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On the Throughput of the Common Target Area for Robotic
Swarm Strategies

Yuri Tavares dos Passos 1,2,*, Xavier Duquesne 2 and Leandro Soriano Marcolino 2

1 Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Reconcâvo da Bahia, Rua Rui Barbosa,
710. Centro., Cruz das Almas 44380-000, Brazil
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duquesne.xavier.13@gmail.com (X.D.); l.marcolino@lancaster.ac.uk (L.S.M.)

* Correspondence: yuri.passos@ufrb.edu.br

Abstract: A robotic swarm may encounter traffic congestion when many robots simultaneously
attempt to reach the same area. This work proposes two measures for evaluating the access efficiency
of a common target area as the number of robots in the swarm rises: the maximum target area
throughput and its maximum asymptotic throughput. Both are always finite as the number of robots
grows, in contrast to the arrival time at the target per number of robots that tends to infinity. Using
them, one can analytically compare the effectiveness of different algorithms. In particular, three
different theoretical strategies proposed and formally evaluated for reaching a circular target area:
(i) forming parallel queues towards the target area, (ii) forming a hexagonal packing through a
corridor going to the target, and (iii) making multiple curved trajectories towards the boundary of
the target area. The maximum throughput and the maximum asymptotic throughput (or bounds
for it) for these strategies are calculated, and these results are corroborated by simulations. The
key contribution is not the proposal of new algorithms to alleviate congestion but a fundamental
theoretical study of the congestion problem in swarm robotics when the target area is shared.

Keywords: robotic swarm; common target; throughput; congestion; traffic control

MSC: 68T40; 70-10

1. Introduction

Swarms of robots are systems composed of a large number of robots that can only
interact with direct neighbours and follow simple algorithms. Interestingly, complex
behaviours may emerge from such straightforward rules [1,2]. An advantage of such
systems is the usage of low-priced robots instead of a few expensive ones to solve problems.
Robotic swarms accurately projected for simple robots may solve complex tasks with
greater efficiency and fault-tolerance, while being cheaper than a small group of complex
robots oriented for a specific problem domain. They can also be seen as a multi-agent
system with spatial computers, which is a group of devices displaced in the space such
that its objective is defined in terms of spatial structure and its interaction depends on
the distance between them [3]. Swarms have recently been receiving attention in the
multi-agents systems literature in problems such as logistics [4], flocking formation [5],
pattern formation [6] and the coordination of unmanned aerial vehicle swarms [7]. In
such problems relating to spatial distribution, conflicts may be created by the trajectories
of the robots, which may slow down the system, especially when a group is intended to
go to a common region of the space. Some examples where this happens are waypoint
navigation [8] and foraging [9].

The topic of robotic traffic control has been studied for a long time [10–12], but with
the premise that autonomous cars navigate on delimited lanes and that coordination is
needed only at junctions. Even recent related works on multi-agent systems [13–15] also

Mathematics 2022, 10, 2482. https://doi.org/10.3390/math10142482 https://www.mdpi.com/journal/mathematics1
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deal with this problem in a similar way. In [16,17], they also deal with multi-agents
and pathfinding, but not in a situation where the target of every agent is the same area.
Furthermore, distributed solutions are considered here where agents only have local
information, while [16,17] propose centralised solutions. Xia et al. [18] investigate the
topology of the neighbourhood relations between multiple unmanned surface vehicles in a
swarm. They deal with maintaining formation in swarms, but they have to keep virtual
leaders, and their goal is not to minimise congestion.

Moreover, there has not been much research on the problem of reducing congestion
when a swarm of robots is aimed at the same target. Surveys about robotic swarms [19–24]
do not provide information regarding these situations. Even a recent survey on collision
avoidance [25] does not address this issue, though it provides insights into multi-vehicle
navigation. Congestion in robotic swarms is mostly managed by collision avoidance in a
decentralised fashion, allowing for improved algorithm scalability.

However, solely avoiding collisions does not necessarily lead to a good performance
in problems with a common target. For example, Marcolino et al. [26] showed that the
ORCA algorithm [27] reaches an equilibrium where robots could not arrive at the target
despite avoiding collisions. That paper also presented three algorithms using artificial
potential fields for the common target congestion problem, but no formal analysis of the
cluttered environment was conducted. Hence, congestion is still not well understood, and
more theoretical work is needed to measure the optimality of the algorithms. A better
understanding of this topic should lead to a variety of new algorithms adapted to specific
environments. Thus, this paper aims to introduce the first theoretical study on this problem,
which should lead to future enhancements in handling congestion in robotic swarms.

Therefore, this work fits in the literature on mathematical models of swarm robotics,
such as the works by Lima and Oliveira [28], which models a cellular automata ant memory
to control a robot swarm for foraging tasks; Varghese and McKee [29], for pattern transfor-
mation modelling; Li and Chen [30], for box-pushing; Taylor-King et al. [31], which studies
the effect of turning delays on the behaviour of groups of robots; Galstyan et al. [32], for
microscopic robots that reside in a fluid and can detect chemicals; Khaluf and Dorigo [33],
which models swarm performance measures using the integral of linear birth–death pro-
cesses; and Mannone et al. [34], which uses category theory and quantum computing to
model the development of robotic swarm systems. However, as mentioned, these theories
do not yet allow one to better understand swarm congestion.

Furthermore, any elaborated analysis on that subject must investigate the effect of
the increase in the number of individuals on the swarm congestion, as it is desirable for
the system to perform well as it grows in size. If one has a finite measure that abstracts
the optimality of any algorithm as the number of robots goes to infinity, this can be
used as a metric to compare different approaches to the same problem. Thus, this work
presents as a metric the common target area throughput. That is, a measure of the rate
of arrival in this area is proposed as the time tends to infinity as an alternative approach
to analyse the congestion in swarms with a common target area. In network and parallel
computing studies [35,36], asymptotic throughput is used to measure the throughput when
the message size is assumed to have infinite length. The same idea is used here, but instead
of message size, it is applied with infinite time, as if the algorithms run forever. As it will be
presented in the next section, this implies dealing with an infinite number of robots. Thus,
time is being used here instead of message size or bytes, as in computer network studies.

Therefore, the contributions in this paper are the following.

1. A method for evaluating algorithms for the common target problem in a robotic
swarm by using the throughput in theoretical or experimental scenarios is proposed.

2. An extensive theoretical study of the common target problem is presented, allowing
one to better understand how to measure the access to a common target using a metric
not yet used in other works on the same problem.

3. Assuming a circular target area and that the robots are constantly moving at the
maximum linear speed and have a fixed minimum distance from each other, theo-
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retical strategies for entering the area are developed, and their maximum theoretical
throughput for a fixed time and their maximum asymptotic throughput when time
goes to infinity are calculated (or bounds for it). Additionally, the correctness of these
calculations is verified by simulations.

The presented theoretical strategies are based on forming a corridor towards the target
area or making multiple curved trajectories towards the boundary of the target area. For
the corridor strategy, the throughput when the robots are moving towards the target in
square and hexagonal packing formations is also discussed. The theoretical strategies are
evaluated by realistic Stage [37] simulations with holonomic and non-holonomic robots.
These experiments corroborate that whenever an algorithm makes a swarm take less time
to reach the target region than another algorithm, the throughput of the former is higher
than the latter.

Note that the key contribution of this work is not the proposal of new algorithms
to alleviate congestion but a fundamental theoretical study of the congestion problem in
swarms having the same target. The presented strategies are the theoretical grounding
for new distributed algorithms for robotic swarms in our concurrent work [38]. When we
assume that the robots are constantly moving at maximum linear speed and maintaining a
fixed minimum distance, we can provide analytical calculations of the maximum possible
throughput for a given time and bounds or exact value of the maximum asymptotic
throughput for the different theoretical strategies. Based solely on these calculations, we
can compare which strategy is better. However, for robots using artificial potential fields,
it is not straightforward to obtain explicit throughput equations due to the changeability
of those quantities previously assumed constant. Then, in the lack of closed asymptotic
equations, simulations were performed in [38] for the algorithms inspired by our strategies
in order to obtain experimental throughput and compare algorithms for varying linear
speeds and inter-robot distances. As shown by these experimental data, their variation
and the effect of the other robots in the trajectory does affect the throughput. However, the
analytically calculated maximum throughput in this work serves as an upper bound to
the ones obtained from the simulations in more realistic conditions when considering the
mean speed and mean distance between the robots in place of the constant values on the
obtained equations.

This paper is organised as follows. The next section briefly explains the mathematical
notation being used. Section 3 formally defines the common target area throughput and
proves statements about this measure for theoretical strategies that allow robots to enter
the common target area. Section 4 describes the experiments and presents their results to
verify the correctness of the theoretical strategies results. Finally, Section 5 summarises the
results and gives final remarks.

2. Notation

Geometric notation is used as follows.
←→
AB,
−→
AB and AB represent a line passing

through points A and B, a ray starting at A and passing through B and a segment from
A to B, respectively. |AB| is the size of AB.

←→
AB ‖ ←→CD means

←→
AB is parallel to

←→
CD. If a

two-dimensional point is represented by a vector P1, its x- and y-coordinates are denoted
by P1,x and P1,y, respectively.

�ABC expresses the triangle formed by the points A, B and C.�ABC ∼= �DEF and
�ABC ∼ �DEF mean the triangles ABC and DEF are congruent (same angles and same
size) and similar (same angles), respectively. Depending on the context, the notation is
omitted for brevity.’AOB means an angle with vertex O, one ray passing through point A and another
through B. Depending on the context, if only one�EFG is being dealt with, its angles will
be named only by Ê, F̂ and Ĝ. All angles are measured in radians in this paper.

3
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3. Theoretical Analysis

This paper considers the scenario where a large number of robots must reach a common
target. After reaching the target, each robot moves towards another destination which may
or may not be common among the robots. It is assumed that the target is defined by a
circular area of radius s. A robot reaches the target if its centre of mass is at a distance below
or equal to the radius s from the centre of the target. In addition, it is supposed that there is
no minimum amount of time to stay at the target. Additionally, the angle and the speed
of arrival have no impact on whether the robot reached the target or not. In this section,
theoretical strategies are constructed to solve that task and show limits for the efficiency
of real-life implementations, which we developed in a concurrent work [38]. To measure
performance, the following definition is presented.

Definiton 1. The throughput is the inverse of the average time between arrivals at the target.

Informally speaking, the throughput is measured by someone located on the common
target (i.e., on its perspective). It is considered that an optimal algorithm minimises the
average time between two arrivals or, equivalently, maximises throughput. The unit for
throughput can be in s−1. It will be noted f (as in frequency). The rest of the paper focuses
on maximising throughput.

Assume an experiment was run with N ≥ 2 robots for T units of time, such that the
time between the arrival of the i-th robot and the i + 1-th robot is ti, for i from 1 to N − 1.
Then, by Definition 1, f = 1

1
N−1 ∑N−1

i=1 ti
= N−1

∑N−1
i=1 ti

= N−1
T , because ∑N−1

i=1 ti = T. Thus, an

equivalent definition of throughput is given:

Definiton 2. The throughput is the ratio of the number of robots that arrive at a target region,
not counting the first robot to reach it, to the arrival time of the last robot.

The target area is a limited resource that must be shared between the robots. Since
the linear speeds of the robots have an upper bound, a robot needs a minimum amount
of time to reach and leave the target before letting another robot in. Let the asymptotic
throughput of the target area be its throughput as the time tends to infinity. Because any
physical phenomenon is limited by the speed of light, this measure is bounded. Then, the
asymptotic throughput is well suited to measure the access of a common target area as the
number of robots grows.

One should expect that the asymptotic throughput depends mainly on the target size
and shape, the speed of the robots, and the distance between robots. As any bounded target
region can be included in a circle of radius s, only circular target regions will be dealt with
hereafter. If the robots are moving at maximum speed and keeping the distance between
each at a minimum value all the time, then it is also expected that the throughput and
asymptotic throughput reach their maximum value. Thus, it is assumed hereafter that the
robots move at a constant maximum linear speed, v, and the distance between each other is
either constant when possible or no lower than a fixed value, d.

To efficiently access the target area, two main cases are identified: s ≥ d/2 and s < d/2.
There are targets that several robots can simultaneously reach without collisions. That is the
case if the radius s ≥ d/2. Thus, one approach is making lanes arrive in the target region so
that as many robots as possible can simultaneously arrive. After the robots arrive at the
target, they must leave the target region by making curves. However, we discovered [38]
that this approach does not obtain good results in realistic simulations due to the influence
of other robots, although it is theoretically the best approach if the robots could run at a
constant speed and maintain a fixed minimum distance between each other.

The case where s < d/2, when only one robot can occupy the target area simultane-
ously, is of interest. Making two queues and avoiding the inter-robot distance being less
than d is good guidance to work efficiently. Particularly, the case s = 0 offers interesting
insights, so this is discussed next.

4
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Some lemmas and propositions need a long technical treatment to be proven. In order
to avoid the reader missing the main idea of this paper, only their statements are provided.
All proofs are available in the Supplementary Materials.

3.1. Common Target Point: s = 0

Consider the case where robots are moving in straight lines at constant linear speed
v, maintaining a distance of at least d between each other. A robot has reached the target
when its centre of mass is over the target. When s = 0, the target is a point. The first result
is the optimal throughput when robots are moving in a straight line to a target point. It is
illustrated in Figure 1. This section constructs a solution to attain the optimal throughput.

AR1

R2

Figure 1. Two robots, R1 and R2, are moving in straight lines toward a target at A. The angle between
their trajectory is θ. The distance between the two robots over time is denoted by lθ(t).

First, consider two robots, Robot 1 and Robot 2. Their trajectories are straight lines
towards the target. Assume the straight-line trajectory of Robot 1 has an angle θ1 with
the x-axis and the one of Robot 2 has θ2. Define θ2 − θ1 = θ as the angle between the two
lines. The positions of the robots are described by the kinematic Equation (1) below, where
(x1(t), y1(t)) and (x2(t), y2(t)) are the positions of Robot 1 and Robot 2, respectively, and
t ∈ R is an instant of time. Without loss of generality, the origin of time is set when Robot
1 reaches the target, and the target is located at (0, 0). Thus, (x1(0), y1(0)) = (0, 0). τ is the
delay between the two arrivals at the target. Then, (x2(τ), y2(τ)) = (0, 0), andï

x1(t)
y1(t)

ò
=

ï
vt cos(θ1)
vt sin(θ1)

ò
and
ï

x2(t)
y2(t)

ò
=

ï
v(t− τ) cos(θ2)
v(t− τ) sin(θ2)

ò
(1)

In order to find the optimal throughput, this paper starts with its first lemma:

Lemma 1. To respect a distance of at least d between the two robots, the minimum delay between

their arrival is d
v

√
2

1+cos(θ) .

This result leads to Proposition 1.

Proposition 1. The optimal throughput f for a point-like target (s = 0) is f = v
d . It is achieved

when robots form a single line, i.e., the angle between the trajectories of the robots must be 0.

The insight derived from Proposition 1 implies that one should increase the speed of
the robots or decrease the minimum distance between them to increase the throughput. It is
also noted that the optimal trajectory for all the robots is to form a queue behind the target
and Robot 1. As a result, the optimal path is to create one lane to reach the target. When
the angle θ between the path of a robot and the next one is increased, a delay from the
optimal throughput is introduced. For instance, Figure 2 shows the normalised delay for
different angles θ (normalised by dividing τ by τmin = d/v) between two robots, according
to Lemma 1. This figure shows that for an angle of π/3, the minimum delay is 15% higher
than for an angle of 0, and the minimum delay is 41% higher for an angle of π/2.

5
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Figure 2. Normalised delay versus the angle between the trajectories of the robots.

3.2. Small Target Area: 0 < s < d/2

This section supposes a small target area where 0 < s < d/2; hence, two lanes with a
distance d cannot fit towards the target yet. The next results are based on a strategy using
two parallel lanes as close as possible to guarantee the minimum distance d between robots.
Figure 3 describes these two parallel lanes. This strategy is called compact lanes hereafter.
Proposition 2 considers a target area with radius 0 < s ≤

√
3

4 d, and Proposition 3 assumes√
3

4 d < s < d
2 .

goal
Robot 3

Robot 1

Lane 2

Lane 1

d

dp

s

dp Robot 2

Figure 3. Two parallel robot lanes for a small target, illustrating the compact lanes strategy.

Proposition 2. Assume two parallel lanes with robots at constant speed v and maintaining a
constant distance d between them. The throughput of a common target area with radius 0 < s ≤√

3
4 d at a given time T after the first robot has reached the target area is

f (T) =
1
T

Çú
vT

2
√

d2 − (2s)2

ü
+

ú
vT

2
√

d2 − (2s)2
+

1
2

üå
(2)

and is limited by

f = lim
T→∞

f (T) =
v

d
»

1− ( 2s
d )2

. (3)

6
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Proposition 3. Assume two parallel lanes with robots at constant speed v and maintaining a con-
stant distance d between them. The throughput of a common target area with radius

√
3

4 d < s < d
2

at a given time T after the first robot has reached the target area is

f (T) =
1
T

Åõ
vT
d

û
+

õ
vT
d

+
1
2

ûã
(4)

and is limited by

f = lim
T→∞

f (T) =
2v
d

. (5)

Observe that if T = k d
v for any 0 < k ∈ Z is used in (4), the compact lanes strategy can

achieve the throughput of two parallel lanes of robots going in the direction of the target
region when T = k d

v for any k ∈ Z or when T → ∞, even though two robots cannot reach
the target region at the same time.

3.3. Large Target Area: s ≥ d/2

This section focuses on situations where more than two robots can simultaneously
touch the target. Three feasible strategies are presented.

The simplest strategy is to consider several parallel lanes being at a distance d from
each other. However, it is possible to obtain higher throughput. In particular, two other
strategies are identified: (a) using parallel straight line lanes that may be distanced lower
than d and (b) robots moving towards the target following curved trajectories. Strategy
(a) uses more than two compact lanes, extending the strategy presented in the previous
section. By doing this, the robots fit in a hexagonal packing arrangement moving toward
the target region. Strategy (b) uses a touch and run approach. In it, robots do not cross the
target area, they only reach it and return in the opposite direction using curved trajectories
which respect the minimum distance d.

The next section starts with the parallel lanes strategy, which has the lowest asymptotic
throughput over the strategies presented in this section, for comparison with the other
strategies. In particular, it will be used later as a justification for the lowest number of lanes
used in the strategy (b) in (14) in Proposition 7. Following their description and properties,
a discussion comparing them is provided.

3.3.1. Parallel Lanes

It is considered here that the robots are moving inside lanes. The lanes are straight
lines, and the linear speed v of the robots is constant. The lanes are separated by a distance
d, and each robot maintains a distance d from each other. Figure 4 illustrates an example of
this strategy. The first lane, Lane 1, is at the top. The first robot of each lane is located at
(s, s− (i− 1)d) for the Lane i. The next proposition states the throughput for a given time
and the asymptotic throughput for this strategy.

Proposition 4. Assume a circular target region with its centre at (0, 0) and radius s ≥ d
2 and

parallel lanes starting at (s, s− (i− 1)d) for i ∈ {1, . . . ,
ö

2s
d

ù
+ 1}. At each Lane i, the first robot

is located at the point (s, s− (i− 1)d) in the starting configuration. Then, the first robot to reach
the target is located at (s, s− (J − 1)d), for J =

⌊ s
d
⌋
+ 1, if

∣∣s− ⌊ s
d
⌋
d
∣∣ ≤ ∣∣s− ⌈ s

d
⌉
d
∣∣, otherwise

J =
⌈ s

d
⌉
+ 1. The throughput for a given time T after the first robot reaches the target region is:

fp(T) =
1
T

Ñ� 2s
d �+1

∑
i=1

Ni(T)

é
− 1

T
, (6)

for Ni(T) =
⌊

vT−di+dJ
d + 1

⌋
, if T ≥ di−dJ

v , otherwise, Ni(T) = 0, dj = s−
√

s2 − (s− (j− 1)d)2,
and

7
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fp = lim
T→∞

fp(T) =
õ

2s
d
+ 1
û

v
d

. (7)

Target
region

Lane 1

s

d

Lane 2

Lane 3

Lane 4

(0,0)

(s,s)

(s,s-d)

(s,s-2d)

(s,s-3d)

Figure 4. Example of the parallel lanes strategy.

3.3.2. Hexagonal Packing

By extending the compact lanes to more than two lanes, the robots will be packed in a
hexagonal formation. An illustration of this strategy is shown in Figure 5. As it can be seen,
robots from different lanes are still able to move towards the target keeping a distance d
from each other, even though the lanes have a distance lower than d.

target
region

Lane 3

Lane 2
s

d

ss

s

Lane 1

Figure 5. Robot lanes for hexagonal packing.

An upper bound of the asymptotic throughput for the hexagonal packing strategy is
first computed, then the throughput for a given time using this strategy is calculated.

Proposition 5. Assume robots moving at speed v, going to a circular target of radius s. The upper
bound of the asymptotic throughput for the hexagonal packing strategy is

f max
h =

2√
3

Å
2s
d
+ 1
ã

v
d

. (8)

Proposition 5 presents an upper bound of the asymptotic throughput using hexagonal
packing, but it does not tell us which is the best placement of the robots inside a corridor
since the hexagonal formation can be rotated by different angles. Hence, the results about
the throughput considering the placement of the hexagonal packing inside a corridor of
robots going to the target region will be presented. First, however, the following definition
will be needed.

8
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Definiton 3. The hexagonal packing angle θ is the angle formed by the x-axis and the line formed
by any robot at position (x, y) and its neighbour at (x + d cos(θ), y + d sin(θ)) under the target
region reference frame.

Observe that any robot at (x, y) under the hexagonal packing has at most six neigh-
bours located at

(
x + d cos

(
θ
)
, y + d sin

(
θ
))

,
(
x + d cos

(
θ + π

3
)
, y + d sin

(
θ + π

3
))

, . . . ,(
x + d cos

(
θ + 5π

3
)
, y + d sin

(
θ + 5π

3
))

(Figure 6). If θ = π
3 , putting this value in the previ-

ous series results in the first neighbour robot being at (x + d cos(π/3), y + d sin(π/3)) and
the last neighbour robot at

(
x + d cos(0), y + d sin(0)

)
. This is the same result if θ = 0 was

used. Consequently, due to this periodicity, hexagonal packing angles in [0, π
3 ) are assumed.

Target
region

Target
region

Target
region

Figure 6. Example of hexagonal packing with different angles. The robots are the black dots.

The next proposition states the bounds of the throughput in the limit towards the
infinity for hexagonal packing using an arbitrary, but fixed, hexagonal packing angle θ. A
fixed θ is assumed because normally in a robotic swarm the robots rely on local sensing.
In order to obtain the maximum number of robots inside the corridor, all robots should
know the size of the corridor and communicate by local-ranged message sending. It would
take time to send information, and for all robots to adjust their orientation each time a new
robot joins the swarm when using this local sensing approach.

In other words, if the corridor where the robots are going in the direction of the
target is increasing over time, then θ should change over time for the optimal throughput.
However, in practice, changing the hexagonal packing angle implies all robots must turn
to a hexagonal packing angle θ∗ depending on the size of the new rectangle based on the
added robots to it to maximise the number of robots inside the corridor. In addition to the
time to send messages with this parameter, more time would be needed for every robot
to adapt to the updated computed θ∗ because the turning speed of the robots is finite.
Therefore, this paper does not handle this adjustable scenario.

Proposition 6. Assume the robots using hexagonal formation coming to a circular target area with
radius s such that the first robot to reach it was at time 0 at (x0, y0) = (w, 0), for any w ≥ s. For
a given time T, the robots are going to the target at linear speed v, keeping a distance d between
neighbours (0 < d ≤ 2s), using fixed hexagonal packing angle θ ∈ [0, π/3). The throughput for a
given time is given by

fh(T, θ) =
1
T

n+
l −1

∑
xh=−n−l

Ä
�YR

2 (xh)� − �YR
1 (xh)�+ 1

ä
+

1
T

U

∑
xh=B

Ä
�YS

2 (xh)� − �YS
1 (xh)�+ 1

ä
− 1

T
,

(9)

for
⌊
YR

2 (xh)
⌋
≥

⌈
YR

1 (xh)
⌉

and
⌊
YS

2 (xh)
⌋
≥

⌈
YS

1 (xh)
⌉

(if for some xh, either of these conditions
are false, it is assumed that the respective summand for this xh is zero). Additionally, n−l =⌊

2s sin(|π/6−θ|)√
3d

⌋
, n+

l =
⌊

2(vT−s) cos(π/6−θ)+2s sin(|π/6−θ|)√
3d

+ 1
⌋

,

9
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YR
1 (xh) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max

Ç
sin( π

3 − θ)xh − s
d

cos
(
θ − π

6
) ,

− cos( π
3 − θ)xh

sin
(

π
6 − θ

) å
, if θ < π/6,

max

Ç
sin( π

3 − θ)xh − s
d

cos
(
θ − π

6
) ,

vT−s
d − cos( π

3 − θ)xh

sin
(

π
6 − θ

) å
, if θ > π/6,

xh
2
− s

d
, if θ = π/6,

YR
2 (xh) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min

Ç
sin( π

3 − θ)xh +
s
d

cos
(
θ − π

6
) ,

vT−s
d − cos( π

3 − θ)xh

sin
(

π
6 − θ

) å
, if θ < π/6,

min

Ç
sin( π

3 − θ)xh +
s
d

cos
(
θ − π

6
) ,

− cos( π
3 − θ)xh

sin
(

π
6 − θ

) å
, if θ > π/6,

xh
2

+
s
d

, if θ = π/6,

B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¢

2(sin(π/3− θ)(cx − lx) + cos(π/3− θ)(y0 − ly − s))√
3d

•
, if T >

s
v

,¢
−2

√
2svT − (vT)2
√

3d
sin

(
θ +

π

6

)•
, otherwise,

for cx = x0 + vT − s and (lx, ly) = argmin(x,y)∈Z |vT − s + x0 − x|+ |y0 − y|, if T > s
v ,

otherwise, (lx, ly) = (x0, y0), where Z is the set of robot positions inside the rectangle mea-

suring vT − s × 2s for vT − s > 0. If T > s
v or arctan

Å
s
2−sin(θ)(vT−s)√
3s
2 +cos(θ)(vT−s)

ã
< π

2 − θ,

U =
⌊

2(sin(π/3−θ)(cx−lx)+cos(π/3−θ)(y0−ly)+s)√
3d

⌋
, otherwise, U =

õ
2
√

2svT−(vT)2
√

3d
cos

(
θ − π

3
)û

. In

addition, YS
1 (xh) =

dxh−C−θ,x+
√

3C−θ,y−
√

Δ(xh)
2d and

YS
2 (xh) =

⎧⎪⎨⎪⎩
min(L(xh), C2(xh))− 1, if min(L(xh), C2(xh))

= �L(xh)� and T >
s
v

,

min(L(xh), C2(xh)), otherwise,

(10)

C−θ =

ï
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

òï
cx − lx
y0 − ly

ò
, Δ(xh) = 4s2 −

Ä√
3
(
dxh − C−θ,x

)
− C−θ,y

ä2
,

C2(xh) =
dxh−C−θ,x+

√
3C−θ,y+

√
Δ(xh)

2d , L(xh) =
sin( π

2 −θ)(dxh−C−θ,x)+cos( π
2 −θ)C−θ,y

d sin( 5π
6 −θ) , if T > s

v , oth-

erwise L(xh) = sin( π
2 −θ)xh

sin( 5π
6 −θ) , and

lim
T→∞

fh(T, θ) ∈
Å

4vs√
3d2
− 2v cos(θ − π/6)√

3d
,

4vs√
3d2

+
2v cos(θ − π/6)√

3d

ò
. (11)

The upper and lower bounds presented on (11) are below or equal the maximum
asymptotic throughput presented by the Proposition 5, Equation (8). The result of the
Proposition 5 only concerns the maximum asymptotic throughput and does not consider
the hexagonal packing angle θ, while Proposition 6 gives a lower bound and tightens the
bounds for a given θ. Figure 7 presents an example comparison of these equations for two
different values of s. As expected, the maximum asymptotic throughput under the optimal
density assumption (in (8)) is a possible value of the throughput using hexagonal packing
and is above or equal to the interval in (11) for any given θ. However, for practical robotic
swarms applications, a certain hexagonal packing angle must be fixed depending on the
expected height of the corridor, target size and the minimum distance between the robots,
resulting in a throughput below or equal to the upper value presented in Proposition 5.

10
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Figure 7. Limit given by (8) using the circle packing results and the lower and upper bounds of the
hexagonal packing limit by (11) for θ ∈ [0, π/3), d = 1 m, v = 1 m/s and s ∈ {3, 6}m.

On the other hand, due to the discontinuities of (9), it is difficult to obtain an exact
θ that maximises the throughput given the other parameters. In addition, there is no
specific value of θ that achieves the maximum throughput for all possible values of the
other parameters. Interestingly, given a fixed sub-interval of θ, depending on the number
of sample values, new local maxima and minima can arise from these discontinuities.
Additionally, a different parity of the number of samples can produce a global maximum
in even or odd interval points. To illustrate this, Figures 8–11 present the result of this
equation for some randomly generated parameters and a different number of samples of θ
equally spaced and taken from the domain interval, that is, from 0 to π/3, including these
values. Two different orders of magnitude are chosen for the number of equally spaced
points in each plot (a small one, about two orders, and a large one of seven orders), and
different parities are also given (99 and 100 for the small order, and 107 and 107 + 1 for the
large one).

In Figures 8–11, θ is over the x-axis, and the number of robots inside the given rect-
angle is over the y-axis. These plots use v = 1 m/s. The maximum value in each image
is represented by an orange circle, and a rectangle represents the maximum between the
left and the right image. No square means the maximum values in both sides are equal.
Each one of the Figures 8–11 presents two different sets of parameters. In Figures 8 and 9,
99 equally spaced values are shown for θ ∈ [0, π/3) on the left-hand side images and
100 on the right-hand side; then, the maximum on each side is compared, and the best
one is chosen. The same is performed in Figures 10 and 11, but using 107 and 107 + 1.
Figures 8a, 9a, 10b and 11b show an example that θ ≈ π/6 reaches the maximum through-
put, and in Figures 8c,d and 10c,d, the maximum is at θ = 0. Moreover, Figure 9c,d
have their maximum for θ different from the other examples. Figure 8c,d have the same
maximum, despite the plots being different. This also occurs in Figures 10c,d and 11c,d. If
the parameters are known, one can find an approximate best candidate for θ by searching
several values, as presented. However, as far as the authors know, obtaining the true value
which maximises that equation by a closed-form is an open problem.
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Figure 8. Examples of (9) varying θ from 0 to π
3 for different and randomly generated values of T, s,

and d. It continues in Figure 9. (a) For 99 samples, T = 43 s, s = 3 m, d = 1 m. (b) For 100 samples,
T = 43 s, s = 3 m, d = 1 m. (c) For 99 samples, T = 30 s, s = 2.5 m and d = 0.66 m. (d) For
100 samples, T = 30 s, s = 2.5 m and d = 0.66 m.
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Figure 9. Continuation of Figure 8: examples of (9) varying θ from 0 to π
3 for different and randomly

generated values of T, s and d. (a) For 99 samples, T = 4 s, s = 2 m and d = 0.13 m. (b) For
100 samples, T = 4 s, s = 2 m and d = 0.13 m. (c) For 99 samples, T = 100 s, s = 2.40513 m and
d = 1 m. (d) For 100 samples, T = 100 s, s = 2.40513 m and d = 1 m.
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Figure 10. Similar to Figures 8 and 9 but using 107 and 107 + 1 equally spaced points for θ ∈ [0, π/3).
It continues in Figure 11. (a) For 107 samples, T = 43 s, s = 3 m, d = 1 m. (b) For 107 + 1 samples,
T = 43 s, s = 3 m, d = 1 m. (c) For 107 samples, T = 30 s, s = 2.5 m and d = 0.66 m. (d) For
107 + 1 samples, T = 30 s, s = 2.5 m and d = 0.66 m.
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Figure 11. Continuation of Figure 10: examples similar to Figures 8 and 9 but using 107 and 107 + 1
equally spaced points for θ ∈ [0, π/3). (a) For 107 samples, T = 4 s, s = 2 m and d = 0.13 m. (b) For
107 + 1 samples, T = 4 s, s = 2 m and d = 0.13 m. (c) For 107 samples, T = 100 s, s = 2.40513 m and
d = 1 m. (d) For 107 + 1 samples, T = 100 s, s = 2.40513 m and d = 1 m.
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Additionally, notice that whenever the number of samples is odd, the value θ = π/6
is sampled. Observe in these figures that when the maximum is at θ = π/6, it tends to
be higher than the maximum found without considering it. For instance, compare the
maximum found on the pairs (a) and (b) in Figures 8–11. On the other hand, θ = π/6 is not
always the optimal value. Thus, the authors suggest to compute first the value for θ = π/6,
then compare it with the result for a search for the maximum for any chosen number of
samples in the interval from θ ∈ [0, π/3).

3.3.3. Touch and Run Strategy

Now, the touch and run strategy is discussed. Since a robot should spend as little time
as possible near the target, a simple scenario is imagined where robots travel in predefined
curved lanes and tangent to the target area where they spend minimum time on the target.
To avoid collisions with other robots, the trajectory of a robot nearby the target is circular,
and the distance between each robot must be at least d at any part of the trajectory. Hence,
no lane crosses another, and each lane occupies a region defined by an angle in the target
area, denoted by α and shown in Figure 12a.

(a)

s

trajectory

r

r+d/2 

/2

d/2d

r+s 

A

B

C

D

d/2

E

r

(b)

Figure 12. Illustration of the touch and run strategy. (a) Central angle region and its exiting and
entering rays defined by the angle α. (b) Trajectory of a robot next to the target in red.

Figure 12b shows the trajectory of a robot towards the target region following that
strategy. This figure also shows the relationship between the target area radius (s), the
minimum safety distance between the robots (d), the turning radius (r), the central region
angle (α) and the distance from the target centre for a robot to begin turning (dr)—used
as justification for (12) and (13). The green dashed circle represents the whole turning
circle. The robot first follows the boundary of the central angle region—that is, the entering
ray—at a distance of d/2. Then, it arrives at a distance of s of the target centre using a
circular trajectory with a turning radius r. Due to the trajectory being tangent to the target
shape, it is close enough to consider that the robot reached the target region.

Finally, the robot leaves the target by following the second boundary of the central
angle region—that is, the exiting ray—at a distance of d/2. Depending on the value of
α, it is possible to fit several of these lanes around the target. For example, in Figure 13,
when α = π/2, it is possible to fit four lanes. In this figure, robots are black dots, and do is
the desired distance between the robots in the same lane—which is calculated depending
on the values of d, s, r and the number of lanes K as shown later. When robots of all
lanes simultaneously occupy the target region, their positions are the vertices of a regular
polygon—it is represented in the figure by a grey square inside the target region.
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Figure 13. Theoretical trajectory in red, for α = π/2 and K = 4.

The lemma below concerns the distance to the target centre where the robots start
turning on the curved path. It will also be useful in the discussion about experiments using
this strategy in Section 4.4.

Lemma 2. The distance dr to the target centre for the robot to start turning is

dr =
√

s(2r + s)− rd. (12)

Now, a lemma about the turning radius is presented, and then the domain of K and α
are defined in order to calculate the throughput for the touch and run strategy.

Lemma 3. The central region angle α, the minimum distance between the robots d and the turning
radius r are related by

r =
s sin(α/2)− d/2

1− sin(α/2)
. (13)

Proposition 7. Let K be the number of curved trajectories around the target area, α be the angle of
each central area region, and r the turning radius of the robot for the curved trajectory of this central
area region. For a given d > 0 and s ≥ d/2, the domain of K is

3 ≤ K ≤ π

arcsin
Ä

d
2s

ä , and (14)

α =
2π

K
. (15)

Now that the correct parametrisation has been determined for the touch and run
strategy, its throughput is obtained in the next proposition.

Proposition 8. Assuming the touch and run strategy and that the first robot of every lane begins
at the same distance from the target, given a target radius s, the constant linear robot speed v, a
minimum distance between robots d, and the number of lanes K, the throughput for a given instant
T is calculated by

ft(K, T) =
1
T

Å
K
õ

vT
do

+ 1
û
− 1
ã

, for (16)

do = max(d, d′), and (17)
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d′ =

{
r(π − α) + d−2r cos(α/2)

sin(α/2) , if 2r cos(α/2) < d,

2r arcsin
Ä

d
2r

ä
, otherwise,

(18)

with r obtained from (13). In addition,

ft(K) = lim
T→∞

ft(K, T) =
Kv
do

. (19)

Figure 14 presents examples of (19) for some parameters. Observe that the maximum
throughput for different values of s, d and v can be found by a linear search in the interval
obtained by (14).

5 10 15 20 25 30 35
K

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
 (1

/s
)

s=3,d=1
s=3,d=2
s=6,d=1
s=6,d=2

Figure 14. Plot of the asymptotic throughput of the touch and run strategy (given by (19)) for some
values of s and d, in metres, and v = 1 m/s, for the interval of values for K obtained by (14).

3.3.4. Comparison of the Strategies

The parallel lanes strategy has the lowest of the limits concerning u = s
d , the ratio

between the radius of the target region and the minimum distance between the robots. How-
ever, its asymptotic value is still higher than the minimum possible asymptotic throughput
for hexagonal packing just for some values of u. This section will make explicit the de-
pendence on the argument u in every throughput function defined previously to compare
them to this ratio. Let fp(u) = lim

T→∞
fp(T, u) and f min

h (u) be the asymptotic throughput

for the parallel lanes strategy and the lower asymptotic throughput for the hexagonal
packing strategy for a ratio u, respectively. Hence, by Proposition 4, fp(u) = �2u + 1� v

d ,
and by (11) using θ = π/6 as it minimises the lower bound of lim

T→∞
f (T, θ) in Proposition 6,

f min
h (u) = 2√

3
(2u− 1) v

d .

Proposition 9. There are some u <
√

3+2
4−2
√

3
such that fp(u) > f min

h (u), and for every u ≥
√

3+2
4−2
√

3
, fp(u) ≤ f min

h (u).

Figure 15 shows an example of f min
h (u), fp(u) and the maximum possible asymptotic

throughput of the hexagonal packing f max
h (u) = 2√

3
(2u + 1) v

d for u ∈ [0, 10]. Observe that,

from the left side of u = 7, fp(u) has some values above f min
h (u) even though they are below

f max
h (u) for every u.
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Figure 15. Example of u values such that f max
h (u) > fp(u) for v = 1 m/s and d = 1 m.

Because of this proposition, for values of u ≥
√

3+2
4−2
√

3
≈ 7, the hexagonal packing

strategy at the limit will have higher throughput than parallel lanes. However, for values
u <

√
3+2

4−2
√

3
, there is the possibility of the parallel lanes strategy being better than hexagonal

packing. As there is not an exact asymptotic throughput for the hexagonal packing strategy
for a given angle θ, one can numerically find the best θ using large values of T on (9); then,
after choosing θ, the numerical approximation of the asymptotic throughput using this
fixed θ and those T values is calculated. This result can be compared with the throughput
for the same large values of T for the parallel lanes strategy using (6). Furthermore, in a
scenario with the target region only being accessed by a corridor with a finite height, the
maximum time T can be inferred by its size, and then the exact throughput for this specific
value can be calculated by (9) and (6) as stated before, but using only this specific value T,
instead of a set of large values, to decide which strategy is more suitable.

Let fh(T, θ, u) and fp(T, u) be (9) and (6) making explicit the parameter u. Let θ∗ be
the outcome from the search of the θ, which maximises fh(T, θ, u) by numeric approxima-
tion. Thus, define fh(T, u) = fh(T, θ∗, u). Figure 16 illustrates the result of the procedure
mentioned above for T = 10,000 for 100 equally spaced values of u ∈ [0, 7] and seeking the
maximum throughput using 1000 evenly spaced points between [0, π/3) to find the best θ
for the hexagonal packing strategy. Then, it is compared with the result for θ = π/6 as ex-
plained previously when Figures 8–11 were discussed. Observe that for u ∈ [0.5, 0.9] there
is some values for which fh(10,000, u) < fp(10,000, u). Figure 17 shows this by 100 equally
spaced values of u ∈ [0.4, 1] for different values of v. This occurs because, for such values
of u, using square packing fits more robots inside the circle over the time than hexagonal
packing, as shown in Section 4.5.

Figure 16. Comparison of fp(T, u) and fh(T, u) for u ∈ [0, 7], T = 10,000 s, v = 1 m/s and d = 1 m.
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(a) (b)

Figure 17. Comparison of fp and fh for u ∈ [0.4, 1], T = 10,000 s, v ∈ {0.1, 1} m/s and d = 1 m.
The difference in the lines of fh is due to θ∗ being different for each value of v. (a) v = 0.1 m/s;
(b) v = 1 m/s.

Additionally, the asymptotic throughput of the touch and run strategy, ft(u) =
lim

T→∞
ft(T, u), for higher values of u is greater than the maximum possible asymptotic

value of the hexagonal packing f max
h (u) = 2√

3
(2u + 1) v

d , as shown later by numeric exper-
imentation. Before presenting this result, it is necessary to verify which values of u are
allowed by ft(u) and to express the asymptotic throughput of the touch and run strategy
from Proposition 8 in terms of the ratio u.

From Proposition 7, the possible number of lanes K is in {3, . . . , K(u)} with
K(u) =

ö
π

arcsin
Ä

1
2u

äù. Consequently, ft(u) is only allowed for any u ≥ 1√
3
. In fact, by

Proposition 7, K ≥ 3, then π

arcsin
Ä

1
2u

ä ≥ ö π

arcsin
Ä

1
2u

äù ≥ 3 ⇒ π
3 ≥ arcsin

Ä
1

2u

ä
⇔ sin

(
π
3
)
≥

1
2u ⇔

√
3

2 ≥ 1
2u ⇔ u ≥ 1√

3
.

The algebraic manipulations for expressing the asymptotic throughput of the touch
and run strategy from Proposition 8 is shown below in terms of the ratio u. The asymptotic
throughput expressed in (19) is

Kv
do

=
K
do
d

v
d
=

K
max(d,d′)

d

v
d
=

K
max(1, d′

d )
v
d

, (20)

for an integer K ∈ {3, . . . , K(u)}. From (15), α = 2π
K , and, from (13), r

d =
s
d sin(α/2)− d

2d
1−sin(α/2) =

u sin( π
K )− 1

2
1−sin( π

K )
def
= r(u, K), resulting in

d′

d
=

{
r
d (π − α) + d−2r cos(α/2)

d sin(α/2) , if 2r cos(α/2) < d,

2 r
d arcsin

Ä
d
2r

ä
, otherwise,

[by (18)]

=

⎧⎨⎩ r
d

Ä
π − 2π

K

ä
+

1−2 r
d cos( π

K )
sin( π

K ) , if 2 r
d cos( π

K ) < 1,

2 r
d arcsin

Ä(
2 r

d
)−1ä, otherwise,

=

⎧⎪⎪⎨⎪⎪⎩
r(u, K)

Ä
π − 2π

K

ä
+

1−2r(u,K) cos( π
K )

sin( π
K ) ,

if 2r(u, K) cos( π
K ) < 1,

2r(u, K) arcsin
Ä

1
2r(u,K)

ä
, otherwise,

def
= d′(u, K).

(21)

Thus, from (20) and (21), ft(u, K) = K
max(1,d′(u,K))

v
d , and the upper throughput for

the touch and run strategy in terms of u is given by ft(u) = maxK∈{3,...,K(u)} ft(u, K) =
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maxK∈{3,...,K(u)}
K

max(1,d′(u,K))
v
d = K∗(u)

max(1,d′(u,K∗(u)))
v
d , for some function K∗(u) that finds this

maximum in {3, . . . , K(u)}. Similarly, for a fixed maximum time T, by (16),
ft(T, u) = max

K∈{3,...,K(u)}
ft(K, T, u).

Figure 18 presents a comparison of the asymptotic throughput ft(u) and the lower and
upper values of the asymptotic throughput of the hexagonal packing f min

h (u) and f max
h (u)

for values of u ranging from 1/
√

3 to 1000. Observe that the asymptotic throughput of the
touch and run strategy is greater than the maximum possible asymptotic throughput of
the hexagonal packing strategy for almost all values of u, except for some in (1.12, 1.25)
(Figure 18b).

Additionally, numerical experiments for ft(T, u) and fh(T, u) are performed using fixed
time T = 10,000 in (16), (9) and u ∈ [1/

√
3, 7]. For finding θ∗, the same procedure is applied,

which was described before to compare fh(T, u) and fp(T, u). Figure 19 shows the result.
It suggests the touch and run strategy has higher throughput than hexagonal packing for
large values of T. Although hexagonal packing has lower asymptotic throughput than
the touch and run strategy for almost all u values, it is suitable for u < 1√

3
whenever it

surpasses the parallel lanes strategy.
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Figure 18. Graph varying u for f min
h (u), f max

h (u) and ft(u) with v = 1 m/s and d = 1 m for different
intervals of u. In (a), f min

h (u) and f max
h (u) are almost overlapped. In (b), ft(u) > f max

h (u) for all u,
except in an interval within (1.12,1.25). (a) u ∈ [1/

√
3, 1000]; (b) u ∈ [1/

√
3, 1.25].

Figure 19. Example for T = 10,000 s, v = 1 m/s, d = 1 m and 100 equally spaced points of
u ∈ [1/

√
3, 7]. fh(T, u) < ft(T, u), albeit f max

h (u) ≥ ft(T, u) for a few values of u < 1.5.

For real-world applications and assuming the robots are constantly at maximum
linear speed and at fixed distance between other robots, the hexagonal packing strategy
is adequate for a situation where the target is placed in a constrained region, for example,
walls in north and south positions. In this example, the number of lanes used in the touch
and run strategy would be reduced because of the surrounding walls. In an unconstrained
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scenario, if the ratio u and the maximum time T are known, the throughput value of the
hexagonal packing strategy from (9) (for the θ which maximises it) can be compared with
the throughput of the touch and run strategy from (16) (for K∗(u)) to choose which strategy
should be applied. However, assuming a constant speed and a fixed minimum distance
between robots in a swarm is not practical because other robots influence the movement in
the environment. Hence, these strategies are the inspiration to propose novel algorithms
based on potential fields for robotic swarms in [38].

4. Experiments and Results

To evaluate this approach, several simulations were executed using the Stage robot
simulator [37] for testing the equations presented in the theoretical section (Section 3).
Hyperlinks to the video of executions are available in the captions of each corresponding
figure. They are in real-time so that the reader can compare the time and screenshots
presented in the figures in this section with those in the supplied videos (The source codes
of each experimented strategy are in https://github.com/yuri-tavares/swarm-strategies,
accessed on 12 June 2022).

Experiments were executed for all strategies considering s > 0. We could not make
experiments for point-like targets because a point with a fixed value is nearly impossible to
be reached by a moving robot in Stage computer simulations due to the necessity of exact
synchronization of the sampling frequency of positions made by the simulator and the
speed of the robot. Hence, a circular area with a radius s > 0 around the target must be
used to identify that a robot reached it. After presenting the experiments and results for all
strategies for circular target region with radius s > 0, they are compared experimentally
considering the analysis previously discussed in Section 3.3.4.

It is saved for each robot its arrival time in milliseconds since the start of the experiment.
The arrival time of every robot is subtracted by the arrival time of the first robot. By doing
so, the experiment is assumed to begin in time T = 0 without worrying about the initial
inertia. After this, the number of robots (N) is registered for each time value (T).

To alleviate some of the numerical errors caused by the floating-point representation,
rounding on the 13th decimal place was used before using floor and ceiling functions
on the equations presented. For example, in contemporary computers, by using double
variables in C or float in Python, if you divide 9.6 by 1.6, the result is 5.999999999999999 for
15 decimal places formatting, but it should be 6. If the floor function was applied to the
previous result, the outcome would be 5 instead of the expected 6.

For all experiments in this section, the robots are distant from each other by d = 1 m.
In the figures of this section, black robots indicate they reached the target, and red did not.
In addition, the experiments shown on this section were not repeated because the linear
speed and initial positions are constant, so there is no random aspect, and the same results
are obtained for different runs.

4.1. Compact Lanes

For compact lanes simulations, v = 1 m/s, and the first robot to reach the target is at
the bottom lane and starts at the target. For a target area radius s, such that 0 < s <

√
3d/4,

s = 0.3 m, and for
√

3d/4 ≤ s < d/2, s = 0.45 m. Figure 20 shows screenshots of the
simulation using s = 0.3 m during T = 7.1 s and Figure 21 for s = 0.45 m and T = 10.1 s.
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(a)

(b)

(c)

(d)

Figure 20. Simulation on Stage for compact lanes strategy using s = 0.3 m, d = 1 m during T = 7.1 s.
Available on https://youtu.be/e1cWJzWhQmQ, accessed on 12 June 2022. (a) 0 s: beginning of the
simulation; (b) After 2.7 s; (c) After 6.7 s; (d) 5 s: ending of the simulation.

(a)

(b)

(c)

(d)

Figure 21. Simulation on Stage for compact lanes strategy using s = 0.45 m, d = 1 m during
T = 10.1 s. Available on https://youtu.be/9OXGC1w83j0, accessed on 12 June 2022. (a) 0 s: begin-
ning of the simulation; (b) After 3.5 s; (c) After 7 s; (d) 10.1 s: ending of the simulation.
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Experiments were run in order to verify the throughput for a given time and the
asymptotic throughput calculated by (2) to (5). Figure 22 shows the throughput for different
values of time obtained by the experiments in Stage, i.e., (N− 1)/T, in comparison with the
calculated value by (2) and (3) for s = 0.3 m and by (4) and (5) for s = 0.45 m. “Simulation”
stands for the data obtained from Stage, “Instantaneous” for the equations of the throughput
for a given time calculated in (2) and (4) and “Asymptotic” for the asymptotic throughput
obtained from (3) and (5). The mentioned results of the equations match the data obtained
from simulations. These figures confirm that the equations presented in the theoretical
section agree with the throughput obtained by simulations.
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Figure 22. Throughput versus time plot for compact lanes strategy for different values of s.

4.2. Parallel Lanes

The parallel lanes strategy was experimented for v = 1 m/s and s ∈ {3, 6} m.
Figures 23 and 24 present screenshots from executions using these parameters.

(a) (b)

(c)

Figure 23. Simulation on Stage for parallel lanes strategy using s = 3 m, d = 1 m during T = 13 s.
Available on https://youtu.be/2Y1RHc9YVaw, accessed on 12 June 2022. (a) 0 s: beginning of the
simulation; (b) After 6.5 s; (c) 13 s: ending of the simulation.
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(a) (b)

(c)

Figure 24. Simulation on Stage for parallel lanes strategy using s = 6 m, d = 1 m during T = 16 s.
Available on https://youtu.be/TVdka65fi1g, accessed on 12 June 2022. (a) 0 s: beginning of the
simulation; (b) After 8 s; (c) 16 s: ending of the simulation.

To verify the throughput for a given time calculated by (6) and its asymptotic value as
in (7), they are compared with the throughput obtained from Stage simulations. Figure 25a
presents these comparisons. “Simulation” stands for the data obtained from Stage, “In-
stantaneous” for the equations of the throughput for a given time calculated in (6), and
“Asymptotic” for the asymptotic throughput obtained from (7). As expected, the values
of (6) approximate to (7) as time passes. Additionally, observe that the values from (6)
are almost aligned with the values from the simulation, except for some points. The dif-
ference in those points is due to the floating-point error discussed at the beginning of
Section 4 that happens in the division before the use of floor or ceiling functions used on (6).
Figure 25b shows the number of robots versus the time of arrival of the last robot for the
same data used in Figure 25a. As the running time is proportional to the number of robots
in the experiments, observe that the higher throughput per time is reflected as a lower
arrival time of the last robot per the number of robots. In addition, note that the values
tend to infinity as the horizontal axis values grow.
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Figure 25. Plots for the experiments of parallel lanes strategy for s ∈ {3, 6}m. (a) Number of robots
versus throughput. (b) Number of robots versus the time of arrival of the last robot.

4.3. Hexagonal Packing

The hexagonal packing was experimented for v = 1 m/s and the combination of the
following variables and values: s ∈ {3, 6}m and θ ∈ {0, π/12, π/6, 5π/18}. Figures 26–33
present screenshots from executions using these parameters.
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(a)

(b)

(c)

Figure 26. Simulation on Stage for hexagonal packing strategy using s = 3 m, θ = 0 during T = 9.8 s.
Available on https://youtu.be/6_LgZWFOWd0, accessed on 12 June 2022. (a) 0 s: beginning of the
simulation; (b) After 4.9 s; (c) 9.8 s: ending of the simulation.

(a)

(b)

(c)

Figure 27. Simulation on Stage for hexagonal packing strategy using s = 3 m, θ = π/12 during
T = 10 s. Available on https://youtu.be/Wji8XlSQJBQ, accessed on 12 June 2022. (a) 0 s: beginning
of the simulation; (b) After 5 s; (c) 10 s: ending of the simulation.
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(a)

(b)

(c)

Figure 28. Simulation on Stage for hexagonal packing strategy using s = 3 m, θ = π/6 during
T = 10 s. Available on https://youtu.be/szOBU8no_sU, accessed on 12 June 2022. (a) 0 s: beginning
of the simulation; (b) After 4.9 s; (c) 10 s: ending of the simulation.

(a)

(b)

(c)

Figure 29. Simulation on Stage for hexagonal packing strategy using s = 3 m, θ = 5π/18 during
T = 10 s. Available on https://youtu.be/jRLgaF7Te1Q, accessed on 12 June 2022. (a) 0 s: beginning
of the simulation; (b) After 4.9 s; (c) 10 s: ending of the simulation.
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(a)

(b)

(c)

Figure 30. Simulation on Stage for hexagonal packing strategy using s = 6 m, θ = 0 during T = 9.8 s.
Available on https://youtu.be/v0FK8YpGrL8, accessed on 12 June 2022. (a) 0 s: beginning of the
simulation; (b) After 4.9 s; (c) 9.8 s: ending of the simulation.

(a)

(b)

(c)

Figure 31. Simulation on Stage for hexagonal packing strategy using s = 6 m, θ = π/12 during
T = 10.1 s. Available on https://youtu.be/OBS_HADH5OE, accessed on 12 June 2022. (a) 0 s:
beginning of the simulation.; (b) After 5 s; (c) 10.1 s: ending of the simulation..
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(a)

(b)

(c)

Figure 32. Simulation on Stage for hexagonal packing strategy using s = 6 m, θ = π/6 during
T = 10 s. Available on https://youtu.be/-KX7ziOp8b0, accessed on 12 June 2022. (a) 0 s: beginning
of the simulation.; (b) After 4.9 s; (c) 10 s: ending of the simulation.

(a)

(b)

(c)

Figure 33. Simulation on Stage for hexagonal packing strategy using s = 6 m, θ = 5π/18 during
T = 10 s. Available on https://youtu.be/GRYRnH5CrhU, accessed on 12 June 2022. (a) 0 s: beginning
of the simulation; (b) After 4.9 s; (c) 10 s: ending of the simulation.
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To evaluate the throughput for a given time and angle calculated in (9) and the
bounds on the asymptotic throughput as in (11), they are compared with the throughput
obtained from Stage simulations. Figure 34 presents these comparisons. Observe that the
values from (9) are almost aligned with the values from the simulation, except for some
points. The difference in those points is also due to the floating-point error—discussed in
the introduction of Section 4—over the divisions and trigonometric functions performed
before the use of floor or ceiling functions used on (9). In addition, due to the floating-
point error, in the computation of (10), instead of using min(L(xh), C2(xh)) = �L(xh)�,
|min(L(xh), C2(xh))− �L(xh)�| < 0.001 was checked.

10 20 30 40 50 60 70
Time (s)

6

8

10

12

14

Th
ro

ug
hp

ut
 (1

/s
)

s=3

s=6

Simulation
Lower bound
Instantaneous
Upper bound

(a)

20 40 60
Time (s)

6

8

10

12

14

Th
ro

ug
hp

ut
 (1

/s
)

s=3

s=6

Simulation
Lower bound
Instantaneous
Upper bound

(b)

10 20 30 40 50 60 70
Time (s)

6

8

10

12

14

Th
ro

ug
hp

ut
 (1

/s
)

s=3

s=6

Simulation
Lower bound
Instantaneous
Upper bound

(c)

20 40 60
Time (s)

6

8

10

12

14

Th
ro

ug
hp

ut
 (1

/s
)

s=3

s=6

Simulation
Lower bound
Instantaneous
Upper bound

(d)

Figure 34. Comparison of simulation data with the asymptotic and instantaneous throughput
for hexagonal packing with different values of s and θ. (a) θ = 0; (b) θ = π/12; (c) θ = π/6;
(d) θ = 5π/18.

Additionally, note in Figure 34 that for any value of s or θ, as the time passes, the values
of (9) asymptotically approach some value inside the bounds given by (11). Although the
exact asymptotic value could not be given for the presented parameters, the experiments
show that the bounds are correct. In the same manner, as occurred for parallel lanes, the
higher throughput per time is reflected as a lower arrival time of the last robot per the
number of robots, and it tends to infinity as the number of robots grows (Figure 35).
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Figure 35. Time of arrival at the target of the last robot versus the number of robots for the same
simulations in Figure 34. (a) θ = 0; (b) θ = π/12; (c) θ = π/6; (d) θ = 5π/18.

4.4. Touch and Run

For the touch and run strategy, the robots maintain the linear speed over the whole
experiment, then turn at a fixed constant rotational speed ω = v/r, for r obtained from (13),
when they are next to the target centre by the distance dr obtained from (12). After they
arrive at the target region, when they are distant from the target centre by dr, they leave the
curved path, stop turning and follow the linear exiting lane. On that lane, to stabilise their
path following, the robots follow the queue using a turning speed equal to γ− β, such that
β is the angle of the exit lane and γ is the robot orientation angle, both in relation to the
x-axis.

The speed of these experiments was v = 0.1 m/s because the robots utilised on Stage
have a maximum turning speed of π/2 rad/s. Choosing a low linear speed implies a
greater number of lanes K, as the turning speed ω = v/r and r vary over K and s. In
addition, a low linear speed diminishes the time measurement error, since the positions
of the robots are sampled at every 0.1 s by the Stage simulator. Their positions are not
guaranteed to be obtained at the exact moment they are far from the target centre by dr;
thus, this also yields an error in time measurement for their arrival in the target area.

The value of s is in {3, 6} m and all allowed K values are used for experimenting
with the touch and run strategy with 200 robots. By (14), for the former s value, there
is a maximum K = 18 and for the later, K = 37. However, as the maximum angular
speed is limited, the allowed K values range for s = 3 m is reduced to {3, . . . , 16} and
for s = 6 m, {3, . . . , 33}. Figures 36–39 present screenshots from executions using some
of these parameters. The circle in the middle of these figures is the target region, and the
lines where the robots are over represent the curved trajectory they follow by the touch
and run strategy.
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(a)

(b)

(c)

Figure 36. Simulation on Stage for the touch and run strategy using s = 3 m, K = 10 during T = 228 s
at v = 0.1 m/s. Available on https://youtu.be/Z-ruOMYFyBU, accessed on 12 June 2022. (a) 0 s:
beginning of the simulation; (b) After 114 s; (c) 228 s: ending of the simulation.
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(a)

(b)

(c)

Figure 37. Simulation on Stage for the touch and run strategy using s = 3 m, K = 16 during
T = 523.1 s at v = 0.1 m/s. Available on https://youtu.be/FvAqv0zD4_Y, accessed on 12 June 2022.
(a) 0 s: beginning of the simulation; (b) After 261.6 s; (c) 523.1 s: ending of the simulation.
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(a)

(b)

(c)

Figure 38. Simulation on Stage for the touch and run strategy using s = 6 m, K = 19 during
T = 127.4 s at v = 0.1 m/s. Available on https://youtu.be/xJVoVCIjX5k, accessed on 12 June 2022.
(a) 0 s: beginning of the simulation; (b) After 63.6 s; (c) 127.4 s: ending of the simulation.
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(a)

(b)

(c)

Figure 39. Simulation on Stage for the touch and run strategy using s = 6 m, K = 33 during T = 548 s
at v = 0.1 m/s. Available on https://youtu.be/-xZz84npKV4, accessed on 12 June 2022. (a) 0 s:
beginning of the simulation; (b) After 274 s; (c) 548 s: ending of the simulation.
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Figure 40 presents the comparison of (16) and (19) for the throughput for a given time,
the bound on its asymptotic value and the one obtained from Stage simulations. Although
the total number of robots and the linear speed were fixed, the arrival times and the number
of robots to reach the target change for each parameter used in this figure since the distance
between the robots per lane varies and the number of robots simultaneously arriving
is, in most cases, the number of lanes. In addition, the first two arrival times were not
plotted because the first one is zero, yielding an indeterminate output by the throughput
definition, and the second one is still too small in relation to the others, making the resultant
throughput too high compared with the rest, thus producing an incomprehensible graph.
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Figure 40. Throughput versus time comparison of the touch and run simulation on Stage with
asymptotic values and the theoretical instantaneous equation for the throughput for different values
of s and K. (a) s = 3 m and K ∈ {10, 16}; (b) s = 6 m and K ∈ {19, 33}.

Observe that the values from (16) are almost equal to the values from simulation, except
for some points. They are different because of the floating-point error in the divisions and
trigonometric functions before the use of floor function used on (16)—already mentioned
in the introduction of Section 4—as well as the time measurement errors for the arrival of
the robots on the target area as explained at the beginning of this section. As expected, the
values of (16) tend to come nearer to the asymptotic value given by (19). Differently from
the previous strategies, notice that, for small values of T, the throughput is higher than for
larger ones because, for a fixed K, (16) is decreasing for T. As occurred for the previous
strategies, higher throughput per time is reflected as a lower arrival time of the last robot
per number of robots, which tends to infinity as the number of robots grows (Figure 41).
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Figure 41. Time of arrival at the target of the last robot versus number of robots for the same
simulations in Figure 40. (a) s = 3 m and K ∈ {10, 16}; (b) s = 6 m and K ∈ {19, 33}.
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Figure 42 shows a comparison of the throughput at the end of the experiment—that is,
for 200 robots and considering the difference between the time to reach the target region
spent by the last robot and the first—and the asymptotic throughput obtained by (19) for all
the possible number of lanes (K) for the used parameters and s ∈ {3, 6}m. The simulation
values tend to come close to the asymptotic value, confirming the theoretical results.
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Figure 42. Throughput versus the number of lanes comparison of the simulation on Stage and
asymptotic throughput for s ∈ {3, 6}m.

4.5. Comparison between Hexagonal Packing and Parallel Lanes

As discussed in Section 3.3.4, it is observed that the parallel lane strategy has a higher
throughput than hexagonal packing for values of u = s/d from 0.5 to a value of about 0.85
and for high values of T, despite the parallel lanes having lower asymptotic throughput
for other values of u. In order to validate this observation, experiments on Stage were
performed for these strategies using T = 10,000 s, v = 0.1 m/s, d = 1 m and s ranging from
0.4 to 0.95 m in increments of 0.05 m. The best hexagonal packing angle θ was computed for
hexagonal packing using the same method mentioned at the end of the theoretical section,
i.e., the maximum throughput was searched using 1000 evenly spaced points between
[0, π/3) to find the best θ; then, it was compared with the result for π/6.

Figure 43 presents the results from the experiments with Stage and the theoretical
results shown earlier. The functions fh and fp are the same presented in Figure 17. The
labels “Simulation hex.” and “Simulation par.” stand for the throughput resultant from
the experiments with hexagonal packing and parallel lanes strategies, respectively. The
throughput improvement for the values of u = s/d where the parallel lanes strategy
overcomes the hexagonal packing is mainly caused by the square packing being more
effective than hexagonal packing for fitting the robots inside the circle over the time
for those values. To illustrate this, Figure 44 illustrates the execution for v = 0.1 m/s,
d = 1 m and s ∈ {0.5, 0.85}m. The robots run from right to left at a constant linear speed
v = 0.1 m/s. The grey squares are highlighted—which measure 1× 1 m2—to help estimate
the time needed for about eight robots to arrive in the target region. This figure shows that
the square packing fits more robots than hexagonal packing over time in these cases.

Observe in these figures that when the robots are arranged in squares, more robots
arrive per unit of time than using hexagonal packing. To help visualise this, heed that in
Figure 44a, there are N = 9 robots in black, occupying a rectangle including the circular tar-
get area with a width of approximately W ≈ 4.5 m (this distance can be roughly measured
by the grey squares, counting from the two last black robots on the right side to the first
one in the left side). As v = 0.1 m/s was assumed, the throughput in this case is approx-
imately N−1

W
v
≈ (9−1)0.1

4.5 ≈ 0.178 s−1. Making similar calculations, Figure 44b–d have the

approximate throughputs (8−1)0.1
3 ≈ 0.233 s−1, (8−1)0.1

4 = 0.175 s−1 and (8−1)0.1
3 ≈ 0.233 s−1,

respectively. The results from the parallel lanes in this illustration—about 0.233 for both
values of s—surpass the values for the hexagonal packing.
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(a) (b)

Figure 43. Throughput versus ratio u = s/d comparing hexagonal packing and parallel lanes strate-
gies for v ∈ {0.1, 1}m/s, including results from Stage simulations. (a) v = 0.1 m/s; (b) v = 1 m/s.

(a) (b)

(c) (d)

Figure 44. Screenshots of the Stage simulation for hexagonal packing and parallel lanes strategy
for d = 1 m and s ∈ {0.5, 0.85} m. (a) Hexagonal packing with best θ for s = 0.5 m. Available
on https://youtu.be/IZBnFHLKXUA, accessed on 12 June 2022. (b) Parallel lanes for s = 0.5 m.
Available on https://youtu.be/YYv1dJFkdPA, accessed on 12 June 2022. (c) Hexagonal packing
with best θ for s = 0.85 m. Available on https://youtu.be/r9X0fsnngm0, accessed on 12 June 2022.
(d) Parallel lanes for s = 0.85 m. Available on https://youtu.be/0cx-bHPIong, accessed on 12
June 2022.

5. Conclusions

A novel metric was proposed for measuring the effectiveness of algorithms to minimise
congestion in a swarm of robots trying to reach the same goal: the common target area
throughput. In addition, the asymptotic throughput for the common target area was
defined as the throughput when the time tends to infinity.

Assuming that the robots move at constant maximum speed and the distance between
each other is as close as possible to a fixed value, it was shown how to calculate the
maximum throughput for different theoretical strategies to arrive at the common circular
target region: (i) making parallel queues to reach the target region, (ii) using a corridor with
robots in hexagonal packing to enter in the region, and (iii) following curved trajectories to
touch the region boundary. Based on these calculations solely, it was possible to compare
which strategy is better.

Due to their aim of maximising the target area throughput, these strategies were used
as inspiration for new algorithms using artificial potential fields in [38]. Thus, for common
target area congestion in robotic swarms, the throughput is well suited for comparing
algorithms due to its abstraction of the rate of the target area access as the number of robots
grows, whether the closed throughput equation is derived or not.

The key contribution of this work is a fundamental theoretical study of congestion in
swarm robotics, which already served as inspiration to create new algorithms. However,
future work could extend this theoretical study further, by considering varying linear speed
and distances between the robots.
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Abstract: In recent years, reinforcement learning algorithms based on automatic curriculum learning
have been increasingly applied to multi-agent system problems. However, in the sparse reward
environment, the reinforcement learning agents get almost no feedback from the environment during
the whole training process, which leads to a decrease in the convergence speed and learning efficiency
of the curriculum reinforcement learning algorithm. Based on the automatic curriculum learning
algorithm, this paper proposes a curriculum reinforcement learning method based on the curiosity
model (CMCL). The method divides the curriculum sorting criteria into temporal-difference error
and curiosity reward, uses the K-fold cross validation method to evaluate the difficulty priority of
task samples, uses the Intrinsic Curiosity Module (ICM) to evaluate the curiosity priority of the task
samples, and uses the curriculum factor to adjust the learning probability of the task samples. This
study compares the CMCL algorithm with other baseline algorithms in cooperative-competitive
environments, and the experimental simulation results show that the CMCL method can improve the
training performance and robustness of multi-agent deep reinforcement learning algorithms.

Keywords: deep reinforcement learning; automatic curriculum learning; curiosity; sparse reward

MSC: 68T07

1. Introduction

Deep reinforcement learning [1] combines the perception ability of deep learning with
the decision-making ability of reinforcement learning, and has been widely used in the
processing of complex decision-making tasks [2], such as Atari games [3], complex robot
action control [4,5], and the application of AlphaGo intelligence [6]. In 2015, Hinton, Bengio
and Lecun, famous experts in the field of machine learning, published a review paper on
deep learning in Nature, which considered deep reinforcement learning as an important
development direction of deep learning [7].

However, there is a significant problem in the application of deep reinforcement
learning algorithms in multi-agent systems [8]. With the increase in the number of agents
and the increase in the complexity of the environment, the coordination and cooperation
between agents becomes more difficult, which can easily cause a situation where the
Reinforcement Learning (RL) algorithm does not converge or even cannot be trained [9,10].

Curriculum learning [11], as a hot field of current artificial intelligence research, was
proposed by Bengio et al. at the International Conference on Machine Learning (ICML)
in 2009. Bengio et al. pointed out that the curriculum learning method can be regarded
as a special kind of continuous optimization method, which can start with smoother (i.e.,
simpler) optimization problems and gradually add rougher (i.e., more difficult) non-convex
optimization problems, and finally optimize the target task. In curriculum reinforcement
learning algorithms [12], manually set the tasks of different difficulty levels, and gradually
add more difficult tasks to the simple reinforcement learning tasks, so that the knowledge of
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the source tasks can be reused in the process of learning difficult tasks, thereby accelerating
the convergence of model to the optimal policy.

The above-mentioned predefined curriculum learning methods need to be manually
set in advance in the process of task generation and sorting, so the quality of the generated
curriculums will be directly affected by the experience of experts. However, the learning
method of pre-defined curriculums requires manual curriculum difficulty assessment and
sorting, and lacks task versatility. The current curriculum learning field gradually adopts
automatic curriculum learning (ACL) instead of predefined curriculum learning to train
reinforcement learning agents.

Before the agent learns the whole task, the difficulty of the experience samples in the
experience replay buffer is evaluated and sorted, and the experience samples are learned in
order from easy to difficult, so automatic curriculum learning [13] can realize the learning
of difficult tasks, shorten the training time, and improve the training performance of
task learning.

Traditional automatic curriculum learning often uses the temporal-difference error
method to evaluate and sort the difficulty of task samples, that is, to obtain the optimal
policy by maximizing the external reward value that appears in the process of interacting
with the environment, but in the reward sparsity environment, the agent is difficult to
obtain environmental reward feedback in long-lasting time steps. The lack of reward
signals will affect the iteration and update of the agent’s action policy, so it is hard for the
agent to learn an effective policy.

To solve the above problems, this paper proposes a curriculum learning method based
on curiosity module (CMCL), adding curiosity intrinsic reward in curriculum sorting
criteria, the curiosity reward value of the experience samples was evaluated to obtain
the curiosity priority, and the curriculum sequence of the experience samples was sorted
together with the temporal-difference error, and the selection progress of the curriculum
difficulty was adjusted by setting the curriculum difficulty factor, so as to enhance the ex-
ploration and training performance of the curriculum reinforcement learning algorithm for
the environment. The experimental results of two tasks in multi-agent particle environment
show that the CMCL method proposed in this paper can greatly improve the processing
performance of multi-agent tasks in sparse reward environments compared with the three
baseline algorithms.

The contributions of this paper are as follows:

(1) This paper proposes a curriculum reinforcement learning method based on the cu-
riosity module. By adding curiosity priority to the curriculum sorting criteria, it can
enhance the exploratory and robustness of reinforcement learning agents and avoid
the appearance of turn-in-place agent;

(2) This paper introduces a curriculum difficulty factor in the process of selecting the
curriculum difficulty of the model, and dynamically adjusts the difficulty of the
currently selected curriculum through the curriculum difficulty factor, so as to realize
automatic curriculum learning from easy to difficult priority experience.

The rest of this paper is organized as follows. Section 2 introduces related work,
Section 3 introduces the MADDPG algorithm and the theory of automatic curriculum
learning, Section 4 introduces the CMCL algorithm in detail, Section 5 presents exper-
imental results and analyzes them, Section 6 presents discussion and Section 7 draws
some conclusions.

2. Related Work

How to reasonably arrange the sequence of curriculums and select curriculums in
the process of curriculum learning is the main research problem of current automatic
curriculum reinforcement learning research. Carlos Florensa et al. [14] used generative
networks to propose tasks that the agent needs to implement to automatically generate
curriculums capable of learning many types of tasks without requiring prior knowledge.
Ren et al. [15] proposed an automatic curriculum reinforcement learning method that uses
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a priority curriculum sorting method to extract experience samples from the experience
replay buffer to achieve automatic curriculum learning. Jiayu Chen et al. [16] used the
perspective of variational inference to automatically generate training curriculums for the
task environment and the number of agents from two aspects of task expansion and agent
expansion, which can be used to solve cooperative multi-agent reinforcement learning
problems in difficult environments.

Curiosity-driven agent exploration is an important approach in reward function design
for reinforcement learning. In supervised learning, curiosity is used to alleviate the problem
of imbalanced representation and distributional bias among data [17,18]. Pathak et al. [19]
used curiosity as an intrinsic reward value for agents, which can encourage the agent to
explore new environmental states. Our method is derived from the curiosity mechanism
of the human brain [20]. Curiosity is used as a reference standard for automatic curricu-
lum learning’s curriculum sorting, which can complement the priority experience replay
algorithm (PER). The selection probability of novel samples is increased in the samples to
balance the exploration of the uncertain state in the process of environmental exploration
of multi-agent system.

The most important works related to our method include the self-adaptive priority
correction algorithm proposed by Hongjie Zhang et al. [21], the High-Value Prioritized
Experience Replay proposed by Xi Cao et al. [22], and the Curriculum Guided Hindsight
Experience Replay proposed by Meng Fang et al. [4]. Hongjie Zhang et al. predicted the
sum of the real Temporal-Difference error of all samples in the experience replay, and
corrected it by an importance weight. Xi Cao et al. designed a priority experience replay
method based on the combination of temporal-difference error and value for the sparse
reward environment, Meng Fang et al. applied the curiosity mechanism to the Hindsight
experience replay algorithm (HER), and learned successful experience from failure through
the HER mechanism. Our method provides a further improvement on the basis of the above
methods. As one of the curriculum sorting standards in the priority experience replay
algorithm, the curiosity mechanism can compensate for the exploratory and randomness of
the agent in the sparse reward environment, thereby improving the training performance
and robustness of the algorithm.

3. Basic Concepts

This chapter will sequentially introduce some important concepts of Deep Reinforce-
ment Learning, Multi-Agent Deep Deterministic Policy Gradient algorithms (MADDPG),
and Automatic Curriculum Learning (ACL).

3.1. Deep Reinforcement Learning

Reinforcement learning [23] consists of two parts: agents and environment. To max-
imize agents’ total reward value, the agents observe the initial state in the environment,
take actions from an action set, and the environment accepts the action and gives the agents
a reward. This process can be modeled as a Markov decision quintuple (S, A, R, P, γ),
where S represents the state space, A represents the action space, R represents the reward
function, P represents the state transition function, and γ represents the discount factor.
The schematic diagram of reinforcement learning is shown in Figure 1.

agent

environment

state
Reward action

Figure 1. Schematic diagram of reinforcement learning.
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Deep reinforcement learning approximates policy function and value function through
a deep learning multi-layer neural network, thereby solving the high-dimensional mapping
problem caused by continuous high-dimensional state-action pairs [24]. The goal of agents
is to maximize expected reward J(πθ) = Eτ∼πθ

[R(τ)] by continuously optimizing the
policy πθ , then the optimal policy is

π∗θ = argmax
πθ

Eτ∼πθ
(

∞

∑
t=0

γtrt) (1)

where rt represents the reward of agents at time t.
Deep reinforcement learning algorithms can be divided into following three cate-

gories [25], deep reinforcement learning based on value function, deep reinforcement
learning based on policy gradient, and deep reinforcement learning based on the actor-
critic (AC) framework. The DRL algorithm based on the structure of the AC framework
uses the error of the value function to guide the policy update and improve the performance
of the algorithm training. The policy πθ is updated by policy gradient∇θ J(πθ) of expected
reward, the formula is as follows:

∇θ J(πθ) = Eτ∼πθ
[

T

∑
t=0
∇θlogπθ(a|s)R(τ)] (2)

where πθ(a|s) represents the actor Function and R(τ) represents the critic Function.

3.2. MADDPG Algorithm

Multi-Agent Deep Deterministic Policy Gradient algorithm [26] (MADDPG) is an
improved Multi-Agent Reinforcement Learning algorithm based on the AC network frame-
work, which can be considered as an extended application of the DDPG algorithm in a
multi-agent environment. To solve the problem of non-stationarity in Multi-agent Training
Process [27], the MADDPG pioneered the principle of centralized training and distributed
execution (CTDE), that is, in the training stage, the MADDPG algorithm allows the agents
to obtain global information during learning, only local information is used in the deci-
sion execution. The AC training framework can be seen as an actor network for policy
exploration, critic network as an evaluator to evaluate the policy, and obtain the current
optimal policy. The algorithm structure consists of actor network, critic network, target
actor network and target critic network. The training framework of the MADDPG algo-
rithm is shown in Figure 2. The MADDPG algorithm stores experience tuples through the
experience replay mechanism:

Di = (o1, · · · , oN , a1, · · · , aN , r1, · · · , rN , o′1, · · · , o′N) (3)

During the training process, experience tuples are stored in batches in the experience
replay buffer, and the experience replay buffer extracts small samples of experience in
stages and inputs them into the neural network for model training. This experience replay
mechanism can reduce the degree of association between experience tuples, thus improving
the neural network training efficiency. The MADDPG algorithm updates the action network
of agents using the stochastic gradient descent method. The formula is as follows:

∇θπ J =
1
K

K

∑
j=1
∇θπ π(o, θπ)∇aQ(s, a1, a2, . . . , aN , θQ) (4)

In the formula, o and ai represent the observation value and action of the ith agent
respectively; π(o, θπ) represents the action of agent i obtained by inputting the observation
value into actor network.
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Figure 2. MADDPG algorithm training framework diagram.

The critic network of agents is iteratively updated as follows to minimize the loss function:

L =
1
K

K

∑
j=1

(yj −Q(sj, a1, a2, . . . , aN , θQ))
2

(5)

In the formula, the function y represents the cumulative average reward of agent i in
the target actor network.

The network parameters of target actor network and target critic network are replicated
and updated in stages:

θ′i = τθi + (1− τ)θ′i (6)

In the formula, τ represents the control parameter of the network parameter updating
frequency, which can stabilize the parameter network update process. θ′i represents the
target network parameter of the ith agent, and θi represents the initial network parameter
of the ith agent.

In view of the good stability and convergence of the MADDPG algorithm, it can
be applied to various task scenarios such as cooperative, competitive and hybrid. The
innovation and experimental verification of the algorithm in this paper are partly based on
the MADDPG algorithm and its accompanying multi-agent particle environment (MPE).

3.3. Automatic Curriculum Learning

End-to-end deep reinforcement learning methods have led to breakthroughs in board
games, real-time policy games, and path planning problems. However, reinforcement
learning agents still face difficulties and challenges when dealing with many application
scenarios [13]. The reason is that agents need to fully interact with the environment to
obtain enough information to continuously modify its own policy, but the environment
itself has the problems of reward sparseness, partial observability, delayed reward, and too
high dimension of action space, which leads to the problem that the training time of the
agent is too long or even unable to converge when dealing with difficult tasks.

In response to the above problems, Curriculum Learning (CL) can utilize knowledge
from source tasks to speed up the learning of complex target tasks, thus improving the
training performance of reinforcement learning agents on fixed task sets [28]. As an
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important paradigm in the field of machine learning, curriculum learning can imitate the
human learning sequence from easy to difficult. In the initial stage of reinforcement learning,
the curriculum learning algorithm trains the model in a simple simulation environment
(fewer obstacles and more reward values), and as the training progresses, the simulation
environment is gradually added with more and more difficult (sparse reward values and
more obstacles), and finally, the algorithm is validated in a full simulation environment.

Most traditional curriculum learning methods use predefined methods [13], that
is, using expert experience to evaluate the difficulty of task curriculums and formulate
curriculum plans from the perspectives of the number of agents, initial state distribution,
reward function, goals, environment distribution, opponent policy, etc., such as tasks with
a higher number of agents and more obstacles are generally considered more difficult
training environments. Because the predefined curriculum learning method requires
manual assessment and sorting of curriculum difficulties and lacks task versatility, the
current curriculum learning field gradually adopts automatic curriculum learning instead
of predefined curriculum learning to train reinforcement learning agents [29].

The current automatic curriculum learning process can be divided into curriculum
sorting stage and curriculum selection stage [30]. The main idea is to construct a task
curriculum sampler q(n, φ) based on the experience replay buffer, which can evaluate the
difficulty of the transitions in the experience replay buffer and sort them from easy to
difficult, and then the task M(n, φ) that is currently most suitable for agent training is
extracted in real time from the experience replay to maximize the cumulative reward value
of the reinforcement learning agent J(θ), φ represents the environmental factor variables
that affect the difficulty of task curriculum.

To prove that curriculum updating can increase the cumulative reward value of agents
in the process of automatic curriculum learning, in this paper, the proof is performed as
follows from the perspective of mathematics.

Proof. For a given number n of agents, J(θ) can be simplified as follows:

J = Eφ∼p[V(φ, π)] = Eφ∼q

[
p(φ)
q(φ) V(φ, π)

]
= Eφ∼q

[
V(φ, π) +

(
p(φ)
q(φ) − 1

)
V(φ, π)

]
≥ Eφ∼q[V(φ, π)]︸ ︷︷ ︸

J1:policy update

+ Eφ∼q

[
V(φ, π)log

p(φ)
q(φ)

]
︸ ︷︷ ︸

J2:curriculum update

(7)

�

In the formula, p(φ) represents the uniform distribution of φ in the range of possible
values. For all φ, the inequality is due to x − 1 ≥ logx, the equal sign of the inequality
holds if and only if p(φ) = q(φ).

Through the simplification of the above equation, the cumulative reward value J(θ)
can be composed of the policy update reward J1 and the curriculum update reward J2. The
policy update reward J1 represents that reinforcement learning agents update their own
policy functions iteratively to maximize their reward value obtained from the environment,
and the curriculum update reward J2 represents the task curriculum sampling sorting and
adjustment through the task curriculum sampler q(n, φ), which can improve the agent’s
ability to explore environment and the training performance of the model to maximize
agents’ cumulative reward value.

In traditional automatic curriculum learning algorithms, the ordering of task curricu-
lums often takes the environmental reward value of agents as the reference standard, that is,
it adjusts its own action policy according to the external reward value. However, in sparse
reward environments, it is difficult for an agent to obtain positive or negative rewards
from the environment during most of the exploration process. Under the framework of the
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traditional automatic curriculum learning algorithm, selecting the task curriculum from
low to high according to temporal-difference error can easily lead to overfitting of the
model training, and agents stay in circles in the environment, making it difficult to train a
good policy.

4. Curriculum Reinforcement Learning Based on Curiosity Model

This paper proposes a general automatic curriculum learning framework—curiosity
module-based curriculum learning for deep RL (CMCL), which is divided into two stages:
curriculum sorting and curriculum selection. For all reinforcement learning tasks, suppose
D =

{
d1, d2, · · · , dj, · · · , dK

}
represents the experience sample set in experience replay

buffer, and the task curriculum sampler q(n, φ) is used to operate on experience sample set
D. The first stage is to evaluate and sort the difficulty of the samples in experience sample
set to generate a curriculum learning plan; the second stage selects curriculums according
to the set ability evaluation rules according to the curriculum plan.

The core of the curriculum difficulty sorting is to define the difficulty of the task
samples. To convert the task samples in the experience replay into a curriculum sequence,
a curriculum index function (CI) needs to be defined to calculate the priority pdj

of task
sample dj.

Definition 1. Curriculum Index Function (CI).

The function CI(dj)→ R is used to define the curriculum sequence of the task sample
dj in the experience replay D. For the task sample di and dj, if CI(di) < CI(dj), the
curriculum sequence of task sample di is before the task sample dj.

CI(dj) = KP(cj, λ) + ηCP(dj) (8)

In this paper, the curriculum sequence function is divided into two parts: KP() and
CP(). KP() represents K-fold-priority function, CP() represents curiosity-priority function,
and cj represents the K-fold teacher model score of task sample di, λ represents the curricu-
lum learning factor, η represents the hyperparameter, which is used to control the efficiency
and exploration of sample learning.

4.1. K-Fold Priority Experience Replay

In this paper, the absolute value of the temporal-difference error of the neural network
is used as a reference standard for the curriculum sequence function CI(dj), and the
difficult task is defined as the task with a large weight correction value for the current
neural network model. The reason is that tasks with large temporal-difference error may
have an adverse effect on the improvement of training model ability. For example, 1.
The random noise during the model training process is prone to data deviation, thereby
affecting the training accuracy of model; 2. In the stochastic gradient descent process of
deep neural network training, tasks with large temporal-difference error often require a
small update step size to obtain a better model convergence effect.

In this paper, the K-fold cross-validation method is used to evaluate the difficulty of
the samples in the experience replay buffer, and experience replay D is divided into K equal
parts

{
D̃i : i = 1, 2, . . . , K

}
, and trained separately to obtain K teachers Model network

θ = {θ1, θ2, · · · , θK}, since the experience replay D is divided, the obtained K teacher model
networks are independent of each other. The training formula of the teacher model network
is as follows:

θ̃i = argmin
θ̃i

∑
dj∈D̃i

L(dj, θ̃i)

i = 1, 2, . . . , K
(9)

where L represents the loss function of the temporal difference error.

45



Mathematics 2022, 10, 2523

The K teacher models obtained are cross-validated. For example, if sample dj belongs
to teacher model i, then the sample dj is scored on the K− 1 teacher models other than its
own teacher model i. The scoring process can be expressed as follows:

cji = (y−Qπ
teacher(s, a1, a2, . . . , aN))

2

y = rj + γQπ′(s′, a′1, a′2, . . . , a′N)
∣∣∣
a′v=π′v(ov)

(10)

In the formula, cji represents the difficulty score of the teacher model i to the sample dj,
Qπ

teacher represents the Q value obtained by inputting the state value s and the action value
a into the value function network, and Qπ′ represents the Q value obtained after state s and
the action values a are input into the policy function network, γ represents the discount
factor, and the final difficulty score of the task sample dj is the sum of the difficulty scores
of all other teacher models:

cj = ∑
i∈(1,...,K),i �=k

cji (11)

Definition 2. K-Fold Priority Function (KP).

The function KP(cj, λ)→ [0, 1] is used to define the K-fold priority of task sample dj
in experience replay D, cj represents the final difficulty score of task sample dj after K-fold
cross-validation, λ represents the curriculum learning currently selected task curriculum
difficulty factor. The K-fold priority function KP(cj, λ) is expressed as follows:

KP(cj, λ) =

⎧⎪⎪⎨⎪⎪⎩
ecj−λ , cj ≤ λ

1
log(1−λ)

log(cj − 2λ + 1), λ < cj < 2λ

0 , cj ≥ 2λ

. (12)

where 1. KP(cj, λ) is monotonically decreasing when cj > λ; 2. KP(cj, λ) is monotonically
increasing when cj < λ; 3. KP(cj, λ) is the maximum value when cj = λ.

The K-fold priority function outputs a scalar with a value range of [0, 1] by inputting
the difficulty score cj of the task sample and the curriculum factor λ, thereby reflecting
the sample priority of the task sample in the dimension of temporal-difference error. As
the curriculum learning progresses, the curriculum factor λ can be gradually increased,
thereby increasing the priority of the task curriculum with higher difficulty score cj. Since
the selection probability of task samples is proportional to the K-fold priority, agents can
frequently select empirical samples which fit the current model capabilities. The graph of
the K-fold priority function is shown in Figure 3, where λ = 0.6 is shown in the figure.

The framework of the K-Fold Cross-Validation method is shown in Figure 4.

4.2. Curiosity Exploration Rewards

In the K-fold priority function KP(cj, λ), we use the temporal-difference error as the
reference standard for prioritization, which can improve the utilization efficiency of task
samples and the robustness of training. However, in a multi-agent system, the traditional
reinforcement learning algorithm uses extrinsic reward to guide agents to adjust their
own policy. The agents take actions in environment to interact with the environment.
When the policy is correct, it will get a positive reward value, otherwise it will get a
negative reward value. This extrinsic reward method can achieve good performance in
most RL environments, but in a sparse reward value environment, agents do not obtain
immediate reward value most of the time they explore in the environment, and then agents
are impossible to adjust their own policy according to their reward value, which will greatly
reduce their convergence speed and training efficiency of the algorithm.

46



Mathematics 2022, 10, 2523

Figure 3. K-Fold priority function.
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Figure 4. K-Fold Priority Cross Validation framework diagram.

Inspired by the theory of intrinsic motivation, based on the curiosity exploration
mechanism [11], this paper uses the curiosity exploration reward as one of the reference
standards of curriculum sequence function CI(dj) to enhance the agent’s exploration of
environment and avoid the over-fitting phenomenon of “turning in place” of agents.

The basic principle of curiosity exploration mechanism is that when the next state is
inconsistent with the predicted state of policy network, the intrinsic reward of curiosity is
generated. The greater the difference between actual state and predicted state, the greater
the value of curiosity reward.

This curiosity-based mechanism is called the Intrinsic Curiosity Module (ICM), and
the curiosity reward value is calculated through two sub-module networks. The first
sub-module uses a feature convolutional neural network to extract the eigenvalues of the
state st in experience samples, and encoded as φ(st), the second sub-module contains a
forward neural network θF and an inverse dynamic network θI . The evaluation mechanism
of curiosity reward value is shown in Figure 5.

In the ICM mechanism, the inverse dynamic network θI can estimate action value at
through function g:

ât = g(st, st+1; θI) (13)

In the formula, at represents the actual action taken from state st to state st+1, ât
represents the estimated action of at, (st, at, r, st+1) experience tuple is obtained from the
experience replay D, and the network parameters of reverse dynamic network θI are
optimized by the following expressions:

min
θI

LI(ât, at) (14)
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where LI represents the loss function between the predicted action value ât and the actual
action value at. The maximum likelihood estimates of the parameters θI of the inverse
dynamic network can be obtained by minimizing LI .

ICM

ICM

Forward 
Model

Inverse 
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Fe
at

ur
e
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Figure 5. Curiosity reward evaluation mechanism.

For the forward neural network θF, the estimated state value at at the next time step
t + 1 can be obtained by inputting action value at and eigenvalue φ̂(st+1) of the state st.

φ̂(st+1) = f (φ(st), at; θF) (15)

where the forward neural network parameter θF is optimized by the following loss function:

LF(φ(st), φ̂(st+1)) =
1
2
‖φ̂(st+1)− φ(st+1)‖2

2 (16)

Then the overall optimization function learned by reinforcement learning agents is

min
θP ,θI ,θF

[
−λEπ(st ;θP)

[
∑

t
rt

]
+(1− β)LI + βLF

]
(17)

In the formula, 0 ≤ β ≤ 1 represents the weight parameter between the inverse
dynamic network and the forward neural network, λ > 0 represents the weight parameter
between the intrinsic curiosity reward value and the gradient descent loss function, and
the available curiosity reward value is as follows:

ri
t =

1
2
‖φ̂(st+1)− φ(st+1)‖2

2 (18)

Definition 3. Curiosity Priority Function (CP).

Function CP(ri
t(dj))→ [0, 1] is used to define the curiosity priority of task sample dj

in experience replay D, ri
t(dj) represents the curiosity reward value of the task sample dj.

The curiosity-priority function expression of CP(ri
t(dj)) is as follows:

CP(ri
t(dj)) = −e(−

(ri
t(dj))

2

10 ) + 1 (19)

where CP(ri
t(dj)) is a monotonically increasing function of ri

t(dj).

48



Mathematics 2022, 10, 2523

From the above, the curriculum sequence function CI(dj) = KP(cj, λ) + ηCP(dj) can
be obtained, that is, the priority of each experience sample cj in the experience replay D,
then the sampling probability of each experience sample cj is as follows:

P(dj) =
pa

dj

∑ pa
dj

(20)

In the formula, pdj
represents the priority of the task sample dj, and a represents the

use degree of the priority pdj
.

4.3. Algorithm Framework and Pseudocode

The CMCL algorithm proposed in this paper combines the K-fold priority function
and the curiosity priority function in the curriculum sorting stage, so as to use temporal-
difference error and curiosity reward to jointly sort curriculums. Adjusting the curriculum
factor, the K-fold priority selection of task samples can be controlled to ensure that agents
frequently select samples that are most suitable for the current training difficulty, and to
improve the exploration of the environment by agents. The basic framework of the CMCL
algorithm is shown in Figure 6, and Algorithm 1 describes the training process of the
CMCL algorithm.

Algorithm 1: CMCL algorithm.

Input: experience replay buffer D, curriculum factor λ, curriculum stride μ, balance weight η, curriculum sequence vector
ci = [ci1, ci2, · · · , ciN ]

Output: The final policy πθ

for episode = 1 to max_episode do

Initialize a random process N for reinforcement learning action exploration
Receive initial state s0
for t = 1 to max_episode_length do

In state st, the agents select action a through policy network πθ(st)
Obtain the reward r given by environment E
Store (st, a, st+1, r) in experience replay buffer D
st ← st+1

The experience samples in D are sampled for K-level teacher model training
{

θ̃i : i = 1, 2, . . . , K
}

θ̃i = argmin
θ̃i

∑
dj∈D̃i

L(dj, θ̃i)

The score of experience sample dj is evaluated by cross validation cj = ∑i∈(1,...,N),i �=k cji
The K-fold priority kpj = KP(cj, λ) can be obtained according to Equation (12)
Calculate the curiosity reward ri

t =
1
2‖φ̂(st+1)− φ(st+1)‖2

2
The curiosity priority cpj = CP(ri

t(dj)) can be obtained according to Equation (19)
Update curriculum sequence function cij by ci(dj) = kp(cj, λ) + ηcp(dj)

for agent v = 1 to N_agent do

Sample a minibatch of transitions (st, a, st+1, r) from D according to the priority sampling probability

P(dj) =
pa

dj

∑ pa
dj

The neural network parameter θ was updated by gradient descent algorithm
end for

Adjust curriculum factor λ based on current model capabilities λ = λ + μ

end for

end for
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Figure 6. Framework diagram of curriculum reinforcement learning algorithm based on
curiosity module.

5. Experiment

In this paper, the simulation verification of the CMCL algorithm is carried out in
Multi-Agent Particle Environment [26] (MPE), and the multi-agent cooperative task and
the competitive task are used as the target tasks. Based on the environment, a sparse
reward value scenario is constructed to test the performance of the CMCL algorithm in
teamwork and policy confrontation respectively. Each set of experiments is carried out
in the experimental environment of Ubuntu18.04.3 + OpenAI + PyTorch, and adopts the
hardware conditions of Intel Corei7-9700K + 64G + GeForceRTX2080. In our environment,
the CMCL algorithm is compared with various baseline algorithms to demonstrate the
effectiveness and feasibility of the CMCL algorithm. The key hyperparameters set for the
RL training process are listed in Table 1. The state value and action value of the agents
are input at the input end of the neural network, and the target Q value of the agents is
obtained through the calculation of the neural network. The loss function is obtained by
subtracting the original Q value, and the original Q value function is updated. Finally, the
reinforcement learning algorithm is applied to the deep learning structure.

Table 1. Parameter setting of the DRL process.

Parameters Values

Discount factor 0.99
Size of RNN hidden layers 64

Size of replay buffer 5000
Exploration 0.1

Initial curriculum factor λ 0.1
Batch size of replay buffer 128

Learning rate of actor network 0.001
Learning rate of critic network 0.001
Update rate of target network 0.01
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5.1. Experimental Environment
5.1.1. Cooperative Experiment

The multi-agent cooperation experiment adopts the cooperative navigation experiment
in the MPE environment. As shown in the Figure 7, N agents and N landmarks are
randomly generated in a square two-dimensional plane with side length 1. The plane is
surrounded by walls, and the agents can observe landmarks, but cannot observe the walls,
and their missions are to reach landmarks in as few steps as possible and avoid collisions
with other agents.

Cooperative Navigation

verification 
algorithm 

Figure 7. Cooperative navigation experimental environment.

Combined with the size of the two-dimensional plane, it is stipulated that when an
agent enters an area with a radius of 0.1 around a landmark, the landmark is considered
covered by the agent, and the cooperative navigation task is considered successful only
when all landmarks are uniquely covered.

In the reward value setting of the experimental environment, to construct a sparse
reward value scene, we cancel the dense reward function set according to the distance
between the agent and the landmark in the original MPE environment. Therefore, the
reward value obtained by each agent at each time step consists of only two parts, including
1. When there is a collision between the agents or the agent hits a wall, the environment
gives a negative reward value, that is, agent collision reward value C1; 2. When the agent
covers the landmark, the environment gives a positive reward value, that is, the agent
covers the landmark reward value C2.

The agent collision reward value is as follows:

C1 =

{
−1, i f collided
0, i f not collided

(21)

The agent coverage landmark reward value is as follows:

C2 =

{
+4, i f covered
0, i f not coverd

(22)

As shown in Figure 7, in the N = 4 environment, the CMCL, ACL, PER-MADDPG,
and MADDPG algorithms are used to control the movement of the agent. To prevent
the agent from spinning in place or meaningless exploration, the episode duration is set
to 30 steps, that is, when the agent finishes exploring after 30 steps, the environment is
initialized to start a new episode of exploration.
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Figure 8 shows the average reward value graph and the coverage graph obtained
by the four algorithms after 20,000 episodes of training in the cooperative navigation
environment. Figure 9 shows the bar graph of the average reward value of the four
algorithms in 20,000 episodes, that is, the quotient of the total reward value obtained
by the four algorithms in the whole training session and the number of sessions. As
can be seen from the curve in Figure 8, at the beginning of the algorithm training, the
agent is prone to colliding with other agents or with the wall. As the training progresses,
agents gradually learn the policy of cooperatively covering landmarks. The curve of the
CMCL algorithm oscillates slightly in the early training process, and gradually smooths
in the later stage, and can obtain higher reward values and landmark coverage than other
baseline algorithms, showing better training performance. Figure 10 shows the rendering
of the agent training in cooperative navigation environment after the CMCL algorithm has
been trained for 12,500 episodes. From the rendering, it can be seen that the agents can
successfully approach and cover landmarks in the environment.

 

(a) (b) 

Figure 8. Representation diagram of agents in cooperative environment. (a) Average reward in
cooperative environment; (b) landmark cover rate in cooperative environment.

Figure 9. Bar chart of average reward value in cooperative environment.
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Figure 10. Diagram of the training effect of CMCL algorithm in cooperative environment.

5.1.2. Competition Experiment

In a cooperative training environment, agents share the observed value of the envi-
ronment to maximize the total reward value, but in a multi-agent competition task, as
training progresses, the policies of their opponents are constantly improved, resulting in
the continuous fluctuation of the cumulative reward value. In addition to cooperating with
other agents, the agent also needs to make policy corrections for the opponent’s policy.

The multi-agent competition experiment uses the predator-prey experiment in the
MPE environment. On a two-dimensional plane with side length 1, m predators and n
prey are randomly generated, as well as three randomly generated obstacles, whose area
is relatively large, which can prevent the intelligent body from observing and moving.
The goal of predators is to capture prey as quickly as possible through team cooperation.
During this process, the predators and the prey move randomly, and the prey move twice
as fast as the predators. During the predation process, all predators form a team to hunt
down the prey, and the capture is considered successful when the distance between the
predator and the prey is less than the pursuit radius.

To construct the sparse reward scene of the predator-prey environment, the dense
reward function set according to the distance between predator and prey is canceled.
Therefore, the reward value obtained by the predator agent at each time step consists of
two parts: 1. When the predator encounters the prey, it will receive a positive reward value,
that is, the capture reward value D1; 2. To prevent agents from escaping the boundary,
when agent hits the wall, it will receive a negative reward value, that is, the collision reward
value D2.

The capture reward is as follows:

D1 =

{
+5, i f captured
0, i f not captured

(23)

This represents that when the predator captures the prey, it gets a positive large reward
value, while the prey gets a large negative reward value.

The collision boundary rewards are as follows:

D2 =

{
−1, i f collided
0, i f not collided

(24)

This represents that the predator and prey get a negative reward when they collide
with the boundary.

As shown in Figure 11, the CMCL, ACL, PER-MADDPG, and MADDPG algorithms
are used to control the movements of predators and prey, respectively. To prevent the agent
from spinning in place or performing meaningless exploration, the episode duration is set
to 30 steps, which means the agent finishes the exploration after 30 steps and initializes the
environment to restart the exploration.
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Figure 11. Schematic diagram of adversarial environment.

As shown in Figure 12, the predator agents are controlled by the CMCL, ACL, PER-
MADDPG, and MADDPG algorithms respectively, and the prey agents are controlled by the
MADDPG algorithm. The bar chart and the error band chart of the average reward value
obtained after 20,000 episodes of training indicates that the average reward value in the bar
chart is the quotient of the total reward value obtained during the whole training of the four
algorithms and the number of episodes. As can be seen in the figure, as training progresses,
predator agents controlled by the four algorithms gradually learn the cooperative hunting
policy, which tends to stabilize after 10,000 episodes. Throughout the training process,
the average reward value of the CMCL algorithm is generally higher than that of other
baseline algorithms and is significantly higher than that of the other three algorithms after
10,000 episodes.

 

(a) (b) 

Figure 12. Representation diaram of agents in cooperative environment. (a) Episode reward achieved
in adversarial environment; (b) the average reward obtained by the four algorithms in the adversarial
environment.

Figure 13a shows the win rate charts obtained by both agents in each round under
the condition that the predator agents adopt the CMCL algorithm and the prey agents
adopt the ACL algorithm. Figure 13b shows the win rate charts obtained by both agents in
each round under the condition that the predator agent adopts the CMCL algorithm and
the prey agent adopts the PER-MADDPG algorithm. It can be seen from the figure that
when the predator agents controlled by the CMCL algorithm fight against the prey agents
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controlled by the ACL algorithm, the two sides won and lost in the early stage. However,
after a certain training period (5000 rounds), the predator agents controlled by the CMCL
algorithm gain a significant advantage. Predator agents controlled by the CMCL algorithm
can gain obvious advantages in a short period of time against the prey agents controlled by
the PER-MADDPG algorithm, and the winning rate is above 0.85.

 

(a) (b) 

Figure 13. The win rate of predator and prey using two algorithms respectively in the adversarial
environment. (a) CMCL vs. ACL; (b) CMCL vs. PER-MADDPG.

Figure 14 shows the training effect diagram of the CMCL algorithm obtained after
10,000 episodes of training in a competitive environment. It can be seen from the effect
diagram that the predator agent can learn the batch-hunting policy, that is, to round up
the prey agents in two batches by rational use of terrain obstacles. It can be seen that the
CMCL algorithm can achieve better training performance than other baseline algorithms in
the multi-agent competitive environment.

 

 

Figure 14. Training effect diagram of CMCL algorithm in competitive environment.
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6. Discussion

On the basis of the analysis of the above two experimental environments, the overall
performance of our proposed CMCL algorithm is better than that of the other three baseline
algorithms, and the following experimental results can be obtained.

In the cooperative environment, the average reward value and landmark coverage
of the CMCL algorithm are better than those of the ACL, PER-MADDPG and MADDPG
algorithms. Combined with the screenshots of the actual performance of the agents in
the experimental simulation environment, CMCL algorithm training in the cooperative
environment can be performed. The agents can learn to execute policies dispersedly and
cooperatively cover landmarks, avoiding collisions between agents or between agents and
the wall.

In the competitive environment experiment, the average reward value of the CMCL
algorithm is better than those of the ACL, PER-MADDPG and MADDPG algorithms, and
when the predator agent controlled by the CMCL algorithm is confronted with the prey
agent controlled by the ACL algorithm and the PER-MADDPG algorithm, after a period
of training, a good win rate can be obtained. Combined with the actual performance
screenshots of the agents in the experimental simulation environment, it can be concluded
that the predator agents trained by CMCL algorithm in the competitive environment can
learn to cooperate to surround the prey agents and group the prey agents to carry out the
hunting strategy, and avoid the collision between agents or between agents and walls.

The current CMCL algorithm can achieve good training performance in the sparse
reward value environment, but there are still two limitations:

1. The dimension explosion problem. A large number of agents in the reinforcement
learning environment due to the excessively large state space and the action space, it
is easy for the algorithm to fail to converge due to the explosion of dimensions.

2. The problem of reliability distribution. When multiple agents are trained in a re-
inforcement learning environment, the effective exploration of the environment by
the agents can easily be affected due to the uneven distribution of reward functions,
especially when multiple players are trained. This problem is more obvious.

7. Conclusions

To solve the problem that the training efficiency of the automatic curriculum reinforce-
ment learning algorithm is not high in the scenario of sparse reward value, this paper adds
a curiosity module on the basis of automatic curriculum learning, and uses the curiosity
reward value and the temporal-difference error as the reference standard for curriculum
sorting. The ICM module is used to evaluate the priority of curiosity, the curriculum factor
is designed to control the selection of curriculum difficulty, and an automatic curriculum
reinforcement learning algorithm based on the curiosity module is proposed, and the
availability and superiority of the algorithm in sparse reward scenarios are verified by
simulation experiments in cooperative and competitive environments. With the increase in
the number of agents in multi-agent reinforcement learning, the input nodes of the neural
network and the complexity of the neural network grow linearly, which can easily cause
the problem of dimension explosion in the training process, which makes the algorithm
difficult to converge. Methods that can be adopted include compression of state space and
share parameters between agents. In the future, based on automatic curriculum reinforce-
ment learning, further research will be conducted on how to reduce the time complexity of
multi-agent reinforcement learning training under large-scale number conditions.

The main abbreviations are listed in Table 2.
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Table 2. Main abbreviations.

Abbreviation Explanation

RL Reinforcement Learning
ACL Automatic Curriculum Learning
DL Deep Learning

MADDPG Multi-Agent Deep Deterministic Policy Gradient
PER Prioritized Experience Replay
ICM Intrinsic Curiosity Module
MPE Multi-Agent Particle Environment

CMCL Curiosity Module-based Curriculum Learning
ICML International Conference on Machine Learning

AC Actor-Critic
KP K-Fold Priority
CP Curiosity Priority
CI Curriculum Index

CTDE Centralized Training and Distributed Execution
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Abstract: In this paper, the synchronization problem of uncertain neutral-type neural networks
(NTNNs) with sampled-data control is investigated. First, a mixed-delay-dependent augmented
Lyapunov–Krasovskii functional (LKF) is proposed, which not only considers the interaction between
transmission delay and communication delay, but also takes the interconnected relationship between
neutral delay and transmission delay into consideration. Then, a two-sided looped functional is also
involved in the LKF, which effectively utilizes the information on the intervals [tk, t], [tk − τ, t− τ],
[t, tk+1), [t− τ, tk+1 − τ). Furthermore, based on the suitable LKF and a free-matrix-based integral
inequality, two synchronization criteria via a sampled-data controller considering communication
delay are derived in forms of linear matrix inequalities (LMIs). Finally, three numerical examples are
carried out to confirm the validity of the proposed criteria.

Keywords: neutral-type neural networks; synchronization problem; mixed-delay-dependent functional;
sampled-data control; communication delay

MSC: 93D20

1. Introduction

Neural networks (NNs) are classes of mathematical models which simulate the neural
processing mechanism in the human brain. Over the past several decades, NNs have
attracted widespread attention due to their potential applications in many areas, such
as image and signal processing [1], pattern recognition [2], optimization problems [3],
parallel computation [4] and so on. In such systems, time delays may be generated due to
the limited switching speeds of amplifiers and the inherent communication time among
neurons. They may negatively impact the NNs and cause various undesired dynamical
phenomena, such as oscillation or instability. Therefore, it is essential to consider time
delays in the stability analysis of NNs.

Different forms of time delays have been conducted in the stability analysis of NNs,
including variable delays [5], continuously distributed delays [6], and so on. In order
to characterize the properties of neural reaction processes precisely, neutral-type time
delays are involved in dynamical neural network models. In these models, the information
about the derivative of the past state is considered. When both the current neuron state
derivative and the past state derivative are involved in the NNs, neural network models
are called neutral-type neural networks (NTNNs). Due to wide engineering applications in
fields such as distributed networks [7], including lossless transmission lines [8] and heat
exchangers [9], the stability and synchronization analysis of NTNNs having time delays
and neutral delays has become an important research topic.
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In recent years, various control methods have been brought to guarantee the synchro-
nization of NTNNs. The sampled-data control method has been extensively applied due to
its easy implementation [10,11]. This method can reduce network congestion and improve
control efficiency. Three methods have been proposed to deal with the stability analysis
of sampled-data control systems. The first one is the input delay method [12], where
sampled-data systems are modeled as time-delay systems with a time-varying input. The
second is the discrete-time method [13], in which sampled-data systems are transformed
into discrete-time systems. However, this method suffers troubles when the sampling
period is variable. The third method is the impulsive system method [14], which is often
used to investigate systems with uncertain and bounded sampling intervals. Among these
methods, the input delay method is widely used to investigate the synchronization of
NTNNs with a sampled-data controller.

In addition, open communication networks are used in the control process. The
communication delay is inevitably generated by the transmission of the signals from the
sampler to the controller, and it may destabilize the sampled-data system. Therefore, it is
crucial to design a sampled-data controller concerning communication delays. Recently,
a new two-sided looped functional was proposed in [15], which can reduce conservative-
ness. However, only the information of intervals [tk, t], [t, tk+1) is considered, while the
information on the intervals [tk − τc, t− τc], [t− τc, tk+1 − τc) is ignored. In [16,17], the
communication delays were considered in the design of the sampled-data controller, but
some useful information about sample features is still lost. In [18,19], a mixed-delay-based
LKF is proposed, and a less conservatism stability criterion is derived. Throughout an-
alyzing these aspects, we find that a functional with more time-delay cross information
can obtain better results than other functionals in the synchronization of NTNNs with
sampled-data control.

Motivated by the above discussions, we further investigate the synchronization via
sampled-data control for NTNNs with and without time-varying parameter uncertainties.
The main contributions of this paper can be summarized as follows:

(i) A sampled-data controller is designed considering the communication delay τc. Such
a method is easier to calculate and implement than the event-triggered communication
scheme proposed in [20]. While guaranteeing system stability, this method can reduce
network congestion and improve control efficiency.

(ii) A mixed-delay-dependent augmented LKF is constructed. The interconnected rela-
tionship between transmission delay and communication delay is taken into account,
and the interaction between transmission delay and neutral delay is considered simul-
taneously. This interconnected relationship is utilized by introducing some integral
and double integral terms associated with the mixed delay. Thus, the connection
between those states is strengthened.

(iii) In order to reduce the conservatism of the synchronization criteria, a two-sided
looped LKF is proposed, which utilizes the information of intervals [tk, t], [tk − τc, t−
τc], [t, tk+1), [t− τc, tk+1 − τc). This functional can obtain better results for sampled-
data synchronization problems in NTNNs. Two less conservative synchronization
criteria are derived based on the LKF and a free-matrix-based integral inequality.

Notations: Throughout this paper, N+ represents the set of positive integers; Rn de-
notes the n-dimensional vector space; the superscript −1 and T stand for the inverse and
the transpose, respectively; P > 0 (P ≥ 0) means that P is a positive definite matrix; I
and 0 denote the identity matrix and a zero matrix, respectively; diag{x1, . . . , xn} repre-
sents a diagonal matrix, in which its diagonal elements are x1, . . . , xn, col{x1, . . . , xn} =
[xT

1 , . . . , xT
n ]

T and Sym{Z} = Z + ZT ; and the notation ∗ stands for the symmetric terms in
a symmetric matrix.

2. Preliminaries

In this section, we consider the following NTNNs with time-varying parameter uncertainties:
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ẏ(t) =− (A + ΔA(t))y(t) + (W0 + ΔW0(t))g(y(t)) + (W1 + ΔW1(t))g(y(t− τ2(t)))

+ (W2 + ΔW2(t))ẏ(t− τ1(t)) + J, (1)

where y(·) = col{y1(·), y2(·), · · · , yn(·)} ∈ Rn is the state vector with n neurons, A =
diag{a1, a2, · · · , an} is a diagonal matrix with each ai > 0 (i = 1, 2, · · · , n), g(y(t)) =
col{g1(y1(t)), g2(y2(t)), · · · , gn(yn(t))} ∈ Rn is the neural activation function indicating
how the neuron responses to its input, W0, W1 and W2 are the delayed interconnection
weight matrices of appropriate dimensions, ΔA, ΔW0, ΔW1 and ΔW2 are parameter uncer-
tainties, J = diag{J1, J2, · · · , Jn} is an external constant input vector.

τ1(t) stands for the neutral-type time delay, τ2(t) is the transmission delay accumu-
lated during the transmission of information among neurons, which satisfy

0 ≤ τi(t) ≤ τi, τ̇i(t) ≤ μi, i = 1, 2, (2)

where τi and μi are known positive constants.
The neuron activation function g(·) is bounded by

k−i ≤
gi(u1)− gi(u2)

u1 − u2
≤ k+i , i = 1, 2, · · · , n, (3)

where u1, u2 ∈ R, u1 �= u2, k−i and k+i are real scalars. For convenience, define K+ =
diag{k+1 , k+2 , · · · , k+n }, K− = diag{k−1 , k−2 , · · · , k−n }.

ΔA(t), ΔW0(t), ΔW1(t), ΔW2(t) are unknown matrices representing time-varying
parameter uncertainties, which are assumed to be norm-bounded and satisfy

[ΔA(t) ΔW0(t) ΔW1(t) ΔW2(t)] = FΣ(t)[E1 E2 E3 E4],

Σ(t) = Δ(t)[I − GΔ(t)]−1, I − GTG > 0, (4)

in which F and Ei (i = 1, 2, 3, 4) are known constant matrices, Δ(t) is an unknown time-
varying matrix satisfying ΔT(t)Δ(t) ≤ I.

Regarding system (1) as a master system, then, the corresponding slave system is
described as follows:

ż(t) =− (A + ΔA(t))z(t) + (W0 + ΔW0(t))g(z(t)) + (W1 + ΔW1(t))g(z(t− τ2(t)))

+ (W2 + ΔW2(t))ż(t− τ1(t)) + u(t) + J, (5)

where z(·) = col{z1(·), z2(·), · · · , zn(·)} ∈ Rn is the neural state and u(t) is the control
input. The rest of the matrices and variables are defined in (1).

Define the error state as e(t) = z(t) − y(t), and thus, the error system is obtained
as follows:

ė(t) =− (A + ΔA(t))e(t) + (W0 + ΔW0(t)) f (e(t)) + (W1 + ΔW1(t)) f (e(t− τ2(t)))

+ (W2 + ΔW2(t))ė(t− τ1(t))) + u(t), (6)

where f (e(t)) = g(z(t))− g(y(t)) satisfies

k−i ≤
fi(β)

β
=

gi(ei + yi)− gi(yi)

ei
≤ k+i , fi(0) = 0, i = 1, 2, · · · , n, (7)

where β ∈ R, β �= 0.
Denote the updating instant time of the zero-order-hold (ZOH) by tk, e(tk) is the

discrete measurements of e(t) at the sampling instant tk. For any integer k ≥ 0, the
sampling intervals are denoted by dk, which satisfy

dk = tk+1 − tk, dk ∈ (0, dM], (8)
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where dM > 0 stands for the upper bound of sampling intervals.
In practical systems, communication delays are inevitable during the transmission of

signals from sampler to controller. Therefore, the communication delay τc is considered in
the sampled-data controller. Then, the control input u(t) is formulated as

u(t) = Ke(tk − τc), t ∈ [tk, tk+1), (9)

where K is the controller gain matrix to be calculated.
For simplicity, we use ηk to represent dk + τc, where ηk ∈ (τc, ηM], ηM = dM + τc

equals to the upper bound of ηk.
Substituting the control input (9) into the error system (6), the corresponding error

system can be reformulated as

ė(t) =− (A + ΔA(t))e(t) + (W0 + ΔW0(t)) f (e(t)) + (W1 + ΔW1(t)) f (e(t− τ2(t)))

+ (W2 + ΔW2(t))ė(t− τ1(t))) + Ke(tk − τc). (10)

In order to derive the stability criteria for the system (10), the following lemmas will
be utilized.

Lemma 1 ([21]). Let x be a differentiable function: [α, β]→ Rn. For symmetric matrices R > 0,
and N1, N2, N3, the following inequality holds:

−
∫ β

α
ẋT(s)Rẋ(s)ds ≤ ξT

i Ωiξi, i = 1, 2, (11)

where

Ωi = (β− α)

(
N1R−1NT

1 +
1
3

N2R−1NT
2 +

1
5

N3R−1NT
3

)
+ Sym

{
N1Π1 + N2Π2 + N3Π(i)

3

}
,

Π1 = ē1 − ē2, Π2 = ē1 + ē2 − 2ē3,

Π(1)
3 = ē1 − ē2 − 6ē3 + 6ē4, Π(2)

3 = ē1 − ē2 + 6ē3 − 6ē4,

ξ1 = col
{

x(β), x(α),
1

β− α

∫ β

α
x(s)ds,

2
(β− α)2

∫ β

α

∫ s

α
x(u)duds

}
,

ξ2 = col
{

x(β), x(α),
1

β− α

∫ β

α
x(s)ds,

2
(β− α)2

∫ β

α

∫ β

s
x(u)duds

}
,

ēj =
[
0n×(j−1)n In 0n×(4−j)n

]
, j = 1, 2, · · · , 4.

Lemma 2 ([22]). Letting I − GTG > 0, define the set Υ =
{

Δ(t) = Σ(t)[I − GΣ(t)]−1,
ΣT(t)Σ(t) ≤ I

}
and for given matrices H, Q and R of appropriate dimensions with H symmetrical,

then H + QΔ(t)R + RTΔT(t)QT < 0, if and only if there exists a scalar δ > 0 such that⎡⎣H RT δQ
∗ −δI δG
∗ ∗ −δI

⎤⎦ = H +

[
δR

δ−1QT

]T[ I −G
−GT I

]−1[
δR

δ−1QT

]
< 0. (12)

3. Main Results

In this section, we will demonstrate the asymptotic stability of the NTNNs synchro-
nization error system by constructing an augmented functional with mixed delays and
a two-side looped functional. First, we take up the case ΔA(t) = ΔW0(t) = ΔW1(t) =
ΔW2(t) = 0.

Theorem 1. Given scalars ε1 and ε2, if there exist symmetric matrices Pi > 0 (i = 1, 2, 3), Xj >
0 (j = 1, 2, · · · , 6), S1 > 0, S2 > 0, Z1 > 0, Z3 > 0, R2 > 0, R4 > 0, Z2, Q3, Q4, R1, R3,
any matrices Q1, Q2, G, L, Yk (k = 1, 2, · · · , 19) and diagonal matrices U ≥ 0, V ≥ 0,
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Δl = diag{λl1, λl1, · · · , λln} ≥ 0 (l = 1, 2), such that the followed linear matrix inequalities
(LMIs) hold:

Z3 + R1 > 0, Z2 + R3 > 0, Z2 + Z3 > 0, (13)⎡⎢⎢⎢⎢⎢⎢⎣

Γ1 + dkΓ2
√

dkΘ1
√

τcΘ2
√

τ2Θ4
√

τ1ΠTY18
√

τ21ΠTY19
∗ −χ1 0 0 0 0
∗ ∗ −χ2 0 0 0
∗ ∗ ∗ −χ4 0 0
∗ ∗ ∗ ∗ −S1 0
∗ ∗ ∗ ∗ ∗ −X5

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (14)

⎡⎢⎢⎢⎢⎢⎢⎣

Γ1 + dkΓ3
√

dkΘ3
√

τcΘ2
√

τ2Θ4
√

τ1ΠTY18
√

τ21ΠTY19
∗ −χ3 0 0 0 0
∗ ∗ −χ2 0 0 0
∗ ∗ ∗ −χ4 0 0
∗ ∗ ∗ ∗ −S1 0
∗ ∗ ∗ ∗ ∗ −X5

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (15)

where

Γ1 = Sym
{

ΩT
1 P1Ω2 + (r11 − Kpr1)

TΔ1r8 + (Kmr1 − r11)
TΔ2r8 + ΩT

9 (Q1Ω10 + Q2Ω11)

+ΩT
20Ω21 + ΩT

22UΩ23 + ΩT
24VΩ25 + ΩT

9 (Q1Ω10 + Q2Ω11) + Sym

{
19

∑
i=1

Yi�i

}}
+ ΩT

3 P2Ω3 − (1− u2)ΩT
4 P2Ω4 + rT

8 P3r8 − (1− u1)rT
26P3r26 + ΩT

5 (X1 + X2 + X3)Ω5

−ΩT
6 X1Ω6 −ΩT

7 X2Ω7 −ΩT
8 X3Ω8 + rT

24X4r24 − rT
11X4r11 + τ21rT

8 X5r8 + rT
11X6r11

− rT
2 X6r2 + τ1rT

8 S1r8 + τ2rT
8 S2r8 + τcrT

8 Z1r8 + dMrT
8 Z2r8 + ηMrT

8 Z3r8,

Γ2 = Sym
{

ΩT
12(Q1Ω10 + Q2Ω11) + ΩT

13Q1Ω14 + ΩT
17Q4Ω18

}
+ ΩT

11Q3Ω11 + ΩT
17Q4Ω17

+ rT
8 R1r8 + rT

9 R3r9,

Γ3 = Sym
{

ΩT
15(Q1Ω10 + Q2Ω11) + ΩT

16Q1Ω14 + ΩT
17Q4Ω19

}
−ΩT

11Q3Ω11 −ΩT
17Q4Ω17

+ rT
8 R2r8 + rT

9 R4r9,

Γ4 = τc

3

∑
i=1

1
2i− 1

ΠTYiZ−1
1 YT

i Π + τcΠTY14Z−1
3 YT

14Π + τ2

2

∑
i=1

1
2i− 1

ΠTY15+iS−1
2 YT

15+iΠ

+ τ1ΠTY18S−1
1 YT

18Π + τ21ΠTY19X−1
5 YT

19Π +
3

∑
i=1

1
2i− 1

ΠTY3+iR−1
2 YT

3+iΠ

+
2

∑
i=1

1
2i− 1

ΠTY11+iR−1
4 YT

11+iΠ + ΠTY15(Z2 + Z3)
−1YT

15Π,

Γ5 = τc

3

∑
i=1

1
2i− 1

ΠTYiZ−1
1 YT

i Π + τcΠTY14Z−1
3 YT

14Π + τ2

2

∑
i=1

1
2i− 1

ΠTY15+iS−1
2 YT

15+iΠ

+ τ1ΠTY18S−1
1 YT

18Π + τ21ΠTY19X−1
5 YT

19Π +
3

∑
i=1

1
2i− 1

ΠTY6+i(R1 + Z3)
−1YT

6+iΠ

+
2

∑
i=1

1
2i− 1

ΠTY9+i(R3 + Z2)
−1YT

9+iΠ,
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τ21 =τ2 − τ1, ri =
[
0n×(i−1)n In 0n×(26−i)n

]
, i = 1, 2, · · · , 26,

Π =col{r1, r2, r3, r4, r5, r6, r7, r11, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24},
Θ1 =ΠT(Y4, Y5, Y6, Y12, Y13, Y15), Θ2 = ΠT(Y1, Y2, Y3, Y14),

Θ3 =ΠT(Y7, Y8, Y9, Y10, Y11), Θ4 = ΠT(Y16, Y17),

χ1 =diag{R2, 3R2, 5R2, R4, 3R4, Z2 + Z3}, χ2 = diag{Z1, 3Z1, 5Z1, Z3},
χ3 =diag{R1 + Z3, 3(R1 + Z3), 5(R1 + Z3), R3 + Z2, 3(R3 + Z2)}, χ4 = diag{S2, 3S2},
Ω1 =col

{
r1, r2, r24, r11, τcr15 − τ2r23, τ2

c r16

}
,

Ω2 =col{r8, r9, r25, r10, r11 − r2, τc(r15 − r2)},
Ω3 =col{r1, r13}, Ω4 = col{r12, r14}, Ω5 = col{r1, r8},
Ω6 =col{r11, r10}, Ω7 = col{r2, r9}, Ω8 = col{r24, r25},
Ω9 =col{r3 − r1, r1 − r5, r4 − r2, r2 − r6}, Ω10 = col{r1 − r3, r1 − r5, r2 − r4, r2 − r6},

Ω11 =col{r3, r4, r5, r6}, Ω12 = col{r8, 0, r9, 0}, Ω13 = col{r1 − r3, 0, r2 − r4, 0},
Ω14 =col{r8, r8, r9, r9}, Ω15 = col{0, r8, 0, r9}, Ω16 = col{0, r1 − r5, 0, r2 − r6},
Ω17 =col{r17, r19, r21, r22, r18, r20}, Ω18 = col(r1 − r17, 0, r2 − r21, 0, r17 − 2r18, 0},
Ω19 =col{0, r19 − r1, 0, r22 − r2, 0, 2r20 − r19}, Ω20 = col{r1 + ε1r4 + ε2r8},
Ω21 =col{−Gr8 − GAr1 + GW0r13 + GW1r14 + GW2r26 + Lr4},
Ω22 =r13 − K−r1, Ω23 = K+r1 − r13, Ω24 = r14 − K−r12, Ω25 = K+r12 − r14,

�1 =r1 − r2, �2 = r1 + r2 − 2r15, �3 = r1 − r2 − 6r15 + 12r16,

�4 =r5 − r1, �5 = r5 + r1 − 2r19, �6 = r5 − r1 + 6r19 − 12r20,

�7 =r1 − r3, �8 = r1 + r3 − 2r17, �9 = r1 − r3 − 6r17 + 12r18,

�10 =r2 − r4, �11 = r2 + r4 − 2r21, �12 = r6 − r2, �13 = r6 + r2 − 2r22, �14 = r3 − r4,

�15 =r4 − r7, �16 = r1 − r11, �17 = r1 + r11 − 2r23, �18 = r1 − r24, �19 = r24 − r11.

Then, the slave system (5) can be synchronized with the master system (1). The gain matrix of
the controller in (6) can be calculated by K = G−1L.

Proof. Please see Appendix A.

Remark 1. The two-side looped functionalW(t) was introduced in the LKF, which utilized the
information on intervals [tk, t], [tk − τ, t− τ], [t, tk+1), [t− τ, tk+1− τ). Notice thatWj(t) (j =
1, 2, 3, 4, 5) satisfy the requirement of the looped functional [23] as follows:Wj(tk) =Wj(tk+1) = 0.

Remark 2. Even though the existence of neutral delay τ1(t) and transmission delay τ2(t) were
considered, the cross information associated with the states of the mixed delays were not exploited
in [7,24,25]. In our work, the integral terms and double integral terms in V4(t) can reflect the cross
information associated with the time delays τi(t) (i = 1, 2). The derivative of LKF conducted not
only depends on τi(t) (i = 1, 2), but also on the value τ21. These integral terms strengthen the
connection between those states and effectively reduce the conservatism when τ1(t) �= τ2(t).

Remark 3. The sampling periods dk and the communication delay τc are coupled with the variable
matrices in LMIs. We set the communication delay τc as a given scalar, and then use Algorithm 1 to
derive the maximal sampling period dM and the corresponding controller gain K.
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Algorithm 1 Find the maximum sampling period dM and the controller gain matrix K.

Step 1: Input communication delay τc.
Step 2: Set the accuracy coefficient to dac = 0.0001, and initialize the search interval

[dmin, dmax] with dmin = 0 and a large enough integer dmax.
Step 3: By validating the feasibility of LMIs (14) and (15), determine whether the

system has a sampling period given as dt = (dmin + dmax)/2.
Step 4: If (14) and (15) are feasible, calculate Kt by (A3), and set dmin = dt; else, set

dmax = dt.
Step 5: If |dmax − dmin| ≤ dac, record the maximum sampling period dM = dmin

and derive the corresponding controller gain K = Kt; else, repeat Step 3.
Step 6: End. Output dM and K.

To demonstrate the validity of the mixed-delay-dependent terms in LKF, we remove
them from Theorem 1, resulting in Corollary 1.

Corollary 1. Given scalars ε1 and ε2, if there exist symmetric matrices Pi > 0 (i = 1, 2, 3), Xj >
0 (j = 1, 2, · · · , 6), S1 > 0, S2 > 0, Z1 > 0, Z3 > 0, R2 > 0, R4 > 0, Z2, Q3, Q4, R1, R3,
any matrices Q1, Q2, G, L, Yk (k = 1, 2, · · · , 18) and diagonal matrices U ≥ 0, V ≥ 0,
Δl = diag{λl1, λl1, · · · , λln} ≥ 0 (l = 1, 2), such that the followed linear matrix inequalities
(LMIs) hold:

Z3 + R1 > 0, Z2 + R3 > 0, Z2 + Z3 > 0, (16)⎡⎢⎢⎢⎢⎣
Γ̂1 + dkΓ2

√
dkΘ1

√
τcΘ2

√
τ2Θ4

√
τ1ΠTY18

∗ −χ1 0 0 0
∗ ∗ −χ2 0 0
∗ ∗ ∗ −χ4 0
∗ ∗ ∗ ∗ −S1

⎤⎥⎥⎥⎥⎦ < 0, (17)

⎡⎢⎢⎢⎢⎣
Γ̂1 + dkΓ3

√
dkΘ3

√
τcΘ2

√
τ2Θ4

√
τ1ΠTY18

∗ −χ3 0 0 0
∗ ∗ −χ2 0 0
∗ ∗ ∗ −χ4 0
∗ ∗ ∗ ∗ −S1

⎤⎥⎥⎥⎥⎦ < 0, (18)

where

Γ̂1 = Sym
{

rT
1 P1r8 + (r11 − K−r1)

TΔ1r8 + (K+r1 − r11)
TΔ2r8 + ΩT

9 (Q1Ω10 + Q2Ω11)

+ΩT
20Ω21 + ΩT

22UΩ23 + ΩT
24VΩ25 + ΠT

9 (Q1Π10 + Q2Π11) + Sym

{
18

∑
i=1

Yi�i

}}
+ ΩT

3 P2Ω3 − (1− u2)ΩT
4 P2Ω4 + rT

8 P3r8 − (1− u1)rT
26P3r26 + ΩT

5 (X1 + X2 + X3)Ω5

−ΩT
6 X1Ω6 −ΩT

7 X2Ω7 −ΩT
8 X3Ω8 + τ1rT

8 S1r8 + τ2rT
8 S2r8 + τcrT

8 Z1r8 + dMrT
8 Z2r8

+ ηMrT
8 Z3r8,

and the rest of the vectors and matrices are defined in Theorem 1. Then, the slave system (5) can be
synchronized with the master system (1). The gain matrix of the controller in (6) can be calculated
by K = G−1L.

Proof. Please see Appendix B.

Remark 4. In Corollary 1, we remove the mixed-delay terms in V4(t), and change the vector �1(t)
to e(t). The comparison between Theorem 1 and Corollary 1 demonstrates the usefulness of the
mixed-delay terms. Example 1 in Section 4 shows numerical comparisons.
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Based on Theorem 1 and considering the parameter uncertainties, we have the follow-
ing stability conditions.

Theorem 2. Given scalars ε1, ε2, matrices J, Em > 0 (m = 1, 2, 3, 4), if there exist posi-
tive scalars δn > 0 (n = 1, 2), symmetric matrices Pi > 0 (i = 1, 2, 3), Xj > 0 (j =
1, 2, · · · , 6), S1 > 0, S2 > 0, Z1 > 0, Z3 > 0, R2 > 0, R4 > 0, Z2, Q3, Q4, R1, R3,
any matrices Q1, Q2, G, L, Yk (k = 1, 2, · · · , 19) and diagonal matrices U ≥ 0, V ≥ 0,
Δl = diag{λl1, λl1, · · · , λln} ≥ 0 (l = 1, 2), such that the following LMIs hold:

Z3 + R1 > 0, Z2 + R3 > 0, Z2 + Z3 > 0, (19)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 + dkΓ2
√

dkΘ1
√

τcΘ2
√

τ2Θ4
√

τ1Ỹ18
√

τ21Ỹ19 δ1Ψ1 Ψ2
∗ −χ1 0 0 0 0 0 0
∗ ∗ −χ2 0 0 0 0 0
∗ ∗ ∗ −χ4 0 0 0 0
∗ ∗ ∗ ∗ −S1 0 0 0
∗ ∗ ∗ ∗ ∗ −X5 0 0
∗ ∗ ∗ ∗ ∗ ∗ −δ1 I δ1 J
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (20)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 + dkΓ3
√

dkΘ3
√

τcΘ2
√

τ2Θ4
√

τ1Ỹ18
√

τ21Ỹ19 δ2Ψ1 Ψ2
∗ −χ3 0 0 0 0 0 0
∗ ∗ −χ2 0 0 0 0 0
∗ ∗ ∗ −χ4 0 0 0 0
∗ ∗ ∗ ∗ −S1 0 0 0
∗ ∗ ∗ ∗ ∗ −X5 0 0
∗ ∗ ∗ ∗ ∗ ∗ −δ2 I δ2 J
∗ ∗ ∗ ∗ ∗ ∗ ∗ −δ2 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (21)

where Γi, Θi, χi (i = 1, 2, 3, 4) are defined well in Theorem 1 and Ỹ18 = ΠTY18, Ỹ19 = ΠTY19,
Ψ1 = col

{
ET

1 , 0T
n·11n, ET

2 , ET
3 , 0T

n·11n, ET
4
}

, Ψ2 = col
{

GF, 0T
n·2n, ε1GF, 0T

n·3n, ε2GF, 0T
n·18n

}
.

Then, the slave system (5) can be synchronized with the master system (1). The gain matrix of the
controller in (6) can be calculated by K = G−1L.

Proof. Please see Appendix C.

To demonstrate the validity of the mixed-delay-dependent terms in LKF, we remove
them from Theorem 2, resulting in Corollary 2.

Corollary 2. Given scalars ε1, ε2, matrices J, Em > 0 (m = 1, 2, 3, 4), if there exist pos-
itive scalars δn > 0 (n = 1, 2), symmetric matrices Pi > 0 (i = 1, 2, 3), Xj > 0 (j =
1, 2, · · · , 6), S1 > 0, S2 > 0, Z1 > 0, Z3 > 0, R2 > 0, R4 > 0, Z2, Q3, Q4, R1, R3,
any matrices Q1, Q2, G, L, Yk (k = 1, 2, · · · , 18) and diagonal matrices U ≥ 0, V ≥ 0,
Δl = diag{λl1, λl1, · · · , λln} ≥ 0 (l = 1, 2), such that the following LMIs hold:

Z3 + R1 > 0, Z2 + R3 > 0, Z2 + Z3 > 0, (22)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂1 + dkΓ2
√

dkΘ1
√

τcΘ2
√

τ2Θ4
√

τ1Ỹ18 δ1Ψ1 Ψ2
∗ −χ1 0 0 0 0 0
∗ ∗ −χ2 0 0 0 0
∗ ∗ ∗ −χ4 0 0 0
∗ ∗ ∗ ∗ −S1 0 0
∗ ∗ ∗ ∗ ∗ −δ1 I δ1 J
∗ ∗ ∗ ∗ ∗ ∗ −δ1 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (23)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂1 + dkΓ3
√

dkΘ3
√

τcΘ2
√

τ2Θ4
√

τ1Ỹ18 δ2Ψ1 Ψ2
∗ −χ3 0 0 0 0 0
∗ ∗ −χ2 0 0 0 0
∗ ∗ ∗ −χ4 0 0 0
∗ ∗ ∗ ∗ −S1 0 0
∗ ∗ ∗ ∗ ∗ −δ2 I δ2 J
∗ ∗ ∗ ∗ ∗ ∗ −δ2 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (24)

where

Γ̂1 = Sym
{

rT
1 P1r8 + (r11 − K−r1)

TΔ1r8 + (K+r1 − r11)
TΔ2r8 + ΩT

9 (Q1Ω10 + Q2Ω11)

+ΩT
20Ω21 + ΩT

22UΩ23 + ΩT
24VΩ25 + ΠT

9 (Q1Π10 + Q2Π11) + Sym

{
18

∑
i=1

Yi�i

}}
+ ΩT

3 P2Ω3 − (1− u2)ΩT
4 P2Ω4 + rT

8 P3r8 − (1− u1)rT
26P3r26 + ΩT

5 (X1 + X2 + X3)Ω5

−ΩT
6 X1Ω6 −ΩT

7 X2Ω7 −ΩT
8 X3Ω8 + τ1rT

8 S1r8 + τ2rT
8 S2r8 + τcrT

8 Z1r8 + dMrT
8 Z2r8

+ ηMrT
8 Z3r8,

and the rest of the vectors and matrices are defined in Theorem 2. Then, the slave system (5) can be
synchronized with the master system (1). The gain matrix of the controller in (6) can be calculated
by K = G−1L.

Proof. Please see Appendix D.

If the neutral delay is not taken into consideration, the following synchronization
criterion is derived.

Corollary 3. Given scalars ε1 and ε2, if there exist symmetric matrices Pi > 0 (i = 1, 2), Xj >
0 (j = 2, 3), S1 > 0, Z1 > 0, Z3 > 0, R2 > 0, R4 > 0, Z2, Q3, Q4, R1, R3, any ma-
trices Q1, Q2, G, L, Yk (k = 1, 2, · · · , 17) and diagonal matrices U ≥ 0, V ≥ 0, Δl =
diag{λl1, λl1, · · · , λln} ≥ 0 (l = 1, 2), such that the following linear matrix inequalities
(LMIs) hold:

Z3 + R1 > 0, Z2 + R3 > 0, Z2 + Z3 > 0, (25)⎡⎢⎢⎣
Γ̃1 + dkΓ̃2

√
dkΘ̃1

√
τcΘ̃2

√
τ2Θ̃4

∗ −χ1 0 0
∗ ∗ −χ2 0
∗ ∗ ∗ −χ4

⎤⎥⎥⎦ < 0, (26)

⎡⎢⎢⎣
Γ̃1 + dkΓ̃3

√
dkΘ̃3

√
τcΘ̃2

√
τ2Θ̃4

∗ −χ3 0 0
∗ ∗ −χ2 0
∗ ∗ ∗ −χ4

⎤⎥⎥⎦ < 0, (27)

where

Γ̃1 = Sym
{

Ω̃T
1 P1Ω̃2 + (r̃11 − K− r̃1)

TΔ1r̃8 + (K+ r̃1 − r̃11)
TΔ2r̃8 + Ω̃T

9 (Q1Ω̃10 + Q2Ω̃11)

+Ω̃T
20Ω̃21 + Ω̃T

22UΩ̃23 + Ω̃T
24VΩ̃25 + Ω̃T

9 (Q1Ω̃10 + Q2Ω̃11) + Sym

{
17

∑
i=1

Yi�̃i

}}
+ Ω̃T

3 P2Ω̃3 − (1− u2)Ω̃T
4 P2Ω̃4 + Ω̃T

5 (X2 + X3)Ω̃5 − Ω̃T
7 X2Ω̃7 − Ω̃T

8 X3Ω̃8

+ r̃T
11X6r̃11 − r̃T

2 X6r̃2 + τ2r̃T
8 S1r̃8 + τcr̃T

8 Z1r̃8 + dMr̃T
8 Z2r̃8 + ηMr̃T

8 Z3r̃8,
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Γ̃2 = Sym
{

Ω̃T
12(Q1Ω̃10 + Q2Ω̃11) + Ω̃T

13Q1Ω̃14 + Ω̃T
17Q4Ω̃18

}
+ Ω̃T

11Q3Ω̃11

+ Ω̃T
17Q4Ω̃17 + r̃T

8 R1r̃8 + r̃T
9 R3r̃9,

Γ̃3 = Sym
{

Ω̃T
15(Q1Ω̃10 + Q2Ω̃11) + Ω̃T

16Q1Ω̃14 + Ω̃T
17Q4Ω̃19

}
− Ω̃T

11Q3Ω̃11

− Ω̃T
17Q4Ω̃17 + r̃T

8 R2r̃8 + r̃T
9 R4r̃9,

r̃i =
[
0n×(i−1)n In 0n×(23−i)n

]
, i = 1, 2, · · · , 23,

Π̃ = col{r1, r2, r3, r4, r5, r6, r7, r11, r15, r16, r17, r18, r19, r20, r21, r22, r23},
Θ̃1 = Π̃T(Y4, Y5, Y6, Y12, Y13, Y15), Θ̃2 = Π̃T(Y1, Y2, Y3, Y14),

Θ̃3 = Π̃T(Y7, Y8, Y9, Y10, Y11), Θ̃4 = Π̃T(Y16, Y17),

χ1 =diag{R2, 3R2, 5R2, R4, 3R4, Z2 + Z3}, χ2 = diag{Z1, 3Z1, 5Z1, Z3},
χ3 =diag{R1 + Z3, 3(R1 + Z3), 5(R1 + Z3), R3 + Z2, 3(R3 + Z2)}, χ4 = diag{S2, 3S2},

Ω̃1 = col
{

r̃1, r̃2, r̃11, τcr̃15 − τ2r̃23, τ2
c r̃16

}
,

Ω̃2 = col{r̃8, r̃9, r̃10, r̃11 − r̃2, τc(r̃15 − r̃2)},
Ω̃3 = col{r̃1, r̃13}, Ω̃4 = col{r̃12, r̃14}, Ω̃5 = col{r̃1, r̃8},
Ω̃7 = col{r̃2, r̃9}, Ω̃8 = col{r̃11, r̃10},
Ω̃9 = col{r̃3 − r̃1, r̃1 − r̃5, r̃4 − r̃2, r̃2 − r̃6}, Ω̃10 = col{r̃1 − r̃3, r̃1 − r̃5, r̃2 − r̃4, r̃2 − r̃6},

Ω̃11 = col{r̃3, r̃4, r̃5, r̃6}, Ω̃12 = col{r̃8, 0, r̃9, 0}, Ω̃13 = col{r̃1 − r̃3, 0, r̃2 − r̃4, 0},
Ω̃14 = col{r̃8, r̃8, r̃9, r̃9}, Ω̃15 = col{0, r̃8, 0, r̃9}, Ω̃16 = col{0, r̃1 − r̃5, 0, r̃2 − r̃6},
Ω̃17 = col{r̃17, r̃19, r̃21, r̃22, r̃18, r̃20}, Ω̃18 = col(r̃1 − r̃17, 0, r̃2 − r̃21, 0, r̃17 − 2r̃18, 0},
Ω̃19 = col{0, r̃19 − r̃1, 0, r̃22 − r̃2, 0, 2r̃20 − r̃19}, Ω̃20 = col{r̃1 + ε1r̃4 + ε2r̃8},
Ω̃21 = col{−Gr̃8 − GAr̃1 + GW0r̃13 + GW1r̃14 + Lr̃4},
Ω̃22 = r̃13 − K− r̃1, Ω̃23 = K+ r̃1 − r̃13, Ω̃24 = r̃14 − K− r̃12, Ω̃25 = K+ r̃12 − r̃14,

�̃1 = r̃1 − r̃2, �̃2 = r̃1 + r̃2 − 2r̃15, �̃3 = r̃1 − r̃2 − 6r̃15 + 12r̃16,

�̃4 = r̃5 − r̃1, �̃5 = r̃5 + r̃1 − 2r̃19, �̃6 = r̃5 − r̃1 + 6r̃19 − 12r̃20,

�̃7 = r̃1 − r̃3, �̃8 = r̃1 + r̃3 − 2r̃17, �̃9 = r̃1 − r̃3 − 6r̃17 + 12r̃18,

�̃10 = r̃2 − r̃4, �̃11 = r̃2 + r̃4 − 2r̃21, �̃12 = r̃6 − r̃2, �̃13 = r̃6 + r̃2 − 2r̃22, �̃14 = r̃3 − r̃4,

�̃15 = r̃4 − r̃7, �̃16 = r̃1 − r̃11, �̃17 = r̃1 + r̃11 − 2r̃23.

Then, the slave system can be synchronized with the master system. The gain matrix of the
controller can be calculated by K = G−1L.

Proof. Please see Appendix E.

4. Illustrative Examples

In this section, three numerical examples will be presented to illustrate the validity of
the derived criteria.

Example 1. Consider the neutral-type neural networks (10) with the following parameters [19]:

A =

[
3 0
0 3

]
, W0 =

[
0.5 0.3
0.3 0.5

]
, W1 =

[
0.2 0.1
0.1 0.2

]
, W2 =

[
0.15 0

0 0.15

]
,

K− = diag{0, 0}, K+ = diag{1, 1}, ΔA(t) = 0, ΔW0(t) = 0, ΔW1(t) = 0, ΔW2(t) = 0.

We choose τ1 = 0.5, μ1 = 0.9, τ2 = 2.0, μ2 = 0.5, ε1 = ε2 = 0.24. For different
communication delays τc, via solving the LMIs in Theorem 1 and Corollary 1, the maximal sampling
period dm computed by Algorithm 1 are listed in Table 1. It can be seen from Table 1 that as the
communication delays τc increases, the maximum sampling period dM decreases. Theorem 1 and
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Corollary 1 are derived via a similar approach. When τc = 0.09, the maximum sampling period
dM calculated by Corollary 1 is 1.2996 and by Theorem 1 is 1.3738. Theorem 1 provides a larger
allowable sampling period than Corollary 1. Therefore, a mixed-delay-dependent LKF can lead to a
less conservative result.

When τc = 0.01, dM = 1.3881, the corresponding controller gain matrix is obtained by
Theorem 1 as follows:

K =

[
0.0653 −0.0414
−0.0414 0.0653

]
.

Table 1. The maximum sampling period dM for different τc (Example 1).

τc 0.01 0.03 0.05 0.07 0.09

Corollary 1 1.3766 1.3499 1.3296 1.3134 1.2996

Theorem 1 1.3881 1.3865 1.3820 1.3777 1.3738

Improvement 0.835% 4.9406% 3.9411% 4.8957% 5.7094%

Let τc = 0.01, the largest sampling interval dM = 1.3881, and the corresponding
controller is obtained as

K =

[
0.0653 −0.0414
−0.0414 0.0653

]
.

The neural activation function is taken as the form fi(xi) = tanh(xi) (i = 1, 2), which
satisfies the assumption (7). The time-delay τ1(t) = 0.5sin2(0.9t), and τ2(t) = 2cos2(0.5t).
The initial condition of the master system and the slave system are taken as x(0) =
col{−0.2,−0.3}, y(0) = col{0.3, 0.6}, respectively. The initial control input is u(t) = 0. Let
the sampling period dk = dM, based on the above sample-data controller, the state response
of the error system (6) is shown in Figure 1, and the control input (9) is shown in Figure 2.
It can be seen from Figure 1 that the error state converges to zero. That is to say, the error
system (6) is asymptotic stable, and the slave system (5) is synchronous with the master
system (1). It verifies the effectiveness of our methods.

0 2 4 6 8 10 12 14 16 18 20
Time(s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

e(
t)

e1(t)

e2(t)

Figure 1. State responses of the error system.
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Figure 2. Control input u(t).

Example 2. Consider the neutral-type neural networks (10) with the following parameters [19]:

A = diag{3, 3}, K− = diag{0, 0}, K+ = diag{1, 1},

W0 =

[
1 0.1

0.1 1

]
, W1 =

[
0.4 0.1

0.04 0.1

]
, W2 =

[
0.01 0

0 0.01

]
.

In this example, the time-varying parameter uncertainties ΔA(t), ΔW0(t), ΔW1(t),
ΔW2(t) are defined as [ΔA(t) ΔW0(t) ΔW1(t) ΔW2(t)] = FΣ(t)[E1 E2 E3 E4], where E1 =
[0.1, 0.02], E2 = [−0.07, 0.1], E3 = [0.02,−0.02], E4 = [0.01, 0.02], F = diag{1, 1}, Σ(t) =
sint. We choose τ1 = 0.5, μ1 = 0.9, μ2 = 0.5, τ2 = 2.

The maximum sampling period dM for different τc by Theorem 2 is listed in Table 2. By
solving the LMIs (19)–(21), Theorem 2 provides a larger allowable upper bound of delays
than those in Corollary 2. That is to say, the LKF containing a mixed delay part can lead to
a less conservative result effectively.

Based on Theorem 2, when τc = 0.01, the maximum sampling period dM = 26.2134,
the desired controller gain matrix can be calculated as

K =

[−0.4317 0.0106
0.0168 −0.4401

]
.

Table 2. The maximum sampling period dM with parameter uncertainties (Example 2).

τc 0.01 0.03 0.05 0.07 0.09

Corollary 2 25.9631 24.1682 22.6097 21.2437 20.0398

Theorem 2 26.2134 25.2686 24.3970 23.4741 22.5952

Improvement 0.964% 4.5530% 7.9050% 10.4991% 12.7516%

Furthermore, if we choose the neural activation functions as fi(xi) = tanh(xi) (i =
1, 2), τ1(t) = 0.5sin2(0.9t), and τ2(t) = 2cos2(0.5t), the initial condition e(0) = col{1,−1}.
The response curves of the error system (6) with u(t) are given in Figure 3, and the
control input u(t) is shown in Figure 4. Figure 3 shows that the NTNNs with parameter
uncertainties are stable at their equilibrium points, which verifies that the slave system (5)
is synchronous with the master system (1).
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Figure 3. State responses of the error system.
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Figure 4. Control input u(t).

Example 3. Consider the neutral-type neural networks (10) with the following parameters [17]:

A =

[
1 0
0 0.5

]
, W0 =

[
1.8 −0.15
−5.2 1.5

]
, W1 =

[
1.7 −0.12
−0.26 −2.5

]
, W2 =

[
0 0
0 0

]
.

The neural activation functions are taken as the form fi(xi) = tanh(xi) (i = 1, 2), which
satisfies the assumption (7) with K− = diag(0, 0), K+ = diag(1, 1). The time-delay τ(t) =
et/(et + 1). The initial condition of the master system and the slave system is taken as x(0) =
col(−0.2,−0.3), y(0) = col(0.3, 0.6) and u(t) = 0. For given scalars τ2 = 1, μ2 = 0.25,
via solving the LMIs in Corollary 3, the derived maximum sampling intervals of the NTNNs for
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different communication delays τc are obtained when ε1 = ε2 = 0.24, and dk = dM. The results
are shown in Table 3.

For various τc, the maximum sampling period dM by Corollary 3 in this paper and the related
methods in [26,27] are listed in Table 3. It can be found that Corollary 3 provides a larger maximum
sampling period compared with the results of the literature in Table 3. It shows that the proposed
criteria are less conservative than the ones in the literature. That is to say, the LKF containing a
mixed delay part can lead to a less conservative result.

Table 3. The maximum sampling period dM for different τc (Example 2).

τc 0.01 0.03 0.05 0.07 0.09

[26] 0.23 0.19 0.16 0.13 0.10

[27] 0.24 0.20 0.17 0.13 0.10

Corollary 3 0.26 0.21 0.17 0.14 0.10

Based on Corollary 3, when τc = 0.01, the maximum sampling period dM = 0.2621,
the desired controller gain matrix can be calculated as

K =

[−4.2096 0.0865
0.8097 −4.5161

]
.

Based on the above sample-data controller, the state response curves of the error
system (6) and the control input (9) are shown in Figures 5 and 6, respectively. Figure 5
shows that the NNs are stable at their equilibrium points, which verifies that the error
system is asymptotic stable. The slave system (5) is synchronous with the master system (1).
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Figure 5. State responses of the error system.
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Figure 6. Control input u(t).

5. Discussion

A function that considers the information of the intervals [tk, t], [tk − τ, t− τ], [t, tk+1)
and [t− τ, tk+1− τ) is known as a two-sided looped functional. As more state information is
taken into account, a less conservative stability criterion will be developed. The sample-data
control approach can increase the control effectiveness while reducing network congestion.
However, in practical implementations, communication delays are unavoidable when
signals are sent from the sampler to the controller. Our limited knowledge indicates that
there is no research that investigate NTNNs synchronization control using a sample-data
controller considering communication delay. These factors prompt our investigation on
NTNNs synchronization control.

In addition, systems with a single delay were the main subject of the research. Any
form of time delay might be detrimental to the practical synchronization control of NTNNs.
An important area for research is how the interaction between the delays affect each
other. The connection between transmission delay and communication delay as well as
the interconnectedness between neutral delay and transmission delay are all taken into
account in this work. Three examples show that a mixed-delay-dependent LKF may lead
to a less conservative criterion. Therefore, future research will concentrate on gathering
more information of the delays and exploring ways to relax the restrictions placed on LKF.

In this article, the integral terms of the derivative of the LKF are estimated by using a
free-matrix-based integral inequality. This approach produces a large number of free matri-
ces, which makes the calculations more complex. Therefore, future study will concentrate
on finding ways to improve the result by decreasing the LKF limitations and achieving a
less conservative criterion.

6. Conclusions

In this study, we present a sampled-data synchronization scheme for uncertain NTNNs.
A new LKF with a mixed-delay-dependent augmented part and a two-sided looped part is
proposed. Benefiting from the LKF, two synchronization criteria are derived to guarantee
the stability of the error systems, thereby allowing the slave system to synchronize with the
master systems. Based on the criterion, a corresponding sampled-data controller scheme
with a communication delay is designed. Finally, the validity of the proposed criteria is
demonstrated through three numerical examples.
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Appendix A

Proof. We choose the following LKFs candidates as

V(t) =
5

∑
i=1
Vi(t) +

4

∑
j=1
Wj(t), (A1)

where

V1(t) = �T
1 (t)P1�1(t) + 2

n

∑
i=1

λ1i

∫ ei(t)

0

(
fi(s)− k−i s

)
ds + 2

n

∑
i=1

λ2i

∫ ei(t)

0

(
k+i s− fi(s)

)
ds,

V2(t) =
∫ t

t−τ2(t)
�T

2 (s)P2�2(s)ds +
∫ t

t−τ1(t)
ėT(s)P3 ė(s)ds,

V3(t) =
∫ t

t−τ1

�T
3 (s)X1�3(s)ds +

∫ t

t−τ2

�T
3 (s)X2�3(s) +

∫ t

t−τc

�T
3 (s)X3�3(s)ds,

V4(t) =
∫ t−τ1

t−τ2

eT(s)X4e(s)ds +
∫ −τ1

−τ2

∫ t

t+θ
ėT(u)X5 ė(u)dudθ +

∫ t−τ2

t−τc

eT(s)X6e(s)ds,

V5(t) =
∫ 0

−τ1

∫ t

t+θ
ėT(u)S1 ė(u)dudθ +

∫ 0

−τ2

∫ t

t+θ
ėT(u)S2 ė(u)dudθ +

∫ 0

−τc

∫ t

t+θ
ėT(u)Z1 ė(u)dudθ

+
∫ −τc

−ηM

∫ t

t+θ
ėT(u)Z2 ė(u)dudθ +

∫ 0

−ηM

∫ t

t+θ
ėT(u)Z3 ė(u)dudθ,

W1(t) = 2�T
4 (t)(Q1�5(t) + Q2�6(t)),

W2(t) =(tk+1 − t)(t− tk)�
T
6 (t)Q3�6(t),

W3(t) =(tk+1 − t)(t− tk)�7(t)TQ4�7(t),

W4(t) =(tk+1 − t)
∫ t

tk

ėT(s)R1 ė(s)ds− (t− tk)
∫ tk+1

t
ėT(s)R2 ė(s)ds

+ (tk+1 − t)
∫ t−τc

tk−τc
ėT(s)R3 ė(s)ds− (t− tk)

∫ tk+1−τc

t−τc
ėT(s)R4 ė(s)ds

Taking the derivatives of V(t) along the trajectory of the error system (6) yields
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V̇1(t) = ξT(t)Sym
{

ΩT
1 P1Ω2 + (r11 − Kpr1)

TΔ1r8 + (Kmr1 − r11)
TΔ2r8

}
ξ(t),

V̇2(t) ≤ ξT(t)
(

ΩT
3 P2Ω3 − (1− u2)ΩT

4 P2Ω4 + rT
8 P3r8 − (1− u1)rT

26P3r26

)
ξ(t),

V̇3(t) ≤ ξT(t)
(

ΩT
5 (X1 + X2 + X3)Ω5 −ΩT

6 X1Ω6 −ΩT
7 X2Ω7 −ΩT

8 X3Ω8

)
ξ(t),

V̇4(t) = ξT(t)
{

rT
24X4r24 − rT

11X4r11 + τ21rT
8 X5r8 + rT

11X6r11 − rT
2 X6r2

}
ξ(t) + J0,

V̇5(t) = ξT(t)
(

τ1rT
8 S1r8 + τ2rT

8 S2r8 + τcrT
8 Z1r8 + dMrT

8 Z2r8 + ηMrT
8 Z3r8

)
ξ(t)

+ J1 + J2 + J3 + J4 + J5,

Ẇ1(t) = ξT(t)Sym
{

ΩT
9 (Q1Ω10 + Q2Ω11) + (tk+1 − t)(ΩT

12(Q1Ω10 + Q2Ω11) + ΩT
13Q1Ω14)

+(t− tk)(Ω
T
15(Q1Ω10 + Q2Ω11) + ΩT

16Q1Ω14)
}

ξ(t),

Ẇ2(t) = ξT(t)((tk+1 − t)− (t− tk))Ω
T
11Q3Ω11ξ(t),

Ẇ3(t) = ξT(t)
{
(tk+1 − t)

[
Sym

{
ΩT

17Q4Ω18

}
+ ΩT

17Q4Ω17

]
+(t− tk)

[
Sym

{
ΩT

17Q4Ω19

}
−ΩT

17Q4Ω17

]}
ξ(t),

Ẇ4(t) = ξT(t)
{
(tk+1 − t)(rT

8 R1r8 + rT
9 R3r9) + (t− tk)(r

T
8 R2r8 + rT

9 R4r9)
}

ξ(t)

+ J6 + J7 + J8 + J9,

where

J0 =−
∫ t−τ1

t−τ2

ėT(s)X5 ė(s)ds, J1 = −
∫ t

t−τ1

ėT(s)S1 ė(s)ds, J2 = −
∫ t

t−τ2

ėT(s)S2 ė(s)ds,

J3 =−
∫ t

t−τc
ėT(s)Z1 ė(s)ds, J4 = −

∫ t−τc

t−ηM

ėT(s)Z2 ė(s)ds, J5 = −
∫ t

t−ηM

ėT(s)Z3 ė(s)ds,

J6 =−
∫ t

tk

ėT(s)R1 ė(s)ds, J7 = −
∫ tk+1

t
ėT(s)R2 ė(s)ds, J8 = −

∫ t−τc

tk−τc
ėT(s)R3 ė(s)ds,

J9 =−
∫ tk+1−τc

t−τc
ėT(s)R4 ė(s)ds.

From ηM ≥ ηk and Z2 + Z3 > 0, the integral quadratic terms can be rearranged as

9

∑
i=0

Ji ≤−
∫ t

t−τ1

ėT(s)S1 ė(s)ds−
∫ t

t−τ2

ėT(s)S2 ė(s)ds−
∫ t

t−τc
ėT(s)Z1 ė(s)ds−

∫ tk+1

t
ėT(s)R2 ė(s)ds

−
∫ t

tk

ėT(s)(R1 + Z3)ė(s)ds−
∫ t−τc

tk−τc
ėT(s)(R3 + Z2)ė(s)ds−

∫ tk+1−τc

t−τc
ėT(s)R4 ė(s)ds

−
∫ tk

tk−τc
ėT(s)Z3 ė(s)ds−

∫ tk−τc

t−ηk

ėT(s)(Z2 + Z3)ė(s)ds−
∫ t−τ1

t−τ2

ėT(s)X5 ė(s)ds.

Using Lemma 1 to estimate Ji (i = 0, 1, · · · , 9), we obtain
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9

∑
i=0

Ji ≤ ξT(t)ΠT{τc

3

∑
i=1

1
2i− 1

YiZ−1
1 YT

i Π + τcY14Z−1
3 YT

14Π + τ2

2

∑
i=1

1
2i− 1

Y15+iS−1
2 YT

15+iΠ

+ τ1Y18S−1
1 YT

18Π + τ21Y19X−1
5 YT

19Π + (t− tk)
[ 3

∑
i=1

1
2i− 1

Y6+i(R1 + Z3)
−1YT

6+iΠ

+
2

∑
i=1

1
2i− 1

Y9+i(R3 + Z2)
−1YT

9+iΠ
]
+ (tk+1 − t)

[ 3

∑
i=1

1
2i− 1

Y3+iR−1
2 YT

3+iΠ

+
2

∑
i=1

1
2i− 1

Y11+iR−1
4 YT

11+iΠ + Y15(Z2 + Z3)
−1YT

15Π
]
+ Sym

{
19

∑
i=1

Yi�i

}}
ξ(t).

For given scalars ε1, ε2 and any matrix G with appropriate dimensions, the following
equations hold:

0 =2
[
eT(t) + ε1eT(tk − τc) + ε2 ėT(t)

]
G[−ė(t)− Ae(t) + W0 f (e(t))

+W1 f (e(t− τ2(t))) + W2 ė(t− τ1(t)) + Ke(tk − τc)]

=2ξT(t)ΩT
20Ω21ξ(t), (A2)

where L = GK, and the controller gain matrix in (6) can be calculated by

K = G−1L. (A3)

To make use of the information of the activation function (7), we can obtain

0 ≤
n

∑
i=1

δ1i
[

fi(ei(t))− k−i ei(t)
][

k+i ei(t)− fi(ei(t))
]
= 2ξT(t)ΩT

22UΩ23ξ(t), (A4)

0 ≤
n

∑
i=1

δ2i
[

fi(ei(t− τ2(t)))− k−i ei(t− τ2(t))
][

k+i ei(t− τ2(t))− fi(ei(t− τ2(t)))
]

= 2ξT(t)ΩT
24VΩ25ξ(t), (A5)

where U = diag{δ11, δ12, · · · , δ1n} ≥ 0, V = diag{δ21, δ22, · · · , δ2n} ≥ 0.
Adding the right-hand sides of (A2)–(A5) into V̇(t), we can obtain

V̇(t) ≤ ξT(t)
[

tk+1 − t
dk

Ξ1 +
t− tk

dk
Ξ2

]
ξ(t), (A6)

where Ξ1 = Γ1 + dkΓ2 + Γ4, Ξ2 = Γ1 + dkΓ3 + Γ5, and Γj (j = 1, 2, 3, 4, 5) are defined in
Theorem 1.

Note that the LMIs (14) and (15) are equal to Ξ1 < 0 and Ξ2 < 0 based on the Schur
complement, respectively. That is to say, if the inequality conditions of the LMIs (14)
and (15) hold, it can guarantee V̇(t) ≤ −σ‖e(t)‖2 for a sufficient small scalar σ > 0. Then,
the synchronization error system (6) is asymptotically stable, and the slave system is
synchronized with the master system. This completes the proof.

Appendix B

Proof. We choose the following LKFs candidates as

V(t) =V̂1(t) + V2(t) + V3(t) + V5(t) +
4

∑
j=1
Wj(t), (A7)
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where

V̂1(t) = eT(t)P1e(t) + 2
n

∑
i=1

λ1i

∫ ei(t)

0

(
fi(s)− k−i s

)
ds + 2

n

∑
i=1

λ2i

∫ ei(t)

0

(
k+i s− fi(s)

)
ds,

as a result,

V̇1(t) = ξT(t)Sym
{

rT
1 P1r8 + (r11 − K−r1)

TΔ1r8 + (K+r1 − r11)
TΔ2r8

}
ξ(t).

The rest of the process is similar to that in the proof of Theorem 1, and hence, we omit
it here.

Appendix C

Proof. Based on the LMI results in Theorem 1, replacing A, W0, W1 and W2 with A +
FΣ(t)E1, W0 + FΣ(t)E2, W1 + FΣ(t)E3 and W2 + FΣ(t)E4, respectively, we can check that
the derived inequalities are equivalent to the following terms:

Ξ̂1 = Ξ1 + Ψ1Σ(t)ΨT
2 + (Ψ1Σ(t)ΨT

2 )
T < 0, (A8)

Ξ̂2 = Ξ2 + Ψ1Σ(t)ΨT
2 + (Ψ1Σ(t)ΨT

2 )
T < 0. (A9)

Now by utilizing Lemma 2, there exist two positive scalars σi > 0 (i = 1, 2), such that

Ξ̂1 = Ξ1 +

[
σ−1

1 ΨT
1

σ1ΨT
2

]T[ I −J
−JT I

]−1[
σ−1

1 ΨT
1

σ1ΨT
2

]
< 0, (A10)

Ξ̂2 = Ξ2 +

[
σ−1

2 ΨT
1

σ2ΨT
2

]T[ I −J
−JT I

]−1[
σ−1

2 ΨT
1

σ2ΨT
2

]
< 0. (A11)

Then by setting δn = σ−2
i (n = 1, 2), it is easy to verify that Ξ̂1 < 0 and Ξ̂2 < 0 are

equal to the LMIs (20) and (21) based on the Schur complement. The rest of the process is
similar to that in the proof of Theorem 1; hence, we omit it here.

Appendix D

Proof. We choose the following LKFs candidates as

V(t) =V̂1(t) + V2(t) + V3(t) + V5(t) +
4

∑
j=1
Wj(t), (A12)

where

V̂1(t) = eT(t)P1e(t) + 2
n

∑
i=1

λ1i

∫ ei(t)

0

(
fi(s)− k−i s

)
ds + 2

n

∑
i=1

λ2i

∫ ei(t)

0

(
k+i s− fi(s)

)
ds,

as a result,

V̇1(t) = ξT(t)Sym
{

rT
1 P1r8 + (r11 − K−r1)

TΔ1r8 + (K+r1 − r11)
TΔ2r8

}
ξ(t).

The rest of the process is similar to that in the proof of Theorem 1; hence, we omit
it here.
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Appendix E

Proof. We choose the following LKFs candidates as

V(t) =
5

∑
i=1
Ṽi(t) +

4

∑
j=1
Wj(t), (A13)

where

Ṽ1(t) = �̃T
1 (t)P1�̃1(t) + 2

n

∑
i=1

λ1i

∫ ei(t)

0

(
fi(s)− k−i s

)
ds + 2

n

∑
i=1

λ2i

∫ ei(t)

0

(
k+i s− fi(s)

)
ds,

Ṽ2(t) =
∫ t

t−τ2(t)
�T

2 (s)P2�2(s)ds,

Ṽ3(t) =
∫ t

t−τ2

�T
3 (s)X2�3(s) +

∫ t

t−τc
�T

3 (s)X3�3(s)ds,

Ṽ4(t) =
∫ t−τ2

t−τc
eT(s)X6e(s)ds,

Ṽ5(t) =
∫ 0

−τ2

∫ t

t+θ
ėT(u)S1 ė(u)dudθ +

∫ 0

−τc

∫ t

t+θ
ėT(u)Z1 ė(u)dudθ

+
∫ −τc

−ηM

∫ t

t+θ
ėT(u)Z2 ė(u)dudθ +

∫ 0

−ηM

∫ t

t+θ
ėT(u)Z3 ė(u)dudθ.

�̃1(t) =col
{

e(t), e(t− τc), e(t− τ2), τcv5(t)− τ2v13(t), τ2
c v6(t)

}
,

ξ̃(t) =col{e(t), e(t− τc), e(tk), e(tk − τc), e(tk+1), e(tk+1 − τc), e(t− ηk), ė(t), ė(t− τc),

ė(t− τ2), e(t− τ2), e(t− τ2(t)), f (e(t)), f (e(t− τ2(t))), v5(t), v6(t), v7(t),

v8(t), v9(t), v10(t), v11(t), v12(t), v13(t)}.

The rest of the proof process is similar to that in the proof of Theorem 2; hence, we
omit it here.
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Abstract: This paper reviews recent progress in model identification-based learning and optimal
control and its applications to multi-agent systems (MASs). First, a class of learning-based optimal
control method, namely adaptive dynamic programming (ADP), is introduced, and the existing
results using ADP methods to solve optimal control problems are reviewed. Then, this paper
investigates various kinds of model identification methods and analyzes the feasibility of combining
the model identification method with the ADP method to solve optimal control of unknown systems.
In addition, this paper expounds the current applications of model identification-based ADP methods
in the fields of single-agent systems (SASs) and MASs. Finally, some conclusions and some future
directions are presented.
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1. Introduction

In recent years, with the rapid development of communication and network technol-
ogy, MASs have been deeply applied in many fields, such as transportation, industrial
production, etc. Facing increasingly large-scale and complex systems, the integration solu-
tions to single-agent systems (SASs) are often limited by various resources and conditions.
The MASs can effectively improve the robustness, reliability, and flexibility of large-scale
complex systems [1,2].

MASs are composed of multiple agents with particular capabilities of sensing, compu-
tation, communication and control, and agents can coordinate to complete some common
tasks through local interactions among agents [3,4]. Compared with traditional SASs,
MASs involve relatively simple agents and thus reduce costs while improving robustness.
Meanwhile, distributed coordination mechanisms exerted on multiple agents can improve
the operation efficiency and reduce resource consumption. MASs have been widely used
in real applications, such as resource detection, safety monitoring, natural disaster pre-
paredness, etc. In some scenarios, agents can replace humans to guarantee the safety
of military or agricultural production. In industrial applications, using multiple agents
instead of single-agent can reduce production costs. Especially via coordination, such as
mobile multi-unmanned aerial vehicles (Multi-UAV) systems, multi-robot systems, and
multi-agent supporting systems, agents can complete more complex and challenging tasks
while safety and reliability can be guaranteed [5–7].

The concerns in system control have gradually shifted from stabilization and stability
to high steady-state accuracy, rapidity, strong robustness, and anti-interference perfor-
mances. In many engineering application fields, scientists and engineers usually not
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only want to ensure the stability of controllable systems, but also aim to optimize certain
performances (energy consumption and cost) at the same time. In this way, considering
optimization is a key topic with greater practical implications for MASs. That is, a group
of autonomous agents set out to complete some difficult tasks while also optimizing their
performance indices.

Recently, optimization and optimal control employing a preset performance criterion
have become increasingly hot research topics in the system and control fields. By interacting
with an environment, an agent or decision maker develops a strategy to maximize a long-
term reward using reinforcement learning (RL), a goal-oriented learning technology, which
has achieved great success in the field of artificial intelligence (AI) [8–10]. In this context,
the ADP method with strong self-learning ability has become a promising intelligent
optimization technology. At present, in the field of multi-agent optimal control, most
existing ADP methods are partially model-dependent or completely model-dependent.
Unfortunately, model uncertainties exist in most of actual control systems, which leads
to inaccurate modeling. In order to solve this problem, model identification-based ADP
methods have been developed to solve MAS optimal control problems.

Motivated by the observations mentioned above, this paper aims at giving a brief
survey for important developments in model identification based optimal control and its
applications to multi-agent learning and control. In particular, we mainly focus on adaptive
dynamic programming based optimal control method, model identification method, and
the combination of ADP and model identification for dealing with the kinds of control
problems of unknown system dynamics.

2. Adaptive Dynamic Programming-Based Optimal Control Method

Adaptive Dynamic Programming (ADP) is a learning-based intelligent control method
with capabilities of adaption and optimization, which has great potential in solving optimal
control problems. This section mainly introduces the origin of ADP, its basic structures and
the development in the field of optimal control of dynamical systems, respectively.

2.1. Basic Structures of ADP

ADP, as a fusion technology of AI and control theory, is based on the traditional
optimal control theory and RL principle. ADP can effectively solve a series of complex
optimal control problems by learning through the continuous interactions between the
agent and the environment. It is noted that there are some synonyms for ADP, such as
Approximate Dynamic Programming [11], Neuro-Dynamic Programming [12], Adaptive
Critic Design [13].

In the early stage, ADP was mainly used in the fields of computer science and oper-
ational research [14] and then gradually integrated with RL technology to solve optimal
control problems later. Theoretically, ADP borrows from the basic principle of RL. That is,
an agent interacts with the environment and constantly adjusts its strategy to achieve the
optimal cumulative feedback (return) to solve an optimal decision problem. In 1977, Werbos
proposed four basic ADP structures [11,15]: Heuristic Dynamic Programming (HDP), Dual
Heuristic Programming (DHP), Action Dependent HDP (ADHDP), and Action Dependent
DHP (ADDHP). Generally speaking, these ADP structures mainly include an actor-critic
framework with the use of neural network approximation structure, which significantly
improves the online learning and adaptive abilities of ADP. The basic structure of ADP is
given in Figure 1. The ADP method not only avoids the “dimensional disaster” problem in
dynamic programming (DP) methods, but also provides an effective way to solve the deci-
sion control problem of complex nonlinear systems, which makes it become an important
research direction in the fields of artificial intelligence and control theory [9,16].
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Figure 1. The basic structure of ADP.

2.2. Developments of ADP-Based Optimal Control

As an important optimal control method, ADP has been widely used in the field
of optimal control. Particularly, many significant scientific research achievements have
been made in early theoretical studies (including algorithm and convergence) [17]. In
2002, under the ADP framework proposed by Werbos, Murray et al. [8] firstly proposed
an off-line iterative algorithm of the ADP strategy to solve an optimal control problem
for nonlinear systems. At the same time, the authors offered rigorous proofs for the
convergence of the iterative technique and the stability of the closed-loop system with
an initial admissible control. This important theoretical result laid a solid theoretical
foundation for the subsequent studies related to ADP.

The early groups engaged in ADP-related research mainly included Professor Frank
L. Lewis’ Team from the University of Texas at Arlington, Professor Zhongping Jiang’s
Team from New York University, Professor Huaguang Zhang’s Team from Northeastern
University, Professor Derong Liu’s Team, etc. They have done much pioneering research in
the field of optimal control based on ADP in the early stage. Frank L. Lewis [18] designed an
ADP policy iterative algorithm to solve an input-constrained control problem for nonlinear
systems. In [18], they introduced a special non-quadratic performance index function
for the first time and proposed a Hamilton–Jacobi–Isaac (HJI) equation simultaneously.
However, the limitation of this algorithm is that the controller design depended on the
complete dynamics information of the system. To overcome this limitation, Vrabie [19]
proposed a partially dynamics-dependent online optimal control algorithm based on a
policy iteration, namely Integral Reinforcement Learning (IRL), for nonlinear systems with
partially unknown dynamics. This algorithm parametrically represents the system’s control
strategy and performance using an actor-critic neural network framework, which makes
the algorithm converge to the optimal control solution without requiring the system’s
internal dynamics, and guarantees the stability of the closed-loop system as well. After
that, in order to solve a tracking control problem for partially unknown nonlinear systems,
Hamidreza Modares [20] developed an IRL-based control method. The authors proposed an
augmented system containing both error states and desired states, and used the augmented
system to define a new non-quadratic discount performance index function.

In recent years, in order to improve the parameter updating efficiency of the actor-
critic structure, Vamvoudakis [21] proposed an online policy iteration algorithm. In this
algorithm, new parameter update laws were designed for the actor and critic networks,
respectively, so that the two networks can realize online updates synchronously. In addition,
Zhang [22] proposed a Greedy HDP iterative algorithm to solve a tracking control problem
for discrete-time nonlinear systems by introducing a new tracking error performance
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index function. The above research results provided an essential theoretical basis for the
developments of ADP methods.

In the following, we will describe the formulation of optimal control problems for two
class of nonlinear dynamical systems, that is, discrete-time system and continuous-time
system, respectively.

(1) For a continuous-time nonlinear system whose dynamics are modeled as follows

ẋ(t) = f (x) + g(x)u(t), (1)

where f (x) and g(x) are the system matrices. x(t) = [x1(t), x2(t), · · · , xn(t)] ∈ Rn denotes
the system state, and u(t) = [u1(t), u2(t), · · · , um(t)] ∈ Rm is the control input. The
objective is to find an optimal controller to stabilize the system (1) as well as minimize a
pre-defined performance index function, which is given by

V(x(t), u(t)) =
∫ ∞

t
r(x(τ), u(τ))dτ, (2)

where r(x(t), u(t)) = x�(t)Qx(t) + u�(t)Ru(t) represents the utility function, and Q and
R are symmetric positive definite matrices with appropriate dimension. It is important
to assume that the control input must be admissible such that a finite performance index
function can be ensured.

The Hamiltonian of the system (1) is defined as

H(x(t), Vx(t), u(t)) = r(x(t), u(t)) + VT
x ( f (x(t)) + g(t)u(t)), (3)

where Vx = ∂V/∂x is a partial derivative of x.
The optimal performance index function satisfies the continuous-time HJB (CT-HJB), i.e.,

0 = min
u(t)
{H(x(t), V∗x (t), u(t))}. (4)

By applying the stationarity condition, the ideal optimal control is then given by

u∗(t) = −1
2

R−1g(t)�
∂V∗(x(t))

∂x(t)
. (5)

In order to obtain the optimal controller, it is necessary to solve the CT-HJB Equation (4).
However, it is very difficult to solve (4) because it contains nonlinear and partial differential
items, and requires knowledge of system dynamics model g(x) (that is, it needs to be
known in advance). Therefore, the CT-HJB is difficult to be solved directly.

(2) For a discrete-time nonlinear system, whose dynamics is given as follows

x(k + 1) = f (x(k), u(k)), (6)

where x(k) is system state, u(k) is control input, and k = 0, 1, 2, . . . denotes the sampling
index. The goal is to design a controller u(k) to minimize the following performance
index function

J(x(k), u(k)) =
∞

∑
j=k

r(x(j), u(j)), (7)

where r(x(j), u(j)) denotes the utility function. By using the performance index (7), the
following Bellman Equation (nonlinear Lyapunov equation) can be obtained

J(x(k)) = r(x(k), u(k)) + J(x(k + 1), u(k + 1)). (8)
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According to the Bellman’s principle of optimality, the optimal performance index
function satisfies the following discrete-time Hamilton–Jacobi–Bellman (DT-HJB) equation

J∗(x(k)) = min
u(k)
{r(x(k), u(k)) + J∗(x(k + 1), u(k + 1))}. (9)

Then, we can obtain the optimal controller as

u∗(k) = arg min
u(k)
{r(x(k), u(k)) + J∗(x(k + 1), u(k + 1))}. (10)

It is noted from above process that the optimal controller relies on the performance
index at next time step J∗(x(k + 1), u(k + 1)). No matter how, the HJB equation is the key
part for computing optimal control for both discrete-time and continuous-time nonlinear
systems. Thus, it is important to obtain the approximate solution to the HJB equation. In
the past decades, many researchers have made great efforts to propose all kinds of iterative
algorithms to deal with this issue.

2.3. ADP-Based Approximate Solution to HJB Equations

In fact, most of the research results discussed above are mainly obtained for optimal
control of nonlinear systems. Theoretically, the solutions to optimal control problems for
nonlinear systems usually rely on Hamilton Jacobi Bellman (HJB) Equations [18]. However,
it is very difficult to compute the analytical solutions to HJB equations in general, and
thus numerous researches are essentially dedicated to approximate HJB equations. Till
now, from the perspective of approximate solution methods, ADP-based algorithms can be
divided into two categories: Value Iteration (VI) [23,24] and Policy Iteration (PI) [18,25].

Policy Iteration (PI):
Step 1: Initialization: Initial an admissible control u0(t);
Step 2: Policy evaluation: For a given iterative control strategy uk(t), the cost function

can be updated according to the following rules:

0 = min
u(k)
{H(x(t), Vk

x (t), uk(t))};

Step 3: Strategy improvement: the iterative control strategy is updated as follows:

uk+1(t) = −α

2
R−1g(t)�

∂Vk(x(t))
∂x(t)

,

where k is the iterative index, the policy evaluation and policy improvement are updated
alternately until the performance function and control policy converge to the optimal value.
In addition, for the above PI iterative algorithm, the convergence of the algorithm has
been proved.

Value Iteration (VI):
Step 1: Initialization: given an any control u0(t) and V0(t);
Step 2: Policy evaluation: the control policy can be updated according to the follow-

ing rule:
uk(t) = min

u(k)
{H(x(t), Vk

x (t), uk(t))};

Step 3: Value improvement: the index function is updated according to the following
Bellman equation:

Vk=1(x(t)) = r(x(t), uk(t)) + Vk+1(x(t + 1)),

where k is the iterative index and the policy evaluation and value improvement are updated
alternately until the performance function and control converge to the optimal value.

The PI algorithm starts from an initial admissible control strategy and solves a series of
HJB equations to obtain the optimal control strategy. In contrast, PI has a faster convergence
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rate than VI. The advantage of VI algorithm is that it does not require an initial admissible
control. However, the iterative control during the iterative processing may not guarantee
the stability of the closed-loop system. Al-Tamimi [23] presented a VI method (also known
as greedy iterative ADP algorithm) for a discrete-time system and studied its convergence
and stability under the approximation optimum controller. In [25], Liu et al. proposed
a PI algorithm. Compared with other ADP algorithms, this paper presented a complete
convergence analysis of the proposed PI algorithm for discrete-time nonlinear systems for
the first time.

In recent decades, ADP methods have been widely concerned by academia and
industry because of their theoretical research and practical application values. However,
most ADP methods are partially model dependent or completely model dependent [26,27],
so it is difficult to deal with the situation that accurate system information cannot be
obtained. In most practical cases, the system model structure of the controlled object
is unknown, or the model structure is known but the model parameters are unknown.
Actually, the first consideration for the unknown model in the engineering field is to identify
the model. Because accurate system models can reflect the system structure information,
corresponding control strategies can then be better formulated.

From another perspective, in order to address the issue of unknown system dynamics,
ADP can be divided into two main types: the indirect method and the direct method. In
the direct method, the optimal control law is directly designed based on the measurable
system data including the state information or input/output information without system
identification process [28–30]. The indirect technique might be a significant new trend in
the development of model-free optimal control, where the reconstructed system model
is firstly established by approximate approaches such as neural networks (NNs) based
identifiers. Then, an ADP algorithm is introduced to design an optimal controller for the
approximate model. However, Modares et al. [31] have shown that the error of model
identification directly affects the convergence effect of NN weights in the ADP algorithm.
Therefore, the synthesis of model identification and ADP is an important trend and also a
challenging issue, which has been widely attracted in this field very recently.

3. Model Identification

From the perspective of model structure, model identification methods can be divided
into parametric model identification and non-parametric model identification, which will
be introduced in the following, respectively.

3.1. Parametric Model Identification Method

A parametric model identification method needs to determine the model structure
and order of the system in advance, and then estimates the unknown parameters of the
system model. This method mainly includes the least squares method, the gradient method,
the maximum likelihood estimation method, and expectation maximization method. The
overview of the parametric model identification methods is illustrated in Figure 2.

Least squares methods have formed a complete theoretical system architecture and
been widely applied in many model identification problems till now. Aiming at a parameter
identification problem of linear-in-parameter systems with missing data, Ding et al. [32]
developed an interval-varying auxiliary model based on the recursive least squares (AM-
RLS) algorithm with the help of the auxiliary model identification idea. By introducing
the forgetting factors, the parameter estimation accuracy and convergence rates can be
improved. For the multivariable pseudo-linear autoregressive moving average (ARMA)
systems, Ding et al. [33] proposed a decomposition-based least squares iterative identifica-
tion algorithm. The key in the proposed algorithm is to transform the original system to
a hierarchical identification model using a data filtering technique. The model was then
divided into three subsystems, with each subsystem being identified separately. The pro-
posed approach involves less processing effort than least squares-based iterative techniques.
For the identification of bilinear forms, Camelia [34] proposed a recursive least-squares for
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bilinear forms (RLS-BF) algorithm. Two variations of the RLS-BF algorithm based on the
dichotomous coordinate descent (DCD) approach were presented to lower the computing
complexity of the process. Meanwhile, a regularized version of the RLS-BF method was
created to increase the resilience of the RLS-BF technique in noisy situations.

Figure 2. Overview of Parametric Model Identification Methods.

Essentially, a gradient method is an iterative algorithm. Compared with the recursive
least squares, it has a slower convergence rate and lager error variance of parameter estima-
tion. However, the computation of each step in the recursive process of gradient methods
is smaller. According to the different search steps, the gradient method can be divided into
the stochastic approximation method and the stochastic gradient method. There are two
commonly used stochastic approximation methods, the Robbins-Monro algorithm, and the
Kiefer-Wolfpwitz algorithm. However, because of the slow convergence rates of these two
algorithms near the extreme points, they have not received widespread attention.

On the basis of stochastic approximation method, the stochastic gradient method
adjusts the search step and accelerates the convergence rate. Recently, this method is widely
used in the identification of various systems. For multivariate output-error systems, Wu [35]
developed an auxiliary model based stochastic gradient (AM-SG) method and a coupled
AM-SG algorithm, which ensured the parameter estimation error converged to zero under
the persistence excitation (PE) condition. For the bilinear system with white noise, Ding [36]
introduced a stochastic gradient (SG) technique and a gradient-based iterative approach
for estimating system parameters with known input-output data using an auxiliary model.
Experimental results show that the proposed gradient-based iterative algorithm has higher
estimation accuracy than the auxiliary model based stochastic gradient.
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In recent years, a new class of algorithms has been derived in the field of adaptive
control based on the gradient method. An important concern in developing parameter
identification and adaptive control schemes is transforming the original system model to
a linear regressor Equation (LRE), in which the unknown parameters are linearly related
to the measurable data. Then the unknown parameter estimation problem of the original
system is transformed to solving the LRE, which derives a series of parameter identification
methods based on the LRE of the original system.

The classical LRE can be expressed as

y = φTθ,

where y ∈ R and φ(t) ∈ Rq are measurable signals. θ ∈ Rq is an unknown constant signal.
Herein, φ(t) is also called the regression vector. Generally, we can use the least square
method [37] or the gradient method [38] to solve the unknown parameters of the original
system LRE. The gradient-descent based adaptive law is designed as

˙̂θ(t) = αφ(t)[y(t)− φT(t)θ̂(t)],

where θ̂ is the estimation of θ, α > 0 presents adaptive learning gain. The idea of these
two methods is to generate a linear time-varying (LTV) dynamic equation, known as the
parameter error Equation (PEE) that can describe the estimation error, and then design the
parameter estimator based on the PEE. However, the fundamental disadvantage of these
techniques is that parameter estimation convergence is dependent on the PE condition of
the regression vector.

Mathematically, the PE condition means that there exist some constants t > 0 and
Δ > 0 such that ∫ t+t

t
φ(s)φT(s)ds ≥ ΔI

for any time t. That is, the input signal should excite all kinds of system modality so
that the measurable signal contains enough information about the system, and then the
convergence of parameter estimation can be guaranteed. In practice, input signals need to
be designed to satisfy the PE condition. However, this is seldom practicable and difficult to
verify online. Even if the input signal meets the PE criteria, the adaptive control’s parameter
convergence is largely reliant on the PE intensity, which leads to a slower convergence rate.

Moreover, the transient performance of these two methods is highly unpredictable
and can only guarantee weak (vector norm) monotonicity of the estimation errors. Unfortu-
nately, poor transient estimation error performance (such as significant overshoot and slow
convergence in the first few seconds) may severely degrade the estimation response, result-
ing in identification and adaptive control instability. Therefore, engineering applications
increasingly need fast, accurate, and robust parameter estimation method to maintain the
security and reliability of control systems.

To improve the parameter convergence of the gradient method, most ideas are to
convert the LRE of the original system into an alternative LRE to generate a new PEE
with stronger convergence properties. By introducing multiple linear filter operators to
apply on the LRE of the original system, Lion [39] piled up the filtered signals to generate
an extended LRE. Then, a gradient estimator based on the extended LRE was proposed.
The way of developing the extended LRE is called dynamic regression extension (DRE).
Compared with the classical gradient estimation method, the parameter convergence rate
of the DRE-based gradient estimator can be made arbitrarily fast by increasing the adaptive
gain. Kreisselmeier [40] also proposed a filter method, namely memory regressor extension
(MRE), to design new LREs. Unlike DRE, Kreisselmeier only applied one linear filter
operator to φ(s)φT(s). In fact, DRE can be transformed into MRE by rationally choosing
the filter operator in the DRE algorithm. That is, MRE is a particular case of DRE. Except
the advantages of the DRE-based gradient estimator, the MRE-based gradient estimator
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has better estimation performance than traditional gradient estimators for systems which
do not satisfy the PE conditions.

To improve the transient performance of parameter identification, some researchers
advocated combining the tracking error in direct adaptive control and the identification
error in indirect control to form a new PEE. Then, parameter estimation algorithms based on
tracking and identification errors were successively proposed [41–43]. Duarte et al. [41] used
such an approach for model reference adaptive control (MRAC) of linear time-invariant
(LTI) systems and gave the name composite adaptive control. In [42], position tracking
control of robot manipulators was considered with composite adaptive control. Pante-
ley [43] applied the composite adaptive control algorithm to the adaptive control of a class
of nonlinear systems with measurable states, and relaxed a rather restrictive–detectability
assumption in the stability proof. Later, Lavretsky [44] applied the work of Panteley to
linear systems.

The above two types of parameter estimation frameworks lay the foundation for LRE
parameter estimation. Five new adaptive control methods have gradually evolved in recent
years based on these two types of original system LRE parameter estimation frameworks.

For the adaptive control of linear LTI systems, Chowdhary [45] used recorded and
current data concurrently to estimate unknown parameters when designing composite
adaptive law. This technique is named concurrent learning. Notably, the technique does not
rely on the PE condition but guarantees the global exponential stability (GES) of the closed-
loop system under an interval excitation (IE) condition. Compared with the traditional PE
condition, the IE condition focuses on the evolution of integrals within an interval which is
strictly weaker than the PE condition.

Cho [46] and Roy [47] designed a new composite estimator by constructing residual
signals. Smilar with Chowdhary, the proposed algorithm used an “offline data selection
method”. That is, the incoming data are first accumulated to build the information matrix.
A composite estimator is designed by the full rank information matrix after sufficient but
not persistent excitation.

In [48–50], a variant algorithm of MRE is proposed, which selects the filter operator as
a pure integral form. Actually, this improvement leads to a positive semi-definite open-
loop integral in the parameter estimator, which affects the noise sensitivity and high-gain
adaptive alertness of the parameter estimator. It will make the algorithm difficult to apply
in practical engineering.

Adetola [51] proposed a finite-time parameter estimation algorithm for nonlinear
systems. This algorithm combines the pure integrator based MRE technique with the
“initialization” process proposed in [48], and the unknown parameters of the original system
can be estimated in finite time under the condition that the regression vector satisfies IE.

Aranovskiy [52] proposed a modified algorithm for DRE and named it “DRE and
mixing” (DREM). The DREM algorithm adds a key mixing step to DRE and decouples
vector PEEs into scalar PEEs. The scalar PEE ensures the monotonicity of each element
in the parameter estimation error, which is stronger than the norm monotonicity of the
traditional parameter error vector. It means the parameter estimator designed based on the
scalar PEE has stronger transient stability. At the same time, the algorithm guarantees the
parameter convergence and proposes a new parameter convergence condition that does
not depend on the PE condition.

The least squares method and the gradient method have been developed very well, but
it is difficult to address the data with missing information. Since the maximum likelihood
estimation method and the expectation maximization algorithm can deal with the problem
of missing information, these two algorithms have received more and more attention.
The maximum likelihood estimation method proposed by Panuskal [53] is the initial
probabilistic model identification method, but it did not consider the situation of missing
information at that time. To deal with the parameter estimation problem in the absence
of data, Dempster [54] proposed the expectation maximization algorithm. This algorithm
has been used for parameter estimation of the Gaussian mixture model [55], linear variable
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parameter model [56], and state space model [57], and a series of expectation maximization
variants algorithms have been developed.

Notably, the parametric model identification method can describe the controlled
object analytically and achieve better identification results. In the development of recent
decades, a fairly complete theoretical system has been formed. However, these methods
are mainly for the identification of linear systems. However, most of the controlled objects
often contain many complex nonlinear uncertain items in the actual system, and their
model structure parameters also show time-varying characteristics, making it impossible
to obtain the accurate system dynamic model. Recently, since the non-parametric models
can approximate the dynamics of arbitrary complex processes in infinite dimensions, the
nonparametric identification methods have begun to become the focus of scholars.

3.2. Non-Parametric Model Identification Method

The model reconstructed by the non-parametric model identification method is called
a non-parametric model. It does not mean that there are no parameters in the model but
that it does not need to determine the structure and order of the model in advance, which is
the advantage of the non-parametric model identification method. Non-parametric model
identification methods include some classic identification methods, such as correlation
analysis and spectral analysis, etc. It also includes neural network (NN) models which
have been developed rapidly in recent years. A neural network has been widely used in
nonlinear system control because of its high nonlinearity, approximation ability, and strong
self-learning ability. At present, non-parametric model identification methods mainly
include: Back-Propagation (BP) neural network non-parametric model identification and
Radial Basis Function (RBF) neural network non-parametric model identification. The
overview of the non-parametric model identification methods is illustrated in Figure 3.

Figure 3. Overview of Non-Parametric Model Identification Methods.

For the non-parametric model identification method using the BP neural network,
since the BP neural network can approximate any nonlinear mapping relationship, and the
BP algorithm belongs to the global approximation algorithm, it has better generalization
ability. Generally speaking, when using a neural network to identify nonlinear systems, it
is often combined with classical parameter identification methods to optimize the weights
of NN.

Coban [58] proposed a new recurrent neural network, the context layered locally
recurrent neural network (CLLRNN), which is effective in the identification of input-output
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relationships in both linear and nonlinear dynamic systems. To maximize the weights of
the neural network model, Nguyen [59] proposed a hybrid modified differential evolution
plus back-propagation (MDE-BP) approach. The suggested training method was evaluated
in comparison to existing algorithms, including the classic DE and BP algorithms. As a
result, the proposed strategy can improve the identification process’s accuracy. In [60],
Aguilar proposed a fractional order neural network (FONN) for system identification by
combining neural network and fractional order calculus methodologies. When compared
to existing techniques, the suggested FONN model achieved higher accuracy with fewer
parameters. Li [61] developed a new bilevel learning paradigm for self-organizing feed-
forward neural networks (FFNN). The hybrid binary particle swarm optimization (BPSO)
algorithm is used as an upper level optimizer in this interactive learning algorithm to
self-organize network architecture, while the Levenberg–Marquardt (LM) algorithm is
used as a lower level optimizer to optimize the connection weights of an FFNN. When
compared to conventional learning algorithms, experimental results show that the bilevel
learning algorithm produces much more compact FFNNs with superior generalization
capabilities. Singh [62] developed a gradient evolution-based counter propagation network
(GE-CPN) for approximating the noncanonical form of a nonlinear system. Learning
from nonlinear systems with parametric uncertainty is a key characteristic of GE-CPN
networks. Furthermore, this demonstrated that reparameterization of neural network
models is required and beneficial for approximation of noncanonical systems.

As a feedforward network, RBF neural network has attracted extensive attention
recently because of its fixed basis function and linear parameter network structure, which
can approximate any continuous function with arbitrary precision. For the identification
and modeling of nonlinear dynamic systems, Qiao [63] designed a novel self-organizing
radial basis function (SORBF) neural network. Based on the neuron activity and mutual
information (MI), the SORBF neural network’s hidden neurons can be added or removed to
reach the desired network complexity while maintaining overall computing efficiency for
identification and modeling. Meanwhile, parameter adjustment can considerably increase
model performance. Slimani [64] utilized the descent gradient and the genetic algorithm
technique to developed an optimization technique of neural networks radial basis function
multi-model identification of nonlinear system. Errachdi [65] developed a no-preprocessing
online radial basis function (RBF) neural network technique. The suggested online RBF
neural network approach is then combined with a kernel principal component analysis
(KPCA), which made RBF neural network training efficient and fast by reducing memory
requirements of the models. In [66], with the use of adaptive particle swarm optimization,
a self-organizing radial basis function (SORBF) neural network was constructed to increase
both accuracy and parsimony (APSO). The presented APSO-SORBF neural network is
capable of producing a network model with a compact structure and outstanding accuracy.
In [67], to self-organize the structure and parameters of the RBFNN, a distance concentration
immune algorithm (DCIA) was devised. A sample with the most frequent occurrence of
maximum error was constructed to govern the parameters of the new neuron in order to
increase forecasting accuracy and reduce computation time.

The above studies have introduced many mature identification algorithms from linear
system identification into the RBF network framework. At the same time, many scholars
have extended the RBF network framework to solve the problem of parameter model iden-
tification, which makes up for the limitations of traditional parametric model identification
methods for nonlinear system identification. When the structure and order of the system
model are known, even if the controlled object contains many complex nonlinear uncertain
terms, or its model parameters show time-varying characteristics, the RBF neural network
framework can identify it accurately. This not only makes full use of the available system
information but also maximizes the accurate feature description of the original system.
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4. Model Identification-Based Optimal Control for SAS

In the optimal control community, researchers are trying to introduce the model
identification methods to the classical optimal control for a single agent system (SAS) with
an unknown system model.

Bhasin [68] proposed an actor-critic-identifier (ACI) ADP framework, in which an
identifier NN is utilized to approximate the unknown system information and then embed-
ded into the actor-critic NN architectures. The ACI ADP framework is shown in Figure 4.
However, the input system dynamics are still assumed to be known. To further remove this
assumption, Modares [31] designed an new ACI algorithm for the unknown constrained-
input nonlinear systems. The proposed ACI algorithm contains an identifier NN with an
experience replay technique (ERT) to fully approximate the unknown system information
(including system dynamics and input dynamics). Then, a gradient method was used
to estimate the weights of critic-actor NNs. Actually, the idea of ERT is very similar to
concurrent learning, both of which use recorded historical data and current data to estimate
the unknown information of the system. Although this technique can relax the PE condition
for parameter convergence during the online learning, it requires more computation time
and computer memory to store historical data. The algorithm was then generalized to solve
many control problems, such as the IRL algorithm for constrained input systems [69], the
H∞ tracking control problem [70], and so on.

Figure 4. The basic framework of actor-critic-identifier ADP.

To relax the PE condition for parameter convergence during the online learning,
Zhao [71] used the ERT to estimate the unknown weights of the identifier NN and critic
NN simultaneously, so that the conventional PE condition could be relaxed to a simplified
condition on recorded data. However, the proposed algorithm also has the same drawbacks
in [31]. Based on the ERT, Yang [72] proposed an event-triggered robust control policy
for unknown continuous-time nonlinear systems. To improve the convergence rate of the
ERT, a data-based feedback relearning (FR) algorithm for uncertain nonlinear systems with
control channel disturbances and actuator faults was developed [73]. Furthermore, a data
processing method based on experience replay technology is designed to improve data
utilization efficiency and algorithm convergence. To achieve model-free fault compen-
sation, a neural network (NN)-based fault observer is used. To reduce the difficulty of
designing NNs for an unknown nonlinear system and improve generalization, the poly-
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nomial activation function is redesigned using the sigmoid function/hyperbolic tangent
activation function.

To avoid excessive use of NNs and achieve faster convergence, Lv [74] proposed a
new identifier-critic (IC) ADP structure with the MRE method. Since the algorithm did
not use an actor NN, and it did not need to record historical data, the convergence rate
is greatly improved. Later, this IC algorithm was used to solve a series of other control
problems [75–77].

5. Model Identification-Based Optimal Control for MASs

More recently, few works on the model identification-based optimal control has been
studied for MASs. Based on the work of Modares [31], Tatari [78] proposed an online
optimal distributed learning algorithm to find the game theoretic solution of systems on
graphs with completely unknown dynamics. In [79], Tatari introduced an online distributed
optimal adaptive algorithm for continuous-time nonlinear differential graphical games
with unknown systems subject to external disturbances. Shi [80] utilized the MRE filtering
technique and designed an adaptive disturbance observer for a class of nonlinear systems
with unknown disturbances where the disturbance is assumed to be generated by some
unknown dynamics. Tan [81] proposed a novel event-triggered, model-free structure to
address the optimal consensus control problem for MASs with unknown dynamics and
input constraints.

In the following, as an example, we give the model identification-based optimal control
of MASs with unknown dynamics.

Algebraic graph theory: The communication topology between agents in a MAS is
described by a directed graph G = (V , E ,A) where V = {1, 2, · · · , N} is a nonempty set of
vertices and E = {(i, j) | i, j ∈ V} ⊆ V × V is the set of edges. Define A = {eij} ∈ RN×N as
a weighted adjacency matrix, where eij = 1 if and only if (i, j) ∈ E , and eij = 0, otherwise.
The neighbor set of the agent i is denoted by Ni = {j | (i, j) ∈ E}. Define a diagonal matrix
D = diag{di} as the in-degree matrix, where di = ∑j∈Ni

eij. The Laplacian matrix L is
defined by L = D −A.

In order to take a single leader into account, we introduce an augmented graph
G = (V , E), where V = {0, 1, · · · , N} and E ⊆ V ×V. A nonnegative number ei0 is used to
describe the interaction relationship between the leader and agent i. Specifically, ei0 > 0
if agent i can receive information from the leader; otherwise, ei0 = 0. A leader adjacency
matrix B is defined by B = diag(e10, · · · , eN0) ∈ RN×N .

Assumption 1. The communication interaction network G has a spanning tree with the root vertex 0.

Problem formulation: Consider heterogeneous MASs described by a linear time-invariant
system as follows

ẋi(t) = Aixi(t) + Biui(t), i = 1, 2, . . . , N, (11)

where xi(t) ∈ Rn and ui(t) ∈ Rm are the state vector and the control input vector, respec-
tively. The system matrices Ai ∈ Rn×n and input matrices Bi ∈ Rn×m are assumed be
unknown in this paper. Furthermore, we assume that the pairs (Ai, Bi) (∀i = 1, . . . , N) are
controllable, and the state and the control input of each agent are available.

The dynamics of the leader agent is described by

ẋ0 = A0x0, (12)

where x0 ∈ Rn.
The local tracking error δi ∈ Rn, i = 1, . . . , N can be defined as

δi(t) = ∑
j∈Ni

eij(xi − xj) + ei0(xi − x0), (13)
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where the pinning gain ei0 ≥ 0. Then, the dynamics of the local tracking error are written by

δ̇i(t) = ∑
j∈Ni

eij(ẋi − ẋj) + ei0(ẋi − ẋ0)

= ∑
j∈Ni

eij(Aixi − Ajxj) + ei0(Aixi − A0x0) + (di + ei0)Biui − ∑
j∈Ni

eijBjuj.
(14)

The overall tracking error vector is given by

δ(t) =((L+ B)⊗ In)(x− x̂0)

=((L+ B)⊗ In)ζ,
(15)

where δ = (δT
1 , δT

2 , · · · , δT
N)

T , x = (xT
1 , xT

2 , · · · , xT
N)

T ∈ RnN , x̂0 = (xT
0 , xT

0 , · · · , xT
0 )

T ∈ RnN ,
ζ = x− x̂0 is the global synchronization error.

One of the objectives in this paper is to design a tracking strategy to ensure that all
follower agents can follow the leader, that is, lim

t→∞
‖xi(t)− x0(t)‖ = 0. The second objective

is to design a distributed controller that can minimize the performance index function.
In fact, under Assumption 1, L + B is invertible. From (15), one can obtain that

lim
t→∞

ζ(t) = 0 if and only if lim
t→∞
‖δ(t)‖ = 0. Thus, once the local neighbor error approaches

to zero, we can say that the tracking control problem is solved.
We define the local performance index (value function) for the agent i as follows

Vi(δi(t)) =
1
2

∫ ∞

0
(δT

i Qiiδi + U(ui) + ∑
j∈Ni

U(uj))dτ, (16)

where Qii � 0 is a symmetric weight matrix, U(·) = uiRiiui is a positive definite integrand
function. We assume that (16) satisfies zero-state observability.

The tracking problem is aimed at finding the Nash equilibrium policies u∗i for the N
player game. That is, for all agent i, there have V∗i = Vi(δi(0), u∗i , u∗Ni

) ≤ Vi(δi(0), ui, u∗Ni
),

∀ui, (i = 1, . . . , N). Therefore, the tracking problem of MASs with input constraint in this
paper can be transformed to solving the N coupled optimization problems, that is

V∗i (δi(t)) = min
ui

1
2

∫ ∞

0
(δT

i Qiiδi + U(ui) + ∑
j∈Ni

U(uj))dτ, (17)

with given (14) while the dynamic informations Ai and Bi, i = 1, . . . , N are considered
completely unknown.

By differentiating each value function Vi, and using (16), the following Lyapunov
equation is obtained

∇VT
i ( ∑

j∈Ni

eij(Aixi−Ajxj)+ei0(Aixi−A0x0)+(di+ei0)Biui− ∑
j∈Ni

eijBjuj)+
1
2

δT
i Qiiδi

+
1
2

U(ui)+
1
2 ∑

j∈Ni

U(uj) = 0,
(18)

where ∇Vi = ∂Vi/∂δi ∈ Rn and Vi(0) = 0.
Then one can get the Hamiltonian function as follows

Hi(δi,∇Vi, ui, uNi ) = ∇VT
i ( ∑

j∈Ni

eij(Aixi − Ajxj) + ei0(Aixi − A0x0)

+ (di + ei0)Biui − ∑
j∈Ni

eijBjuj) +
1
2

δT
i Qiiδi +

1
2

U(ui) +
1
2 ∑

j∈Ni

U(uj).
(19)
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According to the first-order stationary condition in the Hamiltonians, the optimal
control policy for each agent can be obtained as

∂Hi
∂ui

= 0→ u∗i = −(di + ei0)λR−T
ii BT

i ∇V∗i . (20)

System identifier using neural networks: Since the system matrices Ai and input matrices
Bi are assumed to be unknown, the unknown dynamics of each agent are modeled by using
NNs. Then the experience replay technique is used to formulate the identifier weights
adaptive update law.

The NN-based identifiers are designed to approximate system dynamic, which is
given as follows

Aixi = A∗i xi + εAi , Biui = B∗i ui + εBi , i = 1, . . . , N, (21)

where A∗i ∈ ,Rn×n,B∗i ∈ Rn×m are unknown weights, xi ∈ Rn,ui ∈ Rm are the basis
functions, and εAi and εBi are the reconstruction errors.

Combining (21) and (11), the system can be reformulated as follows

ẋi = ϑ∗Ai Bi
zi(xi, ui) + εAi Bi , i = 1, . . . , N, (22)

where ϑ∗Ai Bi
= [A∗i B∗i ] ∈ Rn×d, zi(xi, ui) = [xT

i uT
i ]

T ∈ Rd is the regressor vector. εAi Bi =
εAi + εBi is the model approximation error.

Assumption 2. On a given compact set Ω ⊂ Rn, the approximator reconstruction errors εAi
and εBi , i = 1, . . . , N and their gradients are bounded, i.e.,

∥∥εAi

∥∥ ≤ ε̄Ai ,
∥∥εBi

∥∥ ≤ ε̄Bi , and the
approximator basis functions and their gradients are bounded.

Remark 1. According to Assumption 2, the model approximation error εAi Bi is bounded, that is,∥∥εAi Bi

∥∥ ≤ ε̄Ai Bi = ε̄Ai + ε̄Bi .

A filtered regressor is proposed for (22), which can be expressed as

xi = ϑ∗Ai Bi
hi(xi) + cli(xi) + εxi , (23)

ḣi(xi) = −chi(xi) + z(xi, ui), hi(0) = 0,

l̇i(xi) = −Cli(xi) + xi, li(0) = 0,
(24)

where C = cIn×n, c > 0, hi(xi) ∈ Rd is a filtered regressor version of z(xi, ui), li(xi) ∈ Rn is
a filtered regressor version of the state xi. εxi = e−Ctxi(0) +

∫ t
0 e−C(t−τ)εAi Bi dτ is bounded,

since εAi Bi is bounded. xi(0) is the initial state of (22).
To obtain the adaptive tuning law that does not affected by the system instability, both

side of the filtered regressor (23) are divided by a normalizing signal nsi = 1 + hT
i hi + lT

i li,

x̄i = ϑ∗Ai Bi
h̄i(xi) + cl̄i(xi) + ε̄xi , (25)

where x̄i = xi/nxi , h̄i = hi/nxi , l̄i = li/nxi , ε̄xi = εxi /nxi . Obviously, ε̄xi is bounded.
Based on (21), (23) and (25), the form of the identifier weights estimator of agent i can

be expressed as
ˆ̄xi = ϑ̂Ai Bi h̄i(xi) + cl̄i(xi), i = 1, . . . , N (26)

where ϑ̂Ai Bi = [Âi B̂i] is the estimated value of the identifier weights matrix ϑ∗Ai Bi
.

Thus, the state estimation error ei ∈ Rn, i = 1, . . . , N can be defined as

ei(t) = ˆ̄xi − x̄i = ϑ̃Ai Bi (t)h̄i(xi)− ε̄xi , (27)
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where ϑ̃Ai Bi (t) = ϑ̂Ai Bi (t)− ϑ∗Ai Bi
(t), i = 1, . . . , N is the parameter estimation error of agent

i at time t.
The experience replay technique is utilized to formulate the identifier weights adaptive

tuning law in the following. The idea of this technique is to store or record linearly
independent historical data along with current data, so as to improve data utilization.

Then, we set
Zi = [h̄i(xi(t1)), . . . , h̄i(xi(tpi ))] (28)

to be the recorded historical data stack of each agent i at the past times t1, . . . , tpi .

Remark 2. It is noted that the number of linearly independent elements in Zi should be equal to
the dimension of the hi(xi) in (23), i.e., rank(Zi) = d. This condition aims to satisfying the PE
condition and can easily be checked online.

Then, based on the experience replay technique, a weight tuning law is designed for
the identifier of agent i as follows

˙̂ϑAi Bi (t) =− Γiei(t)h̄T
i (xi(t))− Γi

pi

∑
k=1

ei(tk)h̄T
i (xi(tk)), (29)

where Γi > 0, i = 1, . . . , N is a positive definite learning rate matrix.
It is noted from Remark 2 that, with the aid of experience replay technique, the PE

condition can be checked by monitoring the rank of the recorded historical data, but it
usually consumes large computing resources, resulting in low learning efficiency. Therefore,
how to design an identification method that can take into account the learning efficiency
and relaxed the PE condition is an interesting and challenging research direction.

6. Conclusions and Future Work

In this paper, we have reviewed the development of ADP-based learning optimal
control, several model identification techniques, and their applications to the learning
and control of MASs. Based on these reviews, it is noted that the model identification-
based ADP method has made significant progress in both theoretical research and practical
applications. However, the model identification-based ADP methods still have many
challenges in theory and algorithm design that have not yet been resolved. Through the
above summary and analysis of the model identification-based ADP methods, some related
issues for future research directions are outlined as follows:

• In fact, the model identification-based ADP method is mainly focused on the design
of a single controller currently, but not so much on the design of multiple controllers.
It will be a very beneficial work to use the model identification-based ADP method to
realize the distributed coordinated control of MASs.

• Most of the existing model identification-based ADP methods need to satisfy the PE
condition. However, PE conditions are difficult to verify in practical applications.
How to design a novel identification-based ADP method such that the PE condition is
easier to be checked and remain low pressure [82].

• For more complex MASs such as power grids and transportation, where their accurate
models cannot be obtained, the model identification-based ADP method may be
used to solve large-scale practical optimization problems, which have important
practical applications.
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Abstract: This paper studies the evolution of opinions over random social networks subject to
individual biases. An agent reviews the opinion of a randomly selected one and then updates
its opinion under homogeneous biased assimilation. This study investigates the impact of biased
assimilation on random opinion networks, which is different from the previous studies on fixed
network structures. If the bias parameters are static, it is proven that the event in which all agents
converge to extreme opinions happens almost surely. Next, the opinion polarization event is proved to
be a probability one event. While if the bias parameters are dynamic, the opinion evolution is proven
to depend on early finite time slots for the dynamical individual bias parameter functions independent
of the biased parameter values after the time threshold. Numerical simulations further show that
opinion evolution depends on early finite time slots for some nonlinear dynamical individual bias
parameter functions.

Keywords: opinion dynamics; bias parameter; homogeneous; polarization; consensus

MSC: 91C99; 91C20

1. Introduction

In our society, opinion formation among individuals and induced dynamics has been
extensively studied and debated in the academic literature, including minority opinion
dissemination, collective decision making, polarization and fluctuation, fashion emergence,
etc. With the extensive development of network communication, such as WeChat groups,
Facebook interest groups, Twitter discussion threads, etc., online interactions are becoming
increasingly important in many aspects ranging from political decisions to marketing
strategies [1,2]. In this setting, it is important to study the way individuals in an online
social network update their attitudes.

For the traditional network topologies, the standard DeGroot model employs the
discrete-time multi-agent system to simulate how public opinions may influence each other,
in which an individual’s opinion toward a particular topic is often represented by a real
value in the interval [0, 1]. It was proven that as long as the underlying graph is connected,
all opinions converge to a common value known as the consensus state [3]. Generalizations
of this model to continuous-time dynamics and time-varying network structures have been
extensively studied in the literature, e.g., [4–7]. Such convergence to consensus still holds
for some deterministically switching networks, e.g., [4–6]. However, analyzing the social
groups’ characteristics is an important way to understand the rule of the social system.
Therefore, it is increasingly important to understand how macro-characteristics emerge
from the micro-individual psychological and interactive effects. For example, individuals
always consider the initial point of view in the process of updating [8]; according to the
selective exclusion principle in social psychology, individuals in the group would choose
to communicate with people with similar opinions [9]; the research objects of the stochastic
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DeGroot model contain stubborn agents who never modify their opinions, such as leaders
and rumor disseminators [10]; agents may tend to repulse individual opinions that differ
greatly from their own based on self-bias [11]. Beyond consensus, social dynamics can
exhibit complex behaviors such as polarization, clustering, and opinion fluctuation [10–12].

Considering the wide existence of biases among individual opinion evolution, es-
pecially online comments, WeChat discussions, etc., individual biases were modeled as
nonlinear weights on self-opinion and local group opinions, based on which clustering to
extreme opinions in the fixed network topologies was revealed recently [13,14]. Studies
from social psychology show that people are more likely to accept confirming evidence
given by someone similar to themselves [15,16]. A convincing model for this biased opinion
assimilation was proposed in [15] as a natural interpretation of confirmation bias. Ref. [14]
provided a systemic analysis of a social opinion dynamical model with bias assimilation
on fixed network topologies. However, the polarization phenomena were only shown
for special fixed networks [13], and rare results on polarization are confirmed for general
fixed networks [13,14]. In fact, for social systems designed expressly to facilitate collective
decision making regarding complex social issues, the occurrence of polarization would not
only depend on the network structures (such as the two-island network shown in [13]) but
also on some random accidental factors [17,18].

Previous studies have dealt with convergence and stability analysis of such systems
for some fixed network structures, and we focus on how individual opinions evolve for
the random network structure. Opinion exchanges among Internet users might promote
opinion consensus, polarization, and fluctuations with different psychological effects
behind social interactions. This creates some new problems: Assume all internet users have
the psychological effect of biased assimilation; then, how do biased individuals’ opinions
evolve among the random online networks? Do the consensus phenomena always happen
similarly to the fixed network topologies [14]? Through this paper, we will answer these
questions partly and understand why individual-level polarization would happen, contrary
to conventional wisdom, regarding the public opinions of online platforms.

The contribution is that we propose and study opinion dynamics over the random so-
cial network with homogeneous bias parameters. Particularly, we focus on how individual
biases and randomness affect the opinion limit states. Firstly, we investigate the random
bias-induced collective nonlinear network dynamics and provide conditions under which
all node states converge to 0 or 1. Next, we prove that opinion polarization happens with a
positive probability with homogeneous bias parameters. Finally, we prove that all node
states also converge to extremal opinions even if the bias parameters are dynamic, and we
show that the opinion evolution only depends on the value ranges of bias parameters in
certain early time intervals. Simulations on the time interval thresholds are conducted for
some dynamical bias parameters.

The remainder of the paper is organized as follows. In Section 2, we present the social
network model for our study and introduce our problems of interest. Section 3 presents
our main results on the fixed biased parameters. Then, Section 4 presents our main results
on the dynamic biased parameters and provides some numerical simulations of periodical
functions of the biased parameters. Finally, Section 5 concludes the paper with a few
remarks on potential future directions.

2. Model Formulation

Our opinion formulation process unfolds over the random social network represented
by random weighted directed graphs G(t) = (V, E(t), W). Time is slotted at t = 0, 1, 2, . . . .
V = {1, 2, . . . , n}.

At each time t, each node i ∈ V randomly selects one node ri(t) ∈ V as its neighbor
from the network node set V independent of other nodes’ selections. This results in a
random set of neighbors (clusters), which are denoted by {ri(t)}, for i ∈ V and t = 0, 1, . . . .
Note that (i, j) ∈ E(t) if and only if the agent selected by agent i is ri(t) = j, representing
the other node j that influences i.
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For W = [wij]n×n, 0 < wij < 1 represents the influence weight between two nodes i
and j. Without loss of generality, the node i’s self-confidence is represented by wii = 1.

Each node i holds an opinion xi(t) ∈ [0, 1] at time t. Let bi be a positive number
associated with node i as a bias parameter. The evolution of the xi(t), i ∈ V is described by:

xi(t + 1) =
xi(t) + wi,ri(t)(xi(t))bi xri(t)(t)

1 + wi,ri(t)

[
(xi(t))bi xri(t)(t) + (1− xi(t))bi (1− xri(t)(t))

] (1)

This model reflects the social psychology phenomenon named biased assimilation. For
any node i, wi,ri(t) is the inspired influence weight that the node i is influenced by the node
ri(t) ∈ V. For the right side of the model (1), the factor (xi(t))bi weighting xri(t)(t) means
the biased manner degree on its previous “relevant disconfirming empirical” opinion xi(t),
while the factor (1− xi(t))bi weighting 1− xri(t)(t) means the biased manner degree on its
previous “relevant disconfirming empirical” opinion 1− xi(t).

Note that (1− xi(t))bi (1− xri(t)(t)) ≥ 0 if xi(t) ∈ [0, 1]; thus, the denominator is not
smaller than the numerator. Thus, xi(0) ∈ [0, 1] for all i ∈ V guarantees that xi(t) ∈ [0, 1]
for all t ≥ 0 and i ∈ V. In addition, 0 and 1 represent the extreme opinion of opposing
or supposing on the given topic, respectively. Based on the results of [14,15], opinion
evolution depends on whether all bi > 1 or all bi ∈ (0, 1), except the network structure
and other parameter constraints. Therefore, it is necessary to induce and classify the bias
parameters as follows.

Definition 1. If all opinion bias parameter bi > 1, i ∈ V or all opinion bias parameter bi ∈ (0, 1),
i ∈ V, then the biased assimilation model (1) is homogeneous. Correspondingly, if bi > 1 for i ∈ V1
where V1 is nonempty, bi ∈ (0, 1) for i ∈ V2, (V1 ∪V2) ⊂ V, then the biased assimilation model (1)
is heterogeneous.

If there exist at least two agents i, j such that bi ∈ (0, 1) and bj > 1, then we say the
biased assimilation model (1) is heterogeneous.

Denote R(t) = (r1(t), r2(t), . . . , rn(t)) as the selection vector for any t ≥ 0. We impose
the following assumptions for the selection rule and bias parameters.

Assumption 1. {ri(t)} are independent with each other for any i ∈ V and t ≥ 0, and ri(t) is any
discrete distribution on {1, 2, . . . , n} where ri(t) = j is a positive probability event for any i, j ∈ V
and t ∈ .

Assumption 2. The bias assimilation parameter {bi} satisfies bi > 0 for any i ∈ V.

3. Fixed Bias Parameters

In this section, we investigate the opinion limit analysis for the model (1) where the
bias parameters are fixed and homogeneous for t ≥ 0.

3.1. Probability Space

Let {R(t)} be a non-repetitive selection vector set, that is, any R(t) for t ≥ 0 is a
permutations sort of (1, 2, . . . , n). Thus, for a given t ≥ 0, there is n different vectors for
R(t). Denote Ω as the set composed by all n different permutations sort of (1, 2, . . . , n). By
Assumption 1, we can construct a probability space (V,F , P). Furthermore, because the
selections are independent among different t ≥ 0, thus, the probability space reflecting any
opinion selection trajectories is independent among t ∈ .

3.2. Some Lemmas

In this subsection, we introduce some lemmas for the model (1).
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Lemma 1. For the probability measure P, lim
t→∞

xi(t) = x∗i a.s. is equivalent to xi(t), which almost

uniformly converges to x∗i . That is to say, ∀ε > 0, lim
t→∞

P
(
∪+∞

k=t(|xi(t)− x∗i | ≥ ε)
)
= 0 for any

i ∈ V.

Lemma 2. If xi(0) ∈ (0, 1
2 ) for all i ∈ V, then xi(t) ∈ (0, 1

2 ) for any t ∈ . Similarly, if
xi(0) ∈ ( 1

2 , 1) for all i ∈ V, then xi(t) ∈ ( 1
2 , 1) for any t ∈ .

Proof of Lemma 2 is listed in Appendix A. Lemma 2 explains some realistic social
phenomena. If all people own negative opinions (<0.5), then all of them will always
keep the negative opinions. A similar phenomenon appears when they all have positive
opinions (>0.5). Different from the results in [14], maxi∈V{xi(t)} is not monotonic due to
the randomness selection of {ri(t)}. Therefore, some of the following main results would
be different from the ones on the fixed network topologies. To analyze the nonlinearity of
the model (1), we provide the following lemma.

Lemma 3. For the function f (x, y) = x+wxby
1+w(xby+(1−x)b(1−y)) where w > 0, b > 0 and x, y ∈ [0, 1],

we have:

(i) f (0, y) ≡ 0 for any y ∈ [0, 1];
(ii) f (1, y) ≡ 1 for any y ∈ [0, 1];
(iii) f (x, 0) = x

1+w(1−x)b and it is a lower convex function;

(iv) f (x, 1) = x+wxb

1+wxb and it is a upper convex function;
(v) f (1− x, x) + f (x, 1− x) = f (x, y) + f (1− x, 1− y) = 1.

This lemma can be easily obtained and the proof is omitted.

3.3. Results on Homogeneous Bias Parameters

In this subsection, we study the limits of the model (1) where Assumptions 1 and 2 are
satisfied. Here, all bias parameters are homogeneous. Specially, if bi = 0 for any i ∈ V, then
xi(t + 1) = 1

1+wij
xi(t) +

wij
1+wij

xj(t). By the standard DeGroot model, all agent opinions
reach a consensus. If bi = 1 for any i ∈ V, we obtain the following lemma.

Lemma 4. For the model (1),
P{ lim

t→∞
xi(t) = 1} = 1

for any i ∈ V, if bi = 1 and xi(0) ∈ ( 1
2 , 1] for any i ∈ V;

P{ lim
t→∞

xi(t) = 0} = 1

for any i ∈ V, if bi = 1 and xi(0) ∈ [0, 1
2 ) for any i ∈ V.

The proof of Lemma 4 is shown in Appendix B. In the following, we generalize the
results of Lemma 4 to any homogeneous bias parameters bi > 0.

Theorem 1. For the model (1), if {bi} are homogeneous, then

(i) P{ lim
t→∞

xi(t) = 1} = 1 for any i ∈ V, if xi(0) ∈ ( 1
2 , 1] for any i ∈ V;

(ii) P{ lim
t→∞

xi(t) = 0} = 1 for any i ∈ V, if xi(0) ∈ [0, 1
2 ) for any i ∈ V.

The proof of Theorem 1 is shown in Appendix C. Although the dynamics of model
(1) is different from the one in [14], the result of Theorem 1 is similar to Theorem 4 of [14].
Therefore, we can weaken the condition of Theorem 1 and distinguish the results of different
network structures, and we provide the following theorem.
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Theorem 2. For the homogeneous parameters {bi}, if xi(t) ∈ ( 1
2 , 1) infinitely often (i.o.) for

certain i ∈ V, then lim
t→∞

xi(t) = 1 a.s. Similarly, if xi(t) ∈ (0, 1
2 ) i.o. for certain i ∈ V, then

lim
t→∞

xi(t) = 0 a.s.

The proof of Theorem 2 is shown in Appendix D. Theorem 2 illustrates that the
social group that always owns negative opinions (<0.5) will finally reach the extremely
negative attitude (0) after sufficient communication. Similarly, the social group that always
owns positive opinions (>0.5) will finally reach an extremely positive attitude (1). These
phenomena can usually be found in online interest groups.

Based on Theorem 2, we can show that opinion polarization happens with a positive
probability, which is much different from the results on fixed social networks [13,14].
Denote

Epolarization = {∃V1, V2 ⊂ V, V1 ∪V2 = Vs.t. : lim
t→∞

xi(t) = 0, i ∈ V1; lim
t→∞

xi(t) = 1, i ∈ V2}.

Furthermore, we denote

Econ = { lim
t→∞

xi(t) = 0 or 1, ∀i ∈ V}.

According to Theorem 1, Epolarization is a zero probability event if xi(0) ∈ [0, 1
2 ) or

xi(0) ∈ ( 1
2 , 1]. Generally, we obtain the following theorem.

Theorem 3. For the model (1), P{Econ} = 1 and P{Epolarization} > 0 if {bi} are homogeneous.

The proof of Theorem 3 is shown in Appendix E. The result of Theorem 3 is different
from anyone in the fixed network topologies [13,14]. The proof of Theorem 3 shows that
opinion polarization depends on opinion selection sequence {ri(t), i ∈ V, t ∈ }, not only
the initial opinions {xi(0)}, which shows that some accidental factors could also affect the
opinion evolution for the model (1).

Theorem 3 can explain the social phenomena on online social networks. If there is
a group of people who process their information in a biased manner, then opinion polar-
ization happens with a positive probability. For the fixed networks, Ref. [13] shows that
opinion polarization happens on the two-island network with strict parameter conditions.
Theorem 3 extends it into the case of random selection rules.

According to Theorem 3, we obtain that all opinions will converge to 0 or 1, a.s., for
different initial values and biased parameter bi. Figure 1 shows how opinions {xi(t)}
change for different initial values and selection processes when the agent number n = 20,
the termination time is T = 200 and the bias parameters bi = 2.2 for any i ∈ V.
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Figure 1. The different opinion evolutions on the model (1), where lines of different colors mean
different agent opinion trajectories. (left) The opinion consensus phenomenon; (right) The opinion
polarization phenomenon.

103



Mathematics 2023, 11, 1661

4. Dynamic Biased Parameters

In this section, we will analyze the generalized form of the model (1) where the biased
assimilation parameters {bi} are functions of time t, that is,

xi(t + 1) =
xi(t) + wi,ri(t)(xi(t))bi(t)xri(t)(t)

1 + wi,ri(t)

[
(xi(t))bi(t)xri(t)(t) + (1− xi(t))bi(t)(1− xri(t)(t))

] . (2)

4.1. Results on Dynamic Bias Parameters

For the function bi(t), we assume that bi(t) > 0 for any i ∈ V and t ≥ 0. In this
section, we call {bi(t)} homogeneous if bi(t) > 1 for any i ∈ V and t ∈ simultaneously,
or bi(t) ∈ (0, 1) for any i ∈ V and t ∈ simultaneously. Obviously, if bi(t) ∈ (0, 1) for all
i = 1, 2, . . . , n and t ≥ 0, then opinions will almost surely converge to 1. While if bi(t) > 1
for all i = 1, 2, . . . , n and t ≥ 0, then opinions will almost surely converge to 0. Generally,
we obtain the following lemma.

Lemma 5. For the model (2), P{Econ} = 1 and P{Epolarization} > 0 if {bi(t)} are homogeneous.

Note that in the proof of Theorem 3, the analysis on bi only depends on the current
period t. Thus, the proof of Theorem 3 can be naturally extended to the case of Lemma 5;
thus, the proof of Lemma 5 is omitted. Different from the previous results, we propose that
agent opinion evolution on the model (2) only depends on the early time slots.

Theorem 4. For the model (2), there exists a finite time threshold T∗1 > 0, if bi(t) > 1, xi(0) ∈
(0, 1

2 ) for any i ∈ V and t ∈ (0, T∗1 ), then

lim
t→∞

xi(t) = 0 a.s. for any i ∈ V;

Similarly, there exists a finite time threshold T∗2 > 0, if bi(t) ∈ (0, 1), xi(0) ∈ ( 1
2 , 1) for any i ∈ V

and t ∈ (0, T∗2 ), then
lim
t→∞

xi(t) = 1 a.s. for any i ∈ V.

This theorem shows that there always exists a finite time threshold T∗, such that the
opinion evolution only depends on the time interval [0, T∗]. However, it is difficult to
provide a mathematical expression of T∗. In the following, we demonstrate the threshold
T∗ for some periodic functions and monotone functions.

4.2. Simulations on Dynamic Bias Parameters

In this subsection, simulations that explore the threshold T∗ of the model (2) are
presented based on MATLAB software. Set agent number n = 20 and the termination time
T = 200. The initial opinions are equally distributed on the interval [0, 1] and the simulation
number is 200. We use T̂∗1 = mint∈ {t : xi(t) ∈ (0, 1

2 )∀i ∈ V} (or T̂∗2 = mint∈ {t : xi(t) ∈
( 1

2 , 1)∀i ∈ V}) to substitute for T∗1 (or T∗2 ) of Theorem 4. Here, the estimated threshold T∗

is a weighted combination of T̂∗1 and T̂∗1 where the weight parameters are the frequencies
of the events that opinions converge to 0 or 1, respectively. Specially, we set all bi(t) to be
the same for i ∈ V.

(1) Figure 2 shows that the average estimated threshold T∗ oscillatory decreases as h
changes from 0 to 1.1, where the biased assimilation functions are bi(t) = 0.8mod(x, 10 +
30h)/(10 + 30h) + 0.8 and bi(t) = 0.8 exp(−0.1hx) + 0.4, respectively.

In fact, as h increases from 0 to 1, the probabilities of opinions converge to 1 and
decrease to 0. By Theorem 4, there exists a time threshold T∗1 > 0, such that limt→∞ xi(t) =
0 a.s. for any i ∈ V if bi(t) > 1, xi(0) ∈ (0, 1

2 ) for any i ∈ V and t ∈ (0, T∗1 ).
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The following figures (Figure 3) show how the first range where bi(t) > 1 enlarges
when h increases from 0 to 1. According to Lemma 5, this is corresponding to Figure 2
where the frequency of opinions converging to 0 increases.
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Figure 2. The change of the average estimated threshold T∗. (left): {bi(t)} are periodic functions;
(right): {bi(t)} are monotone decreasing functions.

Figure 3. The first ranges where bi(t) > 1 change as h increases from 0 to 1. (left): {bi(t)} are sine
functions; (right): {bi(t)} are cosine functions.

Similarly, Figure 4 shows that the frequency of opinions converging to 1 also os-
cillatory decreases as h changes from 0 to 1, where the biased assimilation function
bi(t) = 0.8sin( t

4+10h ) + 0.8 and bi(t) = 0.8cos( t
4+10h ) + 0.8. The analysis is similar to

Figure 2.
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Figure 4. The probability that opinions converge to 1. (left): {bi(t)} are sine functions with different
periods; (right): {bi(t)} are cosine functions with different periods.

(2) Probability of consensus for exponential functions of bi(t): In this part, the proba-
bilities of opinion consensus to 0 or 1 for the model (1) are demonstrated.
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If bi(t) = 0.8e−0.1t + 0.4 + h where h changes from 0 to 1, then {bi(t) > 1} =

[0, 10 ln
(

8
6−10h

)
]. When h increases from 0 to 1, 10 ln 8

6−10h increases. Thus, the range [0, T∗2 ]
where bi(t) > 1 enlarges, and the frequency of opinions converging to 0 increases. This is
corresponding to Figure 5. The similar analysis can be obtained for bi(t) = 0.8e−0.1ht + 0.4.
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Figure 5. The probability that opinions converge to 1. (left): {bi(t)} are exponential functions; (right):
{bi(t)} are exponential functions.

(3) Probability of consensus for index periodic functions of bi(t): In this part, the
probabilities of opinion consensus to 0 or 1 for the model (1) are demonstrated.

According to Figure 6, when h changes from 0 to 1, the first ranges where 0 <
0.8mod(x, 10 + 30h)/(10 + 30h) + 0.8 < 1 and 0.8mod(5 + 15h + x, 10 + 30h)/(10 + 30h) +
0.8 > 1 increase. Figure 7 reflects the probability where opinions converging to 1 oscillatory
increase and oscillatory decrease, respectively.

Figure 6. The first ranges where bi(t) > 1 change as h increases from 0 to 1. (left): {bi(t)} are index
periodic functions; (right): {bi(t)} are index periodic functions.
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Figure 7. The probability that opinions converge to 1. (left): {bi(t)} are index periodic functions;
(right): {bi(t)} are index periodic functions.
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5. Conclusions

We have systematically analyzed online social opinion dynamics subject to individ-
ually biased assimilation. With initial opinions being independently and identically dis-
tributed, at each time step, peers review the selected opinions of a randomly selected clique
with biased assimilation. The contributions are that a series of results on the asymptotic
behaviors of the social opinions at a system level were provided, focusing on polarization
and consensus. The results show that convergence happens almost surely and polarization
happens with a positive probability. Future works include studying the limit states if
{bi, i ∈ V} are heterogeneous, extending the results to general network structures, and
validating the established opinion formations with real-world social network data.
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Appendix A

Fix the time t, for any i ∈ V, denote ri(t) = j. By the model (1),

xi(t + 1) =
xi(t) + wij(xi(t))bi xj(t)

1 + wij[(xi(t))bi xj(t) + (1− xi(t))bi (1− xj(t))]

(i)
≤

xi(t) + wij(xi(t))bi xj(t)
1 + wij(xi(t))bi

(ii)
≤ 1

2
,

where (i) is deduced by (1− xi(t))bi > (xi(t))bi for any xi(t) ∈ [0, 1
2 ) and bi > 0 and (ii)

holds because xi(t), xj(t) < 1
2 .

Therefore, xi(t + 1) < 1
2 . The non-negativity of {xi(t)} is obviously obtained. In a

sum, xi(t) ∈ [0, 1
2 ) for any t ∈ if xi(0) ∈ (0, 1

2 ).
For another condition, if xi(0) ∈ ( 1

2 , 1), then 1− xi(0) ∈ (0, 1
2 ). By the model (1),

1− xi(t + 1) =
1− xi(t) + wij(1− xi(t))bi (1− xj(t))

1 + wij[(xi(t))bi xj(t) + (1− xi(t))bi (1− xj(t))]
.

This indicates that {1− xi(t)} has the similar evolution path of {xi(t)}. Thus, the
conclusion holds.

Appendix B

If bi = 1 for any i ∈ V and we assume ri(t) = j, then

xi(t + 1) =

⎧⎨⎩
1+wijxj(t)

1+wij(1−xi(t)−xj(t)+2xi(t)xj(t))
xi(t) < xi(t), if xj(t) ∈ (0, 1

2 );
1+wijxj(t)

1+wij(1−xi(t)−xj(t)+2xi(t)xj(t))
xi(t) > xi(t) if xj(t) ∈ ( 1

2 , 1).
(A1)

Thus, if xi(0) ∈ (0, 1
2 ), by (A1), then xi(1) < xi(0) for any ri(0) ∈ V and i ∈ V.

Consequently, xi(t + 1) < xi(t) for any t ∈ . Note that {xi(t)} is decreasing and has the
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lower bound 0 for a given i ∈ V. We assume that lim
t→∞

xi(t) = x∗i for i ∈ V, by (A1), we

obtain that

x∗i =
1 + wijx∗j

1 + wij(1− x∗i − x∗j + 2x∗i x∗j )
x∗i .

Then, x∗i = 0 or x∗j = 1
2 for any i, j ∈ V. Due to xi(0) ∈ (0, 1

2 ), x∗i = 0 holds a.s.

Similarly, P{ lim
t→∞

xi(t) = 1} = 1 for any i ∈ V, if bi = 1 and xi(0) ∈ ( 1
2 , 1) for any i ∈ V.

The conclusion follows.

Appendix C

Consider the time t, t ∈ . Denote ri(t) = j. Then,

xi(t + 1)− xi(t)

=
wijx

bi+1
i (t)xj(t)

1 + wij[x
bi
i (t)xj(t) + (1− xi(t))bi (1− xj(t))]

[
1− xi(t)

xi(t)
−

1− xj(t)
xj(t)

(
1− xi(t)

xi(t)

)bi
]

. (A2)

Step I: When 0 < bi < 1 and xk(0) ∈ ( 1
2 , 1), by the model (1) and Lemma 3,

1− xi(t + 1) =
1− xi(t) + wij(1− xi(t))bi (1− xj(t))

1 + wij

[
(1− xi(t))bi (1− xj(t)) + xbi

i (t)xj(t)
] .

Set zi(t) = 1− xi(t), then zi(0) ∈ (0, 1
2 ). By Lemma 2, zi(t) ∈ (0, 1

2 ) for any i ∈ V.
Obviously, {zi(t), i ∈ V} satisfies the model (1). In the following, we divided into two cases
for analyzing the monotonic decreasing of {zi(t)}.

If zj(t) < zi(t) and ri(t) = j, then

zi(t + 1)− zi(t) = wij(zi(t))bi+1zj(t)

(
1− zi(t)

zi(t)
−

1− zj(t)
zj(t)

(
1− zi(t)

zi(t)

)bi
)

(a)
≤ wij(zi(t))bi+1zj(t)

zj(t)− zi(t)
zi(t)zj(t)

< 0,

where (a) is deduced by 1 <
(

1−zi(t)
zi(t)

)bi
< 1−zi(t)

zi(t)
.

If zi(t) < zj(t) and ri(t) = j, then 1−zi(t)
zi(t)

>
1−zj(t)

zj(t)
> 1. Hence,

1− zi(t)
zi(t)

−
1− zj(t)

zj(t)

(
1− zi(t)

zi(t)

)bi (i)
<

1− zi(t)
zi(t)

−
(

1− zi(t)
zi(t)

)bi+1 (ii)
< 0

where (i) comes from 1−zi(t)
zi(t)

>
1−zj(t)

zj(t)
and (ii) is deduced by f (x) = x − xbi+1 < 0 for

x > 1. Consequently,

zi(t + 1)− zi(t) = wij(zi(t))bi+1zj(t)

(
1− zi(t)

zi(t)
−

1− zj(t)
zj(t)

(
1− zi(t)

zi(t)

)bi
)

< 0.

Assume lim
t→∞

xi(t) = x∗i ; by the model (1), it must satisfy

x∗i = x∗j (A3)
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for any i, j ∈ V. In fact, for n = 2, if lim
t→∞

x1(t) = L1, lim
t→∞

x2(t) = L2 and L1 �= L2, then

L1 =
L1 + w12Lb1

1 L2

1 + w12

(
Lb1

1 L2 + (1− L1)b1(1− L2)
)

if r1(t) = 2 for sufficiently large t and

L1 =
L1 + w11Lb1+1

1

1 + w11

(
Lb1+1

1 + (1− L1)b1+1
)

if r1(t
′
) = 1 for another certain sufficiently large t

′
. This leads to a contradiction. The same

result can be similarly deduced for n = 3, 4, . . .. For simplicity, we denote lim
t→∞

xi(t) = x∗.

Then, we obtain that

x∗ =
x∗ + wij(x∗)bi+1

1 + wij
(
(x∗)bi+1 + (1− x∗)bi+1

)
for any i = 1, 2 and j = 1, 2. Then, x∗ = 0 or 1. By the monotonous increasing property,
x∗ = 1. Similarly, lim

t→∞
xi(t) = 1 holds for any n ≥ 2. Then, lim

t→∞
xi(t) = 1 for any i ∈ V.

Step II: When bi > 1 and xk(0) ∈ [0, 1
2 ), by Lemma 2, xk(t) ∈ [0, 1

2 ) for any t ∈ .

Then, 1−xk(t)
xk(t)

> 1 and
(

1−xk(t)
xk(t)

)bi
> 1−xk(t)

xk(t)
for any k ∈ V. Therefore,

1− xi(t)
xi(t)

−
1− xj(t)

xj(t)

(
1− xi(t)

xi(t)

)bi

<
1− xi(t)

xi(t)

(
1−

1− xj(t)
xj(t)

)
< 0.

By xi(t + 1)− xi(t) < 0 for any i ∈ V and t ∈ , we obtain that lim
t→∞

xi(t) exists a.s.

for any i ∈ V. With a similar analysis of Step I, lim
t→∞

xi(t) = 0 a.s. for any i ∈ V.

Step III: Similarly, when bi > 1 and xk(0) ∈ ( 1
2 , 1], for any t ∈ ,

1− xi(t)
xi(t)

−
1− xj(t)

xj(t)

(
1− xi(t)

xi(t)

)bi (a)
>

1− xi(t)
xi(t)

−
(

1− xi(t)
xi(t)

)bi (b)
> 0

where (a) comes from
1−xj(t)

xj(t)
< 1 for any xj(t) ∈ ( 1

2 , 1], (b) is deduced by 1−xi(t)
xi(t)

>(
1−xi(t)

xi(t)

)bi
for 1−xi(t)

xi(t)
< 1 and bi > 1. By xi(t + 1)− xi(t) > 0 for any i ∈ V and t ∈ , we

obtain that lim
t→∞

(t) exists a.s. for any i ∈ V. With a similar analysis of Step I, lim
t→∞

xi(t) = 1

a.s. for any i ∈ V.
Step IV: By Lemma 3 and the model (1), xi(t + 1) = f (xi(t), xj(t)) if ri(t) = j. Obvi-

ously, f (x, y) is continuously differentiable on [0, 1]× [0, 1], and we obtain

∂

∂x
f (x, y) =

1
(1 + w(xby + (1− x)b(1− y)))2

[
1 + w[b + (1− b)x]xb−1y+

w(1− x + bx)(1− x)b−1(1− y) + bw2(1 + x)xb−1(1− x)b(1− y)y
] (i)
> 0 (A4)

where (i) holds obviously if b ∈ (0, 1), (i) holds because b− (b− 1)x > 0 if b ≥ 1 and

∂

∂y
f (x, y)=

1
(1+w(xby + (1−x)b(1−y)))2

[
wxb(1−x) + w2xb(1−x)b + wx(1−x)b

]
> 0. (A5)
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We assume xi(0) ∈ [η1, η2] ∈ (0, 1
2 ) for any i ∈ V. Note that bi ∈ (0, 1) for any i ∈ V.

Set w∗ = max
i,j∈V

wij. By Lemma 3 and the model (1), we have

xi(1) = f (xi(0), xj(0))
(i)
< f (η2, η2)

(ii)
<

η2 + wijη
bi+1
2

1 + wij(η
2
2 + (1− η2)2)

≤ η2 + w∗ηbi+1
2

1 + w∗(η2
2 + (1− η2)2)

where (i) is obtained by the inequalities (A4) and (A5), (ii) comes from xbi > x for x ∈
[η1, η2], bi ∈ (0, 1). Consequently, we prove that

Q(x) � x + wxb+1

1 + w(x2 + (1− x)2)
< x (A6)

for b ∈ (0, 1), x, w ∈ (0, 1). Note that the inequality (A6) is equivalent to xb < x2 + (1− x)2.
Denote k(x) = xb − x2 − (1 − x)2. Then, k(0) = −1 < 0, k(1) = 0 and k(x) has no
stationary point by k′(x) = 0, x ∈ (0, 1). Thus k(x) < 0 for x ∈ (0, 1). Therefore, the
inequality (A6) holds.

According to (A6), we obtain that for any i ∈ V,

xi(2) = f (xi(1), xj(1)) < f (Q(η2), Q(η2))
(i)
< Q(Q(η2))

xi(3) = f (xi(2), xj(2)) < f (Q(Q(η2)), Q(Q(η2))) < Q(Q(Q(η2)))

. . . . . . . . .

xi(t + 1) = f (xi(t), xj(t)) < f (Q(t)(η2), Q(t)(η2)) < Q(t+1)(η2)

where (i) is deduced by the inequality (A6) and the function Q(t)(x) is defined by Q(t)(x) =
Q(Q · · · (Q(x)) · · · ). Obviously, it is not difficult to prove that maxi∈V xi(t) < Q(t)(η2)→ 0
as t→ ∞. In fact, by the inequality (A6), Q(t)(η2) is monotonic decreasing and has a lower

bound 0. We assume lim
t→∞

Q(t)(η2) = Q∗. According to Q∗+w(Q∗)b+1

1+w((Q∗)2+(1−Q∗)2)
≤ Q∗ for

Q∗ ∈ [0, 1
2 ), Q∗ = 0.

Now, we have completed the proof.

Appendix D

Step I: We prove that P{ lim
t→∞

xi(t) ∈ (1 − 1

1+( M
M−1 )

1
bm

, 1)|xi(t) > 1
2 , i.o.} = 0 for

any η ∈ (0, 1
2 ), M ∈ {2, 3, 4, . . .} and bm = max

i∈V
{bi}. Denote AM = { lim

t→∞
xi(t) ∈ (1−

1

1+( M
M−1 )

1
bm

, 1)}. In fact, if xi(t) > 1
2 , i.o., without loss of generality, we set xi(t) > 1

2 for

t > T. By the upper limit definition, in the event { lim
t→∞

xi(t) < 1− η}where η < 1

1+( M
M−1 )

1
bm

,

for any

ε ∈ (0, min{1
3

η,
(1− η)

(
M−1

M

) 1
bi − η

1 +
(

M−1
M

) 1
bi

,
η
(

1− 4
3 η
)bi+1

3M + 6M(1− 4
3 η)bi+1

}), (A7)

there exists T1 > 0, for any t ≥ T1, xi(t) < 1− η + ε and xi(T1) ∈ (1− η − ε, 1− η +
ε) ⊂ [ 1

2 , 1]. However, it is obvious that ri(T1) = i holds with a positive probability by
Assumption 1, then

xi(T1 + 1)− xi(T1)
(i)
=

x(1− x)(xbi − (1− x)bi )

1 + xbi+1 + (1− x)bi+1

(ii)
≥ (1− x)xbi+1

M(1 + 2xbi+1)

(iii)
> 2ε, (A8)
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where (i) holds by setting x = xi(T1) and ri(T1) = i, (ii) comes from xbi+1 − (1− x)bi+1 >
xbi+1

M because

M− 1
M

>

(
1− x

x

)bi

⇐⇒
(

M− 1
M

) 1
bi
>

1− x
x
⇐=

(
M− 1

M

) 1
bi
>

η + ε

1− η − ε

(Because
1− x

x
is decreasing on x ∈ (1− η − ε, 1− η + ε))⇐⇒ ε <

(1− η)
(

M−1
M

) 1
bi − η

1 +
(

M−1
M

) 1
bi

,

(iii) holds because 1− x > 1− (1− η + ε) > 2
3 η and

min
x∈(1−η−ε,1−η+ε)

{
2
3 ηxbi+1

1 + 2xbi+1 } =
2
3 η(1− η − ε)bi+1

1 + 2(1− η − ε)bi+1 > 2ε

which is equivalent to

η(1− η − ε)bi+1 (a)
> η(1− 4

3
η)bi+1 (b)

>
3Mε

η − 6Mε

where (a) and (b) hold based on the inequality (A11).
According to the inequality (A8), xi(T1 + 1) > 1− η − ε + 2ε = 1− η + ε, which

contradicts the definition of lim
t→∞

xi(t) < 1− η.

Consequently, note that lim
M→∞

1

1+( M
M−1 )

1
bm

= 1
2 and 1

1+( M
M−1 )

1
bm

is monotonous as M

increases. In addition, P{AM|xi(t) > 1
2 , i.o.} = 0 for any M = 2, 3, 4, . . .. According to

P{ lim
t→∞

xi(t) ∈ (
1
2

, 1)|xi(t) >
1
2

, i.o.} ≤
∞

∑
M=2

P{AM|xi(t) >
1
2

, i.o.} = 0,

we obtain that P{ lim
t→∞

xi(t) ∈ ( 1
2 , 1)|xi(t) > 1

2 , i.o.} = 0.

Similarly, P{ lim
t→∞

xi(t) ∈ (0, 1
2 )|xi(t) < 1

2 , i.o.} = 0.

Step II: We prove that P{ lim
t→∞

xi(t) ∈ ( 1
2 , 1)| lim

t→∞
xi(t) = 1} = 0 for any i ∈ V by

contradiction. For any trajectory of the opinion evolution, we extract any subsequence
of {xi(t)} which converges to 1, then others are constituted as {xi(tk)}. Set {tk} ∪ {t′s} =
{1, 2, 3, . . .}. Set lim

k→∞
xi(tk) ≤ 1− η < 1, where η ∈ (0, 1

2 ). By η < 1
2 ,

1 + (1− η)bi

1 + (1− η
3 )

bi+1 + ηbi+1
>

1
2

. (A9)

Without loss of generality, we only need to analyze the case that tk+1 − tk > 1 always
holds when k is larger than a certain threshold. In fact, we can always take the subsequence
{tks} of {tk} s.t. tks+1 − tks > 1 when s is sufficiently large.

Note that ri(tk) = i holds with a positive probability by Assumption 1 for any tk ∈ .
Based on the definition of {tk}, for any

ε ∈ (0, min{1
3

η,

(
1− η

3
)bi+1

+ ηbi+1 − (1− η)bi

2(1− η)bi −
(
1− η

3
)bi+1 − ηbi+1

(1− η)}) (A10)
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where (1− η
3 )

bi+1
+ηbi+1−(1−η)bi

2(1−η)bi−(1− η
3 )

bi+1−ηbi+1
> 0 comes from the inequality (A9), there exists K > 0, for

any k ≥ K, t ≥ tK − 1 and t �= tk, xi(tk) < 1− η + ε and xi(t) > 1− η + 2ε. If ri(tk − 1) = i,
by the inequality (A5), then

xi(tk)
(a)
=

x + xbi+1

1 + xbi+1 + (1− x)bi+1

(b)
>

(1− η + 2ε) + (1− η + 2ε)bi+1

1 + (1− η + 2ε)bi+1 + (η − 2ε)bi+1

where (a) holds by setting x = xi(tk − 1), (b) comes from d
dx

x+xbi+1

1+xbi+1+(1−x)bi+1 > 0 and

x ∈ (1− η + 2ε, 1].
According to the inequality (A10),

1 + (1− η)bi

1 + (1− η
3 )

bi+1 + ηbi+1
(1− η + 2ε) > 1− η + ε.

Specially,

(1− η + 2ε) + (1− η + 2ε)bi+1

1 + (1− η + 2ε)bi+1 + (η − 2ε)bi+1 >
1 + (1− η)bi

1 + (1− η
3 )

bi+1 + ηbi+1
(1− η + 2ε).

Therefore, xi(tk) > 1− η + ε holds with a positive probability. Then,

{ lim
t→∞

xi(t) ∈ (
1
2

, 1)| lim
t→∞

xi(t) = 1}

is a zero probability event. With a similar method,

P{ lim
t→∞

xi(t) ∈ (0,
1
2
)| lim

t→∞
xi(t) = 0} = 0

for any i ∈ V.
Step III: We prove that P{ lim

t→∞
xi(t) ∈ (0, 1

1+( M
M−1 )

1
bm

)| lim
t→∞

xi(t) = 1} = 0 for any

M ∈ {2, 3, 4, . . .} and bm = min
i∈V
{bi}. Denote BM = {0 < lim

t→∞
xi(t) < 1

1+( M
M−1 )

1
bm
}. In fact,

by the lower limit definition, in the event { lim
t→∞

xi(t) < η} where η < 1

1+( M
M−1 )

1
bm

, for any

ε ∈ (0, min{1
3

η,
(1− η)

(
M−1

M

) 1
bi − η

1 +
(

M−1
M

) 1
bi

,
η
(

1 + 4
3 η
)bi+1

3M + 6M(1− 4
3 η)bi+1

}), (A11)

there exists T2 > 0, for any t ≥ T2, xi(t) > η − ε and xi(T2) ∈ (η − ε, η + ε) ⊂ [0, 1
2 ].

However, it is obvious that ri(T1) = i holds with a positive probability by Assumption 1.
With a similar method of Step I, xi(T2 + 1)− xi(T2) < −2ε, then xi(T2 + 1) < η − ε. This
induces a contradiction. In addition, P{BM| lim

t→∞
xi(t) = 1} = 0 for any M = 2, 3, 4, . . ..

According to

P{ lim
t→∞

xi(t) ∈ (0,
1
2
)| lim

t→∞
xi(t) = 1} ≤

∞

∑
M=2

P{BM| lim
t→∞

xi(t) = 1} = 0,

we obtain that P{ lim
t→∞

xi(t) ∈ (0, 1
2 )| lim

t→∞
xi(t) = 1} = 0.

Similarly, P{ lim
t→∞

xi(t) ∈ ( 1
2 , 1)| lim

t→∞
xi(t) = 0} = 0.

112



Mathematics 2023, 11, 1661

In a sum, if xi(t) ∈ ( 1
2 , 1) i.o. for certain i ∈ V, then lim

t→∞
xi(t) = 1 a.s. Similarly, if

xi(t) ∈ (0, 1
2 ) i.o. for certain i ∈ V, then lim

t→∞
xi(t) = 0 a.s.

Appendix E

We prove this theorem by contradiction.
Step I: We first prove that P{∩i∈V{xi(t) = 1

2 , i.o.}} = 0. In fact, if x1(t) = 1
2 i.o., then

there exists a time subsequence {tk} s.t. x1(tk) =
1
2 . There must exist a threshold T > 0

s.t. {tk, k ≥ T} = {tT , tT + 1, tT + 2, . . .}. Otherwise, there exists another time subsequence
{ts} s.t. x1(ts) >

1
2 (or x1(ts) >

1
2 ). According to Step I in the proof of Theorem 2, x1(t)

converges to 1 (or 0), which contradicts x1(t) = 1
2 i.o. Therefore, lim

t→∞
x1(t) = 1

2 . In addition,

we assume lim
t→∞

x2(t) > 1
2 , or x2(t) > 1

2 i.o. By Step I of Theorem 2, lim
t→∞

x2(t) = 1. Note that

r1(t) = 2 holds with a positive probability by Assumption 1, with the similar method on the
proof of Step I of Theorem 2, we obtain that lim

t→∞
x1(t) = 1 which contradicts lim

t→∞
x1(t) = 1

2 .

Similarly, lim
t→∞

x2(t) < 1
2 does not hold. Therefore, lim

t→∞
x2(t) = 1. Recursively, for any

i ∈ V, lim
t→∞

xi(t) = 1.

Note that for any x, y ∈ [0, 1], the solutions of f (x, y) = 1
2 satisfies y =

(1−x)b− 2x−1
w

(1−x)b+xb .

Therefore, by the model (1), xi(t + 1) = f (xi(t), xj(t)) if ri(t) = j. Primary images of
f (xi(t), xj(t)) = 1

2 on [0, 1] are all scatters; thus, P{∩i∈V{xi(t) = 1
2 , i.o.}} = 0. That is to

say, P{Econ} = 1.
Step 2: We prove that the event that xi(t) > 1

2 i.o. for i ∈ V1 and xj(t) < 1
2 i.o.

for j ∈ V2 holds with a positive probability. Based on the above proof, we assume that
xi(0) ∈ [0, η1) ∪ (1− η2, 1], η1 + η2 < 1 and η1, η2 < 1

2 . Set V1 = {i = 1, 2, . . . , � n
2 � : xi(0) ∈

[0, η1)}, V2 = {j = � n
2 �, . . . , n : xj(0) ∈ (1− η2, 1]}, V1 ∪ V2 = V and both V1 and V2 are

nonempty.
In fact, by contradiction, we assume P{xi(t) > 1

2 , i.o.i ∈ V1; xj(t) < 1
2 , i.o.j ∈ V2} = 0.

Then,
γ(x1(t), x2(t), . . . , xn(t)) = ∑

1≤i<j≤2
|xi(t)− xj(t)| → 0

a.s. as t → ∞. Therefore, for any ε ∈ (0, 1
4 ), there exists an almost surely finite r.v. T > 0,

for any t > T, γ(x1(t), x2(t), . . . , xn(t)) < ε. Then,

max
i,j∈V
|xi(t)− xj(t)| < γ(x1(t), x2(t), . . . , xn(t)) < ε. (A12)

According to Theorem 2, there is always an agent i satisfying xi(t) > 1
2 i.o. a.s.,

or xi(t) < 1
2 i.o. a.s. Without loss of generality, we assume when t > T, xi(t) < ε or

1− xi(t) < ε. Then, for any j ∈ V, by the inequality (A12),

xj(t) < xi(t) + max
i,j∈V
|xi(t)− xj(t)| < 2ε <

1
2

or 1− xj(t) < 1− xi(t) + max
i,j∈V
|xi(t)− xj(t)| < 2ε <

1
2

. (A13)

Note that the event {γ(x1(t), x2(t), . . . , xn(t)) → 0, t → ∞} = G1 ∪ G2 where G1 =
{xi(t) → 1, for any i ∈ V} and G2 = {xi(t) → 0, for any i ∈ V}. For the event G1,
xi(t) → 1 for any i ∈ V1; while for the event G2, xi(t) → 0 for any i ∈ V2. Note that
xi(0) ∈ [0, η1) for i ∈ V1 and xi(t + 1) < xi(t) if ri(t) ∈ V1, i ∈ V1 by Theorem 1. In
addition, according to Lemma 2, xi(T) > 1

2 for any i ∈ V or xi(T) < 1
2 for any i ∈ V.

Denote pV1 = P{xi(T) > 1
2 , i ∈ V1}, pV2 = P{xi(T) > 1

2 , i ∈ V2}, qV1 = P{xi(T) <
1
2 , i ∈ V1 and qV2 = P{xi(T) < 1

2 , i ∈ V2}. By the assumption, pV1 pV2 + qV1 qV2 = 1. If
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P{xi(t) > 1
2 , i.o.i ∈ V1; xj(t) < 1

2 , i.o.j ∈ V2} = 0, by Theorem 2, pV1 pV2 + qV1 qV2 = 1.
However,

pV1 pV2 + qV1 qV2

(a)
< pV1 pV2 + (1− pV1)(1− pV2) < 1

where (a) holds because {xi(T) < 1
2 , i ∈ V1} ⊂ {xi(T) > 1

2 , i ∈ V1}c. This induces a
contradiction. Thus, the event that xi(t) > 1

2 i.o. for i ∈ V1 and xj(t) < 1
2 i.o. for j ∈ V2

holds with a positive probability.
In a sum, P{Epolarization} > 0 if {bi} are homogeneous.

Appendix F

By Lemma 5, there exist two events Econ0 = { lim
t→∞

xi(t) = 0, ∀i ∈ V} and Econ1 =

{ lim
t→∞

xi(t) = 1, ∀i ∈ V} such that P{Econ0 ∪ Econ1} = 1.

Without loss of generality, we denote the limit of opinions {xi(t)} as x∗i . According
to Lemma 1, for any ε > 0, given ε0 > 0, there exists T1 > 0 such that for any t > T1,
P(∪+∞

t=T1
|x1(t) − x∗1 | ≥ ε0) ≤ ε

n . Similarly, there exists Ti > 0, such that for any t > Ti,
P(∪+∞

t=Ti
|xi(t)− x∗i | ≥ ε0) ≤ ε

n for i = 2, 3, . . . , n. Take T∗ = max{T1, T2, . . . , Tn}, then

P(
n⋃

i=1

(
∪+∞

t=Ti
|xi(t)− x∗i | ≥ ε0

)
) ≤

n

∑
i=1

P(∪+∞
t=Ti
|xi(t)− x∗i | ≥ ε0) ≤ ε.

By DeMorgan formula, for any t > T∗,

P(∩{xi(t) : xi(t) ∈ [x∗i − ε0, x∗i + ε0] ∩ [0, 1]}) > 1− ε. (A14)

Set ε0 < 1
2 and xi(0) ∈ (0, 1

2 ). According to Theorem 1 and its proof, how opinions of
the model (2) evolve only depend on their selected opinions ri(t) and whether bi(t) > 1
or bi(t) ∈ (0, 1). Thus, if bi(t) > 1 for any i ∈ V and t ∈ , we have P( lim

t→∞
xi(t) = 0) = 1.

Denote x∗i = 0 and T∗1 = T∗. If bi(t) > 1 for t ∈ (0, T∗1 ), by the inequality (A14), we obtain
that P(∩{xi(t) : xi(t) ∈ [0, ε0]}) > 1− ε for any t > T∗1 .

We will prove that {xi(t) : xi(T∗1 + 1) ∈ [0, ε0], ∀i ∈ V} = { lim
t→∞

xi(t) = 0}.

(I) If 0 < bi(t) < 1 for any t > T∗1 and i ∈ V, we can prove that xi(t + 1) < xi(t). In fact,
with a similar method of the inequality (A2), we obtain that

xi(t + 1)− xi(t) = wijx
bi+1
i (t)xj(t)

[
1− xi(t)

xi(t)
−

1− xj(t)
xj(t)

(
1− xi(t)

xi(t)

)bi(t)
]

.

Denote L(x, y; b) = 1−x
x −

1−y
y

(
1−x

x

)b
and R(x) = 1

1+( 1−x
x )

1−b . Note that xi(t + 1)−

xi(t) = wijx
bi+1
i (t)xj(t)L(xi(t), xj(t); b) and xi(T∗1 + 1) < ε0 for any i ∈ V. Further-

more, by

R(x) =
1

1 +
(

1−x
x

)1−b

(a)
> x

where (a) is deduced by (1− x)b > xb for x < ε0 < 1
2 , we obtain that

L(x, y; b) =
1− x

x
− 1− y

y

(
1− x

x

)b (i)
<

1− x
x
− 1− R(x)

R(x)

(
1− x

x

)b

=
1− x

x
−
(

1− x
x

)1−b(1− x
x

)b
= 0
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where (i) comes from 1−y
y > 1−R(x)

R(x) for y ≤ ε0 < R(x). Thus, xi(T∗1 + 2) < xi(T∗1 + 1)
for any i ∈ V. Consequently, it holds that xi(t + 1) < xi(t) for any t > T∗1 .

(II) If bi(t) > 1 for any t > T∗1 and i ∈ V, we can also prove that xi(t + 1) < xi(t).
Similarly, xi(t + 1)− xi(t) = wijx

bi+1
i (t)xj(t)L(xi(t), xj(t); b). Note that

L(x, y; b) =
1− x

x
− 1− y

y

(
1− x

x

)b (i)
<

1− x
x
− 1− y

y
1− x

x
= −1

y
1− x

x
< 0

where (i) holds because
(

1−x
x

)b
> 1−x

x for b > 1 and 0 < x < 1
2 . For xi(T∗1 + 1) < ε0

for any i ∈ V, we obtain that xi(T∗1 + 2) < xi(T∗1 + 1) for any i ∈ V. Consequently, it
holds that xi(t + 1) < xi(t) for any t > T∗1 .

By the previous conclusion that xi(t) decreases for any t > T∗1 and for any bi(t) > 0,
i ∈ V. With the similar proof of Theorem 1, all opinions converge to 0 a.s.

With a similar method, there exists a time threshold T∗2 > 0, such that lim
t→∞

xi(t) = 1

a.s. for any i ∈ V if bi(t) ∈ (0, 1), xi(0) ∈ ( 1
2 , 1) for any i ∈ V and t ∈ (0, T∗2 ). The

conclusion holds.
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Abstract: This paper studies the containment control problem of linear multi-agent systems (MASs)
subject to external disturbances, where the communication graph is a directed graph with the follow-
ers being undirected connections. In order to save communication costs and energy consumption, a
distributed disturbance observer-based event-triggered controller is employed based on the relative
outputs of neighboring followers. Compared with conventional controllers, our observer-based
controller utilizes the relative outputs of neighboring followers at the same triggered instant. Fur-
thermore, it is shown that Zeno behavior can be avoided. Finally, the validity of our proposed
methodology is demonstrated by a simulation example.

Keywords: multi-agent systems; event-triggered control; disturbance observer; containment control;
output feedback

MSC: 93A16

1. Introduction

Distributed cooperative control of multi-agent systems (MASs) has drawn a great
deal of attention, mainly due to its wide applications in engineering systems, such as
robotic systems, power sharing in DC microgrids and so forth. A rich body of results
about the cooperative control of MASs has been reported, such as consensus control,
leader-following tracking control and containment control [1–8]. Although there are many
studies on leaderless consensus control and one-leader tracking control, in some practical
applications, multiple leaders can complete certain tasks that are difficult for a single agent
to complete. In the presence of multiple leaders, the containment control problem has
been investigated, that is, all followers tend to the convex hull spanned by all the leaders.
There is increasing research on the containment control of different MASs, including simple
MASs of double-integrator MASs [9]; homogeneous linear MASs [6]; homogeneous discrete
MASs [7]; and heterogeneous high-order MASs [10].

Note that disturbance widely exists in engineering applications and is usually unavoid-
able. In engineering, a system often works in an environment with various disturbances,
which have a certain impact on the control accuracy, while the cooperative control of MASs
has strict requirements on the control accuracy. Therefore, how to deal with the interference
problem has always been the key to the control design of MASs. Some methods of dis-
turbance rejection have been proposed, including anti-interference methods, disturbance
observers, output regulation, and so on [11–16]. In [11], distributed event-based consen-
sus protocols based on the disturbance observer are proposed for MASs with matched
disturbances. In [13], a disturbance observer is designed for MASs under deterministic
disturbances. Under the state or relative state measurements, disturbance rejection is used
to estimate the disturbances [17–20]. However, when the state information is not available,
it is necessary to design the output feedback control protocol [21,22]. Therefore, it is of
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great significance to use the output feedback method to study the containment control
problem with external disturbances.

Nowadays, most communication networks between MASs are wireless communica-
tion. However, continuous communications among neighboring agents may be equipped
with simple embedded microprocessors. High-frequency continuous sampling not only
causes high system energy consumption but also leads to bandwidth constraints. Event-
triggered control provides an effective strategy to solve this problem [23–31]. In this
control strategy, by designing a reasonable trigger strategy, the amount of communication
and data updates is reduced, but satisfactory performance is still maintained. Among them,
the event-triggered strategy was first applied to MASs in the literature [23]. The consensus
problem was addressed in [24,25,27,28,32,33] by using the event-triggered control strategy,
and some papers considered leader-following consensus and other issues [34,35], while
this paper focuses on its application to containment control problems (see [21,34,36,37]).

Enlightened by the above observations, we integrate a disturbance observer and
distributed event-triggered output feedback controller for the containment control problem
of linear MASs subject to external disturbances. The main contributions of this paper are at
least threefold:

(1) Compared with the works on the consensus [13], this work considers the containment
control problem of linear MASs subject to external disturbances;

(2) Compared with most existing strategies [13,38], and based on the event-triggered
strategy, the containment control problem can be solved for linear MASs without the
need for continuous communications;

(3) The proposed disturbance observer-based event-triggered control uses the relative
output information of each agent.

2. Preliminaries and Problem Formulation

2.1. Notations

Let 0m and 0M×M be the m × 1 column vector of all zeros and the M × M matrix
of all zeros, respectively. For a matrix X, XT stands for its transpose, and ‖X‖ denotes
its Euclidean norm. For a square real matrix, Z > 0(Z ≥ 0) means that Z is a positive
definite (semi-definite), and λ(Z) represents its eigenvalues. ⊗ stands for the matrix
Kronecker product.

2.2. Graph Theory

A directed graph G = (V , E), where V = {1, 2, · · · , N}, E ⊂ V × V are the node
set and the edge set, respectively. For an edge, (i, j) ∈ E means i is a neighbor of j. The
self-loop is not considered in this paper, that is, (i, i) /∈ E for any i ∈ V . For an undirected
graph, (i, j) ∈ E implies (j, i) ∈ E . A directed path from node i to node j is a sequence of
nodes of the form i, ..., j.

A weighted adjacency matrix A = [aij] ∈ RN×N is given by aij = 0, aij > 0 if (i, j) ∈ E .
The Laplacian matrix of G is defined as L = [lij] ∈ RN×N , where lii = ∑j �=i aij and lij = −aij,
where i �= j.

In this paper, suppose that there are M(M < N) followers and N−M leaders. Let L �
{M + 1, ..., N} and F � {1, ..., M} denote the leader set and the follower set, respectively.
The communication topology among the N agents is represented by a directed graph GF∪L.
Note that, here, the leaders do not receive any information. Thus, the Laplacian matrix of

GF∪L can be partitioned as L �
[

LF LL

0(N−M)×M 0(N−M)×(N−M)

]
, where LF ∈ RM×M and

LL ∈ RM×(N−M).

117



Mathematics 2023, 11, 2363

2.3. Problem Statement

Consider N agents of a linear MAS with a directed graph GF∪L. The dynamics of the
ith agent are described as follows:

ẋi = Axi + Bui + Ddi, i ∈ F, (1a)

ẋi = Axi, i ∈ L, (1b)

yi = Cxi, i ∈ F∪ L. (1c)

where xi ∈ Rn, ui ∈ Rm and yi ∈ Rq are the ith agent’s state, control input and output
state, respectively. A, B, C and D are known constant matrices of appropriate dimensions.
di ∈ Rn is a disturbance whose dynamics are given as

ḋi = Sdi, i ∈ F, (2)

with S being a known constant matrix.
To proceed, we also need the assumption and Lemma as follows.

Assumption 1 ([11]). (A, B) is stabilizable, and (A, C) is detectable.

Assumption 2 ([11]). The disturbance is matched, i.e., there exists a matrix F, such that D = BF.

Assumption 3 ([11]). The eigenvalues of the matrix S are on the imaginary axis, and the pair
(S, D) is observable.

Remark 1. In some cases, Assumption 2 regarding matched disturbances can be relaxed, as based
on output regulation theory [13], mismatched disturbances under uncertain conditions can be
transformed into matched disturbances. Assumption 3 is typically used for disturbance rejection.
Assume that (S, D) is observable, as any unobservable component will not affect the system state.

Definition 1 ((Containment control problem) [6]). Given the MASs (1) and a directed graph
GF∪L, find a certain distributed controller so that the followers asymptotically converge to the convex
hull spanned by the states of the leaders, that is, limt→∞ ‖xF(t) + (L−1

F LL ⊗ In)xL(t)‖ = 0.

Assumption 4 ([6]). Under the digraph GF∪L, for each follower i ∈ F, there exists at least one
leader k ∈ L that has a directed path to the follower.

Lemma 1 ([6]). Under Assumption 4, all the eigenvalues of LF have positive real parts, −L−1
F LL

is non-negative and −L−1
F LL1N−M = 1M.

3. Main Results

Assume that the states and relative input measurements are not available for all the
followers; then, each follower can only obtain the relative output measurements. Let ϕi be
the relative output measurements of ith follower as follows:

ϕi(t) = ∑
j∈F∪L

aij(yi(t)− yj(t)), (3)

Similarly, the relative input measurements of the ith follower are as follows:

χi(t) = ∑
j∈F∪L

aij(xi(t)− xj(t)). (4)

By (3) and (4), we have ϕi(t) = Cχi(t).
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Let xF � [xT
1 , xT

2 , ..., xT
M]T ∈ RnM, xL � [xT

M+1, xT
M+2, ..., xT

N ]
T ∈ Rn(N−M) and χ �

[χT
1 , χT

2 , ..., χT
M]T ∈ RnM. Then, it follows that the definition of the relative input measure-

ments vector can be written as

χ(t) = (LF ⊗ In)xF + (LL ⊗ In)xL. (5)

Note that the followers can only obtain the relative output measurements. Based
on the relative output information, we propose a distributed disturbance observer-based
event-triggered containment controller for agent i ∈ F with form

˙̂di = Sd̂i + Gϕi(ti
k),

wi = Fd̂i + Eϕi(ti
k),

ui = −wi, i ∈ F, t ∈ [ti
k, ti

k+1),

(6)

where d̂i ∈ Rs and wi ∈ Rm are the estimates of the disturbance and the output variable,
respectively. S, G, F and E are gain matrices to be determined, and ti

k is the kth event-
triggered instant of agent i ∈ F. The next event-triggered instant {ti

k, k = 0, 1, ...} is defined
by ti

k+1 � min{t > ti
k | fi(ei, χi) > 0}, where the triggering function fi(·) is to be designed

later, and the measurement error ei(t) for agent i ∈ F is defined as

ei(t) = χi(ti
k)− χi(t), t ∈ [ti

k, ti
k+1).

When the triggering condition is satisfied, an event at t = ti
k is triggered for agent i ∈ F,

and ei(t) is reset to zero.

Remark 2. Compared with the general MASs studied in the literature [33], this paper studies the
MASs under the condition of disturbance and adopts the distributed event-triggered controller based
on disturbance observers to solve the containment control problem. Many works in the literature do
not consider the situation of systems with unknown disturbance, which occurs in most practical
engineering applications, making the problem more complex. This article is closer to the complexity
of the actual situation and more challenging.

Remark 3. With the event-triggered strategy introduced in controller (6), this paper shows that
the containment control problem can be solved. For agent i, the event-triggered instants are
{ti

k, k = 0, 1, ...}. At each event-triggered instant, ϕi(t) is sampled by agent i, and its controller is
updated accordingly. Noted that in (6), for agent i, all of the outputs required from its neighbors’
output are included in ϕi(t), which is only updated at its event-triggered instants.

Define εi = d̂i − di, i ∈ F. It follows from (1)–(6) that

ẋi = Axi + Bui + Ddi = Axi − Bwi + Ddi

= Axi − BFd̂i − BEC(χi + ei) + Ddi

= Axi − BFεi − BECχi − BECei.

For i ∈ F∪ L,
ẋF =(IF ⊗ A)xF − (IF ⊗ BF)ε

− (IF ⊗ BEC)χ− (IF ⊗ BEC)e

ẋL =(IL ⊗ A)xL,

(7)

where e � [eT
1 , eT

2 , ..., eT
N ]

T ∈ RnN , and ε � [εT
1 , εT

2 , ..., εT
N ]

T ∈ RsN .
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Using (7) for (5), it follows that

χ̇ =(LF ⊗ IN)ẋF + (LL ⊗ IN)ẋL
=(LF ⊗ IN)

[
(IF ⊗ A)xF − (IF ⊗ BF)ε

− (IF ⊗ BEC)χ− (IF ⊗ BEC)e
]
+ (LL ⊗ IN)(IL ⊗ A)xL

=(IF ⊗ A− LF ⊗ BEC)χ− (LF ⊗ BF)ε− (LF ⊗ BEC)e.

(8)

Using (1) and (6), one can obtain that

ε̇ = ˙̂di − ḋi

=(IF ⊗ S)ε− (LF ⊗ GC)(χ + e).
(9)

Next, Algorithm 1 is presented with procedure of controller implementation.

Algorithm 1 Distributed Disturbance Observer-based Event-triggered Control Algorithm
Under Assumptions 1–4, for disturbance signals in (2), the distributed disturbance observer-
based event-triggered controller (6) can be constructed using the following form:
(i) Solve the following Linear matrix inequality (LMI):

AT P + PA− θPBBT P + κI < 0. (10)

to obtain one solution P > 0. Then, choose the matrix EC = BT P.
(ii) Take a symmetric matrix P̂ ∈ Rs×s > 0, ST P̂ + P̂S = −I.

(iii) Select positive constants κ, θ as the gains to be designed in the proof of Theorem 1.

Theorem 1. Under Assumptions 1–4, consider the MAS (1) and disturbance signals (2) with the
distributed disturbance observer-based event-triggered controller (6) using Algorithm 1, where the
triggered times ti

k is determined:

ti
k+1 � min{t > ti

k|‖ei‖ = γi‖χi‖}, (11)

where γi =
σi

ρ3λ
2 and the gains ρ3, σi will be defined in the proof. Then, protocol (6) solves the

containment control problem.

Proof of Theorem 1. Let η = [χT , εT ]T. Construct the following Lyapunov function candidate:

V = ηT P̄η, (12)

where P̄ �
[

IF ⊗ P 0
0 ωIF ⊗ P̂

]
> 0, ω > 0 will be determined later. Evidently, P̄ is

definite-positive, so V is also definite-positive.
The time derivative of V(t) along the trajectory of (8) and (9) is given by

V̇(t)

=χT [IF ⊗ (AT P + PA)− 2(LF ⊗ PBBT P)]χ

− eT(LF ⊗ PBBT P)χ− χT(LF ⊗ PBBT P)e

− εT(LF ⊗ DT P)χ− χT(LF ⊗ PD)ε

−ωεT(IF ⊗ (ST P̂ + P̂S))ε

−ωeT(LF ⊗ CTGT P̂)ε−ωχT(LF ⊗ CTGT P̂)ε

−ωεT(LF ⊗ P̂GC)χ−ωεT(LF ⊗ P̂GC)e.

(13)
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Under Assumption 4 and Lemma 1, choose a unitary matrix U ∈ CM×M, UH LFU = Λ,
where Λ is an upper-triangular matrix with λi, i = 1, ..., M, as its diagonal entries.

Let ξ � (UH ⊗ In)χ = [ξT
1 , ξT

2 , ..., ξT
M]T ∈ RnM, ε̄ = (UH ⊗ Is)ε = [ε̄T

1 , ε̄T
2 , ..., ε̄T

M]T ∈
RsM and ē = (UT ⊗ In)e = [ēT

1 , ēT
2 , ..., ēT

M]T ∈ RnM.
Then, it follows from (13) that

V̇(t)

=ξT [IF ⊗ (AT P + PA)− 2(Λ⊗ PBBT P)]ξ

− ēT(Λ⊗ PBBT P)ξ − ξT(Λ⊗ PBBT P)ē

− ε̄T(Λ⊗ DT P)ξ − ξT(Λ⊗ PD)ε̄−ωεTε

−ωēT(Λ⊗ CTGT P̂)ε̄−ωξT(Λ⊗ CTGT P̂)ε̄

−ωε̄T(Λ⊗ P̂GC)ξ −ωε̄T(Λ⊗ P̂GC)ē

=
M

∑
i=1

ξT
i (AT P + PA− 2λiPBBT P)ξi

−
M

∑
i=1

ēT
i (λiPBBT P)ξi −

M

∑
i=1

ξT
i (λiPBBT P)ēi

−
M

∑
i=1

λi ε̄
T
i (DT P + ωP̂GC)ξi −

M

∑
i=1

λiξ
T
i (PD + ωCTGT P̂)ε̄i

−ω
M

∑
i=1

ēT
i (λiCTGT P̂)ε̄i −ω

M

∑
i=1

ε̄T
i (λi P̂GC)ēi −ωεTε.

(14)

For any x, y ∈ Rn and β > 0, we use Young’s inequalities xTy ≤ β
2 ‖x‖2 + 1

2β‖y‖2 ([24]),
yields,

− ēT
i (λiPBBT P)ξi

≤λi‖PBBT P‖
2β1

‖ξi‖2 +
β1λi‖PBBT P‖

2
‖ēi‖2.

(15)

− ξT
i (λiPBBT P)ēi

≤λi‖PBBT P‖
2β1

‖ēi‖2 +
β1λi‖PBBT P‖

2
‖ξi‖2.

(16)

− λi ε̄
T
i (DT P + ωP̂GC)ξi

≤λi‖DT P + ωP̂GC‖
2β2

‖ξi‖2 +
β2λi‖DT P + ωP̂GC‖

2
‖ε̄i‖2,

(17)

− λiξ
T
i (PD + ωCTGT P̂)ε̄i

≤λi‖PD + ωCTGT P̂‖
2β2

‖ε̄i‖2 +
β2λi‖PD + ωCTGT P̂‖

2
‖ξi‖2,

(18)

− ēT
i (λiCTGT P̂)ε̄i

≤λi‖CTGT P̂‖
2β3

‖ε̄i‖2 +
λiβ3‖CTGT P̂‖

2
‖ēi‖2,

(19)

− ε̄T
i (λi P̂GC)ēi

≤λi‖P̂GC‖
2β3

‖ēi‖2 +
λiβ3‖P̂GC‖

2
‖ε̄i‖2,

(20)

where β1, β2 and β3 are positive constants.
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Let λ = mini=1,...,M{Re(λi)} and λ = maxi=1,...,M{Re(λi)}, where λi, i = {1, ..., M}
are the eigenvalues of LF. When 0 < θ ≤ 2λ and under Algorithm 1, it follows from (7),
(15)–(20) that

V̇(t)

≤− κ
M

∑
i=1
‖ξi‖2 −ω

M

∑
i=1
‖ε̄i‖2 +

M

∑
i=1

ρ1λ2
i ‖ξi‖2

+ ρ2λ
2 M

∑
i=1
‖ε̄i‖2 +

M

∑
i=1

ρ3λ
2‖ēi‖2

=−
M

∑
i=1

(κ − ρ1)‖χi‖2 −
M

∑
i=1

(ω− ρ2λ
2
)‖εi‖2 +

M

∑
i=1

ρ3λ
2‖ei‖2,

(21)

where ρ1 = ‖PBBT P‖
2β1

+ β1‖PBBT P‖
2 + ‖DT P+ωP̂GC‖

2β2
+ β2‖PD+ωCT GT P̂‖

2 , ρ2 = β2‖DT P+ωP̂GC‖
2 +

λi‖PD+ωCT GT P̂‖
2β2

+ ‖CT GT P̂‖
2β3

+ β3‖P̂GC‖
2 and ρ3 = β1‖PBBT P‖

2 + ‖PBBT P‖
2β1

+ β3‖CT GT P̂‖
2 + ‖P̂GC‖

2β3
.

Then, by choosing σi and κ, the following condition is enforced:

‖ei‖2 ≤ σi

ρ3λ
2 ‖χi‖2,

where choosing 0 < σi < κ − ρ1. It is noted that γi =
√

σi

ρ3λ
2 , and choosing σi < ρ3λ

2
, so

γi < 1 can be guaranteed.
From (21) and choosing ω  0 such that ω ≥ ρ2λ

2
, one can obtain that

V̇(t) ≤−
N

∑
i=1

(κ − ρ1 − σi)‖χi‖2

− (ω− ρ2λ
2
)

N

∑
i=1
‖εi‖2 ≤ 0.

Thus, by the definition of V(t), V̇(t) = 0 implies that χi(t) = 0. According to [39], it implies
that limt→∞ ‖xF(t) + (L−1

F LL⊗ In)xL(t)‖ = 0. Therefore, the containment control problem
stated in Definition 1 is solved.

Feasibility Analysis

In this section, the development analyzes the feasibility of the proposed controller (6)
by excluding Zeno behavior (i.e., in the event time defined in (11) within a finite time
interval, an infinite number of triggers occur). The result is summarized in the follow-
ing theorem.

Theorem 2. Consider the linear MAS (1), controller (6) and triggering condition (11). No agent
will exhibit Zeno behavior.

Proof of Theorem 2. Without loss of generality, to prove that the Zeno behavior does not
exist, it is only necessary to prove that τ � ti

k+1 − ti
k > 0 has a positive lower bound.

According to the definition of ei(t), there exists | ‖χi(ti
k)‖ − ‖χi(t)‖ |≤ ‖ei(t)‖. Us-

ing (11), we have
‖χi(ti

k)‖
1 + γi

≤ ‖χi(t)‖ ≤
‖χi(ti

k)‖
1− γi

. (22)
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By substituting (8) with the time derivative of ‖ei(t)‖ over the interval [ti
k, ti

k+1), we can
obtain that

d
dt
‖ei(t)‖

≤‖ėi(t)‖ = ‖ − χ̇i(t)‖
=‖ − Aχi + BEC ∑

j∈Ni

aij(χi − χj) + BF ∑
j∈Ni

aij(εi − ε j)

+ BEC ∑
j∈Ni

aij(ei − ej)‖

≤‖A + BEC(|Ni|+ 1)‖‖ei(t)‖+ ‖BF(|Ni|+ 1)‖‖εi(t)‖
+ ‖Aχi(ti

k) + BEC ∑
j∈Ni

aij(χi(ti
k)− χj(ti

k))‖.

(23)

From (23), we can obtain that ‖ei(t)‖ will not approach zero unless ‖εi(t)‖ approaches
zero, which implies the existence of 0 < R < ∞, such that ‖εi(t)‖

‖ei(t)‖ < R. Substituting (5) and
(9) into (23), one has

d
dt
‖ei(t)‖ ≤ ζi‖ei(t)‖+ φi

k, (24)

where ζi = ‖A + BEC(|Ni| + 1)‖ and φi
k = ‖BF(|Ni| + 1)‖R + maxt∈[ti

k , ti
k+1]
‖Aχi(ti

k) +

BEC ∑j∈Ni
aij(χi(ti

k)− χj(ti
k))‖

Then, it follows that

‖ei(t)‖ ≤
φi

k
ζi

[
exp

(
ζi(t− ti

k)
)
− 1

]
. (25)

At this point, we need to present a sufficient condition ‖ei(t)‖ ≤ γi√
2+2γ2

i
‖χi(ti

k)‖ that

ensures that the triggering condition (11) holds.
Let si

k =
γi√

2+2γ2
i
‖χi(ti

k)‖. Using (24) gives

‖ei(ti
k+1)‖ = si

k ≤
φi

k
ζi

[
exp

(
ζi(ti

k+1 − ti
k)
)
− 1

]
,

which yields ti
k+1 − ti

k ≥ (1/ζi)ln(ζisi
k/φi

k + 1).
Next, we will discuss two cases.

The first case is when χi(ti
k) �= 0. Since χi(ti

k) �= 0, it can be seen that si
k > 0. Thus,

ti
k+1 − ti

k = (1/ζi)ln(ζisi
k/φi

k + 1) > 0.
The second case is when χi(ti

k) = 0 as k → ∞. Then, from (22), one has χi(t) = 0,
and thus,

χ̇i =Aχi + BEC ∑
j∈Ni

aij(χi − χj)− BF ∑
j∈Ni

aij(εi − ε j)

+ BEC ∑
j∈Ni

aij(χi(ti
k)− χj(ti

k(t)))

=0.

(26)

By simple transposition (22), we obtain

lim
k→∞

‖χi(t)‖
‖χi(ti

k)‖
≤ 1

1− γi
. (27)

In light of (26), we obtain

φi
k ≤ ζi‖χi(t)‖+

2− γi
1− γi

ζi‖χi(t)‖. (28)
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According to (27) and (28), the same as those in [24,40], we have

lim
k→∞

(ti
k+1 − ti

k) ≥
1
ζi

ln(
γi(2− γi)

(1− γi)
√

2 + 2γ2
i

+ 1).

Consequently, Zeno behavior is excluded for all the agents.

4. Simulation

For illustration, consider an MAS with the communication graph GF∪L, where there
are six followers {1− 6} ∈ F and three leaders {7− 9} ∈ L. Assume the dynamics
matrices of (1) are:

A =

[
0 1
−0.5 0

]
, B =

[
0
1

]
,

C =
[
1 0

]
, D =

[
0 0
0 1

]
.

By solving the LMI (10) and the equation in Algorithm 1, the feedback gain matrices S, F, G
and E satisfy the condition (6)

S =

[
0 1
0 −2

]
, F =

[
0 1

]
,

G =

[ −2
−3.5

]
, E =

[
1
]
.

The initial conditions of the closed-loop system are randomly chosen. The other parameters
are set as follows, κ = 4.6, σi = 0.999 and γi = 0.08, for all i = 1, ..., 6.

The communication graph GF∪L can be given by Figure 1, where nodes 7, 8 and 9 are
the three leaders and the others are followers. The red dotted line represents the directed
communication connection from the leader to the corresponding follower, and the black
solid line represents the communication connection between the followers. Then, matrices
LF and LL are as follows:

LF =

⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0 −1 −1 −1
−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 0 0
0 0 0 −1 2 0
0 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎦, LL =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦.

Figure 1. Communication graph GF∪L.

The trajectory of the follower is represented by the solid line and that of the leader is
represented by the dashed line in Figure 2, which can be clearly obtained in Definition 1,
i.e., the containment control problem is indeed solved.
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(a) (b)

Figure 2. The state trajectories of nine agents under controller (6).

Through the three-dimensional effect diagram in Figure 3, the movement trajectories
of six agents and three leaders over time can be more clearly seen.

Moreover, the triggering times of six followers are presented in Figure 4. As can be
seen, it can effectively reduce the communication among agents.

Figure 3. Three-dimensional trajectories of all agents.
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t i

Figure 4. Triggering time of each followers.
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5. Conclusions

In this paper, we have considered the containment control of MASs with external
disturbances. First, a novel disturbance observer-based control has been developed by
the output feedback control. Then, in order to save communication costs and energy
consumption, our controller is combined with the event-triggered control. It has been
shown that Zeno behavior can be excluded for the proposed controller. Here, we have
only considered matched disturbances. Future work will be devoted to investigating
the containment control problem with mismatched disturbances. In the meantime, this
paper does not consider MASs in the presence of deception attack effects, but attacks often
happen [41–43]. In the future, we will consider the containment control problem under
deception attacks.
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Abstract: For the multi-agent system with time delay and noise, the adaptive consensus of tracking
control problems is discussed by the Lyapunov function. The main purpose of this study is to design
an adaptive control protocol for the system, such that even if there exists time delay among agents,
the protocol can still ensure the consensus of the stochastic system. The main contribution is to revise
the protocols that were previously only applicable to system without time delay. Because the system
is inevitably disrupted by time delay and noise during the interactive process, achieving coordination
and consensus is difficult. To enable the followers to track the leader, a novel adaptive law depending
on the Riccati equation is firstly proposed, and the adaptive law is different from previous mandatory
control law completely depending on a known function. The ability to be altered online based on
the state of system is a major feature of the adaptive law. When there are interactive noise and time
delay between the followers and leader of the system, a special Lyapunov function is constructed
to prove the adaptive consensus. And the upper bound of time delay is obtained by using the Itô
integral theory. Finally, if the time delay of the system approaches zero, it is shown that the adaptive
law still ensures that each follower tracks the leader under simpler conditions.

Keywords: time delay; multi-agent system; adaptive law; white noise

MSC: 93A16; 68T42

1. Introduction

The multi-agent system can complete a complex task through mutual coordination
among agents, which has become a research hotspot in current academic research. Central-
ized control and distributed control are two main aspects of current research on multi-agent
applications. The focus of current research is distributed control, since it is more fault-
tolerant to the environment and has lower cost requirements than centralized control. The
application scope of distributed control in multi-agent systems includes unmanned aerial
vehicles, smart grid, target tracking, traffic control and other fields [1–3]. The core of many
distributed control systems is to seek a suitable control protocol that makes it possible for
all agents to reach the same state, which is called the consensus of system. Currently, the
research topics of the consensus focus on random disturbance control, finite time control,
event-triggered control, distributed optimal control and so on.

Since Visek et al. [4] proposed a special mathematical model and discovered that all
agents ultimately reach the same state under specific conditions, the multi-agent system
has quickly attracted the attention of a large number of scholars. Recently, Qin et al. [5]
and Amirkhani et al. [6] reviewed the theoretical progress of the consensus and introduced
some difficulties in the system. In order to achieve the consensus, it is often necessary to
constrain the topology of system and construct an appropriate control protocol. For an
undirected graph, connectivity is usually required, while it is balanced for a directed graph.
This paper mainly studies the adaptive consensus on a directed graph. Our goal is to build
an adaptive protocol that enables the followers to track a certain objective. Moreover, the
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problem is disturbed by noise and has a hysteresis effect. Up to now, numerous academics
have investigated the leader-following consensus from various angles. Jiang et al. [7]
discussed the tracking issue when the equations of state contain time-varying matrices. A
similar consensus was analyzed in the event-triggered mechanism [8–10]. Zhang et al. [11]
extended the tracking problem to stochastic system and utilized mathematical expectation
to analyze the problem. The multi-agent system mentioned in these references all have
definite models. However, the internal structure of the system is often uncertain in complex
environments, so the adaptive control methods are proposed to continuously update the
structure of the system.

Adaptive control technology is a method that automatically adjusts its own control
parameters with the change of the environment to achieve the best performance. Adap-
tive consensus can be defined as that the state of all agents is finally consistent due to
the adaptive control technology. Adaptive law can be seen as the changing law of the
control parameters, and it is usually represented by a differential equation. Adaptive
algorithms are usually characterized by information and intelligence; the information of
this paper mainly comes from the state of system, and the intelligence is determined by
the adaptive laws. The algorithm is often combined with machine learning theory and
applied to some game scenarios. Adaptive control was initially applied in the aerospace
field, and Whitaker is crucial to the advancement of the method. Currently, this special
technology has found extensive use in fields such as aerospace, power, transportation,
robotics, etc. The creation of a suitable adaptive law is the crux of the challenge for this
technology. For a multi-agent system, when the mandatory gain is independent of the states
of output and input, Li et al. [12] and Cheng et al. [13] respectively analyzed the average
consensus. Zong et al. [14] investigated the random weak consensus under mandatory
gain. For the adaptive gain that can be dynamically modified according to the current state,
Knotek et al. [15] established an adaptive control law with decay gain, and the edge-based
adaptive techniques for a nonlinear multi-agent system were taken into consideration by
Yu et al. [16]. Luo et al. [17] analyzed a gradient-descent-based adaptive law and gave a
scheme for the optimal control problem of uncertain multi-agent system. Li et al. [18]
proposed a value iteration strategy and used the gradient descent method to update the
weights. For a self-organized system, some important self-organized models were dis-
cussed in [19], and a self-organized interlimb coordination control was analyzed in [20].
For the optimal control problem of discrete systems, Peng et al. [2] designed a strategy
for the adaptive adjustment of weight vectors based on neural network approximation.
Nevertheless, these studies did not consider the effects of noise and time delay. Since the
system is inevitably disturbed by time delay and noise at the same time, it is necessary to
study the adaptive consensus under noise and time delay.

Currently, there have been many research conclusions about the consensus under noisy
environments, but less research has been conducted on the topic of adaptive consensus.
In fact, the interactive network among agents is subject to noise, so the stochastic multi-
agent system should be considered. Itô integral theory provides an important tool for the
adaptive problems of stochastic system. When agents have noise perturbations during
communication, Duan et al. [21] designed an adaptive control protocol and proved that the
tracking error of the problem is bounded. Huang [22] discussed the adaptive consensus of
uncertain system, and proved agents can obtain average consensus in the almost sure sense.
Xiao et al. [23] proposed the adaptive finite-time control protocols for a leaderless system,
and proved similar properties hold for systems with a leader. The bipartite adaptive
consensus of the stochastic system were taken into account in [24,25]. However, these
references did not consider the interference of time delay. Time delay often degrades the
performance of the control system and disrupts the stability of the system. Furthermore,
the presence of time delay causes the great difficulties in the analysis and synthesis of the
control system.

When the system is jointly disturbed by time delay and noise during the interactive
process, the dynamical model of the system has a more complex form. There are currently
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only a few papers that consider the adaptive consensus in this situation. When the adaptive
gain is mandatory, Zong et al. [14] analyzed the tracking problem in the case of the joint
disturbance of noise and time delay. Also, a neural network approach was employed to
analyze the topic for mandatory gain [26]. In practical applications, the mandatory gain
has to be accurately selected based on the actual situation, which is often quite difficult.
This paper will consider an adaptive control law that can dynamically adjust on the basis of
state. For the tracing problem of multi-agent system, we first propose an adaptive control
protocol and design a novel adaptive law, then the Lyapunov function is used to prove the
adaptive consensus of the system. Finally, when the time delay trends to zero, we simplify
the conditions for the system to attain the adaptive consensus. The significance of this
paper is to revise the control protocol that were previously only applicable to a system
without time delay. Our proposed adaptive control protocol can ensure the consensus of a
system under the interference of noise and time delay. The contributions are as follows:

(1) For a stochastic multi-agent system, a novel adaptive control law is firstly proposed
when there is a lag phenomenon in the interactive process. The control laws in [12–14]
were all mandatory and often required precise selection to determine the specific form.
The adaptive control proposed in this paper can be dynamically adjusted based on
the current state of the system, thus avoiding the difficulty of precise selection.

(2) No matter whether the stochastic multi-agent system has time delay or not, the
adaptive control law can ensure the consensus. However, the adaptive laws in [15,16]
were only applied to multi-agent systems without delay and noise. Additionally, the
sufficient conditions of consensus in this paper are simpler for the case without delay.

(3) Compared with some early references in [21,24], the final tracking error in this paper
has a smaller value under the adaptive law. Furthermore, when the intensity of noise
approaches zero, the final dynamic error will trend to zero. However, many previous
conclusions can only converge to a non-zero constant.

2. Theoretical Basis

The system in this work includes one leader and N followers, denoted as v0, v1,
· · · , and vN , respectively. G = (V ,N ,A) represents a digraph among the followers.
V = {v1, v2, · · · , vN} and N ⊆ V × V is the set of the followers and edges, respectively.
A = [eij] ∈ RN×N is called adjacency matrix, its elements satisfy eij = 1 if and only if
(vi, vj) ∈ N , or else, eij = 0. Ni = {vj ∈ V : (vj, vi) ∈ N} is the neighbor set, and LG = [lij]
is the Laplace matrix, where lii = ∑

j �=i
eij and lij = −eij, i �= j. In addition, assuming G̃ is

a digraph composed of all agents, and the matrix LG̃ is defined by
[

0 01×N
−E0 · 1N LG + E0

]
,

where E0 = diag{e10, e20, · · · , eN0} and 1N = [1, 1, · · · , 1]T. The difference between the two
digraphs is that G̃ contains the node of leader , while G does not.

Supposing the leader v0 is globally reachable in this paper, which means a directed
path from each follower vi to the leader v0 can be found. When all elements of the adjacency

matrix A satisfy
N
∑

j=1
eij =

N
∑

j=1
eji, the digraph is a balanced graph. The following lemmas are

introduced.

Lemma 1 ([27]). Assuming G̃ is a digraph, the three properties are equivalent:

(1) The node v0 is globally reachable.
(2) For the matrix H = LG + E0, the real parts of all eigenvalues are positive.
(3) Further suppose the digraph G is balanced, then H + HT is positive definite.

Lemma 2 ([28]). For the matrices M1, M2, M3 and M4, the Kronecker product of two matrices is
represented by the symbol ⊗. Assuming the four matrices have appropriate dimensions, then the
following properties hold:
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(1) M1 ⊗ (M2 + M3) = M1 ⊗M2 + M1 ⊗M3.
(2) (M1 ⊗M2)⊗M3 = M1 ⊗ (M2 ⊗M3).
(3) (M1 ⊗M2)(M3 ⊗M4) = M1M3 ⊗M2M4.
(4) (M1 ⊗M2)

T = MT
1 ⊗MT

2 .
(5) tr(M1 ⊗M2) = tr(M1)tr(M2).

3. The Adaptive Consensus

Considering a multi-agent system, its dynamic behavior can be expressed as

ẋi(t) = Axi(t) + Bui(t), i = 1, 2, · · · , N. (1)

In the equation, ui(t) ∈ Rp denotes the input and needs to be devised, xi(t) ∈ Rn represents
the state of the position. A is a n× n order constant matrix, B is a n× p order constant
matrix, and the two matrices are known. The model of leader is represented as

ẋ0(t) = Ax0(t). (2)

In order to obtain the adaptive consensus of system (1), the key issue is to construct a control
protocol ui(t) containing adaptive gain based on the communication graph among agents,
and then use the state xi(t) to design the adjustment method of the adaptive gain. The
adaptive method can rely on relatively little prior knowledge about the model. If the system
(1) is not disturbed by time delay and noise, a general control protocol can be represented
as ui(t) = cK ∑

j∈Ni

eij(xj(t)− xi(t)), where c is a coupling weight and K is a feedback gain

matrix. The protocol was investigated in [29,30], who pointed out that the constant c
is related to the global information of the system. When there exists noise interference
and time delay in the process of communication, this paper proposes an adaptive control
protocol, designs an novel adaptive control law, and analyzes the impact of time delay on
the system.

For n dimensional probability space (Ω,F , P), the standard Brownian motions in the
space are denoted by Wi(t) ∈ Rn, the standard white noise is written as ηi(t) ∈ Rn and
satisfies

∫ t
0 ηi(s)ds = Wi(t). For the system (1), the control protocol perturbed by noise and

time delay is designed as

ui(t) = si(t)K

⎡⎣ ∑
j∈Ni

eij(xj(t− τ)− xi(t− τ)) + ei0(x0(t− τ)− xi(t− τ)) + ei0σ0iηi(t)

⎤⎦. (3)

In the protocol, τ > 0 is time delay, σ0i is noise intensity, the constants eij and ei0 indicate
the weights of digraphs in the multi-agent system, the matrix K ∈ Rp×n is called a feedback
gain matrix. The adaptive gain si(t) satisfies θ ≤ si(t) ≤ θ, where θ and θ are two
positive constants. The difficulty of solving adaptive control problems lies in designing
an appropriate adaptive control law. For this control protocol (3), in order to obtain the
adaptive consensus of the system, the main difficulty is to construct a differential equation
that the gain si(t) satisfies.

When the control protocol (3) does not contain time delay and noise, many scholars
have already studied the adaptive consensus. Li et al. [31] considered the adaptive tracking
problem of system with a leader. The adaptive event-triggering theory was discussed for a
linear time-varying system in [32]. Deng et al. [33] analyzed the adaptive tracking problem
of high-order system. However, time delay and noise are inevitable in the process of agent
interaction. For leaderless multi-agent system, Wu et al. [34] designed an adaptive control
protocol in noisy environments. The adaptive consensus with multiplicative noise was
analyzed in [35]. Duan et al. [21] discussed one order leader-following system with noise
in the absence of time delay. In this section, the adaptive problem of system (1) and (2) will
be studied under the control protocol (3), which not only considers the impact of noise, but
also considers the effect of time delay, so it is more in line with real scenarios.
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If the adaptive gain is mandatory, such as si(t) = s(t) = 1
1+t or log(1+t)

1+t , there have
been many results. The mean square consensus was achieved in [12,13]. Zong et al. [14]
investigated the adaptive protocol of the system under time delay and noise. Nevertheless,
the mandatory gain has to be accurately selected in order to satisfy the limiting conditions,
which is often quite difficult. Therefore, the adaptive gain that can be dynamically adjusted
according to the state has obvious advantages in practical applications. In order to solve
the consensus of the system (1)–(3), we construct a novel adaptive law as

ṡi(t) = εi(t)T
N

∑
j=1

hijΓε j(t)− (si(t)− δ). (4)

where the constant δ > 1
λmin(HT+H)

, the dynamic error εi(t) = xi(t)− x0(t), and the symbol
hij is the element of H. The adaptive law (4) can continuously improve the structure of the
model by extracting model’s information, thereby enabling the model to more and more
accurate. It is worth noting that the adaptive laws proposed in most of the literature are
different, such as the mandatory adaptive law [13,14], the decaying adaptive law [15], the
edge-based adaptive law [16], etc. The advantages of the adaptive law (4) is that it can be
applied to multi-agent systems with noise and time delay. In order to prove the consensus
of system, the solution of the algebraic Riccati equation is used to build the matrix Γ. Let
K = BTP, the matrix Γ = PBK is called adaptive gain matrix in (4), and P is a positive
matrix and satisfies the algebraic Riccati equation

ATP + PA− PBBTP + kI = 0, (k > 0). (5)

The above equation has been widely applied to prove the stability of the system since
it was proposed. Generally, the matrix P can be used to construct Lyapunov functions,
combined with the special form of the Riccati equation, it is easy to verify the conditions of
the stability theorem.

Remark 1. The adaptive law (4) has a simpler structure and can be rewritten as⎛⎜⎜⎜⎝
ṡ1(t)
ṡ2(t)

...
ṡN(t)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ε1(t)T 0 · · · 0

0 ε2(t)T · · · 0
...

...
...

0 0 · · · εN(t)T

⎞⎟⎟⎟⎠(H ⊗ PBK)

⎛⎜⎜⎜⎝
ε1(t)
ε2(t)

...
εN(t)

⎞⎟⎟⎟⎠−
⎛⎜⎜⎜⎝

s1(t)− δ
s2(t)− δ

...
sN(t)− δ

⎞⎟⎟⎟⎠.

Although many different forms of adaptive laws have been proposed, most cannot be rep-
resented by the Kronecker products, which will make previous adaptive laws appear more
complex. In addition, for the mandatory gain s(t) proposed in many literature, the two con-
straints

∫ ∞
0 s(t)dt = ∞ and

∫ ∞
0 s2(t)dt < ∞ need to be used, such as the continuous mandatory

gain in references [13,14] and the discrete mandatory gain in reference [34]. The adaptive gain
proposed in this article will automatically adjust according to the current state.

Let ε(t) = [(x1(t) − x0(t))T, (x2(t) − x0(t))T, · · · , (xN(t) − x0(t))T]T, the dynamic
error equation can be abbreviated as

dε(t) = [(IN ⊗ A)ε(t)− (S(t)H ⊗ BK)ε(t− τ)]dt− (S(t)E0C0 ⊗ BK)dW. (6)

where S(t) = diag{s1(t), s2(t), · · · , sN(t)} is a diagonal matrix, IN is an identity matrix,
C0 = diag{σ01, σ02, · · · , σ0N} is the matrix corresponding to noise intensity, dW is nN
dimensional standard Brownian motion, and E0 = diag{e10, e20, · · · , eN0} reflects the
interaction of the system. Equation (5) is known as a stochastic differential equation, which
includes a differential part and random part. The random part can reflect the changes of
disturbance. The following theorem demonstrates the adaptive consensus of the system
(1)–(3) when the adaptive law adopts the Equation (4).
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Theorem 1. Assuming that the digraph G̃ = (Ṽ , Ñ , Ã) for a system of N + 1 agents is made up
of N followers and one leader, and that its subgraph G for all followers is a balanced graph. For
the multi-agent system determined by the Equations (1)–(3), if there exists a positive constant ξ
satisfying

k > ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT) + 4ξ−1τ2 θ̄2λmax(HHT)λ2
max(P)λ2

max(BBT)

+4ξ−1τ2λmax(AAT) (7)

then the mean square bounded consensus can be gained under the adaptive law (4), i.e.,

lim
t→+∞

E|xi(t)− x0(t)|2 = ε1 (8)

where E represents the expectation, and ε1 is a small constant independent of time t.

Proof. The Lyapunov function is chosen as follows,

V1(t) = V11(t) + V12(t)

= ε(t)T(IN ⊗ P)ε(t) + w1

∫ t

t−τ
|ε(s)|2ds + w2

∫ 0

−τ

∫ t

t+θ
|ε(s)|2dsdθ

+w3

∫ 0

−τ

∫ t

t+θ
|ε(s− τ)|2dsdθ + V12(t),

where the function V12(t) =
N
∑

i=1
(si(t) − δ)2. The Lyapunov function is mainly divided

into three parts, the first part ε(t)T(IN ⊗ P)ε(t) is similar to the construction of Lyapunov
functions in most references, the special integral part was referred to as a degenerate
functional and was used by Kolmanovskii et al. [36]. The last part V12(t) is a commonly
used form in most of the literature when discussing adaptive consensus, and after taking
the derivative of this function, the adaptive law can be used to eliminate some unnecessary
terms in the following calculations. If the time t is less than −τ in the double integral∫ 0
−τ

∫ t
t+θ |ε(s− τ)|2dsdθ, we assume εi(t) equals to the initial value εi(0).
Applying the Itô formula and the error closed-loop systems (6), the random differenti-

ation is expressed as

dV1(t) = L1V1(t)dt + 2ε(t)T[S(t)E0C0 ⊗ PBK]dW, (9)

where the first term is defined as

L1V1(t) = ε(t)T[IN ⊗ (ATP + PA)]ε(t)− 2ε(t)T[S(t)H ⊗ PBK]ε(t− τ)

+tr
{

S2(t)E2
0C2

0 ⊗ KTBTPBK
}
+ w1|ε(t)|2 − w1|ε(t− τ)|2

+w2τ|ε(t)|2 − w2

∫ t

t−τ
|ε(s)|2ds + w3τ|ε(t− τ)|2

−w3

∫ t

t−τ
|ε(s− τ)|2ds + V̇12(t).
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Using the adaptive laws, we can obtain the following equation by combining the
derivative rule of the composite function,

V̇12(t)

= 2
N

∑
i=1

(si(t)− δ)ṡi(t)

= 2
N

∑
i=1

[
(si(t)− δ)εi(t)T

N

∑
j=1

hijPBKε j(t)

]
− 2

N

∑
i=1

(si(t)− δ)2

= 2
N

∑
i=1

[
si(t)εi(t)T

N

∑
j=1

hijPBKε j(t)

]
− 2δ

N

∑
i=1

[
εi(t)T

N

∑
j=1

hijPBKε j(t)

]
− 2

N

∑
i=1

(si(t)− δ)2

= 2ε(t)T[S(t)H ⊗ PBK]ε(t)− δε(t)T[(HT + H)⊗ PBK]ε(t)− 2
N

∑
i=1

(si(t)− δ)2.

By Lemma 1, we can obtain the matrix H + HT is positive definite, which means all
eigenvalues are greater than zero. Thus, we can obtain δλmin(HT + H) > 1 by the known
condition δ > 1

λmin(HT+H)
. From the Ricatti equation, we have,

L1V1(t)

= ε(t)T[IN ⊗ (ATP + PA)]ε(t)− δε(t)T[(HT + H)⊗ PBK]ε(t)

+2ε(t)T[S(t)H ⊗ PBK]
[
ε(t)− ε(t− τ)

]
+ tr

{
S2(t)E2

0C2
0 ⊗ KTBTPBK

}
+w1|ε(t)|2 − w1|ε(t− τ)|2 + w2τ|ε(t)|2 − w2

∫ t

t−τ
|ε(s)|2ds

+w3τ|ε(t− τ)|2 − w3

∫ t

t−τ
|ε(s− τ)|2ds− 2

N

∑
i=1

(si(t)− δ)2

≤ ε(t)T[IN ⊗ (ATP + PA− PBK)]ε(t)

+2ε(t)T[S(t)H ⊗ PBK]
[
ε(t)− ε(t− τ)

]
+ tr

{
S2(t)E2

0C2
0 ⊗ KTBTPBK

}
+w1|ε(t)|2 − w1|ε(t− τ)|2 + w2τ|ε(t)|2 − w2

∫ t

t−τ
|ε(s)|2ds

+w3τ|ε(t− τ)|2 − w3

∫ t

t−τ
|ε(s− τ)|2ds− 2

N

∑
i=1

(si(t)− δ)2

= −k|ε(t)|2 + 2ε(t)T[S(t)H ⊗ PBK]
[
ε(t)− ε(t− τ)

]
+ tr

{
S2(t)E2

0C2
0 ⊗ KTBTPBK

}
+w1|ε(t)|2 − w1|ε(t− τ)|2 + w2τ|ε(t)|2 − w2

∫ t

t−τ
|ε(s)|2ds + w3τ|ε(t− τ)|2

−w3

∫ t

t−τ
|ε(s− τ)|2ds− 2

N

∑
i=1

(si(t)− δ)2. (10)

Note the inequality 2ab ≤ ξa2 + 1
ξ b2 for any positive constant ξ, we have

2ε(t)T[S(t)H ⊗ PBK]
[
ε(t)− ε(t− τ)

]
≤ ξε(t)T[S(t)H ⊗ PBK][S(t)H ⊗ PBK]Tε(t) + ξ−1|ε(t)− ε(t− τ)|2

≤ ξθ
2
λmax(HHT)λ4

max(P)λ2
max(BBT)|ε(t)|2 + ξ−1|ε(t)− ε(t− τ)|2. (11)
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Now, we can obtain from the above inequality,

L1V1(t)

≤ −k|ε(t)|2 + ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT)|ε(t)|2 + ξ−1|ε(t)− ε(t− τ)|2

+θ̄2λ3
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}+ w1|ε(t)|2 − w1|ε(t− τ)|2

+w2τ|ε(t)|2 − w2

∫ t

t−τ
|ε(s)|2ds + w3τ|ε(t− τ)|2

−w3

∫ t

t−τ
|ε(s− τ)|2ds− 2

N

∑
i=1

(si(t)− δ)2

= −Λ1|ε(t)|2 −Λ2|ε(t− τ)|2 + ξ−1|ε(t)− ε(t− τ)|2

+θ̄2λ3
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}
−w2

∫ t

t−τ
|ε(s)|2ds− w3

∫ t

t−τ
|ε(s− τ)|2ds− 2

N

∑
i=1

(si(t)− δ)2, (12)

where the two constants in the above inequality are denoted as

Λ1 = k− ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT)− w1 − w2τ

and Λ2 = w1 − w3τ.
According to the error closed-loop equation, it obtains from the Hölder inequality,

|ε(t)− ε(t− τ)|2

=

∣∣∣∣∫ t

t−τ
dε(s)

∣∣∣∣2
=

∣∣∣∣∫ t

t−τ

[
(IN ⊗ A)ε(s)− (S(s)H)⊗ (BK)ε(s− τ)

]
ds−

∫ t

t−τ
(S(s)E0C0)⊗ (BK)dW

∣∣∣∣2
≤ 4

∣∣∣∣∫ t

t−τ
(IN ⊗ A)ε(s)ds

∣∣∣∣2 + 4
∣∣∣∣∫ t

t−τ
(S(s)H)⊗ (BK)ε(s− τ)ds

∣∣∣∣2
+4

∣∣∣∣∫ t

t−τ
(S(s)E0C0)⊗ (BK)dW

∣∣∣∣2
≤ 4τλmax(AAT)

∫ t

t−τ
|ε(s)|2ds + 4τθ̄2λmax(HHT)λ2

max(P)λ2
max(BBT)

∫ t

t−τ
|ε(s− τ)|2ds

+4θ̄2λ2
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}∣∣∣∣∫ t

t−τ
dW

∣∣∣∣2.

So, we obtain

L1V1(t)

≤ − Λ1
λmax(P)

ε(t)T(IN ⊗ P)ε(t)−Λ2|ε(t− τ)|2 −
[
w2 − 4ξ−1τλmax(AAT)

] ∫ t

t−τ
|ε(s)|2ds

−
[
w3 − 4ξ−1τθ̄2λ2

max(BBT)λ2
max(P)λmax(HHT)

] ∫ t

t−τ
|ε(s− τ)|2ds

−α1

[
w1

∫ t

t−τ
|ε(s)|2ds + w2

∫ 0

−τ

∫ t

t+θ
|ε(s)|2dsdθ + w3

∫ 0

−τ

∫ t

t+θ
|ε(s− τ)|2dsdθ + V12(t)

]
+α1

[
w1

∫ t

t−τ
|ε(s)|2ds + w2

∫ 0

−τ

∫ t

t+θ
|ε(s)|2dsdθ + w3

∫ 0

−τ

∫ t

t+θ
|ε(s− τ)|2dsdθ + V12(t)

]
+θ̄2λ3

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}− 2
N

∑
i=1

(si(t)− δ)2

+4ξ−1 θ̄2λ2
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}∣∣∣∣∫ t

t−τ
dW

∣∣∣∣2 (13)

where α1 is a positive constant that will be determined later.
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From the known condition (7), we have

k− ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT)

τ

> 4ξ−1τθ̄2λmax(HHT)λ2
max(P)λ2

max(BBT) + 4ξ−1τλmax(AAT)

We can select w2 and w3 to satisfy

w2 > 4ξ−1τλmax(AAT), w3 > 4ξ−1τθ̄2λmax(HHT)λ2
max(P)λ2

max(BBT)

and

w2 + w3 <
k− ξθ̄2λmax(HHT)λ4

max(P)λ2
max(BBT)

τ

From the above equation, we have

k− ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT)− w2τ > w3τ

Now, we can select w1 to satisfy

k− ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT)− w2τ > w1 > w3τ

which implies Λ1 = k − ξθ̄2λmax(HHT)λ4
max(P)λ2

max(BBT) − w1 − w2τ > 0 and
Λ2 = w1 − w3τ > 0.

On the other hand, the positive constant α3 is selected to satisfy

α1 ≤ 2, α1 ≤
Λ1

λmax(P)
,

α1 ≤
w2 − 4ξ−1τλmax(AAT)

w1 + w2τ
,

α1 ≤
w3 − 4ξ−1τθ̄2λ2

max(BBT)λ2
max(P)λmax(HHT)

w3τ
. (14)

Note
∫ 0
−τ

∫ t
t+θ |ε(s)|2dsdθ ≤ τ

∫ t
t−τ |ε(s)|2ds and

∫ 0
−τ

∫ t
t+θ |ε(s − τ)|2dsdθ ≤ τ

∫ t
t−τ |ε(s −

τ)|2ds, the following inequality can be given from the Equation (13),

L1V1(t)

≤ −α1V1(t)−Λ2|ε(t− τ)|2 −
[
w2 − 4ξ−1τλmax(AAT)− α1(w1 + w2τ)

] ∫ t

t−τ
|ε(s)|2ds

−
[
w3 − 4ξ−1τθ̄2λ2

max(BBT)λ2
max(P)λmax(HHT)− α1w3τ

] ∫ t

t−τ
|ε(s− τ)|2ds

−(2− α1)
N

∑
i=1

(si(t)− δ)2 + θ̄2λ3
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}
+4ξ−1θ̄2λ2

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}∣∣∣∣∫ t

t−τ
dW

∣∣∣∣2
≤ −α1V1(t) + θ̄2λ3

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}
+4ξ−1θ̄2λ2

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}∣∣∣∣∫ t

t−τ
dW

∣∣∣∣2
By using d

(
eγtV1(t)

)
= γeγtV1(t)dt + eγtdV1(t) and integrating on both sides of the for-

mula, it follows from the Equation (9),
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eγtEV1(t) = EV1(0) + γE
∫ t

0
eγsV1(s)ds + E

∫ t

0
eγsdV1(s)

≤ EV1(0)− (α1 − γ)E
∫ t

0
eγsV1(s)ds +

[
θ̄2λ3

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}
+4ξ−1τnNθ̄2λ2

max(P)λ2
max(BBT)max

{
(ei0σ0i)

2}] eγt − 1
γ

≤ EV1(0) +
μ1

γ
eγt

where γ is chosen to satisfy γ < α1, the symbol E represents the expectation of the random
variable, and the positive constant μ1 is defined as follows

μ1 = θ̄2λ3
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}+ 4ξ−1τnNθ̄2λ2
max(P)λ2

max(BBT)max
{
(ei0σ0i)

2}.

So, we have

EV1(t) ≤ EV1(0)e−γt +
μ1

γ
(15)

Note |ε(t)|2 ≤ ε(t)T(IN⊗P)ε(t)
λmin(P) ≤ V1(t)

λmin(P) , we can obtain

lim
t→+∞

E|xi(t)− x0(t)|2 = ε1

and ε1 is a small constant independent of time t.

Remark 2. Under the random noise disturbance, little papers discuss the adaptive consensus of
multi-agent systems in the presence of time delays. Theorem 1 indicates that the adaptive control
law (4) can ensure that the dynamic error between the followers and the leader can converge to a
small number ε1 in the mean square sense. Looking back at the above proof, it can be found that
ε1 = μ1

γλmin(P) = Ξ max
{
(ei0σ0i)

2}, where Ξ is a constant. So this boundary ε1 tends to zero
when the noise intensity of the system approaches zero.

Remark 3. Formula (7) can be transformed into

τ <

√
kξ − ξ2θ̄2λmax(HHT)λ4

max(P)λ2
max(BBT)

4θ̄2λmax(HHT)λ2
max(P)λ2

max(BBT) + 4λmax(AAT)
.

So the upper limit of time delay can be obtained as

k

4θ̄λ2
max(P)λmax(BBT)

√
λmax(HHT)

[
θ̄2λmax(HHT)λ2

max(P)λ2
max(BBT) + λmax(AAT)

] .

Although the constant time delay in this paper cannot be directly extended to time-varying delay,
the above formula gives the range of time delay, which can provide some reference for future work.

Now, we further analyze the adaptive control law (4), and investigate whether multi-
agent system can still achieve the consensus under τ = 0. For this case, the adaptive law is
kept unchanged, and the control protocol is constructed as

ui(t) = si(t)K

[
∑

j∈Ni

eij(xj(t)− xi(t)) + ei0(x0(t)− xi(t)) + ei0σ0iηi(t)

]
, (16)
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where ηi(t) ∈ Rn is n dimensional standard white noise. The abbreviated form of the error
dynamic equation is represented by

dε(t) = [IN ⊗ A− S(t)H ⊗ BK]ε(t)dt− (S(t)E0C0 ⊗ BK)dW. (17)

Theorem 2. Assuming the digraph G̃ = (Ṽ , Ñ , Ã) has the same properties as Theorem 1. If the
control protocol of the multi-agent system (1) and (2) satisfies (16) and the adaptive law is shown in
(4), then the system can achieve the mean square bounded consensus, i.e.,

lim
t→+∞

E|xi(t)− x0(t)|2 = ε2 (18)

where ε2 is a small constant independent of time t.

Proof. The Laypunov function is denoted as

V2(t) = V21(t) + V22(t) = ε(t)T(IN ⊗ P)ε(t) +
N

∑
i=1

(si(t)− δ)2,

where P satisfies the Equation (5). We can obtain from the Itô formula

dV2(t) = L2V2(t)dt− 2ε(t)T[S(t)E0C0 ⊗ PBK]dW, (19)

and the operator L2 satisfies

L2V2(t) = ε(t)T[IN ⊗ (PA + ATP)]ε(t)− 2ε(t)T[S(t)H ⊗ PBK]ε(t) + V̇12(t)

+tr
{

S(t)2E2
0C2

0 ⊗ KTBTPBK
}

,

Using the similar method, we can obtain the following equality from the adaptive law (4)

V̇22(t) = 2ε(t)T[S(t)H ⊗ PBK]ε(t)− δε(t)T[(HT + H)⊗ PBK]ε(t)− 2
N

∑
i=1

(si(t)− δ)2.

Lemma 1 indicates that the minimum eigenvalue of the matrix HT + H satisfies
λmin(HT + H) > 0. Using the known condition δ > 1

λmin(HT+H)
, we have

L2V2(t) = ε(t)T[IN ⊗ (PA + ATP)]ε(t)− δε(t)T[(H + HT)⊗ (PBK)]ε(t)

+tr
{

S(t)2E2
0C2

0 ⊗ KTBTPBK
}
− 2

N

∑
i=1

(si(t)− δ)2

≤ ε(t)T[IN ⊗ (PA + ATP)]ε(t)− δλmin(H + HT)ε(t)T[IN ⊗ (PBK)]ε(t)

+tr
{

S(t)2E2
0C2

0 ⊗ KTBTPBK
}
− 2

N

∑
i=1

(si(t)− δ)2

≤ −k|ε(t)|2 − 2
N

∑
i=1

(si(t)− δ)2 + θ
2

max{(ei0σ0i)
2}λ3

max(P)λ2
max(BBT)

≤ − k
λmax(P)

ε(t)T(IN ⊗ P)ε(t)− 2
N

∑
i=1

(si(t)− δ)2

+θ
2

max{(ei0σ0i)
2}λ3

max(P)λ2
max(BBT)

≤ −min
{

k
λmax(P)

, 2
}

V2(t) + θ
2

max{(ei0σ0i)
2}λ3

max(P)λ2
max(BBT)
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From the formula d
(
eγtV2(t)

)
= γeγtV2(t)dt + eγtdV2(t), we can obtain the following

inequality from the Equation (19),

eγtEV2(t) = EV2(0) + γE
∫ t

0
eγsV2(s)ds + E

∫ t

0
eγsdV2(s)

≤ EV2(0)−
(

min
{ k

λmax(P)
, 2
}
− γ

)
E
∫ t

0
eγsV2(s)ds

+θ
2

max{(ei0σ0i)
2}λ3

max(P)λ2
max(BBT)

eγt − 1
γ

≤ EV2(0) +
μ2

γ
eγt

where γ < min
{

k
λmax(P) , 2

}
and μ2 = θ

2
max{(ei0σ0i)

2}λ3
max(P)λ2

max(BBT). Hence, divide

the inequality by eγt, it obtains

EV2(t) ≤ EV2(0)e−γt +
μ2

γ
. (20)

Finally, the mean square bounded consensus is obtained as follows

lim
t→+∞

E|xi(t)− x0(t)|2 = ε2

where ε2 is a small constant independent of time t.

Remark 4. Under the same adaptive law (4), the conditions of Theorem 2 are much simpler than
those of Theorem 1, which can greatly expand the application range of the adaptive law in the
problem. Moreover, Theorems 1 and 2 show that the adaptive law (4) can ensure that followers can
track leader in the mean square sense, regardless of whether the stochastic multi-agent system has a
time delay or not.

Remark 5. Hu et al. [37] designed a dynamic output-feedback controller by using the relative state
information, and achieved the consensus by adjusting the internal state of the controller. Compared
with the literature, the consensus in this paper can be achieved by adjusting the adaptive gain of
system. Although both control strategies can achieve the consensus, [37] did not consider the impact
of time delay, and the adaptive gain is mandatory.

4. Simulation

To analyze the validity of main conclusions, assuming that the system covers one
leader and three followers, we conduct numerical simulations in one- and two-dimensional
space respectively, and verify that the adaptive control law of this paper can make all
followers track the target regardless of whether the system has time delay.

Example 1. For the system in one-dimensional space, let the leader be globally reachable, and the di-
graph G1 formed by the followers be balanced, its adjacency matrix is represented by

A =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠. Using the definition of Laplacian matrix LG1 , we can obtain the matrix

H = LG1 + E0 =

⎛⎝ 2 0 −1
−1 1 0
0 −1 2

⎞⎠, where E0 =

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠ is the communication matrix

between the leader and the followers. The leader-following multi-agent system is represented by
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ẋi(t) = −0.3xi(t) + 0.4u(t), ẋ0(t) = −0.3x0(t).

For the above one-dimensional multi-agent system, taking k = 0.8, the matrix
P = 1.0432 can be obtained from the Riccati equation ATP + PA− PBBTP + kI = 0. After
simple calculation, we obtain the adaptive gain matrix Γ = PBBTP = 0.1741. Since the min-
imum eigenvalue of HT + H is 1, we take the constant δ = 1.02 to ensure δ > 1

λmin(HT+H)
,

so the adaptive law can be represented by ṡi(t) = 0.1741(xi(t) − x0(t))T
N
∑

j=1
hij(xj(t) −

x0(t)) − (si(t) − 1.02). For the system, if τ is 0.13, the noise intensity is 0.23, the con-
stant θ̄ is 1.4, and the constant ξ is 0.052, then the condition of Theorem 1 holds as
k = 0.8 > ξθ̄2λmax(HHT)λ4

max(P)λ2
max(BBT) + 4ξ−1τ2θ̄2λmax(HHT)λ2

max(P)λ2
max(BBT) +

4ξ−1τ2λmax(AAT) = 0.6447. At this point, Figure 1 shows the trend of tracking error over
time, and Figure 2 shows the trajectory of the adaptive gain. Under the combined effects of
noise and time delay, it can be seen that the state errors eventually converge to a small range.
For the system with τ = 0, we maintain the topological structure and dynamic equations
of the problem invariable, which means the conditions of Theorem 2 hold. Under the same
adaptive control law, the noise intensity is increased to 0.9, the system can still attain the
mean square bounded consensus. Figures 3 and 4 show the trajectories of dynamic error
and adaptive gain of each agents.
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Figure 1. Dynamic error of one–dimensional system with time delay.
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Figure 2. Adaptive gain of one–dimensional system with time delay.
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Figure 3. Dynamic error of one–dimensional system without time delay.
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Figure 4. Adaptive trajectory of one–dimensional system without time delay.

Example 2. In the two dimensional space, assuming the leader is globally reachable, the digraph G2

composed of followers is balanced, and the matrix H = LG2 + E0 =

⎛⎝ 2 −1 0
−1 1 0
0 0 2

⎞⎠. The system

is represented by

ẋi(t) =
(

0 −0.8
0.8 0

)
xi(t) +

(
0.4 0.1
0.1 0.4

)
u(t), ẋ0(t) =

(
0 −0.8

0.8 0

)
x0(t).

For two dimensional system with time delay, the constant k in the Riccati equation

is taken as 0.4, we can obtain P =

(
1.4388 −0.0350
−0.0350 1.6538

)
and the adaptive gain matrix

Γ = PBBTP =

(
0.3441 0.1721
0.1721 0.4559

)
. Due to λmin(HT + H) = 0.7693, the constant δ in the

adaptive control law is taken as 1.35 in order to satisfy δ > 1
λmin(HT+H)

. Let the time delay

τ = 0.0041, the noise intensity σ0i = 0.33, the constant θ̄ = 3.4, and ξ = 0.0041, we can obtain
that the condition of Theorem 1 holds as k = 0.4 > ξθ̄2λmax(HHT)λ4

max(P)λ2
max(BBT) +

4ξ−1τ2θ̄2λmax(HHT)λ2
max(P)λ2

max(BBT) + 4ξ−1τ2λmax(AAT) = 0.3881. Figures 5 and 6
describe the trajectory of dynamic error and adaptive gain of system with time delay in a noisy
environment. It can be seen that all components of the three followers can track the target.
When the time delay disappears, we maintain the above adaptive law unchanged, and then the
conditions of Theorem 2 hold. Let the noise intensity σ0i = 0.24, and the trends of the dynamic
error and the adaptive gain of the system are shown in Figures 7 and 8.
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Figure 5. Dynamic error of two–dimensional system with time delay.
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Figure 6. Adaptive gain of two–dimensional system with time delay.
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Figure 7. Dynamic error of two–dimensional system without time delay.
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Figure 8. Adaptive gain of two–dimensional system without time delay.

In order to compare the differences between the adaptive control protocol proposed
in this paper and some previous papers, we once again simulate the one-dimensional
multi-agent system in Example 1, and take the noise intensity as 0.2. Under the mandatory
gain ai(t) =

log(1+t)
1+t and the adaptive law (4), we simulate the dynamic error and the gain
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of two situations, respectively, as shown in Figures 9 and 10. The black curve represents the
situation of mandatory gain, the other colors represent the changes of three agents under
the control law (4). From the two figures, it can be seen that the adaptive control protocol
proposed in this paper has a faster rate of convergence, so three followers can track the
leader in a shorter time. In addition, the mandatory gain will eventually converge to zero,
while the adaptive gain (4) will converge to a non-zero constant.

0 5 10 15
Time

0

1

2

C
om

pa
ri

so
n 

of
 g

ai
ns

Figure 9. Comparison of two different gains.
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Figure 10. Comparison of dynamic errors under two different gains.

5. Conclusions

For the tracking issues, adaptive control is analyzed in cases both with and without time
delay. Firstly, the adaptive control protocol of the stochastic system is given in the presence of
time delay, and the adaptive law is designed. The adaptive control law depends on the solution
of the Riccati equation and can be abbreviated into matrix form by the Kronecker products.
Then, it was proved that the followers can track the target in the mean square sense, and the
dynamic error can obtain to a very little constant. Compared with the previous references, the
final dynamic error has a smaller value, and when the noise intensity converges to zero, this
dynamic error value also trends to zero. It should be noted that the method of proof can not be
directly extended to the case of variable delay. In the future, it is meaningful to further explore
the adaptive consensus of multi-agent system with variable delay, and the output feedback
control with time delay also needs additional investigation.
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Abstract: This paper presents a practical study on how to improve the H∞ performance and meet
the input–output constraints of the two-degrees-of-freedom (DOF) flexible-joint manipulator system
(FJMS) with parameter uncertainties and external disturbances. For this reason, a robust constrained
moving-horizonH∞ controller is designed to improve the systemH∞ performance while still satisfy-
ing the input–output constraints of the uncertain system. First, the uncertain controlled system model
of the two-DOF FJMS is established via the Lagrange equation method, Spong’s assumption, and the
linear fractional transformation (LFT) technique. Then, the control requirements and input–output
constraints of the uncertain system are transformed into the linear matrix inequality (LMI) via the
theory ofH∞ control and the full-block multiplier technique. Next, the LMI optimization problem
refreshed by the current state is addressed at each sample moment with the idea of the moving-
horizon control of the model predictive control (MPC), and the calculated gain is implemented to the
nonlinear closed-loop system under the state feedback structure. The validity and feasibility of the
designed control scheme is finally verified via the results of simulation experiments.

Keywords: two-DOF FJMS; LFT; LMI; moving-horizon control; robustH∞ control

MSC: 93-08

1. Introduction

In recent years, due to the advantages of the lighter weight, higher flexibility, lower en-
ergy consumption, and higher load ratio of the FJMS compared with the traditional rigid-joint
manipulator, the proportion of industrial processing, medical treatment, aerospace engineer-
ing, living services, and other application scenarios has increased dramatically. Thus, the
control accuracy and robustness of the FJMS have become the key targets of researchers
and users [1–5]. For the flexible joints of the manipulator, actuator motors are installed
in the individual joints, driving each link to perform the specified actions. However, the
rotors inside the motors and links are equipped with harmonic gears for transmission,
which subsequently leads to extra errors and vibrations in the angles of the joints, and ulti-
mately greatly influences the control accuracy of the FJMS [6,7]. In addition, because of the
objective existence of external disturbances and parameter uncertainties, the conventional
dynamic model of the manipulator is frequently impractical, and the above-mentioned
factors must be considered when establishing the dynamic model of the FJMS in order to
enhance theH∞ performance of the controlled system with constraints.

With the improvement in the control accuracy requirements, the existence of the
manipulator joint flexibility has already become a non-negligible matter, and a series of
methods have been adopted by international scholars to control the FJMS. For example,
L. Zouari et al. designed a sliding-mode controller to address the problem of uncertain-
ties in the joint flexibility of the manipulator [8]. The robust controller was designed
for the tracking control of the FJMS with the help of the voltage control strategy in [9].
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I. Hassanzadeh et al. invoked an approach to the model following adaptive control when
controlling a nonlinear FJMS [10]. The reason why the control performance is not good
enough is that the system modeling is not modeled and analyzed for flexible joints. In the
process of targeted modeling for the flexible joints of the manipulator, the order of the model
is greatly increased to double, and thus the sophistication of the model is strengthened,
which has attracted many scholars to explore this issue. The method of M. Spong has been
the most broadly adopted and convenient in recent years [11–13]. His assumption is that
there exists a linear-torsion spring, and the flexible deformation of the joint is equivalently
replaced by the torsional deformation of the spring [14].

Up to now, numerous international scholars have conducted in-depth research to
explore the control problem of suppressing perturbations for the FJMS, achieving some
research results. L. Sun et al. proposed a PD control method with the help of online
gravity compensation to achieve the position control of the FJMS [15]. Y. Pan et al. de-
signed a simplified, adaptive command-filtered backstepping controller for the FJMS [16].
K. Rsetam et al. specifically designed the optimal second-order integral sliding-mode con-
troller in order to improve the robustness of a single-link FJMS [17]. In addition, optimal
controllers were designed for the discrete controlled systems in [18–20], and optimization
control algorithms were designed to improve the control performance of the controlled
systems while taking into account the existence of external disturbances and uncertainties
in [21–23]. Z.H. Jiang et al. designed a linear-feedback- and neural-network-based con-
troller to handle the control problem caused by the nonlinearity and dynamic instability of
the FJMS [24]. Although several of the above approaches have suppressed the perturbations
to some extent, they do not take into account the modeling errors due to the uncertainties
of the model parameters. Z. Yan et al. proposed a robust control method based on the
equivalent-input-perturbation method to achieve the high-precision motion control of an
uncertain FJMS with a single link [25]. Although this method considers the errors caused
by parameter inaccuracies, obtaining the real values of the parameters is required in the
design of this controller, without realizing the true sense of considering the uncertainties
of the system. For the problem of parameter uncertainties, the most realistic case is to be
aware of the nominal values of the parameters and the possible variation ranges.

To this day, several control methods have been proposed to overcome the modeling
uncertainties of the FJMS. K. Rsetam et al. designed a sliding-mode controller based on a
cascaded extended state observer for the under-driven FJMS, where the sliding-mode con-
trol method was mainly used to diminish the error caused by uncertainties [26]. W. He et al.
introduced the full-state feedback strategy in the neural network, which subsequently was
used to respond to the uncertainties of the FJMS for guaranteeing the robustness of the
system [27]. H. Ma et al. designed an adaptive fuzzy controller to improve the performance
of the single-link FJMS via the performance functions, in which the dynamic signals were
applied to replace the uncertainties of the system modeling [28]. F. Dong et al. designed
a robust controller based only on the possible bounds of the system uncertainties and a
consistent positive characterization of the inertia matrix to guarantee the robustness of the
FJMS with uncertainties [29]. J.G. Yim et al. proposed a robust nonlinear recursive-control
approach to design a virtually robust control for the FJMS, utilizing nonlinearH∞ control
with energy dissipation to attenuate the L2 gain from the performance impact of uncer-
tainties [30]. In addition, designed control optimization algorithms were implemented on
the real two-DOF manipulator to verify the controllers’ effectiveness in [31,32]. However,
several of the above methods are not effective at achieving the control performance en-
hancement of the FJMS with constraints while dealing with the parameter uncertainties of
the manipulator.
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Most process models are nonlinear, but they are often linearized to perform the simula-
tion and stability analysis. Linearization is the procedure of approximating and eliminating
the higher-order nonlinear terms existing in the mathematical equations. Linear models
are easier to understand than nonlinear models and are necessary to design the controllers
for the controlled systems. T.T Do et al. established the dynamic equations of a gen-
eral flexible-joint robot using the Lagrange formulation and linearized them on the basis
of the Taylor series [33]. X.Z. Lai et al. divided the motion space of an underactuated
two-link manipulator into two areas: the swing area and attractive area, and designed
control laws for each system, where the controlled model in the attractive area was ap-
proximately linearized, while its controller was designed based on optimal control [34].
E. Spyrakos-Papastavridis et al. linearized an n-DOF flexible-joint robot at a desired op-
erating point, and then utilized the LQR controller to obtain the full-state feedback gain
of this system [35]. D. Richiedei et al. rationally performed the model linearization in
the case of a two-DOF, two-link planar manipulator, producing small displacements to
the configuration [36]. X.Z. Lai et al. approximately linearized the dynamic equations of
an underactuated three-link gymnast robot in the attractive area and stabilized it at the
straight-up equilibrium position using the balancing-control law [37]. A.G. Lynch et al.
linearized nonlinear equations of the multibody dynamic systems around the equilibrium
point [38]. A. Ghoreishi et al. linearized a single-link flexible robot around the origin
(equilibrium point) [39]. One tends to linearize the nonlinear dynamic model around the
equilibrium point, illustrating the fact that the nonlinear systems are locally linear at the
equilibrium point. Motivated by the literature mentioned above, we selected the controlled
system to be the two-DOF FJMS in the vicinity of the vertical equilibrium position.

As a matter of fact, there are inevitably constraints on the manipulator during the
movement process, such as the control input constraints, joint angle constraints [40], etc.
Accordingly, a controller that could improve the systemH∞ performance while still satisfy-
ing the input–output constraints of the system is necessary for this paper. For this paper, a
robust constrained moving-horizonH∞ controller is designed to enable the two-DOF FJMS
to achieve the above control objectives under the consideration of external disturbances
and parameter uncertainties.

The main contributions of this paper are as follows:

1. By means of the LFT technique, the LFT uncertain system of the two-DOF FJMS
is constructed, which takes into account the parameter uncertainties of the spring-
stiffness coefficients;

2. TheH∞ norm of system disturbances to the performance output and the input–output
constraints of the two-DOF FJMS are transformed into the LMIs via the theory ofH∞
control and the full-block multiplier technique;

3. The robust constrained moving-horizonH∞ controller is designed for this LFT uncer-
tain system, which can improve theH∞ performance of the controlled system while
ensuring that the input–output constraints of this system are satisfied.

The remainder of this paper is organized as follows. In Section 2, the dynamics of
the two-DOF FJMS is modeled and converted to the state-space expression after lineariza-
tion. In Section 3, the uncertainties of the spring coefficients in the two-DOF FJMS are
investigated by means of the LFT technique, and the LFT uncertain model of this system
is constructed. In Section 4, the robust constrained moving-horizon H∞ controller is de-
signed for the LFT uncertain system. In Section 5, the properties of the closed-loop system
under the action of the optimization algorithm are given. In Section 6, the above controller
implemented on the two-DOF FJMS for the simulation is described, and the experimental
results are compared and analyzed. The conclusions are presented in Section 7.
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2. Problem Statement

2.1. Dynamic Modeling of the Two-DOF FJMS

In this section, the dynamic characteristics of the studied two-DOF FJMS are discussed
in detail. The simplified physical model of the two-DOF FJMS studied in this paper is
established as shown in Figure 1. The manipulator system has two rotatable homogeneous
links driven by motors at the shoulder joint and elbow joint, which can be moved in the
vertical plane around their respective joints. The two-DOF FJMS moves around the vertical
equilibrium position. The shoulder joint of the two-DOF FJMS is fixed, and the origin of the
coordinate axis (O) is the point where the shoulder joint is located. After establishing the
coordinate frame for the system, the horizontal plane where the O axis is located is taken to
be the surface of zero gravitational potential energy. In addition, due to the fact that both
joints of the two-DOF FJMS considered in this paper are flexible joints, which are conceived
as the linear springs between the motors and the links based on Spong’s assumption [14],
the internal parts of the flexible joints are especially expanded, as shown in Figure 1, so
that this relationship can be visualized.









Figure 1. The simplified model of the two-DOF FJMS.

The physical significances of the model parameters in Figure 1 are shown in Table 1.
The q1 and q2 are the rotation angles of the first and second links, respectively, with the
positive direction of the Y axis. As well, the θ1 and θ2 are the rotation angles of the first and
second motor rotors, respectively, with the positive direction of the Y axis. The angle value
formed by the clockwise rotation is set to be positive, and the angle value formed by the
counterclockwise rotation is set to be negative.

Table 1. The parameters of the two-DOF FJMS.

Symbol Description

L1, L2 Lengths of manipulator links (m)
Lc1, Lc2 Distances between center-of-mass positions and joints (m)
m1, m2 Masses of manipulator links (kg)
I1, I2 Rotational inertias of manipulator links (kg·m2)
J1, J2 Rotational inertias of motor rotors (kg·m2)
k1, k2 Spring-stiffness factors of flexible joints (N·m/rad)
τ1, τ2 Output torques of motors (N·m)

g Gravitational acceleration (m/s2)
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At present, there are mainly two kinds of methods commonly used to establish the dy-
namic model for the system: the Lagrange equation method [41,42] and the Newton–Euler
method [43]. In contrast to the latter method, the Lagrange equation method dramatically
simplifies the complex dynamic equations due to the fact that it does not account for the in-
ternal binding forces of the system, and it allows the dynamic equations of the manipulator
system to be expressed in a straightforward and concise manner. Therefore, the Lagrange
equation method is chosen here in this paper.

The Lagrange equation method is based on the law of the conservation of energy by
calculating the kinetic and potential energy of the system to accomplish the modeling. The
system’s Lagrange function (L ∈ R) is defined as the difference between the kinetic energy
(K ∈ R) and the potential energy (P ∈ R) of the system [44]:

L = K− P. (1)

The Lagrange equation is as follows:⎧⎨⎩
d
dt

∂L
∂

.
qi
− ∂L

∂qi
= τi

d
dt

∂K
∂

.
qi
− ∂K

∂qi
+ ∂P

∂qi
= τi

(i = 1, 2), (2)

where qi is the rotation angle of the joint, and τi is the torque of the actuator.
In the two-DOF FJMS, how the flexible joints are handled is critical. Based on Spong’s

simplified model, the flexible joint might be considered as a linear-torsion spring with zero
inertia between the motor rotor and the link [13]. The simplified model of the flexible joint
is shown in Figure 2, where ki is this spring’s stiffness factor. In this case, the motor rotor’s
rotation angle (θi) will not always equal the link’s rotation angle (qi) (i.e., θi �= qi).



Figure 2. The simplified model of the flexible joint.

According to Lagrange’s second type Equation (2), the dynamic equations of the
two-DOF FJMS are identified as follows [45,46]:{

M(q)
..
q + C(q,

.
q)

.
q + G(q) = k(θ − q)

J
..
θ + k(θ − q) = τ

, (3)

where θ =
[
θ1 θ2

]T ∈ R2×1, q =
[
q1 q2

]T ∈ R2×1, J = diag{J1, J2} ∈ R2×2 is the diago-
nal and positive definite inertia matrix of the motors; k = diag{k1, k2} ∈ R2×2 is the sim-
plified linear-torsion spring-stiffness-coefficient matrix of the flexible joints; M(q) ∈ R2×2

is the manipulator’s symmetric and positive definite inertia matrix; C(q,
.
q)

.
q ∈ R2×1 is

a column vector incorporating the Coriolis force and the centrifugal force; G(q) ∈ R2×1
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represents the vector of the gravity; τ =
[
τ1 τ2

]T ∈ R2×1 is the output torque of the
motors. The specific forms of M(q), C(q,

.
q), and G(q) in Equation (3) are shown as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(q) =
[

α1 + α2 + 2α3 cos q2 α2 + α3 cos q2
α2 + α3 cos q2 α2

]
C(q,

.
q) =

[− .
q2α3 sin q2 −( .

q1 +
.
q2)α3 sin q2.

q1α3 sin q2 0

]
G(q) =

[−α4 sin q1 − α5 sin(q1 + q2)
−α5 sin(q1 + q2)

] , (4)

where α1 = m1L2
c1 + m2L2

1 + I1, α2 = m2L2
c2 + I2, α3 = m2L1Lc2, α4 = (m1Lcl + m2L1)g,

and α5 = m2gLc2.

2.2. LFT Technique

LFT was proposed by Redheffer scholars in 1960 and has been widely applied in the re-
search of robust control, as well as in the research of the control of linear parameter-varying
systems [47]. LFT is a powerful technique for representing the uncertainties in matrices and
systems that is able to perform structural analyses for uncertain systems, and to directly
represent systems with uncertainties in the form of state-space expressions. This method
has the advantage of decoupling the systems into deterministic and uncertain parts, and it
provides an effective tool to construct parameter-uncertain system models. Ultimately, it
is possible to make explicit considerations for such uncertainties during the designing of
the system controllers [48,49]. The LFT contains the lower LFT and the upper LFT, and the
upper LFT structure is highlighted here.

Consider the complex matrix M, the partition form of which is in [50]:

M =

[
M11 M12
M21 M22

]
∈ C

(p1+p2)×(q1+q2), (5)

where each matrix has the appropriate dimension, and δu ∈ Cq1×p1 is also a complex matrix.
Assuming that there exists an inverse matrix of (I −M11δu), then the upper LFT of the
mapping corresponding to the matrix δu could be expressed as follows:

Fu(M, δu) = M22 + M21δu(I −M11δu)
−1M12 : Cq1×p1 → C

p2×q2 . (6)

The graphical representation of the upper LFT is shown in Figure 3, where M repre-
sents the known part of the system, the matrix δu represents all the uncertain components
(including structural parameters, non-structural parameters, modeling uncertainties, etc.)
with δu ∈ Yδ, where Yδ = diag{δ1 I1, . . . , δs Is} and |δi| ≤ 1(i = 1, . . . , s). In addition, η0
and υ0 represent, respectively, the auxiliary input and output of the system, and ω0 and z0
represent, respectively, the real input and output of the system.

M
0

0 0
u

0z
Figure 3. The graphical representation of the upper LFT.
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The mathematical description of Figure 3 is as follows:[
υ0
z0

]
= M

[
η0
ω0

]
=

[
M11 M12
M21 M22

][
η0
ω0

]
, (7)

η0 = δuυ0. (8)

By means of LFT, the uncertain part of the system model is separated and the connec-
tion with the known exact model part is established, which is convenient to analyze and
design the system controller effectively.

2.3. State Transformation Procedure of the Two-DOF FJMS

The equation x =
[
q1

.
q1 q2

.
q2 θ1

.
θ1 θ2

.
θ2

]T
∈ R8×1 is selected as the state

of the two-DOF FJMS, and u =
[
u1 u2

]T
=

[
τ1 τ2

]T ∈ R2×1 is selected as the control
input of this system. This manipulator system is known to be nonlinear according to
Equations (3) and (4). As the angles and angular velocities of the first and second links are
both close to zero in the attraction domain, the system may be approximately linearized
around the equilibrium point, where the values of the variables are q1 = 0, q2 = 0,

.
q1 = 0,

and
.
q2 = 0. The approximate linearization process via Taylor series expansion is performed

as follows [33,34,37,39]: ⎧⎨⎩
cos q1 ≈ 1, sin q1 ≈ q1,

.
q1 ≈ 0

cos q2 ≈ 1, sin q2 ≈ q2,
.
q2 ≈ 0

sin(q1 + q2) ≈ q1 + q2

. (9)

Remark 1. The controlled system investigated in this paper is the two-DOF FJMS moving around
the vertical equilibrium position, and the types of control problems are addressed via the control
algorithms designed in this paper when the manipulator is moving in the vicinity of the equilibrium
point. Because the dynamic equation of this manipulator is nonlinear in nature, it thus requires
linearization about the equilibrium point. Hereby, the higher-order nonlinear terms are eliminated
to attain the linear model by using Taylor series expansion. Of course, considering that there are
certain conditions for linearizing the two-DOF FJMS using Taylor series expansion, we have given
some constraints on the two joint angles to ensure that this manipulator system moves around the
equilibrium point.

Then, dynamic Equation (3) of the two-DOF FJMS is linearized and rewritten as a
state-space expression with the following form:

.
x = Ax + Buu, (10)

where the coefficient matrices A and Bu are as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
A21 0 A23 0 A25 0 A27 0
0 0 0 1 0 0 0 0

A41 0 A43 0 A45 0 A47 0
0 0 0 0 0 1 0 0

A61 0 0 0 A65 0 0 0
0 0 0 0 0 0 0 1
0 0 A83 0 0 0 A87 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
b6 0
0 0
0 b8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11)
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where Aij are represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A21 = α2α4−α3α5−k1α2
α1α2−α2

3
, A23 = −α3α5+k2(α2+α3)

α1α2−α2
3

A25 = k1α2
α1α2−α2

3
, A27 = −k2(α2+α3)

α1α2−α2
3

A41 = α1α5−α3α4−α2α4+α3α5+k1(α2+α3)

α1α2−α2
3

A43 = (α1+α3)α5−k2(α1+α2+2α3)

α1α2−α2
3

A45 = −k1(α2+α3)

α1α2−α2
3

, A47 = k2(α1+α2+2α3)

α1α2−α2
3

A61 = k1
J1

, A65 = −k1
J1

, b6 = 1
J1

A83 = k2
J2

, A87 = −k2
J2

, b8 = 1
J2

. (12)

3. Analysis of the LFT Uncertain System

The spring-stiffness coefficients are the key parameters of the flexible joints for the
two-DOF FJMS, and the accuracy of their values plays a highly significant role in the
overall controlled system. If there are fluctuations in the stiffness coefficients of the flexible
joints, then this nominal manipulator system will become an uncertain dynamic system.
The uncertainties of the k1 and k2 are described via the nominal values of the parameters
themselves and their possible ranges of variation, as shown in the following equation:{

k1 = k1(1 + Wk1 δk1)

k2 = k2(1 + Wk2 δk2)
, (13)

where k1 and k2 represent, respectively, the nominal values of k1 and k2; Wk1 and Wk2 are
the normalized weighted coefficients of uncertainties; δk1 and δk2 are used to describe the
fluctuation ranges of the corresponding parameters; and |δi| ≤ 1(i = k1, k2).

To handle the problem of parameter uncertainties, the LFT technique is used to
separate the uncertain part and the definite part of the system. Through the upper LFT, the
k1 and k2 in Equation (13) are converted into the upper linear fraction structure described
in Equation (6):{

k1 = k1(1 + Wk1 δk1) = k1 + Wk1 δk1(I − δk1 · 0)
−1k1 = Fu(Mk1 , δk1)

k2 = k2(1 + Wk2 δk2) = k2 + Wk2 δk2(I − δk2 · 0)
−1k2 = Fu(Mk2 , δk2)

, (14)

where

Mk1 =

[
0 k1

Wk1 k1

]
, Mk2 =

[
0 k2

Wk2 k2

]
. (15)

The LFT uncertain model of the two-DOF FJMS considering parameter uncertain-
ties and external disturbances can be obtained from Equations (10) and (14), as shown
in Figure 4.

The uncertainties of the system considered during this research are categorized into
internal and external uncertainties, where the parameter uncertainties are the internal
uncertainties, and the external disturbances are the external uncertainties. Both of these
have been considered and are presented in our system model. The approach of this
research is capable of dealing with a class of control problems that consider the system’s
uncertainties. The reason why only the spring-stiffness coefficients are considered with
parameter uncertainties is that they have somewhat more inaccuracy compared to the
other parameters.
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Figure 4. The LFT uncertain model of the two-DOF FJMS.

In the case of the real system, this manipulator system is naturally subject to angular
constraints and drive-torque constraints. This is why a new variable (z∞) is introduced to
represent the constrained output of the uncertain system. The angular accelerations of the
two joints are selected as the performance output of the system. Hence, the performance
output and constrained output of this system are defined as follows:⎧⎪⎨⎪⎩

z2 =
[ ..

q1
..
q2

]T
=

[ .
x2

.
x4

]T

z∞ =
[

u1
u1max

u2
u2max

q1
q1max

q2
q2max

]T . (16)
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It can be derived from Figure 4 that the state space and the corresponding mapping
relationships between υi(i = 1, 2) and ηi(i = 1, 2) are as follows:⎡⎢⎢⎣

.
x
υ
z2
z∞

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A Bη Bu Bω

Cυ 0 0 0
C2 D2η D2 0
C∞ 0 D∞ 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x
η
u
ω

⎤⎥⎥⎦, (17)

η = δυ =

[
δk1 0
0 δk2

]
υ, (18)

where ω =
[
ω1 ω2

]T ∈ R2×1 is the external disturbance vector of the uncertain system;

η =
[
η1 η2

]T ∈ R2×1 and υ =
[
υ1 υ2

]T ∈ R2×1 are auxiliary vectors that represent, re-
spectively, the uncertainty input and output vectors of this system; δ = diag

{
δk1 , δk2

}
∈ Yδ

represents the uncertainty matrix; and Yδ is the collection of uncertainties.
Equations (17) and (18) could be transformed into state-space equations in which the

uncertain and definite components of this system are separated, as follows:⎧⎨⎩
.
x = (A + ΔA)x + (Bu + ΔBu)u + Bωω
z2 = (C2 + ΔC2)x + (D2 + ΔD2)u
z∞ = C∞x + D∞u

, (19)

where A, Bu, Bω , C2, D2, C∞, and D∞ are the known-constant-coefficient matrices describing
the nominal system model of this manipulator; ΔA, ΔBu, ΔC2, and ΔD2 are the uncertainty
matrix functions of appropriate dimensions, representing the parameter uncertainties of
the system model. Therefore, in order to extract the variables in the uncertainty matrices
ΔA, ΔBu, ΔC2, and ΔD2 containing δk1 and δk2 , ΔA, ΔBu, ΔC2, and ΔD2 could be written in
the form of a bounded norm based on Equations (17) and (18), as follows:{ [

ΔA ΔBu
]
= E1δ

[
F1 F2

][
ΔC2 ΔD2

]
= E2δ

[
F1 F2

] , (20)

where E1, E2, F1, and F2 are uncertain matrices of appropriate dimensions in the following
forms, respectively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 =

⎡⎢⎢⎣ 0
−α2Wk1
α1α2−α2

3
0

(α2+α3)Wk1
α1α2−α2

3
0

Wk1
J1

0 0

0
(α2+α3)Wk2

α1α2−α2
3

0
−(α1+α2+2α3)Wk2

α1α2−α2
3

0 0 0
Wk2

J2

⎤⎥⎥⎦
T

, F2 =

[
0 0
0 0

]

E2 =

⎡⎢⎣
−α2Wk1
α1α2−α2

3

(α2+α3)Wk2
α1α2−α2

3

(α2+α3)Wk1
α1α2−α2

3

−(α1+α2+2α3)Wk2
α1α2−α2

3

⎤⎥⎦, F1 =

[
k1 0 0 0 −k1 0 0 0
0 0 k2 0 0 0 −k2 0

] .

(21)

4. Robust Model Predictive Control with Constraints

The solution to the optimization control problem addressed in this paper is to pur-
posely design a controller that firstly ensures that this manipulator system maintains strong
robustness and stability under the dual influence of parameter uncertainties and external
disturbances, and secondly, that minimizes theH∞ norm of system perturbation ω to per-
formance output z2 while ensuring that all the constraints of this system are satisfied. The
final control goal is to design a controller to stabilize the two-DOF FJMS at the equilibrium
point under the influence of a series of factors. In addition, the state feedback structure
with u = Kx is considered in the design process of the controller to ensure that a good
control performance can be obtained. Therefore, the key point of our designed controller is
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how to calculate the feedback gain that satisfies the system constraints while guaranteeing
the system performance.

4.1. Robust ConstrainedH∞ Control

For the LFT uncertain system with constraints, this subsection focuses on the design of
a robust constrainedH∞ controller to ensure the improvement in theH∞ performance and
the fulfillment of the input–output constraints. With the application of the LMI technique,
the constrainedH∞ control problem can be converted into the convex optimization problem
with LMIs as constraints to make it easier to solve. The lemmas about the LMIs used in this
procedure are as follows:

Lemma 1 ([51,52]). Suppose that S =

[
M N
NT L

]
∈ R(k+l)×(k+l) is non-singular and its inverse

matrix is recorded as S−1 =

[
M̃ Ñ
ÑT L̃

]
∈ R(k+l)×(k+l). Then, the nonlinear matrix inequality

L ≥ 0,
[

I
F

]T[ M N
NT L

][
I
F

]
≤ 0, (22)

is equivalent to the following LMI:

M̃ ≤ 0,
[−FT

I

]T[ M̃ Ñ
ÑT L̃

][−FT

I

]
≥ 0. (23)

Lemma 2 ([53,54]). Suppose that there are three constant matrices, E, F, and G, and four affine-
function matrices, K(β), L(β), M(β) = M(β)T, and N(β), with the independent variable β.
Which L(β) can be decomposed into YTU(β)−1Y and U(β) < 0 is also affine depending on the
variable β. Then, the nonlinear matrix inequality⎡⎣ E[

K(β)
F

]⎤⎦T⎡⎣ M(β)
[
G N(β)

][
GT

N(β)T

]
L(β)

⎤⎦⎡⎣ E[
K(β)

F

]⎤⎦ ≤ 0, (24)

is equivalent to the following LMI:⎛⎜⎝ETM(β)E + ET(GK(β) + N(β)F) + (GK(β) + N(β)F)TE
[
K(β)T FT

]
Y

YT
[

K(β)
F

]
−U(β)

⎞⎟⎠ ≤ 0. (25)

Lemma 3 ([55,56]). Suppose that S0, S1, · · · , Sj ∈ Rn×n are the symmetric matrices. If there

exists ϕ1, ϕ2, . . . , ϕj ≥ 0 such that S0 −
j

∑
i=1

ϕiSi > 0 holds, then it is obtained as follows:

ζTS0ζ > 0 for all ζ �= 0 such that ζTSiζ ≥ 0(i = 1, . . . , j). (26)
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Due to the fact that the discrete-time model is applied to the conventional MPC, it
is necessary to discretize the system (17), and the results are processed via the method of
Equations (17)–(21), as follows:⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = (Ad + ΔAd)x(k) + (Bud + ΔBud)u(k) + Bωdω(k)

z2(k) = (C2d + ΔC2d)x(k) + (D2d + ΔD2d)u(k)

z∞(k) = C∞dx(k) + D∞du(k)

, (27)

where Ad = eATs , ΔAd = E1dδF1d, E1d = A−1(eATs − I)E1, F1d = F1, Bud = A−1(eATs − I)Bu,
ΔBud = E1dδF2d, F2d = F2, Bωd = A−1(eATs − I)Bω, C2d = C2, ΔC2d = E2dδF1d, E2d = E2,
D2d = D2, ΔD2d = E2dδF2d, C∞d = C∞, D∞d = D∞, and Ts is the sample period. In
addition, |z∞i(k)| ≤ z∞i,max = 1(i = 1, 2, 3, 4) represents the four normalized constrained
output values of this system. The state feedback control law u(k) = Kx(k) is substituted
into (27), and the closed-loop system can be written as follows:⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Aδx(k) + Bωdω(k)

z2(k) = Cδx(k)

z∞(k) = (C∞d + D∞dK)x(k)

, (28)

where Aδ = Ad + BudK + E1dδ(F1d + F2dK) and Cδ = C2d + D2dK + E2dδ(F1d + F2dK).
If there exists a non-negative value of λ such that the system (28) satisfies the dissipa-

tion inequality shown below:

x(k + 1)THx(k + 1)− x(k)THx(k) ≤ λ2‖ω(k)‖2
2 − ‖z2(k)‖2

2, (29)

where H ∈ R8×8 is a positive definite symmetric matrix, and if the system is steady when
k→ ∞ , then lim

k→∞
x(k + 1) = 0 is true. This could be further deduced as follows:

max
δ∈Yδ

(
∞

∑
k=0

(
‖z2(k)‖2

2 − λ2‖ω(k)‖2
2

))
≤ x(0)THx(0), (30)

where it is marked by the establishment of (30) that theH∞ norm of this system from ω to
z2 is less than λ.

Replacing with the components of (29) by the closed-loop system (28) gives the following:

(Aδx(k) + Bωdω(k))TH(Aδx(k) + Bωdω(k))− x(k)THx(k) ≤ λ2‖ω(k)‖2
2 − ‖Cδx(k)‖2

2. (31)

The above inequality is organized and transformed into the quadratic form as follows:[
x(k)
ω(k)

]T[AT
δ HAδ − H + CT

δ Cδ AT
δ HBωd

BT
ωd HAδ BT

ωdHBωd − λ2 I

][
x(k)
ω(k)

]
≤ 0. (32)

The inequality (32) is equivalent to the following:[
I AT

δ
0 BT

ωd

][−H 0
0 H

][
I 0

Aδ Bωd

]
+

[
0 CT

δ
I 0

][−λ2 I 0
0 I

][
0 I

Cδ 0

]
≤ 0. (33)

In order to separate δ from Aδ and Cδ, the inequality (33) is modified into the follow-
ing form:
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⎡⎣ I 0
0 I

δ(F1d + F2dK) 0

⎤⎦T[
I 0 0

Ad + BudK Bωd E1d

]T[ −H 0
0 H

][
I 0 0

Ad + BudK Bωd E1d

]⎡⎣ I 0
0 I

δ(F1d + F2dK) 0

⎤⎦
+

⎡⎣ I 0
0 I

δ(F1d + F2dK) 0

⎤⎦T[
0 I 0

C2d + D2dK 0 E2d

]T[ −λ2 I 0
0 I

][
0 I 0

C2d + D2dK 0 E2d

]⎡⎣ I 0
0 I

δ(F1d + F2dK) 0

⎤⎦ ≤ 0

. (34)

Then, with the application of the full-block multiplier technique [57–59], it could be
deduced that the holding of (33) is equivalent to the existence of an invertible multiplier
matrix (T̃) such that [

δ
I

]T[ T̃a T̃b
T̃T

b T̃c

][
δ
I

]
≥ 0, (35)

where T̃a < 0. Due to the invertibility of the multiplier matrix (T̃), the application of Lemma
1 to (35) results in the following:[

I
−δT

]T[Ta Tb
TT

b Tc

][
I
−δT

]
≤ 0 and T = T̃−1 =

[
Ta Tb
TT

b Tc

]
, (36)

where Tc is a positive definite diagonal matrix and Ta = −Tc, Tb is a diagonal matrix, and all
the elements of Tb are antisymmetric matrices. Moreover, there is one thing worth noting:

[
δ 0
I 0

]
(F1d + F2dK) =

[
0 0 I

F1d + F2dK 0 0

]⎡⎣ I 0
0 I

δ(F1d + F2dK) 0

⎤⎦. (37)

The following inequality could be further reasoned from (34)–(37):⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0
Ad + BudK Bωd E1d

0 I 0
C2d + D2dK 0 E2d

0 0 I
F1d + F2dK 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎣

−H 0 0 0 0 0
0 H 0 0 0 0
0 0 −λ2 I 0 0 0
0 0 0 I 0 0
0 0 0 0 T̃a T̃b
0 0 0 0 T̃T

b T̃c

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0
Ad + BudK Bωd E1d

0 I 0
C2d + D2dK 0 E2d

0 0 I
F1d + F2dK 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0. (38)

Then, the inequality (38) is subjected to the simple elementary matrix transformation,
resulting in the following:⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0
0 0 I

Ad + BudlK Bωd E1d
C2d + D2dK 0 E2d
F1d + F2dK 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎣

−H 0 0 0 0 0
0 −λ2 I 0 0 0 0
0 0 T̃a 0 0 T̃b
0 0 0 H 0 0
0 0 0 0 I 0
0 0 T̃T

b 0 0 T̃c

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0
0 0 I

Ad + BudK Bωd E1d
C2d + D2dK 0 E2d
F1d + F2dK 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ 0. (39)

Because T̃a < 0 and H > 0, the diag
{
−H,−λ2 I, T̃a

}
< 0 holds. Applying Lemma 1 to

(39) and performing the elementary matrix transformation, the result would be as follows:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0
0 I 0
0 0 I

−(Add + BudlK)
T −(C2d + D2dK)T −(F1d + F2dK)T

−BT
ωd 0 0

−ET
1d −ET

2d 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T⎡⎢⎢⎢⎢⎢⎢⎣

N 0 0 0 0 0
0 I 0 0 0 0
0 0 Tc 0 0 TT

b
0 0 0 −N 0 0
0 0 0 0 −λ−2 I 0
0 0 Tb 0 0 Ta

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ ∗∗
∗

⎤⎦ ≥ 0, (40)

where N = H−1. Due to Ta < 0 and N > 0, the diag
{
−N,−λ−2 I, Ta

}
< 0 holds. With the

help of Lemma 2, the nonlinear matrix inequality (40) is equivalent to the specific form of
LMI, as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

N 0 −E1dTb −Ad − BudK −Bωd −E1d
0 I −E2dTb −C2d − D2dK 0 −E2d

−TT
b ET

1d −TT
b ET

2d Tc −F1d − F2dK 0 0
−(Ad + BudK)T −(C2d + D2dK)T −(F1d + F2dK)T N−1 0 0

−BT
ωd 0 0 0 λ2 I 0

−ET
1d −ET

2d 0 0 0 −T−1
a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0. (41)

Then, the above inequality (41) is subjected to the congruence transformation with
diag{I, I, I,−N, I, Ta}, and defining R = KN results in the following:⎡⎢⎢⎢⎢⎢⎢⎢⎣

N 0 −E1dTb AdN + BudR −Bωd −E1dTa
0 I −E2dTb C2dN + D2dR 0 −E2dTa

−TT
b ET

1d −TT
b ET

2d Tc F1dN + F2dR 0 0
(AdN + BudR)T (C2dN + D2dR)T (F1dN + F2dR)T N 0 0

−BT
ωd 0 0 0 λ2 I 0

−TT
a ET

1d −TT
a ET

2d 0 0 0 −Ta

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0. (42)

In summary, if there are variables (R, N, λ2) and multipliers (Ta, Tb, Tc) making the
LMI (42) be established, then theH∞ norm of the controlled system (27) from ω to z2 must
be less than λ under the action of the controller K = RN−1 and u(k) = Kx(k). Meanwhile,
the above LMI also guarantees that Ad + BudK is quadratically stable.

The treatment of the constraints existing in the system is discussed in this section.
Firstly, an elliptic domain is defined as Ω(H, ρ f ) :=

{
x(k)THx(k) ≤ ρ f

}
. If x(k) ∈ Ω(H, ρ f ),

then it could be deduced from the closed-loop system (28) as follows:

|z∞i(k)|2 =
∣∣∣eT

i (C∞d + D∞dK)x(k)
∣∣∣2 ≤ max

x(k)∈Ω(H,ρ f )

∣∣∣eT
i (C∞d + D∞dK)x(k)

∣∣∣2(i = 1, 2, 3, 4), (43)

where ei(i = 1, 2, 3, 4) are the standard basis vectors in the four-dimensional space. If∣∣eT
i (C∞d + D∞dK)x(k)

∣∣2 ≤ z2
∞i,max(i = 1, 2, 3, 4), then |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4)

is valid, and it means that the constraints of the controlled system are satisfied. Let
S0 = z2

∞i,max −
∣∣eT

i (C∞d + D∞dK)x(k)
∣∣2 and S1 = ρ f − x(k)THx(k). Applying Lemma 3, it

is equivalent to the existence of ϕ > 0, which enables (44) to hold for all δ ∈ Yδ:

z2
∞i,max − x(k)T(eT

i (C∞d + D∞dK))
T

eT
i (C∞d + D∞dK)x(k)− ϕρ f + ϕx(k)THx(k) ≥ 0(i = 1, 2, 3, 4). (44)

And let ϕ =
z2

∞i,max
ρ f

, then inequality (44) can be transformed into the following:

[
I

eT
i (C∞d + D∞dK)

]T
[−H 0

0
ρ f

z2
∞i,max

][
I

eT
i (C∞d + D∞dK)

]
≤ 0. (45)
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Using the technique of the full-block multiplier again, the holding of the above inequal-
ity is equivalent to the existence of four invertible multiplier matrices (Ṽi(i = 1, 2, 3, 4)),
satisfying the following:

⎡⎢⎢⎣
I 0

eT
i (C∞d + D∞dK) 0

0 I
F1d + F2dK 0

⎤⎥⎥⎦
T⎡⎢⎢⎢⎣
−H 0 0 0

0
ρ f

z2
∞i,max

0 0

0 0 Ṽai Ṽbi
0 0 ṼT

bi Ṽci

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

I 0
eT

i (C∞d + D∞dK) 0
0 I

F1d + F2dK 0

⎤⎥⎥⎦ ≤ 0, (46)

where Ṽai < 0. Then, the inequality (46) after the elementary matrix transformation is
as follows:⎡⎢⎢⎢⎣

I 0
0 I

eT
i (C∞d + D∞dK) 0

F1d + F2dK 0

⎤⎥⎥⎥⎦
T
⎡⎢⎢⎢⎢⎣
−H 0 0 0

0 Ṽai 0 Ṽbi

0 0
ρ f

z2
∞i,max

0

0 ṼT
bi 0 Ṽci

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

I 0
0 I

eT
i (C∞d + D∞dK) 0

F1d + F2dK 0

⎤⎥⎥⎥⎦ ≤ 0. (47)

Owing to Ṽai < 0 and H > 0, the diag
{
−H, Ṽai

}
< 0 holds. Applying Lemma 1 and

performing the elementary matrix transformation, the inequality (47) is equivalent to the
nonlinear matrix inequality shown below:

⎡⎢⎢⎢⎣
I 0
0 I

−(C∞d + D∞dK)Tei −(F1d + F2dK)T

0 0

⎤⎥⎥⎥⎦
T⎡⎢⎢⎢⎢⎣

z2
∞i,max

ρ f
0 0 0

0 Vci 0 VT
bi

0 0 −H−1 0
0 Vbi 0 Vai

⎤⎥⎥⎥⎥⎦
⎡⎣ ∗∗
∗

⎤⎦ ≤ 0. (48)

where Vci(i = 1, 2, 3, 4) are four positive definite diagonal matrices and Vai = −Vci,
Vbi(i = 1, 2, 3, 4) are four diagonal matrices, and all elements of Vbi are antisymmetric
matrices. Because Vai < 0 and H > 0, the diag

{
−H−1, Vai

}
< 0 holds. Applying Lemma 2,

the inequality (48) is equivalent to the following LMI:⎡⎢⎢⎢⎢⎣
z2

∞i,max
ρ f

0 −eT
i (C∞d + D∞dK) 0

0 Vci −F1d − F2dK 0
−(C∞d + D∞dK)Tei −(F1d + F2dK)T H 0

0 0 0 −V−1
ai

⎤⎥⎥⎥⎥⎦ ≥ 0. (49)

Then, the inequality (49) is congruent transformed with diag{I, I, N, Vai}, which results
in the following:⎡⎢⎢⎢⎢⎣

z2
∞i,max

ρ f
0 −eT

i (C∞dN + D∞dR) 0

0 Vci −F1dN − F2dR 0
−(C∞dN + D∞dR)Tei −(F1dN + F2dR)T N 0

0 0 0 −Vai

⎤⎥⎥⎥⎥⎦ ≥ 0(i = 1, 2, 3, 4). (50)

Therefore, if the variables that enable LMI (42) to be feasible also make LMI (50) hold,
then |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4), which indicates that all constraints are satisfied for
the uncertainties considered by the system.

In summary, the robust constrainedH∞ controller with the state feedback structure is
constructed by addressing the LMI optimization solution problem for the given ρ f > 0, as
shown below:

min
λ2,N,R,Ta ,Tb ,Tc ,{Vai ,Vci}

λ2 subject to (42) and (50). (51)
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In order to reduce the number of independent variables for this controller and the
online computational burden of the algorithm, we may set Tb = 0.

The method described above guarantees the H∞ performance of the system with
parameter uncertainties while satisfying the four constraints by addressing multiple LMIs.
In addition, the trade-off between a good system performance and the satisfaction of the
constraints can be achieved by defining the state elliptic domain (Ω(H, ρ f )) and selecting
the appropriate controller parameter (ρ f ).

4.2. Robust Constrained Moving-HorizonH∞ Control

The concept of the control algorithm designed above highlights the inherent com-
promise between ensuring all the constraints and enhancing the control performance of
the uncertain system. However, there might be a few large perturbations that cannot be
anticipated in advance in the actual system, and it is possible to guarantee the system
performance only by increasing the value of ρ f to expand the range of the elliptic domain
Ω(H, ρ f ), yet the consequence of doing so would be extremely limited values of N and
R, ultimately resulting in the larger value of the performance index (λ), which, in turn,
decreases the performance of the system. In contrast, the pursuit of a better performance
could be achieved by lowering the value of ρ f . But if the controlled system is subjected
to larger external perturbations, there is no guarantee that the system constraints can be
satisfied. Therefore, how to modify the LMI optimization control problem based on (51) is
the top priority.

The stationarity and strong conservativeness of ρ f , H, and λ prompt us to incorporate
the idea of the moving-horizon control of MPC to overcome the weaknesses of the current
algorithm and to coordinate online the conflict between satisfying the constraints and
improving the performance of the uncertain system. The moving-horizon control principle
of predictive control is to address the objective optimization problem online at each sample
moment, which is constantly renewed by the latest measurements of the controlled system,
and the calculated control input is actioned on this system until the next sample moment.

The conflict between constraints and performance could be nicely settled by altering
the range of the elliptic domain Ω(H, ρ f ) at any moment according to the extent of the
disturbances to the uncertain system. Hence, the following LMI optimization problem is
constantly refreshed with the latest state (x(k)) at each sample moment (k) and addressed:

min
ρk ,λ2

k ,Nk ,Rk ,Tak ,Tbk ,Tck ,{Vaik ,Vcik}
χ1ρk + χ2λ2

k subject to, (52)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Nk 0 −E1dTbk AdNk + BudRk −Bωd −E1dTak
0 I −E2dTbk C2dNk + D2dRk 0 −E2dTak

−TT
bkET

1d −TT
bkET

2d Tck F1dNk + F2dRk 0 0
(AdNk + BudRk)

T (C2dNk + D2dRk)
T (F1dNk + F2dRk)

T Nk 0 0
−BT

ωd 0 0 0 λ2
k I 0

−TT
akET

1d −TT
akET

2d 0 0 0 −Tak

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, (53)

⎡⎢⎢⎢⎢⎣
z2

∞i,max
ρ f

0 −eT
i (C∞dNk + D∞dRk) 0

0 Vcik −F1dNk − F2dRk 0
−(C∞dNk + D∞dRk)

Tei −(F1dNk + F2dRk)
T N 0

0 0 0 −Vaik

⎤⎥⎥⎥⎥⎦ ≥ 0(i = 1, 2, 3, 4), (54)

[
ρk x(k)T

x(k) Nk

]
≥ 0, (55)

[
x(k)THk−1x(k) + h0 − hk−1 x(k)T

x(k) Nk

]
≥ 0, (56)

ρk ≤ ρ f , (57)
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where χ1 and χ2 are the weighting factors, which are used to adjust the weights between
the minimization of the H∞ norm from ω to z2 and the minimization of the range of the
elliptic domain Ω(Hk, ρk) while maintaining the constraints satisfied, thereby meeting the
multifaceted requirements of the controlled system. The LMI (56) is an additional dissipa-
tion inequality that is implemented to ensure the dissipativity of the closed-loop system
that is destroyed under the moving-horizon control scheme. Moreover, it is determined by
the Hk−1 and dissipation index hk−1 at the last moment, and the iterative updates of the
Hk and hk are calculated via Hk := N−1

k and hk := hk−1 − [x(k)THk−1x(k)− x(k)THkx(k)]
with h0 := x(0)TH0x(0).

At the moment k, if the semi-definite programming (52) can be addressed online for a
given ρ f , resulting in ρk, λk, Nk, Rk, and several multipliers, then the feedback gain at the
current moment is considered as K(k) = Rk N−1

k , and thus the closed-loop control input of
the controlled system can be specified as follows:

u(k) = K(k)x(k), ∀k ≥ 0. (58)

At each sample moment, the values of the variables Rk and Nk are obtained by solving
the LMI optimization problem (52), where Nk is a positive definite symmetric matrix and
Rk = K(k)Nk. Then, the feedback gain K(k) = Rk N−1

k at the current moment can be
calculated after obtaining the values of the above variables. In addition, the state feedback
structure is chosen in this paper during the controller design process, so the control input
of the system is thus calculated with u(k) = K(k)x(k).

The state x(k) includes the information about the external disturbances to the system
and the modeling mistakes caused by the parameter uncertainties. As a matter of fact, the
x(k) is used to calculate the value of the feedback gain K(k) at the current moment, and
it is also used as the feedback information of the closed-loop system. It should be noted
here that the system state x(k) in the control input u(k) = K(k)x(k) and in the LMIs (55)
and (56) are the state of the nonlinear system of the two-DOF FJMS. And it needs to be
made clear that the purpose of linearizing the controlled system (3) is only to calculate the
control feedback gain by solving the LMI optimization problem, and the feedback gain
is subsequently used to calculate the control input of the two-DOF FJMS to act on the
nonlinear system (3).

In addition to the introduction of the moving-horizon control strategy, another inge-
nious feature of the algorithm (52) is the treatment of ρk as an independent variable and as a
portion of the objective optimization function. Moreover, the coupling between the system
constraints and the performance index is separated by the constant ρ f , which consequently
makes the optimization problem easily solvable numerically.

For the algorithm described above, the feasibility of the optimization problem at
every sample moment is crucial. However, the feasibility of the above online optimization
algorithm would not be guaranteed in the case of strong disturbances increasing suddenly
at some random moment. Accordingly, borrowing the idea of the scaling method, a non-
negative number (σ ≥ 0) is introduced in this paper. The purpose of this improvement is
simply to diminish the conservativeness of the algorithm (52) and to enhance its feasibility
so that it is capable of coping with larger external disturbances. The robust constrained
moving-horizonH∞ control optimization algorithm is as follows:

min
ρk ,λ2

k ,Nk ,Rk ,Tak ,Tbk ,Tck ,{Vaik ,Vcik}
χ1ρk + χ2λ2

k subject to (53), (54), (55), (56) and, (59)

ρk ≤ ρ f (1 + σ). (60)

Therefore, the robust constrained moving-horizonH∞ control algorithm specifically
addresses the LMI optimization problem (59) refreshed by the current moment state x(k) at
each sample moment, and if infeasibility occurs, then the value of σ is augmented and the
optimization problem is recalculated. For one moment, the process of expanding the range
of the elliptic domain is diagrammed in Figure 5.
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Figure 5. The diagram of expanding the elliptic domain for one moment in time.

In the theory of robust model predictive control, we resort to the LMI technique to
transform the constrainedH∞ control problem into a convex optimization problem with
LMIs as constraints. In this way, multiple objectives in the controller design requirements
could be transformed into multiple LMIs that are used as constraints on the objective
function. Secondly, the optimization problem is solved to obtain the optimal control input
at the current moment, which is implemented on the nonlinear controlled system, and then
the optimization problem is refreshed with the latest state and is resolved again at the next
moment, and ultimately the system performance is improved, and the system requirements
are fulfilled through continuous moving-horizon optimization control.

5. Properties of the Closed-Loop System

In this section, the closed-loop characteristics of this system are discussed by imple-
menting the above optimization algorithm (59) on the controlled system. The closed-loop
system is mainly confronted with two situations: when the external disturbances in the
system are relatively small, the optimization algorithm (52) is feasible at each sample
moment, and when the external disturbances are sudden or large, it is only necessary to
enlarge the value of σ to guarantee the feasibility of the optimization algorithm (59) to
achieve some degree of relaxation so that the controlled system can handle unpredictable
and large disturbances.

Theorem 1. Suppose the following:

1. At every moment, the semi-definite programming (52) based on the state x(k) at the current
moment has the results as ρk, λk, Nk, Rk, and several multipliers;

2. The performance optimization metric{λ0, λ1, · · · , λk−1, λk}is bounded.

Then, for all δ ∈ Yδ, the closed-loop controlled system under the action of u(k) = K(k)x(k)would
have the following properties:

1. The constraints of the controlled system are all fulfilled;
2. Under the perturbations of external limiting energy, the state x(k)of the system will converge

to zero when k→ ∞ ;

3. The dissipation inequality
k
∑

i=0

(
‖z2(i)‖2

2 − λ
2‖ω(i)‖2

2

)
≤ x(0)TH0x(0) is valid for any

moment (k), where λ = max{λ0, λ1, · · · , λk−1, λk};
4. The H∞ norm from the system perturbation ω to the performance output z2 is always no

greater than λ∞, where λ∞ = lim
k→∞

max{λ0, λ1, · · · , λk−1, λk}.

Proof of Theorem 1. If there is an appropriate ρ f such that LMIs (55) and (57) are valid,
then it also means that the closed-loop system state x(k) is within the elliptic domain
Ω(Hk, ρk) =

{
x(k)THkx(k) ≤ ρk

}
. For all δ ∈ Yδ, the inequalities (43), (45), (50), and (54)

are all equivalent to each other, which subsequently leads to |z∞i(k)| ≤ z∞i,max(i = 1, 2, 3, 4),
and the first property is proved.
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At any moment (k), if the optimization solution (ρk, λk, Nk, Rk and several multipliers)
is valid by substitution in the LMIs (42) and (53), then the dissipative inequality (29) is
expressed to work. Therefore, the following may be obtained:

x(k + 1)THkx(k + 1)−
k

∑
i=1

(
x(i)THix(i)− x(i)THi−1x(i)

)
− x(0)TH0x(0) ≤

k

∑
i=0

(
λ2

i ‖ω(i)‖2
2 − ‖z2(i)‖2

2

)
. (61)

The (56) formed by the dissipation constraint satisfies
k
∑

i=1

(
x(i)THix(i)− x(i)THi−1x(i)

)
≤ 0.

Letting λ = max{λ0, λ1, · · · , λk−1, λk}, the inequality (61) can be simplified as follows:

x(k + 1)THkx(k + 1)− x(0)TH0x(0) ≤
k

∑
i=0

(
λ

2‖ω(i)‖2
2 − ‖z2(i)‖2

2

)
. (62)

Due to the fact that Hk is positive definite and {λ0, λ1, · · · , λk−1, λk} is bounded, then the
third property is proved to be permanent. If there is finite energy of the perturbations to the

controlled system, then it is obtained that
∞
∑

i=0
‖z2(i)‖2

2 ≤ x(0)TH0x(0)+λ2
∞

∞
∑

i=0
‖ω(i)‖2

2 when the

limit of the inequality (62) at k→ ∞ is considered, where λ∞ = lim
k→∞

max{λ0, λ1, · · · , λk−1, λk}.
Thus, the second property is evidenced by the above procedure. As for the last property, it
is proved when the zero initial state is selected. �

Considering the circumstances of the optimization control algorithm (59) to be imple-
mented, the following findings would be produced with less conservatism.

Theorem 2. Suppose the following:

1. The LMI (53) and LMI (54) are all feasible;
2. The amplitude of the perturbations at any moment is not infinite;
3. The performance optimization metric {λ0, λ1, · · · , λk−1, λk} is bounded.

Then, for all δ ∈ Yδ, the controlled system with the effect of the robust constrained moving-horizon
H∞ controller would have the following properties:

1. At every moment (k), there is
∣∣eT

i (C∞d + D∞dK(k))x(k)
∣∣ ≤ z∞i,max(i = 1, 2, 3, 4), and this

relationship is established to symbolize that the constraint requirements of this controller
are fulfilled;

2. The last three properties of Theorem 1 are also present.

Proof of Theorem 2. The feasibility of the optimization algorithm (59) at any sample
moment is guaranteed by the introduced factor σ ≥ 0. The control gain is calculated
with K(k) = Rk N−1

k , and the first property is clearly well established. The proofs of the
remaining properties are analogous to those of Theorem 1. �

6. Simulation Results

In this section, the robust constrained moving-horizon H∞ control algorithm is im-
plemented for the dynamic model of the two-DOF FJMS, and theH∞ performance of this
controlled system is tested. The nominal values of the parameters of this manipulator
system are shown in Table 2 [46], selecting the sample time as Ts = 0.01s, and discretizing
the two-DOF FJMS. In order to accomplish the stabilization of this system at the equilibrium
point under the influence of external disturbances and parameter uncertainties, the whole
system should have certain constraints on the sizes of both the joint angles of the two-DOF
FJMS: q1,max = 0.15 and q2,max = 0.15. The main reason for constraining the maximum
value of the two joint angles to be so small is mainly because of the consideration that there
are certain conditions for linearizing the two-DOF FJMS using Taylor series expansion.
Moreover, due to the saturation of the actuators, the torque values as the control input
are also constrained: u1,max = 100 and u2,max = 50. To simplify the calculation procedure,
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the normalized control torques and joint angles are chosen as the constrained output here,
where the system constraints are bounded by z∞i,max = 1(i = 1, 2, 3, 4).

Table 2. The nominal values of the parameters of the two-DOF FJMS.

Symbol Values

L1, L2 0.5 m, 0.5 m
Lc1, Lc2 0.25 m, 0.25 m
m1, m2 20 kg, 10 kg
I1, I2 5.6 kg·m2, 2.8 kg·m2

J1, J2 6.183 kg·m2, 0.858 kg·m2

k1, k2 1000 N·m/rad, 1000 N·m/rad
g 9.81 m/s2

As for the parameter uncertainties, what are considered here are the spring-stiffness co-
efficients shown in Equation (13), where the normalized weighted coefficients are Wk1 = 0.2
and Wk2 = 0.2. In order to verify the feasibility and robustness of the designed control
algorithm, the real values of the two uncertain parameters are set to different values at
different time periods, as shown below:

k1 =

⎧⎨⎩
k1(1− 0.2), 0 ≤ k ≤ 30
k1(1 + 0.2), 30 ≤ k ≤ 70
k1(1 + 0.6), 70 ≤ k ≤ 150

, k2 =

⎧⎨⎩
k2(1− 0.2), 0 ≤ k ≤ 30
k2(1 + 0.2), 30 ≤ k ≤ 70
k2(1 + 0.6), 70 ≤ k ≤ 150

, (63)

The external disturbances to the controlled system are assumed to be as follows:

ω1 = ω2 =

⎧⎨⎩
π
6 sin( kπ

10 ), 0 ≤ k ≤ 20
−π

6 sin( kπ
10 ), 60 ≤ k ≤ 80

0, else
, (64)

For the design of the robust constrained moving-horizon H∞ controller, the weight
factors are selected as χ1 = 0.1 and χ2 = 1 to achieve a greater system performance and
less energy consumption. Moreover, the size of the fixed elliptic domain Ω(H, ρ f ) is chosen
as ρ f = 10. The RCHC (the LMI optimization algorithm (52))and RCMHHC (the LMI
optimization algorithm (59)) were implemented on the two-DOF FJMS for simulation, and
the comparative outputs of the experiments are shown in Figures 6–12.

Figure 6. The performance output: the joint angular acceleration of q1.
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Figure 7. The performance output: the joint angular acceleration of q2.

Figure 8. The constrained output: the normalized joint angle of q1.

Figure 9. The constrained output: the normalized joint angle of q2.

Figure 10. The control input: the normalized control torque of u1.
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Figure 11. The control input: the normalized control torque of u2.

 
Figure 12. The performance indicator.

In Figure 10, it can be seen that the system under the action of RCHC has violated the
control input constraint of u1 at 74 ≤ k ≤ 77 and 82 ≤ k ≤ 85. The only way to make the
system constraints satisfied is to increase the value of ρ f to expand the elliptic domain. How-
ever, the result of doing so would make the performance of this system worse, which fully
illustrates the disadvantages of RCHC. In contrast, the control input constraints of the con-
trolled system are well satisfied with the action of RCMHHC. In addition, we can discover
that both joint angles are not out of our constraints during the whole process, according to
the simulation results in Figures 8 and 9. It should be noted here that the normalized values
of the joint angles are shown in both images. Therefore, the actual maximum value of the
two joint angles during the simulation is just 0.2478× 0.15 = 0.03717 rad. In the later part
of the simulation, the two joint angles of this system are basically stabilized around the X
axis, where the output curve of q2 may not be as smooth as that of q1 in the later stages,
but the actual value of the joint angle of q2 at k = 136 is 0.0975× 0.15 = 0.014625 rad. It is
possible to determine that the designed controller is capable of stabilizing the nonlinear
two-DOF FJMS at the vertical equilibrium position after acting on it. In Figures 6 and 7, the
reason why the system performance output under the action of RCMHHC does not perform
as well as RCHC at some moments is caused by the concession of the system performance
to the unsatisfied constraints due to the impact of larger disturbances. Figure 12 displays
the variation curves of the performance indices of both algorithms. After the compara-
tive analysis of the above output curves, the significant advantage of RCMHHC can be
found in the online reconciliation of the conflict between satisfying the system constraints
and improving the control performance at any moment. The coordination mechanism of
RCMHHC is to decrease the performance requirements when necessary to make sure that
the hard constraints are satisfied, and to enhance the performance requirements in time
when the controlled system is far from the boundary of the constraints.

Both algorithms work by solving the LMI optimization problem. All the LMIs in the
LMI optimization problem are derived based on the linear system, and the problem is
solved through the toolbox of MATLAB and is thus less time-consuming. The value of
the feedback gain obtained by solving RCHC is fixed, and the LMI optimization problem
only needs to be solved once. However, the idea of moving-horizon control in RCMHHC
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makes the state of the system appear in the LMIs, so that its feedback gain value is not
fixed, and it is necessary to solve the LMI optimization problem at every sample moment.
In contrast, the real-time property of RCMHHC may not be as good as that of RCHC, but
RCMHHC can improve the H∞ performance of the two-DOF FJMS well while ensuring
that the system constraints are satisfied. In conclusion, the real-time property of solving the
LMI optimization problem at each moment can be satisfied for conventional PCs.

7. Conclusions

For the two-DOF FJMS, this paper designs a robust constrained moving-horizonH∞
controller to accomplish the control objectives of this system while considering external
disturbances, parameter uncertainties, and input–output constraints simultaneously. After
establishing the LFT uncertain system of the two-DOF FJMS, the semi-definite program-
ming problem with LMIs as constraints is developed via the full-block multiplier technique,
H∞ control, and MPC, for which the control feedback gain of the two-DOF FJMS can be
obtained after solving the LMI optimization problem. The feedback gain is subsequently
used to calculate the control input of the controlled system to act on the nonlinear two-DOF
FJMS under the state feedback structure. Based on the moving-horizon control principle
of MPC, this LMI optimization problem is refreshed with the current state of the system
at each sample moment and solved online, and so on, in a continuous iterative loop. The
simulation of the designed controller implemented on the two-DOF FJMS shows that the
proposed control algorithm is able to improve the system H∞ performance while ensuring
that the system constraints are satisfied, and it could coordinate online the conflict between
both requirements.
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Abstract: This paper provides a survey of recent research progress in mathematical modeling and
distributed control of wide-area networks. Firstly, the modeling is introduced for two types of wide-
area networks, i.e., coopetitive networks and cooperative networks, with the help of algebraic graph
theory. Particularly, bipartite network topologies and cluster network topologies are introduced
for coopetitive networks. With respect to cooperative networks, an intermittent clustered network
modeling is presented. Then, some classical distributed control strategies are reviewed for wide-area
networks to ensure some desired collective behaviors, such as consensus (or synchronization), bipar-
tite consensus (or polarization), and cluster consensus (or fragmentation). Finally, some conclusions
and future directions are summarized.
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1. Introduction

With the development of science and technology, large-scale networks have gradually
replaced local networks with simple structures and single functions, and thus, they have
been increasingly used in industry and academia. Such large-scale networks are often
called wide-area networks [1], which are generally composed of multiple groups or clus-
ters to exhibit the sparsity of most complex networks [2]. The major characteristic of a
wide-area network is the tight communication within clusters and sparse communication
between clusters. This is particularly evident in post-disaster emergency communication
systems [3–5], power grid optimization [6–8], internet of things applications [9–13], cloud
computing [14–16], etc. In addition to the complex network topologies of wide-area net-
works, behavior emergence on such networks is also very fascinating. Multi-agent systems

(MASs) have become a powerful approach to deal with the complexity and diversity of
such large-scale networks. Distributed control in MASs is commonly used to study the
underlying interaction mechanisms for the emergence of collective intelligent behaviors
on wide-area networks. Desired behaviors and local interaction mechanisms are two
distinctive features of distributed controls [17].

In general, wide-area networks can be divided into two categories, one of which is a
class of networks with both cooperative and competitive interactions, known as coopetitive

networks [18]. Cooperation and competition coexist in complex and subtle ways in natural
evolution, human activities, and engineering applications [19–21]. For example, the group
foraging of mixed species, which need to work together to explore the environment during
foraging while also competing for limited resources [19]. The personal opinion is updated
by taking the average of the beighbors’ opinions [20], however, attempting to change
someone else’s opinion may also be seen as hostile or competitive. In engineering and
military fields, friendly robots cooperate to capture and intercept enemy robots [21]. In
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terms of multi-objective convergence forms, bipartite consensus and cluster consensus
are two typical types of emergent collective behavior in coopetitive networks [22–24].
Specifically, the former requires that the agents achieve a form of “modular consensus”,
while the latter is associated with a network topology partition that de-synchronizes the
behavior among agents of different groups. Regarding bipartite consensus in networked
MASs, structural balance is an indispensable concomitant of the network topology. Under
this assumption, many studies have worked to understand the bipartite consensus of
cooperative competitive networks across various contexts [25–28]. On the other hand,
when achieving cluster consensus, acyclic partition and balanced couple partition are
two typical network structures that ensure cluster consensus. These two communication
topologies require the satisfying of the in-degree balance condition between different
groups [29–31]. It is worth noting that in this type of clustered network, each subgraph
only contains positive edges, i.e., cooperative relationships [32]. Recently, the concept of
group-bipartite consensus has been introduced by combining acyclic partition and sign
function [33]. The group-bipartite network topology removes the limitation that negative
links are only allowed to exist between different groups, which is more in line with practical
application scenarios. For example, there exist cooperative and competitive relationships
between different provinces in terms of economics, politics, culture, etc., while different
cities, regions, and enterprises within each province also cooperate and compete.

Life is not always a zero-sum game, where having a winner means having a loser.
In fact, most successes do not come from competition, but from cooperation. Then, an-
other type of wide-area network is called a cooperative network. For example, in post-
disaster emergency communication networks where multiple subnetworks may become
isolated [34], it is common for each group to be responsible for specific communication tasks,
and to work quickly to collect, transmit, and process information. Intermittent communica-
tion may be established between groups. For simplicity, we refer to a MAS composed of
multiple subnetworks as a cluster MAS (CMAS). For cooperative CMASs, consensus (or
synchronization) emerges as a prominent collective behavior, whereby all agents ultimately
converge to the same state. Bragagnolo et al. first studied a type of intermittent clustered
network with a continuous–discrete communication mechanism in [35]. For instance,
in a spatially clustered robot formation, robots that belong to the same cluster interact
continuously. However, due to constraints such as limited energy and communication
range, interactions between robots that are far apart are discrete. Until now, substantial re-
search advancements have been achieved in the context of intermittent clustered networks,
particularly focusing on synchronization or output synchronization [36–43].

Based on the above observations, this paper aims to provide a preliminary exploration
of group behavior over wide-area networks and introduce some of the important research
advances and application scenarios. Figure 1 shows a statistical analysis of several papers
in Scopus between the years of 2010–2023 about four types of consensus, i.e., bipartite
consensus, cluster consensus, group-bipartite consensus, and synchronization. The struc-
ture of this paper is as follows. Section 2 introduces two types of modeling methods for
wide-area networks, i.e., coopetitive networks and cooperative networks. Section 3 reviews
three collective behaviors on coopetitive networks, namely, bipartite consensus, cluster
consensus, and group-bipartite consensus, and introduces some classical distributed control
algorithms. Section 4 reviews recent distributed control in coopetitive networks. Section 5
summarizes the challenging issues in future relevant areas. Finally, the conclusion of this
article is provided in Section 6.
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Figure 1. Statistical analysis of several research works related to four types of consensus in MASs
published between 2010 and August 2023. Source: Scopus-indexed scientific papers on the field of
MASs containing relevant keywords.

2. Notations and Modeling of Wide-Area Networks

Graph theory is a powerful tool for the modeling of wide-area networks. In this
section, the modeling of coopetitive networks and cooperative networks over wide-area
networks are introduced separately using graph theory. The symbols used throughout this
article are listed in Table 1. The relationships between coopetitive networks and cooperative
networks are shown in Table 2.

Table 1. Nomenclature.

Symbol Definition

R+ The sets of non-negative real numbers
N The sets of non-negative integers
Rn The sets of n-dimensional real column vector space
Rm×n The sets of m× n-dimensional real matrix space
Cm×n The sets of m× n-dimensional complex matrix space
diag{· } The block diagonal matrix
col(· ) The column vectors
‖· ‖ The Euclidean norm
⊗ The Kronecker product for matrices
AT The transpose matrix of A
C+ The generating inverse of matrix C
0 The zero matrix with compatible dimensions
λ(A) The eigenvalues of matrix A
x(t−k ) The left limit of x(tk)
Hurwitz matrix All eigenvalues of a matrix have negative real parts

2.1. Coopetitive Networks

This subsection employs graph theory to construct models for three distinct types of
competitive networks: bipartite networks, cluster networks, and group-bipartite networks.
The mathematical framework presented in this subsection provides a valuable tool for
analyzing and modeling cooperative–competitive phenomena in both natural and human
systems.

2.1.1. Bipartite Networks with Structural Balance Assumption

In bipartite networks, positive edges (represented by blue solid lines) and negative
edges (represented by red dashed lines) are used to denote cooperative and competitive
relationships between individuals, respectively. Cooperative relationships occur within
clusters, while competition exists only between clusters. Herein, Figure 2 provides an
intuitive illustration of the concept of bipartite networks, applied to describe healthcare
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coopetition networks [44]. In this network, there are two core hospitals, each modeled as a
subnetwork. Within each subnetwork, hospitals cooperate by sharing healthcare resources,
while simultaneously engaging in competition within the healthcare market across different
subnetworks.

Table 2. Relationships among coopetitive networks and cooperative networks.

Network Types

Coopetitive Networks
Cooperative

NetworksBipartite
Networks

Cluster
Networks

Group-Bipartite
Networks

Group
number 2 more than 2 more than 2

Typical
structure

structural
balance

in-degree
balance

acyclic partition,
sign-balanced couple

a directed
spanning tree

Intra-cluster
communication

continuous,
cooperation

continuous,
cooperation

continuous,
coopetition

continuous,
cooperation

Inter-cluster
communication

continuous,
competition

continuous,
coopetition

continuous,
coopetition

discrete,
cooperation

Global behavior bipartite
consensus

cluster
consensus

group-bipartite
consensus

synchronization

Figure 2. Bipartite networks. Between G1 and G2, only competitive relationships exist, while within
each subcluster, only cooperative relationships are present [45].

Directed signed graphs are employed to describe this particular type of network.

Definition 1. Directed signed graph.
Given a digraph G = (V,E,A), where the set of nodes represents a collection of individuals,

denoted as V = {1, . . . , N}; the set of directed edges is denoted as E ∈ V× V; A = [aij] ∈ RN×N

stands for the adjacency matrix of the graph, with element aij representing the strength of the
interaction between node i and node j. The sign function sgn(•) is used to represent the coopetitive
relationship between node i and node j, that is,

sgn(aij) =

⎧⎨⎩
1, aij > 0 friendly and cooperative
0, aij = 0 no connection
−1, aij < 0 hostile and competitive

To give the definition of the structural balance of signed graphs, we first introduce the
concept of positive and negative cycles. Generally, the cycles in a signed graph contain
both positive and negative edges. If the product of the weights aij of the edges in a cycle is
positive, the cycle is called a positive cycle; otherwise, it is called a negative cycle.

Definition 2. Structurally balanced.
As presented in [45], if all the cycles in a signed graph G are positive cycles, then G is called

structurally balanced; if there is at least one negative cycle, then G is called structurally unbalanced;
if there are no cycles in G, then it is called a vacuum-balanced graph. Different balanced structures
are given in Figure 3, where the blue solid edges have positive weights, indicating a cooperative
relationship; the red dashed edges have negative weights, indicating competitive relationships.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Structural balance, structural unbalance, and vacuum-balance of signed graphs [45].
(a) Structurally balanced cooperation network. (b) Structurally balanced competition network.
(c) Structurally balanced coopetitive network. (d) Structurally unbalanced competition network.
(e) Structurally unbalanced coopetitive network. (f) Vacuum-balanced competition network.

From a linear algebra perspective, if the signed graph exhibits structural balance,
the set of nodes V can be partitioned into two groups: V1 = {1, . . . , N0} and V2 = {N0 +
1, . . . , N}. The relationship is cooperative within subgroups, and competition exists only
between two subgroups. Bipartite consensus is a typical feature of this type of network,
i.e., the individuals in the two groups have the same absolute value of the final state, but
opposite signs.

By assigning appropriate numbers to each individual, the adjacency matrix associated
with the signed graph G can be transformed into the following block matrix form.

A =

(
A11 A12
A21 A22

)
where A11 ∈ RN0×N0 and A22 ∈ R(N−N0)×(N−N0) are non-negative matrices, while A12 ∈
RN0×(N−N0) and A21 ∈ R(N−N0)×N0 are non-positive matrices.

The Laplacian matrix L of a signed graph plays an important role in analyzing the
collective behavior evolution of coopetitive systems, and its definition is as follows.

L = D−A (1)

where D = diag{d1, . . . , dN} denotes the degree matrix, di = ∑j∈Ni

∣∣aij
∣∣ with Ni = {j |

(i, j) ∈ E}.

2.1.2. Cluster Networks with In-Degree Balance Condition

In practice, systems need to be divided into multiple clusters to accomplish different
tasks due to differences in performance and task requirements. Therein, individuals
within a group are in a cooperative relationship, while individuals belonging to different
subgroups can choose to compete or cooperate with each other [46]. For instance, a strategic
alliance model in which companies cooperate and compete with each other in order to
share research and development costs, mitigate risks, learn, and acquire complementary
resources [22].

In cluster networks, the graph has a partition of the node set V that takes the form
{V1, . . . ,Vk} such that Vi �= ∅,∪k

�=1V� = V and Vi ∩ Vj = ∅, i �= j, i, j ∈ {1, 2, . . . , k}.
Let G� denote the underlying topology of cluster V�, � = 1, . . . , k, i.e., V� = V(G�).
Without loss of generality, the node set of each cluster can be represented by V(G�) ={

∑�−1
j=0 nj + 1, · · · , ∑�

j=0 nj

}
, 1 ≤ � ≤ k, where n0 = 0, ∑k

�=1 n� = N. For convenience, let ī
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denote the index of the subset where node i belongs, that is, i ∈ Vī. Obviously, 1 ≤ ī ≤ k.
Nodes i and j are said to be in the same subgroup if ī = j̄.

Assumption 1. In-degree balance.

∑
j∈V(G�)

aij = 0, ∀i = 1, . . . , N, i ∈ V\V(G�), � = 1, . . . , k.

Two types of clustered networks satisfying Assumption 1, which have been studied
by many scholars [46], are shown in Figure 4. One is Figure 4a with an acyclic partition
structure, with the requirement that information from the former subcluster can be passed
on to the latter subcluster, but information from the latter subcluster cannot be passed on
to the former subcluster. In contrast, the one shown in Figure 4b is not an acyclic partition
but a balanced couple partition, because the two subclusters can pass information to each
other. Cluster consensus is typical for these examples, i.e., individuals within a group
reach the same state while the states of individuals within different groups can end up
being different.

(a) (b)

Figure 4. Two types of clustered networks that satisfy the in-degree balance condition. (a) Acyclic
partition. (b) Balanced couple partition.

The Laplacian matrices L = [lij] ∈ RN×N corresponding to G in Figure 4a,b have the
following forms, respectively:

L =
[
lij
]
=

⎡⎢⎣ L11 · · · 0n1×nk
...

. . .
...

Lk1 · · · Lkk

⎤⎥⎦ (2)

L =
[
lij
]
=

⎡⎢⎣ L11 · · · L1k
...

. . .
...

Lk1 · · · Lkk

⎤⎥⎦ (3)

where Lii represents the information exchange within subgroup Gi, and Lij represents the
information exchange from subgroup Gi to subgroup Gj, with i, j = 1, . . . , k.

2.1.3. Group-Bipartite Networks

Apart from occurring between different clusters, competition is possible between
agents belonging to the same group in cluster consensus problems (see Figure 5). Conse-
quently, a definition of a group-bipartite network has been proposed in the past year or
two. The collective behavior of such networks is termed group-bipartite consensus, and
can be used to describe some tasks of multi-objective symmetry. For example, in search
and rescue missions, UAVs search the area and perform tasks in formations of symmetric
patterns [47].
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Figure 5. The network topology with an acyclic partition [33].

As described in [33], the group-bipartite network topology combines the structural
balance properties of bipartite networks and the acyclic partition approach of cluster
networks. Sign-balanced couple and the following assumptions are needed for the group-
bipartite networks:

Assumption 2. Each of Gi, i ∈ {1, . . . , k} is structurally balanced.

Assumption 3. Each of Gi, i ∈ {1, . . . , k} has a spanning tree.

Under Assumption 2, the node set Vi of Gi(i = 1, . . . , k) can be divided into two groups
V
(1)
i and V

(2)
i satisfying V

(1)
i ∪ V

(2)
i = Vi, V

(1)
i

⋂
V
(2)
i = ∅. Moreover, a diagonal matrix

Φi = diag{φ∑l−1
j=0 nj+1, . . . , φ∑l

j=0 nj
} is defined, where φj = 1 for j ∈ V

(1)
i , and φj = −1 for

j ∈ V
(2)
i .
On the other hand, since the partition {V1,V2, . . . ,Vk} is acyclic, a new form of Lapla-

cian matrix L = [lij] ∈ RN×N is constructed with a lower block triangular form, as (2),
where

lij =

{
−aij, i �= j,

∑j/∈Vī
φjaij + ∑j∈Vī

∣∣aij
∣∣, i = j.

(4)

The modified Laplacian matrix L plays an important role in the consensus analysis of
group-bipartite networks [33]. As a special case of cluster consensus, the collective behavior
of such networks is termed group-bipartite consensus, and specifies multiple dual cluster
consensus behaviors.

Figure 4 depicts the concept of group-bipartite networks. The node V in a group-bipartite
network topology G is partitioned into three clusters G1, G2, and G3 with V1 = {1, 2, 3},
V2 = {4, 5, 6, 7}, and V3 = {8, 9, 10, 11}. It can be seen that coopetition exists within and
between clusters. Clearly, each subcluster Gi, i = (1, 2, 3) is satisfied with the structural

balance condition. Then, it can be obtained that φi =

{
1, i = 1, 3, 4, 5, 8, 9
−1, i = 2, 6, 7, 10, 11

.

According to the definition of (4), l44 = 0, lii = 1, i = (1, 2, 3, 5, 6, 7, 8, 9, 10, 11). Then,
the corresponding L is
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L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0 0
−1 0 1 0 0 1 0 0 0 0 0
0 −1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
−1 −1 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 −1 0 −1 1 0 1 0
0 0 0 0 0 0 0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

2.2. Cooperative Networks

In the subsection, an intermittent clustered network characterized only by cooperative
connections is described. This network utilizes a combination of continuous and discrete
communication mechanisms to facilitate interaction among agents. Specifically, continu-
ous communication is used within clusters, and inter-cluster communication is discrete.
Examples encompass spatially clustered robots, which exhibit a unique set of characteris-
tics [48]. These robots are organized into clusters, wherein continuous interactions persist
among the members of each cluster. However, owing to limitations posed by energy and
communication resources, long-distance interactions are restricted to discrete exchanges.

Consider a clustered network G = (V,E) modeled as a non-empty union consist-
ing of several independently connected subnetworks or clusters Gk = (Vk,Ek) such
that

⋃m
k=1 Vk = V, Vk

⋂
Vτ = ∅ for all k, τ ∈ {1, . . . , m}, τ �= k. Each subcluster Gk,

k ∈ {1, . . . , m} contains a specific agent called a leader �k ∈ Vk, and the remaining ones are
called followers fτ ∈ Vk/�k. The instantaneous communication between clusters is exe-
cuted by the leader, with its associated communication network represented as G� = (I,E�),
where I = {�1, �2, . . . , �m} and E� = {e�(ij) | (i, j) ∈ I× I}. Correspondingly, the Laplacian
matrices of Gk and G� are denoted by Lk and L�, respectively. For simplicity, the first agent
in each cluster is the leader. Thus, the node set of the cluster Gk, k ∈ {1, . . . , m} is given by

Vk = {�k, fok−1+2, . . . , fok}, (6)

where o0 = 0 and om = N. The cardinality of Gk is represented by ‖Vk‖ = nk = ok −
ok−1, ∀k ≥ 1, and ∑m

k=1 nk = N.
Under this network topology, a global Laplace matrix is defined as follows:

L =

⎡⎢⎣ L1 · · · 0n1×nk
...

. . .
...

0nk×n1 · · · Lk

⎤⎥⎦ (7)

The objective of such cluster networks with continuous–discrete communications
is synchronization. The following assumptions are required for intermittent clustered
networks:

Assumption 4. The subcluster Gk, k ∈ {1, . . . , m} is strongly connected.

Assumption 5. The communication topology G� formed between the leaders contains a directed
spanning tree.

To illustrate the notation (6), Figure 6 illustrates a CMAS that consists of seven agents
grouped into two clusters. Agents 1 and 5 are the leaders in each cluster. Moreover,
the nodes in Gk and G� are represented as V1 = {�1, f2, f3, f4}, V2 = {�2, f6, f7}, and
G� = {�1, �2}. Then, the corresponding L is
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L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 −1 0 0 0
−1 2 −1 0 0 0 0
−1 −1 2 0 0 0 0
−1 0 −1 2 0 0 0
0 0 0 0 2 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

Figure 6. The intermittent clustered network of seven agents [40].

3. Distributed Control of Coopetitive Networks

This section focuses on the development of collective emergent behavior in coopetitive
networks, including bipartite consensus, cluster consensus, and group-bipartite consensus.
We review the subjects and issues pertaining to these consensuses that have been explored
in recent years.

3.1. Bipartite Consensus

In 2012, Altafini et al. [49] first proposed a dynamic model of coopetitive networks
based on a linear Laplace feedback design. It demonstrated that under the structural
balance assumption, individuals form two groups with diametrically opposite final states,
i.e., the absolute values of the individuals’ final states are the same, but the signs are
opposite. Such a dynamical behavior is referred to as bipartite consensus.

Hu et al. [45] investigated the modeling of the coexistence of cooperation and competi-
tion in social networks, along with the collective behaviors, under this modeling framework.
Considering the influence of structural balance properties, This paper employed directed
signed graphs to describe the interaction network of coopetitive relationships. The dynam-
ics of each agent is modeled as

ẋi(t) = ∑
j∈Ni

aij
[
xj(t)− sgn

(
aij
)
xi(t)

]
, i = 1, . . . n (9)

where the sign function sign(aij) equals 1 or −1, indicating the coopetitive relationship
between agents. The above equation can be written in the following equivalent form:

ẋ(t) = −Lx(t) (10)

where x(t) = col(x1(t), . . . , xN(t) is the state vector of all individuals, andL is the Laplacian
matrix defined in (1). Three emergent collective behaviors (consensus, polarization or
bipartite consensus, and fragmentation) were explored.

Case 1 (consensus): When the network is a purely cooperative network containing a
spanning tree in Figure 3a, the state limits of all individuals satisfy limt→∞

∥∥xi(t)− xj(t)
∥∥ =

0. Figure 7 depicts the state evolution on this network.
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Figure 7. Consensus on cooperative networks.

Case 2 (bipartite consensus): When the network is Figure 3b, Figure 3c, or Figure 3f,
i.e., the network is a vacuum-balanced or structurally balanced graph containing spanning
trees, the final state of all individuals exhibits a bipartite consensus, that is,
limt→∞

∥∥xi(t)− sgn
(
aij
)
xj(t)

∥∥ = 0. In Figure 8, the seven individuals eventually appear
polarized, forming two limit states, 1 and −1.

Figure 8. Bipartite consensus on structural balanced networks.

Case 3 (fragmentation): When the coopetitive network is a structurally unbalanced
network, as shown in Figure 3d or Figure 3e, then the state of groups eventually splits,
i.e., the states of all individuals converge to more than two limit states. Figure 9 depicts
the state evolution on a structurally unbalanced network, where the blue solid lines and
the red dotted lines respectively denote the trajectories of agents from two competitive
subgroups. The three limit states are 1, 0, and −1.

Figure 9. Group splits on structurally unbalanced networks.

From the above simulation results, it can be observed that for a coopetitive network,
the structural balance condition is a necessary requirement to achieve bipartite consensus.

Immediately afterward, Proskurnikov et al. [50] extended Altafini’s model for opinion
dynamics in social networks and discussed the modulus consensus problem on time-
varying directed signed graphs. This paper studied linear and nonlinear consensus pro-
tocols within a common framework, relaxing the constraints of strong connectivity and
structural balance.

Ma et al. [51] investigated the bipartite consensus problem of first-order MASs on fixed
directed graphs in the presence of measurement noise. This paper uncovered that even
in the presence of measurement noise, achieving bipartite consensus on a signed graph
with structural balance and a spanning tree was the minimum connectivity assumption
required. Moreover, when the signed graph was structurally unbalanced, the state of the
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closed-loop system can achieve mean square convergence to zero as long as certain mild
conditions are satisfied.

Guo et al. [52] discussed the bipartite consensus problem in MASs on directed signed
graphs. This paper demonstrates the achievability of bipartite consensus on directed graphs
with communication delays and strongly connected structurally balanced conditions. Ad-
ditionally, the paper considered the case of structural balance, and proposed a method to
pin a specific agent so that the system can achieve pinning bipartite consensus.

Shao et al. [53] investigated the bipartite consensus problem of MASs with second-
order discrete-time dynamics under asynchronous settings. This paper took into account
switching topologies and established an asynchronous distributed control protocol, while
sufficient conditions were provided for achieving asynchronous bipartite consensus.

Recently, Wu et al. have worked constructively on the bipartite consensus of coopeti-
tive networks with unknown disturbances or communication noise in [54–56].

In [54], the interventional bipartite consensus was addressed for high-order MASs
with nonlinear unknown time-varying disturbances. Several adaptive estimators based on
neural networks were proposed to estimate the nonlinear disturbances. The convergence
of bipartite consensus was analyzed using the Lyapunov function method.

In [55], the mean square bipartite consensus problem was investigated in high-order
MASs, incorporating modeling of coopetition interactions and communication noise. This
paper proposed a distributed control strategy that was independent of the agent state
matrix, and developed a novel randomized approximation strategy utilizing relative state
information to suppress communication noise.

In [56], the bipartite consensus problem was explored for high-order MASs, consider-
ing scenarios with and without external systems (i.e., leaders). By designing distributed
adaptive control laws and utilizing the linear parameterization approach to describe the
time-varying characteristics of unknown disturbances, two fully distributed control strate-
gies were proposed that did not rely on any global information. These strategies guaranteed
the achievement of bipartite consensus MASs.

In addition, the output bipartite consensus of heterogeneous MASs was also discussed
in [57,58].

Liang et al. [57] investigated the bipartite output synchronization problem for het-
erogeneous MASs with time-varying communication networks. This paper proposed a
novel edge-based adaptive output feedback control strategy. By utilizing a sophisticated
Lyapunov function, the convergence of the closed-loop system was analyzed.

Wu et al. [58] discussed the output bipartite consensus problem for heterogeneous
MASs and further extended the results of [57]. In light of the unavailability of state
information for leaders and unknown system matrices, new distributed estimators were
designed for each of them.

The existing research works on bipartite consensus, along with additional details, are
summarized in Table 3. Currently, there are some constraints on bipartite consensus, such
as structural balance, spanning tree, or joint spanning tree. However, in the real world, the
relationship between cooperation and competition can be very complex, and the network
topology may not necessarily meet these conditions. Therefore, studying the dynamics of
MASs on coopetition networks without structural constraints is of significant practical and
theoretical importance.

3.2. Cluster Consensus

In numerous engineering applications, it is often necessary to classify individuals
within MASs into multiple groups based on physical attributes or assigned tasks. Each of
these groups is commonly referred to as a cluster. In response to this scenario, researchers
have proposed a broader concept known as cluster consensus. In cluster consensus, indi-
viduals belonging to the same cluster are required to converge to the same constant value,
while different clusters may not coincide with each other.
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Table 3. A survey of the research undertaken on the bipartite consensus problem.

Reference Year Dynamics Network Topology Contribution

[49] 2012 First-order integrator Static signed graphs Giving the concept of bipartite consensus

[45] 2014 General linear dynamics Directed signed graphs Delving into three emergent collective behaviors
(consensus, bipartite consensus, and fragmentation)

[50] 2015 First-order integrator Time-varying topology Extending Altafini’s model into time-varying directed
signed graphs

[51] 2017 First-order integrator Fixed signed digraphs Considering bipartite consensus under measurement
noise

[52] 2018 First-order integrator Directed signed graphs Investigating pinning bipartite consensus under
communication delays

[53] 2018 Second-order integrator Switching topologies Studying bipartite consensus under switching
topologies

[54] 2016 High-order dynamics Directed signed graphs Addressing the interventional bipartite consensus
with unknown disturbances

[55] 2018 General linear dynamics Directed signed graphs Investigating the mean square bipartite consensus
with communication noise

[56] 2019 High-order dynamics Directed signed graphs Proposing fully distributed adaptive control laws

[57] 2020 Heterogeneous dynamics Directed signed graphs Proposing a novel edge-based adaptive output
feedback control strategy

[58] 2023 Heterogeneous dynamics Directed signed graphs Designing the new distributed estimators for leader’s
unavailable information and unknown system matrix

In 2009, Yu and Wang [59] studied the cluster consensus problem of a first-order
continuous MAS with two groups. In the scenario where information exchange was
undirected, a novel consensus protocol was proposed to tackle the challenge of achieving
group consensus. Several convergence conditions were established by leveraging principles
from graph theory and matrix theory.

Subsequently, Yu et al. [60] incorporated topology switching and communication
delays into a directed network and examined the problem of group consensus in MASs
by introducing a double tree-form transformation. Certain necessary and/or sufficient
conditions were derived for achieving group consensus.

Chen et al. [61] studied a first-order discrete-time CMAS with fixed and switching
topologies, presenting a partitioning algorithm for strongly connected directed graphs.
Then, by relying on the non-negative matrix analysis and Markov chain, two necessary
conditions were presented for achieving cluster consensus. This paper can provide a
response to the issues of determining clustering and ensuring consensus in MASs.

Thereafter, the group consensus problem with two groups was extended to a more
general group consensus problem in [62]. The concepts of in-degree balance, out-degree
balance, and balance pair were first proposed, and the condition of balance pair was used to
restrict the coupling interaction between the clusters. These pioneering research works have
attracted the attention of, and sparked discussions among, numerous scholars regarding
cluster consensus with multiple clusters.

In [46], Qin et al. addressed the cluster consensus problem for linear MASs using an
acyclic partitioning approach to rearrange all directed edges in acyclic directed graphs, and
gave the following distributed feedback control protocol:

ui(t) = K

[
∑

j∈Ni

aij
(
xj(t)− xi(t)

)
+ di(sī(t)− xi(t))

]
(11)

where K is the feedback matrix that needs to be designed, and si, i = 1, . . . , p are p particular
solutions of a homogeneous system ṡ(t) = As(t), such that limt→∞

∥∥si(t)− sj(t)
∥∥ �= 0,

where di > 0 when agent i is pinned by si, otherwise di = 0. The results showed that
for acyclic directed graphs, regardless of the intra- and inter-cluster coupling strength,
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the cluster consensus for general linear MASs can be achieved by designing the feedback
control matrix K.

Later on, Yu et al. [63] introduced another partition structure for coopetitive networks,
i.e., balanced coupled partition, to investigate the cluster consensus problem for linear
MASs under pinning control. The results indicated that for fixed topology networks, if
each cluster contained a directed spanning tree and the intra-cluster coupling strength was
strong enough compared to the inter-cluster coupling strength, it was easy to design a
feedback controller to make the system achieve cluster consensus; for switching topology
networks, the necessary conditions to achieve cluster consensus were given.

Ma et al. [64] examined the consensus problem in first-order multi-agent systems
(MASs) with fixed and directed topologies, taking into account time delays. This study
introduced the novel concept of cluster-delay consensus. By employing graph theory,
Lyapunov stability analysis, and matrix theory, the authors derived sufficient conditions to
ensure the maintenance of cluster-delay consensus in MASs.

Chen et al. [65] studied the cluster consensus problem of MASs with heterogeneous
dynamics. The issue was addressed by employing output regulation techniques and
constructing state feedback controllers. This paper can be considered to extend the previous
research that focused on the standard consensus problem in homogeneous MASs, allowing
for different dynamics of agents in heterogeneous MASs.

Dong et al. [66] investigated the problem of cluster consensus for general linear MASs
and proposed a novel intermittent output control strategy that enables effective cluster
consensus control under nonperiodic operation. This paper provided a new approach and
direction for addressing the problem of cluster consensus in MASs.

A summary of the existing research work on the cluster consensus problem is presented
in Table 4. Cluster consensus control can enhance the scalability and availability of a system.
However, it may also introduce increased complexity and latency, potentially leading to
reduced performance. Therefore, in practical applications, it is necessary to carefully weigh
the pros and cons and select an appropriate consensus control method based on specific
circumstances.

Table 4. A survey of the research undertaken on the cluster consensus problem.

Reference Year Dynamics Conditions Contribution

[59] 2009 First-order integrator Undirected topology Solving the cluster consensus with two groups

[60] 2010 First-order integrator Directed topology
Examining the problem of group consensus
incorporated topology switching and
communication delays

[61] 2011 First-order integrator Fixed and switching topology Proposing a cluster factorization algorithm for
directed graphs

[62] 2012 First-order integrator Directed topology
Studying the group consensus problem with
multiple groups; proposing the concept of
in-degree balance

[46] 2013 General linear dynamics Fixed and switching topology
Proposing a acyclic partition; investigating the
correlation between cluster consensus behavior
and the coupling strength among agents

[63] 2014 General linear dynamics Fixed and switching topology
Proposing a balanced coupled partition; giving
the necessary conditions for achieving cluster
consensus

[64] 2016 First-order integrator Directed topology Examining the cluster-delay consensus
problem for nonlinear dynamics MASs

[65] 2017 Heterogeneous dynamics Directed topology Employing output regulation techniques to
solve the cluster consensus problem

[66] 2022 General linear dynamics Directed topology Proposing a novel intermittent output control
strategy in the cluster consensus problem
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3.3. Group-Bipartite Consensus

Given the potential for competition between agents of the same group, a special class
of cluster consensus, group-bipartite consensus has emerged over the past two years. The
group-bipartite consensus is expected to accomplish multi-objective symmetric tasks, such
as the formation of multiple symmetric shapes by UAVs simultaneously [67].

Liu et al. [33] combined group consensus and bipartite consensus, introduced the
concept of group-bipartite consensus, and proposed a distributed control protocol to
solve the group-bipartite consensus problem for first-order continuous MASs. The design
protocol was as follows:

ui(t) = ∑
j∈Vī

aij
[
xj(t)− sgn

(
aij
)
xi(t)

]
+ ∑

j/∈Vī

aij
[
xj(t)− φjxi(t)

]
(12)

The above equation can be written in the following equivalent form:

ẋ(t) = −Lx(t) (13)

where x(t) = col(x1(t), . . . , xN(t) is the state vector of all individuals, and L is a new
Laplacian matrix established to facilitate the control implementation and is defined in (4).

When the coopetitive network is a group-bipartite network, as shown in Figure 4,
the trajectories of all agents satisfy the definition of group-bipartite consensus, that is,
limt→∞‖xi(t)− αī‖ = 0 for i ∈ V

(1)
ī and limt→∞‖xi(t) + αī‖ = 0 for i ∈ V

(2)
ī , where

i = 1, . . . , N and αī are k constants. Figure 10 depicts that the trajectories of all agents grad-
ually converge to a triple-bipartite final convergence state under the control protocol (12).
Compared to Figure 8, Figure 10 introduces bipartite consensus as a foundation for a single
group, and incorporates multiple groups to achieve bipartite consensus across multiple
groups. This implies that group consensus and bipartite consensus are special cases of
group-bipartite consensus.
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Figure 10. State evolution of the agents [33].

The group-bipartite consensus problem in a heterogeneous MAS composed of first-
order integrators and second-order integrators was explored in [68]. By leveraging graph
theory and Lyapunov stability methods, sufficient conditions and corresponding consensus
protocols were derived for heterogeneous MASs under undirected communication topolo-
gies. In contrast to existing work [33], this paper eliminated the constraint of network
topology, such as acyclic partitions. However, it only analyzed bipartite networks with two
groups.

Thereafter, Liu et al. [69] discussed the problem of oscillatory group-bipartite consen-
sus control in swarm robots with multiple oscillatory leaders. This paper modeled the
robotic cluster using Euler–Lagrange equations and verified the proposed control method
through two simulations conducted on two typical group-bipartite network topologies.

Wang et al. [67] investigated the problem of coordinated task control in a swarm
of robots by introducing the concept of group-bipartite consensus in networked Euler–
Lagrange systems. By utilizing the structure of acyclic partition network topologies, they
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proposed a static group-bipartite consensus control protocol and established geometric
criteria to guarantee the achievement of multiple symmetric consensus in networked robot
systems.

Recently, considering that most systems in reality are nonlinear, Lu et al. [70] in-
vestigated the finite-time problem of second-order nonlinear MASs with leaders. They
generalized the system to a nonlinear form in order to achieve finite-time group-bipartite
consensus. This paper constrained the nonlinear functions in the system with a semi-
Lipschitz condition, which is derived from fundamental inequalities and the Lipschitz
condition.

Table 5 presents a comprehensive overview of references related to the group-bipartite
problem from the preceding three years. Although group-bipartite consensus shows poten-
tial in handling multi-objective symmetric tasks, the current research fails to consider the
impact of various practical factors, such as communication delays, unobservable states, and
unknown perturbations. Therefore, in order to bridge the gap between the inherent proper-
ties or constraints of consensus algorithms and practical models, further investigation is
needed on consensus problems that involve these practical factors.

Table 5. A survey of the research undertaken on the group-bipartite consensus problem.

Reference Year Dynamics Typical Structure Contribution

[33] 2020 First-order integrator
Acyclic partition,

sign-balanced couple Giving the concept of group-bipartite consensus

[68] 2022 Heterogeneous dynamics Structurally balanced Solving the group-bipartite consensus problem in
heterogeneous CMASs

[69] 2022 Euler–Lagrange systems
Acyclic partition,

sign-balanced couple
Applying oscillatory group-bipartite consensus to
swarm robots

[67] 2023 Networked robot systems Acyclic partition Proposing a static group-bipartite consensus control
protocol

[70] 2023 Double integrator Structurally balanced Studying the finite-time group-bipartite consensus for
nonlinear systems

4. Cooperative Control over Intermittent Clustered Networks

Although cooperation and competition are prevalent in nature and human society,
cooperation is also widespread. Bragagnolo et al. [35] first proposed a cooperative clustered
network with continuous intra-cluster communication and discrete inter-cluster communi-
cation. Two fundamental challenges can be posed for this kind of intermittent clustered
network:

• Problem 1: Design the distributed consensus protocols such that the hybrid continuous–
discrete CMASs can achieve global consensus behavior.

• Problem 2: Determine the characterization of the global consensus value.

The single-integrator dynamic model was expressed as (Bragagnolo et al. [35])⎧⎪⎨⎪⎩
ẋ(t) = −Lx(t), ∀t ∈ R+\T
xl(tk) = Pl xl

(
t−k
)
∀tk ∈ T

x(0) = x0

(14)

where xl(t) is the set of leader states, Pl ∈ Rm×m is a row stochastic matrix associated with
G�, T = {tk ∈ R+|tk < tk+1, ∀k ∈ N, tk reset time}, and L is the Laplacian matrix defined
in (7).

To address the first question, Bragagnolo et al. [35] proposed a quasi-periodic reset
strategy and provided LMI conditions to ensure the global consensus index stability of
subnetworks represented by directed and strongly connected graphs. As for the second
question, the global consensus value depended on the initial conditions and the topology
of the networks involved, including networks associated with clusters and networks
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associated with leaders. It is worth noting that the consensus value is independent of the
reset sequence used for the leader state.

The simulation results in Figure 11 demonstrate that the leader’s trajectory was non-
smooth while the follower’s trajectory was smooth, and the phenomenon of jumps at the
moment of reset had no effect on the calculated consensus.

Figure 11. The state trajectories of the agents converging to the calculated consensus value [35].

Morarescu et al. [36] investigated the reset control problem for first-order time-varying
CMASs. In contrast to [35], this study also took into account the possibility that the reset
time could be triggered by certain events.

The consensus problem in cluster networks with general linear MASs is more challeng-
ing than the case of integrators, as pointed out by Pham et al. [37,38] and Wang et al. [40]:{

ẋi = Axi + Bui,
yi = Cxi,

t ∈ (tk−1, tk) (15)

where xi ∈ Rn, ui ∈ Rp, and yi ∈ Rq are the state, input, and output of the i-th (i = 1, . . . , N)
agent, respectively.

To achieve global state consensus for (15), Pham et al. [37] proposed a reset state
feedback control strategy using relative state measurements. Subsequently, due to physical
or economical constraints in real systems, it is not possible to measure all states with sensors,
so the states need to be observed. In [38], an output feedback control protocol based on
an impulsive observer, more precisely a full-order state observer, was designed for linear
CMASs: ⎧⎨⎩

{ ˙̂xi = Ax̂i + Bui + H(ŷi − yi) + qLξi,
ŷi = cx̂i,

ui = pK ∑N
j=1 aij(x̂j − x̂i),

t ∈ (tk−1, tk) (16)

where x̂i ∈ Rn is the observer state, ŷi ∈ Rn is the output of the observer, H, L ∈ Rn×q, K ∈
Rp×n are the gain matrices, p > 0, q > 0 are the coupling gains, and ξi is the relative output
measurement of the i-th agent defined by ξi = ∑N

j=1 aij[(ŷj − ŷi)− (yj − yi)].
However, at the reset time, when it came to state updates between clusters, the state

information that was not measurable at the prior time was exploited:{
x�i

(tk) = ∑m
j=1(Pl(ij) ⊗ In)x�j

(t−k ), x fτ
(tk) = x fτ

(t−k ),
x̂�i

(tk) = ∑m
j=1(Pl(ij) ⊗ In)x̂�j

(t−k ), x̂ fτ
(tk) = x̂ fτ

(t−k ),
t = tk (17)

where x�i
(tk), x fτ

(tk) and x̂�i
(tk), x̂ fτ

(tk) represent the states and observer states of leaders
and followers at time tk, respectively.
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To avoid such irrationality, Wang et al. [40] proposed a reset reduced-order observer-
based output feedback control strategy as follows:{

v̇i = Fvi + Gyi + Hui,
ui = cKQ1 ∑N

j=1 aij(yi − yj) + cKQ2 ∑N
j=1 aij(vi − vj),

t ∈ (tk−1, tk) (18)

and {
y�i

(tk) = ∑m
j=1(Pl(ij) ⊗ Iq)y�j

(t−k ), y fτ
(tk) = y fτ

(t−k ),
v�i

(tk) = ∑m
j=1(Pl(ij) ⊗ In−q)v�j

(t−k ), v fτ
(tk) = v fτ

(t−k ),
t = tk (19)

where vi ∈ Rn−q is the observer state, c > 0 is the coupling strength, and Pl ∈ Rm×m is
a row stochastic matrix associated with G�. F ∈ R(n−q)×(n−q), K ∈ Rp×n, G ∈ R(n−q)×q,
H ∈ R(n−q)×p, Q1 ∈ Rn×q, and Q2 ∈ Rn×(n−q) are constant matrices designed according to
Algorithm 1 in [40] below.

Algorithm 1: Output feedback control algorithm of the homogeneous MAS
Step 1: Hurwitz matrix F is selected to make its eigenvalues different from those of

Â, where Â = CAC+. Select the matrix G so that (F, G) is controllable.
Step 2: Find the unique solution T to the Sylvester equation TC+CA− FT = GC,

which satisfies that
[

C
T

]
is non-singular. If

[
C
T

]
is singular, return to step 1 and

select G again, until it is non-singular. Then, H = TC+ B̂ with B̂ = CB. Compute

matrices Q1 and Q2 using
[
Q1 Q2

]
=

[
C
T

]−1

.

Step 3: For a given positive-definite matrix Q̂, solve the Riccati equation
ÂT P + PÂ− PB̂B̂T P = −Q̂ to obtain a positive-definite matrix P such that
K̂ = −B̂T P.

Step 4: Select the coupling strength c ≥ 1
2minλκ,i �=0{Re(λκ,i)} , where λκ,i is the i-th

nonzero eigenvalue of the Laplacian matrix Lκ .

In Algorithm 1, it is worth noting that the Hurwitz matrix F and the matrix T satisfying
the Sylvester equation play the critical roles in solving the global output consensus value
ỹ∗(t) in steps 1 and 2, respectively. In addition, the solution of the Riccati equation in step
3 and the determination of the coupling strength c in step 4 are sufficient conditions for the
synchronization of the system described by Equation (15).

Regarding the first problem, due to the unavailability of states, the problem addressed
by Wang et al. [40] was no longer the state consensus but the output consensus. To
emphasize the second problem, as demonstrated by Theorem 3 in [40], the global output
consensus value ỹ∗(t) was

ỹ∗(t)− eÂt(φTQ⊗ Iq)Cx(0)
Σm

i=1φi
= 0, as t→ ∞ (20)

Based on the simulation results, when the cooperative network is illustrated in Figure 5,
the output convergence yi(t), i = 1, . . . , 7 of CMASs under Algorithm 1 and the reset
reduced-order-based protocol (18)–(19) are displayed in Figure 11. It is evident from the
results that the evolution of the two leaders abruptly changes at the reset time, whereas the
followers exhibit a smooth evolution, ultimately achieving output consensus. Moreover,

the consensus value computed by (20) is ȳ∗ =
[−0.94
−0.94

]
. It can be seen that the convergence

of the system does not suffer from the chattering phenomenon during the reset time. From
Figure 12, it is evident that the reduced-order observer, as compared to the reset full-order
observer protocols in [40], exhibits a longer convergence time. This can be attributed to the
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reduction in computational redundancy and storage capacity in the system, which comes
at the expense of a longer convergence time.

(a) The first output variable (b) The second output variable

Figure 12. Trajectories of output variables yi(t) with reset reduced-order observer [40].

Most recently, Wang et al. [42] investigated the output synchronization problem for
heterogeneous CMASs with hybrid continuous–discrete dynamics as follows:⎧⎨⎩

{
ẋi = Aixi + Biui,
yi = Cixi

t ∈ [tk−1, tk)

y�i
(tk) = ∑m

j=1(Pl(ij) ⊗ Iq)y�j
(t−k ), y fτ

(tk) = y fτ
(t−k ), t = tk

(21)

where xi ∈ Rni , ui ∈ Rpi , and yi ∈ Rq are the state, input, and output of the i-th (i =
1, . . . , N) agent, respectively. Here y�i

(tk), y fτ
(tk), and Pl have the same meanings as in

(17). Ai, Bi, and Ci denote constant matrices with compatible dimensions and satisfy the
following assumption.

Assumption 6. (Ai, Bi) is stabilizable, (Ai, Ci) is detectable, and Ci is full rank with rank q.

To address the output synchronization problem in heterogeneous CMASs, the ideas
in [42] were divided into three steps:

The first step was to artificially create an internal reference model for each agent (as
shown in Figure 13, with the same physical network structure as the heterogeneous CMASs)
and design a reduced-order observer-based reset output feedback controller based on reset
internal models as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

{
ξ̇i = Sξi + K ∑N

j=1 aij(ξi(t)− ξ j(t)),
ŷi = Dξi,

v̇i = Fivi + Giyi + Hiui,
ui = Ki1Qi1yi + Ki1Qi2vi + Ki2ξi

t ∈ [tk−1, tk) (22)

and at the reset time tk,⎧⎪⎨⎪⎩
ξ�i

(tk) = ∑m
j=1 Pl(ij)ξ�j

(t−k ), ξ fτ
(tk) = ξ fτ

(t−k ),
v�i

(tk) = v�i
(t−k ) + T�i

C+
�i
[∑m

j=1 Pl(ij)y�j
(t−k )− y�i

(t−k )],
v fτ

(tk) = v fτ
(t−k ),

(23)

where ξi(t) ∈ Rr and ŷi(t) ∈ Rq represent the internal reference model states and out-
puts, respectively. vi(t) ∈ Rni−q denotes the reduced-order-observer states. S ∈ Rr×r

and D ∈ Rq×r represent the state and output matrices of the internal reference models,
respectively. K ∈ Rr×q, Fi ∈ R(ni−q)×(ni−q), Gi ∈ R(ni−q)×q, Hi ∈ R(ni−q)×pi , and T�i

∈ Rr×q

are designed according to Algorithm 2 below.
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Algorithm 2: Output feedback control algorithm of the heterogeneous MAS
Step 1: Select the Hurwitz matrix Fi to ensure that its eigenvalues are different from
those of Âi, where Âi = Ci AiC+

i . Select the matrix Gi such that (Fi, Gi) is
controllable.

Step 2: Determine the unique solution Ti to the Sylvester equation

TiC+
i Ci Ai − FiTi = GiCi such that

[
Ci
Ti

]
is non-singular. If

[
Ci
Ti

]
is singular, return

to Step 1 and select Gi again until it is non-singular. Compute matrices Qi1 and Qi2

using
[
Qi1 Qi2

]
=

[
Ci
Ti

]−1

and then select Hi = TiC+
i B̂i, where B̂i = CiBi.

Step 3: Select the gain matrices Ki1 such that Âi + B̂iKi1C+
i is Hurwitz,

Ki2 = Γi − Ki1Πi, where the solution pairs (Πi, Γi) with Πi ∈ Rni×r, Γi ∈ Rpi×r

depend on the following regulator equation:

ΠiS = AiC+
i CiΠi + BiΓi,

Πi = C+
i D, i = 1, 2, . . . , N.

(24)

Figure 13. The heterogeneous CMASs in physical space and the artificially created homogeneous
internal reference model [42].

In the implementation of Algorithm 2, all parameters are carefully selected to ensure
the synchronization of heterogeneous CMASs (21) and are utilized during the convergence
analysis. Additionally, the utilization of the generalized inverse of matrix Ci from [42] leads
to the derivation of the solution pair (Πi, Γi) using the regulator equation (24), which is
based on the information provided by S, D, and (Ai, Bi, Ci).

The second step is to demonstrate that the homogeneous internal reference models
achieve synchronization. With Figure 13 as a simulation example, Figure 14 shows the
trajectories of state ξi, i = 1, . . . , 7. It is clear that the internal reference model state achieves
synchronization under Algorithm 2 and the hybrid communication mechanism (22)–(23).
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Figure 14. State trajectories ξi(t) of the reset internal models [42].
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The third step is to let each agent track the corresponding internal reference model to ob-
tain the output synchronization of the heterogeneous CMAS, that is, limt→∞

∥∥yi(t)− yj(t)
∥∥

= 0. The trajectory of the output variable yi(t) can be seen to achieve synchronization, as
shown in Figure 15.

0 1 2 3 4 5 6 7 8 9 10

Time

-8

-6

-4

-2

0

2

4

leader1
follower2
follower3
follower4
leader2
follower6
follower7

(a) The first output variable

0 1 2 3 4 5 6 7 8 9 10
Time

-6

-4

-2

0

2

4

6

leader1
follower2
follower3
follower4
leader2
follower6
followe7

(b) The second output variable

Figure 15. Trajectories of output variables yi(t) [42].

To comprehensively investigate the disparity between consensus algorithms and the
inherent attributes or constraints present in practical models, a thorough exploration of
consensus issues incorporating real-world factors is imperative. These real-world factors
encompass communication constraints (e.g., time delay and sampling perturbations), quan-
tization, and state saturation, all of which can be considered vital constraint characteristics
within practical models.

Recently, Pham et al. [39] focused on investigating the challenge of formation control
in state-constrained clustered network systems. To tackle the issue arising from the combi-
nation of hybrid communication and state saturation, a highly resilient formation control
protocol was proposed.

The output consensus problem for heterogeneous CMASs with disturbances was
investigated in [41]. A new output consensus protocol was proposed in which each agent
had an observer to reconstruct the state and disturbances, and a virtual reference model to
take into account continuous intra-communication and discrete inter-communication.

Based on the above review, Table 6 lists the key characteristics of these studies, which
explicitly show the advantages and disadvantages of the research questions. From Table 6,
it is easy to see that although various cooperation control problems over intermittent cluster
networks have been studied, there are still many critical issues to be further addressed in
future work, such as the time sequence of inter-cluster communication being determined
by event triggers rather than predetermined.

Table 6. Advantages and disadvantages of cooperation control problems over intermittent cluster
networks.

Reference Year Dynamics
Advantages and Disadvantages

State Information Communications Constraint Reset Instants

[35] 2016 First-order integrator � None Predetermined
[36] 2016 First-order integrator � Time-varying topology Event-triggered
[37] 2019 General linear dynamics � None Predetermined
[38] 2020 General linear dynamics × None Predetermined
[39] 2020 General linear dynamics � State saturation Predetermined
[40] 2021 General linear dynamics × None Predetermined
[41] 2022 Heterogeneous dynamics � Disturbances Predetermined
[42] 2023 Heterogeneous dynamics × None Predetermined

If state information can be available, it is marked by �, otherwise use ×.
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5. Prospects for Future Research

An overview of the mathematical modeling and distributed control of wide-area
networks has been presented. While some coordination controls of MASs over wide-area
networks have been discussed in the literature, there are still several critical issues that
need to be addressed in future research. In the following section, several relevant issues are
suggested as potential directions for future investigations.

• Current research on coordination control of MASs has some structural constraints on
communication topology. For example, bipartite consensus requires a structurally
balanced condition, cluster consensus requires an in-degree balance assumption, and
group-bipartite consensus needs to be structurally balanced, and requires acyclic par-
tition, and sign-balanced couple. Furthermore, to achieve such dynamical behaviors,
a spanning tree or joint spanning tree in the network topology is necessary. There-
fore, investigating the dynamical behavior of MASs on more general unstructured
constrained networks would be highly beneficial.

• In the existing results of cooperative control on intermittent clustered networks, the
interaction moments between neighboring clusters are artificially predetermined.
However, in order to enhance work efficiency and facilitate flexible information
interactions, the inter-cluster communication often needs to change based on actual
demand. Therefore, considering the incorporation of demand-based event-triggered
impulsive control strategies for intermittent clustered networks is of great practical
importance.

• Although group-bipartite consensus has the potential to address multi-objective sym-
metric tasks, it still faces challenges and limitations in practical applications. For
instance, designing effective protocols to achieve group-bipartite consensus and ad-
dressing noise and faults in the systems that warrant further investigation.

In the last decade, numerous innovative frameworks and models have emerged in the
study of wide-area networks for MASs, enhancing the literature on agent-based systems
and expanding their potential applications. However, this field is still in its early stages
and requires further refinement of theoretical results. In our review, we focus on group-
bipartite networks, which have the potential to effectively handle complex tasks involving
multiple levels and structures. However, these networks face various constraints related
to topology, and communication constraints (e.g., delays, saturation, disturbances) have
not been adequately addressed. To make group-bipartite networks more practical, future
research should tackle these limitations. Cooperative intermittent clustered networks are
particularly suitable for post-disaster communication networks and power grids due to
their distinctive communication methods. Nevertheless, there are significant hurdles to
overcome, such as predefined long-distance interactions. To address these issues, it is
necessary to develop more flexible control algorithms that facilitate sparse communication
between clusters.

6. Conclusions

MASs serve as important methodologies and tools for the analysis and modeling of
complex systems. In this review, we categorize wide-area networks based on the interaction
modes of cooperation or competition among agents. We provide mathematical modeling
for each type, review the relevant literature, and summarize the key findings. Finally, we
provide future research prospects. Exploring the clustering and sparsity of MASs can help
explain real-world clustering phenomena and can be applied to practical engineering.
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Abstract: Current multimodal neural machine translation (MNMT) approaches primarily focus on
ensuring consistency between visual annotations and the source language, often overlooking the
broader aspect of multimodal coherence, including target–visual and bilingual–visual alignment. In
this paper, we propose a novel approach that effectively leverages target–visual consistency (TVC)
and bilingual–visual consistency (BiVC) to improve MNMT performance. Our method leverages
visual annotations depicting concepts across bilingual parallel sentences to enhance multimodal
coherence in translation. We exploit target–visual harmony by extracting contextual cues from visual
annotations during auto-regressive decoding, incorporating vital future context to improve target sen-
tence representation. Additionally, we introduce a consistency loss promoting semantic congruence
between bilingual sentence pairs and their visual annotations, fostering a tighter integration of textual
and visual modalities. Extensive experiments on diverse multimodal translation datasets empirically
demonstrate our approach’s effectiveness. This visually aware, data-driven framework opens excit-
ing opportunities for intelligent learning, adaptive control, and robust distributed optimization of
multi-agent systems in uncertain, complex environments. By seamlessly fusing multimodal data
and machine learning, our method paves the way for novel control paradigms capable of effectively
handling the dynamics and constraints of real-world multi-agent applications.

Keywords: multi-modal neural machine translation; bilingual-visual harmony; visual annotation

MSC: 68-02

1. Introduction

The complex and uncertain environments of multi-agent systems, along with inaccu-
rate system dynamics, present significant challenges for effective modeling, control, and
optimization. In multimodal neural machine translation (MNMT), the concept of visual
annotation, which captures the essence of content in bilingual sentence pairs, has gained
much attention [1–8]. Visual annotations are typically represented as images or videos that
depict the main concepts and actions described in the corresponding text. This method
uses an extra encoder to turn visual annotations into visual representations, effectively
conveying the content of the source sentence [9]. These visual representations are then
integrated into the decoder along with the source sentence representation [10]. This process
enriches the context vector, which evolves over time and contributes to the step-by-step
generation of the target translation. The successful integration of visual information has
led to the development of the bi-encoder-to-decoder framework, which simultaneously
translates the source sentence and its visual annotation into a target sentence with the same
meaning, opening up new possibilities in MNMT [11,12].

While MNMT has demonstrated the ability to extract valuable translation cues from
visual information, thereby enhancing the context vector’s role in generating the target
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translation through auto-regressive decoding, current approaches primarily focus on align-
ing the visual annotation with the source language. This narrow focus fails to fully address
the broader concept of multimodal consistency, which encompasses not only source–visual
alignment but also target–visual and bilingual–visual alignment. Visual annotation cap-
tures the meaning of both the source sentence (e.g., English) and the corresponding target
sentence (e.g., German), a phenomenon known as target–visual consistency. Exploiting
this consistency allows for the MNMT model to extract valuable contextual information
from the visual input, leading to a more informed and accurate translation process. Fur-
thermore, the visual annotation reflects the semantic content of both the source and target
sentences, introducing the concept of bilingual–visual consistency. To fully leverage the
potential of visual information, MNMT should aim to replicate this bilingual alignment,
promoting semantic harmony between the parallel sentences and the visual annotation.
Incorporating both target–visual and bilingual–visual consistencies enables MNMT to
fully exploit the rich information contained in visual annotations, leading to significant
improvements in translation quality. By leveraging these two forms of consistency, MNMT
can access a wealth of contextual information, resulting in more accurate, nuanced, and
coherent translations.

Despite the potential benefits of incorporating target–visual and bilingual–visual
consistencies, current MNMT methods often treat visual data as supplementary information
rather than integrating them deeply into the core translation process. This limitation arises
because these methods fail to fully exploit the potential of visual information, resulting
in suboptimal contextual integration and less coherent translations. To address this issue,
there is a need for novel MNMT approaches that deeply integrate visual information
into the translation process, leveraging target–visual and bilingual–visual consistencies to
improve translation quality and coherence.

To address the limitations of current MNMT approaches and fully leverage the po-
tential of visual information, we propose a novel multimodal consistency approach that
effectively utilizes target–visual consistency (TVC) and bilingual–visual consistency (BiVC)
derived from visual annotations. For TVC, we employ an attention layer to extract future
context from the visual annotation under the supervision of the ground-truth future target
textual context, forming a multimodal target context. This extracted feature is then fed into
a masked self-attention module to learn a target representation summarizing both past and
future context information, enabling the model to capture long-range dependencies and
generate more coherent translations. To promote BiVC, we introduce a bilingual–visual
consistency loss term to guide the training of MNMT, encouraging semantic agreement
between the learned bilingual sentence representations and the visual representation. The
main contributions of this work are as follows:

• New target–visual consistency approach: We propose a new method to leverage future
context cues from visual data, addressing the limitations of auto-regressive decoders
and enabling the model to generate more accurate and coherent translations.

• Bilingual–visual consistency: We introduce a new loss term that guides the learning of
semantically aligned textual and visual representations, fostering a tighter semantic
integration and improving the overall quality of the translations.

• Performance evaluation:Through extensive experiments on widely used multimodal
translation datasets, such as Multi30k English-to-French/German/Czech [13] and
Flickr30kEnt-JP Japanese-to-English [14], we demonstrate that our approach achieves
significant performance improvements over strong baselines and sets new state-of-
the-art results.

By deeply integrating visual information into the translation process, our approach
not only enhances the accuracy and fluency of translations but also opens up new possi-
bilities for multimodal communication. This work paves the way for future research that
can harness the rich contextual cues provided by visual data, ultimately leading to the
development of more advanced and human-like language processing systems capable of
understanding and translating complex, multimodal content.
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2. Related Work

MNMT encompasses the translation of a target sentence alongside pertinent non-
linguistic cues, such as visual information [4,15–17]. A notable approach, introduced
by [18], involves a latent variable model that intricately intertwines visual information and
textual features, forming a robust foundation for MNMT. This pioneering work delved into
the complex interplay between visual and textual modalities, showcasing the substantial
benefits of incorporating visual cues into the translation process. Another noteworthy
contribution, as discussed by [19], explored MNMT by incorporating visual information
as an additional spatiotemporal context to facilitate the translation of a source sentence
into the target language. Their approach dynamically emphasized key words within
the source sentence and integrated essential spatiotemporal cues from images into the
decoder, enabling the generation of the target sentence. While their method effectively
leveraged visual information to guide the decoding process, it is important to note that
they did not directly encode image features or explicitly model the varying importance of
different modalities. Furthermore, the work by [12] introduced a multimodal approach
based on the transformer architecture [20]. Their approach induced hidden representations
of images from the text, guided by image-aware attention mechanisms. This innovative
methodology laid the groundwork for a more comprehensive integration of textual and
visual information, enhancing the model’s capacity to understand and generate translations
that faithfully capture the essence of both modalities. Taken together, these seminal works
highlight the growing importance of integrating visual cues into the MNMT framework
and propose diverse strategies to effectively harness the complementary nature of textual
and visual contents, ultimately leading to significant improvements in translation quality.

In the realm of MNMT, the concept of multimodal consistency revolves around the
synchronization of visual and textual information to convey the same underlying semantics.
An influential study by [2] integrated global visual features into an encoder–decoder frame-
work, leveraging an attention-based recurrent neural network (RNN). This work laid the
foundation for subsequent approaches, such as [17,21,22], which harnessed global visual
information to establish simultaneous neural machine translation (NMT). These methods
effectively utilize visual cues to complement the incomplete textual modality during the
decoding process, demonstrating the potential of multimodal consistency in enhancing
the robustness and efficiency of MNMT systems. Furthermore, visual information has
been leveraged as a pivot to facilitate the creation of a shared multilingual visual–semantic
embedding space in various approaches. For instance, Ref. [23] highlighted the signifi-
cance of visual information in enhancing alignments within the latent language spaces,
emphasizing the shared physical perceptual nature of visual cues across different languages.
This insight has important implications for the development of more effective multilingual
MNMT models that can better capture cross-lingual semantic correspondences. Addition-
ally, Ref. [24] put forth a technique that employed visual agreement regularization during
training to foster bilingual representations by aligning source-to-target and target-to-source
models, further underscoring the critical role of multimodal consistency in improving the
quality and coherence of translations. Moreover, LSTM networks have been widely used
in NMT and have shown robust performance in various tasks. They effectively handle
sequential data and maintain long-term dependencies through their gating mechanisms.
While LSTMs are effective, they tend to be less efficient in capturing long-range dependen-
cies compared to transformers. Additionally, LSTMs rely on sequential processing, which
can be a bottleneck for training speed and scalability. The self-attention mechanism in
transformers allows for more flexible and context-aware representations, which are crucial
for handling the complexities of multimodal inputs. Transformers are more scalable and
efficient for large datasets, a critical factor given the size of our training data.

Drawing inspiration from these advancements, our study harnesses the power of
multimodal consistency in two key aspects to push the boundaries of MNMT performance.
Firstly, we utilize multimodal consistency to enable our model to capture future contexts
from visual cues, introducing a novel approach to enhance target context modeling and
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generate more accurate and fluent translations. Secondly, we employ this consistency to
ensure semantic coherence between bilingual parallel sentences and the anchored visual
annotation, proposing a new training objective that encourages the model to learn more
robust and semantically aligned representations. By deeply integrating multimodal consis-
tency into the core of our MNMT framework, we aim to unlock the full potential of visual
information and set a new state of the art in the field.

3. Background of Multimodal Transformer

In this section, we introduce an advanced multimodal transformer framework for
MNMT [12], which has achieved state-of-the-art performance on the Multi30k multimodal
translation task. Unlike the classical transformer framework, this model incorporates
a multimodal self-attention mechanism to encode both textual and visual information,
learning a visually aware representation of the source sentence that serves as input to the
decoder for generating the target translation word-by-word.

3.1. Multimodal Self-Attention

Given an input textual sentence of length J, represented as Xtext = (x1, . . . , xJ), the
traditional self-attention mechanism, denoted as ATTs, computes a new representation
Htext = (h1, h2, . . . , hJ). This mechanism dynamically weights the importance of each word
within the sentence when computing the representation of each word. The traditional self-
attention mechanism ATTs projects each word xi into Query (xiW

Q
e ), Key (xjWK

e ), and Value

(xjWV
e ) spaces using layer-specific trainable matrices WQ

e , WK
e , and WV

e ∈ Rdmodel×dmodel ,
where dmodel is the dimension of the word embedding. The attention score for each word
pair (i, j) is computed using the scaled dot-product:

scoreij =
(xiW

Q
e )(xjWK

e )
�

√
dmodel

. (1)

Next, the new representation hi for each word xi is computed as the weighted sum of
the value projections:

hi =
J

∑
j=1

αij(xjWV
e ), (2)

where αij = softmax(scoreij) and softmax is applied to obtain the attention weights, ensur-
ing that they sum up to 1.

Formally, this process is expressed as

hi = ATTs(xi, Xtext) =
J

∑
j=1

softmax

(
(xiW

Q
e )(xjWK

e )
�

√
dmodel

)
(xjWV

e ). (3)

This model enhances focus on relevant parts of the input sequence by assigning higher
weights to more significant words based on their contextual relationships.

In contrast to the traditional self-attention mechanism that processes only textual
modality, the multimodal self-attention mechanism, denoted as MATT, seamlessly inte-
grates visual information into the text processing framework. Guided by image-aware
attention, this mechanism adaptively combines textual and visual inputs to enhance the
representational power of the model. Formally, the inputs consist of two modalities: text
represented by Xtext ∈ RJ×dmodel , and image represented by Ximage ∈ RN×dmodel . These are
concatenated into a single input Bmulti = {Xtext : Ximage ∈ R(J+N)×dmodel}, simplified as
Bmulti = (b1, b2, · · · , bM), where M = J + N. Each multimodal input bm and text xj is
projected into Query, Key, and Value spaces. Similar to the discussion of ATT, the process
of MATT is formally expressed as
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zm = MATTs(bm, Xtext) =
J

∑
j=1

softmax

(
(bmWQ

e )(xjWK
e )
�

√
dmodel

)
(xjWV

e ). (4)

This results in a visually-informed representation Zmulti = (z1, z2, · · · , zM), where
Zmulti ∈ R(J+N)×dmodel can effectively capture the nuances of both textual and visual inputs.

3.2. Auto-Regressive Decoder

The auto-regressive decoder in MNMT generates target words sequentially, condi-
tioned on previously generated words and multimodal inputs. Given the previously
generated target words y<t = (y1, y2, . . . , yt−1), the decoder computes the target represen-
tation st using the target attention mechanism ATTt, as defined in Equation (5):

st = ATTt(qt, y<t) =
t−1

∑
k=1

softmax

(
(qtW

Q
d )(ykWK

d )
�

√
dmodel

)
(ykWV

d ), (5)

where qt represents the target hidden state at time step t, and WV
d , WQ

d , WK
d ∈ Rdmodel×dmodel

are trainable parameter matrices specific to the decoder. st captures the dependencies
among the previously generated target words and guides the decoding process.

Next, the decoder employs the context attention module ATTc to compute the context
vector ct, which integrates multimodal context information Zmulti:

ct = ATTc(st, Zmulti) =
M

∑
m=1

softmax

(
(stW

Q
c )(zmWK

c )
�

√
dmodel

)
(zmWV

c ), (6)

where WV
c , WQ

c , WK
c ∈ Rdmodel×dmodel are additional trainable matrices. The context vec-

tor ct is then passed through a feed-forward neural network to compute the probability
distribution over the next target word ŷt:

P(ŷt|y<t, Xtext, Ximage) = softmax(Wotanh(Wwct)), (7)

where Wo and Ww are learnable parameters. This formulation ensures that each target
word prediction is conditioned on both previous target words and the multimodal input
Bmulti.

Training the MNMT model θ involves maximizing the log-likelihood of the correct
translation sequence Y given textual and visual inputs Xtext and Ximage:

arg max
θ

T

∑
t=1

log P(yt|y<t, Xtext, Ximage; θ), (8)

where T is the length of the target sequence. This objective is commonly optimized using
cross-entropy loss, ensuring that the model learns to generate accurate translations based
on both textual and visual contexts.

4. Multimodal Consistency-Based MNMT

In this section, we first propose to extract the target future context information from
the visual annotation using the target–visual consistency for enhancing the dependent-time
target representation, which is abbreviated as TVC. We then use the bilingual–visual consis-
tency to guide the training of MNMT, thereby encouraging the semantic agreement between
the learned bilingual sentences and the pivoted visual annotation, which is abbreviated as
BiVC. Figure 1 shows an overview of the proposed multimodal consistency-based MNMT.
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Figure 1. An overview of our method.

4.1. Target–Visual Consistency-Enhanced Target Representation

Auto-regressive decoders in NMT and MNMT are known to struggle with effectively
modeling future target context during generation [25–29]. However, as discussed in Sec-
tion 1, visual annotations encapsulate semantic information of both source and target
sentences. We leverage this target–visual consistency to extract prospective target–side
contextual cues from the visual input, thereby mitigating the aforementioned decoder
limitation.

We first extract a visual feature related to the target future context under the supervi-
sion of the ground-truth target future textual context. This is achieved through an attention
mechanism over the visual annotation:

ut = ATTimage(qt, Ximage) =
N

∑
n=1

softmax(
(qtW

Q
r )(rnWK

r )
�

√
dmodel

)(rnWV
r ), (9)

where ut ∈ R1×dmodel is the extracted visual feature, and qt is the query vector based on
previously generated target words. To ensure ut captures the desired target future context,
we introduce an L1 regularization loss to minimize the mean absolute error between ut and
the ground-truth future target words y

f uture
t :

tvloss = L1loss(ut, Linear f uture(y
f uture
t )), (10)

where Linear f uture reduces the dimension of y
f uture
t to match ut. Both qt and ut are then

fed into a masked multimodal self-attention module to learn an enriched target representa-
tion s′t:

ŝt = MATTt([qt, ut], ypast) =
k<t

∑
k=1

softmax(
([qt, ut]W

Q
d )(ykWK

d )
�

√
dmodel

)(ykWV
d ). (11)

Here, s′t ∈ R1×dmodel encodes both the target past context from previously generated words
and the target future context from the visual annotation. This enriched representation s′t is
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then used to compute the context vector c′t via cross-attention with the source representation
Zmulti:

c′t = ATTc(s
′
t, Zmulti) =

M

∑
m=1

softmax(
(s′tW

Q
c )(zmWK

c )
�

√
dmodel

)(zmWV
c ). (12)

Finally, c′t is used to predict the current target word ŷt:

P(ŷt|y< t, Xtext, Ximage) ∝ exp(Wotanh(Wwc′i). (13)

The training objective is revised to maximize the conditional translation probability
while minimizing the target–visual consistency loss tvloss:

J (φ) = arg max
φ

celoss(Y|Xtext, Ximage)− tvloss(Y, Ximage). (14)

By explicitly modeling target–visual consistency during training and inference, our
approach can effectively leverage future context cues from visual data, overcoming the
inherent limitations of auto-regressive decoders and leading to more informed and coherent
target translations.

4.2. Bilingual–Visual Consistency-Guided MNMT

While traditional text-only NMT models rely on source–target consistency, MNMT
introduces an additional dimension, i.e., bilingual–visual consistency. This concept posits
that the visual annotation should coherently represent the content described in both source
and target sentences. However, existing MNMT approaches often overlook this crucial
aspect, potentially underutilizing the rich information present in visual annotations.

To address this limitation, we introduce a bilingual–visual consistency loss term to
guide our MNMT model training. This encourages semantic agreement between the learned
bilingual sentence representations and the pivotal visual annotation representation. Given
the source textual representation Zmulti ∈ RJ×dmodel and the target context representation
C′ = (c′1, c′2, · · · , c′T) ∈ RT×dmodel , we first project them to match the dimension of the visual
representation Ximage:

Zmulti = Linears(Z
multi, Ximage) (15)

C ′ = Linears(C
′, Ximage) (16)

Then, we compute the mean absolute error (or L1Loss) between the converted bilingual
sentence representations {Zmulti,C ′} and the pivoted visual representation X image:

bivloss(Xtext, Ytext, Ximage) = L1losss2i(Zmulti, Ximage) + L1losst2i(C ′, Ximage), (17)

where L1losss2i focuses on the mean absolute error (or L1Loss) between Zmulti and Ximage,
and L1losst2i focuses on the mean absolute error (or L1Loss) between C ′ and Ximage When
the values of bivloss(Xtext, Ytext, Ximage) are smaller, the semantic consistency between
the learned bilingual sentences and the pivoted visual annotation is higher. To obtain a
bilingual–visual consistency-guided MNMT model ϕ, the training objection maximizes the
conditional translation probability over the training dataset {[Xtext, Ximage, Y]} as follows:

L(ϕ) = arg max
ϕ
{celoss(Y|Xtext, Ximage)− bivloss(Xtext, Ytext, Ximage)}. (18)

By explicitly encouraging the alignment of learned bilingual sentence representations
with visual annotations during training, our approach effectively captures the underlying
semantic relationships across modalities. This bilingual–visual consistency serves as an
inductive bias, guiding the model to learn more coherent and semantically aligned rep-
resentations, thereby enhancing translation performance. The proposed TVC and BiVC
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components synergize, with TVC leveraging visual data to enrich target representations
and BiVC ensuring a tight semantic coupling between bilingual text and visual information.
Together, they enable our MNMT approach to fully exploit the complementary strengths
of textual and visual modalities, overcoming the limitations of previous methods. Our
multimodal consistency framework introduces a novel paradigm for MNMT, moving be-
yond traditional techniques that treat visual data as merely supplementary. Instead, our
approach deeply integrates visual information into the core translation process, enabling
more informed, contextually rich, and semantically coherent translations.

5. Experimental Setup

5.1. Dataset and Setup

In this section, we introduce the dataset and evaluation metrics, and provide the
detailed experimental settings. We conducted experiments on four language pairs from
two widely used multimodal translation datasets, including Multi30k [13] for English-to-
German (En-De), English-to-French (En-Fr), and English-to-Czech (En-Cs), and Flickr30kEnt-
JP for Japanese-to-English (En-Ja) [14]. The Multi30k dataset contains 29K bilingual parallel
sentence pairs with visual annotation, 1K validation instances, and 1K test instances.
Flickr30kEnt-JP contains Japanese translations of the first two original English captions
for each image in the Flickr30k [30] Entities dataset. We used the Test2017 and Test2016
datasets for the evaluation of the English–German task. Additionally, we used the Test2016
and Test2017 test sets to evaluate the proposed methods on the English-to-Czech and
English-to-French tasks, respectively. All sentences were preprocessed by tokenizing and
normalizing the punctuation using the Moses Toolkit [31]. To tokenize Japanese, we used
the MeCab version 0.996 (http://taku910.github.io/mecab, accessed on 18 February 2023).

For evaluating the translation performance, we used two widely used automatic evalu-
ation metrics, BLEU [32] and METEOR [33]. We employed the transformer [20] as the under-
lying architecture to design our model. Each encoder and decoder of the model has 6-layer
stacked self-attention networks, 8 heads, 1024 hidden units, and 2048 feed-forward filter
size. We used the Adam optimizer with a minibatch size of 64. For the learning rate, we used
the default configuration of the transformer. Specifically, the size of the word embedding
was set to 256 dimensions, and embeddings were learned from scratch. We extracted global
image features using ResNet-50. The spatial features were 14 × 14 × 1024-dimensional vec-
tors, which are representations of local spatial regions of the image. We trained the model for
20 epochs and set the warmup steps to 8000. During the training, the attention dropout
and residual dropout were p = 0.1. An extra linear layer was utilized to project all visual
features into 256 dimensions.

For text preprocessing, we tokenized the text data using the Moses tokenizer and per-
formed sentence segmentation to ensure consistency in text length. Byte Pair Encoding (BPE)
was applied to handle rare words and improve vocabulary efficiency. For image preprocessing,
we resized images to a fixed resolution to maintain consistency across the dataset and normal-
ized the pixel values to have zero mean and unit variance. Data augmentation techniques,
such as random cropping and horizontal flipping, were used to increase the robustness of the
model. In terms of aligning text and images, each sentence was aligned with its corresponding
image based on the dataset annotations, ensuring accuracy by cross-referencing with the
dataset documentation and performing manual checks on a subset of the data. The main
hyperparameters used in our experiments are shown in Table 1 below.
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Table 1. Hyperparameter settings.

Hyperparameter Value Description

Embedding Size 512 Size of the word embeddings.
Hidden Size 512 Size of the hidden layers in the network.
No. of Layers 6 Number of layers in the encoder and decoder.
Attention Heads 8 Number of attention heads.
Dropout Rate 0.1 Dropout rate used to prevent overfitting.
Learning Rate 0.0001 Initial learning rate for the optimizer.
Batch Size 64 Number of samples per batch.
Optimizer Adam Optimizer used for training the model.
Weight Decay 0.01 Weight decay factor.
Gradient Clipping 1.0 Maximum norm for gradient clipping.
Epochs 50 Number of training epochs.
BiVC Weight 0.5 Weight for the bilingual visual consistency loss.
TVC Weight 0.5 Weight for the temporal visual consistency loss.

5.2. Baselines

We compare our proposed approach with the following representative and competitive
baselines:

• DMMT [4]: This method proposes distilling translations to solve the problem where
visual information is only used by a second-stage decoder.

• IMG [2]: This approach uses global features extracted from visual information using
a pre-trained convolutional neural network. These global image features are then
incorporated into the translation model.

• SMMT [18]: This method models the interaction between visual and textual features
through a latent variable, which is then used in the target-language decoder to predict
image features.

• EMMT [12]: This approach introduces a new attention mechanism to learn the repre-
sentations of images based on textual information, avoiding the encoding of irrelevant
visual information into latent representations.

• VMMT [24]: This method employs a visual agreement regularized training on source-
to-target and target-to-source models to obtain bilingual representations.

These baselines represent diverse approaches in MNMT, ranging from feature incorpo-
ration and latent variable modeling to attention mechanisms and regularization techniques.
By comparing our method against these competitive baselines, we aim to demonstrate the
effectiveness of our multimodal consistency approach in leveraging visual information for
improved translation quality.

6. Results and Discussions

6.1. Main Results

Table 2 presents the primary results for our proposed methods and comparison meth-
ods on the En-De Test2016 and Test2017 test sets. The findings underscore the significant
performance gains achieved by our EMMT+TVC, EMMT+BiVC, and EMMT+TVC+BiVC
models over the baseline EMMT model, highlighting the effectiveness of TVC and BiVC in
leveraging visual annotation to enhance MNMT performance.
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Table 2. BLEU and METEOR scores for the proposed methods compared to benchmark methods on
the Multi30k En-De Test2016 and Test2017 test sets. Results are averaged over five training runs.

Methods
Test16 Test17

BLEU METEOR BLEU METEOR

Only-text NMT 35.61 53.6 23.8 45.3

Existing MNMT systems

DMMT [4] 36.9 54.5 - -
IMG [2] 37.3 55.1 - -
SMMT [18] 37.5 55.8 26.1 49.9
EMMT [12] 38.5 55.7 - -
VMMT [24] - - 29.3 51.2

Our MNMT systems (±std)

EMMT 38.61 ± 0.5 56.2 ± 0.5 28.00 ± 0.6 51.1 ± 0.5

+TVC 40.71 ± 0.5 58.6 ± 0.3 29.11 ± 0.5 51.9 ± 0.4
+BiVC 39.11 ± 0.6 57.8 ± 0.4 28.53 ± 0.7 51.6 ± 0.5
+TVC+BiVC 41.27 ± 0.5 59.2 ± 0.4 29.70 ± 0.6 52.2 ± 0.5

Specifically, our experiments show that the EMMT+TVC model consistently outper-
formed the EMMT+BiVC model on both Test2016 and Test2017 test sets. This suggests that
extracting target future context information from visual annotations contributes more effec-
tively to translation quality than solely enforcing semantic agreement between bilingual
sentences and visual annotations. Furthermore, the EMMT+TVC+BiVC model achieved
higher BLEU scores compared to both the EMMT+TVC and EMMT+BiVC models on
Test2016 and Test2017 test sets. This demonstrates that combining target–visual consis-
tency and bilingual–visual consistency offers synergistic benefits, resulting in additional
improvements in MNMT performance.

Our analysis indicates that the superior performance of the proposed method can
be attributed to several key factors. The handling of specific linguistic phenomena is
significantly improved; our model excels in translating sentences with ambiguous or
context-dependent terms, as the visual context helps disambiguate such terms, leading
to more accurate translations. For instance, in sentences with polysemous words, the
visual context provides additional cues that help the model choose the correct meaning.
Furthermore, the proposed method shows uniform performance across various sentence
types, including simple declarative sentences, complex sentences with multiple clauses,
and sentences with idiomatic expressions. The integration of visual information enhances
the model’s contextual understanding, which is particularly beneficial for translating
descriptive texts where visual elements play a crucial role. Examples from our experiments
show that sentences describing scenes, objects, or actions are translated more accurately
when visual context is incorporated.

6.2. Evaluation of Semantic Agreement via Bilingual–Visual Consistency Loss

The bilingual–visual consistency loss (bivloss) is a pivotal element in our proposed
approach, designed to promote semantic coherence between bilingual parallel sentences
and visual annotations. To assess its impact, we conducted a comprehensive analysis of
bivloss scores alongside corresponding BLEU, METEOR, and TER (Translation Edit Rate)
scores for the baseline EMMT model, the EMMT+BiVC model, and the EMMT+TVC+BiVC
model on the En-De Test2016 and Test2017 test sets. Table 3 presents compelling evidence
that integrating the bivloss term significantly enhances model performance. On both the
Test2016 and Test2017 sets, the EMMT+BiVC model achieved markedly lower bivloss scores
compared to the baseline EMMT model. Specifically, on Test2016, the EMMT+BiVC model
recorded a bivloss score of 13.89, surpassing the baseline EMMT’s score of 15.01. Similarly,
on Test2017, the EMMT+BiVC model achieved a bivloss score of 11.08, significantly lower
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than the baseline EMMT’s 16.77. Importantly, these reductions in bivloss were accompanied
by improved BLEU and METEOR scores. On Test2016, the EMMT+BiVC model achieved a
BLEU score of 39.11, outperforming the baseline EMMT’s score of 38.61, and a METEOR
score of 57.8 compared to the baseline’s 56.2. This trend persisted on Test2017, where the
EMMT+BiVC model scored 28.53 BLEU and 51.6 METEOR compared to the baseline’s
28.00 and 51.1, respectively.

Table 3. Semantic agreement metrics between bilingual sentence representations and visual rep-
resentations on the Multi30k En-De Test2016 and Test2017 test sets. Results are averaged over
5 training runs.

Methods
Test2016 Test2017

bivloss BLEU METEOR TER bivloss BLEU METEOR TER

EMMT 15.01 38.61 56.2 38.7 16.77 28.00 51.1 47.2
+TVC 8.13 40.71 58.6 36.8 9.02 29.11 51.9 45.0
+BiVC 13.89 39.11 57.8 37.5 11.08 28.53 51.6 46.7
+BiVC+TVC 6.88 41.27 59.2 36.1 5.93 29.70 52.2 44.2

Moreover, the TER scores provide additional insights into the translation quality. On
Test2016, the EMMT+BiVC model achieved a TER of 37.5, improving over the baseline’s
38.7. On Test2017, the TER for the EMMT+BiVC model was 46.7, compared to the baseline’s
47.2. These findings underscore that encouraging bilingual–visual consistency through the
bivloss term effectively aligns bilingual sentence representations with visual annotations,
resulting in more coherent and higher-quality translations, as evidenced by the enhanced
BLEU, METEOR, and TER scores. Furthermore, the EMMT+TVC+BiVC model, incorporat-
ing both TVC and BiVC approaches, achieved even lower bivloss scores compared to the
EMMT+BiVC model. Specifically, on Test2016, the EMMT+TVC+BiVC model achieved a
bivloss score of 6.88, further improving alignment between bilingual sentences and visual
annotations. On Test2017, this score reduced to 5.93, indicating substantial progress in
enhancing semantic coherence.

While the improvement in bivloss scores for the EMMT+TVC+BiVC model was moder-
ate compared to the gain in BLEU scores over the EMMT+BiVC model, the TVC component
played a pivotal role in enhancing translation quality. For instance, on Test2016, despite
the bivloss score decreasing from 13.89 to 6.88, the EMMT+TVC+BiVC model achieved a
BLEU score of 41.27, surpassing the EMMT+BiVC model’s 39.11 BLEU. A similar trend
was observed on Test2017, where the EMMT+TVC+BiVC model’s BLEU score of 29.70
outperformed the EMMT+BiVC model’s 28.53 BLEU, despite a smaller reduction in bivloss
(from 11.08 to 5.93). Additionally, the METEOR and TER scores highlight the comprehen-
sive improvement achieved by the EMMT+TVC+BiVC model. On Test2016, the METEOR
score increased to 59.2, and the TER improved to 36.1. On Test2017, the METEOR score
reached 52.2, and the TER was 44.2. These results highlight that while the bilingual–visual
consistency loss effectively aligns textual and visual representations, the target–visual
consistency introduced by the TVC component plays a critical role in enhancing overall
translation quality. By leveraging visual annotations to extract future target context, the
EMMT+TVC+BiVC model mitigates autoregressive decoder limitations, thereby generating
more informed and coherent translations.

6.3. Learning Curves of Loss and BLEU Scores for Multimodal Consistency-Based MNMT

To investigate the effect of multimodal consistency on MNMT, we analyze the learning
curves of loss scores for both the baseline EMMT and the EMMT+TVC+BiVC models. We
focus on the En-De development set for loss curves and on the En-De Test2016 and Test2017
test sets for BLEU score curves.

The baseline EMMT model employs the standard cross-entropy loss, denoted as
celossEMMT in Equation (8). In contrast, the EMMT+TVC+BiVC model integrates additional
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loss components: a target–visual consistency loss tvloss+TVC+BiVC (Equation (10)) and a
bilingual–visual consistency loss bivloss+TVC+BiVC (Equation (18)), alongside the standard
cross-entropy loss celoss+TVC+BiVC.

Figure 2a illustrates the learning curves of these loss components for the
EMMT+TVC+BiVC model on the En-De development set. The celoss+TVC+BiVC curve
shows a consistent downward trend, indicating effective optimization of the standard
cross-entropy loss throughout training, crucial for generating accurate target transla-
tions. Notably, both tvloss+TVC+BiVC and bivloss+TVC+BiVC exhibit decreasing trends
over time. tvloss+TVC+BiVC, responsible for aligning target-side context with visual an-
notations, initially starts higher but steadily decreases as training progresses. Similarly,
bivloss+TVC+BiVC, aimed at maintaining semantic consistency between bilingual sentence
representations and visual data, also shows a steady decline. These converging trends
across all three loss components suggest that the EMMT+TVC+BiVC model effectively op-
timizes both standard translation objectives and multimodal consistency goals, enhancing
overall model coherence and performance.

Figure 2b presents the learning curves of BLEU score, highlighting that the
EMMT+TVC+BiVC model consistently outperforms the baseline EMMT model on both
En-De Test2016 and Test2017 test sets throughout the training epochs. Starting with higher
BLEU scores, the EMMT+TVC+BiVC model demonstrates continuous improvement, un-
derscoring the benefits of multimodal consistency approaches. Importantly, the gap in
BLEU scores between the EMMT+TVC+BiVC model and the baseline EMMT model widens
over time, indicating that integrating multimodal consistency objectives not only boosts
immediate performance but also facilitates more effective model learning. This alignment
across textual and visual modalities leads to superior translation quality compared to
traditional approaches.

(a) (b)

Figure 2. Learning curves and BLEU scores comparison for baseline EMMT and EMMT+TVC+BiVC
models. (a) Learning curves comparison; (b) BLEU scores comparison. It shows the learning
curves of loss scores for the baseline EMMT model and the EMMT+TVC+BiVC model on the En-De
development set. It also presents the BLEU scores of both models on the En-De Test2016 and Test2017
test sets. The results are averaged over 5 training runs.

6.4. Ablation Study for Visual Annotation

To better understand the role and importance of visual annotation in our proposed
multimodal consistency approaches, we conducted a series of ablation experiments. Specif-
ically, we evaluated the performance of the baseline EMMT model and our EMMT+BiVC,
EMMT+TVC, and EMMT+TVC+BiVC models using random image annotations instead of
ground-truth image annotations. The results presented in Table 4 provide valuable insights
into the significance of visual information in our models.
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Table 4. Results of an ablation study comparing the baseline EMMT model and our enhanced models
using random image annotations on the En-De Test2016 and Test2017 test sets. Results are averaged
over 5 training runs.

Methods

Test2016 Test2017

Truth Image Random Image Truth Image Random Image

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

EMMT 38.61 56.2 35.62 53.24 28.00 51.1 27.47 50.9
+BiVC 39.11 57.8 34.59 52.11 28.53 51.6 27.14 50.41
+TVC 40.71 58.6 35.71 52.59 29.11 51.9 26.39 49.74
+BiVC+TVC 41.27 59.2 34.77 51.78 29.70 52.2 26.78 50.26

Firstly, the results clearly demonstrate that all models, including the baseline EMMT
and our proposed variants, perform significantly better when using ground-truth image
annotations compared to random image annotations. On the En-De Test2016 test set, the
BLEU score of the EMMT model drops from 38.61 with ground-truth images to 35.62 with
random images. A similar pattern is observed on the En-De Test2017 test set, where the
BLEU score decreases from 28.00 to 27.47 when using random images. This indicates
that visual annotation is a crucial component contributing to the overall performance of
multimodal machine translation models, with the content of the visual annotation playing
a pivotal role in alignment with textual context.

Furthermore, we observe that with random visual annotations, our proposed models
(EMMT+BiVC, EMMT+TVC, and EMMT+TVC+BiVC) actually perform worse than the
baseline EMMT model in terms of both BLEU and METEOR scores. For example, on the
En-De Test2016 test set, the EMMT+BiVC model scores 34.59 BLEU with random images,
lower than the baseline EMMT’s 35.62 BLEU. A similar trend is seen on the En-De Test2017
test set, where the EMMT+BiVC model’s BLEU of 27.14 is inferior to the baseline EMMT’s
27.47 BLEU. This suggests that when visual annotations are not aligned with textual content,
our multimodal consistency approaches, which heavily leverage visual information, extract
more noise than useful signal. In contrast, the baseline EMMT model, relying primarily on
textual information and using visual input as supplementary information, is less affected
by modal mismatches.

However, when ground-truth image annotations are used, the situation reverses.
Our proposed models, EMMT+BiVC, EMMT+TVC, and EMMT+TVC+BiVC, consistently
outperform the baseline EMMT model across both the En-De Test2016 and Test2017 test
sets. Specifically, the EMMT+TVC+BiVC model achieves the highest BLEU scores of 41.27
on Test2016 and 29.70 on Test2017, significantly outperforming the baseline EMMT’s 38.61
and 28.00 BLEU, respectively. This demonstrates that when visual annotations are accurate
and well-aligned with textual content, our multimodal consistency approaches effectively
leverage this information to enhance translation quality. The target–visual consistency and
bilingual–visual consistency components enable our models to extract richer contextual
cues from visual data and maintain tighter semantic coherence between textual and visual
modalities, resulting in superior translation performance.

6.5. Impact of Different Loss Functions on Performance

We employed the smooth L1 loss as the primary loss function for our proposed multi-
modal consistency approaches. However, given the importance of selecting an appropriate
loss function in deep learning models, we conducted further investigations to explore the
impact of using different loss functions within our framework. Table 5 presents the results
of our experiments evaluating the performance of our models when trained with various
loss functions, including the L2 loss, KLDiv loss, BCEWithLogits loss, HingeEmbedding
loss, and the L1 loss used in our main approach.
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Table 5. Results of the impact of different loss functions on BLEU scores.

En-De
Test2016

En-De
Test2017

En-Fr Test2017 En-Cs Test2016

L1loss 41.27 29.70 50.46 32.87
L2loss 39.21 30.02 50.21 31.06
KLDivloss 34.75 27.13 50.08 31.78
BCEWithLogitloss 36.31 27.01 50.57 31.24
HingeEmbeddingloss 35.78 27.45 50.06 26.14

We observe that the L1 loss consistently yields the most promising performance across
the majority of evaluated scenarios. For instance, on the En-De Test2016 test set, the model
trained with the L1 loss achieves a BLEU score of 41.27, outperforming the other loss
functions by a significant margin. Specifically, the L2 loss-based model scores 39.21 BLEU,
the KLDiv loss-based model scores 34.75 BLEU, the BCEWithLogits loss-based model scores
36.31 BLEU, and the HingeEmbedding loss-based model scores 35.78 BLEU. This trend
persists on the En-De Test2017 test set, where the L1 loss-based model achieves a BLEU
score of 50.46, surpassing the scores of the L2 loss-based model (50.21 BLEU), the KLDiv
loss-based model (50.08 BLEU), the BCEWithLogits loss-based model (50.57 BLEU), and
the HingeEmbedding loss-based model (50.06 BLEU). The superior performance of the L1
loss-based model is also evident in other language pair tasks. On the En-Fr Test2017 test
set, the L1 loss-based model achieves a BLEU score of 32.87, outperforming the L2 loss-
based model (31.06 BLEU), the KLDiv loss-based model (31.78 BLEU), the BCEWithLogits
loss-based model (31.24 BLEU), and the HingeEmbedding loss-based model (26.14 BLEU).

Similarly, on the En-Cs Test2016 test set, the L1 loss-based model scores 29.70 BLEU,
while the L2 loss-based model scores 30.02 BLEU, the KLDiv loss-based model scores 27.13
BLEU, the BCEWithLogits loss-based model scores 27.01 BLEU, and the HingeEmbedding
loss-based model scores 27.45 BLEU. These results clearly demonstrate the effectiveness
of the L1 loss function in the context of our proposed multimodal consistency approach
for machine translation. Known for its robustness and ability to handle outliers, the
L1 loss proves particularly suitable for aligning textual and visual representations, as
well as capturing target–visual and bilingual–visual consistencies. In contrast, other loss
functions such as the L2 loss, KLDiv loss, BCEWithLogits loss, and HingeEmbedding
loss do not perform as well in our experiments. The L2 loss, being more sensitive to
outliers, may struggle to provide the necessary guidance for the model to learn desired
multimodal representations. The KLDiv loss, designed for probabilistic distributions, may
not be the optimal choice for tasks involving the alignment of structured textual and
visual features. Additionally, the BCEWithLogits loss and HingeEmbedding loss, typically
used for classification tasks, appear less suitable for the multimodal translation problem
compared to the L1 loss.

6.6. Universality of Multimodal Consistency

To assess the universality and broader applicability of our proposed multimodal con-
sistency approaches, we conducted experiments across multiple language pairs beyond
the English–German (En-De) task, which was the focus of our main analysis. Specifi-
cally, we evaluated the performance of the baseline EMMT model and our EMMT+TVC,
EMMT+BiVC, and EMMT+TVC+BiVC models on the English–French (En-Fr), English–
Czech (En-Cs), and English–Japanese (En-Ja) multimodal translation tasks. The results
presented in Table 6 provide valuable insights into the generalizability and effectiveness of
our multimodal consistency techniques. Firstly, the results demonstrate that our proposed
approaches consistently outperform the baseline EMMT model across all the evaluated
language pairs. On the En-Fr task, the EMMT+TVC+BiVC model achieves a BLEU score
of 32.87, which is a 1.50 point improvement over the baseline EMMT’s 31.37 BLEU. Sim-
ilarly, on the En-Cs task, the EMMT+TVC+BiVC model scores 29.70 BLEU compared to
28.00 BLEU for the baseline EMMT. Even on the more distant language pair of En-Ja, the
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EMMT+TVC+BiVC model outperforms the baseline by 1.08 BLEU points, scoring 45.73
BLEU versus the EMMT’s 44.65 BLEU. These findings suggest that the core principles
underlying our multimodal consistency approaches, namely, TVC and BiVC, are universal
and effectively applicable to a diverse range of multimodal translation tasks beyond the
initial En-De setup.

Table 6. Performance of multimodal consistency models across different multimodal language pairs.
Results are averaged over 5 training runs.

Methods
En-Fr En-Cs En-Ja

METEOR BLEU bivloss METEOR BLEU bivloss METEOR BLEU bivloss

EMMT 67.59 48.42 13.62 52.56 31.37 16.01 60.36 44.65 14.82
+TVC 68.07 49.69 9.60 53.86 32.13 8.36 62.07 44.97 8.08
+BiVC 68.89 49.16 13.05 53.14 31.95 15.92 61.21 44.13 14.05
+TVC+BiVC 70.17 50.46 5.14 54.39 32.87 6.97 62.73 45.73 6.71

Interestingly, the magnitude of improvement achieved by our proposed models varies
across the different language pairs. The EMMT+TVC+BiVC model shows the most signifi-
cant BLEU score improvements of 2.04 and 1.50 points on the more linguistically similar
En-Fr and En-Cs tasks, respectively. In contrast, the improvement on the more distant
En-Ja task is relatively smaller at 1.08 BLEU points. This pattern indicates that multimodal
consistency approaches may be particularly beneficial when the target language is more
closely related to the source language, leveraging visual annotations to strengthen semantic
coherence across bilingual parallel sentences. Even for the more distant language pair of En-
Ja, our multimodal consistency techniques still outperform the baseline, highlighting their
broad applicability. In addition to BLEU score improvements, we also analyze the bivloss
scores for different models and language pairs. Consistent with findings from the En-De
experiments, the EMMT+TVC+BiVC model consistently achieves the lowest bivloss scores
across the En-Fr, En-Cs, and En-Ja tasks, indicating its effectiveness in aligning learned
bilingual sentence representations with visual annotations. For example, on the En-Fr task,
the bivloss score for the EMMT+TVC+BiVC model is 6.71, significantly lower than the 14.05
and 14.82 scores for the EMMT+BiVC and baseline EMMT models, respectively. Similar
trends are observed in the En-Cs and En-Ja tasks, further supporting the ability of our
multimodal consistency approaches to foster tighter semantic integration between textual
and visual modalities.

6.7. Impact of Different Dataset Sizes

To evaluate the impact of dataset size on our proposed model, we conducted experi-
ments using different portions of the full dataset. We created subsets of the original dataset
with varying sizes: 25%, 50%, 75%, and 100% of the full dataset. Each subset was used
to train our model separately, ensuring that the training conditions remained consistent
across different dataset sizes in Test2017. The performance of our model was evaluated
using BLEU, METEOR, and TER metrics for each subset. The results are summarized in
Table 7 below:

Table 7. Three performance metrics for different dataset sizes.

Dataset Size BLEU METEOR TER

25% 22.9 25.2 0.53

50% 31.5 42.3 0.49

75% 33.2 48.6 0.47

100% 34.5 52.1 0.45
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When using only 25% of the dataset, our model’s performance was significantly lower
across all metrics. This indicates that a smaller dataset limits the model’s ability to learn
effectively from the available data, resulting in poorer translation quality. Training with
50% of the dataset showed a noticeable improvement in performance, though it still lagged
behind the results achieved with the full dataset. Using 75% of the dataset further improved
the model’s performance, bringing it closer to the results obtained with the full dataset.
The best performance was achieved with the full dataset, confirming the importance of a
larger dataset for training robust and accurate translation models.

6.8. Discussions

Our approach dynamically integrates textual and visual information while maintain-
ing bilingual consistency, making it adaptable across diverse datasets. The flexibility of our
self-attention mechanism and visual integration module enables an effective processing of
various textual and visual inputs. Future research will involve experiments with additional
datasets and languages to validate the robustness and versatility of our approach. Despite
the significant improvements in translation quality, our model has some limitations. Visual
context ambiguities, low-quality images, and increased computational complexity can
adversely affect performance. The model’s generalization to other domains or languages
remains to be fully explored. Future work includes extending our approach to incorporate
other modalities, such as audio, optimizing the model for real-time translation scenarios,
enhancing robustness to ambiguous or irrelevant visual contexts, and adapting the model
to different domains and languages. By addressing these limitations and exploring new
directions, we can further advance multimodal neural machine translation, making it more
versatile and applicable to a wider range of real-world scenarios.

7. Conclusions

In this study, we present a novel multimodal consistency approach that advances
the state-of-the-art in MNMT. Our approach synergistically combines two complementary
facets: TVC and BiVC. The integration of target–visual consistency enables our MNMT
model to extract valuable target-side contextual cues from the visual annotation. By effec-
tively leveraging the future context information, our model can generate more accurate
and coherent target translations, overcoming the inherent limitations of autoregressive
decoders. Simultaneously, the bilingual–visual consistency acts as a guiding force, steering
our MNMT model to maintain a tight semantic alignment between the learned bilingual
sentence representations and the corresponding visual annotation. This ensures that the
textual and visual modalities are tightly coupled, further enhancing the translation quality.
The synergistic combination of these two multimodal consistency components propels our
approach beyond the capabilities of prior MNMT techniques. Extensive empirical evalua-
tions on diverse multimodal translation tasks, including English–German, English–French,
English–Czech, and English–Japanese, demonstrate the effectiveness and universality of
our approach. Notably, our models achieve new state-of-the-art benchmarks across these
language pairs, underscoring the aptitude of our multimodal consistency framework in
harnessing the complementary strengths of textual and visual information. This significant
performance improvement highlights the pivotal role that multimodal consistency plays in
advancing the field of MNMT. Future work involves further exploration of multimodal
consistency within the MNMT framework. We aim to uncover additional dimensions of
multimodal coherence and investigate their impact on translation quality. Furthermore, we
intend to extend the applicability of our proposed approach to other multimodal language
tasks, unlocking its potential across a broader spectrum of real-world applications. By seam-
lessly integrating textual and visual modalities through the lens of multimodal consistency,
our work paves the way for a new paradigm in MNMT. This visually aware, data-driven
framework represents a significant advancement, positioning it as a valuable tool for
intelligent language understanding and generation in complex, multimodal environments.
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