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Uncertainty Analysis of HYDRUS-1D Model to Simulate Soil
Salinity Dynamics under Saline Irrigation Water Conditions
Using Markov Chain Monte Carlo Algorithm
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Abstract: Utilizing degraded quality waters such as saline water as irrigation water with proper man-
agement methods such as leaching application is a potential answer to water scarcity in agricultural
systems. Leaching application requires understanding the relationship between the amount of irriga-
tion water and its quality with the dynamic of salts in the soil. The HYDRUS-1D model can simulate
the dynamic of soil salinity under saline water irrigation conditions. However, these simulations are
subject to uncertainty. A study was conducted to assess the uncertainty of the HYDRUS-1D model
parameters and outputs to simulate the dynamic of salts under saline water irrigation conditions
using the Markov Chain Monte Carlo (MCMC) based Metropolis-Hastings algorithm in the R-Studio
environment. Results indicated a low level of uncertainty in parameters related to the advection term
(water movement simulation) and water stress reduction function for root water uptake in the solute
transport process. However, a higher level of uncertainty was detected for dispersivity and diffusivity
parameters, possibly because of the study’s scale or some error in initial or boundary conditions. The
model output (predictive) uncertainty showed a high uncertainty in dry periods compared to wet
periods (under irrigation or rainfall). The uncertainty in model parameters was the primary source of
total uncertainty in model predictions. The implementation of the Metropolis-Hastings algorithm
for the HYDRUS-1D was able to conveniently estimate the residual water content (θr) value for
the water simulation processes. The model’s performance in simulating soil water content and soil
water electrical conductivity (ECsw) was good when tested with the 50% quantile of the posterior
distribution of the parameters. Uncertainty assessment in this study revealed the effectiveness of
the Metropolis-Hastings algorithm in exploring uncertainty aspects of the HYDRUS-1D model for
reproducing soil salinity dynamics under saline water irrigation at a field scale.

Keywords: Bayesian; HYDRUS-1D; irrigation; leaching; MCMC; Metropolis-Hastings; prior distribution;
posterior distribution; salinity; uncertainty

1. Introduction

The severity of water shortage for irrigated agriculture is becoming a global catas-
trophe. On the other hand, the sustainability of agricultural systems and water resources
has been extremely challenging due to the rising competition in water demands of the
agricultural, industrial, and municipal sectors [1]. Irrigation with saline waters could be a
proper alternative to freshwater to sustain the agricultural industry in arid and semi-arid
regions facing different water scarcity levels [2]. These waters are mainly obtained from
agricultural drainage water, municipal wastewater, and low-quality groundwater. It has

Agronomy 2022, 12, 2793. https://doi.org/10.3390/agronomy12112793 https://www.mdpi.com/journal/agronomy1
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been indicated in several studies that when saline water is used for irrigation purposes,
special focus should be considered on controlling salinity accumulation in the crops’ root
zone to achieve long-term productivity in the region [3–6]. The unsuitable management of
saline water irrigation can potentially restrict crop water and nutrient uptake due to the
inducing salinity build-up in the soil [7]. The salinity distribution and its levels depend on
interactions of irrigation, rainfall, evapotranspiration, and the drainage condition of the
agricultural fields [8]. Thus, implementing an effective method to alleviate concentrated
salinity in the crops’ root zone is crucial. Leaching excessive salts downward from crops’
root zone through the application of more water than the crops’ water requirement during
the growing season has been an effective method for salinity control. Leaching application
is a critical factor in managing soil-soluble salts brought by saline water irrigation [9].
Therefore, balanced management between applying extra water to control salinity and
conserving groundwater resources due to additional water withdrawal is expected. The
ratio of water that passes the root zone to the amount of irrigation water is called the
leaching fraction (LF) [9]. The minimum leaching fraction of irrigation water with partic-
ular quality that needs to be applied over the growing season to keep soil salinity below
the crops’ salinity thresholds is called the leaching requirement (LR) [10]. To determine
the correct value of LR, steady-state and transient-state are two existing approaches and
introduced methods in the literature. In steady-state analysis, specific assumptions have
been made that include the continuous downward flowing of irrigation water at a constant
rate, constant evapotranspiration rate during the growing season, and constant soil soluble
salt concentration at any point [8,11]. Comparing field observations proves that none of
these assumptions are realistic [8,11]. Thus, using transient-state methods is preferable
to compute suitable LR values when the source of irrigation water is saline. One of the
well-distinguished transient numerical models is the HYDRUS-1D, model which has the
capability of simulating water flow and transport of solutes and ions in unsaturated condi-
tions of soils [12]. The HYDRUS-1D along with its solute transport and root water uptake
modules have been proven to be a reliable model for investigating management scenarios
regarding long-term and short-term effects of using marginal quality waters as irrigation
water on soil salinity and water content [13,14]. Gonçalves et al., 2006 have shown that the
HYDRUS-1D model successfully simulated soil water content, overall salinity, and soluble
ions over and out of the irrigation season. The model was able to reasonably describe
the contribution of rainfall in leaching soluble salts deposited by irrigation during the
season [15]. Noshadi et al., 2020 used soil column lysimeters to calibrate and validate the
HYDRUS-1D model under different controlled groundwater depths. They revealed that
statistical indices of normalized root mean square error (NRMSE) and degree of agreement
(d) values were 9.6% and 0.64 for simulating soil water content, and 6.2% and 0.98 for
simulating soil salinity, respectively [16]. It has been shown by Phogat et al., 2010 that the
HYDRUS-1D predictions of water percolation and soil electrical conductivity of sandy loam
soil in mini lysimeters study were not statistically different from the measurements [17].
Salma et al., 2019 have investigated the reliability of the HYDRUS-1D model in terms of
investigating the effects of different irrigation regimes, including full and deficit irriga-
tion, on root water uptake and root zone salinity. Their results indicated good accuracy
of the model by achieving the root mean square error (RMSE) values of 0.008 m3 m−3

and 0.28 dS/m for simulating soil water content and soil water electrical conductivity
(ECsw), respectively [18]. Liu et al., 2019 calibrated and validated the HYDRUS-1D model
to investigate the soil salt dynamic of the winter wheat–summer maize root zone irrigated
with brackish water in a semi-arid region. The results have shown the model’s good
performance regarding soil water content (SWC) and ECsw simulations. The RMSEs for
simulating SWC and Ecsw were in the range of 0.017–0.04 cm3 cm−3 and 0.059–0.069 dS/m,
respectively. In addition, the coefficient of determination (R2) values were from 0.78 to 0.92
for SWC simulations and from 0.67 to 0.89 for Ecsw simulations [19]. Helalia et al., 2021
have simulated water use and soil salinity of drip-irrigated almond and pistachios root
zones by the HYDRUS-1D model under different irrigation water salinities for multiple
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locations in San Joaquin Valley (SJV), California. Their results have shown good accuracy
of the model as NRMSE values between simulated and measured volumetric water content
varied from 0.033 to 0.28. Moreover, the coefficient of correlation (R) values varied from
0.4 to 0.72 for ECsw, showing erratic behavior of the model in different locations due to
multiple factors such as the non-uniformity of root and water redistributions under drip
irrigation [20]. A challenge to obtaining acceptable outputs of the model is the calibration
of its parameters, which is usually time and money consuming. Inverse modeling has
been known as a convenient technique for calibrating HYDRUS-1D based on observa-
tional data [21–24]. Nevertheless, estimating model parameters are still associated with
uncertainties that are reflected in model outputs. To achieve valid results from the model,
it is necessary to quantify this type of uncertainty [25]. To date, very few studies have
explored the uncertainty analysis of HYDRUS-1D parameters, particularly for simulating
the salinity dynamic of the soil under saline irrigation conditions [26–28]. This study, by
pursuing the Bayesian theorem, investigates the conditional probability distribution of the
HYDRUS-1D parameters, grounded on the measurements. The Bayesian theorem consists
of three main terms: (a) the likelihood function that incorporates the model outputs and
measurements to identify the errors, (b) prior probability that covers all of the uncertainty
without considering measurements (initial information), and (c) the posterior probability
that combines the previous knowledge (prior) and new information (likelihood) to gain
uncertainty of the model [29,30]. Various methods have been implemented to determine
the uncertainty analysis of the models based on Bayesian inferences. Among these methods,
those based on Markov Chain Monte Carlo (MCMC) approach have gained significant
popularity in studies, particularly in hydrology [31–36]. The MCMC has been built based
on formal Bayesian inference concepts to estimate the models’ parameters and quantifi-
cation of uncertainty. The MCMC creates a Markov chain whose target distribution is
posterior distribution. The Markov chain illustrates the sampling design for simulating
Monte Carlo [34,37]. Kunnath-Poovakka et al., 2021 have investigated the parameters’
uncertainty of a hydrological model known as the Australian Water Resource Assessment
Landscape (AWRA-L) model using an MCMC method and incorporating remotely sensed
evapotranspiration and soil moisture data [38]. Yang et al., 2020 have taken advantage
of the MCMC approach to develop a method for drought risk assessment under uncer-
tainty [39]. Xu et al., 2018 adopted an MCMC-based algorithm to estimate the parameters
and uncertainty of two-parameter non-stationary Lognormal distribution to analyze flood
frequency in a river basin [40]. So far, most of the attention has been on implementing these
Bayesian theorem-based methods for hydrological problems and few studies have been
accomplished to use these approaches for addressing problems in irrigation science. The
main aim of this study is to couple a Bayesian MCMC algorithm known as Metropolis-
Hastings (M-H) with the numerical model of HYDRUS-1D to quantify the uncertainty of
the parameters of water flow, solute transport, and root water uptake modules of the model
for simulating soil salinity dynamics over the growing season and out of the growing
season in under field conditions.

2. Materials and Methods

2.1. Site Description and Experimental Data

The field experiments were conducted in Alvalade do Sado, Alentejo, Portugal [15].
Soil monoliths were built for the aims of the study. The monoliths had 1.2 m2 × 1.00 m
deep dimensions, which were isolated by plastic to restrict the lateral seepage of water
and solute. The soil surface was exposed to atmospheric conditions, and the bottom had
free drainage conditions. The vegetation cover was annual spontaneous plants such as
gramineous, leguminosae, and compositae. To measure soil water content and pore ware
salinity, TDR probes using waveguides from the Trase System (Soil Moisture Equipment
Corp., Goleta, CA, USA) and ceramic suction cups were installed at 10, 30, 50, and 70 cm,
respectively. The electrical conductivity (EC) of extracted water, using ceramic suction
cups, was analyzed as soil water salinity (ECsw). The experiments were conducted for two
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growing years (505 days), starting on 15 May 2003, to 30 September 2004. The first irrigation
season was started on 29 May 2003 and ended on 20 August 2003. The irrigation events
of the next growing season were initiated on 23 June 2004 and continued until 20 August
2004. The monoliths were exposed to atmospheric conditions for the days out of irrigation
seasons. It should be mentioned that no rainfall occurred from 21 August 2003 until 1
November 2003, and just one rainfall occurred from 21 August 2004 until 30 September
2004. The crop’s daily evapotranspiration and precipitations during the experiments are
presented in Figure 1, and the irrigation seasons are specified with orange bars.

Figure 1. The daily crop evapotranspiration and the precipitations during the experiments starting
on 29 May 2003 until 30 September 2004. Orange bars are indicators of irrigation seasons.

In addition, Table 1 shows the average values of weather variables for the study period.
The electrical conductivity of irrigation water (ECiw) was 1.6 dS/m (Table 2). Irrigation
scheduling followed a fixed 10 mm irrigation depth for each irrigation event during the
growing season. The soil profile was refilled whenever the depletion of total soil water
reached 10 mm based on soil water content readings. Therefore, variable irrigation intervals
were pursued in this study. The monoliths were irrigated using a surface irrigation method
similar to the basin irrigation system [15]. The amount of seasonal irrigation depth was
500 mm for each growing season. The total amount of rainfall was 323.8 mm, and 170.1 mm
for our experimental period in 2003 and 2004.

Table 1. The average values of the weather parameters for study period in 2003 and 2004 near
Alvalade do Sado, Alentejo, Portugal.

Parameter 2003 2004

Tmax (◦C) 27.66 26.06
Tmin (◦C) 12.31 10.36
Taverage (◦C) 19.36 17.58
Relative Humidityaverage% 67.97 70.05
Solar radiation (kj/m2) 17,789.04 18,675.11
Wind speed (m/s) 2.31 2.20
Precipitation (mm) 323.8 170.1

Table 2. Chemical characteristics of the irrigation water [15].

EC
dS/m

SAR
(mmol(c)L

−1)−0.5
Ions

mmol(c)L
−1 USSL Classification

1.6 3.0
Ca2+ Mg2+ Na+ Cl−
3.16 6.32 6.52 16 C3-S1

EC = Electrical Conductivity, SAR = Sodium Adsorption Ratio, USSL = United State Salinity Laboratory.
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The soil texture was silty loam from the soil surface to 85 cm depth and loam from
85 cm to 170 cm soil depth. The physical and chemical characteristics of the soil obtained
through laboratory analysis including are presented in Table 3.

Table 3. The physical and chemical characteristics of the soil [15].

Parameter Soil Depth

0–48 cm 48–85 cm 85–170 cm

Coarse sand (%) 6.2 5.1 6.1
Fine sand (%) 53.2 46.8 42.8
Silt (%) 29.6 29.2 28.2
Clay (%) 11 18.9 22.9
Texture Silty-Loam Silty-Loam Loam
Bulk density (g·cm−3) 1.49 1.51 1.61
pH 5.94 6.58 6.74
CEC, mmol(c)·kg−1 69.96 87.66 92.30

CEC = Cations exchange capacity.

In addition, the initial chemical conditions and the volumetric soil water content of
the soil profile of the monoliths are presented in Table 4. As it has been shown, the average
soil water salinity (ECsw), soil water content (θv), and sodium adsorption ratio (SAR) were
0.6 dS/m, 0.276 cm3 cm−3, and 1.92 (mmol(c)L−1)0.5, respectively.

Table 4. The initial conditions of the soil profile of the monoliths [15].

Parameters Soil Depths

0–10 cm 10–30 cm 30–50 cm 50–100 cm

θv (cm3 cm−3) 0.228 0.275 0.296 0.305
ECsw (dS·m−1) 0.182 0.32 0.55 1.35
Soluble cations (meq·L−1)
Na+ 1.24 2.16 1.54 3.16
Ca2+ 0.38 0.58 2.12 4.48
Mg2+ 0.34 0.62 0.6 4.28
SAR (meq·L−1)0.5 2.07 2.79 1.32 1.51

θv = volumetric soil water content, ECsw = electrical conductivity of soil water, SAR = sodium adsorption ratio.

The meteorological data were obtained from the weather station located 10 m from
the experimental field and the Penman-Monteith method, Allen et al., 1998 was used to
calculate the daily evapotranspiration [41]. To conduct ET partitioning for evaporation and
transpiration, the average leaf area index (3.5 m2 m−2) and its corresponding soil cover
factor (SCF) were used.

More details concerning experimental setup and study conditions can be found in
Gonçalves et al., 2006.

2.2. HYDRUS-1D Model Simulations

The simulations were accomplished for the first 100 cm of the soil profile where the
monoliths were built to prevent lateral water flow.

2.2.1. Water Flow and Root Water Uptake Modeling

The HYDRUS-1D model simulates water flow in the soil under saturated and unsat-
urated conditions by numerically solving the Richards equation (Equation (1)) using the
Galerkin finite element method:

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h
∂z

)
− K(h)

]
− S(z, t) (1)

5
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where θ is volumetric water content (L3 L−3), h is suction head (L), t is time (T), z is vertical
coordinates (L), K(h) is soil unsaturated hydraulic conductivity (L T−1), and S(z,t) is sink
term known as root water uptake (L3 L−3 T−1).

The relationship between h and θ is described by the Van Genuchten-Mualem function
(Equation (2)) as follows [42]:

θ(h) =
θs − θr

1 +
(−α(h)n)m + θr (2)

where θs is the saturated soil volumetric water content (L3 L−3), θr is the residual soil
volumetric water content (L3 L−3), and α, n, and m are empirical parameters (m = 1 − 1/n).

The unsaturated hydraulic conductivity (Equation (3)) is described as a function of
h [42]:

K(h) = KsSel
[

1 −
(

1 − S
1
m
e

)m]2

(3)

where Ks is the saturated hydraulic conductivity (L T−1), l is the empirical parameter, and
Se is the effective saturation (Se = (θ − θr)/(θs − θr)).

The root water uptake or the sink term in Richards’ equation (Equation (1)). It repre-
sents the volume of water removed by plants’ roots (Equation (4)) from the unit of soil per
time unit [43]:

S(z) = β(z)α(h,π)Tp (4)

where S(z) is the sink term in Richard’s equation (L3 L−3 T−1), β(z) is the normalized root
density distribution (L−1), Tp is the potential transpiration rate (L3 L−2 T−1), α(h,π) is the
dimensionless root water and salinity stresses response function.

The normalized linear root density distribution function (Equation (5)) based on root
depth is as follows:

β(z) =

⎧⎨
⎩

−0.0067z + 1, 0 < z < 30 cm
−0.0051z + 0.359, 0 < z < 70 cm

0, z > 70 cm
(5)

where z is root depth (L). Based on the observations in this study, 80% of root density was
distributed in the first 30 cm of soil root zone, and the remaining 20% root density was
extended to 70 cm soil depth [15].

The combined water and salinity stress response function is as follows [43,44]:

α(h, π) =
1

1 +
(

h
h50

)P1 [1 + b(π− a)] (6)

where h is the soil water pressure head (L), b is the slope of water uptake reduction as a
function of the average root zone salinity (-), and a is the threshold of plant root water
uptake to average root zone salinity (dS/m), π is root zone average salinity (dS/m), and P1
and h50 (L) are empirical crops, soil, and climate-based parameters. The h50 is known as
the water pressure head, which reduces the root water uptake by half [44].

The partitioning of evaporation and potential transpiration can be computed by appli-
cation of Beers’ law (Equation (7)) to calculate potential evapotranspiration as follows [45]:

Tp = ETp

(
1 − e−k∗LAI

)
(7)

where ETp is potential evapotranspiration (L T−1), and k is the dimensionless coefficient of
radiation attenuation which was considered equal to 0.4 [14,46,47].
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2.2.2. Solute Transport Modeling

The advection-dispersion equation was solved numerically in HYDRUS-1D as fol-
lows [48]:

∂θc
∂t

=
∂

∂z

(
θDe

∂c
∂z

)
− ∂(qwc)

∂z
(8)

where θ is the volumetric soil water content, c is the solute concentration (M L−3), qw is
the soil water flux (L3 L−2 T−1), z is the soil depth (L), and De is the effective dispersion
coefficient [L2 T−1].

The effective dispersion coefficient is the combination of diffusion and dispersion
coefficients [48]:

De = Ds
l + Dlh (9)

where Ds
l is the effective diffusion coefficient [L2 T−1] and Dlh is the coefficient of hydrody-

namic dispersion [L2 T−1].
Dlh = λv (10)

where λ is a proportionality constant called dispersity [L] and v is the average pore water
velocity [L T−1]. The v is obtained from the results of water flow flux [L3 L−2 T−1].

Ds
l =

θ
7
3

θ2
s

Dw
l (11)

where θ is the volumetric soil water content, θs is the volumetric saturated soil water
content, and Dw

l is the diffusion coefficient in free water.

l =
θ

7
3

θ2
s

(12)

where l is known as the tortuosity factor (l).

2.3. The HYDRUS-1D Model Setup

The simulations of soil salinity dynamics have been conducted by the HYDRUS-1D
model for soil profile 100 cm in the monoliths. As the soil texture was relatively uniform
(Table 3) for the observational points at 10, 30, 50, and 70 cm soil depths, the soil material
and layer were considered equal to 1. The simulations were conducted on a daily basis
for 505 days (from 15 May 2003 to 30 September 2004). To perform the water flow simula-
tion and describe the unsaturated soil hydraulic properties, the Van Genuchten-Mualem
(Equations (1) and (2)) hydraulic model was chosen. The initial values of the water flow
parameters for calibration and uncertainty purposes were determined by the default values
in the HYDRUS-1D library for the silt loam soil. The atmospheric boundary condition
with the surface layer was chosen to represent the study condition at the soil surface. The
atmospheric boundary condition was determined using time series irrigation, precipitation,
evaporation, and transpiration fluxes. The free drainage boundary condition was used
for the bottom of the soil profile. The soil adsorption was negligible based on the field
observations [15]. Thus, the adsorption was eliminated by selecting the linear equilibrium
adsorption model and assigning the zero value to the distribution coefficient [48]. The up-
per and bottom boundary conditions for the Advection-Dispersion equation (Equation (8))
were concentration flux and zero concentration, respectively. The root water uptake sim-
ulations were carried out by the S-Shape [49] model, and simultaneously the slope and
threshold salinity stress reduction function was taken into account in a multiplicative
approach (Equation (6)). Moreover, the initial condition was determined by the soil water
content and ECsw measurements at 10, 30, 50, and 70 cm as presented in Table 4.

To benefit from two years of observational data, the uncertainty analysis was under-
taken for the first year of the study: 15 May 2003 to 22 June 2004, which included the
growing season and out of growing season period. The outputs of the M-H algorithm as
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calibration results were validated for simulating ECsw and soil water content in long-term
aspect, with continues observational data from 15 May 2003 until 30 September 2004. The
simulations were carried out for the period of the beginning of the first growing season
until 45 days after end of the second growing season in the validation process.

2.4. Uncertainty Analysis and Metropolis-Hastings

The term uncertainty has been defined as the degree of confidence in the decision-
making process based on the target outputs from the models [25]. The Bayesian inference
is convenient in terms of predicting the models’ parameters (posterior distribution) by
operating the uncertainty analysis grounded on previous knowledge regarding the model
parameters (prior distribution), observational data, and likelihood function. The Bayesian
concept or inference is demonstrated as follows:

P(θ|Y) =
L(θ|Y)P(θ)∫
L(θ|Y)P(θ)dθ (13)

where θ is the parameter, Y is the observational data, P(θ|Y) is the posterior distribution,
L(θ|Y) is the likelihood function, and P(θ) is the prior distribution. The likelihood is
computed from the probability distribution of residuals between observations (Y). The
residuals are frequently assumed uncorrelated, normally distributed, and independent [50].
Thus, the outcoming likelihood function is as follows:

L
(
θ|Y, σ2

)
=

n

∏
i = 1

1√
2πσ2

i

exp (−1
2

(
Yi(θ)− Yi

σi

)2
) (14)

where σ is the standard deviation of model errors, Yi is the observational data, and Yi(θ) is
the model output. To gain more numerical stability and simplicity, the logarithmic form of
the likelihood function was used in this study:

L(θ|Y, σ2) = −n
2

log(2π)−
n

∑
i = 1

log(σi)− 1
2

n

∑
i = 1

(
Yi(θ)− Yi

σi

)2
(15)

To conduct an uncertainty analysis of the HYDRUS-1D model for simulating solute
transport under saline irrigation conditions, we used the posterior distribution of the
following parameters:

Water flow parameters = [θr, θs, α, Ks, n, l];
Solute transport parameters = [λ, Dl

w];
Salinity Stress for root water uptake = [a,b];
Water Stress for root water uptake = [h50,P1].
The uncertainty analysis was performed in the Bayesian framework using the Metropolis-

Hastings (M-H) algorithm for the Markov Chain Monte Carlo method combined with Gibbs
sampling. To execute the M-H algorithm, the initial step is identifying the proposal distri-
bution to generate new parametric candidates. In this study, we assumed the priors to be
uniformly distributed [51] over space, to assign the same probability to all possible values
of parameters. Hence, uniform distribution was considered as the proposal distribution to
generate the samples using the Monte Carlo approach. Therefore, the Metropolis-Hastings
algorithm was applied as follows [52]:

1. Determine the length of the Markov Chain, T
2. Draw an arbitrary initial candidate (θi)
3. Calculate the proposed initial candidate density: P(θi|Y) = L(θi|Y)*P(θi)
4. For n = 2, . . . , T do:
5. Generate a candidate (θt) from proposal distribution (q(θ)).
6. Calculate the target density: P(θt|Y) = L(θt|Y)*P(θt)

8
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7. Calculate the Random Walk Metropolis acceptance criteria:

α = min
[

1,
L(θt |Y )P(θt)

L(θt−1)∗P(θt−1)

]
(16)

8. Generate a random sample from the uniform distribution as U(0,1);
9. If U ≤ α then θn = θt;
10. Else θn = θt−1;
11. End of the loop.

To achieve the goals of the study, the M-H algorithm was implemented in R-Studio
V 1.4.1717 (Posit Corp, Boston, MA, USA) environment for the HYDRUS-1D model. To
apply M-H, the model was run 100,000 times. The sets of parameters that resulted in the
non-convergence of the model were discarded for any kind of analysis. To combine the
Gibbs sampling algorithm, the parameter sampling was carried out one at a time and
the rest of the parameters were treated like constant values. Then, metropolis acceptance
criteria were evaluated for the sampled parameter at the time.

Prior information (Table 5) about the parameters was obtained from the HYDRUS-1D
library, Maas and Hoffman, 1977, Grieve et al., 2012, Skaggs et al., 2006, and measurements
were undertaken by Gonçalves et al., 2006 [15,44,53,54].

Table 5. The prior distribution of the parameters used in HYDRUS-1D.

Parameters Units Min Max Mean SD CV

θr - 0.05 0.08 0.065 0.009 0.133
θs - 0.3 0.5 0.400 0.058 0.144
α 1/cm 0.001 0.2 0.101 0.057 0.572
Ks cm/days 18 100 59.000 23.671 0.401
n - 1 3 2.000 0.577 0.289
l - 0.1 1 0.550 0.260 0.472
λ cm2/day 5 30 17.500 7.217 0.412
Dl

w cm2/day 1 2 1.500 0.289 0.192
a dS/m 8 14 11.000 1.732 0.157
b % 2 7 4.500 1.443 0.321
h50 cm −5000 −800 −2900 1212.436 −0.418
P1 - 1.5 3 2.25 0.433 0.1924

SD = standard deviation, CV = Coefficient of variation.

In addition, in this research, the relative sensitivity of the parameters was analyzed
for the observational data by comparing the coefficient of variation (CV) of parameters’
posterior distributions generated by the M-H algorithm. Those parameters with higher
values of CV were more sensitive to the soil salinity dynamic under saline irrigation water.

To determine the HYDRUS-1D model output (predictive) uncertainty, the model was
run for 1000 parameter sets obtained from 95 confidence intervals (CI) of the parameter’s
posterior distribution. To have an overall predictive uncertainty analysis for each soil depth,
the p-factor (percent of observation data covered by 95 CI band) and r-factor (average width
of 95 CI band divided by the standard deviation of observations) were computed [55,56].
To calculate the r-factor, the following formula was used:

r − fatctor =

1
K

(
∑K

i = 1
(
qU − qL

))
σ

(17)

where K is the total number of observations, qU is the model outputs (salinity) for 97.5%
quantile, qL is the model outputs for 2.5% quantiles, and σ is the standard deviation of
observation errors.

For the final step in uncertainty assessments, it seemed interesting to analyze the
performance of the model in terms of simulating soil water content (SWC) that accounts
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for model outputs in terms of soil water movement and soil water uptake under saline
water irrigation. The 50% quantiles of the parameters’ posterior distributions were used
for this purpose. The root mean square error (RMSE), normalized root mean square error
(NRMSE), and coefficient of agreement (d):

RMSE =

√
1
n

n

∑
i = 1

(Mi − Si)
2 (18)

NRMSE =
RMSE

M
(19)

d = 1 − (∑n
i = 1(Si − Mi)

2)/(∑n
i = 1

(∣∣Si − M
∣∣+ ∣∣Mi − M

∣∣)2 (20)

where is Mi, Si, and M are observational values, simulated values, and the average value of
measurements. Values of d close to 1 indicate a good performance model. The RMSE and
NRMSE close to zero indicate good matching between simulated values and observations.
The NRMSE ranges of <10%, 10–20%, 20–30%, and >30% evaluates the model performance
as excellent, good, fair, and poor calibration [57].

3. Results

The 100,000 simulation runs of the HYDRUS-1D model after discarding the parameter
sets resulted in 5000 iterations of each parameter for the MCMC algorithm. The uncertainty
analysis results are presented in this section that assess the probability of the model pa-
rameters and outputs for simulating the salinity (ECsw) distribution during and out of the
growing season.

3.1. Parameters Posterior Distribution

The posterior distributions of the model parameters represent the existing uncertainty
in the model parameters after combining the prior information and observational data
through the Bayes theorem. Therefore, comparing parameters priors and posteriors could
be beneficial (Tables 5 and 6). As it was mentioned in the previous section, the priors were
obtained mainly from the HYDRUS-1D model database and other generic values in the
literature. However, the posteriors are specific values for the parameters for a specific field,
the vegetation cover, and the region’s prevailing climate. The average value of acceptance
rate (AR), which is a fraction of accepted parameter samples to proposed ones, was 0.38.
Thus, the AR value was in the acceptance range.

Table 6. Statistical indices of the model posterior distribution obtained from the M-H algorithm.

Parameters Min Max Mean SD CV

θr 0.065 0.079 0.076 0.003 0.040
θs 0.435 0.499 0.490 0.013 0.026
α 0.005 0.02 0.010 0.003 0.303
Ks 19 99.127 86.080 11.578 0.135
n 1.295 2.75 1.394 0.178 0.128
l 0.293 0.894 0.540 0.087 0.161
λ 5.011 29.99 17.150 7.270 0.424

Dl
w 1 2 1.501 0.292 0.195

a 8 13.99 11.030 1.763 0.160
b 2.001 6.99 4.516 1.441 0.319

h50 −802.359 −800 −800.755 0.636 −0.001
P1 2.776 3 2.929 0.035872 0.012247

SD = standard deviation, CV = Coefficient of variation.

The mean values of the parameters’ posteriors were noticeably different from their
corresponding prior values. The range of the parameters shown by min and max values
was reduced, and a significant reduction in the standard deviation (SD) and coefficient
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of variation (CV) was observed as well. As it is shown, for instance, the prior range of α
was from 0.001 to 0.2, however, its posterior range was from 0.005 to 0.02, which was more
limited than its prior values. The prior mean value of α was 0.101, which was changed
to 0.01 for its posterior value. In addition, the SD value of α was changed from 0.057 to
0.003. Very similar to α considerable changes were found for other parameters for water
flow simulation. However, the parameters that describe diffusion and hydrodynamic
dispersion in the advection-dispersion equation (Dl

w and λ) and threshold and slope of
salinity stress water uptake reduction (a and b) did not noticeably change from priors.
Figures 1–3 indicate the histogram of the posterior distribution of parameters for water
flow, solute transport, and root water uptake simulations. It should be mentioned that the
x-axes of the histograms were considered to be equal to priors.

Figure 2. Posterior distribution of soil water flow parameters: θr = residual soil water content,
θs = saturated soil water content, Ks = is saturated hydraulic conductivity, l = tortuosity factor,
α = empirical parameter, and n = empirical parameter. The x-axises of the plots are fixed to prior
distribution (range) of the parameters.
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Figure 3. Posterior distribution of solute transport parameters: Difw = diffusion coefficient and
λ = dispersivity. The x-axises of the plots are fixed to prior distribution (range) of the parameters.

As it is illustrated, the posterior distributions of the parameters are different from
their priors. The posterior distributions of water flow simulation as well as water stress
reduction function parameters occupied small portion of their prior values. Thus, the
parameters related to the advection process in the solute transport phenomenon have been
estimated with high confidence (low uncertainty). These posterior distributions confirmed
that the M-H algorithm was able to estimate the water flow parameters of the model with
a low uncertainty level [58]. Nevertheless, the posterior distributions of dispersivity (λ)
and diffusion coefficient (Dl

w) did not considerably change from the corresponding priors
(Figure 3). The posterior distributions of root water uptake reduction parameters (h50 and
P1) for water stress have been remarkably changed after the M-H algorithm implementation
for simulations of ECsw (Figure 4). However, the considerable uncertainty remained in the
parameters of root water uptake reduction function for salinity stress (Figure 4) as their
posterior distributions covered the prior ranges of the parameters. The unique relative
sensitivity of the parameters was expected due to having atmospheric boundary conditions
that constituted specific wetting and drying cycles. The relative sensitivity of the parameters
to simulate soil salinity dynamics study was lower (higher CV) for solute transport and
root water uptake reduction for salinity stress parameters compared to the parameters
related to water flow simulation and root water uptake reduction function for water stresses
(Table 6). The dispersivity (λ) was found as the least sensitive parameter compared to
the others, and similar results were obtained by Skaggs et al., 2013 [59] for soil column
experiments. The quantiles of the posterior distribution of the parameters are summarized
in Table 7. The 95 CI output uncertainty of the model was obtained from the running model
for 1000 parameter sets between the 2.5 and 97.5% quantiles.

Table 7. Quantiles of the posterior distribution of the model parameters.

Parameters 2.50% 25% 50% 75% 97.50%

θr 0.69 0.075 0.075 0.078 0.079
θs 0.444 0.482 0.497 0.498 0.500
α 0.005 0.007 0.010 0.013 0.015
Ks 77.022 77.411 91.326 91.837 99.127
n 1.296 1.301 1.408 1.411 1.414
l 0.364 0.477 0.555 0.599 0.615
λ 6.182 10.455 16.761 23.547 29.312

Difw 1.023 1.244 1.504 1.757 1.975
a 8.161 9.470 11.047 12.576 13.862
b 2.130 3.270 4.516 5.775 6.884

h50 −802.358 −800.444 −800.408 −800.408 −800.386
P1 2.784 2.915 2.929 2.942 2.974
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Figure 4. Posterior distributions of root water uptake reduction parameters. The h50, P1, a, and b are
the water pressure head for a 50% reduction in root water uptake, empirical parameter, threshold,
and slope of root water uptake reduction function for salinity stress, respectively. The x-axises of the
plots are fixed to prior distribution (range) of the parameters.

3.2. Predictive Uncertainty

Figure 5 shows the 95 CI predictive band associated with the models’ parameters
to simulate the dynamic of soil salinity at four different soil depths during and out of
the growing season. The blue bands are 95 CI of the model outputs, and orange dots
are observational points. The red bars in the figure sections are indicators of the end of
irrigation events (close to the end of the growing season (a–d)), and the green bars are
indicators beginning out of season rainfalls. The majority of the observational data are
covered by the 95 CI band, which is an indicator of reaching parameter uncertainty to the
model outputs [56]. Furthermore, covering most of the observational data in the 95 CI
band shows that a significant portion of uncertainty in model outputs was due to existing
uncertainty in the model parameters. However, at 70 cm (Figure 5d) soil depth, some
of the observational points were out of the 95 CI band, which showed another source
of uncertainty was influential at that specific soil depth. For evaluation of the predictive
uncertainty, the r-factor and p-factor were calculated, and the results are presented in Table 5.
The model output uncertainty is desirable if the 95 CI band covers 90% of observational
data and the r-factor is less than one [55].

Similar to predictive uncertainty graphs (Figure 5), the r- and p-factors results (Table 8)
expressed a higher level of uncertainty for simulating soil salt dynamic at 50 and 70 cm soil
depth. Furthermore, their corresponding the r-factors and p-factors were over 1 and below
100%, respectively, so the outputs of the model should be categorized as undesirable results.
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Figure 5. Predictive uncertainty for simulating soil salinity dynamics during and out of growing
season at (a) 10 (b) 30 (c) 50 and (d) 70 cm soil depth. Orange dots are measured values and blue
bands are predictive uncertainty for parameters 95 CI.

Table 8. Evaluation of the predictive uncertainty of the HYDRUS-1D model regarding soil salinity
dynamic simulations.

Soil Depth

10 cm 30 cm 50 cm 70 cm

r-factor 0.50 0.74 1.1 1.23
p-factor 95% 95% 74% 60%

As it is depicted in Figure 5, the 95 CI band is smaller during the irrigation season
and rainy period out of the growing season. Hence, the predictive uncertainty of the
HYDRUS-1D model was significantly higher during dry periods compared to wet periods
in terms of simulating soil salinity dynamics.
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3.3. Assessment of Simulated Soil Water Content and Salinity

The simulated time series of SWC are presented in Figure 6. The model’s SWC outputs
were close to observational during the growing season and out of the growing season for
two years of the study (2003 and 2004). Based on the statistical indices (Table 9), the overall
performance of the HYDRUS-1D model was good regarding the SWC simulation.

Figure 6. Time series of the simulated soil water content during the growing season and out of the
growing season with observational measurements at (a) 10, (b) 30, (c) 50, and (d) 70 cm soil depth.

Table 9. Statistical indices to evaluate the performance of the -1D model regarding simulating soil
water content.

Soil Depth

10 cm 30 cm 50 cm 70 cm

Soil water content

d 0.50 0.70 0.62 0.78
RMSE (cm3 cm−3) 0.05 0.04 0.04 0.02
NRMSE 0.17 0.14 0.13 0.08

ECsw

d 0.97 0.92 0.84 0.52
RMSE (dS/m) 0.45 0.62 0.57 1.04
NRMSE 0.23 0.28 0.26 0.36

d = coefficient of agreement, RMSE = root mean square error, NRMSE = normalized root mean square error.

The NRMSE values for SWC simulations were from 0.08 to 0.17 for four different soil
depths that fall into good and excellent categories of the model accuracy, and the coefficient
of agreement (d) values were from 0.5 to 0.78. The statistical indices and output graphs
of the model (Figure 7) regarding the ECsw simulations validated the reliability of the
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calibrated model in reproducing the dynamics of soil salinity for two years. The d values
were from 0.84 to 0.97 for the first three observational depths (10, 30, and 50 cm) and the
corresponding NRMSE values were from 0.23 to 0.26, which were in the acceptable range.
The highest deviations from the observational data were only found for simulated ECsw at
70 cm soil depth, which might not be desirable. The HYDRUS-1D model parameterized
based on ECsw in saline water irrigation conditions was successful in reproducing the soil
water movement, solute transport, and root water uptake process for two years during and
out of the growing season.

Figure 7. Time series of the simulated ECsw during the growing season and out of the growing
season with observational measurements for two years of study at (a) 10, (b) 30, (c) 50, and (d) 70 cm
soil depth.

16



Agronomy 2022, 12, 2793

4. Discussion

Marginal water quality waters, such as saline water, have been known as alternative
sources for agricultural systems to mitigate water scarcity. However, soil salinity is a
potential threat in most cases for using these waters as irrigation water. The soil salinity can
be controlled through irrigation management methods such as leaching application. The
HYDRUS-1D is a well-known numerical model that could be used as a decision support tool
to investigate irrigation water management strategies for using saline water as irrigation
water. The proper calibration of this model is a common challenge that could be addressed
by inverse solutions. The calibration of the models usually comes with some level of
uncertainty that needs to be quantified and analyzed. The Markov Chain Monte Carlo
(MCMC)-based algorithm, developed by pursuing the Bayesian theorem, has been known
to be effective in exploring uncertainty aspects in the models’ calibrations. The algorithms
that follow the Bayesian theorem integrate prior knowledge about the parameters of the
models with available information about the specific study to calibrate the model and
quantify the uncertainty by finding posterior distributions. In this study, the MCMC-based
Metropolis-Hastings (M-H) algorithm was implemented for the HYDRUS-1D model to
seek the posterior distributions of the model’s parameters to simulate the dynamics of soil
salinity under saline irrigation conditions. The histograms and comparison of statistics of
the prior and posterior distribution of the water flow simulation and root water uptake
(RWU) reduction function for water stress parameters indicate that observational data
included sufficient information to estimate these parameters [26]. The M-H algorithm was
able to reasonably estimate residual soil water content (θr) at the field scale (CV = 0.04,
SD = 0.003), which proved the algorithm’s effectiveness in estimating this parameter–which
is complicated and time-consuming to be measured. The results indicated a higher level
of uncertainty in diffusivity coefficient and dispersivity for solute transport simulations
and threshold and slope of the RWU reduction function for salinity stress than the other
parameters. A higher uncertainty level in solute transport parameters might be due to
the scale of the study or some errors in the models’ inputs as an initial condition or
boundary condition. Furthermore, the higher level of uncertainty in the threshold and
slope parameters of the salinity stress reduction function is presumably due to the lack
of sufficient knowledge in the literature for the vegetations of this study threshold to
the soil salinity stress. Hence, the selection of our priors for these parameters might
have encountered some errors that resulted in the insufficiency of the M-H algorithm in
identifying them and reducing the uncertainty level. The posterior distributions of the
parameters, which are concentrated in a specific part of the prior distribution, confirm the
robustness of the Bayesian statistics concepts–specifically the M-H algorithm–in seeking
the posterior distribution of the parameters and reducing the uncertainty. Similar highly
concentrated results for seeking posterior distributions of the parameters of the crop
models (DSSAT and large-scale crop model) have been reported by He et al., 2009 and
Izumi et al., 2009 [58,60]. The results showed a higher level of uncertainty in model outputs
during dry periods when no precipitation occurred. One of the hypotheses that could
explain this matter is when the soil is exposed to drying (no irrigation or precipitation), the
prevailing solute transport condition is more unsaturated than in the wet period, which
could increase the complexity of the phenomena predicted by the model. The interactions
of evapotranspiration and soil water, and solute fluxes under unsaturated conditions are
more difficult to be reproduced by the model. The increase in the unsaturation level of
the soil water would make it harder for the model to simulate the water flow and solute
transport in the one-dimensional (1D) mode. The predictive uncertainty band covered
most of the observational points in all of the observational depths except the 70 cm. This is
an indicator of another source of uncertainty in addition to the uncertainty in the model
parameters for this soil depth. Among multiple sources of uncertainty, it sounds reasonable
to consider the measurement error accountable for these outsider points. However, there
was a possibility that if another calibration was done for this soil layer, those points would
be 95 CI. The validation of the HYDRUS-1D model, using continuous data for two years of

17



Agronomy 2022, 12, 2793

the study, has proved the reliability of the calibration achieved by implementing the M-H
algorithm. The model was able to successfully reproduce (Table 9) the ECsw and SWC
during and out of the two growing seasons in 2003 and 2004 (Figures 6 and 7). As indicated
in the results, there are some detectable deviations in simulating ECsw at 70 cm soil depth.
As mentioned in the results, the deviations were expected due to existing uncertainty in the
model outputs. The output uncertainty was reflected in the model performance in terms
of simulating soil salinity dynamics as the overall NRMSE value was more than 0.3, and
R was equal to 0.52 at this soil depth. In this study, it has been proved that even if the
target of calibration and uncertainty assessment of the HYDRUS-1D model is soil water
salinity (ECsw), a very acceptable performance of the model can still be achieved. This
is because the advection term in the advection-dispersion equation is usually the main
driving force of the solute transport phenomenon in the soil porous media under saline
irrigation conditions. This study’s findings authenticated the M-H algorithm’s solidity for
exploring different aspects of the uncertainty in the HYDRUS-1D model to simulate salinity
dynamics under saline water conditions.

The main challenges regarding the accomplishment of the current study to explore the
uncertainty aspects of the HYDRUS-1D model for simulating the soil salinity were:

1. The lack of any reported values in the literature regarding the threshold of sponta-
neous crops to salinity stress.

2. The unavailability of additional data to validate the model performance for more
than two years, specifically the recently obtained data that would contain the effects of
climate change on the frequency of irrigation events and out-of-growing season precipita-
tions.

To explore further aspects of the uncertainty of the HYDRUS-1D model, the following
suggestion might be beneficial for further studies:

1. Testing additive approach for using the water and salinity stress reduction functions
for mimicking root water uptake.

2. Investigating the Feddes model as a water stress reduction function [61].
3. Performing SWC and ECsw simulations for row crop cultivations such as corn

and cotton.
4. Studying the uncertainty of the HYDRUS-1D model for simulating water and

salinity dynamics under crop rotation schemes.
5. Furthermore, an investigation of the HYDRUS-1D uncertainty for reproducing

SWC and ECsw under deficit irrigation with marginal quality waters would provide
more information about uncertainty in the water and salinity stress reduction function
parameters.

5. Conclusions

The uncertainty of the HYDRUS-1D model for simulating the dynamic of salts in the
root zone at the field scale was assessed using the Metropolis-Hastings algorithm in the
R-Studio environment. In this study, the uncertainty in the model’s soil water content,
root water uptake and solute transport parameters, and outputs were explored based
on measurement data of electrical conductivity of soil water (ECsw). The results of this
study indicated a higher level of precision (low uncertainty) in parameters related to
water movement simulations comparing with the solute transport parameters (specifically
dispersivity and diffusivity). The results of the model’s output uncertainty (predictive
uncertainty) showed a relatively lower level of uncertainty in ECsw during wet (under
irrigation or rainfall) periods of the year compared with dry periods. The majority of
output uncertainty in this study originated from parameter uncertainty. Moreover, it has
been proved that even if the target of simulations for calibration and uncertainty purposes
is ECsw, an excellent performance of the model can be achieved for simulating soil water
content. Thus, the HYDRUS-1D outputs are reliable for investigating leaching requirement
estimations scenarios to achieve proper irrigation scheduling for saline irrigation water
conditions. However, to gain more insight into uncertainty aspects of the HYDRUS-1D
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model, it is highly recommended to pursue the uncertainty assessment of the model for
simulating soil salt dynamic in the root zone of crops such as corn, wheat, or soybean under
sprinkle or trickle irrigation systems.
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Abstract: Faced with severe global shortage of water and soil resources, studies on the integrated
effect of water and nitrogen on tomato cultivation are urgently needed for sustainable agriculture.
Two successive greenhouse experiments with three irrigation regimes (1, 2/3, 1/3 full irrigation)
and four nitrogen levels (1, 2/3, 1/3, 0 nitrogen) were conducted; plant growth, fruit yield and
quality were surveyed; and comprehensive quality and net profit were evaluated. The results
show that water and nitrogen deficit decreased plant growth, evapotranspiration and yield while
increasing production efficiency and fruit comprehensive quality. An antagonism effect from water
and nitrogen application was found in tomato yield, organic acid, solids acid ratio, vitamin C and
lycopene, whereas synergistic impact was observed in total soluble solids content. Water deficit had
more significant effect on tomato yield and fruit quality parameters compared with that of nitrogen
deficiency. Synthesizing the perspectives of yield, quality, resource productivity, market price index
and profits, 1/3 full irrigation and 2/3 full nitrogen was the best strategy and could be recommended
to farmers as an effective guidance for tomato production.

Keywords: deficit irrigation; nitrogen application; tomato; comprehensive quality; economic evaluation

1. Introduction

Tomato (solanum lycopersicum L.), as the most widely cultivated and globally popular
vegetable, relies on its savory flavor and rich nutrition [1,2], and higher tomato consump-
tion demonstrates antioxidant, anticancer, antimutagenic and antimicrobial effects on
human health [3–5]. The global planting area of tomato reached 5.03 × 106 ha in 2019, with
an annual production of 1.81 × 108 t [6]. As planting area and production of tomato are
increasing, the fruit quantity can meet the requirements of the market, and consumers
pay more attention to fruit quality [7]. Moreover, better fruit quality generally indicates
higher economic benefits [8]. In addition, the reduction in agricultural irrigation and
fertilization amount, improving water and fertilization productivity, is necessary for sus-
tainable agricultural development in the context of severe water, soil and environmental
resource scarcity [9].

Water and nitrogen application is vital to crop yield and quality [10–12]. Deficit
irrigation decreased tomato evapotranspiration and yield [13–15] but improved fruit quality,
including soluble solids, soluble sugar, vitamin C, polyphenols and lycopene content [16,17].
Gong [18] reported that 50% deficit irrigation decreased tomato evapotranspiration by
16–23%; Lu [19] reported regular deficit irrigation decreased tomato yield by 18.61 t ha−1

Agronomy 2022, 12, 2578. https://doi.org/10.3390/agronomy12102578 https://www.mdpi.com/journal/agronomy22
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on average, increased water use efficiency by 2.33 kg m−3 and improved fruit quality. The
decline in yield under deficit irrigation was mainly attributed to restrained photosynthesis
due to water stress and impaired tomato physiological metabolites [20,21], whereas the
increase in quality could be ascribed to the solute concentration caused by water loss in
fruit [22]. A proper gradient of irrigation deficit could trade off high water use efficiency,
fruit quality and acceptable yield reduction [23]. Plants can only absorb soluble nitrogen-
containing ions such as NO3

− and NH4
+ in soil through water migration [24]. Nitrogen is

an irreplaceable composition of amino acids, proteins, nucleic acids and chlorophyll [25]
that affects plant photosynthesis and metabolism directly [26,27] and further affects plant
growth and fruitage [28]. Many studies have demonstrated that nitrogen application had
positive effect on tomato yield and quality, including vitamin C, sugar–acid ratio, soluble
sugar, total soluble solids and total phenols content [29–31]. However, there were other
reports showing that nitrogen application rates had no significant effect on processing
tomato yield [32] but only increased the aboveground biomass [33]. In addition, it was
noted that nitrogen application had a nonnegligible negative impact on increasing nitrate
content in tomato fruit [34]. Although multiple studies have reported the effect of water
or nitrogen deficit on yield and individual fruit quality parameters, the results vary with
tomato breeds, soil textures, climate and agronomic schemas in different experiments [35],
and studies on the effect mechanisms of water and nitrogen are still urgent needed.

The integration of water and nitrogen is universally considered to exist in plant
growth and fruitage. Zhou [36] found that nitrogen application could partially alleviate
the biological stress caused by water stress on tomato plants and enhanced leaf water use
efficiency. Nevertheless, irrigation can offset the negative effects of deficit nitrogen on crop
productivity [37]. Appropriate sensor-based irrigation and nitrogen sustained high yield
and reduced nitrogen leaching in low-holding-capacity soils [38,39], while an inappropriate
water–nitrogen deficit level led to a decline in tomato yield and quality simultaneously [40].
Although the effect of the coupling of water and nitrogen is admittedly recognized on plant
growth, evidence is still lacking to clarify their inner relationship. Some studies found
no significant relationship between water and nitrogen’s effects on yield in maize [41],
watermelon [42] and tomato [34]. The inner relationship between water and nitrogen
and their response threshold, which are indispensable to adjustable irrigation–nitrogen
decision making, still remain elusive. Therefore, the marginal productivity efficiency and
the comprehensive benefits based on yield, fruit quality, source efficiency and market price
were calculated to evaluate the outcome of each application strategy. The aims of the
present study are to: (1) investigate the effect of irrigation and nitrogen on tomato growth,
yield, quality and water–nitrogen use efficiency; (2) clarify whether there is a synergistic
or antagonistic relationship between water and nitrogen’s effects on yield and different
quality traits; (3) determine the preferable water and nitrogen application strategy based
on comprehensive benefit analysis and provide a direct scientific guidance for local tomato
cultivation industry.

2. Materials and Methods

2.1. Experimental Site

The greenhouse experiments were conducted from 13 April to 6 July (first season) and
13 August to 28 November (second season) in 2019 at a commercial company located in
Gaomi City (latitude 36◦38′ N, longitude 112◦56′ E, altitude 26.03 m), Shandong Province,
in Northern China. The site is located in a monsoon climate with annual precipitation
of 646 mm, pan evaporation of 1838 mm, temperature of 11.7 ◦C, and duration of mean
annual sunshine over 2800 h. The greenhouse is 80 m in length and 12 m in width, covering
an area of 960 m2. The experimental soil is clay loam with the average dry bulk density
of 1.38 g·cm−3. The total available N, P and K content for 0–1.0 m soil depth initially are
84.3 mg·kg−1, 102 mg·kg−1 and 130 mg·kg−1, respectively. The field water capacity
(θFC) and the wilting coefficient for 0–0.8 m depth determined by soil water absorption
experiment are 0.33 cm3·cm−3 and 0.14 cm3·cm−3, respectively.
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2.2. Experimental Design

The experimental tomato (Solanum lycopersicum L.) variety was Baoli 3 in both seasons.
The tomato plants with similar heights were transplanted to the plots on 13 April in the
first season and 13 August in the second season. Three growth stages, i.e., seedling stage
(from transplant to first fruit set), flowering and fruit development stage (from first fruit set
to first fruit maturity) and fruit maturation and harvest stage (from first fruit maturity to
uprooting crops after all fruit is harvested), were divided according to local observations.
The first season ended on 26 July and the second on 28 November.

Three irrigation levels consisted of full irrigation (W1), 2/3 full irrigation (W2/3)
and 1/3 full irrigation (W1/3). Four urea nitrogen levels included full nitrogen (N1), 2/3
full nitrogen (N2/3), 1/3 full nitrogen (N1/3) and no nitrogen (N0) at the whole growth
stage. This yielded twelve treatments in a completely randomized block design, and each
treatment was replicated thrice. The size of each plot was 2.8 m × 6 m, and the plots were
separated by 1 m deep and 2 mm thick acrylic flap. W1 was irrigated to 90 ± 3% of θFC
when the soil water content within 0.6 m at the seedling stage and 0.8 m in other stages
decreased to 75 ± 3% of θFC. The nitrogen amount of N1 treatment was consistent with that
of local management. The irrigation treatment was irrigated at rate of water requirements
based on control treatment W1N1, and the nitrogen treatment was fertilized at rate of N
use in W1N1. Furthermore, concerning the relatively low available N content in soil and
severe deficit in first season, the same amount of nitrogen application was implemented
in second season. The irrigation and fertilization time for deficit treatments was the same
as that of W1N1. The description of irrigation and fertilization amount under different
treatments is shown in Table 1. The irrigation pattern was dripping irrigation, and each
plot had an individual 6 m length branch. Twelve water drippers with a flow of 1.6 L/hour
were evenly distributed in the branch, each branch pipe was separately installed with a
water meter, and a Venturi fertilizing tank was used to record the irrigation and fertilization
amount. Three tomato plants were planted in a plot and uniformly pruned (removing the
secondary shoots and only leaving the main stem) in flowering and fruit development
stage according to the growth condition.

Table 1. Description of irrigation and nitrogen amount in different treatments.

Num Treatment Description (at Whole Season)
First Season Second Season

I N I N

T1 W1N1/CK full irrigation and full nitrogen 260.4 (10) 14.7 (3) 184.3 (10) 19.6 (4)
T2 W1N2/3 full irrigation and 2/3 full nitrogen 260.4 (10) 9.8 (3) 184.3 (10) 15.8 (4)
T3 W1N1/3 full irrigation and 1/3 full nitrogen 260.4 (10) 4.9 (3) 184.3 (10) 12.0 (4)
T4 W1N0 full irrigation and no nitrogen 260.4 (10) 0.0 (0) 184.3 (10) 8.2 (1)
T5 W2/3N1 2/3 full irrigation and full nitrogen 180.6 (10) 14.7 (3) 139.4 (10) 19.6 (4)
T6 W2/3N2/3 2/3 full irrigation and 2/3 full nitrogen 180.6 (10) 9.8 (3) 139.4 (10) 15.8 (4)
T7 W1/3N1/3 2/3 full irrigation and 1/3 full nitrogen 180.6 (10) 4.9 (3) 139.4 (10) 12.0 (4)
T8 W1N0 2/3 full irrigation and no nitrogen 180.6 (10) 0.0 (0) 139.4 (10) 8.2 (1)
T9 W1/3N1 1/3 full irrigation and full nitrogen 104.9 (10) 14.7 (3) 87.5 (10) 19.6 (4)

T10 W1/3N2/3 1/3 full irrigation and 2/3 full nitrogen 104.9 (10) 9.8 (3) 87.5 (10) 15.8 (4)
T11 W1/3N1/3 1/3 full irrigation and 1/3 full nitrogen 104.9 (10) 4.9 (3) 87.5 (10) 12.0 (4)
T12 W1/3N0 1/3 full irrigation and no nitrogen 104.9 (10) 0.0 (0) 87.5 (10) 8.2 (1)

stage I seedling stage 13 Apr.–7 May 13 Aug.–6 Sep.
stage II flowering and fruit development stage 8 May–20 Jun. 7 Sep.–13 Oct.
stage III fruit maturation and harvest stage 21 Jun.–26 Jul. 14 Oct.–28 Nov.

Notes: CK means control treatment; T1 indicates the first treatment and so on for the other treatments; the number
in brackets represents the irrigation and fertilization times; I means irrigation amount (mm); N means nitrogen
application (g·m−2).
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2.3. Measurements
2.3.1. Meteorological Variables

The solar radiation (Ra), air temperature (Ta) and relative humidity (RH) in the two
seasons were recorded continuously using a standard automatic weather station (Hobo,
Onset Computer Crop, Bourne, MA, USA) installed at the center of the greenhouse. All
meteorological mean variables every 30 min were calculated automatically by a data logger,
and the daily average value of Ra, Ta and RH are shown in Figure 1.

Figure 1. The basic meteorological information during the growth stages.

2.3.2. Evapotranspiration

Crop evapotranspiration (ET) was estimated by soil water balance method [43]
as follows:

ET = P + I + W − R − D − ΔW, (1)

where P is precipitation (mm); I is irrigation amount (mm); W is capillary rise to the root
zone (mm); R is surface runoff (mm); D is drainage from the root zone (mm); and ΔW is the
change in soil water content (mm). ΔW was calculated as follows:

ΔW = H(θi − θi − 1), (2)

where H is the depth of plant root zone (m); θi and θi − 1 are the mean water contents in
the root zone at time i and i − 1, respectively.

Since there is no precipitation in greenhouse, P and R can be negligible. The groundwa-
ter level was lower than 15 m below the ground surface according to the local observation,
so W was also negligible. D can be ignored because the irrigation amount was always
within the field water capacity. Thus, Equation 1 is simplified as:

ET = I − H(θi − θi − 1), (3)

2.3.3. Plant Growth

Plant height, stem diameter and leaf index (LAI) were measured at intervals of
7–10 days during the whole growth period. Leaf length and the maximum width were
measured, and the leaf area was determined by the sum of the rectangular area of each
completely developed leaf (the product of leaf length and maximum width) multiplied by
a parameter of 0.64 [36,44]. The LAI was the ratio of leaf area to land area of each plant.
Chlorophyll content was measured by a handled chlorophyll analyzer (SPAD502, Spectrum,
Aurora, IL, USA, 0.1) every 7–10 days.
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2.3.4. Yield, Water and Nitrogen Use Efficiency

Fifteen plants in each plot were randomly selected for measuring the yield, and fruit
weight after maturity was measured by an electronic scale. The total yield (Y, t·ha−1)
and mean single fruit weight was then calculated. Water use efficiency (WUE, kg·m−3),
irrigation water use efficiency (WUEI, kg·m−3) and application nitrogen use efficiency
(NUE, kg·g−1) were calculated as follows:

WUE = Y/ET × 100, (4)

WUEI = Y/I × 100, (5)

NUE = Y/N × 0.1, (6)

where Y is the yield (t·ha−1); I is the irrigation quantity (mm); and N is the nitrogen
application amount (g·m−2).

2.3.5. Fruit Quality

Fruit quality parameters were measured at fruit maturation and harvest stage. Total
soluble solids content (TSS) was measured by a handheld refractometer (PAL-BX/ACID 3,
ATAGO, Tokyo, Japan, 0.1 Brix). Organic acid (OA) was titrated with 0.1 mol·L−1 NaOH
solution and the solids-acid ratio (SAR) was defined as the ratio of TSS to OA. Vitamin C
(VC) content was measured using 2,6-dichloroindophenol titrimetric method (A009-1-1,
Nanjing Jiancheng bioengineering institute, China, 0.1 ug·ml−1) [45]. Lycopene con-
tent (Lyc) was measured by spectrophotometric method (FT-P6141Z, Fantaibio, China,
0.1 ug·mL−1) [46,47]. Fruit firmness was measured by a hardness tester (GY-4, Handpi,
Zhejiang, China, 0.01 kg·cm−2).

2.4. The Calculation of Comprehensive Quality

Tomato quality is an overall result of individual parameters, and the responses of
individual fruit quality parameters to irrigation and nitrogen treatments are different,
which affects the determination of the treatment that has the best fruit quality. Thus, the
comprehensive fruit quality was evaluated using the technique for order preference by
similarity to ideal solution (TOPSIS), combined with analytic hierarchy process (AHP),
which is briefly outlined below.

(1) Normalize individual fruit quality parameters. The low optimal parameter is con-
verted into high optimal parameter as follows:

xij =
1

x∗ij,
i = 1, 2 · · ·m; j = 1, 2 · · · n, (7)

where xij is the forward original quality value of i-th treatment and j-th fruit quality
parameter. In this study, m = 12 and n = 7; x∗ij, is the antidromic original quality value;
and only OA was considered to be small optimal index in this study.

Then, xij is normalized as follows:

zij =

∣∣∣xij−xbestj

∣∣∣√
∑n

i=1

(
xij−xbestj

)2
i = 1, 2 · · ·m; j = 1, 2 · · · n, (8)

where zij is the positively standardized quality value of i-th treatment and j-th fruit quality
parameter; xbestj is the best value of j-th parameter among all treatments.

(2) Define the best and worst ideal solutions:

Z+ =
(

Z+
1 , Z+

1 , . . . Z+
j , . . . Z+

m

)
, Z+

j = max
{

z1j, z2j, . . . , znj
}

, (9)
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Z− =
(

Z−
1 , Z−

1 , . . . Z−
j , . . . Z−

m

)
, Z−

j = min
{

z1j, z2j, . . . , znj
}

, (10)

where Z+ is the defining maximum matrix; Z+
j is the maximum value of parameter j;

Z− is the defining minimum matrix; and Z−
j is the minimum value of parameter j.

(3) Calculate the distance using AHP weights:

D+
i =

√
∑m

j=1 ωj

(
Z+

j −zij

)2
, D−

i =

√
∑m

j=1 ωj

(
Z−

j −zij

)2
, (11)

where D+
i is the distance between i treatment and the maximum value; D−

i is the
distance between i treatment and the minimum value; ωj is the weight of index j
determined by AHP method [48].

(4) Compute the comprehensive index under different treatments (Qi):

Qi =
D−

i
D+

i +D−
i

, (12)

2.5. Economic Analysis

The economic benefits are related to both yield and fruit quality, and better fruit
quality usually indicates higher sale prices. Thus, an economic profit analysis considering
comprehensive quality and yield is necessary to determine the optimal treatment.

Relative sale price considering the comprehensive quality was calculated as:

pi= pc

(
1 + R

(
Qi

Qck
− 1

))
, (13)

where pi is the price of different fruit quality ($·kg−1); pc is the sale price of CK treatment
($·kg−1), which was defined as 1.5 according to the market sale price in 2019; R is the price
index, representing the fluctuation of tomato prices with quality; and Qi and Qck are the
comprehensive quality index under different irrigation and nitrogen treatment and CK
treatment, respectively.

Total cost under different treatment was determined by:

Cc= I × cw+N × cf+Cs, (14)

where Cc is the total cost ($); I is the irrigation amount (m3·ha−1); cw is the unit price of
agricultural water ($·m−3), which is defined as 0.15 according to the water conservancy
company sale price in 2019; N is nitrogen amount applied (kg·ha−1); cf is the unit price of
nitrogen fertilizer ($·kg−1), defined as 2.7 according to the market sale price in 2019; and
Cs is the fixed cost under different treatments ($), which does not change due to different
treatments, including the cost of greenhouse drip irrigation project, land rent, other facilities
costs, $282,750 one-time investment expense for 20 years usage expectation per ha, labor
costs (land leveling, tomato interruption, weeding, fertilization, spraying, harvesting and
packaging) totaling $652 per ha per year and other consumables costs (fertilizers other than
nitrogen, herbicide and insecticide) totaling $580 per ha per year.

Net profit was determined as:

Cn= Yipi − Cc, (15)

where Cn is the net profit per hectare ($); Yi is the yield in different treatments (kg·ha−1).
The profit change was calculated as:

ΔP% =
Cni − Cnck

Cnck
× 100%, (16)
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where ΔP% is the change in net profit, %; Cni is the net profit of i treatment; and Cnck is the
net profit of CK treatment.

2.6. Statistical Analysis

The differences among the treatments were compared by two-way ANOVA and
Duncan’s multiple range test using SPSS 26.0 (IBM statistics, Armonk, NY, USA). The
correlation between independent and dependent variables was determined by the Pearson
correlation analysis.

3. Results

3.1. Effect of Deficit Irrigation and Nitrogen on Plant Growth

The variation in plant height, stem diameter, leaf area index and chlorophyll content
of tomato under different irrigation and nitrogen treatments in the second season is shown
in Figure 2. The plant height increased rapidly in the first two stages and remained stable
after reaching its maximum at the beginning of stage III. The stem diameter showed similar
change tendency to that of plant height, except for reaching its maximum at the beginning
of stage II. Water deficit had no obvious effect on plant height but significantly reduced
stem diameter (Figure 2a–f) due to the infinite-growth tomato variety, which may not be
very sensitive to water stress in height growth. Nitrogen application improved plant height
and stem diameter in low-water treatments (Figure 2c,f), indicating that nitrogen could
alleviate the inhibition caused by water deficit as a vital nutritious element of plant growth.
Compared with CK, plant height and stem diameter of T12 in stable point (November 10)
decreased by 5.88% and 7.62%, respectively.

Figure 2. Cont.
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Figure 2. The plant height (h), stem diameter (D), leaf area index (LAI) and chlorophyll content
(SPAD) under different water and nitrogen treatments in the second season of 2019. Notes: (a,d,g,j)
show sufficient irrigation groups of CK, T2, T3 and T4, respectively; (b,e,h,k) represent moderate
water deficit groups of T5, T6, T7 and T8, respectively; (c,f,i,l) indicate severe water deficit groups of
T9, T10, T11 and T12, respectively.

Leaf area index (LAI) and chlorophyll content increased at stage I and II and then
decreased due to leaf wilting and yellowing (Figure 2g–l). The significant drops on
27 September and 27 October were caused by pruning. Both water and nitrogen deficit
reduced LAI observably. Compared with CK, LAI decreased from 26.6% (W2/3) to 33.2%
(W1/3) for water deficit treatments and 13.1% (N2/3) to 29.1% (N0) for nitrogen deficit
treatments (in maximum point, 20 October). Chlorophyll content decreased by 8.4% (N0)
and 9.6% (W1/3) on August 22 at stage I but had no obvious variance after stage I (on
15 September and 10 November, p > 0.05).

3.2. Effect of Deficit Irrigation and Nitrogen on Evapotranspiration, Yield, Water and Nitrogen
Use Efficiency

The evapotranspiration (ET) at the whole growth stage varied from 300.99 to 173.77 mm
in the first season and from 239.80 to 161.49 mm in the second season (Table 2). Both irriga-
tion and nitrogen fertilization decreased ET significantly (Table 2, p < 0.01), and the decline
in ET reached 38.8% (T9) and 5.7% (T4) in the first season and 23.6% (T9) and 11.6% (T4) in
the second season.

The effect of water and nitrogen on tomato yield was significant (Table 2, p < 0.05).
Compared with CK, yield decreased by 39.1% (T9) and 11.0% (T4) in the first season and
10.1% (T9) and 4.9% (T4) in the second season.

Compared with CK, water use efficiency (WUE) increased first and then decreased
with the decline in water supply in the first season but had no significant differences in the
second season (Table 2). The decrease in water use efficiency in W1/3 was caused by sharp
yield recession, and there was no significant effect of nitrogen on WUE.
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Table 2. Evapotranspiration (ET), yield and product efficiency (WUE, WUEI and NUE) under
different water and nitrogen treatments in the first and second seasons of 2019.

Treatment ET (mm)
Yield

(t·ha−1)
WUE

(kg·m−3)
WUEI

(kg·m−3)
NUE

(kg·g−1)

First season

CK 299.41 a 66.09 a 22.07 ab 25.38 cd 0.45 d
T2 300.99 a 66.46 a 22.08 ab 25.52 cd 0.68 c
T3 288.44 ab 65.33 a 22.65 ab 25.09 cd 1.33 a
T4 282.33 b 58.79 ab 20.82 b 22.58 d
T5 245.79 c 68.28 a 27.78 a 37.81 a 0.46 d
T6 243.26 c 63.84 a 26.24 ab 35.35 ab 0.65 c
T7 239.89 c 48.23 bc 20.11 b 26.71 bcd 0.98 b
T8 225.05 d 47.98 bc 21.32 ab 26.57 bcd
T9 204.59 e 40.23 c 19.66 b 38.35 a 0.27 e

T10 190.83 f 38.48 c 20.16 b 36.68 a 0.39 de
T11 181.28 fg 35.08 c 19.35 b 33.44 abc 0.72 c
T12 173.77 g 34.32 c 19.75 b 32.72 abc

Sig test
W 0.000 ** 0.000 ** 0.022 * 0.000 ** 0.000 **
N 0.000 ** 0.019 * 0.278 ns 0.017 * 0.011 *

W*N 0.326 ns 0.482 ns 0.397 ns 0.608 ns 0.135 ns

Second season

CK 239.80 a 59.92 a 24.99 ab 32.51 cd 0.29 e
T2 229.59 ab 57.55 ab 25.07 ab 31.23 cd 0.34 de
T3 225.45 b 54.32 ab 24.09 ab 29.47 d 0.42 bcd
T4 212.01 c 56.97 ab 26.87 ab 30.91 cd 0.61 a
T5 206.46 c 49.36 abc 23.91 ab 35.41 bcd 0.25 e
T6 206.69 c 56.86 ab 27.51 ab 40.79 bcd 0.36 cde
T7 205.51 c 51.77 abc 25.19 ab 37.14 bcd 0.43 bcd
T8 183.56 d 42.14 bc 22.96 b 30.23 cd 0.51 ab
T9 183.16 d 53.85 abc 29.40 ab 61.54 a 0.28 e

T10 177.75 d 56.79 ab 31.95 a 64.90 a 0.36 cde
T11 176.77 d 41.46 bc 23.46 b 47.39 b 0.35 de
T12 161.49 e 38.00 c 23.53 b 43.43 bc 0.46 bc

Sig test
W 0.000 ** 0.027 * 0.392 ns 0.000 ** 0.134 ns
N 0.000 ** 0.034 * 0.221 ns 0.000 ** 0.000 **

W*N 0.749 ns 0.456 ns 0.384 ns 0.001 ** 0.248 ns
Notes: lowercase letters following the data indicate significant differences by Duncan’s test at p < 0.05 level;
* means statistically significant with p < 0.05; ** notes statistically extreme significance with p < 0.01; ns represents
statistically insignificant with p > 0.05.

Irrigation water use efficiency (WUEI) significantly increased with the reduction in
irrigation amount and deceased with the reduction in nitrogen amount in both seasons.
Oppositely, nitrogen use efficiency (NUE) decreased with the reduction in irrigation amount
and increased with the reduction in nitrogen amount (Table 2). WUEI was generally higher
than WUE, since a plant can use the water in soil that was stored prior to development
stage. The maximum of WUEI was 38.35 kg·m−3, found in T9, in the first season and
64.90 kg·m−3, observed in T10, in the second season. T3 in the first season had a much
higher NUE of 1.33 kg·g−1 than any other treatments. It was interesting that the two-way
ANOVA results of water and nitrogen interaction on ET, yield and efficiency were not
significant except for WUEI in the second season (Table 2).

3.3. Effect of Deficit Irrigation and Nitrogen on Fruit Quality

The TSS, SAR and VC significantly increased with the increase in irrigation deficit,
while SW and OA decreased with the increase in irrigation deficit (Table 3). Compared
with CK, T9 increased TSS by 22.9% and 37.0%, SAR by 79.3% and 51.6% and VC by 112.3%
and 129.9% in the first and second season, respectively. SW decreased by 14.6% and 12.8%,
and OA decreased by 23.8% and 11.1% in the first and second seasons, respectively. Lyc
decreased with the decline in water in the second season, but there was no significant
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variance in the first season. Fn of W1/3 increased 12.7% in the first season but did not
change obviously in the second season.

Table 3. Single fruit quality parameters under different water and nitrogen treatments in the first and
second seasons of 2019.

Treatment
SW
(g)

TSS
(◦Brix)

OA
(%)

SAR
(ratio)

VC
(mg·kg−1)

Lyc
(mg·kg−1)

Fn
(kg·cm−2)

First season

CK 93.08 ab 4.85 fg 0.42 a 10.54 d 1.06 b 26.40 a 4.15 abc
T2 95.86 a 5.38 def 0.38 ab 14.01 cd 1.44 ab 24.00 a 3.45 bc
T3 95.94 a 5.30 def 0.32 bcd 16.53 bcd 1.39 ab 22.03 a 3.32 bc
T4 88.25 abc 4.38 g 0.33 bcd 12.93 cd 0.92 b 17.11 a 3.19 bc
T5 99.69 a 5.06 ef 0.34 abcd 15.83 bcd 1.29 b 23.76 a 3.12 bc
T6 91.79 abc 5.61 bcde 0.36 abc 15.34 bcd 1.67 ab 20.20 a 3.73 abc
T7 85.32 abc 5.83 abcd 0.30 bcde 20.00 bc 1.03 b 18.46 a 3.03 c
T8 84.07 abc 5.55 bcde 0.26 de 21.97 ab 1.08 b 20.70 a 3.24 bc
T9 79.50 bcd 5.96 abc 0.32 bcd 18.90 bc 2.25 a 20.84 a 3.93 abc

T10 76.88 cd 6.24 a 0.27 cde 22.59 ab 2.20 a 27.20 a 5.24 a
T11 69.33 d 6.05 ab 0.33 bcd 18.35 bc 1.54 ab 17.01 a 4.71 abc
T12 67.00 d 5.42 cde 0.23 e 28.63 a 1.06 b 13.63 a 4.83 ab

Sig test
W 0.000 ** 0.000 ** 0.001 ** 0.000 ** 0.012 * 0.715 ns 0.001 **
N 0.002 ** 0.000 ** 0.003 ** 0.027 * 0.022 * 0.210 ns 0.709 ns

W*N 0.384 ns 0.034 * 0.254 ns 0.108 ns 0.321 ns 0.773 ns 0.589 ns

Second season

CK 129.56 ab 4.16 f 0.36 bcd 11.76 d 1.34 g 46.08 a 3.18 a
T2 132.44 ab 5.35 abcd 0.37 bc 15.09 bc 1.40 fg 44.01 ab 3.16 a
T3 127.35 ab 5.52 abc 0.46 a 12.65 d 1.91 de 40.83 abc 3.76 a
T4 122.71 ab 5.00 de 0.37 bc 13.76 cd 1.73 efg 30.06 bc 3.79 a
T5 126.47 ab 5.44 abcd 0.48 a 11.46 d 2.23 bcd 35.10 abc 4.30 a
T6 108.33 ab 5.55 ab 0.39 b 15.62 abc 2.49 b 37.12 abc 3.36 a
T7 115.53 ab 5.14 bcde 0.34 bcde 15.15 bc 2.63 b 35.67 abc 3.26 a
T8 150.01 a 5.07 cde 0.30 e 16.46 ab 1.80 ef 31.39 abc 3.54 a
T9 113.02 ab 5.70 a 0.32 cde 17.83 a 3.08 a 29.25 bc 3.40 a

T10 116.37 ab 5.28 abcd 0.31 de 16.94 ab 2.43 b 30.84 bc 3.45 a
T11 93.50 b 5.47 abcd 0.29 e 17.89 a 2.37 bc 29.97 bc 2.83 a
T12 84.60 b 4.70 e 0.30 e 16.46 ab 2.00 cde 27.86 c 3.48 a

Sig test
W 0.011 * 0.008 ** 0.000 ** 0.000 ** 0.000 ** 0.011 * 0.879 ns
N 0.819 ns 0.000 ** 0.000 ** 0.008 ** 0.001 ** 0.199 ns 0.941 ns

W*N 0.466 ns 0.000 ** 0.000 ** 0.003 ** 0.000 ** 0.755 ns 0.962 ns

Notes: SW, TSS, OA, SAR, VC, Lyc and Fn indicated tomato single weight, total soluble solids, organic acids,
solid–acid content ratio, vitamin C content, lycopene content and fruit firmness, respectively. lowercase letters
following the data indicate significant differences by Duncan’s test at p < 0.05 level; * means statistically significant
with p < 0.05; ** notes statistically extreme significance with p < 0.01; ns represents statistically insignificant
with p > 0.05.

SW declined with the deficit of nitrogen in the first season, but there was no obvious
variance in the second season. Compared with N1, nitrogen deficit significantly improved
fruit TSS by 8.8% (N2/3 and N1/3), while it decreased fruit TSS by 3.0% under N0 in the
first season, and fruit TSS increased by 7.7% with N2/3 and N1/3 while decreasing by 1.4%
with N0 under nitrogen deficit in the second season. Similarly, average VC in two seasons
of N2/3 increased by 9.7% and decreased by 17.9% under N0. However, nitrogen had no
significant effect on Lyc and Fn.

The two-way ANOVA showed that the water more pronouncedly affected the results
than the nitrogen treatments, indicating that, compared with nitrogen, water occupied a
dominant position in tomato yield and fruit quality, in agreement with the experimental
results in northwest China [35,49].
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3.4. The Interactive Relationship between Water and Nitrogen Application

Since the two-way ANOVA results indicate that the interaction of water and nitrogen
was weak and unclear, marginal values (slope) were calculated to further analyze their
relationship, and the results are shown in Figure 3. Tomato marginal yield of W2/3 and
W1/3 increased with nitrogen application, and the increasing weakened in W1, indicating
that an antagonism effect between water and nitrogen was only found under W1~W2/3 and
N1~N1/3 (Figure 3). Although both water and nitrogen promoted tomato yield, their effect
intensity was gradually decreased with source supply saturation, which finally caused low
efficiency [8]. For OA and SAR, a reciprocal effect from water with nitrogen occurred only
under N2/3~N1/3. Water and nitrogen exhibited antagonism on SW, VC and Lyc under
N1~N1/3 and synergy on TSS under N1~N1/3 and W1~W2/3. The interaction of water
and nitrogen tended to disappear when one of them was extremely deficient, and water
took a dominated position in the interaction [49].

Figure 3. The interaction effect of water and nitrogen on yield, single fruit qualities parameters and
comprehensive fruit quality in the first and second seasons of 2019. Notes: the vertical axis is the
estimated marginal mean value of each parameter; the horizontal axis is the gradient of nitrogen
including full nitrogen, mild stress, medium stress and heavy stress.

3.5. Comprehensive Quality Assessment and Economic Analysis

The weights of each individual quality index calculated by Analytic Hierarchy Process
(AHP) are shown in Table 4. The random consistency ratio CR of the judgment matrix was
0.00025 < 0.1, indicating that the calculated weights met the requirements of pairwise com-
parison consistency. The comprehensive evaluation of the technique for order preference by
similarity to ideal solution method (TOPSIS) showed that the individual fruit quality TSS
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and VC were the main factors affecting overall score in both seasons (Table 4), while the
effect of other parameters was restricted by small weights or slight fluctuation of different
treatments. Due to the correlation between pivotal quality parameters and comprehensive
quality, it was feasible to focus on TSS and VC to evaluate tomato fruit in the absence of
quality tests. The assessing results of comprehensive quality in both seasons were roughly
consistent. T10 reached the highest quality value (Q) of 0.770 and ranked no. 1 in the first
season, and T9 reached Q of 0.599 and 0.641, ranking no. 2 and no. 1 in the first and second
seasons, respectively. Treatments with severe water deficit and mild nitrogen stress (T9,
T10) attained the best integrated quality.

Table 4. TOPSIS analysis of comprehensive fruit quality under different water and nitrogen treatments
in the first and second seasons of 2019.

Treatment SW TSS OA SAR VC Lyc Fn D+ D− Q Rank
Weight 0.110 0.131 0.088 0.180 0.173 0.198 0.116 - - - -

First
season

CK 0.312 0.255 0.210 0.164 0.207 0.358 0.308 0.169 0.088 0.344 11
T2 0.321 0.283 0.236 0.218 0.281 0.325 0.256 0.137 0.088 0.392 8
T3 0.321 0.278 0.275 0.257 0.273 0.299 0.246 0.128 0.086 0.403 7
T4 0.295 0.230 0.270 0.201 0.180 0.232 0.237 0.178 0.040 0.182 12
T5 0.334 0.266 0.258 0.246 0.252 0.322 0.231 0.137 0.087 0.388 9
T6 0.309 0.295 0.245 0.238 0.328 0.274 0.277 0.124 0.090 0.421 6
T7 0.286 0.306 0.295 0.311 0.202 0.250 0.224 0.143 0.082 0.364 10
T8 0.281 0.292 0.348 0.341 0.211 0.281 0.240 0.126 0.101 0.445 4
T9 0.266 0.313 0.280 0.294 0.441 0.282 0.291 0.092 0.137 0.599 2

T10 0.257 0.328 0.329 0.351 0.431 0.369 0.388 0.051 0.173 0.770 1
T11 0.232 0.318 0.271 0.285 0.302 0.231 0.349 0.120 0.094 0.438 5
T12 0.224 0.285 0.395 0.445 0.207 0.185 0.358 0.134 0.141 0.513 3
A+ 0.334 0.328 0.395 0.445 0.441 0.369 0.388
A− 0.224 0.230 0.210 0.164 0.180 0.185 0.224
R −0.650 * 0.748 ** 0.636 * 0.762ns 0.720 ** 0.000 ns 0.643 *

Second
season

CK 0.327 0.230 0.277 0.223 0.178 0.377 0.264 0.118 0.080 0.404 10
T2 0.330 0.296 0.270 0.286 0.186 0.360 0.263 0.103 0.083 0.446 8
T3 0.313 0.305 0.219 0.240 0.253 0.334 0.312 0.089 0.077 0.464 7
T4 0.307 0.277 0.270 0.261 0.230 0.246 0.315 0.105 0.057 0.353 12
T5 0.300 0.301 0.210 0.217 0.296 0.287 0.357 0.090 0.080 0.470 6
T6 0.264 0.307 0.257 0.296 0.330 0.303 0.279 0.065 0.088 0.575 3
T7 0.287 0.285 0.297 0.287 0.349 0.291 0.270 0.063 0.093 0.598 2
T8 0.254 0.281 0.329 0.312 0.239 0.256 0.294 0.096 0.068 0.414 9
T9 0.296 0.316 0.307 0.338 0.409 0.239 0.282 0.068 0.121 0.641 1

T10 0.307 0.292 0.319 0.321 0.323 0.252 0.286 0.072 0.093 0.563 4
T11 0.242 0.303 0.340 0.339 0.315 0.245 0.235 0.087 0.091 0.510 5
T12 0.211 0.260 0.333 0.312 0.266 0.228 0.289 0.103 0.069 0.401 11
A+ 0.330 0.316 0.340 0.339 0.409 0.377 0.357
A− 0.211 0.230 0.210 0.217 0.178 0.228 0.235
R −0.189 ns 0.734 ** −0.021 ns 0.399 ns 0.881 ** −0.042 ns −0.308 ns

Notes: SW, TSS, OA, SAR, VC, Lyc and Fn indicated tomato single weight, total soluble solids, organic acids,
solid–acid content ratio, vitamin C content, lycopene content and fruit firmness, respectively. * means statistically
significant with p < 0.05; ** notes statistically extreme significance with p < 0.01; ns represents statistically
insignificant with p > 0.05.

The heat map of net profit percentage change compared to CK under different treat-
ments is shown in Figure 4. Yield dominated the comprehensive benefits when the market
price sensitivity was low (R0~0.6), and the highest profit ratios found in T5 and T6 were
11% and 19% in the first and second seasons, respectively. Sufficient irrigation and mild
nitrogen promised a relative high yield. As the sensitivity of price improved (R0.8~1),
quality became more important than yield, and severe deficit treatment with high fruit
quality reached the highest profit. The profit ratio of T10 reached 31% in the first season
and 33% in the second season. Similar results were also found in grapes [50].
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Figure 4. The tomato profit ratio in the first and second seasons of 2019.

4. Discussion

The results show that water and nitrogen application deficit decreased plant height,
stem diameter, leaf area index and leaf chlorophyll content (3.1), and this is in agreement
with previous studies [24,51]. Nitrogen, as an essential element in synthetic amino acids,
protein and chlorophyll, could affect LAI and chlorophyll more seriously than water [27].
Since T12 (W1/3N0) always showed the lowest values in all treatments, the coupling effect
of water and nitrogen was more obvious than either of them, which confirmed that under
certain circumstances, nitrogen could cripple the inhibition caused by water deficit, and
vice versa [40,42].

Evapotranspiration and yield decreased significantly with the decline in irrigation
and nitrogen application (Section 3.2). Irrigation deficit could directly reduce root zone
soil moisture and plant water use, and nitrogen stress decreased ET through restraining
plant leaf development [34,52]. Water deficit decreased yield more seriously than nitrogen
(Section 3.2), and the yield in the first season was lower than that of the second season, in line
with the results in south Spain [53]. In the current study, the different ET and yield between
the two seasons was due to the significant variances in meteorological parameters (Figure 1).
The lower temperature and solar radiation in the second season reduced potential plant ET
and led to diminished ET (Figure 1 and Table 2), photosynthesis and other meteorological
processes, which finally caused a lower yield [54]. Water supply improved NUE, and
nitrogen supply enhanced WUE (Section 3.2), which were also observed in previous water–
nitrogen deficit experiments [55,56]. On the one hand, as a necessary mineral solvent,
water directly participates in nitrogen uptake of plant root and restricts nitrogen use; on
the other, nitrogen fertilization can promote plant root biomass, improve its absorptive
capacity and enhance water use efficiency [28,57]. In addition to nitrogen, other fertilizers
also play an important role in plant growth [58]. As soil–plant–air is a continuous system,
the interactions between soil characteristic and fertigation still demand research [59].

Fruit quality parameters, e.g., TSS, SAR and VC, increased with the decline in water
supply (Section 3.3). Reduced irrigation decreased water content in tomato fruit, which
formed a concentration effect [7]. VC synthesis and the conversion of acid to sugar can
be improved by more sugar and less water in fruit [52]. Regarding nitrogen, fruit qual-
ity increased first and then decreased with the deficit of nitrogen fertilizer (Section 3.3).
Previous studies reported that nitrogen fertilizer provided essential biochemical material
and enhanced tomato fruit qualities [7,25,31], while excess nitrogen fertilizer application
decreased lycopene and VC content in fruit. The sufficient nitrogen level in this study prob-
ably exceeded the actual nitrogen demand according to conventional nitrogen application
strategy, and thus, moderate nitrogen deficit treatments had a higher TSS and VC content
compared with full nitrogen fertilization.

Although both water and nitrogen affected yield and fruit quality significantly, the
integrated relationship between them only existed within a certain threshold (Section 3.4).
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The stress adaptive capacity of plants was limited by physiological metabolic process, and
water–nitrogen interaction mostly existed in the moderate deficit section. Once the deficit
lever of a factor exceeded the threshold, the other influencing factor could probably no
longer cooperate with or antagonize the deficit factor, and then, they only would affect
plants separately [60–62]. This might explain the non-significance of the interaction effect
of water and nitrogen in this study and many earlier studies [34,41,42]. For deeper research,
a molecular biology study is needed to determine the variances in hormone signals, key
enzyme activities, active genes in a plant when suffering deficit and the inner mechanism
of fertigation application. TSS achieved dominance in comprehensive quality evaluation
with a high weight and a large fluctuation of water–nitrogen deficit (Section 3.5), which
could be the main proxy to judge fruit quality when measurements are limited. In economic
analysis, the prices only referred to the local market in Shandong province, China, where
the water and labor cost was relatively low and fertilizer cost was relatively high, and the
final water and nitrogen application decision may not suitable to other places where the
resources prices differ too much. Specific analysis was needed for localization.

5. Conclusions

Deficit irrigation and nitrogen application restrained tomato growth, including plant
height, stem diameter and LAI, slightly. Tomato yield and partial quality indicators (SW
and OA) decreased with the decline in water and nitrogen. For TSS and VC, water deficit
had a promoting effect, while nitrogen deficiency showed an inhibitory impact. Water and
nitrogen deficit positively impacted SAR. Water showed greater influence on tomatoes
compared with nitrogen, and their integrated relationship was exhibited within the mild
deficit threshold of N1~N1/3 and W1~W2/3.

Based on water and nitrogen use efficiency, severe water and nitrogen deficit (W1/3N1/3)
was the best scheme; in terms of high fruit quality and net profit, severe water deficit and
mild nitrogen deficiency (W1/3N2/3) was optimal. In summary, the 1/3 full irrigation and
mild nitrogen deficit (N2/3, N1/3) treatment produced higher profits and is recommended
to tomato cultivation industry.
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Abstract: We conducted a two-year field experiment on winter wheat (Triticum aestivum L.) from
2016–2018 to compare the effects of reducing nitrogen application rate in spring under three irrigation
methods on grain yield (GY), water and nitrogen use efficiency in the North China Plain (NCP).
Across the two years, GY of conventional irrigation (CI), micro-sprinkling irrigation (SI) and drip
irrigation (DI) decreased by 6.35%, 9.84% and 6.83%, respectively, in the reduced nitrogen application
rate (N45) than the recommended nitrogen application rate (N90). However, micro-irrigation (SI
and DI) significantly increased GY relative to CI under the same nitrogen application rate, and no
significant difference was observed in GY between SI and DI under N45, while SI obtained the highest
GY under N90. The difference among different treatments in GY was mainly due to the variation
in grain weight. The seasonal evapotranspiration (ET) in N45 was decreased more significantly
than N90, and there was no significantly difference in ET among different irrigation methods under
N45, but micro-irrigation significantly decreased the ET relative to CI under N90. Micro-irrigation
significantly improved water use efficiency (WUE) compared to CI at the same nitrogen application
rate. Under N45, compared with CI, WUE in SI and DI increased by 9.09% and 4.70%, respectively;
however, the WUE increased by 15.9% and 7.23%, respectively, under N90. Reducing nitrogen
application rate did not have a significant impact on WUE under CI, but it did have a substantial
negative impact on SI and DI. Nitrogen accumulation in wheat plants at maturity (NAM) in N45
deceased significantly compared with N90 under the same irrigation method. Compared with CI
under the same nitrogen application rate, micro-irrigation treatments significantly increased NAM,
while SI was the largest. In comparison to N90, under three irrigation methods, N45 significantly
increased nitrogen fertilizer use efficiency (NfUE). The highest NfUE was attained in SI, followed
by DI, while CI was the lowest. Moreover, N45 significantly decreased soil NO3

−-N accumulation
(SNC) in three irrigation methods, and micro-irrigation significantly decreased the SNC in deep soil
layers compared with CI when nitrogen is applied at the same level. Overall, micro-irrigation with
a reduced nitrogen application rate in spring can achieve a relatively higher production of winter
wheat while increasing the use efficiency of water and nitrogen and reducing soil NO3

−-N leaching
into deep soil layers in the NCP.

Keywords: winter wheat; micro-irrigation; grain yield; nitrogen reduction; water and nitrogen utilization

1. Introduction

North China Plain (NCP) is the main production base of winter wheat in China. The
planting area of winter wheat reached 1752.8 × 104 hm2 in the NCP, which accounts
for 71.5% and 79.7% of the national total planting area and output of winter wheat in
China, respectively [1]. Therefore, it is crucial to guarantee the long-term production
of winter wheat in this area. Although the annual precipitation is 500–950 mm in the
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NCP, it mainly concentrates in summer, and the lower precipitation during spring causes
drought disasters of winter wheat [2]. The total water consumption for winter wheat
production is 433 mm, 413 mm and 373 mm in dry, normal and wet years, respectively [3],
and the most generally recognized method of meeting the water requirements of wheat
cultivation in the NCP is irrigation. However, the extraction of groundwater for wheat
growth and development in the NCP is responsible for around 70% of the need for irrigated
water [4,5], and over-exploitation of groundwater had caused continuous ground settlement
over the past four decades [6,7], resulting in this region becoming one of the deepest
groundwater cones of depression on Earth [8]. Additionally, improper irrigation methods
have increased the groundwater resource consumption and reduced the nitrogen fertilizer
use efficiency (NfUE), leading to environmental degradation from water and nitrogen
loss [9,10]. Therefore, it is of great significance for the NCP to reduce the nitrogen input
and improve the water and nitrogen use efficiency of winter wheat.

Previous studies have reported that optimizing irrigation regimes to promote wheat
root growth into deep soil layers and increase water utilization in deep soil is an important
means to improve grain yield (GY) and water use efficiency (WUE) of winter wheat [11,12].
However, the unreasonable irrigation methods of wheat often reduce the water absorption
from deep soil layers, and the conventional surface irrigation readily causes water and
fertilizer to migrate out of the wheat’s main root zone, lowering WUE [7,13]. Currently,
most farmers in the NCP use flooding irrigation to irrigate their winter wheat fields, and
Xu et al. (2018) advocated that irrigation at the jointing and anthesis stages of wheat could
achieve a higher GY and WUE [11]. The most common micro-irrigation techniques now
applied in wheat production are surface drip irrigation and micro-sprinkling irrigation in
the NCP. Studies have shown that micro-irrigation significantly improved crop yield and
WUE by ensuring a water supply during the crucial growth stages of winter wheat through
reducing the irrigation volume each time and increasing irrigation frequencies compared
with the conventional irrigation practice [13,14]. Furthermore, it has been demonstrated
that micro-irrigation simultaneously enhanced WUE and NfUE in wheat by co-locating
water and nitrogen fertilizer applications with root distribution of winter wheat in the soil
profile [14–16]. Previous studies also indicated that subjecting wheat to micro-irrigation
could significantly increase leaf area index and chlorophyll content in leaf during grain
filling, extend the leaf function period, enhance photosynthetic rate in plants, prevent
premature senescence of wheat and increase grain weight and GY [17,18].

Nitrogen is one of the most important essential elements for crop growth [19]. Studies
indicated that crops’ growth was highly impacted by the soil’s water conditions as well
as the nitrogen application rate, and a suitable irrigation amount combined with nitrogen
supply could boost the crops’ growth and increase GY [20,21]. Presently, the recommended
nitrogen application rate for wheat production with a target of high yield and efficient
resource utilization is 180–240 kg·ha−1 in the NCP, and it is divided into basal dressing and
top dressing [22]. The prevailing nitrogen top dressing by farmers for winter wheat in this
region is applied artificially combined with irrigation in spring, however, the inadvisable
nitrogen application rate for winter wheat production has led to a lower NfUE [23], and the
disposable top dressing accompanied by irrigation easily caused nitrogen to migrate out
of the main root zone of wheat and leach into deeper soil layers [14]. Wu et al. (2008) [24]
found that the reduction in nitrogen application rate for wheat greatly improved the NfUE
while maintaining a higher yield. Even though an excessive nitrogen application rate
may not have a major impact on crop yield, it can have a considerable impact on the
amount of nitrogen residue in the soil after wheat harvest and decrease the use efficiency
of nitrogen [25,26]. In particular, the rainy season comes soon after wheat harvest in
the NCP, which easily exacerbates the residual nitrogen leaching into deeper soil layers.
Therefore, the development of an optimized irrigation and fertilization regime is urgently
needed to improve the GY, WUE and NfUE of winter wheat in the NCP. Furthermore,
previous studies were focused on the physiological mechanism of micro-irrigation with
water and nitrogen integration to achieve high yield and efficient utilization of water and
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nitrogen in wheat. However, there is insufficient research on the effect of reducing the
nitrogen application rate under different irrigation methods on grain yield and water and
nitrogen utilization in winter wheat. In this study, we hypothesized that, after increasing
irrigation frequency and reducing nitrogen application rate, micro-irrigation with water
and nitrogen integration could delay leaf senescence during grain filling and improve dry
matter production post-anthesis so as to ensure grain yield, promote the absorption and
utilization of soil water and nitrogen, increase nitrogen accumulation in plants and reduce
the nitrate leaching to deep soil layers so as to increase WUE and NfUE. To confirm this
hypothesis, a two-year field experiment was conducted to identify the effects of reducing
nitrogen application rate under different irrigation methods on (1) grain yield and yield
components of winter wheat, (2) leaf area index (LAI), chlorophyll content of flag leaf after
anthesis and dry matter accumulation, (3) water and nitrogen utilization in winter wheat.
We expect the research results to provide a theoretical basis and technical reference for high
winter wheat yield and efficient utilization of water and nitrogen in the NCP.

2. Materials and Methods

2.1. Experimental Site

At the experimental site of the China Agricultural University in Wuqiao County,
Cangzhou City, Hebei Province (37◦41′02′′ N, 116◦37′23′′ E), an in situ field experiment was
carried out from 2016 to 2018 throughout the winter wheat growing seasons. The altitude of
the experimental site is 20 m. The field’s soil is a light loam consisting of 11.8% clay, 78.1%
silt and 10.1% sand. In this two-year trial, summer maize was the previous crop before
wheat. Mean bulk densities in 0–100 cm and 100–200 cm soil layers are both 1.43 g·cm−3.
The soil total nitrogen, organic matter content, available phosphorus and potassium in the
upper 40 cm of the soil layer before sowing were 0.95 g·kg−1, 11.7 g·kg−1, 104.4 mg·kg−1

and 29.2 mg·kg−1, respectively; soil pH was 7.5. The nitrate nitrogen (NO3
−-N) content

before sowing in the 0–100 cm soil layer was 18.6 mg·kg−1 and 12.7 mg·kg−1 in 2016–2017
and 2017–2018 winter wheat growing seasons. The total precipitation in the two wheat
growing seasons was 95.5 mm and 185.6 mm, respectively. Figure 1 shows the climatic data
in different months of the winter wheat growing season during this experiment.

Figure 1. Daily precipitation and average air temperature recorded during the growing seasons of
winter wheat from 2016–2018 at the experiment site in this present study.

2.2. Experimental Design

In this experiment, conventional irrigation (CI), micro-sprinkling irrigation (SI) and
drip irrigation (DI) were used over the two growing seasons of winter wheat. Wheat growth
stages were recorded by the Zadoks scale [27]. Wheat was irrigated with 60 mm in each
irrigation event and 120 mm of total irrigation during the jointing (Z31) and anthesis stages
(Z61) in CI. SI and DI were carried out with 120 mm of total irrigation and 30 mm in each
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irrigation event at jointing (Z31), booting (Z45), anthesis (Z61) and filling stages (Z71). CI
was carried out using PVC pipe, and SI and DI with hoses [14,28]. The length of the hoses
for micro-irrigation treatments (SI and DI) was 30 m. The flow rate of micro-sprinkling
hoses was 6.0 m3·h−1, and the sprinkling angle was 80◦. The specific details of the layout of
micro-sprinkling hose in this experiment field were according to Li et al. [14]. The distance
between adjacent drip hoses was 30 cm, and the drip laterals had 30 cm emitter spacing
and a flow rate of 2.0 L·h−1, with a worked pressure of 0.1 MPa. In this experiment, the
irrigation water source is fresh water drawn from a well. Three replicates were used in the
randomized complete block experimental design. Each experimental plot was 4 m × 30 m.
Before sowing, 105 kg·ha−1 nitrogen, 120 kg·ha−1 P2O5 and 90 kg·ha−1 K2O were applied
as base fertilizer. During the spring season of wheat growth, 45 kg·ha–1 nitrogen (N45)
and 90 kg·ha–1 nitrogen (N90) were applied using urea (nitrogen content of 46.4%) as
top dressing under different irrigation methods. For each irrigation event of SI and DI,
a quarter of the top dressing urea was completely dissolved in a fertilization device and
applied together with the irrigation, while all nitrogen was artificially spread over the field
before irrigation at the jointing stage for CI. One of the most extensively grown varieties in
the NCP, the high-yield winter wheat cultivar “Jimai22”, was utilized in the experiment. At
a planting density of 540 plants per square meter, the wheat was sown on 14 October 2016
and 22 October 2017, and it was harvested on 14 June 2017 and 10 June 2018, respectively.
No visible pests or diseases happened in the experimental field during the test period.

2.3. Sampling and Measurements
2.3.1. Water Consumption and Use Efficiency

At sowing and maturity, soil samples were taken from 0 to 200 cm soil depth at 20 cm
intervals with a soil corer. The soil water content (g·g−1) was measured using the oven-
drying method. Some fresh soil samples were retained in each soil layer to determine
soil NO3

−-N content. The difference between the soil water storage (0–200 cm) at sowing
and maturity was used to calculate the amount of soil water consumption. The soil water
balance equation was used to determine the total seasonal evapotranspiration (ET) during
the growth stage of winter wheat [29]:

ET = I + P ± SW − R + CR − D

where I (mm) is irrigation, P (mm) is precipitation recorded at the nearby meteorological
station, SW (mm) is soil water consumption based on the difference between sowing and
maturity, R is surface runoff, CR is capillary rise into the root zone and D is downward
flux below the 200 cm soil layer. Due to the lower rainfall during wheat growing seasons
in this region, deep soil layer and the large water holding capacity, plus the border of the
experimental plots, runoff was rarely observed in the field and it was taken as zero. D
can also be ignored in the NCP, including at the experimental site [30]. The soil water
consumption percentage for 0–100 cm (SW1) and 100–200 cm (SW2) was the ratio of its
water consumption volume to SW. The GY/ET ratio was used to calculate WUE.

2.3.2. Leaf Area Index (LAI) and Chlorophyll Content of Flag Leaves

At anthesis and grain filling stages (20 days after anthesis), the green leaf area of ten
wheat plants was measured by a Li-3100 area meter (LI-COR, Inc., Lincoln, NE, USA) from
each experimental plot to calculate the leaf area index (LAI) [13]. At these two stages, 20 flag
leaf samples were randomly selected from each experimental plot to analyze the chlorophyll
content (a + b). Flag leaf chlorophyll (a + b) content was extracted with 95% alcohol for
48 h in the dark, and the optical density (OD) of the alcohol extraction was measured at 649
and 665 nm using a UV-1800 Visible Ultraviolet Spectrophotometer, Shimadzu, Japan [14].

2.3.3. Dry Matter Accumulation (DM) and Grain Yield (GY)

Two 50 cm inner rows of wheat plants from each experimental plot were sampled at
ground level at anthesis and maturity stages, then separated into grain and the rest. All
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samples were dried in an oven at 75 ◦C to a constant weight. Dry matter translocation
(DMT) from the vegetative portions of the grain between anthesis and maturity was
calculated as the difference between DM at anthesis and DM at maturity without grain.
The contribution of DM pre-anthesis to grain was calculated from the ratio of DMT pre-
anthesis to grain at maturity (DMR) [31], and the contribution ratio of DM post anthesis
to grain was calculated as the difference by 100-DMR (DMPR). The ratio of grain to total
above-ground DM at maturity is defined as the harvest index (HI). To determine spike
number, spikes were counted in six 1 m center rows of each plot before harvest. Before
harvest, 60 randomly picked spikes from each experimental plot were used to calculate
the grain number. Wheat plants from a 3 m2 area in each plot were harvested and then
threshed artificially to determine GY. Actual GY was reported on a 13% moisture basis. By
weighing 1000 seeds from each sample and averaging the results of three replicates, the
thousand grain weight (TGW) was determined.

2.3.4. Soil Nitrate Nitrogen (NO3
−-N) Residue, Nitrogen Accumulation and Use

Soil NO3
−-N contents were determined using an ultraviolet spectrophotometer, and

soil samples were extracted with 0.01 mol·L−1 CaCl2 [32]. The calculation method for
the accumulated amount of NO3

−-N in the 0–200 cm soil profile is the sum of NO3
−-N

accumulation in each layer [33]. The Kjeldahl method was used to determine the total
nitrogen content of plants [34]. According to Ruisi et al. (2016), nitrogen accumulation and
use were calculated as follows [35]:

NAM = DMM × NC%,

NfUE = GY/Nf

where NAM is the nitrogen accumulation in plants at maturity; DMM is dry matter
accumulation of plants at maturity; NC is the nitrogen concentration in plants; NfUE is
nitrogen fertilizer use efficiency; Nf is the applied amount of nitrogen fertilizer.

2.4. Data Analysis

Microsoft Excel 2016 (Microsoft, Inc., Redmond, WA, USA) was used for data sorting,
SPSS Statistics 22.0 software (IBM, Armonk, NY, USA) was used to analyze the data and
the least significant difference test (p = 0.05) was used to compare the difference between
different irrigation methods and nitrogen application rates in this study. All figures in this
paper were generated using Origin Pro 2019 (Origin Lab Corp., Northampton, MA, USA).

3. Results

3.1. Grain Yield and Yield Components

Grain yield (GY) clearly fell from 2017–2018 compared with 2016–2017, which was
mostly as a result of a decline in spike number (SN) and thousand grain weight (TGW)
(Table 1). However, the two-year study data revealed consistent outcomes. Across the two
years, the GY under three irrigation methods was significantly lowered with a reduction in
nitrogen application rate, which decreased by 6.35%, 9.84% and 6.83%, respectively, in N45
compared to N90. Under N45, there was no significant difference in GY between SI and DI,
and they were both significantly higher than in CI. Under N90, GY in CI was significantly
lower than that of DI, and SI yielded the highest GY when compared to those of CI and
DI. Notably, there was no significant difference in GY among CIN90, SIN45 and DIN45.
SN and grain number per spike (GN) among different treatments in the same year had
no significant difference, while there was a large effect on TGW, and the difference in GY
under different treatments was mainly caused by the change in TGW.
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Table 1. Effects of different irrigation methods and nitrogen application rates on grain yield (GY),
spike number (SN), grain number per spike (GN) and thousand grain weight (TGW) of winter wheat.

Year Treatment GY (kg·ha−1) SN (×104·ha−1)
GN

(Grain·Spike−1)
TGW (g)

2016–2017 CIN45 7769.6 ± 102.5 d 819.0 ± 11.7 a 27.6 ± 0.25 a 42.3 ± 0.28 e
CIN90 8503.7 ± 284.5 c 826.0 ± 12.2 a 27.7 ± 0.21 a 43.6 ± 0.32 d
SIN45 8882.7 ± 102.9 c 819.6 ± 2.2 a 28.2 ± 0.26 a 45.8 ± 0.18 bc
SIN90 9786.4 ± 120.3 a 830.4 ± 10.4 a 27.8 ± 0.28 a 46.7 ± 0.32 a
DIN45 8366.0 ± 99.9 c 818.6 ± 9.2 a 27.6 ± 0.21 a 45.5 ± 0.26 c
DIN90 9111.5 ± 87.8 b 820.9 ± 5.5 a 27.8 ± 0.21 a 46.1 ± 0.09 b

2017–2018 CIN45 6658.2 ± 35.3 d 648.4 ± 5.8 a 29.9 ± 0.15 a 41.3 ± 0.73 e
CIN90 6940.2 ± 35.2 c 677.8 ± 2.5 a 30.3 ± 0.13 a 42.8 ± 0.19 d
SIN45 6905.0 ± 35.2 c 665.6 ± 5.4 a 30.4 ± 0.09 a 43.7 ± 0.27 c
SIN90 7710.7 ± 34.9 a 674.5 ± 6.7 a 30.2 ± 0.02 a 45.4 ± 0.68 a
DIN45 6881.5 ± 66.7 c 666.9 ± 2.5 a 30.0 ± 0.33 a 43.5 ± 0.12 c
DIN90 7279.6 ± 89.9 b 668.7 ± 14.2 a 30.1 ± 0.39 a 45.0 ± 1.1 b

CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI, drip irrigation method; N45
indicates 45 kg·ha−1 nitrogen was applied as top dressing; N90 indicates 90 kg·ha−1 nitrogen was applied as top
dressing. Different letters indicate a significant difference among different irrigation methods at p < 0.05 level. All
the data are shown as the mean ± standard error (n = 3).

3.2. Leaf Area Index (LAI) and Chlorophyll Content Flag Leaf

LAI of winter wheat at anthesis was obviously higher than at the grain filling stage,
and it was obviously lower from 2017–2018 than that from 2016–2017 (Figure 2). The
two years’ experimental results showed that LAI decreased in N45 compared with N90,
but no significant difference was presented between N45 and N90 in micro-irrigation
treatments in the first growing season. At the anthesis stage, the LAIs of SI and DI were
significantly greater than in CI but did not differ significantly from each other under N45.
However, irrigation methods had no significant impact on the LAI under N90. At the filling
stage, N45 significantly reduced the LAI when compared to N90 under the same irrigation
method. The LAI in SI and DI did not differ significantly, while LAI in micro-irrigation
was significantly higher than that of CI under N45. Under N90, compared with CI, micro-
irrigation significantly improved the LAI, and LAI in SI was significantly higher than that
of DI.

Chlorophyll content in flag leaf was obviously decreased when nitrogen application
rate was reduced under the same irrigation method, but the results of chlorophyll content
in different irrigation methods under the same nitrogen application rate were varied. At
the anthesis stage, under N45, the two years’ results all showed that the chlorophyll content
in CI and SI was not significantly different, while SI significantly improved the chlorophyll
content compared to DI. Additionally, under N90, micro-irrigation significantly increased
the chlorophyll content compared to CI, and no significant difference in the chlorophyll
content was observed between SI and DI. At the filling stage, under N45, the two years’
data revealed that CI significantly decreased the chlorophyll content compared to micro-
irrigation treatments, and SI had a much greater chlorophyll content than DI. Under N90,
compared with micro-irrigation treatments, CI significantly decreased the chlorophyll
content, and that of SI was significantly higher than that of DI; however, there was no
significant difference between CI and DI from 2017–2018.
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Figure 2. Effects of different irrigation methods and nitrogen application rates on flag leaf chlorophyll
content at anthesis and filling stages. Note: CI, conventional irrigation method; SI, micro-sprinkling
irrigation method; DI, drip irrigation method; N45 indicates 45 kg·ha−1 nitrogen was applied as
top dressing; N90 indicates 90 kg·ha−1 nitrogen was applied as top dressing. Values followed by
the same letter within a column in each year are not significantly different at p < 0.05. Vertical bars
represent standard errors. All the data are shown as the mean ± standard error (n = 3).

3.3. Dry Matter Accumulation and Translocation

Across the two years, dry matter accumulation (DM) at anthesis (DMA) in SI was not
significantly impacted by reducing the nitrogen application rate, but it was significantly
decreased in CI and DI when nitrogen application was reduced (Table 2). CI treatment
significantly increased the DMA compared to SI and DI when nitrogen application was
the same, and DMA in micro-irrigation treatments had no significant difference. Under
N45, SI and DI significantly decreased DMA compared to CI from 2016–2017; however,
no significant difference was observed in DMA between CI and SI from 2017–2018, nor
between SI and DI, but DMA in CI was significantly higher than that in SI. At maturity,
compared with N90, N45 significantly decreased the total DM (DMM) in both years under
the same irrigation method, and under N90, DMM in CI was significantly decreased
compared with those of DI and SI, and SI showed the highest DMM. However, compared
to CI under N45, the DMM in micro-irrigation treatments was significantly improved, and
that of SI was significantly higher than that of DI in the first growing season, while no
significant difference was observed between SI and DI in the second year. The contribution
ratio of pre-anthesis dry matter translocation to GY (DMR) was significantly higher for
N45 than N90 in CI, and the reduction in nitrogen had no significant impact on DMR in SI
and DI, but SI significantly decreased the DMR compared with DI. The contribution ratio
of post-anthesis dry matter accumulation to grain (DMPR) in different treatments was in
opposition to the DMR. In addition, CI significantly decreased harvest index (HI) compared
to micro-irrigation treatments under the same nitrogen application rate, whereas SI and DI
had no significant effect on HI. Under N45, no significant difference was observed in HI
between DI and SI, however, that of DI was significantly lower than that of SI under N90.
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Table 2. Effects of different irrigation methods and nitrogen application rates on dry matter accumu-
lation, translocation and harvest index of winter wheat.

Year Treatment DMA (kg·ha−1) DMM (kg·ha−1) DMR (%) DMPR (%) HI

2016–2017 CIN45 15395.6 ± 130.5 b 20214.9 ± 10.3.3 e 38.6 ± 0.63 a 61.4 ± 0.63 d 0.388 ± 0.002 c
CIN90 15805.3 ± 81.4 a 21684.0 ± 65.3 d 32.7 ± 0.50 b 67.3 ± 0.50 c 0.403 ± 0.001 b
SIN45 15055.1 ± 105.1 c 22507.8 ± 100.3 c 17.5 ± 2.39 d 82.5 ± 2.39 a 0.401 ± 0.002 b
SIN90 15384.0 ± 108.6 b 23794.7 ± 84.8 a 15.7 ± 0.69 d 84.3 ± 0.69 a 0.419 ± 0.001 a
DIN45 14948.0 ± 87.6 c 21800.4 ± 58.8 d 22.3 ± 0.78 c 77.7 ± 0.78 b 0.405 ± 0.003 b
DIN90 15409.1 ± 32.9 b 22926.0 ± 99.2 b 22.0 ± 0.67 c 78.0 ± 0.67 b 0.420 ± 0.001 a

2017–2018 CIN45 12402.7 ± 62.0 b 16182.2 ± 71.1 e 43.5 ± 1.39 a 56.5 ± 1.39 d 0.414 ± 0.001 d
CIN90 12653.3 ± 67.7 a 17488.9 ± 7.3 b 32.9 ± 0.73 c 67.1 ± 0.73 c 0.412 ± 0.001 d
SIN45 12320.7 ± 99.3 bc 17128.7 ± 91.9 c 33.3 ± 1.01 c 66.7 ± 1.01 c 0.421 ± 0.002 bc
SIN90 12425.1 ± 53.0 b 17962.4 ± 37.3 a 28.6 ± 0.65 d 71.4 ± 0.65 a 0.432 ± 0.001 a
DIN45 12248.4 ± 49.6 c 16627.3 ± 63.2 d 37.1 ± 0.56 b 62.9 ± 0.56 c 0.419 ± 0.003 c
DIN90 12435.8 ± 22.1 b 17476.0 ± 27.2 b 32.0 ± 0.51 c 68.0 ± 0.51 b 0.424 ± 0.003 b

CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI, drip irrigation method; N45
indicates 45 kg·ha–1 nitrogen was applied as top dressing; N90 indicates 90 kg·ha–1 nitrogen was applied as
top dressing. DMA, dry matter accumulation at anthesis; DMM, dry matter accumulation at maturity; DMR,
contribution of dry matter pre-anthesis translocation to grain yield; DMPR, contribution of dry matter post-
anthesis accumulation to grain yield. Different letters indicate a significant difference among different irrigation
methods at p < 0.05 level. All the data are shown as the mean ± standard error (n = 3).

3.4. Water Consumption and Utilization

As shown in Figure 3, the total seasonal evapotranspiration (ET) of winter wheat in
N45 was significantly lower than that of N90 under the same irrigation method across
the two years. The three irrigation methods had no significant effect on ET under N45.
Under N90 in the 2016–2017 growing season of winter wheat, no significant difference in
ET was observed between CI and DI and between DI and SI, but ET in SI was significantly
lower than that in CI; however, CI significantly increased the ET compared with those of DI
and SI from 2017–2018. Water use efficiency (WUE) was not significantly impacted by the
reduction in nitrogen application rate under CI, but micro-irrigation treatments significantly
decreased the WUE in N45 compared to N90. Micro-irrigation treatments significantly
improved the WUE compared to CI under the same nitrogen application rate. WUE in SI
and DI increased by 9.09% and 4.70%, respectively, compared with that of CI under N45;
however, under N90, the WUE increased by 15.9% and 7.23%, respectively. However, WUE
in DI was significantly lower than that of SI under the same nitrogen application rate, but
SI and DI had no significant effect on WUE from 2017–2018. Under N90, the WUE variation
in the various irrigation methods was consistent with the prior year.

3.5. Soil Water Utilization

As shown in Table 3, across the two years, N90 treatments significantly increased
soil water consumption (SW) as compared to those of N45 under three irrigation methods.
However, under N45, there was no significant variation in SW among the three irrigation
methods. Meanwhile, under N90, there was no significant variance in SW between SI
and DI, and besides the DI, SW in SI declined significantly over the two years compared
to CI. The two years of research indicated that the reduction in nitrogen application rate
significantly decreased the soil water consumption from 0–100 cm (SW1), however, CI had
a much higher SW1 than micro-irrigation treatments, and SW1 in SI was similar to that
in DI. It is worth noting that, compared N90, N45 had no significant impact on the ratio
of SW1 to SW in SI and DI, and CI significantly increased SW1 compared to SI and DI
from 2016–2017, while there was no significant impact on SW1 under N90 among the three
irrigation methods from 2017–2018. In addition, there was no significant difference in soil
water consumption in the 100–200 cm soil profile (SW2) between N45 and N90 under SI,
and the reduced nitrogen application rate treatments significantly decreased SW2 in the
three irrigation methods. Under N45, there was no significant difference in SW2 between SI
and DI in the two years, and they were both much higher than in CI. In comparison to CI,
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SW2 under N90 increased dramatically with SI and DI from 2016–2017, but the irrigation
methods had no significant impact on SW2 from 2017–2018. Most notably, the SW2 to SW
ratio in SI and DI was not significantly affected by the reduction in nitrogen application
rate, and they significantly increased SW2 compared with CI from 2016–2017, while there
was no significant impact on the ratio under N90 among the three irrigation methods from
2017–2018.

Figure 3. Effects of different irrigation methods and nitrogen application rates on the seasonal
evapotranspiration (ET) and water use efficiency (WUE) of winter wheat during the two seasons.
Note: CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI, drip irrigation
method; N45 indicates 45 kg·ha–1 nitrogen was applied as top dressing; N90 indicates 90 kg·ha–1

nitrogen was applied as top dressing. Values followed by the same letter within a column in each
year are not significantly different at p < 0.05. Vertical bars represent standard errors. All the data are
shown as the mean ± standard error (n = 3).

3.6. Nitrogen Accumulation and Utilization in Plants

The variation in nitrogen accumulation in winter wheat at maturity (NAM) among
different treatments was consistent between the two growing seasons (Figure 4). Compared
with N90, NAM was decreased significantly in N45 under the same irrigation method.
However, when nitrogen was applied at the same rate, NAM in SI significantly surpassed
that of DI and CI, and CI obtained the lowest NAM. Across the two years, N45 significantly
increased the nitrogen fertilizer use efficiency (NfUE) compared to N90 under the same
irrigation method, but there were some changes in NfUE among the irrigation methods
under the same nitrogen application rate. Under N45, CI significantly decreased the NfUE
compared with DI from 2016–2017, whereas the NfUE in SI was significantly higher than
that in DI. From 2017–2018, NfUE in CI was significantly lower than that of micro-irrigation
treatments, and the NfUE in SI was similar to that of DI. SI had a much higher NfUE than
DI and CI, and CI had the lowest NfUE under N90 in the two years.
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Table 3. Effects of different irrigation methods and nitrogen application rates on soil water consump-
tion of winter wheat during the two seasons.

Year Treatment
Soil Water Consumption Amount (mm)

SW (mm)
SW1 Ratio (%) SW2 Ratio (%)

2016–2017 CIN45 144.2 ± 1.35 b 72.1 ± 0.61 a 55.8 ± 2.19 d 27.9 ± 0.61 b 200.0 ± 3.51 c
CIN90 158.9 ± 0.43 a 70.5 ± 0.89 a 66.5 ± 2.69 c 29.5 ± 0.89 b 225.5 ± 2.40 a
SIN45 134.3 ± 0.86 c 66.4 ± 0.74 b 68.1 ± 2.34 bc 33.6 ± 0.74 a 202.4 ± 3.68 c
SIN90 140.4 ± 4.97 b 65.7 ± 2.14 b 73.3 ± 5.21 ab 34.3 ± 2.14 a 213.6 ± 4.96 b
DIN45 135.8 ± 1.16 c 66.7 ± 0.95 b 67.8 ± 2.77 bc 33.3 ± 0.95 a 203.6 ± 2.87 c
DIN90 143.4 ± 1.39 b 65.3 ± 1.28 b 76.3 ± 2.22 a 34.7 ± 1.28 a 219.7 ± 4.08 ab

2017–2018 CIN45 83.5 ± 3.35 c 85.7 ± 2.51 a 13.9 ± 3.21 d 14.3 ± 2.51 b 97.4 ± 6.24 c
CIN90 98.5 ± 2.80 a 78.3 ± 1.34 b 27.2 ± 2.86 a 21.7 ± 1.34 a 125.7 ± 5.49 a
SIN45 75.4 ± 2.32 d 77.7 ± 1.96 b 21.6 ± 2.52 c 22.3 ± 1.96 a 97.0 ± 3.93 c
SIN90 86.8 ± 1.74 bc 76.7 ± 0.66 b 26.4 ± 1.09 a 23.3 ± 0.66 a 113.2 ± 2.43 b
DIN45 79.2 ± 1.27 d 76.9 ± 1.84 b 23.7 ± 2.08 bc 23.1 ± 1.84 a 102.9 ± 0.83 c
DIN90 90.2 ± 1.10 b 77.0 ± 0.46 b 26.9 ± 0.38 a 23.0 ± 0.46 a 117.1 ± 0.78 b

CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI, drip irrigation method; N45
indicates 45 kg·ha–1 nitrogen was applied as top dressing; N90 indicates 90 kg·ha–1 nitrogen was applied as
top dressing. SW presents the soil water consumption in 0–200 cm soil depth; SW1 presents the soil water
consumption in 0–100 cm soil depth; SW2 presents the soil water consumption in 100–200 cm soil depth. Different
letters indicate a significant difference among different irrigation methods at p < 0.05 level. All the data are shown
as the mean ± standard error (n = 3).

Figure 4. Effects of different irrigation methods and nitrogen application rates on nitrogen accumu-
lation at maturity (NAM) and nitrogen fertilizer use efficiency (NfUE) of winter wheat during the
two seasons. Note: CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI,
drip irrigation method; N45 indicates 45 kg·ha−1 nitrogen was applied as top dressing; N90 indicates
90 kg·ha−1 nitrogen was applied as top dressing. Values followed by the same letter within a column
in each year are not significantly different at p < 0.05. Vertical bars represent standard errors. All the
data are shown as the mean ± standard error (n = 3).

3.7. Soil Available Nitrogen Accumulation

Table 4 shows a similar variation in soil nitrate nitrogen (NO3
−-N) accumulation at

maturity in 0–200 cm soil depth (SNC) among different treatments from 2016–2017 and
2017–2018, that is, N45 significantly decreased the SNC compared to N90 under the same
irrigation method, however, micro-irrigation significantly reduced the SNC compared
to CI when nitrogen was applied at the same rate, and no significant difference in SNC
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was observed between SI and DI. Across the two years, N45 significantly decreased the
NO3

−-N residue from 0–100 cm (SNC1) under the same irrigation method, while there
was no significant difference in SNC1 among different irrigation methods. In addition, the
reduced nitrogen application rate had no significant impact on the ratio of NO3

−-N residue
of SNC1 to SNC under CI from 2016–2017 and, compared with N45, N90 significantly
increased the ratio of NO3

−-N residue of SNC1 to SNC under the same irrigation method.
Under N45, there was no significant difference in the ratio of NO3

−-N residue of SNC1
to SNC among the three irrigation methods from 2016–2017, but SI and DI significantly
increased the ratio compared to CI under the same nitrogen application rate in the two
growing seasons. N45 significantly decreased the NO3

−-N residue in the 100–200 cm soil
profile (SNC2) compared to N90, but under the same nitrogen application rate in the two
years, CI significantly increased the SNC2 compared to micro-irrigation treatments, and no
significant difference in SNC2 was observed between SI and DI. It was noted that the ratio
of SNC2 to SNC in SI and DI was lower than that of CI under the same nitrogen application
rate, and there was no significant difference in the ratio between SI and DI.

Table 4. Effects of different irrigation methods and nitrogen application rates on soil NO3
−-N

accumulation of winter wheat at maturity.

Year Treatment
Soil NO3

−-N Accumulation Amount (kg·ha−1)
SNC (kg·ha−1)

SNC1 Ratio (%) SNC2 Ratio (%)

2016–2017 CIN45 38.0 ± 2.37 b 20.3 ± 1.15 b 148.9 ± 2.37 b 79.7 ± 1.15 a 186.9 ± 1.42 c
CIN90 64.0 ± 4.77 a 24.4 ± 4.91 b 198.1 ± 4.77 a 75.6 ± 4.91 a 262.1 ± 0.39 a
SIN45 39.5 ± 6.45 b 22.3 ± 5.39 b 138.0 ± 6.45 c 77.7 ± 5.39 a 177.5 ± 1.41 d
SIN90 63.2 ± 4.70 a 29.1 ± 0.99 a 154.0 ± 4.70 b 70.9 ± 0.99 b 217.2 ± 3.71 b
DIN45 41.1 ± 5.84 b 22.8 ± 4.44 b 139.0 ± 5.84 c 77.2 ± 4.44 a 180.1 ± 1.45 d
DIN90 66.5 ± 1.63 a 30.1 ± 1.90 a 154.5 ± 1.63 b 69.9 ± 1.90 b 221.0 ± 3.48 b

2017–2018 CIN45 92.8 ± 5.51 b 29.3 ± 1.14 c 224.2 ± 2.26 b 70.7 ± 1.14 a 316.9 ± 6.79 c
CIN90 125.4 ± 2.97 a 33.0 ± 0.82 b 254.2 ± 3.73 a 67.0 ± 0.82 b 379.6 ± 1.74 a
SIN45 95.1 ± 5.32 b 31.6 ± 0.87 b 206.1 ± 4.39 c 68.4 ± 0.87 b 301.2 ± 9.27 d
SIN90 128.2 ± 4.65 a 36.5 ± 0.97 a 222.7 ± 2.80 b 63.5 ± 0.97 c 350.9 ± 4.54 b
DIN45 98.1 ± 4.38 b 31.8 ± 0.58 b 210.5 ± 4.97 c 68.2 ± 0.58 b 308.6 ± 9.03 cd
DIN90 132.1 ± 3.37 a 37.2 ± 0.66 a 223.0 ± 2.31 b 62.8 ± 0.66 c 355.1 ± 3.96 b

CI, conventional irrigation method; SI, micro-sprinkling irrigation method; DI, drip irrigation method; N45
indicates 45 kg·ha–1 nitrogen was applied as top dressing; N90 indicates 90 kg·ha–1 nitrogen was applied as top
dressing. SNC, soil NO3

−-N accumulation in 0–200 cm soil depth; SNC1, soil NO3
−-N accumulation in 0–100 cm

soil depth; SNC2, soil NO3
−-N accumulation in 100–200 cm soil depth. Different letters indicate a significant

difference among different irrigation methods at p < 0.05 level. All the data are shown as the mean ± standard
error (n = 3).

4. Discussion

Spike number, grain number per spike and grain weight all affect wheat grain produc-
tion. Numerous studies have shown that insufficient nitrogen application causes a signifi-
cant decrease in GY of wheat, which mostly decreased the SN and GN but significantly
increased grain weight [36–38]. However, in this study, nitrogen reduction under three
irrigation methods had no significant impact on SN and GN, but significantly decreased
the TGW, which led to a fall in wheat’s GY when compared to the recommended nitrogen
application rate (Table 1). Tillering is an important phenological stage for winter wheat,
and there is a close correlation between tillering in spring and spike development [39]. The
number of tillers produced per plant has been found to be affected by limited nutrients [40].
Nitrogen deficiency has been recognized as an important nutrient factor to limit wheat
tiller growth and development [41]. We considered that the excessive nitrogen reduction
in earlier studies may have had a negative impact on the development of SN and GN in
wheat, and the lower SN and GN were beneficial to the increase in grain weight. In our
two-year study, the same nitrogen rate was applied under different treatments at sowing of
wheat, and all treatments were applied with nitrogen in spring, therefore, the reduction in
nitrogen did not have a negative impact on the SN and GN.
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The flag leaf is one of the most important photosynthetic organs of wheat, and it is the
basis for obtaining high grain weight and GY for wheat by delaying the leaf senescence
and maintaining a higher LAI during the grain filling period [14,42,43]. However, an
insufficient nitrogen application rate could easily lead to premature failure of wheat leaves,
reducing wheat GY [32]. A prior study revealed that micro-irrigation could greatly increase
the production of dry matter by delaying leaf senescence during grain filling, boosting the
grain filling rate and raising wheat’s TGW and GY [18]. In this study, nitrogen reduction
treatments significantly reduced GY under different irrigation methods, and GY in SI was
significantly higher than that of DI and CI, and CI had the lowest GY (Table 1). Additionally,
no significant difference in GY was found among CIN90, SIN45 and DIN45, and the greater
TGW accounted for the increased GY in SI and DI under nitrogen reduction. According to
Figure 2, compared to CI, SI and DI significantly increased the chlorophyll content at the
grain filling stage while maintaining high levels of LAI under the same nitrogen application
rate. Conversely, the chlorophyll content and LAI were significantly decreased when
nitrogen was reduced under the same irrigation method, but they were still significantly
higher in SI and DI than CIN90, which may be the reason why micro-irrigation treatments
could significantly improve the TGW. In addition, nitrogen application during the post-
anthesis of winter wheat could improve root activity and increase the photosynthetic rate
of flag leaf during the grain filling period [44], which may account for the higher grain
weight achieved by micro-irrigation treatments in this present study.

GY of wheat is directly related to dry matter production [45,46]. It is a promising
way to improve the DMM and HI of wheat through optimizing irrigation and nitrogen
application regime [11]. This study found that micro-irrigation significantly improved the
DMM compared with CI under the same nitrogen application rate (Table 2). However,
compared with N90, N45 significantly decreased the DMM under the same irrigation
method, but micro-irrigation with nitrogen reduction showed a similar DMM to CI with
the recommended nitrogen application rate, particularly in SI, which obtained the highest
DMM and HI. In addition, grain growth depends on the photosynthesis during the grain
filling period and the remobilization of pre-anthesis assimilates stored in vegetable organs
to grain [47,48]. In this study, micro-irrigation significantly increased the DM post anthesis
and increased the DMPR compared to CI under the same nitrogen application rate, which
may be related to the higher chlorophyll content and LAI in the filling period in SI and DI
(Figure 2).

Optimized irrigation practices are beneficial to improve the WUE of winter wheat [49,50],
and insufficient nitrogen supply may lead to significantly decreased crop yield as well as
WUE [32]. This study revealed that micro-irrigation greatly lowered ET when compared
with the conventional farmer irrigation method and significantly enhanced wheat GY and
WUE [14,51]. Furthermore, enhancing the water uptake and use from deeper soil profiles
by the crop is a very promising strategy to increase the WUE and enhance wheat yield
when irrigation is limited [12,52,53]. In this study, the ET in CI was significantly lower
than in micro-irrigation methods under N90, especially in SI, which may be because SI
and DI were beneficial to improving the micro-environment of the wheat canopy, and this
favors reducing the ineffective evaporation of soil water in the field [46]. However, under
N45, there was no significant change in ET among the various irrigation methods, and the
study of this effect is ongoing. Compared with CI under the same nitrogen application
rate, micro-irrigation significantly increased WUE of winter wheat, and WUE in SI was
the highest. In this investigation, we also discovered that micro-irrigation altered water
extraction of deep soil by winter wheat (Table 3, Figure 1). The water consumption of
the 0–100 cm soil profile under the same irrigation method was significantly increased by
SI and DI in the first growing season of winter wheat, but the deeper (100–200 cm) soil
water consumption under N90 in the second year was not significantly different among
the three irrigation methods, which may be related to the heavy rainfall during the filling
period of winter wheat in this year (Figure 1). Therefore, we suppose that a small amount
of micro-irrigation with two nitrogen application rates may have promoted the root to
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penetrate into the deep soil profile in this present study, and facilitated enhancing the
acquisition capacity for deep soil water of winter wheat, thereby improving WUE.

Optimizing nitrogen application is an important means to improve GY and NfUE of
wheat [32]. However, the nitrogen application rate has a great impact on the NfUE, as does
the irrigation regime [16,36,54]. Increasing the irrigation volume usually increases nitrogen
leaching, reducing soil’s available nitrogen accumulation in the root zone [14,55]. Previous
studies showed that soil NO3

−-N is easily leached into the deeper soil layer, especially
after a large amount of irrigation for wheat, causing larger NO3

−-N loss, which resulted
in the decrease in NfUE [56,57]. Furthermore, improper agricultural production practices
have had a serious impact on the eco-environment, and climate and environmental changes
have social consequences affecting people [58]. In addition, the frequent occurrence of
droughts over the last two decades has led to in rise in farmers’ concerns that field crop
production will not be possible without irrigation. The warmer climate will also shorten the
growing cycle of all crops [59]. In order to meet the growing demand from an increasing
world population, there is a need to increase wheat production. Fertilization and irrigation
have a great potential to enhance growth quality, grain yield and yield-related traits of
wheat [60–62]. Nevertheless, previous studies found that because of the small irrigation
volume and the divided nitrogen application, which encouraged wheat absorption and
utilization, the NfUE in micro-irrigation treatments significantly improved when compared
to conventional irrigation methods, and the soil NO3

−-N residue was significantly reduced
at maturity [13,14]. In this present study, micro-irrigation significantly improved the plants’
nitrogen accumulation at maturity when compared to CI at the same nitrogen application
rate, and that of SI was the highest. However, under N45, the NfUE in micro-irrigation was
significantly improved compared to CI (Figure 4), which was mainly due to the significant
increase in GY of micro-irrigation treatments (Table 1). In addition, the residual NO3

−-N of
micro-irrigation treatments in the soil at maturity was significantly decreased compared
to CI, which indicated that the micro-irrigation methods were conducive to reducing the
residual amount of soil NO3

−-N, and more nitrogen was absorbed and utilized by the
crop (Table 4). In comparison to SI and DI, CI greatly enhanced the soil NO3

−-N leaching
into the deeper soil depth with the same nitrogen application rate, which is also one of
the causes for the lowering of NfUE in CI. Furthermore, nitrogen deficit in wheat will
stimulate root growth into the deep soil layers to increase nutrient absorption, according to
Wang et al. (2014) [52]. In this study, the reason why micro-irrigation improved the WUE
and NfUE compared to CI may be that it led to lower NO3

−-N in the deeper soil layer
than in CI from the jointing to booting stage of wheat, and this period is greatly critical for
wheat root growth. However, more research will need to be carried out in the future on
the effects of different nitrogen application rates on winter wheat root growth and their
physiological mechanisms.

5. Conclusions

Compared with CI, using micro-irrigation with integrated water and N fertilizer, and
with irrigation and nitrogen application at jointing, booting, anthesis and grain filling of
winter wheat, could further reduce the nitrogen application rate and maintain the GY of
winter wheat, and improve WUE and NfUE, particularly in SI. The reason for the higher GY,
WUE and NfUE in micro-irrigation than in CI was because it delayed the leaf senescence
during the grain filling period, improved the DM post anthesis and increased the use
of water and nitrogen contained in deeper soil layers. Overall, using micro-irrigation
technology with reduced nitrogen application rate can guarantee the output and improve
the use efficiency of water and N fertilizer in the NCP.
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Abstract: Water is a key factor in global food security, which is critical to agriculture. The use of
mathematical models is a strategy for managing water use in agriculture, and it is an effective way
to predict the effect of irrigation management on crop yields if the accuracy of these models is
demonstrated. The CROPWAT and SALTMED models were tested in this study, with water quantities
applied to surface and drip irrigation (SI and DI) systems to estimate irrigation scheduling and
wheat yield. For this purpose, field experiments were conducted for two consecutive years to study
the effects of irrigation water levels of 80%, 100%, and 120% crop evapotranspiration (I80, I100, and
I120) on the yield and water productivity (WP) of wheat in SI and DI systems. Irrigation treatments
affected yield components such as plant height, number of spikes, spike length, and 1000-kernel
weight, though they were not statistically different in some cases. In the I80 treatment, the biological
yield was 12.8% and 8.5% lower than in the I100 and I120 treatments, respectively. I100 treatment under
DI resulted in the highest grain yield of a wheat crop. When DI was applied, there was a maximum
(22.78%) decrease in grain yield in the I80 treatment. The SI system was more water-consuming than
the DI system was, which was reflected in the WP. When compared with the WP of the I80 and I100

treatments, the WP was significantly lower (p < 0.05) in the I120 treatment in the SI or DI system.
To evaluate irrigation scheduling and estimate wheat yield response, the CROPWAT model was
used. Since the CROPWAT model showed that increasing irrigation water levels under SI for water
stress coefficient (Ks) values less than one increased deep percolation (DP), the I120 treatment had the
highest DP value (556.15 mm on average), followed by the I100 and I80 treatments. In DI, I100 and I120

treatments had Ks values equal to one throughout the growing seasons, whereas the I80 treatment had
Ks values less than one during wheat’s mid- and late-season stages. The I100 and I80 treatments with
DI gave lower DP values of 93.4% and 74.3% compared with that of the I120 treatment (on average,
97.05 mm). The I120 treatment had the lowest irrigation schedule efficiency in both irrigation systems,
followed by the I100 and I80 treatments. In both seasons, irrigation schedule deficiencies were highest
in the I80 treatment with DI (on average, 12.35%). The I80 treatment with DI had a significant yield
reduction (on average, 21.9%) in both seasons, while the irrigation level treatments with SI had nearly
the same reductions. The SALTMED model is an integrated model that considers irrigation systems,
soil types, crops, and water application strategies to simulate soil water content (SWC) and crop
yield. The SALTMED model was calibrated and validated based on the experimental data under
irrigation levels across irrigation systems. The accuracy of the model was assessed by the coefficients
of correlation (R), root mean square errors (RMSE), mean absolute errors (MAE), and mean absolute
relative error (MARE). When simulating SWC, the SALTMED models’ R values, on average, were
0.89 and 0.84, RMSE values were 0.018 and 0.019, MAE values were 0.015 and 0.016, and MARE
values were 8.917 and 9.133%, respectively, during the calibration and validation periods. When
simulating crop yield, relative errors (RE) for the SALTMED model varied between −0.11 and 24.37%
for biological yield and 0.1 and 19.18% for grain yield during the calibration period, while in the
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validation period, RE was in the range of 3.8–29.81% and 2.02–25.41%, respectively. The SALTMED
model performed well when simulating wheat yield with different water irrigation levels under SI
or DI.

Keywords: soil water content; water productivity; yield reductions; deficit irrigation

1. Introduction

Water scarcity has become a global problem with a significant impact on agricultural
production [1,2]. According to the most recent report [3], irrigation covers more than 20%
of global cultivated lands and contributes to more than 40% of global total food production.
Agricultural irrigation consumes the most water, but it yields the lowest return per unit
of water when compared with other economic sectors [4]. However, traditional irrigation
methods, such as flood irrigation, result in less water productivity (WP). There have been
many irrigation methods developed to increase WP throughout the world, including furrow
and drip irrigation [5]. Furrow irrigation is a finer form of surface irrigation (SI) in which
ridge tillage aids root development and water infiltration while reducing deep percolation,
causing an increase in WP [6–8]. Furthermore, drip irrigation (DI) has developed rapidly
over the past few decades. DI has a distinct advantage over conventional irrigation in
reducing water use and regulating salt through reduced evaporation and precise water use,
which plays an important role in agricultural production worldwide [9,10]. Deficit irrigation
is another water management technique that allows larger agricultural lands to be irrigated
with scarce water resources [11,12]. Because crops respond to water stress in different
ways at different stages of growth, this technique has a big impact on irrigation scheduling
while having a small impact on yield. When using deficit irrigation, an important factor
to consider is the timing and degree of water stress to which plants are exposed [13–15].
When crops are irrigated insufficiently, their roots grow deep into the soil and reach the soil
water, resulting in significant water savings without reducing crop yield, while increasing
WP and increasing net farm income [16–20].

Wheat (Triticum aestivum L.) has been adopted mostly as a food crop worldwide and is
the world’s most widely distributed cereal after maize, ranking eighth in the world. How-
ever, growers are concerned about its long-term production and yield in water-stressed
conditions [21]. Wheat farmers are currently facing a number of challenges, including
water shortages and uncertain water delivery schedules [22]. At all growth stages, wheat
needs sufficient soil moisture for normal growth and development, which can be achieved
by precise irrigation scheduling that minimizes overwatering [23]. Excessive use of water
can lead to waterlogging and nutrients leaching outside the root zone. To improve WP, it
is necessary to schedule proper irrigation with an adequate amount of water, as flooding
can reduce WP and crop yield [24]. Previous studies [25,26] have suggested that using
deficit irrigation to save water in wheat can be beneficial. Several studies have looked
at how different irrigation schedules affect wheat growth, yield, and WP [27–30]. Panda
et al. [27] reported that wheat WP was highest when irrigation was applied when the
available soil moisture was 45% depleted. According to Jalota et al. [28], reducing the num-
ber of irrigations to maximize WP and using less irrigation water would conserve wheat
grain yield in semi-arid environments. When compared with full wheat-crop irrigation,
Wang et al. [29] and Rao et al. [30] found that deficit irrigation improved WP by 11–40%.
As a result, developing water-saving farming techniques that decrease irrigation water
consumption while increasing WP to produce great and consistent yields similar to those
produced with reduced irrigation is critical for achieving sustainable agricultural develop-
ment [31–33]. Furthermore, decision-makers saved time by using mathematical models
to manage irrigation water and forecast production under various conditions [34]. These
models are an important tool for scientifically documenting irrigation scheduling with the
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goal of reducing water consumption and facilitating horizontal agriculture expansion by
utilizing limited irrigation water resources.

The use of CROPWAT to decide on an irrigation regime is one of the most popular
approaches to assessing irrigation performance and WP in irrigated areas. CROPWAT is an
irrigation management and planning application software established by a group of ex-
perts [35–38]. CROPWAT model’s calculations are based on guidelines for calculating crop
water requirements [39] and the yield response to water requirements [40]. The CROPWAT
model can be considered as a valuable method for calculating water irrigation requirements
for developing irrigation schedules based on the crop parameters and daily soil moisture
balance at maximum root depth, which can be used to estimate evapotranspiration using
different water source options and irrigation management conditions for a variety of crops
under various environmental conditions [41–48].

SALTMED is an integrated model that uses well-known physically based equations
to simulate soil water profiles, salinity distribution and nitrogen in the soil, leaching
requirements, crop growth and yield, taking into account water application strategies,
soil types, irrigation systems, crops, and various water qualities [49,50]. The SALTMED
model can be used to assess the future effect on irrigation management and predict water
distribution under automatic irrigation scheduling by running different scenarios under
different conditions and crop parameters [51]. Some research has been conducted on the
SALTMED model, which has shown that it can be used to manage water, crops, and soil
under a variety of irrigation applications and environmental conditions [34,52–58].

Therefore, our study aims to (1) compare changes in yield and water productivity of
wheat exposed to different water quantities under surface and drip irrigation systems; (2)
explore the CROPWAT model’s ability to evaluate irrigation scheduling and performance
during the wheat-growing stages; and (3) simulate soil water content (SWC), dry matter,
and grain yield of wheat using the SALTMED model and compare it with observed data
from field experiments.

2. Materials and Methods

2.1. Field Study Site

Field experiments were conducted during the two successive seasons of 2018/2019
and 2019/2020 in the Qarun Kebili region, El Fayoum, Egypt. This region has an altitude of
17 m above sea level at 29◦21′55′′ N latitude and 30◦27′11′′ E longitude. The experimental
site has a semi-arid climate, as shown in Figure 1, with air temperature (T), relative air
humidity (RH), rainfall, and reference evapotranspiration (ET0). From November to April,
the average T and RH concentrations were 16.2 ◦C and 54.9% in the first growing season,
respectively, and 17.9 ◦C and 58.9% in the second growing season, respectively. The rainfall
received in the first growing season was 20 mm, while in the second growing season it
was 12.2 mm. In the first and second growing seasons, ET0 was 490.7 mm and 459 mm,
respectively. In Table 1, the physical (i.e., texture, bulk density, field capacity, wilting point,
and saturated hydraulic conductivity) and chemical (i.e., electrical conductivity, pH, organic
matter, and soluble cations and anions) soil properties of the site were determined at two
soil depths (10–30 and 30–60 cm) after eliminating the top soil, by standard procedures
according to Page et al. [59] and Klute [60]. The soil of the experimental site had a loamy
sand texture. The water used to irrigate the experimental site had a pH of 5 and an electrical
conductivity of 2 dS m−1 for the experimental period.
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Figure 1. Daily values of climatic data at the experimental site throughout the two growing seasons.

Table 1. Physical and chemical properties of the soil at the experimental site.

Soil’s Physical Properties

Depth
(cm)

Particle Size (%)
Texture

ρb

(g cm−3)
FC
(%)

WP
(%)

θs

m3 m−3
TAW

m3 m−3

Ks

(mm h−1)Sand Silt Clay

0–30 72.1 11.9 16.0 Loamy sand 1.57 20.0 12.0 0.44 0.08 32.5
30–60 73.4 12.0 14.6 Loamy sand 1.51 19.5 11.5 0.43 0.08 33.1

Soil’s Chemical Properties

Depth
(cm)

ECe

(dS m−1)
pH OM

Soluble Cations (meq L−1) Soluble Anions (meq L−1)

Ca2+ Mg2+ Na+ K+ CO3
2− HCO3− SO4

2− Cl−

0–30 4.42 7.87 0.7 28.7 7.74 9.62 0.46 - 2.98 22.00 21.56
30–60 5.56 7.74 0.8 27.8 5.88 18.88 0.35 - 2.97 22.98 23.93

ρb: bulk density; FC: field capacity; WP: wilting point; θs: saturated moisture content; TAW: total available water;
Ks: saturated hydraulic conductivity; ECe: electrical conductivity; OM: organic matter.
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2.2. Experimental Layout and Design

The soil was plowed and leveled after the removal of plant debris prior to the estab-
lishment of the experimental layout. Before sowing wheat, all areas where corn was the
previous crop received 357 kg ha−1 P2O5 and 120 kg ha−1 K2O as fertilizer, which was
mixed using the disc harrow. After that, the soil was furrowed with 1.2 m spacing, and
flatbeds with 1 m width and 0.10–0.15 m height were the result. Wheat (Triticum aestivum L.
cv. Masr2) seeds were manually sown in the flatbeds at a rate of 110 kg ha−1 on 17 Novem-
ber 2018 for the first season and 15 November 2019 for the second season. Four NH4NO3
fertilizer doses (286 kg ha−1) were applied at 20, 30, 65, and 45 days after sowing (DAS),
with Fe-, Zn-, and Mn- fertilizer sprayed at 53 DAS. Herbicides were sprayed at a rate of
19 g ha−1 and 333 g ha−1 on 24 and 33 DAS, respectively. The wheat crop was harvested at
160 DAS (i.e., 25 April 2019 and 23 April 2020).

The total study area was divided into four fields, representing replications. Each field
contained two irrigation systems that were SI and DI, which represented the main blocks.
Each block had three plots which were irrigation water levels, namely, full [100% crop
evapotranspiration (ETc), I100], deficit [80% ETc, I80], and over [120% ETc, I120] irrigation. It
was maintained at a distance of 1 m between adjacent plots to prevent the potential impact
of water leakage. The randomized complete block design (RCBD) was used.

In surface irrigated plots, the water was supplied through perforated PVC pipe with a
63 mm outside diameter along the plot width. In drip-irrigated plots, surface laterals were
installed with inline emitters at 50 cm spacing on the lateral line and a 3.5 L h−1 flow rate
at an operating pressure of 100 kPa. The laterals were placed in the center of the flatbeds
and furrow bottoms (i.e., lateral spacing of 60 cm). The irrigation interval time for SI and
DI treatments was selected to be 12 and 4 days, respectively. All plots were irrigated based
on the crop evapotranspiration (ETc) under standard conditions, which was calculated
according to the following equation [39]:

ETc = Kc × ET0 (1)

where Kc is the crop coefficient and ET0 is the reference evapotranspiration (mm day−1).
On the basis of field observations of crop stages using the FAO-56 data [39], Kc was

determined to be 0.35 for the initial stage (up to 20 DAS), 1.15 during the mid-season
stage of 51 to 115 DAS, and 0.25 during the late-season stage of 116 to 160 DAS, and the
development stage was from 21 to 50 DAS. The Penman–Monteith FAO-56 equation [39]
was used to calculate ET0 on a daily basis from the measured climatic data:

ET0 =
0.408Δ(Rn − G) + γ 900

Ta+273 u2(es − ea)

Δ + γ(1 + 0.34u2)
(2)

where Rn is net radiation (MJ m−2 day−1), G is the soil heat flux (MJ m−2 day−1), γ is the
psychrometric constant (kPa ◦C−1), Ta is the mean air temperature at 2 m height (◦C), u2 is
the wind speed at 2 m height (m s−1), es is the saturation vapor pressure (kPa), ea is the
actual vapor pressure (kPa), and Δ is the slope of the saturation vapor pressure–temperature
curve at mean air temperature (kPa ◦C−1).

2.3. Measurement of Soil Water Content

In the irrigation level plots, time domain reflectometry (TDR) probes (Trime FM; IMKO
GmbH; Germany-76275 Ettlingen) were installed for continuous monitoring of the SWC
over the two growing seasons. In each plot, a 60 cm-long probe was installed after the
measurements of the TDR sensors were calibrated. A data logger was used to record
SWC data.
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2.4. Measurements of Yield Components, Grain Yield, and Water Productivity

Prior to harvesting and at the maturity stage of wheat, sheaves were randomly selected
from each treatment area to measure the following data: plant height (cm), spike length
(cm), spikes per unit area (m−2), 1000-kernel weight (g), grain yield (GY, Mg ha−1), and
biological yield (Mg ha−1).

Plant length and spike length were measured at each plot. The number of spikes was
calculated by cutting them from sheaves, counting them, and recalculating the m2 area.
1000-kernel weight (g) were determined by rubbing out grains from randomly selected
20 plants in each treatment, counting, and weighing them by scales Kern KB 1200-2 [61].
The GY (Mg ha−1) was calculated from each treatment’s area by weighting grain samples
after air drying and reaching a water content of 14% (g H2O g−1 fresh weight) [62] and
then biological yield was measured. To avoid border effects, flatbeds on every side of each
plot were not considered at harvest. The harvest index (HI) was determined by dividing
grain yield by biological yield. According to Kijne et al. [63], the WP (kg m−3) is defined as the
ratio of GY (Mg ha−1) to the amount of applied water (W, m3 ha−1) (irrigation water + effective
rainfall) as follows:

WP =
GY
W

(3)

2.5. Maximum Grain Yield

The relationship between GY and W is called the grain water production function
(GWPF). As some of the excess applied water is drained or lost, the GWPF becomes
curvilinear. It expresses the benefit of applied water in terms of grain yield or biological
yield. Helweg’s [64] quadratic polynomial function was written as follows:

GY = bo + b1W + b2W2 (4)

where b0, b1, and b2 are fitting coefficients for a specific irrigation system.
When at the maximum GY (GYmax) value, the slope of the GWPF against W goes to

zero, therefore differentiating Equation (4) and equalizing by zero.

dGY
dW

= b1 + 2b2W = 0 (5)

The maximum applied water (Wmax) was calculated as follows:

Wmax =
−b1

2b2
(6)

Then the predicted GYmax was calculated by substituting the Wmax in Equation (4) [56].

GYmax = b0 + b1Wmax + b2W2
max (7)

2.6. CROPWAT Model

The United Nations Food and Agriculture Organization (FAO) [35–38] developed the
CROPWAT version 8.0 model [65], which is a software package. The CROPWAT model
is frequently used for planning and managing irrigation projects based on the method
described in Allen et al. [39]. The CROPWAT model was used to calculate crop water
requirements and evaluate irrigation schedules for different irrigation strategies in this
study. Climatic, crop, and soil variables are included in the CROPWAT model’s input data.

- The daily ET0 values were calculated using the Penman–Monteith FAO-56 equation
(Equation (2)), which was based on climatic data from the Central Laboratory for
Agricultural Climate’s Meteorological Data, as well as the daily rainfall data, for
the seasons of 2018/2019 and 2019/2020. The actual crop evapotranspiration was
estimated by multiplying ET0, Kc, and 0.8, 1, or 1.2. The efficiencies of SI and DI were
estimated through field investigation, which was about 69% and 93%, respectively.
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Irrigation application depth was then estimated at irrigation events for SI and DI, as
shown in Figure 2.

- Planting and harvesting dates, duration and water stress coefficient (Ks) of crop growth
stages, and root depth were all included in the crop data. In addition, according to
Allen et al. [39], the depletion fraction (p) (0.65 for initial and mid-season stages, and
0.57 for late-season stage) were calculated using the following equation:

p = pET5 + 0.04(5 − ETc) (8)

where pET5 is the depletion fraction at ETc = 5 mm/day, which is equivalent to winter
wheat as 0.55 [39].

- Total available soil water from measured data (Table 1), maximum rooting depth and
maximum rain infiltration rate from FAO, and initial soil moisture depletion from the
CROPWAT program were among the soil data.

Figure 2. Applied irrigation water at the timing intervals for different treatments in both growing
seasons. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc, SI = surface
irrigation, and DI = drip irrigation.

Accordingly, irrigation schedules were developed for 80% ETc, 100% ETc, and 120%
ETc with the irrigation systems, namely, SI and DI. The CROPWAT model produces a variety
of parameters that can be used to compare irrigation schedules. The output parameters are:
root zone depletion (Dr), deep percolation (DP), efficiency of the irrigation schedule (EIS),
deficiency of the irrigation schedule (DIS), and yield reduction (YR).

Due to the fact that soil water budget parameters are often expressed as depths of water,
the Dr is useful since it makes adding and subtracting losses and gains straightforward.
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The soil water balance was performed in the schedule module of CROPWAT according to
Swennenhuis [65] to estimate the daily Dr (Equation (9)).

Dr,i = Dr,i−1 + (ETc,i)actual − Pi − Ii + ROi + DPi (9)

where Dr,i, and Dr,i−1 are on days i and i − 1; Pi is the total rainfall over day i; Ii is net
irrigation on day i; ROi is water loss by runoff from the soil surface on day i—since the
ends of the plots in SI system were closed in our study, the RO was zero; and DPi is water
loss by deep percolation on day i. If irrigation was used, the Dr was calculated before it
was applied.

The readily available water (RAW) is the p fraction of total available water (TAW) that
a crop can extract from the root zone without being stressed by water. At a given soil depth,
RAW is expressed as a percentage or in mm, as follows:

RAW = p × TAW (10)

When daily Dr,i is less than RAWi, daily Ks,i = 1. Under soil water limiting conditions,
Dr,i is greater than RAWi and Ks,i < 1 and is given by Allen et al. [39] as:

Ks,i =
TAWi − Dr,i

TAWi − RAWi
(11)

Irrigation water reaching the root zone, Ii, is not always advantageously used by
the crop due to irrigation losses such as DPi in our study. Therefore, the EIS evaluates
how advantageously the Ii contributions are used by the crop over the growing period, as
follows [65]:

EIS =
∑(Ii − DPi)

∑ Ii
× 100 (12)

The relationship between seasonal potential water use by crop (ETc under standard
conditions) and seasonal actual water use by crop is expressed by the DIS that was calcu-
lated by [65]:

DIS =
Seasonal (ETc)potential − Seasonal (ETc)actual

Seasonal (ETc)potential
× 100 (13)

Due to soil water stress, YR was also used in the scheduling performance analysis. YR
was estimated as a percentage of the maximum crop yield achievable in the case of full
satisfaction of crop water needs (GYmax) [37], as follows:

YR =

(
1 − GYa

GYmax

)
= Ky

(
1 − (ETc)actual

(ETc)potential

)
(14)

where GYa is the grain yield achievable under actual conditions, and Ky is the yield
response factor. For initial, development, mid-season, and late-season stages, as well as the
total growing period, Ky is set to 0.4, 0.6, 0.8, 0.4, and 1.0, respectively [40]. As a result, the
best irrigation schedules are those that combine an irrigation interval and depth that result
in a low DP and a reasonable YR.

2.7. SALTMED Model

The SALTMED model version 3.03.21 [49,50] was used for the simulation of SWC, total
dry matter (biological yield), and grain yield of wheat by considering irrigation systems and
different irrigation water quantities during the two seasons of 2018/2019 and 2019/2020.
The data required depends on two main components: the first is for selected application
options (global model parameters) and the second is for the interest of the user (field data).
The user is not required to provide all of the data in the model tabs. For some applications,
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the model has multiple options. The user only needs to provide data for the options that
are required. The data requirements for the SALTMED model may be directly measured in
laboratory and field conditions, or default values may be provided from the SALTMED
database for different plant species and soil types. In our study, the data requirements were
as follows:

1. Climate data, including the daily data of maximum and minimum temperatures,
wind speed, sunshine hours, rainfall, relative humidity, total solar radiation, and
net radiation. The Penman–Monteith FAO-56 equation (Equation (2)) was used to
calculate the daily ET0 values.

2. Irrigation management data, including applied irrigation water amounts, dates of
irrigation events, and irrigation water quality, were based on field measurement data.

3. Soil parameters, including saturated SWC, initial soil moisture, saturated hydraulic
conductivity, and salinity, were based on measurements either in the laboratory or in
the field. Soil evaporation coefficient (Ke) values were taken from Allen et al. [39]. The
Richards equation was used in the model to simulate two-dimensional water flow in
the soil. The analytical functions of van Genuchten [66] in the model were used for
determining soil hydraulic properties (i.e., the soil water pressure head and hydraulic
conductivity relationships).

4. Crop parameters, including plant height, maximum and minimum root depth, leaf
area index, length of the growth stage, and sowing and harvesting dates, were ob-
tained from field measurements. From Allen et al. [39], Kc and fraction cover (Fc) for
the initial, middle, and late growth stages were taken. Basal crop coefficient (Kcb)
values were then estimated as:

Kcb = Kc − Ke (15)

To simulate crop yield, there are two options in the model: the first by calculating the
harvest index and the daily biomass production; and the second, which was used in our
study, by using the relative yield index (RY), which is a ratio between the sum of the actual
water uptake over the season and the maximum water uptake. Actual yield (AY) can then
be calculated as follows:

AY = RY × GYmax (16)

The SALTMED model was calibrated and validated for values of SWC, total dry
matter (biological yield), and grain yield. The SALTMED model was calibrated for the
2018/2019 growing season by using default values of soil and crop parameters, as well
as other measured values of these parameters from the field and laboratory, without any
adjustments. Then, to achieve the best agreement between the measured and simulated
parameters, a trial-and-error method was used to adjust both soil and crop parameters of
the relevant model, namely soil pore-size distribution index, air-entry value, Kc, Ke, Fc,
leaf area index, and photosynthesis efficiency. In the validation process, the SALTMED
model used data collected during the 2019/2020 growing season to compare observed and
simulated SWC, as well as biological and grain yields data of treatments.

2.8. Performance Accuracy Criteria

Five criteria indicators, namely the coefficient of correlation (R), the root mean square
error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and the
relative error (RE), were selected to assess the accuracy of the proposed models. These
criteria can be expressed as follows:

R =
∑n

i=1
(
Oi − O

) (
Si − S

)
√

∑n
i=1
(
Oi − O

)2·∑n
i=1
(
Si − S

)2
(17)
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RMSE =

√
∑n

i=1(Si − Oi)
2

n
(18)

MAE =
∑n

i=1|Si − Oi|
n

(19)

MARE =
1
n

(
n

∑
i=1

∣∣∣∣Si − Oi

Oi

∣∣∣∣× 100

)
(20)

RE =
(Si − Oi)

Oi
× 100 (21)

where Oi and Si are observed and simulated values, respectively, O and S are the average
observed and simulated values, respectively, and n is the number of observations.

The degree of correlation between the observed and simulated values is measured
by R. RMSE expresses the error in the same units as the variable and measures how close
simulated values are to observed values [67]. MAE is a measure of how close the predicted
values to the experimental values [68]. An acceptable goodness of fit is indicated by an
R value close to 1, and RMSE, MAE, and MARE values close to 0. RE describes bias as a
percentage provided by models.

2.9. Statistical Analysis

Using CoStat software (Version 6.303, CoHort, Monterey, CA, USA, 1998–2004) [69],
the data from the two growing seasons were subjected to ANOVA analysis following
a RCBD with four replicates of each treatment. The significant differences between the
two treatment means of the measured parameters of GY, its components, and WP were
evaluated using the least significant difference (LSD) method at a 5% significant level [70].

3. Results and Discussion

3.1. Irrigation Water Applied

Irrigation water applied to wheat for the 2018/2019 and 2019/2020 growing seasons
was presented in Figure 2. The amount of irrigation water applied in the first growing
season was higher than in the second. It is possible that this is due to climatic differences.
The air temperature was lower in 2019/2020 than in 2018/2019, while rainfall and relative
humidity were higher in 2019/2020 than in 2018/2019 (Figure 1). In both growing seasons,
increasing the irrigation level increased the total water applied, as expected. Regarding
the irrigation system in Figure 2, the total water applied increased with the SI system in
both growing seasons. The highest total irrigation water applied value was obtained in
the I120 treatment under the SI system, which was 930 mm in the first growing season and
871 mm in the second growing season, while under the DI system it was 492 mm and
450 mm, respectively. In this study, full-irrigated (I100) wheat plants had a similar total
irrigation water applied value to those obtained by Moussa and Abdel-Maksoud [71] and
Abdelkhalek et al. [72].

3.2. Yield Components and Grain Yield

Table 2 shows the analysis of variance for wheat yield components and grain yield
in the 2018/2019 and 2019/2020 growing seasons. Plant height and spike length were not
significantly (p > 0.05) affected by the systems and levels of irrigation and the interaction
between them in both seasons. The values of plant height ranged from 95.25 cm to 100.25 cm
in the 2018/2019 season and from 95.75 cm to 100 cm in the 2019/2020 season. While the
spike length was between 9.25 cm and 10 cm in the first and second seasons, there was a
significant difference in the number of spikes (p < 0.05) between different irrigation levels
only in the second season, whereas there were no significant differences (p > 0.05) between
the spikes number values in the first season. The I100- and I120-treated plants in 2019/2020
showed no significant differences in the number of spikes (Figure 3), while the I80-treated
number of spikes was significantly reduced by 17.86% and 14.48%, respectively, compared
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with the I100 (396 spikes) and I120 (380 spikes) plants. Irrespective of the irrigation systems,
the irrigation level treatments showed a significant effect on the 1000-kernel weight and
biological yield in both seasons (Table 2). Figure 4 showed that the 1000-kernel weight
and biological yield decreased with decreasing or increasing water levels than I100, but
the decrease was more pronounced under I80 than under I120. In 2018/2019, the 1000-
kernel weight values of I80 and I120 were decreased, compared with I100 (47.5 g), by 22.24%
and 12.11%, respectively, while the value (38.88 g) for I80 was decreased by 17.07% in
2019/2020. The same trend applied to biological yield; the average value for I80 and I120
was 16.38 Mg ha−1 in 2018/2019. The corresponding I100 value was 18.13 Mg ha−1. In
2019/2020, the I80 treatment had the lowest biological yield of 14.78 Mg ha−1 (a 13.99%
decrease from the I100 value). According to Pandey et al. [73], as the amount of irrigation
water applied increased, the growth rate and biological yield of wheat increased as well.
Therefore, Table 2 shows that yield components of the wheat had non-significant differences
between irrigation systems in both seasons. This is consistent with the findings of Eissa [74]
and Noreldin et al. [75], who found that the irrigation system had no significant effect on
the wheat plant characteristics studied.

Table 2. Statistical analysis results for grain yield and yield components of wheat under different
treatments in both growing seasons.

Treatments

Plant
Height

Number of
Spikes

Spike
Length

1000-Kernel
Weight

Biological
Yield

Grain
Yield

Harvest
Index

df
p-

Value
LSD

p-
Value

LSD
p-

Value
LSD

p-
Value

LSD
p-

Value
LSD

p-
Value

LSD
p-

Value
LSD

2018/2019
Irr. syst. 1 0.1417 ns 0.2680 ns 0.3037 ns 0.1063 ns 0.0747 ns 0.0188 0.51 0.4502 ns
Irr. lev. 2 0.9522 ns 0.4414 ns 0.1998 ns <0.001 1.58 0.0239 1.48 0.0008 0.63 0.1491 ns

Irr. syst. × Irr. lev. 2 0.2830 ns 0.4651 ns 0.9103 ns 0.3825 ns 0.2375 ns 0.0405 0.89 0.1187 ns
CV, % 3.78 19.44 6.05 3.53 8.17 8.26 6.86

2019/2020
Irr. syst. 1 0.4590 ns 0.2852 ns 0.9403 ns 0.2042 ns 0.0919 ns 0.0476 0.52 0.2376 ns
Irr. lev. 2 0.3757 ns <0.001 21.99 0.3518 ns 0.0022 3.93 <0.001 0.57 <0.001 0.64 0.0853 ns

Irr. syst. × Irr. lev. 2 0.0829 ns 0.5231 ns 0.4794 ns 0.5828 ns 0.3245 ns 0.4472 ns 0.3028 ns
CV, % 2.74 5.63 6.91 8.57 3.29 8.85 10.83

Irr. syst.: irrigation systems; Irr. lev.: irrigation levels; df: degrees of freedom; LSD: least significant difference; ns:
non-significant; CV: coefficient of variation.

Figure 3. Number of wheat spikes under three irrigation levels in the 2019/2020 growing season (values
are averages of two irrigation systems). According to the least significant difference test at p < 0.05, the
same letters indicate statistically no significant differences. I80 = 80% crop evapotranspiration (ETc),
I100 = 100% ETc, and I120 = 120% ETc. Vertical lines give the means ± SE of the mean (n = 8).
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Figure 4. 1000-kernel weight and biological yield in wheat under three irrigation levels in each
growing season (values are averages of two irrigation systems). According to the least significant
difference test at p < 0.05, the same letters within a growing season indicate statistically no significant
differences. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, and I120 = 120% ETc. Vertical
lines give the means ± SE of the mean (n = 8).

As shown in Table 2, irrigation level treatments had a significant (p < 0.05) effect on
grain yield regardless of the irrigation system in both seasons. The average values of grain
yield under DI were 7.46 and 7.03 Mg ha−1, respectively, in 2018/2019 and 2019/2020,
whereas the values under SI were significantly (p < 0.05) decreased by 8.50% and 7.50%,
compared with those of DI (Figure 5a). Irrespective of the irrigation systems, the value of
grain yield for I100 (7.89 and 7.52 Mg ha−1) was significantly (p < 0.05) the highest, followed
by I120 (decreasing by 10.05% and 5.29%, respectively) and later by I80 (decreasing by 18.34%
and 24.58%, respectively) in 2018/2019 and 2019/2020 (Figure 5b). According to Mugabe
and Nyakatawa [76], applying 75% of the wheat crop’s water requirements reduced yields
by 12% in two years. Low yields in the case of deficit irrigation, especially in cases of water
limitation, may be offset by increasing production with additional water supply through
deficit irrigated areas [77]. Table 2 shows that the interaction between irrigation systems
and irrigation levels was significant (p < 0.05) in 2018/2019 but not significant (p > 0.05)
in 2019/2020. In 2018/2019 (Figure 6), the I100 with DI treatment (8.21 Mg ha−1) had the
highest grain yield, but without significant differences with the I120 with DI and I100 with
SI treatments. The I80 with DI treatment (6.34 Mg ha−1) had the lowest value, but without
significant differences with the I120 with SI and I80 with SI treatments. Finally, there were
non-significant effects (p > 0.05) on the harvest index (Table 2).
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Figure 5. Grain wheat yield in each growing season under (a) two irrigation systems (values are
averages of three irrigation levels, n = 12), and (b) three irrigation levels (values are averages of
two irrigation systems, n = 8). According to the least significant difference test at p < 0.05, the same
letters within a growing season indicated statistically no significant differences. I80 = 80% crop
evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc, SI = surface irrigation, and DI = drip
irrigation. Vertical lines give the means ± SE of the mean.

Figure 6. Grain yield in wheat under irrigation levels across irrigation systems in 2018/2019 growing
season. According to the least significant difference test at p < 0.05, the same letters indicate statistically
no significant differences. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc,
SI = surface irrigation, and DI = drip irrigation. Vertical lines give the means ± SE of the mean (n = 4).
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3.3. Grain Yield–Water Relationship

From the regression analysis of the crop water production function in Figure 7, it
is shown that the GYmax values for plants treated with SI were 7.57 and 7.48 Mg ha−1,
respectively, in the first and second seasons, and the corresponding calculated Wmax values
were 7738 m3 and 7379 m3. While the corresponding values for plants treated with DI were
8.33 and 7.84 Mg ha−1, respectively, the Wmax values were 4343.9 m3 and 4086.8 m3. Thus,
it was found that the highest YR values (13.52–27.02%) were achieved with deficit irrigation
(I80) under the two irrigation systems in both seasons, except in the first season under SI,
where the plants treated with I120 gave a slightly greater YR than those with I80. The least
YR (0.06–2.77%) was for the full irrigation (I100) plants.

Figure 7. Relationship between grain yield (GY) and applied water (W) under different irrigation
systems. SI = surface irrigation, and DI = drip irrigation. Vertical lines give the means ± SE of the
mean (n = 4).

The results in Figure 8 showed that the SI system was the most water-consuming,
followed by the DI system, which was the least water-consuming system. In terms of WP,
the DI of the I100 treatment was found to be the best. No significant (p > 0.05) WP decrease
was observed when using the DI of I80 treatment, where the WP decreased from 2.01 to
1.94 kg m−3 in the first season and from 2.05 to 1.97 kg m−3 in the second season for I100
and I80, respectively. The I120 with either the SI or DI system was the most affected as WP
decreased significantly (p < 0.05); however, it increased the water amount. Deficit irrigation,
according to Geerts and Raes [78] and Pereira et al. [79], can increase WP by reducing
the water loss from unproductive evaporation, increasing harvest index, and controlling
pests and diseases during crop growth. Due to the relatively small increase in grain yield
with increased evapotranspiration, Maurya and Singh [80] reported a decrease in WP with
increased irrigation levels.
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Figure 8. Water productivity in wheat under different irrigation levels across irrigation systems in
each growing season. According to the least significant difference (LSD) test at p < 0.05, the same
letters within an irrigation system indicate statistically no significant differences. Different letters
between brackets represent significant differences between irrigation systems based on the LSD
test with p < 0.05 within growing season. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc,
I120 = 120% ETc, SI = surface irrigation, and DI = drip irrigation. Vertical lines give the means ± SE of
the mean (n = 4).

3.4. CROPWAT Model

Figure 9 shows the soil water balance for wheat in the 2018/2019 and 2019/2020
growth seasons with the CROPWAT model under irrigation levels across irrigation systems.
Irrigation scheduling was evaluated by the crop’s daily water requirements, the soil’s
properties (particularly its TAW or water-holding capacity), and the root’s effective depth.
The TAW evolved in two phases: a filling phase when reserves reached 40 mm at 50 DAS,
and a continual stabilization phase from that day through the conclusion of the cycle. The
RAW went through a filling phase when reserves reached 20 mm at 50 DAS and then
stayed in a steady phase till the cycle ended. The CROPWAT model directly calculates
the root growth increase from the first day of vegetation [81]. The same behavior of soil
depletion was found in the irrigation-level treatments under SI, where the soil depletion
approached the lower limit of RAW at 75 DAS in the 2018/2019 season, while the crop
entered stress at 87 DAS in the 2019/2020 season (Figure 9). The crop reached peak stress
at 126 DAS and 114 DAS with depletion values of 34.4 mm and 31.7 mm (TAW = 40 mm),
respectively, in both seasons. Figure 9 shows that the shape of the depletion curves for
irrigation level treatments with DI was very similar in the first 20 days. There were
considerable differences in irrigation schedules, as the depletion values for the I100 and
I120 treatments were between the FC and the RAW throughout the growth seasons. The
drip-irrigated plot with a water saving of 20% (I80) gave water stress during the mid-
and late-season stages, where the maximum depletion was at 106 DAS (31.9 mm) in the
2018/2019 season and 142 DAS (28.7 mm) in the 2019/2020 season. When soil water is
extracted through evapotranspiration, depletion increases, and stress occurred when Dr
equaled RAW. The Dr exceeded RAW (the water content fell below the threshold), which
limited evapotranspiration to less than potential ETc values, and the crop consumption
decreased proportionally to the amount of water retained in the root zone [65]. Accordingly,
Figure 10 shows that the lowest Ks values (0.28 and 0.48) in SI treatments were achieved at
126 DAS and 114 DAS (late-season stage). While in DI treatments, the Ks values were not
less than one throughout the growing seasons in the I100 and I120 treatments (Figure 10),
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while the Ks values were less than one in the I80 treatment from 75 DAS (Ks of 0.92) in
the 2018/2019 and 87 DAS (Ks of 0.9) in the 2019/2020 (i.e., mid-season) to the end of
the season.

Figure 9. Water balance of wheat during each growth season under different irrigation levels across
irrigation systems. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc,
SI = surface irrigation, and DI = drip irrigation.
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Figure 10. Daily water stress coefficient (Ks) for wheat during each growth season under different
irrigation levels across irrigation systems. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc,
I120 = 120% ETc, SI = surface irrigation, and DI = drip irrigation.

On the other hand, the DP (i.e., irrigation losses) with irrigation levels occurred
throughout the seasons. In SI, the I120 treatment had the highest DP values (596 and
516.3 mm in both seasons), while the I100 and I80 treatments gave 26% and 52% lower values
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in 2018/2019, respectively, and 28.1% and 55.2% in 2019/2020, respectively, compared
to the I120 treatment (Figure 11). Hence, the EIS values were the highest with the I80
treatment (on average 56.7%), followed by the I100 and I120 treatments (on average 45.5%
and 37.8%, respectively).

Figure 11. Total irrigation losses, actual water use by crop, efficiency and deficiency of irrigation
schedule (EIS and DIS), and yield reduction (YR) under different irrigation levels across irriga-
tion systems in each growing season. I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc,
I120 = 120% ETc, SI = surface irrigation, and DI = drip irrigation.

In DI, the DP occurred in I80 and I100 treatments in about the first 45 DAS, where total
DP values were 7.4 and 28.8 mm for I80 and I100 treatments, respectively, in 2018/2019 and
5.4 and 21 mm, respectively, in 2019/2020 (Figure 11). While I120 treatment had DP over
both seasons, the total values were 101 mm and 93.1 mm in 2018/2019 and in 2019/2020,
respectively. The EIS values for the I80 and I100 treatments were high at 90%, whereas the
I120 treatment had an EIS value of 79% in both seasons (Figure 11).

The (ETc)potential with the CROPWAT model was estimated at 370.8 mm in the
2018/2019 season and 336 mm in the 2019/2020 season. The (ETc)actual values’ SI treat-
ments were higher in the 2018/2019 season (on average, 325 mm) than in the 2019/2020
season (on average, 313.3 mm) (Figure 11). Knežević et al. [81] reported that (ETc)actual
values of winter wheat in Serbia were 345.4 mm and 463.3 mm on soils with a medium and
high TAW, respectively, obtained with the CROPWAT model under rainfed conditions. In
the I80 treatment, the obtained (ETc)actual values with DI were around 5 mm and 13 mm in
the first and second seasons, respectively, which were lower than those obtained with SI.
The I80 treatment with DI had the highest values of DIS (13.8% and 10.9%) in both seasons.
On the contrary, in the I100 and I120 treatments, the (ETc)actual values for DI were greater,
on average, by 13.8% and 7.1%, than those for SI. Therefore, the I100 and I120 treatments
with DI had the lowest values of DIS (on average, 0.5% and 0.4%, respectively).

Figure 11 indicates the effect of irrigation scheduling on grain yield potential. During
the I80 treatment with DI in the 2018/2019 and 2019/2020 seasons, tests of irrigation
levels across irrigation systems showed significant yield reduction results (24.5 and 19.3%,
respectively), while yield reductions across the irrigation level treatments under SI were
similar in each season (21.7% in 2018/2019 and 12.2% in 2019/2020). The relative yield
obtained with the simulations was compared with the measured yield. The GYmax ranged
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from 7.48 Mg ha−1 with SI in the 2019/2020 season to 8.33 Mg ha−1 with DI in 2018/2019
(Figure 7). The highest relative yields were achieved with irrigation-level treatments under
DI (RE between −0.78% and 7.65%) in both seasons. In SI, the highest relative yield (99%)
was estimated in 2019/2020 with I120 treatment (RE of −1%), while the lowest relative yield
(78.35%) was estimated in 2018/2019 with I100 treatment (RE of −21.65%). According to the
results of the CROPWAT model in study of Zhou and Zhao [82], an appropriate SI schedule
for wheat in sandy soil included more frequent irrigation and lower application depth; this
schedule can reduce deep percolation and save approximately 10–20% of irrigation water
without affecting crop yield.

The CROPWAT model’s outputs show that irrigation is crucial in the middle and late
stages of wheat production to avoid yield reductions. Deficit irrigation may be used in
areas where water is a limited resource for crop production. Deficit irrigation reduces
irrigation water in certain crop growth stages that are thought to be the least sensitive
to water stress, without affecting yields, to deal with water issues in areas where supply
is limited [83,84]. A well-designed irrigation schedule can improve water productivity
over a large area when full irrigation is not possible. However, because of the relationship
between ETc and crop yield, a yield reduction is expected [47,84,85].

3.5. SALTMED Model

The ability of the SALTMED model to represent the experimental data was examined
during the periods of calibration (growing season 2018/2019) and validation (growing
season 2019/2020) under different irrigation treatments. The SALTMED model was able
to simulate SWCs with relatively high accuracy during the calibration period, based on
the criteria indices presented in Table 3. In this period, the model for I80 in SI had the
lowest RMSE, MAE, and MARE values, and vice versa in DI. The differences between
measured and simulated SWCs were greatest in the SI for the I100 and I120 treatments,
which had the highest RMSE, MAE, and MARE values. This can be explained by the
fact that water infiltrated deeper into the soil during individual irrigation events in full
and over-irrigation (I100 and I120) treatments compared with water-saving irrigation (I80)
treatment. Furthermore, when simulating SWCs under the DI, more precise results were
obtained, with lower RMSE, MAE, and MARE values for irrigation-level treatments than
with SI. This is due to lower SWC differences in DI as a result of limited irrigation and root
water uptake [86].

Table 3. Statistical indices comparing the measured and the SALTMED-simulated soil water content
for various irrigation treatments during the calibration (the 2018/2019 growing season) and validation
(the 2019/2020 growing season) periods.

Irrigation
Systems

Irrigation
Levels

2018/2019 2019/2020

RMSE MAE MARE, % RMSE MAE MARE, %

SI I80 0.019 0.016 9.0 0.018 0.015 8.5
I100 0.022 0.02 11.5 0.020 0.018 9.9
I120 0.022 0.02 11.4 0.021 0.019 10.3

DI I80 0.018 0.015 9.7 0.017 0.013 8.8
I100 0.016 0.011 6.6 0.023 0.018 11.3
I120 0.015 0.009 5.3 0.017 0.010 6.0

Figure 12 shows scatter plots comparing the SALTMED model estimates for SWC
to the SWC-measured data. In addition, linear regression is used to evaluate the model
statistically. As shown in Figure 12, the results of the model show that points for irrigation
level treatment under SI are located above the 1:1 line (perfect line), whereas in the DI,
many points are located above and below this line. The fit line equations also show that
under SI or DI, the I120 treatment had the lowest slope and the highest intercept. This
indicates that the I120 treatment produced a lower R value.
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Figure 12. The observed and the SALTMED-simulated soil water content (SWC) for different irriga-
tion levels across irrigation systems during the calibration period (i.e., the 2018/2019 growing season).
I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc, SI = surface irrigation, and
DI = drip irrigation.

In the validation period (the 2019/2020 growing season), the RMSE, MAE, MARE,
and R values varied between 0.017–0.023, 0.01–0.019, 6.0–11.3%, and 0.62–0.95. The lowest
RMSE, MAE, and MARE values (Table 3), were found in the SALTMED-simulated SWC
values for the I80 treatment under SI. In DI, the I120 treatment presented the lowest RMSE,
MAE, and MARE values. In Figure 13, the R value of the I120 treatment under SI or DI
was the lowest compared with other treatments. The slope and intercept for the fitted
line equation for the I80 treatment had the highest and the lowest values of 0.68 and 0.06,
respectively, under SI, while these values were 0.66 and 0.05 under DI, according to the
scatter plots in Figure 13. This indicates that around the 1:1 line, there was less scatter
and more clustering. As a result, the SALTMED model can account for both temporal and
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spatial variations in SWCs in response to various treatments. According to Aly et al. [56],
the SALTMED-simulated SWC values during the growing season of cucumber were very
close to the observed values, with R ranging from 0.82 to 0.94 during calibration and 0.76 to
0.91 during validation. Hirich et al. [87] showed that the model could predict SWC into soil
layers during the sweet corn growing season, with R values ranging from 0.91 to 0.95 and
RMSE values ranging from 0.017 to 0.029 for calibrated data, and R values ranging from
0.91 to 0.96 and RMSE values ranging from 0.027 to 0.062 for validated data. According to
Karandish and Simunek [86], the SALTMED model could simulate SWCs with a higher
degree of accuracy under water-saving irrigation than under full irrigation.

Figure 13. The measured and the SALTMED-simulated soil water content (SWC) for different
irrigation levels across irrigation systems during the validation period (i.e., the 2019/2020 growing
season). I80 = 80% crop evapotranspiration (ETc), I100 = 100% ETc, I120 = 120% ETc, SI = surface
irrigation, and DI = drip irrigation.
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When using the SALTMED model, it is important to have a reliable description of
the crop’s response to applied treatments in addition to simulating soil water. As a result,
we tested the SALTMED model’s ability to capture temporal variations in biological and
grain yields for various treatments during the growing seasons 2018/2019 (calibration
period) and 2019/2020 (validation period). During the calibration and validation periods,
the SALMED model performed better in the non-water stress (I100 and I120) treatments
than in the water stress (I80) treatment, as shown in Table 4. The SALTMED model over-
estimated biological yield by 0.65–24.37% (except for the I100 treatment under SI, which
underestimated biological yield by 0.11%) and grain yield by 0.13–19.18%, respectively,
when compared with observed yields in 2018/2019 season. In the validation period, the
SALTMED-simulated values also overestimated observed biological and grain yields by
3.8–29.81% and 2.02–25.41%, respectively. The I100 treatment under SI or DI had the lowest
RE in the calibration and validation periods. The SALTMED model, according to Karandish
and Simunek [86], performed well when simulating maize growth parameters, with a
|RE| of 3.5–12%. Our RF range corresponds to the RF range reported by Kaya et al. [88]
for quinoa yield (|RE| = 1.2–12.6%), the range reported by Hirich et al. [89] for corn
yield (|RE| = 0–29.1%), and the range reported by Ragab et al. [34] for tomato and potato
yields (|RE| = 0–21.5%). Over the calibration and validation years (Table 4), close matches
between simulated and observed biological yield were observed, with RMSE, MAE, and
MARE averaging 2.47, 2.01, and 12.68%, respectively. During the seasons, grain yield fol-
lowed the same pattern as biological yield. The average RMSE, MAE, and MARE were 0.88,
0.741, and 11.58%, respectively, indicating that the model accurately predicted grain yield at
various irrigation water levels. These findings are similar to those of Hirich et al. [87], who
discovered that the relationship between observed and simulated yield produced RMSE
values of 1.11 in sweet corn. In general, the performance criteria for statistical comparison
of the observed and simulated data showed that the SALTMED model was well capable of
simulating the yield of a wheat crop.

Table 4. Statistical indices comparing the observed and SALTMED-simulated wheat yields for
various irrigation treatments during the calibration (the 2018/2019 growing season) and validation
(the 2019/2020 growing season) periods.

Growing
Season

Treatments Biological Yield

RE (%)

Grain Yield

RE (%)Irrigation
Systems

Irrigation
Levels

Observed Simulated Observed Simulated

2018/2019

SI I80 15.75 18.20 15.54 6.54 7.55 15.47
I100 18.00 17.98 −0.11 7.56 7.57 0.13
I120 15.50 18.37 18.54 6.36 7.58 19.18

DI I80 16.25 20.21 24.37 6.34 7.54 18.95
I100 18.25 18.37 0.65 8.21 8.27 0.68
I120 18.00 19.04 5.80 7.83 8.28 5.80

RMSE 2.27 0.83
MAE 1.74 0.66

MARE, % 10.80 10.04

2019/2020

SI I80 14.45 18.22 26.09 5.46 6.85 25.41
I100 16.88 17.98 6.52 7.41 7.56 2.02
I120 16.93 18.37 8.53 6.64 7.57 14.01

DI I80 15.11 19.61 29.81 5.88 7.14 21.51
I100 17.49 18.16 3.80 7.62 8.17 7.22
I120 16.84 18.95 12.55 7.60 8.24 8.48

RMSE 2.67 0.92
MAE 2.27 0.82

MARE, % 14.55 13.11
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4. Conclusions

It is important to identify appropriate water irrigation management strategies to
reduce the waste of water resources and improve water productivity in irrigation practices.
Management strategies are commonly tested through field experiments that are expensive
and time-consuming to produce consistent and reliable results. An alternative option for
these experiments is to use validated mathematical models. This study discussed the use
of irrigation water levels across surface and drip irrigation systems and the application of
mathematical models (e.g., CROPWAT and SALTMED) in wheat fields. The study showed
that there is a great potential for water savings when using a drip irrigation system, which
gives much higher water productivity than a surface irrigation system at the same irrigation
water level. Evaluation of the irrigation schedules using the CROPWAT model showed that
different irrigation levels need to integrate irrigation application methods. The graphical
and statistical comparisons confirmed the ability of the SALTMED model to predict soil
water content and simulate the effects of different irrigation water levels on the biological
and grain yields of wheat within acceptable limits. The SALTMED model can be an effective
tool for identifying the correct irrigation strategy to maximize crop production as well as
benefiting from the application of the CROPWAT model to develop accurate irrigation
schedules under different management conditions and water supply schemes.
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Abstract: Irrigation and fertilization technologies need to be adapted to climate change and pro-
vided as effectively and efficiently as possible. The current study proposed pocket fertigation, an
innovative new idea in providing irrigation water and fertilization by using a porous material in
the form of a ring/disc inserted surrounding the plant’s roots as an irrigation emitter equipped
with a “pocket”/bag for storing fertilizer. The objective was to evaluate the functional design of
pocket fertigation in the specific micro-climate inside the screenhouse with a combination of emitter
designs and irrigation rates. The technology was implemented on an experimental field at a lab-scale
melon (Cucumis melo L.) cultivation from 23 August to 25 October 2021 in one planting season. The
technology was tested at six treatments of a combination of three emitter designs and two irrigation
rates. The emitter design consisted of an emitter with textile coating (PT), without coating (PW),
and without emitter as a control (PC). Irrigation rates were supplied at one times the evaporation
rate (E) and 1.2 times the evaporation rate (1.2E). The pocket fertigation was well implemented
in a combination of emitter designs and irrigation rates (PT-E, PW-E, PT-1.2E, and PW-1.2E). The
proposed technology increased the averages of fruit weight and water productivity by 6.20 and 7.88%,
respectively, compared to the control (PC-E and PC-1.2E). Meanwhile, the optimum emitter design of
pocket fertigation was without coating (PW). It increased by 13.36% of fruit weight and 14.71% of
water productivity. Thus, pocket fertigation has good prospects in the future. For further planning,
the proposed technology should be implemented at the field scale.

Keywords: pocket fertigation; water productivity; innovative technology; subsurface irrigation

1. Introduction

Irrigation and fertilization are the main components in determining agricultural pro-
duction successfully. Climate change causes uncertainty in environmental conditions; thus,
optimizing irrigation and fertilization should be adjusted. Suitable adaptation strategies
for climate change on irrigation and fertilization could minimize the negative impacts [1].
Water resource availability tends to decrease and become more scarce with the impact of
climate change [2]. However, irrigation is often oversupplied, thus resulting in more water
loss and reducing water productivity [3]. In addition, excessive use of fertilizers leads
to soil damage due to a large amount of soluble nitrate; thus, more nitrogen is wasted
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before being absorbed by plants [4]. Therefore, it is necessary to develop water-saving
and efficient technology in fertilizers. An example of water-saving irrigation technology
is subsurface irrigation by the innovative emitter [5]. The technology is very effective in
water use because water is supplied directly to the plant roots, reducing evaporation. Sev-
eral subsurface irrigation technologies have been developed, such as ring-shaped emitter
irrigation [6,7] and sheet-pipe technology [8], as well as evapotranspiration irrigation [9].
Unfortunately, the technology still does not consider the use of fertilizers yet.

Both chemical and organic fertilizers should be applied at the right time and in the
right amount to avoid the loss and negative impact on the environment. The excessive
use of chemical fertilizers and residue in the soil changes the soil’s physical and chemical
properties, so the soil is easily eroded due to decreased organic content [10]. Furthermore,
fertilizers dissolve in water due to rain, and irrigation can cause eutrophication of organic
matter accumulation, thus reducing water quality [11]. In addition, long-term use of
chemical fertilizers causes a decrease in soil pH [12]. On the other hand, organic fertilizer is
more environmentally friendly. However, it is suspected to reduce production, convincing
the farmer to consider using it less [13]. In addition, a large amount of organic fertilizer
content in the rainwater can make a loss in the nitrate content before being absorbed
properly by the crops [4].

This study examines pocket fertigation technology as an innovative idea for water and
fertilizer applications. It is developed from a previous emitter irrigation called ring-shaped
subsurface irrigation [6,7,14]. This technology uses a ring/disc porous material installed
surrounding the roots as an emitter and equipped with a “pocket” for fertilizer storage on
the upper side. It is simple, inexpensive, effective, efficient, easy, and fast to construct and
manageable by the farmers. All materials used should be available in the local markets and
reachable in cost. It is in line with the “farmer-led irrigation development” program [15]. In
this sense, the farmers should be capable of planning, constructing, operating, maintaining,
repairing, and even developing the irrigation system. This research aims to apply such
a type of irrigation technology constructible using locally available materials and easily
manageable by the farmers, whether individually or collectively.

By the current technology, water is irrigated through the pocket and then flows
directly to the root zone via the emitter. It is expected that water and fertilizer are absorbed
by the roots simultaneously. Therefore, it is important to test the performance of the
developed technology, particularly for a high economic horticultural product such as melon
(Cucumis melo L.). Melon is a fruit that has high commercial value in Indonesia with a
wide and diverse market range, from traditional markets to modern markets, restaurants,
and hotels. Therefore, it can be cultivated because of its competitiveness compared to
other commodities. In addition, the fruit by-product can be incubated as a functional food
ingredient [16].

The current study was proposed as a preliminary study on the functional design of
the pocket fertigation technology. The objective of the study was to evaluate the functional
design of the pocket fertigation for melon (Cucumis melo L.) production particularly in
the emitter design and irrigation aspect. The scope of evaluation aspects consisted of the
soil moisture fluctuation, fruit weight, and water productivity under different emitters
design and irrigation rates. As an indicator, soil moisture is related to water and nutrient
uptake, while crop yield is related to the income obtained by the farmers [17]. In addition,
water productivity is related to water use efficiency because it reflects the yield or biomass
produced per water used [18].

2. Materials and Methods

2.1. Time, Location, and Soil Properties

The current preliminary study was conducted at lab-scale inside a screenhouse located
at Kinjiro Farm with coordinates 6.59◦ S, 106.77◦ E, Bogor, West Java, Indonesia. Glamor,
a variety of melon seeds, was sown on 6 August 2021, planted on 23 August 2021, and
harvested on 25 October 2021. The physical characteristics of soils are presented in Table 1.
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Table 1. The physical characteristics of planting media soil.

No Parameter Value Unit

1 Dry bulk density 0.77 g/cm3

2 Particle density 1.92 g/cm3

3 C-organic 5.73 %
4 Organic content 9.89 %
5 Permeability 5.18 cm/hour
6 Soil texture

Sand 17 %
Silt 59 %

Clay 24 %
Soil Texture Silt Loam

7
Soil water content at

the following soil
suction:

pF 1 0.476 cm3/cm3

pF 2 0.369 cm3/cm3

pF 2.54 0.294 cm3/cm3

pF 4.2 0.182 cm3/cm3

Based on the physical characteristics of the soil, especially the data on soil water
content at various pF (soil-water matrix potential) values, a water retention curve was made
to determine the saturated and residual soil water contents by the following equation [19]:

θ = θr +
(θ s − θr)

[1 + (α h)n]m (1)

where θ is the soil moisture (m3/m3) in volumetric water content, θs is the saturated soil
water content (m3/m3), θr is the residual soil water content (m3/m3), h is the pressure head
(cm H2O), and α, n, and m are constants. The values of θs, θr, α, n, and m were optimized
with a solver in Microsoft Excel (Figure 1). From the optimization results, the values of θs
and θr were 0.485 m3/m3 and 0.100 m3/m3, respectively.

Figure 1. Water retention curve for the type of soil at the study site.

2.2. Experimental Design of the Pocket Fertigation

The experimental design consisted of a combination of emitter types of the pocket
fertigation and irrigation rates with six treatments and two replications in total. The pocket
fertigation was applied in a pot experiment with a 50 cm diameter in the top and 30 cm
diameter in the bottom (Figure 2a). Meanwhile, the design of pocket fertigation is presented
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in Figure 3. Here, two designs were developed with the same dimensions. As previously
mentioned, pocket fertigation has two parts: an emitter and a pocket to store the fertilizer.
The emitter material was made from a perforated hose, 14 holes in total, with the interval
of the hole being 5 cm. The first design of the emitter was coated with a textile material
(PT) and without coating material (PW). The emitter was oval with a longer diameter of
30 cm and a shorter one of 25 cm. The pocket’s diameter was 9 cm with a 25 cm height that
was created from used plastic bottles with a size of 1500 mL. In this experiment, the emitter
was placed 5 cm below the soil surface. For the control, surface irrigation was applied in
which the fertilizer was sprinkled on the soil surface (PC).

Figure 2. (a) The dimensions of pot; (b) the dimensions of pan evaporation.

Figure 3. The pocket fertigation design: (a) emitter with textile coating (PT), (b) emitter without
coating (PW).

For the irrigation rate, it is commonly supplied based on crop evapotranspiration
(ETc); however, it is difficult to apply by the farmer due to the complicated method.
In this research, we used a simple method by pan evaporation to determine the open
water evaporation rate on a daily basis. The irrigation water was supplied based on the
evaporation rate, i.e., one times the evaporation (E) and 1.2 times the evaporation (1.2E)
in all designs of emitters, so there were six treatments in total, i.e., PT-E, PW-E, PC-E,
PT-1.2E, PW-1.2E, and PC-1.2E (Figure 4). For the pan evaporation, we used a pan filled
with water, 50 cm in diameter and height (Figure 2b). The daily evaporated water was
recorded every morning (around 7.00 a.m.). For the leaching process, all treatments were
supplied with more water ranging from 2 to 4 L/plant six times at 26, 33, 38, 41, 46, and
51 days after transplanting (DAT). In addition, this watering was also performed to avoid
extreme drought in the growing media.
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Figure 4. Testing of the pocket fertigation with various emitter designs and irrigation rates.

As we focused on the application of pocket fertigation under different irrigation rates,
during the experiment, all treatments were given the same amount and materials content
of fertilizer. They were “ABmix” and NPK “Mutiara” fertilizers. The “ABmix” fertilizer
contains macro and micro-nutrients. During the planting season, the “ABmix” fertilizer
was dissolved with an EC (Electrical Conductivity) value of 4500–5000 μS/cm and the NPK
“Mutiara” fertilizer of 20 g/plant at 20 DAT was stored in the pocket.

2.3. Micro-Climate and Soil Moisture Monitoring

The micro-climate inside the screenhouse was measured by an automatic weather
station (AWS) connected to the server. It was part of an IoT-based measurement previously
developed [20]. There were several weather sensors, i.e., air temperature, relative humidity,
wind speed, and solar radiation. Each parameter was measured at 15 min intervals. The
micro-climate conditions in the screenhouse fluctuated throughout the cultivation period.
However, the daily average, minimum, and maximum air temperatures had a constant
trend (Figure 5a). The daily minimum, average, and maximum air temperature values
ranged between 22 ◦C, 28 ◦C, and 35 ◦C, respectively. The same thing also occurred with
the relative humidity (RH). Although it fluctuated more, the trend was also relatively con-
stant with the average value of RH being approximately was 82% (Figure 5a). Something
quite extreme happened on 14 September 2021 (22 DAT). The daily maximum and average
air temperatures decreased significantly. On the other hand, RH increased significantly.
Here, the daily maximum temperature only reached 27.7 ◦C with an average of 25.1 ◦C.
Meanwhile, the RH increased and reached a maximum value of 90.1%. In atmospheric
pressure, air temperature and RH are inversely proportional, as presented in Figure 5b. The
type of greenhouse strongly influences variations in air temperature and RH in the green-
house used [21]. The air temperature inside the greenhouse should be controlled properly
because an increase in air temperature before harvest can reduce fruit sweetness [22]. Many
air temperature control systems, including RH control systems, have been developed for
optimal plant growth, such as fuzzy control systems [23,24].
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Figure 5. (a) Daily maximum, average, and minimum air temperatures, and relative humidity;
(b) linear correlation between daily average air temperature and relative humidity.

The weather data (air temperature, relative humidity, wind speed, and solar radiation)
were then used to determine the reference evapotranspiration based on the following
Penman–Monteith equation [25]:

ETo =
0.408Δ(Rn − G) + γ 900

Tave+273 u(es − ea)

Δ + γ(1 + 0.34u)
(2)

where ETo is the reference evapotranspiration (mm), Rn is the net radiation (MJ/m2/d),
G is the soil heat flux density (MJ/m2/d), Tave is the daily average air temperature (◦C),
u is the wind speed (m/d), es is the saturated vapor pressure (kPa), ea is the actual vapor
pressure (kPa), γ is the psychrometric constant (kPa/◦C), and Δ is the slope of the vapor
pressure curve (kPa/◦C). Rn, G, es, ea, and γ were determined based on observed solar
radiation and relative humidity parameters. In addition, to perform the equation, elevation,
latitude, and Julian day data were required. The data were compared to evaporation rate
that was measured daily as previously explained.

For effectiveness of emitter design, the soil moisture was monitored at a depth of
5 cm below the soil surface and in the middle of the emitter. The 5-TE soil moisture sensor
from the Meter Group was used for this purpose. The sensor was placed at a 5 cm soil
depth because the emitter of pocket fertigation was kept at this location. The sensor was
connected to a ZL datalogger (Meter Group) with a measurement interval of 15 min. From
the fluctuations in soil moisture, the actual evapotranspiration between the treatment was
estimated and compared.

2.4. Crop Performances and Water Productivity Analysis

The indicators of crop performance were plant growth, fruit weight, and soluble solid
content. The soluble solid content represented the sweetness level of fruit. For plant growth
parameters, the number of leaves and plant height were measured at the ages of 10, 20, and
30 DAT during the vegetative phase. Meanwhile, in the generative phase (fruit formation),
fruit weight and total soluble solid content representing sweetness levels were observed
on the harvesting day. The total soluble solid was measured by the Atago Pocket Digital
Refractometer in % Brix.

Water productivity was determined based on the product produced per amount of
water used based on the definition [26]. As the experiment was conducted inside a screen
house and there was no rain, the equation for water productivity is represented as follows:

WPI =
Y
I

C (3)
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where Y is the fruit weight (g), I is the total irrigation (mL), C is the conversion factor
(in this case, 1000), and WPI is the water productivity based on total irrigation water
(kg weight/m3 water).

2.5. The Limitation of the Study

The current study only presented the functional design of pocket fertigation. The
evaluation scopes were on soil moisture fluctuation, evapotranspiration, and crop and
water productivities. As the numbers of pots and screenhouse areas were limited, statistical
analysis was limited on the average value and standard deviation. Thus, the values will be
compared among the treatments. The proposed technology will be implemented at field
scale and it is planned for the next phase of the study.

3. Results

3.1. Evaporation and Evapotranspiration during the Season

Figure 6 shows fluctuations in solar radiation, evaporation, and reference evapotran-
spiration (ETo) during the growing season. Inside the screenhouse, the solar radiation
was relatively low, ranging from 2.1 to 9.8 MJ/m2/d. The low solar radiation affected
the low reference evapotranspiration and pan evaporation (Figure 6). The reference evap-
otranspiration value ranged from 0.4 to 2.2 mm, while the pan evaporation was from 1
to 4 mm. The pan evaporation value was higher than the reference evapotranspiration
because more water evaporated from the water surface than in the soil media when the
soil was unsaturated, as found in all treatments. This condition is in line with previous
experiments that stated that evaporation increases with the presence of flooded water
(unsaturated condition) in the soil and vice versa [27].

Figure 6. Daily total solar radiation, evaporation (E), and reference evapotranspiration (ETo).

ETo was strongly correlated with solar radiation, represented by high R2 (>0.85), as
shown in Figure 7a. Therefore, solar radiation is the strongest parameter affected on the
ETo [20]. The minimum ETo was 0.4 mm when the solar radiation was also a minimum
(2.1 MJ/m2/d). A similar condition also existed for its maximum value, which reached
2.2 mm when the solar radiation was at its maximum level (9.8 MJ/m2/d). It was indicated
that solar radiation had the greatest influence on the evapotranspiration process particularly
through the soil surface and plants [28]. The solar radiation also had a positive correlation
to evaporation, although it had a lower R2 compared to the ETo correlation (Figure 7b).
Evaporation also correlated (R2 > 0.48) to ETo, as shown in Figure 7c. It was indicated that
evaporation from the water surface and evapotranspiration (evaporation and transpiration)
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occurred simultaneously. Commonly, evaporation from the water surface (Epan) was higher
than that of evaporation from the soil surface, which was measured by a lysimeter (Elys) [29].
Evaporation can be converted to evapotranspiration via the pan coefficient (Kp) [30]. In this
study, based on empirical data, Kp was 0.56, indicating that evaporation was approximately
56% higher than the ETo.

Figure 7. Relationship between (a) reference evapotranspiration (ETo) and solar radiation, (b) evapo-
ration (E) and solar radiation, and (c) evaporation (E) and reference evapotranspiration (ETo).

3.2. Soil Moisture Conditions in Various Irrigation Rates

For in-plant cultivation systems inside the screenhouse or greenhouse, soil moisture
is the key to success in horticultural crop production. Thus, it is important to control soil
moisture accurately [31]. The soil moisture in PT-E and PT-1.2E fluctuated depending
on the irrigation supplied because the plant water requirement for the plants was only
supplied from irrigation (Figure 8). The PT-1.2E with a higher irrigation rate had higher soil
moisture levels than those in the PT-E. At the PT-1.2E, soil moisture ranged from 0.198 to
0.496 m3/m3, while at PT-E, it ranged from 0.116 to 0.437 m3/m3. The highest soil moisture
level occurred at 41 DAT (3 October 2021) when 4000 mL of irrigation was supplied to PT-E
and PT-1.2E treatments. At this time, the soil moisture value was reached at its saturation
level in the PT-1.2E. However, the maximum soil moisture in the PT-E treatment was still
lower than that of the soil saturation level. At both irrigation rates (E and 1.2E), the soil
moisture tended to be at the field capacity level at the beginning of the vegetative phase.
Then, water irrigation in large quantities was supplied when the soil moisture level was
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too low, particularly in the mid-season phase. In the generative phase, the soil moisture
condition was maintained in the range of field capacity in both irrigation rates.

Figure 8. The fluctuation in soil moisture and irrigation: (a) PT-E treatment, (b) PT-1.2E treatment.
Note: Sat: saturated water content, FC: field capacity water content, RWC: residual water content.

A similar thing occurred with the PW treatments (Figure 9). The soil moisture level
increased rapidly when a large amount of irrigation was supplied. In the PW-E, soil
moisture was slightly higher than the field capacity level in the beginning phase until 6 DAT
(29 August 2021). Then, the soil moisture decreased below field capacity level until harvest.
Here, the soil moisture conditions ranged from 0.147 to 0.339 m3/m3. Meanwhile, as more
water was supplied, soil moisture in the PW-1.2E was consequently higher than that in the
PW-E. At the beginning phase, the soil moisture was at field capacity level until 23 DAT
(15 September 2021), and it reached the saturation level when a large amount of water was
supplied, particularly at 26 DAT. Hereafter, soil moisture was below the field capacity level.
In this treatment, soil moisture ranged from 0.150 to 0.493 m3/m3. Overall, the average soil
moisture in the PW-E and PW-1.2E was 0.222 and 0.269 m3/m3, respectively.

Figure 9. The fluctuation in soil moisture and irrigation: (a) PW-E treatment, (b) PW-1.2E treatment.
Note: Sat: saturated water content, FC: field capacity water content, RWC: residual water content.

The fluctuations in soil moisture of the PC treatments are presented in Figure 10. The
soil moisture level in the PC-E ranged from 0.112 to 0.426 m3/m3, while at the PC-1.2E, it
ranged from 0.135 to 0.454 m3/m3. For the PC-E, the soil moisture level was below the
field capacity level for most of the growing period, except on the specific days (at 26, 33,
and 41 DAT) when large amounts of water were applied. Meanwhile, in the PC-1.2E, soil
moisture ranged from the field capacity level in the beginning phase to 26 DAT, and then
dropped to below field capacity.
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Figure 10. The fluctuation in soil moisture and irrigation: (a) PC-E treatment, (b) PC-1.2E treatment.
Note: Sat: saturated water content, FC: field capacity water content, RWC: residual water content.

Table 2 shows the average value of soil moisture levels for each treatment every
10 DAT. Among the two emitter designs (PT and PW) of pocket fertigation, soil moisture
tended to be stable with an average level close to the field capacity. PW was more able to
maintain soil moisture above the value of 0.200 m3/m3 compared to PT. This means the
emitter without the coating distributed irrigation water more uniformly and it also reduced
actual evapotranspiration by up 13.6%. This indicated that the PW was probably more
efficient in water use compared to PT.

Table 2. The maximum, average, minimum soil moisture, and actual evapotranspiration among
the treatments.

Parameters

Treatments Summary

PT-E PT-1.2E PW-E PW-1.2E PC-E PC-1.2E
Pocket

Fertigation *
Control **

Soil moisture
(m3/m3) at:
0–10 (DAT) 0.312 0.334 0.295 0.306 0.276 0.326 0.312 0.301

11–20 (DAT) 0.257 0.304 0.240 0.277 0.223 0.283 0.269 0.253
21–30 (DAT) 0.181 0.263 0.214 0.330 0.158 0.250 0.247 0.204
31–40 (DAT) 0.170 0.238 0.178 0.228 0.153 0.187 0.203 0.170
41–50 (DAT) 0.245 0.293 0.202 0.225 0.216 0.252 0.241 0.234
51–62 (DAT) 0.293 0.282 0.207 0.252 0.225 0.245 0.258 0.235
Maximum 0.312 0.334 0.295 0.330 0.276 0.326 0.334 0.326
Minimum 0.170 0.238 0.178 0.225 0.153 0.187 0.170 0.153
Average 0.243 0.285 0.223 0.270 0.209 0.257 0.255 0.233

ETa (mm) 118.8 123.9 98.7 114.9 143.9 107.9 114.1 125.9

* average value of PT-E, PT-1.2E, PW-E, PW-1.2E. ** average value of PC-E and PC 1.2E.

Table 2 also shows that the pocket fertigation was better than the control treatment in
retaining soil moisture at a depth of 5 cm. The indicator had a higher soil moisture at the
pocket fertigation than that of the control treatment. In addition, pocket fertigation was
able to reduce the actual evapotranspiration by 10.32% of the control. The pocket fertiga-
tion functioned well, indicated by the higher efficiency of water used. It was seemingly
subsurface irrigation that was more effective in distributing water along the root zone than
that of surface irrigation. Previous research utilizing a similar emitter type showed that
subsurface irrigation can maintain soil moisture in the root zone without causing stress to
the plants [7].
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3.3. Plant Growth and Their Productivities

The vegetative growth in each treatment is depicted in Figure 11. The highest average
number of leaves at 20 DAT was produced by the PT, followed by the PC and PW treatments.
However, the PW grew the highest plant height at 20 DAT, followed by the PT and PC
treatments. After 30 DAT, pruning of the plants was carried out by maintaining the height of
each plant at 200 cm. Overall, the vegetative growth among the treatments was comparable,
particularly after 30 DAT.

Figure 11. Plant growth performances among the treatments: (a) number of leaves, (b) plant height.

According to Table 3, the PW produced a 13.36% bigger average fruit weight than that
of the PT. However, the PW produced a 13.07% lower total soluble solid than that of the
PT. From the perspective of water used, the PW was more efficient as represented by the
higher water productivity by up 14.71%. Therefore, it is recommended to use the pocket
fertigation without coating materials. The lower effectivity of the PT is probably due to the
clogging problems that occurred by the sedimentation of fertilizers. Thus, this clogging
inhibited the distribution of water and fertilizer in the root zone. Clogging is generally a
problem that must be overcome when utilizing irrigation systems with low flow rates [32],
such as subsurface irrigation.

Table 3. Crop and water productivities among the treatments.

Treatments
Yield (Fruit
Weight) (g)

Irrigation (mL)
Total Soluble
Solid (%brix)

WP
(kg/m3)

PT-E 733 ± 50.9 34,825 10.5 ± 0.0 21.0
PT-1.2E 925.5 ± 116.7 38,925 9.4 ± 2.4 23.8
PW-E 898 ± 0 34,825 9.3 ± 0 25.8

PW-1.2E 982 ± 5.7 38,975 8.3 ± 0.5 25.2
PC-E 551 ± 0 34,875 10.8 ± 0 15.8

PC-1.2E 1115 ± 0 38,925 7.7 ± 0 28.6
Pocket Fertigation 885 ± 92.6 36,888 9.4 ± 0.8 24.0

Control 833 ± 282.0 36,900 9.3 ± 1.5 22.2
Irrigation rate at E 727.3 ± 141.7 34,842 10.2 ± 0.6 20.9

Irrigation rate at 1.2E 1007.5 ± 79.4 38,942 8.5 ± 0.7 25.9
Note: The presented data are the mean ± SD.

Table 3 shows that better performances were found in the pocket fertigation for fruit
weight, total soluble solid, and water productivity compared to the control. It increased the
average fruit weight by 6.20% and water productivity by 7.88%. Meanwhile, a higher water
irrigation rate at 1.2E produced a bigger fruit weight than that at the E irrigation rate. Fruit
weight increased significantly by 38.53% (Table 3). The increasing fruit weight of 1.2E may
be contributed by increasing the actual evapotranspiration due to more irrigation water,
particularly in the pocket fertigation (Table 2). This reason was supported by a previous
study [33]. However, the increase in the fruit weight decreased the sweetness level (total
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soluble solid), as shown in Figure 12. The heavier melon, the higher water content, and the
low dissolved solids may reduce the sweetness level. The results are similar to the previous
observation [34,35].

Figure 12. Relationship between total soluble solid and weight of fruit.

4. Discussion

In the context of climate change, water resources for the agriculture sector may become
scarce in the future. Therefore, it is important to develop innovative and applicable
technologies in utilizing irrigation water more effectively and efficiently, such as the pocket
fertigation. Pocket fertigation is easy to produce by the farmers in Indonesia. The basic
materials are a hose as the emitter and used bottles to store the fertilizer. In this preliminary
study with a limited area, the pocket fertigation was shown to retain soil moisture better
than surface irrigation as a control. Maintaining soil moisture implies that more water is
stored in the soil, and it can be utilized by plants more optimally. Consequently, the fruit
weight was heavier and had higher water productivity (Table 3).

The irrigation water delivery method of the pocket fertigation is similar to drip irriga-
tion in which the emitter is placed below the soil surface near the root zone. Subsurface
irrigation, both the pocket fertigation and drip irrigation, proved to be more effective and
efficient in the utilization of irrigation water by reducing water loss due to evapotranspira-
tion, as shown in Table 3 and reported in previous studies. As reported by Wang et al. [36],
a long-time field experiment of drip irrigation in 2014–2018 showed that irrigation reduced
0.1–23% of evaporation and 7% of evapotranspiration per year. Consequently, the water use
efficiency of drip irrigation can be significantly improved under various crop evapotranspi-
ration scenarios [37]. In addition, subsurface irrigation with drip irrigation, combined with
fertigation, increased production up to 41% as reported by Rolbiecki et al. [38]. Subsurface
irrigation is not only known as effective and efficient in water used, but also more environ-
mentally friendly. The indicates a reduction in greenhouse emissions from the soil under
subsurface irrigation, especially N2O and CO2 [39,40].

The current developed technology has good prospects in the near future and should
be continuously developed. Pocket fertigation is a kind of subsurface irrigation. It has a
better performance indicated by the higher effectiveness of water use, and consequently,
it can increase water productivity [31]. The performance tests on a field scale are needed
not only for melon (Cucumis melo L.) but also for other crops. Crop type selection depends
on the local climate condition and farmer’s preference. Several locations in Indonesia are
characterized by dry areas with low rainfall intensity such as East Nusa Tenggara (NTT), a
province located in eastern Indonesia [41]. The location lacks water resources, so it is very
appropriate to be chosen as the location for field-scale trials.
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5. Conclusions

An innovative technology, pocket fertigation, was well implemented in the lab-scale
experiment. The pocket fertigation with subsurface irrigation was better than surface
irrigation in retaining soil moisture at a 5 cm soil depth. The soil moisture could be
maintained at nearly field capacity level. The pocket fertigation was able to reduce the
actual evapotranspiration by 10.32%. It also showed better performances in fruit weight
production and water productivity. It increased the average fruit weight by 6.20% and
water productivity by 7.88%, respectively. Thus, pocket fertigation has good prospects in
the future. For further planning, the proposed technology will be implemented at the field
scale, particularly in dry areas with minimum water resources.
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Abstract: Land and water are two major inputs for crop production. Simulation modelling was used
to determine crop sequences that maximise farm return. Crop yield was determined for different
irrigation scheduling scenarios based on the fraction of available soil water (FASW). Farm returns
($ ML−1 and $ ha−1) were evaluated for seven crop sequences. Three irrigation water price scenarios
(dry, median, wet) were considered. The yield of summer crops increased with irrigation. For
winter crops, despite increase in irrigation, the yield would not increase. The optimum irrigation
(ML ha−1) was: soybean 8.2, maize 10.4, wheat 2.5, barley 3.1, fababean 2.5, and canola 2.7. The
water productivity curve of summer crops has a parabolic shape, increasing with FASW, reaching
a maximum value at FASW 0.4–0.6, and then decreasing. The water productivity of winter crops
decreases as FASW increases following a power function. Gross margins are positive when water
is cheap ($60 ML−1) and when water has a median price ($124 ML−1). When water is expensive
($440 ML−1), positive gross margin would be obtained only for the continuous wheat scenario. Deficit
irrigation of summer crops leads to significant yield loss. Supplemental irrigation of winter crops
results in the highest gross margin per unit of water.

Keywords: APSIM; Australia; gross margin; double cropping; irrigation; water price

1. Introduction

The rapid growth of the world population and pressure on land and environmental
resources has amplified the need to increase food and fibre production with minimal re-
source input. Multiple cropping or increasing cropping intensity is one means of increasing
global crop production [1]. Crop diversification increases food production sustainability by
supressing pests, absorbing climatic shocks, reducing fertiliser use, and reducing business
risks [2]. In the Australian grain crop production system, winter crops are normally grown
under a dryland/rainfed environment. When and where water is available, supplemental
irrigation is applied as pre-irrigation in autumn and at the reproductive growth stage in
spring. However, with the changing climate and competing needs such as environmental
watering requirements, the amount of water available for irrigation is declining. In the
Riverina region of south-eastern New South Wales (NSW), the farm-land holdings are
also relatively small compared to other parts of the country. As a result, there is a need to
optimise the limited amount of available irrigation water and land resources.

Irrigation farmers in the region have water entitlements, which are an ongoing share
of surface and ground water resources in their catchment. However, they do not always
obtain 100% of their entitlement as this depends on the rainfall in the season and water
already available in the dams. Depending on the reliability of obtaining the full amount of
entitlement, there are two kinds of water securities: high security water and general security
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water. High security water entitlement holders obtain 100% of their entitlement unless
there is severe drought. This is the water for permanent plantings such as horticulture
and viticulture. General security water is for annual crops. Most of the water in the
region is as general security entitlement. When there is low or no general security water
allocated, farmers buy water on the water market. The price of water varies from year to
year depending on the amount of water available in the dams and the prevailing rainfall.
As a result, the gross margin per unit of irrigation water also varies with the price of water.

In recent years, low water allocation brought about by a combination of climatic
and environmental policy-related factors have constrained Riverina irrigators’ production
capacity. In the past 20 years, the amount of water in the region has been around 40%
less than the long-term average (Figure 1). As a result, average seasonal allocations were
less than 50% of the entitlement with high year to year variability. Innovative on-farm
water management practices and planning are required to maintain a profitable irrigation
industry in a future climate of reduced and variable irrigation water supply [3]. Some of
the approaches that could help farmers adapt to reduced water allocations by increasing
water and land productivity are: partial (deficit) irrigation, changes in crop rotations, crop
species or varieties, and changes in water allocation to winter crops relative to summer
crops [4–6]. In this study, different winter–summer crop sequences were evaluated in terms
of gross margin per unit of water applied and per unit of cultivated land area. Crop yields
were simulated using Agricultural Production Systems sIMulator (APSIM v.7.10) [7].

 

Figure 1. Historical annual percentage allocation of irrigation water entitlement in the Mur-
rumbidgee Irrigation Area, Riverina, NSW (data from https://www.industry.nsw.gov.au/water/
allocations-availability/water-accounting/historical-available-water-determination-data, accessed
on 20 November 2021).

2. Materials and Method

2.1. General Description of the Study Area

The study area is at Leeton in the Riverina region in NSW, Australia. The Riverina re-
gion of southern NSW has a mixed (crop and livestock) farming system. There are two large
irrigation areas, Murrumbidgee and Coleambally, in the region. The Murrumbidgee river,
the third longest in the country, originates from two large dams, Blowering and Burrinjuck,
in the Snowy mountain of the Great Dividing Range. Water is diverted to the two irrigation
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areas using the two weirs, Berembed and Gogeldrie, on the Murrumbidgee river. The major
irrigated crops in the region are horticulture, grapevine, cotton, rice, legumes, and maize.
The climate of the region (south-eastern NSW) is partly semi-arid and partly temperate. It
has a cold winter and hot summer with monthly temperature variation shown in Figure 2.

Figure 2. Mean monthly rainfall, temperature and evapotranspiration at Leeton station, Riverina
region, NSW Australia (1989–2018).

The annual mean minimum temperature is 11 ◦C while the mean maximum tempera-
ture is 24 ◦C. It has high evapotranspiration except during the winter season. The mean
annual rainfall is 395 mm (monthly average 33 mm) and mean annual evapotranspiration
is 1652 mm (http://www.bom.gov.au/ (accessed on 14 September 2021)).

2.2. Crops Used in the Study

Two summer crops (maize and soybean) and four winter crops (barley, canola, fababean,
and wheat) commonly grown in the Australian wheat-belt were chosen for this study. In
the Riverina region, in the summer season, after the winter crop harvest, fields are either left
fallow or sown to a summer crop (double-cropping), depending on irrigation water avail-
ability. Introduction of summer crops in a winter-dominant cropping system is important
for farming system sustainability to manage diseases and weeds. However, determining
the crop sequence or which crop follows which requires careful planning. When double
cropping is used, the time of harvest of one crop may overlap with the time of sowing
of the next crop. Careful planning and choice of variety is required to ensure smooth
transition. The availability of short-season varieties in recent years has enabled timely
sowing of a crop and harvest without incurring substantial yield penalty. In order to meet
crop water demand during the critical reproductive growth stages of crop development,
where possible, supplemental irrigation of winter crops is used [8].

In the region, maize (Zea mays L.) is grown for silage and grain production. Depending
on the variety, the length of growing season from planting to harvest is 130 to 150 days.
The average maize irrigation requirement is 8–9 ML ha−1 with an average grain yield
of 10.2 t ha−1 [9]. In southern NSW, the optimum time of sowing of maize is from early
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October to mid-November. Riverina is one of the two areas where soybean is widely
grown in NSW. The soybean (Glycine max L.) irrigation requirement is 6–8 ML ha−1. Its
optimum sowing time is mid-November to mid-December. For barley (Hordeum vulgare L.),
sowing time is important to avoid risk of frost damage and drought stress during and
after anthesis [10]. Its recommended sowing time is from mid-May to mid-June. Canola
(Brassica napus L.) is a profitable break crop for weed and disease control. Its best sowing
time is from the fourth week of April to the second week of May. Fababeans (Vicia faba L.)
is an important break crop in crop rotation for disease control and nitrogen fixation [11].
The recommended sowing window is from the fourth week of April to the second week of
May [12]. The optimum sowing time of wheat (Triticum aestivum L.) is not fixed but varies
with location, season and variety [13]. Supplemental irrigation is used for winter crops
during critical growth stages [14].

2.3. Simulation Setup
2.3.1. Weather and Soil Data

The Agricultural Production Systems sIMulator (APSIM) version 7.10 was used to
simulate water-limited potential yield of the crops [7]. The details of the model can be
found at www.apsim.info (accessed on 4 August 2021). Briefly, APSIM links the specific
crop module (CROP), the soil water module (SOILWAT), the nitrogen module (SOILN),
and residue module (RESIDUE) and irrigation. The model calculates biomass accumulation
from solar radiation interception and adjusts for water and nitrogen stresses. Empirical
coefficients are used to partition the biomass into different organs. The model can be used
to study the effect of environmental factors and management decisions on resource use,
crop growth, and yield. APSIM requires climate, soil, crop, and management decisions’
data to simulate crop yield. The SILO patched point daily climate dataset (1989–2020) of the
Yanco Agricultural Institute Station (−34.6222◦ latitude and 146.4326◦ longitude) was used
([15], https://legacy.longpaddock.qld.gov.au/silo/ (accessed on 23 July 2021)). The soil of
the study area is Brown Chromosol with a moderate water holding capacity (126 mm/m),
the hydrologic characteristics of which, as used in APSIM, are shown in Table 1 [16]. The
APSIM model has already been calibrated and validated for the crops used in this study:
wheat [17,18], soybean [19], fababean [20,21], maize [22], barley [23], and canola [24,25].

Table 1. Hydrologic properties of the Brown Chromosol soil in Murrumbidgee Irrigation Area, NSW
Australia (http://www.apsim.info) (accessed on 4 August 2021).

Soil Depth
(cm)

Bulk Density
(g cm−3)

Wilting Point
(LL15) *

(cm3 cm−3)

Field Capacity
(DUL) +

(cm3 cm−3)

Saturation
Moisture Content

(cm3 cm−3)

Plant Available
Water Capacity,

PAWC (mm)

0–15 1.47 0.101 0.265 0.414 24.6

15–30 1.44 0.247 0.375 0.427 19.2

30–60 1.43 0.244 0.380 0.430 40.8

60–90 1.50 0.244 0.354 0.404 32.7

90–120 1.58 0.228 0.325 0.375 29.1

120–150 1.59 0.224 0.319 0.366 26.7

150–160 1.49 0.224 0.324 0.408 17.7

* LL15 is the soil water content at 15 bar pressure, which is the lower limit of the plant available water. + DUL
(drainable upper limit) is the soil water content at field capacity.

2.3.2. Crop Sequences

Seven winter–summer crop sequences were evaluated under different water alloca-
tion/water price scenarios and irrigation amounts (Table 2). These were selected and
adapted based on Napier et al. [26]. The simulation was done for five seasons (three winter
and two summer—starting with winter season and ending with winter season). Crop culti-
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vars and sowing dates used in the APSIM simulation were: soybean (cv. dragon), 15 Nov;
maize (generic—early maturing), 15 Nov; fababean (cv. fiord), 15 May; wheat (cv. suntop),
01 May; barley (cv. scope), 15 May; canola (generic—early), 01 May. The soil water, nitrogen
and organic matter were reset at the time of sowing in the long-term simulations.

Table 2. Winter–summer crop sequence scenarios used in the simulation.

Rotation 1—R1 F-S-F-M-F Fallow–Soybean–Fallow–Maize–Fallow
Rotation 2—R2 F-S-F-S-F Fallow–Soybean–Fallow–Soybean–Fallow
Rotation 3—R3 W-F-Fb-M-F Wheat–Fallow–Fababean–Maize–Fallow
Rotation 4—R4 W-S-W-S-W Wheat–Soybean–Wheat–Soybean–Wheat
Rotation 5—R5 W-F-W-F-W Wheat–Fallow–Wheat–Fallow–Wheat
Rotation 6—R6 B-S-B-S-B Barley–Soybean–Barley–Soybean–Barley
Rotation 7—R7 C-M-Fb-F-C Canola–Maize–Fababean–Fallow–Canola

2.3.3. Soil Water Deficit

Irrigation would be applied when the soil moisture is at a certain fraction of available
soil water, hereafter designated as FASW. FASW varies between 0 and 1: 1 when the soil
water is close to field capacity or drained upper limit and 0 when the soil water is close to
permanent wilting point or drained lower limit. FASW is computed as:

FASW =
θ − LL15

DUL − LL15
(1)

where FASW = fraction of available soil water (0–1); θ = soil water content (cm3 cm−3);
DUL = drained upper limit or field capacity (cm3 cm−3); LL15 = soil water content ((cm3

cm−3) at wilting point or 1.5 MPa soil water potential). In this study, irrigation scheduling
at the following FASWs was investigated: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. For
example, FASW 0.1 means irrigation is applied when the moisture remaining in the soil
is 10% of the available soil water. This is a dry scenario, which means the crop is under
water stress. On the other hand, in FASW 0.9, irrigation is applied while the soil moisture
is still 90% of full capacity (a wet scenario). For all crop sequence scenarios and soil
moisture deficit levels, the variations in the total seasonal irrigation, crop yield, and water
productivity were determined.

Gross margins ($ ML−1 and $ ha−1) were determined for different winter–summer
crop sequences, irrigation water price scenarios, and soil moisture deficit levels. Irrigation
scheduling is determined by the amount of water available in the soil and the rate at
which the crop uses this water. For most crops, crop yield is not affected if irrigation
is applied before 50% of the available soil moisture (FASW 0.5) is depleted. For gross
margin analysis, three soil moisture deficit scenarios were considered. In the first scenario,
irrigation would be applied when the soil water is depleted to 20% of the available water
(FASW 0.2) (dry scenario). The other scenarios are FASW 0.5 (medium scenario) and FASW
0.8 (wet scenario). The furrow irrigation water application efficiency was set at 75%.

2.4. Water Allocation Scenarios

Water price highly varies from year to year depending on dam storage and rainfall in
the catchments. As a result, the gross margin was determined for different percentiles of wa-
ter price obtained from historical water allocation prices of the Murrumbidgee river catch-
ment (https://www.awe.gov.au/abares/research-topics/water/water-market-outlook (ac-
cessed on 24 August 2021)). The 25 percentile irrigation water price was $60 ML−1, the
median (50 percentile) irrigation water price was $124 ML−1, and the 75 percentile irrigation
water price was $440 ML−1. The annual average water prices for different water-years were
as shown in Figure 3. The generalized price-allocation function is shown in Equation (2):

P = 437 × e−0.025A (2)
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where P is the market water price ($ ML−1); A is the seasonal allocation (%). A similar
relationship was reported by [3].

 

Figure 3. Water price as a function of seasonal water allocation in the Murrumbidgee valley of
NSW, Australia.

2.5. Gross Margin Analysis

Gross margin was calculated using the Decision Support Tool developed during the “Correct Crop
Sequencing” Grain Research and Development Cooperation (GRDC) project (https://www.dpi.nsw.
gov.au/agriculture/budgets/costs/cost-calculators/correct-crop-sequencing-decision-support-tool (ac-
cessed on 25 September 2021)).

Gross margin for a given cropping season was calculated as:

Gross margin ($ ha−1) = Gross income ($ ha−1) − Variable cost ($ ha−1) (3)

Gross income ($ ha−1) = Grain yield (t ha−1) * Price ($ t−1) (4)

Variable cost ($ ha−1) = Cost of water ($ ha−1) + Cost of other inputs and farm operations (cultivation,
sowing, fertiliser, spraying, harvest) ($ ha−1)

(5)

Cost of water ($ ha−1) = Water use (ML ha−1) * Water price ($ ML−1) (6)

Gross margin per unit of water ($ ML−1) = Gross margin ($ ha−1)/Water use (ML ha−1) (7)

The data required to run this model are grain yield, grain yield price, water use,
cost of water, and costs related to other farm operations (cultivation, sowing, fertiliser,
spraying, harvest). It calculates gross margins per unit area ($ ha−1) and per unit of water
($ ML−1) for different crop sequences. The default variable cost (excluding cost of water)
used in the decision support tool was adopted for this simulation study as it is from the
same site as this simulation study. The variation of the variables costs over time were not
considered. The long-term average price for the Riverina area, as obtained from Grain
Price Australia Listings igrainPlus (https://www.igrain.com.au/) (accessed on 14 August
2021) was used in the Gross Margin Decision Support Tool. Accordingly, the average
prices per tonne were: soybean ($535), fababean ($374), barley ($291), canola ($559), wheat
($324), and maize ($384). Water price varied highly from year to year. For example, it
was as high as $1349 in December 2007, $665 in September 2008, and $759 in January
2020. It was also as low as $6 in April 2011, $4 in May 2012, and $6 in June 2017 (https:
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//www.awe.gov.au/abares/research-topics/water/water-market-outlook) (accessed on 4
August 2021). As a result, the gross margin was analysed for three water price ($ ML−1)
scenarios: 25 percentile ($60) (dry), median ($124) (normal), and 75 percentile ($440) (wet).

Crop yield and crop water use were simulated using APSIM [7] for typical varieties,
sowing dates, and long-term climate data for Yanco station, Leeton, NSW.

3. Results and Discussion

3.1. Yield of Summer and Winter Crops at Different Soil Moisture Deficit Levels

The simulated irrigation water requirement and corresponding grain yield at dif-
ferent soil moisture deficit levels is presented in Figure 4. The optimum irrigation, the
amount of irrigation that maximises yield per unit of water applied, is: soybean, 820 mm
(8.2 ML ha−1); maize, 1040 mm (10.4 ML ha−1); wheat, 250 mm (2.5 ML ha−1); barley,
310 mm (3.1 ML ha−1); fababean, 250 mm (2.5 ML ha−1); and canola, 270 mm (2.7 ML ha−1).
In this study area, Gaydon et al. [3] estimated the irrigation requirement of 8 ML ha−1 for
soybean and 3 ML ha−1 for barley. The relationship between grain yield, irrigation, and soil
water deficit levels is different for summer (soybean, maize) and winter (canola, fababean,
wheat, barley) crops. Figure 4a shows that if soybean is scheduled to be irrigated when the
soil moisture is only slightly depleted (FASW 0.8), the total amount of irrigation is high.
However, if irrigation is applied when the soil moisture is depleted to a level that is only
20% of the available soil water (FASW 0.2), the total amount of irrigation decreases signif-
icantly. The grain yield also follows a similar trend. However, the rate of yield increase
slows when irrigation is scheduled in the high soil moisture range. Above FASW 0.5, the
rate of yield increase is only 5%. However, when FASW is less than 0.5, the rate of yield
increase is 20%. Figure 4b also shows that maize has a similar pattern. It has a slightly
quicker increase in yield in the early part of the curve and plateaus once FASW > 0.45. The
average rate of yield increase is 56% for FASW < 0.45 and it was only 3% once FASW > 0.45.
This pattern is different for winter crops; there is only a slight yield increase as the amount
of irrigation increases. Overall, the highest yield is obtained at the lowest soil moisture
deficit level. If irrigation was to be applied only after the soil moisture was highly depleted
(FASW 0.2), less irrigation would be required.

 
Figure 4. Cont.
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Figure 4. The amount of irrigation and corresponding grain yield of summer and winter crops for
different soil water deficit levels in the Riverina region, NSW, Australia.

The FASW below which crop yields are affected depends on the crop species, growth
stage, and environmental condition. For example, for shallow-rooted crops it is 0.25–0.40,
for deep rooted-crops it is 0.50, and for deep-rooted crops with dense rooting systems it
is 0.60–0.65. FAO recommends that the commonly used average FASW 0.50 should be
increased by 15% when the reference evapotranspiration ETo <3 mm day−1 and decreased
by 15% when ETo > 8 mm day−1 [27].

The relationship between the amount of irrigation and grain yield is presented in
Figure 5. From Figure 5a (soybean), it can be seen that when irrigation was reduced from
942 to 636 mm (32%), yield dropped by 25%, and when irrigation was reduced from 564 to
381 mm (32%), yield dropped by 31%. For maize (Figure 5b), when irrigation was reduced
from 1165 to 824 mm (29%), yield dropped by only 18%. However, when irrigation was
reduced from 732 to 542 mm (26%), yield dropped by 60%. This shows that for soybean, the
rate of crop yield loss per unit reduction in irrigation amount is the same at a higher and
lower irrigation ranges. When a higher amount of irrigation is applied, some of the applied
water is lost by deep percolation below the root zone [3]. There is high solar radiation and
temperature during the summer period, implying no yield-limiting environmental factors.
As a result, unlike winter crops, for summer crops, when a higher amount of irrigation
water is applied, correspondingly a higher yield can be obtained. For soybean, the amount
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of irrigation that maximizes yield per unit of water is 8.2 ML ha−1 resulting in 3.8 t ha−1

yield, and for maize, it is 10.4 ML ha−1 irrigation resulting in 10.1 t ha−1 yield.

 
Figure 5. Simulated water production function of soybean and maize and fitted polynomial function
in the Riverina region of NSW, Australia.

When the available soil moisture is highly depleted and the plant is unable to easily
extract water, plant water stress and crop yield loss result. Different crops have different
water stress tolerance [28]. The stress tolerance level also depends on the season, summer
or winter. Due to low evaporative demand during the winter period, the plants are not
significantly affected by the low soil moisture levels. During the summer period, however,
due to high evaporative demand, the plants would not be able to withstand high soil water
depletion. The total amount of irrigation is different for different soil moisture deficit levels.
If irrigation was to be applied only after the soil moisture is highly depleted (long irrigation
interval), the overall amount of irrigation required would be lower. However, irrigating
while the soil moisture is still high results in more frequent and higher amount of irrigation.
Crop water use is high when the soil moisture is high because crops can easily extract
soil water. As a result, the total seasonal irrigation decreases as irrigation is applied less
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frequently, that is, waiting until the soil water is significantly depleted. However, this
happens at the expense of crop yield.

3.2. Water Productivity of Summer and Winter Crops at Different Soil Moisture Deficit Levels

Crop water productivity was calculated as a ratio of crop yield and the total amount
of water applied (rainfall plus irrigation). This was done for the water deficit levels varying
from 0.1 to 0.9. The response of water productivity to different irrigation trigger soil
moisture levels differs for summer and winter crops (Figure 6). The variation of water
productivity with the soil water deficit levels was different for summer and winter crops.
For summer crops, water productivity increases as the soil moisture level at which irrigation
is applied increases. However, once it reached a maximum value at about FASW 0.5, it
decreases. However, for winter crops, it starts at a higher value at FASW 0.1 and starts
decreasing. This is attributed to less evapotranspiration during the winter crop growing
season. Compared to the summer crops, the variation in water productivity with soil
moisture depletion levels is not that high. For summer crops, if irrigation is applied only
after the soil moisture drops to a low level (such as FASW 0.2), water productivity is
low. It increases as the FASW increases and reaches a maximum at about FASW 0.4–0.6
before it decreases again; this is well-represented by a second-degree polynomial equation
(Figure 6a,b). For winter crops, the highest water productivity is when FASW is low
(e.g., FASW 0.2). From this highest point, it decreases as the FASW increases following a
trend line represented by a power function (Figure 6c–f).

 

 

Figure 6. Cont.
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Figure 6. Water productivity of summer and winter crops at different soil water deficit levels in the
Riverina region of NSW, Australia.

Summer crops have higher water requirements compared to winter crops due to high
evaporative demand during the summer season. If irrigation is applied before the plant
available water is depleted, the crop grows at an optimum level and yield will not be
affected. However, depending on the crop type, growth stage, and crop water demand,
crop yields can be affected when irrigation is applied after the soil water is depleted below
a certain level called the management allowed deficit or critical soil moisture content [29].
Supplemental or deficit irrigation is practiced when irrigation is applied after the soil
moisture is depleted below the critical soil moisture level. If the soil water is allowed to be
depleted below the critical level before irrigation is applied, the practice is called regulated
deficit irrigation [30].

3.3. Gross Margins for Different Crop Sequences

Gross margin ($ ML−1 and $ ha−1) for different water prices, soil water deficits,
and crop sequences is presented in Figure 7. When irrigation water is limited, irrigation
scheduling depends on the prevailing seasonal conditions and the value of water. It
can be seen that when irrigation is applied at the commonly used FASW 0.5, positive
gross margins were obtained under all crop sequence scenarios and the 25 percentile
($60 ML−1) and 50 percentile ($124 ML−1) water price scenarios. When water is expensive
(75 percentile—$440 ML−1), all, except the continuous wheat scenario, resulted in negative
gross margins. Obviously, the gross margin (both per ML and per ha) was the highest
when water was cheap ($60 ML−1). When water was cheap ($60 ML−1), continuous wheat
(WFWFW) resulted in the highest gross margin per unit of water used ($536 ML−1) and the
lowest was for the FSFMF sequence ($153 ML−1). Per unit of cultivated land area, the two
non-fallow crop sequences (WSWSW and BSBSB) resulted in the highest return, $5010 ha−1

and $5175 ha−1, respectively. When water was expensive ($440 ML−1), the biggest loss was
for the soybean-only sequence (FSFSF) scenario (−$257 ML−1 and −$3696 ha−1).
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Figure 7. Total gross margin per unit of water and per cultivated land for different water prices ($)
and available soil water fractions (FASW) as affected by crop sequences. Wet, medium, and dry refer
to years with above average, average, and below average rainfall, respectively.

Comparing the three deficit levels (FASW 0.2, FASW 0.5, FASW 0.8) under the cheap
water scenario ($60 ML−1), the highest gross margin per ML was obtained for the WFWFW
crop sequence. The gross margin for the three soil water deficit levels FASW 0.2, FASW
0.5, and FASW 0.8 was $781 ML−1, $536 ML−1, and $420 ML−1, respectively. For all
of the three water deficit scenarios, the highest per unit area gross margin would be
obtained for crop sequences where there is neither summer nor winter fallow (WSWSW
and BSBSB). The highest per unit area gross margin was obtained for the FASW 0.8. For
example, considering the WSWSW scenario, the gross margin per cultivated land area
was 5881 $ ha−1, 5010 $ ha−1, and 4542 $ ha−1, for the FASW 0.8, FASW 0.5, and FASW
0.2 scenarios, respectively.

When water is expensive ($440 ML−1), under all three soil moisture deficit levels, only
the WFWFW crop sequence resulted in a positive gross margin. For this crop sequence,
under the expensive water scenario, the highest gross margin (as $ ML−1) was when FASW
was 0.8. The gross margin as $ ML−1 for the three soil moisture deficit scenarios FASW 0.2,
FASW 0.5, and FASW 0.8 was 429 $ ML−1, 156 $ ML−1, and 41 $ ML−1, respectively. Per
unit of cultivated land area it also followed a similar pattern, 1930 $ ha−1, 1028 $ ha−1, and
335 $ ha−1 for FASW 0.2, FASW 0.5, and FASW 0.8, respectively. The biggest loss in gross
margin as $ ML−1 was for the only-soybean scenario FSFSF. The gross margin losses were
−$272 ML−1, −$257 ML−1, and −$253 ML−1, for FASW 0.2, FASW 0.5, and FASW 0.8,
respectively. The biggest gross margin loss per ha was also for the soybean-only scenario
FSFSF. The gross margin losses were −4457 $ ha−1, −3696 $ ha−1, and −2561 $ ha−1 for
FASW 0.8, FASW 0.5, and FASW 0.2, respectively.

When water is plentiful and cheap and land is not limited, full irrigation of winter and
summer crops that results in high return per unit of water and land area can be practiced.
However, when water is limited, partial/deficit irrigation results in better return in $
per ML. A high gross margin per unit area ($ ha−1) is obtained when both summer and
winter crops are sown (i.e., no fallow). Crop intensification can minimize the expansion of
agricultural land, although its viability depends on attainable crop yield [2].

3.4. Gross Margin under Different Water Price and Soil Water Deficit Scenarios

One of the factors determining the gross margin of an irrigated farm is the price of
water, which varies with the amount of rainfall received by the catchments and runoff into
reservoirs. There is significant year to year rainfall variability in Australia. Water trade
was instituted in Australia to move water from where it has a lower value to where it
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can be used at its highest value (e.g., for permanent horticulture). The Australian water
market is highly complex and occurs across catchments and state boundaries. For this
study, 15 years’ water price data in the Murrumbidgee catchment were used. Accordingly,
the 25 percentile water price ($) was $60 ML−1, the median water price was $124 ML−1,
and the 75 percentile water price was $440 ML−1. The gross margin was determined for the
three water prices and different irrigation scheduling criteria. Irrigation could be applied
at different soil moisture deficit levels between field capacity (drained upper limit) and
permanent wilting point (drained lower limit). From Figure 8a it can be seen that having
two summer crops (soybean and maize) with winter fallows in between has positive gross
margins ($ ML−1 and $ ha−1) for 25 percentile and median water prices with the gross
margin of the $60 water price being higher than that of the median price $124. When water
is cheap, all crop sequence scenarios resulted in positive gross margins (Figure 8a–g). At
a higher water price of $440 ML−1, the gross margins were negative. At an intermediate
water price ($124 ML−1), all crop sequences resulted in positive gross margins for an FASW
of 0.5. The highest gross margin ($ ML−1 and $ ha−1) was for the winter crop-only sequence
R5-WFWFW, while the lowest was for the summer crop-only sequence R2-FSFSF. A water
price of $60 ML−1 and FASW 0.8 resulted in the highest yield and profit when winter crops
are gown. However, for a summer crop-only sequence or when there is at least one season
summer crop, partial irrigations (FASW 0.2 and 0.5) resulted in better gross margins. In
seasons with low water allocation and when water is expensive, maximizing crop yields
does not necessarily lead to the highest whole-farm gross margins.

When seasonal allocation is low and water is expensive, farmers need to concentrate
on fully irrigated winter cropping. This can be seen from Figure 8, where at 440 $ ML−1 all
of the crop sequence scenarios resulted in negative gross margins both per unit of water
and per unit of land area. The only scenario that resulted in a positive gross margin was
R5-WFWFW (Figure 4e), where the gross margin at all three soil moisture deficit levels
was positive. The gross margin was highest for the full irrigation (FASW 0.8) and lowest
for the deficit irrigation scenario (FASW 0.2). The 50% deficit (FASW 0.5) resulted in the
intermediate gross margin.

 
Figure 8. Cont.
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Figure 8. Total gross margin per unit of water and per unit cultivated land for different water prices
($) and available soil water fractions (F).
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Historically, irrigation allocation was close to 100%. However, in recent years the
allocation has been much lower. This requires maximising crop yield and profit per unit
of water. For winter crops, the greatest yield return per unit of water is when about
200–300 mm (2–3 ML ha−1) of irrigation water is applied. Above this amount, the rate
of return of yield for each unit of irrigation water applied decreases (diminishing rate of
return). The relationship between crop production and transpiration is linear [31]; hence
this decreased slope shows that there are other yield-limiting factors. For winter crops,
solar radiation and temperature are the liming factors. Even if a higher amount of irrigation
water is applied, the crops do not grow in proportion to the amount of water applied.
However, in this study, for summer crops the yield continued to increase as the amount of
irrigation was increased.

4. Conclusions

This study evaluated different crop sequence, irrigation scheduling and water price
scenarios to improve the whole-farm gross margin. APSIM, the agricultural system model
used in this study, is a vital tool in prioritizing the use of limited resources such as water and
land. The analyses demonstrated that when water supply is not limited and full irrigation
is practiced, irrigation needs to be triggered with only small soil water deficits, leading to
smaller but frequent irrigations, generally resulting in a higher total irrigation. When full
irrigation is not possible due to limited water supply, irrigation should be applied only
after the soil water is highly depleted, leading to larger but fewer irrigation events and,
generally, a lower amount of total irrigation. These strategies can be used to maximise
long-term profitability.

Summer and winter crops show different relationships between water productivity
and soil water deficit levels. Summer crops have a parabolic relationship with water
productivity, increasing, reaching a maximum, and then decreasing as the amount of
irrigation increases. Winter crops, however, have the highest water productivity at the
lowest irrigation level.

In the current environment, and more so in the future water-limited environment,
supplemental irrigation of winter crops will have more whole farm return compared to
fully irrigated intensive winter–summer cropping systems. When water is limited, it would
be better to practice supplemental irrigation of a winter crop rather than full irrigation of a
summer crop. In hot and dry environments such as the Riverina region, deficit irrigation
of summer crops is not a viable option due to high evaporative demand. However, this
needs to be decided based on the relative price of summer and winter crops as well.
In order to maximise long-term average returns, farm management strategies that vary
on a season-by-season basis, based on resource availability, cost, and commodity prices,
are required.

The interaction between relative prices of summer and winter crops and different
irrigation water allocations was not considered. The gross margin comparison as influenced
by the fluctuation in commodity prices needs to be investigated in any future study. Farm
return was evaluated only from the water and land value perspective; for example, addition
of nitrogen by legumes was not considered.
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andrea.palagyi@gabonakutato.hu

3 Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1.,
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Abstract: The growing global water shortage is an increasing challenge for the agricultural sector,
which aims to produce sufficient quantity and quality of food and animal feed. In our study,
effluent water from an intensive African catfish farm was irrigated on grain sorghum plants in four
consecutive years. In our study the effects of the effluent on the N, P, K, Na content of the seeds,
on the phenological parameters (plant height, relative chlorophyll content), the green mass, and on
the grain yield of three varieties (‘Alföldi 1’, ‘Farmsugro 180’ and ‘GK Emese’) were investigated.
Five treatments (Körös River (K) water and effluent (E) water: 30 and 45 mm weekly irrigation water
dose; non-irrigated control) were applied with micro-spray irrigation. Compared to non-irrigated
plants, effluent water did not negatively affect the N, P, K and Na contents of the grain crop. In
terms of phenological parameters, the quality of the irrigation water (150–230 cm) had no negative
effect on any of the measured parameters compared to the control (133–187 cm) values. In terms of
biomass in 2020, grain yields were 89–109 g/plant with variety Alföldi 1, 64–91 g/plant with variety
Farmsugro 180, and 86–110 g/plant with GK Emese.

Keywords: sorghum; effluent water; irrigation; growth response; mineral content; biomass

1. Introduction

The growing global demand for energy and the high use of fossil fuels are a matter of
distress in both the long and short term, as these energy sources are not renewable [1,2].
There may be a shortage of these non-renewable energy sources in the future, which
could result in economic and political conflicts between energy-scarce nations. Therefore,
there is an increasing urgency to research for renewable energy sources that can meet
humanity’s energy needs in the long term [3,4]. Hungary is poor in fossil fuels, but half
of its area is under arable cultivation, and its agro-ecological characteristics also favor
biomass production. For this reason, energy produced as biomass as an alternative energy
source may be the main perspective in the future [5]. Areas that do not allow the successful
cultivation of other crops can be used to for energy crops. At the same time, they meet
the growing conditions for some woody or herbaceous energy plants. The sorghum plant
may be a perfect candidate for the production of low-cost biofuels in the future, as its
abiotic stress tolerance, diverse genetics, and reliable seed production all contribute to this
property [6].

During changes in climatic conditions, drought periods and uneven rainfall distribu-
tion become more frequent. It has been described several studies that sorghum has excellent
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drought tolerance, with dry-land regions growing more than maize. In drought conditions,
sorghum grain absorbs nutrients more efficiently than maize. However, the sorghum crop
grown under non-irrigated conditions does not exceed the irrigated crop [7–9]. Declining
freshwater supplies and pollution are global problems [10]. According to a study by Mekon-
nen and Hoekstra [11], approximately four billion people live in water scarcity worldwide,
and an estimated five hundred million people live in areas with grave water crisis. For this
reason, one of the most significant resources today is water. Nowadays, the biggest chal-
lenge is to provide irrigation water for agriculture in the context of the increasingly frequent
drought phenomenon. As a consequence of climate change periodically and regionally,
there may be a phenomenon in which the surface freshwater supply is insufficient to meet
irrigation water demand [12]. The need for irrigation water can be solved by making
more optimal use of the available irrigation water. However, in some situations, it may
be necessary to use municipal wastewater or agricultural effluent water [13]. Municipal
water sources contain lower concentrations of potential pollutants compared to industrial
wastewater [14]. During the use of reused water in agriculture, environmental changes that
may have a positive or negative property should be monitored [15]. Another source is the
irrigation utilization of the effluent of intensive aquaculture systems. Moreover, the effluent
is usually rich in organic matter; therefore, the fertilizer doses applied to the production
area can also be reduced [16]. At the same time, nutrient accumulation caused by large
amounts of organic and inorganic metabolites and residual fish feed should be taken into
account when placing effluents in natural recipients [17].

The importance of growing sorghum is increased by the fact that it does not require
as intensive plant protection and nutrient replenishment as maize [18]. It is less sensitive
to the quality of the area and can be grown successfully in places where other crops make
little or no profit in an average year. The uses of sorghum are diverse. Sorghum also
plays a significant role in human consumption; in terms of production area, it ranks fifth
after maize, rice, wheat and barley among the cereal crops [19]. Sorghum is a plant of
physiological type C4 with high productivity and good drought tolerance [20,21]. Species
have good drought tolerance due to their original habitat conditions; indeed, sorghum’s
gene center is the steppe and savannah region of Africa [22]. It has a water demand of
500–580 mm/year and a transpiration coefficient of 150–250 l/kg dry matter [8]. It can be
used as a multi-purpose energy crop in both human food and feed production, although it
can also be grown for energy purposes [23,24].

The aim of our study was to determine the growth rate of the sorghum varieties that
were irrigated with effluent water from an intensive fish farm with a higher Na content, and
to define the biomass production. Our further objective was to determine the concentration
of N, P, K and Na elements which were accumulated in plant parts and its effect on the
macronutrient content in the soil.

2. Materials and Methods

2.1. Site Description and Climatic Conditions

The field experiment was set up at the Lysimeter Research Station (46◦51′49′′ N
20◦31′39′′ E, Szarvas, Hungary) of the Hungarian University of Agriculture and Life
Sciences (MATE), Institute of Environmental Sciences (IES), Research Center for Irrigation
and Water Management (ÖVKI).

Szarvas is located in one of the warmest and driest areas of Hungary. The climate
of the Great Hungarian Plain is characterized by large annual and daily temperature
fluctuations, late spring and early autumn frosts, high sunlight, relatively low air humidity,
and extremely capricious rainfall conditions. In all four experimental years, the spring
was characterized by drought in which the average monthly precipitation did not exceed
49.7 mm (Figure 1). We measured the lowest precipitation in 2019, during which the
average annual precipitation was 516.4 mm. In terms of temperature, the warmest year
was observed in 2019, where the average annual temperature was 27.1 ◦C.
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Figure 1. Average mean temperature and precipitation data for the 2016–2020 experimental years.

The soil parameters were analyzed before the start of the study and at the end of
the experiments. The soil of the small-plot experiment was Vertisol. The pH of the soil
was neutral, total carbonate content and total organic carbon content were low; however,
the nutrient supply was high for phosphorus and potassium and moderate for nitrogen
(Table 1). Based on the recorded electrical conductivity (EC) and sodium (Na) concentration
values, the soil is not saline (Table 1).

Table 1. Soil parameters of the experimental field before the start of the experiment in the 0–30 cm
and 30–60 cm soil layers (2016, Szarvas, Hungary).

Depth of the Soil Layer

Soil Parameter 0–30 cm 30–60 cm

pH (KCL) 7.23 ± 0.06 7.15 ± 0.05
Texture clay loam clay loam

EC (μS/cm) 410 ± 28 458 ± 30
Total carbonate content (m/m%) 1.96 ± 0.97 1.41 ± 0.51

Total organic carbon content (m/m%) 1.21 ± 0.08 1.33 ± 0.09
KCL-NO2

− + NO3
−-N (mg/kg) 3.47 ± 0.56 4.42 ± 0.63

AL-P2O5 (mg/kg) 2350 ± 607 3013 ± 395
AL-K2O (mg/kg) 627 ± 137 957 ± 195
AL-Na (mg/kg) 45.0 ± 11.0 56.2 ± 13.6

Comments: EC—specific electrical conductivity of saturated soil paste, KCL—extraction with potassium chloride
solution, AL—extraction with ammonium lactate solution.

2.2. The Plant Material and Experimental Design

In the present study, the growth parameters of three registered grain sorghum cul-
tivars (‘Alföldi 1’, ‘Farmsugro 180’, ‘GK Emese’) of the Cereal Research Non-Profit Ltd.
(Szeged, Hungary) were monitored using different amounts and qualities of irrigation wa-
ter. The sowing time was set up when the average soil temperature (at 5 cm deep) reached
12–13 ◦C in each experimental year (late April or early May). The row spacing was 70 cm
and a stocking density was 190–230 thousand plants/hectare (114–138 plants per plot).
Each plot contained 4 rows (1 m), and the measurements were performed in the middle
two rows (in 6 replicates) in each case. Accordingly, the size of one sample area was 3 m
long and 2.1 m wide.

In our experiment, two different types of irrigation water were used (Table 2). One of
these was a surface freshwater from the local oxbow lake of the Körös River (46◦51′38.6′′ N
20◦31′28.0′′ E, Szarvas, Hungary). The second was an untreated effluent water which was

120



Agronomy 2022, 12, 1185

collected from the direct outflow tank of an intensive African catfish farm. The amount of
water applied during the experiment is shown in Table 3.

Table 2. Types and average quality parameters of irrigation water used in the irrigation experiment
of grain sorghum varieties (Szarvas, Hungary).

EC NH4-N N P K Na SAR

(μS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Effluent water 1307.0 22.5 29.2 3.9 6.4 275.5 12.1
Körös River oxbow lake water 371.0 0.6 2.1 0.2 3.7 31.2 1.2

Comment: SAR—Sodium adsorption ratio.

Table 3. Date of sowing and the available amount of water (irrigation and precipitation) during the
growing seasons of grain sorghum in 2016–2020.

Date of
Sowing

Irrigation
Water Doses

(mm)

Number of
Irrigation

Amount of
Water Applied
by Irrigation

(mm)

Precipitation
during the

Growing Season
(mm)

Amount of
Additional Irrigation
(Körös River) during
Germination (mm)

Total
Amount of
Available

Water (mm)

2016 4 May 30
5

150
296 120

566
45 225 641

2017 2 May 30
6

180
144 80

404
45 270 494

2019 7 May 30
8

240
208 40

488
45 360 608

2020 27 April 30
4

120
288 90

498
45 180 558

In that fish farm, the continuous water supply was provided by a flow-through system,
and the water was obtained from a geothermal reservoir to ensure minimum (16 ◦C) water
temperature and quality needs for the African catfish. The average daily effluent from
the fish farm exceeds 1000 m3 per day [16]. During the irrigation experiment, two doses
of irrigation water (30 and 45 mm) were set on a weekly basis and applied with a micro
sprinkler irrigation system. Five treatments were set up, one non-irrigated control (C), two
surface water irrigated treatments (K30 and K45), and two effluent treatments (E30 and
E45). For each variety, six replicates were set. In the first four weeks after sowing, the plants
were irrigated with Körös River water to supplement the precipitation in all treatments to
promote germination and initial growth. It had a uniform water condition of 30 mm on a
weekly basis, which was ensured by the total amount of precipitation and irrigation water
in the Körös. Subsequently, differentiated irrigation was implemented.

2.3. Assay of Phenologycal Parameters and Mineral Content

The phenological measurements of the plants were recorded weekly during the grow-
ing seasons. The plant height was measured with a measuring rod at the intersections of
the upper two leaves. The Soil Plant Analyses Development (SPAD) index was measured
with the Chlorophyll Meter SPAD-502 (Konica Minolta Inc., Tokyo, Japan) on 3 plants per
sampling point, on the most advanced leaf, at 4 points per leaf. The SPAD measurement
was distributed proportionally along the length of the leaf plate at two points on the right
and left sides of the leaf plate. For the determination of biomass, the whole above-ground
part of the plant was sampled, when the moisture content of sorghum grains dropped
below 20 m/m%. We also measured wet green weight and the weight of grains (in both
cases we worked with six replicates).

We performed the studies based on our previously published study of Kolozsvári
et al. [16]. The analysis of the soil samples and mineral content of different plant parts was
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carried out at the end of the growing season assayed by the Hungarian and International
Organization for Standardization (ISO) methods. Sodium, phosphorus, and potassium were
extracted with nitric acid + hydrogen peroxide and their concentrations were measured
using inductively coupled plasma-optical emission spectrometry (ICP-OES) (according to
Hungarian standard MSZ 08 1783 28-30:1985). The ISO 5983-2:2009 standard method was
used to determine nitrogen.In the analytical studies, we worked with three repetitions.

2.4. Statictical Analyses

IBM SPSS Statistics 25.0 software was used for statistical evaluation. The significant
differences between different irrigation treatments and cultivars were determined by one-
way analysis of variance ANOVA, where the Tukey’s test was considered significant at
p ≤ 0.05. Pearson correlation was used in correlation analysis.

3. Results

3.1. Changes in Soil Parameters during the Experiment

Soil properties were examined in two soil layers. In the sub-soil layer (30–60 cm),
there was no significant difference between the different treatments, expect the sodium
content (Table 4). The properties of the upper soil layer were changed for five parameters
due to irrigation or irrigation water quality. The pH values were significantly higher in
the effluent water treatment than in the K30, K45 and control treatments. The highest EC
values were measured in the control, and there were no significant differences between
the treatments. In case of two macronutrients, phosphorus and potassium, there were
less available amounts in the soils in E30 and E45 treatments than in surface water or
non-irrigated treatments (Table 4). The AL-Na content was lowest in the control treatment;
for the irrigated soil samples, the value in E45 was significantly higher than others.

Table 4. Soil parameters of the experimental area sampled in the final year of the irrigation experiment.
Average soil parameters data are presented from five treatments. Results are means ± SD, n = 6.
Different letters show significant differences among irrigation water qualities for the four cultivation
years, corroborating to the Tukey’s test at p ≤ 0.05.

2020 E30 E45 K30 K45 C

0–30 cm p1

pH (KCl) 7.28 ± 0.04 b 7.30 ± 0.06 b 7.22 ± 0.02 ab 7.25 ± 0.04 ab 7.18 ± 0.03 a *
EC (μS/cm) 355 ± 38 a 352 ± 38 a 411 ± 38 ab 402 ± 38 ab 464 ± 38 b **

Total carbonate content (m/m%) 2.31 ± 0.67 2.02 ± 0.93 1.90 ± 0.23 2.35 ± 0.23 1.43 ± 0.24 n.s.
Total organic carbon (m/m%) 1.09 ± 0.08 1.08 ± 0.05 1.18 ± 0.05 1.16 ± 0.04 1.23 ± 0.07 n.s.

KCL-NO2
− + NO3

−-N (mg/kg) 3.01 ± 0.45 3.45 ± 0.81 3.44 ± 0.95 3.85 ± 1.04 3.42 ± 0.64 n.s.
AL-P2O5 (mg/kg) 1243 ± 262 a 1247 ± 159 a 1880 ± 285 ab 1543 ± 179 bc 2300 ± 225 c **
AL-K2O (mg/kg) 350 ± 75 a 333 ± 45 a 475 ± 67 ab 460 ± 31 ab 509 ± 41 b **
AL-Na (mg/kg) 113.7 ± 18.9 ab 122.9 ± 21.3 b 89.2 ± 21.0 ab 82.1 ± 17.9 a 86.8 ± 23.3 a **

30–60 cm p1

pH (KCl) 7.13 ± 0.10 7.08 ± 0.03 7.16 ± 0.06 7.17 ± 0.07 7.12 ± 0.05 n.s.
EC (μS/cm) 458 ± 38 476 ± 38 464 ± 38 452 ± 38 451 ± 38 n.s.

Total carbonate content (m/m%) 1.92 ± 1.16 1.41 ± 0.74 1.74 ± 0.52 1.91 ± 1.10 1.40 ± 0.47 n.s.
Total organic carbon (m/m%) 1.30 ± 0.18 1.42 ± 0.06 1.29 ± 0.07 1.30 ± 0.14 1.40 ± 0.06 n.s.

KCL-NO2
− + NO3

−-N (mg/kg) 3.55 ± 0.32 3.37 ± 0.31 3.22 ± 0.92 3.26 ± 0.66 3.53 ± 0.36 n.s.
AL-P2O5 (mg/kg) 2100 ± 447 2447 ± 716 2373 ± 234 2127 ± 318 3010 ± 828 n.s.
AL-K2O (mg/kg) 612 ± 114 607 ± 94 635 ± 93 727 ± 66 640 ± 68 n.s.
AL-Na (mg/kg) 122.2 ± 14.7 ab 127.0 ± 18.2 b 88.9 ± 20.0 a 95.6 ± 24.2 ab 89.9 ± 20.0 a **

Comment: p1: represent p-value. * p < 0.05, ** p < 0.01, n.s.—not significant. EC—specific electrical conductivity
of saturated soil paste, KCL—extraction with potassium chloride solution, AL—extraction with ammonium
lactate solution.

122



Agronomy 2022, 12, 1185

3.2. Results of the Main Macroelement Content of Sorghum Plant Parts
3.2.1. Changing of Nitrogen Content in Different Plant Parts

Figure 2a shows the nitrogen (N) analyses of the grains of the ‘Alföldi 1’ variety during
the experimental four years. The grains show a decreasing trend every year. The highest
value is shown by the control samples (2.4 m/m%), while the lowest nitrogen content was
in the K45 (1.8 m/m%) treatment in 2016. In the 2017 growing year, the samples were
characterized by a balanced nitrogen content. The results obtained in the next two years
converge, where it can be seen that the control (C) values were the lowest and the samples
irrigated with effluent irrigation water had the highest nitrogen content. There was only a
significant difference in the first year, where the E45 treatment (p = 0.005) had a significantly
lower N element content compared to the C and K30 treatments.

Figure 2. Nitrogen content of sorghum grains from 2016 to 2020. (a) The nitrogen content of ‘Alföldi
1’ variety; (b) the nitrogen content of ‘Farmsugro 180’ variety; (c) the nitrogen content of ‘GK Emese’
variety. The mean nitrogen content data are presented in five treatments. The results are means ± SD,
n = 3. The different letters establish significant differences between irrigation water qualities for the
four vegetation periods, corroborating to the Tukey’s test at p ≤ 0.005.

The Figure 2b shows the development of nitrogen content in the grain yield of ‘Farm-
sugro 180’. In the first two growing years, almost the same N-element content was
measured in the grains, during which the C treatment had the highest concentration
(1.7–1.8 m/m%). In addition, a decrease can be observed in 2019 and 2020. No significant
difference can be described; however, it can be observed that higher N content was measur-
able for irrigated treatments. The significant difference was characteristic of the first year
of cultivation, where we measured a significantly lower N content in the E45 treatment
(p = 0.035) compared to the C treatment.

In the ‘GK Emese’ variety (Figure 2c), it can be stated that the highest N content in
the grains occurred in the first year of cultivation. The highest values were measured for
the E45 treatment (2.1 m/m%) and the lowest for the K30 sample (1.0 m/m%). In 2017,
there was some decrease in plant samples for all treatments. Almost the same course can be
observed in the last two growing years. We measured a significant difference in 2016 and
2019. The K30 treatment (p = 0.047) had significantly less N content compared to the E 45
treatment with the highest value. In the latter case, we also measured a significantly higher
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nitrogen content in the plant sample of the 45 mm irrigated effluent treatment compared to
the K30 (p = 0.005), C (p = 0.018) and K45 (p = 0.029) samples.

3.2.2. Changing of Phosphorus Content in Sorghum Plant Part

Figure 3a shows the phosphorus (P) content measured in the grains of the ‘Alföldi
1’ grain sorghum variety. The phosphorus values were between 2700 and 3700 mg/kg
dry matter (d.m.) during the four years of cultivation. In 2016, treatment C had the high-
est concentration (3700 mg/kg d.m.), while K30 treatment had the lowest concentration
(3190 mg/kg d.m.). In the second year of cultivation, the highest phosphorus concentra-
tion was measured in the C treatment plant sample, and the lowest in the E45 treatment.
In the experimental years of 2019 and 2020, a small decrease was observed, especially
for treatment C, where the values were around 3000 and 2700 mg/kg d.m. We mea-
sured significant differences between the treatments, except for the last year. In 2016, K30
(p = 0.028) and E45 (p = 0.046) treatments had significantly less phosphorus content com-
pared to the C treatment with the highest value. In the second year, we also measured
significantly lower values for E45 (p = 0.003), E30 (p = 0.047), and K45 (p = 0.049) sam-
ples compared to the C treatment. In 2019, the phosphorus value of the E30 treatment
proved to be the highest, where we measured a significantly lower value than the C sample
(p = 0.045).

 

Figure 3. Phosphorus content values of sorghum grains from 2016 to 2020. (a) The phosphorus
content of ‘Alföldi 1’ variety; (b) the phosphorus content of ‘Farmsugro 180’ variety; (c) the phos-
phorus content of ‘GK Emese’ variety. The mean phosphorus content data are presented in five
treatments. The results are means ± SD, n = 3. The different letters establish significant differences
between irrigation water qualities for the four vegetation periods, corroborating to the Tukey’s test at
p ≤ 0.005.

Lower phosphorus values were measured for the ‘Farmsugro 180’ variety in the first
experimental year compared to the other years (Figure 3b). The highest value was recorded
by C treatment (2987 mg/kg d.m.), while the lowest was recorded by E45 treatment
(2430 mg/kg d.m.). In the following two experimental years, the values show an upward
trend. However, a repeated decline in phosphorus levels can be observed in 2020. The
significant differences were detected between the applied treatments, with the exception
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of the year 2017. In 2016, we measured a significantly lower concentration for the E45
(p = 0.004) sample compared to the value of treatment C. In 2019, the K30 (p = 0.043) sample
had a significantly higher phosphorus concentration. Compared to the E45 sample with the
highest value, the last year was characterized by significantly lower phosphorus content in
E30 (p = 0.048).

In Figure 3c, the phosphorus value of the grains of the ‘GK Emese’ cultivar ranged
from 2540 to 3950 mg/kg d.m. In the first year of cultivation, E45 treatment had the lowest
concentration, while C treatment had the highest concentration. The difference between the
measured values exceeded 600 mg/kg d.m. The year 2017 was characterized by equalized
values. In the last two years, a decrease in phosphorus levels was observed, where the
K30 treatment had the lowest value and the E45 treatment had the highest concentration.
There was no significant difference between the treatments in 2017 and 2020. However, in
2016, treatments E45 (p = 0.015) and K30 (p = 0.023) contained significantly less phosphorus
capable of C treatment with the highest P levels. Furthermore, we measured significantly
more phosphorus in the E45 treatment in 2019.

3.2.3. Changing of Potassium Content in Sorghum Plant Part

In the first year of cultivation, the potassium (K) levels of the grains of the ‘Alföldi
1’ variety ranged from 4020 to 5000 mg/kg d.m. (Figure 4a). The K30 treatment had the
lowest value and the E45 treatment had the highest value. In 2017, a decrease in potassium
levels was observed for all treatments. Subsequently, in the last two growing years, the
values showed a nearly identical trend, where we measured higher potassium levels with
K30 treatment. We detected a significant difference between the treatments in the first two
experimental years. In 2016, E45 (p = 0.044) treatment had significantly more potassium
content than the others. Furthermore, E30 (p = 0.016) had significantly less K element
content compared to the C treatment with the highest value in 2017.

 

Figure 4. Potassium content values of sorghum grains from 2016 to 2020. (a) The potassium content
of ‘Alföldi 1’ variety; (b) the potassium content of ‘Farmsugro 180’ variety; (c) the potassium content
of ‘GK Emese’ variety. The mean potassium content data are presented five treatments. The results
are means ± SD, n = 3. The different letters establish significant differences between irrigation water
qualities for the four vegetation periods, corroborating to the Tukey’s test at p ≤ 0.005.

125



Agronomy 2022, 12, 1185

In the case of the ‘Farmsugro 180’ cultivar, it can also be described that the samples
were characterized by elevated K levels in the first year. It is also typified by balanced
values (Figure 4b). In 2017, potassium levels ranged from 3490–3580 mg/kg d.m. The
samples from 2019 and 2020 showed significant differences. The E30 (p = 0.010) and E45
(p = 0.021) treatments had significantly less K content compared to the highest value of K30
in 2019. In the last year, E45 (p = 0.029) had significantly less K content compared to the
highest value of K45 treatment.

In case of ‘GK Emese’, we detected a higher K level in the samples, which was between
3843 and 4266 mg/kg d.m. in the first year of cultivation (Figure 4c). In 2017, the potassium
content in the grains was similar to the other varieties as some decrease can be observed.
The K content of the last two years was balanced, with nearly the same values, where
treatment C showed a decreased potassium content (3580 and 3560 mg/kg d.m.). The
highest values were measured for the E45 treatment in both years. In the evaluation of the
K-level measured in the grains of the ‘GK Emese’ variety, no significant difference between
the treatments was detected in any of the examined cultivation years.

3.2.4. Changing of Sodium Content in Sorghum Plant Part

In 2016, the sodium (Na) content detected in the grains of the ‘Alföldi 1’ variety proved
to be the lowest, where its measured values ranged from 29 to 34 mg/kg d.m (Figure 5a).
Some decreases were observed in the 2017 and 2019 cultivation years; however, even
the highest Na content does not exceed 44 mg/kg d.m. In the last experimental year, a
significant increase in Na levels was observed for all treatments. In this case, treatments
E45 and C exceed 100 mg/kg d.m. The effects of the treatments were compared within that
cultivation year, where no significant differences were detected.

 

Figure 5. Sodium content values of sorghum grains from 2016 to 2020. (a) The sodium content
of ‘Alföldi 1’ variety; (b) the sodium content of ‘Farmsugro 180’ variety; (c) the sodium content of
‘GK Emese’ variety. The mean sodium content data are presented five treatments. The results are
means ± SD, n = 3. The different letters establish significant differences between irrigation water
qualities for the four vegetation periods, corroborating to the Tukey’s test at p ≤ 0.005.

In the case of the ‘Farmsugro 180’ cultivar, the Na content measured in the grains was
higher than in the case of the ‘Alföldi 1’ cultivar. In the first year of cultivation, treatment
C had the lowest value of 32 mg/kg d.m., while treatments K45, E30 and E45 had the
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highest values (56 mg/kg d.m.) (Figure 5b). The following year was marked by growth.
The highest sodium values in the control samples were 73 mg/kg d.m. and the lowest
was 63 mg/kg d.m. for K45 treatment. In 2019, a repeated decrease was observed in the
samples, where they ranged from 41 to 49 mg/kg d.m. In 2020, a remarkable increase was
observed between 92 and 109 mg/kg d.m. There were no significant differences for this
variety when comparing the treatments in that year.

The level of Na content measured in the grains was similar for the ‘GK Emese’ cultivar
(Figure 5c). In 2016, a balanced sodium level was measured for each treatment, during
which it did not exceed 26 mg/kg d.m. In the second year of cultivation, samples irrigated
with water from the Körös oxbow lake represented higher Na levels. In 2019, however,
samples irrigated with effluent showed higher values (53 and 57 mg/kg d.m.). It is
also observed in this variety that the Na content in the grains increased notably in 2020,
especially in the case of the E45 sample, where it reached 115 mg/kg d.m. In this case, there
was no significant difference between the treatments in the statistical evaluation.

3.3. Phenological Results
3.3.1. Development of Relative Chlorophyll Content

Table 5 shows the average chlorophyll values. In the experimental year of 2016, the
highest SPAD value in the leaf parts was measured in the case of the C treatment in the
‘Alföldi 1’ variety, while the lowest was detected in the case of the E45 treatment. A decrease
was observed for all treatments in the following year. The SPAD value developed similarly
in 2019 and 2020, with the highest measured at E45 and the lowest at K30. There was
no significant difference between treatments for the first two years. In the third and the
fourth year, E30 (p = 0.000), K30 (p = 0.000), and C (p = 0.001) treatments had significantly
lower SPAD values compared to the highest E45 treatment. By 2020, the chlorophyll
content of the leaves was also significantly lower in the E30 (p = 0.001), K30 (p = 0.002) and
C (p = 0.001) treatments compared to the E45 value.

Table 5. Chlorophyll values over the four experimental years. Average chlorophyll data are presented
from five treatments. Results are means ± SD, n = 30. Different letters recommend significant
differences among irrigation water qualities for the four cultivation years, corroborating to the
Tukey’s test at p ≤ 0.05.

Variety of Grain Sorghum Treatments
Average SPAD Values

2016 2017 2019 2020

‘Alföldi 1’

K30 50.7 ± 5.8 a 51.7 ± 6.2 a 42.8 ± 6.7 a 42.5 ± 6.1 a
K45 52.6 ± 7.5 a 52.1 ± 11.6 a 48.5 ± 9.0 bc 49.9 ± 8.8 bc
E30 52.6 ± 8.0 a 49.0 ± 6.7 a 44.0 ± 7.2 ab 44.5 ± 7.7 ab
E45 50.0 ± 6.1 a 49.1 ± 6.7 a 52.4 ± 4.5 c 53.2 ± 4.7 c
C 52.8 ± 9.1 a 49.8 ± 7.8 a 44.3 ± 9.2 ab 45.3 ± 9.4 ab

‘Farmsugro 180’

K30 46.3 ± 7.3 a 49.8 ± 5.7 a 44.8 ± 5.1 b 45.6 ± 5.5 b
K45 50.0 ± 9.0 a 51.0 ± 5.8 a 39.1 ± 5.4 a 41.0 ± 5.6 a
E30 49.5 ± 10.1 a 50.7 ± 6.2 a 38.9 ± 5.0 a 41.1 ± 4.6 a
E45 47.7 ± 8.8 a 52.5 ± 6.9 a 47.1 ± 5.1 b 48.0 ± 4.9 b
C 47.6 ± 10.2 a 49.8 ± 7.4 a 46.8 ± 5.0 b 47.7 ± 4.6 b

‘GK Emese’

K30 51.9 ± 7.0 a 49.2 ± 5.7 a 45.7 ± 6.3 b 45.5 ± 6.2 b
K45 56.5 ± 7.3 a 50.1 ± 7.3 a 40.0 ± 7.3 a 37.8 ± 8.0 a
E30 52.4 ± 7.2 a 47.3 ± 7.6 a 41.0 ± 6.9 ab 38.0 ± 10.2 a
E45 53.1 ± 7.1 a 48.6 ± 6.8 a 44.8 ± 6.8 b 45.0 ± 7.5 b
C 55.8 ± 7.3 a 48.4 ± 7.5 a 42.8 ± 6.7 ab 43.0 ± 6.6 ab

Comments: SPAD—Soil Plant Analyses Development.

Regarding the ‘Farmsugro 180’ variety, it can be observed that in all cases except
the first year, E45 treatment had the highest SPAD value, especially in 2017, where it
reached 52.5. Of the four experimental years, the lowest mean chlorophyll values were
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detected in 2019 (38.9–47.1), while the highest was measured in 2017 (49.8–52.5). During
the one-way statistical evaluation, there was no significant difference between treatments
in the first two years. In 2019 and 2020, E30 and K45 (p = 0.000) treatments had significantly
lower chlorophyll values compared to E45 treatment with the highest SPAD data.

For the ‘GK Emese’ sorghum variety, the highest chlorophyll value was measured in
2017 out of the four experimental years (51.9–56.5), while the lowest was in 2020 (38.8–45.5).
It was characteristic of the first two cultivation years that the treatments irrigated with the
water of the Körös River had a higher SPAD value, especially the K45 treatments. However,
in 2019 and 2020, plants with K30 treatment had the highest chlorophyll value. In this case,
it can be described that there was no significant difference between the treatments during
the first two years of the statistical analysis. In the year 2019, the K45 (p = 0.012) treatment
had a significantly lower SPAD value compared to the value measured at the highest K30
treatment. In 2020, E45 (p = 0.003) and K45 (p = 0.002) treatments also had significantly
lower chlorophyll values compared to the highest K30 treatment.

3.3.2. Determination of Growth Parameter during the Seasons

In the case of the ‘Alföldi 1’ variety, it can be observed that the height values measured
during the first year exceeded the measurements of the following years (Figure 6a). For the
E45 treatment, we measured the highest plants where they reached 199 cm. Plants with the
E30 treatment grew to the lowest one (155 cm). In the following year, a decrease in height
was observed for all treatments. Height values from 2019 to 2020 were detected in nearly
the same range. As in previous years, the plants grew smaller with E30 treatment and the
largest with E45 treatment (156–169 cm). The significant difference between the treatments
was detected only in the first year of cultivation, where sorghum plants grew signifi-
cantly smaller (p ≤ 0.01) than all other treatments compared to the E45 treatment with the
highest value.

 

Figure 6. Plant height data measured at the last evaluation time of sorghum grains from 2016 to
2020. (a) Height values of ‘Alföldi 1’ variety; (b) height values of ‘Farmsugro 180’ variety; (c) height
values of ‘GK Emese’ variety. The mean height data are presented five treatments. The results are
means ± SD, n = 3. The different letters establish significant differences between irrigation water
qualities for the four vegetation periods, corroborating to the Tukey’s test at p ≤ 0.005.
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For ‘Farmsugro 180’ (Figure 6b), higher plant heights were also detected in the first
year of cultivation, with the lowest plants in treatment C (187 cm) and the highest in
treatment K45 (236 cm). In the following years, a decrease was observed with all treatments.
In 2017, the height of the ‘Farmsugro 180’ variety was between 149 and 164 cm. In 2019
and 2020, an increase of 10% was observed, during which the height ranged from 161 to
182 cm. In 2016, a significant difference was found between the treatments, where plants of
other treatments grew significantly lower (p ≤ 0.05) compared to K45 treatment.

The ‘GK Emese’ variety is also characterized by the finding that the height values
measured in 2016 exceeded those in other years (Figure 6c). The measured values were
between 140–170 cm in the first year and 133–152 cm in the second year. In all four years of
cultivation, treatment C was found to be the lowest and treatment E45 to be the highest. In
the last two years, a decrease can be observed, where the measured values were between
156–162 cm. In the first two years there was a significant difference between treatments. In
2016, C (p = 0.001) E30 (p = 0.008) and K30 (p = 0.016) treatments proved to be significantly
lower than E45. In the second year, significantly lower values were detected for C treatment
(p = 0.018) compared to the highest E30 treatment.

3.4. Development of Biomass Product over the Four Experimental Years
3.4.1. Development of the Green Mass of the Three Sorghum Cultivars during the
Experimental Years

The development of the wet green mass of grain sorghum varies from variety to
variety. In the case of the ‘Alföldi 1’ variety, the 2017 growing year proved to be the most
productive in terms of wet green mass, during which the E45 treatment reached 476 g/plant
(Table 6). In the same year, the lowest weight was measured for treatment C, which was
349 g/plant. In addition, the green mass of the first year of cultivation proved to be the
lowest, where the E45 treatment (365 g/plant) had the highest biomass and E30 treatment
had the lowest (296 g/plant) value. In the one-way analysis of variance, there was no
significant difference when comparing treatments over the years.

Table 6. Development of wet green mass at harvest between 2016–2020 growing seasons. Average
green mass weight data are presented from five treatments. Results are means ± SD, n = 6. Different
letters recommend significant differences among irrigation water qualities for the four cultivation
years, corroborating to the Tukey’s test at p ≤ 0.05.

Variety of
Grain

Sorghum

Applied
Treatments

2016 2017 2019 2020

Green Mass
Weight (g/Plant)

Mean ± SD

p-
Value

Green Mass
Weight (g/Plant)

Mean ± SD

p-
Value

Green Mass
Weight (g/Plant)

Mean ± SD

p-
Value

Green Mass
Weight (g/Plant)

Mean ± SD

p-
Value

‘Alföldi 1’

K30 301 ± 9 a

n.s

422 ± 79 a

n.s.

315 ± 58 a

n.s.

379 ± 104 a

n.s.
K45 302 ± 49 a 451 ± 92 a 357 ± 54 a 420 ± 123 a
E30 296 ± 62 a 436 ± 100 a 386 ± 81 a 402 ± 31 a
E45 365 ± 108 a 476 ± 117 a 329 ± 93 a 376 ± 173 a
C 320 ± 80 a 349 ± 89 a 397 ± 70 a 269 ± 55 a

‘Farmsugro
180’

K30 583 ± 81 b

*

427 ± 48 a

n.s.

331 ± 36 a

n.s.

397 ± 80 a

n.s.
K45 528 ± 96 ab 489 ± 105 a 308 ± 52 a 383 ± 62 a
E30 539 ± 91 ab 460 ± 65 a 346 ± 37 a 422 ± 107 a
E45 433 ± 84 a 458 ± 71 a 330 ± 33 a 461 ± 60 a
C 540 ± 58 ab 411 ± 74 a 321 ± 60 a 448 ± 53 a

‘GK Emese’

K30 244 ± 70 a

n.s

427 ± 98 a

n.s.

435 ± 74 ab

**

347 ± 86 a

n.s.
K45 229 ± 47 a 418 ± 74 a 531 ± 83 abc 303 ± 65 a
E30 256 ± 20 a 401 ± 75 a 573 ± 96 c 335 ± 70 a
E45 209 ± 25 a 421 ± 61 a 555 ± 59 bc 401 ± 140 a
C 227 ± 27 a 339 ± 67 a 421 ± 63 a 330 ± 56 a

Comments: * p < 0.05, ** p < 0.01, n.s.—not significant.

For the ‘Farmsugro 180’ cultivar, the highest green weight was detected in the first
year of cultivation, reaching 583 g/plant for the K30 treatment, while the E45 treatment
with the lowest weight value 433 g/plant. The plants of 2019 had the lowest weight, where
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their measured values ranged from 308 to 346 g/plant. A significant difference between
the treatments was detected in the first year of cultivation (p ≤ 0.05).

In the case of the ‘GK Emese’ cultivar, the year 2016 had the lowest plant weight,
where the highest measured values did not exceed 256 g/plant. However, in 2019, these
values increased for all treatments, with the lowest C treatment reaching 421 g/plant and
the E30 treatment having the highest plant weight of 573 g/plant, although there was no
significant difference between treatments during the statistical annual evaluation.

3.4.2. Improvement of the Grain Yield of the Three Sorghum Cultivars during the
Experimental Years

In the course of the change in the weight of the grain yield of the ‘Alföldi 1’ variety,
the smallest grains yield was detected in the year 2019, which was between 67–91 g/plant
(Table 7). The highest grain yield values were measured in 2016, where the C treatment
had the lowest grain yield of 82 g/plant and the E30 samples had the highest grain yield of
138 g/plant. During the one-way analysis of variance, there was a significant difference
between treatments only in 2016 (p ≤ 0.001).

Table 7. Development of wet grains yield at harvest between 2016–2020 growing seasons. Average
grains yield data are presented from five treatments. Results are means ± SD, n = 6. Different letters
recommend significant differences among irrigation water qualities for the four cultivation years,
corroborating to the Tukey’s test at p ≤ 0.05.

Variety of
Grain

Sorghum

Applied
Treatments

2016 2017 2019 2020

Grain Yield
(g/Plant) Mean

± SD

p-
Value

Grain Yield
(g/Plant) Mean

± SD

p-
Value

Grain Yield
(g/Plant) Mean
± Std. Deviation

p-
Value

Grain Yield
(g/Plant) Mean
± Std. Deviation

p-
Value

‘Alföldi 1’

K30 125 ± 16 bc

***

123 ± 18 a

n.s.

68 ± 17 a

n.s.

102 ± 38 a

n.s.
K45 128 ± 21 c 115 ± 9 a 83 ± 21 a 109 ± 53 a
E30 138 ± 17 c 116 ± 17 a 91 ± 16 a 105 ± 7 a
E45 100 ± 14 ab 120 ± 24 a 67 ± 11 a 106 ± 42 a
C 82 ± 10 a 104 ± 22 a 83 ± 11 a 89 ± 46 a

‘Farmsugro
180’

K30 75 ± 6 a

***

94 ± 11 a

n.s.

88 ± 16 a

n.s.

67± 13 ab

*
K45 86 ± 2 b 105 ± 25 a 88 ± 13 a 57 ± 12 a
E30 88 ± 3 b 90 ± 19 a 96 ± 17 a 64 ± 23 ab
E45 87 ± 3 b 81 ± 8 a 93 ± 16 a 81 ± 21 ab
C 70 ± 6 a 86 ± 13 a 94 ± 12 a 91 ± 21 b

‘GK Emese’

K30 140 ± 13 a

n.s.

109 ± 27 a

n.s.

80 ± 18 a

n.s.

94 ± 22 a

n.s.
K45 129 ± 26 a 106 ± 17 a 75 ± 18 a 77 ± 13 a
E30 110 ± 52 a 112 ± 15 a 77 ± 15 a 86 ± 19 a
E45 127 ± 15 a 107 ± 17 a 87 ± 9 a 110 + 46 a
C 100 ± 19 a 98 ± 13 a 73 ± 19 a 94 ± 15 a

Comments: * p < 0.05, *** p < 0.001, n.s.—not significant.

For the ‘Farmsugro 180’ variety, the grain yield was the lowest in the last experimental
year, during which the measured value was only 57 g/plant for the K45 treatment. However,
the highest values were detected in 2017, during which the grain yield of sorghum was
the lowest for the E45 (81 g/plant) treatment and the highest for the K45 (105 g/plant)
treatment. There was no verifiable significant difference between the treatments in any of
the years.

Compared to the other cultivars, we measured a higher amount of grain yield in
the case of the ‘GK Emese’ every year (Table 7), during which the lowest values mea-
sured in 2019 exceeded it (77–110 g/plant). The year 2016 had the highest weight value,
with the lowest value for treatment C (100 g/plant) and the highest for treatment K30
(140 g/plant), although there was no significant difference between treatments during
statistical evaluation.
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4. Discussion

The irrigation experiment applied to the grain sorghum varieties took place between
2016 and 2020. With population growth and swift urbanization, the agricultural sector
is under increasing pressure as freshwater supplies for crop production declining in all
parts of the world [25]. The use of wastewater and effluents of industrial or agricultural
origin is an essential element in the protection of our water resources. According to Qi
et al. [26], effluents from aquaculture systems have a rich organic matter content which
can be advantageously used in crop production. At the same time, it increases soil fertility,
improves cultivation success and reduces fertilizer costs [27]. Irrigation of the higher
salinity effluent with us gave similar results as Guimarães et al. [28] described in their
research that the cultivation of the sorghum forage could be solved by irrigation with saline
effluent water.

The high Na+ and HCO3
− concentration in irrigation water is known to be respon-

sible for soil salinization. In sodic soils, ionic exchange between Na+ and H+ causes the
dissociation of water in soil solution, leading to increasing concentrations of NaOH in
the soil solution and the soil pH may increase to values above 10.5 [29,30]. The negative
relationship between basic respiration and pH in salt-affected soils [31] could be another
reason of the alkalization of the soil irrigated with effluent water (Table 4). In case of total
carbonate, total organic carbon and N values, there were no significant differences due to
the treatments (Table 4).

According to our results in the non-irrigated treatment, the highest EC value was
measured (in surface soil layer). Strong correlation was found between EC and P and K
content of the soil (Pearson correlation coefficients 0.824 and 0.823, respectively, sig. < 0.01)
in the surface layer, but there was no correlation between them in the subsoil layer. We
assume the EC differences occur because of the more available nutrients (P, K) in the soil at
0–30 cm depth.

The impact of irrigation and water quality on the available phosphorus content of the
soil was proved in the surface soil layer where the lowest mean P content were calculated
in E30 and E45, despite the P content of the effluent and the river water (Tables 1 and 4). We
assume the disintegration of soil aggregates was due to soil salinization was the significant
role of the released colloid-sized clay particles in P fixation; however, further studies are
needed to prove our assumption. According to Arienzo et al. [32], potassium availability is
strongly affected by the pH of the wastewater, as well as by the pH of the receiving soil.
Normally, potassium availability is sustained for most plants in neutral or slightly acidic
soils. In this study, the pH was significantly lower in the soil irrigated with Körös River
water, which may have caused higher K content in the control treatment.

One of the acidic extractants, the ammonium lactate (AL, pH = 3.7) solution, introduced
by Egner et al. [33], is commonly used in Europe. When the soil is treated with AL extraction
solution, the soluble substance enters the solution partly through dissolution and partly
through ion exchange, and AL extraction solution could decompose the carbonates also.
The higher sodium concentration of the soils irrigated with effluent (Table 4) indicates the
start of the sodication process.

The increase in the nitrogen content of sorghum plants is directly proportional to the
higher crude protein content [34], which may mean a more nutritious feed for the animals.
Although, the lower nitrogen content affects the physiology of the plant processes in which
the macronutrient content of the grain changes, in particular the uptake of Ca, Mg and
S [34]. For all three cultivars, significantly higher nitrogen values were measured in the
grain yield in the first two growing years. In certain years of the experiment, it was found
for each variety that the higher N content of the effluent irrigation water could be well
utilized in grain yields.

The P demand of plants is high during the development of vegetative organs, but
it is also significant during crop production. The seeds are the phosphorus-containing
plant organs [35]. Nitrogen and phosphorus are antagonists of each other in terms of their
physiological effects, where N stimulates the growth of vegetative organs, while phos-
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phorus stimulates the appearance of generative organs and crop ripening [36]. Regarding
phosphorus, there was no significant difference between the varieties and the irrigation
treatments. On the other hand, the ‘Alföldi 1’ and ‘GK Emese’ varieties were able to make
slightly better use of the higher P content of effluent irrigation water, especially in the last
two years.

Potassium is an essential element for growth and one of the most frequently occurring
cations in plant organs. Unlike other elements such as nitrogen, phosphorus, magnesium,
calcium and sulfur, potassium is not incorporated into organic matter. Over time, the
K content of older organs showed a decreasing trend. [37]. In the experiment, sorghum
plants had high K levels of grain yield between 3500 and 5000 mg/kg d.m. There was
no significant difference between the varieties. The Na+/K+ ratio is considered to be the
basis of the salt tolerance of plants, which increases in direct proportion to the increase in
salinity [38]. According to Ahmad et al. [39] and Iqbal et al. [40] studies, effluent irrigation
water with higher salinity did not reduce the accumulation of K+ in plant organs.

High salinity in plants cause hyperionic and hyperosmotic stress effects, as well as
limited growth. Sodium is not essential even for extreme salt-tolerant plants, requiring
only small amounts of C4 and CAM plants [41,42]. Due to this, in addition to salt stress,
sorghum is able to maintain its photosynthetic activity and dry matter production [43]. The
sodium content of the grain crop was the lowest in the first year of cultivation. There was a
difference in the accumulation of the cultivars, where a higher Na level was detected in the
case of ‘Farmsugro 180’, while the lowest sodium content was measured in ‘GK Emese’.
The level of Na in the grain yield of sorghum also shows an upward trend between the
years, but it occurred to different degrees for the three sorghum cultivars. However, this
value has not yet been shown to be toxic to the dose. In a vegetation period—in proportion
to the amount of annual irrigation—41–66 g/m2 Na was applied in the case of 30 mm
effluent irrigation and 49–99 g/m2 Na in the case of 45 mm effluent.

Sixto et al. [44] have shown that a decrease in vegetative growth parameters can be
observed in plants as a function of increasing salinity. In plants exposed to salt stress, a
decrease in shoot, stem and root development, fresh and dry stem and root mass, leaf
area and number of leaf, and relative chlorophyll amount and yield were observed [45–48].
For all three varieties, the average SPAD value of the leaves was lower in the last two
growing years. There is a linear relationship between the nitrogen content of the crop and
the chlorophyll value, where a positive correlation (r = 0.737, Pearson correlation) was
observed during the study.

In the case of plant height, it can be stated that the highest plants (149–236 cm) were
detected in the first year of cultivation, which can be explained mainly by the maximum
amount of total water (precipitation + irrigation). Subsequently, a decrease was observed
for all three cultivars (133–181 cm), depending on the total annual water volumes, as
plant height is primarily affected by precipitation and temperature. In the experiment,
the ‘Farmsugro 180’ fell short of its average height of 180–220 cm except for the first year.
However, the measured height data of ‘Alföldi 1’ (140–16 cm), and mainly the ‘GK Emese’
(130–150 cm), corresponded to their characteristic height, which means that they were well
adapted to the experimental stress conditions. This trend is also observed in the weight
of grain yield. In addition, several studies have reported that higher salinity in irrigation
water reduces plant mass, crop, and biomass product [49,50].

Hussein et al. [51] showed that higher Na concentrations of irrigation water had a
negative effect on the growth profile of sorghum. In the 2017 growing year, the amount of
irrigation water presented a positive correlation (r = 0.026, Pearson correlation) for both
green mass and grain yield. In the case of both green mass and grain yield, it was observed
that lower biomass values were detected in the last year of cultivation. The sorghum
is a moderately salt tolerant plant [52], and no yield reduction is expected at irrigation
water with EC of 4.5 dS/m and soil salinity up to 6.8 dS/m. According to our soil EC
values (Table 4), it is not proven that salinity could cause the decrease; however, a detailed
analyses of soil exchangeable sodium percentage would be justified to further investigate
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the effluent water impact on these sorghum cultivars. Nevertheless, a decrease occurred
in all treatments, and hence cannot be linked to water quality with absolute certainty. For
example, the sensitivity of ‘Farmsugro 180’ should be emphasized, during which the value
of grain yield in the case of samples irrigated with the water of the Körös River in the last
year was only between 57–67 g/plant.

5. Conclusions

Irrigation of fish farm effluent water with a higher Na content may provide an alterna-
tive solution for regions with water scarcity; however, the possibility of its long-term use
should be considered as it may cause salinization of the soil.

During the chemical analysis of plant parts compared to non-irrigated plants, effluent
water irrigation did not negatively affect the N, P, K, and Na contents of the grain crop.
Furthermore, based on the plant height and SPAD values, it can be concluded that compared
to the control values, the applied irrigation waters did not have a negative effect on the
two parameters mentioned above.

In summary, in the short term, in water-scarce or unfavorable soil areas, a good
alternative could be to irrigate the effluent water of the intensive African catfish farm we
studied on a grain sorghum plantation.
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Abstract: The assessment of the suitability and status of irrigation water quality from the aspect
of its potential negative impact on soil salinization and mapping of spatial distribution within the
area of the three Morava rivers, which includes the South, West, and Great Morava basins, was the
purpose of this research. A total of 215 samples of irrigation water were tested, and their quality was
evaluated based on the analysis of the following parameters: pH, electrical conductivity (EC), total
dissolved salt (TDS), sodium adsorption ratio (SAR), and content of SO4

2−, Cl−, HCO3
−, CO3

2−,
Mg2+, Ca2+, Na+, and K+. The results showed that the average content of ions was as follows:
Ca2+ > Mg2+ > Na+ > K+ and HCO3

− > SO4
2− > Cl− > CO3

2−. The assessment of irrigation water
suitability was determined by calculating the following indices: percentage sodium (Na %), residual
sodium carbonate (RSC), permeability index (PI), magnesium hazard (MH), potential salinity (PS),
Kelley’s index (KI), total hardness (TH), irrigation water quality index (IWQI). Based on Wilcox’s
diagram, the USSL diagram, and the Doneen chart, it was concluded that most of the samples
were suitable for irrigation. Using multivariate statistical techniques and correlation matrices in
combination with other hydrogeochemical tools such as Piper’s, Chadha’s, and Gibbs diagrams, the
main factors associated with hydrogeochemical variability were identified.

Keywords: hydrochemical characterization; irrigation water quality; irrigation suitability; soil;
hydrochemical facies; GIS

1. Introduction

The irrigation of cultivated plants on agricultural soil involves the use of water with
the appropriate physical, chemical, and biological properties, so it is very important to
examine the quality of water used for its intended purpose to assess the impact on soil
and plants. Intensification of irrigation depends primarily on the provision of the required
amount of water of adequate quality [1,2]. According to the report of the Republic Bu-
reau of Statistics (RBS), in 2021 [3], 52.236 hectares of agricultural soil in the Republic of
Serbia were irrigated, capturing about 92.574 thousand m3 of water, which was mostly
pumped from watercourses, about 84.3%, while the remaining quantities were collected
from groundwaters, lakes, reservoirs, and other sources.

The area of study, the three Morava rivers, covers an area of agricultural production,
within which the application of irrigation is expanding, so the examination of the quality of
irrigation water is important for its intensification. This was recognized by the governing
body, the Ministry of Agriculture, Water Management and Forestry of the Republic of
Serbia, and the Agricultural Soil Administration, which enabled researchers to assess the
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quality of irrigation water to intensify agricultural production and prevent a negative
impact on soil degradation.

Different sources of water are used for irrigation: rivers, streams, natural and artificial
reservoirs and lakes, and groundwater from different depths (tube wells and dug wells).
Information on irrigation water quality is of critical significance for understanding the
changes in product quality and for making necessary modifications in water manage-
ment [4]. Ayers and Wescot [5] stated the importance of water quality assessment for
irrigation. It is a prerequisite for planning, designing, and operating irrigation systems [6].

Surface water quality according to [7], is mostly determined by the quality and scope of
industrial, agricultural, and other anthropogenic activities in the basins of a particular area.

Anthropogenic impacts and natural processes can affect the quality of surface water
and threaten its use as drinking water, and for use in industry, agriculture, and other
purposes [8–10].

When assessing the quality of irrigation water, it is very important to evaluate whether
it can harm the characteristics of the soil on which it is used. Ghazaryan et al. [11] stated
that salinization involves the accumulation of soluble salts in the soil profile and is a
process of soil degradation, mainly anthropogenic, which affects highly productive irrigated
agricultural ecosystems in semi-arid and arid regions and can negatively affect agricultural
production and the sustainable development of agricultural regions. Salinization reduces
the production capacity of the soil and degrades the chemical and physical properties of
the soil. Given the problem of food shortages worldwide, one of the biggest problems of
agriculture is the reduction and control of soil salinity [12].

On irrigated soils, salinization is the main cause of conditions limiting agricultural pro-
duction and lack of yield and is one of the harmful effects on the environment. Singh et al. [13]
list the three most common worldwide problems of irrigation water used being of in-
adequate quality to include salinity, reduced permeability, and increased specificity of
ionic toxicity.

Poor quality irrigation waters can have negative effects on heavy, clayey soils, while
the same water can be used satisfactorily on sandy and/or permeable soils [14].

The quality of irrigation water is defined by the type and concentration of dissolved
salts and solids [15]. Based on the results of the chemical analyses of surface waters
based on hydrochemical parameters, it is possible to obtain adequate data on water types,
different geochemical processes, and water classifications [16]. The interaction of the sur-
face water chemistry and geochemical characteristics offers a valuable context for trend
analysis, identification of unique environmental problems, and the exchange of informa-
tion on water sources, geochemical processes, water quality, and water susceptibility to
contamination [13,17].

There are several methods and classifications for assessing the quality of irrigation
water based on the assessment of analyzed hydrochemical parameters, each of which can-
not be considered applicable to all conditions in crop production because each depends on
the soil characteristics, plant tolerance, precipitation regime, drainage conditions, watering
methods, water accessibility to plants and climate. Different methods and different hydro-
chemical indices are used to assess the suitability of water for irrigation. Hem [18] states
that reliable results can be obtained by analyzing the chemistry of all ions, rather than the
individual parameters of irrigation water. Irrigation water quality is determined based on
sodium adsorption ratio (SAR), sodium percentage (%N), magnesium ratio (MR), residual
sodium carbonate (RSC), permeability index (PI), and Kelley’s index (KI) [11,19–21].

By determining the irrigation water quality index (IWQI), which combines several
indicators and expresses the quality of irrigation water in the form of a single value as
proposed by several authors [22–25], it is possible to obtain more reliable evaluations.

Graphical representations of the irrigation water quality assessment and its application
ability are defined by physicochemical parameters [26], using graphical techniques such as
the [27], Wilcox Diagram [28], and Doneen’s chart [29]. Gibbs diagram [30], as a method
for defining the main geochemical control processes that affect the chemical composition
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of surface waters [31], is an applicable and frequently used method for defining the main
geochemical control processes that affect the chemical composition of surface water and
groundwater, i.e., irrigation water. In addition, by applying multivariate statistical tech-
niques in combination with other hydrogeochemical tools such as Piper’s and Chadha’s
diagrams, the main factors associated with hydrogeochemical variability have been iden-
tified. The application of cluster analysis (CA)-multivariate statistical analysis [32,33] is
often used to assess water quality. It is a multivariate technique for classifying the physico-
chemical parameters into water classes according to the relationship between the chemical
properties of the surface water [34].

Within this paper, the ion content in irrigation water samples, collected from available
sources at observation sites (surface and groundwater), i.e., along with agricultural areas
where irrigation is used or planned, the water characteristics and the relationship between
each component and each type of ion were analyzed. The results have a significant effect on
understanding the characteristics of the current situation of the regional hydrochemistry of the
analyzed irrigation water and the impact of the examined parameters on the soil, primarily in
terms of regional salinization treatment and the impact on agricultural production.

This study aimed to assess the suitability and status of the irrigation water quality and
to provide a graphical representation of the applied classifications of the tested irrigation
water samples within the three Morava river basin districts, which include the basins of
the Južna (English: South), Zapadna (English: West), and Velika (English: Great) Morava
rivers. Given that the data of this type of research have not been systematized, processed,
and presented so far, the present results will contribute through the adoption of adequate
assessment methods that will provide a basis for monitoring and establishing irrigation
water quality.

2. Materials and Methods

2.1. Description of the Study Area
2.1.1. Location, Hydrological Setting, and Climate

The area of the three Morava rivers is of great importance for the national
economy—agriculture, industry, energy, and other human activities. In geographical terms,
the basin of the three Morava rivers’ water area lies between 42◦04′ and 44◦82′ northern
latitude and 19◦19′ and 23◦14′ eastern longitude (Figure 1).

The surface area of the water of the three Morava rivers in the Republic of Serbia,
which includes the basins of the Južna, Zapadna, and Velika Morava, is about 36.207 km2. It
belongs to the Black Sea basin and spreads over the most fertile and most densely populated
area of central Serbia.

Given the small difference in latitude between the southernmost and northernmost
points, it could be expected that the general climatic conditions change very little at the
examined locality. However, the influence of climatic parameters, primarily the relief and
the degree of continentality, determines the diversity of the climate. The climate of the area
is moderately continental. Climatic conditions for agricultural production are generally
favorable, especially the thermal potential.

Air temperature is one of the most important climatic elements, based on which the
insight into the thermal conditions in an area is obtained. Temperatures have been rising
steadily since the coldest January when an average minimum temperature of −2.5 ◦C
and an average maximum of 5.2 ◦C were recorded. The warmest months are July and
August with an average minimum temperature of 15.4 ◦C and 15.0 ◦C, and an average
maximum temperature of 29.3 ◦C and 29.4 ◦C, respectively. The highest amplitude is in
August, at 14.4 ◦C, while the annual temperature amplitude is 11.3 ◦C. The average annual
air temperature is 11.8 ◦C. The annual actual insolation of the observed locality is 2198 h,
and the average annual relative air humidity is 72%.
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Figure 1. Study area with locations of sampling points.

Pomoravlje and its surroundings have a very low annual precipitation of about
665 mm, which is a value close to those of arid areas. The distribution of precipitation
throughout the seasons is not favorable for the development of crops that have a higher
demand for water in summer. Precipitation is not evenly distributed over the months.
The most rain falls in June and May. The months of February and October have the least
precipitation when on average 5 to 6% of the total annual precipitation falls.

Droughts during summer and autumn can cause the soil to dry to a depth of 2–4 m.
Exceptions are areas with groundwater at shallow depths but in very limited areas.

The wind has a significant effect on evapotranspiration. It can currently modify the
weather situation depending on the amount of moisture it carries. Ground air currents
are mostly conditioned by an orography. In the warmer part of the year, winds from the
northwest and west prevail. During the colder part of the year, the east and southeast
wind, called Košava, dominates. For the summer period, it is important to emphasize the
appearance of southern winds when there is a great drying of the soil, especially if the
average temperatures are high.

Data on the reference evapotranspiration (ETo), calculated using the Penman–Monteith
method, showed that the highest value of ETo was registered in July and averaged
4.8 mm day−1.

In the study area, the largest deficit occurs in August and occasionally in July. The
values of peak water requirements are relatively uniform with an average of 4.2 mm day−1.
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2.1.2. Geological and Hydrogeological Setting

Within the study area, three different relief units are observed on which very different
soils are formed. The terrain of the Zapadna Morava basin has a very heterogeneous geo-
logical structure, with very different relief units: river valleys, basins, the coast of Šumadija,
and the foothills of the mountains and mountainous area. The basic morphological charac-
teristic of the Južna Morava basin is its great fragmentation. The Južna Morava valley is a
typical composite valley, consisting of several valleys separated by gorges. In the valleys
filled with loose lake and river sediments, the slopes of the Južna Morava river are less
pronounced than in the gorges built of more resistant rocks, various types of crystal-like
slates through which recently formed eruptive rocks broke in places. From the steep and
mostly deforested mountainsides, the flow of atmospheric water is fast and high, which
makes the Južna Morava river and its tributaries have the characteristics of torrents.

In the basin of the Velika Morava river, there are very diverse rocks on which different
soils are formed. In the river valleys, huge amounts of alluvial and deluvial sediments
were deposited in the quaternary. Neogene sediments predominate on the lake surfaces,
and shists, sandstones, limestones, and other compact rocks dominate in the mountainous
areas. Certain types of soil are formed on quaternary sediments, primarily on alluvial
deposits and loess. Neogene sediments are of great importance for soil formation in the
area of lake surfaces.

Shists and compact rocks are important for the formation of shallow mountain soils.
Figure 2 shows a geological map of the study area.

Figure 2. Geological map of the study area.

2.1.3. Soil Use Type

Soils suitable for irrigation are primarily alluvial soils along the three Morava rivers
and meadow soils that are heavier in texture than alluvium [35,36]. The water physical
properties of the soil along the three Morava rivers are of very heterogeneous composition.
Represented are applied gravel, sandy gravel, sandy, loamy, and clay composition. All of
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these soils can be irrigated with varying amounts of water. The basic soil types in the river
basin are Fluvisols, Luvisols, Eutric Luvisols, Eutric Cambisols and Eutric Vertisols [37].
These soils have a high potential for fertility, and irrigation is one of the factors that
contribute. Irrigation provides increased yields of the crops grown in the river basin.
Figure 3 shows a pedological map of the study area.

Figure 3. Pedological map of the study area.

2.2. Sampling and Collection of Water Samples

A sampling of 215 water samples for irrigation (surface water samples and groundwa-
ter samples) within the irrigated agricultural areas or agricultural areas where irrigation
is planned was conducted in the period 2014 to 2019, in phases as a result of the study
commissioned by the Ministry of Agriculture, Water Management and Forestry of the
Republic of Serbia. Water samples were collected according to the methodology described
in the professional literature. The sampling locations were determined with a Garmin GSP
map 62s GPS device with UTM coordinate recording. Samples were taken in polyethylene
sampling bottles with a volume of 2000 mL to determine physicochemical parameters.
Before use, they were washed with distilled water, and on the spot three times with sam-
pled water. They were marked, sealed, adequately stored at temperatures up to 4 ◦C, and
transported to the laboratory.

2.3. Laboratory Analysis

Analyses of the sampled water for irrigation were conducted in the laboratory of the Insti-
tute of Soil Science, Belgrade. The measured parameters were determined by the following meth-
ods: pH—potentiometric [38]; electrical conductivity (EC)—conductiometric [39]; total dissolved
solids (TDS)—gravimetric; CO3

2−, HCO3
−, Cl−—volumetric; K+, Na+—flame photometric [40];
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sodium adsorption ratio (SAR)—calculation [41]; Ca2+, Mg2+—spectrophotometric [42];
SO4

2−—gravimetric [43]. After analysis of ion concentrations, the charge balance error
(CBE) was calculated to ensure suitably high quality, and the standard error for each sample
was calculated using Equation (1) [44].

CBE =
∑ cations − ∑ anions
∑ cations + ∑ anions

∗ 100% (1)

CBE values with a limit of 5% were considered acceptable [45]. All cations and anions
were expressed in meq L−1.

2.4. Data Analysis

Statistical description (range, mean and standard error) of physicochemical parameters
was determined using SPSS version 22 (SPSS Inc., Chicago, IL, USA) and shown in Table 1.
The relationships between the main physicochemical parameters were processed using
Microsoft Excel to identify geochemical processes and control mechanisms that affect the
quality of irrigation water.

Table 1. Irrigation water quality parameters and their proposed limiting values.

qi
EC SAR Na Cl HCO3

(μS m−1) ((mmol L−1)0.5) (meq L−1) (meq L−1) (meq L−1)

85–100 [200–750) [2–3) [2–3) [1–4) [1–1.5)
60–85 [750–1500) [3–6) [3–6) [4–7) [1.5–4.5)
35–60 [1500–3000) [6–12) [6–9) [7–10) [4.5–8.5)

0–35
EC < 200 or SAR < 2 or Na < 2 or Cl < 1 or HCO3 < 1 or
EC ≥ 3000 SAR ≥ 12 Na ≥ 9 Cl ≥ 10 HCO3 ≥ 8.5

Analysis of the obtained data of the irrigation water analysis results was estimated
using Gibbs diagram, USSL diagram, Wilcox’s diagram, Doneen’s chart, Piper’s diagram,
and Chadha’s diagram, using Microsoft Excel 2016 (Redmond, Washington, DC, USA).

Multivariate statistical analysis, including correlation and cluster analysis (CA), was
applied to assess the quality of irrigation water, using the Ward method to describe the
similarities between the two clusters to identify different geochemical groups with a
similar content of physicochemical parameters in the tested samples. Cluster analysis
(Dendrograms) was performed using SPSS version 22 (SPSS Inc., Chicago, IL, USA).

2.5. Spatial Distribution

GIS software was used as a platform for geostatistical analysis of spatial data process-
ing. Cartographic data processing was performed using ESRI ArcGIS Desktop 10.7.1 (Esri,
Redlands, CA, USA).

2.6. Irrigation Water Quality Evaluation

The following parameters were determined: sodium absorption ratio, sodium hazard,
residual sodium carbonate, permeability index, magnesium ratio, Kelley ratio, potential
salinity, and irrigation water quality index.

These indicators were obtained using the following formulas:

SAR =
Na+√

Ca2++Mg2+

2

(2)

Na% =
(Na+ + K+) ∗ 100

Ca2+ + Mg2+ + Na+ + K+
(3)

RSC =
(

CO2−
3 + HCO−

3

)
−
(

Ca2+ + Mg2+
)

(4)
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PI =

(
Na+ +

√
HCO−

3

)
∗ 100

Ca2+ + Mg2+ + Na+ + K+
(5)

MH =
Mg2+

Ca2+ + Mg2+ ∗ 100 (6)

KI =
Na+

Ca2+ + Mg2+ (7)

PS = Cl− +
1
2

SO2+
4 (8)

The calculation of the irrigation water quality index (IWQI), developed by
Meireles et al. [21], for the calculation of the mentioned index values, individual data
on the values were used, as follows: EC, Na+, Cl−, SAR and HCO3

−, by Equation (9)

IWQI =
n

∑
i=1

qi wi (9)

where:
The values of the limit values qi are determined by the following Equation (10), where

the corresponding parameters are shown in Table 1.

qi = qmax −
⎛
⎝
[(

xij − xin f

)
∗ qimap

xamp

⎞
⎠ (10)

where:
qmax is the upper value of the corresponding class of qi;
Xij represents the data points of the parameters (observed value of each parameter);
Xinf refers to the lower limit value of the class to which the observed parameter belongs;
qimap represents the class amplitude for qi classes;
ximap corresponds to the class amplitude to which the parameter belongs.
For the calculation of Wi, the following Equation (11) is used:

Wi =
∑k

j=1 Fj Aij

∑k
j=1 ∑n

i=1 Fj Aij
(11)

where Wi and F are the comparative weights of the IWQI physicochemical characteristics,
and component i is a constant value; The parameter i that can be described by factor j is
denoted by Aij. The number of physicochemical parameters used in the IWQI ranges from
1 to n, while the number of factors chosen in the IWQI ranges from 1 to k, and where n
represents the number of parameters considered, in this case, 5, values qi in Table 1 were
multiplied by the corresponding weight Wi of each parameter listed in Table 2, according
to [23].

Table 2. The weights of the IWQI parameters.

Parameters Wi

[EC] 0.211
[Na] 0.204

[HCO3] 0.202
[Cl] 0.194

[SAR] 0.189
Total 1
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3. Results and Discussion

3.1. Irrigation Water Suitability Indicators

Several indicators indicate the suitability of irrigation water. Within this study, the ion
content in irrigation water samples was considered, and the water characteristics and the
relationship between each component and each ion type were analyzed.

The results have a significant impact on the understanding of the characteristics
of the current situation of regional surface water hydrochemistry and the impact of the
examined parameters on agriculture, providing support for data for the treatment of
regional salinization.

The results of the statistical analysis (min, max, mean, standard deviation value) of the
physical and chemical parameters of the analyzed samples of irrigation water are shown in
Table 3.

Table 3. Physicochemical water characteristics.

Parameters Unit Range Mean STDEV

pH / 6.20–8.90 7.73 ± 0.47
EC μSm−1 20–2260 650.91 ± 370.02

TDS mg L−1 50–2800 497.42 ± 359.76
CO3

2− meq L−1 0.00–14.70 4.47 ± 2.49
HCO3

− meq L−1 0.00–3.60 0.83 ± 0.56
Cl− meq L−1 0.10–6.12 1.04 ± 0.80

SO4
2− meq L−1 0.05–6.02 1.05 ± 0.82

Ca2+ meq L−1 0.46–11.03 3.85 ± 1.84
Mg2+ meq L−1 0.16–10.91 2.54 ± 1.71

K+ meq L−1 0.01–12.4 1.60 ± 2.15
Na+ meq L−1 0.01–4.30 0.48 ± 0.53

The pH values of the analyzed samples ranged from 6.2 to 8.9 (mean of 7.7). The
EC of the samples varied in the ranges of 20.0–2260.0 μSm−1, with an average value of
650.9 μSm−1. TDS values of the samples varied in a wide range from 50.0–2800.0 mg L−1,
with a mean value of 497.4 mg L−1. The results showed that the average content of ions
was as follows: Ca2+ > Mg2+ > Na+ > K+ and HCO3

− > SO4
2− > Cl− > CO3

2−. The results
of the hydrochemical properties of the tested samples are presented below, based on which
the performance of the irrigation water suitability was obtained (Table 3).

For a critical assessment of the irrigation water suitability, Table 4 shows the various
indicators and associated classifications along with the number and percentage of water
samples belonging to each class.

Table 4. Irrigation water suitability.

Classification Pattern
Sample Range Categories Ranges Description Number of

Samples
Sample

(%)

Min. Max Mean STDEV

Sodium absorption
ratio (SAR) [27]

0.01 10.34 0.93 1.27 Excellent 0–10 Don’t have sodium hazard 214 99.53
Good 10–18 Low sodium hazard 1 0.47
Fair 18–26 Harmful for almost all

types of soils
Poor >26 Unsuitable for irrigation

Percent sodium
(% Na) [28]

0.49 51.89 18.80 9.86 Excellent 0–20 Excellent for irrigation 136 63.26
Good 20–40 Good for irrigation 72 33.49

Permissible 40–60 Permissible for irrigation 7 3,26
Doubtful 60–80 Doubtful for irrigation

Unsuitable >80 Unsuitable for irrigation

Residual sodium
carbonate (RSC) [27]

−8.79 14.16 −1.08 2.62 Good <1.25 Generally safe
for irrigation 197 91.63

Medium 1.25–2.5 Marginal as an
irrigation source

Bad >2.5
Generally not suitable for

irrigation without
improvement

18 8.37
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Table 4. Cont.

Classification Pattern
Sample Range Categories Ranges Description Number of

Samples
Sample

(%)

Min. Max Mean STDEV

Permeability index
(PI) [29]

0.07 1.19 0.48 0.17 Class-I >75 Good for irrigation 201 93.49
Class-II 25–75 Suitable for irrigation 9 4.19
Class-III <25 Unsuitable for irrigation 5 2.33

Electrical conductivity
(EC, μS cm−1) [28]

20.00 2260.00 650.91 370.02 Good 250–750 Medium salinity water 135 62.79
Permissible 750–2250 High-salinity water 79 36.74

Doubtful 2250–5000 Doubtful for irrigation 1 0.47
Unsuitable >5000 Unsuitable for irrigation

Total dissolved salts
(TDS, mg L−1) [27]

50.00 280000 497.42 359.76 Excellent <150 Low salinity hazard 8 3.72
Good 150–500 Permissible for irrigation 134 62.33
Fair 500–1500 Doubtful for irrigation 69 32.09
Poor >1500 Unsuitable for irrigation 4 1.86

Magnesium Hazard
(MH) [46]

4.94 77.68 38.35 12.55 MH <50% Suitable 173 85.12
MH >50% Unsuitable 32 14.88

Kelly’s Index (KI) [47] 0.00 4.42 0.29 0.42 KI <1 Suitable 202 93.95
KI >1 Unsuitable 13 6.05

Potential Salinity (PS)
(meq L−1) [29]

0.28 7.32 1.57 1.06 PS <3.0 Excellent to good 197 91.63
PS 3.0–5.0 Good to injurious 15 6.98
PS >5.0 Injurious to unsatisfactory 3 1.4

Total Hardness (TH)
(meq L−1) [48]

0.70 17.17 6.38 3.11 TH 0–60 Soft 215 100
TH 61–120 Moderate
TH 121–180 Hard
TH >181 Very hard

IWQI [23]

52.96 99.42 89.55 9.19 ClassI 85–100 Excellent 164 76.27
ClassII 70–85 Good 41 19.07
ClassIII 55–70 Poor 7 3.26
ClassIV 40–55 Very poor 3 1.4
ClassV 0–40 Unsuitable

3.1.1. Electrical Conductivity (EC)

Conductivity is a measure of the ability of an aqueous solution to carry an electric
current. Increasing levels of conductivity and cations are the products of decomposition
and mineralization of organic materials [49]. Natural waters have values of electrical con-
ductivity typically less than unity. Measurement of the electrical conductivity is performed
at a specific temperature and it corresponds to the presence of dissolved salts. These are
most often sodium chloride (table salt) and may be represented, sodium sulphate, calcium
chloride, calcium sulfate, magnesium chloride, and others. Some of the large numbers
of different elements dissolved in water favor the plant and their presence is useful, but
sometimes these useful items can become harmful if their concentration is too high.

EC and sodium concentration are very important in the classification of irrigation water.
Salts, in addition to directly affecting plant growth, also affect soil structure, permeability,
and aeration, which indirectly affect plant growth [14].

The presence of a charged particle excess limits the quality of irrigation water. The EC
values of the tested samples were in the range of 20–2260 μSm−1 (Table 3) and the graph is
shown in Figure 4.
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Figure 4. Spatial distribution maps of EC.

3.1.2. Total Dissolved Solids (TDS) and Total Hardness (TH)

Assessment of total dissolved solids (TDS) is very important for understanding the
status of pollutants present in irrigation water. The suitability of using water with a TDS
value of less than approximately 500 mg L−1 is often considered good, while a TDS level
greater than approximately 1500 mg L−1 is not acceptable for irrigation [27].

In the tested irrigation water samples, the range for TDS was from 50 to 2800 mg L−1

(Table 3). Among the analyzed samples (Table 4), 3.72% of irrigation water samples were
in the excellent category (TDS less than 150 mg L−1), 62.33% of samples were in the good
category (TDS in the range of 150–500 mg L−1) below very low, 32.09% of the samples were
in the fair category (TDS in the range 500–1500 mg L−1), and the remaining 1.86% were in
the poor category (TDS > 1500 mg L−1).

The TDS zoning map (Figure 5) shows that TDS values increased from South to North-
west, which may be due to anthropogenic factors and the geological characteristics of the
aquifer in the study area. Somewhat higher values were also noticeable in the Southeastern
part, which can also be explained by anthropogenic and probably mining activity.
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Figure 5. Spatial distribution maps of TDS.

Water hardness (WH) increases due to the increase in the content of alkaline earth
elements such as calcium and magnesium [50]. The presence of the minerals calcite and
dolomite are the main reasons for the increase in the concentration of Ca2+ and Mg2+ in
groundwater [51,52]. Classification of groundwater done by Durfor and Becker [48] based
on WH is given in Table 4. All tested samples belong to the soft category. The spatial
distribution of the examined parameter is shown in Figure 6.
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Figure 6. Spatial distribution maps of TH.

3.1.3. Sodium Absorption Ratio (SAR)

SAR represents the relative activity of Na+ in soil cation exchange reactions and is
used to estimate the degree of alkalization of irrigation water [5]. The SAR concept is used
to detect the likely danger of sodium [53]. This parameter was originally proposed by
Richards [27]. If the water used for irrigation has a high sodium content and a low calcium
content, the cation exchange complex may become saturated with sodium. This can worsen
soil structure due to the dispersion of clay particles [14].

Irrigation with water with a high SAR can lead to the formation of an impermeable
layer, which leads to reduced soil permeability, internal drainage, and air circulation, or
deterioration of the soil structure [54].

Irrigation with water with a high SAR can lead to the formation of an impermeable
layer of irrigated soil, which leads to reduced soil permeability, internal drainage and air
circulation, and deterioration of the structure [55]. SAR is calculated using Equation (2).
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The SAR values of the sampled irrigation water in the study area varied between
0.01 and 10.34 meq L−1 (Table 3). The obtained SAR values showed that all tested samples
of irrigation water, except one, were of the excellent class, and one sample of the good class
(Table 4.). The spatial distribution of SAR values of the tested irrigation water samples is
shown in Figure 7.

Figure 7. Spatial distribution of SAR.

3.1.4. Sodium Hazard (Na %)

For the assessment of the irrigation water quality, the percentage of sodium is one of
the most important indicators. An excess of sodium with carbonate ions will help turn
the soil into alkaline soil, in contrast, sodium mixed with chloride ions will accelerate the
formation of saline soil, which ultimately worsens the infiltration capacity of the soil and
reduces plant growth [56,57]. The percentage of sodium (%Na) is often used as a parameter
to assess the suitability of irrigation water quality [28]. As a result of its reactivity with soil,
sodium is considered an important ion for the classification of irrigation water and, if it
occurs in excess, reduces the water permeability of the soil [58,59].
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The Na % is determined by calculating the relative proportion of all cations available
in water using the Equation (3) [28]:

The value of the specified parameter should not exceed 60% in irrigation waters.
Table 3 shows that Na % in samples of water for irrigation in the study area ranged from
0.49 to 51.89%, with an average of 18.79%. One hundred and thirty-six samples, i.e., 63.26%,
belonged to the class of excellent for irrigation, 72 samples (33.49%) to the class of good
for irrigation, and seven samples (3.26%) to the class of permissible for irrigation. The
analytical results were plotted on a Wilcox diagram (Figure 8). It shows the relationship
between salinity hazards (expressed using EC values in μS cm−1) and the sodium content
in the water (expressed as % Na) [60] and is used to classify irrigation water samples. The
spatial distribution of Na % content is shown in Figure 9.

Figure 8. The plot of sodium percentage versus electrical conductivity [26].
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Figure 9. Spatial distribution of Na %.

3.1.5. Residual Sodium Carbonate (RSC)

Bicarbonate is an important component for assessing the quality of irrigation water [44].
By measuring the difference between the sum of carbonates and bicarbonates and the sum
of calcium and magnesium, the residual sodium carbonate (RSC) value, proposed by
Eaton [61], is determined to assess the impact of the danger of using irrigation water that is
an alkaline reaction.

Soils irrigated with water of the stated quality, with high RSC, may lose their produc-
tive capacity because of structural deterioration due to the deposition of sodium carbon-
ate [44]. Singraja [62] states that increased alkalinity can affect the decomposition of soil
organic matter, which is also one of the negative consequences of using water for irrigation
that is of inadequate quality.

The RSC index is often used to assess the suitability of water for irrigation in clayey
soils that have a high cation exchange capacity. The presence of a higher amount of
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dissolved sodium compared to dissolved calcium and magnesium in irrigation water leads
to the swelling of clayey soils or dispersion, which can lead to a drastic reduction in its
infiltration capacity. The value of the specified parameter is determined by Equation (4).

According to RSC, groundwater is suitable for irrigation if RSC < 1.25, is marginal if it
is higher than 1.25 but lower than 2.50, and is unsuitable if it exceeds 2.50 [20,63].

Residual sodium carbonate is classified into three categories: good, medium, and bad
(Table 4). Of the examined samples, 91.63% belonged to the class of waters with an RSC
value of less than 1.25. Those waters are generally safe for irrigation, and 8.37% belonged
to the group whose value was higher than 2.5, i.e., generally not suitable for irrigation
without improvement. The spatial distribution of a particular RSC is shown in Figure 10.

Figure 10. Spatial distribution of RSC.

3.1.6. Permeability Index (PI) and Doneen Diagram

The permeability index (PI) is one of the indicators of water suitability for irrigation
and indicates problems of water permeability of soil that is flooded for a long time with
water with high salt concentration [64]. It links the concentration of sodium, calcium,
magnesium, and bicarbonate ions with the effect on soil permeability [65]. Prolonged
irrigation with poor quality water can affect soil permeability [66]. To quantify the impact
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of long-term irrigation on soil quality, Doneen [29] proposed a criterion for assessing the
suitability of water for irrigation based on the PI index determined by Equation (5)

Figure 11 presents a graph by which Doneen [29] presented the divisions of irrigation
water quality based on the PI index. Class I and Class II waters are categorized as “good”
and “suitable” with their higher maximum permeability [67].

Figure 11. Doneen classification of irrigation water quality based on PI.

Based on the graphic classification of Doneen, this index determined the suitability of
water for irrigation and categorized water as class I (PI > 75%), class II (25% < PI < 75%),
and class III (PI < 25%) [49]. As shown in Table 4 and Figure 11, 201 samples (93.49%) were
of excellent quality for PI-based irrigation and would not affect soil permeability; nine
water samples were acceptable (4.19%); five water samples were unsuitable for irrigation,
representing 2.33% of the total water samples.

The spatial distribution of the specific PI index of the tested irrigation water samples
is shown in Figure 12.
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Figure 12. Spatial distribution of PI.

3.1.7. Magnesium Hazard (MH)

Szabolcs and Darab [68] proposed an assessment of the dangers of increased magne-
sium content as one of the indicators of the suitability of irrigation water.

For irrigation, the magnesium content also plays an important role, because the
extreme magnesium content is a source of harmful effects on the soil. The risk of excess
Mg2+ in water can be estimated by the ratio of magnesium (MH) and is calculated using
Equation (6).

Water with a high content of magnesium often affects the properties of the soil on
which it is applied, because with increased alkalinity there is a decrease in crop yield [46].
Carbonate and bicarbonate ions are responsible for high pH values since these anions are
the main component affecting alkalinity [69]. Some 85.12% of the tested irrigation water
samples corresponded to the suitable class, while 14.88% belonged to the non-compliant
unsuitable class of irrigation water (Table 4). The spatial distribution of a certain MH index
of tested irrigation water samples is shown in Figure 13.
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Figure 13. Spatial distribution of MH.

3.1.8. Kelley Index (KI)

The Kelley index (KI) [70] is used to determine the suitability of water for irriga-
tion. The levels of Na, Ca, and Mg in water are used to calculate the value of KI, using
Equation (2) [46,70]. Increased concentrations of Na, Ca, and Mg in water pose an alkaline
hazard [71]. KI values lower than one (KI < 1) indicate that excess sodium has been found
in water [47,70,72]. The obtained KI values of the tested samples of irrigation water varied
between 0.004 and 4.416 meq L−1 (Table 4). According to the obtained KI values, 93.95% of
the irrigation water samples belonged to the “suitable” class, and 6.05% are categorized as
“unsuitable”. The Kelley index was calculated using Equation (7).

The spatial distribution of a certain KI index of tested irrigation water samples is
shown in Figure 14.
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Figure 14. Spatial distribution of KI.

3.1.9. Potential Salinity (PS)

Potential salinity, determined as the sum of Cl− and half-concentration of SO4
2− [29],

is used as one of the classifications for assessing the suitability of water for irrigation. It is
determined based on Equation (8).

In the examined irrigation water samples, 197 samples, i.e., 91.63% concerning the
values of PS, were classified as excellent to good; 15 samples (6.98%) as good to injurious,
and 3 samples (1.4%) as injurious to unsatisfactory (Table 4).

The spatial distribution of a particular PS of the tested irrigation water samples is
shown in Figure 15.
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Figure 15. Spatial distribution of PS.

3.1.10. USSL Salinity Diagram

Salinity diagram—the USSL diagram [27], represents the relationship between salinity
hazards (expressed in EC values) and sodium content in water (expressed in terms of
sodium absorption coefficient, SAR; concentrations in meq L−1). If the SAR value is in the
range of 6 to 9, irrigation water will cause permeability problems in the types of clay soils
that accumulate and swell [27]. He and Li [73] state that if the SAR values of irrigation
water are less than 10 meq L−1, they are classified as “excellent”, for SAR values between
10 and 18 meq L−1, they are classified as “good”, and “suspicious” if the SAR values
are between 18 and 26 meq L−1. Waters with an SAR value higher than 26 meq L−1 are
classified as “inappropriate” [60,74].

The study area was classified into six zones, based on USSL diagrams (Figure 16),
as follows: (1) C1S1, (2) C2S1, (3) C3S1, (4) C4S1, (5) C4S2, (6) C3S2. According to this
diagram, if the clusters of samples were located in the regions C1S1 and C2S2, they could
be considered as very good, i.e., a good category of irrigation water. If the samples were
in category C3S1, they belonged to moderately suitable irrigation waters, due to the high
risk of salinity. Samples in the C3S2 and C4S1 categories were rated as irrigation water of
medium to poor quality, due to the high risk of salinization, and they are not suitable for
use on heavy soils and salt-sensitive plants.
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Figure 16. USSL diagram of water samples.

Samples from the C4S2 category belonged to the irrigation water of poor quality and
could only be used on well-drained soils with caution to side effects. The USSL diagram
indicates that the risk of salinization was expected in 8% of the tested irrigation water
samples, and 82% of the samples could be considered as a very good or good category of
irrigation water.

3.1.11. Irrigation Water Quality Index (IWQI)

The irrigation water quality index (IWQI) includes in the calculation only certain
parameters of irrigation water quality based on the recommended limits for all soil types.
Adimalla et al. [75] state that the IWQI method based on the analysis of irrigation water
quality and its impact on soil and plants gives a clear categorization of the quality of
applied water. It is based on the principle of comparing water quality parameters with
specific standards, and defines irrigation water quality with a single value, thus avoiding
water quality assessments that involve complex data intervals [11]. The irrigation water
quality index is based on the recommended limits for continuous water use for all soil
types [76,77] and indicates the following indicators of water quality for irrigation: salinity
(which affects the availability of water to cultivated crops), permeability (which affects soil
infiltration), toxicity (affects sensitive crops), and others. Based on two quality indicators,
only certain irrigation water quality parameters were used for the IWQI calculation, as
follows: electrical conductivity (EC), sodium adsorption ratio (SAR), and concentration
of the ions such as sodium (Na+), chloride (Cl−), and bicarbonate (HCO3

−) [24,78,79].
Based on the processed data of the estimated IWQI index, and the classification listed in
Table 5, 164 samples of irrigation water, or 76.27%, were rated as excellent–no restriction
water; 41 samples (19.07%) were estimated as good–low restriction water; 7 samples (3.26%)
were rated as poor–moderate restriction water, and 3 samples (1.4%) as very poor–high
restriction water. A graphical representation of the IWQI estimate is given in Figure 17.
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Table 5. Classification of water quality for investigated sites based on IWQI.

IWQI Exploitation Restrictions
Recommendation

Soil Crops

(85–100) No restriction (NR)
Water can be used for almost all types of soil.

Soil is exposed to lower risks of
salinity/sodicity problems

No toxicity risk for most plants

(70–85) Low restriction (LR)

Irrigated soils with a light texture or
moderate permeability can be adapted to this

range. To avoid soil sodicity in heavy
textures, soil leaching is recommended.

Elevated risks for salt sensitive plants

(55–70) Moderate restriction (MR)

The water in this range would be better used
for soils with moderate to high permeability
values. Moderate leaching of salts is highly

recommended to avoid soil degradation.

Plants with moderate tolerance to
salts may be grow

(40–55) High restriction (HR)
This range of water can be used in soils with

high permeability without compact layers.
High frquency irrigation schedule

Suitable for irrigation of plants with
moderate to high tolerance to salts

with special salinity control practices,
except water with low Na, Cl and

HCO3 values

(0–40) Severe restriction Using this range of water for irrigaion under
normal conditions should be avoided.

Only plants with high salt tolerance,
except for waters with extremely low

values of Na, Cl and HCO3
−.

Figure 17. Spatial distribution of IWQI.
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3.2. Geochemical Facies and Controlling Mechanisms

Most of the critical issues related to water hydrogeochemistry are often estimated
based on the percentage concentrations of major cations and anions in meq L−1 in the [80]
trilinear diagram. Piper’s trilinear diagram is presented in Figure 18. The geochemical
classification of water mainly depends on the concentration of cation and anion ions and
their correlation. The Piper diagram is a frequently used and very efficient method for
classifying water based on the basic geochemical characteristics of the major ions [16].
The chemical data of the analyzed samples collected from the research area were plotted
in Piper’s diagram (Figure 18). It was stated that there are three main hydrochemical
types of tested samples of irrigation water, of which, type I: SO4, Cl-Ca, Mg, belonged to
6.98% (15 water samples); type III: HCO3, Na, belonged to 2.79% (6 water samples); type
IV: HCO3-Ca, Mg, belonged to 90.23% (194 samples). Based on the cationic triangle, it
was noticeable that most of the samples belonged to the mixed zone, 54.43% of samples,
followed by Ca2+ type with 23.25% of samples, then Mg2+ type with 19.53% of samples, and
Na+ K+ type with 2.79% of samples. In the part of the anionic triangle, most of the samples,
93.02%, belonged to the type HCO3

−, CO3
−, followed by the mixed type with 6.52% of

the samples, and only 0.46% of the samples belonged to the type Cl−. The occurrence of
individual examples of irrigation water samples with increased chloride content might be
the result of pollution by sewage waste and leaching of salt residues in the soil [81], i.e.,
from household wastewater and untreated industrial waste [82]. The high concentration of
Ca and Mg can be explained by the dissolution of dolomite limestones and Ca-Mg silicates
(amphiboles, pyroxenes, olivine, biotite). Sodium and potassium in the aqueous system
are obtained by atmospheric precipitation, dissolution of evaporites, and decomposition
of silicates such as albite, anorthite, orthoclase, and microcline. The high concentration of
K in some analyzed samples of irrigation water could be interpreted as a contribution of
anthropogenic activities.

Figure 18. Piper’s diagram for water samples.

In this paper, Chadha’s diagram [83] was applied to interpret the hydrogeochemical
properties of irrigation waters (Figure 19). It is formed by plotting the difference in meq L−1

between earth-alkaline (Ca2+ + Mg2+) and alkali metals (Na+ + K+) on the X-axis, and the
difference in meq L−1 between weakly acidic anions (HCO3

− + CO3
2−) and strong acid

anions (Cl− + SO4
2−) on the Y-axis [84,85]. Each of the four fields formed by the above

diagram has its hydrochemical significance. Field-1 (type Ca+–HCO3
−) indicates samples
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with recharging water filling capacity; Field-2 describes reverse ion exchange samples
(Ca+–Mg+–Cl− type); Field-3 indicates saltwater samples of outer members (type Na+–Cl−);
Field-4 represents the description of the base ion exchange samples (type Na+–HCO3

−) [86].
The largest number of analyzed samples of irrigation water belonged to Field 1 (90.24%),
followed by Field 4 (6.97%), and then Field 2 (2.79%), which was as per the findings from
the Piper’s diagram.

Figure 19. Geochemical classification based on Chadha’s diagram.

Hydrochemical variability, among other things, can be shown by the Gibbs diagram,
which shows the relationship between groundwater chemistry and aquifer lithology [87].
Based on this diagram, three main natural mechanisms can be found: the dominance of
evaporation, the dominance of rocks, and the dominance of precipitation [30,88,89].

The Gibbs diagram can indicate the origin of solutes and hydrogeochemical pro-
cesses [30]. It is a set of semi-logarithmic diagrams with the ratio of anions and cations
(Na+/(Na+ + Ca2+) and C1−/(C1− + HCO3

−), shown on the X-axis and TDS on the
Y-axis (Figure 20). The diagram thus summarizes the most important natural mechanisms
for controlling the chemical properties of water, i.e., precipitation control mechanisms,
rock–geological substrate-control mechanisms, and evaporation-control mechanisms.

Figure 20. Gibbs diagram: (a) TDS vs. Na/(Na+Ca); (b) Cl/(Cl+HCO3).
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Although the Gibbs diagram can be used to determine the role of natural factors, it
cannot exclude anthropogenic activities on the chemical properties of water. The Gibbs
diagram also has some limitations. Water pollutants originating from anthropogenic
activities such as mining, metallurgy and chemical industry, municipal communal services
with their actions and contributions, can change the hydrochemical composition of water
and increase the concentration of pollutants in water, such as Cl−, SO4

2− and TDS [90–92].
In addition, people change the hydrodynamic properties of water during the exploitation
of water resources and thus affect the interactions of water and geological substrate (rocks)
or the intensity of evaporation and change the concentration of individual elements.

Geochemical processes and their control mechanisms affect water quality and their
suitability for irrigation. The similarities between the analyzed physicochemical com-
ponents of the collected irrigation water samples were analyzed and shown graphically
(Figure 21).

Figure 21. Major cation and anion relationships with ionic ratios (a) Na+ vs. Cl−, (b) SO4
2− vs. Cl−,

(c) Na+-Cl− vs. Ca2++Mg2+-(HCO3
−+CO3

2−+SO4
2−), (d) Na+ vs. Ca2++Mg2+, (e) Ca2++Mg2+ vs.

Na++HCO3−, (f) Na+ vs. SO4
2− on water samples.
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The relationship between Na+ and Cl− is very important in identifying the potential
occurrence of salinization (Figure 22). The correlation coefficient of the examined, listed
parameters shows a low correlation ratio (R2 = 0.03).

Figure 22. Correlation matrix of hydrochemical parameters.

The same can be concluded from the relationship SO4
2− vs. Cl− (Figure 22), where the

correlation ratio was determined (R2 = 0.23), then from the ratio Na+-Cl− vs. Ca2++Mg2+-
(HCO3

−+CO3
2−+SO4

2−), Figure 22, where the correlation coefficient was determined
(R2 = 0.26). Figure 22 shows the ratio Na+ vs. Ca2++Mg2+, where the correlation coefficient
was determined (R2 = 0.02). The correlation coefficient (R2 = 0.24) was determined from
the ratio Ca2+ + Mg2+ vs. Na+ + HCO3−, Figure 22, while from the ratio Na+ vs. SO4

2− the
correlation coefficient (R2 = 0.19) was determined, Figure 22.

Based on the conducted analysis, it can be concluded that there is no significant
correlation between the analyzed parameters and that the probable disposal of untreated
wastewater either from industry or anthropogenic origin in some samples leads to increased
concentrations of Ca2+, which is observed in some samples of irrigation water.

3.3. Multivariate Statistical Analysis

Groundwater quality is affected by various physicochemical variables and the de-
gree of correlation between them can be assessed using a correlation matrix (Figure 22).
The relationship between the two variables is established by estimating the correlation
coefficient. Pearson was the first to develop this correlation analysis. A positive strong
correlation represents the same sources of certain ions, while a weak correlation represents
the sources of independent ions [93]. Analysis of the interdependence of variables was
carried out by calculating linear Pearson correlation coefficients. It has been assumed that
the regression modeling of the potential usefulness of the selected variable (explanatory) to
model another variable (explained variable) determines the absolute value of the high cor-
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relation coefficient between these two variables. The statistical analysis usually assumes that
if the correlation coefficient is >0.9, a very strong linear dependence exists; 0.7–0.9—significant
linear dependence; 0.4–0.7—moderate linear dependence; 0.2–0.4—distinct linear dependence,
but low; <0.2—no linear dependence [12].

The obtained results also imply moderate linear dependence for EC-TDS; EC-HCO3;
EC-Cl; EC-SO4; EC-Ca; EC-Mg; TDS-HCO3; TDS-Cl; TDS- SO4; TDS-Ca; TDS-Mg; HCO3−Cl;
HCO3-SO4; HCO3-Ca; HCO3-Mg; HCO3-Na; Cl-SO4; Cl-Ca; Cl-Mg; SO4-Ca; SO4-Mg; SO4-
Na; Ca-Mg; end for EC-Na; EC-K; pH-TDS; pH- HCO3; pH-Cl; pH-Na; TDS-Na; Cl-Na;
SO4-K; Mg-Na; Na-K distinct linear dependence, while for the rest of observed parameters
there is no linear dependence (Figure 22).

The ion of Cl− shows a moderate correlation with Mg2+, which indicates the possible
leaching of secondary salts. The combination of SO4

2− with Ca2+ and Mg2+ can lead to the
formation of insoluble salts such as CaSO4 and MgSO4, and the irrigation of arable soil
with water containing these salts can cause their deposition on the surface and worsen its
salinity, which affects the ecological environment of certain parts of the research area.

The correlation coefficients of TDS with HCO3
−, Cl−, SO4

2−, Ca2+ and Mg2+ were
higher than 0.4, which suggests that these five ions were dominant in the samples of tested
irrigation water. Among these pairs, the correlation coefficient of HCO3− and Mg2+ was
the highest.

Several multivariate methods have been included in cluster analysis to identify the
right groups of data sets, with similar groups belonging to the same class [94,95]. In cluster
analysis, groups are divided based on similarity levels, and a dendrogram is formed where
observations are combined. Cluster analysis (CA) was applied to determine the sources
of changes in water resource quality by combining primary variables into a new set of
variables. The results of the CA’s basic physical and chemical parameters are presented
(Figure 23). Two types of grouping were singled out, with the following parameters
grouped in the same, Cluster I: CO3

2, Na+, K+, pH, and the others in Cluster II, which was
divided into two subclusters representing EC, Mg2+, HCO3− in one group and Cl−, Ca2+,
TDS, SO4

2− in the other group.

Figure 23. Cluster analysis (CA) for water physiochemical parameters for major ions.
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The obtained results confirm that in the tested samples of water for irrigation the
dominant cations were Ca2+, Mg2+, Na+, and K+, i.e., HCO3

−, SO4
2−, C−CO3

2− were the
dominant anions. These data are in agreement with the Piper diagram due to the effects of
evaporation, weather, and anthropogenic influences. The interaction between geological
substrate and water presented in Gibbs and Chadha’s diagrams was also confirmed.

4. Conclusions

The assessment of the suitability of 215 tested irrigation water samples in the research
area was performed based on the assessment of the hydrochemical results through the
classifications SAR, Na%, RSC, PI, EC, TDS, MH, KI, PS, TH, IWQI. Most of the tested
samples were suitable for irrigation and only a small number of samples were not suitable
for the application.

Using the irrigation water quality index (IWQI), which was assessed based on com-
paring irrigation water quality parameters with specific standards with one value, it was
determined that 95.34% of the tested samples were ranked as excellent and good, while
poor and very poor were recorded in 4.66% of samples. By presenting the obtained results
through Wilcox, Doneen, and USSL diagrams, the obtained results of observations were
confirmed. The Piper’s diagram showed that the dominant type of irrigation water in the
study area was HCO3-Ca, Mg, which was found in 90.23% of the tested samples.

Based on Chadha’s diagram, it was found that 90.21% of the tested irrigation water
samples belong to the Ca2+-HCO3

− type, followed by 6.97% samples of the Na+-HCO3
−

type, and 2.79% samples of the Ca2+-Mg2+Cl− type, which is as per Piper’s diagram.
The Gibbs diagram determined that there was no significant correlation between the
analyzed parameters and that the probable disposal of untreated wastewater, either from
industry or anthropogenic origin, led to increased concentrations of Ca2+ in some samples
of irrigation water.

Industrial and intensive agricultural production, as well as anthropogenic pollution
by the inflow from urban domestic sewage near the sampling site, were most likely the
cause of inadequate quality irrigation water samples.

The graphical presentation of each of the examined parameters highlights the risk
zones based on which it is possible to propose the application of some of the measures that
will contribute to mitigating or eliminating identified deficiencies and problems. This will
improve the current reporting approach and provide a basis for monitoring the quality of
irrigation water in existing and planned irrigation systems.

This paper emphasizes the need to establish a real-time monitoring system for irri-
gation water quality at the research site. As the study area is characterized by intensive
agricultural production, as such, it requires the establishment of continuous monitoring
and risk management through tools for generating rapid reports, which would be primarily
useful to policymakers and decision-makers on the use of irrigation water of the appropri-
ate quality. It can be concluded that reporting can be carried out using the irrigation water
quality index (IWQI).
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Abstract: Predicting the impact of future climate change on food security has important implications
for sustainable food production. The 26 meteorological stations’ future climate data in the study area
are assembled from four global climate models under two representative concentration pathways
(RCP4.5 and RCP8.5). The future maize yield, actual crop evapotranspiration (ETa), and water
use efficiency (WUE) were predicted by calibrated AquaCrop model under two deficit irrigation
(the regulated deficit irrigation (RDI) at jointing stage(W1), filling stage(W2)), and full irrigation
(W3) during the three periods (2021–2040, 2041–2060, and 2061–2080). The result showed that
the maize yields under W1, W2, and W3 of RCP4.5 were 2.8%, 2.9%, and 2.5% lower than those
in RCP8.5, respectively. In RCP8.5, the yield of W3 was 1.9% and 1.4% higher than W1 and W2,
respectively. Under the RCP4.5, the ETa of W1, W2, and W3 was 481.32 mm, 484.94 mm, and 489.12
mm, respectively. Moreover, the ETa of W1 was significantly lower than W2 under the RCP4.5
and RCP8.5 (p > 0.05). In conclusion, regulated deficit irrigation at the maize jointing stage is
recommended in the study area when considering WUE.

Keywords: maize; AquaCrop; actual crop evapotranspiration (ETa); yield; water use efficiency
(WUE); irrigation schedule; climate change

1. Introduction

Climate change has a great impact on agricultural systems. [1]. Climate change,
characterized by temperature rise, the uncertain amount and patterns of precipitation (Pe),
and elevated atmospheric CO2 concentration [2], is a widely concerned issue in global
development [3]. According to the Intergovernmental Panel on Climate Change (IPCC),
the future temperature will increase by 1.5 ◦C or higher, particularly significant in the
high latitudes and tropical regions [4]. In order to maintain the stable development of
the agricultural economy and food security, it is necessary to predict the impact of future
climate change on crop growth [5]. Due to sustaining the needs of the increasing population,
the modern era model would replace the traditional model. Crop models would be one of
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the tools of future agricultural research. A well-efficient and validated model can be used
to optimize resources and predict the yield [6].

With the temperature increasing, fluctuations in both amount and frequency of Pe and
changes in CO2 concentration would all directly impact crop evapotranspiration, actual
evapotranspiration (ETa), and irrigation water requirements [7]. With the crop growing,
potential evapotranspiration and net irrigation water requirements would decrease if CO2
concentrations increased [8]. Furthermore, the high temperature can actively promote the
growth of most crops, advance crop phenology, shorten crop growth period, and reduce
the cumulative biomass of crops, thus affecting the final yield [9,10]. Crop yields may vary
due to climate change impacts in different regions, the region’s latitude, and irrigation
applications [11]. The maize’s yield under normal, critical, and minimum irrigation in
the North China Plain varied between 10,964–11,235 kg/ha [12]. In the Adana region, the
highest maize yield (10,075 kg/ha) was obtained when irrigation limits were set between
25% ready water available (RAW) depletion and field capacity (FC), while the lowest yield
(9837 kg/ha) was obtained when irrigation limits were set between 100% RAW depletion
and FC [13]. However, many scholars proposed water-saving irrigation schedules to cope
with the challenge of water shortage to ensure food security [14].

Water use efficiency (WUE) is an index for rational selection of irrigation schedule.
Regulated deficit irrigation (RDI) is beneficial to yield increase by studying the effects
of different water-deficit treatments on yield, ETa, and WUE [15]. Appropriate water
deficit treatment at the maize jointing stage can dramatically improve the utilization rate of
irrigation water, and maize will not reduce production but improve maize yield traits [16].
When water deficit was affected in transpiration by reducing the irrigation and wet surface
soil time, the ETa would be decreased. RDI will generally have lower WUE than full
irrigation [17]. Due to the uncertainty of the future climate, the crops may suffer water stress,
and future yields would be unstable. Exploring the impact of different RDI schedules on
maize for seed production under future climate conditions is very important for optimizing
irrigation schedules and crop production selection. Volk et al. [18] forecasted the maize
yield in Tanzania under the future climate, and they concluded that the establishment of
different RDI schedules had no significant effect on maize yield. Jalil et al. [19] found that a
reasonable selection of RDI system was of benefit to increasing the WUE and yield of winter
wheat. However, there are relatively few studies on how to avoid yield loss by adjusting
the deficit irrigation at each growth stage of crops under future climate scenarios.

Maize has played a significant role in meeting global food requirements and its yield
accounts for nearly 30% of total global food production. According to the Food and
Agriculture Organization of the United Nations (FAO) report, 23% of the world’s maize
yield comes from China, and China’s maize harvested area accounts for more than one-fifth
of the worldwide. Heilongjiang Province is an essential commercial grain base in China.
Maize is the largest food crop in Heilongjiang Province, and its plant area and yield rank
first in China. In 2019, the plant area of maize in the province was 5.87 million ha, and
the yield was 39.4 billion kg [20]. Climate will seriously affect the growth of maize yield
due to the uneven distribution of climate in Heilongjiang Province in the future [21]. It is
necessary to combine rain-fed and RDI to ensure basic food security.

AquaCrop is an agricultural model that could reliably simulate maize yields under
different irrigation schedules [22]. The AquaCrop model is sensitive to the water stress
module. The simulation process has fewer steps and simple input parameters, which make
the AquaCrop model widely used [23]. The AquaCrop model accurately simulated maize
yield over some ranges. When assessing maize yield under different water stress irrigation
schedules in semi-arid regions, compared to 50% field capacity irrigation, the AquaCrop
model could more accurately simulate maize yield under 75% field capacity irrigation and
full irrigation [24]. AquaCrop simulations have high accuracy in maize yield under full
irrigation in the North China Plain. Under full irrigation, the error was 5% and 6% for
grain yield and biomass, respectively. The error of full irrigation is smaller than that of
rainfed. However, the model could be used to simulate maize yield and biomass under full
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irrigation [25]. Aquacrop was widely used in agricultural forecasting production around
the world [26–28].

Studying the optimal selection of maize yield, ETa, and WUE under different irrigation
schedules in Heilongjiang under future climate changes will effectively provide optimal
irrigation schedules for future maize planting systems. Our aims of this study were 1. to
localize AquaCrop model parameters using observational data from irrigation experiments
in the study region; and 2. to apply the calibrated model to evaluate the impacts of
three irrigation schedules on maize yield and WUE in Heilongjiang Province under future
climate scenarios.

2. Materials and Methods

2.1. Study Site and Field Data Sources

The research site is located in Heilongjiang Province in Northeast China, which is
between 43◦26′ and 53◦33′ in latitude and 121◦11′ and 135◦05′ in longitude (Figure 1).
The average temperature was between 3.1~4.6 ◦C, and the average annual Pe mainly
was between 400 and 650 mm. Pe was concentrated primarily in June-August. The 6th
accumulated temperature zone in Heilongjiang Province was unsuitable for maize planting.
Thus, we didn’t study the 6th accumulated temperature zone.

Figure 1. Locations of the Heilongjiang Province and 26 meteorological stations.

The field data of this study are from a four-year experiment established in the National
Irrigation Experimental Center (45◦43′09′′ N, 126◦36′35′′ E, and altitude 140 m) in Harbin,
Heilongjiang Province. The soil texture is loam, and the basic soil properties are as follows:
N, 154.4 mg/kg; P2O5, 40.1 mg/kg; K2O, 376.8 mg/kg; and pH, 7.27 [29]. We choose the
maize growing four periods (emergence stage, jointing stage, tasseling stage, and filling
stage) to study the effect of water stress at different growth stages on maize yield and ETa
(Table 1). A rain shelter was used to control precipitation. The size of each test pit used was
2.5 m × 2 m × 1.7 m.
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Table 1. Irrigation treatments from 2014 to 2017.

Year Treatments
Irrigation Upper and Lower Limit in Different Growth Stages of Maize (% of FC)

Emergence Stage Jointing Stage Tasseling Stage Filling Stage

2014
T1 80–100% 50–100% 80–100% 80–100%
T2 80–100% 80–100% 80–100% 50–100%
T3 80–100% 80–100% 80–100% 80–100%

2015

T4 80–100% 45–100% 80–100% 80–100%
T5 80–100% 80–100% 80–100% 45–100%
T6 80–100% 80–100% 80–100% 80–100%
T7 100% 100% 100% 100%

2016
T8 60–70% 70–80% 70–80% 70–80%
T9 70–80% 50–60% 70–80% 70–80%
T10 70–80% 70–80% 70–80% 70–80%

2017
T11 60–70% 70–80% 70–80% 70–80%
T12 50–60% 70–80% 70–80% 70–80%
T13 70–80% 70–80% 70–80% 70–80%

Note: Number before “–” in the table represents the lower limit of irrigation, and number after “–” in the table
represents the upper limit of irrigation. “80–100%” in T1 treatment represents the irrigation starts when the soil
moisture content reached 80% FC (the lower limit of irrigation), and the irrigation stops until the soil moisture
content reached 100% FC (the upper limit of irrigation). Other explanations are the same as above. T8, T11, and
T12 represent RDI treatments during the emergence stage; T1, T4, and T9 represent RDI treatments during the
jointing stage; T2 and T5 represent RDI treatments during the filling stage; T3, T6, T7, T10, and T13 represent full
irrigation treatments of maize growth. FC is the field capacity.

2.2. Future Climate Data

The Global Climate Model (GCM) is a tool used to study the earth’s climate. In the
Coupled Model Intercomparison Project phase 5, more than 60 GCMs have been proposed
to contribute to future climate research [30]. In order to avoid the unreliability of a single
GCM, multiple models were used to collect the predicted data of GCMs [31]. However, the
future climate data were based on the ensemble datasets of four GCMs under the RCP4.5
and the RCP8.5, respectively. This study selected 26 meteorological stations distributed
in different places in the Heilongjiang Province (Figure 1). Meteorological data consist
of the daily maximum temperature (Tmax), daily minimum temperature (Tmin), Pe, and
Rad from 2021 to 2080. We used the LARS-WG random weather generator downscaling
method to generate future climate scenarios [32]. The calibration and verification data of
the LARS-WG was derived from the historical meteorological data of daily Tmax, Tmin,
Pe, and Rad of 26 meteorological stations from 1960 to 2015. The output meteorological
data were the daily Tmax, Tmin, Pe, and Rad of four GCMs (Table 2) under RCP4.5 and
RCP8.5, respectively, from 2021 to 2080. The period from 2021 to 2080 is divided into three
research stages 2030s (2021–2040), 2050s (2041–2060), and 2070s (2061–2080). For details
of the downscaling method, refer to [33]. The output meteorological data will be input
into the AquaCrop. RCP8.5 represents radiation forcing values of more than 8.5 W/m2 in
2100, and RCP4.5 means 4.5 W/m2 when stable after 2100 [34]. We focus on the selection of
RCP4.5 and RCP8.5 based on the socioeconomic conditions of radiative forcing currently
faced by humans [35].

Table 2. 4 GCMs datasets in the LARS-WG model.

GCMs Research Center Countries and Regions Grid Resolution

EC-EARTH EC: Earth Consortium Europe 1.125◦ × 1.125◦

HadGEM2-ES United Kingdom(UK) Meteorological Office UK 1.25◦ × 1.88◦

MIROC5 The University of Tokyo, National Institute
for Environmental Japan 1.39◦ × 1.41◦

MPI-ESM-MR Max Planck Institute for Meteorology Germany 1.85◦ × 1.88◦

173



Agronomy 2022, 12, 810

2.3. AquaCrop Model Introduction and Settings

The AquaCrop model input data includes four modules, which are the climate mod-
ule, crop module, management module, and soil module. Climate data includes daily
Tmax, Tmin, Pe, Rad, and reference evapotranspiration (ET0). The ETa is calculated by
ET0-calculator software [36]. The crop data input section has some default values for crops
growth parameters in this module. We need to adjust the corresponding plant parame-
ters (including plant each growth period, sowing date, etc.) based on different climate
and research sites. The crop growth was determined based on 14 agrometeorological
observation stations in Heilongjiang Province. For the meteorological station without
observation data, the data of the neighboring agrometeorological observation station in
the same accumulated temperature area is selected as the calculation basis [37]. In order
to improve the accuracy of output data during model simulation, parameters should be
adjusted appropriately according to specific conditions. Irrigation management is specified
by the irrigation method and the irrigation events. The irrigation schedule is formulated
according to the irrigation time and depth of each stage of the crop growth period [14].
Soil data that describe soil properties in each layer are from The Soil Science Database
(http://vdb3.soil.csdb.cn/, accessed on 30 March 2021).

To avoid the confounding effect of the non-productive consumptive water use (soil
evaporation), the AquaCrop model calculates crop transpiration (Tr), soil evaporation (E),
and ETa using the following equation:

Tr= KsKsTr

(
KcTr,x

CC∗
)

ET0 (1)

E = Kr(1 − CC ∗)KexET0 (2)

ETa = Tr + E (3)

where, CC* is the adjusted actual canopy coverage (%); KCTr,x
is the maximum standard crop

transpiration coefficient (dimensionless); KS means the water stresses coefficient (dimen-
sionless); KSTr is the temperature stresses coefficient (dimensionless); ET0 is the reference
evapotranspiration (mm); Kr is the evaporation reduction coefficient (dimensionless); Kex is
the maximum soil evaporation coefficient (dimensionless). ETa was separated into Tr and
E (mm).

In this study, the method recommended by FAO-66 was used to calculate the maize
yield and WUE. As:

Y = f HI HI0B (4)

WUE = Y/ETa (5)

where Y is maize yield (kg/ha). fHI is the harvest index adjustment factor (dimensionless).
HI0 is a reference harvest index (dimensionless), which means the yield ratio to biomass, B
means the aboveground dry (kg/ha), WUE means water use efficiency (kg/m3).

In this study, the inverse distance weighting (IDW) and Kriging methods of ArcGIS
were used to interpolate the numerical values of each station output by AquaCrop into
the study area, to analyze the spatial characteristics of the effects of different irrigation
schedules on maize yield, ETa, and WUE in Heilongjiang Province under future climate.
The two-factor ANOVA of SPSS Statistics 17 was used to test the difference in yield, ETa
and WUE under different irrigation schedules.

In this study, we explored the effects of water stress at maize different growth stages
on maize development. The generation of irrigation schedules in the AquaCrop model
was used to evaluate or design a particular irrigation schedule. Irrigation practice was
generated according to the specified time and a depth criterion when the model was
running. In this study, RDI was set and generated at a specific time; the depth of irrigation
depends on whether the soil moisture content reaches the set irrigation lower limit. When
the soil moisture content falls to the set minimum limit, it will automatically irrigate to
the fixed upper limit. The growth stage of maize is divided into four stages: emergence,
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jointing, tasseling, and filling. The jointing and filling stages of maize are essential stages of
nutrient generation in crop growth [38]. Therefore, we set up three irrigation schedules, full
irrigation and deficit irrigation in two crucial growth periods of maize. The three irrigation
schedules sets are W1: water stress treatment in maize jointing stage. The lower and upper
limits are 50% FC and 80% FC, respectively; W2: water stress treatment in maize filling
stage. The lower and upper limits are 50% FC and 80% FC, respectively; W3: full irrigation
schedule, which made maize suffer no water stress in the entire growth cycle.

2.4. AquaCrop Calibration and Verification

We selected the experimental data to calibrate the yield and ETa in two years (2014–2015)
main RDI (T1, T2, T3, T4, T5, T6, T7). Validation data were established by the six main RDI
(T8, T9, T10, T11, T12, T13) experimental data from 2016 to 2017. The statistical parameters,
including normalized RMSE (CV(RMSE)), determination coefficient (R2), Willmott’s agree-
ment index (d), and model efficiency coefficient (EF) were determined for the performance
evaluation of AquaCrop.

R2 = 1 − ∑(yi − ˆ
yi)2

∑(yi − ˆ
y)2

(6)

CV(RMSE) =
1
Ō

√
∑(Pi − Oi)2

n
(7)

d = 1 − ∑(Pi − Oi)2

∑
(∣∣Pi − Ō

∣∣+ ∣∣Oi − Ō
∣∣)2 (8)

EF =
∑n

i=1
(
Oi − Ō

)2 − ∑n
i=1(Si − Oi)2

∑n
i=1
(
Oi − Ō

)2 (9)

where yi is the actual value, ŷi is the simulated value, and ŷ is the mean value. And Ō is
the mean observations, pi is the simulated value, and Oi is the observed value. n means the
research count. A simulation can be considered perfect if CV(RMSE) is smaller than 10%,
good if between 10 and 20%. d range is 0–1, with 0 indicating a bad fit and 1 indicating
a good fit between the simulated and observed data. The EF value is smaller than 1; a
positive value indicates that the simulated value better describes the measured data trend
than the mean observations.

The flow chart showing the optimal selection of future irrigation schedules using the
AquaCrop model is provided in Figure 2.
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Figure 2. Flow chart for the steps involved in the estimation of future irrigation schedules using the
AquaCrop model.

3. Results

3.1. Performance Evaluation of AquaCrop

Based on the AquaCrop model calibration and verification of the ETa and yield, the
model-simulated different irrigation schedules ETa and yield agree well with the field-
observed (Table 3). The R2 of the simulated and observed maize yield reaches 0.72, and the
average difference between simulated and observed yield under different treatments did
not exceed 200 kg/ha (Figure 3). Each difference of the simulated and observed ETa was
less than 50 mm (Figures 4 and 5). When calibrating the AquaCrop model, the simulated
and measured values of maize in different RDI were well fitted (Figure 4). From the six
treatments in the validation, the model is reasonable in simulating the ETa of the maize
(Figure 5). Therefore, the AquaCrop model simulation results on maize ETa and yield under
different irrigation schedules during the whole growth stage were reliable and applicable
for this study area.

Table 3. Fit indexes of AquaCrop model-simulated and measured ETa and yield.

Parameter CV (RMSE) (%) d R2 EF

ETa 8.21 0.99 0.97 0.97
Yield 4.44 0.91 0.72 0.68
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Figure 3. Calibration and validation of the AquaCrop model with yield (2014–2017).

(a) T1 (b) T2 (c) T3 (d) T4 

 
 

(e) T5 (f) T6 (g) T7 (h) T1-T7 

Figure 4. Observational and simulated cumulative ETa during the whole growth period of maize,
(a) T1, (b) T2, (c) T3, (d) T4, (e) T5, (f) T6, (g) T7 and (h) calibration of ETa for different stages
(2014–2015).

   

(a) T8 (b) T9 (c) T10 (d) T11 

Figure 5. Cont.
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(e) T12 (f) T13 (g) T8-T13 

Figure 5. Observational and simulated cumulative ETa during the whole growth period of maize,
(a) T8, (b) T9, (c) T10, (d) T11, (e) T12, (f) T13, and (g) validation of ETa for different stages (2016–2017).

3.2. Projected Future Climate Change

Figure 6 presents the predicted future climate during the maize growing period. The
highest Pe, Tmax, and Tmin appeared in the 2070s under the RCP4.5, they are 470.31 mm,
26.06 ◦C, and 14.69 ◦C, respectively, while the highest value of the Rad is 19.04 MJ/m2

appeared at 2050s. In the RCP8.5, the average Pe, Tmax and Tmin, and Rad highest values
appeared in the 2070s, they were 490.57 mm, 27.48 ◦C, 16.15 ◦C, and 19.08 MJ/m2. RCP8.5’s
highest value of average Pe, Tmax and Tmin, and Rad was 4.31%, 5.45%, 9.94%, and 0.21%
more than RCP4.5, respectively. Under the two RCPs, the maximum Pe appeared in the
central and southern part of the study area; the highest Rad value mainly appears in the
southwest. Moreover, the southern’s Tmin has the highest value, and the Tmax high value
was distributed in the southwestern and south.
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Figure 6. Spatial and temporal distribution of average precipitation (Pe) (a1–a4,b1–b4), solar radiation
(Rad) (c1–c4,d1–d4), minimum temperature (Tmin) (e1–e4,f1–f4), and maximum temperature (Tmax)
(g1–g4,h1–h4) for the multi-GCM ensemble during the maize growth stage under two RCPs from
2021–2080 in the study area.

3.3. ETa Changes under Different Future Scenarios

The ETa showed a declined trend from southwest to northeast in the study area
(Figure 7). The ETa had an upward trend under two RCPs with different magnitudes. The
value of RCP8.5 is generally greater than the ETa of RCP4.5. In the future, the maximum
value of ETa appears in the W3. Compared with the W3, W1, and W2 reduced by 1.5–1.6%
and 0.4–0.6%.
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Figure 7. Spatial and temporal distribution of maize ETa for the multi-GCM ensemble under different
irrigation schedules ((a1–a4,b1–b4) W1, (c1–c4,d1–d4) W2,(e1–e4,f1–f4) W3) in the 2030s, 2050s, and
2070s with two RCPs.

3.4. Yield Changes under Different Future Scenarios

Maize yield under different irrigation schedules increased from the north part to the
south area in the spatial distribution. The maximum value appeared in the southeast and
southwest (Figure 8). Yield showed a growth trend from 2030s to 2070s. The maximum
value for the three irrigation schedules appears in W3, which were 14,044 kg/ha (RCP4.5)
and 14,402 kg/ha (RCP8.5).
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Figure 8. Spatial and temporal distribution of maize yield for the multi-GCM ensemble under
different irrigation schedules ((a1–a4,b1–b4) W1,(c1–c4,d1–d4) W2,(e1–e4,f1–f4) W3) in the 2030s,
2050s, and 2070s with two RCPs.

3.5. WUE Changes under Different Future Scenarios

The WUE showed a growth trend from the west area to the east part (Figure 9). While
the extent of increase in WUE under the two RCPs was different, and the RCP8.5′s WUE
was larger than RCP4.5’s. Under both of two RCPs, the minimum value of WUE appears in
W2. Compared with W2, the WUE of the W1 and W3 increased by 0.5–0.6% and 0.9–1.2%.
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Figure 9. Spatial and temporal distribution of maize WUE for the multi-GCM ensemble under
different irrigation schedules ((a1–a4,b1–b4) W1, (c1–c4,d1–d4) W2, (e1–e4,f1–f4) W3) in the 2030s,
2050s, and 2070s with two RCPs.

3.6. Assessment of Irrigation Optimization Scenarios and Corresponding Measures

Under the RCP4.5, the ETa of W1, W2, and W3 were 481 mm, 486 mm, and 489 mm,
respectively. The highest value of ETa was in W3, and the lowest value was in W1. The
difference between the three irrigation schedules is significant (p ≤ 0.05) (Figure 10a). Yield
under W3 was the highest. Although the W1’s yield was less than W2’s, the difference was
not significant (p > 0.05) (Figure 11c). For WUE, W3’s WUE was the highest among the
three, and W1 and W2 were significantly lower than W3. Under the RCP8.5, the lowest
value of ETa appears in W1 (p > 0.05) (Figure 10b). Yields of maize under W1, W2, and
W3 were 14,127kg/ha, 14,199 kg/ha, and 14,402 kg/ha, respectively. The results showed
that the yield difference between W1 and W3 was significant (p ≤ 0.05), and the yield
difference between W2 and the other was not significant (p > 0.05) (Figure 11d). For WUE,
W3 has the highest value. However, the difference between the three irrigation schedules
is insignificant (p > 0.05). Overall, under the two RCPs, optimization selection W1 is
recommended for farmers’ reference as an optimal option under RDI, as W1 had a higher
WUE without significantly decreasing yield.

Figure 10. Relationship of WUE and ETa under different irrigation optimization schedules. Different
lowercase letters represent different levels of each column at p ≤ 0.05.
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Figure 11. Relationship of Yield and WUE under different irrigation schedules. Different lowercase
letters represent different levels of each column at p ≤ 0.05.

4. Discussion

The four GCMs and two RCPs scenario models used in the study predicted an increase
in temperature (Tmin and Tmax), Pe, and Rad in future study phases. Xiao et al. found that
the crop growth stage would be shortened as the temperature increases. This condition
usually reduces the transpiration of the crop during the growth stage [39]. The ETa of
most planting systems would somewhat decline with future climate change. Different ETa
would vary according to different cropping schedules under future climate scenarios [30].
Tao et al. [40] proposed that future temperature warming would significantly increase soil
evaporation. Our results showed that ETa increases as the temperature increases. The
rising temperature may promote the photosynthesis and leaf expansion of crops, then
accelerate the dry matter accumulation and crop growth, enhancing the transpiration,
which is consistent with [41]. In this study area, the climate affected the southwestern
Heilongjiang Province as a low-yield area. The relatively lower Pe and the higher ETa,
which may be due to the high temperature and Rad, leads to the lower WUE in this area.
This study established analysis and comparison of irrigation schedules based on maize’s
different growth stages water stress. The results showed that maize’s ETa under treatments
in which water stress appeared in the jointing stage was the least among all irrigation
schedules. The reason may be that maize is more sensitive in the jointing stage with water
stress. Jin et al. [42] indicated that maize’s early growth stages were more vulnerable to
water stress. The ETa would reduce when water stress arises at filling stages. However, the
results of this study were different from the result reported by Yu et al. [43]. They found
that ETa was the maximum when maize was exposed to water stress in the jointing stage.
The results showed that photosynthesis in the early stage of maize growth was not only
controlled by water stress, but the crop was still inhibited after rewatering, and it was
difficult to recover. This result may be due to different research results obtained from other
experimental locations. The degree of inhibition of crop growth is related to the duration
of drought and the degree of stress. Future climate changes are complex, and the ETa and
yield of maize crops should be studied based on different future climate scenarios.

However, future climate changes would also affect maize yields. This climate change
would impact crop yield and water supply and requirements. The increase in CO2 con-
centration in the whole study area increases the possibility of photosynthesis and further
promotes biomass accumulation in crops, thereby increasing yield [44,45]. This study
showed that the RCP8.5’s yield was higher than RCP4.5’s, and the yield increased 386, 403,
and 358 kg/ha under W1, W2, and W3, respectively. The results were similar to the results
found by Qaisar et al. [46]. This study also showed that the yield under the RDI was lower
than the yield under the full irrigation schedule, and the yield of W1 was lower than that
of W2. This may be because the lack of development during the maize vegetative growth
stage ultimately affects the reproductive development stage, and the high-quality output
of ears and kernels reduces the yield of maize. Li et al. [47]’s research found that water
decline leads to reduced leaf area, accelerated leaf senescence, and reduced photosynthesis,
reducing leaf source activity and negatively affecting the seed setting rate, reducing maize
yield. NeSmith et al. [48] proposed that the grain filling rate is not significantly affected by
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water deficit during grain filling. Therefore, our research results are consistent with theirs;
the yield gap between W2 and W3 was not significant. Maize growth is a complicated
process influenced by climatic, soil, and geographical factors, respectively [49]. Different
irrigation schedules have less effect on the yield of maize, and the difference between them
was not significant. Other researchers found that moderate water stress at the maize’s
jointing stage could increase crop WUE and control the growth redundancy of plants during
the vegetative growth process, reduce the length of maize ears, and promote reproductive
growth [50]. Cai et al. [51] and Wei et al. [52] found that appropriate water deficit treatments
in the early stage of maize growth can improve crop WUE to varying degrees.

5. Conclusions

AquaCrop can simulate the maize ETa and yield well, and the R2 of the relationship
between the model simulation and the observed were 0.99 and 0.71, respectively. Due to
the increasing trend of future climate, the ETa, yield, and WUE of maize in the two RCPs
showed an increased trend during 2021–2080. The ETa and yield showed an increasing
trend from the north area to the south part in the study area, and WUE showed a downward
trend from the east part to the west area. The ETa, yield, and WUE of RCP8.5 were larger
than these under RCP4.5. From the perspective of saving irrigation water without affecting
the stability of maize yield, we recommend W1 for future maize planting. This study will
supply useful knowledge with the impact of different irrigation schedules on crop growth
under future climate, and help to optimize the selection of feasible irrigation schedules to
balance the relationship between water scarcity and food security.
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Abstract: Accurately forecasting reference evapotranspiration (ET0) values is crucial to improve
crop irrigation scheduling, allowing anticipated planning decisions and optimized water resource
management and agricultural production. In this work, a recent state-of-the-art architecture has
been adapted and deployed for multivariate input time series forecasting (transformers) using past
values of ET0 and temperature-based parameters (28 input configurations) to forecast daily ET0 up
to a week (1 to 7 days). Additionally, it has been compared to standard machine learning models
such as multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), extreme
learning machine (ELM), convolutional neural network (CNN), long short-term memory (LSTM),
and two baselines (historical monthly mean value and a moving average of the previous seven
days) in five locations with different geo-climatic characteristics in the Andalusian region, Southern
Spain. In general, machine learning models significantly outperformed the baselines. Furthermore,
the accuracy dramatically dropped when forecasting ET0 for any horizon longer than three days.
SVM, ELM, and RF using configurations I, III, IV, and IX outperformed, on average, the rest of the
configurations in most cases. The best NSE values ranged from 0.934 in Córdoba to 0.869 in Tabernas,
using SVM. The best RMSE, on average, ranged from 0.704 mm/day for Málaga to 0.883 mm/day
for Conil using RF. In terms of MBE, most models and cases performed very accurately, with a total
average performance of 0.011 mm/day. We found a relationship in performance regarding the aridity
index and the distance to the sea. The higher the aridity index at inland locations, the better results
were obtained in forecasts. On the other hand, for coastal sites, the higher the aridity index, the higher
the error. Due to the good performance and the availability as an open-source repository of these
models, they can be used to accurately forecast ET0 in different geo-climatic conditions, helping to
increase efficiency in tasks of great agronomic importance, especially in areas with low rainfall or
where water resources are limiting for the development of crops.

Keywords: machine learning; transformers; neural networks; support vector machine; reference
evapotranspiration; forecasting; Bayesian optimization

1. Introduction

The worldwide population is increasing to alarming values that will require almost
50% more food to meet the demand in 2050 [1]. Therefore, research into new methodologies
to outperform agroclimatic forecasts (solar radiation, precipitation, or evapotranspiration)
is a relevant task that allows the optimization of water resource management, the improve-
ment of irrigation scheduling, and, indeed, contributes to the great challenge of increasing
food production. Furthermore, it is significantly impactful in arid and semiarid areas such
as the Andalusian region (Southern Spain), where crop water uses are elevated and the
scarce precipitation is limiting growth and agricultural yield.

Agronomy 2022, 12, 656. https://doi.org/10.3390/agronomy12030656 https://www.mdpi.com/journal/agronomy187



Agronomy 2022, 12, 656

Crop evapotranspiration measures the crops’ water demand, being affected by atmo-
spheric parameters (such as temperature, wind speed, or solar radiation), specific crop
type, soil characteristics, as well as management and environmental conditions. The evapo-
transpiration rate from a reference surface with no shortage of water is named reference
evapotranspiration (ET0), which studies the evaporative demand of the atmosphere in-
dependently of the surface, the crop type, its development stage, and the management
practices. Its calculation can be accurately determined using physics-based methods such
as the FAO56-PM [2], which has been assessed globally in different climatic conditions
and countries, including Korea [3], Argentina [4], and Tunisia [5], among others. However,
measuring all the required parameters (air temperature, relative humidity, wind speed,
and solar radiation) is very costly in installation and maintenance. Moreover, Automated
Weather Stations (AWS) usually contain non-reliable long-term datasets, mainly for wind
speed and solar radiation, due to a lack of maintenance or miscalibration [6]. These are the
reasons why the geographical density of complete AWS is generally low, especially in rural
areas and developing countries [7,8].

Therefore, developing new algorithms with fewer climatic input parameters is of high
interest. In this context, Hargreaves and Samani [9] introduced an empirical equation (HS)
that uses maximum and minimum daily air temperature values (Tx and Tn, respectively)
and extraterrestrial solar radiation (Ra). Different studies have assessed HS in different
aridity conditions and countries, such as Iran [10], Italy [11], Bolivia [11], China [12], and
others. Nevertheless, advances in computation during the last several decades led to the
application of new methodologies based on Artificial Intelligence (AI) with a very intensive
computational cost. Thanks to the progress in CPU and GPU computation, the time spent
training these models has dropped significantly, allowing scientists to apply them without
needing a vast CPU/GPU farm and obtaining promising results in all sectors, especially
agriculture. For example, Karimi et al. [13] evaluated the performance of random forest
(RF) and other empirical methods to estimate ET0 when several meteorological data were
missing. RF surpassed the other models for temperature-based data availability when
using Tx, Tn, Ra, and relative humidity (RH) as input features. Ferreira and da Cunha [14]
assessed RF, extreme gradient boosting (XGB), multilayer perceptron (MLP), and convolu-
tional neural network (CNN) to estimate daily ET0 through different approaches, using
hourly temperature and relative humidity as features in different AWS in Brazil. CNN
outperformed the rest of the models for most statistics and locations in both local and re-
gional approaches. However, no optimization algorithm was used during hyperparameter
tuning. Yan et al. [15] evaluated XGB to estimate daily ET0 in two different regions (an
arid and humid region) from China and seven meteorological input combinations using
maximum and minimum daily temperature (Tx and Tn, respectively), extraterrestrial solar
radiation (Ra), relative humidity (RH), wind speed (U2), and sunshine hours (n). In order to
tune the different hyperparameters, the Whale Optimization Algorithm (WOA) was used.
Their results showed that using local and external (neighbor stations) datasets obtained
even better performance than using only local data in some cases. Therefore, this strategy
is very promising when there is a lack of long-term records. Wu et al. [16] studied the
performance of extreme learning machines (ELM) in different locations from China. They
analyzed the use of the K-means clustering algorithm and the Firefly Algorithm (FFA) to
estimate monthly mean daily ET0 using Tx, Tn, Ra, and Tm (mean daily temperature).
Nourani et al. [17] assessed support vector regression (SVR), Adaptive Fuzzy Inference
System (ANFIS), MLP, and multiple linear regression (MLR) to forecast monthly ET0 in
Turkey, North Cyprus, and Iraq. Moreover, three ensemble methods were applied (simple
averaging, weighted averaging, and neural ensemble) to outperform the performance and
reliability of single modeling. The use of neural ensemble models highly outperformed
single modeling in all cases, although simple and weighted averaging did not significantly
perform better. Ferreira and da Cunha [18] evaluated the performance of daily ET0 forecasts
(up to 7 days) using CNN, long short-term memory (LSTM), CNN-LSTM, RF, and MLP
using hourly data from different weather stations with heterogeneous aridity index charac-
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teristics in Brazil. In all cases, the use of the machine learning (ML) models outperformed
the baselines, where CNN-LSTM performed the best in both local and regional scenarios
using Tx, Tn, maximum and minimum relative humidity (RHx and RHn, respectively),
wind speed, solar radiation (Rs), Ra, the day of the year (DOY), and ET0 values from a
lag window in the past (up to 30 days). In order to tune the different hyperparameters, a
random search algorithm with 30 epochs was used.

In addition to these well-known and standard ML models, new architectures have
been recently developed to deal with natural language programming (NLP) problems with
outstanding results, called transformers [19]. The transformer model is an encoder–decoder
architecture based on a self-attention mechanism that looks at an input sequence and
decides which timesteps are valuable. The promising results of transformers have fostered
their use on time series problems due to its apparent relationship. In both types of problems,
words/parameter values are more or less meaningful based on their position. Therefore,
several scientists have evaluated attention-based architectures in forecasting problems.
For example, Wu et al. [20] proposed an Adversarial Sparse Transformer (AST) based on
generative adversarial networks (GAN). They assessed it to forecast five different public
datasets: (I) an hourly time series electricity consumption dataset, (II) an hourly traffic
level from the San Francisco dataset, (III) an hourly solar power production dataset, and
(IV) an hourly time series dataset from the M4 competition. Furthermore, [21] analyzed a
transformed-based architecture to forecast influenza-like illness (ILI), obtaining promising
results. Finally, Li et al. [22] evaluated the performance of transformers in time series
forecasting using the same public datasets as Wu et al. [20] and obtained more accurate
modeling with long-term dependencies.

This work is motivated by the need to minimize error in daily ET0 forecasts, which
is one of the main drawbacks in the reviewed literature, as well as the outstanding and
promising performance of transformers and transformer-based models in different fields.
Thereby, this work is the first one using a multivariate input transformer-based architecture
in order to forecast daily ET0 (from one to seven days ahead). The development and
assessment have been carried out using past values of ET0 and temperature-based measured
variables as features in five sites of Andalusia (Córdoba, Málaga, Conil, Tabernas, and
Aroche) with different geo-climatic characteristics. Moreover, standard ML models such
as RF, MLP, SVR, ELM, CNN, and LSTM have been also evaluated in conjunction with
Bayesian optimization to tune all their different hyperparameters. Thus, the main objectives
of this work are (a) to assess the performance of the proposed transformer model to forecast
ET0 and to compare it to standard ML models and two simple baselines (historical monthly
mean value and mean of previous seven days); (b) to evaluate different input feature
configurations based on ET0 past values and several temperature-based features to forecast
ET0, and (c) to analyze the forecast efficiency depending on the different geo-climatic
characteristics of the sites.

2. Materials and Methods

2.1. Study Area and Dataset

Andalusia is located in the southwest of Europe, ranging from 37◦ to 39◦ N, from 1◦ to
7◦ W, and occupying an extension of 87,268 km2. This work was carried out with data
from five locations in Andalusia (Figure 1), with different geo-climatic characteristics and
representing great variability in terms of UNEP aridity index [23] in this region (ranging
from 0.555—dry subhumid—in Aroche, to 0.177—arid—in Tabernas). The coordinates and
other characteristics of the AWS are reported in Table 1. In contrast, in Table 2, the minimum,
mean, maximum, and standard deviation values of minimum, mean, and maximum
daily air temperature (Tn, Tm, and Tx, respectively), relative humidity (RHn, RHm, RHx,
respectively), wind speed (U2), solar radiation (Rs), and reference evapotranspiration (ET0)
data are shown. The dataset used in this study belongs to the Agroclimatic Information
Network of Andalusia (RIA), which can be downloaded at https://www.juntadeandalucia.
es/agriculturaypesca/ifapa/ria/servlet/FrontController (accessed on 1 February 2022).
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Figure 1. Spatial distribution of Aroche, Conil, Córdoba, Málaga, and Tabernas in the Andalusia
region, south of Spain.

Table 1. Geo-climatic characteristics of the locations assessed in this work (ARO—Aroche, CON—Conil
de la Frontera, COR—Córdoba, MAG—Málaga, and TAB—Tabernas). Time period from 2000 to 2018.

Site
Lon.

(◦ W)
Lat.

(◦ N)
Alt.
(m)

Mean Annual
Precipitation

(mm)

UNEP
Aridity
Index

Total
Available Days

Aroche (ARO) 6.94 37.95 293 632 0.555
(dry-subhumid) 6399

Conil de la
Frontera (CON) 6.13 36.33 22 470 0.479 (semiarid) 5868

Córdoba (COR) 4.80 37.85 94 589 0.462 (semiarid) 6397
Málaga (MAG) 4.53 36.75 55 434 0.366 (semiarid) 6438
Tabernas (TAB) 2.30 37.09 502 237 0.178 (arid) 6694

In this work, because the accurate estimation of ET0 using limited meteorological data
has been improved in recent years [14,24] and due to the high availability of temperature
records, only temperature-based and ET0 values from the past have been used as input
features to forecast ET0. Specifically, two different windows have been evaluated, the
use of 15 and 30 days from the past. Moreover, several temperature-based variables have
been calculated, such as EnergyT (the area below the intraday temperature in a whole
day), HourminTx (the time when Tx occurs), HourminTn (the time when Tn occurs),
HourminSunset (the time when sunset occurs), HourminSunrise (the time when sunrise
occurs), es (mean saturation vapor pressure), ea (actual vapor pressure) and VPD (vapor
pressure deficit), Tx-Tn, HourminSunset-HourminTx, and HourminSunrise-HourminTn.
All the configurations assessed in this work contained Tx, Tn, Tx-Tn, and Ra as features
due to their very high Pearson correlation (Figure 2), and the rest of the configurations were
selected based on their Pearson correlation values and the previous results on these same
locations regarding ET0 and solar radiation [24–26] estimations. The 27 different assessed
configurations are shown in Table 3.
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Table 2. Minimum (Min), mean, maximum (Max), and standard deviation (Std) values of all the daily
parameters measured: maximum air temperature (Tx), mean air temperature (Tm), minimum air tem-
perature (Tn), maximum relative humidity (RHx), mean relative humidity (RHm), minimum relative
humidity (RHn), wind speed at 2 m height (U2), solar radiation (Rs), reference evapotranspiration
(ET0) at each location (ARO—Aroche, CON—Conil de la Frontera, COR—Córdoba, MAG—Málaga,
and TAB—Tabernas) and for the whole dataset (2000–2018).

Tx
(◦C)

Tm
(◦C)

Tn
(◦C)

RHx
(%)

RHm
(%)

RHn
(%)

U2

(m/s)
Rs

(MJ/m2 day)
ET0

(mm)

ARO

Min 2.5 −0.2 −8.0 32.5 17.2 5.0 0.3 1.0 0.3
Mean 23.2 16.1 8.9 89.5 65.9 39.0 1.2 17.8 3.2
Max 44.0 34.1 24.9 100.0 100.0 100.0 5.8 34.3 8.7
Std 8.1 6.8 5.6 11.2 17.7 19.4 0.5 8.8 2.0

CON

Min 6.4 0.7 −5.3 39.9 24.3 6.9 0.0 0.5 0.4
Mean 23.0 17.4 12.1 89.3 72.5 50.5 1.3 18.0 3.2
Max 41.3 31.9 26.9 100.0 99.6 97.1 7.9 31.7 9.3
Std 5.7 5.2 5.3 9.0 12.3 14.6 1.0 7.8 1.8

COR

Min 3.3 0.0 −8.3 38.9 21.8 4.3 0.0 0.5 0.3
Mean 24.6 17.4 11.0 86.8 64.1 37.3 1.6 17.7 3.6
Max 45.7 34.7 27.6 100.0 100.0 100.0 7.5 33.2 9.6
Std 8.5 7.3 6.2 12.0 18.1 19.3 0.7 8.5 2.3

MAG

Min 6.2 3.3 −4.2 36.0 19.4 4.6 0.0 0.3 0.4
Mean 23.9 18.2 12.6 85.1 63.4 39.1 1.3 18.2 3.4
Max 42.7 33.7 26.8 100.0 99.7 98.3 4.6 32.4 10.3
Std 6.3 5.8 5.5 10.5 14.2 15.1 0.5 8.2 1.9

TAB

Min 4.3 −1.2 −8.2 28.6 16.8 2.8 0.1 0.2 0.4
Mean 23.2 16.4 9.8 85.7 59.9 32.9 1.9 18.4 3.8
Max 42.5 32.1 26.0 100.0 97.5 95.0 9.9 32.8 10.6
Std 7.2 6.6 6.2 11.9 15.1 14.8 0.9 7.8 2.0

Figure 2. Pearson correlation values of the assessed features in all the stations.
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Table 3. Configuration table with all configurations. HTx represents HourminTx, HTn represents
HourminTn, HSs represents HourminSunset, and HSr represents HourminSunrise.

Conf. Tx Tn Tx-Tn Ra EnergyT ea es VPD HTx HTn HSs-HTx HSr-HTn ET0

I X X X X X X
II X X X X X X X
III X X X X X X X
IV X X X X X X
V X X X X X X X
VI X X X X X X X
VII X X X X X X X
VIII X X X X X X X X
IX X X X X X X X X
X X X X X X X X
XI X X X X X X X X
XII X X X X X X X X
XIII X X X X X X X X X X X X X
XIV X X X X X X X X X
XV X X X X X X X X X
XVI X X X X X X X X
XVII X X X X X X X X X
XVIII X X X X X X X X X
XIX X X X X X X X X X
XX X X X X X X X X
XXI X X X X X X X
XXII X X X X X X
XXIII X X X X X
XXIV X X X X X X
XXV X X X X X X
XXVI X X X X X X
XXVII X X X X X X

2.2. Preprocessing Methodology

In machine learning applications, a vital prerequisite to guarantee accurate modeling
is the use of reliable datasets. In this work, the control guidelines reported by Estévez
et al. [6] have been followed to identify erroneous and questionable data from sensor
measurements by applying different tests (range, internal consistency, step, and persis-
tence) and a spatial consistency test [27]. These quality assurance procedures have been
successfully employed in different countries [4,28,29]. Afterward, the input and output
matrices had to be built depending on the number of lag days from the past (15 or 30),
the features to use (up to 27 input configurations), and the number of days to forecast (up
to 7 days). In Figures 3 and 4, a mind map with all the possibilities is shown. It is worth
noting that a MIMO (Multiple Input Multiple Output) approach was used in models that
allowed it, whereas a direct approach was considered in the others according to the results
of Ferreira and da Cunha [18].

Consequently, using configuration 1 and 15 lag days as an example, the values from
day to day—14 of Tx, Tn, Tx-Tn, Ra, ea, and ET0 are used as input features (a total of
90 values) for all the ML models (except for transformers—see Section 2.5.7), where Tx and
Tn are directly given by AWS, and Ra and ea can be calculated using Tx, Tn, and the latitude,
as stated by [2]. Finally, ET0 is calculated using the well-known FAO56-PM method.

Later, in order to train, tune all the hyperparameters, and assess the final performance
of the model, for each location, the dataset was split into training (70% of the entire dataset
length), validation (20% of the training dataset length), and testing (30% of the entire
dataset length) using a holdout technique. Next, the Bayesian optimization algorithm was
used to tune all the hyperparameters (the hyperparameter space can be seen in Table S1,
Supplementary Materials). Eventually, after the best hyperparameter set was found, the
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final model was trained using the entire training dataset (70% of the entire dataset length)
and evaluated using the testing dataset. Figure 5 shows an overview of this methodology.

Figure 3. Mind map of the matrix data structure.

Figure 4. Forecasting approaches using configuration 1 as an example.

2.3. Reference Evapotranspiration Calculation

In this work, the ET0 (FAO56-PM) values were used as input and target values. They
were determined following the procedure of [2], and can be mathematically expressed as
Equation (1):

ET0 =
0.408Δ(Rn − G) + γ 900

T+273 U2(es − ea)
Δ + γ(1 + 0.34U2)

(1)

where ET0 is the reference evapotranspiration (mm day−1), 0.408 corresponds to a coeffi-
cient (MJ−1 m2 mm), Δ is the slope of the saturation vapor pressure versus temperature
curve (kPa ◦C−1), Rn is the net radiation calculated at the crop surface (MJ m−2 day−1),
G is the soil heat flux density at the soil surface (MJ m−2 day−1), γ is the psychrometric
constant (kPa ◦C−1), T is the mean daily air temperature (◦C), U2 is the mean daily wind
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speed at 2 m height (m s−1), and es and ea are the saturation vapor pressure and the mean
actual vapor pressure, respectively (kPa).

Figure 5. Methodology flowchart.

2.4. Baselines

In order to compare the performance of the developed models and configurations, it
is crucial to have a baseline performance as a starting point. In this sense, two empirical
baselines have been proposed in this work, following the methodology proposed by Ferreira
and da Cunha [18]. In the first place, a moving average from the last 7 days was used.
Secondly, the historical average monthly values from the training dataset were used for the
corresponding forecast day.
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2.5. Machine Learning Models
2.5.1. Multilayer Perceptron

The multilayer perceptron (MLP) is one of the most used agronomical and hydrological
AI models [14,30,31]. Its popularity is based on its similarities to neurons in the biological
nervous system, easy coding, and promising results in most cases. They are structured
in three kinds of layers, the input and output layer, representing the inputs and outputs
of the model, respectively, and the hidden layers, where all the neurons are located. The
neurons work together to create stimuli (reference evapotranspiration forecast values)
based on different inputs (the input matrix containing features from the past). A back-
propagation algorithm makes the neurons learn (automatically update all weights and
biases) and improve every mini batch every epoch. A single neuron architecture can be
seen in Figure 6.

Figure 6. Single neuron architecture. I1, I2, I3, and I4 represent the inputs of the neuron; W1, W2, W3,
and W4 correspond to the weights of every input; B is the bias, and O represents the output of the
neuron after passing through an activation function.

2.5.2. Extreme Learning Machine

Extreme learning machine models (ELM) were first introduced by Huang et al. [32] as
a single hidden layer feed-forward neural network with the following main characteristics:
(I) the input weights and biases are randomly generated and (II) the output weights and
biases are analytically determined. As a result, these models do not require any training
process and have a meager computational cost, with promising results in ET0 [24,33,34].
However, on the other hand, when the model is working with massive datasets, the amount
of random access memory (RAM) required is enormous.

2.5.3. Support Vector Machine for Regression

Support vector machine (SVM) models for regression tasks, also known as support
vector regression (SVR) models, are supervised AI models based on a different functionality
than neuron-based architectures such as MLP and ELM. They search for the best hyperplane
(and its margins) that contains all data points. Thus, it could be easily related to linear
regression with the flexibility of defining how much error can be considered acceptable.
Moreover, one of their most important features is the use of kernels to allow the model to
operate on a high-dimensional feature space. SVMs can be mathematically expressed as a
minimization problem of Equation (2) with the constraints in Equation (3).

MIN

(
1
2
‖w‖2 + C

n

∑
i=1

|ξi|
)

≥ 0 (2)

|yi − wixi| ≤ ε + |ξi| (3)

where wi corresponds to the weight vector, xi to the input vector, yi to the output vector, ε
represents the margins, ξ represents the deviation of values to the margins, C is a coefficient
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to penalize deviation to the margins, and n is the length of the training dataset. For further
details, the work of [35] can be consulted.

2.5.4. Random Forest

A random forest (RF) is composed of the conjunction of multiple tree-based models
in order to improve the overall result (ensemble model). The general idea is that different
models are trained on different data samples (bootstrap) and feature sets. Instead of
searching for the best features when splitting nodes, it searches among a random subset of
the features. Thus, it results in greater diversity and better final performance.

2.5.5. Convolutional Neural Network

Convolutional neural network (CNN) models were first developed for image clas-
sification problems, where the convolution algorithm captures local patterns to learn a
representation of figures to classify them. Moreover, this process can be extrapolated to 1D
sequences of data such as time series datasets. One of the advantages of using convolutions
is that they can obtain local features’ relationships without the requirement of an extensive
preprocessing method and can obtain outstanding results in ET0 [14,36,37] and in other
agro-climatic parameters [25,38,39].

Typically, such CNNs are composed of three layers: the convolutional layer, the
pooling layer, and a fully connected layer. The convolutional layer is used to extract local
relationships between the different features and timesteps. The pooling layer is added after
the convolutional layer, and it gradually reduces the feature map. Finally, a fully connected
layer is used to forecast the seven-day horizon ET0 values (in this work). For further details,
the work of Aloysius et al. [40] can be reviewed.

2.5.6. Long Short-Term Memory

Long short-term memory (LSTM) models were first introduced by Hochreiter et al. [41]
as a recurrent neural network (RNN)-based model that could deal with long-term depen-
dencies and address the vanishing gradient problem. In order to control the information
flow, the LSTM block contains an input gate, an output gate, a forget gate, a cell state, and
a hidden state. The gates are in charge of deciding which information is allowed on the
cell state, i.e., whether a piece of information is relevant to keep or forget during training.
The cell and hidden state can be seen as the memory of the network, used to carry relevant
information throughout the sequence.

2.5.7. Transformers

A new state-of-the-art architecture has been recently presented for NLP problems, the
transformers [19]; see Figure 7. One of the main motivations of transformers is to deal with
the vanishing gradient problem of LSTM when working with long sequences. Although
LSTMs can theoretically propagate crucial information over infinitely long sequences, due
to the vanishing gradient problem, they pay more attention to recent tokens and eventually
forget earlier tokens. In contrast, transformers use an attention mechanism, which learns
the relevant subset of the sequences to accomplish the specific task. For a single head, the
operation can be expressed as Equation (4),

Attention(Q, K, V) = So f tmax(
Q KT
√

dk
)V (4)

where Q, K, and V represent the query, key, and value, respectively, as an analogy to a
database, and dk corresponds to queries and keys’ dimension. As stated by Yıldırım and
Asgari-Chenaghlu (2021), the attention mechanism can be defined as follows: “This can
also be seen as a database where we use the query and keys in order to find out how much various
items are related in terms of numeric evaluation. Multiplication of attention score and the V matrix
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produces the final result of this type of attention mechanism”. In particular, transformers use a
multi-head attention mechanism, which can be mathematically expressed as Equation (5).

MultiHead(Q, K, V) = [Head1, . . . , Headh]W0 (5)

where Headi is attention (QWi, KWi, VWi) and W denotes all the learnable parameter matrices.

Figure 7. Original transformer architecture.

Generally, the transformer is an encoder–decoder architecture. Considering a transla-
tion task from English to Spanish, the encoder takes an input sequence (‘I am from Spain’)
and maps it into a higher-dimensional space using a multi-headed attention, an adding, a
normalization, and a fully connected feed-forward layer. The abstract vector obtained in
the encoder module is fed into the decoder, which uses it to obtain the translated sentence
(‘Soy de España’). It is worth noting that both the encoder and decoder are composed of
modules that can be stacked on top of each other multiple times. However, before carrying
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out any mathematical operation to the input data, it is required to convert words into
numbers. The embedding layer is used for this purpose, transforming words into a vector
of numbers that can be easily recognized by the model.

Another vital aspect to consider is the need for transformers to learn the temporal
dependencies of the different timestamps through positional encoding because they do
not inherently carry it out. In this work, the positional encoding was achieved using
Equations (6) and (7) for monthly and daily values (Figure 8). In this way, 31 January and
2 February are close, but 5 May and 26 July are not.

PE(pos, 2i) = sin
(

pos
10, 0002i/dmodel

)
(6)

PE(pos, 2i+1) = cos
(

pos
10, 0002i/dmodel

)
(7)

where pos represents the position, dmodel is the input dimension, and i represents the index
in the vector. It is worth noting that this temporal dependency information is shared with
the rest of the models as new features in this work to make the comparison between models
as fair as possible. Thus, new features are included in all configurations. For example, in
configuration 1, the input features would be Tx, Tn, Tx-Tn, Ra, ea, ET0, Sin_day (sine of
days over 31 days period), Cos_day (cosine of days over 31 days period), Sin_month (sine
of days over 12 month period) and Cos_month (cosine of days over 12 month period).

(a) (b)

Figure 8. Sine/cosine positional encoding for 31 days in a month (a) and 12 months in a year (b).

The architecture used in this work can be seen in Figure 9. It is based on the original
transformer architecture from Vaswani et al. [19] and the attention-based architecture of
Song et al. [42]. Several aspects were modified. First, since the input data already have
numerical values, the embedding layer was omitted. Then, the positional encoding in-
cluded new features in the input matrix instead of adding their values to the “embedded
vector”. Consequently, four more features were used in this model (sine and cosine posi-
tional encoding for days in a month, and sine and cosine positional encoding for months in
a year). Finally, the SoftMax layer was also deleted because we are dealing with a regression
problem (forecasting ET0). Thus, the processing of data in the proposed transformer-based
model can be described as follows. Firstly, the input matrix passes through a positional
encoding mechanism. Then, the positional encoding features are added to the input matrix.
Later, the data go to an attention-based block containing multi-head attention, dropout,
normalization, addition, and feed-forward layers. Two different variations have been
tested depending on the model used in the feed-forward layer: TransformerCNN, where a
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convolutional approach has been used, and TransformerLSTM, where an LSTM approach
has been implemented. Eventually, the processed data go to an MLP model to carry out the
regression task. The following works provide further details [19,21,43,44] and the code can
be checked at the AgroML GitHub repository.

Figure 9. The architecture of the proposed multi attention-based model.

2.6. Bayesian Optimization

The most critical aspect to obtain accurate performance in machine learning models
is choosing the fittest hyperparameter set. The results could dramatically change from
outstanding to very poor. A prevalent practice among the scientific community in agronomy
and hydrology is using a trial-and-error approach [14,18,36], evaluating from dozens to
hundreds of sets. However, it is not an efficient approach because the process is too
slow if the hyperparameter space is large, spending a significant amount of time on
non-promising configurations. Otherwise, if the hyperparameter space is made to be
small, one may obtain a suboptimal model. Several optimization algorithms have been
assessed to solve this problem—for example, Particle Swarm Optimization (PSO), Grey
Wolf Optimizer (GWO), Genetic Algorithms (GA), Bayesian Optimization (BO), and the
Whale Optimization Algorithm (WOA), among others [31,45–47].

In this work, the BO algorithm has been proposed due to its high sample efficiency
and popularity in automated machine learning libraries such as Auto-Weka 2.0 [48], Auto-
Keras [49], and Auto-Sklearn [50] and they can be consulted in Hutter et al. [51]. Part of
its popularity is related to the close relationship to human behavior when carrying out
this same process [52,53], where prior results are considered to choose the following set.
BO is based on Bayes’ theorem, and it can be explained using the following four steps:
(I) definition of the hyperparameter space; (II) the algorithm first tries several random
sets; (III) the algorithm takes into account the previously assessed configuration sets
when choosing the following one, balancing between exploitation (it exploits regions
that are known to have good performance) and exploration (choosing region with higher
uncertainty), and evaluating it; (IV) if the process has not finished yet, it goes to step 3.

In this work, BO has been implemented using Scikit-Optimize (gp_minimize) and
Python 3.8. In all cases, this process was configured using 50 Bayesian epochs (80% of
them were randomly chosen), selected after a trial-and-error algorithm among 50, 100, 150,
and 200 Bayesian epochs, the mean absolute error (MAE) as the objective function, and
the rest of parameters as default. The hyperparameter space can be found in Table S1,
Supplementary Materials and their results in Table S2.
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2.7. Evaluation Metrics

The models’ performance has been evaluated by using the following parameters:
mean bias error (MBE), root mean square error (RMSE), and the Nash–Sutcliffe model
efficiency coefficient (NSE). The MBE, RMSE, and NSE are defined as Equations (8)–(10):

MBE =
1
n

n

∑
i=1

xi − yi (8)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (9)

NSE = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (10)

where x and y correspond to the observed and forecasted ET0 values, respectively, n
represents the number of records in the testing dataset, and the bar denotes the mean.

3. Results and Discussion

It is worth noting that the code developed in this work is available on GitHub in the
public repository called AgroML, which can be found at https://github.com/Smarity/
agroML (accessed on 1 February 2022). This new library focuses on helping scientists to
research state-of-the-art machine learning models, mainly focused on agronomy estimations
and forecasts but easily extrapolated to other sectors and problems. It lets new scientists
test these models on their datasets, and experienced scientists commit new features and
architectures. The code has been programmed in standard Python using Tensorflow, Scikit-
Learn, Scikit-Optimize, Pandas, and Numpy.

3.1. Baseline Performance

Tables 4 and 5 show the RMSE and NSE performance for the baselines along the
different forecast horizons (up to 1 week), where B1 refers to the moving average of the last
seven ET0 values and B2 the use of mean historical monthly ET0 values (mean ET0 values
for each month of the year). Generally, B2 outperformed B1 for all the forecast horizons
except for one day ahead, where B1 performed better in all sites. Moreover, B1 obtained
the most accurate forecasts on the one day ahead horizon, and it gradually dropped when
the forecast horizon increased. In Aroche, the most humid site, the best performance in
both RMSE and NSE values was obtained (NSE = 0.9038 and RMSE = 0.6390), followed
by Córdoba, Málaga, Conil, and Tabernas (the most arid site), in this order. This suggests
a relationship between the aridity index, distance to the sea, and the performance of the
models. In inland locations, the higher the aridity index, the fewer the forecasting errors.
On the other hand, in coastal locations, the opposite occurs. The higher the aridity index
and the farther from the sea, the more precise the ET0 modeling. Finally, Table 6 shows the
MBE values for the different stations and forecast horizons. In this case, B1 outperformed
B2 in most of the cases.

Table 4. RMSE values for ET0 forecast during seven forecast horizons and the two empirical baselines
(B1—using the average value from the last seven days—and B2—using the mean monthly value from
the training dataset).

Location Baseline
Forecast Horizon

1 2 3 4 5 6 7

COR
B1 0.7551 0.8733 0.9365 0.9926 1.0172 1.0363 1.0644
B2 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374

MAG
B1 0.7665 0.9084 0.9439 0.9632 0.9902 1.0140 1.0188
B2 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143
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Table 4. Cont.

Location Baseline
Forecast Horizon

1 2 3 4 5 6 7

TAB
B1 0.8515 0.9961 1.0451 1.0938 1.1075 1.1568 1.1628
B2 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176

CON
B1 0.7987 1.0675 1.1950 1.2474 1.2404 1.2444 1.2778
B2 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567

ARO
B1 0.6390 0.7882 0.8840 0.9337 0.9820 0.9901 1.0032
B2 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027

Mean
B1 0.7622 0.9277 1.0009 1.0461 1.0675 1.0883 1.1054
B2 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667 0.8667

Table 5. NSE values for ET0 forecast during seven forecast horizons and the two empirical baselines
(B1—using the average value from the last seven days—and B2—using the mean daily monthly value
from the training dataset).

Location Model
Forecast Horizon

1 2 3 4 5 6 7

COR
B1 0.8926 0.8564 0.8349 0.8145 0.8052 0.7978 0.7868
B2 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680

MAG
B1 0.8376 0.7719 0.7538 0.7436 0.7290 0.7157 0.7129
B2 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167

TAB
B1 0.8197 0.7531 0.7283 0.7023 0.6947 0.6671 0.6638
B2 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906

CON
B1 0.8235 0.6844 0.6042 0.5684 0.5728 0.5695 0.5455
B2 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465

ARO
B1 0.9038 0.8537 0.8160 0.7949 0.7732 0.7696 0.7636
B2 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481

Mean
B1 0.8554 0.7849 0.7474 0.7247 0.7150 0.7039 0.6945
B2 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140

Table 6. MBE values for ET0 forecast during seven forecast horizons and the two empirical baselines
(B1—using the average value from the last seven days—and B2—using the mean daily monthly value
from the training dataset).

Location Model
Forecast Horizon

1 2 3 4 5 6 7

COR
B1 −0.0002 −0.0001 −0.0001 0.0000 −0.0002 −0.0001 0.0007
B2 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033

MAG
B1 0.0000 0.0002 0.0000 0.0000 −0.0008 −0.0016 −0.0015
B2 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710

TAB
B1 0.0003 0.0003 0.0000 −0.0018 −0.0034 −0.0041 −0.0046
B2 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972

CON
B1 0.0014 0.0047 0.0084 0.0117 0.0157 0.0198 0.0236
B2 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113

ARO
B1 0.0006 0.0011 0.0012 0.0021 0.0029 0.0036 0.0052
B2 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787

Mean
B1 0.0004 0.0012 0.0019 0.0024 0.0028 0.0035 0.0047
B2 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878
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3.2. Analysis of ML Performance

Table 7 shows the minimum, mean, and maximum NSE, RMSE, and MBE values for
all the sites and models using two different lag intervals (15 and 30 days). Generally, in
terms of NSE and RMSE, the use of 15 days slightly outperformed all the models using
30 lag days for almost all the cases. On the other hand, the MBE performance for all
models, locations, and lag days was very similar. Additionally, ML approaches highly
outperformed the baselines, although the CNN and the transformer-based models gave
the worst results in all sites. In Tabernas, the most arid site, in terms of NSE and RMSE,
all the ML models surpassed the baseline performance. SVM obtained the best values
(NSE = 0.869 and RMSE = 0.700 mm/day), followed very closely by RF (NSE = 0.867 and
RMSE = 0.706 mm/day), which outperformed, on average, the rest of the models. On the
other hand, the CNN model obtained the worst modeling for 30 lag days (NSE = 0.423
and RMSE = 1.438 mm/day). All the models obtained high mean MBE metrics, obtaining
the highest MBE value (−0.974 mm/day) using CNN and 30 lag days. In Conil, the best
values were obtained by SVM (RMSE = 0.684 mm/day), RF (RMSE = 0.703 mm/day),
and ELM (RMSE = 0.717 mm/day), in this order and for 15 lag days. In terms of NSE,
these three models also gave the best performance on mean values and for 15 lag days,
whereas the worst were obtained by CNN (NSE = 0.520) for 30 lag days. In Córdoba,
SVM and ELM using 15 lag days outperformed the rest of the models in both RMSE
(0.605 and 0.614 mm/day) and NSE (0.934 and 0.932), respectively. Moreover, on average,
the best results were obtained in Córdoba compared to the rest of the sites (NSE > 0.85,
RMSE < 0.80 mm/day, and MBE ≈ 0.0 mm/day). In Aroche, the most humid site, the
NSE values ranged from 0.737 (CNN model) to 0.922 (SVM model) and the RMSE values
ranged from 0.597 mm/day (SVM model) to 1.097 mm/day (CNN model). Finally, in
Málaga, the results using 30 lag days were slightly better for all models. SVM and RF
outperformed the rest of the models in terms of NSE (0.894 and 0.892, respectively) and
RMSE (0.631 mm/day and 0.640 mm/day, respectively), whereas the worst results were
obtained using CNN (NSE = 0.409 and RMSE = 1.499 mm/day) and LSTM (NSE = 0.202
and RMSE = 1.739 mm/day).

In Figures 10–12, the RMSE and NSE values for all forecasting predictions in the
different sites are shown in a boxplot, respectively. Firstly, no significant performance
distinctions were observed from the two approaches depending on the number of lag
days (15 and 30 days). However, the first approach (15 lag days) slightly outperformed
the second (30 lag days) on mean values, and more precision was observed (a lower
interquartile range). Moreover, the number of outliers having non-accurate modeling
was much higher using the second approach. Then, as a general rule, using daily values
from 15 days in the past is recommended over using 30 days. Furthermore, regarding
the efficiency of different models, SVM, RF, and ELM were predominantly better than the
rest of the models according to NSE and RMSE values, giving more precise results. In
contrast, CNN and both transformer models were at the bottom in the ranking. Finally, the
MBE results are plotted in a boxplot. The results were very accurate in both approaches
and for all the models and sites, but CNN gave more outliers, especially using the 30 lag
days approach.

To further analyze these results, Figures 13–15 show the best statistic values (NSE,
RMSE, and MBE, respectively) of all the models and sites for the different forecast horizons
used. In terms of NSE (Figure 13), all ML models highly outperformed B1 and B2 in all
the forecast horizons and locations, except for Conil. In Conil, only SVM, RF, and ELM
outperformed both B1 and B2 in all cases. On the other hand, the transformers, CNN,
and MLP models underperformed B1 and B2 for a horizon higher than 3 days. Regarding
RMSE, the results were similar to those shown in Figure 12. However, a more significant
improvement in ML models is appreciated for most models and horizons. In terms of MBE
(Figures 13–15), B2 obtained significantly worse results in Aroche, Córdoba, Málaga, and
Tabernas, where ML performed very accurately in all cases. In Conil, there were no major
differences in performance between all the models. Thereby, due to these results, it could
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be stated that the use of ML models to forecast ET0 up to a week is highly recommended,
especially SVM, RF, and ELM models. Generally, B1 highly outperformed B2 to forecast
ET0 values one day ahead, but its performance profoundly decreased for higher horizons,
obtaining even worse results than B2. This denotes a low autocorrelation of daily ET0
values but a higher relation with historical monthly values. Moreover, SVM generally
showed the best performance in terms of NSE and RMSE, whereas, regarding MBE, all
models performed very accurately. Finally, it is worth noting that in Conil (a coastal site
with an aridity index close to being a dry sub-humid climate), the best ML models (SVM, RF,
and ELM) could not highly outperform B2 as in the rest of the locations when forecasting
more than two days ahead, due to the effect of the close distance to the sea and the higher
aridity index.

Table 7. Minimum (Min.), mean, and maximum (Max.) of NSE, RMSE, and MBE values for all loca-
tions (TAB—Tabernas, CON—Conil, COR—Córdoba, ARO—Aroche, MAG—Málaga) and models
using two different lag day windows (15 days and 30 days). T_CNN refers to transformer using CNN
in the feed-forward layer, while T_LSTM refers to transformers using LSTM in this same layer.

Station Model
Lag

Days
NSE RMSE MBE

Min Mean Max Min Mean Max Min Mean Max

TAB

CNN
15 0.710 0.778 0.862 0.723 0.916 1.050 0.001 0.123 0.484
30 0.423 0.752 0.848 0.734 0.939 1.438 0.000 −0.026 −0.974

ELM
15 0.794 0.820 0.860 0.727 0.825 0.885 0.043 0.082 0.126
30 0.778 0.807 0.853 0.722 0.830 0.892 −0.000 0.021 0.079

LSTM
15 0.749 0.797 0.845 0.766 0.877 0.976 −0.003 0.088 0.236
30 0.730 0.771 0.828 0.783 0.905 0.984 0.000 −0.009 −0.209

MLP
15 0.769 0.810 0.854 0.743 0.848 0.936 0.000 0.046 0.265
30 0.715 0.781 0.841 0.750 0.883 1.012 −0.000 −0.029 −0.210

RF
15 0.802 0.821 0.867 0.710 0.823 0.866 0.057 0.094 0.117
30 0.799 0.819 0.859 0.706 0.805 0.850 0.000 −0.011 −0.033

SVM
15 0.779 0.817 0.869 0.704 0.831 0.915 0.000 0.074 0.183
30 0.746 0.812 0.862 0.700 0.818 0.955 0.000 −0.018 0.121

T_CNN 15 0.742 0.789 0.840 0.779 0.893 0.989 0.000 0.100 0.324
30 0.705 0.770 0.841 0.750 0.905 1.029 −0.000 −0.017 −0.297

T_LSTM 15 0.726 0.780 0.829 0.804 0.912 1.019 0.002 0.099 0.257
30 0.699 0.765 0.831 0.775 0.916 1.040 0.000 −0.050 −0.312

CON

CNN
15 0.580 0.674 0.817 0.759 1.017 1.154 0.000 −0.037 −0.560
30 0.303 0.520 0.724 0.889 1.164 1.409 0.002 −0.151 −0.706

ELM
15 0.716 0.753 0.837 0.717 0.885 0.959 0.000 0.000 0.048
30 0.635 0.697 0.779 0.796 0.927 1.021 −0.002 −0.057 −0.122

LSTM
15 0.651 0.724 0.788 0.816 0.936 1.055 0.000 −0.029 −0.131
30 0.378 0.552 0.706 0.919 1.126 1.326 0.000 −0.061 0.304

MLP
15 0.579 0.709 0.808 0.778 0.959 1.160 0.000 −0.059 −0.260
30 0.368 0.573 0.738 0.866 1.099 1.338 0.003 −0.153 −0.371

RF
15 0.721 0.754 0.843 0.703 0.883 0.939 0.003 0.026 0.057
30 0.667 0.704 0.799 0.759 0.915 0.967 −0.020 −0.054 −0.099

SVM
15 0.640 0.752 0.851 0.684 0.885 1.065 0.000 −0.146 −0.250
30 0.547 0.672 0.804 0.749 0.961 1.146 0.015 −0.235 −0.393

T_CNN 15 0.561 0.679 0.800 0.794 1.008 1.184 0.000 −0.047 −0.225
30 0.422 0.569 0.723 0.891 1.104 1.294 −0.001 −0.096 −0.451

T_LSTM 15 0.570 0.674 0.746 0.895 1.018 1.177 0.000 −0.035 −0.166
30 0.389 0.588 0.707 0.917 1.080 1.310 0.000 −0.082 −0.259
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Table 7. Cont.

Station Model
Lag

Days
NSE RMSE MBE

Min Mean Max Min Mean Max Min Mean Max

COR

CNN
15 0.818 0.882 0.929 0.630 0.808 1.011 0.000 0.056 −0.505
30 0.522 0.853 0.913 0.670 0.873 1.592 0.000 0.035 1.003

ELM
15 0.879 0.900 0.932 0.614 0.745 0.824 0.000 0.015 0.084
30 0.848 0.874 0.909 0.686 0.813 0.896 −0.001 0.046 0.128

LSTM
15 0.877 0.894 0.924 0.649 0.771 0.831 0.000 0.041 0.178
30 0.835 0.865 0.902 0.713 0.841 0.932 0.000 0.027 0.193

MLP
15 0.858 0.893 0.927 0.639 0.773 0.891 −0.000 0.038 0.211
30 0.801 0.858 0.908 0.690 0.860 1.029 −0.001 0.011 0.172

RF
15 0.892 0.903 0.928 0.633 0.734 0.776 0.011 0.029 0.045
30 0.870 0.883 0.912 0.674 0.783 0.826 0.000 0.015 0.033

SVM
15 0.869 0.900 0.934 0.605 0.744 0.855 −0.000 0.053 0.130
30 0.832 0.875 0.914 0.667 0.809 0.942 0.000 0.064 0.167

T_CNN 15 0.857 0.885 0.906 0.725 0.802 0.896 0.003 0.052 0.207
30 0.815 0.855 0.892 0.749 0.870 0.988 0.000 0.023 −0.280

T_LSTM 15 0.842 0.880 0.906 0.724 0.818 0.939 −0.000 0.048 0.204
30 0.824 0.859 0.885 0.773 0.859 0.965 0.000 0.037 0.230

ARO

CNN
15 0.799 0.851 0.913 0.624 0.816 0.951 0.000 0.106 0.436
30 0.737 0.840 0.916 0.620 0.851 1.097 0.001 0.056 0.256

ELM
15 0.850 0.874 0.917 0.609 0.751 0.823 −0.001 0.056 0.113
30 0.853 0.878 0.918 0.613 0.744 0.819 0.020 0.082 0.141

LSTM
15 0.823 0.860 0.912 0.627 0.792 0.892 0.000 0.068 0.196
30 0.798 0.850 0.908 0.647 0.827 0.960 −0.002 0.038 0.220

MLP
15 0.803 0.861 0.911 0.632 0.789 0.943 −0.001 0.079 0.288
30 0.793 0.853 0.913 0.630 0.815 0.972 0.000 0.020 0.164

RF
15 0.860 0.877 0.914 0.620 0.742 0.794 0.022 0.098 0.139
30 0.855 0.883 0.920 0.606 0.730 0.814 0.009 0.047 0.070

SVM
15 0.817 0.869 0.918 0.607 0.764 0.908 −0.003 0.136 0.200
30 0.810 0.868 0.922 0.597 0.772 0.931 0.006 0.091 0.201

T_CNN 15 0.802 0.845 0.902 0.664 0.834 0.945 0.002 0.099 0.281
30 0.794 0.845 0.901 0.674 0.840 0.970 0.000 0.018 0.210

T_LSTM 15 0.800 0.843 0.885 0.719 0.840 0.950 0.000 0.089 0.278
30 0.780 0.838 0.882 0.736 0.859 1.001 0.000 0.042 0.238

MAG

CNN
15 0.734 0.800 0.871 0.681 0.847 0.980 0.000 0.046 0.311
30 0.409 0.819 0.880 0.672 0.823 1.499 0.000 −0.003 1.113

ELM
15 0.821 0.841 0.878 0.662 0.756 0.804 0.000 0.031 0.071
30 0.841 0.857 0.884 0.663 0.736 0.777 −0.001 −0.040 −0.084

LSTM
15 0.810 0.830 0.862 0.705 0.782 0.828 0.000 0.036 0.132
30 0.202 0.840 0.872 0.695 0.773 1.739 0.000 −0.069 −1.052

MLP
15 0.773 0.823 0.872 0.678 0.798 0.904 0.000 0.036 0.195
30 0.763 0.835 0.880 0.672 0.788 0.948 0.000 −0.048 −0.261

RF
15 0.832 0.849 0.882 0.651 0.738 0.778 0.000 0.027 0.044
30 0.859 0.869 0.892 0.640 0.704 0.732 −0.020 −0.039 −0.061

SVM
15 0.797 0.843 0.885 0.643 0.750 0.855 0.000 0.049 −0.138
30 0.814 0.858 0.894 0.631 0.731 0.839 0.000 −0.006 −0.094

T_CNN 15 0.741 0.809 0.853 0.727 0.829 0.967 0.001 0.009 0.198
30 0.773 0.825 0.864 0.716 0.812 0.928 0.002 −0.097 −0.371

T_LSTM 15 0.768 0.801 0.835 0.771 0.846 0.916 0.000 0.001 −0.130
30 0.787 0.827 0.852 0.749 0.808 0.897 0.000 −0.063 −0.247
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(a) (b)

Figure 10. Boxplot with RMSE values from all models and configurations in the different AWS, using
15 lag days (a) and 30 lag days (b).

(a) (b)

Figure 11. Boxplot with NSE values from all models and configurations in the different AWS, using
15 lag days (a) and 30 lag days (b).

(a) (b)

Figure 12. Boxplot with MBE values from all models and configurations in the different AWS, using
15 lag days (a) and 30 lag days (b).

3.3. Assessing the Different Configurations

In order to evaluate the performance of the different configurations at all locations,
Table 8 shows the average and best RMSE values of each configuration in the different
sites. In Tabernas, configurations III, XXII, IV, and IX obtained the most accurate results
on mean, whereas configurations XVI, XII, and XXIV were the worst. In Conil, the best
configurations in terms of mean RMSE were XXV, VI, and XX. Furthermore, configura-
tion XXVI obtained the best value in absolute terms. On the other hand, configurations
XIII, XI, and XII performed the worst on average. In Córdoba, regarding mean values,
configurations XVII, XXIV, and V were at the bottom, whereas configurations III, XXVII,
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and II were at the top of the ranking. In Aroche, configuration V obtained the lowest
RMSE value (RMSE = 0.598 mm/day). Moreover, considering the mean values, all con-
figurations obtained very similar performance, beginning with RMSE = 0.764 mm/day
(configuration I), followed closely by configurations IV (RMSE = 0.764 mm/day), III
(RMSE = 0.767 mm/day), IX (RMSE = 0.767 mm/day), and XXII (RMSE = 0.768 mm/day),
and finally RMSE = 0.788 mm/day (configurations XIII and XVII). Thus, it could be stated
that in terms of the mean, although there were no significant differences in performance
between the best and worst configurations, the use of configurations I, III, IV, and IX
is recommended.

Figure 13. Scatter plot with the best NSE value for each model and location.

Figure 14. Scatter plot with the best RMSE value for each model and location.
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Figure 15. Scatterplot with the best MBE value for each model and location.

Table 8. Mean and minimum RMSE values (mm/day) for the different configurations at each location.
The format is: mean (minimum). The best values are in bold.

Conf. TAB CON COR ARO MAG Mean

I 0.806
(0.704)

0.886
(0.695)

0.720
(0.614)

0.686
(0.605)

0.724
(0.648) 0.764

II 0.801
(0.709)

0.909
(0.697)

0.718
(0.618)

0.703
(0.615)

0.732
(0.631) 0.772

III 0.786
(0.701)

0.920
(0.694)

0.710
(0.633)

0.693
(0.603)

0.730
(0.643) 0.767

IV 0.794
(0.703)

0.897
(0.694)

0.724
(0.630)

0.693
(0.604)

0.734
(0.646) 0.768

V 0.812
(0.706)

0.914
(0.700)

0.741
(0.621)

0.704
(0.598)

0.732
(0.632) 0.780

VI 0.812
(0.709)

0.870
(0.687)

0.720
(0.622)

0.725
(0.602)

0.743
(0.645) 0.774

VII 0.805
(0.703)

0.902
(0.689)

0.728
(0.621)

0.710
(0.601)

0.733
(0.648) 0.775

VIII 0.805
(0.709)

0.925
(0.693)

0.737
(0.617)

0.717
(0.606)

0.725
(0.642) 0.781

IX 0.799
(0.708)

0.883
(0.694)

0.735
(0.642)

0.693
(0.613)

0.726
(0.639) 0.767

X 0.803
(0.704)

0.897
(0.699)

0.734
(0.620)

0.687
(0.613)

0.730
(0.641) 0.770

XI 0.811
(0.709)

0.931
(0.698)

0.740
(0.617)

0.686
(0.597)

0.702
(0.640) 0.774

XII 0.823
(0.712)

0.926
(0.697)

0.732
(0.640)

0.706
(0.605)

0.722
(0.641) 0.781

XIII 0.814
(0.708)

0.933
(0.691)

0.734
(0.605)

0.726
(0.615)

0.737
(0.642) 0.788

XIV 0.809
(0.714)

0.892
(0.688)

0.737
(0.643)

0.721
(0.615)

0.741
(0.643) 0.780

XV 0.811
(0.708)

0.899
(0.715)

0.730
(0.614)

0.698
(0.612)

0.721
(0.645) 0.771

XVI 0.824
(0.709)

0.904
(0.693)

0.722
(0.619)

0.706
(0.599)

0.736
(0.633) 0.778
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Table 8. Cont.

Conf. TAB CON COR ARO MAG Mean

XVII 0.810
(0.708)

0.921
(0.691)

0.753
(0.615)

0.726
(0.599)

0.734
(0.633) 0.788

XVIII 0.805
(0.707)

0.904
(0.718)

0.729
(0.622)

0.719
(0.606)

0.735
(0.647) 0.778

XIX 0.803
(0.707)

0.905
(0.688)

0.736
(0.616)

0.711
(0.605)

0.722
(0.633) 0.775

XX 0.816
(0.713)

0.879
(0.695)

0.733
(0.610)

0.719
(0.604)

0.747
(0.642) 0.778

XXI 0.801
(0.700)

0.920
(0.721)

0.725
(0.623)

0.696
(0.608)

0.738
(0.643) 0.776

XXII 0.792
(0.709)

0.893
(0.698)

0.728
(0.615)

0.709
(0.609)

0.722
(0.637) 0.768

XXIII 0.803
(0.713)

0.904
(0.696)

0.719
(0.627)

0.705
(0.604)

0.786
(0.643) 0.783

XXIV 0.823
(0.709)

0.917
(0.695)

0.741
(0.640)

0.696
(0.608)

0.731
(0.635) 0.781

XXV 0.821
(0.711)

0.863
(0.691)

0.720
(0.618)

0.714
(0.613)

0.733
(0.655) 0.770

XXVI 0.822
(0.713)

0.894
(0.684)

0.736
(0.615)

0.711
(0.605)

0.730
(0.647) 0.778

XXVII 0.803
(0.710)

0.917
(0.699)

0.714
(0.627)

0.718
(0.612)

0.734
(0.636) 0.777

3.4. Overall Discussion

In this work, several aspects were evaluated in forecasting daily ET0 at five locations
in the Andalusia region (Southern Spain) with different geo-climatic conditions. Firstly,
a new state-of-the-art architecture for NLP problems was assessed to forecast daily ET0,
the transformers. Specifically, two different approaches were evaluated, TransformerCNN
and TransformerLSTM, and they were compared to standard machine learning models
such as MLP, SVM, RF, or CNN, among others. In general, the results obtained using
standard machine learning approaches such as RF, SVM, and ELM highly outperformed
the rest of the models assessed in this work. Moreover, transformer-based models did
not perform as expected in all cases when compared to standard ML models. However,
their results were better than the baselines for most sites and cases (except for Conil).
Secondly, another critical aspect to highlight in this work is that even using a self-attention
mechanism (transformer-based models), the use of 30 lag days instead of 15 lag days
was not beneficial to forecasting daily ET0. On the contrary, slightly better results were
obtained when 15 lag days were used, along with fewer serious outliers. Moreover, when
comparing the different feature input configurations proposed in this study, none of them
predominantly outperformed the rest, although configurations XIII, XIV, XX, and XXI were
better on average. Figures 16–18 show a scatter plot of measured vs. predicted ET0 values
using the best ML model and configuration for 1 and 7 days ahead.

Furthermore, the results of the proposed models were significantly better than those
reported by Ferreira and da Cunha [18] in terms of RMSE and NSE using different deep
learning approaches in Brazil in AWS with an aridity index ranging from 0.3 to 1.6. The
best NSE performances in Brazil ranged from 0.35 to 0.62 (approximately), whereas in
this work, the best NSE values ranged from 0.60 to 0.95 (approximately). Moreover, this
work also obtained slightly better NSE values than those reported by Nourani et al. [17]
using ensemble modeling in different weather stations from Iran, Turkey, and Cyprus.
These previous works used temperature, relative humidity, solar radiation, and wind speed
values as input features, whereas all the configurations of this work were temperature-
based variables. Additionally, comparing the results to those obtained by de Oliveira and
Lucas et al. [54], the assessed models in the present work outperformed their CNN and
ensemble CNN results in Brazil.
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(a) (b)

(c) (d)

Figure 16. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Tabernas,
(b) forecast horizon 1 in Conil de la Frontera, (c) forecast horizon 7 in Tabernas, and (d) forecast
horizon 7 in Conil de la Frontera.

(a) (b)

(c) (d)

Figure 17. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Aroche,
(b) forecast horizon 1 in Málaga, (c) forecast horizon 7 in Aroche, and (d) forecast horizon 7 in Málaga.
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(a) (b)

Figure 18. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Córdoba,
(b) forecast horizon 7 in Córdoba.

In all, the models developed in this work, especially SVM, ELM, and RF, are able to
accurately forecast ET0 for one week ahead using only temperature-based parameters and
ET0 past values. This issue is vital for improving crop irrigation scheduling, allowing ade-
quate and anticipated planning, and contributing to agricultural production. Furthermore,
providing reliable ET0 future values positively impacts the current challenge of optimizing
water resource management, especially in arid and semiarid locations.

4. Conclusions

In this work, several machine learning models have been developed and assessed for
daily ET0 forecasting from 1 to 7 days ahead using different input configurations, as well as
different lag days. In general, all the ML approaches outperformed the baselines for all the
forecast horizons and most locations, but SVM, RF, and ELM highly outperformed the rest
of the models evaluated for most sites except for Conil de la Frontera, with unusually low
wind speed values in this region. On the other hand, the transformers were, on average,
at the bottom of the ranking. Moreover, all configurations obtained very similar results in
terms of RMSE, but configurations I, III, IV, and IX slightly outperformed the rest. The NSE
values were above 0.85 for Conil, Tabernas, and Málaga and above 0.9 for Córdoba and
Aroche for their best modeling. In terms of RMSE, the average performance for Tabernas
was 0.92 mm/day, 1.00 mm/day for Conil, 0.81 mm/day for Córdoba, 0.80 mm/day
for Aroche, and 0.78 mm/day for Málaga. This denotes a relationship in performance
regarding the aridity index and the distance to the sea. For inland locations, the higher the
aridity index, the lower the error of forecasting ET0 will be. On the other hand, for coastal
sites, the higher the aridity index, the higher the error. Regarding MBE, most stations and
models obtained very accurate values on average for most cases, with a mean performance
value of 0.011 mm/day.

Further studies can deeply explore using these models in new regions with differ-
ent geo-climatic conditions, different scenarios (a different time interval and a regional
scenario), and for other parameters, such as solar radiation or precipitation. Moreover,
accurate feature selection or reduction could be researched because, as could be stated
based on the present results, the configurations containing the worst related features based
on Pearson correlation (HTx, HTn, HSr-HTn) obtained very accurate minimum and mean
RMSE (Table 8 and Figure 2). The approaches proposed in this work may result in greater
efficiency for optimizing water resources, improving irrigation scheduling, and anticipating
the decision-making for agricultural goals. Finally, the creation of an open-source repos-
itory will allow novel scientists to apply these models using their own datasets, as well
as experienced scientists to commit improvements with new features and architectures.
Overall, the ultimate aim is to democratize the use of machine learning to more efficiently
solve today’s agricultural problems.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy12030656/s1, Table S1. Hyperparameter space for all the models
assessed in this work. MLP—Multilayer Perceptron, RF—Random Forest, SVR—Support Vector
Regression, ELM—Extreme Learning Machine, CNN—Convolutional Neural Network, LSTM—Long
Short-Term Memory, Transformer CNN—Transformer using CNN in the feed-forward layer, Trans-
former LSTM—Transformer using LSTM in the feed-forward layer. Table S2. Fittest hyperparameters
for the best model and configuration at every location.
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Abstract: Precise forecasting of reference evapotranspiration (ET0) is one of the critical initial steps in
determining crop water requirements, which contributes to the reliable management and long-term
planning of the world’s scarce water sources. This study provides daily prediction and multi-step
forward forecasting of ET0 utilizing a long short-term memory network (LSTM) and a bi-directional
LSTM (Bi-LSTM) model. For daily predictions, the LSTM model’s accuracy was compared to that
of other artificial intelligence-based models commonly used in ET0 forecasting, including support
vector regression (SVR), M5 model tree (M5Tree), multivariate adaptive regression spline (MARS),
probabilistic linear regression (PLR), adaptive neuro-fuzzy inference system (ANFIS), and Gaussian
process regression (GPR). The LSTM model outperformed the other models in a comparison based
on Shannon’s entropy-based decision theory, while the M5 tree and PLR models proved to be the
lowest performers. Prior to performing a multi-step-ahead forecasting, ANFIS, sequence-to-sequence
regression LSTM network (SSR-LSTM), LSTM, and Bi-LSTM approaches were used for one-step-
ahead forecasting utilizing the past values of the ET0 time series. The results showed that the Bi-LSTM
model outperformed other models and that the sequence of models in ascending order in terms of
accuracies was Bi-LSTM > SSR-LSTM > ANFIS > LSTM. The Bi-LSTM model provided multi-step
(5 day)-ahead ET0 forecasting in the next step. According to the results, the Bi-LSTM provided
reasonably accurate and acceptable forecasting of multi-step-forward ET0 with relatively lower levels
of forecasting errors. In the final step, the generalization capability of the proposed best models
(LSTM for daily predictions and Bi-LSTM for multi-step-ahead forecasting) was evaluated on new
unseen data obtained from a test station, Ishurdi. The model’s performance was assessed on three
distinct datasets (the entire dataset and the first and the second halves of the entire dataset) derived
from the test dataset between 1 January 2015 and 31 December 2020. The results indicated that the
deep learning techniques (LSTM and Bi-LSTM) achieved equally good performances as the training
station dataset, for which the models were developed. The research outcomes demonstrated the
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ability of the developed deep learning models to generalize the prediction capabilities outside the
training station.

Keywords: deep learning; recurrent neural networks; machine learning algorithms; reference
evapotranspiration

1. Introduction

Water conservation in irrigated agriculture has been a significant concern, as agricul-
ture consumes the majority of the world’s freshwater reserves. A considerable amount
of water can be saved through accurate quantification of crop water requirements, which
depends on the precise estimation of evapotranspiration (ET), one of the vital elements
in computational frameworks of water balance equations. Being an essential element
of the surface energy balances and water budgets, ET plays a central role in controlling
interactions among soil, vegetation, and the atmosphere [1]. As such, proper design and
efficient management of irrigation techniques and reliable planning for the allocation of
scarce water resources largely depend on the accurate estimation of the ET [2]. The val-
ues of ET can be obtained through direct measurement techniques, including lysimeter
methods, eddy covariance techniques, and the Bowen ratio–energy balance approach [3–5],
which are expensive and deemed unavailable in many countries [6,7]. Alternatively, ET can
be estimated indirectly utilizing a set of accessible climatological variables to determine
reference evapotranspiration (ET0). This indirect approach has been extensively used
in many parts around the globe in which either unavailability or budgetary constraints
prohibit direct estimation of ET. One of the most stable and well-established techniques
of ET0 computation is the FAO-56 Penman–Monteith (FAO-56 PM) equation [6]. It is also
utilized to validate alternative ET0 computation methods, as the equation was validated
using lysimeter methods in different climates [8]. ET0 computation using the FAO-56 PM
equation requires a few climatological variables, including maximum and minimum air
temperatures, wind speed, relative humidity, and solar radiation. Upon estimation of
ET0, crop evapotranspiration can be obtained by utilizing estimated ET0 values and crop
coefficient values for a particular crop.

Machine learning algorithms have recently been recognized as reliable tools in the
prediction and future forecasting of ET0. They have been used extensively in providing a
reasonably accurate forecast of ET0 in various hydrologic and climatic settings. The first
implementation of ET0 prediction modeling was based on the usage of artificial neural
networks (ANN) [9–13]. Later, different variants of ANN and other machine learning
algorithms have attained the researchers’ interests. These include the usage of general-
ized regression neural networks [14,15], neural network with optimum time lags [16],
adaptive neuro-fuzzy inference system (ANFIS) [17–23], random forests (RF) [14,24,25],
CatBoost [26], hybrid extreme gradient boosting grey wolf optimizer (GWO) [27], extreme
learning machine (ELM) [15,17,28–31], support vector regression (SVR) [23–25,31–33], mul-
tivariate relevance vector regression [34], genetic programming (GP) [35], Gaussian process
regression (GPR) [36], multivariate adaptive regression splines (MARS) [2,9], M5 model tree
(M5Tree) [2], radial basis M5Tree [37], gene-expression programming (GEP) [12,18,38–45],
hierarchical fuzzy systems (HFS) [46], coupled extreme gradient boosting-whale opti-
mization algorithm [47], coupled natural-extreme gradient boosting [48], hybrid model
based on variational mode decomposition-GWO-SVM [49], and inter-model ensemble
approaches [50]. Apart from machine learning approaches, there are other approaches of
ET estimation, including the application of Sentinel-2 spectral information [51], comparison
of different empirical methods [52], utilizing NASA POWER Reanalysis Products [53], and
using lysimeter data [54]. Recently, Bellido-Jiménez et al. [55] examined several machine
learning approaches to improve ET0 estimations, considering only the temperature-based
data (EnergyT and Hourmin) as inputs, and they determined that ELM outperformed the
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others. In another study, Vásquez et al. [56] proposed several methods based on maximum
and minimum temperatures to enhance ET0 computation under scarce data situations in
the high tropical Andes. Nourani et al. [57] proposed one-, two-, and three-step-ahead
predictions of ET0 using ensembles of ANFIS, ANN, and MLR models in various climatic
stations. This study evaluates deep learning algorithms’ daily prediction and multi-step
(5 steps)-ahead forecasting abilities.

The deep machine learning (DL) technique has attained substantial attention in recent
years, being considered an advanced version of machine learning techniques. The DL
technique has been successfully utilized in various research domains, including time
series prediction [58–60], computer vision [61], classification of images [62], recognition
of speech [63], language processing [64], forecasting of groundwater levels [65,66], and
prediction of water quality parameters [67]. The DL techniques are primarily based on the
recurrent neural networks (RNN), which, for their ability to preserve and utilize memory
from the previous network states, are superior candidates for predicting and forecasting
time series data [68–70]. Nevertheless, despite the ability to capture the trends of the
time series data, the standard RNN model structures face difficulties in retaining the
longer-term dependence among the variables and suffer from vanishing and exploding
gradients-related issues [71]. Due to these two inherent problems of the standard RNN,
network training becomes unrealistic as the network weights may either become zero or
unnecessarily large during network training. The two most important criteria that ensure
better network training are retaining necessary information and eluding redundant or
unnecessary information among various network states. A long short-term memory (LSTM)
network possesses these characteristics to overcome the training shortfall of RNNs. The
LSTMs are the variants of standard RNNs and have widely been used in various research
domains such as financial time series and language processing [72], traffic congestion, and
traveling [73], including the application in the hydrologic time series prediction [74–77].

The application of DL-based models in predicting pan evaporation, reference evap-
otranspiration, and crop evapotranspiration in different climatic conditions have been
found in recent literature. These include daily pan evaporation prediction using deep
LSTM model [78], evapotranspiration computation estimation using deep neural net-
work [79], daily reference evapotranspiration prediction using convolutional neural net-
work (CNN) [80], one-step-ahead forecasting of reference evapotranspiration using LSTM [81],
multi-step-ahead forecasting of daily reference evapotranspiration using LSTM and CNN-
LSTM [82], multi-week-ahead forecasting of ET0 using CNN-gated recurrent unit optimized
with ant colony optimization [83], ET0 estimation using deep learning-multilayer percep-
trons [84], and short-term actual ET prediction using LSTM and NARX [85]. Despite the
ET0 prediction and forecasting application, the DL-based models, especially LSTM models,
need to be evaluated for different combinations of input variables that provide better
prediction accuracy. Recently, Zhang et al. [26] used only eight input combinations of
different meteorological variables to estimate reference crop evapotranspiration using the
CatBoost model. Another study by Maroufpoor et al. [86] used optimal input combina-
tions to estimate reference evapotranspiration using a hybridized ANN model. Another
study [87] used 29 different combinations of input variables from various meteorological
variables to forecast daily reference evapotranspiration using ANN, SVR, and ELM. To the
best of our knowledge, none of the previous studies evaluated all possible combinations
of available input climatological variables to provide daily and multi-step forward ET0
estimation using DL-based LSTM models. This is the first effort that has used various
possible combinations of input variables using a deep learning model to predict daily and
forecast multi-step-ahead reference evapotranspiration.

Another critical aspect of predictive modeling with the machine or deep learning
approaches is evaluating the established models’ ability to anticipate and forecast data from
other meteorological stations. However, the generalization capabilities of the developed
models for predicting and forecasting ET0 in other meteorological stations have been given
relatively little attention. For daily prediction of ET0, Wang et al. [44] investigated the
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generalization capability of RF- and GEP-based machine learning tools, while Roy et al. [46]
evaluated the potential of HFS models in generalizing the outputs using data from another
meteorological station. For one-step-ahead forecasting of ET0, Roy [81] utilized LSTM
models; however, the study did not evaluate the generalization capability of the developed
LSTM models for a new unseen test dataset. Nevertheless, model generalization has not
been used for multi-step-ahead ET0 forecasting using different combinations of input
variables as well as using various machine and deep learning algorithms. To the best
of our understanding, this study was the first attempt at providing daily prediction and
multi-step-forward forecasting of ET0 using LSTM and Bi-LSTM models.

Therefore, the prime objective and focus of this research were to (1) explore the ca-
pability of DL-based techniques, LSTM, and Bi-LSTM in predicting daily and forecasting
multi-step (5 day)-ahead ET0 estimates in the selected study areas in Bangladesh; (2) com-
pare the prediction and forecasting skill of the proposed LSTM and Bi-LSTM models with
that of the commonly used machine learning algorithms; and (3) assess the generalization
capability of the proposed LSTM and Bi-LSTM models to predict and forecast ET0 at a
nearby station, at which the models were neither trained nor validated.

2. Material and Methods

2.1. Study Area and the Data

The study area consists of two upazillas (administrative units) in Gazipur and Pabna
districts: Gazipur Sadar Upazilla and Ishurdi Upazilla (Figure 1). Meteorological data,
including minimum and maximum daily temperatures, relative humidity, wind speed,
and duration of sunshine, were acquired from two weather stations (Gazipur Sadar and
Ishurdi). The climatic variables were gathered from different weather stations, as illustrated
in Figure 1. A silicon photodiode type global solar radiation recorder (Licor-200SZ, LI-COR
Biosciences, USA; accuracy = ±5%; range = 0.3–4 μm; measurement height = 2 m) was
used to measure the amount of sunshine along with length of the day. The maximum
and minimum temperatures were measured employing the maximum and minimum
thermometers (Zeal P1000, G. H. Zeal Ltd., London SW19 3UU, UK; accuracy = ±0.2 ◦C;
range and resolution = −50 to +70 ◦C, 0.1 ◦C; measurement height = 2 m). Relative humidity
was measured using a capacitive-type hygrometer (R. M. Young Company, Traverse City,
MI 49686, USA; accuracy = ±3%; range and resolution = 0–100%, 1%; measurement
height = 2 m). The measurement of wind speed was performed using a rotating cup
anemometer (Cup Anemometer 4.3018.10.000, Adolf Thies GmbH and Co. KG, Hauptstraße
76, 37083 Göttingen, Germany; accuracy = 1.2 m/s; range and resolution = 0.5–60 m/s,
0.1 m/s; measurement height = 10 m). It is noted that performing a thorough quality
assurance procedure is often desirable to ensure the quality of climatic datasets, which
enhances the reliability of ET0 estimations using machine learning tools [88]. Although
a detailed quality assurance procedure was not performed, the quality of the obtained
climatic data was checked thoroughly for its correctness and completeness. The missing
entries (less than 1%) were imputed using the ‘movmedian’ (Matlab MATLAB 2021a)
approach of data imputation. Nevertheless, a few adjustments were performed to obtain
the FAO-56 PM equation appropriate for local conditions following the recommendations
provided in [89]. For instance, the wind speeds obtained at 10 m height (from the weather
stations) were converted to wind speeds at the height of 2 m (keeping a lower limit of
0.5 m/s).
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Figure 1. Weather station locations.

The weather station in Gazipur Sadar Upazilla was utilized as the training station for
developing the proposed models, whereas data from the weather station in Ishurdi were
used to evaluate the produced models’ performance (testing station). The position of the
weather station at Gazipur Sadar Upazilla is at 24.00◦ N latitude and 90.43◦ E longitude,
being located 8.4 m above mean sea level (MSL). On the other hand, the test station is
placed between 24.12◦ N latitude and 89.08◦ E longitude with an altitude of 18 m from the
MSL. The weather data for the training station were obtained for a duration of 15.5 years
(from 1 January 2004 to 30 June 2019). Descriptive statistics of the acquired weather data
for the training station are presented in Table 1.

Table 1. Descriptive statistics of the weather data for the training station (Gazipur Sadar Upazilla).

Climatic Variables Min Max Mean Standard Deviation Skewness Kurtosis

Data Range: 1 January 2004 to 30 June 2019 (5660 Daily Entries)

Minimum temperature, ◦C 4.40 34.50 21.17 5.64 −0.63 −0.88
Maximum temperature, ◦C 12.00 53.00 30.93 3.92 −1.10 2.11

Relative humidity, % 38.00 89.00 80.22 8.20 −0.63 0.75
Wind speed, m/s 0.68 5.06 2.79 1.05 −0.06 −1.32

Sunshine duration, h 0.00 11.40 5.54 3.09 −0.40 −1.04

The weather data for the test station were obtained for a duration of around 5.5 years
(from 1 June 2015 to 31 December 2020). Descriptive statistics of the acquired weather data
for the test station are presented in Table 2.
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Table 2. Descriptive statistics of the entire, first half, and the second half of the weather data for the
test station (Ishurdi Upazilla).

Climatic Variables Mean Standard Deviation Skewness Kurtosis

Entire dataset (1 June 2015 to 31 December 2020: 2041 daily entries)

Minimum temperature, ◦C 21.37 5.98 −0.73 −0.76
Maximum temperature, ◦C 31.46 4.16 −0.83 0.28

Relative humidity, % 78.89 12.18 −1.23 1.93
Wind speed, m/s 1.43 0.23 0.07 0.22

Sunshine duration, h 5.90 3.19 −0.41 −0.71

First half data (1 June 2015 to 3 October 2018: 1221 daily entries)

Minimum temperature, ◦C 21.06 6.08 −0.65 −0.92
Maximum temperature, ◦C 31.27 4.21 −0.71 0.26

Relative humidity, % 80.06 11.30 −1.24 2.25
Wind speed, m/s 1.43 0.23 0.06 0.35

Sunshine duration, h 5.75 3.18 −0.42 −0.98

Second half data (4 October 2018 to 31 December 2020: 820 daily entries)

Minimum temperature, ◦C 21.69 5.87 −0.83 −0.56
Maximum temperature, ◦C 31.66 4.11 −0.95 0.35

Relative humidity, % 77.71 12.89 −1.18 1.54
Wind speed, m/s 1.44 0.23 0.09 0.08

Sunshine duration, h 6.05 3.19 −0.39 −0.44

Weather data acquired from the two weather stations for the specified duration were
used to calculate the daily ET0 values employing the FAO-56 PM equation (Equation (1)).
The climatological variables (acquired weather data) and corresponding ET0 values (com-
puted using FAO-56 PM equation) were used as inputs and outputs from the proposed
LSTM, Bi-LSTM, and other machine learning-based models. This approach of estimating
ET0 indirectly using the climatological variables has been a widely accepted method in
situations where obtaining ET0 directly becomes infeasible due to technical and budgetary
constraints [6,15,90]. The FAO-56 PM equation is represented by

ET0 =
0.408Δ(Rn − G) + γ 900

Tmean+273 u2(es − ea)

Δ + γ(1 + 0.34u2)
(1)

where ET0 denotes reference evapotranspiration, mm/d; Rn represents the net radiation at
the crop surface, MJ/m2/d; G indicates heat flux density of soil, MJ/m2/d; Δ represents
the slope of the saturation vapor pressure curve, kPa/◦C; γ denotes psychometric constant,
kPa/◦C; es represents the saturation vapor pressure, kPa; ea indicates the actual vapor
pressure, kPa; u2 is the wind speed at the height of 2 m, m/s; and Tmean is the mean air
temperature at 2.0 m height, ◦C.

The computed ET0 values at the training station (Gazipur Sadar Upazilla) ranged
between 0.92 and 8.02 mm/d, with the mean, standard deviation, skewness, and kurtosis
values of 3.80 mm/d, 1.32 mm/d, 0.30, and −0.67, respectively. For the test station
(Ishurdi), the computed ET0 time series was divided into three sub-time series to test the
generalization capability of the proposed modeling approach at different regions of the time
series. The first time series considered was the entire dataset for which the ET0 values had
the mean, standard deviation, skewness, and kurtosis values of 3.67 mm/d, 1.24 mm/d,
0.28, and −0.62, respectively. The values of the mean, standard deviation, skewness, and
kurtosis of the calculated ET0 for the first half of the dataset were 3.57 mm/d, 1.25 mm/d,
0.35, and −0.62, respectively. The second half of the ET0 time series contained the mean,
standard deviation, skewness, and kurtosis values of 3.76 mm/d, 1.23 mm/d, 0.22, and
−0.59, respectively.
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For daily ET0 prediction, meteorological variables and calculated ET0 values using
the FAO-56 PM equation were used as inputs and outputs. On the other hand, calculated
ET0 time series were used to develop the proposed models for one- and multi-step-ahead
predictions by obtaining time-lagged characteristics from the time series data. For training
the models, the entire dataset was divided into three parts: training data (40% of the entire
dataset: 2264 daily entries—from 1 January 2004 to 13 March 2010), validation data (40% of
the entire dataset: 2264 daily entries—from 14 March 2010 to 24 May 2016), and test data
(remaining 20% of the total dataset: 1132 daily entries—from 25 May 2016 to 30 June 2019).
To test the generalization capability of the proposed models, we partitioned the data from
the test station as follows: entire dataset (2021 ET0 values and associated meteorological
variables ranging from 1 June 2015 to 31 December 2020), the first half of the entire dataset
(1221 ET0 values and associated meteorological variables ranging from 1 June 2015 to
3 October 2018), and the first half of the entire dataset (820 ET0 values and associated
meteorological variables ranging from 4 October 2018 to 31 December 2020).

2.2. Prediction Models
2.2.1. Long Short-Term Memory (LSTM) Networks

An LSTM is a variant of the neural network-based modeling approach, an upgraded
version of RNNs capable of learning long-term dependence that exists at various steps in the
sequential time series data. LSTMs safeguard against the vanishing and exploding gradient
issues commonly observed in a standard RNN architecture, making an LSTM an ideal
modeling tool to predict and forecast sequential time series data. To eliminate vanishing and
exploding gradient problems, an LSTM integrates two important parameters called ‘state
dynamics’ and ‘gating functions’ [91]. An LSTM network architecture is made up of several
interconnected memory blocks that are connected to each other in a number of layers,
each of which consists of many recurrently connected memory cells. The memory cells of
LSTM architectures are comprised of three gates [92]: (a) input, (b) forget, and (c) output.
For performing a regression task, an LSTM model employs four layers: a sequence input
layer, an LSTM layer, a fully connected layer, and a regression layer. The input and fully
connected layers correspond to the number of input and output variables, respectively.
The LSTM layer accommodates the number of hidden units, whereas the regression layer
performs the regression task. The sequence input and LSTM layers are the most important
components of a fundamental LSTM network. The input layer is responsible for inputting
the sequence data, e.g., time-series data to the network, whereas the LSTM layer facilitates
learning long-term dependence among various time-steps of a sequential time series data.
A comprehensive explanation of the LSTM model architecture is presented by Roy [81]
and is not repeated in this effort. A bidirectional LSTM network (Bi-LSTM) architecture is
similar to an LSTM network except that a Bi-LSTM network is associated with bidirectional
long-term dependence among various time-steps of a sequential time series data.

In this study, both networks (LSTM and Bi-LSTM) have three hidden layers, each of
which is followed by a dropout layer that is employed to prevent model overfitting. Each
of the three hidden layers has a large number of hidden neurons. The first, second, and
third hidden layers each had 100, 50, and 20 hidden neurons, respectively. In contrast,
the dropout rates assigned for the associated dropout layers were chosen as 0.4, 0.3, and
0.2, respectively. The optimum numbers of hidden layers, hidden neurons, and dropout
rates are determined by conducting a series of trials. Numerous combinations of varying
numbers of these parameters are tested until a stable network is obtained. In addition,
the best training options are selected upon conducting several trials, and similar training
options are used for training both the LSTM and Bi-LSTM models for consistency. The
training options used for training the LSTM and Bi-LSTM networks are provided in Table 3.
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Table 3. Training options and the associated parameter values.

Training Options Corresponding Parameter Values

Solver for optimization ‘adam’
Maximum number of epochs 1000

Gradient threshold value 1
Preliminary learning rate 0.01

Minimum size of the batch 150
Length of sequence 1000

2.2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS, a variant of fuzzy inference systems (FIS), is adaptive in nature, incorporating
fuzziness and ambiguity of input variables in developing input–output relationships of
nonlinear systems [93]. An ANFIS grab holds the advantageous features of both the artificial
neural networks and fuzzy set theory into an adaptive framework to model nonlinear and
complex systems quite efficiently and effectively [94,95]. Due to less complexity and better
learning ability [93], a Sugeno-type FIS is used to develop the ANFIS model utilizing a fuzzy
c-means clustering (FCM) [96] algorithm to reduce the dimensionality of input variables.
Detailed descriptions of ANFIS model structures are provided in Jang et al. [93] and are
not repeated in this effort. Figure 2 presents an ANFIS model structure derived from a
Sugeno-type FIS. The ANFIS models were developed in a MATLAB [97] environment.

Figure 2. A schematic diagram of an ANFIS structure derived from a first-order Sugeno-type FIS.
Reprinted with permission from Jang [98].

2.2.3. Gaussian Process Regression (GPR)

A GPR is a nonparametric modeling algorithm that is derived from the theories of
probability and Gaussian process [99]. Following a Gaussian distribution, a GPR model
provides the output, Y from the input variables, and X(i) through developing a functional
relationship, which can be mathematically represented as [100]

Y = f(X(i)) + ε (2)

where ε is a Gaussian noise, the variance of which is denoted by σ2
n.

The mean, m(xi), and covariance, k
(
xi, xj

)
, functions are the two important functional

components of a typical GPR model. They can be mathematically expressed as [99]

m(xi) = E[f(xi)] (3)

k
(
xi, xj

)
= E

[
(f(xi)− m(xi))

(
f
(
xj
)− m

(
xj
))]

(4)

On the basis of these two key functions, the functional relationship using Gaussian
process theory is established by the following equation:

f(x) ∼ gp
(
m(xi), k

(
xi, xj

))
(5)
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The prediction probability distribution of a GPR model is governed by the free param-
eters or hyperparameters, which are in essence the parameters of the mean and covariance
functions. The values of free parameters or hyperparameters depend on the training
dataset’s log-likelihood function values. The GPR models were developed by utilizing the
commands and functions of MATLAB [97].

2.2.4. M5 Model Trees (M5 Tree)

The development of the M5 tree is derived from the philosophies associated with the
M5 technique [101,102] in building standalone trees. The prediction capabilities of M5
trees were demonstrated and well documented in various research domains [103,104]. In
the M5 tree modeling approach, a complex modeling task is sub-divided into numerous
sub-tasks via the divide-and-conquer technique, and the final result is the integration of
solutions from all the sub-tasks [103]. This splitting technique results in a hierarchy of
model trees in which non-terminal nodes are associated with splitting rules, whereas expert
models are represented by the tree leaves [104]. Model development using the M5 tree
technique is performed using three stepwise procedures: (1) development of an initial tree,
(2) pruning of the tree, and (3) smoothing of the tree [105]. In the MATLAB environment, a
toolbox “M5PrimeLab” [106] was used to develop M5 trees for predicting daily reference
ET0 values.

2.2.5. Multivariate Adaptive Regression Spline (MARS)

MARS [107] is a nonparametric modeling technique that is adaptive in nature and
is believed to be a flexible and rapid approach to developing regression models. The
MARS approach partitions the entire decision space into several input parameters on
which standalone basis functions or splines are fitted to obtain the final MARS model [108].
Both a forward procedure and a backward procedure are utilized, i.e., MARS initially
builds a comparatively complex model using the user-specified maximum number of basis
functions in the forward step. In contrast, in the backward step, MARS parsimoniously
selects the most significant input variables in predicting the output variable [109]. The
backward step eliminates redundant input variables and assists in simplifying the final
model while avoiding over-or under-fitting. The relationship between the input and output
variables can be represented by the following equation [110]:

BFi(x) = max
(
0, xj − α

)
OR BFi(x) = max

(
0,α− xj

)
(6)

y = f(x) = β± γk × BFi(x) (7)

where i represents the index of Basis functions, j denotes the index of input variables, BFi
symbolizes the ith Basis function, xj is the jth input variable, α is a threshold value used
by the MARS model during model building, β is a constant, γk indicates the respective
coefficient of BFi(x), and y denotes the model prediction (output variable).

A MATLAB toolbox ‘ARESLab’ [106] was employed to build MARS-based ET0 pre-
diction models. This study used both piecewise-linear and piecewise-cubic modeling
approaches to predict daily ET0 values.

2.2.6. Probabilistic Linear Regression (PLR)

PLR utilizes Bayesian inference techniques to develop prediction models through
probabilistically performing linear regression. The PLR approach is often referred to
as empirical Bayesian linear regression, using either an expectation-maximization (EM)
algorithm [111] or a Mackay fixpoint iteration method [112]. The EM algorithm is generally
utilized to formulate the PLR models. As such, the present study used the EM algorithm
in developing PLR-based ET0 prediction models. Mo Chen [113] developed a MATLAB
toolbox in this research to develop PLR models.
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2.2.7. Support Vector Regression (SVR)

SVRs are derived from the principles of the support vector machine (SVM) algo-
rithm [114], which has been attaining significant attention in recent years for its capability
to solve a diversified range of regression and classification problems [115]. SVRs are devel-
oped via a nonlinear mapping technique that utilizes required data from the input space
to a high-dimensional feature space on which linear regressions are executed [116]. An
elaborated explanation of the theory of the SVR approach has been provided in Chevalier
et al. [117], and only a brief account of the SVR theorem is presented in this effort. The
following equation symbolizes the training dataset in developing a linear SVR model:

{(x1, y1), (x2, y2), . . . , (xl, yl)} (8)

xi ∈ Rd, yi ∈ R, and l = number of data entries

In this case, the solution function can be expressed as

f(x) =
l

∑
i=1

(αi − α∗
i ) < xi, x > +b (9)

where < ., . > denotes dot product, and αi, α∗
i , and b represent coefficients computed by

the SVR model.
A data transformation step is performed to build nonlinear SVR models, including a

nonlinear mapping function ∅ [118] that transforms low-dimensional input space into a
high-dimensional feature space. The computation ∅ becomes challenging during progres-
sive mapping of the input–output data into higher dimensions. This limitation is handled
using the Mercers theorem, which can be represented by the following equation:

< ∅(u),∅(v) >= k(u, v) (10)

For a particular mapping ∅, the Mercers theorem introduces the concept of using
a kernel function k, which is used to calculate the dot product of any two points (u, v),
and the computation of dot products in this approach bypasses the explicit calculation of
high-dimensional and nonlinear mapping. The prediction performance of nonlinear SVR
models depends on the kernel function, which is regarded as one of the most important
parameters in SVR modeling.

2.3. Ranking of the ET0 Prediction Models: Shannon’s Entropy

ET0 prediction models were ranked using performance-based weights assigned to
standalone models using Shannon’s entropy principle. For this, a decision matrix of predic-
tion models (m) and performance indices (PI) is formulated, which can be represented in
the form of the following equation [119]:

ETij =

⎡
⎢⎢⎢⎣

ET11
ET12

...
ET1PI

ET21
ET22

...
ET2PI

· · ·
· · ·

...
· · ·

ETm1
ETm2

...
ETmPI

⎤
⎥⎥⎥⎦ (11)

To reduce the adverse impacts of index dimensionality, we standardized the per-
formance index values between 0 and 1

{
Sij ∈ [0, 1], i = 1, 2, . . . , m; j = 1, 2, . . . , PI

}
. The

standardization component Sij was performed using the following equation [119]:

Sij =

⎧⎨
⎩

ETij
max(ETi1,ETi2,...,ETiPI)

, for benefit indexes
Xij

min(ETi1,ETi2,...,ETiPI)
, for cos t indexes

(12)
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Shannon’s entropy-based ranking was performed using a five-step stepwise procedure
described in Roy et al. [21], which was not repeated here.

2.4. Selection of Input Variables for Daily Predictions

All possible combinations of the five input variables (minimum temperatures, maxi-
mum temperatures, relative humidity, wind speed, and sunshine hours) were used. A total
of 31 models were developed on the basis of the 31 combinations (single, two-input combi-
nations, three-input combinations, four-input combinations, and all five inputs) of input
variables. Two-, three-, and four-input combinations are presented in Table 4.

Table 4. Different combinations of two-, three-, and four-input combinations.

Two-Input Combinations Three-Input Combinations Four-Input Combinations

Min temp, max temp Min temp, max temp, humidity Min temp, max temp, humidity, wind speed
Min temp, humidity Min temp, max temp, wind speed Min temp, max temp, humidity, sunshine hours

Min temp, wind speed Min temp, max temp, sunshine hours Min temp, max temp, wind speed, sunshine hours
Min temp, sunshine hours Min temp, humidity, wind speed Min temp, humidity, wind speed, sunshine hours

Max temp, humidity Min temp, humidity, sunshine hours Max temp, humidity, wind speed, sunshine hours
Max temp, wind speed Min temp, wind speed, sunshine hours

Max temp, sunshine hours Max temp, humidity, wind speed
Humidity, wind speed Max temp, humidity, sunshine hours

Humidity, sunshine hours Max temp, wind speed, sunshine hours
Wind speed, sunshine hours Humidity, wind speed, sunshine hours

These combinations of input variables were evaluated for two deep learning algo-
rithms (LSTM and Bi-LSTM). The 62 models (31 LSTM + 31 Bi-LSTM) developed were
ranked on the basis of their prediction accuracies using Shannon’s entropy by incorpo-
rating a number of benefit (correlation coefficient, Nash–Sutcliffe efficiency coefficient,
Willmott’s index of agreement) and cost (normalized or relative root mean squared error,
maximum absolute error, median absolute deviation) performance evaluation indices. The
best-input combinations thus obtained were used to develop the other shallow machine
learning algorithms.

2.5. Model Performance Evaluation

The performances of the proposed models were evaluated using various statistical
evaluation indices as follows:

- Correlation coefficient, R

R =
∑n

i=1
(
ETi,a − ETa

)(
ETi,a − ETp

)
√

∑n
i=1
(
ETi,a − ETa

)2
√

∑n
i=1
(
ETi,p − ETp

)2
(13)

- Nash–Sutcliffe efficiency coefficient, NS [120]

NS = 1 − ∑n
i=1
(
ETi,a − ETi,p

)2

∑n
i=1
(
ETi,a − ETa

)2 (14)

- Index of agreement, IOA [121]

IOA = 1 − ∑n
i=1
(
ETi,a − ETi,p

)2

∑n
i=1
(∣∣ETi,p − ETa

∣∣+ ∣∣ETi,a − ETa
∣∣)2 (15)

- Root mean square error, RMSE [122]
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RMSE =

√
1
n

n

∑
i=1

(
ETi,a − ETi,p

)2 (16)

- Normalized RMSE, NRMSE

NRMSE =
RMSE

ETa
(17)

- Maximum absolute error, MAE

MAE = max
[∣∣ETi,a − ETi,p

∣∣] (18)

- Median absolute deviation, MAD

MAD
(
ETa, ETp

)
= median

(∣∣ET1,a − ET1,p
∣∣, ∣∣ET2,a − ET2,p

∣∣, . . . ,
∣∣ETn,a − ETn,p

∣∣)
for i = 1, 2, . . . , n

(19)

where ETi,a and ETi,p are ET0 quantities at the ith data points acquired from the FAO-56 PM
computed and model predicted values, respectively; ETa represents the arithmetic mean of
the FAO-56 PM computed ET0 values; and n is the amount of input–output data.

3. Results and Discussion

3.1. Daily Prediction of ET0 Using Various Machine Learning Algorithms at the Training Station
(Gazipur Sadar)

To determine the optimum numbers of input variables combinations, we used 31
possible combinations of five input variables to develop 31 LSTM and 31 Bi-LSTM models.
Learning (training) and testing of the ET0 models were performed simultaneously. Pre-
diction errors on the test dataset in terms of RMSE criterion for the 31 developed models
are presented in Table 5. As evidenced by the numerical values presented in Table 5, the
LSTM model predictions were slightly better than those of the Bi-LSTM models when
the RMSE criterion was used as a deciding factor. It was also observed that both the
LSTM- and Bi-LSTM-based ET0 prediction models produced the lowest RMSE values
(best daily ET0 predictions) when all five variables were used. The performance of LSTM
(RMSE = 0.081 mm/d) was slightly better than that of the Bi-LSTM (RMSE = 0.087 mm/d)
model. However, in situations where adequate data are not available, the use of fewer
input variables may be employed to achieve a realistically precise prediction of ET0 val-
ues. For instance, four climatological variables (a combination of maximum temperature,
relative humidity, wind speed, and sunshine hours) could be used to obtain sufficiently
accurate daily ET0 predictions using LSTM (test error in terms of RMSE value equals
0.107 mm/d) and Bi-LSTM (test error in terms of RMSE value equals 0.116 mm/d) mod-
els. Other combinations of four meteorological variables, e.g., (minimum temperature,
maximum temperature, relative humidity, sunshine hours) and (minimum temperature,
relative humidity, wind speed, sunshine hours) provided reasonably accurate daily ET0
predictions (Table 5). In addition, combinations of three meteorological variables (relative
humidity, wind speed, sunshine hours) and (minimum temperature, relative humidity,
sunshine hours) produced reasonable accurate predictions, with test RMSE values ranging
between 0.333 and 0.377 mm/d.
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Table 5. Prediction errors of deep learning-based ET0 models (LSTM and Bi-LSTM) with different
input combinations on the test dataset.

Model No. Different Input Combinations
Test RMSE, mm/d

LSTM Bi-LSTM

Single Input Combinations
M1 Min temp 0.880 0.964
M2 Max temp 0.775 0.781
M3 Humidity 1.124 1.211
M4 Wind speed 1.177 1.105
M5 Sunshine hours 0.732 0.807

Two Inputs combinations
M6 Min temp, max temp 0.765 0.779
M7 Min temp, humidity 0.729 0.751
M8 Min temp, wind speed 1.004 1.049
M9 Min temp, sunshine hours 0.527 0.514

M10 Max temp, humidity 0.634 0.602
M11 Max temp, wind speed 0.734 0.743
M12 Max temp, sunshine hours 0.501 0.430
M13 Humidity, wind speed 0.727 0.760
M14 Humidity, sunshine hours 0.531 0.983
M15 Wind speed, sunshine hours 0.527 0.627

Three Inputs Combinations
M16 Min temp, max temp, humidity 0.570 0.574
M17 Min temp, max temp, wind speed 0.729 0.722
M18 Min temp, max temp, sunshine hours 0.512 0.447
M19 Min temp, humidity, wind speed 0.726 0.723
M20 Min temp, humidity, sunshine hours 0.337 0.377
M21 Min temp, wind speed, sunshine hours 0.470 0.501
M22 Max temp, humidity, wind speed 0.567 0.566
M23 Max temp, humidity, sunshine hours 0.300 0.239
M24 Max temp, wind speed, sunshine hours 0.409 0.394
M25 Humidity, wind speed, sunshine hours 0.337 0.333

Four Inputs Combinations
M26 Min temp, max temp, humidity, wind speed 0.577 0.561
M27 Min temp, max temp, humidity, sunshine hours 0.262 0.229
M28 Min temp, max temp, wind speed, sunshine hours 0.382 0.404
M29 Min temp, humidity, wind speed, sunshine hours 0.271 0.238
M30 Max temp, humidity, wind speed, sunshine hours 0.107 0.116

All Inputs
M31 Min temp, max temp, humidity, wind speed, sunshine hours 0.081 0.087

RMSE = root mean squared error, LSTM = long short-term memory networks, Bi-LSTM = bi-directional long-short
term memory networks. The numbers in boldface indicate the best performance, whereas the numbers in boldface
and italicized represent the worst performance.

Nonetheless, decision making in such situations is challenging, as the RMSE criterion
alone is insufficient as a decision-making tool. To assist in the decision-making process,
we used three benefit (the higher numeric values indicate better model performances: R,
NS, IOA) and three cost (the lower the numeric values, the better the model performance:
NRMSE, MAE, MAD) performance evaluation indices in the decision-making process with
the aid of Shannon’s entropy. On the testing dataset, we computed the R, NS, IOA, NRMSE,
MAE, and MAD criteria for all 31 LSTM and 31 Bi-LSTM models. These evaluation indices
were used to rank proposed models using Shannon’s entropy-based decision theory. Table 6
shows the ranking results together with the corresponding ranking values.
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Table 6. Ranking of the LSTM and Bi-LSTM models using Shannon’s entropy.

Sl. No.
LSTM Bi-LSTM

Model Ranking Value Model Ranking Value

1 M31 0.996 M31 0.966
2 M30 0.906 M30 0.913
3 M27 0.702 M27 0.704
4 M23 0.687 M23 0.696
5 M20 0.657 M29 0.688
6 M29 0.652 M25 0.642
7 M25 0.640 M20 0.621
8 M28 0.604 M24 0.600
9 M24 0.600 M28 0.594
10 M21 0.584 M12 0.581
11 M12 0.563 M18 0.576
12 M18 0.561 M21 0.563
13 M14 0.560 M26 0.557
14 M22 0.558 M9 0.555
15 M26 0.556 M22 0.551
16 M15 0.555 M16 0.551
17 M9 0.555 M10 0.535
18 M16 0.554 M15 0.522
19 M10 0.535 M17 0.488
20 M11 0.496 M19 0.485
21 M17 0.493 M11 0.482
22 M19 0.491 M7 0.478
23 M13 0.491 M13 0.475
24 M7 0.483 M6 0.462
25 M5 0.482 M2 0.460
26 M6 0.470 M5 0.451
27 M2 0.470 M14 0.384
28 M1 0.415 M1 0.376
29 M8 0.364 M8 0.336
30 M3 0.306 M4 0.311
31 M4 0.209 M3 0.256

It is perceived from the results presented in Table 6 that models that used all five
input variables (M31) were the top-ranked predictors, followed by M30, M27, and M23
for both LSTM and Bi-LSTM algorithms. Models M3 and M4 appeared to be the worst
performers when using LSTM or Bi-LSTM algorithms for model development. The findings
are in accordance with the work of Kisi et al. [37], who indicated that considering all input
variables greatly increased the accuracy of the prediction model (radial basis M5Tree) for
the data acquired from the three weather stations. Therefore, the results suggest that all
input variables would be employed to better predict the daily ET0 for the meteorological
data and the corresponding ET0 values presented in this study. Consequently, to arrange
for an impartial comparison, we developed other prediction modeling algorithms (ANFIS,
GPR, M5Tree, MARS, PLR, and SVR) using all five input variables available for the study
area. Similar evaluation indices were computed for all the other prediction modeling
algorithms proposed in this research. The prediction results are presented in Table 7.

The prediction results in Table 7 indicated that all ET0 prediction models are reasonably
accurate at predicting daily ET0 values, as evidenced by the different performance indices
computed on the testing dataset. While no standalone model exhibited the best performance
for all evaluation indices, the individual prediction models provided the estimates of daily
ET0 values superior to others. All ET0 models had satisfactory prediction accuracy as
all models had better (higher) values R, NS, and IOA and lower NRMSE, MAE, and
MAD values. LSTM and Bi-LSTM models had superior performance in comparison with
others according to all performance evaluation indices. PLR was found to be the worst-
performing model.
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Table 7. Performance indices of the developed ET0 prediction models for the testing dataset.

Model
Performance Evaluation Indices

R NS IOA NRMSE MAE, mm/d MAD, mm/d

LSTM 0.998 0.995 0.999 0.021 0.666 0.025
Bi-LSTM 0.998 0.995 0.999 0.023 0.582 0.027
ANFIS 0.991 0.981 0.995 0.043 0.706 0.061
GPR 0.993 0.985 0.996 0.038 0.650 0.052

M5 Tree 0.985 0.970 0.993 0.054 1.153 0.062
MARS_C 0.992 0.983 0.996 0.041 0.869 0.054
MARS_L 0.992 0.983 0.996 0.040 0.760 0.054

PLR 0.973 0.943 0.985 0.075 1.489 0.114
SVR 0.993 0.985 0.996 0.038 0.676 0.050

MARS_C = piecewise cubic, MARS_L = piecewise linear.

To provide an additional evaluation regarding the prediction capabilities of the pro-
posed machine learning algorithms (ET0 prediction models), we presented and compared
the absolute error boxplots. Figure 3 illustrates the absolute error boxplots for all the
developed models. Absolute error boxplots represent a relative assessment of the statistical
distributions of the absolute errors between the FAO-56 PM-computed and model-predicted
ET0 values and supports the evaluation of the degree of general distributions of the inac-
curacies provided by the models. The horizontal lines inside the boxplots represent the
median values of the absolute errors, whereas the black circles mark the mean (average) of
the absolute errors. Absolute error boxplots also demonstrated the superior performance
of the LSTM- and Bi-LSTM-based models.

Figure 3. Absolute error boxplots. M1–M9 represent LSTM, Bi-LSTM, ANFIS, GPR, M5 tree, MARS_C,
MARS_L, PLR, and SVR models, respectively.

As far as the two best models are considered, the LSTM model performed better than
Bi-LSTM when NRMSE and MAD criteria were considered. In contrast, Bi-LSTM outper-
formed the LSTM model according to the MAE criterion. On the other hand, both LSTM
and Bi-LSTM performed equally well with respect to R, NS, and IOA criteria. Therefore, it is
concluded that ET0 prediction models showed differing precisions depending on the model
evaluation indices calculated on the FAO-56 PM and model predicted ET0 values, which
indicated an inconsistency in the model performance when divergent or non-identical
evaluation indices were employed. Decision making in this situation is extremely arduous
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and can be smoothed by employing a decision theory that integrates a number of different
model evaluation indices in decision making. This study employed Shannon’s entropy as a
decision-making tool.

The ranking of the proposed ET0 models computed using Shannon’s entropy is pre-
sented in Table 8. The greater the values of Shannon’s entropy, the better the model’s per-
formance. Table 8 suggests that LSTM was the top-performing model followed by Bi-LSTM,
although the difference between the ranking values of these two models was negligible.

Table 8. Shannon’s entropy values for different models and their corresponding ranks.

Model Shannon’s Entropy Value Rank

LSTM 0.979 1
Bi-LSTM 0.978 2
ANFIS 0.807 6
GPR 0.839 3

M5 tree 0.734 8
MARS_C 0.794 7
MARS_L 0.810 5

PLR 0.665 9
SVR 0.836 4

The performance index values for the best model (LSTM) are as follows (Table 7):
R = 0.998, NS = 0.995, IOA = 0.999, NRMSE = 0.021, MAE = 0.666 mm/d, and
MAD = 0.025 mm/d. Although an explicit comparison between the findings of this re-
search and other studies is not possible due to variations in study conditions (modeling
tools and geographical locations), the numeric values of various performance indices were
observed as being comparable to or even better than those found in the recent literature on
ET0 modeling. For instance, the present study’s findings are superior to those obtained by
Tao et al. [123], who obtained NRMSE and R2 values of 0.043 and 0.97, respectively, using an
optimization algorithm-tuned ANFIS model to predict ET0 in the Bur Dedougou, Burkina
Faso. The LSTM model proposed in this study also shows better performance than the
optimization algorithm tuned SVR model developed in Ahmadi et al. [32], who obtained
the following performance indices at various stations: RMSE = 0.540 mm/d and R = 0.983 at
Mashhad station; RMSE = 0.404 mm/d and R = 0.980 at Arak station; RMSE = 0.299 mm/d
and R = 0.989 at Shiraz station; RMSE = 0.559 mm/d and R = 0.978 at Tehran station;
RMSE = 0.457 mm/d and R = 0.962 at Bandar Abbas station; and RMSE = 0.399 mm/d
and R = 0.986 at Yazd station. The present study’s findings are also in good agreement
with the findings presented in Chia et al. [124], who obtained RMSE and R2 values of
0.001–0.197 mm/d and 1.000–0.949, respectively, at three stations using an optimization
algorithm-tuned ELM model. The findings are also compared with those presented in
Mohammadi and Mehdizadeh [125] that are based on RMSE and R2 criteria. Our proposed
LSTM model shows superior performance over the best models developed with the daily
data in Ferreira and da Cunha [80], who reported NS values of 0.69 to 0.84 and R2 values of
0.79 to 0.88. The present study’s findings are superior to the optimization algorithm-tuned
ELM model developed by Wu et al. [30] that reported R2 and NRMSE values of 0.993 and
0.0554, respectively. Elbeltagi et al. [126] reported R values of 0.94, 0.95, and 0.95 at the Ad
Daqahliyah, Kafr ash Shaykh, and Ash Sharqiyah regions, respectively, using the DNN
model. These R values were lower than the R-value obtained using the proposed LSTM
model in the present study (R = 0.998). The NS value of the present study (NS = 0.995) is
also superior to the NS value (NS = 0.959) presented in Gao et al. [127], indicating the better
performance of the proposed LSTM model. The findings of our study are also comparable
to those presented in Chia et al. [50], who reported minimum MAE and RMSE values of
0.444 mm/d and 0.543 mm/d, respectively.

Nevertheless, an apple-to-apple comparison can be performed between the findings
obtained from the LSTM model presented in this effort with the models investigated in
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Roy et al. [21] (an ensemble of ANFIS models) and in Roy et al. [20] (optimization algo-
rithm tuned ANFIS model). With the optimization algorithm-tuned ANFIS model for the
same study area, Roy et al. [20] obtained the following performance indices: R = 0.993,
NS = 0.986, IOA = 0.996, MAD = 0.054 mm/d, NRMSE = 0.038. Our proposed LSTM model
performed better than the ANFIS model presented by Roy et al. [20] with respect to all
of these performance indices (R = 0.998, NS = 0.995, IOA = 0.999, NRMSE = 0.021, and
MAD = 0.025 mm/d in the present study). Statistical indices provided by the LSTM model
(R = 0.998, NS = 0.995, IOA = 0.999, and MAD = 0.025 mm/d) proposed in this research
also appeared to be superior than those presented by Roy et al. [21] using ensemble of
ANFIS models (R = 0.993, NS = 0.985, IOA = 0.996, and MAD = 0.054 mm/d). Furthermore,
the proposed LSTM model’s performance is superior to the performance of the optimiza-
tion algorithm tune hierarchical fuzzy systems (HFS) presented by Roy et al. [46] with
respect to R (LSTM = 0.998, HFS = 0.987), NRMSE (LSTM = 0.021, HFS = 0.052), and MAD
(LSTM = 0.025 mm/d, HFS = 0.068 mm/d) criteria.

3.2. One-Step-Ahead Prediction of ET0 Using Different Modeling Approaches at the Training
Station (Gazipur Sadar)
3.2.1. One-Step-Ahead Forecast Using Sequence to Sequence Regression LSTM
(SSR-LSTM) Network

An SSR-LSTM network-based model was trained by employing the historical ET0
dataset (time series) computed using the FAO-56 PM equation from the meteorological
variables. In an SSR-LSTM model, the outputs from the model correspond to the training
sequences (ET0 time series) with ET0 values moved to a one-time step ahead. At every
time step of the ET0 sequence, an SSR-LSTM network learns how to predict ET0 values
for the next time step. For training the proposed SSR-LSTM model, the historical ET0
time series was partitioned into training and test sets (90% of the entire data was used for
training, whereas the remaining 10% was used for testing the model). Model parameters
including the number of hidden layers and neurons were decided upon by conducting
several trials. An SSR-LSTM model with one hidden layer having 200 hidden neurons in the
hidden layer provided the best results for both the model training and testing phases. The
optimal values of other model parameters were solver = ‘adam’, number of epochs = 250,
gradient threshold = 1, initial learning rate = 0.005, and multiplying factor for the learn rate
dropping = 0.2. Model performance is presented in Figure 4.

(a) (b) 

–

–

Figure 4. SSR-LSTM performance: (a) estimated (FAO-56 PM-computed) and SSR-LSTM-forecasted
ET0 values for the test dataset; (b) future projections beyond the observed ET0 values.
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It is observed from Figure 4 that even though the SSR-LSTM model adequately ap-
prehended the trends of the ET0 time series for the test set of the data (Figure 4b), the
SSR-LSTM forecasts were comparatively flat compared to the original ET0 time-series
data (Figure 4a). This necessitates the improvement in the forecasting performance of the
initial SSR-LSTM model. One way of improving performance is to update the SSR-LSTM
network state using the observed ET0 values instead of the predicted ET0 values. Resetting
the network’s state is used in this study to prevent previous predictions from impacting
the results.

This was performed by resetting the network state in order to prevent previous
predictions from affecting the predictions on the new dataset. The forecasting results
obtained from the updated network state of the SSR-LSTM model are presented in Figure 5.

(a) 
(b)  

–

–

Figure 5. SSR-LSTM performance after network updating: (a) estimated (FAO-56 PM-computed)
and SSR-LSTM-forecasted ET0 values for the test dataset; (b) future projections beyond the observed
ET0 values.

3.2.2. One-Step-Ahead Forecast Using ANFIS, LSTM, and Bi-LSTM Models

For developing ANFIS, LSTM, and Bi-LSTM models to provide one-step-ahead fore-
casts, we computed PACF functions to obtain time-lagged information from the daily ET0
time series. This information obtained from the PACF functions was employed to assess the
time-based dependences between ET0 for a present day (ETt) and the ET0 values at a par-
ticular day in a prior period (e.g., at a lag time of ETt−1, ETt−2, ETt−3, ETt−4, and ETt−5).
These time-based dependences in the ET0 time series were assessed for 50 time lags (e.g.,
ETt−1 to ETt−50), as shown in Figure 6. In Figure 6, the blue lines indicate the 95% con-
fidence band, whereas the red vertical lines represent the corresponding values of ACF
and PACF. Time-lagged ET0 values serve as the inputs to the ANFIS, LSTM, and Bi-LSTM
models to forecast one-day-ahead ET0 values (outputs from the models). The optimal sets
of time-lagged ET0 inputs for model development were selected carefully after observing
the PACF functions.
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(a) (b)

Figure 6. ACF (a) and PACF (b) plots of the ET0 time series for 50 lags at Gazipur station.

A careful observation of the PACF plot shown in Figure 6 determines the following
time-lagged ET0 values as inputs to the developed models:

ETt, ETt−1, ETt−2, ETt−3, ETt−4, ETt−5, ETt−6, ETt−7, ETt−8, ETt−9, ETt−10, ETt−11

The outputs from the developed models were ETt+1(one-day-ahead ET0 values).
ANFIS outputs: The results of the one-step-ahead forecast using the ANFIS model

are presented in Figure 7 and Table 9. Figure 7 presents ANFIS forecasts through scatter
plots and hydrographs, whereas Table 8 shows model prediction capabilities based on
several statistical performance evaluation indices. Hydrographs and scatterplots presented
in Figure 7 demonstrate the reasonable precision of the one-day-ahead ET0 forecasts by
the ANFIS model. It is observed from Figure 7 that the training and test RMSE (0.759 and
0.789 mm/d, respectively, for the training and testing phases) did not vary considerably,
which indicates a better model fit without model over- or under-fitting. Figure 7 also indi-
cates acceptable values of training and test R-values (0.825 and 0.755, respectively, for the
training and testing phases). As far as other performance evaluation indices are considered,
the ANFIS model produced the following values of performance measures computed on
the test dataset: NS = 0.567, IOA = 0.858, NRMSE = 0.207 mm/d, MAE = 2.710 mm/d, and
MAD = 0.308 mm/d.

LSTM and Bi-LSTM outputs: Comparison of FAO-56 PM-calculated and model-
predicted ET0 values, error plots, and projected (one-step-ahead) ET0 values produced
by the LSTM and Bi-LSTM models are presented in Figures 8 and 9, respectively. It is
noticed from Figures 8 and 9 that both LSTM and Bi-LSTM models captured the trend of
the ET0 time series precisely and that Bi-LSTM model forecasts were superior to those of the
LSTM model. The performance evaluation results based on several statistical performance
evaluation indices are presented in Table 9. The LSTM model produced the following
values of performance measures computed on the test dataset: R = 0.698, NS = 0.698,
IOA = 0.429, NRMSE = 0.237 mm/d, MAE = 3.047 mm/d, and MAD = 0.334 mm/d. On the
other hand, the Bi-LSTM model produced the following values of performance measures
computed on the test dataset: R = 0.999, NS = 0.998, IOA = 0.999, NRMSE = 0.014 mm/d,
MAE = 0.491 mm/d, and MAD = 0.017 mm/d.
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(a) (b)

–

–

–

–
– –

Figure 7. Scatter plots and regression plots for the values of FAO-56 PM-calculated ET0 and ANFIS-
forecasted ET0 for the training (a) and testing (b) phases.

Table 9. Performance indices of the one-day-ahead ET0 prediction models for the testing dataset.

Model
Performance Evaluation Indices

R NS IOA NRMSE MAE, mm/d MAD, mm/d

ANFIS 0.755 0.567 0.858 0.207 2.710 0.308
Bi-LSTM 0.999 0.998 0.999 0.014 0.491 0.017

LSTM 0.698 0.429 0.833 0.237 3.047 0.334
SSR-LSTM 0.818 0.666 0.898 0.184 2.687 0.279
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–

Figure 8. FAO-56 PM-calculated and LSTM-projected ET0 values with error plots computed on the
test dataset.

–

Figure 9. FAO-56 PM-calculated and Bi-LSTM-projected ET0 values with error plots computed on
the test dataset.

It is observed from Table 9 that the Bi-LSTM model provided a superior performance
compared to the other models (SSR-LSTM, ANFIS, and LSTM) according to the statistical
indices computed on the test dataset. It is noted that the prediction results with respect
to the calculated performance indices did not demonstrate a considerable inconsistency.
However, to reach a solid conclusion regarding the best-performing model, we applied the
concept of Shannon’s entropy to provide a performance ranking (Table 10). It is observed
from Table 10 that Bi-LSTM appeared to be the best performer, while SSR-LSTM, ANFIS,
and LSTM held the second, third, and fourth positions, respectively. Therefore, according
to the performance results for one-step-ahead forecasting, the best-performing Bi-LSTM
model was employed to provide multi-step (5 day)-ahead forecasting.

Table 10. Shannon’s entropy-based model ranking for one-day-ahead ET0 forecasts.

Model Shannon’s Entropy Value Rank

Bi-LSTM 1.00 1
SSR-LSTM 0.30 2

ANFIS 0.27 3
LSTM 0.24 4
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3.3. Multi-Step (5 Day-Ahead) Forecasting Using the Bi-LSTM Model

The forecasting performance of the developed ET0 prediction model using the Bi-LSTM
algorithm was evaluated using several statistical performance indices on the test dataset.
However, to ascertain that no model over- or under-fitting occurred, we quantitatively
evaluated the results obtained from both the training and validation phases. Five Bi-LSTM
models were developed to forecast 1, 2, 3, 4, and 5 day-ahead ET0 values. For all models,
the selected time-lagged variables were served as inputs to the Bi-LSTM models. Table 11
presents the performances of the developed Bi-LSTM models on the training and validation
datasets. It is evident from Table 11 that the absolute variances between the training and
validation performances increased with the increase in the forecasting horizon. Overall, the
training performances were satisfactory for all forecasting horizons.

Table 11. Training and validation performances of the developed Bi-LSTM models at Gazipur station.

Forecasting Horizon Training RMSE, mm/d Validation RMSE, mm/d

1 day 0.08 0.11
2 days 0.12 0.17
3 days 0.09 0.18
4 days 0.10 0.22
5 days 0.10 0.28

The trained and validated Bi-LSTM models were then used to forecast ET0 values
on the test dataset, which were selected from the entire dataset. Testing performances
were assessed using several evaluation indices, as shown in Table 12. It is perceived from
Table 12 that the forecasting horizon greatly influenced the forecasting accuracies. The
accuracy decreased with the increase in the forecasting horizon as in the case of the training
and validation performances. However, the overall performances of the Bi-LSTM model
for all forecasting horizons showed particularly good performance, as indicated by the
computed statistical performance evaluation indices. The performance of the developed
models was also assessed using line graphs and error plots as shown in Figure 10.

Table 12. Multi-day-ahead forecasting performance of the Bi-LSTM model on the test dataset at
Gazipur station.

Indices
Forecasting Horizon

1 Day 2 Days 3 Days 4 Days 5 Days

RMSE, mm/d 0.11 0.17 0.18 0.22 0.28
NRMSE 0.03 0.04 0.05 0.06 0.07

R 1.00 0.99 0.99 0.98 0.97
MAD, mm/d 0.03 0.04 0.04 0.06 0.08
MAE, mm/d 0.07 0.08 0.10 0.13 0.17

NS 0.99 0.98 0.98 0.97 0.95
IOA 1.00 0.99 0.99 0.99 0.99
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–

–

–

Figure 10. Line graph and error plots for 1, 2, 3, 4, and 5 day-ahead forecasting at Gazipur station.

It is observed from Table 12 that the Bi-LSTM model showed reasonably good per-
formance, as evidenced by the computed performance indices. It produced lower values
of cost indices (RMSE, NRMSE, MAD, and MAE) as well as higher values of benefit in-
dices (R, NS, IOA). However, it is noted that the forecasting accuracy largely depended
on the forecasting horizon, i.e., the sequence of forecasting accuracies are as follows:
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1 day > 2 days > 3 days > 4 days > 5 days. This finding is in good agreement with the
work of Yin et al. [128], who also stated that forecasting accuracy decreased with the
increased forecasting horizon. Nevertheless, the forecasting accuracy of the Bi-LSTM
model at 5 days ahead was also found acceptable for deep learning-based modeling of ET0.
Ferreira and da Cunha [82] also reported better deep learning model performance (CNN-
LSTM) on the first and second forecasting days. Our findings using the Bi-LSTM model
(RMSE = 0.11–0.28 mm/d) outperformed the CNN-LSTM model proposed by Ferreira and
da Cunha [82] (mean RMSE values of 0.87 to 0.88 mm/d) with respect to RMSE criterion.
Our proposed Bi-LSTM model performed better than the Bi-LSTM model proposed by
Yin et al. [128] with respect to RMSE, R, and NS criteria. For instance, for 1 day-ahead
forecasting, Yin et al. [128] obtained RMSE, R, and NS values of 0.159 mm/d, 0.992, and
0.988, respectively, whereas the values of RMSE, R, and NS in our study were found to be
0.11 mm/d, 1.00, and 0.99, respectively. Similarly, our proposed Bi-LSTM model outper-
formed the Bi-LSTM model presented by Yin et al. [128] for 4 day-ahead ET0 forecasting.
Moreover, our results also showed superior performance than the Bi-LSTM model results
presented by Roy [81] in terms of R and IOA criteria for 1 day-ahead ET0 forecasting.
Roy [81] reported R and IOA values of 0.698 to 0.999 and 0.833 to 0.999, respectively, while
the present study provided R and IOA values of 1.00 and 1.00, respectively. Therefore, it can
be inferred that our proposed Bi-LSTM model is suitable for forecasting multi-step-ahead
ET0 values quite efficiently and precisely. It is noted that the Bi-LSTM model produced a
slightly higher forecast error, especially at the end of the ET0 time series. This comparatively
big error at the end of the dataset may have arisen from higher values of ET0 (outliers),
which was not smoothed in order to evaluate the performance of the proposed modeling
approaches for datasets containing outliers. Nevertheless, these values are still acceptable
in the context of modeling ET0 using machine learning approaches.

3.4. Generalization Capability of the Proposed Best ET0 Prediction Models

The validation of the proposed best models (LSTM for daily predictions and Bi-LSTM
for multi-step-ahead forecasts) was performed using data obtained from a new test station
at which the models were not developed. The entire dataset of the test station (Ishurdi
station) was split into three separate sets, each of which was employed to validate the
models developed at the training station (Gazipur Sadar station). These three standalone
datasets were fed into the LSTM and Bi-LSTM models to predict daily ET0 values and
forecast multi-day-ahead ET0, respectively. The outputs from the models were weighed
against the FAO-56 PM-computed ET0 values using numerous statistical performance
evaluation indices.

3.4.1. Generalization Capability of Proposed Best LSTM Model: Daily Prediction of ET0

Table 13 summarizes the evaluation results for a variety of performance indices. The
LSTM model exhibited a reasonably good performance at the test station data’s three
different sets (entire, first half, and second half). The computed performance indices
indicated a satisfactory performance of the proposed LSTM model. It produced reasonably
higher values of benefit indices (R, NS, and IOA) and lower values of the cost indices
(RMSE, NRMSE, MAD, and MAE) for the entire, the first half, and the second half of the
test station data. It is also observed that the first half of the dataset produced relatively better
performance when compared to that of the second half and the entire dataset. Overall, the
performance is satisfactory. On this basis, it is arguably concluded that the proposed LSTM
model at Gazipur Sadar station can predict daily ET0 values at Ishurdi station without
developing a model at Ishurdi station. Additionally, performance data were presented
using scatter and error plots, as illustrated in Figure 11, which depict the distribution of
errors at individual data points.
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Table 13. Performance of the LSTM model for predicting daily ET0 values on the Ishurdi dataset.

Performance Indices Entire Dataset First Half Data Second Half Data

RMSE, mm/d 0.65 0.49 0.84
NRMSE 0.18 0.13 0.23

R 0.87 0.92 0.83
MAD, mm/d 0.18 0.18 0.20
MAE, mm/d 0.44 0.39 0.52

NS 0.72 0.84 0.57
IOA 0.97 0.98 0.96

(a) (b) 

(c) 

–

–

–

–

–

–

Figure 11. Line graph and error plots of FAO-56 PM-computed and LSTM-predicted daily ET0 at
Ishurdi station: (a) entire dataset, (b) first half of the dataset, and (c) second half of the dataset.

3.4.2. Generalization Capability of Proposed Best Bi-LSTM Model: Multi-Step
(Multi-Day)-Ahead ET0 Forecasting

For multi-step (multi-day)-ahead ET0 forecasting, new Bi-LSTM models were devel-
oped because the nature of data was different. However, a similar model structure and
parameters as in the case of Gazipur station were used. As a Bi-LSTM model performed
better for one-step-ahead prediction at Gazipur station, the Bi-LSTM model was used to
develop models for forecasting 1, 2, 3, and 5 day-ahead ET0 values at the Ishurdi station.
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For this, time-lagged information from the ET0 time series was collected for 50 lags. The
most significant input variables were determined by observing partial autocorrelation
functions of the lagged time series, as shown in Figure 12.

–

Figure 12. Sample partial autocorrelation functions of the lagged ET0 time series at Ishurdi station.

Five Bi-LSTM models were developed to forecast 1, 2, 3, 4, and 5 day-ahead ET0
forecasting. For all models, the selected time-lagged variables were served as inputs to the
Bi-LSTM models. Table 14 presents the performances of the proposed Bi-LSTM models
at the training and validation datasets. The absolute variances between the training and
validation performances increased with the increase in the forecasting horizon. Overall, the
training performances were satisfactory for all forecasting horizons.

Table 14. Training and validation performances of the developed Bi-LSTM models at Ishurdi station.

Forecasting Horizon Training RMSE, mm/d Validation RMSE, mm/d

1 day 0.09 0.12
2 days 0.10 0.17
3 days 0.11 0.29
4 days 0.12 0.56
5 days 0.10 0.73
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The trained and validated Bi-LSTM models were then used to forecast ET0 values
on the test dataset, which were selected from the entire dataset. Testing performances
were assessed using several statistical index values, as shown in Table 15. The forecasting
horizon greatly influenced the forecasting accuracies. The accuracy decreased with the
increase in the forecasting horizon, as in the case of the training and validation perfor-
mances. However, the overall performances of the Bi-LSTM model for all forecasting
horizons showed particularly good performance, as indicated by the computed statistical
performance evaluation indices. Performance evaluation results of the developed models
were also assessed with the aid of line graphs and error plots, as shown in Figure 13. The
performance results illustrated in Figure 13 were in good agreement with the statistical
index values presented in Table 15. As observed in the line graphs and error plots, forecast-
ing accuracy largely depended on the forecasting horizon: forecasting accuracy decreased
with increases in the forecasting horizon.

Table 15. Multi-day-ahead forecasting performance of the Bi-LSTM model on the test dataset at
Ishurdi station.

Indices
Forecasting Horizon

1 Day 2 Days 3 Days 4 Days 5 Days

RMSE, mm/d 0.12 0.17 0.29 0.56 0.73
NRMSE 0.03 0.05 0.08 0.16 0.20

R 1.00 0.99 0.98 0.90 0.86
MAD, mm/d 0.04 0.05 0.08 0.14 0.24
MAE, mm/d 0.09 0.12 0.19 0.37 0.56

NS 0.99 0.98 0.95 0.81 0.69
IOA 1.00 1.00 0.99 0.95 0.91

It is observed from Figure that 1 day- and 2 day-ahead forecasting results were
relatively better when compared to the results produced in three, four, and five day-ahead
forecasts with respect to the RMSE criterion. A closer look at the line graphs also revealed
the superiority of one day- and two day-ahead forecasts over the other three forecasting
horizons and that Bi-LSTM models captured the lower values of the ET0 time series quite
accurately in comparison with the higher values for one day-, two day-, and three day-
ahead forecasts. While producing acceptable results, the Bi-LSTM models followed similar
trends for both the lower and higher values in the ET0 time series in the case of the four
day- and five day-ahead forecasts. It is also perceived from the line graphs that errors
were relatively smaller at the end of the time series for the one day- and two day-ahead
forecasts, while the Bi-LSTM models produced relatively higher errors at the end of the
dataset for the three, four, and five day-ahead forecasts. Although performed differently at
different forecast horizons, the Bi-LSTM model forecasts were quite accurate and closer to
the FAO-56 PM-estimated ET0 values. This is also evident from the statistical performance
evaluation indices presented in Table 15. In particular, the NRMSE values of 0.03, 0.05,
0.08, 0.16, and 0.20 for the one, two, three, four, and five day-ahead forecasts, respectively,
revealed the reasonable accurate forecasts of the proposed Bi-LSTM model. A model’s
performance is said to be excellent when the NRMSE value is lower than 0.1, good when
the NRMSE value is between 0.1 and 0.2, fair when the NRMSE value is between 0.2 and
0.3, poor when the NRMSE is greater than 0.3 [129,130].
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Figure 13. Line graph and error plots for 1, 2, 3, 4, and 5 day-ahead forecasting at Ishurdi station.
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4. Conclusions

Precise prediction and forecasting of ET0 have been a critical and emerging first step
for developing a justifiable and effective irrigation scheduling plan. This research provided
a selection of the best machine and deep learning algorithms to develop robust prediction
and forecasting tools for daily and multi-step (5 day)-ahead ET0 prediction and forecasting,
respectively. The selection results indicated the superiority of the LSTM model for daily
ET0 predictions, whereas for multi-step-ahead forecasting, the Bi-LSTM model provided
superior performance. For daily ET0 prediction, a number of meteorological variables were
used as inputs to the model, whereas the computed ET0 values were used as outputs from
the model. For multi-step (5 day)-ahead forecasting, the appropriate daily time-lagged
ET0 values were used as inputs to the Bi-LSTM model, and the outputs from the Bi-LSTM
model were the one, two, three, four, and five step-ahead ET0 values. On the basis of
the results of the one-step-ahead prediction performed previously for model selection,
we found that the Bi-LSTM model was further employed to provide multi-step (5 day)-
ahead forecasting. Results revealed the suitability of the Bi-LSTM model in predicting
multi-step-ahead ET0 values.

In a further step, best models for daily prediction (LSTM) and multi-step-ahead
forecasting (Bi-LSTM) were used to generalize the ET0 values for the data obtained from a
different weather station, for which the models were neither trained nor validated. More
specifically, the LSTM network was used to generalize the daily ET0 predictions in a nearby
meteorological station without developing a model for that station. On the other hand, the
Bi-LSTM model was developed for the Ishurdi station to forecast 1, 2, 3, 4, and 5 day-ahead
ET0 forecasting. The relatively low errors obtained by the LSTM and Bi-LSTM approaches
led to a good fit of the models in predicting daily ET0 values and forecasting multi-step-
ahead ET0 values. This can be expected to be very useful in the practice of irrigation water
management, for which ET0 is an important parameter.
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Abstract: Shallow groundwater is considered an important water resource to meet crop irrigation
demands. However, limited information is available on the application of models to investigate
the impact of irrigation schedules on shallow groundwater depth and estimate evaporation while
considering the interaction between meteorological factors and the surface soil water content (SWC).
Based on the Richards equation, we develop a model to simultaneously estimate crop water con-
sumption of shallow groundwater and determine the optimal irrigation schedule in association with
a shallow groundwater depth. A new soil evaporation function was established, and the control
factors were calculated by using only the days after sowing. In this study, two irrigation scheduling
methods were considered. In Method A, irrigation was managed based on the soil water content; in
Method B, irrigation was based on the crop water demand. In comparison with Method B, Method A
was more rational because it could use more groundwater, and the ratio of soil evaporation to total
evapotranspiration was low. In this model, the interaction between meteorological factors and the
SWC was considered to better reflect the real condition; therefore, the model provided a better way
to estimate the crop water consumption.

Keywords: arid region; evapotranspiration partitioning; soil evaporation; soil water content

1. Introduction

Water scarcity is a great concern for irrigation agriculture worldwide. More than half
of the farmland in the world exists in arid and semiarid regions [1]. Irrigation is essential
to crop production in arid regions and plays an important role in crop water demands
throughout the world. The site-specific application of irrigation water within a field
improves water use efficiency and reduces water usage for sustainable crop production,
especially in arid and semiarid regions [2].

Rational irrigation scheduling is essential to irrigation management, and many irriga-
tion scheduling studies have been performed in arid regions [3–5]. In general, one type
of irrigation scheduling is based on evapotranspiration demand, and another is based on
the soil water content of the root zone [5]. Shallow groundwater exists in many areas of
the world [6], and some farmlands are irrigated with shallow groundwater in arid regions.
Shallow groundwater exists in many areas of the world and plays a vital role in sustaining
agricultural productivity in many irrigated areas [3,7,8]. Irrational or intensive irrigation
leads to a decline in the shallow groundwater table. The variation in a shallow ground-
water table strongly influences the water balance [9]. Water cycling in soils with shallow
groundwater is complex due to the deep percolation and groundwater evapotranspiration
(ETg) that occur in arid regions [10]. An improved irrigation schedule could reduce the
amount of deep percolation [8].
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Several studies have used lysimeters to measure crop water consumption from a
shallow groundwater table [11–15]. The lysimeters were accurate, but their use is limited
because of their high cost [3]. Therefore, some studies have attempted to quantify the
groundwater as a part of the SPAC (soil-plant-atmosphere continuum) at the field and
regional scales using models such as SWAP [3], EPIC [16], and DSSAT [17]; however,
the models mentioned above usually oversimplified the influence of groundwater [18].
Han et al. [18] used the Hydrus-1D model coupled with a simplified crop growth model
from SWAT to estimate the effect of groundwater on the water balance in the cotton root
zone, but their study did not include a method for irrigation scheduling and was not
implemented or systematically used by the majority of growers. Huo et al. [3] simulated
the various amounts of irrigation applied to soil with different water tables, but the irri-
gation schedule was fixed in their study. Therefore, information relative to the irrigation
scheduling method is still limited.

Accurate estimations of evapotranspiration (ET) are urgently needed. ET includes
soil evaporation (E) and crop transpiration (T); transpiration is considered a physiological
process, whereas soil evaporation is a physical process. Soil evaporation is an important
component of the total crop water consumption, and the E ratio is higher in the earlier
growing season due to wet surface soils and low crop cover (CC) [19]; however, evapo-
ration may be lower in the later growing season when the surface soils are drier, and the
CC is higher [20]. Unkovich et al. [20] reviewed the published field measurements from
Australia and found an average of 38% crop water consumption due to soil evaporation.
Kool et al. [21] noted that the E/ET ratio exceeded 30% in 32 of the studies and noted that E
usually constituted a large fraction of ET and should be independently considered. Numer-
ous measurement methods and analytical models have been developed to estimate T and E
separately, but large variability exists in ET partitioning, suggesting that obtaining accurate
ET partitioning is relatively challenging [21]. In general, T is controlled by atmospheric
evaporative demand, leaf area index (LAI) or crop cover (CC), surface soil water content
(SWC), and reference crop evapotranspiration (ET0) [22–25]. These factors influence T and
E, as well as ET partitioning. Therefore, most previous studies focused on the influence of
crops on ET partitioning using regression functions between CC and T/ET or E/ET [26–30].
Zhao et al. [25] established a function between ET partitioning and control factors (CC
and SWC), but the metrological factors were neglected, and the CC and SWC had to be
acquired by field experiment observations. The establishment of simple functions that
are correlated with the main control factors without field experiment observations was
necessary. It will provide a better way to interpret evapotranspiration partitioning and to
model water consumption in cotton fields.

Existing models include Hydrus-1D; however, E or SWC must be acquired by field
experimental observations. For SWC, E is just an input parameter, leading to the interaction
between SWC and E being neglected. However, this interaction effect is present. For exam-
ple, a high soil water content could cause high soil evaporation, but meteorological factors
also influence the SWC [20,21]. If the SWC or E are included as only input parameters,
then the interaction effect will be neglected, and the real condition will not be reflected.
Although the HYDRUS model can simulate irrigation and water consumption at a given
groundwater table, the model can only set a fixed or initial groundwater table. In practice,
changes in groundwater table are not entirely dependent on evaporation consumption
from cropland (but lysimeter with impermeable bottom) but involve lateral recharge and
groundwater consumption from surrounding areas. Our model takes into account an ac-
tual groundwater change (groundwater variation with time as an input parameter), which
better reflects a real situation. Therefore, in this study, we developed a model to estimate
crop water consumption and considered an actual groundwater table fluctuation and the
interaction between SWC and E.

The objective of our research was to (1) develop a model based on the Richards
equation to simultaneously estimate crop water consumption with shallower groundwater,
(2) develop a new function for estimating soil evaporation considering the interaction
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between SWC and E, (3) validate this model using cotton field experiment observations,
and (4) apply the new tool to estimate a suitable irrigation schedule.

2. Materials and Methods

2.1. Mathematic Model
2.1.1. Water Flow Equations

The Richards model was used to simulate the soil water movement as follows [31]:⎧⎨
⎩

∂θ
∂t = ∂

∂z

[
K
(

∂h
∂z + 1

)]
− S, 0 ≤ z ≤ Lr

∂θ
∂t = ∂

∂z

[
K
(

∂h
∂z + 1

)]
, Lr ≤ z ≤ L

(1)

where S is the root water uptake (cm−1), h is the pressure water head (cm), θ is the soil
water content (cm3 cm−3), Lr is the crop root zone depth (cm), L is the soil depth (cm),
and K is the unsaturated hydraulic conductivity (cm day−1). The van Genuchten–Mualem
model was used to estimate the soil hydraulic properties [32].

2.1.2. Root Water Uptake

The root water uptake is described as follows [33]:

S = α(h)× b(z)× Tp(t) (2)

where α(h) is the soil water stress response function [34]. The parameters in the Feddes et al. [34]
model for cotton are h1 = −10 cm, h2 = −25 cm, h3max = −200 cm, h3min = −600 cm, and
h4 = −14,000 cm [35,36], b(z) is the root water uptake distribution function [37] and Tp(t)
is the cotton actual transpiration during one day (cm), which was calculated as follows [4]:

Tp(t) = ETp(t)×
(

1 − exp
(
−γ

(
1 + δ

∣∣∣∣sin
π(td − SN)

12

∣∣∣∣
)

LAI
))

(3)

where ETp(t) is the potential evapotranspiration of cotton (cm day−1), which was calculated
using the FAO 56 Penman–Monteith equation [38], LAI is the leaf area index and is a
function of the time after sowing, δ and γ are the empirical coefficients, td is time (h), and
SN is time at noon (h).

2.2. Field Experiment and Model Parameterization
2.2.1. Study Area

This experiment was conducted at the Aksu National Field Research Station of Agroe-
cosystems (40◦37′ N, 80◦51′ E) in the northwestern Tarim Basin, Xinjiang Province, China.
Cotton was the main crop, which is largely dependent on irrigation. The precipitation was
variable with a mean value of 45.7 mm, the annual pan evaporation was approximately
2500 mm, and the mean temperature was approximately 8 ◦C. The groundwater table is
shallow and approximately 2 m. The soil physical properties at the experimental site are
shown in Table 1.

Table 1. Soil bulk density and particle size distribution from 0 to 80 cm in experiment sites.

Depth (cm)
Bulk Density

(g/cm3)

Soil Particle Size Distribution (%)

<0.002 mm 0.002–0.05 mm 0.05–2.0 mm

0–10 1.33 8.03 78.8 13.17
10–20 1.37 8.36 80.32 11.32
20–40 1.5 11.56 82.32 6.12
40–60 1.44 13.7 83.21 3.09
60–80 1.41 9.42 75.96 14.62
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2.2.2. Field Experimental Design

The experiment was conducted in 2010 and 2011, and the plot area was 150 m × 90 m.
The cotton was sown in April and harvested in November. The phenological phases
of cotton growth are shown in Table 2, and the irrigation schedule is shown in Table 3.
Additional spring and winter irrigation was applied before seeding and after harvest,
providing approximately 200 mm of water to leach the salt.

Table 2. Phenological phases of cotton growth in 2010 and 2011.

Phenological Phases 2010 2011

Seeding 30 April 2010 5 May 2011
Emergence stage 2 May 2010 5 May 2011
Squaring stage 10 June 2010 12 June 2011

Flowering stage 3 July 2010 28 June 2011
Boll opening stage 25 August 2010 19 September 2011

Harvest 1 November 2010 2 November 2011

Table 3. The rainfall date and irrigation schedules in 2010 and 2011 in cotton field.

Irrigation Date
Irrigation

Amount (mm)
Rainfall Date

Rainfall Amount
(mm)

Rainfall Date
Rainfall Amount

(mm)

25 June 2010 180 5 June 2010 1.6 25 October 2010 15.7
12 June 2010 100 12 June 2010 0.2 31 October 2010 0.6

2 August 2010 150 16 June 2010 0.4 5 May 2011 4.8
29 August 2010 130 20 June 2010 0.3 10 May 2011 3.2

30 June 2011 199 25 June 2010 0.3 15 May 2011 4.4
15 July 2011 240 31 June 2010 3.0 20 May 2011 0.6

9 August 2011 148 20 August 2011 1.8 5 June 2011 2.6
25 August 2011 157 25 August 2010 0.5 20 June 2011 8.2

20 September 2010 2.3 15 August 2011 3.1
26 September 2010 11.2 19 August 2011 1.5
29 September 2010 7.8 5 September 2011 2.3

2.2.3. Measurements

The soil water content and groundwater table were observed every 5 days (Figure 1).
The soil water content was measured using a neutron probe (CNC503DR, Beijing Hean
Nuclear Instrument Company, Shenzhen, China) with three replications at depths of 10, 20,
30, 40, 50, 70, 90, 110, 130, and 150 cm. This neutron probe consists of two main components:
a probe and a rate meter. The density of slow neutrons formed around the probe is nearly
proportional to the concentration of hydrogen in the medium of the probe. Equation (4)
was used to calculate soil water content:

θ = 0.615
R

Rw
+ 0.0289, r = 0.952 (4)

where R was the slow neutron count in soil, and Rw was standard neutron count.
The groundwater table was measured using a water level scale every 5 days. An

automatic meteorological station was installed in the field to measure wind speed (Model
010c, Met One, Grants Pass, OR, USA), solar radiation (Model LI200X, Campbell Scientific,
Logan, UT, USA), precipitation (Model 52202, RM Young, Traverse City, MI, USA), air
temperature, and relative humidity (Model Hmp45c, Campbell Scientific, Logan, UT, USA),
and a datalogger (Model CR1000, Campbell Scientific, Logan, UT, USA) was used to monitor
the sensors. Leaf samples were collected with five replications for each phenological phase,
and the LAI was calculated by the leaf width (W) and length (L) [39], the mean LAI was
0.16 (std, 0.01), 0.92 (std, 0.03), 2.91 (std, 0.16), 3.23 (std, 0.33), and 1.76 (std, 0.15) from
emergence to harvest stage, respectively.
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Figure 1. Volumetric soil water content at a depth of 20 cm and groundwater depths in experiment
sites in 2010 and 2011.

2.2.4. Numerical Modeling

The initial conditions were set based on the soil moisture. The bottom boundary was
assigned at the pressure head boundary condition using the observed groundwater table
depths, and the upper boundary was set according to the atmospheric boundary condition
as follows [33]:

∂θ

∂t
= − ∂q

∂x
(5)

where q is the soil surface water flux. If the soil surface is flooded, q = I(t), I(t) is infiltration
rate, and if the soil surface water has begun to evaporate, the q = E(θ), where E(θ) is the
evaporation intensity.

We defined the five soil layers (0–10, 10–20, 20–40, 40–60, and 60–80 cm) in the soil
profile (Table 1) based on previous studies [18]. The soil hydraulic parameters of the van
Genuchten–Mualem model are shown in Table 4, and the parameters remained constant
for both model calibration and validation. The pore connectivity parameter was constant
(0.5). The parameter estimation tool (PEST) [40] was used to optimize the parameters θr,
α, n, γ and δ. The time from 30 April to 31 October in 2010 and the time from 2 May to
2 November in 2011 were used to calibrate t and validate the model, respectively. The
optimized parameters of the van Genuchten–Mualem analytical functions [32] are given in
Table 4, with γ = 0.7937 and δ = 0.10364.

Table 4. Soil hydraulic parameters of the van Genuchten–Mualem model at the experimental site.

Depth (cm) θr (cm3/cm3) θs (cm3/cm3) α (cm−1) n Ks (cm·day−1)

0–10 0.0563 0.43 0.0050 1.70 25
10–20 0.057 0.42 0.0053 1.68 15
20–40 0.0062 0.41 0.0062 1.63 9
40–60 0.0671 0.44 0.0059 1.64 6

60–270 0.055 0.41 0.0053 1.68 5

Soil evaporation is also controlled by meteorological factors and the CC. The CC was
adequately described by the logistic growth curve with the days after sowing (t), and
ET0 reflected the meteorological factor; thus, we were able to establish the function by
combining the ET0 and CC to calculate the soil evaporation as follows:

E
(
θtop

)
=
(
a1θtop + a2

)a3 × (ET0)
a4 × (1 + exp(−a5t)) (6)

The constants a1, a2, a3, a4, and a5 were obtained by fitting the parameters with
observed data, and they were 1.3181, 0.3400, 8.4880, 0.1282, and 1.5734, respectively. The R2

was 0.77, and the RMSE was 0.049. θtop represents the mean soil water content (0–5 cm).
This equation does not include a measured parameter “CC”; the CC was reflected by the
last term (power function).
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The relationship between the LAI and the days after sowing is expressed in Equation (6),
with R2 = 0.99 and RMSE = 1.15:

LAI(t) = −4.64× 10−3 + 2.89× 10−2t− 1.48× 10−3t2 + 3.27× 10−5t3 − 1.70× 10−7t4 (7)

2.3. Model Solutions

The soil to a depth of 2.7 m was simulated, and the grid size was 0.01 m. Equation (1)
was solved using the finite-element method, and the solutions were the same as those of
the Hydrus-1D model [33]. A software package (MATLAB 7.0 for Windows) was used to
edit the code.

2.3.1. Model Evaluation

The correlation coefficient (R2) and the root mean square error (RMSE) were used to
evaluate the agreement between the simulated results and the observed results:

RMSE =

[
1
n

n

∑
i=1

(Csi − Cob)
2

]1/2

(8)

R2 =

[
∑n

i=1
(
Csi − Csi

)(
Cob − Cob

)
∑n

i=1
(
Csi − Csi

)
∑n

i=1
(
Cob − Cob

)
]2

(9)

where Csi is the model prediction at time interval i, Cob is the field observation, n is the total
number of observed values, Csi is the mean of the simulated values, and Cob is the mean of
the observed values.

2.3.2. Sensitivity Experiments

The numeric simulation experiments were mainly conducted to determine the influ-
ence of the irrigation schedule and groundwater depth on the soil root zone water balance.
The effects of the irrigation schedule and groundwater table depth on the water capacity,
capillary rise, actual evaporation, and actual transpiration were estimated. The root zone
was from the surface soil (0 cm) to a depth of 60 cm. Fourteen different modeling scenarios
were considered (Table 5). The groundwater table fluctuation had a range from 1.4 to 3.1 m
during the growing season in 2010 and 2011 (Figure 1). The modeling scenarios cover
this range to reflect the real situation; thus, we conduct seven groundwater tables from
1.0 to 4.0 m.

Table 5. The 14 different modeling scenarios included the seven groundwater depths and two
irrigation schedules for the numerically simulated experiments.

Irrigation Schedule Groundwater Depth (m)

Method A Method B

Irrigation Managed Based
on the Soil Water Content

Irrigation Was Based on the
Crop Water Demand

A1 B1 1.0
A2 B2 1.5
A3 B3 2.0
A4 B4 2.5
A5 B5 3.0
A6 B6 3.5
A7 B7 4.0

We assumed that the groundwater table was a natural fluctuation, which was not
entirely influenced by water consumption from cropland. It can be seen in Figure 1, which
was the observed variation of the groundwater table with time. The variation trend does
not show a strong relation with irrigation or water consumption. For each scenario, the
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groundwater table time series were generated by adding a constant value (ranging from
−1.5 to 1.5 m) to the groundwater table depth measured in 2010. It was an input parameter
to run the model (Figure 2). The mean groundwater table was 2.5 m (measured value
during growing season) in 2010, the seven groundwater table (mean value) were conducted
as follow: 1.0 m (2.5 m + (−1.5 m)), 1.5 m (2.5 m + (−1.0 m)), 2.0 m (2.5 m + (−0.5 m)),
2.5 m (2.5 m + 0 m), 3.0 m (2.5 m + 0.5 m), 3.5 m (2.5 m + 1.0 m), and 4.0 m (2.5 m + 1.5 m)
(Table 5), respectively, all the change trend of groundwater tale (14 treatments) were
consistent with measured data in 2010 during growing season (Figure 2). Two common
irrigation scheduling methods were selected. In Method A, the irrigation was managed
based on the soil water content, and the lower limits of the controlled soil water contents at
field capacity (θf) were 0.55θf, 0.6θf, and 0.7θf for the planned soil moisture layers of 0.2 m,
0.4 m, 0.6 m and 0.8 m in the emergence stage and squaring stage, respectively. The higher
limit of the soil water contents at field capacity was 0.95. With Method B, the irrigation
amount and timing were designed based on the crop water demand (local farmer custom),
depending on the potential ET in the next N (or 20) days.

Figure 2. The variation of groundwater table in 14 different modeling scenarios.

3. Results and Discussion

3.1. Model Calibration and Validation

The relationship between the measured and simulated soil water storage in the root
zone (0–60 cm) is shown in Figure 3. Suitable agreement between the measured and
simulated values (soil water storage) was found. The model slightly overpredicted the
water content during the calibration process; on the contrary, the validation process showed
slight underprediction. More statistical tests were conducted to evaluate the performance of
the model. The simulated and measured soil water contents from the soil depths of 20 and
150 cm are shown in Figure 4, which indicates that the predicted values are in agreement
with the observed values. The R2 and RMSE values for the soil water contents and soil water
storage (0–60 cm) are shown in Table 6. The R2 values ranged from 0.92 to 0.94, the RMSE
values of the soil water storage at 60 cm, and the soil water content were 20–24 mm and
0.04, respectively. These statistical tests indicated that the model had suitable performance.
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Figure 3. The observed and simulated soil water storage in the root zone (0 to 60 cm) in 2010 (a) and
2011 (b).

 

 
Figure 4. The variations in soil water content at (a) soil depths of 20 cm in 2010, (b) soil depths of
20 cm in 2011, (c) soil depths of 150 cm in 2010, and (d) soil depths of 150 cm in 2011.

Table 6. Statistical tests for the modeling results in 2011 and 2012.

Period Year Item Soil Water Content (−) Soil Water Storage (mm)

Calibration
process 2010

R2 0.92 0.93
RMSE 0.04 20.83

Validation
process 2011

R2 0.94 0.93
RMSE 0.04 24.06

3.2. Scenario Simulation
3.2.1. Soil Water Storage Variation in the Root Zone

The soil water storage in the root zone (0–60 cm) showed variations under the different
treatments (Figure 5). The soil water storage showed sharp increases after irrigation and
then decreased gradually due to percolation and evaporation. When the groundwater table
was shallow, the soil water storage showed small variations with high values because the
groundwater could supply water into the soil root zone. In contrast, when the groundwater
table was deep, the water supply from the groundwater was weaker and could not satisfy
the water consumption by the cotton, which caused low soil water content in the root zone,
deepened the groundwater table, and caused greater fluctuations in the soil water content.
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Figure 5. The variations in soil water storage in the soil root zone under different treatments.

In general, shallow groundwater is considered a water resource for crop irrigation. In
our research, the irrigation times increased from treatment A1 (1.0 m) to A7 (4.0 m) with
the increase in groundwater depth. The groundwater table was maintained at depths of 1.0
(treatment A1) and 1.5 m (treatment A2), and the groundwater was able to supply enough
water to the root zone for evaporation (Figure 6 and Table 7). The groundwater table does
not show a significant decrease (Figure 2); therefore, irrigation was not necessary with a
shallower groundwater table (1.0 and 1.5 m). Kahlown et al. [14] investigated the water
tables that were maintained at shallower depths (e.g., 0.5 m for wheat) and noted that the
groundwater could meet the crop water requirements, but differences were observed for
different crops [14] and soil textures [3]. For treatment A7, the first irrigation occurred on
the 56th day. This is because the soil evaporation was small due to low surface soil water
content, which led to low soil evaporation. Usually, the surface soil water content showed
a strong influence on soil evaporation, which has been reported in many studies [41–43].
The dry surface soils lead to vapor transport through the surface [44], which will be
greatly inhibited the soil evaporation, thus retained the water in below the surface. The
cotton was seeding around at depth of 5 cm, thus it could obtain the water by root at the
emergence stage.

Figure 6. The dynamic variation of accumulated groundwater evaporation under different treatments.

For Method B (Treatments B1 to B7), the irrigation amounts and times were similar
among the treatments (Table 7). Compared with Method A, the soil water storage (0–60 cm)
in Method B showed more significant fluctuations (Figure 5). Method B had fixed irrigation
times and amounts, and the soil water potential was higher in the root zone than in the
lower layer after irrigation and resulted in downward soil water movement. In contrast,
irrigation began when the soil water content reached the prescribed lower limit; therefore,
the soil water potential was lower in the root zone than in the low layer, causing the
groundwater to move upward into the root zone (Figure 6).
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Table 7. The simulated irrigation schedule for 14 treatments.

Treatments Irrigation Schedule Irrigation Time (d)/Irrigation Amount (mm) Total

A1
Irrigation time 0

Irrigation amount 0 0

A2
Irrigation time 0

Irrigation amount 0 0

A3
Irrigation time 89

Irrigation amount 42 42

A4
Irrigation time/(d) 65 74 82 89 105
Irrigation amount 35.00 36.75 40.25 42.00 47.25 201.25

A5
Irrigation time 64 70 77 83 89 97 109

Irrigation amount 46.55 35.00 38.50 40.25 42.00 45.50 49.00 296.8

A6
Irrigation time 60 66 71 77 83 88 96 103 112 141

Irrigation amount 41.65 35.00 36.75 38.50 40.25 42.00 43.75 47.25 49.00 72.80 446.95

A7
Irrigation time 56 65 69 74 80 85 90 97 103 112 134

Irrigation amount 39.20 35.00 35.00 36.75 38.50 40.25 42.00 45.50 47.25 49.00 75.60 484.05

B1–B7
Irrigation time/(d) 20 40 60 80 100 120 140 160 180
Irrigation amount 38.31 73.79 103.75 97.21 90.89 106.88 45.85 34.44 3.72 594.84

3.2.2. Evapotranspiration Dynamics

Figure 6 shows the accumulated soil evaporation, transpiration, evapotranspiration,
ET0, and irrigation amounts under the different treatments. The amount of soil evaporation
was larger when the groundwater table was shallower, with the soil evaporation reaching
252.6 and 244.1 mm at a depth of 1.0 m and reaching only 68.5 mm and 81.5 mm at
a depth of 4.0 m for Method A and Method B, respectively (Figure 7a). However, the
cotton transpiration was not significantly different for the different groundwater tables and
irrigation methods, showing a range from 485.0 to 505.7 mm for all treatments, and the
amounts of T and E were similar in the two irrigation methods (Figure 7a,b). Except for the
seeding and emergence stages, cotton transpiration was less than soil evaporation because
of the small CC. However, after the emergence stage, the increased, causing larger cotton
transpiration and smaller soil evaporation. As the irrigation amount and time increased, the
soil evaporation and transpiration showed increasing trends (Figure 7d), but the variation
in transpiration was small. This trend occurred because the soil evaporation was higher
after irrigation and resulted in increased soil evaporation. The soil evaporation variation
trend was similar to the variation pattern.

As mentioned above, cotton transpiration was strongly correlated with meteorological
factors and was also correlated with the irrigation amount and soil water content. Cotton
transpiration was described by the logistic curve (Figure 7b), with cotton transpiration
greater than soil evaporation, but the soil evaporation increased significantly or was higher
than transpiration after irrigation, indicating that the irrigation had a great influence on
the soil evaporation. The ET0 was calculated using the meteorological factor by the FAO
56 Penman–Monteith equation [38]. The ET0 directly reflects the evaporation demand by
ambient conditions. The high ET0 in the early stage is due to the increase in evaporation
demand (temperature and radiation), while the actual evaporation (evapotranspiration)
is controlled by the soil surface water content, and the crop transpiration is small at this
stage. Therefore, the high ET0 in the early stage but the evapotranspiration smaller than
ET0 (Figure 7c). With the cotton growing, the cotton transpiration increased significantly
(Figure 7b), the evapotranspiration is gradually close to ET0 and has the same trend,
indicating that the evapotranspiration was dominated by cotton transpiration after the
flowering stage.

257



Agronomy 2022, 12, 213

 

 

 

Figure 7. The dynamic variations in accumulated soil evaporation (a), crop transpiration (b), crop
evapotranspiration (c), and irrigation amount (d).

Ding et al. [45] found that higher soil evaporation occurred in early growing seasons
due to the small canopy in the maize field, particularly after rainfall or irrigation events.
The wet soil surface may have caused increased soil evaporation, and the soil evaporation
gradually decreased as the soil dried [25]. Our research results were similar to the results of
these studies. The soil evaporation was approximately 11% to 34% of the total evapotran-
spiration, and the soil evaporation was noticeably reduced with a shallower groundwater
table and less irrigation. The soil evaporation was influenced by the groundwater table and
showed some differences with the irrigation times and different groundwater table depths.
The surface soil was relatively wet when the groundwater table was shallow (e.g., 1.0 m),
and the soil evaporation was approximately 33% of the total evapotranspiration. For the
deeper groundwater table depth in Method B, the ratio (E/ET) showed a decreasing trend
from 33% to 14%, whereas for Method A, the soil evaporation was only 11% of the total ET,
with treatment 5 showing the smallest ratio of all treatments (Figure 8).
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Figure 8. The variation of soil evaporation (E) and transpiration (T) evaporation in different ground-
water tables and irrigation schedules.

As noted above, previous studies have presented some regression functions between
CC or LAI and T/ET or E/ET to obtain the ET partition [26–30]; however, some functions
neglected metrological factors. As mentioned above, the SWC or E was the input parameter,
and some parameters, including CC, must be acquired by field observations, while the
interaction effect was neglected. Our functions (Equation (5)) were established in correlation
with the SWC, CC, and meteorological factors, and the parameter was calculated by days
after sowing (Equation (6)), considering the interaction effect. Therefore, we provided a
better way to reflect evapotranspiration partitioning and to model water consumption in a
cotton field.

3.2.3. Water Balance in the Root Zone

Table 8 shows the water balance in the root zone, including evapotranspiration, soil
evaporation, cotton transpiration, and soil water and groundwater evaporation. The rela-
tive error was less than 3%, which indicates that the model performs well when quantifying
the water balance in the cotton field. The cotton water consumption showed great differ-
ences under the different treatments. For example, the source of cotton water consumption
was mainly derived from the groundwater when the groundwater table was shallower
in Method A, but the source gradually transformed to irrigation when the groundwater
table was deeper. The cotton water consumption was 826 mm when the groundwater
table remained at a depth of 1 m, almost meeting the cotton water demands. When the
groundwater table was deeper, the groundwater evaporation decreased gradually. The
groundwater evaporation sharply decreased to below 2.5 m. The groundwater evaporation
was 383 mm at 2.5 m, which only partially met the cotton water consumption demand.

The simulated evapotranspiration ranged from 558 to 755 mm, but the cotton transpi-
ration ranged from 485 to 505 mm. The irrigation of cotton was not necessary when the
groundwater table was less than 1.5 m deep because the water source for cotton consump-
tion mainly came from the groundwater. The irrigation amount was greater than 300 mm
when the groundwater table was deeper than 3.0 m.

For Method B, as the groundwater table decreased, the groundwater evaporation
decreased because the irrigation times and amounts were consistent. The groundwater
evaporation reached 199 mm at the groundwater table depth of 1.0 m, which was 27% of
the total evapotranspiration. However, the groundwater evaporation became negative
when the groundwater table was deeper than 3.0 m, indicating that the irrigation caused
the soil water to drain deeply, recharging the groundwater. The deep soil water drainage
showed an increasing trend with increasing groundwater table depth. Therefore, we
conclude that Method A used more groundwater than Method B throughout the growth
period. Method A was more rational because it allowed the use of more groundwater.
Although irrigating the cotton was not necessary when the groundwater table was less
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than 1 m, a shallower groundwater table increased the soil evaporation, thus leading to
more groundwater consumption, which may be harmful to root growth.

Table 8. The water balance component under 14 treatments.

Simulated
Treatments

ET/mm T/mm E/mm ETg/mm
Soil Water Con-
sumption/mm

Irrigation
Amount/mm

Irrigation
Times

Error/%

A1 755.23 502.66 252.57 826.36 −52.90 0.00 0 −2.41
A2 724.00 503.09 220.91 780.66 −41.65 0.00 0 −2.07
A3 620.01 500.01 120.00 610.80 −17.98 42.00 1 −2.39
A4 585.86 505.65 80.20 383.96 8.93 201.25 5 −1.41
A5 558.09 494.75 63.34 238.12 39.53 296.80 7 −2.93
A6 564.76 493.05 71.72 100.54 31.21 446.95 10 −2.47
A7 566.80 498.33 68.48 55.71 42.10 484.05 11 −2.66
B1 729.11 484.99 244.12 199.63 −52.94 594.84 9 −1.70
B2 723.59 497.14 226.46 179.97 −42.43 595.85 9 −1.35
B3 672.99 505.43 167.56 118.33 −20.86 593.22 9 −2.63
B4 628.12 500.22 127.90 48.33 −4.58 595.85 9 −1.83
B5 602.00 495.26 106.74 −5.99 7.44 593.98 9 1.09
B6 585.00 495.89 89.11 −26.54 16.35 595.85 9 −0.11
B7 572.61 491.09 81.52 −46.12 23.17 594.84 9 0.13

4. Conclusions

A model was developed to quantify cotton water consumption and to estimate a
suitable irrigation schedule according to the groundwater depth (1.0–4.0 m). In this study,
two irrigation scheduling methods were considered. In Method A, irrigation was managed
based on the soil water content; in Method B, irrigation was based on the crop water
demand. The simulation results were verified with soil water storage measurements in the
root zone (0–60 cm) and soil water contents at depths of 20 and 150 cm from the cotton
field. Suitable agreement was presented between the simulation results and experimental
data obtained from cotton field experiments, indicating that the model showed suitable
performance.

A new function was established in correlation with the surface soil water content,
crop cover, and reference crop evapotranspiration to calculate the soil evaporation and
determine the evaporation partition. These factors were calculated using the days after
sowing and did not require observations. The interaction effect between meteorological
factors and surface soil water content was also considered and better reflected the real
condition, thus providing a better way to interpret evapotranspiration partitioning.

With a deeper groundwater table depth from 1.0 to 4.0 m, the ratio between the soil
evaporation and evapotranspiration showed a decreasing trend, but Method A showed
a smaller ratio than Method B. In addition, for Method A, the groundwater could supply
enough water to the soil root zone, and irrigation was not necessary when the groundwater
table was less than at a depth of 1.5 m; however, the groundwater could not supply enough
water to meet the crop water consumption demands even if the groundwater table was
at a depth of 1.0 m, and the crops could not use the groundwater when the groundwater
was deeper than 3.0 m in Method B. Therefore, we suggest that the irrigation schedule
should be managed based on the soil water content because this irrigation schedule could
use more groundwater and have a smaller soil evaporation to evapotranspiration ratio.
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Abstract: Mexico, as many countries, relies on its aquifers to provide at least 60% of all irrigation
water to produce crops every year. Often, the water withdrawal goes beyond what the aquifer can
be replenished by the little rainfall. Mexico is a country that has experienced a successful process
of regional development based on the adoption of intensive agricultural systems. However, this
development has occurred in an unplanned way and displays shortcomings in terms of sustainability,
particularly in the management of water resources. This study analysed the case of Costa de Her-
mosillo, which is one of the Mexican regions in which this model of intensive agriculture has been
developed and where there is a high level of overexploitation of its groundwater resources. Based on
the application of a qualitative methodology involving different stakeholders (farmers, policymakers,
and researchers), the main barriers and facilitators for achieving sustainability in water resources
management have been identified. A series of consensus-based measures were contemplated, which
may lead to the adoption of sustainable practices in water management. Useful lessons can be
drawn from this analysis and be applied to other agricultural areas where ground and surface water
resources are overexploited, alternative water sources are overlooked, and where stakeholders have
conflicting interests in water management.

Keywords: intensive agriculture; water management; participatory assessment; stakeholders;
sustainable development

1. Introduction

Of the objectives included in the 2030 Agenda of the United Nations, the eradication
of poverty and hunger and access to drinking water are the most urgent for the survival of
a large part of the population [1]. These objectives are closely related and their fulfilment
is threatened by different factors. First, the population is growing much faster than food
producers’ capacity to respond [2]. It is estimated that the population will increase from
7.7 to 9.7 billion people by 2050 [3]. Furthermore, global economic development has given
rise to the expansion of the population segment classified as middle class, which has a
higher level of income, generating a modification in consumption patterns due to the
evolution of global lifestyles [2]. Consequently, consumer preferences require a greater use
of resources, which threatens the sustainability of the production system. It is estimated that
in order to satisfy global demand for the year 2050, based on current consumption patterns,
the resources equivalent to those of three planet earths would be necessary [4]. In food
production alone, it has been estimated that by the year 2050, an increase in production of
between 25 and 110% will be required, depending on the different possible scenarios [5,6].

As a principal supplier, not only of food but also a wide range of raw materials,
agriculture plays a prominent role in ensuring food security [7]. In addition to satisfying the
growing demand, agricultural production systems must adapt to the consequences of global
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climate change [8]. These consequences include the alteration of rainfall cycles, long periods
of drought and imbalances in the supply of water; more frequent and more unpredictable
and extreme weather phenomena; and changes in soil humidity, evapotranspiration flows
and surface run-off [9,10]. The agricultural expansion and intensification taking place over
the last few decades has enabled unprecedented growth in food production. However,
it has had a severe impact on forest and aquatic systems [11]. Deforestation practices
related to agriculture are the world’s second largest threat in terms of conservation of
biodiversity [12,13], given that approximately three quarters of the world’s forests have
been lost due to this activity [14].

The main limiting factor for the expansion and intensification of agriculture is the
availability of water [15]. Furthermore, as the leading consumer of water resources on a
global level, agriculture has reduced the quality and quantity of available water on a global
level in recent decades [11,16]. Agriculture uses between 60 and 90% of the available water,
depending on the climate and economic development of the region [17,18]. An increase
in irrigation to satisfy the growing demand for food will severely affect the availability of
water for the natural ecosystems and even human supply [19,20]. According to the 2020
United Nations report on water resources, there are currently 2.2 billion people across the
world who have limited access to drinking water [21].

Mexico has become an agricultural power in terms of cultivated area, production
and volume of exports [22]. It is also one of the world’s principal suppliers of food [23].
The country has an area of 198 million hectares, of which approximately 73% is used
for agricultural activities [24,25]. Agriculture accounts for approximately 4% of Gross
National Product (GNP) [26]. In recent years, the share of Mexican agricultural products in
foreign markets has increased, thanks to their quality and variety and the tariff advantages
derived from the North American Free Trade Agreement (NAFTA) [27]. Furthermore,
the agricultural activity has played a fundamental role in the regional development of
Mexico [28]. Approximately 20% of the country’s population is in a situation of food
poverty, and 5% are classified as malnourished [25]. This situation is even more critical in
the rural environment, where agriculture represents 50% of the income of the family [29,30].
According to the 2018 report on the evolution of the Sustainable Development Goals (SDGs),
58.2% of the Mexican rural population lived in a situation of poverty [31]. This figure was
as high as 71.9% among the indigenous population (a total of twelve million people) [31].
It is estimated that the children living in the rural areas have a growth delay of 43.4%, more
than double that of the national average of Mexico, with negative effects on motor and
cognitive development [32,33].

Mexico is a paradigmatic example of a country which has experienced a successful
process of regional development based on the evolution of traditional agricultural models
towards modern agricultural systems [28]. However, this development has occurred in an
unplanned way and displays shortcomings in terms of sustainability [23,31]. Due to its
location and climate conditions, Mexican agriculture is particularly sensitive to the problem
of water. Some of the principal agricultural regions suffer from serious deficit problems in
their water bodies. Furthermore, this country is located in an area particularly vulnerable to
the impacts of global climate change, most of all in terms of water resources and agricultural
management [21,25]. In addition, this development has been based on the use of poor
environmental management practices, fundamentally with respect to the management
of water resources and the unequal distribution of land and infrastructures [23,29]. As
a result, this country is a perfect laboratory for studying the agricultural development
experienced by developing countries. Therefore, the objective of this study is to analyse
one of the Mexican regions (Costa de Hermosillo) that has experienced an agricultural
modernisation process more intensely, based on the overexploitation of its groundwater
resources. Furthermore, it seeks to identify the principal barriers and facilitators for
obtaining sustainability in the management of water resources in this region. Finally, it
attempts to find a series of measures that will contribute to the adoption of sustainable
practices in water management in the agricultural region studied.
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The state of Sonora holds the third position in terms of the value of national agricultural
production, with more than 15327 million pesos (748 million US$), accounting for 13.7%
of the national total and a cultivated area of 411,090 hectares. The Costa de Hermosillo
represents 12% of the total surface area with 49524 hectares and 23.2% of the total value
of production with 3556 million pesos (173 million US$) [34]. The agriculture of the Costa
de Hermosillo has evolved from traditional production systems based on corn, wheat and
cotton crops to an intensive agricultural model based on the use of new technologies and
innovation processes in production, storage and distribution [35,36]. This transformation
began with the coming into force of the North American Free Trade Agreement (NAFTA)
in 1994 [27]. Currently, the predominant crops are tomatoes, pumpkins, asparagus, green
chili, melon, citrus fruits, cucumber, watermelon, grapes and walnuts, which are mainly
exported. The state has a vast hydraulic infrastructure made up of a system of dams and
pipelines for irrigation, which is carried out principally through gravity and flooding [37].

The Colonisation Decree of 1949 establishes three forms of land ownership; small
owners, settlers and ejido members [38]. This ownership structure gave rise to a concen-
tration of water as a result of the prior concentration of land [38]. The small owners have
the private ownership of a farm for which the volume of groundwater used for irrigation
cannot exceed 100 ha based on Clause XV of Article 27 of the constitution. In practice, this
condition is not fulfilled [39]. The small owners have farms of between 200 and 400 ha.
Furthermore, different members of the same family own farms resulting in the formation of
large family farms with thousands of hectares [40]. The settler sector is formed by 66 settler
associations, fruit of the migration from other regions. These associations were granted the
right to collectively farm the low-quality land close to the coast, which were affected by the
salinisation due to the seawater intrusion into the aquifer [41]. These lands have now been
abandoned and the settlers work as day labourers for the small owners or have emigrated,
mostly to the United States [41]. Finally, the ejido sector is made up of 28 scattered rural
villages which were established from 1964 [42]. The crop area of the ejidos is of a low
quality and is leased to the small owners or used for subsistence production in small farms
by the ejido members, who sell their produce directly to consumers [39].

The use and exploitation of the groundwater is regulated through the National Water
Act of 1992 (LAN). Article 3 of this Act allows the exploitation of the aquifers for the
use of the resources through an individual license or concession granted to the private
farmers by the National Water Commission (CONAGUA), which must be registered in the
Public Registry of Water Rights (REPDA) [43]. Article 4 provides that the authority and
administration of the aquifer correspond to the Federal Executive Body, which exercises
these responsibilities directly or through the CONAGUA which, in turn, must be made up
of a technical board and should have close ties with the Basin Councils of the respective
water basin body responsible for monitoring, administrating or managing the use of the
water resources [43].

Table 1 presents a selection of previous literature on the adoption of sustainable
practices in Mexican agriculture. Among these works, the study of soil conservation and
water resource management are highlighted as priority issues. Of particular relevance is
the study of traditional knowledge in subsistence agricultural production, as a basis for the
development of the most vulnerable rural populations. For more detailed information, see
the work of Ochoa-Noriega [23], a bibliometric review of sustainable agriculture in Mexico.
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Table 1. Previous literature on sustainable agricultural management in Mexico.

Title Author and Year

Adoption of phytodesalination as a sustainable agricultural practice for improving
the productivity of saline soils Lastiri-Hernández et al. 2021 [44]

Analysis of energy consumption for tomato production in low technology
greenhouses of Mexico Ramırez-Arias et al. 2020 [45]

Temporal Dynamics of Rhizobacteria Found in Pequin Pepper, Soybean, and
Orange Trees Growing in a Semi-arid Ecosystem Diaz-Garza et al. 2020 [46]

The Use of Water in Agriculture in Mexico and Its Sustainable Management:
A Bibliometric Review Ochoa-Noriega, et al. 2020 [23]

Sustainability prospective for water resources in Northwestern Mexico: Use of
recycled concrete for Agricultural purpose water supply Gutiérrez-Moreno et al. 2020 [47]

Ecological, Cultural, and Geographical Implications of Brahea dulcis (Kunth) Mart.
Insights for Sustainable Management in Mexico Pérez-Valladares et al. 2020 [48]

The sustainable cultivation of Mexican nontoxic Jatropha curcas to produce
biodiesel and food in marginal rural lands Pérez et al. 2019 [49]

Sustainability and environmental management in the Mexican vegetable sector Padilla-Bernal et al. 2019 [50]
Vulnerability, innovation and social resilience in the maize (Zea mays L.)
production: The case of the conservation tillage club of chiapas, Mexico Díaz-José et al. 2018 [51]

The myth behind sustainable African palm crop. Socio-environmental impacts of
palm oil in Chiapas, Mexico León et al. 2017 [52]

TEK and biodiversity management in agroforestry systems of different
socio-ecological contexts of the Tehuacán Valley Vallejo-Ramos et al. 2016 [53]

Degree of sustainability of rural development in subsistence, intermediate, and
commercial farmers, under an autopoietic view point García et al. 2009 [54]

2. Materials and Methods

This study seeks to analyse a complex agricultural system that incorporates different
types of agents with conflicting objectives. Moreover, it aims to reach a consensus-based
proposal for the sustainable management of the water resources available in the system. In
order to fulfil this objective, a participatory qualitative methodology has been developed.
This type of research provides a more in-depth understanding of the topic of study, the vari-
ables involved, the relationships established between them and identifies the critical points,
which enables us to appreciate the interactions in complex systems, such as the case of
water management systems [55,56]. Finally, even though the potential for generalisation of
case studies may be limited, these types of studies can offer a range of possible alternatives
to test in similar contexts and can constitute a model with which to reach consensus-based
measures in other contexts [57].

2.1. Case Study

The study was conducted in the Costa de Hermosillo, in the northeastern region of
Mexico, in the central coastal plain of the state of Sonora (Figure 1). The Hermosillo Coast
stretches 100 km in a straight line between the city of Hermosillo and Bahía de Kino, on the
shores of the Gulf of California. This area has a semi-arid climate, with an annual average
rainfall of less than 100 mm, concentrated in the summer months, an annual average
temperature of 24 ◦C which can fluctuate between a maximum of 47 ◦C and a minimum of
−3 ◦C, and high solar radiation [55].

The Costa de Hermosillo corresponds to irrigation district 051 created in 1953 for
the management of its agricultural water resources [58]. This district is supplied by the
water basin of the Sonora and Bacoachi rivers, which have irregular flows, a low volume
and high infiltration [59]. The principal source of water for irrigation is underground,
being one of the largest pump irrigation districts in the country [41]. In 1980, a total of
498 wells were drilled exclusively for agricultural use, accounting for 90% of the available
water for this sector [60,61]. The main aquifer of the system is identified as 2619. This
aquifer has an average annual recharge of 250 hm3/year and an average extraction of
346 hm3/year [41]. As a result, there is an average annual deficit of 96 hm3/year, which
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has translated into a reduction in the total volume of water, giving rise to a process of
water intrusion, contaminating the available freshwater [58]. It has been declared as one of
the 17 aquifers with saltwater intrusion and as one of the 115 overexploited aquifers on a
national level, having the highest deficit of the 61 existing in the state of Sonora [62]. As a
consequence of the water resource situation, farms that are unproductive due to the salinity
of the soil have been abandoned. The concession of new farms is unfeasible and the rivalry
between the different users of water for irrigation has increased.

 
Figure 1. Location of irrigation districts of the basin organisation: Northwestern Mexico. District
051 Costa de Hermosillo, Sonora, Mexico [34]. Sonora borders the American states of Arizona and
New Mexico.

The administration and management of the use of the groundwater in this area is
carried out through a group license granted to the User’s Association of District 051 (AUDR,
051) [63]. This has led to a greater concentration of resources, predominantly by the private
farmers who have been able to afford the pumping costs and the investments necessary to
meet the standards established in the destination countries for exported crops [40].

2.2. Methods

This study has used a series of methods aiming to compile both primary and secondary
information, based on the different development stages of the research. First, a literature
review was carried out in order to establish the conceptual framework to guide the rest of
the process. Second, a series of interviews with experts was conducted on the topic in order
to identify the possible management alternatives and principal barriers and facilitators for
their adoption. Finally, a workshop was undertaken to assess the different points of view
of the groups of stakeholders involved and to draw up a consensus-based proposal for the
adoption of the measures to apply.

As a starting point, the literature review is considered as a necessary task in all research
studies [63]. The objective of this methodological tool is to identify the most relevant
contributions in which the concepts and theories that should be applied are defined and to
structure the research problem [64]. In this way, the context is obtained and the theoretical
and conceptual foundation is established based on previous studies on the topic and case
studies [65]. Furthermore, the experience gained in other analyses enables us to identify
the principal variables that intervene in the case study and to delimit their structure of
relations, allowing us to establish starting hypotheses [66]. The literature review included
both scientific and grey literature. In the first case, the main literature repositories were
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used, both in English and Spanish, such as Dialnet, Scielo and Scopus. The grey literature
included documents published by official sources such as the National Water Commission,
the Official Journal of Mexico, or the United Nations.

The interviews are more or less structured conversations which generate interaction
between the parties involved with the objective of obtaining knowledge [67]. As an
exploratory method of research, the interviews seek to find new aspects and develop
research questions regarding topics that are not clearly defined [68]. In-depth interviews
generate an exchange of ideas through interactive conversations with stakeholders with the
objective of establishing a close relationship between the participants and the interviewer
in order to obtain exhaustive and significant responses [69]. These interviews are not
structured or semi-structured. They are based on a script with a series of open questions
which are answered during the interview [70]. The method of sample selection was
snowballing. This non-probability sampling technique is based on the fact that a small set
of study subjects recruits future subjects from among their acquaintances. In this way, the
statistical sample grows according to a snowball or domino effect [63]. There were two
advantages to using this methodology. On the one hand, it made it possible to contact
the right person for the purpose of the study. On the other hand, it allowed for a good
predisposition on the part of the interviewee by having the recommendation of another
person. A total of seven experts participated: two from academia, two from business, two
from administration and one technical professional. The experts were selected from among
persons of recognised prestige within the agricultural sector for their leadership position
within a relevant organisation (public or private), number of scientific publications, and/or
years of experience. A script for the open-ended interview is included in the supplementary
material (Supplementary Material 1).

Finally, a workshop was conducted in order to fulfil the objective of designing a
management proposal agreed by all of the parties. This methodology enables different
stakeholders to collaborate in order to share their knowledge on the theme of study [71].
The workshop is a tool that allows the knowledge from different fields to be synthesised and
assessed and conclusions to be drawn [72,73]. Furthermore, it can reinforce the connection
between the researchers and policymakers, enabling the development of knowledge that
can serve as a base with which to generate policies [74]. The use of this methodology
seeks to present all of the knowledge obtained in the previous stages of the research, to
incorporate the different points of view of the stakeholders and to reach a consensus-
based proposal which allows the adoption of sustainable management practices. In the
previous interview phase, farmers, policymakers and researchers were highlighted as the
main stakeholder groups. In the case of farmers, it refers to private owners, as they are
the main decision-makers in land management. The policymakers are responsible for
setting policies and regulations, as well as incentives to encourage behaviour. Researchers
are the main providers of knowledge. Through the snowballing procedure, an equal
number of members were selected from each group, so that there would be a homogeneous
representation of the different groups. In this way, all groups are in the same position to
reach an unbiased consensus.

In order to establish a hierarchy with respect to the level of influence of the different
factors identified regarding the adoption of each of the practices proposed, a workshop
was carried out incorporating the most representative interested parties. The workshop
was attended by representatives of farmers (private landowners), policy makers, and
researchers. Farmers (private landowners) are the ones who are mainly affected by the
proposed measures and who must carry out the practice. Policy makers need to regulate
and set incentives to implement the practices. Finally, researchers are in charge of generating
the necessary knowledge to guide the whole process. Each of these groups contributed
with a total of three participants, so that the different interests and points of view were
considered equally.
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3. Results

The most urgent problem to be addressed, according to the perception of stakeholders,
is the scarcity of water resources and the overexploitation of aquifer Costa de Hermosillo
(designated in the National Water Law as aquifer 2619), caused by the development of
agricultural activities on the Hermosillo Coast. Therefore, different practices have been
identified to increase the supply of water for irrigation through diversification of sources.
Of all the possible alternatives, two sustainable practices capable of contributing to the
recovery of the aquifer through the reduction of abstractions have been selected:

• The harvesting and storage of rainwater (hereinafter P1—practice 1). Given the charac-
teristics of the area of study, the majority of the rainwater is lost through evaporation
or run-off. Rainwater can constitute a low-cost resource, requiring only the instal-
lation of a small infrastructure to enable its channeling and storage [75,76]. Another
relevant aspect is the monitoring of rainfall in order to plan the water needs based on
the harvesting of annual rainfall for the crops [75]. This rainfall monitoring should
include the total duration of rainfall, the intensity (volume of rain per unit of time)
and frequency (the number of precipitations in a given time and with certain char-
acteristics). The compilation of these data enables the design of a climate prediction
model for developing technical processes of infrastructures that control the harvesting
and storage of rainwater for agricultural use.

• The desalination of seawater (hereinafter P2—practice 2). Desalination is a process in
which the salts are eliminated from the water. Although there are different methods of
desalination, the most commonly used is reverse osmosis. In this process, the water is
conducted through semi-permeable membranes under pressure. The salts are retained
in the membranes, while the water molecules circulate.

Five principal barriers and five facilitators were identified for adopting sustainable
practices in the management of irrigation water in the area of study (Figure 2). These factors
were classified into three different groups: institutional, technical and socio-economic.
Barriers include (i) the lack of regulation and the high level of noncompliance with existing
legislation; (ii) the current land ownership structure and the concentration of water use
rights; (iii) the lack of technical knowledge regarding the proposed innovations; (iv) the
low level of rainfall; and (v) the lack of environmental knowledge of farmers. The main
facilitators are (i) the existence of institutional incentives for the adoption of sustainable
practices; (ii) the continuous process of technological innovation in which the sector is
immersed; (iii) the positive disposition of farmers towards technical change; (iv) the
collaborative relationships between the different actors; (v) the sector’s financing capacity.

Figure 2. Main barriers and facilitators for the adoption of sustainable practices.
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Figure 3 illustrates the results regarding the perception of each group of stakeholders
in terms of the level of influence of each barrier to adopting the proposed practices. In this
case, the farmers and policymakers show a higher level of agreement. The two groups
coincide in considering that the principal barriers to adopting the rainwater harvesting
systems are the lack of knowledge of the different aspects of the infrastructure, capacity
and return on investment, and the erratic behaviour of the rainfall, which makes it difficult
to forecast the water needs at any given time, particularly with the impact of climate
change. Meanwhile, the researchers indicated a high degree of noncompliance with the
applicable regulations, the low level of environmental awareness among the farmers and
policymakers, and the power of the farmers to concentrate the water rights derived from
the land ownership regime.

Figure 3. Main barriers to the adoption of sustainable practices by group. P1 (harvesting and storage
of rainwater, practice 1); P2 (desalination of seawater, practice 2).

With respect to the installation of the desalination plant in the area of study, the three
groups identify the ownership regime as the principal obstacle. However, there are different
opinions with respect to the reason for this. The researchers and policymakers believe
that the negotiating capacity of the farmers can impose objectives to increase the crop area
instead of mitigating the overexploitation of the aquifers. On the other hand, the farmers
highlight the need for finance from the administration, given that the group of farmers
is very small and cannot undertake such a large investment which would be borne by
a small number of entrepreneurs. In this case, the rainfall factor is not relevant, as the
desalination of seawater does not depend on climate factors. The principal discrepancy
regarding the different barriers resides in the fact that the researchers continue to denounce
a lack of compliance with the regulations and environmental awareness. The farmers and
policymakers claim that there is a gap in the knowledge on a local level regarding the
impact of the use of desalinated water. In this respect, the researchers argue that there
is sufficient research in favour of the use of this technology, although they acknowledge
that more information on a local level is required even though previous studies have been
carried out [77,78].

Concerning the factors acting as facilitators for the adoption of the proposed practices,
the results are shown in Figure 4. In this case, the responses are more similar as they
refer to both management alternatives. With regards to rainwater harvesting, the three
groups indicate that the modernisation of agriculture experienced over the last few decades
and the disposition of the farmers in following the continuous improvement process
are the principal pillars for the adoption of these practices. The policymakers indicated
that the administration has already made different proposals to encourage technological
development in the region which should serve as an incentive to adopt these practices.
Meanwhile, the researchers surveyed in this study support that the sector has sufficient
financing capacity to cover the investment necessary for the installation of rainwater
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harvesting systems. However, with respect to the installation of the seawater desalination
plant, the researchers surveyed in this study do not believe that the prior innovation process
will be so positive, given that, to date, the sector has not made an investment of such a
scale, so prior experience will not be useful for managing this new additional resource.

Figure 4. Main facilitators for adopting sustainable practices by group. P1 (harvesting and storage of
rainwater, practice 1); P2 (desalination of seawater, practice 2).

As a result of the workshop and sharing the different points of view, the different
groups represented established a series of common points that serve as a guide to design
an action plan for the adoption of the different practices proposed. This action plan is based
on three pillars. Firstly, commitment to the gradual reduction in groundwater extraction
from the aquifer as new water sources become available. Secondly, closer collaboration and
communication between the different groups to obtain and disseminate knowledge and
to improve the level of environmental awareness. Finally, the design of a public-private
financing strategy in order to undertake the investment necessary for the development of
the proposed projects.

First, the three groups (farmers, policy makers, and researchers) agree that the situation
of the aquifer is unsustainable and threatens the continuity of the agricultural activity in the
area in the medium to long term, which is the case of other coastal territories of this region.
To address this problem, the farmers consider as positive the reduction of the extraction
of groundwater for irrigation until the aquifer has been recharged and other alternative
water sources become available for crop irrigation. In this way, the crop areas will not be
extended until the water supply is expanded and the possible surplus will be used for
recharging the underground water bodies.

Second, to guarantee that this commitment is fulfilled, all of the groups agree that
it is necessary to work together to design the best strategy for implementing the new
processes. On the one hand, updated technical knowledge is required that will enable
the optimisation of the investment. This knowledge should be obtained directly on the
farms; so, close collaboration between researchers and farmers is required. Furthermore, the
policymakers should provide coverage and get involved in all of the levels for the process to
be successful. Therefore, there should be a three-way collaboration. On the other hand, the
level of environmental awareness regarding the different processes related to agriculture
should be improved, not only in terms of water management, but also those referring to the
conservation of the soil and air pollution. These factors give rise to a better conservation of
the water resources. Finally, a comprehensive management of the agricultural ecosystem is
the only way to maintain the means of subsistence for future generations.

Third, undertaking the proposed investments, particularly the seawater desalination
plant, requires a considerable volume of investment. According to the consensus reached,
given the general interest in the conservation of the underground water bodies, while
maintaining an agricultural production that supports a good part of the population in the
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area of study, the best option is the development of a joint financing project between the
administration and the entrepreneurs. In this way, the negative externality (negative result
of agricultural activity not incorporated in its costs) generated with the overexploitation of
the aquifer by the farmers would be internalised and the farmers would be compensated
by the positive externality (positive result from agricultural activity not incorporated in its
profits) generated by the creation of jobs and the securing of the rural population.

4. Discussion

Among the different aspects that condition the sustainability of the agricultural pro-
ductive model on the Hermosillo Coast, water supply is a pressing structural problem.
This situation is aggravated by the impact of global climate change on temperature and
rainfall patterns. Therefore, all actors involved agree that measures must be taken. This
is mainly because producers are already aware of the decline in crop productivity due to
high groundwater salinity, that is the only source of water for irrigation. Carrillo-Huerta
and Gómez-Bretón [78] conducted a study on the evaluation of irrigation technology in
a district with an overexploited aquifer in Puebla, Mexico. Among their results, they
identified farmers and policy-makers as the key stakeholder groups in water resources
management. These results are similar to those obtained in the present study. However, in
their case, the path chosen to improve the management of water resources and the state
of the aquifer was on the demand side, whereas in this study the focus was on increas-
ing the supply of the resource. Dévora-Isiordia et al. [79] estimated an increase of one
tonne per hectare in sorghum production by using desalinated water (0.1 dS/m) instead of
brackish well water (10.3 dS/m) in the Yaki Valley, Sonora. In addition, these authors have
tested the technical and economic feasibility of using desalinated water in the study area
by comparing different technical developments [80]. Their results show that the price of
desalinated water (obtained from brackish water) was 0.6 US$/1000L, while for seawater
it was 1.2 US$/1000L. Other studies show that desalinated water can be more costly in
monetary and energy terms when compared to other sources. A report comparing the cost
of alternative water supply and efficiency options in California [81] cited that desalinated
water was the most expensive source of water to groundwater at 2100$/acre foot for large
projects and 2800–4000$/acre foot for smaller projects. The cheapest was captured stormwa-
ter (590$/acre foot). The second least expensive was desalinized brackish water (requires
less energy than to desalinate seawater). It is shown that reused water could be a more
economical alternative source than desalinated seawater. The reason why reused water
was not initially included as an alternative in this study was that in the study area there
are 44 water treatment plants for reuse for industrial purposes and irrigation of gardens
and green areas. Thus, its availability for agriculture is lower. However, the authors of this
work propose this as a future line of research due to the fact that some of these plants are
underused, the price differential indicated, and the improvement in the circularity of urban
water that reuse would entail.

Rainwater harvesting systems, adapted to different types of agricultural practices,
are widely developed, and have demonstrated their viability to supplement irrigation
in semi-arid environments [76]. Loera-Alvarado et al. [82] conducted a study to test the
suitability of runoff water for agricultural use in the State of San Luis Potosí. From their
results, they concluded that the runoff water stored in earthen dams is of excellent quality
for agricultural use (even in soils with very low permeability) and to grow crops sensitive to
salinity and sodium. However, they indicate that it is necessary to assess water suitability
in conjunction with the soil-climatic characteristics of the site in order to establish an
appropriate management system for each specific case. This would be especially necessary
in the case of combining runoff water with desalinated seawater, based on the proposal
of this study. López-Hernández et al. [83] compare a rainwater harvesting system with
groundwater abstraction for domestic and agricultural use in a municipality in the State of
Tlaxcala, Mexico. Their results show that rainwater can be more economically viable than
ground-water abstraction when demand is low. A future line of research could compare
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the demand for the two types of water in the study area to establish the tipping point in
the use of these two resources and influence demand control to minimise water use from
the aquifer.

As already mentioned, in the area of study there is a regulation for the concession of the
rights to extract groundwater for irrigation, establishing a maximum limit per farmer [39].
These rights are obtained through the User’s Association of District 051 (AUDR, 051), up
to the maximum allowed by law [63]. However, in practice this condition is not fulfilled.
There is a lack of control in terms of the area that is irrigated with groundwater and the
amount of water extracted by each concessionaire. On the other hand, the ownership
structure of the land has enabled a small group of owners to control large areas [40]. This
has given rise to the concentration, in parallel, of the water rights, and has relegated a
large part of the population in the area to the role of day labourer. This, in turn, bestows
a high degree of negotiating power to the private owners, with respect to the proletariat
and the administration, given that their decisions have important repercussions on an
environmental, economic and social level for the whole region. From a technical perspective,
there is a lack of knowledge on the impact of the adoption of the practices proposed, due
to their innovative nature in the area of study [84]. Furthermore, the scarcity of rainfall
is a factor to consider, particularly in the case of the practice of rainfall harvesting. In
the case of this specific practice, the development of scenarios to evaluate the technical
and economic feasibility of the investment is much more relevant. Finally, from a social
perspective, the short and medium-term economic criteria play a prominent role in decision-
making. Conversely, the main social and environmental impacts are seen in the medium
and long term [85]. Social impacts include inequality, job insecurity and deterioration of
health, especially for the most vulnerable people [32]. Environmental impacts include
the deterioration and depletion of water bodies, the transformation of the landscape, and
infertility of the soil [6]. In this respect, there is a low level of awareness of the concept
of sustainability among farmers. For their part, the labourers do not have the capacity to
influence the decisions of the landowners. They receive low wages, which they supplement
with subsistence farming on small, unproductive plots of land. In many cases, they are
forced to migrate to improve their living conditions in the USA. Aznar-Sanchez et al. [86]
studied the use of desalinated seawater as a measure to increase irrigation water supply
and improve the sustainability of an overexploited aquifer in Spain. In their case, the main
barriers on the farmers’ side were the low level of knowledge about the impact of using
this type of water, the increased costs (e.g. due to increased fertiliser use) and the price of
water. These last two factors were not identified by the stakeholders in the present study.

Despite these barriers, the area of study has a series of facilitators for the adoption
of sustainable practices in the management of water for irrigation. On the institutional
level, there is a willingness to offer economic and technical consulting incentives for the
adoption of technological innovation, leading to an improvement in exports, all under
the umbrella of NAFTA. From a technical perspective, and also since the entry into force
of NAFTA, the Costa de Hermosillo has experienced a process of innovation, on both a
technological and organisational level [80]. The success of this process has generated great
interest in continuous improvement among the farmers. Furthermore, during this period,
ties have been established between the farmers through the official bodies and through
professionals promoting common interests, such as water management or the marketing of
products [39]. Carrillo-Huerta and Gómez-Bretón [78] identified technical assistance as the
main contribution of public managers to the adoption of sustainable irrigation practices. On
the farmers’ side, these authors found that associationism around irrigation communities
is the main facilitator towards sustainable management that allows aquifer recovery. In
the same way, there is close contact between the agricultural business organisations and
the Public Administration. These relationships constitute facilitators when designing
legislative proposals and providing resources. Finally, as a result of the exporting activity
and its attractiveness for investment, there is sufficient financial capacity to carry out the
investments necessary to improve the agricultural production sector in the area of study,
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provided that a return on the investment can be gained. Carrillo-Huerta and Gómez-
Bretón [78] identified water price as a determining factor in irrigation management in their
study from the demand side. This factor has not been pointed out by the stakeholders
in our study from the supply side perspective. Aznar-Sanchez et al. [86] identified the
possibility of crop diversification and the lack of availability of other alternative sources as
the main facilitators for the use of desalinated seawater for irrigation.

Carrillo-Huerta and Gómez-Bretón [78] point out that the lack of consensus in the
design and planning of irrigation management measures is the main reason for the current
state of deterioration of the aquifer, the result of overexploitation. Therefore, although the
proposal made in this paper may be ambitious, having the agreement of the main stakehold-
ers is a positive starting point. The project to build a seawater desalination plant implies
the mobilisation of a large amount of resources, not only for the desalination facility, but
also for the channelling and transport of water. On the other hand, in 2017, the governor of
the state of Sonora, Claudia Pavlovich, led a proposal for the construction of a desalination
plant with a capacity of 6,307,200 m3 per year devoted to human consumption [87]. This
project has not yet been implemented. However, it is proof that the proposal made in this
paper has broad support and the backing of the political class.

Finally, it should be noted that the main limitation of this study is its exploratory
nature and the qualitative information on which it is based. Therefore, the development of
a broad stakeholder survey is proposed as a future line of research. The purpose of this
survey would be to verify the real support of all stakeholders for the proposal, as well as to
identify any possible conflicting points that may be detected.

5. Conclusions

The objective of this study is to elaborate a proposal to improve the management
of the water resources of the Costa de Hermosillo which would be able to: (i) improve
the situation of overexploitation of the underground water bodies, (ii) contribute to the
sustainability of the agricultural activity in the area, and (iii) reach a consensus between
the different parties involved in order to guarantee the success of its implementation.

The results show that the main concern for different stakeholders to ensure the sus-
tainability of an agricultural system in a semi-arid environment is the availability of water.
Technology offers a variety of alternatives to try to increase water supply through sources
other than overexploited water bodies. In systems based on the use of groundwater with
seawater intrusion problems, alternative water sources such as desalinized seawater, rain-
water, brackish water, and reclaimed municipal water are potential alternative sources for
groundwater and surface waters.

The results also show that the principal driving factors for adopting innovations in
the management of agricultural irrigation are the existence of institutional incentives for
adopting sustainable practices; the continual process of technological innovation in which
the sector is immersed; the good disposition of the farmers towards technical change; the
collaboration relationships between the different stakeholders; and the financing capacity
of the sector. The principal elements that hinder the adoption of these practices are the
lack of regulation and the high level of non-compliance with the legislation in force; the
structure of the current land ownership and the concentration of the water use rights; the
lack of technical knowledge pertinent to the innovations proposed; the low level of rainfall;
and the lack of environmental knowledge of the farmers.

The principal contribution of this study is a proposal designed by the farmers, policy-
makers and researchers of the area to evaluate the implementation of rainwater harvesting
systems and the construction of a seawater desalination plant. This proposal is based on
three pillars of action: (i) the reduction of extractions, (ii) continuous cooperation and (iii)
public-private financing. These pillars constitute the priority lines of work for stakeholders
to carry out the plan designed to improve sustainability in the use of water resources for
irrigation. Therefore, a strong commitment from all stakeholders in these three areas of
action is essential. Furthermore, given that the concentration of land ownership in turn
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leads to a concentration of water use rights, it would be desirable to update the forms of
water governance in a way that it decouples land use from water use.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12010154/s1. Supplementary Material 1: Analysis
of the acceptance of sustainable practices in water management for the intensive agriculture of the
Costa de Hermosillo (Mexico).
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Abstract: Irrigated almond orchards in Spain are increasing in acreage, and it is pertinent to study the
effect of deficit irrigation on the presence of pests, plant damage, and other arthropod communities.
In an orchard examined from 2017 to 2020, arthropods and diseases were studied by visual sampling
under two irrigation treatments (T1, control and T2, regulated deficit irrigation (RDI)). Univariate
analysis showed no influence of irrigation on the aphid Hyalopterus amygdali (Blanchard) (Hemiptera:
Aphididae) population and damage, but Tetranychus urticae Koch (Trombidiformes: Tetranychidae)
damage on leaves was significantly less (50–60% reduction in damaged leaf area) in the T2 RDI
treatment compared to the full irrigation T1 control in 2019 and 2020. Typhlocybinae (principal
species Asymmetrasca decedens (Paoli) (Hemiptera: Cicadellidae)) population was also significantly
lower under T2 RDI treatment. Chrysopidae and Phytoseiidae, important groups in the biological
control of pests, were not affected by irrigation treatment. The most important diseases observed in
the orchard were not, in general, affected by irrigation treatment. The multivariate principal response
curves show significant differences between irrigation strategies in 2019 and 2020. In conclusion,
irrigation schemes with restricted water use (such as T2 RDI) can help reduce the foliar damage of
important pests and the abundance of other secondary pests in almond orchards.

Keywords: leaf damage; Tetranychus urticae; Asymmetrasca decedens; Stigmina carpophila; Polystigma
amygdalinum

1. Introduction

Water used for crop irrigation faces shortages in the near future due to lower rainfall
in the Mediterranean basin and increased evapotranspiration, according to the latest
study published by the European Environmental Agency on climate change, impacts, and
vulnerability in Europe [1].

Almond is considered a drought-tolerant species and its response to water scarcity has
been defined in many studies under deficit irrigation, which minimizes loss of production
and increases fruit quality [2–5]. This, together with the good prices for fruit and the good
future prospects [6], stimulated a steady growth in the total almond crop area in Spain
by 36.3% between 2014 and 2020 [7,8]. This increase occurred mainly in new plantations
that substituted other, less profitable, crops in areas with irrigation rights [9], which means
an increase in irrigated almond acreage of 152.7% (118,202 ha in 2020, around 25% in
Andalucía; MAPA 2015, 2020). Furthermore, studies of efficient water use were also
extended to other typical Mediterranean crops such as olives [10–12].

Recommended deficit irrigation (DI) for Spanish and Portuguese almonds varies
between 1300–1500 and 6500 m3·ha−1 of water [3,4,13,14], depending on the limitations
imposed in the irrigation schedule and the objectives of the study. Reduced irrigation has
an effect on kernel production per ha (with less irrigation, there is less kernel production),
but the efficiency of water use (in terms of kernel production (kg) per water (m3) used) is
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significantly improved [2–5,14]. Secondarily, deficit irrigation in almond has also led to
studies on how it can affect the nutritional quality of the kernel, which generally find clear
improvements in the nutritional and sensory qualities of kernels produced under such an
irrigation regime [15–18].

Almond pests (and diseases) were little studied in Spain until this recent change
in acreage and management, but new interest has led to studies on how they affect the
crop in this new situation [19–23]. Briefly and focused in Andalucía, the main arthropod
pests of almond orchards are aphids (mainly Hyalopterus amygdali (Blanchard)) and mites
(especially Tetranychus urticae Koch, with other secondary species); other groups can have
importance in some locations and moments, such as certain Hemiptera (Asymmetrasca
decedens (Paoli), Monosteira unicostata (Mulsant and Rey), Parlatoria oleae (Colvée)), and
sometimes Coleoptera (Capnodis tenebrionis (L.)) and Lepidoptera (Anarsia lineatella Zeller).
The almond crop has a variety of pathogens that affect it, although the cultivated variety
and management influence the severity of the damage. The most important diseases of
the aerial part are fungi as Colletrotichum acutatum species complex, Monilinia laxa (Aderh.
and Ruhland) Honey, Stigmina carpophila (Lév.) M.B. Ellis, Taphrina deformans (Berk.) Tul.,
and others, and in soil Phytophthora de Bary spp. and Verticillium dahliae Kleb. are the most
important. In other areas where almonds are of particular importance, such as California
(USA), studies on the main pests and diseases of the crop have been carried out for a long
time [24–26].

Arthropod communities in plants (thus specific pests that affect crops) can be influ-
enced by the water status of plants, which influences different physiological processes and
nutritional quality, as many studies have revealed [27–33]. Therefore, a rational approach
to sustainable use of water in different crops should include the effects on the most relevant
biotic factors (pests and diseases) that affect the crops. The effects of deficit irrigation on
arthropod populations and diseases are not usually considered in scientific production, but
recent changes in crop management in Spain to more productive methods have promoted
such studies in super-intensive olive [34,35] and irrigated almond [23,36] orchards.

The present study focused on how crop irrigation management can impact the pres-
ence and population of some arthropod pests and the damage they produce, as well as the
effect on beneficial arthropods, in an almond orchard, and collaterally also the presence of
the most important diseases observed during the study. Specifically, this study compared
two irrigation regimes in an almond orchard over four years, providing a more complete
view of their effects on the crop. The most important result obtained after this long-term
study is that T2, with regulated deficit irrigation (RDI) treatment, produced a sensible
reduction in damage inflicted by two-spotted spider mites and a smaller population of
leafhoppers compared to T1, with more irrigation.

2. Materials and Methods

2.1. Experimental Design

The experiment was conducted in an orchard in Dos Hermanas (province of Sevilla,
Spain), with coordinates 37◦13.805′ N 5◦54.823′ W. It has an area of 29,423 m2, and the
experiment was carried out on 7968 m2. The orchard has 2 cultivated almond (Prunus
dulcis (Mill) DA Webb) varieties, “Vairo” and “Guara”, planted in paired lines, with a tree
spacing of 6 m × 8 m, and the research was carried out with the cultivar “Vairo”. The trees
were 7 years old at the beginning of the experiment in 2017, which lasted until 2020 (a
total of 4 years). The orchard was fertilized and controlled for pests, diseases, and weeds
using the criteria of the owner and advisor technicians. The timing and products used
in the 4 years are listed in Table A1 (Appendix A). Samplings were performed before the
application schedule or several days after it to reduce contact with residues.

The statistical design used complete randomized blocks with 4 blocks and 2 irrigation
treatments. Each experimental plot had 12 trees (4 rows with 3 trees in each row), with
the 2 central trees in each plot used for sampling purposes (corresponding to the “Vairo”
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trees). A repetition of each irrigation treatment was randomly assigned within each block,
making 4 repetitions of each irrigation treatment for the whole experiment.

This study focused on two irrigation strategies: T1, irrigation control, and T2, regulated
deficit irrigation (RDI). The control plots received irrigation to avoid any water stress in
the trees and to meet their evapotranspiration (ETc) needs. With RDI, the use of water was
decreased during a specific growing state of the trees: water stress was applied during kernel
filling (phase II), and the full irrigated conditions were maintained for the rest of the season
(phase I, which ran from full bloom until the beginning of kernel filling, and phase III, the
postharvest period). The RDI plots were irrigated according to this strategy, but limited
to the water resources allowed by the Guadalquivir River Water Authority (Confederación
Hidrográfica del Guadalquivir); this resulted in a 78% reduction in the total amount of water
used for irrigation compared to the control treatment. The irrigation parameters for each
treatment can be found in Tables A2 and A3 (Appendix B), and in more detail in Martín-
Palomo et al. [14]. The average annual water irrigation provided in each treatment during the
4 years of this study was T1 = 594.0 ± 117.7 mm and T2 = 130.5 ± 18.1 mm.

2.2. Sampling Procedure

The sampling period was from March to September/October in each year of the study,
except in 2020, when sampling started in mid-May when COVID-19 pandemic lockdown
restrictions were relaxed. Sampling was performed biweekly, with 18 dates in 2017, 18 in
2018, 13 in 2019, and 14 in 2020.

The 2 central trees of each plot were scouted and 2 shoots (each around 6 cm, with
3–4 leaves) in each cardinal direction per tree (16 branches per plot were observed on each
sampling date) were randomly selected in each sampling date; for statistical analysis, the
mean of each cardinal direction was used, which means 4 values per plot, 16 per treatment,
and 32 on each sampling date. The same procedure was followed for fruits when they were
formed until harvest.

Visual sampling was carried out in different ways (Table 1): presence/absence of
arthropods and diseases; presence/absence of symptoms of damage by feeding of some
arthropods, and in some cases estimated leaf area damage (with an ordinal scale: 0, no
damage; 1, 1–20% of surface damaged; 2, 21–50% of surface damaged; 3, >50% of surface
damaged); and direct count of certain arthropods. Two diseases were easily detected on
leaves and had an important presence: Stigmina carpophila (Lév.) M.B. Ellis (shothole blight,
SB) and Polystigma amygdalinum P.F. Cannon (red leaf blotch, RLB).

Arthropod samples were taken to the laboratory to confirm or elucidate the species.
The specimens were separated following different generic taxonomic guides [37,38] and
specific works [20,39]. Several species were determined with the help of experts only in
particular cases when they were important in relation to the crop. Samples of the most
relevant specimens are kept in the laboratory collection.

2.3. Data Analysis

Repeated-measures ANOVA was used to analyze how the different observed vari-
ables were individually affected by irrigation treatment with the analysis of time-series
abundance data. SPSS (v15.0 for Windows) was used to test whether irrigation treatment
(between-subject effect, with two treatments), time (within-subject effect), and interaction
of time and irrigation treatment were significant in the response variables for each year of
the study. GLM analysis was also performed, pooling data from the 3 or 4 years for each
response variable (using similar types of data) with treatment (fixed factor), year (random
factor), and interaction treatment × year to test whether a general pattern was present.
Data transformations [40] appear in Table 1.

A multivariate principal response curve (PRC) was used for synthesis and global
observation of the possible effects of the treatments under study each year when multiple
variables were concerned. This method was used in agricultural entomology [34,41–43]
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with the same objective of analyzing and interpreting the effect of treatment on a complex
of observed variables (taxon or other).

Table 1. Most important parameters registered for almond sampling in 2017–2020, with type of measure and transformation
used in statistical analysis.

2017 2018 to 2020

Type of Measure Transformation Type of Measure Transformation

Hyalopterus amygdali
Population Scale (0–4), then continous value Log (x + 1) Scale (0–4), then continous value Log (x + 1)

Damage Scale (0–3) Scale (0–3)
Tetranychus urticae

Population Proportion of organs occupied Arcsin
√

p Population count Log (x + 1)

Damage Scale (0–3), then proportion of
leaf area with damage Arcsin

√
p Scale (0–3), then proportion of

leaf area with damage Arcsin
√

p

Asymmetrasca decedens
Population Proportion of organs occupied Arcsin

√
p Population count Log (x + 1)

Damage Proportion of organs with
symptoms Arcsin

√
p Proportion of organs with

symptoms Arcsin
√

p

Phyllonorycter cerasicolella Population count
√

x Population count
√

x
Monosteira unicostata

Population Proportion of organs occupied Arcsin
√

p Population count Log (x + 1)

Damage Scale (0–3), then proportion of
leaf surface with damage Arcsin

√
p Scale (0–3), then proportion of

leaf surface with damage Arcsin
√

p

Hemiberlesia rapax Proportion of organs occupied Arcsin
√

p Proportion of organs occupied Arcsin
√

p
Chrysopidae sp. Population count

√
x Population count

√
x

Euseius stipulatus Population count
√

x Population count
√

x
Other arthropods Population count

√
x Population count

√
x

Stigmina carpophila Proportion of organs occupied Arcsin
√

p Proportion of organs occupied Arcsin
√

p
Polystigma amygdalinum Proportion of organs occupied Arcsin

√
p Proportion of organs occupied Arcsin

√
p

In PRC, the community response under study is represented by a canonical coefficient,
which measures the response to abundance by a designated control, expressed as deviations
from a control community over time. The treatment designated as the control is represented
by a horizontal line, which serves as a reference to assess its relationship with the other
treatment [44]. PRC analysis generates a species weight (or weights of higher taxonomic
groups and observations in our case), plotted on the right vertical axis; weights are used to
indicate which ones follow the plotted community pattern, but only weights higher than
|0.4–0.5| are considered significant [44]. A visual interpretation of the PRC graphs can be
found in Auber et al. [45].

Quantitative tests to determine whether a PRC diagram displays significant variance
due to treatment were performed in R (v3.6.3) with the package “vegan” (v2.5-2), which
uses a Monte Carlo procedure to generate up to 999 permutations. Count data were
transformed with log (x + 1), and presence/absence and leaf damage data were transformed
with arcsin (

√
p) prior to the application of PRC.

3. Results and Discussion

Control of pests, diseases, and weeds was carried out following basically the criteria
of the owner and technicians, and the authors did not interfere with them, although in
some moments certain changes in the timing and products were suggested to coordinate
our sampling schedule with the normal activity in the orchard. Although the effect of the
pesticides could interfere with arthropods and diseases, they were applied throughout the
orchard at the same time, and the only differential factor was the water used in the two
irrigation treatments.

Four years of studying the effect of deficit irrigation in an almond orchard give a
general idea (as shown in the PRC results) that the effect on arthropods and diseases was
not clear at the beginning of the study, and, as happened in a similar study carried out in a
super-intensive olive orchard [34], there was a progressive effect over subsequent years.
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PRC showed a pattern in which a general effect of the irrigation treatment was not
observed in the first two years of the study (2017 and 2018), either in population as density
(p = 0.323 and p = 0.413, respectively, Figure 1a,b), population as proportion (p = 0.893
and p = 0.348, respectively, Figure 2a,b), or damage (p = 0.457 and p = 0.106, respectively,
Figure 3a,b). In the third year (2019), PRC showed a significant effect of irrigation treatment
on damage (p = 0.011; Figure 3c), especially due to the activity of Tetranychus urticae Koch
(Trombidiformes: Tetranychidae), and population (as proportion) was almost significant
(p = 0.05; Figure 2c). However, in the fourth year of the study (2020), the three PRCs showed
a significant effect of irrigation treatment on population density (p = 0.001; Figure 1d),
the population as a proportion (p = 0.001; Figure 2d), and damage (p = 0.001; Figure 3d),
with particular importance of T. urticae, with higher population density and damage in
treatment T1, as shown by its weight on the right vertical axis, which is always opposite
to the canonical value of treatment T2. Other populations also had high weight values,
especially in 2019 (Stigmina, whose weight is opposite to T2, indicating more presence
in T1; Figure 2c) and 2020 (Polystigma, Typhlocibinae; Figure 2d), indicating an effect of
irrigation treatment on their populations.

 

Figure 1. Principal response curves (PRCs) for the most important arthropod taxa whose population density was evaluated
on almond shoots for (a) 2017, (b) 2018, (c) 2019, and (d) 2020. The p values denote the significance of treatment T2 (RDI),
represented as a plotted line, relative to control treatment on all dates based on an F−type permutation test. Arthropod
taxa are shown on the right vertical axis with their weights, which have the same scale as canonical coefficients on the left
vertical axis.

The particular study of arthropods and diseases showed a differential response to
irrigation treatment, hence the final perception of the effect of deficit irrigation. The most
representative groups are described below.

The most important variables observed over four years are shown in Tables 2 and A4
(Appendix C). Aphid Hyalopterus amygdali (Blanchard) (Hemiptera: Aphididae) was one
of the most important pests present in the orchard in the studied period. Its population
was not statistically different between irrigation treatments in any year or taking all years
together (p = 0.707; Table 2), and the damage observed was only significant in 2019 (p < 0.01;
Table 2). The H. amygdali population and the damage it caused were not affected by the
irrigation treatment in the three years during which this species was observed in this
study. The irrigation treatment started in mid-March with the blossom stage, and the
population normally had its peak in May, when deficit irrigation (in T2) was starting. The
small difference in water used in both treatments (and thus the little stress produced) at
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the beginning of the season may explain the similar populations and damage observed in
both treatments [30].

 

Figure 2. Principal response curves (PRCs) of the most important arthropod taxa and diseases, whose presence were
evaluated as the proportion of almond shoots (or fruits) occupied for (a) 2017, (b) 2018, (c) 2019, and (d) 2020. The p values
denote the significance of treatment T2 (RDI), represented as a plotted line, relative to control treatment on all dates based
on an F−type permutation test. Arthropod taxa and diseases are shown on the right vertical axis with their weights, which
have the same scale as canonical coefficients on the left vertical axis.

Figure 3. Principal response curves (PRCs) of most important arthropod taxa showing any type of damage on almond
shoots for (a) 2017, (b) 2018, (c) 2019, and (d) 2020. The p values denote significance of treatment T2 (RDI), represented as a
plotted line, relative to control treatment on all dates based on an F−type permutation test. Arthropod taxa are shown on
the right vertical axis with their weights, which have the same scale as canonical coefficients on the left vertical axis.
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Table 2. Significance (p) of treatment (Tr) and interaction treatment × sampling date (Tr × SD) for important parameters
registered in almond sampling in 2017–2020.

2017 2018 2019 2020 2017–2020

Tr Tr × SD Tr Tr × SD Tr Tr × SD Tr Tr × SD Tr Year Tr × Year

Hyalopterus amygdali
Population 0.644 0.084 0.166 0.039 * 0.184 0.577 -2 - 0.707 0.089 0.181
Damage 1 0.952 - 0.309 - <0.01 ** - -2 - 0.062 - -

Tetranychus urticae
Population 0.166 0.028 * 0.368 0.260 0.826 0.272 <0.01 ** <0.01 ** 0.297 0.133 0.080

Damage 0.114 0.069 0.012 * <0.01 ** <0.01 ** <0.01 ** <0.01 ** <0.01 ** 0.075 0.180 <0.01 **
Asymmetrasca

decedens 0.013 * 0.802 <0.01 ** 0.034 * <0.01 ** 0.063 <0.01 ** <0.01 ** 0.082 0.469 <0.01 **

Phyllonorycter
cerasicolella - 3 - 0.714 0.269 0.814 0.042 * 0.312 0.624 0.621 0.562 0.575

Monosteira unicostata 0.509 0.771 - 3 - - 3 - - 3 -
Hemiberlesia rapax - 3 - - 3 - 0.108 0.760 - 3 -
Chrysopidae sp. 0.497 0.093 0.932 0.046 * 0.606 0.423 <0.01 ** 0.030 * 0.175 0.030 * 0.584
Euseius stipulatus 0.781 0.115 0.269 0.100 0.072 0.382 0.186 0.097 0.316 <0.01 ** 0.205
Other arthropods 0.117 0.214 0.417 0.700 0.403 0.302 0.070 0.313 0.319 0.057 0.231
Stigmina carpophila 0.795 0.187 0.096 0.052 0.014 * 0.308 0.232 0.107 0.420 0.025 * <0.01 **

Polystigma
amygdalinum - 3 - - 3 - 0.146 0.328 <0.01 ** 0.341 0.128 0.113 0.326

Repeated-measures ANOVA was used to analyze most of the data in each individual year. GLM analysis was used to analyze the
years together, although for some response variables (Tetranychus urticae population, Asymmetrasca decedens) the data included only three
available years (2018 to 2020) to use similar population density data. 1 Damage produced by Hyalopterus amygdali was analyzed with the
non-parametric Wilcoxon signed-rank test. 2 COVID-19 restrictions from 15 March to 15 May prevented adequate sampling of this insect.
3 Not present in the sampling period, or with such low presence that it was not included in the analysis. * p < 0.05; and ** p < 0.01.

Tetranychus urticae was present during the four years, but its population was not
influenced much by irrigation treatment: only in 2020, the population was significantly
higher in T1 than in T2 (p < 0.01; Table 2), and taking the density counts of the three years
(2018–2020) together, there were no differences between treatments (p = 0.297; Table 2).
However, the same was not the case for the damage observed in leaves: in three out of the
four years (2018, 2019, and 2020; Table 2), there was a significant effect of the irrigation
treatment, with a reduction in T. urticae damage in T2 compared with T1. Furthermore, al-
though taking the four years together there was no significant effect of treatment (p = 0.075;
Table 2), the treatment × year interaction was significant (p < 0.01; Table 2), indicating
that in some years (that is, in 2019 and 2020) there were significant differences between
irrigation treatments. More statistical results are presented in Table A4 (Appendix C).

The population of the two-spotted spider mite T. urticae was not (in general) affected
by irrigation treatment, except in 2020 (Table 2, Figure 4), but the damage on leaves was
different (Table 2, Figure 5): In 2019 there was low leaf surface damage, corresponding
to low mite populations, but in 2018 and 2020 the damage was much more evident and
substantial, reflecting that T. urticae is one of the most important pests in almond crops
in Spain [20,46]. In some ways, this agrees with Hodson and Lampinen [47], who found
that the Tetranychus pacificus McGregor population or damage increased with high water
availability on leaves and decreased with intermediate water stress in different almond
cultivars in California. Prgomet et al. [13] also observed that almond leaves with RDI
treatment had less water availability compared to full irrigation treatment, although no
mite interaction was studied.
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Figure 4. Seasonal patterns of Tetranychus urticae as (a) proportion of shoots occupied (2017) and (b–d) population density
in shoots (2018, 2019, and 2020, respectively). Note the different y-scales. Solid line represents treatment T1 (Control) and
dotted line represents treatment T2 (RDI). Vertical bars represent exact confidence interval of proportion (a) and standard
error of the mean (b–d).

Figure 5. Seasonal patterns of Tetranychus urticae damage on leaves, measured as the proportion of leaf area with feeding
symptoms for (a) 2017, (b) 2018, (c) 2019, and (d) 2020. Solid line represents treatment T1 (Control) and dotted line represents
treatment T2 (RDI). Vertical bars represent standard error of the mean.
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The Tetranychus urticae population was not clearly different between irrigation treat-
ments from 2017 to 2019 (Figure 4a–c and Table 2) as mentioned above, and only in 2020,
there were clear (and significant) differences between the treatments, with a higher pop-
ulation peak in T1 than in T2 (Figure 4d and Table 2). There was great variability in the
densities reached in 2018–2020 (Figure 4b–d), from peaks of around 1 individual per shoot
in 2019 (Figure 4c) to nearly 20 individuals per shoot in 2018 (Figure 4b). In 2017 and
2020 (Figure 4b,d) there was a significant effect of the sampling date (Table 2), showing
that T. urticae increased its population from mid-June or later. Signs of damage on leaves
produced by T. urticae also varied between years, from very low levels in 2017 (Figure 5a)
to rather high levels in 2020 (Figure 5d), when nearly 55% of the leaf area was affected
in irrigation treatment T1. Leaf damage was clearly observed in 2018, 2019, and 2020
(Figure 5b–d), showing significantly higher damage in T1 than in T2 over the three years
(Table 2). Damage was more evident at the end of the sampling period (September), es-
pecially in 2019 and 2020 (Figure 5c,d), coinciding with the beginning of leaf abscission,
reaching, in general, a 50–60% reduction in leaf damage in T2 compared with T1.

Other authors have studied the effect of irrigation on almond mite populations, such
as Goldhammer et al. [2], who found no differences in T. urticae populations using different
water doses (from 580 to 860 mm) and timing. However, it must be noted that they
evaluated T. urticae in April–June (soon to develop mite populations) and their lowest
irrigation treatment used an annual average of 580 mm (a 33% reduction compared with
their highest treatment), similar to the highest irrigation treatment in this study. Youngman
and Barnes [48] reported a more severe attack of spider mites on water-stressed almond
trees, but it was not repeated in the second year. Using herbaceous plants, English-
Loeb [27,49] observed an effect of irrigation treatment on a T. urticae population: the mites
were more abundant in well-watered and severely stressed plants, and least abundant
in slightly to moderately stressed plants, with a non-monotonic effect of water stress on
their population, an effect about which Hodson and Lampinen [47] discussed. Studies
conducted in soybean [50] showed no significant differences in spider mite populations in
moisture-unstressed and stressed plants, but reductions in photosynthetic rate by spider
mites were greater in the former. Studies have indicated that a moderate water stress level
can save protein production, increasing other components that can play a role in the defense
against phytophagous [33]. Other authors [28] have reported that during water-deficit
stress, foliar nitrogen concentrations can increase in stressed plants, providing a valuable
increase in nutritional quality for herbivores, but this can be counteracted by a reduction in
water potential and water content, which can reduce herbivore feeding, especially those
with piercing-sucking mouthparts.

The lower damage observed by T. urticae in the T2-RDI treatment may have conse-
quences in the next season, because in the post-harvest period (see Tables A2 and A3),
irrigation resumed to almost normal levels, and trees with less damage (especially in the
leaves by spider mites) could store more nutrients to use for better blooming and sprouting
in the next season [51].

Other secondary pests were present in the orchard, such as Typhlocybinae (with
principal species Asymmetrasca decedens (Paoli) (Hemiptera, Cicadellidae)). In the four
years, there were significant differences between irrigation treatments, with a greater
presence (2017) or population (2018–2020) in T1, the more irrigated treatment, than in
T2 (p = 0.013 and p < 0.01, respectively; Table 2). Taking the three years 2018 to 2020
together, there was no significant evidence of the effect of irrigation treatment (p = 0.082;
Table 2), but the treatment × year interaction was significant (p < 0.01; Table 2) in 2018
and 2020. Only in 2017, this group caused damage, with significantly more damage in
treatment T1 than in treatment T2 (not shown).

The presence of Typhlocybinae was constant during the four years of sampling, al-
though always with low populations (no more than 0.35 individuals per shoot; Figure 6),
and almost no damage was observed on leaves and shoots most of the time. The presence
of this group was more noticeable from the end of May to July, and the differences in
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population between the two irrigation treatments were more important in 2018 and 2020
(Figure 6b,d), with a significantly higher population in T1 than in T2. Leafhoppers (Typhlo-
cybinae) presented a small population in the orchard, but under T2, with less irrigation,
had a significantly smaller population in each of the four years of study. This may be
related to better resource availability in T1, and equally to the less suitable environment in
less irrigated treatment, as suggested by Sconiers and Eubanks [28] about arthropods with
piercing-sucking mouthparts. Several leafhoppers are known for their ability to transmit
diseases in different crops [52], and if their population can be maintained at lower levels,
then this can be considered a positive effect.

Figure 6. Seasonal patterns of leafhoppers (Typhlocybinae) in terms of (a) proportion of shoots occupied in 2017 and
(b–d) population density on shoots in 2018, 2019 and 2020, respectively. Solid line represents treatment T1 (Control) and
dotted line represents treatment T2 (RDI). Vertical bars represent exact confidence interval of (a) proportion and (b–d)
standard error of the mean.

Regarding Lepidoptera (principal species was Phyllonorycter cerasicolella (Herrich-
Schäffer) (Lepidoptera: Gracillariidae)), there were no differences in the three years individ-
ually or together (p = 0.621; Table 2). The same was the case with several species or groups
relevant only in one year, such as Monosteira unicostata (Mulsant and Rey) (Hemiptera:
Tingidae) in 2017 (p = 0.509; Table 2) and Coccidae (principal species Hemiberlesia rapax
(Comstock) (Hemiptera: Diaspididae)) in 2019 (p = 0.108; Table 2). More statistical results
are presented in Table A4 (Appendix C).

Two groups of natural enemies were consistently observed during the sampling
period. Chrysopidae (order Neuroptera, with no species identified) was the most regularly
observed in the orchard during the four years of the study; the population was similar
in both irrigation treatments in three years, and taken together there was no effect of
the irrigation treatment (p = 0.175; Table 2). Chrysopidae are among the most important
predator groups in many crops and are also relevant in nut crops such as almonds [20,53],
and in olives, no effect of irrigation treatment was observed on their population [34].
Phytoseiidae (most frequent species was Euseius stipulatus (Athias-Henriot) (Mesostigmata:
Phytoseiidae)) was the second predator group to appear, periodically observed on leaves
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(mainly in May to June), and there was no effect of irrigation treatment on its population
in the four years or when the years were analyzed together (p = 0.316; Table 2). More
statistical results are presented in Table A4 (Appendix C).

Chrysopidae are generalist predators that can prey on a wide range of arthropods
(small larvae/nymphs, their eggs, etc.), but were not observed preying on T. urticae, prob-
ably because of the heavy web produced by the mite, nor in general on any other pest
observed in the study. Regarding phytoseids, E. stipulatus does not prey on mites that
produce a lot of webs, as happens with T. urticae. Additionally, this phytoseid appears
at the end of spring, for a short period of time, earlier than the mite, and feeds on small
arthropods and secretion of the leaves. Although the presence of predators could influ-
ence the population of some arthropods, we do not think that their presence altered the
effect that differential irrigation exerted on pest population or damage, as in T. urticae
in 2020 (Figure 4d). These predators were present in both irrigation treatments, but the
different water applied in each irrigation treatment was the definite factor that could
affect arthropods.

The category “other arthropods” includes arthropod groups (mainly Coleoptera,
Thysanoptera, Hymenoptera, Heteroptera and Araneae) of little quantitative or qualitative
importance in the orchard, and in the four years there was no effect of irrigation treatment
on their population, or when the four years were analyzed together (p = 0.319; Table 2).
More statistical results are presented in Table A4 (Appendix C).

Symptoms of several diseases were observed in the orchard during the sampling
period. The most frequent in the four years was S. carpophila (SB), but in three years there
was no effect of irrigation treatment on its presence in the leaves, and no effect when
the four years were taken together (p = 0.420; Table 2), although the treatment × year
interaction was significant (p < 0.01; Table 2), namely in 2019. Polystigma amygdalinum (RLB)
was less frequent, only clearly detected in 2019 (Table 2), without an effect of irrigation
treatment on its presence, and 2020 (p < 0.01; Table 2), when T2 had more effect than T1, but
taking both years together, the effect of treatment was not significant (p = 0.128; Table 2).
More statistical results are presented in Table A4 (Appendix C).

Stigmina carpophila was the most remarkable disease in the orchard, with a constant
presence during the four-year sampling period, reaching a large presence in some years
(such as in 2018, with a peak of 80% of shoots with symptoms; Figure 7b). Only in 2019,
there was a significant difference between irrigation treatments (Figure 7c and Table 2),
with more symptoms in T1, with more irrigation, than in T2.

The two diseases most frequently observed in the orchard, S. carpophila (SB) and
P. amygdalinum (RLB), did not present clear evidence of the effect of the irrigation treatment
on their occurrence. S. carpophila, P. amygdalinum, and other diseases are common in almond
crops [20,46], especially when the crop is managed in an intensive way, but the cultivar
“Vairo” is not particularly affected by these two diseases, especially RLB [23,54].

The interest of deficit irrigation and its interaction with tree physiology and pests and
diseases impact is also present in other parts of the world: Smith et al. [55] have studied
the positive effect that a combination of RDI and early harvest has on several pests and
diseases in California almonds, thus improving the long-term sustainability of the crop
and IPM programs.
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Figure 7. Seasonal patterns of Stigmina carpophila (shothole blight, SB) presence on leaves, measured as proportion of shoots
with symptoms in (a) 2017, (b) 2018, (c) 2019 and (d) 2020. Solid line represents treatment T1 (Control), and dotted line
represents treatment T2 (RDI). Vertical bars represent exact confidence intervals of proportions.

4. Conclusions

The conclusions obtained in this research are based on one orchard, but for a long
period of four seasons, from 2017 to 2020. The main interest of this work is that the regulated
deficit irrigation (RDI) treatment, T2, as applied in this study, produced a sensible reduction
in damage to trees inflicted by T. urticae than the more irrigated treatment, T1. The positive
effect of T2-RDI was also observed in the form of a smaller leafhopper population compared
to T1. Furthermore, the irrigation treatments applied in this study did not have a differential
effect on two groups of natural enemies (Chrysopidae, Phytoseiidae) or on the diseases
observed in the orchard. Regulated deficit irrigation strategies help to reduce water use in
crops, which in the case of almonds, implies better efficiency of the water used to obtain the
harvest, and in addition to having a positive effect on reducing the presence and damage of
several pests, also helps to regulate the vigor of the plants and, therefore, helps in different
cultivation operations, such as pruning.
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Appendix A

Table A1. Treatments against pests and diseases in the four years of the study.

Date Product Used Used against
Copper oxichloride 52% Diseases31 January 2017

Paraffinic oil 83% Eggs and immature arthropods
16–17 February 2017 Thiophanate-methyl 70% Diseases

1–2 March 2017 Boscalid 26.7% + Pyraclostrobin 6.7% Diseases
18–21 March 2017 Boscalid 26.7% + Pyraclostrobin 6.7% Diseases

4–6 April 2017
Metconazol 9%
Mancozeb 75% Diseases

Deltamethrin 2.5% Aphids
26 April 2017 Azoxystrobin 25% Diseases

Fluopyram 20% + Tebuconazole 20% Diseases16–17 May 2017
Tau-fluvalinate 24% Aphids, leafhoppers

9–11 June 2017

Copper oxichloride 52% Diseases
Tau-fluvalinate 24%

Two-spotted spider miteHexythiazox 10%
Abamectin 1.8 %

19 August 2017 Thiram 50% Diseases

9 September 2017 Imidacloprid 20% Two-spotted spider mite, Monosteira,
Capnodis (beetles)Dimethoate 40%

7 March 2018 Fenbuconazole 2.5 % Diseases
20 March 2018 Tebuconazole 50 % + Trifloxystrobin 25 % Diseases

Fluxapyroxad 7.5 % + Pyraclostrobin 15 % Diseases5 April 2018
Deltamethrin 2.5% Aphids

12 May 2018
Fluopyram 20% + Tebuconazole 20% Diseases

Imidacloprid 20% Aphids, leafhoppers, Monosteira,
Capnodis (beetles)

9 July 2018 Deltamethrin 2.5% Lepidoptera, leafhoppers

21 July 2018 Imidacloprid 20% Aphids, leafhoppers, Monosteira,
Capnodis (beetles)

4 September 2018

Thiacloprid 48 % Lepidoptera
Deltamethrin 2.5% Lepidoptera, leafhoppers

Fenpyroximate 5.12 % Two-spotted spider mite
Mancozeb 75% Diseases

5 October 2018 Acetamiprid 20 % Leafhoppers
Thiophanate-methyl 70%14 February 2019
Copper oxichloride 52% Diseases

15–17 March 2019 Boscalid 26.7% + Pyraclostrobin 6.7% Diseases

4 April 2019
Mancozeb 75%

Trifloxystrobin 50% Diseases

Deltamethrin 2.5% Aphids

12–13 April 2019 Folpet 40 %
DiseasesThiophanate-methyl 70%

27 April 2019 Boscalid 26.7% + Pyraclostrobin 6.7%) Diseases

20–21 June 2019
Copper oxichloride 52% Diseases

Tau-fluvalinate 24% Two-spotted spider mite, Monosteira,
leafhoppers

291



Agronomy 2021, 11, 2486

Table A1. Cont.

Date Product Used Used against
Metconazole 9 %

3–5 March 2020 Boscalid 26.7% + Pyraclostrobin 6.7%
Diseases

17–18 March 2020

Tebuconazole 25 %
DiseasesTrifloxystrobin 50%

Deltamethrin 2.5% Aphids
Acetamiprid 20 %

7 April 2020 Thiophanate-methyl 70% Diseases
22 April 2020 Difenoconazole 4% + Isopyrazam 10% Diseases

10 May 2020

Difenoconazole 25 %

Diseases
Azoxystrobin 20 % + Cyproconazole 8 %

Copper oxichloride 52%
Mancozeb 75%

20 May 2020
Dodine 40 %

DiseasesMancozeb 75%
Deltamethrin 2.5% Aphids, leafhoppers

Captan 47.5 % Diseases1 June 2020 Deltamethrin 2.5% Leafhoppers

17 June 2020
Mancozeb 75% Diseases

Tau-fluvalinate 24% Mites, leafhoppers, lepidoptera
Fenpyroximate 5.12 %

26 August 2020
Copper oxichloride 52% Diseases

Deltamethrin 2.5%
Acetamiprid 20 %

Leafhoppers, lepidoptera

Appendix B

The trees were irrigated with a line of drip emitters (3.8 L·h−1) separated by 0.4 m.
Irrigation scheduling was performed daily with a remote programming device (Ciclon,
C-146 v 3.53, Maher, Almeria, Spain). This device controls each plot in the experimental
orchard. Data from the previous day were used to change the current scheduling. Then,
irrigation was changed daily and the water applied in RDI treatments was estimated
according to the maximum daily shrinkage (MDS) of the trunk and stem water potential
(SWP). Daily irrigation was based on the estimated maximum daily ETc (3 mm) when a
difference of more than 30% of the threshold was measured and was reduced to 1.5 mm
and 0.75 mm when the differences were between 20–30% and 10–20%, respectively. If the
differences were less than 10% or the measured value indicated a better-than-expected
water status, the trees were not irrigated. Irrigation was measured in each plot with a water
meter at the beginning of the measured tree line.

The crop–water status was measured weekly using the midday stem water potential
(ψ) and a pressure chamber (PMS Instrument Company, Albany, OR, USA) for two trees
per plot in each irrigation treatment during the experiment (March to October in the four
years of the study). A full description of the methodology is given in [14]. The irrigation
plan followed in the treatments is provided in Table A2.

Table A2. Irrigation doses and stress levels in irrigation treatments.

Treatment Phase Irrigation 1 Threshold I

1. Control 100% Etc
2. RDI I (full bloom to kernel filling) 600 m3·ha−1 ψ = −1.2 Mpa; signal MDS = 1

II (kernel filling to harvest) 100 m3·ha−1 ψ = −2.0 Mpa; signal MDS = 2.75
III (post-harvest hydration) 300 m3·ha−1 ψ = −1.2 Mpa; signal MDS = 1

1 Theorical amount of irrigation water to be received in treatment 2 (RDI) was around 1000 m3·ha−1 per year, but the final annual average
of water used was 1305 m3·ha−1.

The water stress integral (Table A3) was calculated by Equation (A1) to describe the
cumulative effect of deficit irrigation strategies in the irrigation period:

SI = |Σ(ψ − (−0.2)) × n| (A1)
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where SI is the stress integral, ψ is the average midday stem water potential for any interval,
and n is the number of days in the interval.

Table A3. Average water stress integral (SI, MPa × day) (± SE) in irrigation treatments in the four years of the study.

Treatment Year Total
Phase I

(until Fruit Filling)
Phase II

(until Harvest)
Phase III

(Post-Harvest Hydration)

1. Control 2017 128.6 ± 6.3 25.4 ± 1.6 54.2 ± 3.5 53.3 ± 3.9
2018 99.4 ± 7.4 6.1 ±0.8 53.4 ± 5.2 39.9 ± 2.7
2019 67.2 ± 6.9 7.5 ±1.4 30.6 ± 2.8 29.1 ± 3.0
2020 84.1 ± 14.3 8.8 ± 2.6 40.0 ± 5.9 35.2 ± 6.6

2. RDI 2017 207.8 ± 12.1 31.7 ± 3.0 94.9 ± 4.9 86.3 ± 5.7
2018 148.7 ± 21.9 7.9 ± 1.3 83.8 ± 10.3 57.0 ± 10.7
2019 206.1 ± 12.4 14.8 ± 1.7 110.7 ± 10.4 80.6 ± 3.1
2020 174.5 ± 14.5 18.6 ± 2.7 90.8 ± 7.1 65.1 ± 5.9

Phase II (from kernel filling to harvest) occurred in the following periods: day 151 to 221 (2017), day 168 to 245 (2018), day 135 to 225 (2019),
day 149 to 224 (2020).

Appendix C

The between-subjects analysis of the repeated-measures ANOVA used the following
factors: treatment (two levels of irrigation), block (four levels), and treatment × block.
Tables 2 and A3 only show the results of the treatment factor.

There were four sets of observations for each plot (one for each cardinal direction),
so the total number of observations is 32 for each sampling date. They are distributed in
the ANOVA as treatment, 1 d.f.; block, 3 d.f.; treatment × block, 3 d.f.; error, 24 d.f.; and
intersection, 1 d.f.

The within-subjects analysis in the repeated-measures ANOVA was performed with
the time factor (sampling date) and its interaction with the other between-subject factors
(treatment, block, and treatment × block), but only the results of treatment × sampling
date are presented in Tables 2 and A3. First, we tested whether Mauchly’s sphericity test
was significant. In most cases, the test was significant and the Greenhouse–Geisser degree
of freedom correction was applied.

A GLM analysis of the years taken together is also in the table, although for some
response variables (Tetranychus urticae population, Asymmetrasca decedens) the data used
included only three of the four available years (2018 to 2020), to use similar population
density data. The factors were treatment (fixed factor), year (random factor), and interaction
treatment × year. Degrees of freedom are explained in a footnote to the table.
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