamlined approach since the consistency of the data allows for easier training. Ho-
mogeneous situations can facilitate model aggregation, sharing updates, and making
assumptions about data features. On the other hand, heterogeneous data relates to
scenarios when the data obtained from diverse participants exhibit notable variations
in terms of data kinds, formats, and quality. Heterogeneity can manifest in myriad
ways, such as disparities in feature representations, variations in data preparation
techniques, and discrepancies in data-gathering methodologies. Data heterogeneity
arises for a variety of reasons, such as the utilization of disparate technologies, the
involvement of many companies, and the integration of data from sources that possess
separate data schemas. The issue of data heterogeneity is highly significant in the FL
context, as it has notable implications for the capacity to develop a valuable global
model from varied data sources while ensuring data privacy and model performance.
The efficient management of data heterogeneity and adaptation to accommodate
the different attributes of individual participants’ data are crucial considerations in
developing effective FLSs.

• Data skewness: The concept of data skewness holds significant relevance within the
FLS taxonomy, as it specifically refers to the uneven distribution of data across the
participants or nodes in an FLS. Skewness pertains to the extent of asymmetry or
lopsidedness in the distribution of data [30]. The comprehension of data skewness is
essential due to its potential impact on the performance, fairness, and convergence of
models in the FL context. In certain instances of FL, the distribution of data among
participants may exhibit a uniform skew. This implies that each participant’s data are
subject to a comparable degree of skewness. Uniform skewness is observed when
participants show identical patterns of data distribution despite potential variations
in the quantity of data. By contrast, non-uniform skewness is observed when the
skewness of the data distribution across different participants varies. Certain par-
ticipants may have heavily skewed data distributions, while others may have more
evenly balanced ones. Dealing with non-uniform skewness can pose difficulties as it
necessitates accepting diverse levels of skewness in the data distribution. The presence
of data skewness In FL gives rise to several challenges, including training imbalance,
model bias, concerns over privacy, and increased communication overhead. Weighted
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aggregation approaches can be utilized in FLSs to address the issue of data skewness
and reduce its impact. These strategies involve allocating varying weights to partic-
ipants based on the degree of skewness in their data distribution. Participants who
possess more highly skewed data may be assigned lower weights in order to prevent
their data from exerting an excessive impact on the overall model.

• Data evolution: The evolution of data in FLS taxonomy pertains to the temporal
modifications that transpire within the datasets maintained by participants. These
modifications can have noteworthy consequences in terms of the efficiency and preci-
sion of FL models. In certain FL situations, the data remain static throughout the FL
process, resulting in a simplified training procedure. Static data are typically seen in
situations where the underlying data exhibits few changes, as in the case of historical
datasets or reference databases. Notably, dynamic data have the potential to change
over time. Consequently, participants may find it necessary to update their respective
local datasets regularly.

Model Management

Another critical component of the FLS taxonomy is model management, which refers
to the approaches and techniques used to manage the machine learning models within an FL
framework. It includes several aspects of model deployment, customization, aggregation,
initialization, and updates in FL environments. The following elements are essential in
understanding model management within the FLS taxonomy:

• Global model: In an FL environment, the global model represents the machine learning
model trained and updated collectively by all participating devices or nodes. Without
consolidating the data, the global model captures the common knowledge derived
from the decentralized data sources. Most FL situations have a single global model
that all participants work together to enhance. Meanwhile, some global models may
be employed in other specialized applications, each tailored to a particular task, set
of features, or user group. The central focus of FL is the global model, encapsulating
collective intelligence from various data sources while safeguarding data privacy and
promoting decentralization. The successful management of the global model is crucial,
involving appropriate initialization, secure updates, and precise evaluation.

• Local model: The term “local model” refers to individual machine learning models
maintained and updated by each participating device or node in the network. These
local models are trained using local data accessible on each individual device, and
the raw data is not shared with a centralized server throughout this process. Each
participant may have their own unique local model, which they are responsible for
maintaining. During the training, participants do not discuss their models, nor do
they exchange raw data or model parameters with one another. As an alternative, each
participant may maintain their own local ensemble of models, allowing for a variety
of perspectives and levels of competence. The ensemble may include models that
use various algorithmic approaches, architectural layouts, or hyperparameter settings.
More reliable and accurate results can sometimes be achieved by combining the pre-
dictions of different models. Local models are essential to the FL process because they
enable individuals to contribute to the collective intelligence without compromising
the privacy of their personal information. Effective local model management is crucial
for the success of FLSs across various domains and applications. This management
must include secure training, customization, and evaluation.

• Model aggregation: A key component of model management in the FLS taxonomy is
model aggregation, which describes the procedure for combining local model updates
from many collaborators to produce a current global model. This procedure is essential
to FL because it guarantees the integration of all participants’ aggregate knowledge
without centralizing their raw data [31]. FLSs use various standard methods for
aggregating models. Federated averaging is the most widely used model aggregation
technique for FL. After using their own data to train their local model, all participants
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transmit the updated model—gradients—to a central server. A new global model
is produced by averaging these modifications. Since no raw data is transferred,
privacy is guaranteed [32]. This approach’s efficiency and simplicity enable quick
adjustments to the global model. Another popular FL model aggregation method
is secure aggregation. This technique combines model updates while protecting the
privacy of individual modifications. It uses cryptographic techniques, such as SMPC,
to aggregate data without disclosing the unprocessed changes. It is appropriate for
sensitive applications since it offers a high degree of privacy and secrecy. Additionally,
it safeguards the integrity of the aggregation process from malevolent attempts. Krum-
based aggregation, the third aggregation technique, is designed to stave off Byzantine
attacks. This aggregation approach entails sorting the updates from participants
according to their impact. The update with the smallest cumulative distance to the
k-nearest updates is selected for aggregation [33]. Because it is robust against updates
that differ significantly from one another, it can be used in adversarial environments.
Trimmed mean aggregation, a popular variation of federated averaging, removes
a predetermined proportion of extreme updates before averaging. After sorting
the participant updates, the updates with the largest variances from the mean are
eliminated. By using this method, the aggregation process becomes more resilient
to updates that contain outliers. Participants in the weighted aggregation technique
are given varying weights according to the caliber or applicability of their updates.
During aggregation, higher weights are assigned to participants who provide more
accurate or diverse updates, increasing their contributions’ effect on the global model.
This allows for the prioritization of more trustworthy or pertinent updates, enhancing
the global model’s overall quality. In FL, model aggregation is a crucial stage since
it establishes the quality and efficacy of the final global model. The best aggregation
technique is determined by specific application needs, such as privacy concerns,
resilience against adversarial attacks, communication limitations, and required model
quality. Effective model aggregation approaches enable FLSs to create precise, reliable,
and privacy-preserving global models.

• Model updates: Model updates pertain to modifications made to machine learning
models during the FL process. Implementing these updates is paramount in improving
the models’ overall performance, accuracy, and generalization capabilities. On the
one hand, local model updates can be employed in scenarios where players train
their own local models using their respective datasets, resulting in model updates
derived from their individual training procedures. Local updates are computed
via methodologies such as stochastic gradient descent (SGD) or its variations, such
as federated averaging. The updates are contingent upon the data on individual
participants’ devices, enabling models to catch localized patterns. On the other hand,
in global model updates, changes are computed by aggregating information from
the local models of all participants. Global updates are produced by combining the
local model updates contributed by several participants. These updates indicate the
cumulative understanding of the FL network as a whole. Model updates play a
vital role in the FL context, as they enable the integration of the collective intelligence
derived from various data sources into one cohesive and improved model. The success
of FLSs in many domains and applications heavily relies on the efficient administration
of model updates, encompassing privacy protection, security, and adaptability.

• Model deployment: Model deployment in FLSs includes the steps required to make the
trained machine learning model accessible and functional for generating predictions
or providing services to end-users or applications. However, model deployment in FL
exhibits notable differences from conventional machine learning model deployment,
mostly stemming from the decentralized and privacy-preserving characteristics inher-
ent in the FL methodology. The strategic process of deploying models in FLSs involves
striking a compromise between real-time adaptation and safeguarding user privacy
and data security. FL involves the collaborative training of models on dispersed
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devices while preserving the confidentiality of sensitive data within local servers [26].
Following the completion of training, models can be deployed in both online and
offline environments. The process of online deployment in FLSs entails the seamless
and immediate incorporation of model changes originating from distributed devices.
This facilitates the prompt reaction to evolving data patterns and user behaviors in real
time. This methodology enables rapid model aggregation, maintaining the pertinence
and precision of forecasts in dynamic settings. By employing strategies such as the
integration of real-time noise injection to ensure privacy and the implementation of
continuous monitoring, the online deployment of the model ensures its ability to
promptly adapt to developing trends. Feedback loops facilitate the collection of user
interactions in real time, enabling prompt modifications and refinements. Utilizing
adaptive learning rates and personalization settings guarantees customized experi-
ences for individual users. Online deployment generally ensures that FL models
offer timely, accurate, customized predictions while protecting user privacy. This
makes it crucial for applications that require swift and exact answers to real-time
data streams. Conversely, offline deployment in FLSs encompasses using pretrained
models on novel data without necessitating real-time adaptation. After the FL model
completes the training and aggregation process by incorporating updates from devices
involved in the process, it can be implemented offline for many applications. Offline
deployment is especially advantageous in situations when immediate adjustment is
not critical and regular updates are satisfactory. In this particular situation, the model
that has undergone training is implemented on servers or edge devices, enabling it
to provide predictions or services by leveraging its accumulated knowledge. This
deployment strategy demonstrates efficacy when employed in applications character-
ized by consistent data patterns and when privacy-preserving methodologies have
been included during the training phase. Although offline deployment may not pos-
sess the immediate responsiveness of online deployment, it offers the advantage of
ensuring consistency and accuracy in predictions. This characteristic renders offline
deployment well-suited for numerous FL applications. Table 2 provides a comparison
of online and offline model deployment in FLSs.

Table 2. Comparison between online and offline model deployment in Federated Learning systems.

Adaptability
Online deployment is well-suited for dynamic environments subject to rapid change, as it enables instant

adaptation to new data. In contrast, offline deployment ensures consistency but may not adapt as rapidly to
new circumstances.

Privacy
Both deployment strategies prioritize privacy during the training period. However, online deployment

guarantees real-time privacy maintenance while updating the model, offering enhanced privacy for
continuous interactions.

Resource usage
Online deployment requires consistent and instantaneous information exchange, as well as the availability of
computational resources to implement model revisions promptly. In contrast, offline deployment reduces the

need for continuous communication, enhancing resource efficiency.

Use cases

Online deployment is highly advantageous in scenarios where real-time adjustments and customized
responses are crucial. Offline deployment is a suitable option for applications requiring periodic model

updates and consistent forecasts, particularly in situations where continuous communication may not be
practical or essential.

The selection of online or offline deployment in FLSs is contingent upon the particular
use case, data patterns, privacy stipulations, and the necessity for real-time adaption. Each
option presents distinct advantages, enabling organizations and developers to customize
their strategy according to the application’s specific requirements.
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Privacy and Security

Privacy and security are of utmost importance in the taxonomy of FLSs. The preser-
vation of data privacy, secrecy, and security is critical due to the involvement of various
sources. The following key elements pertain to privacy and security within FLSs:

• Differential privacy: Differential privacy is a core principle within the field of privacy-
preserving data analysis, such as in FL. Differential privacy techniques ensure that the
presence or absence of a particular data point does not materially affect the output
by adding noise to the computations made on the data [34]. Even when combined
with or applied to updates to machine learning models, it safeguards the privacy of
individual data pieces. Differential privacy is used in FLSs to protect participant data
privacy while enabling group participation in machine learning model training [35].
The following are the fundamental types of differential privacy inside FLSs:

– Local differential privacy (LDP): When using LDP, noise is applied locally to
individual data points on the users’ devices before transferring the perturbed
data to the central server. This ensures that raw data are never transmitted outside
users’ devices, offering a higher level of privacy but making it more difficult to
aggregate the data [35].

– Central differential privacy (CDP): In the CDP technique, noise is added to the
aggregated statistics or model parameters in a centralized location. This helps to
ensure that no participant’s data are made public. It is appropriate for situations
in which a reliable central server compiles the updates contributed by participants
without disclosing their private data [35].

– Epsilon-differential privacy (ε-differential privacy): The level of privacy can
be quantified using a parameter known as epsilon. A lower value for epsilon
indicates a greater degree of discretion and confidentiality. A balance must be
struck between personal privacy and practicality. Lower values result in increased
privacy but could also lead to a less accurate global model.

In FLSs, differential privacy is crucial to guaranteeing that users can provide data for
model training without risking their privacy. Ensuring the security of sensitive information
while maintaining accuracy in models is a critical component of privacy-preserving machine
learning in collaborative settings. Table 3 provides a comparison summary between these
three standard differential privacy techniques.

• Secure multiparty computation: SMPC is a cryptographic methodology that facilitates
collaborative computation of a function by numerous entities while ensuring the
privacy of their inputs. Within the realm of FLSs, SMPC assumes a pivotal role in
upholding privacy and security. The integration of SMPC inside the FLS taxonomy
can be elucidated as follows:

– Privacy-preserving model aggregation: SMPC guarantees participants’ ability to
safely submit their model updates or gradients to collectively construct a global
model while ensuring that no individual party can access the specific contribu-
tions made by others. The integration of collective intelligence from multiple
participants while maintaining individual privacy is of utmost importance in the
FL context.

– Collaborative model training: The SMPC technique facilitates the cooperative
training of machine learning models, allowing participants to cooperatively
compute model parameters without sharing their raw data. Collaborative efforts
among participants can be employed to enhance the model’s accuracy while
maintaining the privacy and confidentiality of their respective datasets.

– Differential privacy in aggregation: The combination of SMPC and differential
privacy approaches allows for the introduction of noise into aggregated results,
hence offering a robust privacy assurance. The utilization of the aggregated model
guarantees that the determination of the contribution made by any particular
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participant remains computationally infeasible, thus upholding the preservation
of individual privacy [35].

Table 3. Comparison summary between three common differential privacy techniques.

Local Differential Privacy Central Differential Privacy Epsilon-Differential Privacy

Privacy level

Ensures robust individual
privacy by ensuring raw data

remains exclusively on the
participants’ devices.

Provides privacy at an
aggregate level, ensuring that
individual data is not directly
exposed in any circumstance.

Adjusting epsilon allows for
custom privacy levels,

offering flexibility.

Aggregation complexity
Aggregating locally perturbed

data while maintaining
privacy is complex.

Since noise addition happens
centrally, aggregation

is simpler.

The aggregation complexity is
determined by the particular

implementation and the
noise-adding mechanism.

Centralization

Completely decentralized,
with no centralized entity

participating in the processing
of data.

The addition of noise
necessitates the use of a

reliable centralized server,
resulting in centralization.

The centralization level
depends on the noise-
adding mechanism.

Flexibility
High privacy but increased

noise levels may
reduce usability.

A balanced approach with
group-level privacy.

Flexible, enabling privacy
levels to be changed in

accordance with
application needs.

Challenges Aggregation complexity.
Increased noise.

Central trust.
Potential central attack. Utility trade-off.

The utilization of SMPC-based aggregation plays a crucial role in the FL context, as it
enables participants to collectively improve the accuracy of a global model while simul-
taneously ensuring the protection of their data’s privacy. FLSs can utilize safe multiparty
computation techniques to use the combined information from various remote sources
effectively. This approach ensures that security, privacy, and integrity are maintained
during the collaborative learning process.

• Participant authentication: Participant authentication is an essential component within
the taxonomy of FLSs, as it verifies the identity and legitimacy of entities involved
in the collaborative learning process. Participant authentication can be conducted
using authentication mechanisms, or participants can remain anonymous through
anonymous participant techniques. Authentication systems are an essential feature of
FLSs. They ensure that all participants and entities interacting with the system have
their identities checked and are granted the appropriate permissions. Within the FLS
taxonomy, the following authentication mechanisms are used:

– User credentials authentication: In this mechanism, participants must provide
their usernames and passwords to verify their identities. This fundamental
mechanism is used extensively despite the fact that, if not adequately secured, it
is susceptible to password-based attacks.

– Biometric authentication: The authenticity of the participants is determined by
using distinctive biological characteristics, such as fingerprints or facial recogni-
tion. Because copying biometric data is so complex, this technique provides a
very high level of security.

– Token-based authentication: Participants authenticate subsequent requests with
tokens, which are typically generated once an initial login has been completed suc-
cessfully. It improves security by minimizing the amount of sensitive credentials
that must be transmitted regularly.

– Certificate-based authentication: Participants show digital certificates signed by a
reliable certificate authority to authenticate themselves. This improves security
by guaranteeing that a reliable third party confirms participants’ identities.
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– Multi-factor authentication: In order to gain access, participants are required
to furnish a variety of authentication methods, including a password and a
verification number transmitted to their mobile device. The implementation of
various proofs of identification enhances the level of security.

– oAuth and OpenID connect: The use of secure authentication and authorization
protocols is prevalent in web-based FLSs. The system offers standardized and
secure authentication techniques, effectively integrating them with a wide range
of applications and services.

– Device-based authentication: The authentication of participants’ devices is con-
tingent upon the utilization of distinct device identifiers or certificates linked to
the hardware. Implementing device authorization in the FLS bolsters security
measures by only allowing access to authorized devices.

– Role-based access control: Participants are allocated distinct roles and permissions
in accordance with their respective tasks inside the FLS. Implementing access
controls guarantees that participants possess suitable levels of access, hence
mitigating the risk of unauthorized activities and access to data.

– Continuous authentication: The activities and behaviors of participants are con-
tinuously watched to identify any anomalies, ensuring that authenticated users
maintain their authentication status. Including this feature enhances security
measures by rapidly detecting and addressing any questionable behavior.

– Symmetric encryption: In FLS, symmetric encryption plays a crucial role in main-
taining data confidentiality and integrity. This method, utilizing the same key for
both encryption and decryption, is particularly efficient for the large volumes of
data typical in FLS. It ensures that sensitive information remains secure during
transmission, as only model updates or insights are shared across the network,
not the raw training data. This encryption method not only protects the data
from potential eavesdroppers but also maintains their integrity, making any unau-
thorized alterations easily detectable. While symmetric encryption is central to
preserving data privacy and consistency in FLS, it is typically complemented by
other security measures, such as secure key management protocols, to provide a
comprehensive security framework. The efficiency and effectiveness of symmet-
ric encryption in these systems highlight its indispensability in the secure and
efficient operation of FLS.

The specific requirements of a particular FLS determine the most suitable authenti-
cation approach, taking into account aspects such as security, usability, scalability, and
management complexity. These techniques can frequently be combined to achieve an
efficient balance between security and usability. Table 4 provides a comparison of the main
authentication mechanisms within FLSs.

• Anonymous participants: When discussing FLSs, the term anonymous participants
refers to the practice of protecting the participants’ right to privacy and maintaining the
confidentiality of their data and identities. Ensuring that users can participate in FLSs
while maintaining anonymity is essential for protecting their data privacy. This objec-
tive is accomplished by using a variety of strategies and approaches. In FLSs, the fol-
lowing methods are frequently used by participants who wish to remain anonymous:

– Participant identity concealment: The concealment of participants’ identities
is a crucial measure in the FL process, as it guarantees the protection of their
personal information from being disclosed. The preservation of user privacy
fosters engagement from individuals and businesses who are apprehensive about
the potential risks associated with data disclosure.

– Data anonymization: In the context of FL, personal data undergo anonymization
procedures prior to engagement, guaranteeing that even in the event of unautho-
rized access, the data cannot be directly associated with identifiable individuals.
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Methods such as differential privacy, k-anonymity, and data perturbation can be
employed to achieve data anonymization

– Pseudonymization: During the FL process, participants are not required to re-
veal their true identities and instead employ pseudonyms or temporary IDs.
The utilization of this technology affords a level of anonymity, making it more
challenging to trace particular data contributions to specific individuals.

– Blockchain-based identity management: The utilization of blockchain technol-
ogy facilitates the management of participants’ identities and transactions in a
decentralized and tamper-proof manner. The elimination of a central authority
and the provision of transparent and safe identity management contribute to the
enhancement of security and privacy.

The emphasis on preserving participant anonymity is pivotal for building trust, en-
couraging engagement, and safeguarding privacy within FLSs. FLSs align with regulatory
frameworks like the General Data Protection Regulation, which prioritize principles such
as user permission and the anonymization of personal data. By taking these factors into
account, FL platforms have the potential to establish a secure, privacy-preserving environ-
ment for collaborative machine learning initiatives.

Table 4. Comparison of the main authentication mechanisms within Federated Learning systems.

Authentication Mechanisms Strengths Weaknesses

User credentials authentication Simple, widely understood and used. Vulnerable to password-based attacks if
weak passwords are used.

Biometric authentication Highly secure, unique to individuals,
eliminates the need for passwords.

Hardware requirements (e.g., fingerprint
scanners), potential false

positives/negatives.

Token-based authentication Reduces reliance on passwords, enhances
security for multiple requests.

Requires secure token storage and
transmission mechanisms.

Certificate-based authentication Strong security, verified by
certificate authorities.

Complex certificate management,
reliance on a trusted certificate authority.

Multi-factor authentication Adds an extra layer of security, even if
one factor is compromised.

User inconvenience, requires additional
verification steps.

OAuth and OpenID Connect Widely adopted, standardized, secure
token-based authentication.

Requires integration and understanding
of protocols.

Device-based suthentication Ensures device authenticity, useful for
Internet of Things devices.

Complex device management, potential
security vulnerabilities.

Role-based access control Granular control over user permissions,
scalable for large systems.

Initial setup complexity, requires
ongoing management.

Continuous authentication Provides real-time security monitoring,
identifies and responds to anomalies.

Requires sophisticated monitoring tools,
potential false positive/negative issues.

Communication

Another vital element of FLSs is communication, which involves the exchange of
data between the central server and participants, including devices, clients, or edge nodes.
Effective and safe communication is necessary for FLSs to function well. The following
provides an analysis of the various components related to communication within the
taxonomy of FLSs.

• Communication patterns: Communication patterns in FLSs concern how participants,
including diverse devices or entities, interact with one another and the central server
during the collaborative learning procedure. These patterns play a crucial role in
facilitating the effective and secure transmission of data and updates to models. In
FLSs, the following communication patterns are considered to be the most common:
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• Client–server communication: In this communication pattern, the participants’ devices
establish direct contact with a central server, through which they transmit their changes
and receive aggregated model parameters. It is frequently observed in situations where
participants possess restricted computational capabilities and depend on a central
server to aggregate models.

• Peer-to-peer communication: In this setting, users directly communicate with one
another, facilitating the exchange of model updates or aggregated information without
needing a central server to mediate the process. Utilizing decentralized environments
is advantageous as it allows players to establish direct connections, minimizing latency
and decreasing reliance on a central server.

• Hierarchical communication: In this pattern, participants are systematically grouped
into hierarchical structures, wherein updates are initially consolidated at lower levels
before being transmitted to higher levels for additional consolidation. This approach
exhibits scalability, particularly in the context of massive federated networks, enabling
effective aggregation at several hierarchical levels [36].

• Federated architecture with cloud offloading: Participants carry out the preliminary
computations at their respective locations and then send the more intensive com-
putations (such as aggregation) to a central server hosted in the cloud. It allows
devices with limited resources to take part by offloading complicated activities and
distributing computation evenly between on-premise and remote resources.

• Federated architecture with edge offloading: The process resembles cloud offloading,
but its computations are offloaded to edge devices situated within the local network.
This approach diminishes latency and decreases dependence on a remote cloud server.
This technology is well-suited to use cases requiring real-time responses and minimal
delay, frequently seen in IoT and edge computing environments.

• Broadcast communication: The central server disseminates model updates to all
participants concurrently, maintaining consistency across all devices. The broadcasting
of updates, particularly when all participants require identical model parameters,
conserves bandwidth and reduces time consumption.

• Multicast communication: Model updates are distributed to distinct groups of par-
ticipants, enabling selective broadcasting based on the degree to which two sets of
data are comparable. When multiple groups of people work on similar activities, this
pattern is helpful because it allows for the more efficient use of network resources.

• Delayed communication: Participants gather updates on their local machines and
deliver them in batches at regular intervals, thus decreasing the time spent communi-
cating with the centralized server. This reduces the overhead of transmission and the
delay, particularly in situations when real-time updates are not essential.

The selection of a communication pattern substantially influences the effectiveness,
scalability, and responsiveness of FLSs, rendering it a critical element in their design and
execution. Every communication pattern possesses distinct advantages and trade-offs,
making them appropriate for specific use scenarios. The selection of a particular pattern
is contingent upon various aspects, including but not limited to the configuration of the
network, the capabilities of the participants involved, the need for real-time features, and
the need to maintain anonymity. A combination of these patterns is frequently utilized to
achieve an ideal balance of various components.

• Communication synchronization: In FLSs, “communication synchronization” refers
to the process of coordinating and aligning the various communication activities that
take place among the participating devices or nodes. It ensures that the processes
of aggregation, exchanging data, and updating models happen in a structured and
synchronized way. The devices must be synchronized correctly in order to maintain
the reliability and precision of the collaborative model being trained across distributed
devices. Communication in FLSs can be either synchronous or asynchronous [37].

• Synchronous communication: This type of communication involves individuals send-
ing real-time updates on a predetermined timetable to the central server or other
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participants. Everybody synchronizes their communication so that aggregations and
model updates happen simultaneously. This synchronous method creates an FLS with
a coordinated and organized workflow. Synchronous communication is necessary for
applications in autonomous vehicles because it ensures that the vehicle’s model can
adjust in real time to the constantly shifting conditions of the road and its surround-
ings. To take full advantage of the benefits of synchronous communication in FLSs, it
is vital to properly manage network latency and bandwidth usage.

• Asynchronous communication: This type of communication involves devices or nodes
functioning autonomously without the requirement of precise time synchronization.
In contrast to synchronous communication, which involves coordinating updates
in rounds or at predetermined intervals, asynchronous communication enables par-
ticipants to individually transmit their updates to the central server or other nodes
according to their unique schedules [38]. Asynchronous communication, for instance,
makes it easier for research institutes located in several time zones to collaborate, en-
abling scientists to share their discoveries without being constrained by synchronized
communication periods. To fully utilize asynchronous communication’s advantages
in FLSs, its associated problems must be addressed.

The selection of one of these two approaches is contingent upon the particular de-
mands and limitations of the FLS and the attributes of the involved devices or nodes.
Table 5 provides a summary of the comparison between asynchronous and synchronous
communication in the context of FLSs.

• Communication overhead: Within the context of FL, the term “communication over-
head” refers to the additional data transmission and processing resources necessary
for participants to exchange model updates, gradients, and other information while
the collaborative learning process is being carried out [39]. The effective manage-
ment of communication overhead is essential because it directly affects the band-
width of the network, the latency, and the overall effectiveness of the FLS. In FLSs,
a number of different techniques have been established to reduce the amount of
communication overhead. Table 6 presents a comprehensive summary of several
prominent methodologies.

Table 5. Comparison between asynchronous and synchronous communication in FLSs.

Synchronous Communication Asynchronous Communication

Communication Timing
Participants communicate according to a

predefined schedule or specific
synchronization points.

Participants communicate independently,
sending updates whenever they have

new data or model improvements
to contribute.

Flexibility

Less flexible as participants are bound to
fixed communication schedules,

potentially causing delays for
some participants.

Highly flexible, allowing participants to
operate at their own pace,

accommodating varying network
conditions and device availability.

Dependency on central control

Often requires central control to
coordinate communication, ensuring all

participants adhere to the
predefined schedule.

Reduces dependency on central control,
enabling decentralized decision-making

and autonomous operation
of participants.

Latency

Lower latency as updates are
synchronized, allowing rapid model

adjustments and real-time responses to
changing data patterns.

Potentially higher latency due to the lack
of synchronization, especially if updates

from critical participants are delayed.
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Table 5. Cont.

Synchronous Communication Asynchronous Communication

Communication overhead
More predictable communication

patterns, potentially reducing overall
communication overhead.

Can lead to higher communication
overhead due to the lack of

synchronization, efficient data
compression and differential updates are

essential to manage this.

Adaptability to dynamic environments
Might struggle to adapt to dynamic

environments where network conditions
or participant availability fluctuate.

More adaptable to dynamic
environments, allowing participants to
contribute whenever they can, ensuring

continuous collaboration.

Fault tolerance

Susceptible to disruptions if a participant
fails to communicate at a scheduled time,

potentially affecting the entire
synchronization process.

More fault-tolerant as one participant’s
failure does not disrupt the entire system.

Other participants can continue to
contribute independently.

Privacy and security
Easier to implement security protocols

and encryption as communication occurs
at predictable times.

Requires robust encryption and security
measures to ensure the safety of data

transmitted independently
by participants.

Each of the strategies mentioned above are designed to target distinct facets of com-
munication overhead in the context of FL. Frequently, these methodologies are synthesized
in practical contexts to attain maximum communication efficacy while concurrently up-
holding the principles of data confidentiality, model precision, and system promptness.
The selection of methodologies is contingent upon the particular application scenario,
prevailing network circumstances, and attributes of the involved devices. On the other
hand, the presence of significant communication overhead in FLSs can be attributed to
several variables. These variables include the utilization of large model sizes, frequent
updates, non-selective participant communication, high data dimensionality, non-localized
computing, and excessive reliance on encryption or privacy measures. The transmission of
machine learning models across distant devices can result in massive data transmission
and consume significant network resources, particularly when these models are sizable or
updated often. The practice of non-selective communication further exacerbates the issue
because all participants send updates without considering their relevance. In addition,
many gradients must be transmitted for high-dimensional data, resulting in an additional
increase in communication volume. When computations are concentrated in a central
location, participants must send unprocessed data, resulting in inefficiencies. Furthermore,
an excessive focus on encryption and privacy protocols can increase the quantity of data,
thus intensifying the difficulties associated with communication. The presence of inefficient
communication protocols can exacerbate these concerns. To address the issue of high
communication overhead, techniques such as model compression, intelligent participant
selection, dimensionality reduction, localized computation, and the judicious application
of encryption methods must be strategically implemented. This ensures a balance between
the protection of data and the effectiveness of communication.

Federated Learning Algorithms

FL algorithms are yet another essential component of FLSs. These algorithms make
it possible to train collaborative models without transferring raw data between devices
and a central server. This helps protect users’ privacy while reducing the amount of
communication overhead required. The following is a list of essential uses of FL algorithms.
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Table 6. An overview of some of key communication-efficient methods.

Methods Description Advantages Considerations

Differential updates

Instead of transmitting the
entire model, participants

compute and transmit only
the changes (gradients) in

their local model parameters.

Significantly reduces the
amount of data transmitted,
especially when only small

parts of the model
have changed.

Efficient algorithms are
needed to calculate and

transmit the
differentials accurately.

Model compression

Techniques like quantization,
where model parameters are
represented with fewer bits,

and pruning, where
insignificant model weights

are removed, reduce the
model size

before transmission.

Reduces the amount of data
that must be transmitted,
reducing bandwidth and
computational overhead.

Balancing compression levels
to maintain model accuracy

is crucial.

Decentralized optimization

Algorithms like federated
averaging allow model
updates to be computed

locally and averaged among
participants, reducing the
need to transmit raw data

or gradients.

Minimizes communication
overhead by performing local

computations and
transmitting only the

aggregated model updates.

Requires careful coordination
to ensure

accurate aggregation.

Smart sampling and
client selection

Algorithms that intelligently
select a subset of clients for
participation, reducing the

total number of
updates transmitted.

Reduces the communication
overhead by selecting a
representative subset of

clients, optimizing the use
of bandwidth.

Requires algorithms that
balance randomness and
representation to avoid

biased sampling.

Edge computing

Computation and updates are
performed locally on edge

devices, reducing the need for
frequent communication with

a central server.

Minimizes communication by
allowing edge devices to
handle computations and

updates, reducing latency and
bandwidth usage.

Ensuring that edge devices
have sufficient computational
resources and storage capacity

is essential.

Adaptive communication

Dynamic communication
frequency and volume

adjustment based on network
conditions, participant

capabilities, and
system requirements.

Optimizes communication
overhead in real time,
ensuring efficient use

of resources.

Requires continuous
monitoring and adaptation,

potentially introducing
computational overhead.

Cryptography and encryption

Secure communication
protocols use encryption
techniques to protect data

during transmission.

Ensures data privacy and
security, allowing sensitive

information to be
transmitted securely.

Introduces computational
overhead for encryption and

decryption processes.

• Optimization algorithms: Optimization algorithms have a crucial function in FLSs,
providing the aggregation of information from various devices and enabling the
construction of accurate and efficient machine learning models. These algorithms
have been specifically developed to achieve a harmonious equilibrium between the
collaborative aspects of FL and the imperative requirements of privacy preservation
and computational efficiency [21]. Federated optimization techniques commonly
prioritize minimizing a global objective function by integrating local updates obtained
from individual devices. Several examples of prominent optimization algorithms
employed in FLSs are mentioned below:

– Federated SGD: This is a pivotal algorithm that has revolutionized the framework
of collaborative machine learning in decentralized environments, particularly
in the context of Federated Learning Systems (FLSs). This algorithm offers a

254



Future Internet 2023, 15, 403

nuanced approach to model training, diverging from traditional methods that
necessitate the transmission of raw data to a central repository.
At the heart of Federated SGD lies the principle of gradient computation at the
local device level. Each participating device in the network utilizes its local data
to calculate gradients, which represent the partial derivatives of the loss function
with respect to the model parameters. This local computation not only preserves
the privacy of user data by avoiding raw data transmission but also significantly
reduces the volume of data that needs to be communicated across the network.
This aspect of Federated SGD is particularly advantageous in scenarios where
network bandwidth is limited.

* Privacy preservation and data integration. The privacy-preserving nature
of Federated SGD is one of its standout features. By enabling local gradient
computation, the algorithm ensures that sensitive data remains within the
confines of the originating device. These locally computed gradients, en-
capsulating the necessary information for model updates, are then securely
transmitted to a central server [40]. On the server, an aggregation process
takes place, where these gradients from multiple devices are combined to
update the global model. This approach not only safeguards individual data
confidentiality but also facilitates the integration of heterogeneous datasets
into a unified model. By aggregating diverse local updates, Federated SGD
harnesses the collective intelligence embedded in disparate data sources,
enhancing the robustness and relevance of the global model.

* Bandwidth optimization and application versatility The reduction in data
transmission volume inherent to Federated SGD addresses the challenges
posed by restricted bandwidth environments. In traditional centralized
learning models, the transmission of large volumes of raw data can be a
significant bottleneck, consuming substantial network resources. Federated
SGD elegantly circumvents this issue by transmitting only essential gradi-
ent information, thereby optimizing bandwidth usage. This optimization is
crucial for ensuring the scalability and efficiency of FLSs, particularly when
deployed in bandwidth-constrained settings. Furthermore, the versatility
of Federated SGD extends its applicability across a broad spectrum of do-
mains. From healthcare to finance, and from mobile computing to Internet of
Things (IoT) applications, this methodology proves instrumental in diverse
fields by facilitating effective model training across various scenarios while
maintaining data privacy and minimizing risk.

– Federated Averaging with Momentum (FedAvgM): represents a significant en-
hancement over the traditional Federated Averaging (FedAvg) algorithm, pri-
marily used in Federated Learning Systems (FLSs). This advanced algorithm
introduces a momentum component to the model updates, enhancing the overall
efficiency and accuracy of the learning process. FedAvgM not only leverages the
collaborative capabilities inherent in Federated Learning but also introduces the
stability and efficiency offered by momentum-based optimization. This results
in a more robust and responsive learning algorithm capable of adapting to the
nuanced requirements of distributed learning scenarios.
The central innovation in FedAvgM lies in the incorporation of a velocity compo-
nent, or momentum, into the model updates. This momentum term allows the
algorithm to ’remember’ and integrate a portion of the previous update into the
current one.

* Enhanced convergence and optimization: By maintaining its previous tra-
jectory through the velocity term, FedAvgM accelerates the convergence
process. This momentum-driven approach is particularly beneficial in sce-
narios with non-IID data distributions or significant data volatility, where
traditional FedAvg might struggle with slow or unstable convergence.
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* Application in diverse scenarios: FedAvgM demonstrates remarkable ef-
fectiveness in a variety of distributed environments. Its ability to facilitate
rapid and steady knowledge acquisition across distributed devices makes
it an ideal choice for FLSs dealing with complex data landscapes. The algo-
rithm effectively balances the need for accurate and efficient model training
while maintaining user privacy and data security. In summary, Federated
Averaging with Momentum elevates the traditional Federated Learning ap-
proach by introducing a dynamic and adaptive component that significantly
enhances model training effectiveness. Its ability to handle complex data dis-
tributions and volatile environments, while ensuring rapid convergence and
optimization, marks it as a valuable tool in the realm of Federated Learning.
The inclusion of momentum in the federated averaging with momentum op-
timization algorithm enhances the traditional federated averaging approach
in FLSs. This modification introduces a velocity component into model
updates, enabling the algorithm to maintain its previous trajectory while
accelerating, resulting in faster convergence and improved optimization. It
facilitates rapid and steady knowledge acquisition across distributed devices,
particularly in scenarios involving non-identically distributed (non-IID) data
or significant volatility. Federated averaging with momentum demonstrates
remarkable effectiveness in achieving accurate and efficient model training
while safeguarding user privacy and data security. It combines the collab-
orative capabilities of FL with the stability offered by momentum-based
optimization.

– The Federated Proximal Algorithm: The Federated Proximal Algorithm repre-
sents an advanced iteration in the evolution of FL algorithms, tailored to address
the challenges posed by non-IID (independently and identically distributed) data
across a network of devices. This algorithm is particularly relevant in scenarios
where the data distribution varies significantly among the participating nodes, a
common occurrence in real-world applications. The Federated Proximal Algo-
rithm is built upon the foundation of the standard Federated Learning framework
but introduces a crucial modification in the optimization process. The key inno-
vation lies in the incorporation of a proximal term to the optimization objective.
This term essentially acts as a regularizer that encourages the local models to not
deviate significantly from the global model. The mathematical formulation of
this algorithm involves adding a proximal term to the local loss function, typi-
cally represented as a squared Euclidean distance between the local and global
model parameters.

* Addressing non-IID data challenges: In standard Federated Learning setups,
the assumption is often that the data across devices is identically distributed.
However, in many practical situations, this assumption does not hold, lead-
ing to significant challenges in model convergence and performance. The
Federated Proximal Algorithm mitigates these issues by ensuring that local
model updates remain ‘proximal’ to the global model. This approach effec-
tively handles the statistical heterogeneity of data, ensuring more stable and
consistent model training across diverse data distributions.

* Optimization process in Federated Proximal Algorithm: During the training
process, each participating device computes its local model update by opti-
mizing the modified loss function, which includes the proximal term. Once
the local updates are computed, they are sent to a central server where a
global aggregation occurs. The server updates the global model by averaging
these updates, similar to standard Federated Learning, but with the added
nuance provided by the proximal regularization.

* Advantages and practical applications: The incorporation of the proximal
term offers several advantages. Primarily, it enhances model performance
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in non-IID data scenarios, which are prevalent in many real-world applica-
tions such as healthcare, finance, and mobile services [41]. Additionally, by
controlling the extent of deviation of local models from the global model, the
Federated Proximal Algorithm promotes more uniform learning across the
network, leading to improved overall model accuracy and convergence rates.
In summary, the Federated Proximal Algorithm represents a significant
advancement in the field of Federated Learning, offering a robust solution
to the challenges posed by non-IID data distributions. Its ability to ensure
consistent and efficient learning across a decentralized network of devices
makes it a valuable tool in the arsenal of Federated Learning algorithms.

The optimization algorithms utilized in FLSs undergo continuous development to
effectively address the challenges posed by diverse and privacy-sensitive data. The use
of these algorithms ensures the efficient generation of precise global models in FL while
protecting user privacy. As a result, these algorithms play a critical role in advancing
collaborative and privacy-preserving machine learning methodologies.

• Personalization algorithms: Personalization algorithms within FLSs play a crucial
role in customizing user experiences while preserving data privacy. These algorithms
facilitate the development of personalized models for users while ensuring the de-
centralization of their sensitive data. Personalization algorithms utilize data from
local interactions and activities on user devices to discern trends and preferences. FL
enables the integration of these insights into the global model while upholding user
privacy. This practice ensures that recommendations, services, or materials provided
to consumers are highly relevant and engaging, aligning with their preferences and
needs [42]. FL empowers organizations and service providers to deliver personalized
experiences on a large scale, simultaneously enhancing user satisfaction and safe-
guarding their privacy and data security. Personalization algorithms can be applied to
tailor both global and local models within FLSs.

– Global model personalization in Federated Learning Systems: Global model
personalization within Federated Learning Systems (FLSs) is a sophisticated ap-
proach that aims to adapt a universally trained model to meet the specific needs
and preferences of individual users or user groups. This concept is particularly
vital in ensuring that the one-size-fits-all model can be effectively tailored to
diverse user contexts while preserving privacy and data security. Global model
personalization involves the adaptation of a shared global model, initially trained
across multiple devices or data sources, to better align with the unique charac-
teristics, behaviors, or preferences of individual users or specific segments [43].
This adaptation is crucial in FLSs, where a single global model is collaboratively
trained but needs to be relevant and effective for each participant in the system.
Techniques for global model personalization:

* Client-side personalization: This involves adjusting the global model on the
client’s device using local data. Techniques such as model fine-tuning, where
the model is slightly adjusted using the user’s data, or layer retraining, where
specific layers of the model are retrained, are commonly used.

* User embeddings: Incorporating user embeddings into the model is another
effective method. User embeddings are vector representations that capture
the unique characteristics of each user. These embeddings can be integrated
into the global model to ensure that the model’s outputs are personalized for
each user.

* Transfer learning: Leveraging transfer learning, where a model trained on
one task is adapted for another related task, can also be employed for per-
sonalization. This is particularly useful when the global model is trained on
a broad dataset but needs to be adapted for specific user scenarios.
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* Meta-learning: Meta-learning, or learning to learn, is a technique where the
model is trained to quickly adapt to new tasks or data. In the context of
personalization, meta-learning can enable the global model to rapidly adjust
to individual user data.

Challenges in global model personalization:

* Data diversity and quality: Ensuring that the global model can effectively
personalize across a wide range of diverse user data is a significant challenge.

* Resource limitations: The computational and storage limitations of client
devices must be considered, especially when personalization involves addi-
tional model training on the device.

* Privacy concerns: Maintaining user privacy during the personalization pro-
cess, especially when user-specific data are used for model adjustments,
is crucial.
Global model personalization in FLSs represents a key strategy in making
Federated Learning models more user-centric and effective. By adapting
the shared global model to align with individual users’ unique tastes and
features, FLSs can provide customized and relevant experiences to users,
enhancing the overall utility and acceptance of these systems.

– Local model personalization in Federated Learning Systems: Local model per-
sonalization in Federated Learning Systems (FLSs) addresses the challenge of
customizing machine learning models at an individual level, using data that
reside on a user’s device. This approach is crucial in FLSs, where maintaining
data privacy and catering to specific user needs are paramount.
Local model personalization revolves around adapting a federated model to
fit individual user profiles based on their unique data. Unlike global model
personalization, which modifies a shared model to suit general user character-
istics, local personalization focuses on leveraging data available on each user’s
device to create a model that reflects their specific preferences, behaviors, and
usage patterns.
Techniques for local model personalization:

* On-device training: This involves adjusting the federated model directly on
the user’s device. The model is fine-tuned with the user’s local data, ensuring
that the personalized model captures individual preferences and behaviors.

* Data augmentation: Enhancing the local training process with data aug-
mentation techniques can improve the model’s ability to learn from a lim-
ited amount of user data. This might include generating synthetic data
points based on the user’s existing data to provide a more comprehensive
training dataset.

* Layer customization: In some cases, only specific layers of the neural net-
work are personalized, while others remain shared across all users. This
approach can be particularly effective in scenarios where certain aspects of
the model need to be user-specific, while others can benefit from broader,
global training.

* User feedback integration: Incorporating user feedback directly into the train-
ing process allows the model to adapt dynamically to changing user prefer-
ences and behaviors. This can be achieved through techniques like reinforce-
ment learning, where the model learns and adapts based on user interactions.

Challenges in local model personalization:

* Resource constraints: Personalizing models on individual devices requires
computational and storage resources, which might be limited, especially in
mobile or IoT devices.
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* Data quality and diversity: The quality and diversity of local data can signifi-
cantly impact the effectiveness of personalization. Ensuring that the model
can handle a variety of data types and qualities is essential.

* Privacy preservation: Even though the data do not leave the device, ensuring
that the personalization process itself does not compromise user privacy
is crucial.

Advancements in lightweight machine learning models, efficient on-device train-
ing algorithms, and privacy-preserving techniques will be key to enhancing local
model personalization. Research into optimizing these elements can lead to more
effective and user-friendly personalized experiences in FLSs.
Local model personalization in FLSs represents a critical step towards creating
more user-centric and efficient learning models. By leveraging local data to tailor
models to individual user needs, FLSs can provide more relevant, accurate, and
privacy-preserving services. This personalized approach not only enhances user
experience but also drives the effectiveness and adaptability of learning models
in diverse real-world scenarios.

• Outlier handling algorithms: Handling outliers is a crucial aspect of data analysis
and statistical modeling. Outliers are data points that significantly deviate from the
majority [44]. Algorithms within FLSs play a vital role in maintaining the precision
and reliability of machine learning models, especially when dealing with noisy or
aberrant data points. These methods focus on detecting and managing outliers, which
are data examples that deviate substantially from the established norm. The presence
of outliers within a dataset can introduce bias during the model training process,
potentially compromising the accuracy of subsequent predictions. The management
of outliers is of utmost importance in FL, which involves utilizing data from various
heterogeneous sources. Once outliers are identified, they can be addressed through
data cleaning, imputation, or robust model training techniques. FLSs enhance the
performance and utility of models across numerous applications and user scenarios by
successfully managing outliers, ensuring data quality and model reliability. Various
techniques for detecting outliers, including statistical methods, clustering algorithms,
and robust machine learning models, are utilized to find abnormal data points.

– Statistical outlier handling methods: Statistical techniques are essential tools for
addressing outliers within FLSs, offering a quantitative framework for detect-
ing and effectively handling anomalies in data. Methods such as the Z-score,
interquartile range, or Tukey’s fences are commonly used to identify outliers
by quantifying their deviation from the dataset’s mean or median. Through the
application of statistical metrics, FLSs can pinpoint data points that significantly
deviate from the established norm, signifying their potential classification as
outliers. Once identified, these outliers can be managed using techniques such as
data imputation, transformation, or exclusion to prevent them from unduly affect-
ing the collaborative model training process. Methods for controlling statistical
outliers offer a systematic and objective approach to preserving the integrity of
data utilized in FL, thereby enhancing the precision and reliability of the resulting
machine learning models.

– Clustering outlier handling algorithms: Clustering algorithms are efficient tools
for managing outliers in FLSs, especially when dealing with diverse and hetero-
geneous data sources. These methods facilitate the clustering of data points that
exhibit similarities, allowing the detection and analysis of patterns inherent in the
data. Outliers, characterized by significant deviation from the norm, frequently
show unusual clustering patterns, making their identification more straightfor-
ward. FLSs can effectively detect outlier clusters using clustering algorithms such
as k-means, hierarchical clustering, or DBSCAN. Clustering techniques aid in
handling outliers within FLSs, providing a data-driven and adaptable approach.
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This ensures the robust and accurate collaborative training of models, regardless
of the diversity of data sources and patterns.

– Robust aggregation machine learning algorithms: Robust aggregation algorithms
play an essential part in FLSs by effectively managing outliers, particularly in
scenarios with noisy or inconsistent data originating from multiple sources. These
algorithms are designed to minimize the impact of outliers on the aggregation
process, ensuring that inaccurate or deceptive data points do not significantly
distort the overall model. The use of robust aggregation strategies helps mitigate
the influence of outliers during the model aggregation phase. Techniques like
the trimmed mean, median-based aggregation, or methods derived from robust
statistics are effective in achieving this objective. FLSs can thus maintain the
integrity of the shared model, even when confronted with outliers, by reducing
the significance of extreme or incorrect updates originating from individual
devices. Robust aggregation algorithms are of utmost importance in enhancing
the robustness of FL models. These algorithms guarantee that the resulting model
accurately captures the collective intelligence of the devices involved, even in
scenarios where the data are contaminated with noise or anomalies.

In summary, statistical techniques offer a straightforward and comprehensible ap-
proach, albeit potentially lacking in their ability to handle intricate data distributions
effectively. Clustering algorithms can uncover subtle patterns within datasets but may be
sensitive to parameters and initialization. Robust aggregation methods have been purpose-
fully developed to address the presence of outliers during the process of model aggregation
in FLSs, thereby guaranteeing the creation of a more dependable and resilient global model.
Table 7 is a comparison table of some common techniques for outlier detection in FLS,
including statistical methods, clustering algorithms, and robust machine learning models.
The selection of an outlier handling method frequently relies on the data characteristics
and the specific requirements of the FLS.

Table 7. A comparison table of some common techniques for outlier detection in FLS.

Technique Approach to
Outlier Detection Advantages Disadvantages Typical Applications

Statistical methods

Use statistical metrics
(like Z-score, IQR) to
identify data points

that deviate
significantly from

the norm.

Simple to implement;
effective for

univariate data.

Can be less effective
with complex,

high-dimensional data.

Data with a
well-defined statistical

distribution.

Clustering algorithms

Group similar data
points together; outliers

are points that fall
outside clusters.

Effective in identifying
groups and anomalies

in multi-
dimensional space.

May misclassify
outliers as a separate

cluster, requires
determination of the
number of clusters.

Multi-dimensional data
with distinguishable

clusters.

Isolation forest

Isolates anomalies by
randomly selecting

features and splitting
values; outliers are

easier to isolate.

Efficient for
high-dimensional

datasets; low linear
time complexity.

Random forest
mechanism may lead to

inconsistent results.

Large datasets with
many features.

Autoencoders (NN)

Neural networks
trained to reconstruct

input data; outliers are
data with high

reconstruction error.

Effective in capturing
complex, nonlinear

relationships in data.

Requires substantial
data for training;
computationally

intensive.

Complex datasets with
intricate patterns.
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Table 7. Cont.

Technique Approach to Outlier
Detection Advantages Disadvantages Typical Applications

Robust ML Models

Models that are less
sensitive to outliers,

like Random Cut Forest
or models with
regularization.

Can handle outliers
while performing the
primary learning task.

May require careful
tuning; could ignore

subtle but
important anomalies.

Scenarios where model
robustness is crucial.

This taxonomy offers a structured framework for comprehending and classifying the
primary distinctions and factors that must be considered when dealing with FLSs. Depend-
ing on the specific use case and context, FLS implementations may vary significantly along
these dimensions. Understanding these variations is essential for the proper development
and deployment of FL solutions.

2.3. An Overview of Intrusion Detection Systems

The IDS is a vital cybersecurity tool specifically developed to observe and evaluate
network traffic to identify any malicious activity or breaches of established policies. The
system functions as a diligent protector, continuously monitoring the network environment
for atypical patterns or behaviors that could signify a security breach or unauthorized
entry [45]. Upon detecting suspicious activity, the IDS provides alerts or notifications,
facilitating IT professionals’ rapid investigation of and response to security issues. In the
realm of network security, IDSs assume a pivotal role by enhancing the overall protection
of computer networks. These systems enable enterprises to promptly identify and coun-
teract potential cybersecurity threats, thereby fortifying the security of sensitive data and
upholding the integrity of computer systems.

2.3.1. Types of Intrusion Detection Systems

IDSs can be classified based on their focus areas, deployment strategies, and detection
techniques. The two primary types of IDS are the host intrusion detection system (HIDS)
and the network intrusion detection system (NIDS) [45].

• HIDS: A HIDS is a critical cybersecurity component that focuses on monitoring and
protecting specific hosts or devices within a network. It operates directly on end-
points such as servers, workstations, or other devices, analyzing local activities and
configurations. HIDS identifies signs of malicious actions by comparing observed
activity to predefined security regulations or baselines [46]. These activities may
include unauthorized access attempts, file alterations, and unusual processes. HIDS
employs methods like log analysis, file integrity verification, and real-time system
monitoring to detect potential security issues. If suspicious actions are detected, HIDS
generates notifications, alerting administrators to investigate and take appropriate
actions to protect individual devices and their stored data. HIDS is particularly useful
in environments where safeguarding specific hosts from internal and external threats
is paramount.

• NIDS: NIDS is a cybersecurity solution that monitors and analyzes network traffic
for indicators of malicious activity or potential security concerns. Unlike host-based
systems, NIDS operates at the network level, analyzing data packets as they traverse
the network. NIDS is strategically placed at critical points throughout the network,
passively observing and analyzing all incoming and outgoing traffic in real time. It
generates alerts when it detects suspicious trends, allowing security teams to promptly
investigate and respond to potential security incidents. NIDS is especially beneficial
for securing large and complex networks
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2.3.2. Intrusion Detection Approaches

In the field of cybersecurity, IDSs utilize a range of methodologies to detect and
counteract potential security breaches. The primary IDS approaches include the following:

• Signature-based detection: An essential component of an IDS involves comparing
known attack patterns, often referred to as signatures, with incoming network traffic or
system actions. If there is a match between the observed data and a saved signature, the
IDS generates an alert indicating a potential security breach. This method efficiently
recognizes well-known attacks that have been documented in the past, including
various forms of malware, viruses, and infiltration attempts. However, its most
significant limitation is its inability to identify novel or zero-day attacks. These types
of security threats exploit vulnerabilities unknown to security professionals. Despite
this limitation, signaturebased detection remains a vital part of any comprehensive
security strategy. When used as one component of a layered security approach, it can
be combined with other detection approaches, such as anomaly-based detection.

• Anomaly-based detection: IDSs use this sophisticated method to identify anomalous
patterns or behaviors within the network traffic or system operations. Anomaly-
based detection establishes a baseline of normal behavior by examining historical data
to create a reference point, rather than relying on pre-defined attack signatures. It
identifies any behavior that deviates from this baseline, such as unexpected patterns
of network traffic or actions that are atypical for the system, as a potential security
threat. ML algorithms are frequently utilized to analyze large datasets, detecting
subtle variations that may indicate a security breach. Because it is highly effective
at identifying entirely new types of attacks, anomaly-based detection is an essential
component of contemporary cybersecurity methods. However, it requires accurate
baselines and ongoing tuning to minimize false positives and negatives, maximizing
the likelihood of identifying serious threats while reducing interference with legitimate
network operations.

2.3.3. Internet of Vehicle Intrusion Detection

Within the dynamic and constantly changing domain of the IoV, IDSs play a vital
role as digital protectors, safeguarding the resilience of interconnected vehicular networks
against an increasingly diverse range of cyberattacks. Fundamentally, an IDS in an IoV
setting entails a multifaceted approach that involves behavioral analysis, signature-based
detection, and anomaly-based detection. Behavioral analysis is a fundamental aspect
that involves careful observation and a comprehensive understanding of the complex
patterns exhibited by vehicle behavior and network connections [47]. By effectively dis-
tinguishing between typical and atypical behaviors, the system can immediately detect
deviations, therefore flagging possible intrusions or harmful operations. Simultaneously,
signature-based detection functions as the initial layer of protection. This approach en-
tails comparing incoming data with an extensive database of identified attack patterns.
When a match occurs, it initiates an alert, facilitating prompt remedial action. Anomaly-
based detection, a more advanced technique, creates baselines of typical behavior. When
anomalies—such as atypical data traffic or unauthorized system access—are identified,
alerts are sent, facilitating proactive measures to address potential security risks [48].

Furthermore, within the context of the IoV, ensuring the security of vehicle-to-everything
communication is critical. Establishing robust cryptographic protocols is necessary to
safeguard the complex communication network between vehicles and outside entities.
These protocols play a crucial role in guaranteeing the secrecy, integrity, and validity of the
data being communicated. Incorporating physical and cybersecurity measures provides
an enhanced level of safeguarding. The detection systems for physical tampering serve
to notify the IDS of potential threats, facilitating proactive cybersecurity measures [6]. By
harnessing the capabilities of machine learning-based detection, IDSs can dynamically
adjust and evolve. Machine learning algorithms, specifically deep learning models, can
analyze extensive datasets obtained from car sensors and network interactions. This enables
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the detection of subtle patterns that can serve as indicators of cyber risks, including those
previously unidentified.

Significantly, the implementation of real-time threat response mechanisms dramati-
cally enhances the effectiveness of IDSs in IoV. Real-time notifications, activated by irreg-
ularities or suspected breaches, are received by individuals inside the vehicle, managers
overseeing the fleet, and centralized monitoring systems. These notifications prompt swift
and targeted actions, including measures such as network segment isolation and emergency
protocol activation. These actions effectively contain threats and safeguard the overall
integrity of the network. The IDSs employed in the IoV encompass a complex integration
of several components, including behavioral analysis, pattern identification, cryptographic
techniques, machine learning capabilities, and instantaneous reactions. These technologies
ensure secure data transmission inside the IoV and protect the safety, privacy, and trust of
all individuals connected to this complex vehicular network. In doing so, they strengthen
the fundamental basis upon which the future of transportation technology relies.

3. State of the Art

In this section, we present a well-organized literature review on IDSs based on FL in
the IoV environment. This review aims to identify the latest advancements in FL-based
intrusion detection within the IoV domain, covering the years from FL’s inception in 2016
to 2023.

3.1. Intrusion Detection Systems Based on Federated Learning

The emergence of IDSs that utilize FL represents a significant advancement in cyberse-
curity. This innovative technique ensures the security of networked environments while
upholding data privacy [26]. Unlike conventional IDSs that depend on centralized data
analysis, FL-based IDSs operate on a decentralized principle. Within this innovative frame-
work, each device independently generates localized ML models by leveraging their own
data inputs. These models are subsequently improved through a collaborative learning
process, where devices communicate changes to the models rather than exchanging raw
data [49]. Ongoing research efforts continuously enhance this approach, leading to the emer-
gence of FL-based IDSs as a potential future in the pursuit of secure and privacy-conscious
network defense mechanisms [46].

Motivation to Adapt Federated Learning in Intrusion Detection Systems

The incorporation of FL into IDSs is driven by the significant demand for height-
ened security and privacy in our increasingly interconnected society. Despite the notable
advancements made by ML and DL in the field of IDSs, various limitations associated
with these technologies must be acknowledged, particularly concerning data privacy and
communication efficiency. FL addresses these challenges by facilitating localized model
training without compromising the privacy of raw data, thereby safeguarding individual
privacy while promoting collaborative learning.

FL facilitates decentralized, real-time threat detection in contexts such as the IoT or
IoV, where various geographically scattered devices generate data. The IDS’s capacity
to adapt to local contexts allows it to detect and recognize distinct threats peculiar to
individual environments. The motivations for implementing FL in IDSs revolve around
several essential elements, including the following [45]:

• Privacy preservation: FL enables collaborative model training while ensuring the
privacy of sensitive raw data. Data privacy is of utmost importance in contexts where
it holds significant value, such as the healthcare, finance, or government sectors.
FL guarantees the protection of individual privacy by maintaining data locally and
exchanging model updates. This approach aligns with legal and ethical requirements
around privacy.

• Data efficiency: Data efficiency is a significant concern in conventional centralized
systems, as transmitting substantial amounts of raw data to a central server may prove
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unfeasible. This is particularly true when there are constraints on available bandwidth
or communication costs are high. FL addresses this issue by focusing on lowering the
volume of data transferred. Specifically, only updates to the model are exchanged,
resulting in a substantial reduction in communication overhead.

• Adaptability and customization: The adaptability and customization of FL models
allow for their adaptation to specific local settings. In the IDS field, various contexts
may encounter distinct and specific threats. FL permits individual devices to customize
their intrusion detection models based on their unique threat landscapes, ensuring
precision in identifying potential threats.

• Continuous learning: Continuous learning is essential in the security field as threats
perpetually evolve. FL permits the ongoing updating of models as new data become
accessible. The capacity to adapt in real time ensures that IDSs remain effective in the
face of developing threats, providing a significant advantage in dynamic situations.

• Robustness and fault tolerance: The inherent robustness of FL systems is based on
their ability to withstand and recover from faults. In the event of a device failure
or offline status, the system can maintain operation by utilizing the remaining func-
tional devices [37]. The maintenance of fault tolerance is of the utmost importance
in guaranteeing uninterrupted intrusion detection capabilities inside diverse and
large-scale networks.

• Decentralization and edge computing: The utilization of FL facilitates decentralized
learning, which aligns with edge computing principles, wherein data processing
occurs in close proximity to its origin. In scenarios like IoT or IoV, where devices are
dispersed geographically, FL enables localized learning, ensuring prompt reactions to
potential risks without dependence on a central server.

These elements make FL a compelling and viable approach for enhancing the efficacy
and confidentiality aspects of IDSs in diverse settings.

3.2. Related Surveys

A few reviews have focused on the topic of FL-based IDSs. Table 8 succinctly outlines
the primary differentiators between our work and the previously conducted surveys.
For instance, ref. [45] offers a comprehensive survey of FL-based IDS approaches and
discusses the difficulties and challenges of using these methods. This review also outlines
potential future directions for FL in IDS. Meanwhile, the authors of [27] focus on the current
scientific progress of FL applications in attack detection problems for IoT and explore these
applications. The extensive review presented in [50] draws from an analysis of 39 research
papers published from 2018 to March 2022, with a specific focus on the IoT. The analysis
examined evaluation variables related to IoT, particularly concerning FL, and identified
and dis-cussed prospects and unresolved issues pertaining to FL-based IoT. The authors
of [25] also provided an overview and comparison of six studies that use FL to enhance
IDS effectiveness for IoT. In the absence of specific datasets for assessing FL, the authors
emphasized data partitioning modeling among clients. Additionally, they investigated
the modeling of bias in the test data to assess its impact on the effectiveness of the ML
model. The authors of [51] discussed the implementation of FL-based IDSs in various
domains and highlighted distinctions between different architectural configurations. Their
structured literature analysis offers a reference architecture that can be used as a set of
principles for comparing and designing FL-based IDS. Despite significant progress in FL
for IDS development, a comprehensive survey exploring FL for IDS applications within
the context of IoV is conspicuously lacking. To the best of our knowledge, no survey has
thoroughly evaluated existing IDSs based on FL for IoV. In this direction, we present an
organized literature analysis that examines recent developments in IDSs based on FL in an
IoV environment. The review covers the years from 2016 (when FL was first introduced) to
2023. We conducted our search using the terms “federated learning”, “intrusion detection”,
and “internet of vehicles”.
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Table 8. Summary of related surveys on Federated Learning-based IDS.

Survey Title Year Main Focus Key Contributions IDS IoV

Survey [45] 2021 FL-based IDS Discussion on the role of FL in intrusion detection
- Comprehensive review of ML/DL/FL in intru-
sion detection
- Highlighting open research challenges

X X

Survey [27] 2022 FL in IDS within
(IoT) domain Understanding of federated learning, privacy

preservation, and anomaly detection in network
systems, with a particular focus on applications in
IoT and related domains.

X X

Survey [25] 2022 FL-based IDS - Review of FL system architectures
- Review of Evaluation Datasets
- Comparative analysis of proposed systems
Open challenges and future directions

X X

Survey [50] 2022 FL-based IoT Organizing and reviewing FL-based IoT domains
- Creating a taxonomy to organize various aspects
of FL-based IoT
Providing some research questions about the FL-
based IoT area and answering them
Reviewing evaluation factors
Focusing on open issues and future
research challenges

X X

Survey [51] 2022 FL-based IDS Review of FL application in attack detection
and mitigation
Proposal of a reference architecture
Establishment of a taxonomy
Identification of open issues and research directions

X X

Our Survey 2023 FL-based IDS in
IoV environment Offer of a generic taxonomy for describing

FL systems
A well-organized literature review on IDSs based
on FL in an IoV environment.
Highlighting challenges and potential future direc-
tions based on the existing literature.

X X

Note: In this table, X: indicates that the survey discussed the relevant aspect of Federated Learning (FL) or
Intrusion Detection Systems (IDS), while X signifies that the aspect was not discussed in the survey.

3.3. Comparative Analysis of Federated Learning-Based Intrusion Detection Systems for Internet
of Vehicles

In the rapidly evolving landscape of cybersecurity within IoV, FL has emerged as a
transformative paradigm, promising enhanced security and privacy preservation. As the
IoV ecosystem expands, robust IDSs become essential to safeguard vehicles, passengers, and
the underlying network infrastructure from ever-evolving cyber threats. This section offers
an extensive analysis of the relevant literature in the field of IDS based on FL, specifically
tailored to the intricacies of IoV. This comparative survey aims to extract significant insights
by examining the unique techniques, strategies, and structures of recent studies. These
insights are crucial for understanding the current state of IDS solutions based on FL in
IoV and provide valuable guidance for future research. We employed a range of criteria
to evaluate and differentiate the related works in the domain of FL-based IDSs within the
framework of IoV. We formulated the following research questions for our review:
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• What kinds of FL designs are used for IDS?
• What ML model architectures are employed in the proposed solutions?
• Which datasets are utilized for evaluating the proposed solutions?
• What types of attacks can be identified by the proposed solutions?
• Which measures do the authors employ to validate their proposed solutions?
• Which communication patterns are utilized in the solutions they offer?
• Do the proposed solutions operate in synchronous or asynchronous mode?
• Which aggregation model do the proposed solutions utilize?
• Which optimization algorithms do the proposed solutions utilize?
• Are the proposed solutions designed to support real-time processing?
• Are the proposed solutions designed to support imbalanced data distribution?
• What is the impact of the implemented solutions on overhead costs?

Based on the formulated questions, we considered the following criteria during our
review of the papers to organize the information in a structured manner that allowed for
easy comparison and understanding:

• Year of publication;
• Datasets used;
• Attacks detected;
• ML models;
• Communication patterns;
• Communication synchronization;
• Evaluation metrics;
• Model aggregation algorithms;
• Optimization algorithms;
• Real-time considerations;
• Data distribution;
• Communication overhead.

While FL-based IDSs for IoV are the primary focus of this paper, we did not conduct
any experiments on the reviewed approaches to evaluate them. The study aimed to
highlight open difficulties and research directions by considering the described factors.
Table 9 provides a summary of the comparison’s results.

266



Future Internet 2023, 15, 403

Ta
bl

e
9.

C
om

pa
ra

ti
ve

A
na

ly
si

s
of

Fe
de

ra
te

d
Le

ar
ni

ng
-b

as
ed

in
tr

us
io

n
de

te
ct

io
n

sy
st

em
s

fo
r

Io
V.

R
ef

.\
Ye

ar
D

at
as

et
A

tt
ac

ks
M

L
C

om
m

un
ic

at
io

n
C

om
m

un
ic

at
io

n
Ev

al
ua

ti
on

M
od

el
O

pt
im

iz
at

io
n

R
ea

l-
Ti

m
e

D
at

a
O

ve
rh

ea
d

D
et

ec
te

d
M

od
el

Pa
tt

er
ns

Sy
nc

hr
on

iz
at

io
n

M
et

ri
cs

A
gg

re
ga

ti
on

A
lg

or
it

hm
s

Pr
oc

es
si

ng
Im

ba
la

nc
e

[5
2]

,2
02

2
Th

e
at

ta
ck

-f
re

e
-S

po
ofi

ng
C

on
vo

lu
ti

on
al

C
lie

nt
–s

er
ve

r
m

od
e

Sy
nc

hr
on

ou
s

-F
PR

,T
PR

Se
cu

re
Th

e
Fe

de
ra

te
d

R
ea

l-
ti

m
e

Im
ba

la
nc

ed
R

ed
uc

es
th

e
da

ta
se

to
fC

A
N

-R
ep

la
y

Lo
ng

Sh
or

t-
m

od
e

-A
cc

ur
ac

y
M

ul
ti

Pa
rt

y
Pr

ox
im

al
pr

oc
es

si
ng

da
ta

ov
er

he
ad

m
es

sa
ge

s
pu

bl
is

he
d

-D
ro

p
Te

rm
M

em
or

y
-P

re
ci

si
on

C
om

pu
ta

ti
on

A
lg

or
it

hm
di

st
ri

bu
ti

on
.

by
th

e
H

C
R

La
b

-D
en

ia
l-

of
-S

er
vi

ce
(D

oS
)

(C
on

vL
ST

M
)

-R
ec

al
l

of
K

or
ea

U
ni

ve
rs

it
y

m
od

el
-F

1-
sc

or
e

[5
3]

,2
02

1
Ve

R
eM

i
-C

on
st

an
ta

tt
ac

k
Lo

ng
Sh

or
t-

C
lie

nt
–s

er
ve

r
m

od
e

Sy
nc

hr
on

ou
s

-P
re

ci
si

on
Fe

de
ra

te
d

Fe
de

ra
te

d
Ba

tc
h

Im
ba

la
nc

ed
R

ed
uc

es
th

e
da

ta
se

t
-C

on
st

an
to

ff
se

ta
tt

ac
k

Te
rm

M
em

or
y

m
od

e
-R

ec
al

l
A

ve
ra

gi
ng

St
oc

ha
st

ic
pr

oc
es

si
ng

da
ta

ov
er

he
ad

-R
an

do
m

at
ta

ck
(L

ST
M

)n
eu

ra
l

-A
cc

ur
ac

y
A

lg
or

it
hm

G
ra

di
en

t
di

st
ri

bu
ti

on
.

-R
an

do
m

of
fs

et
at

ta
ck

ne
tw

or
k.

(F
ed

A
vg

)
D

es
ce

nt
-E

ve
nt

ua
ls

to
p

at
ta

ck
.

(F
ed

er
at

ed
SG

D
)

[5
4]

,2
02

2
Si

m
ul

at
ed

da
ta

se
t

Bl
ac

k
ho

le
R

an
do

m
Fo

re
st

C
lie

nt
–s

er
ve

r
m

od
e

Sy
nc

hr
on

ou
s

-P
re

ci
si

on
W

ei
gh

te
d

Ba
tc

h
at

ta
ck

1-
di

m
en

si
on

al
C

N
N

(1
-D

C
N

N
)

m
od

e
-R

ec
al

l
ag

gr
eg

at
io

n
_

pr
oc

es
si

ng
_

_

1-
di

m
en

si
on

al
R

N
N

(1
-D

R
N

N
)

-F
1-

sc
or

e
m

od
el

[5
5]

,2
02

3
Ve

R
eM

i
-C

on
st

an
ta

tt
ac

k
D

ee
p

ne
ur

al
Fe

de
ra

te
d

A
rc

h.
-A

cc
ur

ac
y

Fe
de

ra
te

d
Fe

de
ra

te
d

R
ed

uc
es

th
e

da
ta

se
t

-C
on

st
an

to
ff

se
ta

tt
ac

k
ne

tw
or

ks
w

it
h

ed
ge

-C
on

se
ns

us
ti

m
e

A
ve

ra
gi

ng
St

oc
ha

st
ic

ov
er

he
ad

-R
an

do
m

at
ta

ck
of

flo
ad

in
g

_
-I

nc
en

ti
ve

A
lg

or
it

hm
G

ra
di

en
t

_
_

-R
an

do
m

of
fs

et
at

ta
ck

m
ec

ha
ni

sm
s

(F
ed

A
vg

)
D

es
ce

nt
-E

ve
nt

ua
ls

to
p

at
ta

ck
.

(F
ed

er
at

ed
SG

D
)

[5
6]

,2
02

3
Th

e
si

m
ul

at
ed

Sy
bi

la
tt

ac
k

C
lie

nt
–s

er
ve

r
m

od
e

Sy
nc

hr
on

ou
s

A
cc

ur
ac

y
W

ei
gh

te
d

Fu
zz

y
lo

gi
c-

Ba
tc

h
R

ed
uc

es
th

e
Sy

bi
la

tt
ac

k
_

m
od

e
N

um
be

r
of

gl
ob

al
ag

gr
eg

at
io

n
ba

se
d

pr
oc

es
si

ng
_

ov
er

he
ad

da
ta

se
t

ag
gr

eg
at

io
ns

m
od

el
te

ch
ni

qu
e

[1
6]

,2
02

2
C

ar
H

ac
ki

ng
-F

lo
od

in
g

G
at

ed
R

ec
ur

re
nt

C
lie

nt
–s

er
ve

r
m

od
e

as
yn

ch
ro

no
us

-A
cc

ur
ac

y
Fe

de
ra

te
d

A
da

m
op

ti
m

iz
er

Ba
tc

h
da

ta
se

t
-S

po
ofi

ng
U

ni
t(

G
R

U
)w

it
h

m
od

e
-P

re
ci

si
on

A
ve

ra
gi

ng
pr

oc
es

si
ng

-R
ep

la
y

a
R

an
do

m
Fo

re
st

-R
ec

al
l

A
lg

or
it

hm
_

_
-F

uz
zi

ng
(R

F)
-b

as
ed

-F
1

sc
or

e
(F

ed
A

vg
)

en
se

m
bl

er
un

it
.

[5
7]

,2
02

1
C

A
N

-I
nt

ru
si

on
-D

oS
at

ta
ck

R
an

do
m

Fo
re

st
C

lie
nt

–s
er

ve
r

m
od

e
-A

cc
ur

ac
y

Ba
tc

h
da

ta
se

t(
O

TI
D

S)
-F

uz
zy

at
ta

ck
_

-P
re

ci
si

on
_

_
pr

oc
es

si
ng

_
_

-S
po

ofi
ng

at
ta

ck
-R

ec
al

l

[5
8]

,2
02

2
C

ar
H

ac
ki

ng
-D

oS
at

ta
ck

M
ul

ti
la

ye
r

C
lie

nt
–s

er
ve

r
m

od
e

-A
cc

ur
ac

y
Fe

de
ra

te
d

St
oc

ha
st

ic
R

ea
l-

ti
m

e
da

ta
se

t
-F

uz
zy

at
ta

ck
Pe

rc
ep

tr
on

(M
LP

)
_

-L
os

s
A

ve
ra

gi
ng

G
ra

di
en

t
pr

oc
es

si
ng

-S
po

ofi
ng

at
ta

ck
m

od
el

-A
U

C
sc

or
e

A
lg

or
it

hm
D

es
ce

nt
(S

G
D

)
_

_
-T

im
e

C
os

t
(F

ed
A

vg
)

op
ti

m
iz

er

267



Future Internet 2023, 15, 403

Ta
bl

e
9.

C
on

t.

R
ef

.\
Ye

ar
D

at
as

et
A

tt
ac

ks
M

L
C

om
m

un
ic

at
io

n
C

om
m

un
ic

at
io

n
Ev

al
ua

ti
on

M
od

el
O

pt
im

iz
at

io
n

R
ea

l-
Ti

m
e

D
at

a
O

ve
rh

ea
d

D
et

ec
te

d
M

od
el

Pa
tt

er
ns

Sy
nc

hr
on

iz
at

io
n

M
et

ri
cs

A
gg

re
ga

ti
on

A
lg

or
it

hm
s

Pr
oc

es
si

ng
Im

ba
la

nc
e

[5
9]

,2
02

2
Pr

ac
ti

ca
ld

at
as

et
-S

po
ofi

ng
at

ta
ck

s
Lo

ng
Sh

or
t-

C
lie

nt
–s

er
ve

r
m

od
e

-T
he

de
te

ct
io

n
R

ea
l-

ti
m

e
-R

ep
la

y
at

ta
ck

s
Te

rm
M

em
or

y
_

ac
cu

ra
cy

_
_

pr
oc

es
si

ng
_

_
-D

ro
p

at
ta

ck
s

(L
ST

M
)

-D
oS

at
ta

ck
s

ne
ur

al
ne

tw
or

k.

[6
0]

,2
02

3
C

ar
H

ac
ki

ng
-D

oS
at

ta
ck

C
on

vo
lu

ti
on

al
C

lie
nt

–s
er

ve
r

m
od

e
-A

cc
ur

ac
y

Fe
de

ra
te

d
Ba

ye
si

an
R

ea
l-

ti
m

e
Im

ba
la

nc
ed

R
ed

uc
es

th
e

da
ta

se
t

-F
uz

zy
at

ta
ck

N
eu

ra
lN

et
w

or
k

_
-R

ec
al

l
A

ve
ra

gi
ng

O
pt

im
iz

at
io

n
pr

oc
es

si
ng

da
ta

ov
er

he
ad

-S
po

ofi
ng

at
ta

ck
(C

N
N

)
-P

re
ci

si
on

A
lg

or
it

hm
(B

O
)

di
st

ri
bu

ti
on

.
-F

1-
sc

or
e

(F
ed

A
vg

)

[4
7]

,2
02

3
N

SL
-K

D
D

-D
oS

at
ta

ck
M

em
or

y-
C

lie
nt

–s
er

ve
r

m
od

e
Sy

nc
hr

on
ou

s
-A

cc
ur

ac
y

W
ei

gh
te

d
A

da
m

op
ti

m
iz

er
Ba

tc
h

Im
ba

la
nc

ed
da

ta
se

t
-P

ro
be

at
ta

ck
A

ug
m

en
te

d
m

od
e

-P
re

ci
si

on
A

gg
re

ga
ti

on
pr

oc
es

si
ng

da
ta

_
-R

2L
(R

em
ot

e
to

Lo
ca

l)
A

ut
oe

nc
od

er
-R

ec
al

l
M

od
el

di
st

ri
bu

ti
on

.
-U

2R
(U

se
r

to
R

oo
t)

M
od

el
-F

1
sc

or
e

[6
1]

,2
02

3
Ve

R
eM

i
-C

on
st

an
ta

tt
ac

k
Lo

ng
Sh

or
t-

-F
1-

sc
or

es
Ex

te
ns

io
n

-C
on

st
an

to
ff

se
ta

tt
ac

k
Te

rm
M

em
or

y
da

ta
se

t
-R

an
do

m
at

ta
ck

(L
ST

M
)

_
_

_
_

_
_

_
-R

an
do

m
of

fs
et

at
ta

ck
ne

ur
al

ne
tw

or
k.

-E
ve

nt
ua

ls
to

p
at

ta
ck

.

[6
2]

,2
02

3
Th

e
da

ta
se

t
-S

Y
N

flo
od

at
ta

ck
Th

e
de

ep
Fe

de
ra

te
d

A
rc

h.
-F

1-
Sc

or
e

Fe
de

ra
te

d
Fe

de
ra

te
d

[R
A

K
G

Z
20

]
-U

D
P

flo
od

at
ta

ck
au

to
en

co
de

r
w

it
h

ed
ge

_
-T

he
fa

ls
e

po
si

ti
ve

A
ve

ra
gi

ng
A

ve
ra

gi
ng

_
_

_
m

et
ho

d
of

flo
ad

in
g

ra
te

(F
PR

)
A

lg
or

it
hm

A
lg

or
it

hm
(F

ed
A

vg
)

(F
ed

A
vg

)

[6
3]

,2
02

2
C

A
N

-I
nt

ru
si

on
-D

oS
at

ta
ck

St
at

is
ti

ca
l

-M
ax

im
um

M
ea

n
Ba

tc
h

da
ta

se
t(

O
TI

D
S)

-F
uz

zy
at

ta
ck

A
dv

er
sa

ri
al

_
D

is
cr

ep
an

cy
(M

M
D

)
_

_
pr

oc
es

si
ng

_
_

-I
m

pe
rs

on
at

io
n

at
ta

ck
D

et
ec

to
r

-E
ne

rg
y

di
st

an
ce

(E
D

)

[6
4]

,2
02

3
Th

e
C

IC
-I

D
S

20
17

D
oS

at
ta

ck
,w

eb
at

ta
ck

s,
A

C
at

Bo
os

t
C

lie
nt

–s
er

ve
r

m
od

e
Pr

ec
is

io
n,

re
ca

ll,
T

he
Ba

gg
in

g
Th

e
gr

id
Im

ba
la

nc
ed

da
ta

se
t

po
rt

sc
an

,b
ot

,
m

od
el

_
K

ap
pa

sc
or

e,
C

la
ss

ifi
er

se
ar

ch
m

et
ho

d
_

da
ta

_
br

ut
e

fo
rc

e
at

ta
ck

s
ac

cu
ra

cy
te

ch
ni

qu
e

di
st

ri
bu

ti
on

268



Future Internet 2023, 15, 403

3.4. Analysis and Discussion

The analysis of the research papers aided us in formulating the following conclusions:

• Dataset: The selection of a dataset is a crucial aspect when evaluating the effectiveness
and resilience of proposed solutions in the field of IDS based on FL within the context
of IoV. Given the dynamic and complex nature of IoV, it is imperative to use datasets
that can accurately depict real-world vehicular communication scenarios, encompass-
ing both normal and malicious activities. These datasets play a fundamental role
in training and evaluating IDS models, enabling them to effectively identify threats
within the IoV environment. The following describes the datasets utilized in the
provided papers to assess the efficacy of various IDS solutions. Three of the papers,
namely [52,57,63], employed the CAN-intrusion dataset (OTIDS), which was sourced
from the Hacking and Countermeasure Research Lab at Korea University. This dataset
provides a comprehensive representation of intrusion scenarios within in-vehicle
networks, making it suitable for assessing IDSs specifically designed for vehicular con-
texts. By contrast, refs. [53,55,61] employed the VeReMi dataset for their experimental
analysis. The publicly accessible VeReMi dataset was explicitly developed for analyz-
ing mechanisms to detect misbehavior in VANETs. The authors of [16,58,60] employed
the Car-Hacking dataset derived from the “Car Hacking: Attack & Defense Challenge”
competition held in 2020. Additionally, some papers used simulated datasets, such
as [54], where a simulated dataset was employed to evaluate the effectiveness of their
proposed approach in vehicle-to-vehicle and ve-hicle-to-infrastructure scenarios. The
authors of [56] employed a simulated attack dataset consisting of simulated Sybil
attack flows and normal traffic flows in their experimental analysis. Meanwhile,
the simulations in [59] were conducted using the authors’ proprietary dataset. Al-
though the NSL-KDD and CIC-IDS 2017 datasets are not dedicated to IoVs and are
primarily general intrusion detection datasets, the authors of [47,64] conducted their
experiments on these datasets to evaluate the performance of their proposed methods.
Finally, ref. [62] utilized the [RAKGZ20] dataset to evaluate the authors’ proposed
solutions. These datasets collectively offer a comprehensive view of various intrusion
detection scenarios, particularly within automotive networks.

• Attacks detected: Within the domain of FL-based IDSs for IoV, numerous research
papers have put forth methodologies to identify a diverse range of cyber threats.
DoS attacks [47,52,57–60,63] and constant attacks [53,55,61] are the most frequently
discussed types of attacks in the literature. In addition, some authors emphasized
specific attacks, such as the Sybil assault [56] and the black hole attack [54]. Several
papers also explored detecting advanced attacks in in-vehicle networks, including
adversarial attacks like fuzzy attacks [16,57,58,60,63], flooding attacks [16,62], and
spoofing attacks [16,52,58–60]. These studies highlighted the diverse and persistent
nature of cyber threats in the IoV environment, underscoring the critical need for
robust IDS solutions. IDSs based on FL in IoV not only demonstrate the adaptability
and robustness of FL techniques but also illustrate the essential role these techniques
play in protecting the future of connected vehicular systems against a wide array
of cyberattacks.

• ML models: Researchers have turned to more powerful ML models to construct
resilient FL-based IDSs capable of addressing challenges posed by vehicular networks.
These models, tailored to meet the unique requirements of vehicular communication,
offer promising ways to detect and mitigate potential attacks. To improve detection
capacities and ensure vehicular safety, numerous ML models based on FL in IoV have
been implemented in the field of IDS. The following summarizes the ML models
utilized in the proposed solutions across the reviewed papers.

– Long short-term memory (LSTM): This architecture of recurrent neural networks
is prominently featured in articles [16,52,53,59,61]. One notable advantage of this
approach is its proficiency in identifying patterns over different time intervals,
making it well-suited for analyzing time-series data such as network traffic.
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– Deep convolutional neural network (DCNN): Papers such as [55,60] utilized
DCNNs to effectively handle structured grid data, including images or time-
series data. These DCNNs possess the capability to automatically and adaptively
learn spatial hierarchies.

– Support vector machine (SVM): ref. [60] utilized SVM, a supervised ML approach
applicable to both classification and regression tasks.

– Statistical adversarial detector: As explicitly stated in [63], this approach employs
statistical techniques to identify adversarial examples.

– Random forest: refs. [54,57] employed the random forest algorithm, an ensemble
learning technique. This algorithm constructs numerous decision trees during
the training phase and determines the class output by selecting the mode of the
classes for classification.

The utilization of a wide array of ML models in the articles highlights the intricate
and multifaceted characteristics of intrusion detection in IoV. Researchers have used
diverse techniques, such as recurrent networks like LSTM, capable of capturing tempo-
ral relationships, and ensemble methods like random forest, which provide robustness.
These approaches enhance the security and dependability of vehicular networks.

• Communication patterns: Most of the articles we reviewed provided solutions formu-
lated according to the client–server mode of operation, as exemplified
by [47,54,58,60,64], among others. In this mode, clients engage in the process of
training their models on a local level without sharing raw data. Subsequently, the
model updates are transmitted to the server, the central entity responsible for aggregat-
ing them. This procedure guarantees the protection of data privacy and minimizes the
necessity of data centralization. Meanwhile, some papers adopted a federated archi-
tecture with an edge-offloading technique [55,62]. As mentioned above, this approach
diminishes latency and reduces dependence on a remote cloud server. As discussed in
the publications mentioned above, the client–server mode of operation emphasizes
the shifting paradigm of decentralized data processing in IoV. FL-based IDSs not
only protect users’ data privacy but also pave the way for more effective and scalable
security solutions in rapidly developing vehicular networks. These systems enable
vehicles to train models locally, with central servers aggregating the training results.

• Communication synchronization: The communication synchronization mode,
whether synchronous or asynchronous, significantly impacts the efficiency and ef-
fectiveness of the FL process. Ref. [52] discussed the operational characteristics of
synchronous FL, which involves a single launch point and a single aggregate point for
the global model. In this model, the beginning of each iteration occurs concurrently for
all clients, and the federated aggregation process is performed without establishing
a predetermined objective for the learning rounds. In [53], the authors presented a
synchronous FL approach, and ref. [54] introduced a conventional synchronous FL
protocol. This protocol is considered appropriate for a wide range of FL scenarios,
including those involving bottlenecks. On the other hand, ref. [16] preferred an
asynchronous mode, which can provide greater flexibility in dynamic settings and
effectively handle frequent model changes and bottlenecks. This strategy enables
increased adaptability in the learning process, accommodating partial updates from
clients that may impact convergence performance. Nevertheless, not all research
explicitly addressed this matter. Most of the publications did not specify their opera-
tional mode concerning synchronization. The variations mentioned above highlight
the varied approaches that researchers have utilized to enhance the effectiveness of
IDSs within the rapidly changing environment of IoV. In summary, while synchronous
FL was a prevalent technique in the suggested solutions, some studies acknowledged
the advantages of asynchronous methods, particularly in environments characterized
by frequent updates and potential bottlenecks.

• Evaluation metrics: In most of the papers that were reviewed, the evaluation of the
efficacy of FL-based IDS systems relied on ML measures that assess the effectiveness
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of the analytic model. These metrics include accuracy, precision, recall, and F-measure.
A limited number of research publications examined the effects of FL. In particular,
ref. [55] discussed the consensus time, which is impacted by the quantity of FL workers
and the number of created blocks. The study additionally assessed the effectiveness
of the FL-enabled edge node by manipulating the reward and accuracy of the local
model. This evaluation considered various elements, including the reward, energy
consumption, and processing overhead. Moreover, the researchers did not overlook
the significance of accuracy as a fundamental measure for evaluating the efficacy of
their proposed solution. The paper also addressed the issues associated with recruit-
ing FL workers, highlighting the possibility of bias and imbalance when selection
is primarily predicated on reputation. The authors proposed various strategies to
address these difficulties, such as including randomization in the selection procedure.
In addition, in [56], the authors considered the “number of global aggregations (NGA)”
as an evaluation metric. They presented information regarding the number of global
aggregations performed in the proposed system and other state-of-the-art baseline
frameworks. Their research demonstrated how many global aggregations are neces-
sary for different numbers of communication rounds (R) to achieve the desired level
of accuracy. The FLEMDS framework proposed in the study necessitates a reduced
number of global aggregations in comparison to the baseline frameworks to attain a
comparable level of accuracy.

• Aggregation model: In the domain of distributed ML, the combination of data or
model updates from several nodes holds significant importance in determining the
overall performance and efficiency of the system. The aggregation process has been
extensively explored in contemporary research, with numerous novel approaches and
models offered in recent research papers. These aggregation models aim to successfully
harness the collective intelligence of all participating nodes while simultaneously
overcoming problems such as data heterogeneity, communication overheads, and
adversarial threats.
The examined literature suggested a range of aggregation models to improve the
effectiveness and precision of distributed systems, particularly in the domain of FL.
One of the most common aggregation models used in the reviewed papers is the feder-
ated averaging method, where local model updates are averaged to produce a global
model [16,53,55,58,60,62]. This approach is simple yet impactful, particularly in situa-
tions involving non-identically and independently distributed (non-IID) data [32]. An
alternative methodology uses weighted federated averaging, as described in several
papers [47,54,56]. This technique involves assigning varying weights to local models,
considering factors such as the quantity of data samples or the quality of the model.
Secure aggregation is another widely employed model aggregation technique in the
field of FL, as observed in [52]. In this technique, various cryptographic techniques,
including SMPC, are employed to consolidate data while preserving the confiden-
tiality of the unprocessed updates. The authors of [64] used the Bagging Classifier
technique as aggregation model in their developed solution. This technique aggregates
the predictions of multiple models to produce a single, more accurate model. The
resulting supermodel, created by the central server, exhibits better robustness than the
individual edge device models.
Each aggregation method provides specific benefits designed to address the challenges
and requirements of dispersed learning settings. The models described above are at
the forefront of current research, each tackling distinct issues. As technology advances
and increasingly intricate situations arise, these models are expected to continue to
develop, facilitating the implementation of more resilient and effective distributed
learning systems. The ongoing investigation and advancement of aggregation models
serve as evidence of the dynamic characteristics of ML research and its dedication to
optimizing the utilization of distributed nodes’ collective intelligence.
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• Optimization algorithms: The utilization of FL in IDSs presents a new and innovative
method for addressing the issues related to data privacy and effective model training
in IoV. Advanced algorithms play a pivotal role in optimizing FL models. For instance,
the federated proximal algorithm has been used to fine-tune model parameters, en-
suring optimal performance in detecting intrusions [52]. Similarly, some studies have
adopted federated stochastic gradient descent (federated SGD) to optimize the param-
eters of the proposed IDS models [53,55,58]. Furthermore, some papers utilized other
optimization techniques, such as the Adam optimizer [16,47], a fuzzy logic-based
technique [56], Bayesian optimization (BO) [60], and the federated averaging (FedAvg)
algorithm [62]. The authors of [64] used the grid search method for hyperparameter
tuning as an optimization algorithm in their solution. This method is employed to
optimize the Cat Boost model, a gradient boosting algorithm that utilizes decision
trees as the classifier model for edge devices. The grid search technique exhaustively
searches over a specified set of hyperparameters to improve the model’s accuracy.
The integration of optimization approaches, combined with the decentralized nature
of FL, holds the potential to deliver resilient and effective IDSs for the IoV environment.
Decentralizing the learning process and applying complex optimization algorithms
not only enhances detection capabilities but also ensures that modern concerns re-
garding privacy and efficiency within the IoV landscape are effectively addressed.
This represents a significant advancement for the industry. The ongoing expansion
and development of IoV necessitate the use of innovative strategies to ensure the
protection and security of our networked automotive environment.

• Real-time processing: A critical aspect of FL-based IDSs is their ability to process data
in real time, ensuring timely detection and response to potential threats. Our review
found several papers that proposed IDSs designed for real-time operation [52,58–60].
For instance, refs. [52,53,58] highlighted the significance of real-time processing for
IDSs, especially when dealing with vehicular networks. In addition, ref. [60] in-
troduced ImageFed IDS, a system designed for real-time inference. It employs a
lightweight image-based feature extraction for CAN packets, making it suitable for
real-time applications. On the other hand, some papers supported a batch processing
approach rather than real-time processing [16,47,56]. Some papers did not explic-
itly mention whether their proposed solutions are designed for real-time or batch
processing. Nevertheless, all the papers emphasized the importance of real-time pro-
cessing in IDSs for IoV, with various solutions and methodologies proposed to achieve
this objective. The operational significance of IDSs for vehicle networks increases as
these networks undergo continuous evolution and encounter a diverse range of cyber
threats. The research presented in these papers offers solutions and approaches that
contribute to the development of a more secure and responsive IoV environment by
emphasizing the significance of real-time processing.

• Data distribution: While imbalanced data distribution is a significant concern in ML
and AI research, most of the research papers we reviewed did not address this aspect.
We only identified five articles, namely [47,52,53,60,64], that specifically addressed
the issues and implications associated with imbalances in data distribution in FL
scenarios. They stressed the importance of dealing with this problem to achieve
robust and stable model performance. The authors of [52] emphasized that in real
FL contexts, the data distributed across many nodes or devices may exhibit non-IID
characteristics. These characteristics sometimes arise due to an imbalanced distribu-
tion of data, wherein certain data classes may be overrepresented in one node while
being underrepresented in another. To overcome this difficulty, the study suggested
an IDS that uses FL to help handle imbalanced data distribution. The authors of [53]
examined the vulnerability of models to adversarial attacks, particularly when con-
fronted with data imbalance. The presence of an imbalance in vulnerability can be
exploited by adversarial examples, resulting in the misclassification of benign data.
The authors presented various techniques for identifying these adversarial examples,
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indirectly addressing the difficulties associated with data imbalance. From another
perspective, the authors of [60] showed that data distribution among vehicles in FL
scenarios, particularly in the context of IoV, might exhibit a significant imbalance.
This imbalance can potentially impact the overall performance of the global model.
The paper introduced various methodologies aimed at alleviating the repercussions
of this imbalance, thereby ensuring the robustness of the FL framework. The issues
presented by imbalanced data distribution were also addressed in [47]. The authors
highlighted the potential emergence of unexpected attack behaviors in the context of
IoV development. The absence of comprehensive analysis and systematic gathering
of various attack behaviors has resulted in an imbalanced distribution of sample
data categories within intrusion detection for IoV. Consequently, this disparity leads
to diminished accuracy in detection. The authors proposed an intrusion detection
approach integrating FL and a memory-augmented autoencoder (FL-MAAE) to tackle
this issue. They have considered the problem posed by imbalanced data distribution
in their produced solution, hence ensuring the continued effectiveness of the model.
Lastly, the proposed framework in [64] employs the Synthetic Minority Over-sampling
Technique (SMOTE) to tackle the issue of class imbalance in the dataset. This approach
of oversampling minority classes helps to create a more balanced dataset, which in
turn allows for a more accurate and representative evaluation of the classification
models. Addressing data imbalance is critical for guaranteeing the resilience and
dependability of ML models, particularly in distributed learning scenarios such as FL.

• The overhead: One of the primary issues frequently encountered in the domain of
IDSs based on FL is the significant overhead associated with these systems. The effec-
tiveness and responsiveness of IDSs in IoV contexts can be significantly affected by
overhead, including computing, communication, and storage expenses. Addressing
this overhead is crucial to ensure the seamless operation of these systems without
compromising their primary function of identifying and mitigating threats. Several
of the reviewed papers examined the issue of overhead, which holds significant im-
portance in the field of distributed systems and FL [52,53,55–57,60]. In [52], the term
“overhead” refers to the complexity of the algorithms offered, and the authors stressed
how important it is to reduce this complexity as much as possible to ensure efficient
operations. In addition, ref. [53] discussed overhead in the context of communication
costs, emphasizing the relevance of minimizing overhead to improve system perfor-
mance. Overhead was explored in relation to the computing expenses of the proposed
approaches in [55], which emphasized the necessity of striking a balance between
accuracy and computational efficiency in the methods offered. The research presented
in [56] investigated the overhead caused by the consensus process in blockchains
and suggested that using a lightweight consensus method can reduce overhead and
increase scalability. The topic of overhead was discussed in the context of data trans-
mission in [57], which emphasized the significance of effective data-sharing systems to
reduce overhead. Lastly, ref. [60] provided a comparative analysis of various solutions.
This research suggested that FL approaches often incur less overhead than alternative
distributed learning modes. The study also discussed processing overhead in the
context of incentive mechanisms for FL. Taken together, these papers highlight the im-
portance of properly managing overhead costs to guarantee the efficiency, scalability,
and effectiveness of distributed and federated information systems.

Upon reviewing the collection of work relevant to IDSs based on FL in IoV, it becomes
apparent that the realm of security within vehicular networks is experiencing a significant
and fundamental change. FL has emerged as a promising solution for effectively address-
ing the intertwined issues of safeguarding data privacy and enhancing threat detection
efficiency. In conclusion, Table 10 presents a comparative analysis of the advantages and
drawbacks of each one of these proposed solutions that we discussed.
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Table 10. Comparative analysis of FL-based IDS for IoV: advantages and drawbacks.

Ref Advantages Drawbacks

[56]
Three-level model aggregation.

Fuzzy Logic-Based FL Vehicle Selection (FLBFLVS).
Reduced latency.

Complex system architecture.

[52] Reduced model size and convergence time. High
detection accuracy (over 95%)

Complexity of implementation.
Scalability concerns.

[53] Privacy preservation. Reduction in communication
overhead. Handling position falsification attacks.

Complexity in implementation. Challenges in
federated averaging. Experimental limitations.

[54] Trust estimator integration. Effective learning with fewer
rounds. Improved network performance

Challenges in synchronization and model
aggregation. Need for regular updates

and maintenance.

[55]
Blockchain integration for trust. Smart contract use.

Efficient consensus protocol.
High performance.

Resource intensity.
Challenges in worker selection and bias.

Scalability in real-world deployment.

[16]
High accuracy in cyberattack detection.

Reduced communication overhead.
Resource efficiency.

Complex implementation.

[57]
Blockchain integration.

Decomposition using Fourier transform.
High performance.

Complex system architecture.
Resource intensiveness.

Challenges in blockchain integration.

[58]
High accuracy (up to 98.45%).

Low-complexity structure.
Adaptability.

Dependency on local data quality.

[59] High detection accuracy (beyond 90%). -

[60]

High performance metrics (with an average 99.54%
F1-score and 99.87% accuracy, alongside low

detection latency).
Lightweight feature extraction.

-

[47] Robust to imbalanced data.
Effective in detecting unknown attacks.

The evaluation is conducted used the NSL-KDD
dataset, which is not dedicated to IoVs and is

primarily an intrusion detection dataset.

[61] High accuracy in threat detection. Complexity in tradeoffs between utility
and‘privacy.

[62]

Zero-day attack detection.
High detection rates.

Multi-access Edge Computing (MEC) assistance. Complexity in implementation and management

[63]

Adversarial attack detection.
Blockchain integration.

High detection accuracy
Lightweight feature extraction.

Computational overhead.
Limitations in detecting certain

adversarial attacks.

[64] Robust to imbalanced Data.
Handling class imbalance.

The evaluation is conducted used the CIC-IDS
2017, dataset which is not dedicated to IoVs and is

primarily an intrusion detection dataset.

4. Discussion of Challenges and Future Research Directions

IoV is anticipated to experience significant growth in the coming decade, emerging as
a prominent paradigm movement. This projection suggests that IoV will receive substantial
attention and witness considerable advancements across several sectors and industries. The
integration of FL into IDSs within IoV scenarios presents a significant opportunity to bolster
the security of interconnected vehicles in this dynamic environment. The primary objective
of incorporating collaborative intelligence concepts and technologies into the domain of
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IoV is to facilitate the integration of data and resources from a vast array of vehicles, users,
infrastructure, and networks. This integration aims to enhance the reliability, connectivity,
and ease of management, control, and operation of IoV systems. Nevertheless, this novel
methodology also presents a series of challenges that necessitate meticulous consideration
to guarantee the efficiency and security of these systems. These constraints arise from the
heterogeneous characteristics of vehicle data, constrained network resources, the persistent
risk of adversarial assaults, strict regulatory obligations, and the imperative to uphold
the security of FL models. The ability to effectively deal with these intricacies is crucial
to fully harness the capabilities of FL-enabled IDSs in IoV scenarios. This will establish a
resilient, secure, and privacy-conscious vehicular network. Drawing upon the literature
analysis, this section aims to elucidate some of the main challenges we found and possible
future research directions for investigating the development of IDSs empowered by FL
within the IoV context. Figure 3 summarizes the challenges and future research directions
in FL-enabled IDS IoV.

Figure 3. Challenges and future research directions in FL-enabled IDS for IoV.

Here, we cover some of the primary challenges and future research directions associ-
ated with developing FL-enabled IDSs in IoV scenarios.

• The deployment of Federated Learning on Internet of Vehicles devices: Deploying an
FL-enabled IDS architecture on real IoV devices presents many challenges. One notable
obstacle involves the presence of resource constraints since IoV devices frequently
have restricted processing capabilities and memory capacities, making the efficient
execution of intricate FL algorithms difficult. This challenge can be exacerbated when
employing deep learning techniques, as they often require more computational re-
sources than traditional ML [65]. To overcome these restrictions, a prevailing approach
involves the implementation of intermediate nodes positioned at the network edge.
These nodes serve as clients for FL, receiving data from end devices. Real-time pro-
cessing poses an additional challenge in the context of IDSs in IoV. These IDSs need to
effectively evaluate incoming data and promptly identify any instances of intrusion,
requiring the implementation of algorithms that strike a delicate balance between
accuracy and processing speed. Consequently, more work is needed to examine the
real-world constraints of FL-enabled IDS techniques in IoV contexts to ensure optimal
levels of security and efficiency.

• Limitations of existing FL-enabled IDS datasets for IoV: The current datasets available
for FL-enabled IDSs in the context of IoV exhibit various limitations. The issue of
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data diversity presents a notable obstacle as datasets may lack a comprehensive
representation of the wide range of real-world scenarios and driving conditions,
resulting in the development of biased models. Data imbalance is a significant issue
that warrants attention, as specific categories of security threats may be inadequately
represented in the dataset, posing challenges for the FL-enabled IDS to detect these
less frequent intrusions accurately and efficiently. Data quality is essential, as any
inaccuracies or noise present in the data can significantly impact the learning process,
potentially leading to the development of intrusion detection models that are less
reliable and potentially misleading. Furthermore, the issue of data privacy poses
a significant constraint in the context of IoV. The data generated by IoV systems
frequently encompass confidential personal and vehicular details, thereby presenting
a formidable obstacle in creating extensive datasets that simultaneously safeguard
users’ privacy. The concern regarding the scalability of current datasets becomes
particularly significant as IoV networks experience rapid expansion. These constraints
must be acknowledged and addressed to create resilient IDSs that effectively capture
the complicated nature of actual IoV settings while upholding user privacy and
data integrity.

• Aggregator as a bottleneck: In the context of IoV scenarios involving FL-enabled IDS,
the aggregator frequently becomes a bottleneck despite being a central component.
The processing capacity of the aggregator can be overwhelmed by the sheer volume
of incoming information if data from multiple vehicles are sent to the aggregator
for model training and updating [65]. The influx of data, especially in extensive IoV
networks, has the potential to result in delays when it comes to aggregating and
updating FL models. Furthermore, given the real-time nature of intrusion detection in
vehicle contexts, introducing any delay at the aggregator level can impede prompt
responses to security threats. The challenge of balancing the requirement for com-
prehensive model updates with the practical constraints of aggregators is of utmost
importance. This necessitates using innovative approaches in distributed computing,
efficient algorithms, and optimized communication protocols. These measures are
necessary to address the bottleneck and ensure the smooth operation of FL-enabled
IDSs in IoV scenarios.

• Client selection: Identifying suitable clients for FL-enabled IDSs in the IoV context
presents a significant challenge. During each training iteration, the coordinator can
choose a specific subset of devices to engage as FL clients in the training procedure. The
environments in which IoV operates exhibit a high degree of dynamism, characterized
by the continuous movement of vehicles within and beyond the network coverage area.
The dynamic nature of the environment poses difficulties in maintaining a consistent
group of clients who actively participate in the training of FL models. For instance,
specific devices may not be accessible during a particular round due to mobility
issues or disruptions in connectivity. In addition, the criteria for selection need to
consider factors such as the device’s current state, its battery life, its computational
and networking capabilities, and even the precision of the ML technique. The client
selection process can significantly impact the accuracy achieved and, consequently,
the detection of potential security breaches within the framework of an IDS approach.
Striking a balance in the client selection process, where a diverse, accurate, and current
dataset is maintained, necessitates the utilization of advanced algorithms and real-time
decision-making to manage the ever-changing pool of participating vehicles effectively.
Addressing this challenge is essential to maintain the integrity and accuracy of FL-
enabled IDSs in IoV scenarios. Therefore, future strategies for devising an efficient
client selection process in IoV systems must consider the dynamic nature of device
conditions throughout each training iteration.

• Security attacks: In the context of FL-enabled IDSs in IoV scenarios, security attacks
pose a severe threat. Attackers can exploit vulnerabilities inherent in the FL archi-
tecture [66]. These exploits can manifest as various types of attacks, including data

276



Future Internet 2023, 15, 403

poisoning [24], where adversaries inject deceptive data into the training process to
manipulate the IDS model [45]. Model inversion attacks can also occur, in which
attackers attempt to deduce confidential data from the trained model. In addition,
the confidentiality and integrity of data might be compromised by eavesdropping
attacks that specifically target the communication channels established between ve-
hicles and the central server. To address these security concerns, robust security
measures are essential, including strong encryption, secure communication protocols,
anomaly detection techniques, and continuous monitoring. Preserving security in
FL-enabled IDSs within IoV scenarios is of utmost importance for protecting against
a diverse range of potential cyberattacks and maintaining the efficiency of IDSs in
interconnected vehicular networks.

• Privacy concerns: Privacy considerations emerge as a significant challenge in the
context of FL-enabled IDSs in IoV scenarios. Although the primary purpose of FL is to
address the privacy concerns associated with centralized learning methods, FL may
still inadvertently disclose information from the training data of individual clients.
FL relies on data provided by individual vehicles for the purpose of training models,
raising issues concerning user privacy and data confidentiality. Within IoV, vehicles
can generate substantial quantities of sensitive data, including location information,
driving behavior, and recordings of communication. The central issue revolves around
the need to effectively utilize this data for training IDS models while safeguarding the
privacy of both vehicle owners and occupants. As a result, there has been a notable
surge of interest has occurred in implementing privacy-preserving methodologies
in the field of FL [23]. These methodologies include differential privacy techniques,
SMPC, and homomorphic encryption. However, using these advanced approaches
often entails a trade-off in terms of precision and effectiveness, potentially compro-
mising the IDS’s ability to identify attacks. Deploying these advanced methods is
necessary to strike a balance between the need for effective intrusion detection, strict
privacy requirements, and meeting user expectations. Further research is required
to find the optimal balance between privacy and performance to develop efficient
IDS methodologies.

• Communication efficiency: Implementing FL-enabled IDSs within IoV introduces a
significant challenge in terms of communication efficiency. In IoV scenarios, where
vehicles are in constant motion, transmitting substantial amounts of data to train
FL models on a central server can strain network bandwidth and result in signifi-
cant communication overhead. This challenge is further exacerbated by the need for
real-time intrusion detection, where rapid responses are crucial. Optimizing com-
munication protocols and data transmission techniques is essential to alleviate the
network’s burden while ensuring the timely delivery of relevant data to the central
server for model updates. Future research in this field is oriented towards devel-
oping sophisticated communication-efficient techniques tailored specifically for IoV
scenarios. Approaches such as model quantization, edge computing, and strategic
data sampling can be leveraged to minimize the volume of transferred data, thereby
enhancing communication efficiency. Balancing the requirement for extensive data
exchange with the constraints imposed by network bandwidth is essential for the
effective implementation of FL-enabled IDSs in dynamic and bandwidth-limited IoV
environments. Research efforts also focus on exploring 5G and beyond-5G technolo-
gies, which hold the potential to provide increased bandwidth and reduced latency.
These advancements can significantly transform the communication landscape of
FL-enabled IDSs in IoV.

• Encryption standards: Encryption standards play a significant and multifaceted role
in the context of FL-enabled IDSs within IoV. Ensuring the security and privacy of
sensitive vehicular data during the transmission process is of paramount importance.
The main challenge lies in adopting encryption standards that combine robustness
and efficiency to effectively manage the substantial volumes of data transmitted
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between vehicles and central servers. Moreover, within the FL framework, which
entails collaborative model training on various devices, selecting encryption methods
that can protect data while preserving the integrity of the collaborative learning
process is a complex task [67]. Future advancements in this field primarily focus
on developing encryption techniques that successfully reconcile the requirements of
security, efficiency, and the necessity for collaborative learning. Research efforts aim to
establish standardized encryption protocols tailored specifically for IoV settings. These
protocols are intended to ensure data security and integrity while facilitating seamless
model updates and promoting collaborative learning within a broad spectrum of
vehicular networks.

• Edge computing: Incorporating edge computing into FL-enabled IDSs within IoV
introduces both challenges and potential solutions. While local data processing on
devices has the potential to alleviate network bandwidth demands, it also brings
about issues related to resource limitations and data diversity. IoV devices, often
constrained in terms of available resources, face difficulties when attempting to ex-
ecute computationally intensive FL algorithms on the device itself. Furthermore,
ensuring consistency and accuracy in updating models across various vehicles with
different hardware configurations and data formats presents a significant challenge.
Future research in this domain seeks to enhance the effectiveness of edge computing
methodologies, facilitating efficient local data processing and collaborative learning
while mitigating the variations in device capabilities. Leveraging edge computing,
IDSs empowered by FL in IoV can realize benefits such as reduced communication
overhead and improved real-time intrusion detection capabilities [68]. This, in turn,
contributes to the establishment of more secure and responsive vehicular networks

• Optimization of Federated Learning and intrusion detection system parameters: FL
predominantly relies on deep learning models that involve a diverse set of trainable
parameters, which the user can configure. Additionally, IDSs are highly sensitive
to these parameters. The next research avenue in FL-enabled IDSs for IoV involves
optimizing FL and IDS parameters, as this directly impacts performance and train-
ing effectiveness [45]. Given the dynamic and diverse nature of IoV environments,
it becomes imperative to identify the most suitable parameters for FL algorithms.
This includes determining appropriate learning rates, aggregation methods, and local
model parameters. In addition, customizing these parameters for specific intrusion
detection tasks and diverse vehicular datasets can significantly improve the perfor-
mance and accuracy of FL-enabled IDSs [51]. Future research should explore these
factors in greater depth, utilizing methodologies such as hyperparameter tuning and
adaptive learning algorithms [51]. By optimizing these parameters, researchers can
finely tailor FL-enabled IDSs to suit specific IoV scenarios. This optimization process
ensures effective collaboration, precise intrusion detection, and minimized communi-
cation overhead, ultimately paving the way for the development of more robust and
responsive vehicular security systems.

• Heterogeneity and interpretability of the Federated Learning model: In the realm
of FL-enabled IDSs for IoV, the heterogeneity and interpretability of FL models are
of paramount importance. Heterogeneity stems from the distinct characteristics of
vehicular data and the varying capabilities of different vehicles and their sensors.
Coordinating multiple models for effective collaboration, especially in real-time in-
trusion detection, introduces a high degree of complexity. Moreover, prioritizing the
interpretability of these models is crucial, as it enables a comprehensive understand-
ing of the rationale behind intrusion alerts. This understanding is valuable for both
developers and end-users. Future research endeavors are geared towards developing
approaches that harmonize these diverse models, ensuring their seamless integration
to enhance intrusion detection accuracy Simultaneously, researchers are dedicated to
enhancing the interpretability of FL models through methodologies like explainable
AI, which provides insights into the decision-making processes of these models. By
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effectively addressing these challenges, FL-enabled IDSs in IoV can achieve a state
of equilibrium that encompasses various data sources, model interpretability, and
efficient intrusion detection. This, in turn, fosters confidence and comprehension
among stakeholders in vehicular security.

• Big data management: Effective management of big data poses a significant challenge
within the context of FL-enabled IDSs in IoV. The sheer volume, velocity, and diver-
sity of data generated by vehicles require robust storage, processing, and analysis
capabilities [69]. The integration of FL-enabled IDSs necessitates the use of extensive
data for training and model updates. Efficiently handling this vast amount of data is
paramount. The complexity lies in maintaining timely data collection, aggregation,
and storage while preserving real-time intrusion detection capabilities, particularly
when considering the limited resources of vehicle networks. Future studies will con-
centrate on creating distributed and scalable storage systems, better data processing
algorithms, and advanced data analytics methods. By addressing big data manage-
ment challenges, FL-enabled IDSs in IoV can harness the wealth of vehicular data
efficiently, enhancing the precision and agility of IDSs in dynamic and networked
vehicular environments.

• Sparse data: Vehicle data, especially regarding specific types of security threats, can
be sparse and unevenly distributed across vehicles. Data sparsity may lead to biased
models, as they might not adequately capture certain types of intrusions. Conse-
quently, this limitation can hinder the overall effectiveness of the IDS. Addressing the
issue of sparse data requires innovative methodologies, such as data augmentation,
imputation approaches, or customized algorithms designed to handle incomplete
datasets effectively [70]. Future research efforts aim to develop algorithms that can
successfully enable FL models to learn from limited and irregular data. By effectively
tackling the issue of sparse data, FL-enabled IDSs in IoV can enhance their precision,
ensuring a more comprehensive and nuanced understanding of various intrusion
patterns across different vehicular scenarios.

• Stability: Stability is a significant challenge within the context of FL-enabled IDSs in
IoV. The inherent instability of the FL process is introduced by the dynamic nature of
vehicular networks, characterized by the continuous changes in the composition and
positions of vehicles. This variability can potentially disrupt the FL environment, af-
fecting the consistency and accuracy of the IDS models. Maintaining stability requires
the implementation of robust systems to address fluctuations in participation rates,
network disconnections, and intermittent data availability [69]. Future research aims
to develop algorithms that can adapt dynamically to changes in the network, ensuring
the stability of FL models, even when confronted with evolving IoV scenarios. By
addressing this challenge, FL-enabled IDSs in IoV can consistently perform at a high
level, providing reliable capabilities for detecting unauthorized access despite the
everchanging characteristics of vehicular networks.

• Reliability: Applications related to intelligent transportation and unmanned aerial
vehicle detection demand a high level of reliability due to their safety-critical nature.
Failures in meeting reliability standards can lead to severe consequences, including
significant loss of life and property. Achieving reliability in the context of intrusion de-
tection within a diverse and dynamic vehicle network presents significant challenges.
Maintaining constant and accurate IDS performance is complicated by factors such as
network latency, fluctuations in data quality, and the reliability of data transfer from
individual vehicles. To ensure reliability, robust FL algorithms are needed to manage
data discrepancies, adapt to changing network conditions, and effectively integrate
data from diverse vehicles. Moreover, the timely and accurate deployment of intrusion
detection solutions depends on the reliability of model updates and communication
protocols. Future research aims to enhance the reliability of IDSs in IoV by refining
FL algorithms, improving data preprocessing methods, and optimizing communica-
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tion protocols. This will ultimately ensure the consistent and reliable operation of
FL-enabled IDSs across diverse IoV environments.

• Real-time data: In the context of vehicle environments, responding promptly to
security threats is crucial for ensuring passenger safety and network security. Swift and
effective intrusion detection relies on processing the substantial volume of real-time
data provided by vehicles. The primary challenge lies in developing FL algorithms
capable of handling this increased data volume efficiently, with a focus on enabling
timely anomaly or intrusion identification. Moreover, optimizing communication
protocols to efficiently transmit relevant real-time data to central servers for model
updates is of paramount importance. Future research in this area is directed towards
creating FL models that combine lightweight characteristics with high-performance
capabilities. This involves exploring the use of edge computing for local real-time
analysis and improving communication protocols to facilitate seamless and swift
sharing of real-time data [68]. By effectively addressing this challenge, the utilization
of FL-enabled IDSs in IoV can offer immediate responses to security threats, thereby
enhancing the overall safety and security of vehicular networks.

5. Conclusions

When we consider the extensive landscape of IDSs supported by FL in the context
of IoV, it becomes abundantly clear that we are on the threshold of a revolutionary era
in the field of vehicular network security. This realization is supported by the fact that
IoV is the foundation upon which IDSs are constructed. IoV requires a security paradigm
that is both resilient and adaptable due to its vast network of interconnected devices and
vehicles. With its decentralized approach, Federated Learning has emerged as a beacon,
offering a harmonious balance between data privacy and collaborative intelligence. It
addresses the growing concerns about data privacy in our hyper-connected world by
enabling vehicles to train models locally, ensuring that sensitive data are always retained
on the device, thus solving this problem. The aggregation of these local models at a
central location produces IDSs that are more accurate and capable of adapting to changing
threat land-scapes, while simultaneously tapping into the collective wisdom of the entire
network. However, challenges persist, as is expected with any emerging technology.
Further research should take into account issues such as scalability, real-time processing
demands, and maintaining model correctness across a wide range of vehicle nodes. In this
paper, we conducted a well-organized literature review on IDSs based on FL within an IoV
environment. We identified the relevant state of the art in FL-based IDSs within the IoV
domain, covering the years from FL’s inception in 2016 through 2023. Additionally, we
introduced a general taxonomy to describe the FL systems, ensuring a coherent structure
to guide future research. Finally, drawing upon the literature analysis, we elucidated
some of the main challenges and potential directions for future studies in developing IDSs
empowered by FL within the IoV context. In conclusion, as IoV continues to rapidly evolve,
the interdependence between FL and IDSs will play a crucial role in establishing a vehicular
ecosystem that is both secure and resilient, all while also safeguarding privacy.
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Abbreviations
The following abbreviations are used in this manuscript:

IoV Internet of Vehicles
IDS Intrusion Detection System
FL Federated Learning
IoT Internet of Things
SMPC Secure MultiParty Computation
SGD Stochastic Gradient Descent
DP Differential Privacy
LDP Local Differential Privacy
CDP Central Differential Privacy
non-IID non-Independent and Identically Distributed
HIDS Host Intrusion Detection System
NIDS Network Intrusion Detection System
ML Machine Learning
DL Deep Learning
VANETs Vehicular Ad-hoc Networks
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
DoS Denial-of-Service
LSTM Long Short-Term Memory
DCNN Deep Convolutional Neural Network
SVM Support Vector Machine
RF Random Forest
FedAvg Federated Averaging Algorithm
BO Bayesian Optimization
MLP Multilayer Perceptron
R2L Remote to Local
U2R User to Root
FPR The False Positive Rate
MMD Maximum Mean Discrepancy
ED Energy Distance
NGA Number Of Global Aggregations
R Numbers Of Communication Rounds
FL-MAAE Federated Learning Memory-Augmented Autoencoder
SMC Secure-Multiparty Computation
UAV Unmanned Aerial Vehicle
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