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Editorial

Remote Sensing of Target Object Detection and Identification II

Paolo Tripicchio

Institute of Mechanical Intelligence, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna,
56124 Pisa, Italy; paolo.tripicchio@santannapisa.it

The ability to detect and identify target objects from remote images and acquisitions
is paramount in remote sensing systems for the proper analysis of territories. The field
of applying such a technology spans environmental [1] and urban [2] monitoring, hazard
and disaster management, and defense and military applications. The existing literature
has taken advantage of the large amounts of data acquired by sensors mounted on satel-
lite, airborne, and unmanned aerial vehicle (UAV) platforms. While satellite imaging is
still the foremost source of data, as also confirmed by the contributions collected in this
Special Issue, UAV platforms have had exponential growth in recent years [3] and, given
their low-cost effectiveness, this has allowed, and will allow in future, the acquisition and
coverage of a wide range of environments exploiting customized setups and coverage
algorithms [4]. Research applications exploit different phenomena and technologies, which
include synthetic aperture radar (SAR) [5] imaging, multispectral and hyperspectral imag-
ing, and images (or videos) acquired in the visible and near-infrared (VNIR) wavelength
ranges. With the recent improvements in the sensing technologies regarding their spatial
resolution and spectral content, and with the rapid development of artificial intelligence
techniques that exploit convolutional neural networks (CNNs) or deep neural networks
(DNNs), the results that novel approaches will achieve in the near future are promising.

The articles belonging to this Special Issue provide a comprehensive overview of
the advancements, challenges, and future trends in object detection and tracking, with a
particular focus on remote sensing applications. They discuss a wide range of topics,
including different types of targets (e.g., ships, small targets), imaging modalities (e.g.,
optical, SAR, infrared), image processing techniques, and deep learning algorithms.

This editorial attempts to summarize the novelties and drawbacks of the methods and
studies presented by the contributors in the context of current research trends, and also
considering future developments.

A group of articles discusses different aspects of ship detection in remote sensing
images, including challenges, advancements, and datasets. These sources specifically focus
on ship detection in SAR images, which poses unique challenges due to the presence of
speckle noise and the need for robust algorithms that can handle different ship sizes and
orientations. Another group addresses the problem of detecting small targets in infrared
images, which is a complex task due to the small size of the targets, low contrast with
the background, and the presence of noise and clutter. A third group focuses on target
tracking in image sequences, which involves estimating the trajectory of a target over
time. This is particularly useful in applications such as surveillance and navigation. All
contributions refer to the use of various image processing techniques to either enhance the
quality of images or extract meaningful information. Examples of these techniques include
background suppression, edge enhancement, and Hough transformation [6]. Many of
the sources discuss the use of deep learning algorithms, particularly convolutional neural
networks (CNNs) and Transformers [7], for object detection and tracking tasks, and several
of them highlight the importance of evaluating the performance of detection and tracking
algorithms using appropriate metrics and datasets.

A detailed summary of the novelty and drawbacks of each contribution, whose list
can be found at the end of this editorial, is provided to introduce and discuss the current
challenges and future development in remote sensing object detection and tracking.

Remote Sens. 2024, 16, 3106. https://doi.org/10.3390/rs16163106 https://www.mdpi.com/journal/remotesensing1
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The first contribution is a survey that offers a comprehensive overview of the technolo-
gies, challenges, and prospects of ship detection in optical images obtained through remote
sensing. The article examines various ship detection technologies in chronological order,
dividing them into traditional methods, methods based on convolutional neural networks
(CNNs), and methods based on Transformers. The advantages and disadvantages of each
category of method are analyzed. The article particularly focuses on the challenges that
arise from ship detection in optical images obtained from remote sensing, which are mainly:
complex marine environments, in which images can be influenced by factors such as light,
weather, and the presence of objects other than ships, making identification difficult; the
presence of insufficient discriminating features, since ships often occupy very small areas
in images, and this makes it difficult to extract distinctive features; the problems of large
scale variations, density distribution, and rotation, since ships can have very different sizes
in images, can be very close to each other, and are probably oriented in different directions;
the presence of large aspect ratios, since ships often have an elongated shape; and the
problem of imbalance between positive and negative samples, since images usually contain
many more background areas than ships. For each challenge, the article reviews and
analyzes the solutions proposed in the literature, mainly based on CNNs, and highlights
their advantages and disadvantages. In addition, the article presents a collection of public
datasets of optical images for ship detection, offering detailed information on their data
distribution, such as the number of ships and their size in pixels. The performance of
different detection models on these datasets is compared, and the effects of the different
optimization strategies to address the challenges of ship detection are analyzed. Finally,
the article explores the application of Transformers in ship detection, comparing their
feature extraction capability with that of CNNs. The results show that Transformers, thanks
to their ability to model long-range dependencies, have great potential in this field.

Xia et al. (Contribution 2) present a novel method for differentiating corner reflec-
tor arrays from ships in anti-ship scenarios. This distinction is crucial in naval warfare,
as corner reflector arrays are often deployed as decoys to confuse enemy radar systems.
Their method leverages the distinct scattering characteristics exhibited by corner reflector
arrays and ships. These characteristics become more pronounced when processed using
a mismatched filter with an adjusted frequency modulation slope. By modifying the fre-
quency modulation slope of the LFM signal within the filter, the main lobe of the signal
output is broadened. This broadening reduces the compression level, as compared to a
matched filter, thereby accentuating the differences in scattering characteristics between
ships and corner reflector arrays. Two key features are extracted from the two-dimensional
range-Doppler image obtained after applying the mismatched filter. These are the variance
of the width, and the variance of the intervals of regions with normalized amplitude within
a specific range. These features effectively capture the differences in the spatial distribution
of scattering points between the two target types, aiding in their discrimination. The
extracted features are then used to train a Support Vector Machine (SVM) classifier with a
Gaussian kernel. This classifier demonstrates high efficacy in distinguishing between ships
and corner reflector arrays. It has to be noted, however, that the method’s performance is
susceptible to degradation in the presence of noise, particularly at low signal-to-noise ratios
(SNRs). This vulnerability arises because the extracted features rely on the distribution of
scattering points, which noise can distort. The effectiveness of the method also hinges on
the selection of specific parameters, such as the Doppler factor range and the point extrac-
tion range. While the method has shown resilience to minor variations in these parameters,
optimizing their selection is paramount for achieving optimal performance. The authors
propose potential solutions to mitigate these limitations, including the implementation
of noise suppression techniques and the refinement of parameter selections. They also
suggest future research directions, such as validating the method using real-world data in
operational scenarios and integrating information from other domains, such as polarization,
to enhance identification accuracy.
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The third contribution describes a method for detecting oriented ships in Synthetic
Aperture Radar (SAR) images based on RepPoints, which are representation points that
capture the object’s shape and orientation, which is based on an anchor-free detection ar-
chitecture consisting of two main components: Scattering-Point-Guided Adaptive Sample
Selection(SPG-ASS) and SPG learning. The improved sample selection method integrates
the scattering point location information to select higher-quality samples during training,
thus preventing model degradation caused by low-quality samples. The SPG learning
mechanism improves the quality of RepPoints in the initialization stage, enabling the net-
work to learn more refined representations of ships’ electromagnetic characteristics, while
reducing land clutter interference in complex nearshore environments. The method has
shown good generalization and reliability across different datasets with varying character-
istics, suggesting its adaptability to practical application scenarios. Furthermore, ablation
experiments demonstrate the effectiveness of the individual components, namely SPG-ASS
and SPG learning, in improving detection performance. However, both the adaptive sample
selection scheme and the adaptive learning part rely on extracting the scattering points
from the target. If the area occupied by ships is limited, or if the scattering from the ships
is weak, resulting in fewer or no corner points being extracted, the method might fail.
The authors have suggested that, in the future, they will explore redesigning the scattering
point extraction part and introducing more efficient and advanced network structures for
scattering feature extraction and fusion.

Tian et al. (contribution 4) present a new lightweight model (LMSD-Net) for ship
detection, specifically small ships, in optical remote sensing imagery. The model is de-
signed to address challenges posed by variations in ship size, background clutter, and the
limited capabilities of embedded systems. A fog simulation method is used to augment the
training dataset with more foggy images. This method simulates the effect of fog on scene
radiance, improving the model’s robustness in adverse weather conditions. A new feature
extraction module, called Efficient Layer Aggregation of C3 (ELA-C3), is introduced for
more efficient information aggregation. ELA-C3 enhances feature learning without signifi-
cantly increasing the number of model parameters. A feature fusion method is proposed to
fuse features extracted at different scales. It utilizes learnable weights for channels during
bidirectional fusion, allowing the model to focus on the most relevant information and
reducing the number of parameters, as compared to the original architecture it is based
on. A Contextual Transformer (CoT) block is added to the detection head to improve its
localization accuracy. The CoT block combines the global relationship modeling capability
of transformers with the computational efficiency of convolutional neural networks. Finally,
an improved version of the CIoU loss function, called V-CIoU, is proposed to address the
issue of slow convergence when the aspect ratios of the ground truth box and the predicted
box are similar. V-CIoU introduces a penalty term based on the variance of aspect ratios,
improving detection performance for small ships.

Contribution 5 introduces a new method for detecting small objects in remote sensing
images. The method, called Multi-Vision Transformer (MVT), is based on a Transformer-
like neural network, and proposes the first remote sensing dataset based on event cameras,
called the Event Object Detection Dataset (EOD Dataset). This dataset consists of over
5000 event streams, and includes six object categories: cars, buses, pedestrians, bicycles,
boats, and ships. MVT consists of three modules: a downsampling Module, a Channel
Spatial Attention Module (CSA), and a Global Spatial Attention Module (GSA). The CSA
focuses on short-range dependencies within feature maps, improving the representation
of channel- and spatial location-level features. The GSA module, consisting of Window-
Attention and Grid-Attention, considers long-range dependencies in the feature maps,
capturing the global information and long-distance connections in a single operation.
Finally, a novel cross-scale attention mechanism (Cross Deformable Attention (CDA)) that
progressively merges high-level features with low-level features is proposed, reducing
the computational complexity of the Transformer encoder and the entire network while
preserving the original performance. The authors suggest that, in order to improve possible
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loss of details due to event camera captures, a possible solution could be to combine data
from the event cameras with those from traditional cameras to exploit the advantages of
both technologies.

The Multiscale Feature Extraction U-Net (MFEU-Net), presented in the sixth contribu-
tion, is a convolutional neural network designed for infrared small and dim target detection
(ISDT). The network’s architecture is based on the U-Net structure, which enables the
fusion of multiscale information through skip connections. This allows the network to
have different receptive fields at different levels, improving its ability to detect targets of
varying sizes. In particular, MFEU-Net utilizes a combination of Residual U-block (RSU)
blocks and Inception modules to extract multiscale information. Moreover, it incorporates
a multidimensional attention mechanism, which operates on both channels and space. This
mechanism enables the network to focus on the important areas of the image, enhancing
detection in complex scenarios and reducing false alarms. The results show superior per-
formance compared to other ISDT detection algorithms, achieving higher detection rates,
lower false alarm rates, and higher IoU values on various datasets.

Contribution 7 presents another method aimed at ISDT detection, called the Group
Regularized Principle Component Pursuit (GPCP), which is a group-regularized low-rank
and sparsity decomposition model. This method addresses the limitations of traditional
patch-based models, such as Infrared Patch Image (IPI), which are often sensitive to strong
edges and background clutter due to their failure to consider the diversity of data structure.
Unlike traditional methods that utilize a single low-rank constraint for the entire back-
ground component, GPCP employs a group low-rank constraint for background estimation.
This approach allows for the use of different singular value thresholds for the low-rank
decomposition of image groups corresponding to different complexities. Consequently,
GPCP can better explore the local structure of the image and achieve a more accurate
decomposition result. By dividing image data into groups based on brightness and clutter
level, GPCP can more effectively suppress background clutter, particularly in areas with
strong edges. This capability is demonstrated by experimental results on various detection
scenes, where the GPCP achieves higher background suppression factors, as compared
to other methods. Although GPCP utilizes Singular Value Decomposition (SVD) [8], in
the same way as other patch-based models, its computational complexity is lower than
its baseline model, IPI. This is attributed to the grouping strategy that divides image data
into smaller groups, reducing the overall computational cost of SVD decomposition. By
integrating group low-rank regularization with the sparsity constraint for background and
target separation, GPCP improves the detection accuracy and overcomes the limitations of
traditional decomposition-based methods. However, further research is needed to optimize
the grouping criteria, further reduce the computational complexity, and explore more
efficient background modeling methods.

On the same topic, the Background-Suppression Proximal Gradient (BSPG) method
(contribution 8) enhances detection accuracy and computational efficiency in patch-based
methods, particularly in suppressing strong background edges. It incorporates a novel
continuation strategy during the alternating update of low-rank and sparse components,
so as to suppress strong edges that are often mistaken as targets. This strategy retains more
components during the low-rank matrix update while reducing the sparse matrix’s update
speed, enabling the model to mitigate the influence of strong edges. Approximate Partial
SVD (APSVD) is employed to expedite the resolution of the low-rank sparse decomposition
problem. This approach is more efficient than the full SVD because it leverages the fact that
the soft-thresholding operation utilizes only a portion of the singular values. To further
enhance processing speed, BSPG employs GPU multi-thread parallelism strategies to ac-
celerate the construction and reconstruction of patch images, which can be divided into
repetitive and independent subtasks. While efforts have been made to reduce computa-
tional complexity and exploit computation parallelism, further research may enhance the
time performance and possible limitations due to data dependency.
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Chen et al. (contribution 9) present a novel approach for anomaly detection in hyper-
spectral images (HSI), named the Multi-Dimensional Low-Rank (MDLR) method. Unlike
previous tensor-based methods that mainly focused on the low dimensionality of the spec-
tral dimension, MDLR considers low dimensionality along all dimensions of HSI: width,
height, and spectrum. This three-dimensional analysis allows for more comprehensive
background information extraction, improving the separation between background and
anomalies. To impose low-rank constraints on the background tensor, MDLR utilizes
Weighted Schatten p-norm Minimization (WSNM) on the slices of the f-diagonal tensor
obtained through t-SVD decomposition. This approach allows for better preservation of the
low-rank structure of the background, as compared to traditional nuclear norm minimiza-
tion. MDLR utilizes a norm that penalizes the anomaly tensor, promoting joint sparsity
in both the spectral and spatial domains. This takes into account the fact that anomalies
tend to be spatially localized and exhibit low spectral density. Finally, the authors suggest
that dimensionality reduction techniques could be integrated in the future to mitigate the
computational complexity due to the t-SVD.

The authors of contribution 10 describe a tracking algorithm for sonar detection,
called the Improved Multi-Kernel Correlation Filter (IMKCF), which is designed to detect
and track weak underwater targets in complex marine environments. This problem is
particularly challenging in environments with a low signal-to-reverberation ratio, where
reverberation interference can make it difficult to distinguish the target from the back-
ground noise. Although the kernel correlation filter algorithm has been successful in visual
tracking, it has not previously been applied to underwater target tracking. Using weighted
information from historical samples to solve the coefficients of multiple nonlinear kernels
adaptively, this method addresses the problem of limited robustness in tracking single
features, taking full advantage of multiple complementary features. In particular, when
a tracking result is deemed unreliable, a redetection module uses the historical reliability
tracking results to drive a Kalman filter, which predicts the location of the target candi-
date. The use of multiple features, an adaptive update of the kernel coefficients, and the
inclusion of a redetection module improve the method’s performance over traditional
tracking algorithms.

Contribution 11 proposes a method for suppressing faint/dim background stars in
infrared, based on recursive moving target indication, to enhance the detection of space
targets in optical image sequences. The suppression of stars with a low signal-to-noise ratio
(SNR) has been largely ignored by previous research, but can negatively impact accuracy
and real-time performance, particularly for time-before-space (TBS) detection methods.
Unlike other TBS methods, which are closely tied to their corresponding target detection
methods, the proposed method is versatile, and can be utilized as an efficient pre-processing
step for most target detection and tracking methods. Additionally, a multi-frame adaptive
threshold segmentation method is put forward to create an accurate star mask, enabling
the real-time suppression of dim stars.

Contribution 12 presents a multi-stage joint detection and tracking model (MJDTM)
for the real-time detection of space targets, such as space debris and satellites, using optical
image sequences. The authors argue that although space target surveillance is critical for
aerospace safety, it is becoming increasingly difficult, due to increasingly complex space
environments. This article addresses the limitations of existing approaches that struggle to
suppress background noise and mostly focus on single tasks, such as detection or tracking.
The model uses an improved local contrast method to extract potential small space targets
in optical image sequences. It uses a star target suppression method that exploits the
differences in motion relative to Earth and real-time satellite attitude data to distinguish
between space and star targets. The model is implemented on a specialized heterogeneous
multi-core processing platform based on FPGA and DSP to meet real-time processing
requirements. The authors note that although the proposed model shows improvements in
detection accuracy while maintaining real-time processing speed, it may not perform well
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for targets with a low SNR. Additionally, the model relies on real-time satellite attitude
data, which could be a limitation.

The SE-RRACycleGAN algorithm (contribution 13) introduces several improvements
for single image deraining in an unsupervised manner. It contains an innovative Recurrent
Rain-Attentive Module, designed to enhance the detection of rain-related information by
concurrently considering both rainy and clean images, by not only incorporating spatial
and channel attention blocks, but also employing an LSTM unit to capture spatiotemporal
dependencies within images, facilitating the modeling of complex rain streak patterns
that interact with the scene. The addition of Squeeze-and-Excitation (SE) blocks to the
generator enables the model to learn discriminative features, facilitating the capture of
intricate rain patterns and the representation of the underlying image structure. This
capability is particularly significant for deraining tasks requiring both local and global
features. Finally, to enhance the visual similarity between the generated image and the input
image, the algorithm’s loss function includes the content loss. These improvements allow
SE-RRACycleGAN to surpass most state-of-the-art unsupervised methods, particularly
on the Rain12 dataset and real rainy images, making it highly competitive compared to
supervised techniques.

Conflicts of Interest: The author declares no conflicts of interest.
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Abstract: Ship detection aims to automatically identify whether there are ships in the images, precisely
classifies and localizes them. Regardless of whether utilizing early manually designed methods
or deep learning technology, ship detection is dedicated to exploring the inherent characteristics
of ships to enhance recall. Nowadays, high-precision ship detection plays a crucial role in civilian
and military applications. In order to provide a comprehensive review of ship detection in optical
remote-sensing images (SDORSIs), this paper summarizes the challenges as a guide. These challenges
include complex marine environments, insufficient discriminative features, large scale variations,
dense and rotated distributions, large aspect ratios, and imbalances between positive and negative
samples. We meticulously review the improvement methods and conduct a detailed analysis of the
strengths and weaknesses of these methods. We compile ship information from common optical
remote sensing image datasets and compare algorithm performance. Simultaneously, we compare
and analyze the feature extraction capabilities of backbones based on CNNs and Transformer, seeking
new directions for the development in SDORSIs. Promising prospects are provided to facilitate
further research in the future.

Keywords: ship detection; deep learning; optical remote-sensing images; convolutional neural
network; transformer

1. Introduction

Ship detection has important applications in areas such as fisheries management,
maritime patrol, and maritime rescue. It contributes to ship traffic management and the
maintenance of maritime safety. Therefore, ship detection has broad application prospects
in civil and military fields [1]. The core objective is to determine the position of ships and
identify their categories.

Optical remote-sensing images are captured via imaging distant ground surfaces
using electro-optical sensors on aerial platforms and artificial Earth satellites [2]. With the
rapid development of remote sensing, the resolution of optical remote-sensing images has
continuously improved. They can provide more details, such as color and texture, as well
as a comprehensive database for ship detection. Therefore, how to effectively utilize the
existing favorable conditions to maximize the application benefits is an urgent issue to
be solved.

Ship-detection methods have experienced two stages of development: rule-based
classification and deep learning. In the early methods, the sliding window method was
employed to systematically judge all potential areas. It relies on fixed-pattern approaches,
such as geometric elements and manually designed features to extract ship features. How-
ever, the early methods may generate large amounts of redundant computations, which
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significantly impact detection speed. Additionally, the manually designed features lack
the robustness to resist the interference from complex backgrounds. Therefore, early
approaches struggled to meet the requirements of both performance and efficiency.

Compared with traditional methods, deep learning can extract features with stronger
semantic information, and enable autonomous learning. In recent years, deep learning has
developed rapidly. It has gradually migrated and innovated in the field of ship detection,
achieving good results in ship detection in optical remote-sensing images (SDORSIs). How-
ever, influenced by factors such as complex maritime environments and ship characteristics,
the results of SDORSIs based on deep learning still need improvement. Furthermore,
achieving a balance between accuracy and speed is also one of the significant challenges.

At present, some reviews have been published in ship detection. Er et al. [3] collated
a large number of popular datasets and reviewed the existing object-detection models.
Joseph et al. [4] and Li et al. [5] systematically analyzed the typical methods at each stage
of SDORSIs. Kanjir et al. [6] conducted a detailed analysis of the impact of environmental
factors on SDORSIs. Li et al. [7] summarized the ship-detection techniques in synthetic
aperture radar (SAR) images, along with their advantages and disadvantages.

Different from existing reviews, this paper primarily focuses on the challenges asso-
ciated with SDORSIs. It aims to establish a refined classification system that progresses
from the main problems to solutions, and provides readers with a comprehensive under-
standing of this field. Specifically, according to the characteristics of optical remote-sensing
images and ships, we summarize the challenges as follows: complex marine environments,
insufficient discriminative features, large scale variations, dense and rotated distributions,
large aspect ratios, and imbalances between positive and negative samples, as shown in
Figure 1. We take the problems as the driving force and conduct an in-depth analysis for
each one. We comprehensively summarize the corresponding solutions and analyze the
advantages and disadvantages of the respective solutions. In addition, we chronologically
summarize ship-detection technologies, including methods based on manual feature extrac-
tion, convolutional neural networks (CNN) and Transformer. Finally, for the first time, we
separate and aggregate ship information from comprehensive datasets. We also summarize
and analyze the performance improvement effects of existing solutions, as well as compare
the feature extraction capabilities of CNNs and Transformer. It is worth noting that the
ship-detection methods and datasets discussed in this paper are only for nadir imagery.

To summarize, the main contributions are as follows:

• We systematically review ship-detection technologies in chronological order, including
traditional methods, CNN-based methods, and Transformer-based methods.

• Guided by ship characteristics, we classify and outline the existing challenges in
SDORSIs. based on CNNs and analyze their advantages and disadvantages.

• We summarize ship datasets and evaluation metrics. Furthermore, we are the first to
separate and aggregate ship information from comprehensive datasets. At the same
time, we compare and analyze performance improvement of the solutions and the
feature extraction abilities of different backbones.

• Prospects of SDORSIs are presented.

The remaining components of this review are as follows: Section 2 chronologically
reviews ship-detection technologies. Section 3 sorts out SDORSI challenges, summarizing
improvement methods and their pros and cons. Section 4 summarizes ship datasets and
evaluation metrics, comparing the performance of existing algorithms. Section 5 discusses
the future development trends. Finally, Section 6 provides a summary of this paper. A
research content diagram of this paper is shown in Figure 2.
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Figure 1. Main challenges in SDORSIs.

Figure 2. The research content of the paper.
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2. Methods

Ship detection is an important research topic. In this section, we chronologically
review the methods of ship-detection technologies, including traditional methods, CNN-
based methods, and Transformer-based methods. The timeline of ship-detection methods
is shown in Figure 3.

Figure 3. The timeline of ship-detection methods.

2.1. Traditional Methods

Most traditional ship-detection methods rely on geometric elements and manually
designed features to locate ships within the background. Furthermore, they achieve good
detection results in specific scenarios. The traditional methods are as follows: template
matching, visual saliency, and classification learning.

2.1.1. Template-Matching-Based Method

Template-matching-based methods initially collect ship templates from various angles
and environments. Then, they calculate the similarity between the templates and input
images to determine the presence of ships. The methods primarily include global template
matching, local template matching and feature-point matching. They are simple to operate
and exhibit good detection performance in specific scenarios.

Xu et al. [8] proposed a method based on an invariant generalized Hough transform.
It exhibited invariance to translation, scaling, and rotation transformation to extract ship
shapes. Harvey et al. [9] performed rotational transformation on ship samples to increase
the diversity of the templates. The method enhanced the generalization capability of the
detector. He et al. [10] proposed a new method based on pose-weighted voting. It is robust
in template matching. It further improved the performance.

Template-matching-based methods achieve good results in traditional ship detection.
However, they require a lot of prior knowledge to build a template database and are
sensitive to the environment, leading to a poor generalization capability.

2.1.2. Visual-Saliency-Based Method

The visual-saliency-based method prioritizes detector focus on regions with visually
prominent features by analyzing image characteristics. The method first utilizes saliency
detection algorithms to calculate the contrast between a certain region and its surrounding
areas. Subsequently, it accomplishes the extraction of ship regions according to the results.
The method achieves good results in ship detection.

Xu et al. [11] proposed a saliency model with adaptive weights for extracting candi-
date ships. The method can identify ships and suppress the interference from complex
backgrounds effectively. Nie et al. [12] proposed a method that combined extended wavelet
transform with phase saliency regions. It effectively achieved the extraction of regions
of interests (ROIs) from complex backgrounds. Qi et al. [13] utilized the phase spec-
trum of Fourier transform to measure saliency, resulting in better identification of ships.
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Bi et al. [14] employed a visual attention algorithm to highlight the positions of ships and
provided their approximate regions.

The visual-saliency-based method finds extensive application in traditional ship detec-
tion. However, it has higher requirements for image quality. When ships are disturbed by
cloud or the ship areas are large, it is difficult to obtain ideal results.

2.1.3. Classification-Learning-Based Method

Supervised machine learning is utilized in traditional ship detection. Thus, it is
necessary to design suitable classifiers. The network trains classifiers by extracting ship
features and labels to predict ships, and then establishes the relationship between ship
features and ship categories. The main features include Scale Invariant Feature Transform
(SIFT) features [15], histogram of oriented gradients (HOG) features [16], shape and texture
features, etc. The commonly used classifiers are SVM, logistic regression, and AdaBoost.

Corbane et al. [17] utilized Radon transform and wavelet transform to extract ship
features. Subsequently, the features were combined, employing logistic regression to accom-
plish ship detection. Song et al. [18] combined shape features with HOG features to construct
a feature vector independent of size. Then, the method detected ships through AdaBoost.

However, the above manually designed features only utilize the low-level visual
information, and cannot accurately express the complex high-level semantic information in
the image. Moreover, because of the large amount of calculation in classifier detection, it is
difficult to meet the application requirements of a real-time system.

2.1.4. Summary

In addition to the aforementioned methods, nearshore ship–land segmentation [19–22]
and grayscale information [23] are also common traditional ship-detection methods. They
have achieved some good results in specific scenarios. However, they are vulnerable to
complex environment and heavily rely on prior knowledge. Additionally, the features are
manually designed, and lack good robustness and generalization ability in traditional methods.

2.2. CNN-Based Methods

The CNN-based AlexNet [24] won the first prize in the 2012 ImageNet competition,
marking the advent of the CNN era. Since then, CNN-based ship-detection technologies
have developed rapidly and achieved excellent results. Compared with traditional meth-
ods, CNNs can automatically extract ship features without manual design. The features
possess more advanced semantic information, contributing to the improvement of detec-
tion results. CNN-based methods are mainly divided into anchor-based methods and
anchor-free methods, in which anchor-based methods include a two-stage detector and a
single-stage detector.

2.2.1. Two-Stage Detector

The anchor-based detector locates ships by defining a set of anchor boxes. Anchor
boxes are a set of rectangular bounding boxes with different sizes and aspect ratios, and
evenly distributed at each pixel position in the image. The network predicts and adjusts
the positions of anchor boxes to precisely cover the ships. Then, by further judging the
category of ship, the network completes the detection. Anchor-based detectors include
a two-stage detector and a single-stage detector. The two-stage detector divides the ship
detection into two stages. The network first predicts all proposed regions containing ships
in the first stage, and then modifies these regions to accurately locate and classify ships
in the second stage, as shown in Figure 4. The two-stage detector has high accuracy and
robustness. However, due to the refinement process of the proposed regions, the detection
efficiency still needs further improvement.
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Figure 4. Schematic diagram of two-stage detector.

R-CNN: Girshick et al. [25] proposed R-CNN in 2014, marking the first attempt to
incorporate deep learning into object detection. It significantly improves the results of
detection. R-CNN uses the deep semantic features extracted by a CNN to replace the
original shallow features (HOG, SIFT, etc.), further enhancing the discriminability of ships.
Specifically, R-CNN first employs the Selective Search (SS) algorithm to divide the input
image into approximately 2000 proposed regions, aiming to comprehensively cover the
ships. Then, the network utilizes a CNN to extract features of each proposed region in turn,
and sends them into the SVM classifier to obtain the detection results. At the same time, the
network uses the regressor to adjust the positions of these proposed regions to accurately
represent the ships.

SPPNet: Due to the size requirements of the classifier, R-CNN needs to standardize
the sizes of proposed regions. It leads to the distortion and deformation of ships. To this
end, He et al. [26] proposed SPPNet in 2015 which introduced spatial pyramid pooling
(SPP). SPP divides the feature map into a fixed number of grids, and then performs max
pooling for each grid. As a result, it can convert feature maps of arbitrary size into fixed-
size feature vectors. Furthermore, compared with R-CNN, SPPNet significantly improves
detection speed.

Fast R-CNN: In order to enable end-to-end learning for object detection and further
improve the training speed, Girshick et al. [27] proposed Fast R-CNN in 2015. The network
no longer needs to extract features for each proposed region separately; instead, it cleverly
maps the regions to the feature map of the input image. At the same time, Fast R-CNN
innovatively proposed ROI pooling, which can adapt the proposed regions of different
sizes to a unified size to fit into the subsequent fully connected network. Fast R-CNN
replaces the SVM classifier with a softmax layer. Furthermore, by designing a multi-task
loss, the network is unified into a whole to train and optimize. Fast R-CNN greatly reduces
training costs.

Faster R-CNN: Ren et al. [28] proposed Faster R-CNN, in which a region proposal
network (RPN) replaced the SS algorithm for extracting ROIs. RPN proposed anchor boxes
for the first time and it greatly improved the detection speed. Anchor boxes are evenly
distributed at each pixel position of the feature map and fully cover it. Specifically, in the
first stage, Faster R-CNN predicts the foreground and background probability of anchor
boxes and performs rough boundary adjustments. Then, it maps anchor boxes to the
feature map to support predictions in the second stage.

R-CNN improvement: Following the concept of R-CNN, some detectors improved from
R-CNN have been successively proposed, such as Mask R-CNN [29], Cascade R-CNN [30],
Libra R-CNN [31], Grid R-CNN [32], etc. These detectors improve Faster R-CNN from
different aspects, aiming to meet the application requirements in various scenarios and
achieving excellent detection results.

A two-stage detector achieves high precision and robustness in ship detection. For
example, Guo et al. [33] proposed rotational Libra R-CNN to accurately predict the position
of rotated ships. Li et al. [34] introduced the hierarchical selective filtering layer into Faster
R-CNN to generate more accurate prediction boxes. Nie et al. [35] proposed a nearshore
ship-detection method based on Mask R-CNN which introduced Soft-NMS to reduce the
occurrence of missed detection.
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2.2.2. Single-Stage Detector

In the single-stage detector, the results can be directly output after passing through
a deep network, eliminating the time-consuming aspect of region proposals, as shown in
Figure 5. Compared with the two-stage detector, the single-stage detector trades off the
accuracy and efficiency. It is suitable for applications that require high real-time accuracy
and high efficiency.

Figure 5. Schematic diagram of single-stage detector.

YOLO: Redmon et al. [36] first proposed the representative of single-stage detectors
in 2016, known as You Only Look Once (YOLO). The image only passes through the CNN,
and the ship category and location can be generated directly. Specifically, YOLOv1 divides
the input image into 7× 7 grids, and each grid generates two prediction boxes to predict the
ship category and location. YOLO reduces the complexity of the algorithm and increases
the detection speed. However, YOLOv1 can only detect one ship per grid, resulting in poor
detection performance for dense ships. Therefore, many researchers have made a series of
improvements on the basis of YOLOv1, including data preprocessing, feature extraction,
and anchor box generation [37–41]. These methods have elevated the accuracy of single-
stage detectors to a new level while maintaining YOLO’s high detection speed, achieving
further balance in performance. To date, the latest algorithm in the YOLO series, YOLOv8,
has been published in GitHub. It incorporates innovative improvements over YOLOv5,
including backbone, decoupling detection head, loss function, and sets the algorithm in an
anchor-free form. YOLOv8 has the advantages of light weight and high efficiency.

SSD: Liu et al. [42] combined the regression concept of YOLO with the anchor
mechanism of Faster R-CNN, proposing the SSD in 2016. SSD sets anchor boxes with
different aspect ratios at each pixel of the feature map for predicting the classification and
regression of ships. At the same time, multi-scale detection technology is introduced in
SSD. By setting up six scale feature maps, the model gains the capability to detect ships
at multiple scales, especially small ones. SSD provides a new approach for the design of
single-stage detectors by incorporating the anchor mechanism, which can achieve effective
coverage of ships.

RetinaNet: During the training process, anchor mechanisms may lead the model to
excessively focus on the background regions where negative samples are located, thereby
affecting detection performance. For this reason, Lin et al. [43] proposed RetinaNet in 2017,
and Focal Loss effectively addresses the issues of positive and negative samples imbalance
as well as difficulty imbalance. By utilizing Focal Loss, the network achieves weighted
positive samples through balanced cross-entropy, enhancing the ability to detect positive
samples. Simultaneously, the network maps the confidence of each category to a weight
coefficient added to the loss, improving the ability of the network to detect difficult samples.
The proposal of RetinaNet makes it possible to imagine that the single-stage detector can
compete with the two-stage detector in detection accuracy.

There are strict limitations on the detection speed due to the real-time requirements
of monitoring the sea situation. Therefore, more and more researchers are committed to
deep development of single-stage detectors to meet the requirements of ship detection. For
example, Patel et al. [44] compared the detection capabilities of different versions of the
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YOLO algorithm. Gong et al. [45] integrated the shallow features of SSD and introduced
context information, improving the detection accuracy. Wu et al. [46] employed RetinaNet
as the backbone and proposed the hierarchical atrous spatial pyramid to obtain larger
receptive fields.

In summary, anchor-based detectors include two-stage detectors and single-stage
detectors. Anchor boxes fully cover the image per pixel, significantly enhancing detection
accuracy. However, the drawbacks of the anchor mechanism are as follows: Firstly, the
ship regions occupy only a small portion of an image, resulting in the majority of anchor
boxes being assigned to irrelevant backgrounds. Therefore, the massive tiling of anchor
boxes introduces redundant computations. Secondly, anchor boxes require setting hyperpa-
rameters, and unreasonable configurations may lead to performance degradation. Finally,
predefined aspect ratios result in poor performance when matching irregularly shaped
ships, causing the detector to lack generalization.

2.2.3. Anchor-Free Detector

The anchor-free detector breaks limitations of the anchor-based detector, providing
a new reference path for ship detection. The anchor-free detector uses keypoints instead
of anchor boxes to detect ships, which enhances the ability to process ships of different
shapes, as shown in Figure 6. It improves the generalization of the model.

Figure 6. Schematic diagram of anchor-free detector.

CornerNet: Law et al. [47] proposed CornerNet which was the first to implement the
anchor-free detector in 2018. It adopts the keypoint detection method and proposes corner
pooling. By predicting the top-left and bottom-right points, Corner pooling generates
prediction boxes to determine the ship positions. It significantly reduces the amount of
calculation and improves the speed of detection.

CenterNet: Inspired by CornerNet, Zhou et al. [48] proposed CenterNet in 2019.
CenterNet takes the peak points of the heatmap generated by the image as the center points
of ships. Then, it regresses the width, height, weight, and other information of ships based
on the center points to generate prediction boxes.

FCOS: Tian et al. [49] proposed an anchor-free detector using pixel prediction in 2019,
named FCOS. It introduces center-ness to measure the distance between predicted pixels
and the actual center of ships. Center-ness effectively inhibits the generation of low-quality
prediction boxes.

An anchor-free detector has the obvious advantage of alleviating the imbalance be-
tween positive and negative samples. Therefore, it achieves excellent performance in
ship detection. For example, Yang et al. [50] improved the weight assignment method of
center-ness in FCOS, making it better aligned with the shape of ships. It more effectively
suppressed the generation of low-quality prediction boxes. Zhuang et al. [51] proposed
CMDet based on FCOS to detect rotated ships. Zhang et al. [52] introduced the recall-
priority branch based on CenterNet to alleviate the occurrence of missed detection.

However, due to the lack of anchor boxes, the capability of ship detection completely
depends on the recognition of keypoints. Anchor-free detector exhibits poor performance
for ships with ambiguous keypoints. Moreover, it cannot effectively handle overlapping or
occluded ships.
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2.2.4. Summary

Compared with traditional ship-detection methods, CNN-based methods demonstrate
superior robustness and accuracy. Currently, CNN-based methods have become the pri-
mary methods for ship detection. According to the specific requirements, different detectors
are adopted in different ship detections. For high-precision detection, two-stage detectors
are considered more suitable. Furthermore, single-stage detectors are more suitable for
scenes with high requirements for real-time performance. In addition, anchor-free detectors
can effectively address problems such as imbalance between positive and negative samples,
and redundant calculations in anchor-based detectors.

2.3. Transformer-Based Methods

Vaswani et al. [53] proposed a simple network architecture, Transformer, and im-
plemented efficient natural language processing (NLP) in 2017. Transformer abandons
traditional recurrent and convolutional structures, adopting an encoder–decoder structure
based on multi-head self-attention mechanism, as shown in Figure 7a,b. In this process,
the encoder maps input sequences into a continuous representative sequence through
global attention operations. Furthermore, the decoder is auto-regressive. It is able to
better capture long-range contextual relationships by interacting with the output of the
encoder during sequence generation. Furthermore, the parallel computing capability of
Transformer greatly enhances training speed. Benefiting from the satisfactory performance
in NLP, researchers are attempting to explore its applications in computer vision. In recent
years, Transformer has been extended to object detection and has made great contributions.
According to differences in model design, it can be divided into Transformer-based detector
and Transformer-based backbone.

Figure 7. Schematic diagram of Transformer. (a) Encoder–decoder structure. (b) Self-attention mechanism.

2.3.1. Transformer-Based Detector

DETR: Carion et al. [54] proposed DETR, which first applied Transformer to object
detection in 2020. DETR views ship detection as a set prediction problem. Specifically,
DETR first extracts feature maps using CNN. Then, they are converted into one-dimensional
vectors and fed into the encoder along with positional codes. Afterward, the encoder sends
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the output vectors into the decoder along with object queries. Finally, the decoder sends the
output to a shared feed-forward network to obtain the detection result. DETR matches the
predicted object queries with ships, seeking an optimal matching scheme with the lowest
cost. Therefore, DETR circumvents the NMS procedure and achieves end-to-end detection.

Deformable DETR: The high computational cost and spatial complexity of the self-
attention mechanism result in a slow convergence speed of DETR. The resolution that
DETR can process is limited, and it is not ideal for detecting small ships. To address
it, Zhu et al. [55] incorporated the concepts of deformable convolution and multi-scale
features into DETR, proposing Deformable DETR. Furthermore, the deformable attention
module was designed to replace the traditional attention module. It allows each reference
point to focus only on a set of sampling points in its neighborhood, and the positions of
these sampling points are learnable. It reduces the computational burden in irrelevant
regions and decreases training time. At the same time, the introduction of multi-scale
feature maps realizes the hierarchical processing for ships of different sizes. Deformable
DETR is capable of effectively performing detection tasks of different scales.

2.3.2. Transformer-Based Backbone

Swin Transformer: Liu et al. [56] proposed Swin Transformer, attempting to combine
the prior knowledge of a CNN with Transformer. Swin Transformer employs the idea of
the local context in a CNN, where the model calculates self-attention only within each
local window. It significantly reduced the sequence length and improved computational
efficiency. Swin Transformer also introduced the idea of translational invariance from
CNNs. The shifted window approach facilitates information interaction between adjacent
windows, achieving the goal of global information extraction. It first demonstrated that
Transformer can be used as a general backbone in computer vision.

PVT: Wang et al. [57] proposed a Transformer backbone suitable for dense object
detection, named PVT. By incorporating the pyramid structure from CNN, PVT can extract
better multi-scale feature information. Meanwhile, compared with traditional multi-head
attention, spatial reduction attention ensures that PVT can obtain high-resolution feature
maps while reducing computational cost.

TNT: Transformer struggles to capture the correlation within patches, which leads
to the omission of small objects. To this end, Han et al. [58] proposed a Transformer
in Transformer (TNT) architecture. TNT further divides each patch and then computes
self-attention within each patch. As a result, TNT cannot only model global information,
but also better capture local information, extracting more detailed features.

2.3.3. Summary

The issues of high parameters and computational consumption in Transformer greatly
restrict its practical application scenarios. Furthermore, the high data requirements make
it challenging to achieve satisfactory results on small datasets. These factors limit its de-
velopment in ship detection. However, compared to CNN-based methods, Transformer
can thoroughly explore long-range dependencies in targets, and effectively capture global
features. It increases the identifiable information of ships from a global perspective. Trans-
former has significant potential for development in ship detection. However, there is
currently a lack of research on the optimization of ship characteristics, which may be a key
hindrance to the development of this field. Therefore, addressing the above issues and
fully leveraging the advantages of Transformer in ship detection require more efforts in
the future. Furthermore, in order to facilitate the comparison of the three methods, we
summarize them and their advantages and disadvantages in Table 1.
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Table 1. Methods of ship detection and main advantages and disadvantages.

Methods Advantages Disadvantages References

Traditional
Methods

Template
Matching

It is simple to operate. It requires a lot of prior knowledge
and is sensitive to the environment. [8–10]

Visual
Saliency

It calculates the contrast between a
certain region and its surrounding
areas to extract regions.

It has higher requirements for image
quality. [11–14]

Classification
Learning

It establishes the relationship
between ship features and ship
categories.

The manually designed features
only utilize the low-level visual
information and cannot express the
complex semantic information.

[17,18]

CNN-based
Methods

Two-stage
Detector

It divides the ship detection into
two stages and has high accuracy
and robustness.

Detection efficiency of two-stage
detector may be lower than
single-stage detector.

[25–32]

Single-stage
Detector

It is suitable for the applications that
require high real-time accuracy and
high efficiency.

Detection accuracy of single-stage
detector may be lower than
two-stage detector.

[36–43]

Anchor-free
Detector

It uses keypoints instead of anchor
boxes to detect ships which
improves the generalization of the
model.

It exhibits poor performance for
ships with ambiguous keypoints. [47–49]

Transformer
Methods

Detector
Backbone

It can explore long-range
dependencies in targets, and
effectively capture global features.

The high data requirements make it
challenging to achieve satisfactory
results on small datasets.

[54–58]

3. Challenges and Solutions in Ship Detection

Due to the significant differences between optical remote-sensing images and natural
images, and variations in the features of ships compared with other targets, applying
classical object detection algorithms directly results in low detection accuracy and missed
detection. Therefore, this section summarizes the reasons for the low accuracy in SDORSIs,
including complex marine environments, insufficient discriminative features, large scale
variations, dense and rotated distributions, large aspect ratios, and imbalances between
positive and negative samples. Furthermore, the corresponding solutions based on CNNs
and their advantages and disadvantages are analyzed in detail. Challenges and solutions
are shown in Figure 8.

Figure 8. Challenges and solutions for improvement.
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3.1. Complex Marine Environments

Optical remote-sensing images can provide rich information, but they are susceptible
to factors such as light and weather. These adverse background factors bring significant
interference to ship detection, resulting in missed or false detection. At the same time, there
are usually only a few ships in remote-sensing images of the sea, while the background
occupies the majority of the area. The extreme imbalance phenomenon causes the detector
to overly focus on background regions, but ignores the effective extraction of ships. There-
fore, it is a necessary processing strategy to guide the network to pay more attention to
ships and ignore irrelevant background in SDORSIs. At present, there are several main
solutions for complex backgrounds: image preprocessing, attention mechanisms, and
salience constraints.

3.1.1. Image-Preprocessing-Based Method

Image preprocessing is one of the feasible methods to deal with complex background.
It primarily suppresses the expression of background through prior information during
the image preparation stage to reduce the contribution of the background, allowing the
model to focus on learning ship features. Through the method of active guidance, image
preprocessing greatly reduces the impact of complex background in SDORSIs.

Yu et al. [59] developed an embedded cascade structure. It removes the majority of
irrelevant background in advance, and selects regions containing ships for training. The
method alleviates the imbalance of the foreground and background, and reduces the inter-
ference of the background. Zheng et al. [60], Song et al. [61], and Yang et al. [62] designed
image dehazing algorithms to restore images, addressing the issues of cloud occlusion in
ocean scenes. Dehazing algorithms improve the image quality and are beneficial for enhanc-
ing detection accuracy. However, Li et al. [63] argued that existing dehazing algorithms
did not distinguish between blurry and clear images. Excessive deblurring of clear images
could lead to degrading image quality. Therefore, they proposed the blurred classification
and deblurring module which obtained clear images and improved detection accuracy.

However, it should be noted that some image preprocessing methods require pro-
cessing images independently based on prior knowledge, lacking generalization ability.
Furthermore, some methods may introduce more convolutional layers which require addi-
tional training for the network.

3.1.2. Attention-Mechanism-Based Method

Due to the bottleneck in information processing, human cognitive systems always
tend to selectively focus on important information and ignore secondary information. The
core idea is to weight different parts of the input sequence according to the importance of
features, and enhance the contrast between ships and the background at the feature level.
Without human intervention, the attention mechanism operates end-to-end. Attention-
mechanism-based methods generate prominent feature maps, which effectively highlight
ship regions and suppress the expression of irrelevant background regions. Therefore,
introducing attention mechanism is one of the effective methods to deal with complex
background issues.

Li et al. [64] introduced the channel attention mechanism, as shown in Figure 9b, into
multiple receptive field fusion modules to suppress irrelevant background information.
Wang et al. [65] attached the channel attention mechanism to the backbone to enhance
the capability of extracting ship features in complex backgrounds. Hu et al. [66] and
Qin et al. [67] incorporated both a spatial attention mechanism, as shown in Figure 9a, and
a channel attention mechanism to highlight the ships. Chen et al. [68] designed a coordinate
attention module. It effectively combines spatial attention and channel attention to enhance
the ability of ship feature representation. Qu et al. [69] added a convolutional attention
module to YOLOv3, as shown in Figure 9c, highlighting ship features and improving
detection accuracy.
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Figure 9. Schematic diagram of attention mechanisms. (a) Spatial attention mechanism. (b) Channel
attention mechanism. (c) Convolutional block attention module.

However, an attention mechanism increases the complexity of network computing.
Furthermore, if the network overly relies on it in SDORSIs, it may lead to a decreased
ability to generalize.

3.1.3. Saliency-Constraint-Based Method

The saliency-constraint-based method adopts the idea of multi-task learning, constrain-
ing the network to focus on ships by designing the loss function, as shown in Figure 10.
Firstly, the method utilizes prior information to create significance maps as labels. The
values on labels reflect the importance of pixel positions, and the higher value indicates
the higher attention of the ship. Then, a saliency prediction branch is added to output
the predicted saliency maps. Through pixel-level loss constraints, the model pays more
attention to ship regions during the training phase, thereby suppressing the impact of the
background. The method enables the network to prioritize focusing on saliency regions
with obvious visual features, and ignore the irrelevant background. It can narrow down
the detection range and enhance detection efficiency.

Figure 10. Schematic diagram of saliency constraint, the red square is the saliency constraint.
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Ren et al. [70] added a saliency prediction branch to introduce saliency information
with stronger foreground expression ability in SDORSIs. It improves the ship detection
capability in complex environments. Chen et al. [71] designed a degradation reconstruction
enhancement network. By selective degradation, the network obtains “pseudo saliency
maps”. Then, the maps are used to guide the network to focus more on ship information
and ignore the irrelevant background in the training stage.

Visual saliency employs pixel-level supervision to guide the network and greatly
addresses the challenge of complex backgrounds in SDORSIs. However, the generation
of saliency maps requires clearer spatial distribution, which has demands on the details
and resolution of feature maps. Furthermore, the weight of multi-task loss needs to be
adjusted manually.

3.1.4. Summary

Complex environmental interference is one of the main challenges for the difficult
improvement of SDORSI results. The existing research indicates that optimization strategies
such as image preprocessing, attention mechanisms, and saliency constraints contribute to
improving detection performance. The essence of these methods is to highlight ships and
make the network focus on ship features. However, the methods are inevitably associated
with some disadvantages. Simple methods are not suitable for more complex environments.
Furthermore, paying too much attention to the background of a specific dataset leads to
overfitting, hindering the network from generalizing. In order to provide readers with a
more intuitive understanding, the methods and the main advantages and disadvantages in
complex marine environments are shown in Table 2.

Table 2. Methods and main advantages and disadvantages of complex marine environments.

Methods Advantages Disadvantages References

Image
Preprocessing

Exclude
Background

It filters out untargeted images in
advance.

Introducing convolutional layers
requires additional training for the
network.

[59]

Dehazing
Algorithm

It improves the quality of the image
by eliminating the impact of clouds
and fog.

Excessive dehazing may result in
information loss. Simple algorithms
are not suitable for complex scenes.

[60–63]

Attention
Mechanism

Channel
Attention

Mechanism

It adjusts channel weights
dynamically to focus on ships.

It has limitations in extracting
global information. [64–67]

Spatial Attention
Mechanism

It highlights important information
in the image to focus on ships.

It may excessively focus on local
structures, leading to a decreased
ability to generalize.

[66,67]

Convolutional
Attention
Module

It adjusts convolutional kernel
weights dynamically at different
positions to focus on ships.

Introducing additional
computation. [68,69]

Saliency
Constraint

Saliency
Constraint

It uses the concept of multi-task
learning and pixel-level supervision
to focus on ships.

It has a high requirement for the
resolution of the images. The weight
needs to be adjusted manually.

[70,71]

3.2. Insufficient Discriminative Features

Unlike occupying a large proportion in natural images, ships usually cover only a few
dozen pixels in optical remote-sensing images, which makes them challenging to detect.
As a deep network continuously compresses and extracts features, the crucial information
of small ships is easily suppressed. Therefore, insufficient discriminative features of small
ships are the main reason for missed detection. It remains a challenge in ship detection, and
has not been effectively solved. Currently, context information mining and feature fusion
are effective methods to improve the accuracy of small ship detection. These methods focus
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on extracting effective information from the surroundings or inside of ships to enhance the
feature expression ability.

3.2.1. Context Information Mining-Based Method

Context information mining refers to enhancing the information processing ability of
the network by obtaining the environment information around the ship. The information is
closely related to ships and helps to identify small ships with network uncertainty, thereby
improving the accuracy and robustness. When detecting small ships, exploring contextual
information that is closely connected with the ship can help obtain contents conducive to
detection. It can alleviate the issue of insufficient discriminative features of small ships and
improve the detection accuracy.

Ship-wake-based method: Ships navigating at sea usually occupy only a few dozen
pixels in optical remote-sensing images, but their wake often reaches hundreds of pixels,
as shown in Figure 11a. Wake refers to the visual trace created by the movement of ships,
such as waves or disturbances on the sea. It is closely associated with ships and provides
crucial contextual information, which can be used to enhance ship detection performance.
Liu et al. [72], Xue et al. [73], Liu et al. [74], Liu et al. [75], and Liu et al. [76] introduced
wake as contextual information. By employing a cascaded method of ships and wake, the
network achieved excellent performance.

Figure 11. Schematic diagram of context information mining. (a) Comparison between the ship
and its wake. (b) Comparison between standard convolution (kernel size = 3, rate = 1) and dilated
convolution (kernel size = 3, rate = 2).

Dilated-convolution-based method: Increasing the receptive fields while maintain-
ing resolution can help obtain more contextual information, helping the network to detect
small ships better. Using a large kernel to extract information is regarded as an effective
method for increasing the receptive fields. However, the parameters of it increase the
computational burden. Therefore, the dilated convolution is developed as the context
information mining method, as shown in Figure 11b. Xu et al. [77], Chen et al. [78], and
Zhou et al. [79] used dilated convolution instead of regular convolution to extract ship
features. Dilated convolution can capture more context information without bringing too
many parameters, introducing more references in SDORSIs.

It is worth noting that the extraction of context information requires a balance, as
introducing irrelevant information may harm the performance. Furthermore, because of
gaps in the dilated convolution kernel, the feature extraction may result in discontinuity of
information. Therefore, the network needs to stack multiple dilated convolutions to ensure
the integrity of feature.

3.2.2. Feature-Fusion-Based Method

A CNN has a hierarchical structure, and generates features with multiple resolutions.
Shallow features contain more detailed information, such as ship boundary, which is bene-
ficial for ship localization. Furthermore, deep features contain more semantic information,
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such as the discriminant parts of the ship, which is more conducive to ship classification.
Feature fusion can obtain rich semantic information and localization information on a
feature map to enhance the discriminative features of small ships.

Liu et al. [80] integrated three feature maps of different sizes in the same channel
dimension, enhancing discriminative features. Li et al. [81] first proposed a pooling-based
method to integrate features, fully leveraging the advantages of features with different
resolutions in ship detection. Tian et al. [82] designed a dense feature reconstruction
module. By integrating high-resolution detailed information with low-resolution semantic
information, small ship features were enhanced. Qin et al. [83] aggregated features based
on residual network to improve the accuracy of ship detection. Han et al. [84] proposed
a dense feature fusion network. It effectively integrated information without consuming
additional memory space. Wen et al. [85] proposed a method of cross-skip connection to
flexibly fuse information.

Feature fusion is an effective method to detect insufficient discriminative features
of small ships. However, it increases the computation and model complexity, which are
detrimental to detection speed. Furthermore, improper fusion methods may result in loss
or confusion of information.

3.2.3. Summary

Insufficient discriminative features are a major challenge in SDORSIs, and enhancing
the feature representation ability of ships is a key technology to alleviate this problem. The
experiments indicate that methods of context information mining and feature fusion can
enhance the discriminative ability of small ships, further improving the detection effect.
However, the significant performance gap between small and large ships indicates that there
is still considerable room for improvement. Specifically, the unfairness in Intersection over
Union (IoU) evaluation and the indifference in regression loss contribute to the disregard of
small ships in detection. Therefore, in order to effectively address this challenge, increasing
the attention of small ships detection is the key point for future work. The methods and
the main advantages and disadvantages of insufficient discriminative feature are shown in
Table 3.

Table 3. Methods and main advantages and disadvantages of insufficient discriminative feature.

Methods Advantages Disadvantages References

Context
Information

Mining

Ship Wake
The wake is closely related to the
ship and can provide additional
discriminative information.

Excessive context information may
compromise detection performance. [72–76]

Dilated
Convolution

It enhances the receptive field
without introducing additional
parameters while maintaining
resolution.

There are gaps in the dilated
convolution kernel, which leads to
information discontinuity.

[77–79]

Feature
Fusion

Feature
Fusion

Integrating information from
feature maps with different
resolutions can extract rich semantic
information and localization
information to enhance information
interaction capabilities.

Improper fusion methods may
result in loss or confusion of
information.

[80–85]

3.3. Large Scale Variation

Compared with natural images, the scale variation of ships in optical remote-sensing
images is larger. With the down sampling of optical remote-sensing images, the spatial
resolution decreases. The information of small ships may vanish in deep features, causing
the detector to fail to identify crucial discriminative features. Therefore, only relying on
single-scale information for detecting ships of various scales cannot achieve desirable
results. The current research challenge lies in achieving satisfactory detection results for
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ships with different scales using the same network. At present, the introduction of multi-
scale information is an effective method to address this issue. The essence is to perform
hierarchical processing for large, medium, and small ships.

3.3.1. Multi-Scale Information-Based Method

Due to the absence of excessive down sampling in shallow features, important high-
frequency information can be preserved, such as texture, color, and edges. The information
helps with the prediction of small ships. After multiple down samplings, the deep features
can obtain larger receptive fields, which is helpful for the prediction of large ships. There-
fore, utilizing multi-scale feature maps can better complete the fine-grained detection of
different scales. However, they are independent from each other in the early prediction of
ships, lacking mutual correlation. Then, a multi-scale information-based method based on
feature fusion is proposed to alleviate this problem. It enhances the information interaction
ability of different scale feature maps, and is widely applied in ship detection.

Feature Pyramid Network (FPN) [86] is a representative method that uses feature
fusion to enhance multi-scale information. Through the lateral connection and the top-
down pathway, a high-level feature transfers downward and fuses with a low-level feature,
as shown in Figure 12. It combines the semantic information and positional information of
feature maps, improving the representational ability of multi-scale information. Therefore,
FPN can more comprehensively detect multi-scale ships. Tian et al. [87] and Ren et al. [70]
proposed a multi-node feature fusion method based on FPN. It fully integrates information
from feature maps at different scales, and improves the detection ability of multi-scale
ships. Si et al. [88] and Yan et al. [89] used an improved bidirectional FPN to enhance the
interactive ability of multi-scale features. Li et al. [90] and Yang et al. [50] improved FPN
using the Network Architecture Search algorithm (NAS). It can learn features adaptively
and choose more suitable fusion paths to enrich information. Chen et al. [91] combined
FPN with the recursive mechanism to further enhance the representational capacity of
multi-scale information. Xie et al. [92] proposed an adaptive pyramid network. It can
enhance important features, improving detection accuracy. Zhang et al. [93] proposed SCM,
which addresses the issue of channel imbalance during the feature fusion. Guo et al. [33]
proposed Balanced Feature Pyramid (BFP). It adjusts multi-scale feature maps to the same
medium size by interpolation and down sampling. Then, the balanced semantic features
are generated by scaling and refining the features. The method alleviates the impact of
different size feature maps during fusion. Guo et al. [94] improved BFP and proposed
Adaptive Balanced Feature Integration (ABFI). The module can assign different weights to
the different feature maps during feature fusion, enabling more accurate detection.

Figure 12. Schematic diagram of FPN.

In conclusion, addressing the multi-scale challenge in SDORSIs requires a comprehen-
sive consideration of factors such as scale differences, algorithm design, FPN construction,
and so on. It is essential to ensure that the network can accurately and efficiently detect
ships of different scales.

3.3.2. Summary

The large-scale variation in SDORSIs is one of the key factors limiting the improvement
of performance. Introducing multi-scale information is one of the commonly used methods.
Simultaneously, the key factor contributing to the low detection accuracy of large-scale
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targets detection is the poor performance in small vessels. In the future, enhancing the
feature representation capability of small ships and designing multi-branch detection
networks are also strategies to address this issue. Furthermore, the research trend lies
in how to enhance the light weight of the network and reduce the application threshold
in portable mobile devices while ensuring the accuracy of multi-scale ship detection.The
methods and the main advantages and disadvantages of large scale variation are shown in
Table 4.

Table 4. Methods and main advantages and disadvantages of large scale variation.

Methods Advantages Disadvantages References

Multi-Scale
Information

FPN and
Improvements

It enables the model to handle ships
of different scales through the
pyramid structure and the feature
fusion is used to enhance the
information interaction ability to
improve the detection accuracy.

By introducing the pyramid
structure, it increases the
computational complexity and
training time.

[33,50,70,86–94]

3.4. Dense Distribution and Rotated Ships

Due to the arbitrary orientation of ships in optical remote-sensing images, using
horizontal bounding boxes (HBBs) cannot accurately represent the orientation of ships, and
also introduce excessive background information. At the same time, ships often exhibit
a trend of dense and rotated distribution in areas such as nearshore docks. Excessive
overlap between bounding boxes leads to the suppression of correct boxes, which further
exacerbates the phenomenon of low recall. Therefore, achieving accurate detection of ships
with a dense rotated distribution is a challenge in optical remote-sensing images. Currently,
employing arbitrary orientation bounding boxes (OBBs) is an effective strategy for detecting
rotated ships. OBBs accurately represent the position and orientation information of ships
while effectively reducing the introduction of background information. Additionally,
improved methods for Non-Maximum Suppression (NMS) alleviate the issue that detection
results are incorrectly suppressed in densely distributed ships to a certain extent.

3.4.1. OBB Representation and Regression-Based Method

OBBs introduce angle information based on HBBs. The angle information can effec-
tively represent the sailing direction of the ship. Therefore, OBBs can better highlight the
position and orientation information. OBBs also effectively reduce the introduction of back-
ground information and separate the densely distributed ships. Accurately representing
and generating arbitrary OBBs to locate ships holds higher application value in optical
remote-sensing images.

Representation with five parameters: The method with five parameters is one of the
classical representations of OBBs, represented by (x, y, w, h, θ). Specifically, (x, y) represents
the center point, (w, h) represents the width and height, and θ represents the rotated angle.
The representation of 90◦ cycle defines the height as a rectangular edge that forms an acute
angle with the x-axis, and the range of values for θ is [0◦, 90◦), as shown in Figure 13a.
However, the defined width and height are exchanged when the rotated angle exceeds
90◦, as shown in Figure 14a. It affects the convergence effectiveness of the network. The
representation of 180◦ cycle defines the long side of a rectangular box as the height, and
the range of values for θ is [−90◦, 90◦), as shown in Figure 13b. It can effectively avoid the
issue of exchanging width and height. However, there is a value difference when there is
an overlap of −90◦ and 90◦ at the boundary, which produces the boundary discontinuity
problem, as shown in Figure 14b. It results in a sharp increase in loss at the boundary,
affecting the detection performance. Liu et al. [95], Ouyang et al. [96], and Ma et al. [97]
used OBBs represented as (x, y, w, h, θ) to locate ships.
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Figure 13. Schematic diagram of classical representations. (a) Five parameters (90◦ cycle). (b) Five pa-
rameters (180◦ cycle). (c) Eight parameters.

Figure 14. Schematic diagram of the issues of classical representations. The ground truth boxes
are shown in red, and the bounding boxes are shown in blue. (a) Five parameters (90◦ cycle).
(b) Five parameters (180◦ cycle). (c) Eight parameters.

Representation with eight parameters: The method with eight parameters is another
classical representation for OBBs, represented by (x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4). Specifically,
(xn, yn) represents the coordinates of the four vertices of OBBs, as shown in Figure 13c.
The method determines a unique direction by artificially setting the reference point, rather
than representing angle values. However, it also exhibits an issue of loss discontinuity
during the regression process. As shown in Figure 14c, the ideal regression process from
the blue bounding box to the red ground truth box should be (a→a), (b→b), (c→c), (d→d).
However, the actual regression process is (a→b), (b→c), (c→d), (d→a). At the same time,
the representation requires more parameters, increasing the learning burden of the network.
Zhang et al. [98] used OBBs represented as (x1, y1, x2, y2, x3, y3, x4, y4) to locate ships.

Others: The issue of loss discontinuity, calculated by representations with five pa-
rameters and eight parameters, significantly impacts the convergence effectiveness of the
model. Therefore, proposing new representations to alleviate this problem is the focus
of current research. Su et al. [99] proposed the method represented by (x, y, w, h, OH,
OV) to locate ships, as shown in Figure 15a. OH and OV were normalized horizontal
and vertical distance. The method fundamentally addressed the boundary issue of angle
regression. Zhou et al. [100] proposed an ellipse method, represented by (x, y, |u|, |v|, m,
α), as shown in Figure 15b, where α = 0 represents that the ship belongs to the second and
fourth quadrants; α = 1 represents that the ship belongs to the first and third quadrants.
Furthermore, m is the difference between the length of the major axis and the focal vector.
It uses vectors to represent angles, avoiding the issue of loss discontinuity caused by direct
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angle prediction. Yang et al. [101] and Zhang et al. [93] converted the representation with
five parameters into a 2D Gaussian distribution, as shown in Figure 15c. It abandons angle
representation, avoiding the issue of discontinuity in angles.

Figure 15. Schematic diagram of others. (a) Six parameters represented by (x, y, w, h, OH, OV).
(b) An ellipse method represented by (x, y, |u|, |v|, m, α). (c) Gaussian distribution, and the confidence
is highest in the red area.

Anchor-based regression: It is a common method to use the anchor-based detector
to generate OBBs. The detector first presets a set of rotated anchor boxes and overlays
the input image with pixel-wise prediction. Then, the detector regresses parameters of
the rotated angle, center position, width, and height of positive samples by a predefined
method to generate OBBs. For example, KOO et al. [102] used the width or height distance
projection to predict the angle and generate OBBs. Ouyang et al. [96] first preset a series of
horizontal anchor boxes. Then, the rotated proposal regions were generated by bilinear
interpolation. Furthermore, through fully connected layers, OBBs were generated. Li et al.
[64] proposed the boundary regression module, which achieved more accurate regression
by predicting the offset values for the four edges of each bounding box.

Anchor-free regression: The method of generating OBBs using the anchor-free detec-
tor is not constrained by anchor boxes. It usually uses keypoints or segmentation techniques
to directly generate the OBBs of ships. Furthermore, compared with the anchor-based detec-
tor, it reduces hyperparameters and demonstrates greater generalization. Zhang et al. [93]
converted the ship detection into a binary semantic segmentation based on the anchor-free
detector. The method generates OBBs directly by selecting pixels above the set threshold.
Chen et al. [103] used the network to detect three keypoints: the bow, the stern, and the
center. Furthermore, they combined the bow and stern to generate a series of prediction
boxes. Then, OBBs were generated using the center points and angle information. Zhang
et al. [104] used the bow and the center points to determine the orientation and generate
OBBs. Cui et al. [105] used the anchor-free detector to predict the center point and shape of
ships for accurately generating OBBs.

Using OBBs in rotated ship detection alleviates the issues introduced by HBBs and
achieves good results. However, there are certain limitations in OBBs. The loss discontinu-
ity of classical representations seriously impacts efficiency. Currently, some representations
solve this problem, but the calculations are complex. Furthermore, the predefined dimen-
sions, aspect ratio, and angles of anchor boxes are closely related to the dataset. The design
of different hyperparameters affects the performance of detection. However, the prior
knowledge of anchor boxes is crucial. Their absence may cause the detection accuracy
to decrease.

3.4.2. NMS-Based Method

Due to the dense distribution of ships, the use of OBBs for close ship detection may
also produce the significant overlap. When the IoU between different ships exceeds the
predefined parameter, traditional NMS retains only one bounding box with the highest
confidence, and completely discards the other. The operation may lead to the suppression
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of a correct prediction, resulting in the instance of a missed detection. Therefore, in order to
eliminate redundant prediction boxes while maximally preserving correct predictions, the
improvement methods of NMS have been proposed.

Bodla et al. [106] proposed Soft-NMS, which considers both the confidence and
the overlap of different bounding boxes. It weights the overlapping bounding boxes to
reduce their scores, rather than simply removing them with non-maximum confidence.
Nie et al. [34] and Zhang et al. [107] employed Soft-NMS instead of traditional NMS, im-
proving the recall in ship detection. Inspired by Soft-NMS, Cui et al. [105] proposed
Soft-Rotate-NMS. It combines Soft-NMS with rotated features, making it more suitable for
ships with arbitrary orientations.

It is important to note that the setting of the IoU threshold has a significant impact on
NMS, requiring constantly manual adjustment to find the optimal threshold during the
training process. Therefore, an adaptive threshold NMS algorithm is more in line with the
current environment.

3.4.3. Summary

The dense and rotated distribution of ships is one of the challenges in SDORSIs. Exist-
ing research indicates that the generation of arbitrary OBBs and the improvement methods
of NMS have positive effects. OBBs can more accurately locate the position and orientation
of rotated ships. Furthermore, the improvement methods of NMS greatly alleviate the prob-
lem of missed detection of dense ships. Solving the issue of boundary discontinuity caused
by OBBs has significant research value in the future. However, current OBB representations
introduce additional parameters, and require a balance between detection accuracy and
speed in practical applications. The methods and the main advantages and disadvantages
of dense distribution and rotated ships are shown in Table 5.

Table 5. Methods and main advantages and disadvantages of dense distribution and rotated ships.

Methods Advantages Disadvantages References

OBB
Representation

Five
Parameters

It is represented by (x, y, w, h, θ)
and more accurately represents the
position and orientation
information of ships.

At the angle boundary, angle change
leads to a sharp increase in loss. [95–97]

Eight
Parameters

It is represented by (x1 , y1 , x2 , y2 ,
x3 , y3 , x4 , y4) and does not use
angles to represent direction.

It produces loss discontinuity and a
large number of parameters. [98]

Others It can alleviate the problem of loss
discontinuity.

Some methods increase the
computational complexity and the
training time.

[93,99–101]

OBB
Regression

Anchor-Based
It utilizes predefined anchor boxes
for the OBB’s more accurate
regression.

The performance is greatly
influenced by hyperparameters,
which are related to sizes and aspect
ratios of predefined anchor boxes.

[64,96,102]

Anchor-Free
It is not constrained by sizes and
aspect ratios of anchor boxes,
reducing hyperparameters.

Due to the absence of prior
information provided by anchor
boxes, the results are sometimes
lower than anchor-based methods.

[93,103–105]

NMS

Soft-NMS
It alleviates the problem of missed
dense ships by weighting
overlapping bounding boxes.

It is not combined with rotated
feature of the ship. [35,106,107]

Soft-Rotate
-NMS

It combines rotated features with
Soft-NMS, making it more suitable
for ship detection.

The IoU threshold has a significant
impact on NMS. [105]
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3.5. Large Aspect Ratio of Ships

The large aspect ratio is one of the most crucial features of ships. The standard
convolution struggles to adapt to the geometric shapes in feature extraction. It inevitably
leads to insufficient feature extraction and carries redundant information. Traditional ROI
pooling usually extracts square-shaped features during the feature sampling stage. It leads
to an uneven distribution of feature samples in two directions, affecting the detection
performance. Therefore, it is important to design effective processing methods according to
the geometric shapes of ships. Currently, the Deformable Convolutional Network (DCN)
and improved methods of feature sampling are effective strategies. These methods aim to
adapt to the geometric shapes of ships with large aspect ratios, and enhance the ability to
extract irregular features.

3.5.1. DCN-Based Method

DCN [108] achieves the effect of random sampling by adding the offset variable to
each sampling point. Moreover, by dynamically adjusting offsets, DCN can adaptively
extract feature information from irregularly shaped ships, as shown in Figure 16a. There-
fore, compared with the standard convolution, DCN is better able to adapt to geometric
deformations such as the shape and size of the ship. It can extract ship features adequately
while reducing the introduction of background information.

Figure 16. Schematic diagram of methods for large aspect ratios, orange indicates sampling points.
(a) Comparison between standard convolution and deformable convolution, and the latter is de-
formable convolution. (b) Comparison between standard sampling and improved sampling, and the
latter better matches the shape.

Su et al. [99] and Chai et al. [109] utilized DCN instead of standard convolution to
extract features, enhancing the ability to capture irregular ship features. Guo et al. [94] and
Cui et al. [110] integrated DCN into FPN to better adapt to the geometric features of ships.
Zhang et al. [52] employed DCN for up sampling, which ensured the robust convolutional
process and improved the detection ability for ships with various shapes.

However, it is worth noting that the offsets entirely rely on the compensatory predic-
tions of the network. It may result in unstable performance at the beginning of training.
Furthermore, DCN consumes more memory compared to the standard convolution.

3.5.2. Feature Sampling-Based Method

Feature sampling refers to the operation of using ROI pooling or ROI align to obtain
the fixed-size feature map. However, traditional feature sampling outputs the same number
of feature samples along the width and height directions. It leads to a dense distribution of
feature samples in the short side, but a sparse distribution in the long side, significantly
impacting detection performance. Therefore, it is necessary to propose a new feature sam-
pling method that adapts to ship geometric shapes. The improved method can match ship
shapes and extract feature samples uniformly in both directions, as shown in Figure 16b.

Different from the typical ROI pooling, Li et al. [81] designed a shape-adaptive
pooling. It obtains uniformly distributed feature samples in both length and width ac-
cording to the shapes of ships. Then, it combines these samples into a fixed-size feature
map. Guo et al. [111] designed a shape-aware rotated ROI align. It alleviates the problem
of uneven feature distribution caused by the typical square-shaped sampling approach.
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Furthermore, it achieves more accurate feature representations with fewer parameters.
Zhang et al. [112] performed three different shape-aware ROI align operations on each ROI.
It captures information more accurately for ships with large aspect ratios.

The improved method is an effective approach to enhance the detection result of ships
with large aspect ratios. However, it maps multiple feature points to one feature point,
which may cause some degree of information loss.

3.5.3. Summary

The large aspect ratio is one of the key factors which constrains the development in
SDORSIs. Furthermore, enhancing the ability of network to extract irregular features is
a critical technology for alleviating this issue. The experiments show that using DCN to
extract features and improving the feature sampling methods are effective strategies. These
methods can better adapt to ship shapes and uniformly extract feature samples. However,
when extracting features from large images, DCN tends to heavily consume memory
which limits application scenarios. Simultaneously, feature sampling maps multiple feature
samples to a single feature point, which may cause a certain degree of information loss
and calculation errors. The large aspect ratio is the essential distinction between ships and
other targets. Therefore, exploring more detection methods designed for the large aspect
ratio is one of the future development trends. The methods and the main advantages and
disadvantages of large aspect ratio of ships are shown in Table 6.

Table 6. Methods and main advantages and disadvantages of large aspect ratio of ships.

Methods Advantages Disadvantages References

DCN DCN
It can adaptively extract feature
information for irregularly shaped
ships by randomly sampling.

The offset of sampling points
entirely relies on the prediction of
network and DCN consumes more
memory compared to the standard
convolution.

[52,94,99,109,110]

Feature
Sampling

ROI Pooling
ROI Align

It adapts to the ship geometry of
the large aspect ratio, and extracts
features uniformly in different
directions.

It maps multiple feature points to
one feature point, which may
cause some degree of information
loss and computational error.

[81,111,112]

3.6. Imbalance between Positive and Negative Samples

Ships usually occupy only a small portion in optical remote-sensing images, generating
a large number of negative samples [113]. Meanwhile, due to the shapes of ships with
large aspect ratios and rotated distribution, IoU-based matching strategy imposes stricter
constraint. Even a slight angular deviation between the detection boxes seriously disrupts
the calculation of IoU, as shown in Figure 17, resulting in insufficient positive samples.
The imbalance between positive and negative samples significantly impacts the training
of the network. Therefore, it is important to alleviate this problem for the development
of SDORSIs. At present, improving the calculation method of IoU and loss function are
effective strategies. These methods aim to explore more positive samples to mitigate the
impact of insufficient positive samples.
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Figure 17. Schematic diagrams of IoU at different angles. The ground truth boxes are shown in red,
and the bounding boxes are shown in yellow. (a) The angle difference is 7.5◦, the IoU is 0.73. (b) The
angle difference is 15◦, the IoU is 0.46. (c) The angle difference is 30◦, the IoU is 0.27.

3.6.1. IoU-Based Matching Methods

There is a certain deviation between the prediction box and ground truth box, and
IoU is sensitive to angular changes. Even a small angular deviation leads to a large change
in the IoU value. Meanwhile, the traditional hard-threshold sample matching strategy
also severely limits the selection of positive samples, leading only a small number of high-
quality positive samples to meet the filtering criteria. However, these positive samples are
insufficient to support the training, constraining the performance of the network. Therefore,
improving the calculation method of IoU and dynamically adjusting the IoU threshold are
effective strategies to alleviate the imbalance of positive and negative samples.

Zhang et al. [114] and Li et al. [115] proposed a dynamic soft label assignment method,
which adjusts the IoU threshold dynamically according to aspect the ratios of ships. It
ensures that ships with extreme aspect ratios can still retain sufficient positive samples for
training. Song et al. [116] used Skew IoU to calculate the overlapping area between the
prediction box and ground truth box. Ma et al. [97] designed a ship orientation classification
network. The network first roughly predicts the angular range of each ship. Then, several
more precise angles are established within this range. It limits the angular difference to a
smaller range, mitigating the impact of angular factors on IoU. Li et al. [81] proposed the
orientation-agnostic IoU. The prediction box aligns with the label in orientation, assisting
the network in obtaining more positive samples.

The method can better adapt to the features of ships, achieving the exploration of
more positive samples. However, improving the calculation method of IoU may introduce
additional computation. Furthermore, dynamical threshold requires designing a suitable
threshold mapping function and constraining the range of the threshold. Inappropriate
mapping ranges may introduce interfering samples.

3.6.2. Loss-Function-Based Method

There is the fact that ships usually occupy a small area in optical remote-sensing
images. The number of negative samples is larger than positive samples. It results in
the imbalance between positive and negative samples during training. Furthermore, the
traditional cross-entropy loss function tends to focus on more negative samples, seriously
affecting the detection performance. Therefore, proposing the loss function that can assign
more weight to positive samples is an important way to alleviate this problem.

Focal Loss [43] introduced a weighting factor before each category in the loss function
to balance the cross-entropy loss:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

It can alleviate the imbalance of the network. Liu et al. [117] applied Focal Loss in ship
detection and it also enabled to focus more on hard samples, enhancing the robustness
of the model. Chen et al. [103] assigned the higher weight to pixels near keypoints when

31



Remote Sens. 2024, 16, 1145

calculating loss. It effectively addressed the imbalance caused by the smaller number of
keypoints compared with the total pixels in the image.

The method mitigates the impact of the imbalance between positive and negative sam-
ples by increasing the contribution of positive samples during training. However, it is worth
noting that the weighting factor requires constant manual search for the optimal value.

3.6.3. Summary

The imbalance between positive and negative samples seriously impacts the perfor-
mance and constrains the development in SDORSIs. The existing research shows that the
improvements of the loss function and IoU are the primary ways to alleviate this problem.
Improving the calculation method of IoU and dynamically adjusting IoU threshold aim to
explore more positive samples during training. Furthermore, the improved loss function
aims to assign more weight to positive samples, preventing the model from focusing more
on the larger quantity of negative samples. However, the method of dynamically adjust-
ing the IoU threshold relies on the choice of the dataset. The same network may behave
differently on different datasets. Furthermore, there is a certain difficulty in selecting
hyperparameters for the loss function. Therefore, alleviating the imbalance of samples has
great development potential. The methods and the main advantages and disadvantages of
imbalance between positive and negative samples are shown in Table 7.

Table 7. Methods and main advantages and disadvantages of imbalance between positive and
negative samples.

Methods Advantages Disadvantages References

IoU

Improved IoU
Calculation

It can obtain more positive samples
to participate in training by
improving the calculation method
of IoU.

It introduces additional
computation and increases the
complexity of the network.

[81,97,116]

Dynamical IoU
Threshold

It dynamically adjusts the threshold
based on the shape of the ship to
obtain more positive samples.

It requires designing a suitable
threshold mapping function and
constraining the range of threshold.
Inappropriate mapping ranges may
introduce interfering samples.

[114,115]

Loss Function Improved Loss
Function

It assigns more weight to positive
samples during loss calculation, and
improves their contribution in
training.

It relies on hyperparameters tuning,
and requires constant manual
search for the optimal value.

[43,103,117]

4. Datasets, Evaluation Metrics, and Experiments

High-quality datasets are the foundation for the successful development of deep
learning and play a crucial role in ship detection. In this section, we summarize the publicly
available ship datasets of optical remote-sensing images and evaluation metrics. It is worth
noting that we separated ship information from comprehensive datasets to provide more
detailed data for the development of SDORSIs. Furthermore, we meticulously recorded the
number of ships and the approximate distribution of ship sizes for each dataset, enabling
readers to gain a more intuitive understanding of the data distribution. In addition, we
compared and analyzed some representative models on different datasets. Furthermore,
we summarized the improvement effects of optimization strategies for ship detection
challenges. Finally, by analyzing the feature extraction capabilities of different backbones,
we provided new insights into the development of SDORSIs.

4.1. Datasets

For the first time, we separated ships from comprehensive datasets and compiled
specific ship information from seven commonly used optical remote sensing image datasets,
as shown in Table 8. We used a box diagram to depict the pixel distribution of ships in
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each dataset. As shown in Figure 18a, ShipRSImageNet and HRRSD-ship exhibit larger
variations in ship scales, which can be effectively alleviated by introducing multi-scale
information during detection. The pixels of ships in DIOR-ship and LEVIR-ship are smaller,
and focusing on small targets can effectively improve detection accuracy. Additionally, we
visually represented the number of ships in each dataset using a bar chart. As shown in
Figure 18b, the number of ships in DIOR-ship and DOTA-ship is higher than in others.

Table 8. Summary of public optical remote sensing image ship datasets.

Dataset Year Image Category Instance Resolution Image Size Label

HRSC2016 [118] 2016 1070 4 2976 0.4–2 m 300 × 300–1500 × 900 HBB, OBB
DOTA-ship [119] 2017 434 1 37,028 0.5 m 800 × 800–4000 × 4000 HBB, OBB
DIOR-ship [120] 2018 2702 1 62,400 0.5–30 m 800 × 800 HBB

HRRSD-ship [121] 2019 2165 1 3886 0.5–1.2m 270 × 370–4000 × 5500 HBB
FGSD2021 [104] 2021 636 20 5274 1 m 1202 × 1205 OBB

ShipRSImageNet [122] 2021 3435 50 17,573 0.12–6 m 930 × 930 HBB, OBB
LEVIR-ship [71] 2021 3896 1 3119 16m 512 × 512 HBB
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Figure 18. Statistical chart of specific ship information. (a) Box diagram of ship pixel distribution.
(b) Bar chart of instance numbers.

HRSC2016: The HRSC2016 [118] dataset was published by Northwestern Polytech-
nical University in 2016. The dataset consists of 1070 images from six different ports and
2976 labeled ships from Google Earth. The image size ranges from 300 × 300 to 1500 × 900
pixels, and the resolution from 0.4 m to 2 m. It is labeled with HBB and OBB.

DOTA-ship: The DOTA-ship dataset is collected from the DOTA [119] dataset. It
includes 434 ship images and 37028 ships. The image size ranges from 800 × 800 to
4000 × 4000 pixels, and the resolution from 0.1m to 1m. It is labeled with HBB and OBB.

DIOR-ship: The DIOR-ship dataset is collected from the DIOR [120] dataset. It
includes 2702 ship images and 62,400 ships. The image size is 800 × 800, and the resolution
ranges from 0.5 m to 30 m. It is labeled with HBB.

HRRSD-ship: The HRRSD-ship dataset is collected from the HRRSD [121] dataset.
It includes 2165 ship images and 3886 ships. The image size ranges from 270 × 370 to
4000 × 5500 pixels, and the resolution from 0.5 m to 1.2 m. It is labeled with HBB.

FGSD2021: Zhang et al. [104] introduced an FGSD2021 dataset at a ground sam-
ple distance in 2021. The dataset consists of 636 images from Google Earth and the
HRSC2016 dataset. It includes 5274 labeled ships and 20 categories. The average size
is 1202 × 1205 pixels, and the resolution is 1m. It is labeled with OBB.

ShipRSImageNet: The ShipRSImageNet [122] dataset is composed of 3435 images
from the xView dataset, HRSC2016 dataset, FGSD dataset, Airbus Ship Detection Challenge,
and Chinese satellites. It includes 17,573 ships and 50 categories. The size of most original
images is 930 × 930 pixels, and the resolution ranges from 0.12 m to 6 m. It is labeled with
HBB and OBB.
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LEVIR-ship: Chen et al. [71] introduced a LEVIR-ship dataset in 2021, which is a
medium-resolution ship dataset. The images were captured from GaoFen-1 and GaoFen-6
satellites. It includes 3896 ship images and 3119 ships. The image size is 512 × 512 pixels,
and the resolution is 16 m. It is labeled with HBB.

4.2. Evaluation Metrics

IoU: IoU [123] is a metric used to measure the overlap between the prediction box and
the ground truth box. In general, positive samples are filtered by setting the IoU threshold,
defined as follows:

IoU =
area(Proposal ∩ GroundTruth)
area(Proposal ∪ GroundTruth)

(2)

However, IoU lacks consideration for the distance between the prediction box and the
ground truth box, failing to accurately reflect their spatial relationship. Therefore, metrics
such as GIoU [124] and DIoU [125] were introduced. Based on IoU, GIoU introduces
geometric factors to calculate the distance between two bounding boxes. Furthermore,
DIoU calculates the distance between the centers of two bounding boxes on the basis
of GIoU.

Accuracy, Precision, and Recall: First, we define as follows: true positives (TP) indi-
cate that the prediction is positive and the ground truth is also positive; false positives (FP)
indicate that the prediction is positive but the ground truth is negative; false negatives (FN)
indicate that the prediction is negative but the ground truth is positive; true negatives (TN)
indicate that the prediction is negative and the ground truth is also negative. Then, the
definitions of accuracy rate, precision rate, and recall rate are given as follows: Accuracy
rate represents the proportion of all correctly predicted samples out of the total samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision rate represents the proportion of correctly predicted positive samples out of all
predicted positive samples:

Precision =
TP

TP + FP
(4)

Recall rate represents the proportion of correctly predicted positive samples out of all actual
positive samples:

Recall =
TP

TP + FN
(5)

Average precision (AP) and mean average precision (mAP): The curve plotted with
the recall rate as the horizontal axis and the precision rate as the vertical axis is called the
precision recall curve (PRC). Furthermore, the area under the PRC is called AP. AP is used
to characterize the detection accuracy for a single category:

AP =

1∫
0

P(R)dR (6)

Each category corresponds to an AP value, and the average AP value across all categories is
called mAP. The mAP is used to evaluate the overall accuracy of the dataset. Furthermore,
a higher mAP value indicates better performance of the detector:

mAP =
1
C

C

∑
i=1

AP =
1
C

C

∑
i=1

1∫
0

Pi(Ri)dRi (7)
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Frames Per Second (FPS): The speed is as important as the accuracy of detection when
measuring the effect of a model. Furthermore, a commonly used metric to evaluate the
detection speed is FPS, which represents the number of images recognized per second.

4.3. Experimentation and Analysis
4.3.1. Algorithm Performance Comparison and Analysis

To visually demonstrate the progress in SDORSIs, we compiled some representative
models in recent years and listed them in Tables 9 and 10. According to the data in Table 9,
it can be observed that, for the simple ship category datasets, such as HRSC2016, the mAP
reaches more than 90%, and the performance is generally saturated since 2023. 3WM-
AugNet achieves 90.69% on the HRSC2016 dataset, demonstrating a leading performance.

Table 9. The performance of each algorithm on HRSC2016 datasets. mAP refers to the mAP computed
on the PASCAL VOC2007. The optimal results are shown in bold, and sub-optimal results are shown
in underline.

Method Year Publication Backbone Input_Size mAP

Anchor-based (Two-stage)

R2CNN [126] 2017 ICPR ResNet-101 800 × 800 73.07
RRPN [127] 2018 TMM ResNet-101 800 × 800 79.08
RoI_Trans [128] 2019 CVPR ResNet-101 512 × 800 86.20
Gliding Vertex [129] 2021 TPAMI ResNet-101 512 × 800 88.20
OPLD [130] 2021 JSTAR ResNet-50 1024 × 1333 88.44
Oriented R-CNN [131] 2021 ICCV ResNet-101 1333 × 800 90.50

Anchor-based (One-stage)

DAL [132] 2021 AAAI ResNet-101 416 × 416 88.95
R3Det [133] 2021 AAAI ResNet-101 800 × 800 89.26
DLAO [99] 2022 GRSL DCNDarknet25 800 × 800 88.28
RIDet-Q [134] 2022 GRSL ResNet-101 800 × 800 89.10
CFC-Net [135] 2022 TGRS ResNet-101 800 × 800 89.70
S2A-Net [136] 2022 TGRS ResNet-101 512 × 800 90.17
DSA-Net [67] 2022 GRSL CSPDarknet-53 608 × 608 90.41
DAL-BCL [137] 2023 TGRS CSPDarknet-53 800 × 800 89.70
3WM-AugNet [63] 2023 TGRS ResNet-101 512 × 512 90.69

Anchor-free

Axis Learning [138] 2020 RS ResNet-101 800 × 800 78.15
TOSO [139] 2020 ICASSP ResNet-101 800 × 800 79.29
SKNet [105] 2021 TGRS Hourglass-104 511 × 511 88.30
BBAVectors [140] 2021 WACV ResNet-101 608 × 608 88.60
CHPDet [104] 2022 TGRS DLA-34 512 × 512 88.81
LCNet [141] 2022 GRSL RepVGG-A1 416 × 416 89.50
CMDet [51] 2023 GRSL ResNet-50 640 × 640 90.20
AEDet [100] 2023 JSTAR CSPDarknet-53 800 × 800 90.45

In contrast, FGSD2021 includes more ship categories and quantities, making it more
challenging in SDORSIs. According to the data in Table 10, compared with single-stage
detectors, the mAP of two-stage detectors is improved by about 5–10%, meaning that
two-stage detectors have the advantage of higher accuracy. Furthermore, compared with
anchor-based detectors, the real-time performance of anchor-free detectors is improved
by approximately 20–30 FPS. At the same time, it also can achieve satisfactory accuracy.
GF-CSL achieves 88.5%, exceeding other algorithms. CenterNet-Rbb demonstrates the
best real-time performance. In the 20 categories of FGSD2021, the accuracy of Ave, Sub,
and Oth is significantly lower than others. Therefore, it is helpful to design a classification
algorithm with stronger discrimination ability to improve the overall detection performance
of the model.
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Table 10. The performance of each algorithm on FGSD2021 datasets. The short name of the class is
defined as (abbreviation-full name): AIR-AIRCRAFT CARRIERS, WAS-WASP CLASS, TAR-TARAWA
CLASS, AUS-AUSTIN CLASS, WHI-WHIDBEY ISLAND CLASS, SAN-SAN ANTONIO CLASS,
NEW-NEWPORT CLASS, TIC-TICONDEROGA CLASS, BUR-ARLEIGH BURKE CLASS, PER-
PERRY CLASS, LEW-LEWIS CLARK CLASS, SUP-SUPPLY CLASS, KAI-HENRY J. KAISER CLASS,
HOP-BOB HOPE CLASS, MER-MERCY CLASS, FRE-FREEDOM CLASS, IND-INDEPENDENCE
CLASS, AVE-AVENGER CLASS, SUB-SUBMARINE, and OTH-OTHER. mAP refers to the mAP
computed on the PASCAL VOC2007. The optimal results are shown in bold, and sub-optimal results
are shown in underline.

Method Backbone Air Was Tar Aus Whi San New Tic Bur Per Lew Sup Kai Hop Mer Fre Ind Ave Sub Oth mAP FPS

Anchor-based (Two-stage)

R2CNN [126] Resnet50 89.9 80.9 80.5 79.4 87.0 87.8 44.2 89.0 89.6 79.5 80.4 47.7 81.5 87.4 100 82.4 100 66.4 50.9 57.2 78.1 10.3
RoI_Trans [128] Resnet50 90.9 88.6 87.2 89.5 78.5 88.8 81.8 89.6 89.8 90.4 71.7 74.7 73.7 81.6 78.6 100 75.6 78.4 68.0 66.9 83.5 19.2
Oriented

R-CNN [131]

Resnet50 90.9 89.7 81.5 81.1 79.6 88.2 98.9 89.8 90.6 87.8 60.4 73.9 81.8 86.7 100 60.0 100 79.4 66.9 63.7 82.5 27.4

DEA-Net [142] Resnet50 90.4 91.4 84.6 93.5 88.7 94.5 92.1 90.7 92.4 88.9 60.6 81.6 85.4 90.3 99.7 83.1 98.5 76.6 68.5 69.2 86.0 12.1
SCRDet [143] Resnet50 77.3 90.4 87.4 89.8 78.8 90.9 54.5 88.3 89.6 74.9 68.4 59.2 90.4 77.2 81.8 73.9 100 43.9 43.8 57.1 75.9 9.2
ReDet [144] ReResnet50 90.9 90.6 80.3 81.5 89.3 88.4 81.8 88.8 90.3 90.5 78.1 76.0 90.7 87.0 98.2 84.4 90.9 74.6 85.3 71.2 85.4 13.8

Anchor-based (One-stage)

Retinanet [43] Resnet50 89.7 89.2 78.2 87.3 77.0 86.9 62.7 81.5 83.3 70.6 46.8 69.9 80.2 83.1 100 80.6 89.7 61.5 42.5 9.1 73.5 35.6
CSL [145] Resnet50 89.7 81.3 77.2 80.2 71.4 77.2 52.7 87.7 87.7 74.2 57.1 97.2 77.6 80.5 100 72.7 100 32.6 37.0 40.7 73.7 10.4
R3Det [133] Resnet50 90.9 80.9 81.5 90.1 79.3 87.5 29.5 77.4 89.4 69.7 59.9 67.3 80.7 76.8 72.7 83.3 90.9 38.4 23.1 40.0 70.5 14.0
DCL [146] Resnet50 89.9 81.4 78.6 80.7 78.0 87.9 49.8 78.7 87.2 76.1 60.6 76.9 90.4 80.0 78.8 77.9 100 37.1 31.2 45.6 73.3 10.0
RSDet [147] Resnet50 89.8 80.4 75.8 77.3 78.6 88.8 26.1 84.7 87.6 75.2 55.1 74.4 89.7 89.3 100 86.4 100 27.6 37.6 50.6 73.7 15.4
S2A-Net [136] Resnet50 90.9 81.4 73.3 89.1 80.9 89.9 81.2 89.2 90.7 88.9 60.5 75.9 81.6 89.2 100 68.6 90.9 61.3 55.7 64.7 80.2 33.1

Anchor-free

BBAVectors [140] Resnet50 99.5 90.9 75.9 94.3 90.9 52.9 88.5 90.0 80.4 72.2 76.9 88.2 99.6 100 94.0 100 74.5 58.9 63.1 81.1 83.6 18.5
CHPDet [104] DLA34 90.9 90.4 89.6 89.3 89.6 99.1 99.4 90.2 90.2 90.3 70.7 87.9 89.2 96.5 100 85.1 100 84.4 68.5 56.9 87.9 41.7
CenterNet [48] DLA34 67.2 77.9 79.2 75.5 66.8 79.8 76.8 83.1 89.0 77.7 54.5 72.6 77.4 100 100 60.8 74.8 46.5 44.1 6.8 70.5 48.5
RepPoint [148] Resnet50 91.2 89.2 85.6 89.3 87.6 93.1 94.2 91.5 88.7 83.3 71.4 81.1 89.4 91.5 95.6 82.6 100 86.6 64.7 57.5 85.7 36.7
GF-CSL [149] Resnet50 92.6 90.3 86.6 90.5 88.2 95.3 97.9 89.8 91.2 86.9 69.7 85.6 92.7 92.5 99.7 85.1 98.6 86.7 79.4 70.4 88.5 40.3
DARDet [150] Resnet50 90.9 89.2 69.7 89.6 88.0 81.4 90.3 89.5 90.5 79.7 62.5 87.9 90.2 89.2 100 68.9 81.8 66.3 44.3 56.2 80.3 31.9
DDMNet [151] DDRNet39 98.2 89.8 92.5 97.1 91.6 94.9 90.9 90.0 90.5 79.0 80.2 91.7 90.0 93.6 100 93.2 100 74.8 48.7 69.4 87.3 43.8

4.3.2. Performance of Optimization Strategies Comparison and Analysis

The mAP intuitively proves that a series of optimization strategies for ship charac-
teristics are effective in Table 11. Specifically, attention mechanism is the primary method
used to address complex background issues. It can enhance the contrast between ships and
the background. Compared with the baseline model, the mAP of the algorithm employing
this strategy is improved by about 1 to 4%. As one of the primary methods of multi-scale
feature representation, FPN is widely applied in SDORSIs. It can enhance the information
interaction ability of feature maps, and effectively identify ships with significant scale
variations. The improved methods of FPN can enhance the ability to detect multi-scale
ships. Table 11 shows an improvement in mAP of approximately 1 to 6%. Furthermore,
OBB representation and regression address the issue of loss discontinuity associated with
rotation angles. The mAP in Table 11 is improved by about 0.5 to 7%, confirming its
effectiveness. DCN and feature sampling are more adaptive to large aspect ratios. They can
reduce the introduction of irrelevant information while adequately extracting ship features.
The mAP of the algorithm using this strategy is improved by about 1 to 8%.
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Table 11. The performance of optimization strategies on HRSC2016 datasets. The improve values are
shown in bold.

Challenges Strategies Methods Year mAP

Complex environment
Attention Mechanism

AM [45] 2021 82.67 (+1.81)
CDA [64] 2021 87.20 (+0.70)
CLM [67] 2022 86.18 (+1.13)
GCM [67] 2022 87.75 (+2.70)

DFAM [84] 2022 78.65 (+3.70)
Image Preprocessing De_haze [61] 2023 95.27 (+1.59)
Saliency Constraint SPB * [70] 2022 86.51 (+0.99)

Large Aspect Ratio
Feature Sampling AP [81] 2021 89.20 (+0.80)

OP [105] 2021 88.30 (+1.80)

DCN DCN [99] 2022 86.42 (+8.46)
DRoI [67] 2022 89.21 (+0.61)

Dense and Rotated ship

OBB Representation

Gaussian-Mask [93] 2021 88.38 (+0.87)
Six Parameters [99] 2022 88.28 (+3.55)

ICR-Head [67] 2022 89.17 (+0.57)
MDP-RGH [152] 2023 89.69 (+4.75)

DAL [137] 2023 89.70 (+0.20)

OBB Regression

EL [50] 2021 87.70 (+1.92)
BR [64] 2021 87.40 (+2.00)

OAC [98] 2023 91.07 (+6.89)
KLD [68] 2023 89.87 (+3.94)

Large Scale Variation Multi-scale Information

SCM [93] 2021 88.43 (+0.92)
FFM [45] 2021 83.34 (+2.48)

NASFCOS-FPN [50] 2021 88.20 (+2.42)
FES * [70] 2022 87.01 (+1.49)
DFF [84] 2022 74.95 (+2.63)

FE-FPN [98] 2023 84.11 (+6.05)
AF-OSD [152] 2023 89.69 (+1.80)
RFF-Net [68] 2023 83.91 (+3.96)

* means that the model used only partial data.

4.3.3. Exploration of Transformer Application

The performance of some competitive detection models are listed in Tables 9 and 10.
It can be observed that most algorithms prioritize the classical CNN models as the primary
choice for feature extraction networks. However, the rate of performance growth is slow-
ing down in recent years, indicating that the development of CNN-based algorithms is
approaching maturity. To address this, it is an urgent need to break through the bottleneck
of algorithmic development to further enhance detection capabilities. In view of the strong
performance advantages of Transformer in other computer vision domains, we attempted
to explore the feature extraction capability of Transformer for SDORSIs. We compared the
detection performance of two representative CNN-based backbones (ResNet and ResNext)
and two representative Transformer-based backbones (Swin Transformer and PV Trans-
former) on the HRSC2016 dataset. At the same time, to ensure the robustness of the results,
we chose two detection networks (RetinaNet and RoI_Trans) as baselines. We selected mAP,
GFlops, and Parameters as the objective criteria for performance evaluation, as shown in
Tables 12 and 13. Furthermore, in order to intuitively demonstrate the relationship between
the parameters’ count and performance of different backbones, we drewthe experimental
results in a line chart, as shown in Figure 19.
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Table 12. The performance of different backbones for RetinaNet on HRSC2016 datasets. The optimal
results are shown in bold, and sub-optimal results are shown in underline.

Backbones Params(M) GFLOPs(G) mAP

ResNet-18 [153] 11.02 38.07 73.55
ResNet-50 [153] 23.28 86.10 81.07
ResNet-101 [153] 42.28 163.99 82.57
ResNext-50-32 × 4d [154] 22.77 89.25 82.93
ResNext-101-32 × 4d [154] 41.91 167.83 83.73
ResNext-101-64 × 4d [154] 81.00 324.99 84.45
Swin-tiny [56] 27.50 95.36 84.32
Swin-small [56] 48.79 188.10 85.22
Swin-base [56] 86.68 334.16 85.70
PVT-tiny [57] 9.24 32.40 85.15
PVT-small [57] 17.65 63.51 85.62
PVT-Medium [57] 41.07 108.96 85.93

Table 13. The performance of different backbones for RoI_Trans on HRSC2016 datasets. The optimal
results are shown in bold, and sub-optimal results are shown in underline.

Backbones Params(M) GFLOPs(G) mAP

ResNet-18 [153] 11.02 38.07 72.35
ResNet-50 [153] 23.28 86.10 87.24
ResNet-101 [153] 42.28 163.99 88.62
ResNext-50-32 × 4d [154] 22.77 89.25 88.26
ResNext-101-32 × 4d [154] 41.91 167.83 89.61
ResNext-101-64 × 4d [154] 81.00 324.99 89.40
Swin-tiny [56] 27.50 95.36 90.23
Swin-small [56] 48.79 188.10 90.41
Swin-base [56] 86.68 334.16 90.49
PVT-tiny [57] 9.24 32.40 89.69
PVT-small [57] 17.65 63.51 90.04
PVT-Medium [57] 41.07 108.96 90.23
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Figure 19. The performance for different backbones. (a) Line chart of performance for RetinaNet.
(b) Line chart of performance for RoI_Trans.

It can be observed that under the same parameter level, the feature extraction capabilities
of Transformer-based backbones are generally higher than those of CNN-based backbones.
In Table 12, PVT-Medium achieves the best mAP of 85.93% when choosing RetinaNet as
the baseline. Compared to ResNet-101 and ResNext-101 with the same parameter level,
PVT-Medium improves by 3.36% and 2.20%, while significantly reducing GFlops. Swin
Transformer also takes a leading position in competition with ResNext at the same parameter
level. Specifically, under three model parameters (tiny, small, and base), Swin Transformer
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improves mAP by 1.39%, 1.49%, and 1.25%. In Table 13, Swin-base achieves the highest
mAP when RoI_Trans is selected as the baseline. Furthermore, compared to ResNet-18,
PVT-tiny improves the mAP by 17.34%. As shown in Figure 19, it is concluded that under
the same parameter level, Transformer exhibits stronger feature extraction capability than
CNN, leading to better network performance. This is because Transformer can effectively
capture dependencies between targets over long distances, building the ability of global
information awareness, while CNNs can only extract information within a small window,
and the information is quite limited. Exploring the connections between ship and ship or ship
and ocean from a global perspective can provide important clues for SDORSIs. Therefore,
Transformer has great potential in SDORSIs. Furthermore, further research is important to
explore optimization strategies for Transformers based on the characteristics of ships.

We visualize feature heatmaps of each backbone at the low, middle, and high levels
to compare the differences in feature extraction capabilities between CNNs and Trans-
former. The feature heatmaps for RetinaNet and RoI_Trans are, respectively, presented in
Figures 20 and 21. According to the figures, as the network depth increases, CNN-based
backbones (ResNet and ResNext) gradually pay more attention to ship regions. This is be-
cause the receptive field of deep-layer features increases, resulting in the feature collecting
a wider range of information, so that the network can learn the comprehensive features
of ships. However, the convolution is still a locally sliding feature extraction operation,
and the extracted features are only concerned with the local scenes. Transformer-based
backbones (Swin and PVT) process information from a global perspective, and the core
self-attention operation can capture correlations between all pixels. For ship detection, the
network can gather all ship-related clues to assist in prediction, avoiding the limitations of
feature extraction confined to local windows. As shown in Figures 20 and 21, the feature
heatmaps of PVT focus on the edge details of ships at shallow feature levels, while the deep-
level features establish global dependencies, thereby activating more associated regions
to assist ship detection. Furthermore, in order to reduce the computational burden, Swin
Transformer limits self-attention within a window and realizes the interaction between
windows through sliding operations. The heatmaps in figures also indicate that attention is
more concentrated within certain windows.

Figure 20. Feature heatmaps of each backbone for RetinaNet. (a) Inputs. (b) Shallow feature heatmaps.
(c) Intermediate feature heatmaps. (d) Deep feature heatmaps. (e) Predicted boxes and confidence scores.
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Figure 21. Feature heatmaps of each backbone for RoI_Trans. (a) Inputs. (b) Shallow feature heatmaps.
(c) Intermediate feature heatmaps. (d) Deep feature heatmaps. (e) Predicted boxes and confidence scores.

5. Discussions and Prospects

The rapid development of deep learning has led to significant progress in SDORSIs.
However, there is still a considerable gap to reach mature applications, due to the six factors
summarized in this paper that constrain the development of SDORSIs. Therefore, we
discuss and prospect the future development directions in this section:

1. Utilizing super-resolution and other feature enhancement methods to selectively
enhance the feature representation ability of small-scale ships, which improve the
recall for small ships when the scale variation is extensive. It contributes to further
enhancing the overall detection accuracy.

2. To address the challenge of imbalance between positive and negative samples, sup-
plementing the quantity of positive samples, such as methods of mining samples
from the ignored set and using adaptive IoU thresholds, are helpful to increase the
contribution of positive samples during network training.

3. Directly transferring common object detection networks to ship detection often fails
to produce satisfactory results. Therefore, it is one of the future trends to mine the
inherent features of ships, such as the wake of moving ships, large aspect ratios and
so on, and design targeted ship detection networks.

4. Utilizing image fusion methods of different modalities, such as spatial information
and frequency domain information, optical remote-sensing images and SAR images,
enables the advantageous complementarity of information. Therefore, It helps to im-
prove the detection accuracy of ships with cloud and fog cover and small-scale ships.

5. Designing compact and efficient detection models is more in line with the needs
of applications. Therefore, the research on lightweight models, such as knowledge
distillation, network pruning, and NAS, is an important strategy for deploying models
to embedded devices.

6. By comparing the feature extraction capabilities of CNNs and Transformer, this paper
preliminarily verifies that the global modeling concept of Transformer is helpful
to improve the detection accuracy of the network. Therefore, drawing inspiration
from the latest research achievements in computer vision is the direction for future
development.
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6. Conclusions

Ship detection in optical remote-sensing images has broad application prospects in
both civilian and military domains, and is the focal point in object detection. However, a
comprehensive and systematic survey that addresses the challenges faced by SDORSIs in
realistic scenarios is lacking. To address this gap, this paper based on the characteristics
and challenges of ships, systematically reviews the development and current research
status in SDORSIs. Specifically, this paper provides a systematic review of object detection
methods, including both traditional and deep learning-based methods. Furthermore, the
analysis of the application scenarios of these methods is conducted in SDORSIs. Secondly,
we analyze the challenges faced in detection based on the characteristics of ships, including
complex marine environments, insufficient discriminative features, large scale variations,
dense and rotated distributions, large aspect ratios, and imbalances between positive
and negative samples. The improvement strategies for these six issues are summarized
in detail. Then, we firstly compile ship information from comprehensive datasets and
compare the performance of representative models. We explore the application prospects
of Transformer in SDORSIs through experiments. Finally, we put forward the prospects for
the development trends in SDORSIs.

We hope that this review can promote development in SDORSIs. In the future, we will
continue to monitor the latest technologies in ship detection. Furthermore, we are eager
to successful deploy ship detectors into embedded devices and achieve high-precision
real-time detection.
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Abstract: The corner reflector is an effective means of interference for radar seekers due to its high
jamming intensity, wide frequency band, and combat effectiveness ratio. Properly arranging multiple
corner reflectors in an array can form dilution jamming that resembles ships, substantially enhancing
the interference effect. This results in a significant decline in the precision attack efficiency of radar
seekers. Hence, it is critical to accurately identify corner reflector array. The common recognition
methods involve extracting features on the high-resolution range profile (HRRP) and polarization
domain. However, the former is constrained by the number of corner reflectors, while the latter is
affected by the accuracy of polarization measurement, both of which have limited performance on
the identification of corner reflector array. In terms of the evident variations in physical structures,
there must be differences in their scattering characteristics. To highlight the differences, this paper
proposes a new method based on the concept of mismatched filtering, which involves changing the
frequency modulation slope of the chirp signal in the filter. Then, the variance of width and intervals
within a specific scope are extracted as features to characterize these differences, and an identification
process is designed in combination with the support vector machine. The simulation experiments
demonstrate that the proposed method exhibits stable discriminative performance and can effectively
combat dilution jamming. Its accuracy rate exceeds 0.86 when the signal-to-noise ratio is greater than
0 dB. Compared to the HRRP methods, the recognition accuracy of the proposed algorithm improves
15% in relation to variations in the quantity of corner reflectors.

Keywords: corner reflector array; combat dilution jamming; change the frequency modulation slope;
mismatched filter; support vector machine

1. Introduction

In the field of radar electronic countermeasures, chaff jamming and corner reflector are
the primary methods of passive jamming [1]. In contrast to the chaff jamming, corner reflec-
tor has the advantages of long−lasting interference duration and stable interference effects.
In addition, corner reflector exhibits a number of advantageous properties with regard to
scattering characteristics, spectral characteristics, polarization properties, and resistance to
the technique of coherent accumulation. In recent years, the continuous advancement of
structure and surface reflection materials has led to significant improvements in the perfor-
mance metrics of corner reflectors, including coverage frequency bands, omnidirectionality,
and the cost−effectiveness ratio of interference [2]. Consequently, many countries have
devoted greater attention to the development of corner reflectors and deployed them in a
variety of scenarios where they are used to counter the radar detection.
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The corner reflector is composed of several orthogonal metallic planes that enable
the incident wave to reflect multiple times. This property results in the corner reflector
exhibiting a pronounced backward radar cross−section and the generation of a robust
jamming signal [3]. Proper assignment of multiple corner reflectors can simulate false
targets similar to ships, which will substantially enhance the interference effect [4–6].
Consequently, the array of corner reflectors has attracted greater interest [7,8]. According to
the jamming performance, corner reflector array can be classified into two types: dilution
jamming and centroid jamming [9,10]. The former takes effect in the tracking stage, in
which the corner reflectors released by the ship are in the same resolution unit with ship.
The radar echoes of the corner reflector are typically more pronounced than those of
the ship, which results in a bias towards the corner reflector in the tracking direction.
The dilution jamming is aimed at the seeking stage, generating multiple false targets
covering the detection area of radar. The distance between the corner reflector array and the
ship is sufficiently large to permit the clear division of two targets. In contrast to centroid
jamming, the implementation of dilution jamming is less constrained, presenting a more
significant and challenging issue. Consequently, it is of paramount importance to devise an
identification method for the dilution jamming.

It is important to note that the distinction between corner reflectors and ships is not
sufficiently obvious, which has made the identification of corner reflectors a challenging
problem. A number of studies have been conducted to extract features from different
domains with the objective of characterizing the differences between dilution jamming
and ship. These domains can be mainly divided into the time domain, frequency domain,
and polarization domain.

In the time domain, the majority of studies focus on the extraction of features in the
high−resolution range profile (HRRP) [11,12]. The HRRP can be employed to reflect the
construction information of the target, including its geometric shape, size, and material
composition [13]. Ref. [14] extracted the features in HRRP such as radial size, scattering
symmetry, and number of scattering points. Nevertheless, the efficacy of the HRRP method
is constrained by the observation angle and spatial geometry, which may not yield expected
precision in practical applications. In the frequency domain, the focus is typically on the
variances in the motion characteristics. Due to the differing velocity and fluctuation of the
corner reflector compared to the ship, the identification of the reflector is typically achieved
through doppler frequency shift [15] or micro−doppler frequency shift [16,17]. However,
the former cannot easily achieve the expected performance in the context of trailing the
corner reflectors, given that the velocity of the corner reflector array closely matches that of
the ship. And the latter cannot perform well in complex sea conditions. In the polarization
domain, the polarization decomposition theory is widely used [18,19]. This method is one
of the important parts of radar polarization technology, extracting the characteristics of the
object by decomposing polarization data into various components [20,21]. Nevertheless,
real targets exhibit pronounced angular sensitivity in their scattering responses, which
makes it difficult to accurately measure the polarization scattering matrix based on polar-
ization decomposition [22]. In order to reduce the impact of azimuth sensitivity of target
polarization scattering response, some studies have employed polarimetric roll-invariant
features for the identification of corner reflectors [23–25].

In light of the limitations of single−domain approaches, recent studies have sought to
enhance performance by focusing on multi−dimensional joint features. The authors of [7],
based on the theory of polarization modulation, extracted the correlation characteristic
parameters on the polarization range 2D image. Simulation results indicate that this method
has stable recognition performance. Ref. [26] proposed a novel method of discrimination
for corner reflector arrays based on the time−spatial−polarization joint domains. Ref. [8]
optimized features and proposed new characteristics in the polarization domain and HRRP.
Then, based on the measured data, this paper provided performance analyses of different
features and their combinations. However, this method has certain reference value but
lacks universality.
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Considering the aforementioned constraints, this paper utilizes a novel method based
on mismatched filter, which involves modifying the frequency modulation slope of the
linear frequency modulated (LFM) signal in the filter. The LFM signal is the most prevalent
waveform employed in radar systems. Nevertheless, in comparison to the sophisticated
waveforms proposed in recent years [27,28], it is relatively ineffective in mitigating interfer-
ence and spoofing in radar detection. It is of great value to optimize the signal processing
in order to enhance the radar performance [29]. In some previous studies, this technology
was nearly applied at the transmitter by modifying the frequency modulation slope of the
transmitting LFM signal to enhance the complexity of the waveform. This method resulted
in the interference signal being mismatched with the transmitted signal, preventing it
from acquiring the corresponding gain of pulse compression. It has since developed many
applications, such as anti−interference [30] and defect detection [31]. On the contrary,
we utilize the side effect of this technology to broaden the main lobe of the signal output,
thereby reducing the degree of compression compared to matched filter. This will amplify
the potential differences in scattering characteristics between ships and corner reflector
arrays, thus improving the identification performance. Subsequently, this paper extracts
the pertinent characteristics and develops an identification method in conjunction with the
support vector machine (SVM). The advantages of this approach are as follows.

1. Stable performance. The recognition process aims to utilise the structural dissimilari-
ties between the two targets in order to achieve recognition, rather than relying on
some intuitive features, such as length or the number of scattering points, which is
applicable to complex environments. Compared to the methods applied in HRRP,
the proposed method is not limited to some environmental factors, such as the num-
ber of corner reflectors or the observation angle. In contrast to the aforementioned
frequency domain features, this approach is not limited to scenarios where there are
differences in the speed of targets.

2. Strong applicability. The primary objective of this method is to enhance the perfor-
mance of the LFM radar, which is a common waveform in radar systems. Nevertheless,
the efficacy of polarization decomposition is contingent upon the availability of a fully
polarimetric radar and a signal possessing a high degree of polarization isolation,
both of which are essential for the accurate measurement to guarantee its performance.
The methods employed in the frequency domain similarly necessitate the capacity for
coherent integration.

The remaining sections of this article are organized as follows. In Section 2, we es-
tablish the signal model and introduce the principle of mismatched filter by changing
the frequency modulation slope. In Section 3, we mainly simulate the output of the ship
and corner reflector array based on the proposed mismatch filter, identify the differences,
and extract corresponding characteristics. Subsequently, based on the extracted features,
we propose an identification method combine with SVM. In Section 4, based on the elec-
tromagnetic simulation data, we use the proposed method to evaluate the identification
performance under different parameters, and compare with other methods in different
conditions. In Section 5, some conclusions are drawn.

Notations: We use bold lowercase letters for vectors and bold uppercase letters for
matrices. (·)∗ represents the conjugate operation. ⊗ denotes the convolution operation. | · |
denotes the modulus. The letter j denotes the imaginary unit (i.e., j =

√−1). The letter c is
the velocity of light.

2. Mismatched Filter by Changing Frequency Modulation Slope

2.1. Signal Model

The signal used in this paper is the common LFM signal, and its base band format can
be expressed as below.

s(t) = rect
(

t
Tp

)
exp

(
jπKt2

)
(1)
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In Equation (1), K = B/Tp is the frequency modulation slope of the LFM signal, where
Tp and B, respectively, denote the pulse width and bandwidth. When K > 0, it is up−chirp;
when K < 0, it is down−chirp. In addition, rect(t) is the function of rectangular pulse,
which can be expressed as below.

rect
(
t
)
=

⎧⎨⎩1,
∣∣t∣∣ ≤ 1

2
0, else

(2)

When there exist targets within the detection range, the echoes can be represented
as sr(t) = ∑I

i=1 ais(t− τi), where I is the number of equivalent scattering points, ai repre-
sents the intensity of the ith scattering point, τi = ri/c denotes the time delay of the ith
scattering point.

According to the usual process [32], the impulse response of the matched filter is an
LFM signal, and the slopes of instantaneous frequency are opposite to K. For the signal in
Equation (1), its matched filter impulse response is h(t) = s∗(−t). To simplify the process
of analysis, we set I = 1, a = 1, and τ = 0. When the echo passes through the matched
filter, the filter output can be expressed as

Smatch(t) = s(t)⊗ s∗(−t)

= TP

sin
(

πB
(

1− |t|
TP

)
t
)

πBt
rect

(
t

2TP

) (3)

It is evident that pulse compression can enhance the signal−to−noise ratio (SNR) and
further highlight targets. However, the scattering characteristics of targets and interference
can also be compressed, which can make it challenging to clearly distinguish them in the
range profile. Therefore, in this paper, we propose using mismatched filtering to enhance
and highlight these differences.

2.2. Mismatched Filter by Modifying Frequency Modulation Slope

In this paper, the way to change the frequency modulation slope is to modify the
bandwidth but maintain the time width, as shown in Figure 1a. And the modified slope can
be denoted as K1 = βB/Tp = βK, where β characterizes the degree of change in bandwidth.
The format of the modified LFM signal can be expressed as follows.

sr(t) = rect

(
t

Tp

)
exp

(
jπK1t2

)
(4)

To further simplify the analysis process, we use the same settings as Equation (3).
The output of the radar echo passing through this mismatched filter can be expressed as

y(t) = s(t)⊗ s∗r (−t)

=
∫ ∞

−∞
rect

(
τ

Tp

)
exp

(
jπKτ2

)
rect

(
t− τ

Tp

)
exp

[
− jπK1

(
t− τ

)2
]

dτ

= exp
(
−jπK1t2

) ∫ ∞

−∞
rect

(
τ

Tp

)
rect

(
t− τ

Tp

)
exp

[
jπ
(
K− K1

)
τ2 + 2jπK1tτ

]
dτ

= exp
(
−jπK1t2

) ∫ ∞

−∞
A(τ) exp

[
j
(

π(K− K1)τ
2 + 2πK1tτ

)]
dτ

(5)
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In Equation (5), A(τ) is the rectangular envelope, and its value is 1 in the range[−Tp/2 + t, Tp/2
]
. By using the method of stationary phase to analyze Equation (5), we

can obtain its approximate analytical expression as follows.

y(t) ≈
√

1
|1− β|K exp

[
jπ

β

β− 1
Kt2 + sgn

(
1− β

)π

4

]
, t ∈

[
−|1− β|

2β
Tp,
|1− β|

2β
Tp

]
(6)

where sgn(·) is the sign function.
From Equation (6), it can be observed that the width of main lobe of the output after

mismatched filtering is approximately
∣∣1− β

∣∣Tp/β, while the one of pulse compression out-
put is 1/B, resulting in a ratio of

∣∣1− β
∣∣BTp/β between them. Since the time−bandwidth

product of the LFM signal is much greater than 1, it can be inferred that the width of main
lobe is significantly broadened after reception by changing the frequency modulation slope.
Likewise, the output amplitude of pulse compression is 1/Tp, so the decrease ratio of

amplitude can be expressed as
√(|1− β|BTp

)
.

Then, we take an example of LFM signal with a bandwidth of 150 MHz and a time
duration of 10 μs to validate the derivation above. The frequency modulation factors β
chosen for the LFM signal in mismatched filter are 0.8, 0.9, 1.1, and 1.2. The filtered outputs
of those factors are as graphed in Figure 1.

Now use the formula
∣∣1− β

∣∣ to express the deviation level of frequency modulation
slope. Roughly speaking, Figure 1b shows that the larger the deviation level, the smaller
the output amplitude. And it can be observed that at a given deviation level, the main
lobe widens to a lesser extent when the modulation factor β is greater than 1. When the
deviation level equals 0.1, the decrease amplitude is near 22 dB, which is close to the
theoretical value.

0 2 4 6 8 10 12

Duration( s)

0

20

40

60

80

100

120

140

160

180

200

B
an

d 
W

id
th

(M
H

z)

 = 1.2
 = 1.1
 = 0.9
 = 0.8
 = 1

(a)

26 26.5 27 27.5 28 28.5 29 29.5 30

Time( s)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

 = 1.2
 = 1.1
 = 0.9
 = 0.8
 = 1

(b)

Figure 1. The mismatched filter by modifying frequency modulation slope. (a) Time−frequency
scheme of LFM signal in mismatched filter. (b) The outputs of different modulation factor.

2.3. Analysis on Echoes Simulated from Simple Scattering Points

The mismatched filter illustrated in Section 2.2 can largely broaden the width of the
main lobe, compared with pulse compression. Next, we simulate the mismatched filtering
output of multiple scattering points to investigate the effects of this method on reflecting
distribution, types, or other information of those scattering points.
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Based on geometrical theory of diffraction (GTD) [33], we can establish backward
scattering characteristics of the target and reconstruct the echo signal according to the
transmitted signal. The backward scattering characteristics can be expressed as

E( f ) =
I

∑
i=1

Ai(j
f
f0
)αi exp(− j4π f ri

c
) (7)

where I is the number of scattering points, Ai represents the intensity of the ith scattering
point, f0 is the initial frequency of the transmitted signal, αi denotes the type of the ith
scattering point, ri is the position of the ith scattering point.

Subsequently, four distinct scenarios are designed, with the requisite details presented
in Table 1. The modulation factor−range two−dimensional images of these above scenarios
are shown in Figure 2. The bandwidth of the LFM signal used in this simulation is 300 MHz,
with a pulse duration of 20 μs.

Table 1. Four types of scenarios.

Scenario Distribution of Position Types of Scattering Points

1 Uniform Consistent
2 Uniform Inconsistent
3 Cluster 1 Consistent
4 Cluster Inconsistent

1 clustered on two centers but the coverage range and the number of scattering points are the same.
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Figure 2. The modulation factor−range two−dimensional images of different scenarios. (a) Sce-
nario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4.
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Figure 2 illustrates the outputs of multiple mismatched filters, which are based on
the received signal from scattering points with varying distributions and types. In these
images, we perform a process of normalization at each value of modulation factor β in
order to concentrate on the precise acquisition of alterations in the amplitude distribution.
Comparing Figure 2a with Figure 2c, it can be observed that the former output amplitude
is more concentrated and evenly distributed, forming a striped pattern. Conversely, the di-
agram of the latter exhibits a wrinkled pattern. In the same way, analyzing Figure 2a,b,
we can find that the type of scatter points also contributes to a more intricate amplitude
variation. However, the most significant factor influencing the output of the matched filter
is the spatial distribution of the scattering points, which is closely related to the physical
structure of the target. Consequently, based on this mismatched filter, we can capture the
scattering characteristics of targets, including their structure and type, to a certain extent.

3. Character Extraction and Identification

The objective of this section is to employ this mismatched filter to distinguish between
corner reflector arrays and ships and to succinctly summarize the discernible features. Then
based on these features, an identification method is proposed.

3.1. Target Echo Acquisition

Due to the paucity of measured data concerning the scenarios of corner reflector
arrays or ships at sea, we have employed electromagnetic simulation software (CST Stu-
dio Suite 2021) to acquire the backward scattering characteristics of the target. Figure 3
presents a pair of range profiles obtained through electromagnetic simulation software,
which separately denote ship and corner reflector array. The blue solid lines in Figure 3
represent the range profiles acquired by electromagnetic simulation software. It is observed
that the range profile of the ship is manifested as a few pronounced peaks, interspersed
with a relatively weak region. In contrast, the range profile of the corner reflector array
appears as a combination of similarly strong peaks. This is due to the complex and large
structure of the ship, which can be considered as the superposition of echoes from multiple
scattering centers. The scattering characteristics of these centers are usually different. The
corner reflector is typically composed of multiple trihedral angles, with a simple structure
and strong symmetry. This can be considered as strong scattering points with similar
scattering characteristics.
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Figure 3. Simulated range profile and reconstructed range profile. (a) Ship. (b) Corner reflector array.

Due to the limitations imposed by the computational speed and time constraints, the num-
ber of sampling frequency points employed in the simulation of the one−dimensional range
profile did not match that of the transmitted LFM signal, which is unable to generate
the radar echoes through convolution in the frequency domain. Nevertheless, there are
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currently many methods for inverting the target echoes based on range profile [34,35].
In this paper, we utilize the total least squares−estimating signal parameter via rotational
invariance techniques (TLS−ESPRIT) to reconstruct the range profile and to acquire the
radar echoes [36,37]. The following outlines the brief operational processes.

The initial step is to utilize the electromagnetic simulation software to obtain the
frequency response of the target. Based on this frequency response, the TLS−ESPRIT algo-
rithm is employed to extract the parameters of the equivalent scattering centers, including
amplitude, type, and relative position. Subsequently, the frequency response of the target
is reconstructed based on the frequency sampling vector, according to the GTD listed in
Equation (7). Finally, multiply the reconstructed frequency response with the transmitted
signal in the frequency domain, and the target echoes can be obtained by Fourier transform.

The red dashed lines in Figure 3 are the reconstructed range profiles. A comparison of
the reconstructed results with the electromagnetic calculations reveals that they only differ
in regions heavily affected by clutter. Furthermore, the amplitudes at the peak positions
are essentially consistent, which demonstrates the effectiveness of the aforementioned
reconstruction method.

3.2. Character Extraction

Based on the reconstructed echoes of the target, we conduct the proposed mismatched
filter through changing the frequency modulation slope. The bandwidth of the LFM signal
used in this Section is 150 MHz, with a pulse duration of 10 μs.

From Figure 4, it can be observed that the image of the ship is concentrated on one
side, while the image of the corner reflector array is more evenly distributed, consisting of
multiple bright bands. The differences displayed in Figure 3 illustrate that the mismatched
filter has the capacity to amplify the discrepancies between ship and corner reflector arrays
to a considerable extent, which renders it more conducive to the process of identification.

In order to facilitate the process of identification, this section employs a process of
feature extraction, whereby the intuitive distribution differences are translated into mathe-
matical expressions. It can be observed from Figure 4 that the differences are concentrated
on the distribution of bright bands, where the points with larger amplitude are located.
Therefore, in order to accurately characterize the distinction, only those points whose
normalized amplitude falls within a specific range are retained.
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Figure 4. Modulation factor−range two−dimensional image. (a) Ship. (b) Corner reflector array.

Figure 5 illustrates the points within the range of −5 dB. As the preceding analysis,
the points of the ship are concentrated on one side, whereas those of the corner reflector
array are evenly and densely distributed. It can be observed that when β is less than 1,
the widening of the image becomes more pronounced compared to when β is greater than
1. This is consistent with the analysis presented in Section 2.2. However, if the widening
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is too large, it will lead to excessive superposition in the outputs of the mismatched filter,
thereby affecting the effectiveness of feature extraction. Consequently, in the following
sections, this paper will only focus on the cases in which β is greater than 1.

Subsequently, this paper identifies two features that can be used to distinguish between
ships and corner reflector arrays, based on the observed distribution differences.

(1) Variance of width.
A comparison of Figure 5a and Figure 5b reveals that the widths of the −5 dB regions

in the ship are largely disparate, while those of the corner reflector array are relatively
similar. Consequently, this paper calculates the variance of width to characterize this
difference, which can be expressed as

σ2
width,α =

1
N − 1

N

∑
i=1

(
xi − x

Nx

)2
(8)

where N refers to the number of regions under the modulation factor β, xi is the width of
the ith region, x expresses the average width of the regions. In this feature, the summary of
the width is used to normalize the variance.
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Figure 5. The distribution of points within the range of −5 dB. (a) Ship. (b) Corner reflector array.

(2) Variance of intervals.
Similarly, it can be demonstrated that the regions of the ship are relatively concentrated,

with a few bright bands that are far apart. In contrast, the regions of the corner reflector
array are more evenly distributed. Therefore, the variance of intervals is used to characterize
the distribution characteristics, with the formula depicted below.

σ2
gap,α =

1
N − 2

N−1

∑
i=1

(
gi − g

L

)2

(9)

where gi represents the interval between the ith region and the i + 1th region, g denotes
the average interval, L represents the total width under the modulation factor β. Figure 6
takes the condition of β = 1.3 in Figure 5a as an example, where the specific meanings of
interval and width are explained.

3.3. Identification Method Based on SVM

SVM is a classifier used for solving binary classification problems [38]. It achieves
non−linear classification through kernel functions that map data into higher dimensions,
aiming to find a separation hyperplane that correctly divides the training data with the
maximum geometric margin. SVM exhibits many unique advantages in addressing small
sample sizes, non−linearity, and high−dimensional pattern recognition tasks. Compared
to the SVM classifiers with linear kernel function, the SVM classifier using Gaussian radial
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basis kernel function has advantages such as diverse boundaries and higher classification
accuracy. Therefore, this paper will use SVM based on the Gaussian radial basis kernel
function to distinguish corner reflector arrays. The SVM identification process of corner
reflector arrays is illustrated in Figure 7.
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Figure 6. The intuitive illustration of the two extracted features.
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Figure 7. The identification process of corner reflector array.

The identification process can be divided into two parts. The initial stage of the process
involves the extraction of characteristics. Firstly, the methods for interference suppression
should be employed in order to moderate the influence of strong noise and clutter. Secondly,
the search radius should be set to half of the maximum target size, after which the number
of targets in the range profile can be determined. In the event that multiple targets exist,
it is necessary to split their regions separately. Finally, the frequency modulation slope is
modified in order to construct the mismatched filter, which is then employed to generate
the modulation factor−range two−dimensional image and calculate the proposed features.

The second part is to train and to identify the corner reflector array. At first, add
the appropriate labels in order to construct the training dataset of ships and corner re-
flector arrays. The format of the training dataset for SVM classifier can be expressed as
D =

[
x1 x2 y

]
, where x1 and x2 separately represent the variance of width and intervals.

And y ∈ {+1 −1
}

is the label set, where +1 represents ships and −1 represents corner re-
flector arrays. The SVM classifier can be used to train an optimal SVM classification model
through simulated data of corner reflector arrays or ships on the sea surface. Subsequently,
this model will be employed to identify corner reflector arrays within the testing dataset.
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4. Simulation Experiment Analysis

4.1. Data Acquisition

In the experiments, we still utilize the electromagnetic simulation software (CST
Studio Suite 2021) to obtain the backward scattering characteristics of different targets.
Multiple models are employed to ensure the validity of the results, as illustrated in Figure 8.
The shape parameters of four ship models are listed in Table 2.

(a) (b) (c) (d)

(e) (f)

Figure 8. The models of ships and corner reflector arrays. (a) Ship 1. (b) Ship 2. (c) Ship 3. (d) Ship 4.
(e) Corner reflector array 1. (f) Corner reflector array 2.

Table 2. Shape parameters of four ship models.

Type Length (m) Width (m) Height (m)

Ship 1 169.39 22.90 56.25
Ship 2 145.35 17.74 34.27
Ship 3 107.74 11.39 29.14
Ship 4 130.80 10.12 23.32

Considering the scenario of dilution jamming, the corner reflector array is positioned in
alignment with the ship’s navigation direction on the sea surface, with a sufficient distance
between them to ensure that both can be divided. Set the direction along the bow of the ship
as 0◦ in azimuth angle, and downward from the deck as 0◦ in pitch angle. The bandwidth
of the LFM signal used in these simulations is 150 MHz, with a pulse duration of 10 μs,
and the center frequency is 10 GHz. The electromagnetic scattering data utilized in this
paper are confined to the pitch angle range of 20◦ to 90◦ and azimuth angle range of 0◦ to
70◦. In this method, the polarization information is not utilized. Consequently, the data
employed in this method comprise only those of the same polarization type, both for the
transmission and reception. To better approximate the ship’s output, we also place one or
two groups of identical corner reflector arrays to acquire similar length in range profile.
The details of simulation experiments are listed in Table 3. It is important to note that
the training dataset is derived from data generated by a single model with corresponding
numbers, as indicated in Table 3. And the testing dataset comprises data simulated from
each sub−row in Table 3.
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Table 3. Groups of simulation data.

Type of Ship Type of Array 1 Number of Arrays

Ship 1 Array 1 2
Array 2 2

Ship 2 Array 1 1
Array 2 2

Ship 3 Array 1 1
Array 2 2

Ship 4 Array 1 2
Array 2 2

1 Array denotes corner reflector array.

4.2. Identification Based on a Single Modification Factor

To further investigate the application conditions of this method and seek better discrim-
ination performance, we first perform the identification process under a single modification
factor β. In this section, we choose seven modification factors and calculate the proposed
characters within the range of −5 dB. Meanwhile, we also test the condition of β = 1.1
within different ranges of selection area. Considering the impact of noise with varying am-
plitudes on classification accuracy, this paper introduces white Gaussian noise with varying
SNR and employs 20 Monte Carlo simulations to compute the accuracy rate. The accuracy
rates of these tests are graphed in Figure 9.
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Figure 9. The identification performance of single modulation factor. (a) Different modulation factor
but within the same range of −5 dB. (b) Same modulation factor within different ranges.

In Figure 9a, the red line represents the recognition accuracy rate under the condition
of β = 1, which can also be regarded as the matched filter scenario. It is evident that
the proposed features also demonstrate excellent discriminative performance on HRRP.
But this performance is also constrained by some factors such as the quantity of corner
reflectors, which will be discussed in Section 4.5. In addition, the bright−colored lines
represent the conditions of factor β greater than 1, and the dark−colored lines represent
the conditions of factor β less than 1. It can be observed that at the same deviation level∣∣1− β

∣∣, there is a deterioration in identification performance when the modulation factor β
is less than 1.

Meanwhile, we can observe that the recognition performance under other single
modulation factors is not satisfactory, with an accuracy rate that falls below 0.8 in each case.
Figure 9b demonstrates that there is a better identification performance within the range of
−5 dB. Nevertheless, the accuracy rate within each range remains not ideal.
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The suboptimal discriminative performance under the condition of a single modu-
lation factor is primarily attributable to the widening of the main lobe. The proposed
mismatched filter does indeed amplify the differences of scattering characteristics to a
certain extent. However, due to the effects of attenuation and superposition, it is more
susceptible to the influence of incidental factors, thus making it difficult to accurately
guarantee its performance under individual modulation factors. From Figure 9a, we can
also find that the greater the extent of main lobe widening, the more unstable the robustness
of its performance under this modulation factor.

4.3. Identification Based on a Range of Modulation Factors

Due to the unsatisfactory and unstable identification performance under a single
modulation factor, this part will perform the identification process on a range of modulation
factors. Consequently, the proposed features will be acquired by calculating the mean value
of features in different modulation factors, thereby characterizing the average fluctuation
of distribution differences.

As demonstrated in Section 4.2, the identification process exhibits a better performance
when β is set to 1 and the range is selected to be −5 dB. Accordingly, this section sets the
range of modulation factor as 1 to 1.1, with a step size of 100 (exclusive of β = 1). Based
on the training dataset, the distributions of the two features for ships and corner reflectors
arrays are, respectively, depicted below.

Figure 10 reveals a clear disparity in the distribution of the two features. In both
characteristics, the values of the corner reflector arrays are relatively low, concentrated near
the X−axis. In contrast, the ship’s values exhibit a higher concentration, with a higher
interquartile range compared to the corner reflector arrays. From the joint distribution in
Figure 11, it can be observed that the feature points of corner reflector arrays are relatively
concentrated, clustered near the origin. On the contrary, the ones of ships are relatively
dispersed, forming an arc−shaped distribution with only a few overlapping regions.
Consequently, subsequent validations of the method’s performance will be conducted
under these parameters.

(a) (b)

Figure 10. The distribution of characteristics. (a) The variance of width. (b) The variance of intervals.
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Figure 11. The joint distribution of the two features.

To further demonstrate the advantages of this method, several comparative methods
were employed in this experiment. It is very regrettable to note that since electromagnetic
simulation software is unable to accurately simulate the scattering characteristics of targets
in motion, identification methods based on frequency domain features cannot be introduced
for comparison, such as doppler frequency and micro−motion period. These methods
for comparison in this section include the HRRP methods in [8], polarization decompo-
sition method including Cloude decomposition [39] and Krogager decomposition [40],
polarization−invariant method [41], and the method utilizing correlation characteristic
parameters from the polarization−range 2D image [7].

Krogager decomposition divides the polarimetric scattering matrix of scattering points
into three components: odd scattering, second−order scattering with rotation angle, and
helix scattering. Thus, we choose the first two as discriminative features for the SVM
classifier. In the method of Cloude decomposition, we utilize the scattering entropy and
average scattering angle as the features for identification. Regarding the feature selection of
polarization invariants, we chose three more important features based on the results in [24],
which are the shape factor, depolarization coefficient, and target aspect ratio.

In the context of simulation experiment scenarios, the angular size of the corner
reflector array and the ship are nearly similar on the HRRP. Consequently, the other
comparative experiment primarily utilizes two HRRP features in [8]. The two features
are total half−peak breadth (THPB) and mean differential amplitude (MDA), and their
expressions are as follows.

THPB =
k

∑
i=1

HPBi (10)

MDA =
1

pe − ps

pe−1

∑
n=ps

|xn+1 − xn|
maxps≤i≤pe xi

, ps ≤ n ≤ pe − 1 (11)

In Equations (10) and (11),
[
ps pe

]
represents the region of the target location, k

represents the number of peaks above the threshold within the region, HPBi refers to the
half−peak width of the ith peak, xi is the amplitude at the ith range unit.

Figure 12 shows the discriminative accuracy rate of various methods under different
SNR conditions, and Table 4 is the numerical comparison table. When SNR is greater than
−5 dB, it is evident that the identification accuracy of the proposed method is higher than
other methods, almost exceeding 0.86 when the SNR is between −5 and 30. When the
influence of noise is minimal, the accuracy of the proposed method can be approximated
to 0.9. Compared to the methods in polarization, the proposed method and the HRRP
method are significantly impacted by SNR, especially at a low SNR. This is mainly because
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the features selected in this method are the distribution characteristics within the area
above the −5 dB region, which is relatively easily affected by strong noise or clutter.
However, the polarization methods usually analyze the scattering matrix of peaks on
polarization HRRP, which is minimally affected by noise. Nevertheless, it is noteworthy
that the proposed method has demonstrated enhanced robustness with regard to noise in
comparison to the HRRP method in [8].

Table 4. The comparison table of different methods.

Methods −15 −10 −5 0 5 10 15 20 25 30

The Proposed Method 0.665 0.744 0.858 0.877 0.884 0.887 0.889 0.891 0.893 0.896

HRRP Method in [8] 0.548 0.741 0.827 0.857 0.856 0.862 0.864 0.866 0.869 0.871

Polarization Modulation [7] 0.727 0.804 0.838 0.855 0.863 0.876 0.878 0.878 0.878 0.879

Polarization Invariant [41] 0.654 0.742 0.801 0.824 0.829 0.831 0.832 0.836 0.837 0.840

Cloude Decomposition [39] 0.683 0.751 0.790 0.794 0.806 0.804 0.806 0.809 0.814 0.818

Krogager decomposition [40] 0.651 0.725 0.762 0.792 0.816 0.832 0.847 0.855 0.855 0.856
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Figure 12. The identification performance of different methods. Where the HRRP method is in Ref. [8],
polarization modulation is in Ref. [7], polarization invariant is in Ref. [41], Cloude decomposition is
in Ref. [39], krogager decomposition is in Ref. [40].

However, it should be pointed out that the method in the polarization domain has
extremely high requirements for measurement accuracy and utilizes information from
multiple channels. Consequently, the polarization method has extremely high requirements
on equipment, such as polarization measurement error and polarization isolation. On the
contrary, the proposed method only requires multiple mismatched filters of the transmitted
signal. Meanwhile, this method has relatively low requirements on target echoes, which
can be combined with the common suppression method for noise, clutter, and interference.
These methods include time−domain cancellation [42], blind source separation [43], cyclic
cancellation [44], and so on. Therefore, in a low−SNR environment, it is first necessary to
focus on improving the radar’s noise resistance and target detection effectiveness, and then
find solutions to suppress noise.

Considering that Gaussian noise may not easily simulate actual radar environments,
we simulate the noise under other distribution functions to further assess the identification
performance of the proposed method. These distribution functions include Rayleigh
distribution, K−distribution, lognormal distribution, and Weibull distribution. In order to
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get closer to the actual situation, we simulate these distribution functions under different
sea conditions. The data are simulated under these distribution functions with reference
to the method in [45] and the parameters given in [46], which is most similar to the
amplitude distribution of the IPIX dataset [47]. The identification performance under
different distribution functions is plotted in Figure 13.

The black solid line in Figure 13 demonstrates the identification performance under
the Gaussian complex noise. In other colors of lines, the solid lines represent the accuracy
rate under high sea condition, and the dashed lines are the identification performance
under low sea condition. The proposed method exhibits a superior performance under
lognormal distribution in high sea conditions, while the other methods exhibit comparable
performance. In comparison to the identification performance under other distributions,
the maximum discrepancy in accuracy rate under Gaussian complex noise does not exceed
0.012 when SNR is greater than 0 dB. Therefore, in the remainder of this paper, we will still
use Gaussian complex noise to study the identification performance under different SNR.
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Figure 13. The identification performance under noise of different distributions.

4.4. Stability Tests under Different Conditions

The efficacy of the proposed method is contingent upon two parameters: the range of
modulation factor and the range of point extraction. The impact of varying these two factors
on the identification performance will be investigated in the following context. In this
section, we denote ΔR as the degree of range variation, which is the ratio of changed amount
to the original range. In the circumstances of different ΔR, the step size is maintained
at 100.

Figure 14a illustrates the accuracy rate of different ranges of modulation factors. It
can be observed that the identification performance remains relatively consistent across
different ranges, with differences within 0.01. Similarly, Figure 14b demonstrates that the
accuracy rate of identification varies slightly when the range of point extraction is above
−3 dB, with differences within 0.015. Nevertheless, when the range of point extraction is
equal to −3 dB, there is a slight decline in identification performance. This is attributed
to the excessively high threshold setting, which results in a limited extraction area for the
feature points. Consequently, this inadequate coverage fails to accurately represent the scat-
tering characteristics of targets. However, in general, the proposed method demonstrates
good robustness with respect to the variation of the two parameters.
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Figure 14. The identification performance under different parameters. (a) Different range of modula-
tion factors but within the same range of −5 dB. (b) Different range of point extraction but within the
same range of modulation factors.

The HRRP−based method is significantly affected by the observation angle. Therefore,
it is imperative to investigate the recognition performance of the proposed method when
subjected to varying observation angles or the pitch and yaw angles of the ship.

As indicated in Section 4.1, the electromagnetic scattering data utilized in this paper
are confined to the pitch angle range of 20° to 90° and azimuth angle range of 0° to 70°,
with steps of 10°. To further validate the performance of the method under different
pitch and yaw angles, we designed relevant experiments based on the simulation data.
By extracting a portion of the data from specific angles to serve as the test set, while using
the remaining portion as the training set, we can evaluate the identification performance at
new angles.

Figure 15 illustrates the identification performance under two sorts of conditions,
which only change pitch angles or yaw angles. The designation “Train X & Test X” indicates
that the condition employs X groups of angles for training and utilizes other X groups of
angles for testing, resulting in a total of eight. To mitigate the impact of strong noise, SNR
was set to a range of 5 to 30. Each condition was randomly sampled eight times, and the
mean accuracy rate was calculated.

5 10 15 20 25 30

SNR(dB)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y 
R

at
e

All groups
Train 7&Test 1
Train 6&Test 2
Train 5&Test 3

Train 4&Test 4
Train 3&Test 5
Train 2&Test 6
Train 1&Test 7

(a)

5 10 15 20 25 30

SNR(dB)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y 
R

at
e

All groups
Train 7&Test 1
Train 6&Test 2
Train 5&Test 3

Train 4&Test 4
Train 3&Test 5
Train 2&Test 6
Train 1&Test 7

(b)

Figure 15. The identification performance of different conditions. (a) Training and testing using
different pitch angles. (b) Training and testing using different yaw angles.
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As can be seen from Figure 15, the recognition accuracy rate in each condition is
higher than 0.83. When there are more training data, containing data from more angles,
the recognition performance is better. However, the difference in recognition accuracy
under different conditions is not large, and the maximum discrepancy does not exceed
0.05. This phenomenon indicates that when the training data do not contain the current
angle of the ship, this method can still maintain good recognition performance. It is further
explained that this method mainly relies on the structural differences between targets for
identification, and its performance is less affected by factors such as yaw and pitch angles.

4.5. Stability Tests under Different Quantities of Corner Reflectors

This section compares the proposed method with the HRRP method in [8] to examine
the stability of the discriminative performance when different quantities of corner reflectors
are employed in the testing set. Furthermore, the method that utilizes the proposed features
under the matched filter scenario is included as a comparison method. Based on the training
dataset simulated from the single models presented in Table 3, the two−dimensional
distributions of features for each method are plotted in Figure 16. To avoid the influence of
strong noise, this section set the SNR as 5 to 30.

Comparing Figure 11 with Figure 16a,b, it can be observed that in the proposed
method, the feature points of the corner reflector array are more concentrated in the area
near the origin. However, in the other methods that extract features based on HRRP, they
are centralized into several regions. This difference may be related to the number of corner
reflectors. To validate this hypothesis, several sets of experiments were designed to assess
the discriminative performance of each method when the training and testing datasets
have different quantities of corner reflectors.
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Figure 16. The two−dimensional distribution of different methods. (a) The HRRP method in [8].
(b) The proposed features in HRRP.

Table 3 presents the simulated dataset, comprising two sets of corner reflector arrays
with different quantities, prompting us to conduct two sets of experiments. In each experi-
mental set, the SVM classifier will be trained with simulated data using a specific quantity
of corner reflectors, after which it will be tested with simulated data from a different
quantity. From this process, we can conduct the assessment of discriminative performance
across varying numbers of corner reflectors, based on different methods. The following
diagrams illustrate the distribution of the testing dataset across varying quantities of corner
reflector arrays, all under a SNR of 25 dB.

From Table 3, we can find that the dataset generated from a single group of corner
reflector arrays is considerably smaller than that derived from two groups. Consequently,
the number of feature points in the second row is markedly less than that in the first row
in Figure 17. Due to the compressive property induced by pulse compression and the
stretching variation of the range profile across different observation angles, the features
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proposed in this paper for matched filter scenarios may yield numerous meaningless values,
necessitating filtration. As depicted in Figure 17c,f, it is evident that the number of feature
points in this condition is comparatively fewer than in the other two methods.

Analyzing the vertical subplots in Figure 17, we can find that in the proposed method,
the distribution areas of different quantities of corner reflectors are largely similar. However,
under the other two methods, there are significant differences in the feature distribution
among different quantities of corner reflectors. These figures suggest that the method
proposed in this paper is less affected by variations in the quantity of corner reflectors.
Subsequently, we will plot the identification accuracy rate under two sets of experiments in
order to further compare the robustness of each method on this condition.

The dash lines in Figure 18 represent the identification performance under the condi-
tion where the quantity of corner reflector is held constant, whereas the solid line illustrates
the alternative case. Correspondingly, the solid line denotes the experiment group. Com-
paring Figure 18a with Figure 18b, it can be observed that there exists an overall decrease
in accuracy in the right graph. This is because the training dataset used in Figure 18b only
consists of data from a single corner reflector array, resulting in a relatively small sample
size, which may have led to a less effective identification performance.

We can observe that when the testing dataset contains data from different quantities
of corner reflectors, the proposed method in this paper exhibits the smallest variation in
accuracy. Specifically in Figure 18b, the variation is within the range of 0.03. In contrast, ex-
tracting features on the HRRP is significantly influenced by the quantity of corner reflectors,
as evidenced by the sharp decrease in Figure 18. It is illustrated that the proposed method
demonstrates good robustness with respect to variations in the quantity of corner reflectors.
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Figure 17. The two−dimensional distribution of different methods under different quantities of
corner reflectors. (a,d) Based on the proposed method. (b,e) Based on the HRRP method in [8].
(c,f) Based on the proposed features in HRRP.
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Figure 18. The identification accuracy rate of different methods under two sets of experiments.
(a) A single array of corner reflectors. (b) Two arrays of corner reflectors.

5. Conclusions

To address the challenge of passive interference from corner reflector arrays in the
anti−ship scenarios, this paper proposes a mismatched filtering method based on changing
frequency modulation slope. Through analysis of the mismatched filtering output of
simple scattering points in different distributions or types, it can be seen that the proposed
method is capable of reflecting the scattering characteristics of the target to some extent.
Then, based on the simulation data, we separately construct modulation factor−range
two−dimensional images of ships and corner reflector arrays. Focusing on the differences
in these images, this paper extracts the variance of width and intervals in a certain region
as characteristics and designs an identification process based on the SVM. The results of
numerical experiments conducted under different SNR conditions demonstrate that the
proposed method exhibits excellent identification performance, consistently exceeding 0.86
when the SNR is greater than 0 dB. In terms of comparative experimental results among
different methods, the proposed method is observed to exhibit superior discriminative
performance when SNR exceeds 0 dB. In contrast to the method that extracts features in
HRRP, this method demonstrates good robustness with respect to variations in the quantity
of corner reflectors and is less susceptible to noise.

In the future, measured data will be collected to investigate the performance of the
method in actual scenarios. Additionally, the data will be augmented by both simulation
and measured data, seeking to enhance the performance of the method by developing a
more effective classifier. In the meantime, additional research will focus on optimizing
methods for area selection to enhance accuracy rate and exploring interference suppression
techniques for application in environments with high levels of noise or clutter. The de-
ployment strategy of corner reflector arrays will be optimized in order to make them more
similar to ships in scattering characteristics or range profile to further validate the proposed
method. Finally, we will be make efforts to combine other domain information, such as
polarization, with the intention of enhancing the identification performance.
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Abstract: Ship detection finds extensive applications in fisheries management, maritime rescue,
and surveillance. However, detecting nearshore targets in SAR images is challenging due to land
scattering interference and non-axisymmetric ship shapes. Existing SAR ship detection models
struggle to adapt to oriented ship detection in complex nearshore environments. To address this, we
propose an oriented-reppoints target detection scheme guided by scattering points in SAR images.
Our method deeply integrates SAR image target scattering characteristics and designs an adaptive
sample selection scheme guided by target scattering points. This incorporates scattering position
features into the sample quality measurement scheme, providing the network with a higher-quality
set of proposed reppoints. We also introduce a novel supervised guidance paradigm that uses
target scattering points to guide the initialization of reppoints, mitigating the influence of land
scattering interference on the initial reppoints quality. This achieves adaptive feature learning,
enhancing the quality of the initial reppoints set and the performance of object detection. Our
method has been extensively tested on the SSDD and HRSID datasets, where we achieved mAP
scores of 89.8% and 80.8%, respectively. These scores represent significant improvements over the
baseline methods, demonstrating the effectiveness and robustness of our approach. Additionally,
our method exhibits strong anti-interference capabilities in nearshore detection and has achieved
state-of-the-art performance.

Keywords: ship detection; reppoints; adaptive sample selection; guided learning; synthetic aperture
radar (SAR); scattering point

1. Introduction

Currently, radar application scenarios are continuously expanding, with various radar
systems emerging and advancing rapidly [1]. Synthetic aperture radar (SAR) functions as an
active microwave imaging system, impervious to natural conditions such as illumination,
clouds, and weather. Consequently, it boasts the capability for all-weather, day-and-
night observation of the Earth’s surface, establishing itself as a primary tool for current
maritime applications [2]. Ship detection, a main direction in the maritime domain [3],
holds a critical role in monitoring maritime transportation, managing ports, and overseeing
maritime zones [4]. In recent years, more and more SAR satellites have been successfully
launched [5–7], with continuous advancements in collaborative observation techniques [8].
The improvement of data quality [9], the further diversity of imaging scenarios, and the
continuous establishment and upgrading of SAR datasets [10,11] have greatly promoted
the development of intelligent technology for the interpretation of SAR images [12].

Among traditional algorithms, CFAR [13] stands out as one of the most widely used
detection methods, relying on manually crafted features. This method entails modeling
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cluttered backgrounds by setting the background threshold to a predetermined level, thus
identifying abnormal pixel points that deviate from the background distribution. Various
CFAR-based detection algorithms have emerged by employing different background-
modeling models [14–17]. However, it is still susceptible to interference from complex
environments, and its nearshore environment detection performance is low.

Due to advancements in deep learning algorithms, numerous CNN-based object de-
tection techniques tailored to natural scenes have been applied in SAR target detection [18].
These algorithms leverage the robust feature extraction and representation capabilities
inherent in CNNs [19], exhibiting superior performance in detection when compared to
traditional methods such as CFAR [20]. However, a significant limitation arises from the
fact that most of these detection networks are designed based on horizontal bounding
boxes, commonly used in natural scenes. Traditional horizontal bounding boxes exhibit
overlap in nearshore ship detection, introducing interference from land areas beyond the
target region and hindering the extraction of detailed target features. Consequently, this
challenge limits the network’s ability to effectively capture a target’s fine-grained structural
texture features [21]. In contrast, oriented bounding boxes avoid these issues.

In reference to the previously mentioned concern, numerous algorithms centered
around oriented object detection have been introduced. These algorithms are predomi-
nantly categorized into two main types: two-stage algorithms employing anchor boxes and
single-stage algorithms without anchor boxes.

The first type of anchor box detection algorithm based on the rotated box (RBOX)
often oversamples anchor boxes with a specified aspect ratio and generates a large number
of anchor boxes. On the one hand, it greatly increases the number of parameters and the
computational complexity. On the other hand, the anchor frame with artificially fixed
proportions is difficult to adapt to multi-scale and multi-directional ship targets. At the
same time, when distinguishing between positive and negative samples through inter-
section over union (IoU), it will further aggravate the problem of the imbalance between
positive and negative samples and the insufficiency of positive samples. Accordingly, the
recall rate of the model will be reduced, and problems such as category skew and network
degradation will occur, which make it difficult to achieve the network’s generalization
ability. The second type of detection algorithm improves the representation of bounding
boxes by implementing a combined strategy of initializing anchor points and fine-tuning
anchor points. The model scale and computational complexity are reduced. However, due
to the lack of a target position prior, there is a lack of effective guidance when performing
feature learning and initializing anchor points, and strong land scattering points in complex
nearshore environments further interfere with the generation of initialized anchor points,
resulting in lower learning sample quality and poor network detection performance.

In response to the aforementioned challenges, we propose a directional anchor-free
detection network guided by significant scattering features in SAR images. Firstly, we
adopt a lightweight single-stage reppoints detection architecture, which generates target
boxes through reppoints and exhibits stronger adaptability and higher detection granularity
for nearshore directional targets. Secondly, by comprehensively considering the imaging
mechanism of SAR and the physical characteristics of strong scatterers such as ships, we
integrate SAR image scattering properties for the first time. We extract strong scattering
points from SAR images and design an adaptive sample selection scheme guided by these
scattering points to select high-quality samples for network training. Additionally, we
design a supervision guidance mechanism that utilizes target scattering points to guide the
initialization of reppoints, thus achieving adaptive feature learning. The main contributions
of our work can be summarized as follows:

1. A reppoints-based object detection network deeply fused with SAR scattering charac-
teristics is proposed, which leverages the profound integration of SAR image scatter-
ing properties to guide the network for high-quality learning, enabling fine-grained
nearshore detection.
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2. To address the issue of low sample quality, this study introduces an innovative adap-
tive sample selection scheme known as SPG-ASS (Scattering-Point-Guided Adaptive
Sample Selection). The method integrates the positional features of strong scattering
points on ships to enhance the overall quality of samples. By extracting scattering
points and clustering their positions into the optimal number of clusters, the method
measures the similarity between the scattering point clusters and the set of sample
points using the cosine similarity metric to achieve the best match. This, in turn,
determines the quality score of the sample points. Finally, the adaptive selection of
high-quality samples is achieved using the TOP K algorithm. This method further
improves the quality of reppoints.

3. To reduce land scattering interference and further improve the quality of initial-
ized reppoints, a novel reppoints supervision guidance paradigm is proposed. This
paradigm aligns target scattering points with initialized reppoints at the point level by
employing an intermediary framework. Using the KLD (Kullback–Leibler Divergence)
loss, it integrates the structural and positional attributes of scattering point clusters
into the supervised learning process of initialized reppoints. During the training
phase, this paradigm effectively guides the reppoints to extract the semantic features
of key regions in targets.

2. Related Works

2.1. Deep Learning-Based Object Detection

Object detection, as one of the fundamental visual tasks in deep learning, has seen
the emergence of numerous algorithms with the advancements in deep learning. These
algorithms can mainly be categorized into two classes: two-stage methods using anchor
boxes and single-stage detectors without anchor boxes.

Two-stage methods using anchor boxes: Candidate regions are generated in the first
stage, followed by the mapping of these regions to a fixed size in the second stage for
classification and bounding box regression. For instance, R-CNN [22] utilizes selective
search algorithms to produce candidate regions and then employs convolutional operations
to obtain bounding boxes and their respective classes. SPP-Net [23] addresses the draw-
backs of repeated convolutions and fixed output sizes. Fast R-CNN [24], building upon
the aforementioned methods, utilizes ROI (Region of Interest) pooling to extract target
features, sharing the tasks of bounding box regression and classification, thereby achieving
end-to-end training. Faster R-CNN [25] replaces the selective search algorithm with an RPN
(Region Proposal Network) to generate candidate boxes, significantly reducing algorithmic
complexity. FPN [26] introduces a pyramid structure to leverage information from various
scales, considerably enhancing the performance of object detection tasks.

Single-stage detectors without anchor boxes: These detectors do not rely on com-
plex anchor box designs and accomplish object detection in a single stage. For example,
YOLO-V1 [27] divides the image into a grid and predicts bounding boxes and confidence
for all objects within each grid cell in one go. SSD [28] efficiently detects objects of various
scales and aspect ratios by introducing multi-scale feature extraction and the Default Boxes
mechanism. RetinaNet [29] addresses the issue of imbalanced positive and negative sam-
ples through the design of focal loss. CenterNet [30] models objects as the center points of
bounding boxes, where the detector finds the center point through keypoint estimation and
regresses other attributes of the target. Reppoints [31], considering the limited granularity
in existing feature learning, utilizes a set of representative points to adaptively learn key
semantic positions in the image, thereby achieving classification and regression.
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2.2. Oriented Object Detection

Traditional horizontal bounding boxes often lack the capability to capture target
orientation information and are prone to background interference, especially in intricate
environments. Consequently, oriented object detection has emerged as a pivotal research
area. For instance, ROI Transformer [32] employs spatial transformations of Regions of
Interest, learning transformation parameters supervised by annotated directional bounding
boxes. Oriented-RCNN [33] adjusts the regression parameters of the Region Proposal
Network (RPN) to six, directly generating oriented proposals for corresponding targets.
Utilizing KLD [34] to construct the Gaussian representation of oriented bounding boxes, it
redesigns rotation regression losses, dynamically adjusting parameter gradients for object
alignment. G-Rep [35] devises a unified Gaussian representation to construct Gaussian
distributions for both OBBs and PointSets, accompanied by a Gaussian regression loss
to further enhance object detection performance. Oriented Reppoints [36] utilizes an
adaptive point learning methodology to capture the geometric information of arbitrary
orientation instances and formulate schemes for adaptive point quality assessment and
sample allocation.

Various oriented bounding box (OBB) detection algorithms have found applications
in SAR ship detection. For instance, Zhang et al. [37] proposed a Rotated Region Proposal
Network to generate multi-directional proposals with ship azimuth information, thereby
enhancing the performance of multi-angle target detection. Yang et al. [38] introduced
R-RetinaNet, which utilizes scale calibration methods to contrast scale distributions. They
leveraged a task-level Feature Pyramid Network to fuse features, alleviating conflicts
between different targets. Additionally, an adaptive IOU threshold training method was
introduced to address imbalance issues. Yue et al. [39] proposed a method for detecting
oriented ships in synthetic aperture radar (SAR) images, which improved the accuracy of
detecting small oriented ships by fusing high-resolution feature maps and dynamically
mining rotated positive samples (DRPSM). Sun et al. [40] proposed the SPAN, which
integrates scattering characteristics for ship detection and classification. This addresses the
weak detection performance caused by the lack of SAR features in conventional detectors.
Zhang et al. [2] proposed an object detection network based on scatter-point-guided region
proposal, combining SAR image scattering characteristics to guide an RPN in generating
crucial proposals. They incorporated supervised contrastive learning to mitigate category
differences, thereby enhancing the target detection performance.

2.3. Sample Assignment for Object Detection

Sample allocation plays a crucial role in the performance of object detection. Various
sample allocation methods have been proposed, such as Faster R-CNN [25], SSD [28], and
RetinaNet [29], which employ IOU for positive sample selection, relying on manually
designed thresholds. ATSS dynamically adjusts thresholds based on the statistical features
of sample groups. OTA [41] extends the consideration to ambiguous sample allocation
(one-to-many) by transforming sample allocation into a dynamic programming problem.
Furthermore, PAA [42] adapts sample allocation in a probabilistic manner. APAA [36]
addresses the limitations of IOU in directional scenes by proposing an adaptive sample
point set allocation scheme based on a comprehensive evaluation of orientation, classifica-
tion, localization, and pixel-wise correlation. Although the above algorithms have proven
their effectiveness in the field of optical images, in the field of SAR, we still need to further
explore methods tailored to the characteristics of SAR images.

3. Materials and Methods

3.1. Overview of Model Structure

Figure 1 illustrates an overview of our proposed method. Our method can be mainly
divided into four parts. The first part is the FPN backbone network, the second part is
scattering point extraction and matching evaluation, the third part is adaptive sample
selection, and the fourth part is reppoints generation of shared headers. This method starts

73



Remote Sens. 2024, 16, 933

with inputting the SAR image, which enters two feature extraction channels at the same
time. One channel is the scattering point extraction branch based on corner points, and a
strong scattering point set is obtained and adaptive clustering processing is performed to
obtain several point clusters. The other channel is the deep semantic feature extraction part
based on FPN, which extracts high-level features and then sends them to the shared headers.
Through this two-stage operation, initialized reppoints and finely corrected reppoints are
obtained. In the training phase, the initialized reppoints are sent to the adaptive sample
selection part to evaluate the point set quality using matched and aligned scattering point
clusters so as to select high-quality samples for learning. In addition, in order to improve
the quality of the initialized reppoints, guided learning is performed through the SPG
learning part. In the testing phase, the oriented detection results are directly generated by
the finely corrected reppoints through the conversion function.

F 

Classification

Orientation

Localization

Scatter location similarity

DCN

DCN

DCN

F F 

Match and eval

Initialized 
Reppoints points

KLD

Classification

Orientation
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Scatter location similarity
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DCN

DCN

F F 

Match and eval

Figure 1. The model structure It consists of the FPN backbone network, scattering point extraction
and matching evaluation, adaptive sample selection, and shared header for reppoints generation.
Additionally, Ls.c indicates the spatial constraint loss, Lloc indicates the localization loss, and Ls.Init

indicates the SPG learning loss.

3.2. Scattering-Point-Guided Adaptive Sample Selection (SPG-ASS)
3.2.1. Extraction of Scattering Points and Clustering

Ships usually have metal shells composed of a large number of strong scattering
structures, such as dihedral angles, trihedral angles, etc., which, in turn, result in the strong
scattering phenomena of ships in SAR images when combined with the unique imaging
mechanism of the SAR system. These strong scattering points often contain the structure
and location characteristics of the ship itself. For this reason, we use the Harris corner
detector to extract corner points. In order to reduce the interference of land scattering, the
corner point threshold is set to 0.2, and a part of the low-quality corner point responses are
filtered. In order to better capture the global ship scattering characteristics, the maximum
number of corner points is set to 100. In order to better capture the local characteristics of
the ship, the minimum Euclidean distance is set to 10. The obtained scattering point set
is Rsp{(xi, yi)}N

i=1. In order to better realize the guiding role of the SAR scattering point
set, cluster processing [43] is performed on the point set, with K ∈ [2, 8], and the silhouette
coefficient is used as the evaluation metric for the cluster quality. By iteratively looping
through this process, the optimal cluster number K is determined, and its clustering effect
is shown in Figure 2.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The extracted scattering points(red color) and their clustered results(different colors).
(a–c) The extracted scattering points from the ships. (d–f) The scattering points after clustering.

Afterward, based on the allocation strategy, they are assigned to the corresponding
initialized reppoints for quality evaluation.

3.2.2. Feature Matching and Adaptive Sample Selection

We improve the quality metric for adaptive sample reppoints, which is different from
APAA [36], and we introduce a scattering position metric in the quality assessment to more
comprehensively measure the quality of the sample reppoints and provide higher-quality
samples for model training.

The extracted set of scattering points is Rsp{(xi, yi)}N
i=1, which is clustered to obtain

a number of clusters. The number of clusters is obtained by measuring the optimal sil-
houette coefficient of the clusters; the scattering cluster center point set is C{(xi, yi)}K

i=1,
where K denotes the optimal number of clusters. The point set of sample reppoints is
R = {S1, S2, S3, . . . , Sm}, where Si = {(xj, yj)}9

j=1, and m denotes the generation of m sam-
ples. We use cosine similarity as the similarity measure between point set clusters and
initialized reppoints, thereby achieving matching and assessment between scattering cluster
center points and initialized reppoints. The average cosine similarity between the scattering
cluster center points and the sample reppoints can be expressed as Eik:

Eik =
1
N

9

∑
j=1

(cos < eij, e∗k >) (1)

where N = 9 indicates that each sample’s reppoints consists of nine points. eij represents
the vector denoting each point within every sample’s reppoints, while e∗k denotes the
vector representing the scattering cluster center points. By traversing all scattering cluster
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center points, we obtain the cosine similarity matrix E between sample reppoints and the
scattering cluster center points:

E =

⎡⎢⎢⎢⎣
(E1,1) (E1,2) . . . (E1,n)
(E2,1) (E2,2) . . . (E2,n)

...
...

. . .
...

(Em,1) (Em,2) . . . (Em,n)

⎤⎥⎥⎥⎦ (2)

By computing the average cosine similarity between the extracted scattering cluster
center points and the sample reppoints, we obtain the similarity matrix E ∈ Rm×n. Taking
the maximum along the dimension of n, we derive the optimal match between the samples
and the scattering cluster center points, along with their corresponding cosine similarity,
denoted as follows:

max
n

(E) =

⎡⎢⎢⎢⎣
max(E1,1, E1,2, . . . , E1,n)
max(E2,1, E2,2, . . . , E2,n)

...
max(Em,1, Em,2, . . . , Em,n)

⎤⎥⎥⎥⎦ (3)

In order to facilitate integration with other quality scores, the corresponding cosine
distance is obtained based on the cosine similarity, thereby generating the quality score
Qsp ∈ Rm.

Qsp = 1−max
n

(E) (4)

In summary, the score Qsp, measured by the scattering position, is obtained, and then
our quality evaluation part can be divided into the following:

Qunion = Qcls + μ1Qsp + μ2Qloc + μ2Qori (5)

Among these measures, Qsp denotes the similarity measure for scattering positions,
while Qloc represents the assessment of the spatial positioning quality, computed through
the positioning loss converted by GIoU [44]. Qori employs the Chamfer distance [45] to
gauge directional disparities, whereas Qcls utilizes FocalLoss [29] to evaluate the correlation
in category quality. A dynamic TOP K sample selection scheme is devised based on their
quality assessment scores. Quality score lists are generated during different iterations, and
these scores are arranged in ascending order. Additionally, a random sampling rate σ is set
to adaptively adjust the number of positive samples, denoted by k .

k = σ× Nt (6)

where Nt represents the total number of generated samples, and the initial default setting
for σ is 0.2. Subsequently, during the training phase, the top k samples with the highest
quality assessment scores are selected as positive samples for training. Considering the
practical application scenarios of SAR target detection, we restrict the utilization of this
approach solely to the training phase, aiming to reduce the computational load during the
detection phase.

3.3. Scattering-Point-Guided Reppoints Dynamic Learning (SPG Learning)

Ship misdetection tends to happen in nearshore scenarios due to the presence of land
scattering interference, which results in the poor generation of initial reppoints. Addi-
tionally, some outliers appear in the adaptive learning stage of key semantic features for
reppoints, which further reduces the performance of ship detection.

We add supervisory information based on scattering point location priors during the
initialization point generation stage, thereby guiding reppoints to learn features from key
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semantic parts of the target. This reduces the land scattering interference and makes the
extracted features more accurate and complete.

Specifically, scattering points play a critical role in representing ship features within
SAR images. Once we perform positive sample selection using SPG-ASS, we acquire the
corresponding positive sample set of reppoints and assign ground truth (GT) boxes to them.
Subsequently, we utilize these GT boxes to identify matching clusters of scattering points
positioned accordingly. This alignment process ensures a cohesive match between scattering
points and sample reppoints, thereby consolidating more of the inherent structural and
positional features of targets into the supervised information. Consequently, this offers
valuable guidance for initializing reppoints, facilitating a more effective learning process
regarding the key semantic features of the target. Ultimately, this procedure significantly
elevates the quality of the initialized point set. The learning process is depicted in Figure 3.

Figure 3. SPG learning. After alignment via GT bounding boxes, Gaussian distribution is employed
to fit the scattering points and initialize reppoints, followed by computing the KLD loss, achieving
supervised-guided learning.

After initialization, the reppoints are generated as R = {S1, S2, S3, . . . , Sm}, where
Si = {(xj, yj)}9

j=1. To better achieve the adaptive learning of the target’s crucial seman-
tic parts by initializing reppoints, we utilize Kullback–Leibler Divergence (KLD) [34] as
the regression loss for supervised optimization. Specifically, Gaussian distributions are
employed to individually model the scattering point clusters and the reppoints generated
during initialization. Subsequently, the KLD loss is computed based on the Gaussian distri-
butions between these two sets of points. This enables the dynamic adaptive adjustment
of gradients for each parameter based on the loss between the two point sets. Such an
approach is advantageous for facilitating the adaptive collaborative optimization of the
initialized reppoints and, consequently, enabling the learning of key semantic features of
the target. The computation of the Gaussian distribution of the point set is as follows:

N (xi|μ, Σ) =
1

2π
√

det(Σ)
exp

(
−1

2
(xi − μ)TΣ−1(xi − μ)

)
(7)

where μ represents the mean value, and Σ represents the covariance matrix. The calculation
of KLD for the Gaussian distribution of point sets is as follows:

DKL(Np‖Nt) =
1
2

(
(μp − μt)

TΣ−1
t (μp − μt) + Tr(Σ−1

t Σp) + ln
( |Σt|
|Σp|

))
− 1 (8)
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where Np and Nt represent the Gaussian distributions of the initialized reppoints and
the corresponding position scattering point cluster, respectively. Consequently, the loss
between the two sets of points is obtained as follows:

Ls.Init = 1− 1
2 + f (D)

(9)

where f (·) denotes a non-linear function applied to distances, in this case using sqrt(D).
The overall loss function for the entire training process is as follows:

Ltotal = Lcls + αLs1 + βLs2 + γLs.Init (10)

where α, β, and γ represent balancing weighting coefficients, and Ls1 and Ls2, respectively,
represent the spatial localization losses during the initialization stage and the fine-tuning
stage. The spatial localization loss comprises two components: positioning loss [44] and
spatial constraint loss [36]. Additionally, Ls.Init indicates the guidance loss of SPG learning.

4. Results and Discussion

4.1. Dataset and Its Evaluation Metrics

We conducted experiments on the SSDD [46] and HRSID datasets [10]. The SSDD
dataset consists of 1160 images, with 928 images used for training and 232 images (including
46 nearshore images and 186 offshore images) used for testing. These images are sourced
from RADARSAT-2, TerraSAR-X, and Sentinel-1, with resolutions ranging from 1 m to 15 m
and with the C and X bands. The HRSID dataset comprises 5604 images, with 65% used for
training and 35% for testing. The image slice resolutions in this dataset range from 0.5 m to
3 m. All images were resized to 800× 800 pixels, and the data augmentation approach
exclusively employs random flipping to enhance the sample set.

In our experiments, we used mAP (mean Average Precision) to evaluate the perfor-
mance of the network. Its expression is as follows:

mAP =
1
K

K

∑
j=1

∫ 1

0
precision(recall) d(recall) (11)

Besides mAP, we also utilized Recall as another important metric to reflect the perfor-
mance of our method. Its expression is as follows:

Recall =
NTP

NTP + NFN
(12)

where NTP represents the number of true positives, and NFN represents the number of
false negatives.

4.2. The Details of the Experiment

The entire experiment was implemented within the mmrotate codebase. The total
number of training epochs was 50, and the SGD optimizer was used with a learning rate
of 0.0025, a momentum parameter of 0.9, and a weight decay of 0.0001. Learning rate
adjustments were made using a stepwise strategy with adjustment nodes at (38, 40, 42, 44,
46, 48). All training and testing experiments in this paper were conducted on the Ubuntu
18.04 operating system. As for hardware specifications, the experiments were performed
using an Intel i5-13490F CPU (Intel, Santa Clara, CA, USA) and an NVIDIA RTX 4080 GPU
(NVIDIA, Santa Clara, CA, USA).
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4.3. Comparison with State-of-the-Art Methods

In order to validate the effectiveness of our SPG oriented-reppoints method, we
compared our method with ten other state-of-the-art directional target detection algorithms
on a unified SSDD dataset; their mAP and Recall values were computed for nearshore
scenarios, offshore scenarios, and hybrid scenarios, as shown in Table 1.

Table 1. Comparison with state-of-the-art methods (SSDD).

Method Backbone
mAP Recall

Params (M) Flops (GFLOPs)
Nearshore Offshore Total Nearshore Offshore Total

Oriented-rcnn R-50-FPN 0.794 0.906 0.902 0.847 0.963 0.934 41.13 198.53
Rotated-faster-rcnn R-50-FPN 0.776 0.904 0.896 0.824 0.963 0.929 41.12 198.40

Roi-trans R-50-FPN 0.703 0.903 0.893 0.779 0.943 0.902 55.03 200.41
Rotated-retinanet R-50-FPN 0.629 0.904 0.864 0.763 0.945 0.900 36.13 209.58

Gliding-vertex R-50-FPN 0.703 0.903 0.892 0.763 0.935 0.893 41.13 198.40
Fcos R-50-FPN 0.668 0.904 0.810 0.740 0.938 0.889 31.89 206.20

S2anet R-50-FPN 0.680 0.897 0.804 0.786 0.928 0.893 38.54 196.21
Kld R-50-FPN 0.693 0.904 0.892 0.771 0.955 0.910 36.13 229.95

R3det R-50-FPN 0.691 0.906 0.890 0.740 0.965 0.910 41.58 328.70
Oriented reppoints

(baseline) R-50-FPN 0.747 0.904 0.895 0.863 0.965 0.940 36.60 171.70

Our method R-50-FPN 0.780 0.904 0.898 0.885 0.963 0.944 36.60 171.70

The compared methods include (1) two-stage object detectors based on anchor boxes:
oriented-rcnn [33], Roi-Transformer [32], and Rotated-faster-rcnn [25], Gliding-vertex [47];
(2) anchor-free object detectors: Fcos [48] and oriented reppoints (baseline) [36]; (3) single-
stage detectors based on anchor points: Rotated-retinanet [29], S2anet [49], Kld [34], and
R3det [50]. Ultimately, our method achieved 78% mAP and 88.5% Recall in nearshore
scenes and 89.8% mAP and 94.4% Recall in hybrid scenes, surpassing all methods except
oriented-rcnn. Particularly in nearshore scenes, in terms of mAP, our method significantly
outperforms other anchor-free algorithms and some anchor-based methods. Further-
more, compared to our baseline method (oriented reppoints), our method demonstrated
a 3.3% mAP and 2.2% Recall improvement in nearshore scenes and a 0.26% mAP and
0.4% Recall improvement in mixed scenes. This validates the effectiveness of our method
over the baseline.

The ship detection capabilities of these methods for the nearshore scenario are directly
exhibited in Figure 4. As shown in the figure, our algorithm can detect ships in complex
nearshore environments, while other methods exhibit varying degrees of false positives
and misses. In Figure 4b–g, the targets on land were mistakenly detected as ships. In
Figure 4c,e, the clutter on the sea surface was mistakenly detected as a ship. In Figure 4e,g,
the nearshore ship was missed.

Simultaneously, we considered the practical application scenarios of the models and
compared their parameter sizes and computational complexities. As illustrated in Figure 5,
our method’s model parameter size constitutes 88.98% of that of oriented-rcnn, while its
computational complexity represents 86% of oriented-rcnn’s. However, the difference in
detection accuracy between our method and oriented-rcnn is merely 1.4%. To some extent,
our method achieves comparable precision to oriented-rcnn while possessing a smaller
parameter size and reduced computational overhead. Moreover, in contrast to the baseline
method, our approach significantly enhances model performance without increasing the
model’s parameters or computational complexity. This reinforces the practical superiority
of our method in detection scenarios.

Furthermore, to further analyze the performance of our algorithm, we conducted tests
on the HRSID dataset. The results are shown in Table 2. Our method achieved an improve-
ment of 3.6% in nearshore environments and 4.5% in mixed scenarios compared to the
baseline. Multiple metrics reached the state-of-the-art (SOTA) level, further demonstrating
the effectiveness and robustness of our method.
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Figure 4. A comparison of methods for nearshore detection. The red, yellow, and green circles
represent false positives, misses, and correct detections, respectively. (a) Ground truth. (b) Fcos.
(c) R3det. (d) Oriented-rcnn. (e) Rotated-retinanet. (f) Roi-trans. (g) S2anet. (h) Our method.

(a) (b)

Figure 5. Model parameters and their flops against mAP,the red star represents the performance of
our method. (a) Model parameters against mAP. (b) Model flops against mAP.

Table 2. Comparison with state-of-the-art methods (Hrsid).

Method Backbone
mAP Recall

Params (M) Flops (GFLOPs)
Nearshore Offshore Total Nearshore Offshore Total

Oriented-rcnn R-50-FPN 0.543 0.905 0.781 0.670 0.957 0.830 41.13 198.53
Rotated-faster-rcnn R-50-FPN 0.523 0.901 0.774 0.639 0.955 0.815 41.12 198.40

Roi-trans R-50-FPN 0.521 0.906 0.774 0.668 0.953 0.827 55.03 200.41
Rotated-retinanet R-50-FPN 0.481 0.903 0.689 0.632 0.945 0.812 36.13 209.58

Gliding-vertex R-50-FPN 0.509 0.903 0.709 0.628 0.934 0.799 41.13 198.40
Fcos R-50-FPN 0.383 0.903 0.696 0.544 0.954 0.772 31.89 206.20

S2anet R-50-FPN 0.493 0.905 0.759 0.645 0.949 0.814 38.54 196.21
Kld R-50-FPN 0.506 0.904 0.776 0.771 0.969 0.844 36.13 229.95

R3det R-50-FPN 0.463 0.904 0.708 0.605 0.935 0.789 41.58 328.70
Oriented reppoints

(baseline) R-50-FPN 0.532 0.905 0.763 0.669 0.955 0.840 36.60 171.70

Our method R-50-FPN 0.568 0.906 0.808 0.810 0.963 0.869 36.60 171.70

80



Remote Sens. 2024, 16, 933

4.4. Ablation Experiments

In this section, to analyze the effectiveness of various proposed components within
our method, we employed the original oriented-reppoints method as a baseline and evalu-
ated its performance first. Subsequently, we conducted a series of ablation experiments
and compared their results. To ensure the reliability of these experimental outcomes, all
experiments were conducted under identical conditions and with identical settings.

We incorporated two parts into the baseline method to study their impacts separately:
adaptive sample selection guided by scattering points (SPG-ASS) and adaptive reppoints
learning guided by scattering points (SPG learning). The experimental results are presented
in Table 3. When solely incorporating SPG-ASS, the mAP is increased by 1.3%, and the
network’s detection Recall is increased by 1.5%, benefiting from the exclusivity of high-
quality samples in the network training and learning processes. When solely incorporating
the SPG learning part, the mAP and Recall for nearshore detection are improved by
1.6% and 0.2%, respectively. As indicated in row IV of Table 3, when both components
were integrated into our network, it exhibited greater performance improvements. The
mAP and Recall for nearshore detection are increased by 3.3% and 2.2%, respectively.
Additionally, these components were applied during the training phase of our network,
without increasing the computational load during the testing phase.

Table 3. Ablation experiments.

SPG-ASS SPG Learning
Map (Nearshore)

↑
Recall

(Nearshore) ↑
I 0.747 0.863
II � 0.760 0.878
III � 0.763 0.865
IV � � 0.780 0.885

4.4.1. SPG-ASS

Given the utilization of an anchor-free mechanism within our network architecture,
the acquisition of high-quality samples stands as a pivotal factor in effectively detecting
intricate nearshore targets. We introduced SPG-ASS into the baseline model. By incorpo-
rating scattering point positional information, during the training phase, we can select
higher-quality samples for learning, thereby avoiding issues of model degradation caused
by low-quality samples. In Figure 6a, due to the lack of scattering point position informa-
tion of the target with the adaptive sampling scheme, the correlation between the sample’s
classification confidence and localization score (IoU) is low. Moreover, a considerable
number of samples are concentrated in regions with both lower classification confidence
and lower localization scores, indicating low sample quality overall.
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Figure 6. The impact of SPG-ASS on the correlation between the classification confidence and
localization score of oriented reppoints. (a) Without SPG-ASS. (b) With SPG-ASS.
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In contrast, as depicted in Figure 6b, by incorporating the scattering position information,
the localization quality scores and classification confidence of the samples are significantly
increased compared to Figure 6a without this integration. This approach has led to the
selection of numerous high-quality samples exhibiting higher classification confidence and
localization scores. This substantiates the effectiveness of our method in selecting high-quality
samples. In addition, we conducted a comparative analysis in nearshore environments using
both the baseline method and the improved approach with SPG-ASS.

As depicted in Figure 7b,e, it is evident that the baseline method is prone to false
positives and false negatives in nearshore detection. Conversely, the detection outcomes of
the improved approach, as illustrated in Figure 7c,f, exhibit a significant decrease in false
negatives and the absence of false positives. This further corroborates the effectiveness of our
SPG-ASS component.

Figure 7. Nearshore detection comparison. (a,d) Ground truth. (b,e) Without SPG-ASS. (c,f) With SPG-
ASS. The red, yellow, and green represent false positives, misses, and correct detections, respectively.

4.4.2. SPG Learning

To further explore the impact of SPG learning, we independently incorporated it into
the baseline task. As indicated in Table 3, by employing SPG learning techniques, the
adaptive feature learning capability of the initial reppoints is focused on the semantic
features at critical target locations so as to mitigate the impact of land-based scattering
interference. Furthermore, to further illustrate the effectiveness of our approach, we
visualized the features of the backbone network.

As shown in Figure 8b,e, in the baseline task, the network is more sensitive to land
scattering, making it difficult for adaptive points to learn the key semantic features of
the target itself in nearshore detection. However, after applying adaptive point learning
guided by scattering points, the results in Figure 8c,f show that land scattering interference
is suppressed. The scattering-guided initialization points move toward the key semantic
areas of the ship, enabling the network to highlight the significance of the target itself
while reducing attention to land regions. This improves the robustness and accuracy
of nearshore ship detection. Furthermore, we conducted tests on both the baseline and
improved methods with SPG learning in nearshore environments. The results are shown in
Figure 9. False detections and missed detections occur with the baseline. Meanwhile, the
detection results generated by the improved method are consistent with the ground-truth
bounding boxes. This further validates the effectiveness of the SPG learning component.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Visualization of the confidence heatmaps,the gradient from blue to red represents the
increasing level of attention focus. (a,d) Ground truth. (b,e) Without SPG learning. (c,f) With
SPG learning.

Figure 9. Nearshore detection comparison. (a,d) Ground truth. (b,e) Without SPG learning. (c,f) With
SPG learning. The red circles indicate false detections, green circles indicate correct detections,while
the yellow circles indicate missed detections.

4.4.3. SPG Oriented Reppoints Detection

In addition, we simultaneously incorporated the two proposed modules into the
baseline network. The detection results are shown in Figure 10. Figure 10a–c represent the
ground truth, while Figure 10d–f illustrate the detection results of our proposed method.
As depicted in Figure 10, our approach achieves the precise detection of objects in various
scenes, such as offshore and nearshore, by adapting reppoints transformations. This
demonstrates the effectiveness of our approach.
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(a) (b) (c)

(d) (e) (f)

Figure 10. The detection results of our proposed method. (a–c) Ground truth in the SAR image.
(d–f) The detection results from our proposed method.

4.5. Qualitative Evaluation

Additionally, to assess the generalization performance of our method, a SAR image
captured in the vicinity of the Zhoushan port area was chosen for ship detection, with the
specific details outlined in Table 4.

Table 4. Details of SAR images.

Satellite Center (Longitude/Latitude) Scene Date (UTC) Imaging Mode Resolution Band Polarization

Sentinel-1 122.147°/29.369° 12 May 2019 09:53:10.579856 IW 13.957 m C VH

We selected three representative areas within the image for analysis, as illustrated in
Figure 11. Area 1 comprises a mixed scene of nearshore and offshore areas, while area
2 depicts an offshore scene, and area 3 portrays a nearshore scene. The oriented_rcnn
method, having the best mAP value on the SSDD dataset, was chosen for comparison with
the proposed method. The left three subplots Figure 11A–C showcase the detection results
obtained using the oriented_rcnn method. In contrast, the right three subplots Figure 11D–F
display the detection outcomes achieved by our proposed method. In subplot A, there are
likely to be false and missed detections in the nearshore area when using oriented_rcnn.
However, our method, as depicted in subplot D, not only effectively detects nearshore
ships but also avoids false positives in the strong scattering areas on land. This also shows
that our method has better ability to resist land scattering interference.

From subplot B in Figure 11, it is evident that there were some missed detections during
offshore detection. However, our proposed method, as depicted in subplot E, presents more
comprehensive detection results, with a significantly reduced rate of missed detections.
Additionally, in nearshore scenarios, such as the area illustrated in Figure 11, there exists
prominent strong scattering areas on land, closely adjacent to the ships, significantly
increasing the difficulty of ship detection. The detection results of oriented_rcnn, as shown
in subplot C, exhibit both missed detections in nearshore areas and false positives on
land. In contrast, our method’s detection results, displayed in subplot F, identify all ship
targets in that area without producing false detections on land targets. Overall, our method
demonstrates superior detection and generalization performance in practical scenarios.
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1

2

3

Figure 11. Ship detection results of Sentinel-1 SAR image. Areas 1, 2, and 3 represent mixed scenes,
offshore scenes, and nearshore scenes, respectively. Subplots (A–C) are the detection results of
oriented_rcnn for the three areas, and subplots (D–F) are the detection results of our method. Red
circles indicate false detections, and yellow circles indicate missed detections.

4.6. Discussion

The experimental results on the SSDD and HRSID datasets validate the effectiveness
of our proposed method. On the SSDD dataset, our method outperformed the baseline
by 3.2% and performed comparably to oriented-rcnn in nearshore environments, achiev-
ing a suboptimal level. To further verify the method’s generalization and reliability, we
conducted a comparative study on the HRSID dataset, which is larger in scale, richer in
imaging modes, and more complex in nearshore environments. The results show that our
proposed method outperformed the baseline by 3.6% and achieved the state-of-the-art
level on this dataset. Additionally, we observed performance fluctuations on different
datasets, mainly due to differences in dataset characteristics. The HRSID dataset has a more
complex nearshore environment with diverse slice characteristics, and the detection results
in these complex scenarios also reflect the robustness and generalization of our method.
Our method benefits from the anchor-free detection framework guided by scattering points,
which provides higher granularity for recognizing ships in complex nearshore environ-
ments and has higher perceptual adaptability for detecting directional ships. Moreover,
the SPG learning mechanism can better learn the features of nearshore ships, reduce false
alarms on land, achieve feature focusing, and thus achieve higher detection accuracy. We
also conducted ablation experiments to explore the roles of various parts of the proposed
method. However, this method currently has some shortcomings. For example, both the
adaptive sample selection scheme and the adaptive learning part rely on the extraction of
scattering points from the target. If the area occupied by ships is limited or the scattering
from ships is weak, resulting in fewer or no corner points being extracted, the method
may fail. In the future, we plan to redesign the scattering point extraction part and in-
troduce more efficient and advanced network structures for scattering feature extraction
and fusion.
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5. Conclusions

In summary, we propose an anchor-free detection scheme based on oriented reppoints
guided by the scattering characteristics of SAR images. This scheme addresses the chal-
lenges of detecting oriented ships in complex nearshore environments. Initially, considering
the scattering mechanism of metal-made ships, the strong points, such as corner points, are
extracted as positional prior information. Then, we use the positional information of scat-
tering points for adaptive sample selection, enabling the superior selection of high-quality
sample points during the training phase and thus avoiding model degradation caused by
low-quality samples. Furthermore, we enhance the reppoints quality in the initializing
phase by a novel supervised guidance paradigm, allowing the network to learn more
refined representations of the electromagnetic features of ships, consequently reducing
land scattering interference in complex nearshore environments. Our method offers new
insights into the integration of scattering features and demonstrates effectiveness in various
environments, especially in nearshore scenes with significant land interference. On the
SSDD dataset, our method achieves an mAP of 78% for nearshore detection, which is a
3.3% improvement over the baseline. To further validate the robustness of our method, we
tested it on the HRSID dataset, where it achieves an mAP of 56.8% for nearshore detection,
a 3.6% improvement over the baseline, reaching the state-of-the-art (SOTA) level compared
to other methods. In the future, we will try to extend this methodology to other application
scenarios so as to improve other object detection tasks with SAR images.
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Abstract: Ship detection technology has achieved significant progress recently. However, for practical
applications, lightweight ship detection still remains a very challenging problem since small ships
have small relative scales in wide images and are easily missed in the background. To promote the
research and application of small-ship detection, we propose a new remote sensing image dataset
(VRS-SD v2) and provide a fog simulation method that reflects the actual background in remote
sensing ship detection. The experiment results show that the proposed fog simulation is beneficial
in improving the robustness of the model for extreme weather. Further, we propose a lightweight
detector (LMSD-Net) for ship detection. Ablation experiments indicate the improved ELA-C3 module
can efficiently extract features and improve the detection accuracy, and the proposed WGC-PANet can
reduce the model parameters and computation complexity to ensure a lightweight nature. In addition,
we add a Contextual Transformer (CoT) block to improve the localization accuracy and propose
an improved localization loss specialized for tiny-ship prediction. Finally, the overall performance
experiments demonstrate that LMSD-Net is competitive in lightweight ship detection among the
SOTA models. The overall performance achieves 81.3% in AP@50 and could meet the lightweight
and real-time detection requirements.

Keywords: optical remote sensing; small-ship detection; lightweight detection; convolutional neural
network

1. Introduction

Ship detection has gained much attention in the field of marine remote sensing. It
has been widely used in sea area management, maritime intelligent traffic, and military
target reconnaissance [1–4]. In sea area management, ship detection can improve sea area
security, such as assisting in combating illegal smuggling, illegal oil dumping, and illegal
fishing [5,6]. Both maritime intelligent traffic and military target reconnaissance rely on
Automatic Identification System (AIS) and Vessel Traffic System (VTS) to determine the
current position of a ship. Although AIS and VTS integrate multiple technologies such as
Very High Frequency (VHF), Global Positioning System (GPS), and Electronic Chart Display
and Information System (ECDIS) technologies, an essential prerequisite is that the ship
must be equipped with the corresponding transponder. However, ships below the standard
tonnage specified by the International Maritime Organization (IMO) can be unnecessarily
equipped with AIS or VTS, which means the Electronic Charts and GPS will not work.
In addition to tonnage restrictions, some other special-purpose ships often deliberately
turn off their transceivers to avoid radar detection. Therefore, optical image-based remote
sensing detection techniques can provide an effective means in these cases. In addition,
lightweight research for detection is essential to improve efficiency further.
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In recent years, a large number of high-resolution optical remote sensing images (ORSI)
have been collected for ship detection since the optimization of optical sensors and accurate
geometric correction. However, the following challenges remain in ORSI for ship detection:

Large field of view: Due to different parameter settings of imaging sensors and
changes in the flight altitude of the acquisition platform, the target scale changes sharply,
which increases the model burden. In addition, the objects of interest in nearshore remote
sensing images are usually tiny and densely clustered. Rapid low-altitude flight causes
motion blur in dense target areas, posing challenges for detection.

Background interference: In high-resolution images, some environmental conditions,
such as fog and low light, will indirectly amplify the interference of sea clutter, wake waves,
islands, and other false alarms in the detection. Therefore, it is necessary to consider the
impact of complex weather conditions on the image.

Application limitations: Some embedded processors have limited computational
performance and storage space. Reducing the computation and spatial complexity of the
model with guaranteed performance is crucial for lightweight deployment.

To solve the above problems, traditional methods based on supervised learning are
highly dependent on feature descriptors, such as HOG [7], DPM [8], and FourierHOG [9].
For the sparse distribution of small ships on the sea, if feature extraction and calculation are
directly implemented within the global sea area, it will greatly increase memory and time
consumption. Subsequently, some studies [10–13] have added a candidate region extraction
stage, which could significantly improve the detection speed. However, nearshore dense
ships often cause candidate regions to overlap, which is not conducive to feature discrimina-
tion. Therefore, these traditional methods are not very robust for unified marine–nearshore
ship detection.

With the tremendous success of Convolutional Neural Networks (CNNs) in image
classification, CNN has been migrated to object detection frameworks and has played a
significant role. Furthermore, the construction of datasets, such as PASCAL VOC chal-
lenges [14,15] (VOC2007 and VOC2012), ImageNet large-scale visual recognition chal-
lenges [16,17] (ILSVRC2014), and MS-COCO detection challenges [18], has laid a data-
driven foundation for the broad application of CNN in object detection.

In the past few decades, two-stage detectors based on CNN have inherited the tra-
ditional detection approach, which involves extracting candidate regions first and then
discriminating targets, such as SPP-Net [19], R-FCN [20], and Faster R-CNN [21]. Progres-
sively, instead of traditional candidate region extraction methods, related research attempts
to use learnable regional proposal networks (RPNs) and achieve state-of-the-art (SOTA)
performance in terms of accuracy. For instance, Hu [22] proposed a two-stage detector
to improve the accuracy of multi-scale ship targets in complex backgrounds. However,
the higher accuracy comes at the cost of detection speed loss. In contrast, single-stage
detectors have faster detection velocities, such as RetinaNet [23], Centernet [24], and YOLO
series v3–v8 [25–30]. For instance, Wang [31] used Yolov4 for ship inspections. Despite
a large increase in speed, multi-scale detection performance was poor. For this reason,
Ye [32] proposed an adaptive attention fusion mechanism (AAFM) to cope with multi-scale
target detection in remote sensing scenes and achieved a better performance. Xu [33]
proposed a specific model named LMO-YOLO for ship detection. However, for the detec-
tion of small and tiny ship targets, the current accuracy is still low. The low accuracy of
these single-stage detectors is the result of sample imbalance. Subsequently, Zhang [34]
proposed a balanced learning method to solve the problem of imbalance in the target,
scene, and feature pyramid network and classification regression network and achieved
better results. In addition, since being inspired by Visual Transformer in Natural Language
Processing (NLP), some single-stage detectors have shown great potential, such as Swin
Transformer [35,36], Detr [37], and MobileViT [38]. Transformer-based detectors usually use
attention matrices to establish the dependencies of sequence elements, which focuses more
on contextual information. Remote feature interactions in the transformer can compensate
for CNN’s shortcomings. However, high computation complexity and large numbers of
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parameters are not favorable for deployment. In a word, designing a model should take
into account multiple properties such as detection speed, accuracy at multiple scales, and
lightweight nature. Therefore, there is still room for improvement to perfect these aspects
mentioned above.

With the increasing demand for deployment, lightweight detection has become a
necessary evolutionary process. Since the breakthrough of network depth, the vast majority
of existing advanced models are pursuing real-time performance and accuracy and have in-
deed reached a high level. However, to deploy to edge platforms, the detection model must
occupy a small amount of memory and participate in less computation. Therefore, some
studies have designed model scaling to address different device parameter limitations. For
example, Yolov6 [28] has three models with different widths and depths. Two of the three
models are used for lightweight deployment. However, one drawback of model scaling
is that lightweight models reduce network size while significantly reducing performance.
EfficientDet [39] demonstrated in ablation experiments that mixed scaling can reduce the
loss of accuracy. In addition, some studies focus on model compression, which minimizes
model size as much as possible while ensuring performance. Specifically, SqueezeNext [40]
and CondenseNet [41] improved inference speed with parameter pruning and network
optimization. The IGC series [42–44] pointed out that group convolution could help to
reduce the number of parameters. Based on group convolution, ShuffleNetV2 [45] adopted
a channel split for feature reusing. While group convolution shares parameters, it still
retains redundant features, and parameter sharing affects the accuracy of the prediction
box, leading to the missed detection of small targets. It seems to have reached the bottleneck
regarding lightweight and performance improvement. Based on the defects mentioned
above, there is still room for improvement in designing the detection backbone and shared
parameter modes suitable for remote sensing images.

On account of the significant differences in ship scales, it is necessary to design a
multi-layer detection model. Most existing layered detection models are based on Feature
Pyramid Networks [46] (FPNs). Forming the feature pyramid requires multiple downsam-
plings and pooling, which may lead to the loss of tiny targets. For example, a small ship
with a 12 × 12 dimension has only about one pixel after three layers of pooling, which
makes it difficult to distinguish due to its low dimensionality. SSD [47] applied FPN by
multiple downsamplings. The receptive field of the underlying feature map is small, which
makes it difficult for the network to learn the features of the small targets. Yolov3-spp [25]
proposed a spatial pooling pyramid to increase the receptive field of the network, which has
a certain improvement in small-target detection. In fact, according to the detection ranking
of MS-COCO Challenge1, the detection accuracy of small objects is still far lower than
that of large objects. At present, due to differences in resolution, insufficient appearance
information, and limited prior knowledge of ORSI, the current technology is still not ideal
for detecting tiny ships.

We notice that the expansion of network depth facilitates the mining of higher-level
semantic features. High-level semantic features and low-level localization features can
reflect the differences of observers well, which brings more potential room to fuse the
layered features. For efficient fusion, the layered detection models usually employ bidi-
rectional mapping, including top-down paths and bottom-up paths, such as PANet [48],
NAS-FPN [49], BiFPN [39], ASFF [50], and SFAM [51]. Moreover, after feature aggregation,
the number of channels of fused features mostly remains consistent with the original fea-
tures to ensure the width of the network. However, the larger the width of the network, the
better it may not necessarily be. Numerous studies have demonstrated an upper limit to
network width. When the width reaches a certain scale, the performance will not improve
or may even decrease.

We also notice that the design of the detection head is crucial for prediction. The
coupled head that is widely used obtains a unified output for localization and classification
by sharing convolutional layers between two branches. In contrast, decoupled head designs
separate convolutional layers for the localization and classification vectors to obtain more
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accurate outputs. FCOS [52] pointed out that the decoupled head can speed up model
convergence and improve detection accuracy but also brings additional parameters and
computational costs. Therefore, the coupled head that shares convolutional layers may
be more in line with the lightweight requirement. But how to compensate for the lost
performance? With the entry of the transformer into the object detection field, THP-
yolov5 [53] treated the transformer as the convolution and utilized the Swin Transformer
encoding block [35] to capture the global feature. However, the fully connected layer and
residual connections are not optimized enough for the parameters. We urgently need
to design a lightweight detection head that combines the advantage of CNN’s inductive
bias and the global receptive field capability of ViT, which would improve the detection
performance of tiny targets.

As mentioned, although the performance of the above models is impressive, existing
frameworks cannot meet the requirements of lightweight and practical remote sensing
images. This paper provides an advanced detection model for marine remote sensing
applications. The main contributions of this article can be summarized as follows:

• We propose a method to generate fog images in remote sensing datasets to simulate
actual background disturbances and compensate for the lack of images with extreme
weather. From the perspective of data augmentation and data driven, fog simulation
indirectly improves the model’s robustness and detection performance.

• Based on the analysis of the difficulties in optical remote sensing, we have designed a
lightweight and layered detection framework (LMSD-Net). Inspired by the detection
paradigm of “backbone–neck–head”, in LMSD-Net, an improved module (ELA-C3) is
proposed for efficient feature extraction. In the neck, we design a weighted fusion con-
nection (WFC-PANet) to compress the network neck and enhance the representation
ability of channel features. In the prediction, we introduce a Contextual Transformer
(CoT) to improve the accuracy of dense targets in complex offshore scenes. During
the training process, we discovered the degradation problem of CIoU in dealing with
small ships and proposed V-CIoU to improve the detection performance of vessels
marked by small boxes.

• Based on the VRS ship dataset [54], we added more nearshore images to construct a
new ship dataset (VRS-SD v2). The dataset covers different nearshore and offshore
scenes, multiple potential disturbances, different target scales, and more dense dis-
tributions of tiny ships. Then, we used the proposed fog simulation to process the
dataset and obtained the dataset for the actual scenes.

The rest of the paper is organized as follows: Section 2 provides a detailed introduc-
tion to the fog simulation and detection framework. In Section 3, we conduct extensive
ablation experiments to demonstrate the innovative and efficient framework, and then,
we demonstrate the detection results of our model on typical datasets. According to the
experiments, Section 4 emphatically discusses the problems solved by the corresponding
methods and the experiment results. The final section summarizes the entire paper and
briefly discusses future research directions.

2. Methods

An advanced and lightweight ship detection framework consists of three main com-
ponents: effective data augmentation, efficient feature extraction and fusion, and accurate
target prediction. Given the detection difficulties and lightweight requirements mentioned
above, these three parts need to be reconsidered. In this section, we have provided a de-
tailed introduction to the methods proposed, including the data augmentation combination
and the lightweight detection framework.

2.1. Data Augmentation–Fog Simulation on Actual Remote Sensing Scenes

Whether at sea or near shore, ships are arbitrary in direction and random in dis-
tribution. Therefore, we selected several common data augmentation methods, such as
cropping, translation, rotation, and random scaling. Then, we adjusted the images’ hue,
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brightness, and saturation values to address photometric distortion and intensity differ-
ences. In addition, we adopted Mosaic [26], which concatenates four images and computes
the activation statistics of multiple images together. It has been proven that Mosaic can
enrich the detection of backgrounds and improve training efficiency. Essentially, the above
data augmentation methods are aimed at achieving more complex representations of the
data. Enriched data reduces the gap between the validation, training, and final test sets, so
that the network can learn the data distribution better.

In optical remote sensing images, the background of ship targets is often complex
and has significant interference with detection. The difficulty of detecting nearshore ships
is related to the complex scene of the shore, while the interference of ship detection at
sea is mainly caused by islands, wake waves, and sea clutter. Considering more actual
scenes, detection work will be carried out under different lighting and weather conditions,
especially extreme weather. However, there are few images of existing extreme weather.
Due to the absence of cloud and fog scenes in the training and validation sets, the detection
performance of the network would be poor. Therefore, simulating the dataset close to the
actual scene is necessary to improve the robustness of the model. Thus, we proposed an
image degradation method to simulate foggy scenes.

According to the optical model and the imaging mechanism in Figure 1, the influence
of fog is modeled as a radiation attenuation function that maps the radiance of a clear scene
to the camera sensor. According to the standard optical model, the degradation formula is
expressed as follows:

D(x) = I(x)t(x) + Latmo(1− t(x)) (1)

where I(x) and D(x) represent the original image intensity and observed fog-simulated
image intensity at pixel x, respectively, Latmo is global atmospheric light, and t(x) is the
transmission transmittance, which depends on the distance from the lens to the scene and
the noise particles in the air. Therefore, the key to simulating fog lies in the estimation of
atmospheric light noise and transmission transmittance.

 
Figure 1. Fog simulation based on the optical model.

Considering the impact of noise on transmission, fog consistently exhibits spatial
randomness and density nonuniformity. Therefore, we established the random diffusion of
regional noise brightness. The input image was divided into different regions Rn×n

i , and
parts of the regions were randomly selected to participate in the diffusion processing. Based
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on the principle of center point diffusion, the diffusion degree at pixels (j, k) is defined
as follows:

C(x) = −0.04
√
(j−m)2 +

(
k− n)2 + 17 (2)

where (m, n) is the central point of the region Rn×n
i . It can be inferred that the closer to the

center point, the higher the diffusion degree value.
Considering the impact of the distance from the camera to the scene on transmission,

unlike common scenes, the top-view angle of remote sensing results in minimal spatial dis-
tance differences between the foreground and background. Strictly speaking, the difference
is preserved and regarded as a weak distance attenuation. In the case of random diffusion
noise, transmission transmittance is defined as distance attenuation:

t(x) = e−βC(x) (3)

where β represents the attenuation factor, which effectively controls the thickness of the fog:
the smaller the attenuation factor, the thicker the fog is. According to the theory of semantic
foggy scene understanding [55], the attenuation factor always obeys β ≥ 2.996× 10−3 m−1.
In this experiment, for convenience, β was limited in set S: {0.01 0.02 0.04 0.06 0.08 0.12 0.16}.

Global atmospheric light is related to lighting and is often set as a relative value. In
this experiment, considering different lighting conditions, global atmospheric light was
randomly selected in set T: {0.8 0.85 0.9 0.95 1}. Finally, the fog simulation was added to
part of the data to improve the generalization performance of the model.

2.2. The Proposed LMSD-Net

Most lightweight frameworks mainly consider factors such as parameter size and
computation complexity. Some models [45,56] achieve less computation complexity but
sacrifice accuracy. Therefore, it is important to design a framework focusing on both
lightweight and high performance. In this section, we proposed a lightweight multi-scale
ship detector network (LMSD-Net) that can simultaneously locate and classify ship targets
in ORSI, especially small-target ships.

2.2.1. Overall Architecture

Based on the classic detection paradigm, the overall architecture consists of three
parts shown in Figure 2. The first part is a CNN backbone, which extracts feature maps of
different layers. The second part is a bidirectional fusion process based on feature pyramids,
and the third part includes a detection head used to predict the categories and bounding
boxes of ships.

In terms of the architecture backbone, we continued the idea of the YOLO series
models, which have proven their strong feature extraction capabilities in detection and
other issues. It is worth noting that, unlike the C3 module (Yolov5), Repvgg Block (Yolov6),
and E-LHAN (Yolov7), we designed a new functional module (ELA-C3 Block). Rethinking
C3 and bottleneck-CSP, we added a branch containing Bottleneck structural units. After
branch expansion, ELA-C3 Block has a more efficient feature extraction ability than C3.

Regarding the architecture neck, we proposed an improved fusion structure with a
weighted-channel network (WFC-PANet). In WFC-PANet, the features of different channels
are given weighted specificity. In addition, we abandoned the principle of equal channels
for feature aggregation but designed half of the convolutional kernels to control the number
of channels. Therefore, the number of channels for fused features was reduced to half of the
original number, greatly reducing the parameters and Floating Point Operations (FLOPs).

In the detection head, a Contextual Transformer encoder (CoT) was added to effectively
locate targets, further improving the detection performance of small ships. Thus, a more
detailed network structure is shown in Table 1.
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Figure 2. Overall architecture of the LMSD-Net framework.

Table 1. Information about each layer of the LMSD-Net structure.

The nth Layer From Module Num Output Shape Params

/ Input / [640,640,3] /
0 −1 Convolution 1 [320,320,32] 3520
1 −1 Convolution 1 [160,160,64] 18,560
2 −1 ELA-C3

Block 1 [160,160,64] 18,816
3 −1 Convolution 1 [80,80,128] 73,984
4 −1 ELA-C3

Block 2 [80,80,128] 115,712
5 −1 Convolution 1 [40,40,256] 295,424
6 −1 ELA-C3

Block 3 [40,40,256] 625,152
7 −1 Convolution 1 [20,20,512] 1,180,672
8 −1 ELA-C3

Block 1 [20,20,512] 1,182,720
9 −1 SPPF 1 [20,20,512] 656,896
10 −1 Convolution 1 [20,20,128] 65,792
11 −1 Nearest

Upsample 1 [40,40,128] -
12 −1,6 WFC_Concat_2 1 [40,40,384] 2
13 −1 ELA-C3

Block 1 [40,40,128] 107,264
14 −1 Convolution 1 [40,40,64] 8320
15 −1 Nearest

Upsample 1 [80,80,64] -
16 −1,4 WFC_Concat_2 1 [80,80,192] 2
17 −1 ELA-C3

Block 1 [80,80,64] 27,008
18 −1 Convolution 1 [40,40,64] 36,992
19 −1,14,6 WFC_Concat_3 1 [40,40,384] 3
20 −1 ELA-C3

Block 1 [40,40,128] 107,264
21 −1 Convolution 1 [20,20,128] 147,712
22 −1,10,8 WFC_Concat_3 1 [20,20,768] 3
23 −1 ELA-C3

Block 1 [20,20,256] 427,520
24 17 CoTB 3 [80,80,64] 18,944
25 20 CoTB 3 [40,40,128] 74,240
26 23 CoTB 3 [20,20,256] 293,888
27 24,25,26 Detect 1 / 8118

366 Conv layers 12.8 GFLOPs 5.5× 106 parameters
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Each row in Table 1 represents the forward propagation of the corresponding feature
layer. By executing the corresponding number of modules, the shape of the feature output
is marked in the “Output Shape” and the parameters are recorded in the “Params”. “Num”
represents the number of repetitions. For example, in the sixth row of the table, the features
of the fourth layer of the network will be used as the input of the ELA-C3 module to further
extract the features, the extracted feature scale is 80 × 80 × 128, and the number of process
parameters is 115,712. From the output shape of the 24th–26th rows, the model provides
three scales of feature output, which would serve for multi-scale ship detection. From
the output shape and “Params” of the 17th, 20th, and 23rd rows, the improved feature
fusion part preserves small parameters and channels. The last line summarizes the model’s
convolution layers, total parameters, and computational complexity values.

2.2.2. Efficient Layer Aggregation Block

The backbone and neck focus more on obtaining efficient features, especially in
lightweight models. As shown in Figure 3a,b, C3, as a variant of CSP-ResNeXt, still
retains the CSP architecture and adopts CSP-Bottleneck as the modified unit with fewer
parameters. In lightweight models, sharing current layer weights often achieves efficient
layer aggregation. Based on this idea, we proposed a variant named Efficient Layer Aggre-
gation of C3 (ELA-C3) in Figure 3d. In addition to reducing repetitive gradient learning,
we also analyzed the gradient path. Compared to the Efficient Layer Aggregation Network
(ELAN) [29], ELA-C3 removes the base layer paths with less contribution and assigns
different channel numbers to different layers. For example, in Figure 3d, the number of
channels in the three paths from left to right is c, c/2, and c/2, respectively. In this way,
different layers can learn more various features without damaging the original gradient
path, which is beneficial in enhancing learning ability.

Figure 3. Evolution and exploration of the ELA-C3 module.

From the perspective of gradient diversion, the base path only performs ordinary
transformations, while the two extended paths use efficient transformations to obtain
extended features. Based on group convolution, ELA-C3 forms a local “extend–transform–
merge” structure. Assume that feature x is obtained from the base path by the CBS operation.
On the one hand, x is exported to participate in the final merger. On the other hand, x
serves as the input for extended path features. In Extension Path 1, x performs an efficient
transformation to obtain ψ(x). Then, ψ(x), as the input of Extension Path 2, participates in an
efficient transformation of c/2 convolution kernels. Finally, the output results are merged
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by concatenating operations. The “split–transform–merge” structure can be expressed
as follows:

Fc = Θ(xc, ψ(x) c
2
, ψ(ψ(x)) c

2
) (4)

where Θ represents the merge operation, and ψ represents the efficient transformation.
Output Fc of the structure has c channels.

In the implementation, we adopted group convolution (group = g) to expand the
channel and cardinality of the computational block. First, we applied the same parameters
and channel multipliers to the two extended paths. Then, we concatenated the tensors of
the three paths together. The number of channels in each group of feature maps will be
the same as that in the base layer. Finally, we added g sets of feature maps to obtain the
complete features. Therefore, ELA-C3 could construct efficient layer aggregation blocks by
group convolution to learn more diverse features.

2.2.3. Lightweight Fusion with Weighted-Channel Concatenation

For the single-stage detector, multi-layer detection is an important method to address
scale differences. As we all know, FPN has inconsistency of features among the different
scales of the target. Specifically, large targets are typically associated with higher-feature
maps, while small targets are typically associated with lower-feature maps. After sampling
and fusion, the high-level feature responsible for large targets has rich semantic information
but fuzzy spatial information. In contrast, the low-level feature responsible for small
targets has an accurate location but less semantic information. This may result in a low
classification accuracy for small targets and an inaccurate positioning for large targets. In
Figure 4b, PANet adds a bottom-up fusion path, which is a “soft fusion” to ensure that
spatial features are mapped to global features. However, not only does it bring more
parameters and computational complexity, but also the loss from sampling is irreparable.
For these issues, we proposed a lightweight fusion with the weighted channel based on
PANet (WFC-PANet).

Figure 4. Fusion structure improvement of WFC-PANet.

Specifically, WFC-PANet adds learnable weights to all the channels in bidirectional
fusion. Since different feature maps have different resolutions before stacking or adding,
their contributions to the fusion are also different. Therefore, we established a feature
competition mechanism based on the contribution to the fused feature map. Once a channel
becomes more important in the fusion of features, it will occupy a greater weight. Then the
weight is expressed by a fast normalization fusion formula:

W = ∑
i

wi
ε + ∑

j
wj

(5)
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where wi > 0 and ε = 0.0001 for stabilizing the value. Then, the number of channels of the
output features is reduced to half of the original features, which avoids the reuse of similar
features and reduces training parameters. Although it sacrifices some of the compelling
features, the cross-layer weighted concatenation basically guarantees the expressiveness of
the fusion.

To illustrate the fusion in Figure 4c, we used the concept of set to describe the features.
As shown in Figure 5a, the entire detection neck is divided into three layers horizontally
and three columns vertically. The available feature sets X, Y, and Z contain three scales of
feature maps with different receptive fields. Then, based on the number of branches, the
fusion includes two specific forms: two-node fusion and multi-node fusion. In Figure 5b,c,
external mapping expands the fusion scales, while internal mapping only increases the
diversity of features. Multi-node fusion adds cross-layer weighted fusion compared to two-
node fusion. Because of more available feature map choices, multi-node fusion will be more
inclined to select efficient features. Therefore, it seems this part of the features is screened
and participates in feature refactoring. Moreover, both of them adopt Formula 5, and the
values of each normalized weight are limited to [0, 1]. As for the layers corresponding
to set Y, two-node weighted fusion is used. For example, the My layer is generated by
the weighted fusion of corresponding Mx and Sy in the X set. As for the feature layers
corresponding to set Z, multi-node weighted fusion is used because of the addition of
cross-layer channels. For example, Mz is generated by weighted splicing of Mx, My, and Lz.

Figure 5. Abstract representation of fusion mapping. (a) Schematic diagram of a bidirectional fusion
set. (b,c) Specific integration forms. The available features include the native feature set X, the
top-down feature set Y, and the bottom-up feature set Z.

2.2.4. Contextual Transformer Block for the Detection Head

Discrete convolution operators impose spatial locality variance, which is beneficial for
reflecting local differences. However, the limited acceptance field affects the modeling of
global relationships and makes it less apparent to the remote feature interactions. Inspired
by visual transformers, interactions in pairs of queries and keys can measure the global
attention matrix, which reflects contextual self-attention expression well. Based on CNN,
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we added a lightweight Contextual Transformer (CoT) block before the shared decoupled
head for more accurate classification and localization.

Specifically, as shown in Figure 6, given a ship feature map X ∈ RH×W×C, it can be
transformed into queries, keys, and values, which are defined as follows:

Q = XMq (6)

K = XME
k (7)

V = XMv (8)

where Mq, ME
k , and Mv are the embedding matrices, which transform the sparse image into

a dense matrix. Assuming the central key of the context area is Xcen, the surrounding key
is the region with k × k (k = 3 in Figure 6). Centered around each key in the surrounding
area, the k × k convolution can calculate the contextual information of each key. Similar to
sliding window convolution in CNN, the learned contextual key KStatic ∈ RH×W×C reflects
the static information of the center and surrounding.

 

Figure 6. Measurement of the attention matrix in the CoT block.

Then, the learned contextual keys and queries are concatenated to synthesize new
keys [KStatic, Q]. By using two consecutive 1 × 1 convolutions to perform self-attention:

Watt = [KStatic, Q]×MSiLu
att ×Matt (9)

where MSiLu
att represents the convolution with SiLU while Matt represents the convolution

without activation. Obviously, the learned attention weight matrix considers the context
keys and queries. In other words, the purpose of mining contextual information is to
improve the self-attention of local regions. Next, Softmax is used to form the attention
weight matrix WSo f tmax

att . Aggregating the value matrix, a dynamic contextual self-attention
weight matrix is calculated and represented as follows:

Kdynamic = V
⊗

WSo f tmax
att (10)

During the forward transmission process, static context KStatic and dynamic context
Kdynamic integrate through the overlay fusion mechanism [57]. The hardware algorithm
implementation is shown in Figure 7.

Essentially, CoT is a self-attention block that combines transformers. Therefore, treat-
ing CoT as a convolution module is feasible. In the ablation experiment, we increased the
number of CoT blocks to obtain the best response.
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Figure 7. The detailed structures of the Contextual Transformer (CoT) block. � denotes local matrix
multiplication, and ⊕ denotes the fusion of dynamic and static keys. For two consecutive 1 × 1
convolutions, channel scaling factor λ is set as 4 in the experiment.

2.2.5. Prediction

As mentioned above, three prediction branches are elicited to accurately detect multi-
scale ships. In the output of each branch, the positive sample grids, which are used to
predict the real target, need to be filtered and serve for location prediction. Since the ship
targets are mostly distinctly elongated, the aspect ratio of the label has a positive effect on
the prediction. In addition, we expanded the prediction location to three cell grids to filter
positive samples with a multi-sample label matching strategy [27]. In this way, the labels
are assigned to all the anchors simultaneously during training, thus alleviating the problem
of unbalanced positive and negative samples during training to some extent. Once the
positive samples are identified, the positive sample loss is calculated as the sum of grid
confidence loss, target classification loss, and target bounding box regression loss. The
negative samples only need to calculate the confidence loss.

In the training process, we inherited the Binary Cross-Entropy as the class loss and
confidence loss of the positive and negative samples of the grid. Considering the prediction
output grid (S × S), each cell in the grid generates N bounding boxes, whose center
coordinate is (x, y), prediction confidence is c, and the prediction vector points to the kth
class with prediction value pk. Class loss and confidence loss are defined as follows:

Lclass =
S2

∑
i=0

B

∑
j=0

N

∑
k=0

Z
obj
ij [ p̂kln(pk) + (1− p̂k)ln(1− pk)] (11)

Lobj =
S2

∑
i=0

B

∑
j=1

Z
obj
ij [ĉln(c) + (1− ĉ)ln(1− c)] (12)

where p̂, ĉ are the truth of p, c. Zobj
ij denotes whether the object appears in the bounding box

j predictor in cell i. It is worth noting that the positive sample only contains three grids,
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while the negative sample contains other grids as well as grids from other detection layers.
Due to the labels of the negative samples ĉ = 0, the confidence loss calculation for negative
samples can be optimized approximately as follows:

Lobj =
num(neg)

∑
i=0

B

∑
j=1

Z
obj
ij lim

ĉ→0
[−ĉln(c)− (1− ĉ)ln(1− c)] =

num(neg)

∑
i=0

B

∑
j=1

Z
obj
ij ln(1− c) (13)

For the bounding box regression loss of positive samples, we proposed an improved
version named V-CIoU based on CIoU [58]. First, consider the formula of CIoU:

LCIoU
Bbox = IoU −

(
(x− x̂)2 + (y− ŷ)2

c2 + αv

)
(14)

IoU =

∣∣∣∣∣Area(B)
⋂

Area
(

B̂
)

Area(B)
⋃

Area(B)

∣∣∣∣∣ (15)

v =
4

π2

(
arctan

ŵ
ĥ
− arctan

w
h

)2
(16)

α =
v

(1− IoU) + v
(17)

where B and B̂ represent the areas of the prediction box and the ground-truth box, respec-
tively, (x̂, ŷ, ŵ, ĥ) is the matched truth value of (x, y, w, h), c is the diagonal length of the
smallest closed box covering both boxes, α is the weight parameter, and v is the penalty
representing the aspect ratio’s consistency.

CIoU loss adds the distance offset and aspect ratio of the prediction box to the IoU,
and both of them are beneficial for improving the regression accuracy of the ship. However,
a problem that needs to be considered is that the penalty term v in Formula (16) will fail
when the aspect ratio of the truth and prediction is equal or approximately equal. Especially
for some small-ship targets, the similar aspect ratio results in incomplete convergence. In
this case, we proposed a penalty function based on the variance of the ground truth and the
prediction for each corresponding aspect ratio. This penalty term u is defined as follows:

u =

⎧⎪⎨⎪⎩
4

π2 (arctan ŵ
ĥ
− arctan w

h )
2
,

∣∣∣ŵh− wĥ
∣∣∣ ≥ 0.001

8
π2

[(
arctan ŵ

w − π
4
)2

+
(

arctan ĥ
h − π

4

)2
]

,
∣∣∣ŵh− wĥ

∣∣∣ < 0.001
(18)

The penalty term v is preserved as a part of the new penalty function. Normally, the
penalty term v can solve the problem of offset. The variance penalty term is activated when
the ratio between the prediction and the ground truth is consistent. Therefore, V-CIoU not
only embodies the advantages of CIoU but also solves the degradation problem, in that
the aspect ratio of the ground truth equals that of the prediction. Once the aspect ratio
of the prediction and ground truth are maintained within a small range, the convergence
behavior reaches its limit, and then the penalty loses efficacy. Finally, the bounding box
regression loss is defined as follows:

LVCIoU
Bbox = IoU −

(
(x− x̂)2 + (y− ŷ)2

c2 + αu

)
(19)

Furthermore, the implementation process is summarized in Algorithm 1.
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Algorithm 1. V-CIoU computation

1: Input: Bounding box of ground truth Bgt =
(

wgt, hgt, xgt, ygt
)

2: Input: Bounding box of prediction Bp = (wp, hp, xp, yp)
3: Output: VCIoU between the ground-truth box and the prediction boxes
4: If

(
Bgt �= ∅

) ∪ (Bp �= ∅) do
5: For A and B, find the smallest enclosing convex object C.

6: within C, calculate IoU =

∣∣∣∣ Area(Bp)
⋂

Area(Bgt)
Area(Bp)

⋃
Area(Bgt)

∣∣∣∣.
7: If

∣∣wgthp − wphgt
∣∣ ≤ 0.001:

8: then u = 8
π2

[(
arctan ŵ

w − π
4
)2

+
(

arctan ĥ
h − π

4

)2
]

,

9: α = u
(1−IoU)+u ,

10: LBbox = IoU − ( (x−x̂)2+(y−ŷ)2

c2 + αu).
11: else

12: then v = 4
π2 (arctan ŵ

ĥ
− arctan w

h )
2
.

13: else
14: LBbox = 0.

3. Results and Experiments

This section provides a detailed introduction to the dataset and a description of the
evaluation metric. Then, we conduct a large number of experiments to demonstrate the
effectiveness of the framework. On the one hand, we perform ablation experiments for the
proposed data argument and self-designed modules with relevant advanced methods. On
the other hand, we perform a detailed comparison with the current excellent lightweight
detection frameworks. Finally, the detection results using the most advanced methods are
presented, leading to a profound discussion in the next section.

3.1. Dataset

The increase in high-resolution optical images has greatly contributed to the advance-
ment of target detection. Improving the detection performance of small ships relies on
collecting small-target ship datasets. However, existing open data sources still need to be
extended in the diversity of scenes and targets. For example, in HRSC2016 [59], there are
only two or three targets in an image, most of which are large-scale targets. The scenes of
NWPU VHR-10 [60] and the Airbus ship dataset [61] are more singular with the coastal
background. Subsequently, we have proposed the VRS ship dataset [54] (VRS-SD) in our
previous study, which contains various maritime disturbances, such as thin clouds, islands,
sea waves, and wake waves. Therefore, the application of VRS-SD is oriented toward
detection tasks in maritime scenes. In order to meet the unified detection requirements
for nearshore and maritime scenes, we furthermore construct VRS-SD v2, which covers
different nearshore scenes, marine environments, maritime disturbances, target scales, and
dense small-target distributions. The detailed differences among the current datasets are
summarized in Table 2.

Table 2. Comparison of ship datasets.

Dataset Images Class Ship Instances Image Size Source Fog

NWPU VHR-10 800 10 302 / Google Earth ×
HRSC2016 1061 3 2976 300 × 300~1500 × 1900 Google Earth ×

Airbus ship dataset 192,570 2 / 768 × 768 Google Earth ×
MASATI [62] 6212 7 7389 512 × 512 Aircraft ×

FGSD2021 [63] 636 20 5274 157 × 224~6506 × 7789 Google Earth ×
AI-TOD [64] 28,036 8 700,621 / Google Earth

√
VRS-SD 893 6 1162 512 × 512 Google Earth

√
VRS-SD v2 2368 8 4054 512 × 512 Google Earth and Aircraft

√
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According to the statistics in Table 2, most of the existing ship datasets are from Google
Earth and are mostly taken under sunny conditions. Both VRS-SD and VRS-SD v2 are
collected under a variety of weather conditions. Compared with VRS-SD, VRS-SD v2 has
significantly expanded the amounts of images, and the two additional classes are near-shore
ships and river-distribution ships. In addition, to address the problem of insufficient fog
interference background in VRS-SD, we provided more images of such scenes through
fog simulation. Since AI-TOD focuses more on the differences in nearshore target scale, it
usually better reflects the complexity of the scenes. Therefore, in the final validation, we
implemented our method on the AI-TOD dataset.

3.1.1. The Analysis of VRS-SD v2

VRS-SD v2 increases the number of ship targets at different scales. To compare the
targets at different scales, we first refer to the definition of the small target. The small-target
scale has different absolute definitions in different remote sensing datasets. For example,
the MS COCO dataset defines small targets within 32 × 32 pixels. TinyPerson [65] defines
small targets as those with pixel values in the interval [20, 50]. Furthermore, the aerial
image dataset DOTA [66] defines a small target with pixel values in the range of 10–50. It is
difficult to unify the definition of small targets for different datasets, so we introduced a
relative definition of small-target scale. Ref. [67] states that the relative areas of small-target
instances in the same class, the median ratio of the area of the ground truth to the image,
should be limited to between 0.08% and 0.58%. In addition, the ratio of the target bounding
box area to the image area is open-squared to less than a certain value, the more general
value being 0.03. Based on the above considerations, we compared the two datasets at a
finer scale as shown in Table 3. It can be seen that there is a significant increase in tiny ships,
and the number of small targets has increased to varying degrees at the subdivision scales.
Figure 8 counts the relative areas of all ship instances and the number of targets in different
intervals. In addition, Figure 9 shows the distribution of ship positions at different scales,
and VRS-SD v2 has more targets and a denser distribution.

Table 3. Quantitative statistics of multi-scale ships.

Relative Scales Relative Area Rates VRS-SD/pcs VRS-SD v2/pcs

Tiny ship (0, 0.0008) 312 2284

Small ship
(0.0008, 0.0016) 761 943
(0.0016–0.0025) 244 381
(0.0025–0.0058) 300 335

Medium ship (0.0058–0.04) 46 111

Figure 8. Target statistics of VRS-SD v2 and comparison with VRS-SD. (a) Relative scale statistics in
VRS-SD v2. (b) Comparison of target-relative scale distribution between VRS-SD and VRS-SD v2.
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Figure 9. Distribution of target positions at different scales in VRS-SD and VRS-SD v2. The X and Y
axes indicate the relative positions of the ships, and the image scale is normalized to a relative scale
of 1.0 × 1.0. Different colors indicate the targets at different scales.

3.1.2. Fog Simulation

VRS-SD v2 includes a few cloud images and fog images. We performed the fog simu-
lation on a certain proportion of images to simulate the real-world detection background.
These images have been fogged at random spatial locations with varying degrees. In
Figure 10, we present some simulation examples of some typical scenes. The fog simulation
in the coastal area represents the real situation. Once the model is trained to resist the
disturbances caused by fog, it can be deployed to industrial equipment, especially those
devices under severe weather conditions.

Figure 10. Examples of fog simulation. (a) The open areas contain lakes, island shores, and sea clutter.
(b) The coast scene with dense ship targets.

3.2. Evaluation Metrics

Similar to the general target detection task, we used precision rate, recall rate, and
average precision to evaluate the performance of the proposed network. By setting a
threshold for the intersection over union (IoU), the prediction results can be filtered and
divided as true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). The formulas for precision, recall, and F1 score are as follows:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 = 2× Precsion× Recall
Precsion + Recall

(22)
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Furthermore, average precision (AP) calculates the total precision of the recall value
from 0 to 1, that is, AP is the area enclosed by the P-R curve and the coordinate axis. Let r
be the recall rate and P(r) be the accuracy corresponding to the curve. By interpolation, AP
as the line integral is calculated as follows:

AP =
∫ 1

0
P(r)dr =

N

∑
k=1

P(k)Δr(k) (23)

For the lightweight comparison, we use the GFLOPs and parameters, which could
reflect the network complexity and memory usage. Additionally, frames per second (FPS)
is calculated to quantify the detection speed. In consideration of the limitation of the device,
FPS is tested with batch size = 1 or 16 in the experiments.

3.3. Ablation Study

All the experiments were tested and evaluated on a computer with an Intel Core
i7-10900 2.90 GHz CPU, 24 GB memory, and GeForce GTX 3060Ti GPU with 8 GB. In the
preparation phase, the dataset was divided into a training set, a validation set, and a test set
in a ratio of 8:1:1. By k-means clustering, the criteria for the three classes of anchors were
automatically generated based on the ship scale in the specific dataset. During the training
process, we applied the AdamW optimizer and trained 200 epochs to ensure convergence.
For all experiments, the IoU was set to 0.6.

3.3.1. Effect of Fog Simulation

To verify the importance of fog simulation for practical detection work, as shown
in Table 4, we tested the fog simulation on MASATI and VRS-SD v2, which are both the
small-ship dataset. It is worth noting that we set three rates, 0, 50%, and 100%, to test the
effect of fog simulation on the results. The best results of the three rates are highlighted
in red.

Table 4. Fog simulation for data enhancement.

Dataset Train/Val Set With Fog Test Set with Fog Recall Precision F1 AP@0.5 AP@0.5:0.95

MASATI

× × 0.813 0.825 0.82 0.813 0.407
× √

(100%) 0.609 0.679 0.64 0.587 0.264√
(100%)

√
(100%) 0.738 0.766 0.75 0.758 0.345√

(50%)
√

(50%) 0.731 0.833 0.78 0.783 0.358

VRS-SOD v2

× × 0.771 0.832 0.80 0.817 0.395
× √

(100%) 0.612 0.718 0.66 0.615 0.283√
(100%)

√
(100%) 0.650 0.744 0.69 0.718 0.32√

(50%)
√

(50%) 0.662 0.848 0.74 0.741 0.342

Taking MASATI as an example, the model can give the best results at AP@0.5 of 0.813
and AP@0.5:0.95 of 0.407 without fog interference. However, when the training set lacks
fog images, the testing achieves the worst results, with AP@0.5 of 0.587 and AP@0.5:0.95 of
0.264. Adding a certain percentage of fog images in the dataset can match the real remote
sensing detection and improve the robustness of the model to weather conditions. On
VRS-SD v2, when the training and test sets are mixed with fog images simultaneously, the
detection results are better than the in case of all fog images, and AP@0.5 and AP@0.5:0.95
reach 0.741 and 0.342. It also provides an experimental basis for obtaining the best ratio of
fog images.

3.3.2. Effect of ELA-C3

ELA-C3 is an improved version of the C3 module. To verify the validity of ELA-C3,
we used C3 as a baseline in LMSD-Net. Additionally, we applied all remaining components
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of LMSD-Net. As shown in Table 5, the model obtains results by replacing the C3 module
in the backbone and neck.

Table 5. Ablation of ELA-C3.

Input Size
Backbone
+ ELA-C3

Neck
+ ELA-C3

AP@0.5 AP@0.5:0.95
FPS

bs@16
Params

(M)
GFLOPs

(G)

640 × 640 × × 0.782 0.363 126 6.97 17.3
640 × 640

√ × 0.821 (+3.9%) 0.381 (+1.8%) 204 5.09 12.1
640 × 640 × √

0.797 (+1.5%) 0.382 (+1.9%) 161 6.51 16.5
640 × 640

√ √
0.837 (+5.5%) 0.396 (+3.3%) 181 5.5 12.8

When ELA-C3 is added to the backbone or neck, the AP@50 values are 3.9% or 1.5%
higher than the baseline model. In addition, the AP value with ELA-C3 exclusively is 5.5%
higher than that using C3. As a lightweight feature extraction module, ELA-C3 has less
increase of parameters. Therefore, the ELA-C3 module facilitates the efficient acquisition of
rich contextual spatial features to improve the detection performance of ship targets.

3.3.3. Effect of WFC-PANet

In the detection neck, we designed the cross-layer and weighted-channel concatenation
based on PANet. To avoid the influence of ELA-C3, all the following networks uniformly
used the Yolov5s-backbone. Then, we quantified the experimental results of the current
advanced feature fusion methods in Table 6.

Table 6. Comparison of different feature fusion methods in the neck.

Neck Recall Precision AP@0.5 AP@0.5:0.95
FPS

bs@16
Params

(M)
GFLOPs

(G)

PANet 0.811 0.823 0.831 0.41 181 7.02 15.8
BiFPN_Add 0.783 0.789 0.809 0.38 169 9.32 22.9

BiFPN_Concat 0.771 0.844 0.823 0.404 181 7.08 16.0
WFC-PANet(ours) 0.790 0.832 0.817 0.39 208 5.10 12.1

The experiment results show that using WGC-PANet leads to an increase in speed
and a more lightweight model. In addition, there is a small sacrifice in average accuracy
compared with PANet. Nevertheless, the model still maintains good performance and
enough to finish the detection task. Similar to BiFPN, WGC-PANet also mentions a cross-
layer connection. However, the use of adding BiFPN increases the computation complexity
significantly. On the contrary, using Concat guarantees the model’s performance and
reduces the computation complexity. Taken together, the cross-channel and weighted-
channel concatenation adopted by WGC-PANet can maintain the model’s expressiveness
and provide the possibility of lightweight implementation.

3.3.4. Structure Exploration of the Detection Head

The prediction head is crucial for the decoupling of the feature map. Based on the
general structure of LMSD-Net, the comparison results of applying different mainstream
detection heads are presented in Table 7. Further, to explore the effect of the number of CoT
blocks, we embedded different numbers of CoT blocks and obtained the optimal choice
according to the comparison. Note that CoT_x denotes the use of x CoT blocks.
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Table 7. Exploration and comparison of detection heads.

Detection Head Recall Precision AP@0.5 AP@0.5:0.95
FPS

(bs@16)
Params

(M)
GFLOPs

(G)

YOLO head 0.743 0.784 0.793 0.368 208 5.10 12.1
Decoupled head [28] 0.792 0.821 0.800 0.386 188 6.09 13.9

Swin+ YOLO head [53] 0.773 0.804 0.796 0.392 181 5.54 25.7
CoT_1+ YOLO head 0.756 0.837 0.817 0.375 208 4.97 12.1
CoT_2+ YOLO head 0.787 0.821 0.831 0.384 185 5.18 12.5
CoT_3+ YOLO head 0.781 0.847 0.837 0.396 171 5.49 12.8
CoT_4+ YOLO head 0.784 0.850 0.839 0.398 162 5.90 13.2

In the YOLO head, the classification and localization branches are fused to share the
convolutional layers. In the decoupled head, the two branches are convolved separately
to obtain higher accuracy. Therefore, applying the YOLO head has fewer parameters
and computation complexity than the decoupled head but poorer performance. With the
addition of CoT blocks, the detection performs more powerfully. Compared with Swin
Transformer block, CoT_3 obtains less computation complexity as well as higher precision.
In addition, the number of CoT blocks affect the performance. More CoT blocks will bring
a slight increase in parameters and GFLOPs but a decrease in speed. Considering the
performance and hardware consumption, we finally chose CoT_3 in the network.

3.3.5. Validation of Regression Loss Function

According to the analysis of VRS-SD v2 in Table 3, the relative area ratios of tiny and
small targets are primarily of [0,0.0016]. Therefore, the observation will have a similar
aspect ratio between the ground truth and the predicted bounding box, which leads to
the failure of the aspect ratio penalty term of CIoU. To verify the validity of the proposed
variance penalty term for V-CIoU, we designed experiments of regression loss, as shown in
Table 8. We set three different thresholds for the following loss functions in the valid. On
the whole, V-CIoU has the best effect. Compared with CIoU, V-CIoU improves by 2.9% at
AP@75 and 2.2% at AP@50:95. The experiments demonstrated that adding the variance
penalty term makes V-CIoU more adaptable to tiny- and small-ship detection.

Table 8. Validation of the improved V-CIoU.

Regression Loss APval
50 APval

75 APval
50:95

CIoU 0.821 0.309 0.382
DIoU [68] 0.817 0.293 0.371
EIoU [69] 0.796 0.294 0.375
SIoU [70] 0.787 0.318 0.379

Wise-IoU [71] 0.817 0.326 0.378
V-CIoU 0.823 0.338 0.404

3.3.6. Multi-Scale Performance of the Model

Based on the statistics of the dataset, the proposed VRS-SD v2.0 contains ship targets
that are mostly small- and medium-sized, whereas VRS-SD proposed in previous work
contains more large targets. Therefore, we combined the two datasets to explore the model’s
detection performance for different-sized ship targets. Table 9 lists the comparison results
of the lightweight SOTA detectors.
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Table 9. Comparison of detection performance at different scales.

Model Params (M) GFLOPs(G) Size APval APval
S APval

M APval
L

Yolov7-tiny 6.01 13.2 640 0.208 0.211 0.149 0.342
Yolov5s-6.1 7.03 15.9 640 0.376 0.369 0.549 0.581
Yolov6n-3.0 4.63 11.34 640 0.323 0.316 0.513 0.604

Yolov8s 11.1 28.6 640 0.380 0.360 0.595 0.683
LMSD-Net 5.50 12.8 640 0.392 0.372 0.591 0.644

From the results, we see that LMSD-Net is comparable to the latest Yolov6-3.0n in
terms of being lightweight, while LMSD-Net performs better on small targets and medium-
sized targets, with an improvement of 5.6% and 7.8%, respectively. Considering this
enhancement, on the one hand, the small and medium targets are well trained due to
the large number of small and medium samples in the dataset. On the other hand, V-
CIOU specifically solves the problem of the inconsistent aspect ratio of small targets, thus
improving detection accuracy. In addition, the AP for large-ship targets reaches 0.644,
which is lower than Yolov8s by about 3.9%. Nevertheless, the parameters of LMSD-Net are
only half of those of Yolov8s, and the computation is reduced by 45%.

3.4. Overall Detection Performance

To validate the overall detection performance, we first compared the proposed models
with the current lightweight state-of-the-art on the VRS-SD v2. These comparison methods
include lightweight versions of the universal detectors, such as EfficientDet (D0-D3), Yolov7-
tiny, and Yolov8n, and specialized lightweight detectors, such as the Nanodet family.
In addition, we added a variant of Yolov5s called Yolov5-Ghost, which introduces the
lightweight backbone GhostNet into the CSP architecture. For this part of the experiments,
we used the training and validation setup of the ablation study. To ensure great and
fast convergence, we increased the pre-training weights and performed 200 epochs of
training. In addition, we set the batch size = 1 to test the general real-time performance. The
comparison experiments were fair and extensive. We directly trained and tested all the
comparison methods using official open-source codes.

Generally, as shown in Table 10, the proposed method performs best on this small-ship
dataset. In terms of AP@50, LMSD-Net achieves the highest value with 81.3%. Compared
with Yolov8s and Yolov6-3.0-s, which have high average accuracy, LMSD-Net has more
advantages in terms of parameters and computation complexity. Therefore, it can meet
the needs of ship-target detection tasks better. In addition, we observed that parts of the
anchor-free detectors in Table 10, like Yolov6s-3.0 and Yolov8s, performed better than
the Yolov5 series, Yolov4-tiny and Yolov7-tiny, which are anchor-based detectors. Since
tiny targets are more sensitive to IoU than large targets, the anchor-based detectors, such
as Yolov7-tiny and Yolov5n, cannot accurately predict the bounding box. Especially in
AP@50:95, which has a stricter limitation than AP@50, common IoU loss will lead to less
improvement. With the proposed V-CIOU, we could improve the average accuracy and
cope with the tiny-target detection.

In terms of lightweight, the Nanodet series perform the best. However, they are mainly
applied to mobile target detection and are not well adapted to small-ship target detection
in the remote sensing field. Due to the small model input scale, such as 320 × 320 or
416× 416, the feature description capability is limited, which leads to low detection accuracy.
Differently, the model input scale of the EfficientDet series increases with the expansion of
the backbone. Based on DWConv, the scaled model gradually adapts to lightweight but
sacrifices more accuracy and improves a little in speed. In contrast, the accuracy advantage
of LMSD-Net is very obvious and ensures efficient detection performance.

108



Remote Sens. 2023, 15, 4358

Table 10. Comparison of the lightweight SOTA performance on VRS-SD v2 (30% foggy images).

Method Backbone
Input
Size

Recall Precision F1 AP@0.5 AP@0.5:0.95
FPS

(bs@1)
Params

(M)
GFLOPs

(G)

EfficientDet-D0 [39] Efficient-B0 512 0.233 0.766 0.36 0.291 0.125 23 3.83 4.7
EfficientDet-D1 [39] Efficient-B1 640 0.404 0.833 0.54 0.444 0.213 19 6.56 11.5
EfficientDet-D2 [39] Efficient-B2 768 0.458 0.842 0.59 0.561 0.266 16 8.01 20.5
EfficientDet-D3 [39] Efficient-B3 896 0.671 0.780 0.72 0.638 0.300 13 11.90 46.9

Nanodet-m [72] ShuffleNetV2 1.0x 320 0.355 0.879 0.51 0.420 0.162 78 0.94 0.72
Nanodet-plus-m [72] ShuffleNetV2 1.5x 416 0.556 0.656 0.60 0.585 0.278 67 2.44 2.97
Nanodet-EfficientLite [72] EfficientNet-Lite1 416 0.586 0.677 0.63 0.578 0.288 59 4.00 4.06
Nanodet-EfficientLite [72] EfficientNet-Lite2 512 0.635 0.691 0.66 0.596 0.284 48 4.70 7.12

Yolov4-tiny [26] CSPDarknet53-tiny 640 0.576 0.751 0.65 0.683 0.235 130 5.87 16.2
Yolov7-tiny [29] CSP-ELAN 640 0.699 0.891 0.78 0.731 0.282 80 6.01 13.2

Yolox-nano [73] CSPDarknet-C3 640 0.689 0.661 0.67 0.705 0.283 57 0.90 2.5
Yolox-tiny [73] CSPDarknet-C3 640 0.763 0.827 0.79 0.782 0.324 53 5.06 15.4

Yolov5n6 [27] CSPDarknet-C3 640 0.665 0.842 0.74 0.756 0.329 91 1.77 4.2
Yolov5s6 [27] CSPDarknet-C3 640 0.724 0.856 0.78 0.787 0.370 79 7.03 15.9
Yolov5-Ghost [27] CSPDarknet-C3Ghost 640 0.725 0.781 0.75 0.771 0.347 84 4.90 10.6

Yolov6-3.0-nano [74] EfficientRep 640 0.726 0.829 0.77 0.744 0.380 81 4.63 11.34
Yolov6-3.0-s [74] EfficientRep 640 0.743 0.884 0.81 0.789 0.392 73 18.50 45.17

Yolov8n [30] CSPDarknet-C2f 640 0.716 0.877 0.79 0.772 0.345 82 3.1 8.2
Yolov8s [30] CSPDarknet-C2f 640 0.760 0.886 0.82 0.809 0.358 79 11.1 28.6

LMSD-Net(ours) CSPDarknet-
ELA-C3 (ours) 640 0.790 0.824 0.81 0.813 0.384 68 5.50 12.8

Although the speed of LMSD-Net is not the fastest, it is acceptable compared to most
of the advanced detectors mentioned earlier. Its detection speed reaches 68 FPS, which
could meet the real-time requirement (FPS > 30).

Further, in Figure 11, we show the detection results using LMSD-Net on AI-TOD,
MASATI, and VRS-SD v2. It can be observed that our model performs well on all three
datasets with no missed and false detections essentially, which indicates that the model has
a high generalization ability. Despite the large interference caused by clouds and fog to the
ship target, the detection still performs well.

Figure 11. Cont.
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Figure 11. Detection results of the proposed LMSD-Net on different datasets.
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4. Discussion

In this study, we propose a new ship dataset VRS-SD v2, which adds more small-
and tiny-ship targets located nearshore and in rivers. The dataset covers different open
coast scenes, marine environments, maritime disturbances, target scales, and more dense
distributions. In addition, we propose a new fog simulation method for increasing the
proportion of fog images in the dataset. This method can improve the robustness of
the model in severe weather conditions. We have demonstrated the importance of fog
simulation for actual detection by implementing different proportions of fog simulation on
the dataset in the ablation experiment.

Then, we propose a new lightweight model (LMSD-Net) specifically for ship detection.
In the network, we design the ELA-C3 module for efficient feature extraction. In the feature-
fusion process, we propose a fusion method with compressed channels and weighted
connections to ensure lightweight and low computational complexity. In the detection head,
we introduce a contextual transformer (CoT) block to improve the detection accuracy. In
the prediction process, the variance penalty term is added, and the prediction performance
is improved for the relative scale consistency of the targets.

Furthermore, we validate the effectiveness of each module and the overall detection
performance on two small-ship datasets (VRS-SD v2 and MASATI). The ablation experi-
ments indicate that the ELA-C3 module, CoT block, and V-CIoU are beneficial in improving
accuracy. Meanwhile, WGC-PANet mainly enhances lightweight performance while en-
suring the expressiveness of the model. The overall comparison demonstrates that the
proposed model can reach 81.3% at AP@50 and 38.4% at AP@50:95 in VRS-SD v2, while
with only 5.5M parameters and 12.8 GFLOPs. Among the existing lightweight detection
models, LMSD-Net has better detection capability for small and tiny ships and achieves
SOTA performance. In addition, the detection speed reaches 68 FPS, which could meet the
real-time requirement.

5. Conclusions

The proposed lightweight model presents a feasible solution for remote sensing ship
detection and project deployment. The model performs well in dealing with complex
background disturbances near shore and at sea. Fog simulation has positive implications
for ship detection in bad weather conditions. In the future, reducing the computation
complexity will remain a challenging research task. In addition, we will further improve
our research in weighted-feature fusion and more comprehensive weather simulations.
Inspired by the Transformer, we believe that remote feature interaction will be the key to
improving detection performance in lightweight ship detection.
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Abstract: Object detection in remote sensing plays a crucial role in various ground identification
tasks. However, due to the limited feature information contained within small targets, which are
more susceptible to being buried by complex backgrounds, especially in extreme environments
(e.g., low-light, motion-blur scenes). Meanwhile, event cameras offer a unique paradigm with high
temporal resolution and wide dynamic range for object detection. These advantages enable event
cameras without being limited by the intensity of light, to perform better in challenging conditions
compared to traditional cameras. In this work, we introduce the Multi-Vision Transformer (MVT),
which comprises three efficiently designed components: the downsampling module, the Channel
Spatial Attention (CSA) module, and the Global Spatial Attention (GSA) module. This architecture
simultaneously considers short-term and long-term dependencies in semantic information, resulting
in improved performance for small object detection. Additionally, we propose Cross Deformable
Attention (CDA), which progressively fuses high-level and low-level features instead of considering
all scales at each layer, thereby reducing the computational complexity of multi-scale features.
Nevertheless, due to the scarcity of event camera remote sensing datasets, we provide the Event
Object Detection (EOD) dataset, which is the first dataset that includes various extreme scenarios
specifically introduced for remote sensing using event cameras. Moreover, we conducted experiments
on the EOD dataset and two typical unmanned aerial vehicle remote sensing datasets (VisDrone2019
and UAVDT Dataset). The comprehensive results demonstrate that the proposed MVT-Net achieves
a promising and competitive performance.

Keywords: event cameras; multi-scale fusion; remote sensing; small target detection

1. Introduction

The event camera is a novel vision sensor inspired by biology, also known as Dynamic
Vision Sensor (DVS) [1] or Dynamic and Active-Pixel Vision Sensor (DAVIS) [2]. Compared
to conventional cameras that capture images at a fixed frame rate, event cameras inde-
pendently measure and output the logarithmic intensity changes of each pixel instead of
capturing images. When it comes to capturing fast-moving objects, traditional cameras
require a significant cost to achieve satisfactory performance. In contrast, event cameras
can effectively circumvent the limitations, providing asynchronous information with sub-
millisecond latency. As a result, event cameras possess characteristics such as low latency,
low power consumption, high dynamic range, and high temporal resolution. In addition,
due to the fact that event cameras only capture changes in light intensity at different pixel
locations, they can capture objects even in low-light conditions or extremely bright lighting.
Thanks to these advantages, event cameras have demonstrated significant applications in
both the military and civilian sectors. Figure 1 illustrates the theory of event generation
in DVS.
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Figure 1. The process of DVS generates events. Each pixel serves as an independent detection unit
for changes in brightness. An event is generated when the logarithmic intensity change at a pixel
exceeds a specified threshold Vth. The continuous generation of events forms an event stream, which
consists of two types of polarity: when the light intensity changes from strong to weak and reaches
the threshold, DVS outputs a negative event (red arrow); when the light intensity changes from weak
to strong and reaches the threshold, DVS outputs a positive event (blue arrow).

Utilizing drones equipped with event cameras for object detection or tracking is an
innovative approach that holds great potential for a wide range of applications including
satellite imaging, transportation, and early warning systems. However, due to the scarcity
of remote sensing datasets based on the event cameras, we present the first event-based
remote sensing dataset named Event-based Object Detection Dataset (EOD Dataset), which
utilizes a DAVIS346 event camera mounted on an unmanned aerial vehicle (UAV) to capture
various scenes. Furthermore, in practical processing, a high flying altitude results in ground
targets occupying only a small portion of the image output, which poses challenges for
object detection. Recently, advanced approaches for enhancing the detection performance
of small targets often apply Feature Pyramid Networks (FPN) to concatenate multi-scale
features. However, these methods have significant limitations as they are unable to differ-
entiate between distinct feature layers. So how can we address this problem? Deformable
DETR [3] provides an answer by introducing Scale-Level Embedding to differentiate the
positional encoding of different features at the same location. Therefore, we draw inspi-
ration from this embedding operation to concatenate multi-scale features, with the aim
of enhancing the detection performance of small targets. Moreover, solely considering
multi-scale features undoubtedly incurs significant computational and memory overhead,
making convergence more challenging. For instance, in the Transformer Encoder of De-
formable DETR, the model needs to extract features for all scales, even though deformable
attention is used to reduce computational complexity, which still remains redundant.

In this work, we propose Cross-Deformable-Attention (CDA) to further enhance
the performance of the model while significantly reducing its computational complexity.
Specifically, by applying CDA between low-level and high-level features, we continuously
propagate the fused information from lower layers to higher layers. In addition to reduc-
ing computational complexity, CDA can also reduce model training time and improve
inference speed. What is more, we propose an efficient feature extraction model called
Multi-Vision Transformer (MVT), which consists of three modules: Downsampling Module,
Channel Spatial Attention Module (CSA), and Global Spatial Attention Module (GSA).
Firstly, the downsampling module employs a simple overlapped convolution for scale
reduction, resulting in better performance compared to non-overlapped convolution and
patch merging operations. Then, we apply CSA for attention querying between spatial
and channel dimensions. Compared to the original SE Block, CSA applies adaptive max
pooling operations to preserve more high-frequency information. Finally, we employ GSA
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including Window-Attention and Grid-Attention for local and global search. Compared to
Swin-Attention, which requires more computational resources and complex offset vectors,
Grid-Attention and Window-Attention are similar but only require local grid attention to
extend them to the entire domain, achieving higher performance and fewer parameters.
Additionally, we also provide three model variants (MVT-B, MVT-S, MVT-T) by setting dif-
ferent embedding dimensions and output scales. Employing MVT-B trained for 36 epochs,
we achieve 28.7% mAP@0.5:0.95, outperforming all current state-of-the-art methods on the
EOD dataset. With the application of multiple efficient attention modules that consider
multi-scale features, the detection performance is improved especially for small objects,
achieving 16.6% APS. While due to the scarcity of remote sensing datasets based on event
cameras, we select the VisDrone2019 dataset [4] and UAVDT dataset [5], which are similar
to our own dataset and consist of images captured by drones equipped with cameras. In this
case, we employ MVT-B, which is trained for 36 epochs and achieve 31.7% mAP@0.5:0.95
and 24.3% APS on the VisDrone2019 Dataset, as well as 28.2% mAP@0.5:0.95 and 23.7%
APS on the UAVDT Dataset.

Our contributions can be summarized as follows:

1. The first remote sensing dataset based on event cameras has been proposed, called
the Event Object Detection Dataset (EOD Dataset), which consists of over 5000 event
streams and includes six categories of objects like car, bus, pedestrian, two-wheel,
boat, and ship.

2. We propose a novel multi-scale extraction network named Multi-Vision Transformer
(MVT), which consists of three efficient modules proposed by us. The downsampling
module, the Channel Spatial Attention (CSA) module, and the Global Spatial Atten-
tion (GSA) module. Overall, The MVT incorporates efficient modules, achieving a
substantial reduction in computational complexity with high performance.

3. Considering that extracting information at all scales consumes massive computing
resources, we propose a novel cross-scale attention mechanism that progressively
fuses high-level features with low-level features, enabling the incorporation of low-
level information. The Cross-Deformable-Attention (CDA) reduces the computational
complexity of the Transformer Encoder and entire network by approximately 82%
and 45% while preserving the original performance.

4. As a multi-scale object detection network, MVT achieves state-of-the-art performance
trained from scratch without fine-tuning, which trained for 36 epochs, achieving
28.7% mAP@0.5:0.95 and 16.6% APS on the EOD Dataset, 31.7% mAP@0.5:0.95 and
24.3% APS on the VisDrone2019 Dataset, 28.2% mAP@0.5:0.95 and 23.7% APS on the
UAVDT Dataset.

2. Related Work

2.1. Multi-Scale Feature Learning

Convolutional neural networks extract features of objects through hierarchical ab-
stractions, and an important concept in this process is the receptive field. Higher-level
feature maps have larger receptive fields, which make them strong in representing se-
mantic information, while they have lower spatial resolution and lack detailed spatial
geometric features. On the other hand, lower-level feature maps have smaller receptive
fields, which makes them strong in representing geometric details with higher resolution,
but they exhibit weaker semantic information representation. For remote sensing object
detection, the accuracy of small target recognition greatly affects the performance of the
network. Therefore, multi-scale feature representation is a commonly used approach in
small target detection [6,7].

The concept of the Feature Pyramid Networks (FPN) [8] is initially introduced for
multi-scale object detection. However, the computation-intensive nature of the FPN sig-
nificantly influences the detection speed. For this reason, various improvement methods
have been developed. Centralized Feature Pyramid (CFP) [9] focuses on optimizing the
representation of features within the same level, particularly in the corners of the im-
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age. Path Aggregation Network (PANet) [10] extends the FPN with a bottom-up path to
capture deeper-level features using shallow-level features. Additionally, the U-Net, origi-
nally designed for segmentation tasks, has also demonstrated outstanding performance in
object detection [11–13].

In addition, there are methods that specifically utilize low-scale features for small
target detection. Unlike approaches that recover high-resolution representation from low-
resolution ones, the High-Resolution Network (HRNet) [6] maintains high-resolution rep-
resentation during forward propagation. Lite-High-Resolution Network (Lite-HRNet) [14]
can rapidly estimate feature points, thereby reducing the computational complexity of
the model. Feature-Selection High-Resolution network (FSHRNet) [15] adopts HRNet
as the backbone and introduces a Feature Selection Convolution (FSConv) layer to fuse
multi-resolution features, enabling adaptive feature selection based on object characteristics.
The Improved U-Net (IU-Net) [16] enhances the HRNetv2 [17] by incorporating the csAG
module, composed of spatial attention and channel attention, to improve model perfor-
mance. However, solely relying on low-scale features often leads to inferior performance,
and the FPN operation fails to distinguish between different feature levels.

Scale-Level Embedding [3] was proposed for multi-scale fusion, which has the signifi-
cant advantage of encoding different feature levels to enable the model to differentiate the
same position information across different feature levels, and is widely applied in various
types of models.

2.2. Attention Mechanism

The Attention Mechanism (AM) originated from studies on human vision. Due to the
limitations in information processing, humans selectively focus on important information
while disregarding less significant details [18]. In deep learning, AM is employed to
mimic the human cognitive system by adding weights to different regions of feature maps,
ensuring a prioritized processing order for neural networks [19,20]. Currently, AM can be
broadly categorized into two branches: (1) applying pooling operations to extract salient
information in channel or spatial dimensions [21]; (2) employing self-attention mechanisms
to model global information and capture long-range dependencies [19].

There are several representative approaches in the first branch. Squeeze-and-Excitation
Networks (SENet) [22] operate in the channel dimension, applying global pooling and fully
connected layers to downsample feature maps to a single point and employ a multilayer
perceptron (MLP) to generate weights for different regions. Then, the Hadamard product is
computed between the weights applied sigmoid activation function and the original input
to obtain channel-weighted feature maps, establishing relationships between channels.
Efficient Channel Attention Networks (ECA-Net) [20] is an improved version of SENet that
uses 1D convolution instead of fully connected layers to achieve channel-wise information
interaction, which avoids the degradation of a part of feature representations during
the scale variation process. The Convolutional Block Attention Module (CBAM) [23]
further introduces the Spatial Attention Module (SAM), which calculates weights for both
the channel and spatial domains, selectively assigning importance to different features.
SAM first generates distinct global information feature maps through pooling operations.
Subsequently, the Hadamard product is computed between the result applied sigmoid and
the original input to enhance the target region. Due to the lightweight and plug-and-play
advantages, these methods have been widely applied. However, their drawback lies in the
loss of features for small objects due to their limitations in long-range regions.

Transformer [19] is the representative approach in the second branch, capable of ef-
fectively extracting features from long-range regions. The Vision Transformer (VIT) [24]
provides a novel approach to extract features by treating images as tokens, similar to
sentences, to capture global information. Due to its simplicity and strong scalability, spark-
ing subsequent research. However, VIT still faces the challenge of high computational
complexity with excessively long tokens. Therefore, VIT only extracts features from im-
ages with an input resolution of 224. To solve these problems, Swin Transformer [25]
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introduces a window shift strategy to overcome the limitation of input resolution and
utilizes a window sliding mechanism with convolutional operations to enable interaction
between different windows, thus achieving global attention. Despite achieving remarkable
results in various tasks, the Swin Transformer still faces the redundancy of using offset
vectors. Furthermore, Multi-Axis Vision Transformer (MAXVIT) [26] proposes Multi-axis
Self-Attention (MaxSA), which decomposes the conventional self-attention mechanism
into two sparse forms: Window-Attention and Grid-Attention. This approach reduces the
quadratic complexity of traditional computation methods to linear complexity. Importantly,
it discards redundant window offset operations and instead employs a simpler form of
window attention and grid attention to consider both local and global information. Addi-
tionally, Deformable DETR [3] introduces Deformable-Attention, which can be summarized
as each feature pixel does not need to interact with all other feature pixels for computation.
Instead, it only needs to interact with a subset of other pixels obtained through sampling.
This mechanism significantly accelerates model convergence while reducing computational
complexity. The aforementioned studies discuss the capability of Transformer Attention
to model global information for accurate target localization. While these methods have
made improvements in terms of computational resources, they still encounter challenges
regarding the excessive computational complexity caused by remote sensing images. There-
fore, we propose a novel Cross-Deformable-Attention (CDA) structure to achieve a balance
between performance and computational cost.

2.3. Remote Sensing Images Object Detection

Currently, the mainstream frameworks for event camera object detection include CNN-
based [27–29] and Transformer-based [3,30,31] approaches. Specifically, the event streams
are encoded into spatiotemporal tensors, which are then fed into deep neural networks
for some complex downstream tasks. While this process is similar to conventional image
detection frameworks, the representation of the event tensor is significantly different from
the image. Therefore, the performance of the network is directly influenced by the extracted
information. Meanwhile, RNN-based [32] models have also shown great potential in event
camera detection.

The small targets in remote sensing are often susceptible to interference from complex
backgrounds. There are several studies have shown that enhancing multi-scale features
can significantly improve small target detection. Compared to R-CNN [33] and Faster
R-CNN [34], which generate redundant bounding boxes during small object detection,
Events-SSD [35] introduces Single-Shot MultiBox Detector to improve detection efficiency.
However, due to its relatively weak representation capability in shallow feature maps, it is
not robust for small targets. Events-YOLO [36] improves upon Events-SSD by introducing
a multi-scale detection mechanism that combines visible frames to supplement event repre-
sentations with finer details, enabling the detection of objects at different scales. RVT [32]
introduces a novel recurrent neural network that incorporates the temporal dimension of
event tensors, achieving excellent performance on ground vehicle datasets. EMS-YOLO [37]
directly trains a deep Spiking Neural Network, aiming for better applicability to neuro-
computing hardware by binary data communication. While RVT and EMS-YOLO both
take into account the temporal sequence of the event stream, they are frameworks in the
field of ground object detection, utilizing FPN for multi-scale fusion rather than Scale-Level
Embedding that can differentiate information of different scales.

In general, event cameras have seen emerging developments in ground-based detec-
tion, while research in the field of remote sensing remains notably scarce. Moreover, due
to the extreme challenges (e.g., smaller targets, more severe motion blur, more complex
backgrounds) associated with event camera remote sensing detection, designing an efficient
backbone becomes particularly crucial. However, existing research lacks the capability
of global modeling, and is unable to extract long-dependence information, especially in
high-resolution remote sensing images. In this work, our objective is to propose a novel
end-to-end object detection framework that better inherits the advantages of multi-scale fea-
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tures and attention mechanisms to address small target detection in complex backgrounds
of remote sensing.

3. Method

3.1. Overall Architecture

The proposed MVT Network is illustrated in Figure 2, which is composed of four
main components, namely Data Processing, MVT Backbone, Feature Fusion Module, and
Prediction Head.
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Figure 2. Overview of the MVT framework, which contains five main components, including: (1) the
data preprocessing method of converting event streams into dense tensors; (2) the proposed MVT
Backbone used to extract multi-scale features; (3) the designed feature fusion module for encoding
and aggregating features at different scales; (4) the detection head that applies bipartite matching
strategy; (5) Each MVT Block, composed of three designed components.

The original chaotic event sequence cannot be directly used as an input tensor for
deep neural networks. Therefore, we encode the event stream in the form of voxel grid
representation [38], which has a channel regarding the temporal dimension generated by
a time partitioning function, and described in detail in Section 3.2. In this work, we do
not consider the correlation of the temporal order. Thus, the processed event tensor has
a shape of X = RH×W×1. Different scale features of the event tensor are extracted by the
backbone, which utilizes CSA to attend to short-range dependencies and GSA to attend to
long-range dependencies, which is specifically described in Section 3.3. Subsequently, the
multi-scale features with rich semantic information are fed into the Transformer Encoder,
where CDA is applied to fuse tokens at different levels, which is described in detail in
Section 3.4. Finally, regression calculations are performed on the 900 vectors generated by
the Feature Fusion Module to obtain the detection results.

3.2. Event Representation

The event camera captures the brightness changes of individual pixels, generating
an asynchronous event stream. An event with polarity is generated at time t when the
logarithmic change of light intensity It(u) exceeds the threshold Vth within a small time
interval Δt, which satisfies

p[It(u)− It−Δt(u)] � Vth (1)
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where p ∈ {0, 1} is the event polarity, Vth is the threshold. The event camera will generate
an ordered set of events ε = {ek}Ex ,Ey ,Ep ,Et ∈ R4 according to Equation (1). Afterwards,
the polarity of each pixel in the same time window is aggregated by performing bilinear
voting, which requires the standardization of event timestamps as

Et_norm = T
Et − Et(0)

Et(N)− Et(0)
(2)

where T represents the number of non-overlapping time windows, which we set to 1 in
this work. Et(N) indicates the timestamp corresponding to the last event. Equation (2)
demonstrates the normalization of temporal dimensions for the event stream. In addition,
the two encoded polarities are represented as

Ep_le f t = Ep(Et_norm − [Et_norm]) (3)

Ep_right = Ep(1.0− (Et_norm − [Et_norm])) (4)

where [·] represents the floor function. Equations (3) and (4), respectively, denote the
product of the time distance from the current event to the start and end points of the
time window and the polarity. Finally, by accumulating the encoded polarities at the
corresponding pixel position (Ex, Ey), we obtain the event tensor in the form of voxel grid
representation. The Algorithm 1 for event representation is as follows:

Algorithm 1 Voxel grid encoding from event stream

Input: Event stream containing N number of events ε = {ek}Ex ,Ey ,Ep ,Et ∈ R4.
Output: Voxel grid tensor X = RH×W .

1: X = RH×W ; // Create a tensor with all values set to 0;
2: Compute the normalized event stream time Et_norm according to Equation (2);
3: TI = [Et_norm]; // Perform time windowing based on the setting values;
4: Compute the encoded polarity fused event time Ep_le f t and Ep_right according to

Equations (3) and (4);
5: if (TI < T) then
6: for (i = 0, i < len(T), i ++) do
7: X(Ex[i], Ey[i])+ = Ep_le f t[i]; // Accumulate the left polarity at the corresponding

pixel positions where events occur.
8: end for
9: end if

10: if (TI + 1 < T) then
11: for (i = 0, i < len(T), i ++) do
12: X(Ex[i], Ey[i])+ = Ep_right[i]; // Accumulate the right polarity at the correspond-

ing pixel positions where events occur.
13: end for
14: end if
15: return X

3.3. Multi-Vision Transformer (MVT)

The MVT Backbone consists of four layers, with each layer stacked with a varying
number of MVT Blocks to extract features at different scales, which is specifically demon-
strated in illustration (5) of Figure 2. The MVT Block consists of three components: the
downsampling module applying overlapping convolutions, the CSA module utilizing spa-
tial and channel attention to consider short-term attention, and the GSA module employing
Window-Attention and Grid-Attention to consider long-term attention.
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3.3.1. Downsample Module

We design an extremely simple downsampling module, which consists of an over-
lapping convolution. Specifically, in the first layer, we use a 7 × 7 convolution kernel
with a stride of 4 to achieve fourfold downsampling, while the remaining layers apply a
3× 3 convolution kernel with a stride of 2 for two-fold downsampling. Furthermore, we
demonstrate that the overlapping convolution outperforms non-overlapping convolutions
and patch merging operations in Section 4.3.

3.3.2. Channel Spatial Attention Module (CSA)

In this section, we introduce CSA for extracting short-term dependency attention,
which assigns more weight to focal channels and spatial locations in the feature map,
thereby enhancing the capability of feature representation, as illustrated in Figure 3.

C
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Element-wise Multiplication/Addition
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Channel Max Pool Channel Avg Pool
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1 × ×
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Figure 3. Architecture of CSA module, which consists of channel attention and spatial attention
module to extract short-term dependent attention.

The input feature map f l−1 is fed into CSA for feature extraction. Firstly, f l−1 under-
goes a 2D convolution (Conv2D) operation with a 1 × 1 kernel, resulting in f̂ l−1, which
has the same dimensions as f l−1. Then, f̂ l−1 is separately fed into channel attention (LC

Attn)
and spatial attention (LS

Attn) modules, producing the intermediate feature map f̂ l , which is
added to f̂ l−1 to obtain the output feature map f l+1. The entire CSA computation process
can be represented by Equation (5).

f̂ l−1 = Conv2D( f l−1)

f̂ l = LS
Attn(LC

Attn( f̂ l−1))

f l+1 = f̂ l−1 ⊕ f̂ l

(5)

The main components of CSA can be divided into Channel Attention and Spatial At-
tention. Within the Channel Attention module, there are three branches: in the first branch,
the input (F) is fed into Channel Max Pooling (PC

Max) and a 1D convolution (Conv1D),
resulting in a tensor (Fmax) with C× 1× 1 dimensions, then, applying a sigmoid function
(σ) to obtain attention weights, which are multiplied with the shortcut layer to produce
a feature map (F̂max) with C× H ×W dimensions; the second branch utilizes a residual
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connection to preserve the original features, enhancing the representational and general-
ization capabilities of the network; the third branch differs from the first branch only in
applying Channel Average Pooling (PC

Avg) to extract features (F̂avg). In addition, a concate-
nation function (Concat) is employed to transform the three feature maps with C× H ×W
dimensions into a single feature map with 3C× H ×W dimensions. Finally, utilizing a 2D
convolution to map the channels back to C× H ×W and obtain the feature map (FC

Attn).
The entire Channel Attention computation process can be represented by Equation (6).

Fmax = Conv1D(PC
Max(F))

F̂max = σ(Fmax)⊗ F

Favg = Conv1D(PC
Avg(F))

F̂avg = σ(Favg)⊗ F

FC
Attn = Conv2D(Concat[F, F̂max, F̂avg])

(6)

Within the Spatial Attention module, there are two branches: in the first branch, the
input (F) is fed into both Spatial Max Pooling (PS

Max) and Spatial Average Pooling (PS
Avg)

to obtain features (F̂max) and (F̂avg), which are then concatenated to form a tensor (F̂) with
2× H ×W dimensions. Next, the feature map (F̂) undergoes a 2D convolution (Conv2D)
followed by a sigmoid function (σ), resulting in spatial attention weights (F̂S

Attn), which are
multiplied element-wise with the original input (F) to achieve the final feature map (FS

Attn)
in the second branch. The entire Spatial Attention computation process can be represented
by Equation (7).

F̂ = Concat[PS
Max(F),PS

Avg(F)]

F̂S
Attn = σ(Conv2D(F̂))

FS
Attn = F̂S

Attn ⊗ F

(7)

The CSA module improves the feature extraction performance for short-range regions
by incorporating attention mechanisms for both channels and spatial dimensions. However,
convolutional attention modules suffer from a loss of features for small objects due to their
limitations in long-range regions. Therefore, we propose GSA, considering global attention
to enhance the detection performance of small targets.

3.3.3. Global Spatial Attention Module (GSA)

In this section, we introduce GSA for extracting long-term dependency attention,
which is able to obtain global information and long-distance connections in one single
operation, as illustrated in Figure 4.

(2)Window-Attention(1) GSA

(3)Grid-Attention

Layer Norm MLPWindow Attention Grid Attention Element-wise Addition

× ×

× ×
× × × ×

× ×× ×

Figure 4. Architecture of GSA module, which consists of window attention and grid attention to
extract long-term-dependent attention.
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We propose an efficient modeling solution with two window configurations: Window-
based Multi-head Self-Attention (W-MSA) and Grid-based Multi-head Self-Attention (G-
MSA). Firstly, the input ( f l−1) is normalized and fed into the W-MSA to obtain the local
attention feature map, which is then added to the original input ( f l−1) through a residual
path, resulting in the hidden feature map ( f̂ l). Subsequently, ( f̂ l) is separately processed
through Layer Normalization (LN) + Multilayer Perceptron (MLP) and the shortcut path to
obtain the feature map ( f l). In addition, ( f l) undergoes LN and G-MSA to obtain the global
attention feature map ( f̂ l+1), which is further processed through LN and MLP to obtain the
global spatial feature map ( f l+1). The entire Global Spatial Attention computation process
can be represented by Equation (8).

f̂ l = W-MSA(LN( f l−1)) + f l−1

f l = MLP(LN( f̂ l)) + f̂ l

f̂ l+1 = G-MSA(LN( f l)) + f l

f l+1 = MLP(LN( f̂ l+1)) + f̂ l+1

(8)

3.4. Cross Deformable Attention (CDA)

The framework of the Cross-scale Deformable Attention (CDA) is shown in Figure 5.
Different from the repeated iterative feature extraction operation of multi-scale cross fusion,
we propose CDA to achieve layer-by-layer feature fusion to better fuse feature maps of
different scales and reduce computational complexity. Accordingly, enhances the represen-
tation of high-level features with both high-level semantics and high-resolution details.
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Figure 5. Overview of the Cross-scale Deformable Encoder layer. The three high-level features
are used as the basic tokens to fuse low-level features layer by layer using Cross-scale Deformable
Attention, finally building the architecture of the transformer encoder.

The encoder layer contains deformable self-attention and cross-scale attention. Con-
sidering that the feature map size of the high level is much smaller than the low level. Thus
only the middle and final encoder layers are needed for cross-scale attention to the low and
high scale instead of extracting all tokens, as shown in Figure 5. In this module, high-level
features FH∈RNH×dmodel will serve as queries to extract features from the low-level features
FL∈RNL×dmodel , each query feature will be split into M heads, and each head will sample K
points from each of the L feature scales as query Q. Therefore, the total number of queries
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sampled for a query feature is Np = 2× M × L × K, Δp is sampling offsets, and their
corresponding attention weights are directly predicted from query features using two linear
projections denoted as Wp∈Rdmodel×Np and WA∈Rdmodel×dmodel . Formally, we have

Q =
M

∑
m=1

Wm[
L

∑
l=1

K

∑
k=1

W
′
mS
(

xl , φ(pl) + Δpmlk

)
] (9)

K =
M

∑
m=1

Wm[
K

∑
k=1

WA ·W ′
mS(x, p + Δpmk)] (10)

where m is the attention head, p are the reference points of the query features, x indexes
the different scale feature, Wm ∈ Rdmodel×Nm and W

′
m ∈ RNm×dmodel are of learnable weights

(Nm = dmodel/M by default). With the sampled offsets (Δp = FWp), bilinear interpolation is
applied in computing the features with the function S(x, p + Δp) in the sampled locations
(p + Δp) of the corresponding feature x. As all the high-level features will sample locations
to query the key consisting of low-level features, the original model can quickly learn
which sampled location given the queries is important. Finally, we can obtain the value
(V = KWV) with a parameter matrices WV ∈ Rdmodel×dmodel , and the cross-scale deformable
attention can be formulated as

CDA(Q, K, V) = Cat(FL, So f tmax(
QKT
√

dK
)V) (11)

In words, the cat function is to concatenate low-level features and other multi-scale features,
dk is the key dimension of a head. Equation (11) indicates more reliable attention weights
predicted by stacking CDA when updating layer-by-layer features from different scales.

4. Experiments

In this section, we test the proposed method on the EOD, VisDrone [4], and UAVDT [5]
datasets, and the mean average precision (mAP) [39] is the main metric that we consider.
In addition, we performe ablation experiments to verify the effectiveness of each module.
Finally, the experimental results demonstrate the superiority of the proposed method.

4.1. Datasets
4.1.1. EOD Dataset

The EOD dataset consists of 5317 event streams captured in various scenes, where
each event stream is a collection of events within 33 ms. The dataset includes 3722 event
streams for training, 530 event streams for validation, and 1065 event streams for testing,
and contains six categories: car, bus, pedestrian, two-wheel, boat, and ship.

4.1.2. VisDrone Dataset

The VisDrone-DET2019 dataset [4] consists of 8599 images, including 6471 images
for training, and 1580 images for testing. The dataset contains ten categories: person,
pedestrian, car, bus, truck, bicycle, tricycle, awning-tricycle, van, and motor.

4.1.3. UAVDT Dataset

The UAVDT dataset [5] consists of 40,409 images, selected from 10 h long videos
that cover various scene variations (e.g., weather, viewpoint, and illumination), including
23,829 images for training and 16,580 images for testing. The images in this dataset have a
resolution of 540× 1024 pixels and include three categories: car, bus, and truck.

4.2. Implementation Details
4.2.1. Evaluation Metrics

We quantitatively evaluate the performance of our method through the mAP, which
is used to comprehensively evaluate the precision and recall of a model across different
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categories, commonly used in object detection. Specifically, the mAP can be defined as the
area under the precision–recall (P-R) curve when plotted with the recall (R) on the horizontal
axis and precision (P) on the vertical axis. mAP@0.5 refers to the IOU (Intersection of Union)
is greater than 0.5. mAP@0.5:0.95 refers to the average of IOU values from 0.5 to 0.95 with
an interval of 0.05. The P and R are defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(12)

where TP (True Positive) indicates the number of positive samples correctly classified
as positive by the model, FP (False Positive) represents the number of negative samples
incorrectly classified as positive by the model, and FN (False Negative) represents the
number of positive samples incorrectly classified as negative by the model. By calculating
the area under the P-R curve, the mAP is defined as

mAP =
∫ 1

0
P(R)dR (13)

where P(R) is a function of P and R. In addition, we also evaluate the model size and
computational complexity through Params and GFLOPs (giga floating point of operations).

4.2.2. Training Settings

In this work, we use a 6-layer Transformer encoder and a 6-layer Transformer decoder,
utilize 8 as multi-heads and 4 as sampling offset, adopt 2048 as Transformer feed-forward,
and 256 as the hidden feature dimension, apply 1 × 10−4 as the initial learning rate and
1 × 10−5 as the backbone learning rate. In addition, we use the AdamW optimizer with
a weight decay of 1 × 10−4 and train our model by using the PyTorch framework with
8 Nvidia GeForce RTX3090 GPUs on Ubuntu22.04 with batch size 32 for all datasets.
Particularly, our model is trained from scratch without pre-training and fine-tuning.

4.2.3. Model Variants

By setting different dimensions and final output scales for each layer, we constructed
three variants of MVT-B/S/T. Where MVT-B is the base form with five stages, MVT-S
and MVT-T are small and tiny forms with four and three stages, respectively. After the
backbone feature extraction, the feature maps are missing the final stage that is obtained by
applying a convolutional block to the last-second feature map. Furthermore, the first layer
utilizes a 7 × 7 kernel with a stride of 4 for overlapping convolution to reduce the input
feature resolution and computational cost. The second to fourth layers adopt a 3 × 3 kernel
with a stride of 2 for overlapping convolution to extract higher-level feature information.
“�” indicates that the stage serves as a multi-scale feature output. Table 1 shows the specific
parameters for different variants.

Table 1. MVT parameters and variations. Except for the channel numbers at each stage, all model
variants share the same parameter set.

Stage Size Kernel Stride
Channels

MVT-B MVT-S MVT-T

S1 1/4 7 4 96 � 64 32
S2 1/8 3 2 192 � 128 � 64
S3 1/16 3 2 384 � 256 � 128 �
S4 1/32 3 2 768 � 512 � 256 �

We utilize three variants, MVT-B/S/T, for detection on the EOD dataset. Figure 6
presents the detection results in different scenarios. Since the event camera outputs asyn-
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chronous data, and generates corresponding events even in low light and overexposure
without limitation by the intensity of light.
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Figure 6. Prediction examples on the EOD dataset. The MVT-B/S/T variants are applied to detect in
normal, motion blur, and low-light scenarios, respectively.

MVT-B outperforms the other variants due to its higher-resolution feature scale in-
formation, resulting in superior performance in detecting small objects. Specifically, in
scenarios with motion blur and low light, MVT-S and MVT-T occasionally fail to detect
small targets located in the top-left corner. However, despite the inherent advantages of
event cameras over traditional cameras in terms of efficiency, they suffer from the loss
of high-frequency information in the images, leading to the degradation of image details.
Consequently, under low-light conditions, MVT-T erroneously misclassifies a car as a boat.

4.3. Ablation Experiments

In this section, we conducted ablation experiments on the EOD dataset to assess the
contribution of each proposed module to the results. The contribution to the final results
by evaluating the detection performance before and after applying each module. Table 2
represents the performance of ablation experiments.

Table 2. Ablation experiment on the EOD dataset. “�” indicates that the module is used in the MVT
network, while “-” indicates that it is not used, best results in bold, underlined denotes the second
best performance, and the same colors indicate the same benchmarks except for CDA.

Model
Structure mAP mAP Entire Encoder

Params
CSA GSA CDA @0.5:0.95 @0.5 GFLOPs GFLOPs

Baseline - - - 0.214 0.403 67.6 47.6 25.6 M

MVT-B

� - - 0.238 0.474 69.7 47.6 34.5 M
- � - 0.265 0.527 84.7 47.6 97.3 M
- - � 0.212 0.401 28.4 8.4 25.7 M
� � - 0.288 0.569 86.8 47.6 106.3 M
� � � 0.287 0.565 47.6 8.4 106.4 M

By progressively incorporating the designed modules, we achieve higher mAP. Com-
pared to the baseline that only considers downsampling, the inclusion of CSA for extracting
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channel and spatial information improves mAP@0.5:0.95 by 2.4%, the incorporation of GSA
for extracting global spatial information enhances mAP@0.5:0.95 by 5.1%, the introduc-
tion of CDA reduces model computational complexity by approximately 58% in terms of
GFLOPs while maintaining the original performance. Combining CSA and GSA results in
a 7.4% increase in mAP@0.5:0.95. Finally, by considering CSA, GSA, and CDA, we achieve
28.7% mAP@0.5:0.95, reducing Entire GFLOPs and Encoder GFLOPs by approximately 45%
and 82% compared to the model without CDA. Figure 7 shows the attention visualization
both without and with CDA.

Ra  frame Voxel rid a b c

Figure 7. Visualization of attention maps. (a) Visualization of feature maps generated by the model
without CDA. (b) Visualization of feature maps generated by the model with CDA. It can be observed
that the attention applied by CDA is more focused on small targets. (c) Detection results applied CDA.

4.3.1. Ablation of Downsample Module

In the original Vision Transformer [24], downsampling operations primarily employ
patch merging, which involves fewer parameters compared to pooling layers while fully
preserving the input feature maps. Specifically, elements are divided and concatenated with
two strides in both rows and columns, and a linear layer is utilized to scale the input feature
maps from 4× to 2×. Thus, we have separately compared patch merging, overlapping,
and non-overlapping convolutional downsampling blocks. Table 3 demonstrates that the
use of convolutional downsampling outperforms patch merging.

Table 3. Ablation of the downsampling module. Best results in bold. The usage of Conv. overlapping
outperforms other downsample approaches.

Downsampling Type
mAP mAP mAP

mAPS mAPM mAPL Params
@0.5:0.95 @0.5 @0.75

Patch Merging 0.281 0.557 0.254 0.159 0.336 0.566 6.21 M
Conv. non-overlapping 0.283 0.559 0.257 0.160 0.337 0.565 6.20 M
Conv. overlapping 0.290 0.573 0.264 0.166 0.358 0.582 13.94 M

4.3.2. Ablation of GSA Module

We apply Swin-Attention [25] and Grid-Attention [26] as global attention modules,
respectively, to consider the all tokens. Table 4 shows that using Swin-Attention consumes
more computational resources and has lower performance than Grid-Attention.
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Table 4. Ablation of the global spatial attention module. Best results in bold. The usage of Grid-
Attention outperforms Swin-Attention.

Attention Type
mAP mAP mAP

mAPS mAPM mAPL Params
@0.5:0.95 @0.5 @0.75

Swin-Attn 0.280 0.558 0.251 0.162 0.347 0.545 99.5 M
Grid-Attn 0.287 0.565 0.263 0.166 0.353 0.580 66.9 M

4.3.3. Effect of Multi-Vision Transformer Network

The introduction of CSA and GSA aims to efficiently extract features at different scales
while considering dependencies between short-range and long-range features. The second
and third rows in Table 1 demonstrate the effects of incorporating CSA and GSA into the
baseline respectively. CSA improves mAP@0.5:0.95 by 2.4% and mAP@0.5 by 7.1% with a
slight increase in the number of GFLOPs and parameters. GSA improves mAP@0.5:0.95
by 5.1% and mAP@0.5 by 12.4% while at the cost of higher GFLOPs and parameters.
Furthermore, the joint utilization of CSA and GSA results in an improvement of 7.4%
mAP@0.5:0.95 and 16.6% mAP@0.5. By introducing CDA, the computational complexity of
the model was reduced by approximately 58% and 45% compared to the baseline and the
model that combines CSA and GSA. Figure 8 provides a visual comparison of the detection
results obtained by MVT when using CSA alone, GSA alone, and both CSA and GSA.
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Figure 8. Comparison of the detection results before and after using CSA alone, GSA alone, and
both CSA and GSA in the MVT network. (a) Baseline. (b) Baseline + CSA. (c) Baseline + GSA.
(d) Baseline + CSA + GSA.

There are significant visual improvements as the baseline progressively incorporates
CSA and GSA. Specifically, in Figure 8, the first and third rows exhibit cases of false
detections, which arise from the lack of effective feature extraction operations. In the
second row, illustrations (a) and (b) show cases of missed detections, attributed to dense
object interference that hampers feature distinction between foreground and background
or feature overlap. It is worth noting that in illustrations (c) and (d) of the second row, a
small target in the bottom-right corner is detected, even though it is not annotated in the
ground truth (GT), which demonstrates that the model incorporating global attention can
achieve better detection performance for small targets.
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4.4. Benchmark Comparisons

We conduct comparative experiments using three variants of MVT on the EOD, Vis-
Drone, and UAVDT datasets, benchmarking against state-of-the-art methods with mAP.

4.4.1. Results on the EOD Dataset

We compare our method with several state-of-the-art detectors as shown in Table 5.
MVT-B achieves 28.7% mAP@0.5:0.95, 56.5% mAP@0.5, and 26.3% mAP@0.75 on the
EOD dataset, outperforming all other state-of-the-art methods. Figure 9 presents the
results of our method for detecting objects in various scenes within the EOD dataset. As
we expected, MVT has demonstrated superior detection performance for small objects,
achieving 16.6% mAPS.
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Figure 9. Prediction examples on the EOD dataset using different approaches involving Faster
R-CNN, YOLOv7, Deformable DETR, and proposed method.

Table 5. Comparison of detection performance on the EOD dataset. The best result is highlighted
with bold.

Model Backbone
mAP mAP mAP

mAPS mAPM mAPL Params
@0.5:0.95 @0.5 @0.75

Faster R-CNN [34] ResNet 50 0.183 0.392 0.122 0.089 0.202 0.371 42.0 M
DetectoRS [40] ResNet 101 0.194 0.433 0.154 0.103 0.235 0.389 540.1 M
YOLOv5 [27] CSPDarkNet 53 0.232 0.469 0.190 0.113 0.263 0.466 93.0 M
Cascade R-CNN [28] Transformer 0.234 0.445 0.208 0.122 0.276 0.485 335.0 M
YOLOv7 [41] CSPDarkNet 53 0.237 0.480 0.197 0.118 0.286 0.479 135.8 M
DMNet [42] CSPDarkNet 53 0.255 0.503 0.228 0.142 0.311 0.529 96.7 M
Sparse R-CNN [43] Transformer 0.259 0.510 0.215 0.133 0.312 0.521 352.0 M
Deformable DETR [3] ResNet 50 0.262 0.521 0.238 0.145 0.317 0.536 41.0 M
CLusDet [44] ResNeXt 101 0.266 0.543 0.244 0.127 0.332 0.547 -
MVT-B (ours) Transformer 0.287 0.565 0.263 0.166 0.353 0.580 106.4 M

MVT-S (ours) Transformer 0.273 0.557 0.255 0.159 0.341 0.551 56.6 M
MVT-T (ours) Transformer 0.258 0.525 0.230 0.144 0.315 0.542 26.1 M

4.4.2. Results on VisDrone2019 Dataset

We compare our method with several state-of-the-art detectors as shown in Table 6.
MVT-B achieves 31.7% mAP@0.5:0.95, 52.2% mAP@0.5, and 34.2% mAP@0.75 on the
VisDrone2019 dataset, outperforming all other state-of-the-art methods expect mAP@0.5.
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Figure 10 presents the results of our method for detecting objects in various scenes within
the VisDrone2019 dataset.
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Figure 10. Prediction examples on the VisDrone2019 dataset using different approaches involving
YOLOv5, DMNet, and proposed method.

Table 6. Comparison of detection performance on the VisDrone2019 dataset. The best result is
highlighted with bold.

Model Backbone
mAP mAP mAP

mAPS mAPM mAPL Params
@0.5:0.95 @0.5 @0.75

Cascade R-CNN [28] ResNet 50 0.232 0.399 0.234 0.165 0.368 0.394 273.2 M
YOLOv5 [27] CSPDarknet 53 0.241 0.441 0.247 0.153 0.356 0.384 93.0 M
RetinaNet [45] ResNet 101 0.243 0.443 0.187 0.187 0.352 0.378 251.7 M
Libra RCNN [29] ResNet 50 0.243 0.412 0.249 0.168 0.340 0.368 185.4 M
Cascade R-CNN [28] Transformer 0.247 0.424 0.265 0.177 0.372 0.403 335.0 M
HawkNet [46] ResNet 50 0.256 0.443 0.258 0.199 0.360 0.391 130.9 M
VFNet [47] ResNet 50 0.259 0.421 0.270 0.168 0.373 0.414 296.2 M
DetectoRS [40] ResNet 101 0.268 0.432 0.280 0.175 0.382 0.417 540.1 M
Sparse R-CNN [43] Transformer 0.276 0.463 0.282 0.188 0.392 0.433 352.0 M
DMNet [42] CSPDarknet 53 0.282 0.476 0.289 0.199 0.396 0.558 96.7 M
ClusDet [44] ResNeXt 101 0.284 0.532 0.264 0.191 0.408 0.544 -
SDMNet [48] CSPDarknet 53 0.302 0.525 0.306 0.226 0.396 0.398 96.6 M
MVT-B (ours) Transformer 0.317 0.522 0.342 0.243 0.421 0.552 106.4 M

MVT-S (ours) Transformer 0.296 0.497 0.321 0.225 0.405 0.533 56.6 M
MVT-T (ours) Transformer 0.277 0.465 0.303 0.202 0.388 0.502 26.1 M

4.4.3. Results on UAVDT Dataset

We compare our method with several state-of-the-art detectors as shown in Table 7.
MVT-B achieves 28.2% mAP@0.5:0.95, 42.1% mAP@0.5, and 32.2% mAP@0.75 on the
UAVDT dataset, outperforming all other state-of-the-art methods expect mAP@0.5. Figure 11
presents the results of our method for detecting objects in various scenes within the
UAVDT dataset.
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Figure 11. Prediction examples on the UAVDT dataset using different approaches involving Faster
R-CNN, DMNet, and proposed method.

Table 7. Comparison of detection performance on the UAVDT dataset. The best result is highlighted
with bold.

Model Backbone
mAP mAP mAP

mAPS mAPM mAPL Params
@0.5:0.95 @0.5 @0.75

Faster R-CNN [34] ResNet 50 0.110 0.234 0.084 0.081 0.202 0.265 42.0 M
Cascade R-CNN [28] ResNet 50 0.121 0.235 0.108 0.084 0.215 0.147 273.2 M
ClusDet [44] ResNet 101 0.137 0.265 0.125 0.091 0.251 0.312 -
Cascade R-CNN [28] Transformer 0.138 0.244 0.117 0.090 0.232 0.268 335.0 M
DMNet [42] CSPDarkNet 53 0.147 0.246 0.163 0.093 0.262 0.352 96.7 M
Sparse R-CNN [43] Transformer 0.153 0.266 0.171 0.118 0.253 0.288 352.0 M
GLSAN [49] CSPDarkNet 53 0.170 0.281 0.188 - - - -
AdaZoom [50] CSPDarkNet 53 0.201 0.345 0.215 0.142 0.292 0.284 -
ReasDet [51] CSPDarkNet 53 0.218 0.349 0.248 0.153 0.327 0.308 -
EVORL [52] ResNet 50 0.280 0.438 0.315 0.218 0.404 0.359 -
MVT-B (ours) Transformer 0.282 0.421 0.322 0.237 0.397 0.368 106.4 M

MVT-S (ours) Transformer 0.267 0.405 0.297 0.206 0.373 0.350 56.6M
MVT-T (ours) Transformer 0.238 0.367 0.271 0.162 0.356 0.322 26.1M

5. Discussion

The UAVDT dataset only annotates three categories of objects and has simpler scenes
compared to the VisDrone2019 dataset. However, the UAVDT dataset exhibits lower
detection performance due to its challenging scenes (e.g., low lighting, motion blur), as
exemplified in Figure 12. Therefore, applying event cameras to improve visual effects in
extreme environments will greatly improve the accuracy of object detection. Despite event
cameras being capable of capturing moving objects in various challenging scenarios, they
only retain intensity features while losing color information, resulting in the loss of object
details. While traditional cameras are limited by a fixed frame rate, they preserve more
high-frequency information. Therefore, it is a meaningful step to simultaneously consider
the event and traditional cameras for detection, aiming to achieve improved performance
in any challenging scenario.
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Figure 12. Extreme scenarios in UAVDT dataset. These scenes captured by traditional cameras pose
challenges for object detection.

6. Conclusions

In this paper, we aim to capture details in challenging remote sensing images (e.g., low
light, motion blur scenarios) to improve the detection performance of small targets. We
propose a method called Multi-Vision Transformer (MVT), which employs Channel Spa-
tial Attention (CSA) to enhance short-range dependencies and extract high-frequency
information features, utilizing Global Spatial Attention (GSA) to strengthen long-range
dependencies and retain more low-frequency information. Specifically, the proposed MVT
backbone generates more accurate object locations with enhanced features by maintaining
multi-scale high-resolution features with rich semantic information. Subsequently, we use
Scale-Level Embedding to extract multiple scales features and apply Cross Deformable
Attention (CDA) to progressively fuse information from different scales, significantly re-
ducing the computational complexity of the network. Furthermore, we introduce a dataset
called EOD, captured by a drone equipped with an event camera. Finally, all experiments
are conducted on the EOD dataset and two widely used UAV remote sensing datasets.
The results demonstrate that our method outperforms widely used methods in terms of
detection performance on the EOD dataset, VisDrone2019 dataset, and UAVDT dataset.
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Abstract: The technology of infrared dim- and small-target detection is irreplaceable in many fields,
such as those of missile early warning systems and forest fire prevention, among others. However,
numerous components interfere with infrared imaging, presenting challenges for achieving successful
detection of infrared dim and small targets with a low rate of false alarms. Hence, we propose a new
infrared dim- and small-target detection network, Multiscale Feature Extraction U-Net for Infrared
Dim- and Small-Target Detection (MFEU-Net), which can accurately detect targets in complex
backgrounds. It uses the U-Net structure, and the encoders and decoders consist of ReSidual U-block
and Inception, allowing rich multiscale feature information to be extracted. Thus, the effectiveness
of algorithms in detecting very small-sized targets can be improved. In addition, through the
multidimensional channel and spatial attention mechanism, the model can be adjusted to focus
more on the target area in the image, improving its extraction of target information and detection
performance in different scenarios. The experimental results show that our proposed algorithm
outperforms other advanced algorithms in detection performance. On the MFIRST, SIRST, and
IRSTD-1k datasets, we achieved detection rates of 0.864, 0.962, and 0.965; IoU values of 0.514, 0.671,
and 0.630; and false alarm rates of 3.08 × 10−5, 2.61 × 10−6, and 1.81 × 10−5, respectively.

Keywords: convolutional neural network; multiscale features; infrared image; small-target detection

1. Introduction

Infrared detection systems can distinguish between a target and its background by
collecting the different radiation signatures and comparing between the two. They are a
type of passive detection system able to work under all-weather conditions without being
influenced by light and can realize long-distance detection with high detection accuracy.
As they are not affected by the shortcoming of interference from other electromagnetic
waves, in contrast to detection based on radar and visible light, they have become one of the
important means of acquiring strategic perception data, experiencing very high application
in both military and civil contexts [1]. However, in practical applications, such as involving
guidance, early-warning, airborne, or satellite surveillance, the very long distance of targets
from the detector results in them representing a very small percentage of the image output
from the detector; at the same time, such targets are generally not the brightest in the image
due to the effect of atmospheric scattering and absorption, and this kind of typical target is
usually referred to as an infrared dim and small target (IDST) [2].

IDSTs usually present as a speckle in the image, thus lacking geometrical and textural
feature information, and the target is often submerged in the background, which makes
it impossible to extract the target through global grayscale characteristics [3]. Compared
with sky and sea backgrounds, ground backgrounds are more complex, and there are
often sources of interference, such as noise and small edges, close to the IDST in the
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background, which will lead to a more complex and variable grayscale distribution in the
target neighborhood. All these factors lead to IDSTs being difficult to detect. Therefore,
IDST detection represents both a difficulty and a hotspot in the field of target detection.
The ability to function under real-time detection conditions is an important application
requirement in the practical projects of detection algorithms, which have high research and
application value in many fields [4].

Numerous traditional target detection algorithms have previously been proposed by
researchers [5]. Filter-based methods use a specific filter that can eliminate the background
of the infrared image to detect the IDST. Filter-based methods require less computation
but have low efficacy. They can thus only be used in specific scenes to suppress the
background of a gentle change and cannot solve the problem of complex background [6].
The LCM-based methods take advantage of the difference in gray values between the target
and the background to boost the gray values of the target while reducing those of the
background, but good detection results can mostly only be obtained when there is high
image contrast, so the algorithm’s generalization ability is poor, and it cannot be effectively
applied to complex backgrounds [7]. Data structure-based methods mainly transform the
IDST detection problem into a convex optimization problem with low-rank and sparse
matrix recovery. This type of algorithm has good applicability to images with complex
backgrounds. However, the algorithm is very computationally intensive, so it is not suitable
for imaging in real-time applications where latency is significantly compromised [8].

Due to the many advantages of deep learning-based algorithms, numerous researchers
have proposed their use in IDST detection [9]. Since the size of an IDST is very small, and
they are very sensitive to bounding box perturbation, image segmentation methods are
adopted in most approaches for IDST detection such that more fine target information
can be obtained [10]. In order to detect very-small-size and general-size targets, some
algorithms enhance the information fusion between different layers so they can extract
the information for different sizes and improve the detection effect for differently sized
targets [11]. Due to the sparse nature of IDSTs, some algorithms enhance the visibility
of targets by suppressing the background [12]. There are also algorithms that use GAN
networks to separately address the problem of missed and false alarms, using different
generators to address the difficult balance between them [13].

The existing IDST detection algorithms still have some limitations. The traditional
methods are overly dependent on a priori knowledge and have poor detection performance
in real scenes [14]. Although the above deep learning algorithms have achieved good
detection results, most cannot achieve a good balance between the detection rate and
the false alarm rate. In addition, some algorithms with insufficient generalization ability
can only be used with specific datasets and cannot meet the requirements for real-scene
detection [15].

In this paper, we propose a new convolutional network-based system for IDST detec-
tion: the Multiscale Feature Extraction U-Net for Infrared Dim- and Small-Target Detection
(MFEU-net). The network uses U-Net, and ReSidual U-block (RSU) and Inception modules
are introduced in the encoders and decoders to extract multiscale feature information,
making it possible to detect very small IDSTs. There are multidimensional channels and
spatial attention mechanisms in each encoder and decoder, and the global information is
extracted by the attention mechanism such that the model can give a greater weight to the
target area, thereby improving the ability of the model to adapt to different scenarios as
well as the detection performance with complex backgrounds. The algorithm proposed in
this paper has the lowest leakage detection rates and false alarm rates.

Overall, the main contributions of this paper are as follows:
(1) We design a multiscale feature extraction network using a combination of ReSidual

U-block (RSU) and Inception, which enables the network to have different receptive fields
at one level, allowing the network to adapt to scenarios containing targets of different sizes;
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(2) We design a multidimensional channel and spatial attention mechanism (MCSAM)
that can make full use of the different information in the feature map and more effectively
determine the region where the target is located;

(3) Compared to other state-of-the-art algorithms, our algorithm achieved better
detection results on different datasets.

2. Materials and Methods

2.1. Related Work
2.1.1. IDST Detection

Traditional single-frame IDST detection methods can be divided into filter-based
methods, local contrast measure (LCM)-based methods, and data structure-based methods.

Filter-based methods can be divided into spatial- and transform-domain filtering.
In the spatial-domain filtering methods, a specific filtering kernel is used to remove the
background in the infrared image [16]. For these methods, start by designing a filter
kernel based on the characteristics of the background and the target to eliminate the
background, then use the estimated background to perform a difference operation with
the original image, and finally threshold the difference image to segment and detect IDSTs.
With the frequency-domain filtering approach, the background is considered to be low
frequency and the target to be high frequency, and by designing an appropriate high-pass
filter, the low-frequency background and the high-frequency target can be separated [17].
Overall, filtering-based methods require less computation but have low efficacy, being only
applicable to scenes with very little background change. Thus, they cannot be used to solve
the problem of complex backgrounds and, moreover, have high false alarm rates and poor
algorithm robustness [18].

The LCM-based algorithm uses the different gray values of the target images and
other images to calculate different gain factors such that the difference between the two
can be increased, making the target more prominent [19]. In the LCM approach, a kernel is
used to traverse the entire image, multiplying the gray value at the center of the kernel by
the ratio of the center gray value to the average gray value of the surrounding area, and
when the center gray value of the kernel greatly exceeds the surrounding gray value, the
center of the kernel is considered to be the target, and a saliency map can be obtained. Then,
the small targets are segmented in the saliency map via thresholding. Finally, the position
of the targets in the saliency map must correspond to the original image to achieve IDST
detection [20]. The key to this algorithm is the way in which the saliency map is acquired,
which will greatly affect the algorithm’s performance. These LCM-based methods can be
used to suppress background enhancement targets through certain means, but most them
can only detect targets when there is high image contrast, and the generalization ability of
the algorithm is poor, so it cannot be effectively applied to complex backgrounds [21].

The methods based on image data structure involve transforming the small-target
detection problem into a convex optimization problem for low-rank and sparse matrix
restoration based on the sparsity of the target and the low rank of the background [22].
These algorithms are based on the two prerequisites of having few targets and strong
background correlation in infrared images, so when these two conditions are not met, these
algorithms are much less effective in detection. The methods based on image data structure
have good applicability for images with fewer targets and complex backgrounds, but these
algorithms will have leakage detection in the case of more targets, and the computational
weight is very high, so they are difficult to apply to remote sensing images [23].

Deep learning algorithms can realize complex nonlinear computations and surpass
traditional algorithms in many areas, so they are increasingly being applied in IDST
detection [24].

Wang et al. used two independent generators, each accomplishing the task of reducing
false alarms and missed detections, and the two models were based on a contextual
aggregation network that could utilize different feature information, thus achieving low
rates of missed detections and false alarms in IDST detection [25]. In addition, they
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published a large synthetic IDST detection dataset that can be used in advancing the
development of IDST detection algorithms.

Lee et al. incorporated fusion and augmentation modules at each level of the network,
and through repeated augmentation and fusion, different levels of information could be
fused to retain more information about the target [26]. However, it was necessary to retain
many of the previous feature maps, thereby consuming high amounts of storage resources,
which poses a problem for practical use.

Chen et al. designed a global attention mechanism that can be used to separately
extract local and global features, eliminate most of the background pixels, and highlight
the target location; by fusing global and local features, the target can be detected using
multiscale information [27]. However, its post-processing is complex, blurring the target
with loss of detailed information.

Hou et al. utilized ResNet to extract features in the form of groups, making it possible
increase the weight of important groups; furthermore, the addition of a fully connected
layer to the jump connections of U-Net allows the network to extract global information to
improve target extraction [28]. However, the use of the mean square error (MSE) as a loss
function results in the network being prone to predicting the target as background during
training due to the imbalance in positive and negative samples.

Yu et al. proposed a multiscale local contrast learning mechanism, which can generate
multiscale local contrast feature maps during the training process such that more detailed
information about the target can be extracted, enabling the network to better localize
the target position [29]. However, the use of normal convolutional layers and dilation
convolution to extract local information introduces a grid effect when the dilation parameter
is excessively large, which tends to result in the loss of target information.

2.1.2. Attention Mechanism

In deep learning, an attention mechanism (AM) can be used to ensure neural networks
prioritize important regions when processing data by mimicking the human visual and
cognitive systems and adding different weights to different regions in the feature map [30].
By introducing an attention mechanism, different regions of the input feature map can
be multiplied by different weighting factors, and the neural network is able to focus on
important local information from the global information and more important information
can be extracted by the network such that the model can make more accurate predictions
or classifications without consuming more computational and storage resources. There-
fore, AMs have been widely used in deep learning networks, such as SE-Net, ECA-Net,
CBAM, etc. [31].

Squeeze-and-Excitation Networks (SE-Nets) [32] are representative of work in the
field of CV where the attention mechanism is applied to the channel dimension. They have
a simple and effective structure and can adaptively adjust the feature responses between
channels by means of feature recalibration. This network extracts global information using
the global average pooling operation and downsamples all feature maps to a single point.
After that, it utilizes a two-layer multilayer perceptron network to change the weights of
different regions. The sigmoid activation function is then used to generate the channel
weights, after which the Hadamard product is computed with the input to obtain the
channel-weighted feature map.

Efficient Channel Attention (ECA-Net) [33] is an improvement of the feature trans-
formation part of SE-Nets. The channel information interaction of SE-Nets is realized
through the full connection, which damages a part of the feature expression in the process
of downscaling and upscaling, while ECA-Net utilizes one-dimensional convolution to
realize channel information interaction, which significantly reduces the computational
complexity, basically with no loss of performance.

The Convolutional Block Attention Module (CBAM) [34] can be understood as adding
a spatial attention module (SAM) to an SE-Net, which separately calculates weights in the
channel and spatial domains, allowing it to more precisely localize the region where the
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target is located compared to a single-channel attention mechanism. A SAM generates
two feature maps containing different global information through two pooling operations,
which are concatenated together and then fused by a 7× 7-sized convolutional layer. Finally,
a sigmoid operation is performed to generate a weight map, after which the Hadamard
product is computed from the original input feature map to enhance the target region.

2.2. Method
2.2.1. Overall Architecture

U-Net can fuse different information at different levels through skip connections such
that detailed information at the low level can be directly passed to the high level, thus
providing richer contextual and detailed information. This skip connection design helps the
network to better capture the boundaries and details of the target and results in improved
accuracy of detection. Another advantage of U-Net is its efficient architectural design,
especially the skip connections and symmetric expansion paths, which contribute to the
network’s good performance even on small datasets. Thus, we use the U-Net structure in
our deep learning network.

Structurally, the upsampling stage and the downsampling stage are basically symmet-
rical. The downsampling stage consists of an encoder module and global maximum pooling
for extracting the multiscale information of the input feature maps and downsampling the
feature maps. The upsampling phase consists of an upsampling and decoder module in
which linear interpolation is used to upsample the low-resolution feature map, and the
multiscale information from different layers is then fused. In stages one to four, the encoder
and decoder are RSU and MCSAM, while in stages five to six, the encoder and decoder are
Inception and MCSAM. The downsampling stage and the upsampling stage are connected
by the Merge module. The structure of MFEU-Net is shown in Figure 1.

Inside the Merge module is a ResNet consisting of convolutional layers with a convo-
lutional kernel size of 1× 1. Through these 1× 1 convolutional layers, the information of
different channels can be fused, and the nonlinear ability of the model can be increased
after convolution through the activation function.

Input Merge
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MCSAM

DownSample Stage 1

GMP DownSample
Stage 2

DownSample
Stage 3

DownSample
Stage 4
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Stage 5

Inception+
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Merge
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Output

I
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UpSample Stage 5
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Stage 2

GMP: global maximum poolingUP: upsamplingCS:conv and sigimod

Figure 1. MFEU-Net structure.

2.2.2. Encoder and Decoder

Conventional convolutional layers have a fixed convolutional kernel size, which
means they have a fixed sense field for the input image. Therefore, they cannot fully utilize
the contextual information and have poor detection performance when encountering very
small targets. Multiscale feature extraction methods can enable a network to have different
receptive field sizes at different layers by adding parallel convolutional branches or using
pooling operations at different scales. Thus, they enable the algorithm to better detect very
small targets in the image.

ReSidual U-block (RSU) [35] uses small U-Net modules instead of single-stream
convolution, so it can have a variety of different-sized receptive fields at different layers,
which allows it to better capture contextual information at different scales. RSU uses
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pooling operations to increase the overall architecture depth as well as the network’s ability
to sense global and semantic information through multiple downsampling.

However, excessive downsampling will lead to a large reduction in detail information,
and u-sampling will bring invalid information when concatenating with high-resolution
feature maps, affecting the retention of detail information. In addition, U-Net’s structure is
dependent on retention of the feature maps before downsampling, and multiple rounds
of downsampling will increase the number of feature maps to be retained, which will
consume a large amount of storage resources. For this reason, we reduce the number
of downsampling events in the RSU module and remove the feature maps that will not
subsequently be used. As a result, more information in the feature map can be retained,
and the consumption of storage resources is reduced.

Inception uses parallel convolution and pooling operations of different sizes or dif-
ferent depths to capture rich multiscale information, allowing the model to handle richer
spatial features and increase feature diversity [36]. Inception modules can be repeatedly
stacked to form larger networks, which can effectively extend the depth and width of
the network, preventing overfitting phenomena while improving the accuracy of deep
learning networks. However, for parallel multibranching, a large number of parameters
are introduced to the model, increasing the requirement for computational resources and
the time for training and inference. Therefore, we decrease the parameters by reducing the
number of channels in each branch.

Therefore, a combination of RSU and Inception is used such that the U-Net has
different multiscale features at different levels. In the initial stage, RSU is used and the
amount of downsampling is limited. Its structure is shown in Figure 2. First, the number of
channels of the input feature map is changed by a convolutional layer of size 1× 1. The
data are then fed into the RSU module. In the RSU there is a small U-Net, whose encoder
and decoder employ ResNet and are connected by skip connections. The data are then fed
into the AM to add different weights to different regions of the feature map. Finally, they
data are added to the feature map after changing the number of channels and output to the
next module.

1 1
Conv

MCSAM

C,H,W

C,H,W

C,H,W

RSU

ResNet
Block

DownSample Stage

GMP
DownSample

Stage
DownSample

Stage
DownSample

Stage
ResNet
Block

UPResNet
Block

UpSample Stage

UpSample
Stage

UpSample
Stage

UpSample
Stage

GMP: global maximum pooling UP:upsampling

C

The structure of RSU

Figure 2. Architecture diagram of an encoder and decoder using the RSU module.

By changing the number of downsampling events, the depth of the RSU module
can be changed to accommodate different-sized feature maps. Specifically, encoder and
decoder block one uses four rounds of downsampling, encoder and decoder block two
uses three rounds of downsampling, encoder and decoder block three uses two rounds of
downsampling, and encoder and decoder block four uses one round of downsampling.

Following this, Inception is used. In order to avoid having excessive parameters, four
different branches are used, and the number of channels in each branch is one-quarter
of the number of output channels. Since the parameters of the convolutional layer are
proportional to the square of the number of channels, the parameters and computation of
the model can be drastically reduced by reducing the number of channels. Its structure is
shown in Figure 3. First, the number of channels of the input feature map is changed to the
number of output channels by a convolutional layer of size 1× 1. It is then fed into four
different branches.
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Through different branches, different examples of feature information can be learned
and synthesized to improve model performance. Afterwards, the outputs of these four
different branches are concatenated together and fed into a 1× 1-sized convolutional layer,
exchanging information between the different channels. The output is then fed into the
AM to add different weights to different regions of the feature map. Finally, it is added to
the feature map after changing the number of channels and output to the next module.
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1 1
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1 1
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Figure 3. Architecture diagram of an encoder and decoder using Inception.

The backbone network and the number of downsampling events at different stages
are shown in Table 1. This allows the model to have different receptive fields without
significantly increasing the number of model parameters, resulting in improving the efficacy
of IDST detection.

Table 1. Backbone network and number of rounds of downsampling at different stages.

Stage Backbone Downsampling Number

Stage one RSU 4
Stage two RSU 3

Stage three RSU 2
Stage four RSU 1
Stage five Inception 0
Stage six Inception 0

2.2.3. Attention Mechanism

In this section, we describe the design of a Multidimensional Channel Attention
and Spatial Attention Mechanism (MCSAM) to extract global information. Through the
attention mechanism, more weight can be given to the focus area in the feature map. The
channel AM is first utilized to generate different weights for each channel in its channel
domain for the input feature map. Then, the spatial AM is utilized to generate different
weights for each region in the spatial domain for the channel-weighted feature maps. The
structure diagram is shown in Figure 4.

In the channel attention mechanism, to extract more advanced information, we ad-
ditionally add pooling operations. Two 1× 1× C feature maps (Fc

max, Fc
avg) are generated

by performing global maximum pooling (GMPc) and global average pooling (GAPc) on
the input feature maps (F). The two feature maps are concatenated on the channel domain
to obtain a 2× 1× C feature map. After that, a 1× 1× C feature map is generated by
one-dimensional convolution. A C × 1× 1 channel weight feature map (Wc(F)) is then
obtained by using the sigmoid function (σ) and transpose operation on it. Finally, the
Hadamard product (⊗) is computed using the input feature map to get a channel-weighted
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feature map. The process is illustrated in Equation 1. The structure diagram is shown in
Figure 5.

Fc
max = GAPc(F)

Fc
avg = GMPc(F)

Wc(F) = σ(Conv([Fc
avg, Fc

max]))

Fc = Wc(F)⊗ F

(1)

Conv
Block

Channel
Attention

Spatial
Attention

C1,H,W C,H,W C,H,W C,H,WC,H,W1 1
Conv

C,H,W

Figure 4. MCSAM structure.
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Figure 5. Channel attention structure.

SAM extracts information using only pooling operations, which can result in a signif-
icant loss of local information. In order to retain more information, we additionally add
a convolution operation that can retain feature information differently from the pooling
retention operation. This is beneficial in generating better spatial weights and enabling the
model to better localize the target.

The feature maps (F) are fed into the spatial attention mechanism, which first generates
feature maps (Fs

avg, Fs
max, Fs

conv) of sizes 1 × H ×W, 1 × H ×W, and 2 × H ×W using
global average pooling (GAPs), global maximum pooling (GMPs), and a convolutional
layer (Convs) of size 1× 1, respectively. Through the convolution and pooling operations,
different features can be extracted and more information can be retained. These feature
maps are then concatenated together and fed into a convolutional layer (Conv) of size 7× 7
to fuse different types of feature information. After that, the spatial weights (Ws(F)) are
generated using the sigmod function (σ), and then the Hadamard product (⊗) is computed
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using the input feature map to generate a spatially weighted feature map (Fs) [34]. The
process is illustrated in Equation (2). The structure diagram is shown in Figure 6.

Fs
avg = GAPs(F)

Fs
max = GMPs(F)

Fs
conv = Convs(F)

Ws(F) = σ(Conv([Fs
avg, Fs

max, Fs
conv]))

Fs = Ws(F)⊗ F

(2)
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Figure 6. Spatial attention structure.

MCSAM uses channel and spatial attention in tandem, where the input feature maps
(F) are first fed into the channel attention mechanism to generate channel-weighted feature
maps (F1) and later into the spatial attention mechanism to generate spatially weighted
feature maps (F2). The formula for the entire MCSAM is shown in Equation (3). By
varying the parameters of the convolutional layer, the weights generated by the attention
mechanism can be changed and therefore increase the visibility of the area containing the
image, thereby improving the perception and discrimination abilities of the model.

F1 = Wc(F)⊗ F

F2 = Ws(F1)⊗ F1
(3)

2.2.4. Loss Function

Due to the small sizes and low numbers of IDSTs, they comprise only a small portion
of an image, and the sum of target pixels as positive samples is much less than the sum of
background pixels as negative samples. Therefore, when using infrared images to train the
model, there is a very serious imbalance in positive and negative samples, which leads to a
decrease in the model’s ability to recognize the target category, and it can easily misclassify
the target as background.

For this reason, we use the sum of focal loss and dice loss as the loss function of the
algorithm. When calculating the value of the loss function, different weights are separately
added for different samples such that each of these samples have a roughly equal share in
the loss function during training. As a result, the model can learn the different features of
different samples simultaneously in becoming fully trained, thus reducing the possibility
of the algorithm predicting all samples as negative.

Dice loss (DL) [37] is a region-dependent loss function, where the value of the loss
function is independent of the whole image and is related only to the intersection and
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concatenation of the actual and predicted target regions. The formula for DL is shown in
Equation (4):

DiceLoss = 1− 2TP + s
2TP + FP + FN + s

(4)

Here, TP represents true positive, FP represents false positive, FN represents false negative,
and s takes the value 1 × 10−5 to avoid having a denominator of 0.

Focal loss (FL) [38] is a loss function specialized in solving the problem of too many
negative samples in the training data. The formula for FL is shown in Equation (5).

FocalLoss = −α(1− p)γy lg (p)− (1− α)(1− y)pγ lg (1− p) (5)

where α is an adjustable balancing parameter that regulates the proportion of different
samples in the loss function. γ is a regulatory factor used to control the weight difference
between samples that are easy to classify and those that are difficult to classify. p represents
the prediction probability, wherein the closer p is to 0 or 1, the easier it is to categorize. y is
the true labeling, where 1 indicates the target and 0 indicates the background.

DL focuses on the overall target, while FL focuses on individual pixels, so the final
loss function is

Loss = DL + FL. (6)

3. Results

3.1. Evaluation Metrics

The probability of detection (Pd) and false alarm rate (Fa) were used to assess whether
the algorithm can accurately detect the target, and IoU was used to estimate whether
the algorithm can retain the shape of the target. For these three metrics, we used a fixed
threshold of 0.5. In addition, ROC curves were used to evaluate whether the algorithm can
accurately detect the target under dynamic thresholds [39].

Probability of detection (Pd) reflects the ability to correctly detect targets and is the
ratio of the sum of correctly detected targets Tcorrect to the actual sum of targets Tact. Its
formula is shown in Equation (7):

Pd =
Tcorrect

Tact
(7)

The false alarm rate (Fa) reflects the accuracy of the algorithm in detecting the target
and is the ratio of the sum of false predicted pixels Pf alse to the sum of pixels in the whole
image PAll . It is defined by the formula shown in Equation (8):

Fa =
Pf alse

PAll
(8)

IoU reflects the degree of shape resemblance between the predicted and actual targets
and is the ratio of the intersection and union of the two (intersection/union of the two). It
takes a value between 0 and 1, where 0 means there is no overlap at all, and 1 means there
is perfect overlap. The calculation formula is

IoU =
TP

TP + FP + FN
. (9)

where TP represents true positive, FP represents false positive, and FN represents false neg-
ative.

The ROC curve represents the classification effect of a classifier under different thresh-
olds; specifically, the curve from left to right can be thought of as a change in threshold
from 0 to 1. Its vertical axis is the true positive rate (TPR) and its horizontal axis is the
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false positive rate (FPR). The closer the curve is to the coordinates (0, 1), the better the
performance of the algorithm. The TPR and FPR are calculated as follows:

FPR =
FP
N

TPR =
TP
N

(10)

where N is the sum of pixels in the whole image, TP represents true positive, and FP
represents false positive.

3.2. Implementation Details

For the proposed network MFEU-Net, we performed ablation experiments and
comparisons with other algorithms using three publicly available datasets: SIRST [40],
MFIRST [25], IRSTD-1k [41]. We used an NVIDIA RTX A6000 (48 GB memory) for our
graphics cards, and the algorithms were all based on a Pytorch neural network framework.

The training set image size of MFIRST is 128× 128, and the batch size (BS) can be up
to 128 on the A6000, but in order to avoid it being too large such that it would negatively
impact the model, we set the BS to 32, the epoch to 100, and the learning rate (LR) to
1 × 10−5. The test set image size of MFIRST is not fixed, so we set the BS as 1.

There are 427 images in the SIRST dataset, which is separated into a training set and a
test set with 332 and 85 images, respectively. The image size is not fixed in the SIRST data,
so we resized all the images in the training set to 320× 320, and the size of the images in
the test set was kept unchanged. For training, we set the BS, epoch, and LR to 8, 100, and
1 × 10−5, respectively. For testing, the BS was 1.

There are 1001 images in the IRSTD-1k dataset, which is separated into a training set
and a test set with 901 and 100 images, respectively. The image sizes in the SIRST data
are all 512× 512. For the training, we set the BS, epoch, and LR to 8, 100, and 1 × 10−5,
respectively. For testing, the BS was 8.

3.3. Ablation Study

To validate the effectiveness of our proposed algorithm, we performed an ablation
experiment on the aforementioned dataset. Specifically, the performance of networks
using different backbones was compared with the overall structure unmodified, and the
performance of networks with and without the attention mechanism was compared with
all other structures unchanged. For each comparison experiment, we ensured that the
structure of the other parts remained the same.

3.3.1. Different Backbones

We compared the detection performance of networks using classical residual networks
and networks using RSU without Reduced Downsampling Times (RSURD). A comparison
of their specific performance metrics is shown in Table 2. It can be found that the Pd
of MFEU-Net was higher than that of the network using RSURD, while the Pd of the
network using RSURD was higher than that of the network using ResNet. Our proposed
multiscale feature extraction network can extract rich multiscale information, and our
algorithm can retain more detail for this information compared with RSURD, thereby
outperforming RSURD in different quantitative metrics. Compared with the single-stream
ResNet, the detection effect of the model can be substantially improved by multiscale feature
extraction. MFEU-Net achieved the highest Pd and the lowest Fa, which demonstrates that
our proposed backbone network of RSU combined with Inception is able to extract more
information about different features, enabling the model to detect targets of different sizes
in different scenarios.
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Table 2. Comparison of quantitative metrics for the different backbone networks. The best of these
metrics are shown in red bold font.

MFIRST Dataset SIRST Dataset
Backbone

Pd Fa IoU Pd Fa IoU

RSU+Inception 0.864 3.08 × 10−5 0.514 0.963 2.61 × 10−6 0.671

RSURD 0.8 7.22 × 10−5 0.463 0.935 1.42 × 10−4 0.585
ResNet 0.764 4.08 × 10−5 0.444 0.915 6.89 × 10−5 0.506

3.3.2. Attention Mechanism

We compared the detection performance of networks without and using MCSAM,
and the specific indicators are shown in Table 3. It is obvious from the different evaluation
metrics that the networks that used attention mechanisms outperformed those that did
not. The above analysis clearly demonstrates that our proposed MCSAM can effectively
determine the IDST location, which demonstrates the necessity of introducing MCSAM.

Table 3. Comparison of detection performance of the different backbone networks.The best of these
metrics are shown in red bold font.

MFIRST Dataset SIRST Dataset
Attention

Pd Fa IoU Pd Fa IoU

With attention 0.864 3.08 × 10−5 0.514 0.963 2.61 × 10−6 0.6714

Without attention 0.714 6.32 × 10−5 0.393 0.88 4.54 × 10−5 0.487

3.4. Comparison to State-of-the-Art Methods

We selected different algorithms for comparison, including Infrared Patch Image
(IPI) [42], MPCM [21], FKRW [43], MDvsFA cGAN (MDFA) [25], Dense Nested Attention
Network (DNA) [26], Infrared Small Target Detection U-Net (ISTDU) [28], Local Patch
Network with Global Attention (LPNet) [27], and Multiscale Local Contrast Learning
(MLCL) networks [29].

3.4.1. Quantitative Comparison

The quantitative metrics for these algorithms are shown in Table 4. The best of
these quantitative metrics are shown in red bolded font and the second best in blue font.
Overall, thanks to the feature representation capability, the quantization metrics for the
deep learning-based algorithms were significantly higher than the traditional algorithms.

The MPCM algorithm is very sensitive to edges and drastic grayscale changes, so it
could detect most of the targets and had a high Pd; however, it also had a high Fa, one
of the highest among the evaluated algorithms. The FKRW algorithm removes the edges
and noise in an image but also part of the detail information, so the Pd of this algorithm
was relatively low. The IPI algorithm achieved better Fa and Pd compared to the other
two conventional algorithms. However, its detection efficacy depends on the sparsity of
the targets, which is affected when there are multiple targets in the image. This is also
illustrated by the fact that the IPI algorithm did not achieve as good a Pd in the IRSTD-1k
dataset as in the other two datasets.

ISTDU groups feature maps and enhances the weights of IDST feature map groups
to improve IDST characterization, but it uses the mean squared error (MSE) as the loss
function, and due to the imbalance between positive and negative samples, it tends to
predict the target as background, so its detection rate was not very high. DNA can make
full use of contextual information through a large number of jump connections, but it does
not have an attention mechanism, so its detection performance was not very good. MDFA
uses two generators responsible for the Pd and Fa, respectively, and its Pd was very high.
However, its network is relatively simple and cannot adapt to complex scenarios, and its Fa
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was also high. MLCL uses a combination of convolutional-layer and dilated-convolutional-
layer approaches to learn local contrast feature information, but the dilation is too large to
lead to the grid effect, resulting in the target being easily lost, so its detection rate was very
low. LPNet can extract global and local information at the same time, which can improve
the detection effect of the algorithm, but the target becomes fuzzy in post-processing, so
the IoU was not high.

The deep learning algorithms proposed in this paper outperformed the other methods.
The proposed algorithm achieved the lowest Fa, highest IoU, and high Pd on the MFIRST
dataset. It also achieved the best Pd, Fa, and IoU on the SIRST and IRSTD-1k datasets. Our
algorithm also outperformed others in terms of ROC curves on different datasets, as shown
in Figure 7. Taken together, our algorithm outperformed the other algorithms.

Table 4. Comparison of quantitative metrics for the different algorithms on different datasets. The
best of these metrics are shown in red bold font, and the second-best metrics are shown in blue font.

MFIRST Dataset SIRST Dataset IRSTD-1k Dataset
Method

Pd Fa IoU Pd Fa IoU Pd Fa IoU

IPI 0.861 3.86 × 10−4 0.411 0.923 2.22 × 10−3 0.532 0.75 3.15 × 10−5 0.469
MPCM 0.828 9.58 × 10−3 0.402 0.945 1.30 × 10−2 0.120 0.956 6.09 × 10−3 0.483
FKRW 0.607 4.82 × 10−4 0.233 0.814 3.43 × 10−4 0.229 0.709 1.31 × 10−4 0.235
ISTDU 0.828 3.67 × 10−4 0.439 0.954 1.07 × 10−4 0.470 0.780 2.41 × 10−4 0.563
DNA 0.692 2.35 × 10−4 0.351 0.889 2.63 × 10−4 0.46436 0.815 1.84 × 10−5 0.611

MDFA 0.928 5.94 × 10−3 0.445 0.917 2.82 × 10−4 0.579 0.962 1.86 × 10−4 0.610
MLCL 0.478 9.46 × 10−5 0.251 0.565 1.65 × 10−5 0.350 0.808 2.81 × 10−5 0.616
LPNet 0.785 9.39 × 10−4 0.247 0.929 8.89 × 10−5 0.577 0.621 1.64 × 10−4 0.320
Ours 0.864 3.08 × 10−5 0.514 0.962 2.61 × 10−6 0.671 0.965 1.81 × 10−5 0.630

(a) (b) (c)

Figure 7. ROC curves of different algorithms. The ROC performance of IPI and MPCM was too poor
to be shown in the figure. (a) ROC curves of different algorithms with the MFIRST dataset. (b) ROC
curves of different algorithms with the SIRST dataset. (c) ROC curves of different algorithms with the
IRSTD-1k dataset.

3.4.2. Visual Comparison

Some visualization examples of the MFIRST, SIRST, and IRSTD-1k datasets are shown
in Figures 8–11, 12–15, 16–19, respectively. The yellow circles in the images indicate false
alarms, and the red circle indicates leakage detection. We zoomed in on the target, which
is displayed in the white box in the corner of the images, and when there were multiple
targets, a blue dotted line is used to show the correspondence between the target and its
zoomed-in image.

Among the traditional algorithms, IPI had a high detection rate, but the false alarm
rate was also higher; the FKRW algorithm resulted in some leakage detection, and noise
was introduced at the bottom edge of the image; the MPCM algorithm was very sensitive
to boundary changes, had the highest false alarm rate, and had difficulty discriminating
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between the target and false alarms, so the detection effect figure for MPCM is not in-
cluded. Overall, the traditional algorithms did not exhibit as good detection performance
as the deep learning algorithms due to their reliance on a priori knowledge and lack of
generalization ability.

Among the deep learning algorithms, MLCL had fewer false alarms but more false
alarms; MDFA has few false alarms but many false alarms, even worse than the traditional
IPI algorithm; ISTDU and DNA could detect all the targets but had false alarms to different
degrees; LPNet could accurately detect all targets, but the target became blurred and less
information was retained following subsequent processing. Thanks to the ability of our
MCSAM to better localize the target area and our algorithm’s advantages in extracting
different features, our algorithm achieved the best detection results. Compared to other
deep learning algorithms, our proposed algorithm could accurately detect all targets and
achieved the lowest leakage and false alarm rates.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 8. Visual example one of some representative methods for the MFIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 9. Visual example two of some representative methods for the MFIRST dataset.
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(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 10. Visual example three of some representative methods for the MFIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 11. Visual example four of some representative methods for the MFIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 12. Visual example one of some representative methods for the SIRST dataset.
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(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 13. Visual example two of some representative methods for the SIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 14. Visual example three of some representative methods for the SIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 15. Visual example four of some representative methods for the SIRST dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 16. Visual example one of some representative methods for the IRSTD-1k dataset.
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(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 17. Visual example two of some representative methods for the IRSTD-1k dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 18. Visual example three of some representative methods for the IRSTD-1k dataset.

(a) Original (b) GT (c) FKRW (d) IPI (e) Ours

(f) ISTDU (g) LPNet (h) MLCL (i) MDFA (j) DNA

Figure 19. Visual example four of some representative methods for the IRSTD-1k dataset.
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4. Discussion

Considering both the above quantitative and visual comparisons, the deep learning
algorithms generally outperformed the traditional algorithms in terms of rates of detection
and missed detection. Deep learning algorithms can extract rich feature information and
automatically learn the features of a dataset through training, thus improving the detection
efficacy of the algorithms, whereas traditional algorithms rely on a priori knowledge
and can only be adapted to specific scenarios, making it difficult to detect targets in
complex backgrounds.

Our algorithm can have different receptive fields through multiscale feature extraction,
which improves its ability to adapt to targets of different sizes, including very small targets,
and a high detection rate can be achieved. By using MCSAM, global information can
be extracted and the target area can be made more prominent, thus improving detection
in complex scenes and helping to achieve extremely low false alarm rates. In terms of
quantitative metrics, our algorithm outperformed other state-of-the-art algorithms: we
achieved the highest detection rate, the lowest false alarm rate, and the highest IoU values
with different datasets; moreover, our ROC curve was closest to the upper left. Ablation and
comparison experiments with different data demonstrate that our proposed amendments
can effectively improve the detection performance of the algorithm.

5. Conclusions

In this paper, we present our proposed multiscale feature extraction U-Net network
called MFEU-Net. MFEU-Net uses RSU and Inception as the encoder and decoder and
extracts rich multiscale feature information through skip connections and a parallel branch-
ing structure, which enables the network to have different receptive field sizes at different
layers. In addition, through MCSAM, weighting is performed in the channel and spatial
domains separately, so the model can automatically learn the key patterns and features
in the data, thereby focusing on the important regions in the feature map and thus im-
proving its performance. In the experiments with different datasets, MFEU-Net achieved
better detection results, demonstrating its effectiveness and that the changes result in
an advancement.
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Abstract: The detection of an infrared small target faces the problems of background interference
and non-obvious target features, which have yet to be efficiently solved. By employing the non-
local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-
based methods are demonstrated to be applicable to infrared small target detection in a complex
scene. However, existing PCP-based methods heavily depend on the uniform distribution of the
background pixels and are prone to generating a high number of false alarms under strong clutter
situations. In this paper, we propose a group low-rank regularized principle component pursuit
model (GPCP) to solve this problem. First, the local image patches are clustered into several groups
that correspond to different grayscale distributions. These patch groups are regularized with a
group low-rank constraint, enabling an independent recovery of different background regions.
Then, GPCP model integrates the group low-rank components with a global sparse component to
extract small targets from the background. Different singular value thresholds can be exploited for
image groups corresponding to different brightness and grayscale variance, boosting the recovery
of background clutters and also enhancing the detection of small targets. Finally, a customized
optimization approach based on alternating direction method of multipliers is proposed to solve
this model. We set three representative detection scenes, including the ground background, sea
background and sky background for experiment analysis and model comparison. The evaluation
results show the proposed model has superiority in background suppression and achieves better
adaptability for different scenes compared with various state-of-the-art methods.

Keywords: infrared small target detection; principle component pursuit; group low-rank regularization;
infrared patch-image model

1. Introduction

The infrared search system has the merits of working in all weather, all day and at
long ranges, which is applicable to many important fields such as early-warning systems,
aerospace technology, remote sensing [1–3], etc. In the moving process of the infrared target,
it is easy for it to be submerged in high brightness clutter such as clouds, sea-sky-line, etc.
In addition, the search system usually needs to detect long-range targets [4], which means
the target size is very small and the useful signal is very weak. To adapt to these real-
world scenarios, the detection algorithms should be designed to handle the interference
of background clutter and achieve the effective extraction of the small (<9× 9 pixels) and
weak (<3 SNR) targets.

Over the years, a plethora of small dim target detection algorithms have been
proposed. From the perspective of image characteristic utilization, these algorithms can
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be categorized into three types: target characteristic-based method [5–8], background
characteristic-based method [9–11] and target/background characteristic integration-
based method [12–15]. Generally, the infrared small targets appear to have large gray-
scale values and are prone to distribution in high-frequency areas. These properties are
usually adopted by the target characteristic-based methods for potential target region
extraction, such as the local contrast measure [5,16], local entropy measure [3] and
frequency-domain saliency region segmentation [17]. These methods are adequate for
their relatively uniform background and targets with high brightness. However, due
to the lack of background modeling, the strong edges or background clutters can easily
be detected as false alarms in the target characteristic-based methods. The background
characteristic-based methods can avoid the confusion of the targets and background
interference to some extent, in which the background pixels of adjacent image area
and successive frames are assumed to be spatially consistent. According to this, the
target is detected by removing the predicted background from the original image.
However, background characteristic-based methods are not suitable for handling
complex backgrounds due to the difficulty of background estimation. It has been
extensively shown that using single-target or background information is not effective
for detecting small targets in complex situations.

The infrared patch-image (IPI) model [12] is a representative target and background
integration-based method. By employing the non-local self-correlation of the background,
IPI transfers the small target detection problem to the recovery of a low-rank matrix and
a sparse matrix, which correspond to the background component, and target component
respectively. The target components are regarded as outliers that increase the rank value
of the data matrix and can be efficiently separated by the PCP model. Accurate approxi-
mation of the matrix rank is a major difficulty for the IPI model. Overlarge rank is good
for background interference suppression but is more likely to cause miss detection. On the
contrary, a lower rank will introduce an enormous number of false alarms. Recently, many
works concentrate on the approximation of the matrix ranks. Zhang et al. [18] propose
the modification of the low-rank constraint of IPI to a tighter-rank surrogate— l2,1 norm to
remove the unpredictable background residuals. Zhu et al. use a smooth but nonconvex
surrogate of the rank based on the Log operator [19], which is closer to the rank minimiza-
tion optimization than the nuclear norm. In the NIPPS model [20] and PSTNN model [14],
by using the partial sum of nuclear norms, the matrix and tensor ranks are approximated
by the energy ratio of the principle matrix to adapt to the changeable background. Liu et
al. proposed a non-convex tensor low-rank approximation (NTLA) method to adaptively
assign different weights to different singular values [21]. The above-mentioned methods
focus more on using different surrogates to replace the low-rank constraint. However,
due to the intrinsic diversity of different local image regions, using one single low-rank
constraint is difficult to describe the whole background. For the sake of a more accurate
description model, it is necessary to explore the complexity variations of different local
regions and assign different rank thresholds in reconstruction.

Considering the fact that the infrared image is nonuniform and its complexity varies
spatially, we establish a novel group regularized PCP model, named as GPCP for the
small target detection in complex scenes. The proposed model employs a group low-rank
constraint to replace the previous global low-rank constraint in recovering the background
component, and enforces using different number of principle components for image data
groups corresponding to different complexity and brightness. By minimizing the group
low-rank constraints of the GPCP model, more image details can be reconstructed, so that
the residual errors can be eliminated from the target components. The contributions of this
article can be summarized as follows:

• We analyze the low-rank property of the global data matrix and grouped data matrix,
and find there is a significant difference of principle component number in recovering
the data matrix with different complexity.
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• We propose a group low-rank constraint for background recovery and combine it with
a global sparse regularization term for target recovery, which can remove the residual
errors in the target component efficiently.

• A customized optimization algorithm is adopted to solve the proposed GPCP model,
in which the group low-rank components are decoupled by the ADMM algorithm.

The rest of the sections are organized as follows. In Section 2, some related works
on the small target detection are briefly reviewed. Section 3 introduces the algorithm
flowchart and implementation details of the proposed detection model. Section 4 gives the
experimental results on different background situations to demonstrate the effectiveness of
our proposed method. Section 5 concludes the whole paper and discusses future works.

2. Related Work

We briefly review the related work on the small target detection methods using target
characteristics, background characteristics and integration idea.

2.1. Target Characteristic-Based Method

The target characteristic-based method mainly focuses on the distinction between the
target and its surrounding background. Many representative methods have been proposed
in this research branch, such as the local contrast measure (LCM) [5,22], entropy contrast
measure (ECM) [23,24], sparse representation-based methods [25], and so on. This type of
method utilizes the shape or statistical characteristics of the small target for target detection.
However, due to the similar image property of the small target and the strong background
edges, the background clutters could easily be mistaken for a target. To address the issue
of false detection, relative methods have been proposed to enhance the target intensity
while suppressing the background region, such as the weighted local difference measure
(WLDM) [6], multiscale local homogeneity measure (MLHM) [7], self-regularized weighted
sparse model (SRWS) [26] etc. In the recent studies, saliency features are also utilized to
associate the gray intensity with the entropy [19,27] or frequency domain [3,17], which
have gained better results in small target detection. It is noticeable that these methods
are sensitive to the settings of the target size and window size, which are hard to balance
without prior information.

2.2. Background Characteristic-Based Method

The background characteristic-based method is usually based on the assumption
that the background pixels are highly correlated, and targets are the parts that break this
relationship. So, many background characteristic-based methods study the background
estimation algorithms by using the neighboring pixels [9,11,28]. For example, the differ-
ence of Gaussian (DoG) filter uses the weighted sum of local neighborhood pixels as the
background [29]. To cope with the problem of edge sensitivity, many methods propose
to add the orientation information for background estimation, such as the max-mean and
max-median filters [30], in which the maximum values of the mean or median arrays of
different lines is taken as the background. The above mentioned background characteristic-
based methods are all based on the local estimation model, in addition, the estimation
strategy usually selects the maximum value of different orientations, which is not accu-
rately designed. Aiming at this problem, some researchers propose to adopt the transform
domain information for background suppression [9,31]. In [9], the whole infrared image is
transformed into the frequency domain, and the background component is suppressed by
removing the low frequency component from the original image. However, this type of
method cannot suppress the complex background because the strong edges also belong to
high-frequency subbands.
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2.3. Target/Background Characteristic Integration-Based Method

Recently, the low-rank sparse model, which integrates the target characteristic and
background characteristic by image data decomposition, has achieved considerable advances
in the small target detection area. In [12], Gao et al. presented an infrared patch image (IPI)
model, in which the target component and background component are assumed to be sparse
and low rank, respectively. Considering that equally weighted singular values will restrict
the description ability of low rank nature for the background patches, Zhang et al. proposed
to modify the nuclear norm regularization to a weighted nuclear norm [13], which makes
the model more flexible for complex background. Afterwards, Dai et al. pointed out that
when facing extremely complex background, the low rank assumption of IPI model has a
mismatching problem, which may lead the strong edges to be considered as outliers [20]. To
solve this problem, they adopted the partial sum of singular values to constrain the low-rank
background instead of the nuclear norm. Similar idea has also been mentioned in [14], where
the partial sum minimization constraint of singular values is extended to the patch-tensor
model. In order to transfer the NP-hard problem of PCP model into a non-convex optimization
problem, Zhang et al. proposed to apply schatten q-norm and lp-norm to the small target
detection area, which is named as NOLC model [32]. To enhance the detection accuracy,
in [26], an overlapping edge information is applied to mine the structure information of
background. Multiple frames-based models [33] are also reported for small target detection
in complex scenes. In [34], Aliha et al. built a block-matching patch-tensor model based
on the spatial–temporal domain to extract inter-frame information. Hu et al. further used a
simultaneous sampling in spatial and temporal domains to make full use of the information
between multiple frames [26]. Considering the target’s local continuity in the spatial–temporal
domain, Li et al. [35] proposed a spatial regularized spatial–temporal twist tensor model,
which can reduce the global noise to some extent.

Recently, convolutional neural network (CNN) began to appear in the infrared small
target detection study area. Du et al. [36] proposed a shallow–deep feature-based detection
model, which demonstrates that shallow features are important for small target detection.
Regarding the feature lacking problem, Bai et al. used a cross-connection bidirectional
pyramid network to provide more comprehensive target information [37]. To cope with the
miss detection problem, Liu et al. adopted the transformer to learn the correlation of image
features in a larger range [38]. Among existing deep learning methods, feature learning still
remains challenging due to the small size and non-obvious image features of the infrared
small targets.

3. Proposed Small Target Detection Using GPCP

In this section, we first analyze the low-rank property of the patch-image data matrix,
including the global data matrix, the bright-uniform part, the dark-uniform part and the
cluttered part. Then, a group-regularized principle component pursuit model (GPCP)
is constructed according to the diverse characteristics of the local image parts. Finally,
the sparse component which includes the small target is separated from the complex
background using the GPCP model, as shown in Figure 1. The algorithm steps and results
of the traditional PCP model and the proposed GPCP model are also illustrated in Figure 1.
Next, we will elaborate the details of the proposed small target detection model.

3.1. Low-Rank Property of Image Groups

The existing PCP-based models mainly focus on the low-rank structure of the global
data matrix and ignore the inhomogeneous information among local background regions,
which makes these models not suitable to handle complex scenes. As illustrated in the upper
part of Figure 1, there are many background clutters (labeled by blue boxes) remaining
in the sparse component after the global PCP based decomposition process. It could
also be observed that the residual clutters are mainly distributed in the image parts with
strong edges or big gray level changes. That is to say, such a decomposition model forms
a confusion of the small targets and some background clutters. Since the background
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component is recovered by a low-rank constraint, the key problem is then transferred into
how to determine the rank threshold in the PCP process.

Figure 1. Illustration of the proposed GPCP model for small target detection.

To handle the aforementioned issue, we need to have a deeper understanding of the
low-rank characteristics of different background parts. Figure 2 illustrates the eigenvalue
curves of the global data matrix and the grouped local data matrix, which are generated
by the distribution of data. To avoid the influence of matrix dimension on the result of
eigenvalues, the column size of the global data matrix and the grouped data matrix is
down-sampled to keep it the same. The X-axis of Figure 2c represents the number of
principle components, which is defined as “rank threshold” in the optimization process.
Y-axis represents the eigenvalues of data matrix. Here, we set 2 as the boundary of principle
components, which means the eigenvectors whose corresponding eigenvalues are greater
than 2 are regarded as principle components. From Figure 2c, we can see that the principle
component of the global data matrix (red line) is concentrated in the top nine eigenvec-
tors. For the uniform data matrix groups (green and pink lines), the number of principle
components is about seven to eight. By comparison, the threshold value of the cluttered
part (blue line) is 10, which is much larger than the other two uniform parts and is a bit
larger than the global data matrix. This demonstrates that there is a significant difference
on the low-rank characteristics among the bright-uniform part, the dark-uniform part and
the cluttered part, which motivates us to consider whether we can use a group regularized
PCP model to cope with the clutter interference problems in complex situations.

Figure 2. Low-rank property of entire data matrix and grouped data matrix. (a) Input images
(b) data matrix (c) eigen value curves.
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3.2. Construction of the GPCP Model

PCP is a convex model which aims to recover the low-rank matrix when the data
matrix is corrupted by gross sparse errors [39] and is playing an important role in the recent
patch-image based small target detection methods. Mathematically, it considers the data
matrix D ∈ Rn1×n2 is composed of a low-rank component L and a sparse component S and
solves the following convex optimization problem:

arg min
L,S

‖L‖∗ + λ‖S‖0, s.t.‖D− L− S‖ ≤ ε (1)

To recover L and S, the low-rank component L should be limited to the following
three conditions:

max
i
‖U∗ei‖2 ≤ μr

n1
, max

i
‖V∗ei‖2 ≤ μr

n2
, ‖UV∗‖∞ ≤

√
μr

n1n2
(2)

where L = UΣV∗ =
r
∑

i=1
σiμiv∗i . By arranging an appropriate r, the L and S components can

be efficiently separated after the PCP operation. Yet a unified r is not suitable to handle
the overall data matrix since the image data always corresponds to different complexity.
An extreme example is that the small target is located in the smooth background part,
meanwhile strong edges exist in the other part of the background. When r is set to a
small value, many residual errors will remain in the sparse component; when r is large,
the real target will be regarded as the low-rank component. Therefore, the true reason
causing missed detection and false detection lies in the data structure diversity of different
background parts.

The newly designed GPCP model we consider in this paper assumes the low-rank
component L satisfies a group low-rank structure, which is defined as follows:

rankgroup(L) = ∑
k

μk‖Lk‖∗ (3)

where Lk represents the kth group of the low-rank component, μk is used to balance the
image groups with different data number. In this way, each Lk is considered independent
with each other and will correspond to different shrink thresholds rk for decomposition.
The eigen value curves of the data matrixes in Figure 2 also show that compared with the
global data matrix, the group data matrix has a better property on the low-rank condition of
PCP model. To recover the low-rank components Lk(k = 1, 2, . . . ) and the spare component
S, we need to solve the following GPCP model:

arg min
L,S

∑
k

μk‖Lk‖∗ + λ‖S‖1

s.t.D = L + S + N, L = {L1, . . . Lk, . . .}
(4)

3.3. Small Target Detection Using GPCP

Typically, the small target detection model can be written as follows:

D = T + B + N (5)

where D represents the input image, T, B and N represent the target, background and
noise, respectively.

In this paper, we follow the basic idea of the infrared patch-image model [12] and
denote D as a data matrix, which is composed of column-wise local patches of the input
image. To explore the data structure of the background component, the image patch vectors
with similar property on gray-scale variation should be clustered together. The complexity
and gray level of an image are reflected by the variance value σ and the mean value μ ,
respectively. So, we employ (μ, σ) as the data feature descriptor.
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Firstly, the image data can be divided into a clutter group and a uniform group
according to σ. Then, for the uniform group, the bright part and the dark part also
correspond to different image properties. The dissimilarity degree between two data
samples is calculated by:

d1 = |μ1 − μ1|, d2 = |σ1 − σ1| (6)

According to Equation (6), large d1 and d2 indicate a big difference between two
samples. The k-means cluster algorithm is employed to divide the entire data into three
groups: the bright-uniform part, the dark-uniform part and the cluttered part, which is
shown in Figure 2. According to the previous discussion in Sections 3.1 and 3.2, the image
data in different groups always corresponds to different low-rank structure and should be
regularized separately. So, we propose to use the GPCP model to depict the background
patch-image in complex scenes, which is defined as:

‖B‖g∗ = ∑
k

μk‖Bk‖∗
B = {B1, B2, . . . , Bk}

(7)

where Bk represents the k-th group of the background data, μk is used to balance the image
groups with different data number, which is defined as:

μk =
data number o f group k

total number
(8)

Here, we use the group-regularized nuclear norm ∑
k

μk‖Bk‖∗ to approximate the rank

property of the background component B, instead of ‖B‖∗. So, the whole background is
composed of the recovering of these separated image groups. Generally, the image groups
containing strong edges and clutters will correspond to a large singular threshold, and
the uniform image groups will correspond to a lower one. Compared with the previous
detection method which uses one single low-rank constraint for the whole background
component, the group low rank regularization can better explore the local structure of the
image and lead to a more accurate decomposition result.

In the infrared images, small targets are usually randomly distributed in different
groups. So, to keep the sparsity of the entire target component rather than the group
component, we use a global sparse constraint for the whole target component T, which is
defined as ‖T‖1. Therefore, the group IPI model is defined as follows:

arg min
L,S

∑
k

μk‖Bk‖∗ + λ‖T‖1

s.t.D = B + T + N, B = {B1, B2, . . . , Bk}
(9)

3.4. Optimization Method of the GPCP Model

The objective function defined in Equation (9) is a convex problem which includes
two variables B and T to be solved. It should be noticed that the background component
B in Equation (9) is composed of several local groups and each group is independent of
one another, which has a great difference compared with the traditional PCP model. In
accordance with this complex situation, we adopt the ADMM algorithm to decouple the
group principle component pursuit model into several sub-problems and alternatively
optimize one variable while keeping others fixed. The augmented Lagrangian expression
of Equation (9) can be rewritten as the following form:

Lρ(B, T, F) = ∑
k

μk‖Bk‖∗ + ρ
2‖D− B− T‖2

F

+λ‖T‖1 + 〈F, D− B− T〉
(10)

where F represents the dual vector, ρ > 0 is the penalty parameter. The algorithm flow of
ADMM is summarized in Algorithm 1.
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Algorithm 1 ADMM (Alternating Direction Method of Multipliers) Algorithm for
GPCP model

Input: group number K, regularization parameter λ, penalty parameter ρ, update factor
for ρ: μρ, maximum iteration max_iter, tolerance error tol.
while not converged do

1. Compute group background component Bk using Ukdiag
(

pos
(

σk − 1
ρ

))
VT

k ;
2. Combine K group components B1:K into a global form B;
3. Compute target component T using th 2λ

ρ

(
D− B + F

ρ

)
;

4. Update dual factor F using Ft+1 = Ft + ρt(Tt+1 + Bt+1 − D
)
;

5. Update penalty factor ρ using ρt+1 = μρ× ρt;
6. Set termination condition:
(1) Compute reconstruction error err = ‖T + B− D‖ < tol;
(2) Target component not change ∑

i,j
Tt−1(i, j) = ∑

i,j
Tt(i, j);

(3) Reach the maximum iteration number max_iter.
end while
Output: Sparse coefficient matrix X(k).

(1) Solution of background component B
The objective expression with regard to B can be summarized as:

Lρ(B) = ∑
k

μk‖Bk‖∗ +
ρ

2
‖D− B− T‖2

F + 〈F, D− B− T〉 (11)

The group members in B are independent with each other, so the minimization prob-
lem of ρ

2‖D− B− T‖2
F is equal to minimizing ρ

2 ∑
k
‖Dk − Bk − Tk‖2

F, and the minimization

problem of 〈F, D− B− T〉 is equal to minimizing 〈F, Dk − Bk − Tk〉. According to this,
Equation (10) can also be described as the following grouped summation form:

Lρ(Bk) = ∑
k

μk‖Bk‖∗ + 〈F, Dk − Bk − T〉
+ ρ

2 ∑
k
‖Dk − Bk − Tk‖2

F
(12)

For each group, the objective function related to its corresponding background compo-
nent Bk can be rewritten as the separated group form:

Lρ(Bk) = μk‖Bk‖∗ + 〈F, Dk − Bk − T〉
+ ρ

2‖Dk − Bk − Tk‖2
F

= μk‖Bk‖∗ + ρ
2

∥∥∥Bk −
(

Dk − Tk +
F
ρ

)∥∥∥2

F

(13)

The above problem can be solved by the singular value thresholding algorithm [40],
which is defined as follows:

Bt+1
k = SVD 1

ρ

(
Dk − Tk − F

ρ

)
= Ukdiag

(
pos

(
σk − 1

ρ

))
VT

k

pos
(

σk − 1
ρ

)
=

{
σk − 1

ρ , i f σk >
1
ρ

0, otherwise

(14)

where Uk, Vk and σk are the left eigen-vector, right eigen-vector and singular values of
matrix Dk − Tk − F

ρ , respectively.
(2) Solution of target component
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The objective expression with regard to T can be summarized as:

Lρ(T) = λ‖T‖1 +
ρ
2‖D− B− T‖2

F + 〈F, Dk − Bk − Tk〉
B = {B1, . . . Bk, . . .} (15)

Similar to Equation (13), the above expression can be rewritten as the following form:

Lρ(T) = λ‖T‖1 +
ρ

2

∥∥∥∥T −
(

D− B +
F
ρ

)∥∥∥∥2

F
(16)

According to reference [41], the solution of Equation (16) is given by the soft-thresholding
function:

Tt+1 = th 2λ
ρ

(
D− B + F

ρ

)
ths(W) =

⎧⎨⎩
w− s, w > s
w + s, w < −s
0, otherwise

(17)

in which w represents the element of matrix W, Tt+1 represents the updated target compo-
nent in the next iteration.

(3) Update dual factor F and penalty factor ρ
The dual factor F and penalty factor ρ are all updated in a standard way as shown in

the following:
Ft+1 = Ft + ρt(Tt+1 + Bt+1 − D

)
ρt+1 = μρ× ρt (18)

where μρ is the update factor for ρ.

4. Experimental Evaluations

4.1. Experiment Settings
4.1.1. Parameter Settings

In our experiment, the image is divided into 16× 16 local patches with 10 pixel step
size. The group number is set to 3. The regularization factor λ of the target component is
1/
[√

min(M, N)
]
, where M and N represent the patch size and patch number, respectively.

The penalty factor ρ of the ADMM method is set to 0.001, and the update factor μρ is 1.05.
The maximum iteration of ADMM method is set to 500.

4.1.2. Evaluation Metrics

We adopt three metrics to evaluate the performance of the detection algorithms. The
first one is receiver operating characteristic (ROC) curve, which describes the sensitivity
(or called saliency) of the target after detection operation. The false alarm ratio Fa and
probability of detection Pd are employed to form the horizontal and vertical axis of the
ROC curve, which are separately defined as below:

Pd =
detected target number

real target number
(19)

Fa =
f alsely detected pixel number

total pixel number
(20)

For a randomly selected segmentation threshold, a good detection result should have
a low false alarm ratio, while keeping a high target detection rate.

Another two metrics, signal-to-clutter ratio gain (SCRG) and background suppression
factor (BSF) are used to measure the information change between the input images and
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output images. SCRG mainly reflects the enhanced capability to the target and BSF focuses
on measuring the suppression effect on the background, which are separately defined as:

SCRG =
SCRGout

SCRGin
, SCR =

|μt − μb|
σb

(21)

BSF =
(σb)in
(σb)out

(22)

where μt and μb represent the mean value of the target part and background part, respec-
tively. σb represents the standard deviation of the background part. Larger SCRG and BSF
scores indicate a better detection performance.

4.1.3. Baseline Algorithms

To evaluate the performance of our proposed detection algorithm, several state-
of-the-art methods are introduced as the comparison group, involving non-convex ten-
sor low-rank approximation method (ASTTV-NTLA) [21], infrared patch image model
(IPI) [12], partial sum of tensor nuclear norm-based detection model (PSTNN) [14], total
variation regularization-based model (TVPCP) [42], reweighted image patch tensor model
(RIPT) [43], non-convex rank approximation minimization joint l1,2 norm-based model
(NRAM) [18], multiscale patch-based contrast measure-based model (MPCM) [44] and
sparse regularization-based spatial–temporal twist tensor (SRSTT) model [35]. Table 1
shows the detailed parameter settings of the compared methods in this paper.

Table 1. Detailed parameter settings for compared methods.

Methods Acronyms Parameter Settings

Non-convex tensor low-rank approximation method ASTTV-NTLA L = 3, H = 6, λtv = 0.005, λs =
H√

max(M,N)∗L
, λ3 = 100

Infrared patch image model IPI Patchsize: 30× 30, step: 10, λ = 1√
min(m,n)

, ε = 10−7

Partial sum of tensor nuclear norm-based detection model PSTNN Patchsize: 40× 40, step: 40, λ = 0.6√
max(n1,n2)∗n3

, ε = 10−7

Total variation regularization-based model TVPCP λ1 = 0.005, λ2 = 1√
max(M,N)

, β = 0.025, γ = 1.5

Reweighted image patch tensor model RIPT
Patchsize: 50× 50, step: 10, λ = L√

min(n1,n2,n3)

L = 1, H = 10, ε = 10−7

Non-convex rank approximation minimization joint l1,2 norm-based model NRAM
Patchsize: 50× 50, step: 10, γ = 0.002, λ = 1√

max(M,N)

C =

√
min(M,N)

2.5 , μ0 = 3
√

min(M, N), ε = 10−7

Multiscale patch-based contrast measure-based model MPCM Mean filter size: 3× 3, N = 3, 5, 7, 9

Sparse regularization-based spatial–temporal twist tensor SRSTT L = 30, λ1 = 0.05, λ2 = 0.1, λ3 = 100, ε = 10−7, μ = 0.01

Group-regularized principle component pursuit GPCP Patchsize: 30× 30, step: 10, groupnum: 3, λ = 1√
min(m,n)

, ε = 10−7

4.1.4. Dataset

The full dataset contains 12 sequences. According to the type of detection scene, we
have manually divided these sequences into 3 categories, including 3 ground-background
sequences, 3 sea-background sequences and 6 sky-background sequences. The frame number,
image size and signal-to-clutter information of each sequence are shown in Table 2.

Representative frames of each detection scene are shown in Figures 3–5. It is noticeable
that the ground-background is the most complex compared with other two situations. The
road surface with high gray-scale level leads to a very strong background edge, which
causes great interference for detecting the real target. For the scene of sea-background,
the warship target usually moves nearby the sea-level line. The clutters caused by the
clouds and lighthouses will also increase the difficulty of small target detection. On the
other hand, the imaging noise is very high in this situation, as shown in the sequence
Sea-1. In the sky-background situation, the target energy is the lowest among these three
situations. Specifically, the average signal-to-clutter ratio of sequence Sky-4 is less than zero,
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which indicates a very challenging task to detect the small target. In other sky-background
sequences, the targets are submerged by the clouds from time to time.

Table 2. Dataset Information.

Sequence
Name

Frame
Number

Image
Size

Average
SCR

Ground
Background

Ground-1 200 256× 256 2.21 dB
Ground-2 200 256× 256 3.41 dB
Ground-3 200 256× 256 5.01 dB

Sea
Background

Sea-1 100 128× 128 2.29 dB
Sea-2 87 284× 213 6.32 dB
Sea-3 185 252× 213 2.28 dB

Sky
Background

Sky-1 60 320× 240 6.86 dB
Sky-2 67 320× 240 0.87 dB
Sky-3 400 256× 172 4.14 dB
Sky-4 200 256× 208 −2.56 dB
Sky-5 40 128× 128 2.73 dB
Sky-6 40 256× 200 2.44 dB

(a) (b) (c)

Figure 3. Ground-background sequences. (a) Ground-1 (b) Ground-2 (c) Ground-3. Targets are
marked in red boxes.

(a) (b) (c)

Figure 4. Sea-background sequences. (a) Sea-1 (b) Sea-2 (c) Sea-3. Targets are marked in red boxes.

4.2. Quantitative Comparison

To evaluate the detection performance of the proposed GPCP model, we first report
the ROC curves of 9 infrared small target detection algorithms on the whole dataset, as
shown in Figure 6. It can be observed that the curve of GPCP is the closest to the upper left
corner, which means for any given false alarm rate, the proposed GPCP model achieves the
highest accurate detection rate, and for any given detection rate, the proposed GPCP model
achieves the lowest false alarm rate. The first line in Table 3 also shows the proposed GPCP
model has the highest area under curve (AUC) value in all 9 algorithms, PSTNN is second
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only to our proposed model. That is to say, the proposed GPCP model has a relatively good
detection performance on the whole dataset.

(a) (b) (c)

(d) (e) (f)

Figure 5. Sea-background sequences. (a) Sky-1 (b) Sky-2 (c) Sky-3 (d) Sky-4 (e) Sky-5 (f) Sky-6.
Targets are marked in red boxes.

(a) (b)

(c) (d)

Figure 6. ROC curves of the whole dataset and 3 different background categories. (a) All sequences,
(b) ground background, (c) sea background, (d) sky background.

Table 3. The table shows the AUC of 9 small target detection algorithms in the whole dataset and
3 different background categories. For each category, the best results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

All 0.999994 0.7391 0.999992 0.99979 0.9606 0.9485 0.9916 0.9945 0.9147
Ground 0.999999 0.9933 0.999998 0.999993 0.999999 0.9008 0.999999 0.9775 0.90

Sea 1 0.5355 0.999964 1 1 1 0.9785 1 0.8388
Sky 0.999998 0.6072 0.999998 0.9991 0.9132 0.9603 0.9913 0.9995 0.9346
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We also report the ROC curves on 3 different background categories: the ground
background, the sea background and the sky background, which are illustrated in Figure 6b,
Figure 6c and Figure 6d, respectively. Combined with the AUC scores shown in Table 3, we
can see that the GPCP curve is the closest to the upper left corner and corresponds to the
largest AUC value, which indicates the proposed model has the best detection performance
in the ground background. RIPT and IPI are the second- and third-best algorithms in this
situation. For the sea background, most algorithms perform well. As the third line of
Table 3 shows, the AUC values of IPI, MPCM, NRAM, GPCP and TVPCP are 1. Yet it is
worth noting that the ASTTV-NTLA has a relatively small AUC value in this situation. For
the sky background, from Figure 6d and the forth line of Table 3, we can see the proposed
method and PSTNN have the best detection performance. The AUC values of these two
models are the same. The main difference of these two methods lies in the GPCP model
performs better in suppressing false alarms and PSTNN performs better in detection rate.
Figure 6d can prove this point, in the case of lower false-alarm rate, the proposed GPCP
model has a higher accurate detection rate; in the case of a higher detection rate, the PSTNN
achieves a lower false-alarm rate.

To analyze the algorithm performance more specifically, the signal-to-clutter gain
(SCRG) and background suppression factor (BSF) of 9 algorithms on each individual
sequence are also calculated, as shown in Tables 4–6. A good algorithm should achieve
high SCRG and high BSF, which represent the performance on target enhancement and
background clutter suppression, respectively. From Table 4, we can see that our proposed
method achieves the highest SCRG on all three sequences in the ground background. In
Ground−1, the proposed model also achieves the highest BSF value. In Ground−2 and
Ground−3, BSF values of the proposed model are a bit lower than the NRAM and ASTTV-
NTLA, which means the remained background pixel value of our model is a bit higher than
the other two models. Based on the fact that the proposed model has the highest SCRG
values in these two sequences, we can conclude that our model still achieves the largest
contrast between the target and background. Table 5 shows the algorithm performance on
three sequences in the sea background. GPCP model achieves the highest values of SCRG
and BSF values in sequence Sea−1 and Sea−2. ASTTV-NTLA model achieves the highest
values of SCRG and BSF in sequence Sea−3 due to its multi-frame and TV model, but has a
poor performance in Sea−1 and Sea−2. That is because the ASTTV-NTLA model is not
suitable for infrared small target detection with low moving speed. The same experiment
results also appear in Sky−4 and Sky−5. ASTTV-NTLA model misses all the targets in
these two sequences due to the low moving speed. PSTNN also performs well in sequence
Sea−3, especially in the SCRG value. This is due in large part to the usage of structure
tensor. A prior weight representing the corner feature is added to the target component and
makes the extracted target brighter. By comparison, target intensity values of the proposed
model are a little bit lower than PSTNN. However, from Table 3, we can see the AUC values
of the proposed model is higher than PSTNN. In the sky background, the proposed GPCP
model has the largest SCRG and BSF values in sequence Sky−1, Sky−2, Sky−5 and Sky−6.
NRAM and PSTNN achieves the highest SCRG and BSF in Sky−3 and Sky−4, respectively.
From Figure 5, we can see the targets in Sky−3 are relatively large and has a gray variance.
The detection results of NRAM only reserve several pixels in the target center position. By
comparison, the proposed model has more pixels of targets in the detection results and
is more coincide with the real target. For sequence Sky−4, there are some residual pixels
with low values remained in the proposed model compared with PSTNN. The reason lies
that in this sequence, the gray-scale difference of the local background regions is not very
great. Current group strategy which employs the complexity difference for patch grouping
is disabled. Therefore, in sequence Sky−4, GPCP model is almost equal to its baseline IPI.
The experiment results in Table 6 also shows the performance of GPCP model is similar to
IPI model.

168



Remote Sens. 2024, 16, 16

Table 4. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 8 small target detection algorithms on 3 ground-background sequences. For each sequence, the
best results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Ground−1 SCRG 23.80 13.79 3.79 0.81 1.19 2.39 0.95 0.69 5.63
BSF 5402 126.56 9.73 7.13 10.38 18.51 9.45 11.30 10.35

Ground−2 SCRG 0.3038 0.22 0.03 0.004 0.06 0.002 0.13 0.18 0.28
BSF 10.16 8.54 2.64 2.48 4.22 10.54 7.15 3.38 4.35

Ground−3 SCRG 5.55 5.10 3.03 1.44 2.51 4.43 2.48 0.12 5.50
BSF 9.04 9.32 5.45 2.44 6.00 7.56 9.29 2.93 2.34

Table 5. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 8 small target detection algorithms on 3 sea-background sequences. For each sequence, the best
results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Sea−1 SCRG 30,498 0 42.07 943.90 3.82 25.53 4.69 1.38 6099
BSF 15,784 0 124.55 3146 10.06 58.24 9.69 4.89 14,376

Sea−2 SCRG 15,659 0 12,144 16.60 18.36 11,399 13,648 4.89 0.25
BSF 13,438 0 13,438 26.71 41.00 1 13,438 15.63 10,458

Sea−3 SCRG 97.74 2323 554.47 17.28 19.46 34.97 2318 1.15 6.48
BSF 205.78 6461 211.13 14.15 14.46 24.57 1079 2.63 4.18

Table 6. The table shows signal-to-clutter ratio gain (SCRG) and background suppression factor (BSF)
of 9 small target detection algorithms on 6 sky-background sequences. For each sequence, the best
results are marked in the red color.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Sky−1 SCRG 17.02 1.52 13.91 1.33 12.63 2.49 3.88 0.34 2.34
BSF 17.26 3.56 15.39 1.27 15.08 17.58 11.92 8.91 2.31

Sky−2 SCRG 15.89 13.1 13.23 1.42 4.67 6.83 0.02 0.04 7.92
BSF 20.28 8.67 8.46 1.17 14.18 10.79 8.93 5.91 5.23

Sky−3 SCRG 8.11 4.56 9.39 7.67 7.41 18.57 0.01 0.15 0.98
BSF 10.99 1.16 16.79 10.74 10.42 1066 172.93 19.22 11.66

Sky−4 SCRG 25.46 0 7073 27.23 30.79 4105 28.13 0.17 59.50
BSF 28.55 0 1078 16.19 26.63 1023 20.37 4.95 17.33

Sky−5 SCRG 1991 0 125 0.01 8.16 29.68 8.77 0.69 7.13
BSF 1735 0 95.22 3.80 9.36 38.33 7.68 0.88 32.59

Sky−6 SCRG 15.87 0.006 12.09 13.90 13.66 14.96 6.59 2.19 3.45
BSF 20.76 8.42 8.53 10.63 10.76 17.57 8.79 9.81 2.71

4.3. Qualitative Comparison

To have a more direct and deeper impression on the effect of each method, we select
several representative results as well as the corresponding three-dimensional surface results
from each type of detection scene for illustration. The small target detection task in the
ground background is the most difficult situation. Three representative examples are shown
in Figure 7. The detection for sequence Ground−1 is relatively simple because there is a
large contrast between the target and its surrounding background. The most challenging
factor is the interference caused by the road edge. The proposed GPCP model achieves
the best detection performance in this situation. Meanwhile, from the three-dimensional
surface results, we can see the proposed method gets the best performance on background
suppression among all the 9 algorithms. The detection task for sequence Ground−2 and
Ground−3 is more difficult compared with Ground−1. The original images of these
two sequences show the targets have been basically submerged into the background, in
addition, there are many background clutters with similar appearance to the small dim
targets. In these two sequences, only the proposed GPCP model successfully detects the
target while suppressing the background clutters. Other methods leave many false alarms
in the detection results, as the green box and three-dimensional surfaces show.
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Figure 7. Representative results in the ground background. (a) Ground−1 (b) Ground−2
(c) Ground−3. Targets are labeled by the red box. The remained background clutters are labeled by
the green box.

Figure 8 illustrates the detection results in the scene of sea background, in which the
most challenging factor lies in the background interference caused by the lighthouse and
water grass shelter. In sequence Sea−1, it can be seen that the ASTTV-NTLA, IPI, MPCM
and PSTNN models have a poor detection performance, where the gray-scale value of the
lighthouse outline is even larger than the real target after detection. For the RIPT method,
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the imaging noise has a certain impact on the detection performance, in which many false
alarms are remained in the background part. By comparison, the NRAM, TVPCP and the
proposed methods are good at suppressing the strong background edges as well as the
imaging noise. In sequence Sea−3, the gray value of the water grass is larger than the target,
in addition, both of these two parts have sharp forms in appearance, making the small
target hard to be distinguished from the background. In the detection results of SRSTT
and TVPCP methods, there are many residual clutters remaining in the background, as the
green boxes show. By comparison, the PSTNN, RIPT, NRAM and the proposed methods
achieve satisfactory results.

RS

S - I I R

S RI SRS

Sea-1

(a)

RS

S - I I R

S RI SRS

Sea-3

(b)

Figure 8. Representative results in the sea background. (a) Sea−1 (b) Sea−3. Targets are labeled by
the red box. The remained background clutters are labeled by the green box.

Three representative detection results in the scene of sky background are shown
in Figure 9. The target in sequence Sky-2 has a very low contrast compared with the
background. In this situation, the ASTTV-NTLA and TVPCP methods fail to suppress the
background noise and cannot find the real target. By comparison, the NRAM, PSTNN, RIPT,
SRSTT and the proposed GPCP model achieve a better performance on target enhancement.
We can see that the decomposition results of these four methods all correspond to a low level
background noise. Sequence Sky-5 shows the small target detection results of 9 methods
in the case of bright heavy cloud. There are many strong edges in the background part,
especially in the top and right side of the image. As shown in Figure 9, the detection
results of the IPI, MPCM, PSTNN, RIPT, Tophat and TVPCP methods remain having
many background clutters, which are easily to confuse with the real small target. Only
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the NRAM and the proposed GPCP methods can extract the target while suppressing the
clutters simultaneously. The IPI, PSTNN, RIPT and NRAM models are all based on the
PCP theory and carry out a global low-rank decomposition to remove the background
clutters. By comparison, the proposed group low-rank and sparse decomposition model
has a significant effect to cope with the situation with strong background clutters.
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(a)
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Figure 9. Representative results in the sky background. (a) Sky−2 (b) Sky−3 (c) Sky−5. Targets are
labeled by the red box. The remained background clutters are labeled by the green box.

4.4. Influence of Grouping Criteria on Our Method

As mentioned above, the proposed model needs to divide the full image into several
groups for image decomposition. In this part, an ablation experiment is carried out to
discuss the effectiveness of the grouping criteria of the customized group low-rank strategy.
The proposed model takes both of the gray-scale level and the clutter level into consid-
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eration and divides the data matrix into three groups. By comparison, the first contrast
experiment is designed to only use the gray-scale information and divide the data matrix
into a bright part and a dark part, which is named as GPCP−Gray. The second contrast
experiment employs the variance information and divides the data matrix into a uniform
part and a cluttered part, which is named as GPCP−Var. The IPI model, which decomposes
the entire image data into a low-rank component and a sparse component plays as the
baseline method. The ROC curves of these four experiments are shown in Figure 10.

In this experiment, the GPCP−Var model has the worst performance, especially in the
sky background situation. By comparison, the GPCP−Gray model has a slight decline in
the ROC curves compared with the proposed GPCP model, while performs better than
the global regularized low rank and sparse decomposition model (IPI). This suggests
that dividing the data matrix into two parts with different brightness level has a positive
influence on background suppression in the PCP process. In addition, from the ROC results
of the GPCP−Gray model and the proposed GPCP model, we can see that extracting the
cluttered image data and decomposing this part independently can further improve the
detection performance.

erall

(a)

round a kground

(b)

Sea a kground

(c)

Sk a kground

(d)

Figure 10. ROC curves of the overall dataset and 3 different background categories. (a) Overall
(b) ground background (c) sea background (d) sky background.

4.5. Computation Complexity Analysis

The computation complexity of each comparison model is shown in Table 7. Sup-
pose the image size is M× N and the patch image size is m× n. The computation cost
is O(L3MN). The major time-consuming part is saliency map calculation, in each scale,
the computation cost is O(L2MN). The total cost in all scales is O(L3MN). For the
patch-based models, including IPI, NRAM and the proposed GPCP model, its computa-
tion complexity mainly comes from the SVD decomposition. For an m× n patch matrix,
the computation complexity of SVD is O(mn2). For the patch-tensor models, including
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RIPT, PSTNN, ASTTV-NTLA and SRSTT, the main time-consuming part is the SVD de-
composition progress in the frequency domain. For a tensor size with n1 × n2 × n3, the
computation complexity of SVD is O(n1n2n3 log(n1n2n3)), the computation complexity of
FFT is O(n1n2

2[(n3 + 1)/2]). They are faster than the SVD decomposition of patch-based
models, which are calculated in the spatial domain. The TVPCP model is a little time
consuming due to the matrix inversion calculation. It is worth noting that the proposed
GPCP model is faster than its baseline IPI model. From the grouping criteria, we can see
that n1 + n2 + n3 = n. Based on the fact that n2

1 + n2
2 + n2

3 < n2, the computation cost of
GPCP is lower than IPI. In our experiments, for a 256× 256 image, GPCP needs 5.9 s to
obtain the detection result. By comparison, IPI needs 11.9s. The speed increases doubly.

Table 7. The table shows the computation complexity of 9 small target detection algorithms.

OURS ASTTV-NTLA PSTNN TVPCP IPI NRAM RIPT MPCM SRSTT

Complexity O(m(n2
1 + n2

2 + n2
3)) O(MNL log(MNL))

O(n1n2n3 log(n1n2n3))
+O(n1n2

2 [(n3 + 1)/2])
O(MN2 + N4) O(mn2) O(mn2) O(n1n2n3(n1n2 + n2n3 + n1n3)) O(L3 MN) O(Ln1(n

2
2 + n3 log((n2 + 1)/2)))

5. Conclusions

In this paper, a novel group regularized low-rank and sparse decomposition model
is proposed for infrared small dim target detection. The traditional decomposition-based
models are usually sensitive to strong edges and background clutters due to the ignorance
of data structure diversity. The proposed method is able to solve this problem by using a
customized group low-rank strategy. Firstly, it exploits different singular value thresholds
for the low-rank decomposition of image groups corresponding to different complexity.
Then, the newly designed group low-rank regularization is integrated with the sparse
constraint for background and target separation, in which more prior information related
to data structure can be utilized in the decomposition process. Experimental results on
3 different detection scenes, which includes 12 sequences, have shown the priority of the
proposed in terms of probability of detection, false alarm rates, target enhancement and
background suppression factors.

There also exist some issues worth considering. For example, we use the brightness
and gray-scale variance to divide patches into groups, other strategies such as image
feature-based methods can be further considered for patch grouping. This method is also
time consuming, especially in the background solving process, other background modeling
methods need to be explored in the future work.
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Abstract: Patch-based methods improve the performance of infrared small target detection, trans-
forming the detection problem into a Low-Rank Sparse Decomposition (LRSD) problem. However,
two challenges hinder the success of these methods: (1) The interference from strong edges of the
background, and (2) the time-consuming nature of solving the model. To tackle these two chal-
lenges, we propose a novel infrared small-target detection method using a Background-Suppression
Proximal Gradient (BSPG) and GPU parallelism. We first propose a new continuation strategy to
suppress the strong edges. This strategy enables the model to simultaneously consider heterogeneous
components while dealing with low-rank backgrounds. Then, the Approximate Partial Singular
Value Decomposition (APSVD) is presented to accelerate solution of the LRSD problem and further
improve the solution accuracy. Finally, we implement our method on GPU using multi-threaded
parallelism, in order to further enhance the computational efficiency of the model. The experimental
results demonstrate that our method out-performs existing advanced methods, in terms of detection
accuracy and execution time.

Keywords: infrared small target detection; proximal gradient; approximate partial SVD; GPU acceleration

1. Introduction

Infrared Small-Target Detection (ISTD) is an important component of infrared search
and tracking, aiming to exploit the thermal radiation difference between a target and
its background to achieve long-range target detection. According to the definition by
the Society of Photo-Optical Instrumentation Engineers (SPIE), small targets typically
refers to objects in a 256 × 256 image with an area of fewer than 80 pixels, accounting
for approximately 0.12% of the total image area [1]. These small targets usually appear
as faint, tiny points, characterized by their diminutive size and a lack of clear texture
and shape features. Moreover, the background in infrared images is often affected by
random noise, clutter, and environmental factors, making small targets vulnerable to
interference. Furthermore, some practical applications have strict requirements on the
real-time performance of detection algorithms. Therefore, the rapid and accurate detection
of small targets in complex backgrounds poses a significant challenge.

Two primary methods are employed in ISTD for target detection: Tracking-Before-
Detection (TBD) and Detection-Before-Tracking (DBT). TBD relies on the temporal infor-
mation of consecutive frames to capture the movement and features of potential targets.
It struggles with stationary or sporadically moving targets and is constrained by compu-
tational resources. On the other hand, DBT applies single-frame ISTD to infrared data,
identifying potential targets based on features such as contrast and low-rank sparsity.
Single-frame infrared small target detection has been widely concerned because of its
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simple data acquisition, low computational complexity, not affected by target motion, and
wide applicability.

The categorization of single-frame ISTD can be determined by the structure of the image;
that is, whether (1) the original image or (2) the patch image is used [2]. The first category
detects the target directly from the original image; for example, by filtering or Human Vision
System (HVS). Filter-based methods [3–6] have limited utility in ISTD, due to their strict
requirements on the background variation and prior knowledge. Meanwhile, HVS-based
methods [7–11] use the contrast mechanism to quantify the difference between the target and
the background, thereby enhancing small targets. However, these methods are limited by the
local saliency of the target, rendering them ineffective when detecting targets that are dark
or similar to the background. Some deep learning technologies [12–15] have recently been
applied to this category, but a lack of large data sets limits their performance.

The other category—namely, patch-based methods—transforms small target detection
into a low-rank matrix recovery problem [16]. This transformation can circumvent the
aforementioned limitations, such as the dependence on prior knowledge and target saliency,
as well as the false detection of dark targets. The most popular method is Infrared Patch-
Image (IPI) [17], which uses a sliding window technique to generate a corresponding patch
image from the original image. Due to its outstanding performance, many studies [18–26]
have been conducted on IPI, which typically yields superior results. However, patch-based
methods still have two problems: (1) The misclassification of strong edges as sparse target
components, and (2) the time-consuming nature of the method.

The above-mentioned misclassification arises from the limited ability of the model
to distinguish strong edges from sparse components. To address this issue, we propose
a Background Suppression Proximal Gradient (BSPG) method, incorporating a novel
continuation strategy during the alternating updating of low-rank and sparse components.
Our proposed continuation strategy can preserve more components while updating the
low-rank matrix, while also reducing the update rate of sparse matrix. As strong edges
frequently correspond to larger singular values than targets, the former facilitates the
transition of strong edges from sparse components to low-rank components, thereby
enabling the model to eliminate the affect of strong edges. Meanwhile, the latter ensures
the convergence of the algorithm.

The time-consuming nature of patch-based methods is due to the complex nature of solving
the method, mainly including solving the LRSD problem and constructing/reconstructing
patch images. To address this issue, we utilize both algorithmic optimizations and hardware
enhancements. At the algorithmic level, we propose an approximate partial SVD (APSVD) for
efficiently solving the LRSD problem and use a rank estimation method to ensure the accuracy
of the solution. At the hardware level, we propose the use of GPU multi-threaded parallelism
strategies to expedite the construction and reconstruction modules, as these modules can be
decomposed into repetitive and independent sub-tasks.

Our main contributions can be summarized as follows:

• A novel continuation strategy based on the Proximal Gradient (PG) algorithm is intro-
duced to suppress strong edges. This continuation strategy preserves heterogeneous
backgrounds as low-rank components, hence reducing false alarms.

• The APSVD is proposed for solving the LRSD problem, which is more efficient than the
original SVD. Subsequently, parallel strategies are presented to accelerate the construction
and reconstruction of patch images. These designs can reduce the computation time at
the algorithmic and hardware levels, facilitating rapid and accurate solution.

• Implementation of the proposed method on GPU is executed and experimentally
validate its effectiveness with respect to the detection accuracy and computation
time. The obtained results demonstrate that the proposed method out-performs
nine state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 presents the related work.
Section 3 details our proposed BSPG algorithm and GPU acceleration strategies. Section 4
introduces the data set and experimental settings, as well as providing the experimental
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results and analysis. Section 5 discusses the results of the experiments. Section 6 gives a
summary of our method.

2. Related Work

2.1. HVS-Based Methods

HVS-based methods detect small targets by utilizing the contrast differences between
the target region and its surrounding background. These methods can be categorized
based on the type of information they use: grey scale information, gradient information,
and a combination of both grey scale and gradient information. Local Contrast Measure
(LCM) [1] proposes a novel method for detecting small targets by leveraging grey scale
contrast. This method uses a contrast mechanism designed to enhance small targets while
effectively suppressing the background noise. Based on the improvement of LCM al-
gorithm, Relative Local Contrast Measure (RLCM) [8], Multiscale Patch-based Contrast
Measure (MPCM) [9], Weighted Local Difference Measure (WLDM) [27] and other methods
were proposed. Gradient-based contrast methods use first-order or second-order deriva-
tives of the image to extract gradient information. They then utilize this information to
design a gradient difference measure that effectively discriminates between small targets
and the surrounding background. Building on this concept, Derivative Entropy-based
Contrast Measure (DECM) [28] and Local Contrast-Weighted Multidirectional Derivative
(LCWMD) [29] propose the use of multidirectional derivative to incorporate more gradient
information. In addition, Local Intensity and Gradient (LIG) [30], Gradient-Intensity Joint
Saliency Measure (GISM) [31] fuse gradient and intensity information to further highlight
small targets. Although HVS-based methods can be effective in many scenarios, they
are susceptible to missed detections and false positives in images characterized by low
signal-to-clutter ratios and high-intensity backgrounds.

2.2. Deep Learning-Based Methods

In recent years, there has been a significant research focus on deep learning-based meth-
ods for infrared small target detection, which seek to achieve high-accuracy detection rates.
These deep learning models are trained to discern features within infrared images using vast
datasets, thereby enhancing their detection capabilities. To address the problem that infrared
small target features are easily lost in deep neural networks, Attention Local Contrast Network
(ALCNet) [32] proposes asymmetric contextual modulation to interact the feature information
between the high and low levels. Dense Nested Attention Network (DNANet) [15] adequately
fuses feature information through densely nested interaction modules to maintain small tar-
gets in deep layers. Miss Detection vs. False Alarm (MDvsFA) [33] proposes dual generative
adversarial network models, trained inversely to decompose the detection challenge into
sub-problems, aiming to strike a balance between miss detections and false alarms. While
publicly available datasets have advanced deep learning for infrared small target detection, the
scant features of small targets and the dependency on training samples limit the applicability
of the model in varied real-world scenarios.

2.3. Patch-Based Methods

A significant amount of research has been conducted to improve the detection ability
of IPI [17]. On one hand, some methods have used prior constraints, including Column-
Weighted IPI (WIPI) [18], Non-negative IPI with Partial Sum (NIPPS) [20], and Re-Weighted
IPI (ReWIPI) [21]. On the other hand, some studies have identified limitations in the nuclear
norm and L1 norm and, so, alternative norms to achieve improved target representation
and background suppression have been proposed; for example, Non-convex Rank Approxi-
mation Minimization (NRAM) [22] and Non-convex Optimization with Lp norm Constraint
(NOLC) [23] introduce non-convex matrix rank approximation coupled with L2,1 norm
and Lp norm regularization, while Total Variation Weighted Low-Rank (TVWLR) [24],
Kernel Robust Principal Component Analysis (KRPCA) [25] introduce total variation reg-
ularization, High Local Variance (HLV) [26] method present LV* norm to constrain the
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background’s local variance. Patch-based methods mainly consider the low-rank nature of
the background, affecting their performance in the presence of strong edges. However, our
method pays additional attention to heterogeneous background suppression in low-rank
constraints, in order to avoid this problem.

2.4. Acceleration Strategies for Patch-Based Methods

Acceleration strategies for patch-based methods can be categorized into algorithm-
level and hardware-level acceleration. The first category mainly relies on the strategy of
reducing the number of iterations. Self-Regularized Weighted Sparse (SRWS) [34] and
NOLC [23] improve the iteration termination condition for acceleration, but still suffer
from the time consumption associated to decomposing large matrices. The other category
(i.e., hardware acceleration) relies on the use of computationally powerful hardware and
efficient parallelization strategies. In [35], the researchers proposed Separable Convo-
lutional Templates (SCT); however, this method has poor performance under complex
backgrounds. In addition, extending the patch model to tensor space can also achieve ac-
celeration [36–41]. Representative methods in this direction include Re-weighted Infrared
Patch-Tensor (RIPT) [36], LogTFNN [39] and the Pareto Frontier Algorithm (PFA) [37].
However, unfolding the tensor into a two-dimensional matrix before decomposition in-
creases the algorithm’s complexity. Partial Sum of the Tensor Nuclear Norm (PSTNN) [38]
and Self-Adaptive and Non-Local Patch-Tensor Model (ANLPT) [42] utilize the t-SVD
speed up tensor decomposition with t-SVD. However, these methods are limited by the
complexity of finding the applicable constrained kernel norm. Our work investigates
accelerated patch-based methods at both the algorithmic and hardware levels.

3. Method

In this section, we present the details and principles of the proposed method. First, a
novel continuous strategy is proposed for the suppression of strong edges. Then, APSVD
is used to accelerate solution of the LRSD problem. Finally, the integration of our proposed
method on GPU is presented. The overall framework is shown in Figure 1.

Figure 1. Framework of the proposed infrared small-target detection method. Targets in the input
and output images are highlighted with red boxes.
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3.1. BSPG Model

The infrared image is considered to be composed of the target image, background
image, and noise image, formulated as

fD = fB + fT + fN , (1)

where fD, fB, fT , and fN represent the original infrared, background, target, and noise
images, respectively. The IPI model uses a sliding window (from top-left to bottom-right)
to convert the original image into a patch image. The IPI model can be formulated as

D = B + T + N, (2)

where D, B, T, and N represent the patch image, background patch image, target patch
image, and noise patch image, respectively. Then, we can transform the small-target
detection problem into the following convex optimization under broad conditions; that is,

min
B,T
‖B‖∗ + λ‖T‖1, s.t. ‖D− B− T‖F ≤ δ, (3)

where ‖.‖∗ represents the nuclear norm, ‖.‖1 represents the column sum norm, λ is a
positive weighting parameter, and δ > 0. This convex optimization problem is called robust
principle component analysis (RPCA), which can recover low-rank and sparse parts of the

data matrix even when a fraction of the entries are missing. Let f (X) =
1
2
‖D− B− T‖2

F,

P(X) = μ(‖B‖∗ + λ‖T‖1), where μ is a relaxation parameter. Hence, we can express
Equation (3) as

minF(X) = f (X) + P(X). (4)

The PG algorithm is an efficient method to solve the RPCA problem, which esti-
mates the background image and the target image by minimizing the separable quadratic
approximation sequence of Equation (4); that is,

Q(X, Y) .
= f (Y) + 〈� f (Y), X−Y〉+ τ

2
‖X−Y‖2

F + P(X)

=
τ

2
‖(X− G)‖2

F + P(X) + f (Y)− 1
2τ
‖�Y‖2

F,

(5)

where G = Y − 1
L f
� f , L f is the Lipschitz constant (which is set to 2 in this problem),

and τ > 0 is a given parameter. The following function has a unique optimal solution as
Equation (5) is convex:

arg min{Qτ(X, Y|X ∈ dom(P))}, (6)

where dom(P) = {X|P(X) < +∞}. In our method, Equation (5) can be expressed as:

Q(B, T, μ, YB, YT) =
τ

2
‖B−YB|2F +

τ

2
‖T −YT |2F + f (YB, YT)

+ μP(B, T) +
1

2τ
|� f (YB, YT)|2F.

(7)

To solve Equation (6), the iterative process of the PG algorithm repeatedly sets
Xk+1 = arg minQ(X, Yk), and Yk is obtained from X0, X1, ...Xk. In our method, XK to be
solved are ordered pairs (Bk, Tk). Therefore, we set

Yk = Xk +
tk−1 − 1

tk
(Xk − Xk−1), (8)
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where tk is the sequence satisfying tk+1
2 − tk+1 ≤ tk

2.
The closed-form expression of Xk+1 can be obtained by soft-thresholding the singular

values. The soft-threshold operation is defined as

Sε[x]
.
=

⎧⎪⎨⎪⎩
x− ε, i f x > ε,
x + ε, i f x < −ε,
0, otherwise.

(9)

Then,
Tk+1 = Sτ [GT

k ] = S λμ
L f

[GT
k ],

Bk+1 = Sτ [GB
k ] = US μ

L f
VT ,

(10)

where USVT is the SVD of GB
k .

The continuation strategy in [43] can speed up the convergence of the PG. This tech-
nique employs a decreasing sequence to derive μ̄, where μk is updated as follows:

μk = max{ημk−1, μ̄}, 0 < η < 1. (11)

The value of η affects the convergence of the algorithm. A larger decrease results in more
Gk components to be retained, while fewer iterations to update μ̄ results in an inability to
separate the target. Conversely, a smaller η decrease has the opposite effect. Figure 2 shows
examples of the target images at different iterations. It can be seen that, in the early iterations,
the strong edges are separated first as the low component of the background is retained at the
highlights. This leads to many false alarms at the strong edges when the target is separated.
This phenomenon motivates us to use different decrement rates for GB

k and GT
k . We set a

higher rate for μB and set GB
k+1 to compute more singular values, in order to retain strong

edges. We also set a lower rate for μT, ensuring that the target is decomposed into sparse
parts when the algorithm converges. Thus, μk is updated as follows:

μT
k = max{αμT

k−1, μ̄},

μB
k = max{βμT

k , μ̄},
(12)

where 0 < α, β < 1. The solution of the BSPG algorithm is described in Algorithm 1.
The upper bound of the algorithm is discussed below. By denoting {Xk, Yk, tk} as

the sequence obtained by the algorithm with tk ≥ k + 2
2

, according to [44], for any k ≥ 1,
we have

F(Xk)− F(X∗) ≤ 2L f ‖X∗ − X0‖2
F

(k + 1)2 , X∗ �= 0. (13)

Then,
F(Xk)− F(X∗) ≤ ε, (14)

when k > k0 +

√
L f

ε
‖Xk0 − X∗‖F, where the convergence accuracy is ε > 0, yielding that

the algorithm has O
(√ L f

ε

)
iteration complexity.
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k-th iteration target image last iteration target image(k+5)-th iteration target image

strong edges
target

input image

Figure 2. IPI target images at different iterations. Strong edges are preserved when the target is
detected. Targets are shown in red boxes and strong edges are denoted by green circles.

Algorithm 1: BSPG solution via APSVD

Input : Patch image: D ∈ Rm×n, weighting parameters: λ, μ, α, β
Output : B ← Bk, T ← Tk

1 Initialization: k = 0, Y0
B, Y0

T , B0, T0, t0, μ0;
2 while not converged do

3 update Yk
B, Yk

T by Equation (8);
4 GB

k ← YB
k − 1/2(YB

k + YT
k − D); GT

k ← YT
k − 1/2(YB

k + YT
k − D);

5 update rank estimation quantity svk by Equation (15);
6 //Approximate Partial SVD:

7 GB
′

k ← GB
k

T × GB
k ;

8 (S, V)svk ← partial_eig(GB
′

k , svk) ;
9 Usvk ← GB

k Vsvk Ssvk
−1;

10 update Bk+1, Tk+1 by Equation (10);
11 compute the current rank quantity:

12 svk+1 = length
(

f ind
(
diagS > μB

k /L f
))

;

13 update μT
k+1, μB

k+1 by Equation (12);
14 k ← k + 1
15 end

3.2. APSVD

The most time-consuming step in each iteration of the PG algorithm is the execution
of the full SVD. It is worth mentioning that the soft-threshold operation only leaves a
portion of the singular values and vectors to participate in the subsequent calculations. In
particular, few singular values are needed in early iterations. Therefore, it is feasible to
replace full SVD with partial SVD. The crucial step of this strategy is rank estimation, which
involves estimating the number of singular values and singular vectors participating in the
computation after truncation. As the noise in infrared images is often not simply Gaussian
distributed, estimation functions such as minimax estimator or the simple quantitative
increase method proposed in [43] are not feasible. Due to the low-rank nature of the patch
image, the singular value matrix has a clear trend of change, as shown in Figure 3. Thus,
we estimate the rank by evaluating the degree of variation of the singular values. In the kth
iteration, the pre-determined rank svk−1 is initialized by the number of singular values in S
greater than μk/L f . We update svk as follows:

svk =

⎧⎪⎨⎪⎩ svk−1 + 5, i f
σsvk

σsvk−1

< δ,

svk−1 + �γN�, otherwise,
(15)

where δ is the threshold for measuring the degree of singular value variation, N is the
width of the patch image, and δ and γ are empirically set to 0.95 and 0.1, respectively.
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Figure 3. Trend of rank with an increasing number of iterations. Image 1 to image 4 represent the
patch images corresponding to four different infrared images from the used data set.

The truncated SVD of the patch image needs to satisfy two requirements: (1) Only a
small number of large singular values are retained, and (2) the singular vectors (including
the left and right) need to be computed. We approximate the SVD of the patch image A
by solving the eigenvalue decomposition of its covariance matrix AT A. Given the slender
nature of the patch matrix, the latter computation is considerably more straightforward
compared to the former. Moreover, the symmetry of AT A guarantees its suitability for
eigenvalue decomposition, leading to{

A = USVT ,
AT A = VS2VT .

(16)

It is apparent, from Equation (16), that the eigenvalues of AT A correspond to the
squares of the singular values of A. Additionally, both the right singular vectors of A and
the eigenvectors of AT A are unitary. This relationship further implies that the left singular
vectors U follow the equation U = AVS−1. The approximate SVD of matrix A satisfies

UT AV = S + ξ, (17)

where ξ depends on the rounding errors. The singular values and singular vectors of the
eigendecomposition in CUDA can approximate the accuracy of SVD to machine zero [45].
Furthermore, the larger the singular value, the smaller the error of U.

3.3. GPU Parallel Implementation

The GPU implementation consists of three main parts: Constructing the patch image,
solving the LRSD problem, and reconstructing the patch image. Our method uses GPU for
implementation purposes, and CPU only for data transfer and GPU control.

3.3.1. Construction

In order to reduce the number of data transfers between the host memory and the
device’s global memory, we first copy all the image data and hyperparameters read by the
CPU to the GPU via PCI Express, and then execute the parallelization kernel functions.
GPU parallelism mainly relies on data parallelism, i.e., performing the same operation
on multiple data elements. Correspondingly, a patch image is constructed to change the
storage location of each pixel in the original image. Therefore we build an index mapping
between the original image and the patch image. This mapping allows a thread to manage
the correspondence of a pixel position, facilitating the parallel processing of all pixels.
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Let dw, dh denote the width and height of the sliding window, sx, sy denote the sliding
step in the x, y directions, and p denotes the number of patches in the x direction. The
mapping of the patch image pixel index Ip

x to the original image pixel index Io
x is

Io
x = Ip

x % p× sy +
Ip
y

dh
,

Io
y =

Ip
x

p
× sx + Ip

y % dh.
(18)

The execution of the kernel function requires the determination of the thread block and
grid size, where the grid size is determined based on the number of processing subtasks
and the thread block size. Suppose the output image size n of the kernel function is nx × ny
and the thread block size k is set to kx × ky (where nx, ny denote the size of the image in the
x and y direction, respectively, and kx, ky denote the number of threads per block in the x
and y direction, respectively), then the grid size is determined as ((nx)kx , (ny)ky), where
operator (∗)k is defined as

(n)k = k�∗�n
k

, k ∈ N, n ∈ R. (19)

We set the thread block size for the construction kernel function based on the size of
the patch image. Assuming that the patch image dimensions are px × py, we configure the
thread block size as (px, �1024/px�). For instance, given an image with a size of 200× 150, a
sliding window with a size of 50× 50, and a sliding step of 10, the size of the resulting patch
image would be 176× 2500. Accordingly, the thread block size is set to (176, 5) and the grid
dimensions are set to (1, 500). Consequently, a row of threads in the x direction corresponds
to a row within the patch image. The construction process is carried out pixel-by-pixel.
The processing time of each pixel is assumed to be t, for an M × N patch image, serial
execution of the construction module takes M× N × t. In contrast, our method operates
M× N threads in parallel, completing the process in time t. The theoretical speedup ratio
is M× N.

3.3.2. Reconstruction

Figure 4 shows the steps for reconstructing the background and target patch images
after LRSD. First, the target patch image is transformed into the pre-filtered image. We
provide the pseudo-code for this transformation in Algorithm 2. Then, the indices of the
first and last patches containing valid information are determined. Finally, filtering is
performed on the valid portions of each row to obtain the target image. In summary, the
reconstruction includes two parallel processes: One involving mapping from the patch
image to the pre-filter image, and another entailing filtering.

Figure 4. Three steps of the proposed reconstruction method.
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Algorithm 2: The mapping of patch image and pre-filter image
Input : Patch image D, original image size w and h, patch size dw and dh, step s,

patch number of per row pr
Output : pre-filter image F

1 Step I: Compute the index ID in the patch image by using the row and column
numbers RD, CD.

2 RD = blockIdx.y× blockDim.y + threadIdx.y;
3 CD = blockIdx.x× blockDim.x + threadIdx.x;
4 ID = CD × dw× dh + RD;
5 Step II: Compute the row index Ir

p and column index Ic
p of the patch by using

patch index Ip.
6 Ip = ID/(dw × dh);
7 Ir

p=Ip/pr; Ic
p = Ip%pr;

8 Step III: Compute the index IF in F by using the row number RO and column
number CO in the original image O.

9 RO = Ir
p × s + RD%dh;

10 CO = Ic
p × s + RD/dh;

11 IF = CD × w× h + CO × h + RO;
12 F[IF] = D[ID].

We set the thread block and grid of the mapping kernel to the same size as the
construction kernel. The filter kernel handles a much larger matrix, and in order to improve
the resource usage, the thread block size is set to (32, 32), and the grid size is obtained
according to Equation (19). Then, the indices of the first patch and the last patch I f

p , Il
p

containing valid information can be expressed as:

I f
p =

Io
x − dw

sx
+ 1 + (

Io
y − dh

sy
+ 1)× p,

Il
p =

Io
x

sx
+ 1 + (

Io
y

sy
+ 1)× p.

(20)

In NVIDIA’s GPU architecture, one warp typically consists of 32 threads, while our
thread block contains 32× 32 threads. This means that each warp can effectively execute
an entire thread block. This high warp occupancy rate reaches 100%, efficiently harnessing
the performance of the GPU.

3.3.3. APSVD Using CUDA

The key to implementing the APSVD is the exact eigendecomposition, which can be
achieved using the Symmetric Eigenvalue Divide (SYEVD) function based on QR decom-
position or the Symmetric Eigenvalue Jacobi (SYEVJ) function based on Jacobi decomposi-
tion [46]. SYEVD employs a divide-and-conquer method to decompose a symmetric matrix
into smaller sub-problems and solves them recursively. Its runtime is primarily attributed
to QR decomposition. QR decomposition can be expressed as

Am×n = Qm×nRn×n, (21)

where Q is an orthogonal matrix and R is an upper triangular matrix. QR decomposition
usually requires Householder transformations for multiple iterations, and each transformation
needs to manipulate all elements of the matrix, which becomes redundant for small matrices.

SYEVJ transforms the symmetric matrix A into a diagonal matrix D by performing a
rotational transformation via the bilateral Jacobi method.

D = · · · JT
3 (JT

2 (JT
1 AJ1)J2)J3 · · · = (· · · JT

3 JT
2 JT

1 )A(J1 J2 J3 · · · ), (22)
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where J is denoted as J(i, j, θ), contains the rotation angle θ and an index pair (i, j), and
satisfies J(i, j, θ)T J(i, jθ) = E. The Jacobi method, with its element-wise rotations, offers
lower computational complexity, localized memory access, and parallelization potential,
making it more efficient for small matrices.

To quantitatively analyze both methods, we introduce arithmetic intensity [46] which
is a metric used to evaluate the performance of parallel computational tasks. Specifically,
the arithmetic intensity I is defined as

I =
FLOPs

bytes loaded
, (23)

where FLOPs represents the number of floating point operations and can measure the
complexity of an algorithm, bytes loaded represents the number of bytes loaded from
memory during kernel execution. Given an N × N matrix (single-precision), a Givens
rotation typically requires 8 floating-point operations (2 trigonometric functions, 4 multi-
plications, 2 additions) and loads 2N elements. This means that the number of FLOPS per
iteration is 8, and the memory access requires loading 8N bytes. In QR decomposition, the
computational complexity of each iteration, which involves Householder transformations,
is 2N3, and it loads the entire matrix, including 4N2 bytes. The arithmetic intensity of the
Jacobi kernel IJ and the arithmetic intensity of the QR decomposition kernel IQR can be
expressed as

IJ =
8

2N
, IQR =

2N3

4N2 . (24)

Therefore, from the perspective of arithmetic intensity, we choose the more efficient
Jacobi method to perform eigenvalue decomposition. The Jacobi method typically has lower
arithmetic intensity and is relatively memory-access efficient, whereas QR decomposition
involves orthogonal transformations and matrix updates, often requiring more memory
bandwidth and computation. QR decomposition has a higher arithmetic intensity, making
it perform better on larger matrices where the high arithmetic intensity can be fully utilized,
but not on small matrices.

Furthermore, the implementation of APSVD requires an efficient matrix multiplication
function. The General Element-wise Matrix Multiply (GEMM) function in CUDA takes
advantage of the GPU’s parallel computing capabilities and efficiently processes substantial
amounts of data, thereby enhancing computational performance. To reduce routing errors,
we use the double precision-controlled GEMM function, DGEMM, which has a time
complexity of 2MN2. Notably, other functions utilize single precision to strike a balance
between instruction throughput and accuracy. Figure 5 illustrates the runtime ratios for
each component of APSVD on matrices of varying size. Notably, the efficiency of SYEVJ is
demonstrated, as it is unaffected by the matrix height and exhibits a decreasing ratio of
time spent on eigendecomposition as the matrix size increases.

1,000,000

100,000

10,000

1000

Figure 5. The running time ratio of each component in APSVD. The matrix is taken from SIR_1 in the
experiment with a fixed width of 32.
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4. Experiments and Analysis

In this section, we provide an evaluation of our method in terms of detection accuracy
and execution time.

4.1. Experimental Setup

Data. The experiments used the real single-frame infrared images provided in [32],
selected from infrared sequences in a variety of scenes, including ocean, cloud, sky, and
urban areas, as shown in Figure 6. The targets are marked with red boxes and magnified for
convenient viewing in the bottom left corner of each image. It can be seen that the targets
occupy very few pixels; most small targets lack shape and texture information and have
low intensity. Images with poor imaging quality exhibit strong noise, such as SIR_2 and
SIR_3. Some small targets are submerged in cloud or sea clutter as SIR_11 and SIR_13 and
suffered from highlight backgrounds with strong edges as SIR_8 to SIR_14. Furthermore,
we provide detailed information of the test images, including the background type, target
type, Signal Clutter Ratio (SCR), target size, and detection challenges, in Table 1.

SIR_1 SIR_2 SIR_4SIR_3 SIR_5 SIR_7SIR_6

SIR_8 SIR_9 SIR_11SIR_10 SIR_12 SIR_14SIR_13

Figure 6. Test images SIR_1 to SIR_14. The targets are highlighted with red boxes and the binary
mask of the target is given in the lower left corner of each image.

Table 1. Detailed information of the test images. The target size is expressed as the number of pixels.

Data Image Size Target Size SCR
Background Target

Detection Challenges

Type Type Strong Edge
Low

Contrast
Heavy
Noise

Cloud
Clutter

SIR_1 256 × 172 11 6.52 cloud + sky Irregular
shape �

SIR_2 256 × 239 3 8.63 building +
sky Weak � � �

SIR_3 300 × 209 12 1.04 sea + sky Low
intensity � �

SIR_4 280 × 228 2 3.09 cloud + sky Weak,
hidden � �

SIR_5 320 × 240 7 11.11 cloud + sky Hidden �
SIR_6 359 × 249 6 6.14 building +

sky
Irregular

shape �

SIR_7 640 × 512 4 10.52 cloud + sky Weak,
hidden � �

SIR_8 320 × 256 5 5.36 sea + sky Weak �
SIR_9 283 × 182 8 1.59 cloud + sea Hidden � �
SIR_10 379 × 246 3 10.57 building +

sky
Low

intensity � �

SIR_11 315 × 206 5 9.61 cloud + sky Low
intensity � �

SIR_12 305 × 214 17 8.43 tree + sky Irregular
shape �

SIR_13 320 × 255 4 4.12 cloud + sky Low
intensity � � �

SIR_14 377 × 261 6 2.38 cloud + sky Low
intensity � �
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Hardware. We implemented our method on the embedded GPU Jetson AGX Xavier,
which has 7764 MB of global memory and 48 KB of shared memory. The version of CUDA
was 10.2. The experiments in MATLAB were based on an Intel(R) Core(TM) i7-8750H CPU
with 8 GB RAM.

Baselines and parameter settings. We compared our proposed method to other state-
of-the-art patch-based methods, including IPI [17], NIPPS [20], NRAM [22], NOLC [23],
SRWS [34] and HLV [26]. As tensor-based methods have better performance in terms
of computational efficiency, we also included three tensor-based methods for compari-
son, including RIPT [36], PSTNN [38], PFA [37], LogTFNN [39] and ANLPT [42]. The
parameter settings are provided in Table 2. We employed a sliding window with a size of
100× 100 and a step size of 30 on images with resolution equal to or exceeding 640× 512.
This setting ensured that the execution time remained within the desired range.

Table 2. Parameter settings. All methods used their original settings.

Method Patch Size Step Parameter

IPI [17] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

RIPT [36] 50× 50 10 L = 1, λ = L/
√

min(n1, n2, n3), ε = 10−7

NIPPS [20] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

NRAM [22] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

NOLC [23] 50× 50 10 L = 1, λ = L/
√

min(size(D)), p = 0.5, ε = 10−7

PSTNN [38] 40× 40 40 L = 0.7, λ = L/
√

min(n1, n2) ∗ n3, ε = 10−7

SRWS [34] 50× 50 10 L = 1, λ = L/
√

min(m, n), γ = 0.09/
√

min(m, n), ε = 10−7

PFA [37] 25× 25 25 κ = 30, τ0 = 1e + 5, ε = 10−5

LogTFNN [39] 40× 40 40 L = 1, λ = L/
√

min(n1, n2)× n3, β = 0.01, μ = 200
HLV [26] 50× 50 10 L = 1, λ = L/

√
max(m, n), α = 1.3, β = 2.5, C = 8

ANLPT [42] 50× 50 10 λ = sigmoid(E/n3)/
√

min(n1, n2)× n3, E = entropy(T)
Ours 50× 50 10 L = 1, λ = L/

√
max(m, n), ε = 10−7

Evaluation metrics. We used two quantitative analysis evaluation indicators com-
monly used for small-target detection to evaluate our method: Signal Clutter Ratio Gain
(SCRG) and Background Suppress Factor (BSF). SCRG reflects the effect of increasing target
saliency, and is defined as follows:

SCRG =
SCRout

SCRin
, SCR =

|μt − μb|
σb

, (25)

where SCRin and SCRout represent the signal-to-clutter ratio of the input and output
images, respectively, μt represents the average pixel gray value of the target, μb represents
the average pixel gray value of the local background around the target, and σb represents
the standard deviation of the gray pixel value of the local background around the target.
BSF reflects the effect of suppressing background interference and is defined as follows:

BSF =
σin

σout
, (26)

where σout and σin are the standard deviation values of the local background around the
target in the output image and the original image, respectively.

We also analyzed the results using Receiver Operating Characteristic (ROC) curves.
The ROC curve is plotted by assessing the True Positive Rate (TPR) and the False Positive
Rate (FPR) at different classification thresholds, as defined below:

TPR =
number o f real targets detected

number o f real targets
,

FPR =
numer o f f alse targets detected

number o f real targets
.

(27)

To quantitatively compare the ROC curves, the area under the curve (AUC) can be used
as an evaluation criterion; the larger the AUC, the more accurate the detection performance.
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4.2. Visual Comparison with Baselines

The visualization results of twelve detection methods are shown in Figures 7 and 8.
IPI, RIPT, and NIPPS only successfully detect targets under simple backgrounds with high
local patch similarity. In images with complex backgrounds, NIPPS present noticeable
clutter, while IPI and RIPT exhibit noise in highlighted backgrounds. NRAM and PFA can
detect the majority of targets, but they are prone to generating false alarms in regions with
strong edges. NOLC and SRWS suffer from the sea surface background and can not detect
weak dark targets. PSTNN has similar poor performance, with many false alarms under
clutter. LogTFNN is poorly detected under high-intensity backgrounds, leaving a large
amount of background residue. HLV and ANLPT perform poorly when detecting targets
that are dark or have low contrast with the neighboring background. In the case of images
SIR_7 to SIR_14, the highlighted backgrounds cause most methods to produce false alarms
near strong edges, leading to inaccurate detection. However, our method excels in terms of
effectively suppressing strong edges under such conditions. From the visualized detection
results, our method exhibits robust detection performance.
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Figure 7. Partial detection results for different methods. The correctly detected targets are highlighted
with red boxes and enlarged in the top left corner of each target image. The incorrect targets are
highlighted with green boxes and circles.
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Figure 8. Partial detection results for different methods. The correctly detected targets are highlighted
with red boxes and enlarged in the top left corner of each target image. The incorrect targets are
highlighted with green boxes and circles.

4.3. Quantitative Evaluation and Analysis

The results of the quantitative comparison of the various methods on the test images are
shown in Table 3. From the definitions of the two evaluation metrics, the larger the SCRG
and BSF values, the better the detection results. In terms of BSF, our method performs better
than the other methods on all images, indicating that our method excels in suppressing the
background. In terms of SCRG, our method outperforms the other methods on most images.
When the target is missed, the local background standard deviation is 0. Consequently, this
leads to the SCRG appearing as a NaN result and BSF tending to infinity. In addition, we
plotted the ROC curves corresponding to the experiments, in order to further validate the
effectiveness of our method. The results in Figure 9 demonstrate that our method outperforms
the other comparative methods on the test images. IPI and NIPPS are sensitive to clutter
and high-intensity backgrounds due to the difficulty in distinguishing between targets and
strong edges. NRAM and NOLC exhibit instability in detecting dim and weak targets. HLV
experiences an increase in false alarms when dealing with strong clutter interference on the
sea surface. Tensor-based detection methods show stable performance in simple backgrounds.
However, RIPT and LogTFNN exhibit low detection accuracy in high-intensity backgrounds
due to their high requirements for sparsity. PSTNN and PFA tend to erroneously reject targets
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in the presence of background clutter. SRWS demonstrates effective clutter suppression in
high-intensity backgrounds but struggles to detect low-contrast weak targets. ANLPT exhibits
weaker clutter suppression capabilities in high-intensity structured backgrounds. In contrast,
our method achieves remarkable results in terms of detection accuracy and false alarm rate in
a wide range of scenarios.

To evaluate the execution speed of our method, we compared our method with other
patch-based methods. For fair comparison, we set these methods to share the same patch
and step configurations. We implemented our method in two versions; that is, CPU and
GPU versions. The GPU execution time includes the data transfer time between the host
and the device. To ensure the reliability of the time statistics, we took the average time of
10 executions for each method. The comparison results are presented in Table 4. Most patch-
based methods are time-consuming due to iteration and complex matrix decomposition,
including IPI, NIPPS, and NRAM. RIPT and ANLPT relatively improve the detection
efficiency, but the tensor decomposition is still complex. SRWS and HLV optimise the
iterative termination conditions to achieve a faster detection speed. The results demonstrate
that our method achieved impressive speed, particularly with significant acceleration when
using the GPU. Combined with the previous detection accuracy evaluation, our method
was found to achieve faster detection while maintaining higher accuracy.

Table 3. Comparison of SCRG and BSF under various methods. The best performance is indicated
in bold.

Methods IPI [17]
RIPT
[17]

NIPPS
[20]

NRAM
[22]

NOLC
[23]

PSTNN
[38]

SRWS
[34]

PFA
[37]

LogTFNN
[39]

HLV
[26]

ANLPT
[42]

Ours

SIR_1 SCRG 2.08 2.55 0.05 2.76 2.58 1.81 2.78 0.03 1.56 2.85 NaN 20.67
BSF 1.51 2.26 3.45 2.82 1.98 1.31 5.54 4.50 1.14 2.14 Inf 32.40

SIR_2 SCRG 3.29 2.38 1.17 2.89 NaN 3.13 5.20 0.91 1.82 4.24 3.40 23.50
BSF 1.05 0.59 0.26 0.75 Inf 0.80 2.48 0.40 0.48 1.08 0.83 7.20

SIR_3 SCRG 137.56 NaN 102.47 235.38 NaN 90.23 NaN 32.40 11.80 NaN NaN 151.21
BSF 11.39 Inf 5.99 17.02 Inf 18.42 Inf 12.10 1.28 Inf Inf 19.48

SIR_4 SCRG 16.36 15.36 9.46 Inf 39.94 Inf 60.86 NaN NaN 16.74 NaN Inf
BSF 3.55 3.47 2.04 Inf 8.80 Inf 13.90 Inf Inf 3.61 Inf Inf

SIR_5 SCRG 2.18 5.60 0.68 4.79 4.96 1.53 6.57 2.39 1.41 1.82 0.01 7.81
BSF 0.77 2.07 0.16 1.63 1.72 0.49 2.49 0.80 0.71 0.61 0.68 3.59

SIR_6 SCRG 28.99 17.08 7.77 Inf 26.84 NaN Inf NaN NaN 2.56 NaN Inf
BSF 32.21 6.18 1.96 Inf 8.08 Inf Inf Inf Inf 0.90 Inf Inf

SIR_7 SCRG 275.57 Inf Inf NaN NaN 5.36 NaN 2.13 3.42 351.29 NaN Inf
BSF 169.41 Inf Inf Inf Inf 3.30 Inf 1.69 2.47 215.97 Inf Inf

SIR_8 SCRG 7.53 32.22 7.89 17.04 41.07 6.16 NaN 2.40 3.48 8.75 4.76 90.97
BSF 3.98 25.67 3.28 9.77 43.57 4.50 Inf 192.28 1.82 4.88 2.39 69.74

SIR_9 SCRG 24.34 25.51 11.86 Inf NaN 14.85 Inf 5.41 18.08 23.11 NaN Inf
BSF 12.92 24.33 9.04 Inf Inf 7.95 Inf 10.00 9.44 12.42 Inf Inf

SIR_10 SCRG 1.94 Inf 0.38 Inf 3.37 Inf 4.31 NaN NaN 2.39 2.02 Inf
BSF 1.04 Inf 0.16 Inf 1.85 Inf 2.47 Inf Inf 1.30 1.36 Inf

SIR_11 SCRG 2.57 NaN 0.87 NaN NaN NaN 10.58 NaN 0.06 Inf 1.73 Inf
BSF 0.28 Inf 0.07 Inf Inf Inf 1.46 Inf 0.05 Inf 0.18 Inf

SIR_12 SCRG 1.47 Inf 1.42 Inf NaN 1.91 1.11 Inf 0.52 1.75 1.14 Inf
BSF 0.73 Inf 0.62 Inf Inf 1.02 1.75 Inf 0.25 0.91 0.55 Inf

SIR_13 SCRG 1.58 Inf 0.30 Inf Inf 5.67 Inf NaN NaN 31.94 Inf Inf
BSF 0.53 Inf 0.08 Inf Inf 3.40 Inf Inf Inf 6.23 Inf Inf

SIR_14 SCRG 4.28 7.69 1.87 8.26 Inf 3.25 Inf 1.58 0.52 7.25 5.73 Inf
BSF 1.55 2.79 0.48 3.09 Inf 1.14 Inf 0.63 0.19 2.88 2.06 Inf
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ROC of SIR_13
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Figure 9. ROC curves for the twelve methods on test images SIR_1 to SIR_14.

Table 4. Comparison of the execution time (s) across various patch-based methods. All baselines
were tested on the CPU, while our methods were tested on both the CPU and GPU. The best time is
denoted in bold, while the second-best is underlined.

Image id SIR_1 SIR_2 SIR_3 SIR_4 SIR_5 SIR_6 SIR_7 SIR_8 SIR_9 SIR_10 SIR_11 SIR_12 SIR_13 SIR_14

IPI [17] 3.28 5.23 7.63 6.45 12.52 12.93 12.67 11.28 4.12 15.32 7.88 7.29 14.87 18.72
RIPT [36] 1.17 2.76 2.02 2.82 4.70 2.88 8.01 4.35 0.96 1.85 1.02 1.40 2.12 2.14

NIPPS [20] 1.88 3.34 3.60 3.56 5.51 6.82 7.11 6.71 2.84 9.18 3.95 3.99 7.51 9.96
NRAM [22] 2.17 2.14 1.55 2.61 2.99 3.88 2.38 4.79 1.44 4.20 2.09 2.27 3.94 4.20
NOLC [23] 0.72 0.86 1.11 1.15 1.24 1.67 3.62 1.64 0.94 3.17 1.55 1.28 1.33 2.11
SRWS [34] 2.01 2.01 1.10 3.12 2.12 2.60 3.65 1.63 0.78 1.57 1.01 1.29 1.46 1.77
HLV [26] 1.13 1.76 2.32 1.55 2.86 4.51 4.26 3.54 1.44 4.47 2.30 2.27 4.01 6.09

ANLPT [42] 1.53 1.79 1.91 1.73 2.05 2.18 8.07 2.57 1.53 2.29 1.99 2.15 2.52 2.80

Ours (CPU) 0.49 0.76 0.94 0.93 1.55 1.94 2.10 1.29 0.53 1.77 0.86 0.87 1.64 1.89
Ours (GPU) 0.34 0.42 0.54 0.52 0.87 0.98 0.54 0.90 0.36 0.84 0.47 0.42 0.82 0.85

4.4. Ablation Study

The effect of relaxation parameters. We explored the effects of the relaxation param-
eters α and β on the detection accuracy of our method using ROC curves. Figure 10 shows
that excessively large or small values of α and β led to a decrease in the AUC value. Small
α can retain more background components, but overly small values result in insufficient
iteration, thereby failing to separate targets. Meanwhile, large α and β values can cause
false alarms by decomposing strong edges into sparse target portions. Therefore, we set α
and β to 0.4 and 0.7, respectively.

Comparison with other tensor-based methods. For a fair comparison, we studied
the tensor-based methods under the same settings as used for ours. We evaluated their
detection accuracy and execution time under various patch and step configurations. Table 5
shows the execution time results. When using the same patch and step settings, our
method on GPU is faster than PFA, PSTNN, and LogTFNN. As illustrated in Figure 11, our
method consistently achieves the best detection accuracy across most scenarios. However,
the detection accuracy of PFA, PSTNN, and LogTFNN significantly diminishes between
images with variations in the patch size and step values.
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R  lots on SIR_1-SIR_14

Figure 10. ROC curves of our method under different α and β values.

Table 5. Execution time (s) of PFA, PSTNN, LogTFNN and the proposed method (Ours) under varying
patch size and number of steps. The best is denoted in bold, while the second-best is underlined.

Method SIR_1 SIR_2 SIR_3

(Patch, Step) (25,25) (40,40) (50,10) (25,25) (40,40) (50,10) (25,25) (40,40) (50,10)

PFA [37] 9.96 0.33 1.39 12.68 0.26 1.69 0.33 0.26 2.19
PSTNN [38] 0.04 0.05 1.15 0.06 0.07 3.90 0.16 0.06 1.44

LogTFNN [39] 0.89 1.33 15.06 1.22 1.81 11.63 1.27 1.38 26.92
Ours(CPU) 0.12 0.13 0.49 0.19 0.17 0.76 0.16 0.14 0.94
Ours(GPU) 0.02 0.02 0.34 0.04 0.02 0.42 0.02 0.01 0.54

ROC Plots on SIR_1 ROC Plots on SIR_2 ROC Plots on SIR_3

0 1 2 3 4 5 6
FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

LogTFNN(25,25) AUC=0.7910
PFA(25,25) AUC=0.9166
PSTNN(25,25) AUC=0.9998
Ours(25,25) AUC=0.9993
LogTFNN(40,40) AUC=0.9997
PFA(40,40) AUC=0.9166
PSTNN(40,40) AUC=0.9998
Ours(40,40) AUC=0.9993
LogTFNN(50,10) AUC=0.9989
PFA(50,10) AUC=0.8333
PSTNN(50,10) AUC=0.9999
Ours(50,10) AUC=1.0000

0 1 2 3 4 5 6
FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

LogTFNN(25,25) AUC=0.7497
PFA(25,25) AUC=0.5100
PSTNN(25,25) AUC=0.9699
Ours(25,25) AUC=0.9999
LogTFNN(40,40) AUC=0.9999
PFA(40,40) AUC=0.6399
PSTNN(40,40) AUC=0.9899
Ours(40,40) AUC=0.9999
LogTFNN(50,10) AUC=0.9999
PFA(50,10) AUC=0.5699
PSTNN(50,10) AUC=0.8299
Ours(50,10) AUC=0.9499

0 1 2 3 4 5 6
FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP
R

LogTFNN(25,25) AUC=0.8286
PFA(25,25) AUC=0.7998
PSTNN(25,25) AUC=0.7998
Ours(25,25) AUC=0.9996
LogTFNN(40,40) AUC=0.9985
PFA(40,40) AUC=0.8332
PSTNN(40,40) AUC=0.7665
Ours(40,40) AUC=1.0000
LogTFNN(50,10) AUC=0.9943
PFA(50,10) AUC=0.7998
PSTNN(50,10) AUC=0.5000
Ours(50,10) AUC=0.9999

Figure 11. ROC curves for PFA, PSTNN, LogTFNN and the proposed method (Ours). The patch size
and step are labeled in the figure; for example, (25,25) means that the patch size was set to 25× 25 and
the step was set to 25.

The acceleration effect of different strategies. To validate the speed enhancement
due to our proposed APSVD, we compared its implementations on both MATLAB 2017b
and CUDA 10.2 platforms with various SVD functions, as shown in Table 6. It can be
observed that APSVD exhibits high efficiency on slender matrices. To explore the effec-
tiveness of the proposed acceleration strategies, we conducted tests on their cumulative
acceleration effects over the baseline method IPI. Table 7 demonstrates that our proposed
acceleration strategies yield commendable speed increases. Notably, PASVD avoids the
intricate decomposition of large matrices, thus significantly saving time; the new contin-
uation strategy employs a greater decrement for the relaxation parameters, reducing the
number of iterations and consequently accelerating the overall speed; and the GPU parallel
strategies provide significant acceleration, especially for larger images.
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Table 6. Execution times (ms) of SVD functions in MATLAB and CUDA on different matrices, with a
fixed matrix width of 32 and a rank of 10 for partial SVD. The fastest time on MATLAB and CUDA is
marked in bold.

Matrix Height
MATLAB CUDA

SVD SVDS Lanczos RSVD APSVD SGESVD SGESVDJ APSVD

1000 1.03 6.68 4.59 7.67 0.53 9.07 5.75 1.06
10,000 6.27 19.93 22.08 10.05 1.83 16.71 7.36 1.24
100,000 280.12 406.70 298.77 50.82 11.82 / 24.06 9.58

Table 7. Cumulative acceleration effects at different sizes of SIR_1, obtained using the resize function.

Image Size Base +PASVD +New Continuation +GPU Parallelism

200× 150 1.42 0.86 0.29 0.09
280× 228 6.23 4.91 1.12 0.41
320× 256 12.77 9.24 1.99 0.74
640× 512 13.60 7.33 2.31 0.59

1020× 750 57.79 34.6 7.32 2.38
1260× 1024 207.13 116.58 22.20 3.65

The acceleration effects on images with different attributes. To validate the acceler-
ation effect of the proposed method, we conducted experiments on images with varying
attributes (i.e., resolution and background complexity). As shown in Figure 12, the acceler-
ation effect of our method becomes more pronounced with increasing image resolution.
On an image with a resolution of 1024× 1020, the execution speed of the proposed method
is nearly 60 times faster than that of IPI. Due to the influence of image complexity on execu-
tion time, the acceleration effect varies slightly at the same resolution. Furthermore, we
conducted a comparative analysis of the three stages of our method—namely, constructing
a patch image, solving the LRSD problem, and reconstructing a patch image—as shown
in Figure 13. It is evident that multi-threading parallelism and optimized memory access
significantly reduce the time required for the construction and reconstruction modules.
Additionally, the new continuation strategy and APSVD greatly contribute to reducing the
time required to solve the LRSD problem.
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Figure 12. Comparison of execution time between IPI and the proposed method (Ours) for images of
different resolution and complexity.
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Figure 13. Comparison of execution time between IPI and the proposed method (Ours) for the
three parts.

5. Discussion

Patch-based methods are well-studied in single-frame infrared small target detection
for their reliability. The classical IPI algorithm is a notable example. It transforms the origi-
nal image into a patch image and leverages the non-local self-similarity of the background
to enhance the low-rank property of the patch image. This method allows for effective
infrared small target detection through low-rank and sparse decomposition.

In our comparison of small target detection methods, we observed that methods like
NIPPS, NRAM, and NOLC aim to improve detection accuracy by enhancing the nuclear
norm and l1 norm. However, these methods involve complex matrix decomposition and
iterative processes, leading to time-consuming issues. These methods also struggle to
differentiate between the edges and the actual targets due to the local sparsity of strong
edges. Conversely, SRWS and HLV, with their proposed multi-subspace assumptions and
high local variance constraints, generally perform well in most cases. They effectively
suppress strong edges but may miss dark and weak targets. Additionally, these methods
require complex matrix decomposition, making them time-consuming. RIPT expands the
patch model into tensor space, adding to the computational burden as tensors are unfolded
and decomposed. While tensor-based methods such as PSTNN, PFA, and logTFNN have
accelerated detection somewhat, their effectiveness is limited by the challenges of accurately
approximating nuclear norms within tensor models.

This paper aims to strike a balance between detection performance and time consump-
tion. To address interference from strong edges, the BSPG method proposed in this paper
introduces a novel continuous strategy in the alternating update process of low-rank and
sparse components. This allows the model to mitigate the influence of strong edges by
preserving more components while updating the low-rank matrix. For algorithm accelera-
tion, a combined approach involving algorithm optimization and hardware enhancement
is presented. On the algorithmic front, APSVD is introduced to expedite solving the LRSD
problem. On the hardware front, we suggest utilizing GPU multi-thread parallel strategies
to accelerate the construction and reconstruction of modules. This is possible as these mod-
ules can be decomposed into repetitive and independent subtasks. Visual and quantitative
results from experiments demonstrate that our method outperforms other state-of-the-art
methods. However, there is still room for improvement in terms of time performance, and
in the future, we plan to explore even faster methods.

196



Remote Sens. 2023, 15, 5424

6. Conclusions

In this paper, we proposed a novel infrared small-target detection method using
background-suppression proximal gradient and GPU parallelism. Considering that patch-
based methods often result in false alarms at strong edges, we first proposed a novel contin-
uation strategy to suppress such background interference. Then, we presented APSVD to
accelerate the solution of the LRSD problem, which involves complex and time-consuming
large matrix decomposition. Moreover, we employed GPU multi-threading parallelism
to accelerate the construction and reconstruction of patch images. Finally, we optimized
the proposed method on the GPU, ultimately achieving outstanding performance. The
obtained experimental results demonstrated that our method out-performs nine state-of-
the-art methods in terms of both detection accuracy and computational efficiency. The
proposed GPU parallelism strategy can be applied to infrared motion sensors and other
patch-based infrared small-target detection methods, thus facilitating their application in
practical engineering.
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Abstract: Hyperspectral anomaly detection is an important unsupervised binary classification prob-
lem that aims to effectively distinguish between background and anomalies in hyperspectral images
(HSIs). In recent years, methods based on low-rank tensor representations have been proposed to
decompose HSIs into low-rank background and sparse anomaly tensors. However, current methods
neglect the low-rank information in the spatial dimension and rely heavily on the background infor-
mation contained in the dictionary. Furthermore, these algorithms show limited robustness when the
dictionary information is missing or corrupted by high level noise. To address these problems, we
propose a novel method called multi-dimensional low-rank (MDLR) for HSI anomaly detection. It
first reconstructs three background tensors separately from three directional slices of the background
tensor. Then, weighted schatten p-norm minimization is employed to enforce the low-rank constraint
on the background tensor, and LF,1-norm regularization is used to describe the sparsity in the anomaly
tensor. Finally, a well-designed alternating direction method of multipliers (ADMM) is employed to
effectively solve the optimization problem. Extensive experiments on four real-world datasets show
that our approach outperforms existing anomaly detection methods in terms of accuracy.

Keywords: anomaly detection; multi-dimensional; low-rank

1. Introduction

Compared with conventional images such as RGB images, multispectral images, SAS
images [1], and delay-Doppler images [2], hyperspectral images (HSIs) offer the advantage
of capturing hundreds of contiguous spectral bands of the same scene. This unique
characteristic of HSI proves to be beneficial for target detection and finds wide applications
in various fields such as land cover classification [3–5], mineral survey [6–8], environmental
protection [9–11], and other applications [12–18]. In hyperspectral target detection, when
the target information is unknown, the unsupervised processing of the target detection is
called anomaly detection. However, in practical applications, it is often difficult to obtain
the prior information of the target, so hyperspectral anomaly detection is more suitable.
In essence, hyperspectral anomaly detection can be viewed as an unsupervised binary
classification problem that separates an image into background and anomalies, where
anomalies typically represent rare targets that occupy only a small number of pixels.

Over the past two decades, there has been a growing interest in hyperspectral anomaly
detection, leading to the development of numerous detection algorithms. The Reed–Xiaoli
(RX) algorithm [19] is a classical statistical modelling method for anomaly detection, assum-
ing that the background follows a multivariate Gaussian distribution. The main objective
of the RX algorithm is to compute the Mahalanobis distance between the measured pixel
and the background [20], which involves estimating the mean vector and the covariance
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matrix of the background. Two commonly studied extended versions of the RX algorithm
are the global RX (GRX) [21] and the local RX (LRX) [22], where the former calculates the
distance between the measured pixel and all background pixels, and the latter calculates
the distance between the measured pixel and the surrounding background pixels. However,
in hyperspectral applications, it is crude to describe the background with a single Gaussian
distribution, and the mean vector and covariance matrix of the background are susceptible
to the noisy pixels and anomalies.

In general, the HSI can be represented as a three-order tensor with two spatial di-
mensions and one spectral dimension. Taking into account the similarity between spectral
bands, the HSI can be transformed into a matrix along the spectral dimension, which
inspires the matrix-based anomaly detection methods. Anomalies are assumed to be ran-
domly distributed in the background and to have sparse properties. By formulating a
constrained convex optimization problem that incorporates the characteristics of both the
background and the anomalies, successful separation of the anomalies from the background
can be achieved. Consequently, the low-rank and sparse matrix decomposition (LRaSMD)
algorithms [23–25] have been used to separate the HSI data into low-rank background and
sparse anomalies and have demonstrated their effectiveness in previous studies [26–28].
According to the LRaSMD approach, the spectral response of a pixel yi(i ∈ {1, . . . , N}) in d
bands of the HSI can be represented as a spectral vector yi ∈ Rd with the decomposition.

yi = xi + si,
{

si = 0, if yi is part of background,
si �= 0, if yi is part of anomalies,

(1)

which can further be written in matrix form as:

Y = X + S, (2)

where X = [x1, x2, . . . , xN ]
T and S = [s1, s2, . . . , sN ]

T ∈ RN×d represent the background
and anomaly components of the HSI matrix Y = [y1, y2, . . . , yN ]

T ∈ RN×d, where N
represents the number of pixels in the HSI, and d represents the number of spectral bands.
Furthermore, to address the attention imbalance between anomalies and the background
observed in LRaSMD, Zhang et al. [29] proposed the LRaSMD-based Mahalanobis
distance (LSMAD) method. Xu et al. [30] integrated cooperative representation and
Euclidean distance into the LRaSMD framework. Li et al. [31] investigated LRaSMD
under the assumption of a mixture-of-Gaussian (MoG) distribution and developed a global
detector based on the Manhattan distance. To further exploit the intrinsic information
of the background, low-rank representation (LRR) [32,33] was proposed, which maps
the HSI to multiple linear subspaces using a dictionary. Xu et al. [34] proposed a new
anomaly detection method called low-rank and sparse representation (LRASR), which
employed a dictionary construction strategy and a sparsity-inducing regularization term
to reconstruct the background matrix. To preserve the local geometric structure and
spatial relationships of the background, the graph and total variation regularized low-rank
representation (GTVLRR) [35] method was introduced for HSI anomaly detection. Fu et al. [36]
used convolutional neural network (CNN) denoisers [37] as priors for the coefficients of
the dictionary.

The aforementioned matrix-based anomaly detection methods tend to destroy the
spatial structure of HSI and fail to effectively exploit the inherent spatial information [38,39].
In recent years, tensor-based methods have emerged as a promising approach to HSI
anomaly detection, allowing the decomposition of HSI data into low-rank and sparse
components. Sun et al. [23] used Tucker decomposition to obtain the low-rank back-
ground, using an unmixing method to extract the spectral features of the anomaly. Li et al. [40]
embedded priors into the dimensions of a tensor with different regularizations.
Song et al. [41] proposed a dictionary construction strategy based on Tucker decompo-
sition, which improved the inclusion of spectral segment information in the dictionary.
Shang et al. [42] found a new prior that describes the sparsity of the core tensor of a
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gradient map (GCS) under Tucker decomposition. However, Tucker decomposition has
inherent limitations in terms of rank. To address this issue, Wang et al. [43] extended the
concept of LRR from matrix to tensor, taking into account the three-dimensional structure
of HSI. Sun et al. [44] represented the background tensor as the product of a transformed
tensor and a low-rank matrix. However, these methods pay primary attention to the low-
rank of the spectral dimension of the tensor, neglecting the low-rank information in the
spatial dimensions. The dictionary, which maps the HSI into multiple linear subspaces,
plays a crucial role in the reconstruction of the background component. To achieve an
effective separation of background and anomalies, the dictionary should primarily contain
background information. Although some methods choose the original data themselves as
the dictionary, they may still contain anomalies that can adversely affect the background
reconstruction process.

To address these issues, we propose a multi-dimensional low-rank (MDLR) strategy
for HSI anomaly detection. Unlike the existing tensor-based methods that construct one
background tensor, our approach constructs three background tensors, two capturing the
spatial dimension and one representing the spectral dimension. Using the tensor singular
value decomposition (t-SVD) technique, we obtain the f -diagonal tensor S , characterizing
the background. To enforce low-rankness in the background tensor, we apply the weighted
Schatten p-norm minimization (WSNM) to the slices of S . Finally, the three background
tensors are merged into a single background tensor. In addition, anomalies in the HSI tend
to occur at consistent spatial locations across all spectral bands and exhibit a slight spectral
density. To capture this property, we impose a joint spectral–spatial sparsity on the anomaly
tensor using the LF,1 norm. The main contributions of this work can be summarized
as follows:

1. Low-rankness along three dimensions in the frequency domain is exploited. Through
the low-rank property analysis of the tensor along different dimensions, we found that
it is not sufficient to measure the low-rankness along only one dimension. Therefore,
multi-dimensional low-rankness is embedded into different tensors with t-SVD along
different slices. These tensors are then fused to form a background tensor that captures
the low-rank characteristics across all three dimensions and enables the MDLR method
to effectively explore more comprehensive background information.

2. To enforce low-rank in the background tensor, WSNM is applied to the frontal slices
of the f -diagonal tensor, which enhances the preservation of the low-rank structure in
the background tensor.

The rest of this paper is organized as follows. In Section 2, notations and preliminaries
are introduced. The proposed multidimensional low-rank model is presented in detail in
Section 3. The experimental results are demonstrated in Section 4. The conclusion is given
in Section 5.

2. Notations and Preliminaries

In this section, we introduce the notations and preliminaries used in this paper. The
column vectors are represented by lowercase letters, e.g., x. The matrix is represented by
bold capital letters, e.g., X. An HSI with w rows, h columns, and d spectral bands can be
naturally represented as a third-order tensor, X ∈ Rw×h×d. The discrete Fourier transform
(DFT) of X along the spectral dimension can be written as X̂ = fft(X , [], 3). The inverse
DFT of X̂ is written as X= ifft(X̂ , [], 3). X ∗ represents the conjugate transpose of X . X (i) is
the i-th frontal slice of X . The block circulant matrix bcirc(N ) of N ∈ Rw×h×d is defined
as follows:

bcirc(N ) =

⎡⎢⎢⎢⎢⎣
N (1) N (d) N (d−1) . . . N (2)

N (2) N (1) N (d) · · · N (3)

...
. . . . . . . . .

...

N (d) N (d−1) . . . N (2) N (1).

⎤⎥⎥⎥⎥⎦
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The block vectorization operation bvec(·) of N and its inverse operation bvfold(·) are
denoted as:

bvec(N ) =

⎡⎢⎢⎢⎢⎣
N (1)

N (2)

...
N (d)

⎤⎥⎥⎥⎥⎦, bvfold(bvec(N )) = N .

Definition 1 (Tensor product). The product of three-order tensor N ∈ Rn1×n2×n3 and
M ∈ Rn2×n4×n3 is A ∈ Rn1×n4×n3 defined as follows:

A = N ∗M = bvfold(bcirc(N ) ∗ bvec(M)). (3)

Definition 2 (Slices of Tensor). There are three types of slices in a tensor: that is, horizontal slices
Xi::, lateral slices X:j:, and frontal slices X::k.

Definition 3 (Identity Tensor). The identity tensor I∈ Rn1×n2×n3 is defined by
I(:, :, 1) = eye(n1, n2) , I(:, :, 2 : n3) = 0, where eye (n1, n2) is an identity matrix (n1 × n2).

Definition 4 (Conjugate Transpose). The conjugate transpose of a tensor X ∈ Rn1×n2×n3 is
denoted as X ∗ with

X̂ ∗(i) = (X̂ (i))T , i = 1, 2, ..., n3. (4)

Definition 5 (Orthogonal Tensor). The orthogonal tensor D satisfies D∗ ∗ D = D ∗D∗ = I .

Definition 6 (t-SVD). The singular value decomposition of a tensor X ∈ Rw×h×d can be decom-
posed into the product of three three-order tensors.

X = U ∗ S ∗ V∗, (5)

where U ∈ Rw×w×d and V ∈ Rh×h×d are orthogonal tensors and S ∈ Rw×h×d is an f -diagonal
tensor. The procedure of t-SVD is described in Algorithm 1.

Definition 7 (Tensor Tubal Rank). For a tensor X ∈ Rn1×n2×n3 with t-SVD X = U ∗ S ∗ V∗,
its tubal rank is the number of non-zero tubes of S :

rankt(X ) = #{k : S(k, k, :) �= 0}. (6)

Definition 8 (Tensor Nuclear Norm(TNN)). The TNN of a tensor X ∈ Rn1×n2×n3 is the sum of
singular values of all front slices of X̂ , that is,

‖X ‖∗ :=
n3

∑
k=1
‖X̂ (k)‖∗. (7)

3. Proposed Method

An illustration of the proposed model is shown in Figure 1. Figure 1a illustrates the
different dimension low-rank property of the HSI in the frequency domain. To exploit the
low-rankness along different dimensions, we combine these three different dimensional
tensors to form the background tensor and apply tensor low-rank and sparse decomposition
to extract the sparse anomaly object from the low-rank background. Final detection map M

can be obtained via the sparse S by computing
√

∑d
k=1 |S(i, j, k)|2. We will introduce each

part in detail in the following subsections.
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Figure 1. Illustration of the proposed model for HSI anomaly detection. (a) Multi-dimensional
low-rank in frequency domain. (b) Tensor low-rank and sparse decomposition. (c) Detection map.

3.1. Tensor Low-Rank Linear Representation

LRR uses a dictionary to explore low-rank linear representations of HSI, but the matrix-
based approach breaks the tensor structure inherent in HSI. To overcome this limitation,
tensor LRR is proposed, which incorporates the t-product to preserve the spatial structure
of the tensor. Given a tensor Y ∈ Rw×h×d, it can be decomposed using the tensor LRR
formulation as follows:

Y = A ∗ X + S , (8)

where X is the low-rank background tensor, S is the sparse anomaly tensor, and A is the
dictionary. Equation (8) aims to construct the low-rank and sparse components exactly and
efficiently by dictionary A from HSI data.

min
X ,S

rankt(X ) + λsparse(S)

s.t. Y = A ∗ X + S , (9)

where rankt(X ) denotes the tensor tubal rank function [45], λ is a regularization parameter
of the S , sparse(S) is the sparse norm.

3.2. Weighted Schatten p-Norm Minimization

The problem of determining the rankt(X ) is known to be NP-hard. To approximate
the rank of a matrix, a commonly used method is nuclear norm minimization (NNM),
which calculates the sum of the singular values of the matrix X . NNM is typically solved
using a singular value thresholding algorithm. However, to obtain a more accurate low-
rank approximation, other methods [46–48] have been developed. These methods treat
different singular values individually rather than uniformly as in NNM, resulting in
improved performance. In WSNM, each singular value is assigned a specific weight,
and the optimization problem aims to minimize the weighted Schatten p-norm of the
matrix X ∈ Rh×w.

‖X‖w,Sp =

(
min{n,m}

∑
i=1

wiσ
p
i

) 1
p

, (10)
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where σi is the i-th singular value of X, wi is the weight of σi, w=[w1,. . . ,wmin(n,m)] is a
non-negative vector to constrain the single value of X. The weighted Schatten p norm
minimization problem can be effectively solved by the generalized soft thresholds. Given p
and wi, the specific threshold can be obtained by:

GST(wi, p) = (2wi(1− p))
1

2−p + wi p(2wi(1− p))
p−1
2−p . (11)

The main procedures of this approach are shown in Algorithm 1. In this work, the
low-rank problem of HSI is solved in tensor form and the nuclear norm of the matrix is
converted to the tensor nuclear norm (TNN). The WSNM is applied to the forward slices
of S .

3.3. Mutil-Dimensional Tensor Low-Rank Norm

According to the tensor LRR, tensor X can be expressed as the linear combination of
the tensor dictionary A. The choice of the dictionary plays a crucial role in the background
tensor reconstruction. Conventional dictionary construction methods are often sensitive
to noise and require separate construction for different datasets, making the anomaly
detection process complicated. When the dictionary is an identity tensor, the tensor LRR
is converted to tensor robust principal component analysis (TRPCA) [49]. By combining
WSNM and TRPCA, we have the following:

min
X ,S

‖X ‖w,Sp + λ‖S‖F,1

s.t. Y = X + S . (12)

In the field of HSI unmixing, a latent low-rank representation theory (LatLRR) has
been proposed [50]. LatLRR treats itself as a dictionary and learns its own rows and
columns separately to obtain two different background representations while incorporating
low-rank constraints. Motivated by this concept, we aim to explore the background tensor
and reorganize it from different directions of slices. To achieve this, we introduce three
background tensors: Xw,Xh,Xd ∈ Rw×h×d. We run WSNM separately on these three
tensors along different dimensional frontal slices. The proposed tensor-based method,
called multi-dimensional low-rank (MDLR), can be expressed as follows:

‖X ‖msp,∗ = μw‖Xw‖w,Sp + μh‖Xh‖w,Sp + μd‖Xd‖w,Sp , (13)

where 0 ≤ μw ≤ 1 , 0 ≤ μh ≤ 1, and μd = 1− μw − μh balance the contributions of Xw, Xh
and Xd. We call the reconstruction of the background tensor Xw, the reconstruction of the
background from the w dimension, Xh, the reconstruction of the background from the h
dimension, Xd the reconstruction of the background from the d dimension. Finally, our
model formulation can be written as:

min
X ,S

‖X ‖msp,∗ + λ‖S‖F,1

s.t. Y = X + S . (14)

3.4. Optimization Procedure

By introducing auxiliary Xw,Xh,Xd, Equation (12) can be written as the following
equivalent problem:

min
Xw ,Xh ,Xd ,S

μw‖Xw‖w,Sp + μh‖Xh‖w,Sp + μd‖Xd‖w,Sp + λ‖S‖F,1

s.t. X = Xw, X = Xh, X = Xd, Y = X + S . (15)
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The Lagrange multipliers E , Q1,2,3 are introduced and we use the ADMM to solve the
augmented Lagrange function. The optimization problem above is written as follows:

min
Xw ,Xh ,Xd ,S ,E

μw‖Xw‖w,Sp + μh‖Xh‖w,Sp + μd‖Xd‖w,Sp + λ‖S‖F,1

+
α

2
‖X − Xw +

Q1

α
‖2

F +
α

2
‖X − Xh +

Q2

α
‖2

F

+
α

2
‖X − Xd +

Q3

α
‖2

F +
α

2
‖Y − X − S +

E
α
‖2

F (16)

(1) UpdateX
X = argmin

X
α

2
‖X − Xw +

Q1

α
‖2

F +
α

2
‖X − Xh +

Q2

α
‖2

F

+
α

2
‖X − Xd +

Q3

α
‖2

F +
α

2
‖Y − X − S +

E
α
‖2

F. (17)

The closed-form solution of X can be obtained by taking the derivative of the above
objective function and setting it to zero, as follows:

X = (Y − S +
E
α
+Xw +Xh +Xd −

3

∑
i=1

Qi
α
)/4 (18)

(2) UpdateXw

Xw = arg min
Xw

μw‖Xw‖w,sp +
α

2
‖X − Xw +

Q1

α
‖2

F (19)

(3) UpdateXh

Xh = arg min
Xh

μh‖Xh‖w,sp +
α

2
‖X − Xh +

Q3

α
‖2

F (20)

(4) UpdateXd

Xd = arg min
Xd

μd‖Xd‖w,sp +
α

2
‖X − Xd +

Q3

α
‖2

F. (21)

The subproblem Xw,h,d can be solved using generalized soft-thresholding as shown in
Algorithm 1. Before applying the Algorithm 1, Xw should be converted to Xw ∈ Rd×h×w,
and then it must be reshaped again as Xw ∈ Rw×h×d after Algorithm 1. Similarly, Xh
should be converted to Xw ∈ Rw×d×h before Algorithm 1 and back to Xh ∈ Rw×h×d

after Algorithm 1.

(5) UpdateS
S = arg min

S
λ‖S‖F,1 +

α

2
‖Y − X − S +

E
α
‖2

F. (22)

Then, we have the following closed solution:

S(:, :, k) =

⎧⎪⎨⎪⎩
‖M(:,:,k)‖F+λ
M(:,:,k)‖F

M(:, :, k), λ < ‖M(:, :, k)‖F

0, otherwise
,

(23)

whereM = Y −X + E
α .

(6) Update Lagrange multiplier E and Q1,2,3

E = E + α ∗ (Y −X − S)
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Q1 = Q1 + α ∗ (X −Xw)

Q2 = Q2 + α ∗ (X −Xh)

Q3 = Q3 + α ∗ (X −Xd). (24)

The overall process of the proposed method is concluded in Algorithm 2. When the
optimization process is complete, the anomaly detection map M of HSI data can obtain by
the sparse anomaly tensor S as follows:

M(i, j) =

√√√√ d

∑
k=1
|S(i, j, k)|2. (25)

Due to the WSNM regularization, the solution process of the problem in Equations (19)–(21)
is actually not a convex optimization problem. Nevertheless, Xie et al. [51] prove that
WSNM is not convex, and if the weights satisfy 0 ≤ w1 ≤ w2 ≤ . . . wi, at least one
accumulation point satisfies (26). A convergence analysis can be found in Theorem 3
of WSNM.

lim
k→∞

‖Xk+1 −Xk‖2
F + ‖Sk+1 − Sk‖2

F. (26)

Algorithm 1 WSNM based on t-SVD.

Input: X ,Q, p, α, τ

1: P = X + Q
α

2: P̂ = fft(P , [], 3)
3: for i = 0,1,..., [ d+1

2 ]
4: [Û (:, :, i), Ŝ(:, :, i), V̂(:, :, i)] = SVD(P̂(:, :, i));
5: Ŝ = Ŝ(:, :, i);
6: for j = 1 :size(diag(Ŝ))
7: wj = τ(2

√
2(( 1

α2 )
√

wh)/(diag(Ŝ(j))1/p + 1−6);
get t by calculating Equation (11);

8: if |diag(Ŝ(j))| ≤ t , then

9: diag(Ŝ(j)) = 0 ;
10: else

11: k = 0, μk = |diag(Ŝ(j))|
12: for k = 0, 1, ..., J do

13: μk+1 = |diag(Ŝ(j))| − wj p(μk)
p−1;

14: k = k + 1;
15: end

16: diag(Ŝ(j)) =sgn(diag(Ŝ(j))μk;
17: Ŝnew(:, :, i) =diag(Ŝ(j));
18: end
19: end
20: end

21: for i = [ z+1
2 ] + 1, ..., z

22: Û (:, :, i) = conj(Û (:, :, z− i + 2))
23: ˆSnew(:, :, i) = conj( ˆSnew(:, :, i))
24: V̂(:, :, i) = conj(V̂(:, :, z− i + 2))
25: U = ifft(Û , [], 3),Snew = iftt(Ŝnew, [], 3),V = ifft(V̂ , [], 3)
26: end
Output: Z = U ∗ Snew ∗ V∗;
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Algorithm 2 MDLR for HSI anomaly detection.

Input: HSI tensor Y , μw,h,d, λ, α
Initializtion: X , S , Xw,h,d = 0, Q1,2,3, E = 0, i = 0.
If i<maxiter or satisfy Equation (11).

Update X by Equation (18);
Update Xw,j,d by algorithm (2);
Update S by Equation (23);
Update E and Q1,2,3 by Equation (24);

End
compute the anomaly detection map M by Equation (25);
Output: anomaly detection map M.

3.5. Computational Complexity

Given a tensor X ∈ Rw×h×d, the computational complexity of our model mainly
consists of the following two parts: (1) solving the subproblem of Equations (19)–(21)
depends on the t-SVD, and the complexity is approximately O(h3d + d3h + h3w); (2) for
Equation (22), O(wh2d + h(w + h)dlog(d) is required. Therefore, the total main cost of
the proposed model is O(h3d + d3h + h3w + wh2d + h(w + d)dlog(d)). The computational
complexity is studied by comparing their running time on San Diego data as shown
in Table 1.

Table 1. Running time of all compared algorithms on San Diego.

HSI Data RX LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR MDLR

San Diego 2.054 38.46 56.394 214.343 256.589 34.344 8.312 132.46

4. Experimental Results

In this section, we verify the effectiveness of our method on an extensive dataset
compared with the SOTA methods. Standard metrics, such as the 2D receiver operating
characteristic (ROC) curve [52] and the area under the curve (AUC) metric [53], are used to
quantify the results quantitatively. The ROC curve plots the probability of detection (PD)
against the false alarm rate (FAR) for all possible thresholds. The AUC is calculated by
integrating the area under the ROC curve. To effectively evaluate the detection performance,
3D ROCs [54] generated from 2D ROC and separability maps are also used for quantitative
comparison. All the experimental algorithms are performed in MATLAB 2020a on a
computer with Core i9-11900KF 3.50GHz CPU and 32-GB of RAM in Windows 11.

4.1. HSI Datasets

San Diego: The dataset is part of a collection captured by the AVIRIS sensor [55],
which measures 100 × 100 × 189 and consists mainly of roofs, shadows, and grass, of
which aircrafts are considered anomalies to be detected.

HYDICE-Urban: The dataset is collected by a hyperspectral digital imagery collection
experiment (HYDICE) sensor [56] for an urban area, including one vegetation area, one
built-up area, and several built-up areas of roads and some vehicles. Its spatial resolution is
1 meter. The size of the crop plus the water vapor removal is 80 × 100 × 175. The 21 pixels
occupied by vehicles and roofs of different sizes are used as anomalies.

Airport 1–4: The dataset consists of four images of 100 by 100 pixels in 205 bands taken
by the airborne visible/infrared imaging spectrometer (AVIRIS) sensor [57]. As above, they
include surface vegetation, roads, and buildings as background. Aircraft flying at different
altitudes are treated as anomalies.

Urban 1–4: This dataset of four urban scenes is obtained from a class of sensors as
with the airport dataset, with pixels of 100 × 100 and a band number between 190 and 210.
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4.2. Compared Methods and Parameter Setting

In this section, we briefly introduce the compared anomaly detection methods and their
parameter settings. The parameter values of the compared methods in our experiments are
tuned according to the corresponding references.

• RX [19]: The classical anomaly detection algorithm calculates the Mahalanobis dis-
tance between the pixel under test and the background pixels. The parameter λ of RX
is set to 1/min(w,h).

• LSMAD [29]: A method based on low-rank sparse matrix decomposition (LRaSAM)
with Mahalanobis distance. We set r = 3, k = 0.8.

• LRASR [34]: Learn low-rank linear representation (LRR) of backgrounds by con-
structing dictionaries. The parameters λ and β of LRASR are set to 0.1 and 0.1
in LRASR.

• GTVLRR [35]: Adding total variation (TV) and graph regularization to the restructur-
ing of the background in the LRR-based method, we set λ = 0.5, β = 0.2, and ω = 0.05
according to the GTVLRR.

• PTA [40]: According to the properties of the spatial and spectral dimensions of the
HSI, PTA adds TV into spatial dimensions and low-rank into spectral dimensions. The
parameters α, τ ,β of PTA are set to 1, 1, and 0.01 separately.

• DeCNN-AD [36]: Using convolutional neural network (CNN)-based denoisers as the
prior for the dictionary representation coefficients, the cluster number of DeCNN-AD
is set to 8 and λ, β are set to 0.01.

• PCA-TLRSR [43]: The first method extends LRR to tensor LRR for HSI anomaly
detection. The reduced dimensions of PCA are tuned according to PCA-TLRSR and
parameter λ is set to 0.4.

4.3. Detection Performance
4.3.1. San Diego

The false-color image, ground-truth map, and detection maps of all compared methods
are shown in Figure 2. In the San Diego detection maps, methods such as RX, LSMAD,
and LRASR fail to accurately detect the three aircrafts in the upper right corner of the
HSI data. DeCNN-AD and GTVLRR have difficulty clearly identifying the outline of the
aircrafts. PTA can observe the aircrafts, but it contains some background information, such
as road buildings. PCA-TLRSR obtains a relatively good performance by recovering the
outline of the aircrafts with less background information. In addition, our method can
also capture more detailed features of the aircrafts. Figure 3 shows the anomaly detection
evaluation metrics of different anomaly detectors for the San Diego dataset, including
3D ROC curves, 2D ROC curves, and separability maps. The proposed method has a
slightly higher detection probability than PCA-TLRSR in 3D and 2D ROC curves. The
gap between the background box and the anomaly box shows the degree of separation
between background and anomaly on the separability maps. The separability maps on
the San Diego dataset are shown in Figure 3. The proposed MDLR obtains a larger gap
between the background and the anomaly box over all the other methods compared, which
indicates that it has a better ability to separate the background and anomaly. The AUC
values in the second row of Table 2 provide further evidence that our method achieves the
highest performance on the San Diego dataset.

4.3.2. HYDICE-Ubran

The false-color image, ground-truth map, and detection maps of the competitive
methods are visually shown in Figure 4. In the detection maps of all compared methods
on the HYDICE-Urban dataset, RX and LSMAD have difficulty in clearly recovering the
anomaly information. PTA and PCA-TLRSR can observe the anomaly information, but they
also contain a significant amount of background information, such as roads. DeCNN-AD,
LRASR, GTVLRR, and our proposed method can clearly identify the anomaly information.
However, both LRASR and GTVLRR struggle to detect the anomaly in the lower left corner
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of the image. Our proposed method shows an improvement in terms of visual quality and
achieves a higher AUC value compared to other methods, as shown in Table 2.

Table 2. AUC values of all compared algorithms on different datasets.

HSI Datasets RX LSMAD LRASR GTVLRR DeCNN-AD PTA PCA-TLRSR MDLR

San Diego 0.8885 0.9773 0.9853 0.9795 0.9901 0.9946 0.9957 0.9976

HYDICE-Urban 0.9856 0.9901 0.9918 0.9856 0.9935 0.9953 0.9941 0.9975

Airport-1 0.8220 0.8334 0.7854 0.9013 0.8503 0.9207 0.9478 0.9538
Airport-2 0.8403 0.9189 0.8657 0.8695 0.9204 0.9428 0.9697 0.9738
Airport-3 0.9228 0.9401 0.9408 0.9295 0.9434 0.9355 0.9574 0.9590
Airport-4 0.9526 0.9862 0.9723 0.9875 0.9897 0.9875 0.9943 0.9953

Urban-1 0.9907 0.9829 0.9797 0.9605 0.9820 0.9826 0.9902 0.9835
Urban-2 0.9946 0.9836 0.9628 0.8539 0.9973 0.9970 0.9941 0.9980
Urban-3 0.9513 0.9636 0.9415 0.9385 0.9394 0.9578 0.9833 0.9812
Urban-4 0.9887 0.9809 0.9575 0.9205 0.9868 0.9907 0.9869 0.9966

Figure 2. Detection maps obtained by all compared methods on San Diego dataset. (a) HSI. (b) RX.
(c) LSMAD. (d) LRASR. (e) GTVLRR. (f) Ground-truth. (g) DeCNN-AD. (h) PTA. (i) PCA-TLRSR.
(j) Ours.

(a) (b) (c)

Figure 3. Anomaly detection evaluation metrics obtained by different methods on the San Diego
dataset. (a) Three-dimensional (3D) ROC curves, (b) 2D ROC curves, (c) separability map.

4.3.3. Airport 1–4

The AUC values of four airport datasets are provided in Table 2. Our method has
achieved the highest values. The false-color images, ground-truth maps, and detection
maps of four airport dates are demonstrated in Figure 5. In the detection maps of Airport-1,
RX, LSMAD, LRASR, and DeCNN-AD datasets, it is difficult to distinguish the aircrafts.
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GTVLRR, PTA, PCA-TLRSR, and ours can distinguish the aircraft in the middle, but they
contain a lot of roof information and the aircraft in the upper left corner is not visible.
In the detection maps of Airport-2, our method can clearly observe the middle plane of
the figure with less background information compared to other methods, but does not
fully preserve its edge information due to the effect of some mixed pixels. Compared to
the ground truth of Airport-3, the detection maps of all comparison methods can barely
detect the outline of an aircraft. This indicates that the existing methods are not sensitive to
detecting dense small targets and are easily contaminated by background information. In
the detection maps of the Airport-4 dataset, our detection result shows a clear outline of
the aircraft compared to other methods. There is no interference from road information
compared to LSMAD, LRASR, DeCNN-AD, GTVLRR, PTA, and PCA-TLRSR. The first
row of Figures 6 and 7 show the 2D and 3D ROC curves of different anomaly detectors for
Airport 1–4. They demonstrate that our method produces detection maps with relatively
little interference from background information. The separability maps on the Airport
dataset are shown in the first row of Figure 8. The compared methods fail to effectively
separate the background boxes and anomaly boxes, while the proposed MDLR achieves a
bigger gap.

Figure 4. Detection maps on HYDICE-Urban dataset obtained by all compared methods. (a) HSI.
(b) RX. (c) LSMAD. (d) LRASR. (e) GTVLRR. (f) Ground-truth. (g) DeCNN-AD. (h) PTA. (i) PCA-
TLRSR. (j) Ours.

Figure 5. Detection maps obtained by all compared methods on Airport-1 (first line), Airport-2
(second line), Airport-3 (third line), and Airport-4 (forth line) datasets.
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Figure 6. Two-dimensional (2D) ROC curves obtained by all compared methods. (a) Airport-1,
(b) Airport-2, (c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.

Figure 7. Three-dimensional (3D) ROC curves obtained by all compared methods. (a) Airport-1,
(b) Airport-2, (c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.

4.3.4. Urban 1–4

The AUC values in Table 2 are optimal for all datasets except Urban-1 and Urban-3.
For the Urban-1 dataset, from the detection maps shown in Figure 9 we can observe clear
lines running through the maps in LSMAD, LRASR, GTVLRR, DeCNN-AD, PTA, and our
method. However, the detection map of PCA-TLRSR is difficult to interpret. PCA-TLRSR
uses PCA for dimensionality reduction, which aims to reduce noise in the image. The
presence of noise in a particular image may have hindered the achievement of optimal
results. In the false-color image of Urban-3, there are many large and obvious targets in
the background. In the third row of Figure 9, the detection maps of RX and LSMAD barely
show the anomaly targets. Other detection algorithms can detect the anomaly targets but
retain most of the background contour information. In the detection maps of Urban-2
and Urban-4, compared to the detection maps obtained by other algorithms and the ROC
curves in the second row of Figures 6 and 7 obtained by other methods, our method obtains
a clearer and more accurate observation of the anomalies. In the separability maps of
the Urban dataset in Figure 8, it can be seen that the background boxes and the anomaly

212



Remote Sens. 2024, 16, 74

boxes of proposed MDLR are obviously separated, which also proves that our method can
achieve effective separation of background and anomaly.

Figure 8. Separability maps obtained by all compared methods. (a) Airport-1, (b) Airport-2,
(c) Airport-3, (d) Airport-4, (e) Urban-1, (f) Urban-2, (g) Urban-3, (h) Urban-4.

Figure 9. Detection maps obtained by all compared methods on Urban-1 (first line), Urban-2 (second
line), Urban-3 (third line), and Urban-4 (forth line) datasets.

4.4. Discussion of Multi-Dimensional Low-Rank

In this section, we analyze the necessity of reconstructing the background with multi-
dimensional low-rank.

The discussion on single-dimensional and three-dimensional low-rank: The results
presented in Table 3 show that reconstructing the background along a multi-dimensional
(w, h, d dimension) gives significantly higher AUC values compared to reconstructing
along a single-dimensional (d dimension). This improvement is evident across all datasets,
with notable increases in AUC values for the HYDICE-Urban and Airport-1 HSI datasets.
Specifically, the AUC values for anomaly detection increased by 4 percent and 6 percent
for HYDICE-Urban and Airport-1 datasets, respectively, compared to the one-dimensional
reconstruction. These improvements demonstrate the benefit of using multi-dimensional
information to effectively separate the background from anomalies in the HSI data. By
considering the data from multiple dimensions simultaneously, the proposed method is
able to capture more comprehensive and discriminative information about the background,
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leading to an improved detection performance. This highlights that multi-dimensional has
an advantage over single-dimensional in separating background and anomaly.

Table 3. AUC values of single-dimensional and multi-dimensional low-rank.

HSI dataset San Diego Airport-1 Airport-2 Airport-3 Airport-4

S-dimensional 0.9966 0.8957 0.9655 0.9345 0.9921
M-dimensional 0.9976 0.9538 0.9738 0.9590 0.9953

HSI dataset HYDIE-Urban Urban-1 Urban-2 Urban-3 Urban-4

S-dimensional 0.9546 0.9619 0.9928 0.9527 0.9966
M-dimensional 0.9975 0.9835 0.9980 0.9812 0.9966

The discussion on two-dimensional and three-dimensional low-rank: From the
results shown in Figure 10, it can be seen that the AUC values obtained by reconstructing
the background with different combinations of two dimensions are different. In the case
of Airport-1 in Figure 10a,b, reconstructing the background with Xd and Xw achieves
higher AUC values compared to reconstructing with Xd and Xh. On the other hand, for
Airport-3 in Figure 10c,d, reconstructing the background with Xh and Xw yields higher
AUC values compared to reconstructing with Xd and Xh. These results indicate that there
is no fixed combination of two dimensions that consistently gives the best performance for
background tensor reconstruction. The optimal combination may vary depending on the
specific dataset and the characteristics of the HSI data. Therefore, it is important to explore
and analyze the relationship between different dimensional background tensors to achieve
the best reconstruction results.

(a) (b) (c) (d)

Figure 10. AUC value bars obtained from coefficients μ via the reconstruction of the background
with two different dimensions. (a) Airport-1: μw and μh, (b) Airport-1: μw and μd, (c) Airport-3:
μw and μh, (d) Airport-3: μh and μd.

In the analysis of the reconstruction of the background along two different dimensions
of the HSI, the focus is on investigating the relationship between these dimensions. For this
purpose, the experimental datasets Airport-1 and Airport-3 are selected. Two dimensions
of the data are chosen to reconstruct the background, resulting in four different comparison
experiments: (a) Reconstruction using Xd and Xh from Airport-1; (b) Reconstruction
using Xd and Xw from Airport-1; (c) Reconstruction using Xd and Xh from Airport-3;
(d) Reconstruction using Xh and Xw from Airport-3. The aim of these experiments is to
investigate the performance and effectiveness of background reconstruction when using
different combinations of two dimensions.

Effects of coefficient μ in two reconstructed background tensors: This study in-
vestigates the relationship between the reconstructed background tensors from different
dimensions, which aims to better understand their impact on anomaly detection per-
formance. The coefficients between two dimensions are varied in the range [0:0. 1:1] so
that the results can be observed when each dimension acts alone and when two dimen-
sions work together. The AUC values of the comparison experiments are visualized in
Figure 10. In Figure 10a, the individual reconstruction of Xd in Airport-1 achieves an accu-
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racy of 0.8922, while the individual reconstruction of Xh only achieves an accuracy of 0.8602.
However, when Xd and Xh are combined in the reconstruction, they achieve a maximum
AUC value of 0.8947. Similarly, in Figure 10b, the individual reconstruction of Xd in Airport-
1 gives an AUC of 0.8922, while the individual reconstruction of Xw gives an AUC of 0.9487.
However, their combination leads to a maximum AUC value of 0.9518. The same trend
can be seen in Figure 10c,d for Airport-3. From Figure 10a,c, it is clear that both Airport-1
and Airport-3 benefit from the background reconstruction using Xd and Xh. Interestingly,
the coefficients of the reconstructed background from the same dimensions differ between
the two datasets, indicating that the relationship between the reconstructed background
tensors can vary for different datasets. The final AUC values in Table 2 also support the
effectiveness of reconstructing the background along multiple dimensions. Although the
AUC values of Airport-1 and Airport-3 in Figure 10 are slightly lower, they still demonstrate
the validity of the multi-dimensional reconstruction approach in improving the anomaly
detection performance.

4.5. Parameter Tuning

In this section, we focus on analyzing the effect of the values of λ and p on the
AUC results.

(1) Effects of parameter λ: The influence of parameter λ on model performance was
analysed on four HSI datasets. The parameter λ was selected from the set [0.001, 0.005,
0.01, 0.05, 0.1, 1, 2] while keeping the other parameters fixed. AUC value curves with
respect to λ on four datasets are shown in Figure 11a. The AUC values of the San Diego,
HYIDE-Urban and Airport-4 datasets reach their maximum value when λ is equal to 1.
Airport-1 and Airport-2 datasets both reach their maximum value when λ is 2. Airport-3
has a downward trend when λ is 1. For the experiment as a whole, when λ is 0.1 or 1, the
AUC values are relatively stable. So for San Diego, HYDICE-Urban, and Airport-4 datasets,
λ is set to 1. λ is set to 0.1 on Airport 1-3.

(2) Effects of parameter p: The AUC value curves for the parameter p are shown
in Figure 11b. The parameter p has been chosen in the range [0.1, 1]. As the value of p
increases, the AUC values on different HSI datasets start to improve. The growing trend of
the AUC values for San Diego, HYDICE-Urban, Airport-2, Airport-3, and Airport-4 datasets
tends to level off when p reaches 0.6. However, the AUC value of Airport-1 continues to
increase as p increases. Based on the AUC value curves, the following choices of p are
made. For the San Diego, HYDICE-Urban, Airport-1, and Airport-4 datasets, p is set to 1.
For the Airport-2 dataset, p is set to 0.9. For the Airport-3 dataset, p is set to 0.6.

(a) (b)

Figure 11. The effect of parameter tuning on AUC values. (a) AUC value curves with respect to λ on
four datasets; (b) AUC value curves with respect to p on three datasets.

5. Conclusions

In this paper, a novel multi-dimensional low-rank (MDLR) method is proposed for HSI
anomaly detection. The MDLR method exploits the low-rank properties of HSI from three
dimensions, namely the spatial and spectral dimensions. Multi-dimensional background
tensors are reconstructed. Weighted Schatten p-norm minimization is used to enforce the
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low-rank constraints. In addition, the LF,1 norm is used to penalize the anomaly tensor to
promote joint spectral–spatial sparsity. The optimization problem is solved using ADMM.
Experimental results on real HSI datasets demonstrate its effectiveness compared with
SOTA in terms of anomaly detection. However, one of the major limitations of MDLR is the
computational complexity introduced by the t-SVD operation, especially when dealing with
large spectral bands. In future work, we would like to try to incorporate dimensionality
reduction preprocessing techniques, which is a promising direction to take in order to
address this computational challenge.
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Abstract: Joint detection and tracking of weak underwater targets are challenging problems whose
complexity is intensified when the target is disturbed by reverberation. In the low signal-to-
reverberation ratio (SRR) environment, the traditional detection and tracking methods perform
poorly in tracking robustness because they only consider the target motion characteristics. Recently,
the kernel correlation filter (KCF) based on target features has received lots of attention and gained
great success in visual tracking. We propose an improved multi-kernel correlation filter (IMKCF)
tracking-by-detection algorithm by introducing the KCF into the field of underwater weak target
detection and tracking. It is composed of the tracking-by-detection, the adaptive reliability check,
and the re-detection modules. Specifically, the tracking-by-detection part is built on the multi-kernel
correlation filter (MKCF), and it uses multi-frame data weighted averaging to update. The reliability
check helps keep the tracker from corruption. The re-detection module, integrated with a Kalman
filter, identifies target positions when the tracking is unreliable. Finally, the experimental data pro-
cessing and analysis show that the proposed method outperforms the single-kernel methods and
some traditional tracking methods.

Keywords: active sonar; low signal-to-reverberation ratio; underwater target; tracking by detection;
kernel correlation filter

1. Introduction

Underwater target detection and tracking in active sonar systems has always been
a hot topic in underwater applications. The conventional approach to detect and track
underwater targets involves threshold detection, followed by data association and filtering
tracking [1–4]. However, practical sonar systems often encounter strong reverberation
interference. In this low signal-to-reverberation ratio (SRR) environment, only setting a
lower threshold can ensure that the target is not missed, but it also causes a lot of false
alarms [5,6]. The higher false alarm rate adversely affects target associations, thereby
increasing the risk of tracker drift during the tracking process.

In order to solve the problem of weak target detection and tracking in low SRR, the
methods commonly used at present can be categorized into three groups. The first group
involves traditional data association methods, such as joint probabilistic data association
(JPDA) [7,8] and multiple hypothesis tracking (MHT) [9,10]. However, these approaches
suffer from high computational costs when confronted with a high false alarm rate. The
second group focuses on methods based on random finite set (RFS) [11,12], which elimi-
nate the need for data association. These methods employ filtering techniques based on
the motion characteristics of the target. A crucial aspect of accurate tracking filtering is
establishing an appropriate motion model that aligns with the target’s motion type. The
filtering algorithms with multiple models (MMs) and the jump Markov system (JMS) have
been shown to be effective approaches for maneuvering target tracking [13–15]. In addition,
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Yue et al. established a multi-directional motion model set according to the motion char-
acteristics of the diver target [16]. However, due to the diverse underwater target motion
types, it is challenging to apply a single modeling method to all underwater targets of
interest. Furthermore, in environments with reverberation interference, the aforementioned
tracking methods face difficulties in accurately determining the target’s position solely
based on trajectory information. The third group involves deep learning methods, such as
Convolutional Neural Network (CNN) [17], Recurrent Neural Network (RNN) [18], and
Siamese Network [19]. These approaches typically require a substantial number of samples
for model training. However, in practical applications, it may not be feasible to collect a
sufficient amount of sample data.

Nevertheless, the kernel correlation filter (KCF) algorithm, proposed by Joao F. Hen-
riques et al., presents a promising solution for tracking multiple target types without the
need for predefined target motion models [20,21]. Presently, the KCF algorithm is primarily
used in the visual tracking field [22], and there has been no prior instance of its application
in underwater target tracking domestically or internationally. Hence, the primary contribu-
tion of this study lies in the application of the KCF algorithm to resolve the detection and
tracking challenges associated with underwater weak targets.

The effectiveness of single-feature-based tracking is limited due to the absence of
prior knowledge about the target in the model-free kernelized correlation filter (KCF) algo-
rithm [23–26]. To enhance robustness in tracking, researchers have explored multi-feature
fusion tracking methods [27–30], which leverage a shared kernel function with multiple
complementary features. However, these methods face challenges in achieving the optimal
solution because different features may require distinct kernel functions. To adaptively
use multiple complementary features, Tang et al. introduced multi-kernel learning (MKL)
into the correlation filtering algorithm to dynamically update multiple nonlinear kernels,
namely the multi-kernel correlation filter (MKCF) [31]. However, the MKCF algorithm only
utilizes adjacent frame information for filter updates, which could lead to model update
errors in the presence of reverberation occlusion. The second contribution of this paper is
to utilize weighted information from historical samples to adaptively solve the parameters
of multiple nonlinear kernels and make full use of multiple complementary features to
enhance the robustness and tracking accuracy of the long-term tracking process.

In scenarios with low SRR, the involvement of non-target information in training
frames may result in error propagation during the model update phase, increasing the risk
of drift. Thus, it becomes crucial to assess the reliability of tracking results and identify a
more dependable result when the tracking outcome is unreliable.

In terms of assessing the reliability of tracking results, Bolme [32] computed the peak-
to-sidelobe ratio (PSR) score of the relevant response, comparing it with a fixed threshold
to determine reliability. However, this method exhibited limited effectiveness in complex
environments. Wang et al. (their tracker is abbreviated as RRLT) [33] proposed a more
effective reliability criterion for evaluating the confidence of the current tracking result.
This criterion adaptively updates the mean value of multi-frame PSR scores as a threshold,
thereby improving the accuracy of evaluation results in complex environments. Regarding
tracking methods, the long-term correlation tracker (LCT) employs an online random fern
classifier to generate potential target locations [34], while Wang [33] utilizes a particle
filter to generate numerous candidate target positions around the previous frame’s target
position. Nonetheless, neither LCT nor the random RRLT tracker can successfully re-detect
a target that has been obscured for an extended period [35]. The third contribution of this
paper entails a real-time assessment of target tracking result reliability and proposes an
effective re-detection module. The reliability check module adopts the approach outlined
by Wang et al. [33] to evaluate the reliability of both detection and tracking results obtained
using the MKCF. When the tracking result is deemed unreliable, the re-detection module
utilizes the historical reliability tracking result to drive the Kalman filter, predicting the
target candidate position. Subsequently, several candidate positions are generated around
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this predicted position, following a Gaussian distribution. Finally, a stringent replacement
criterion is applied to determine the final tracking result.

In summary, this paper presents an improved multi-kernel correlation filter (IMKCF)
algorithm for robust detection and tracking of weak underwater targets. A novel adaptation
of the KCF algorithm from visual tracking to the domain of underwater multi-motion weak
target detection and tracking is proposed. To address the issue of limited robustness in
single-feature tracking, the weighted information from historical samples is utilized to
adaptively resolve the coefficients of multiple nonlinear kernels. The MKCF algorithm is
analyzed from a maximum likelihood perspective to determine the target position based
on the maximum likelihood criterion. Real-time estimation of the target tracking result
reliability is performed, and an effective re-detection module is introduced. The efficacy of
the algorithm is validated through the analysis of sea trial data.

The rest of this article is organized as follows: Section 2 introduces the target model and
sonar measurement model. Section 3 reviews the KCF algorithm. Section 4 introduces the
framework of the IMKCF tracking-by-detection algorithm and introduces the components
of each module in detail. Section 5 analyzes the performance of the algorithm by processing
experimental data. Section 6 summarizes the work of this paper.

2. Model Establishment

2.1. Target Model

Given the position of the target xk at time k denoted by xpk and ypk , and the correspond-
ing velocities vxk and vyk , the state of the target can be represented by xk =

[
xpk , ypk , vxk , vyk

]
.

The evolution of xk is formulated as a first-order Markov process,

xk|k−1 = p
(

xk
∣∣∣xk−1

)
(1)

where the p is the a priori probability density function. The specific form of p is determined
by the target model.

2.2. Measurement Model

The algorithm employs raw sonar data measurements in range-azimuth format. When
the influence of noise is disregarded, the correlation between the range, angle of the sonar,
and position of the target is established.⎧⎨⎩ rk =

√
x2

pk
+ y2

pk

θk = arctan
( xpk

ypk

)
.

(2)

At time k, the resolution of the measurement area is Nr × Nb. With the sonar position
serving as the reference point or origin, the measurement area is characterized by a distance
range [Rmin, Rmax], which is discretized into Nr distance units, and an azimuth range
[θmin, θmax], which is discretized into Nb azimuth units.

Nr =
2(Rmax − Rmin)

c
× Fs, (3)

where Fs is the sampling frequency, and Nb can be determined by the azimuth resolution
unit Δθ. The element zk(x, y) of the xth azimuth and yth distance cell in the measurement
zk is the signal echo intensity. zk(x, y) can be modeled as

zk(x, y) =
{

akh(x, y; xk) + wk if target is in (x, y)
wk otherwise

, (4)

where ak is the peak amplitude of the target, h is the point spread function, and wk is the
measured noise and reverberation of the sonar system at moment k.
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3. Preliminaries of the KCF Algorithm

The KCF algorithm involves three steps: training, detection, and updating. In the
training step, it aims to optimize the correlation filter parameter using the training feature–
label pairs {x i, yi}m

i=1. It maps the input x to a new space ϕ(x) with higher dimensions
and puts the ϕ(x) into the optimization process. The kernel function κ and the objective of
optimization are as follows.

κ
(
xi, xj

)
=
〈

ϕ(xi), ϕ
(
xj
)〉

. (5)

min
w

m

∑
i=1

(
yi −

m

∑
j=1

ajκ
(
xi, xj

))2

+ λ‖w‖2, (6)

where w is defined as

w =
m

∑
i=1

ai ϕ(xi). (7)

The solution of (6) is given by employing the circulant structure for fast training and
testing,

α = F−1
(

F(Y)
F∗(Kxx) + λ

)
, (8)

where the * indicates the complex conjugate, and F and F−1 denote the Fourier transform
and the inverse, respectively. Kxx denotes kernel matrix.

In the detection step, we can compute the probability of a new input z being from the
target feature.

Y′ = F−1(F ∗ (Kxz)F(α)). (9)

In the updating step, the reference feature x and the correlation filter parameters are
calculated as follows

xt = zt × η + (1− η)× xt−1, (10)

αt = αzt × η + (1− η)× αt−1, (11)

where η is the learning rate.
As above, the KCF can be performed on general machines due to its high computa-

tional efficiency. However, the performance of KCF is related to the features extracted.
Making full use of multiple complementary features can improve tracking accuracy and
robustness. Therefore, in our proposed algorithm, to avoid the interference of different
features in the single kernel, we use MKCF to assign a kernel for each feature.

4. Improved MKCF Tracking-by-Detection

This study aims to tackle the challenge of detecting and tracking weak targets with
various motion types in shallow sea environments. We propose an IMKCF tracking-by-
detection algorithm, which consists of three components: the MKCF tracking-by-detection,
the adaptive reliability check, and the re-detection modules. The overall framework of the
proposed approach is depicted in Figure 1.
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Figure 1. The IMKCF tracking-by-detection algorithm framework diagram.

4.1. The MKCF Tracking-by-Detection

Studies have shown that the incorporation of multiple kernels can improve the discrim-
inatory ability of classifiers in comparison to a single-kernel approach [36]. A prevalent ap-
proach is to employ a basis kernel, km(m = 1, · · · , M), and then view k

(
xi, xj

)
= bTk

(
xi, xj

)
as a composition of the basis kernels, where k

(
xi, xj

)
=

(
k1(xi, xj), · · · , kM(xi, xj)

)T,
b = (b1, · · · , bm)

T, ∑M
m=1 bm = 1, and bm ≥ 0. Therefore K = ∑M

m=1 bmKm, Km is the
base core of group m, whose elements are km

�j = km
(
xi, xj

)
. The optimization problem is

used to minimize the loss,

min
α,b

1
2

∥∥∥∥y− M
∑

m=1
bmKmα

∥∥∥∥2

2
+ λ

2 αT
M
∑

m=1
bmKmα = min

α,b
F(α, b)

s.t.
M
∑

m=1
bm= 1, bm ≥ 0, m = 1, · · · , M .

(12)

The optimal solution can be expressed as Equation (13), and the * indicates the optimal.

f ∗(x) =
l−1

∑
i=0

αib
Tk(xi, x). (13)

The diagram of the MKCF tracking-by-detection algorithm is presented in Figure 2.
In order to achieve localization robustness, the MKCF tracking-by-detection algorithm

uses the weighted average of historical samples to update the training coefficients α and b.
The optimization function is represented by

Fp
(
αp, bp

) ≡ 1
2

p

∑
j=1

M

∑
m=1

β
j
muj,m

F(α,b), (14)

where βj is the weight of the sample optimization function of the jth frame, uj,m
F(α,b) =∥∥∥yc − bm,pK

j
mαp

∥∥∥2

2
+ λbm,pαT

pK
j
mαp,j = 2, · · · , p,β1

m = (1− γm)
p−1,βj

m = γm(1− γm)
p−j,

αp =
(

α0,p, · · · , αl−1,p

)T
, bp =

(
b1,p, · · · , bM,p

)T,
M
∑

m=1
bm,p = 1, p is the number of historical

frames, γm ∈ (0, 1) is the learning rate, and K
j
m is the Gram matrix of kernel m. The new

optimization problem is
min
αp ,bp

Fp
(
αp, bp

)
s.t.

M
∑

m=1
dm,p = 1

dm,p ≥ 0, m = 1, · · · , M.

(15)
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First, given bp to solve αp, the above optimization problem becomes an unconstrained
optimization problem. Let ∇αp Fp

(
αp, bp

)
, then,

αp =

(
p

∑
j=1

M

∑
m=1

β
j
m

((
bm,pK

j
m

)2
+ λbm,pK

j
m

))−1

·
p

∑
j=1

M

∑
m=1

β
j
mbm,pK

j
myc. (16)

The efficient evaluation can be achieved through the utilization of FFT.

Ap ≡ F
(
αp
)
=

p
∑

j=1

M
∑

m=1
β

j
mF
(

bm,pk
j
m

)
� F(yc)

p
∑

j=1

M
∑

m=1
β

j
mF
(

bm,pk
j
m

)
�
(

F
(

bm,pk
j
m

)
+ λ

) . (17)

Set

Ap =
AN

p

AD
p

=

M
∑

m=1
AN

m,p

M
∑

m=1
AD

m,p

. (18)

when p = 1,
AN

m,1 = F
(

bm,1k1
m

)
� F(yc)

AD
m,1 = F

(
bm,1k1

m

)
�
(

F
(

bm,1k1
m

)
+ λ

)
.

(19)

when p > 1,

AN
m,p = (1− γm)AN

m,p−1 + γmF
(

bm,pk
p
m

)
� F(yc)

AD
m,p = (1− γm)AD

m,p−1 + γmF
(

bm,pk
p
m

)
�
(

F
(

bm,pk
p
m

)
+ λ

)
.

(20)

The optimal solution α∗p can be attained by means of the aforementioned iteration.
Subsequently, when presented with the task of solving bp given αp, the optimization
problem outlined earlier transforms into a constrained optimization problem. To address
this issue, we initially posit it as an unconstrained optimization problem and subsequently
demonstrate that the resulting solution bp conforms to the prescribed constraint conditions.
Let ∇bp Fp

(
αp, bp

)
, then,

bm,p =

p
∑

j=1
β

j
m

(
K

j
mαp

)T(
2yc − λαp

)
2

p
∑

j=1
β

j
m

(
K

j
mαp

)T(
K

j
mαp

) , (21)

where m = 1, · · · , M, let

bm,p =
bN

m,p

bD
m,p

. (22)

when p = 1,

bN
m,p = (1− γm)bN

m,p−1 + γm

(
K

p
mαp

)T(
2yc − λαp

)
bD

m,p = (1− γm)bD
m,p−1 + 2γm

(
K

p
mαp

)T(
K

p
mαp

)
.

(23)

when p > 1,
bN

m,1 =
(
K1

mα1
)T
(2yc − λα1)

bD
m,1 = 2

(
K1

mα1
)T(

K1
mα1

)
.

(24)
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The FFT method enables the rapid calculation of K
p
mαp as F−1

(
F*
(

k
p
m

)⊙
F
(
αp
))

=

F−1
(

F*
(

k
p
m

)⊙
Ap

)
. Subsequently, the optimal solution can be attained through the

aforementioned iteration. Finally, the solution is verified to conform to the prescribed
constraint conditions.

The kernel function employed in this algorithm utilizes a Gaussian kernel, and the
elements within the kernel matrix can be computed using the following formula,

km
(
xi, xj

)
= exp

(
− 1

σ2
k

(∥∥xi − xj
∥∥2
))

. (25)

The exponent within the exponential function exp(·) used in this study is determined
by the negative normalized Euclidean distance between xi and xj. The higher the similarity
between xi and xj in Euclidean space, the greater the value of km

(
xi, xj

)
. This function is

commonly known as the likelihood function in filter-based tracking [37]. It enables the
calculation of a value that represents the likelihood of the measured real target given any
measurement. Based on the maximum likelihood estimation criterion, the target position is
estimated by determining the peak position yp of the correlation response y.

Figure 2. The diagram of the MKCF tracking-by-detection algorithm.

4.2. The Adaptive Reliability Check

In the correlation filter response map, a single peak is observed, and the sharpness
of the peak corresponds to the reliability of the tracking result. The work conducted
by Bolme [34] has proposed the idea that the peak-to-sidelobe ratio (PSR) possesses the
potential to serve as an indicator of the sharpness of the response peak. The PSR is
defined as

Sp =
max

(
Rp
)− μp

σp
, (26)

where Rp represents the response map calculated by the correlation filter at frame p, and μp
and σp are the mean and standard deviation of Rp, respectively. In cases where the tracking
result is unreliable, as exemplified in Figure 3, the response map may exhibit multiple
peaks with low values, resulting in a significant decrease in the PSR. Therefore, the PSR
can serve as an indicator of tracking result quality to a certain degree.
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Figure 3. From left to right: input image, correlation response map (with a 2D visualization), and
correlation response map (with a 3D visualization). (a) The target is in the target box. (b) The
non-target is in the target box.

It is not suitable to pre-define a constant threshold to judge the reliability of the current
tracking because the PSR fluctuates between different values due to the uncertainty factor in
different scenarios. In order to mitigate the impact of fluctuations in the PSR, we utilize the
historical frames to compute the average score to determine the reliability of the tracking
results. We combine the PSR values of the historical frames to C =

{
S2, · · · , Sp−1

}
with

the mean of M. Furthermore, we introduce a small coefficient τ1, whereby the PSR Si of
the ith frame is stored in C if Si < τ1 ·M and discarded otherwise. Finally, the evaluation
criteria of the MKCF algorithm adaptively changes from frame to frame as the average of
the multi-frame PSR is computed.

We check the reliability of the tracking result in each frame. The tracking result is
deemed unreliable if Si < τ1 · M (“Unreliability Check” in Figure 1). On the other hand,
the tracking result is likely to be reliable if it satisfies Si > τ2 · M (“Reliability Check”
in Figure 1) and the coefficient τ2 is higher than τ1. Once the initial tracking result is
determined to be unreliable, the re-detection module is initiated.

4.3. The Re-Detection Module

This section provides an introduction to the re-detection module, which plays a crucial
role in generating candidate target locations and determining whether to substitute the
initial tracking result with the optimal candidate target location. A key component of this
module is the implementation of the Kalman filter, which utilizes reliable tracking results
from the current frame for filter updates. Assuming that the motion between adjacent
frames adheres to a linear Gaussian distribution as prior knowledge, the motion model in
the Kalman filter can be established as a uniform linear motion model.

In cases where the track result is deemed unreliable, the target positions from the last
reliable tracking results are saved and used to drive a Kalman filter, providing an estimated
position positionp for the current target position with the variance in ψ

(
positionp

)
. Subse-

quently, N random locations gj(j = 1, · · · , N) are generated around the location positionp,

following a Gaussian distribution with the mean positionp and the variance ψ
(

positionp

)
.

With gj as the center, N target candidate bounding boxes Bj are generated. For the obtained

Bj, their response maps Rj
p are generated by Equation (6) and the maximum values of

these maps, qj = maxuRj
p(u), are also computed. Suppose q∗j is the maximum among

{q1, . . . , qN}. The best candidate bounding box of the target B∗j and the best candidate
location of the target g∗j are determined accordingly. Finally, the decision of whether the
best candidate location g∗j replaces the initial tracking result is determined through the
following two steps.

(1) If it does not meet the reliability check Si > τ2 ·M, the initial tracking result is used;
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(2) If it meets the reliability check Si > τ2 ·M, we compute the correlation response at
the initial tracking location, and the highest response value is recorded as kp. If (27) is met,
the initial tracking result is replaced with g∗j .

q∗j ≥ γ× kp, (27)

where γ is the penalty parameter, and the * indicates the optimal. If the above equation is
not satisfied, the initial tracking result is not replaced.

5. Experimental Results

In this section, we apply the proposed method on two test scenarios and compare it
with the traditional tracking methods and the original KCF algorithms. All the algorithms
are implemented in MATLAB 2018b, utilizing an Intel i5-6200U CPU with a main frequency
of 2.3 GHz and 8 GB of memory. We make a Table 1 to summarize the abbreviations of
various algorithms.

Table 1. The abbreviations of various algorithms.

Algorithm Abbreviation

Multiple Hypothesis Tracking MHT
Joint Probabilistic Data Association JPDA

Probability Hypothesis Density PHD
Multi-Feature Kernel Correlation Filter MF-KCF

Multi-Kernel Correlation Filter MKCF
Improved Multi-Feature Kernel Correlation Filter IMF-KCF

Improved Multi-Kernel Correlation Filter IMKCF

5.1. Evaluation Metrics

Evaluation metrics of performance are discussed below.
(1) Root-mean-square error (RMSE) and precision: the average distance error between the

estimated position and the actual position, defined as (28). Given a threshold M, the centroid
position is properly estimated if its RMSE is less than M. The RMSE accuracy is defined as the
percentage of the total number of frames for which the location is correctly estimated.

RMSE =

√
m

∑
i=1

[(
x̂i

k − xk
)2

+
(
ŷi

k − yk
)2
]
/m, (28)

where m is the number of Monte Carlo experiments.
(2) Intersection over union (IOU) and precision: IOU is defined as (29). A larger IOU

value indicates a more accurate estimation of the target. Given a threshold N, the target box is
considered correctly estimated if its IOU is greater than N. The IOU accuracy is defined as the
percentage of the total number of frames for which the target box is correctly estimated.

IOU =
E ∩ G
E ∪ G

, (29)

where E denotes the area of the estimated target and G denotes the area of the real target.
Operator ∩ represents intersection and ∪means the union.

(3) Frames Per Second (FPS): The number of frames processed per second, the greater
the FPS; the higher the efficiency of the algorithm.

5.2. Test Scenarios and Parameter Settings
5.2.1. Test Scenarios

In order to verify the effect of the proposed algorithm on tracking targets exhibiting
different types of motion, we have designed two scenarios. Notably, both the ball and the
diver have equivalent target strength, with the difference lying in their respective motion
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types. The experiment used a GPS device to record the actual motion trajectory of the
target. The GPS device is soft-connected to the target and floats on the ocean directly above
the target.

(a) Maneuvering target: As shown in Figure 4a, the small boat drags the ball to perform
a turning motion. Figure 5a is the sound speed profile of the experiment. The actual
trajectory of the target is plotted in Figure 5b, represented by the red line. Subsequent
to the 70th frame, the SRR is lower than 0 dB for the majority of frames within this
specific scene.

Figure 4. The test scenarios. (a) Maneuvering target. (b) Diver target.

Figure 5. (a) Sound speed profile. (b) The actual trajectory of maneuvering target in acoustic image.

(b) Diver target: As represented in Figure 4b, the closed diver moves in a Z-shaped
manner. The sound speed profile is shown in Figure 6a. The actual trajectory of the target
is plotted in Figure 6b, represented by the red line. In this scene, the SRR surpasses 0 dB for
the majority of frames, indicating a higher quality data set.
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Figure 6. (a) Sound speed profile. (b) The actual trajectory of diver target in acoustic image.

5.2.2. Parameter Settings

In this paper, we use the histogram of oriented gradient (HOG) and invariant moment
features. The HOG feature has nine gradient orientations, and the cell size is 4× 4. In
the KCF, it uses a single Gaussian kernel with parameter σ = 0.5 and the learning factor
η = 0.01. It is worth noting that the multi-feature KCF (MF-KCF) trains the tracker based
on the above features’ fusion. The MKCF uses two Gaussian kernels with parameters
σ1 = 0.3 and σ2 = 0.3 and learning factors η = 0.0175 and η = 0.018, respectively. Both
methods employ a regularization parameter of λ = 10−4 [38]. In the adaptive reliability
check module, the coefficients τ1 and τ2 are 0.75 and 0.9, respectively.

To address the issue of high-frequency noise caused by abrupt edges in samples after
the cyclic shift, this study uses the Hanning window when processing sample features. The
application of the Hanning window aids in smoothing boundaries and minimizing inter-
ference from background information, consequently enhancing overall tracking accuracy.
Furthermore, due to the potential decline in detection and tracking performance associated
with an excessive search area in the KCF, it becomes necessary to restrict the size of the
search area. Hence, the search area is limited to 2.5 times the size of the target box [39].

5.3. Data Processing and Analysis
5.3.1. Comparison with Traditional Tracking Algorithms

In this section, a comparison is made between the proposed algorithm and three
commonly used algorithms in underwater target detection and tracking: MHT, JPDA, and
PHD. To minimize target loss during thresholding, a relatively low threshold is adopted in
the data preprocessing stage. It should be noted that this approach can lead to an increased
probability of false alarms, resulting in an increased number of false targets, thereby adding
difficulties of data association and computational costs.

The outcomes of data processing for maneuvering and diver targets are depicted in
Figures 7 and 8. Analysis of these figures reveals that the proposed IMKCF algorithm
consistently maintains a relatively low RMSE across the majority of frames in both maneu-
vering and diver target tracking processes, when compared to the other three algorithms.
This superior performance can mainly be attributed to two factors. Firstly, our response
map, which is based on target features, effectively identifies target areas. Secondly, the
re-detection module with a Kalman filter estimates a reliable target location when the
tracking result is deemed unreliable.
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Figure 7. (a) RMSE with maneuvering target. (b) RMSE with diver target.

Figure 8. (a) RMSE precision with maneuvering target. (b) RMSE precision with diver target.

As shown in Figure 7, in the tracking of maneuvering targets, the three traditional
tracking algorithms perform poorly, particularly the PHD and MHT algorithms. Both
exhibit significant tracking drift at approximately 100 frames. The JPDA and PHD algo-
rithms demonstrate satisfactory performance in tracking the diver target, while the MHT
algorithm experiences tracking drift at about 70 frames. The JPDA algorithm excels in
cluttered environments as it does not require prior information about the target and clutter,
allowing for successful target tracking. Nevertheless, because this study focuses on a
single-target tracking scenario, the JPDA algorithm performs relatively well. In contrast,
the MHT algorithm necessitates prior information about the target and clutter, and the
computational complexity increases exponentially with the clutter density. To enhance
computational efficiency, we set a smaller value for N-scan pruning, but this compromises
the tracking performance of the algorithm. The PHD algorithm, which is based on RFS
theory, avoids the intricate correlation process associated with traditional methods and
exhibits high computational efficiency. In the data processing of the two scenarios, we
assume a uniform linear motion model for both the MHT and PHD algorithms. However,
this motion constraint is not robust in low SRR environments, leading to the failure of the
PHD algorithm in tracking maneuvering targets. Our proposed method surpasses these
algorithms by utilizing multiple features and incorporating reliability estimation to identify
a reliable re-detected target for self-correction.

Figure 8a,b display the percentage of frames within a given RMSE threshold for the
error between the estimated position and the true position of the maneuvering target
and the diver target, respectively. Analysis of these figures demonstrates that the IMKCF
algorithm outperforms the other three tested algorithms in terms of RMSE precision.
Specifically, when the RMSE threshold is set at 5, the IMKCF algorithm achieves an accuracy
rate close to 80%, while the other algorithms only have approximately 50% accuracy when
the RMSE threshold is 10.

5.3.2. Comparison with Original KCF Algorithms

In this section, a comparative analysis is conducted between the proposed algorithm
and three original KCF algorithms, namely, MF-KCF, improved MF-KCF (IMF-KCF), and
MKCF. Figure 9 illustrates the target position in the final frame and tracking outcomes
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for all four algorithms. It can be observed from the figure that both the MF-KCF and
MKCF algorithms fail to track the maneuvering target. Conversely, the IMF-KCF and
IMKCF algorithms, incorporating adaptive reliability checks and a re-detection module,
successfully track the target. At approximately the 70th frame, target tracking is inter-
fered with by reverberation, and the training samples are contaminated, resulting in error
propagation during model training and subsequent tracker drift. The IMKCF algorithm
checks real-time reliability on target tracking results and re-detects the target position when
deemed unreliable, preventing frame drift. The versatility of the re-detection module is
demonstrated by its successful implementation in both algorithms.

Figure 9. Track results (frame = 127).

To further elucidate tracking performance under low-SRR scenarios, Figure 10 presents
the frame-by-frame RMSE and IOU of maneuvering target tracking. Higher IOU values
and lower RMSE values signify more accurate tracking outcomes. As shown in Figure 10,
both the MF-KCF and MKCF algorithms lose track of the targets around the 70th frame.
The IMKCF algorithm outperforms the IMF-KCF algorithm, exhibiting relatively low RMSE
and high IOU values across most frames, indicating superior accuracy. This improvement
can be attributed to the MKCF tracking-by-detection module, which enables the algorithm
to make full use of the complementary features and improve tracking accuracy.

Figure 10. (a) RMSE. (b) IOU.

Figure 11a depicts the RMSE precision. The figure reveals that when the RMSE
threshold is set at 10, the IMKCF algorithm achieves nearly 100% precision, while the other
three algorithms fall below 60%. Additionally, Figure 11b demonstrates the IOU precision.
Notably, when the IOU threshold is set at 0.5, the IMKCF algorithm attains nearly 100%
precision, whereas the other three algorithms exhibit less than 60%. The results show that,
compared with the single-kernel correlation filter, the correlation filter based on multiple
kernels has greater advantages in tracking accuracy.
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Figure 11. (a) RMSE precision. (b) IOU precision.

Figure 12 illustrates the PSR curve during the tracking process of the MKCF and
IMKCF algorithms. It can be observed that the PSR of the MKCF algorithm experiences
a significant decline around the 70th frame, whereas the PSR of the IMKCF algorithm
fluctuates steadily throughout the tracking process. These findings indicate that the PSR
score serves as an indicator of tracking result reliability, and the adaptive reliability check
and re-detection modules within the IMKCF algorithm play a vital role in enhancing
tracking robustness.

Figure 12. The comparison of PSR between MKCF and IMKCF algorithms.

5.3.3. Algorithm Efficiency

Table 2 displays the PFS and average RMSE of the above algorithms. The results
indicate that the PHD algorithm has the highest FPS and computational efficiency but
exhibits the poorest tracking accuracy. In contrast, the KCF algorithms exhibit relatively
lower computational efficiency but has higher tracking accuracy compared to the classical
filtering algorithm. The analysis suggests that MKCF exhibits a slight improvement in
computational efficiency when compared MF-KCF. This implies that the incorporation of
an additional kernel in kernel correlation filtering does not result in a significant increment
in computational cost. Moreover, the results demonstrate that IMKCF achieves superior
tracking accuracy in comparison to both IMF-KCF and MF-KCF. Notably, Table 2 reveals
that the inclusion of a re-detection module can lead to an increase in computational cost, as
it carries out target re-detection when the tracking results are deemed unreliable.

Table 2. FPS and the average of RMSE.

MHT JPDA PHD MF-KCF MKCF IMF-KCF IMKCF

FPS 7.2 107.1 122.3 22.3 27.2 11.3 14.2

RMSEaver 44.82 10.26 50.83 19.94 33.52 9.6 3.86

6. Conclusions

In this paper, we propose an IMKCF algorithm to solve the challenging problem
of detecting and tracking weak targets with varying movements in a complex marine
environment. The IMKCF algorithm consists of three modules: the MKCF tracking-by-
detection, the adaptive reliability check, and the re-detection modules. The MKCF tracking-
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by-detection module employs a multi-frame data weighted average technique to adaptively
update the coefficients of multiple kernels, thereby enhancing tracking accuracy. We
conduct a comprehensive analysis of the MKCF algorithm using a maximum likelihood
perspective and prove that the target location can be precisely determined based on the
location of the maximum value of the correlation response. The remaining two modules
work collaboratively to improve the robustness of target tracking. In particular, the previous
reliable tracking results are utilized to drive a Kalman filter, generating a position estimate
when the tracking result is considered unreliable. A decision is then made about whether
to replace the original target position with the estimated one.

In data processing, we extracted HOG features and invariant moment features to
train the proposed IMKCF algorithm, which has been compared with traditional tracking
algorithms and original KCF algorithms. The experimental results demonstrate that our
proposed algorithm not only exhibits the capability of effectively tracking underwater
targets with diverse motion types but also achieves long-term robust tracking in low-SRR
environments. Moreover, the tracking accuracy of our algorithm surpasses that of the
single-core correlation filter. Currently, the method proposed in this paper is only suitable
for single-target tracking. In future research, we plan to delve deeper into the challenges
of multiple weak underwater target tracking. Additionally, we aim to mine more target
feature information to enhance the algorithm’s robustness.
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Abstract: Space-based infrared target detection can provide full-time and full-weather observation of
targets, thus it is of significance in space security. However, the presence of stars in the background
can severely affect the accuracy and real-time performance of infrared dim and small target detection,
making star suppression a key technology and hot spot in the field of space target detection. The
existing star suppression algorithms are all oriented towards the detection before track method and
rely on the single image properties of the stars. They can only effectively suppress bright stars with
a high signal-to-noise ratio (SNR). To address this problem, we propose a new method for infrared
dim star background suppression based on recursive moving target indication (RMTI). Our proposed
method is based on a more direct analysis of the image sequence itself, which will lead to more
robust and accurate background suppression. The method first obtains the motion information of
stars through satellite motion or key star registration. Then, the advanced RMTI algorithm is used to
enhance the stars in the image. Finally, the mask of suppressing stars is generated by an accumulation
frame adaptive threshold. The experimental results show that the algorithm has a less than 8.73%
leakage suppression rate for stars with an SNR ≤ 2 and a false suppression rate of less than 2.3%.
The validity of the proposed method is verified in real data. Compared with the existing methods,
the method proposed in this paper can stably suppress stars with a lower SNR.

Keywords: star background suppression; recursive moving target indication; dim space target
detection

1. Introduction

The utilization of space resources has led to an increase in space debris, asteroids,
and failed satellites, which pose a serious threat to working satellites [1,2]. Ensuring space
security is a vital mission, and the ability to surveil these space targets is essential in
achieving this goal [3,4]. Space infrared remote sensing provides full-time and full-weather
observation of objects, making it the main tool for surveilling space targets. However,
due to the long detection range, limited resolution, low radiant energy, and small target
size, these space targets appear as dim point targets in the focal plane [5–9]. These low
signal-to-noise ratio (SNR) point targets are inherently difficult to detect, especially with
complex backgrounds and noise [10–14]. Therefore, background suppression is crucial for
space target observation.

Stars are a crucial component of the deep space background and, like other space
targets, appear as point sources in images [15,16]. However, stars are a significant source
of false alarms in space target detection [17,18]. If the star background cannot be effec-
tively suppressed, it can negatively impact the accuracy and real-time performance of the
detection process [19,20]. While most algorithms proposed in the past few decades have
focused on clearing bright stars as part of high-SNR target detection, few have addressed
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the suppression of dim stars. A few algorithms that can suppress dim stars are limited
by specific application conditions. Nevertheless, the presence of dim stars in the back-
ground cannot be ignored. Therefore, this paper aims to propose a universal dim star
background suppression method that can ensure the accurate and real-time detection of
low-SNR targets.

1.1. Research Status

Detecting stars in space images can be challenging due to their similar characteristics
to other space targets. Existing algorithms can be generally classified into two kinds, which
are based on star catalogue and image. The algorithms based on images often rely on multi-
frame images to introduce kinematic characteristics. Stars, being stationary in celestial
coordinates for short periods, can be distinguished from other moving space targets [21].
Spatial–temporal correlation information is used to classify detection methods into two cate-
gories: space before time (SBT) and time before space (TBS). Previous research has explored
both approaches. SBT methods prioritize spatial information before temporal [22–26], while
TBS methods prioritize temporal information before spatial [27–31].

SBT utilizes the detection before track (DBT) method to detect potential targets, which
may include stars. Then, stars are stationary in celestial coordinates and have fixed positions
relative to each other in time, while real space targets and stars constantly change positions,
as shown in Figure 1. The blue stars present stars and the red point presents space targets.
Therefore, SBT can suppress stars from other space targets by extracting the position
information of potential targets from a single frame. This approach allows for more
accurate tracking of real space targets.

 

Figure 1. The schematic of stars suppression of SBT.

For instance, Hong Zhang et al. [22] define a feature space of distance (FSD) between
stars to describe the invariance of distance among the stars. This method is used for
feature matching and image transformation to achieve image registration. After image
registration, the star background can be easily suppressed by the image difference. Other
SBT methods based on star image registration adopt different matching features and
registration algorithms. Yu Zhu et al. [23] propose the longest common sub-sequence
(LCS) to find the isomorphism sub-graph which represents the matched feature pairs.
Qingqing Luo et al. [24] introduce an iterative closest point algorithm which is a widely
used point cloud registration algorithm. They also proposed a Gaussian mixture probability
hypothesis density filter to avoid the target being mistakenly associated with stars. Feng
Liu et al. [25] apply a mature and effective triangle algorithm to register stars. Meanwhile,
target motion track detection is also considered to further suppress noise. Recently, the
interior angle matrix has been used to describe the topological invariance of stars [26].
Then, stars are suppressed by sequence frame offset statistics histogram.

SBT methods rely on detecting stars using a single frame, which severely limits the
SNR of suppressed stars. As a result, these methods are not suitable for aiding the detection
of very-low-SNR targets.

Figure 2 illustrates the TBS method, which utilizes the position invariant theory to
identify potential targets. The blue stars present stars and the red point presents space
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targets. The black line denotes the movement of the target and the star. Unlike SBT, TBS
accumulates the energy of potential targets from the time dimension. This allows all
potential targets to gain their corresponding route. The route of space targets is markedly
different from the route of stars, whether the field of the camera is moving or still. By
identifying the routes of space targets, TBS can suppress the stars and effectively identify
potential targets.

Figure 2. The schematic of stars suppression of SBT.

The key to TBS is to identify the route difference to suppress stars. Wang Hou et al. [27]
propose a main directional suppression high pass filter for star line suppression, which
considers the phase of the spectrum as the velocity of the target. Similarly, an adaptive
linear filtering method is proposed to decrease the influence region of stars filtering uni-
formly [28]. Furthermore, the moving target indicator (MTI) algorithm is an effective
trajectory detection method that achieves target detection and star suppression through
route energy accumulation and direction judgment [29]. Another set of TBS methods
focuses on the still field of the camera. Interval frame subtraction is applied to suppress
stars, and back neighborhood frame correlation is proposed to protect the targets covered
by stars [30]. Additionally, a star subtraction mask is obtained by introducing the maximum
frame and medium frame, which can suppress the still star residues [31].

The preceding methods are highly dependent on their corresponding target detection
methods, making them challenging to apply to alternative methods. Furthermore, the use
of multiple frames superimposition is utilized to derive the star route, but this approach
has limited energy enhancement and is unable to effectively suppress stars with a very
low SNR.

The algorithms based on star catalogue are theoretically not limited by the SNR of stars.
According to the reference method of the star catalogue, it can be divided into two categories.
The first is star identification. Star identification determines the correspondence between
stars based on the feature matching of the star catalogue consisting of the observed stars in
the field of view. Star identification is the key technic of satellite position confirmation from
the star sensor. To pursue a faster and more robust star identification performance, neural
networks [32], color ratio information [33], rotation-invariant additive vector sequence [34],
and so on are introduced and have obtained good results. In the application of star
suppression, star identification matches the stars in the image for suppression. These
algorithms can suppress all the stars recorded by the star catalogue regardless of the
SNR. The second is the star map mask. These algorithms generate a star mask from the
observation direction and star catalogue [35]. Like star identification, these algorithms are
not limited by star SNR because they rely on star catalogue.

In addition to the previously mentioned methods, there exist various algorithms for
star observation. Some of these algorithms aim to suppress stars or enhance them. For
example, one approach involves using two spectral band sensors to estimate the temper-
ature of targets and differentiate stars based on temperature differences [19]. However,
this method requires high-quality detection hardware. In cases where the target is at a
finite distance and its scale is larger than 3 × 3 pixels [36], connected components analysis
can be used to cluster stars. This method cannot be generalized to other applications.
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Currently, neural networks are widely used for the classification of remote sensing image
data. An improved CBDNet network structure has been proposed for star background
suppression, which is trained using real images [37]. However, it is important to note that
the signal-to-noise ratio (SNR) of stars that this algorithm can handle is limited.

In conclusion, there is no universal infrared dim star background suppression. The
algorithms based on images are mainly used to suppress the high-SNR star background.
Although the algorithms based on star catalogue can suppress low-SNR stars, it is not
suitable for the preprocessing of space target detection and tracking. These algorithms may
suppress some stars that are not in the image, causing information loss and consuming
more computing resources. Other algorithms require specific application conditions that are
not universally applicable. If the large amounts of dim infrared stars cannot be suppressed
by preprocessing, the real-time on-board intelligent information processing would be
catastrophic. Therefore, an effective and less consuming infrared dim star background
suppression method is vitally important in practical application.

1.2. Motivation

Previous research has largely overlooked the impact of very-low-SNR stars that can-
not be detected using a single frame. While these stars may not significantly affect the
performance of DBT methods, they can still hurt real-time performance and accuracy in
TBD methods. Existing TBD methods, such as particle filter [38,39], dynamic program-
ming [40,41], and Hough transform [42,43], have primarily focused on digging targets that
are covered by heavy noise. Usually, these TBD methods need extra processes to identify
real targets and stars, which can negatively impact real-time performance and accuracy. For
instance, the particle filter may cancel the route of stars, but the small number of stars as
potential targets requires a large number of additional particles to track, which can waste
computing resources and negatively affect real-time performance.

The main contributions of this paper are as follows: (1) Recursive moving target
indication (RMTI) is improved in a motion vector to enhance dim stars efficiently and
accurately. (2) An adaptive multi-frame accumulation threshold segmentation is proposed,
which can create an accurate star mask. Dim stars can be suppressed in real-time. (3) The set
value of key parameters is provided by analyzing the experiment. Meanwhile, a simulation
experiment was designed to verify the feasibility and robustness of this method. The
proposed algorithm fills the low-SNR star background suppression gap in space target
detection and tracking. It can be used as an efficient preprocessing step for most target
detection and tracking methods and has great practical value.

The remainder of this paper is structured as follows. Section 2 provides a detailed
explanation of our method. In Section 3, we present our experimental approach, including
the set values of main parameters and the resulting experimental results. Section 4 discusses
the performance of our proposed methods. Finally, in Section 5, we present our conclusions.

2. Methodology

Figure 3 displays the block diagram of the proposed infrared dim star background
suppression method based on recursive moving target indication. Firstly, the star motion is
extracted from the high-SNR star map or is deduced from the satellite attitude and orbit
data. Then, the RMTI is used to enhance the dim star and generate the frame mask of
multi-frame accumulation (FMMA). The FMMA carries the number of frames that have
been accumulated for each pixel. Therefore, the adaptive threshold for each pixel is derived
by FMMA. Finally, the star mask can be extracted from a multi-frame enhanced star image
using adaptive threshold segmentation. The dim stars can be suppressed by the star mask.
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Figure 3. Block diagram of the proposed infrared dim star background suppression method.

2.1. The Multi-Frame Enhancement of Advanced RMTI

RMTI can produce significant SNR gains when the target motion state is known [44,45].
Unlike noncooperative targets, such as space debris, stars remain stationary relative to the
Earth. As a result, estimating the motion information of stars in an image sequence is a
relatively simple task. The phase matrix of the motion spectrum for each frame can be
calculated based on the star motion information, and the spectrum of the current enhanced
frame can be obtained by multiplying the phase matrix of the motion spectrum for the
current frame and the spectrum of the previous enhanced frames. In the space domain,
RMTI enhances stars by registration and accumulation [46]. RMTI processes each frame
and stores the result for further processing. The output of the previous frame is used as the
input for the next frame, allowing for easy adaptation to digital processing.

To continuously, accurately, and efficiently enhance the star, we improve the RMTI in
the motion vector. The multi-frame enhancement of RMTI for stars proceeds is described
below. The signal intensity of the star in the focal plane is denoted by s(r, nt0), where
r represents the coordinate of stars, and t0 is the image sampling period. The star state
transition function is defined as

s(r, nt0) = s(r− vnt0, (n− 1)t0) (1)

where vn is the velocity of the stars in nt0. The image y(r, nt0) can be described as:

y(r, nt0) = s(r, nt0) + n(r, nt0) (2)

where n(r, nt0) represents the noise of the image. The two-dimensional spatial Fourier
transform of the image is:

Y(k, nt0) = Sn−1(k)exp{−ik · vnt0}+ N(k, nt0) (3)

where k denotes a two-dimensional spatial wavenumber vector. Sn−1(k) denotes the
two-dimensional spatial Fourier transform of the star signal of the previous frame, and
N(k, nt0) is the two-dimensional spatial Fourier transform of noise. The star registration of
adjacent frames in the space domain can be achieved by multiplying exp{−ik · vnt0} in the
frequency domain. For convenience, let αn = exp{−ik · vnt0}. αn is the phase matrix of the

239



Remote Sens. 2023, 15, 4152

motion spectrum for nt0. When n = 0, the two-dimensional spatial Fourier transform of
the image is:

Y(k, 0) = S0(k) + N(k, 0) (4)

Let X0(k) = Y(k, 0), where Xn(k) denotes the enhanced frequency spectrum of stars.
When n = 1, the two-dimensional spatial Fourier transform of the image is:

Y(k, 1) = S0(k)α1 + N(k, 1) (5)

Since the noise in different positions and times is mutually uncorrelated, we can
describe X1(k) as:

X1(k) = Y(k, 1) + X0(k)α1 (6)

Similarly, when n = 2, X2(k) is defined as:

X2(k) = Y(k, 2) + X1(k)α2 (7)

Therefore, the enhanced frequency spectrum of stars in n can be represented as:

Xn(k) = Y(k, n) + Xn−1(k)αn (8)

To obtain the frequency spectrum of all the superposed frames, we can add the two-
dimensional spatial Fourier transform of the current frame to the frequency spectrum of all
the previous superposed frames, as shown in Equation (8). The result of the current frame
will be superposed by the next frame, and this iteration can output the frequency spectrum
of the enhanced stars of every frame easily.

In practical applications, digital images are represented by integer coordinates, and
the velocity of stars needs to be converted to an integer to avoid artifacts. Let I(x, y, f ) be
the input image with pixel coordinates x, y and frame number f . The image size is M× N,
and x = 1, . . . , M, y = 1, . . . , N. The two-dimensional spatial Fourier transform of the input
image is given by:

FI(u, v, f ) =
M−1

∑
x=0

N−1

∑
y=0

I(x, y, f )e−i2π( ux
M +

vy
N ) (9)

where (u, v) denotes the two-dimensional spatial wavenumber vector.
However, the velocity of stars in the f -th frame, denoted by Vx( f ) and Vy( f ), is

typically non-integer. To address this, we introduce an offset of velocity (Dx−o f f set( f ) and
Dy−o f f set( f )) to compensate for the error of converting velocity to an integer. This allows
us to obtain a more accurate representation of the image without introducing artifacts. To
determine the motion vector of the current frame (Dx( f ) and Dy( f )), we need to consider
the offset of the velocity of the previous frame and the velocity of the current frame together.
This ensures that the motion vector accurately reflects the movement of the stars in the
image. The offset of the velocity of the previous frame and the velocity of the current frame
is given as follows: ⎧⎨⎩Dx( f ) = round

[
Vx( f )t0 + Vx−o f f set( f − 1)t0

]
Dy( f ) = round

[
Vy( f )t0 + Vy−o f f set( f − 1)t0

] (10)

{
Dx−o f f set( f ) = Dx( f )−Vx( f )t0
Dy−o f f set( f ) = Dy( f )−Vy( f )t0

(11)

where round(·) means the process of rounding off. When f = 1, Vx−o f f set and Vy−o f f set are
equal to 0. Now, we can deduce the phase matrix of motion spectrum as follows:

α = exp
{−i

(
Dxu + vDy

)}
(12)
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Hence, according to Equations (9) and (12), Equation (8) can transform as:

FEI(u, v, f ) = FI(u, v, f ) + FEI(u, v, f − 1) · α (13)

Notably, the enhanced spectrum is equivalent to the original spectrum for the first
frame component (FEI(u, v, 1) = FI(u, v, 1)). Furthermore, in actual observations, the vi-
sual field undergoes slow movement, with a maximum motion of two pixels per frame [47].
To optimize computing resources, a lookup table is introduced to determine the phase
matrix of the motion spectrum, as shown in Figure 4. This approach allows for efficient
processing as each iteration only requires the operation of Equations (9) and (13) and a
single lookup.

 

Figure 4. The lookup table of motion vector.

Furthermore, the stars that have just entered the field of view have fewer superposed
frames than those almost leaving the field of view. Stars that have more superposed frames
are enhanced to a greater degree. Therefore, to achieve adaptive threshold segments for
different pixels, a mask of superposed frames is introduced. This mask helps to differentiate
between pixels that have a high degree of superposition and those that do not, resulting in
a more accurate representation of the image. The generation of this mask is similar to the
star enhancement and can be described as follows:

FM(u, v, f ) = E(u, v) + FM(u, v, f − 1) · α (14)

Here, FM(u, v, f ) is the spectrum of the mask of superposed frames, E(u, v) denotes
the two-dimensional spatial Fourier transform of the unit image, and alpha is a constant.
In particular, FM(u, v, 1) = E(u, v). Figure 5 shows the generation of this mask. Owing
to the invariability of the unit image of each frame, the procedure is easy to compute
and implement.

 
Figure 5. The implementation of the mask of superposed frames.
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2.2. Adaptive Star Map

In order to improve the accuracy of star detection, an adaptive threshold segmentation
approach is employed. This approach adjusts the threshold based on the number of
superimposed frames for each pixel. Pixels with fewer superimposed frames are assigned
a higher threshold to avoid false detection, while pixels with more superimposed frames
are assigned a lower threshold to improve the detection rate. By using this approach, the
algorithm can effectively detect stars while minimizing the impact of noise.

To determine the threshold for star detection, it is important to understand the proba-
bility distribution of stars, background, and noise. According to engineering practice, the
noise in infrared images is distributed nearly normally [48]. Additionally, the temperature
of deep space is less than 4 K [49], which has a negligible effect on stars. Therefore, in
this paper, the background and noise are estimated using the normal distribution function.
Suppose the distribution of background and noise is N (μnoise, σnoise

2). Then, the stars can
be expressed as N (μnoise + Istar, σnoise

2), where μnoise and σnoise represent the mean and
standard deviation of the noise, and Istar denotes the responsive intensity of the stars. Since
the background noise is independent between different pixels and different frames, after
n frames accumulation the distribution of the star and noise is still Gaussian, with the
mean amplified by n times and the standard deviation amplified by

√
n times. The noise

and stars distribution will change to N (nμnoise, nσnoise
2) and N (nμnoise + nIstar, nσnoise

2),
respectively. Ideally, the SNR of the stars will increase by a factor of

√
n. This superimposed

process makes star detection easier, as shown in Figure 6.

 

Figure 6. The probability distribution of stars and noise.

The calculation of the adaptive threshold is introduced in detail below. Firstly, the
enhanced star image EI(x, y, f ) and the mask of superposed frames M(x, y, f ) is obtained
by applying the inverse transformation of two-dimensional spatial Fourier as follows:

EI(x, y, f ) =
1

MN

U−1

∑
u=0

V−1

∑
v=0

FEI(u, v, f )ei2π( ux
M +

vy
N ) (15)

M(x, y, f ) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

FM(u, v, f )ei2π( ux
M +

vy
N ) (16)

Then, we apply median filtering to eliminate stars and other targets. Once the back-
ground is relatively clean, we can estimate the mean (Imean) and standard deviation (I std)
of the background. These values are used to calculate the threshold for eliminating noise
and stars. We use the three sigma criteria along with an analysis of the probability distribu-
tion of stars and noise. By applying these criteria, we obtain the threshold for eliminating
noise (TEN) and the threshold for detecting stars (TDS) as follows:

TEN(x, y, f ) = Imean( f ) ·M(x, y, f ) + CσN · Istd( f ) ·
√

M(x, y, f ) (17)

TDS(x, y, f ) = [Imean( f ) + Psnr · Istd( f )]M(x, y, f ) + CσS · Istd( f ) ·
√

M(x, y, f ) (18)
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where Psnr denotes the lowest signal-to-noise ratio of the stars that plan to suppress. This
parameter can limit the lower limit of the star SNR that needs to be suppressed and enhance
the robustness of the proposed method for blurred images. Then, CσN and CσS are the
coefficients of sigma for eliminating noise and the coefficients of sigma for detecting stars,
respectively. The effectiveness of noise suppression in the image processing algorithm
is directly proportional to the value of CσN . However, it is important to note that an
excessively high value of CσN may result in the erroneous detection of stars. Similarly, the
selection of CσS should aim to balance noise suppression and star detection. Typically, a
value of CσN greater than 4.5 and a value of CσS greater than 3 are recommended. The
specific parameter selection will be explained in Section 3.2. The optimal values of CσN
and CσS can be increased with a higher Psnr. In practical applications, these parameters
can be adjusted based on the acceptable level of false positives and missed detections. To
obtain the final threshold (Tstar), Equations (17) and (18) are used to calculate the number
of frames that make TEN and TDS equal. The final threshold is obtained by fusing the two
thresholds as in the below equation:

Tstar(x, y, f ) =

⎧⎪⎨⎪⎩
TEN(x,y, f )+TDS(x,y, f )

2 M(x, y, f ) >
(

Cσ1+Cσ2
Psnr

)2

TEN(x, y, f ) M(x, y, f ) ≤
(

Cσ1+Cσ2
Psnr

)2 (19)

It is crucial to note that the selection of the final threshold depends on the number of
available frames. Figure 7 depicts the probability distribution of star superposition with
different frame numbers and the selection principle of the final threshold. In Figure 7a, the
noise and the star have a lot of overlap, and it is not good to separate the two. Our primary
objective is to eliminate noise and prevent false detection when the number of frames is less.
Owing to the lack of enhanced frames, the stars are mixed with noise, thereby preventing
false detection as the main object. Conversely, if we have sufficient frames, we have the
conditions to distinguish the stars from the noise. Then, we will select the middle value of
the threshold for eliminating noise and detecting stars as the final threshold, as shown in
Figure 7b.

 
(a) 

 
(b) 

Figure 7. The selection principle of the final threshold: (a) noise elimination priority; (b) star detection
and noise elimination are considered comprehensively.
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After the above steps, the adaptive threshold is used to segment the mask of stars
from the enhanced star image. The detection of stars can be suppressed to avoid their
influence on the detection of other space objects. In some cases, it may be beneficial to
further improve the suppression of the star background by applying a morphology dilation
operation to the mask. This process should be chosen based on the specific optical system
under consideration.

3. Experiment and Parameter Setting

In this section, we provide a detailed explanation of the experimental design. Mean-
while, the set value of the main parameters is discussed in order to obtain a good perfor-
mance. Finally, the experimental results compared with other new methods are presented.

3.1. Experimental Setup

In this paper, three satellite real star data were used to verify the robustness and
effectiveness of the proposed method. The parameters of the infrared camera used in this
satellite are listed in Table 1.

Table 1. The parameters of infrared camera used in the satellite.

Parameters Value

Format 512 × 512

The angle resolution of pixel 0.02464◦

The angle of field of view 12.6◦ × 12.6◦

Framerate 20 Hz

Bits per pixel 14 bits

Spectrum 2.1~3.3 μm

Field direction
Seq.1: De = 340.668 Ra = −46.885
Seq.2: De = 298.808 Ra = −59.196
Seq.3: De = 252.166 Ra = −69.028

To evaluate the effectiveness of the proposed method quantificationally in this paper,
we made use of a star table obtained from NASA’s Wide-field Infrared Survey Explorer
(WISE) [50]. Figure 8 shows the procedure for simulating star images. Each color in the
picture corresponds to a star. Arrows indicate camera acquisition direction. The main
method was referenced from star identification described by Zhang Guangjun [51]. The
simulation procedure involved the establishment of a celestial, satellite camera, and image
coordinates. Next, rotation transformation and perspective projection transformation
were employed to convert the stars in the star table to image coordinates. The response
intensities of the stars in the resultant image were then calculated based on factors such
as the minimum detectable star magnitude, corresponding SNR, as well as the star’s
magnitude in the star list. Subsequently, each star was simulated using the point diffusion
function and its response intensity, as well as its sub-pixel position concerning the camera.
It is worth noting that the point diffusion function was approximated by the circular
symmetric two-dimensional Gaussian distribution. In addition to the aforementioned
techniques, a nearly constant velocity model for camera motion was used following the
method in [52]. A randomized approach was adopted to generate the initial right ascension
and declination of the camera, as well as its initial moving speed within the range of
1~3 pixels/frame. Other simulation parameters, as well as their relevant values, are listed
in Table 2. Overall, these simulation procedures accurately reflected the expected behavior
of the proposed method in different scenarios, which validates the effectiveness of the
proposed solution.
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Figure 8. The procedure of simulating star images.

Table 2. The parameters of star map simulation.

Parameters Value

Format 320 × 256

The angle resolution of pixel 0.01784◦

The angle of field of view 4.568◦ × 5.710◦

Framerate 30 Hz

Bits per pixel 14 bits

Spectrum 3 μm

Minimum detectable magnitude (corresponding SNR = 1) 9.56

To quantitatively analyze the effectiveness of the proposed method, three testing
metrics are introduced: the accuracy of star suppression Rts, the ratio of star suppression
Rss, and the average running time per frame Tp f . Suppose the number of stars suppressed
by the method is Ns, and the number of stars correctly suppressed by the method is Ntrue.
Furthermore, the number of stars whose SNR is larger than the lowest SNR of the stars that
plan to suppress is Ntotal . Then, these metrics can be defined as follows:

Rts =
Ntrue

Ns
(20)

Rss =
Ntrue

Ntotal
(21)

3.2. Parameter Setting

To effectively suppress stars, it is crucial to determine the appropriate coefficients of
sigma for both eliminating noise and detecting stars. To test the effectiveness of different
coefficients, we conducted simulations and analyzed the results. Based on our findings, we
will recommend the coefficients for optimal star suppression.

Where Nf s f (n) refers to the frame amount that falsely suppressed the nth flickering
pixel. As mentioned above, the evaluation of flickering pixel suppression uses simulation
data. Therefore, the Nr f (n), Nf s f (n), and Nms f (n) in Equations (13) and (14) can be
recorded while the simulation is underway.

We introduce Rts × Rss to evaluate the performance of the proposed method. This
index expresses the suppression precision and the suppressing rate, with a range of 0 to 1.
A large value of Rts × Rss can only be obtained when the suppressed stars are many and
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accurate. We simulate hundreds of star image sequences, each using different values of CσN ,
CσS, and SNR to suppress stars. The results of these tests are shown in Figures 9–11, with
SNR values of 1, 1.5, and 2, respectively. Figures 9–11 (a) show the 3D map of Rts× Rss with
different values of CσN and CσS, while Figures 9–11 (b) show the distribution of Rts × Rss
for different values of CσN under maximum CσS, and Figures 9–11 (c) show the distribution
of Rts × Rss for different values of CσS under maximum CσN . It is clear that the suppression
performance is better when CσN is between 4 and 5 and when CσS approaches 6. Table 3
provides a list of typical parameter selections.

  
(a) (b) (c) 

Figure 9. The distribution of Rts × Rss in Psnr = 1. (a) The 3D map of Rts × Rss with different values
of CσN and CσS; (b) the distribution of Rts × Rss for different values of CσN under maximum CσS;
(c) the distribution of Rts × Rss for different values of CσS under maximum CσN .

 
(a) (b) (c) 

Figure 10. The distribution of Rts × Rss in Psnr = 1.5. (a) The 3-D map of Rts × Rss with different
values of CσN and CσS; (b) the distribution of Rts × Rss for different values of CσN under maximum
CσS; (c) the distribution of Rts × Rss for different values of CσS under maximum CσN .

 
(a) (b) (c) 

Figure 11. The distribution of Rts × Rss in Psnr = 2. (a) The 3-D map of Rts × Rss with different values
of CσN and CσS; (b) the distribution of Rts × Rss for different values of CσN under maximum CσS;
(c) the distribution of Rts × Rss for different values of CσS under maximum CσN .
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Table 3. The typical selection of parameters.

Psnr CσN CσS

1 4.2~4.8 5.5~6.0

1.5 4.0~4.6 5.6~6.0

2 4.0~4.4 5.8~6.0

3.3. Experimental Result

With the above experimental data and evaluation criterion, the proposed method
is compared with star map registration via topology invariance (SMRTI) [26] and an
enhanced moving target indicator (EMTI) [29]. The SMRTI and EMTI are the most recently
proposed SBT and TBS, respectively. The proposed method uses the following parameter
setting: CσN = 4.6, CσS = 6, Psnr = 1. The proposed method and other methods are
implemented under MATLAB R2018a with an Intel Core 2.80 GHz processor and 8 GB of
physical memory.

Figures 12–14 show the experimental results of real data Seq.1, Seq.2, and Seq.3, where
(a), (b), and (c) are the result of the proposed method, SMRTI, and EMTI, respectively.
The green star represents the real stars in the image. The red circle represents the stars
suppressed by the proposed method in this paper. The blue box represents the stars
suppressed by SMRTI, and the yellow triangle represents the stars suppressed by EMTI.

 
(a) (b) (c) 

Figure 12. The experimental results with Seq.1 real data: (a) proposed method; (b) SMRTI; (c) EMTI.

 
(a) (b) (c) 

Figure 13. The experimental results with Seq.2 real data: (a) proposed method; (b) SMRTI; (c) EMTI.

 
(a) (b) (c) 

Figure 14. The experimental results with Seq.3 real data: (a) proposed method; (b) SMRTI; (c) EMTI.
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Figure 15 presents the experimental results of the proposed method. In Figure 15a,
the key frames of the simulated star image are shown, where most stars are obscured by
noise. Figure 15b displays the enhanced star images using the proposed method, revealing
many low-SNR stars that were previously hidden. Figure 15c shows the stars detected
by the proposed method, with the blue block indicating the detected stars and the red
stars representing the actual stars present in the images. While there were a few mistaken
detections, the proposed method successfully identified most of the stars, with only a small
quantity of stars being missed.

 
(a) 

 
(b) 

 
(c) 

Figure 15. The experimental result of the proposed method. (a) Simulated star image sequence;
(b) star image sequence enhanced advanced RMTI; (c) the stars detected by the proposed method.
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We evaluated the performance of the three methods by recording the accuracy of
star suppression (Rts), the ratio of star suppression (Rss), and the average running time
per frame (Tp f ) using a hundred simulation sequences. The results, presented in Table 4,
demonstrate that the proposed method outperforms the other methods in terms of both
speed and accuracy. Specifically, the proposed method achieves the task quickly and
effectively, as evidenced by its high Rts and low Rss values.

Table 4. The experimental result of methods.

Method Rts Rss Tpf

Proposed method 98.72% 98.82% 0.0031 s

SMRTI 98.19% 69.88% 0.2490 s

EMTI 98.59% 73.28% 0.0640 s

To offer a more intuitionistic star suppression result, the ratio of star suppression on a
different SNR partition is recorded and mapped as follows.

4. Discussion

In the experiment with real data, the proposed method has an obvious advantage over
other methods, as shown in Figures 12–14. The proposed method only misses a few stars.
The effectiveness and robustness of the proposed method are demonstrated.

The working process shown in Figure 15 explains why the proposed method can
suppress a dim star background. The proposed method for suppressing a dim star back-
ground is based on the core idea of treating stars as targets. By enhancing the SNR of stars
through multi-frame accumulation, as shown in Figure 15b, the enhanced stars can be
easily detected through threshold segmentation. Finally, the detected stars in Figure 15c
are suppressed. The proposed method is capable of suppressing the majority of stars in the
field of view, as seen in Figure 15c. However, a small minority of stars may be missed or
wrongly suppressed in the top right corner of the subgraph of Figure 15c due to the lack
of superimposed frames. If we do not accept the suppression results of this region, the
accuracy of star suppression and the ratio of star suppression will be further improved.
However, this comes at the expense of the field of view. Therefore, this promotion scheme
should be considered according to the actual application situation. It is worth noting that
the results compared with SMRTI and EMTI in Table 4 and Figure 16 are evaluated from
the entire field of view.

Space target detection under a star background has been extensively researched, with
a recent focus on high-SNR star suppression and corresponding DBT target detection
methods. As shown in Table 4, the proposed star suppression method has a significant
advantage in the ratio of star suppression. This advantage is mainly due to the effective
suppression of low-SNR stars, as demonstrated in Figure 16. When the SNR is larger
than five, these three methods are evenly matched. When the SNR ratio is smaller, the
advantages of the proposed method are more obvious. The SMRTI and EMTI methods
can suppress a few stars when the SNR is lower than two, and EMTI can suppress more
stars than SMRTI when the SNR is between two and five. This is because EMTI adopts
limited energy accumulation first. However, the proposed method enhances low-SNR stars
through RMTI, resulting in stable and efficient star suppression when the SNR is lower
than five. Although low-SNR stars do not interfere with SMRTI and EMTI, the proposed
method’s ability to suppress them is vital to TBD methods. This is the most significant
contribution of our proposed method. The suppression of a low-SNR star background
is an urgent issue, and the proposed method is on par with EMTI and SMRTI in terms
of the accuracy of star suppression, with all three methods achieving over 98% accuracy.
Additionally, the proposed method has a certain advantage in running time. These results
demonstrate that the proposed method can be widely used in preprocessing for low-SNR
target detection and tracking.
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Figure 16. The ratio of star suppression on different SNR partitions.

5. Conclusions

To address the limitation of existing star suppression algorithms in effectively sup-
pressing very-low-SNR star backgrounds, a dim star background suppression algorithm
via RMTI is proposed in this paper. The proposed method involves enhancing the dim
stars using advanced RMTI, followed by an adaptive threshold segmentation to filter out
stars precisely. The experimental results using simulated star images demonstrate that
the proposed method can stably and reliably suppress stars with an SNR of less than
2, with a star suppression rate of over 91%, and an overall star suppression accuracy of
over 98.7%. Compared to the existing star suppression algorithms, the proposed method
exhibits significant improvements in real-time performance and low-SNR star suppression
ability. For real image processing, this method still maintains a good performance. As a
preprocessing step for many TBD methods, the proposed method can effectively reduce
the false detection rate of infrared dim small target detection and tracking and improve the
real-time performance.

Author Contributions: All the authors contributed to this study. Conceptualization, L.Z. and P.R.;
Investigation, L.Z. and Y.H.; Methodology, P.R. and X.C.; Resources, Y.H. and X.C.; Software, L.Z.
and X.C.; Data curation, L.Z.; Funding acquisition, P.R. and L.J.; Project administration, Y.H. and X.C.;
Supervision, L.J. Writing—Original draft preparation, L.Z. and P.R.; Writing—review and editing, P.R.
and L.J.; Validation, L.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
62175251.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wei, B.; Nener, B.D. Multi-Sensor Space Debris Tracking for Space Situational Awareness With Labeled Random Finite Sets. IEEE
Access 2019, 7, 36991–37003. [CrossRef]

2. Xie, Z.; Chen, X.; Ren, Y.; Zhao, Y. Design and Analysis of Preload Control for Space Debris Impact Adhesion Capture Method.
IEEE Access 2020, 8, 203845–203853. [CrossRef]

3. Guo, X.; Chen, T.; Liu, J.; Liu, Y.; An, Q. Dim Space Target Detection via Convolutional Neural Network in Single Optical Image.
IEEE Access 2022, 10, 52306–52318. [CrossRef]

4. Liu, D.; Wang, X.; Xu, Z.; Li, Y.; Liu, W. Space target extraction and detection for wide-field surveillance. Astron. Comput. 2020,
32, 100408. [CrossRef]

250



Remote Sens. 2023, 15, 4152

5. Kwan, C.; Budavari, B. Enhancing small moving target detection performance in low-quality and long-range infrared videos
using optical flow techniques. Remote Sens. 2020, 12, 4024. [CrossRef]

6. Rawat, S.S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput.
Sci. 2020, 167, 2496–2505. [CrossRef]

7. Zou, Y.; Zhao, J.; Wu, Y.; Wang, B.; Dong, L. Reverse Procedure Detection of Space Target Streaks Based on Motion Parameter
Estimation. IEEE Access 2021, 9, 21823–21831. [CrossRef]

8. Zhao, F.; Wang, T.; Shao, S.; Zhang, E.; Lin, G. Infrared moving small-target detection via spatiotemporal consistency of trajectory
points. IEEE Geosci. Remote Sens. Lett. 2020, 17, 122–126. [CrossRef]

9. Cao, Y.; Wang, G.; Yan, D.; Zhao, Z. Two Algorithms for the Detection and Tracking of Moving Vehicle Targets in Aerial Infrared
Image Sequences. Remote Sens. 2016, 8, 28. [CrossRef]

10. Chen, S.T.; Jin, M.; Zhang, Y.Y.; Zhang, C. Infrared blind-pixel compensation algorithm based on generative adversarial networks
and Poisson image blending. Signal Image Video Process 2020, 14, 77–85. [CrossRef]

11. Tchendjou, G.T.; Simeu, E. Detection, location and concealment of defective pixels in image sensors. IEEE Trans. Emerg. Top.
Comput. 2021, 9, 664–679. [CrossRef]

12. Wan, M.; Ye, X.; Zhang, X.; Xu, Y.; Gu, G.; Chen, Q. Infrared small target tracking via gaussian curvature-based compressive
convolution feature extraction. IEEE Geosci. Remote Sens. Lett. 2021, 19, 7000905. [CrossRef]

13. Wan, M.J.; Gu, G.H.; Cao, E.C.; Hu, X.B.; Qian, W.X.; Ren, K. In-frame and inter-frame information based infrared moving small
target detection under complex cloud backgrounds. Infrared Phys. Technol. 2016, 76, 455–467. [CrossRef]

14. Li, M.; Peng, L.; Chen, Y.; Huang, S.; Qin, F.; Peng, Z. Mask Sparse Representation Based on Semantic Features for Thermal
Infrared Target Tracking. Remote Sens. 2019, 11, 1967. [CrossRef]

15. Cao, L.; Wan, C.; Zhang, Y.; Li, N. Infrared radiation characteristic measure method of point target. J. Infrared Millim. Waves 2015,
34, 5. [CrossRef]

16. Jia, L.; Rao, P.; Chen, X.; Qiu, S. On-Board Flickering Pixel Dynamic Suppression Method Based on Multi-Feature Fusion. Appl.
Sci. 2022, 12, 198. [CrossRef]

17. Zhou, D.; Wang, X. Stray Light Suppression of Wide-Field Surveillance in Complicated Situations. IEEE Access 2023, 11, 2424–2432.
[CrossRef]

18. Xu, Z.; Liu, D.; Yan, C.; Hu, C. Stray light nonuniform background correction for a wide-field surveillance system. Appl. Opt.
2020, 59, 10719–10728. [CrossRef]

19. Johnson, C.R.; Sentovich, M.F.; Ho, C.q. Star Background Cancellation for Deep Space Surveillance. IEEE Trans. Aerosp. Electron.
Syst. 1981, AES-17, 314–319. [CrossRef]

20. Xue, D.; Sun, J.; Hu, Y.; Zheng, Y.; Zhu, Y.; Zhang, Y. Dim small target detection based on convolutinal neural network in star
image. Multimed. Tools Appl. 2020, 79, 4681–4698. [CrossRef]

21. Jun, Z.; Hongjian, Z.; Dakai, S.; Li, W.; Yanpeng, W.; Chunyan, L. High sensitive automatic detection technique for space objects.
Infrared Laser Eng. 2020, 49, 88–94.

22. Zhang, H.; Bai, Y.; Li, J. An algorithm of small and dim target detection in deep space background. In Proceedings of the 2009
International Conference on Information and Automation, Zhuhai, China, 22–24 June 2009; pp. 985–989.

23. Zhu, Y.; Hu, W.; Zhou, J.; Duan, F.; Sun, J.; Jiang, L. A new starry images matching method in dim and small space target
detection. In Proceedings of the 2009 Fifth International Conference on Image and Graphics, Xi’an, China, 20–23 September 2009;
pp. 447–450.

24. Luo, Q.; Gao, Z.; Xie, C. Improved GM-PHD filter based on threshold separation clusterer for space-based starry-sky background
weak point target tracking. Digit. Signal Process. 2020, 103, 102766. [CrossRef]

25. Feng, L.; Xiaoliang, X.; Tongsheng, S. Space small targets detection based on maximum projection and quick registration. Infrared
Laser Eng. 2016, 45, 145–150.

26. Jiang, F.; Yuan, J.; Qi, Y.; Liu, Z.; Cai, L. Space target detection based on the invariance of inter-satellite topology. In Proceedings of
the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China,
17–19 June 2022; pp. 2151–2155.

27. Hou, W.; Lei, Z.; Yu, Q.; Liu, X. Small target detection using main directional suppression high pass filter. Optik 2014, 125,
3017–3022. [CrossRef]

28. Jianlin, L.; Xijian, P.; Debao, M. A novel method of drift-scanning stars suppression based on the standardized linear filter. In
Proceedings of the 2011 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing
Technology, Beijing, China, 28 November 2011.

29. Zhang, Y.; Rao, P.; Jia, L.; Chen, X. Dim moving infrared target enhancement based on precise trajectory extraction. Infrared Phys.
Technol. 2022, 128, 104374. [CrossRef]

30. Wenkang, D.; Zongxi, S. Detection and tracking of multi-space junks in star images. In Proceedings of the Eighth International
Conference on Digital Image Processing (ICDIP 2016), Chengu, China, 20–22 May 2016; p. 100330N.

31. Dong, W.; Yan, W.; Zhao, L. Moving space target detection algorithm based on trajectory similarity. In Proceedings of the
SPIE/COS Photonics Asia, Beijing, China, 11 October 2018; p. 108161B.

251



Remote Sens. 2023, 15, 4152

32. Chen, B.; Qin, S.; Dai, D. A Star Identification Algorithm based on Radial Basis Neural Network. In Proceedings of the 2022
4th International Academic Exchange Conference on Science and Technology Innovation (IAECST), Guangzhou, China, 9–11
December 2022; pp. 1274–1278.

33. Niu, Y.; Wei, X.; Li, J. Fast and Robust Star Identification Using Color Ratio Information. IEEE Sens. J. 2022, 22, 20401–20412.
[CrossRef]

34. Mehta, D.S.; Chen, S.; Low, K.S. A Rotation-Invariant Additive Vector Sequence Based Star Pattern Recognition. IEEE Trans.
Aerosp. Electron. Syst. 2019, 55, 689–705. [CrossRef]

35. Coupon, J.; Czakon, N.; Bosch, J.; Komiyama, Y.; Medezinski, E.; Miyazaki, S.; Oguri, M. The bright-star masks for the HSC-SSP
survey. Publ. Astron. Soc. Jpn. 2018, 70, S7. [CrossRef]

36. Han, K.; Pei, H.; Huang, Z.; Huang, T.; Qin, S. Non-cooperative Space Target High-Speed Tracking Measuring Method Based on
FPGA. In Proceedings of the 2022 7th International Conference on Image, Vision and Computing (ICIVC), Xi’an, China, 26–28
July 2022; pp. 222–231.

37. Li, Y.; Niu, Z.; Sun, Q.; Xiao, H. Background Suppression Method of Star Image Based on Improved CBDNet. In Proceedings of
the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer
Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; pp. 671–674.

38. Hu, Z.; Su, Y. Infrared target tracking based on improved particle filtering. Int. J. Pattern Recognit. Artif. Intell. 2021, 35, 2154015.
[CrossRef]

39. Jia, L.; Rao, P.; Zhang, Y.; Su, Y.; Chen, X. Low-SNR Infrared Point Target Detection and Tracking via Saliency-Guided Double-Stage
Particle Filter. Sensors 2022, 22, 2791. [CrossRef]

40. Barniv, Y. Dynamic Programming Solution for Detecting Dim Moving Targets. IEEE Trans. Aerosp. Electron. Syst. 1985, AES-21,
144–156. [CrossRef]

41. Sun, X.; Liu, X.; Tang, Z.; Long, G.; Yu, Q. Real-time visual enhancement for infrared small dim targets in video. Infrared Phys.
Technol. 2017, 83, 217–226. [CrossRef]

42. Liu, H.; Rosenfeld, A.; Bhattacharya, P. Hough-transform detection of lines in 3-D space. Pattern Recognit. Lett. 2000, 21, 843–849.
43. Kultanen, P.; Xu, L.; Oja, E. Randomized Hough transform (RHT). In Proceedings of the 10th International Conference on Pattern

Recognition, Atlantic City, NJ, USA, 16–21 June 1990; Volume 631, pp. 631–635.
44. Reed, I.S.; Gagliardi, R.M.; Stotts, L.B. Optical moving target detection with 3-D matched filtering. IEEE Trans. Aerosp. Electron.

Syst. 1988, 24, 327–336. [CrossRef]
45. Reed, I.S.; Gagliardi, R.M.; Stotts, L.B. A recursive moving-target-indication algorithm for optical image sequences. IEEE Trans.

Aerosp. Electron. Syst. 1990, 26, 434–440. [CrossRef]
46. Hou, W.; Yu, Q.F.; Lei, Z.H.; Liu, X.C. A block-based improved recursive moving-target-indication algorithm. Acta Phys. Sin.

2014, 63, 13. [CrossRef]
47. Zongfu, H.; Jinzhen, W.; Zengping, C. Motion characteristics analysis of space target and stellar target in opto-electronic

observation. Opto-Electron. Eng. 2012, 39, 67–72.
48. Ibarra-Castanedo, C.; González, D.; Klein, M.; Pilla, M.; Vallerand, S.; Maldague, X. Infrared image processing and data analysis.

Infrared Phys. Technol. 2004, 46, 75–83. [CrossRef]
49. Hong, S.H.; Choi, G.B.; Baek, R.H.; Kang, H.S.; Jung, S.W.; Jeong, Y.H. Low-Temperature Performance of Nanoscale MOSFET for

Deep-Space RF Applications. IEEE Electron Device Lett. 2008, 29, 775–777. [CrossRef]
50. Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan,

R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance.
Astron. J. 2010, 140, 1868–1881. [CrossRef]

51. Zhang, G. Star Identification; Nation Defense Industry Press: Beijing, China, 2011.
52. Ristic, B.; Arulampalam, S.; Gordon, N. Detection and tracking of stealthy targets. In Beyond the Kalman Filter Particle Filters for

Tracking Applications; Barton, D.K., Ed.; Artech House: Boston, MA, USA; London, UK, 2004; pp. 240–251.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

252



Citation: Su, Y.; Chen, X.; Liu, G.;

Cang, C.; Rao, P. Implementation of

Real-Time Space Target Detection

and Tracking Algorithm for

Space-Based Surveillance. Remote

Sens. 2023, 15, 3156. https://

doi.org/10.3390/rs15123156

Academic Editor: Paolo Tripicchio

Received: 10 May 2023

Revised: 3 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Implementation of Real-Time Space Target Detection and
Tracking Algorithm for Space-Based Surveillance

Yueqi Su 1,2,3, Xin Chen 1,2, Gaorui Liu 1,2, Chen Cang 1,2 and Peng Rao 1,2,*

1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
suyueqi@mail.sitp.ac.cn (Y.S.); chenxin@mail.sitp.ac.cn (X.C.); liugaorui@mail.sitp.ac.cn (G.L.);
cangchen@mail.sitp.ac.cn (C.C.)

2 Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: peng_rao@mail.sitp.ac.cn

Abstract: Space-based target surveillance is important for aerospace safety. However, with the
increasing complexity of the space environment, the stellar target and strong noise interference pose
difficulties for space target detection. Simultaneously, it is hard to balance real-time processing
with computational performance for the onboard processing platform owing to resource limitations.
The heterogeneous multi-core architecture has corresponding processing capabilities, providing a
hardware implementation platform with real-time and computational performance for space-based
applications. This paper first developed a multi-stage joint detection and tracking model (MJDTM) for
space targets in optical image sequences. This model combined an improved local contrast method
and the Kalman filter to detect and track the potential targets and use differences in movement
status to suppress the stellar targets. Then, a heterogeneous multi-core processing system based
on a field-programmable gate array (FPGA) and digital signal processor (DSP) was established as
the space-based image processing system. Finally, MJDTM was optimized and implemented on
the above image processing system. The experiments conducted with simulated and actual image
sequences examine the accuracy and efficiency of the MJDTM, which has a 95% detection probability
while the false alarm rate is 10−4. According to the experimental results, the algorithm hardware
implementation can detect targets in an image with 1024 × 1024 pixels in just 22.064 ms, which
satisfies the real-time requirements of space-based surveillance.

Keywords: space target; heterogeneous multi-core system; detection and tracking; MJDTM; FPGA; DSP

1. Introduction

The term space target refers to all outer space objects, including nonfunctional space-
craft, spent upper stages, and space debris [1]. With the development of human activities,
the amount of space debris is multiplying. The collision between different space targets
such as space debris and spacecraft may lead to equipment damage and mission failure
and even produce more space debris, which poses a significant threat to aerospace safety.
Therefore, space target detection and tracking are essential to avoid space collision and
ensure the operation safety of on-orbit spacecraft. Space situational awareness technology
is important to guarantee on-orbit safety, monitoring space targets, evaluating space events
and providing space situational information for on-orbit spacecraft using the space-based
or ground-based detection equipment. Its primary mission is to accurately detect and track
space targets and calculate important characteristic parameters such as the size and shape
of space targets that may pose a threat to the on-orbit spacecraft [2].

Compared to ground-based observation, a space-based photoelectric detection sys-
tem has the advantages of high maturity, high precision, and low energy consumption,
making it possible to realize all-weather space target detection and on-orbit spacecraft
protection [3]. The subject of the detection and tracking of space targets using optical
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detection equipment consists of a set of problems that are central to the disciplines of
space-based space target awareness. However, as space-based optical detection technology
is upgraded, the detection field of view is gradually expanding, and space-based images
are including increasingly complex information about the space environment. The existing
methods have limited ability to suppress background noise in space-based images and
are insufficient for space target perception, which generally concentrates on a single task
such as detection or tracking. Therefore, developing a target detection algorithm with
improved detection precision and a low rate of false alarms to separate space targets from
the background is the critical problem of space target detection and tracking algorithms.
Meanwhile, there are few space-based image processing system solutions presented by the
current researchers, which have not been able to solve the problems of small space target
detection and stellar target suppression, and the detection performance of the systems
cannot keep up with the demand for the real-time processing of high-resolution space
target images. The development of miniaturized, dedicated, high-speed processing systems
for real-time space target detection with constrained on-orbit hardware resources remains
a difficult task.

To achieve real-time space target surveillance, we proposed a high-precision detection
and tracking architecture for space targets and developed a high-speed image processing
platform to fulfill the algorithm implementation while maintaining real-time processing
requirements. The main contributions of our paper are as follows. First, inspired by the
human visual contrast mechanism, we improved the local feature contrast and energy con-
centration degree method to extract the potential small space targets in the optical image
sequences. The local subtraction of the target detection algorithm suppresses background
noise, and the accumulation of the target area boosts the target to achieve high-precision
detection for space targets. Second, to eliminate false alarms of stellar targets with similar
imaging features to the real space target, we proposed a stellar target suppression method
that uses differences in motion relative to the Earth and real-time satellite attitude data to
distinguish between the space and stellar targets. The algorithm is based on the historical
coordinate data of the tracking trajectory and uses the platform parameters to determine
the target type accurately. Finally, a comprehensive and lightweight space target perception
architecture, called the multi-stage joint detection and tracking model (MJDTM), is given.
It combines the space target detection method based on the LFC, the Kalman filter algo-
rithm, and the proposed stellar target suppression method to accurately detect and track
space targets. The architecture is implemented on a specialized heterogeneous multi-core
processing platform based on FPGA and DSP. Additionally, the performance measures of
the architecture and its implementation are evaluated using the simulated and real image
sequences including computation time, resource usage, and detection capability.

The remainder of this paper is divided into the following sections. Section 2 summa-
rizes related works on space target detection and tracking algorithms and existing hardware
implementation schemes. In Section 3, the proposed multi-stage joint detection and track-
ing model is elaborated. In Section 4, we present the proposed hardware architecture and
the algorithm implementation. Section 5 validates the performance and effectiveness of the
proposed implementation. Section 6 gives the discussion of this paper. The conclusions are
provided in Section 7.

2. Related Work

Various algorithms and relevant hardware implementations have been exploited for
faint and tiny moving space target detection and tracking in space-based optical image
sequences. Track-before-detect (TBD) and detect-before-track (DBT) are the dominating
solutions to the difficulty of moving target detection and tracking. A dynamic programming
approach was developed by BARNIV [4,5] that utilizes the velocity and shape information
to detect linear moving objects with a low signal to noise ratio (SNR). The particle filter
method [6] is a nonlinear dynamic filter based on the Monte Carlo method. A TBD
algorithm has been realized using a Bayesian particle filter to approximate the posterior
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probability distribution of the target state [7]. Reed et al. [8] established a dim and small
target detection method based on three-dimensional matching filtering that matched and
filtered the feature information of moving targets in the Fourier domain. These three
methods described above could be defined as the TBD method. In actual scenarios, since
the energy distribution and pattern of stellar and space targets are similar, it is challenging
for the TBD approach to distinguish between them. Moreover, the variety of the target
motion state will enhance the computational burden of the algorithm, making it hard for the
TBD method to satisfy real-time application requirements. Accordingly, the DBT method is
more suitable for space target surveillance in the space-based scenario.

The detection stage of the DBT method needs to extract the possible target and acquire
the target region. The star map registration algorithm [9–12] is a common method for space
target detection. In contrast, the satellite platform attitude variation increases the image
background uncertainty and complexity, which makes the star map registration method
unsuitable for space-based scenarios. Some threshold segmentation methods based on
target enhancement have been studied, including the wavelet filtering method [13,14],
local contrast method [15,16], and morphology filtering. Boccignone et al. [13] presented a
small target detection method using wavelets. Jiang et al. [14] improved this method and
developed an automatic space debris extraction algorithm. It utilized wavelet transform
and variational hybrid filtering algorithms to suppress noise and detected candidate debris
targets using the Hough transform. Mathematical morphology-based algorithms usually
use image filters to eliminate background noise and enhance small targets, such as median
filters [17], max-mean and max-median filters [18], and top-hat [19]. The local contrast
method [15] is a powerful small target detection algorithm that was inspired by the human
visual system contrast mechanism. It can enhance the target by calculating the local contrast
map of the infrared image. Chen et al. [16] combined the local contrast method with energy
concentration degree and proposed an infrared dim and small target detection algorithm.
Lv et al. [20] developed a novel algorithm called neighborhood saliency map (NSM) based
on the contrast mechanism of the human visual system. Han et al. [21] improved the
local contrast method (LCM) and designed a detection architecture named multiscale
tri-layer local contrast measure (TLLCM). The image filter algorithm based on the LCM
method, which has been applied to the problem of infrared (IR) small target detection,
could effectively boost the dim target and increase the detection accuracy. In recent years,
researchers have also proposed deep learning-based solutions to the problem of dim and
small target detection [22]. However, the network structure of these algorithms is frequently
complex, and they frequently require a large quantity of experimental data to learn, making
their implementation and application challenging.

Once the target has been extracted, it requires a tracker to predict the target motion
state and update the trajectories in the subsequent frames. Fan Shi et al. [23] tracked a
moving target using a primary scale invariant feature transform (P-SIFT) keypoint matching
algorithm. In this way, the deviation of feature extraction will also have an impact on
tracking. K. Fujita et al. [24] described a computer vision technique called an optical flow
algorithm to detect and track GEO debris. However, its computational complexity makes
it challenging to meet the requirements of real-time applications. The Kalman filter [25]
is a classic target tracking algorithm used in dynamic procedures where the measured
process is linear and Gaussian. Scala and Bitmeand [26] proposed the extended Kalman
filter for solving the tracking problem when both the dynamic and measurement processes
are nonlinear. Tao et al. [27] presented a space target surveillance algorithm that contains
a variance detector and uses a Markov-based dynamic model to forecast the potential
target position.

In addition to noise interference, hundreds of thousands of stars are the primary
interference sources for space target detection in space-based detection scenarios. The
image difference method [28] directly differentiates adjacent image frames, but when the
platform moves, the imaging position of the stars changes, which will cause a false alarm
for detection. The star mask frame method [29] employs multi-frame image accumulation
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to calculate the position of a star and generates a star mask frame to filter out the stars
in the image. However, detection fails when the target is near the imaging distance of
the star. The star image recognition method [30] matches the image with the star map to
extract the matching star point, but it is hard to implement it in hardware due to the heavy
calculation burden. In this paper, a stellar target suppression method that uses differences
in motion and real-time satellite attitude data is provided to distinguish between the space
and stellar targets.

The target only takes up a small portion of the image pixels due to the large separation
between space targets and detector, and the contrast between targets and background
may not be strong enough for the detection method to utilize the texture feature data
effectively. The space target detection method mentioned above can only solve the problem
of target detection in some specific scenes, and it is challenging to overcome the problem of
background stellar false alarms and strong noise in space-based scenes. In addition, these
works have not been implemented by the hardware platform, and its real-time processing
capability needs to be evaluated.

Moreover, the research community has designed some image processing systems using
the limited hardware system resources that could implement the related target detection
and tracking algorithms in the space-based scenario. A high-performance embedded pro-
cessing platform based on a graphics processing unit (GPU), DSP, and FPGA has become
the potential solution for onboard image processing [31–34]. As the specialized image
processor, the embedded GPU processing platform [35] has been widely used in unmanned
driving technology, AI computation, and video image processing. Its parallel processing
capability supports it in handling complex data and geometry computing [36]. However,
the disadvantages of poor independence and high power consumption hinder the ap-
plication of GPUs in onboard applications. In the meantime, DSP and ARM processors
with computing capability, flexibility, and large-scale integration have been adopted to
implement the vision and image processing algorithms [37]. Sun et al. [38] described an
onboard space debris detection approach on a multi-core DSP platform that can process a
2048 × 2048 image in 600 ms. The parallelism of this system constrains the throughput of
processing data streams, making it challenging to process intensive computing with large
data volumes. Over other embedded systems, the use of FPGAs in high-speed parallel
data processing has become more prevalent due to their parallel processing capability. The
FPGA platform is suitable for onboard image processing because of its flexibility, reconfig-
urability, and high energy efficiency [39]. Han et al. [40] proposed a high-speed tracking
and measurement method for non-cooperative space targets and applied it to an FPGA-
based space-embedded system. However, their scheme does not consider the situation
of small space targets and establishes an overly ideal stellar interference model that may
malfunction in practical space-based scenarios. Yang et al. [41] implemented the ATGP
algorithm on FPGAs to achieve real-time target and anomaly detection in hyperspectral
image sequences. Nevertheless, it is not feasible for FPGAs to implement high-precision
data operations, and their programming development is complex. A heterogeneous pro-
cessing platform based on FPGA and DSP is one of the most commonly used embedded
image processing systems, and has been relatively maturely applied to the field of space-
based image processing [42,43]. The high-speed parallel processing capability of FPGA
has considerable advantages in large-scale image data processing. The DSP processor has
the characteristics of large-scale integration and stability, which can realize high-precision
digital signal processing.

For space-based surveillance, an integrated processing system with high flexibility,
powerful processing performance, and low power consumption can quickly complete
image processing. The current research in space target detection and tracking and other
image processing performance needs to be improved, as it has failed to give a high-
performance space target sensing method and its hardware implementation. However, a
high-performance space target perception method and its hardware implementation have
not been provided by the present research.
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In this paper, we provide a complete space target perception architecture that realizes
the accurate detection and tracking of small space targets. A space-based image processing
system platform based on FPGA + DSP has been constructed to implement this architecture.

3. Methodology

A flow diagram of the MJDTM architecture is outlined in Figure 1. With the detection
range extension of the space-based optical detector, there are more stellar targets and noise
points in images, making it challenging to accurately identify space targets only occupying
one to several pixels in the image plane. To ensure target detection accuracy and reduce the
false alarm rate, the interference of the stellar targets and background noise points needs to
be suppressed. The proposed space target perception architecture contains three main parts:
space target detection and tracking, stellar target suppression, and target feature calculation.
As shown in Figure 1, we first adopt an improved local contrast method to extract the
potential space point target during the target detection and tracking stage. Then, the
classical Kalman filter algorithm and the Hungarian matching algorithm are combined to
predict the target state and correlate tracking trajectories. The sidereal targets with similar
imaging properties to space targets are suppressed during the stellar target suppression
stage. A schematic diagram of the image sequence after target detection tracking and stellar
suppression is given in Figure 1. After that, the feature information of the space target that
is confirmed as the real target is calculated. Details are as follows.

Figure 1. Workflow of the proposed architecture.

3.1. Target Detection and Tracking
3.1.1. Target Detection Algorithm

The space-based optical image of space can be modeled as follows:

F(i, j) = T(i, j) + S(i, j) + B(i, j) + N(i, j) (1)

where (i, j) represents the pixel coordinates of the image and F(i, j) denotes the grayscale
value of the pixel coordinate (i, j) in the image. T(i, j) and S(i, j), respectively, denote the
space target and the stellar targets, which obey the Gaussian distribution model. B(i, j)
represents the background of the deep space environment and N(i, j) denotes the noise gen-
erated by the internal noise of the imaging system and external environment interference.
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It can be seen from the above model that most of the image information obtained
by the space-based space target detection equipment is from the deep space background
environment. The space targets and stellar targets only account for a small part of the
image, and various noise disturbances are randomly distributed throughout the image.
Due to the limitation of the detection distance and the short exposure time, the space targets
and stellar targets occupy only one pixel in the image and the energy of the target is weak.
In order to accurately detect real space targets, the detection algorithm should enhance the
target region for better target segmentation and extraction, and reduce the independent
noise points on the image to lower the false alarm rate. All possible targets in the image
must be segmented during the target detection phase to avoid missing actual space targets
since the space target and stellar target have very similar imaging characteristics.

In this paper, the target detection algorithm uses the target energy feature and the local
standard deviation feature to establish the LFC model and employs this model to realize
the image filtering and the detection of the space and stellar targets. The local contrast
method [15] is an image-filtering method based on the contrast mechanism of the human
visual system and is commonly used to solve IR dim target detection problems. Similar to
IR faint targets, space targets in space-based optical image sequences have weak energy
and occupy only a few pixels without shape and texture features. Therefore, the detection
rate could be guaranteed by using this technique to locate space targets in the deep space
background. Chen et al. [15] proposed a local feature contrast and energy concentration
degree method (LFC-ECD) that combines the LCM algorithm with the energy concentration
algorithm to detect small infrared targets. This algorithm suppresses the neighboring
regions of the target through local subtraction and performs energy accumulation to
enhance the faint target. In the target detection stage, we remove the energy accumulation
progress of the LFC-ECD and use the local feature contrast filter to extract space targets.
The specific steps are as follows.

By sliding the local window on the whole image, the local feature contrast value of
each point in the image is calculated. Firstly, the image slice larger than the target region
is selected as the local window. Additionally, the slice of coordinate (x, y) in the image is
divided into the target region S0 and the neighboring region S, which is shown in Figure 2.

l +

s +

Figure 2. The target and its neighboring region.

The region of S0 and S are represented as follows:

RS = {(p, q)|max(|p− x|, |q− y|≤ s)}, s = 4, 7, 10, 13 (2)

RS0 = {(i, j)|max(|i− x|, |j− y|≤ l)}, l = 1, 2, 3, 4 (3)

where s and l represent the radius of S0 and S, respectively, and (i, j) and (p, q) denote the
pixel coordinates of S0 and S in the image.
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The pixel grayscale average value and standard deviation in the region S are computed
to represent the background and noise of the target region, and the formula is denoted
as follows:

Gm(x, y) = ∑(p,q)∈RS

G(p, q)

(2s + 1)2 (4)

Gs(x, y) =

√√√√∑(p,q)∈Rs [G(p, q)− Gm(x, y)]2

(2s + 1)2 (5)

where G(p, q) is the pixel grayscale at (p, q) in the region S and Gm(x, y) and Gs(x, y) are the
pixel grayscale average value and standard deviation at (x, y) in the region S, respectively.

Then, the background should be inhibited by the regional background subtraction
because of the solid local continuity, and the formula is represented as follows:

Gt(x, y) = G(x, y)− Gm(x, y), (i, j) ∈ S0 (6)

where G(x, y) denotes the grayscale of the pixel at (i, j) in the region S0 and Gt(x, y) repre-
sents the grayscale of the pixel at (i, j) in the region S0 after the background suppression.

When the target is weak, the pixel grayscale of the region S0 will be low after the
background subtraction. Therefore, the target component should be magnified by the
energy accumulation to ensure the target is detected correctly. The formula of energy
accumulation is denoted as follows:

Et(x, y) = ∑(i,j)∈RS0
G2

t (i, j) (7)

where Et(x, y) denotes the energy accumulation value of the pixel grayscale in the region
S0 at (x, y). The sum operation helps in the rapid enhancement of targets.

Finally, the local feature contrast value of the coordinates (x, y) in the image is provided
in the following formula:

Gc(x, y) = Et(x, y)/Gs(x, y) (8)

GL(x, y) = Gc(x, y)× Gt(x, y) (9)

where Gc(x, y) represents the contrast factor and GL(x, y) denotes the values of local feature
contrast at the coordinates (x, y).

When obtaining the local feature contrast, the adaptive threshold segmentation will be
conducted on the local feature contrast image to segment the target. The adaptive threshold
T1 is denoted as follows:

T1 = mL + k1 × stdL (10)

where mL and stdL represent the average value and standard deviation of local features’
contrast GL(x, y). The range of the parameter k1 confirms that a range of 30 to 40 is
efficacious. In Section 5.1, the selection of the parameter k1 will be discussed in depth.

Then, the binary image of the LFC result is segmented by the threshold T1. The
formula is represented as follows:

b1(i, j) =
{

1, GL(i, j) > T1
0, GL(i, j) ≤ T1

(11)

where b1(i, j) denotes the grayscale at the coordinates (i, j) in the segmented image and
GL(i, j) is the local feature contrast value at the coordinates (i, j) in the image.

In the ideal optical system, only one pixel of the detector is occupied by the point target.
However, the targets will diffuse into several pixels due to circular aperture diffraction in
practical situations. The precise pixel coordinates of the target are confirmed by the center
location of the gray pixel. Since the target is susceptible to the effects of ambient background
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noise, the precision of target positioning might be impacted by the classic centroid method.
The centroid coordinates of targets are calculated using the distance-weighted centroid
method that enhances the conventional centroid with distance-weighting. Based on the
conventional centroid approach, the distance-weighted centroid method adds the grayscale
and distance influence factor as the weight to lessen the impact of target edge noise on
target location extraction. The steps of this method are described below.

Firstly, the maximum grayscale pixel coordinate data in the target region are provided
by the target detection stage result. The target region St is separated by extending m pixels
outward from the center of the maximum pixel gray value coordinates. The size of the
target area is n = 2×m+ 1. Moreover, the distance D(i, j) between the maximum grayscale
pixel and each pixel in the target area is defined by the following formula:

D(i, j) =
√
(i− x)2 + (j− y)2(i, j ∈ St) (12)

where (i, j) are the pixel coordinate data in the target region and (x, y) represent the
maximum pixel grayscale value coordinates.

The formula of the distance weight D′(i, j) is defined as:

D′(i, j) = 1/D(i, j) (13)

where D′(i, j) is the distance weight at the coordinates (i, j) in the target area. The distance
weight at the maximum grayscale pixel is a(3 ≤ a ≤ 5).

The following formula computes the distance-weighted centroid coordinates of the target:

X =
∑(i,j)∈RSt

G(i, j)D′(i, j)i

∑(i,j)∈RSt
G(i, j)D′(i, j)

(14)

Y =
∑(i,j)∈RSt

G(i, j)D′(i, j)j

∑(i,j)∈RSt
G(i, j)D′(i, j)

(15)

where the G(i, j) is the grayscale value at the coordinates (i, j) in the target area and (X, Y) is
the target centroid coordinates calculated through the distance-weighted centroid method.

3.1.2. Target Tracking Algorithm

The target coordinate sequence of each frame can be obtained after the target detection
for the optical image sequence. We establish tracking trajectories for each potential target
during the tracking stage, estimate the candidate target motion state, and predict the target
position using the Kalman filter to track space targets steadily. Moreover, the Hungarian
matching algorithm is adopted to correlate the tracking trajectories with the target sequence
to update the target coordinate positions. The specific operation flow is shown in Figure 3.

 

Figure 3. Procedure of the tracking stage.

Affected by the gravity of the Earth, both the space targets and the observation
satellite platforms will run in a specific orbit. Thus, we can use a linear uniform model
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to simulate the motion of the space target relative to the platform, which is unrelated to
other targets and camera motion. It can be assumed that the running path of the space
target in the continuous space image sequence is connected and that the target detection
results from earlier frames can be used to estimate the target motion model and forecast
the target position.

Before the target motion state prediction and tracking trajectory association, the multi-
frame association operation as shown in Figure 3 will confirm the current candidate target
queue, which reduces the calculation amount of the subsequent tracking process while
suppressing noise points. The target that satisfies the trajectory creation condition initializes
the corresponding tracking trajectory after this operation. The specific processing steps are
as follows.

First, based on the detection result of the first frame image, a suspicious target queue
TSs will be created for each target in the current candidate target queue TSc.

Then, the Euclidean distance between each target in the suspicious target queue TSs
and the current candidate’s target queue TSc will be calculated after the detection of the
subsequent image frames. The specific formula is as follows:

TD(n, m) =

√
(in − xm)

2 + (jn − ym)
2, n = 1 . . . N, m = 1 . . . M. (16)

where TD(n, m) is the Euclidean distance between the target TSS(n) in the suspicious
target queue TSS and the target TSC(m) in the current candidate target queue TSc, (in, jn)
is the coordinate data of the target TSS(n), (xm, ym) is the coordinate data of the target
TSC(m), and N and M are the numbers of targets in the queue TSS and TSc, respectively.

For a target in the suspicious target queue TSS, if there is a target within the predeter-
mined distance threshold range in the candidate target queue TSc, the number of target
occurrences is determined to increase. Then, the target coordinate data and the number
of target occurrences in the suspicious target queue TSS will be updated. If the current
candidate target queue does not contain a target that fulfills the criteria, the number of
target disappearances will be updated.

After the multi-frame suspicious target queue update, there will be a target in the
suspicious target queue TSS that appears more than the set threshold. It can be assumed
that this is a real target rather than an independent noise point. For the real target, we
adopt the Kalman filter to estimate the motion state and predict the coordinate position
to achieve stable tracking of the target. The Kalman filter [25] is an optimal estimation
algorithm for system state that uses the linear system state equation and system input and
output observation data. It has been widely applied in the fields of orbit calculation [44],
target tracking, and navigation [45], such as calculations of spacecraft orbit, tracking of
maneuvering targets, and positioning of GPS. The specific calculation steps of the Kalman
filter are as follows.

The tracking trajectory of this target will be initialized for subsequent target tracking
and trajectory update. The invalid targets that disappear more than the set threshold in
the suspicious queue will be cleared. When a trajectory is created in the target trajectory
queue, the motion state estimation and target prediction of the target will be performed in
subsequent frames as shown in Figure 3. The state of the target is defined according to the
following model:

xk = [u, v, p, q]T (17)

where u and v represent the horizontal and vertical coordinates of the target centroid and
p and q represent the velocity component of the coordinate. The Kalman filter algorithm
predicts the target position in subsequent frames according to the target state and updates
the target state according to the measured value associated with the current target queue
using the Hungarian matching algorithm. If a target has no correlation matching, its state
is simply predicted using the linear velocity model without any correction.

One of the most well-known Bayesian filter theories is the Kalman filter, a linear
optimal status estimate technique [46]. The estimation process of the Kalman filter consists
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of the previous prediction step and the current measurement step. It includes two types of
equations: status equation and observation equation. A dynamic model with the status
and observation equations is given using a precise estimation that has been measured and
altered. The status equation of the Kalman filter is represented as follows [47]:

xk = Axk−1 + Buk + wk (18)

where A is the status transition matrix, B is the control–input matrix, xk is the status vector,
uk is the system control matrix, and wk is the system noise vector.

The Kalman filter observation equation is defined as follows:

zk = Hxk + vk (19)

where H is the observation matrix, zk is the observation vector, and vk is the observation
noise vector. wk and vk are assumed to be zero-mean Gaussian white noise with covariance
Q and R, respectively, denoted as:

w ∼ N(0, Q) (20)

v ∼ N(0, R) (21)

When a discrete control process system satisfies the above conditions, the Kalman
filter algorithm can be used to predict the system state.

The calculation procedure of the algorithm is as follows.
Firstly, the prediction equation is used to predict the next state of the system. The

prediction equation is defined as follows [47]:

x̂−k = Ax̂k−1 + Buk (22)

where x̂k−1 represents the posterior status estimation combined with the measurements at
the moment of k− 1 and x̂−k denotes the prior status estimation derived from the status
transition equation at the moment of k.

Then, the error covariance is calculated using the update equation. The update
equation is as follows:

P−k = APk−1 AT + Q (23)

where P−k is the prior estimation deviation covariance of the status x̂−k , Pk−1 is the posterior
estimation deviation covariance of the status x̂k−1, and Q is the deviation covariance of the
system noise vector.

The trajectory correlation operation follows the aforementioned prediction stage. As
shown in Figure 3, the Hungarian matching algorithm is used to correlate the predicted
coordinate sequence and the current candidate target sequence. The Hungarian matching
algorithm [48] was proposed by two Hungarian mathematicians and is mainly used to
solve some problems related to bipartite graph matching, such as data association [49],
UAV task assignment [50], and multi-target tracking [51]. The core of the algorithm is to
use the augmented path to find the maximum matching algorithm of the bipartite graph.
The predicted coordinate sequence of the tracking trajectory and the current candidate
target sequence form a bipartite graph that can be easily represented by a distance matrix.

Specifically, the Euclidean distance between the target prediction coordinates of the
tracking trajectory sequence and the target coordinates in the current candidate target
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sequence is calculated and integrated into a distance matrix ED, as shown in Figure 4a.
The formula is as follows:

ED =

⎛⎜⎜⎜⎝
Ed1,1 Ed1,2
Ed2,1 Ed2,2

· · · Ed1,n
· · · Ed2,n

...
...

Edm,1 Edm,2

. . .
...

· · · Edm,n

⎞⎟⎟⎟⎠ (24)

Edm,n =

√
(in − xm)

2 + (jn − ym)
2, n = 1 . . . P, m = 1 . . . C. (25)

where Edm,n is the Euclidean distance between the target PC(n) in the predicted target
coordinate sequence PC and the target CT(m) in the current candidate target sequence CT,
(in, jn) is the coordinate data of the target PC(n), (xm, ym) is the coordinate data of the target
CT(m), and P and C are the numbers of targets in the sequence PC and CT, respectively.
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Figure 4. Diagram of the Hungarian matching algorithm.

Then, as shown in Figure 4b, the distance matrix will be transformed into a registration
weight matrix WM according to the following formula:

WM =

⎛⎜⎜⎜⎝
w1,1 w1,2
w2,1 w2,2

· · · w1,n
· · · w2,n

...
...

wm,1 wm,2

. . .
...

· · · wm,n

⎞⎟⎟⎟⎠, wm,n =

{
dk− Edn,m

0
, Edn,m ≤ dk
, Edn,m > dk

}
(26)

where dk is the distance threshold parameter of the weight matrix. When the distance
between the coordinates is close, we hope that the corresponding correlation weight is
large, so the weight matrix should be inversely proportional to the distance matrix. At the
same time, we introduce the parameter dk to limit the correlation of the target coordinates
far away. If the distance between the targets is greater than dk, it is considered that the
possibility of a large difference between the two coordinates is low, and the corresponding
weight is set to zero directly to simplify the correlation calculation. After this operation,
the weight of the coordinates with smaller distances becomes larger, and the possibility of
registration association is also enhanced.

Through iterative optimization, the Hungarian matching algorithm generates a maxi-
mum weight distribution matrix, as shown in Figure 4c,d, which represents the correspon-
dence between the target in the tracking trajectory and the latest subsequent target sequence.
Each tracking trajectory is assigned to a current candidate target so that the posterior state
can be calculated and updated according to the associated measurement. The Euclidean
distance between the target predicted coordinate of the tracking trajectory sequence and
the target coordinate in the current candidate target sequence is calculated and sorted into
the correlation cost matrix. The assignment problem between the tracking trajectory and
the current candidate target sequence is solved optimally using the Hungarian algorithm,
which can provide the best matching for the two sequences.
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For the tracking trajectory with correlation detection, the correction stage combines its
predicted state with the measured value to obtain the best estimation xk. The formula is
represented as follows:

xk = x̂−k + Kk(zk − Hx̂−k ) (27)

where xk is the optimal estimation at the moment of k and Kk is the Kalman gain matrix.
The formula of Kk is denoted as follows:

Kk = P−k HT(HP−k HT + R)
−1

(28)

where R is the deviation covariance of the observation noise vector.
The posterior estimation deviation covariance of the state xk is calculated using the

following formula to keep the Kalman filter running until the processing system is finished.

Pk = (I − Kk H)P−k (29)

where Pk is the filter deviation matrix and I is the unit matrix.
The target parameters in the target tracking trajectory queue are updated after the

tracking association operation in each frame, including the coordinate data of the target
and the number of occurrences. Similar to the suspicious target queue, when the number
of target disappearances in the tracking trajectory exceeds the predetermined threshold,
the target is removed from the tracking trajectory. This procedure stops the unrestricted
expansion of the tracker population and positioning inaccuracies brought on by excessively
extended forecast durations without detector correction.

3.2. Stellar Target Suppression Algorithm

As the target detection and tracking stage run alternately, the number of target his-
torical coordinates in the tracking trajectory queue increases cumulatively. Both the space
target and the stellar target are included in the trajectory queue. This section proposes a
method for classifying the stellar targets and space targets using real-time satellite attitude
data and the historical coordinate data of track trajectories. We postulate that due to the
remote distance between the sidereal target and the Earth, the positions of the stars relative
to the Earth remain unchanged for a short time. In contrast, the coordinate of the space
targets relative to the Earth will change during this time because the moving space target
has a certain velocity and is closer to the Earth. Therefore, we exploit the different motion
states of stellar and space targets relative to the Earth to suppress the stellar targets. The
specific methods are as follows.

For the candidate trajectory formed at the time t, this stage performs the subsequent
operations on the latest target coordinates of each trajectory. The latest target point coor-
dinates of a trajectory need to be transferred to the camera coordinate using the camera’s
intrinsic matrix. Since the plane image can only provide two-dimensional coordinate data,
it is difficult to acquire the distance data of the target. During the process of coordinate
transformation, we assume the Z-axis data of the target point to be 1.⎡⎣ xc(t)

yc(t)
zc(t)

⎤⎦ = R−1
Int

⎡⎣x(t)
y(t)

1

⎤⎦, RInt =

⎡⎣ f /dx 0 x0
0 f /dy y0
0 0 1

⎤⎦ (30)

where RInt is the intrinsic matrix of the camera, R−1
Int is the inverse of the intrinsic matrix,

[xc(t), yc(t), zc(t)] is the camera coordinate of the target, [x(t), y(t)] is the pixel coordinate
of the target at the time n, (dx, dy) is the focus of the camera on the X and Y axis, and
(x0, y0) is the center pixel coordinate value of the camera.
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The installation matrix calculates the target coordinate relative to the platform. The
formula is as follows:⎡⎢⎢⎣

xs(t)
ys(t)
zs(t)

1

⎤⎥⎥⎦ = RIns

⎡⎢⎢⎣
xc(t)
yc(t)
zc(t)

1

⎤⎥⎥⎦, RIns =

[
R t
0 1

]
=

⎡⎢⎢⎣
nx ox ax tx
ny oy ay ty
nz oz az tz
0 0 0 1

⎤⎥⎥⎦ (31)

where RIns is the camera’s installation matrix and [xs(t), ys(t), zs(t)] denotes the target
coordinates relative to the platform.

The target coordinates relative to the Earth are calculated using the satellite attitude
matrix at the time n. The formula is as follows:⎡⎣ xe

ye
ze

⎤⎦ = RRot(t)

⎡⎣ xs(t)
ys(t)
zs(t)

⎤⎦ (32)

where [xe(t), ye(t), ze(t)] represents the target coordinates relative to the Earth t and RRot(t)
represents the satellite platform attitude matrix at the time n. This formula converts
the target coordinate relative to the camera to the platform coordinate system using the
camera external parameter matrix and the fourth-dimensional coordinate data are added
to facilitate the calculation. The formula for the attitude matrix RRot is as follows [52]:

RRot =

⎡⎣q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤⎦ (33)

where (q0, q1, q2, q3) denotes the attitude quaternion matrix of the satellite.
The target coordinates relative to the Earth can be obtained by transforming the target

coordinates. The target coordinate data relative to the platform at the time t + 1 is predicted
by the satellite attitude matrix at the time t + 1. The formula is as follows:⎡⎣ xs(t + 1)

ys(t + 1)
zs(t + 1)

⎤⎦ = R−1
Rot(t + 1)

⎡⎣ xe
ye
ze

⎤⎦ (34)

where [xs(t + 1), ys(t + 1), zs(t + 1)] denotes the target coordinates relative to the platform
at the time t + 1, [xe, ye, ze] represents the coordinates of the target relative to the Earth, and
R−1

Rot(t + 1) represents the satellite attitude inverse matrix at the time t + 1.
The camera coordinates are predicted by the coordinates of the target relative to the

platform and the installation matrix. The formula is as follows:⎡⎣ xc(t + 1)
yc(t + 1)
zc(t + 1)

⎤⎦ = R−1
Ins

⎡⎣ xs(t + 1)
ys(t + 1)
zs(t + 1)

⎤⎦ (35)

where [xc(t + 1), yc(t + 1), zc(t + 1)] represents the target camera coordinate data at the
time t + 1 and R−1

Ins denotes the inverse of the installation matrix. The target coordinates
[x(t + 1), y(t + 1)] at the time t + 1 are predicted by the target camera coordinates at the
time t + 1 and the camera internal reference matrix. The formula is as follows:⎡⎣x(t + 1)

y(t + 1)
1

⎤⎦ = RInt

⎡⎣ xc(t + 1)
yc(t + 1)
zc(t + 1)

⎤⎦ (36)

where [x(t + 1), y(t + 1)] denotes the target pixel coordinates at the time t + 1.
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After a sequence of coordinate transformations, we can obtain the predicted target
coordinates of the tracked trajectory at the time t + 1. The actual target coordinate data in
the track trajectories at the time t + 1 are provided after the tracking association operation
in the above section. The difference between the target predicted and practical coordinates
can be used as a criterion to determine whether the target is a real space target or not.
When the difference exceeds a set threshold, the target is judged to be a real space target;
otherwise, it is a stellar target. The threshold to confirm the target type is determined based
on prior experience, which is selected as 1 in this paper.

3.3. Target Angle Calculation

The stellar target suppression module described in the above section classifies the
space targets and stellar targets in the tracking trajectory queue. The calculation method of
space target angle information will be introduced in this section. The position of the target
with respect to the optical axis of the camera determines the azimuth and pitch angle of the
target, and the precise calculation procedures are as follows.

Firstly, the intrinsic matrix of the camera is used to convert the target coordinate data
from the image pixel coordinate system to the image physical coordinate system, as defined
in the following formula.⎡⎣x

y
1

⎤⎦ = RInt

⎡⎣u
v
1

⎤⎦ =

⎡⎣1/dx 0 u0
0 1/dy v0
0 0 1

⎤⎦ (37)

where (u, v) denotes the coordinate value of the target in the image pixel coordinate system,
(x, y) indicates the coordinate value of the target in the image physical coordinate system,
and RInt is the intrinsic matrix of the camera.

Due to the lens distortion of the optical system, it is necessary to correct the target
coordinate to ensure the accuracy of the target angle calculation. The radial and tangential
distortion [53] are the major factors affecting the imaging quality of the wide field view
optical system. The radial distortion can be fitted by quadratic and higher-order polynomial
functions linked to the separation between target point coordinates and the image center
pixel coordinates, as shown in the following formula [54]:{

xd = x(1 + k1r2 + k2r4 + k3r6)
yd = y(1 + k1r2 + k2r4 + k3r6)

, r2 = x2 + y2 (38)

where (xd, yd) indicates the point coordinates after the radial distortion, (x, y) represents
the coordinate value of the target in the image physical coordinate system, r2 is equivalent
to the distance between the coordinate point and the image center, and (k1, k2, k3) denotes
the parameters of the radial distortion model.

The tangential distortion is similar to radial distortion, which can be fitted using two
other parameters, as shown in the following formula.{

xd = x + 2p1xy + p2(r2 + 2x2)
yd = y + p1(r2 + 2y2) + 2p2xy

(39)

where (xd, yd) is the point coordinates after the tangential distortion, (x, y) represents the
coordinate value of the target in the image’s physical coordinate system, r2 is equivalent to
the distance between the coordinate point and the image center, and (p1, p2) denotes the
parameters of the tangential distortion model.

The complete distortion model of the optical system can be determined by combining
the above two types of distortion models, as shown in the following formula [54].{

xd = x(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2x2)
yd = y(1 + k1r2 + k2r4 + k3r6) + p1(r2 + 2y2) + 2p2xy

(40)
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In this paper, we use the fitting approach to correct the distortion of the coordinate
data of a single target to reduce the calculation amount of the distortion correction model.
The distortion correction model is shown as follows:{

xr = xd(1 + k′1r2
d + k′2r4

d + k′3r6
d) + 2p′1xdyd + p′2(r2

d + 2xd
2)

yr = yd(1 + k′1r2
d + k′2r4

d + k′3r6
d) + p′1(r

2
d + 2xd

2) + 2p′2xdyd
, r2

d = x2
d + y2

d (41)

where (xd, yd) represents the target coordinates of the image’s physical coordinate system
after distortion correction, (xr, yr) denotes the target coordinates of the image’s physical
coordinate system after distortion correction, and (k′1, k′2, k′3, p′1, p′2) indicates the parameters
of the inverse distortion model. The parameters are fitted using the measured and actual
angle data of the sampling target points.

Finally, the azimuth angle θ and pitch angle ϕ of the target can be calculated using the
following formula. {

θ = arctan(xr)
ϕ = arctan(yr)

(42)

The calibration experiments of the camera internal and distortion parameters are
conducted before the DSP implementation. We calculate the relevant parameters on the PC
platform, such as the intrinsic camera matrix and distortion correction parameters. Then, the
relevant calculated parameters are solidified within the DSP program to achieve a fast target
angle calculation task. The relevant calculated parameters can also be changed by sending
instructions from the integrated control system. The calculation of target characteristics
data, particularly azimuth and pitch information, can provide comprehensive space target
position and grayscale characteristics for space-based surveillance and assist in generating
the decision information for spacecraft obstacle avoidance.

4. Hardware Implementation

This paper presents a hardware implementation of the MJDTM model based on an
embedded image processing system composed of FPGA and DSP. The FPGA processor,
which is suited for parallel computing and has a low computational complexity, has major
advantages in terms of large-scale image data processing. This model is suitable for
implementing the image filtering algorithm to accomplish rapid target detection. The DSP
chip with high-precision digital signal processing capability can complete the algorithm
with high computational resource consumption during the tracking stage such as the
Kalman filter. To meet the real-time processing requirement of the optical image sequences,
we assign processing tasks to the designed multi-core heterogeneous system according to
the resource requirements of each processing step. In this section, the constituent modules
of the algorithm implementation will be explained in detail.

4.1. Overall Hardware Design

Figure 5 depicts the hardware architecture of the designed space target detection
architecture. The onboard space target surveillance system comprises the image acquisition
system, the image processing system, the integrated control system, and the external
storage. The space-based optical image acquisition system consists of two CMOS sensors
with a 1024× 1024 pixel resolution and a grayscale value of 12 bits that output image data in
the format of LVDS (low-voltage differential signaling) data. The image acquisition system
captures the space optical image at a rate of five frames per second. The proposed image
processing platform consists of a DSP processor for the target tracking association algorithm
and an FPGA chip for image acquisition and target detection. When the image data are
received, the processing system will cache the image data and perform the operations
of the space target detection and tracking. We will obtain the space target optical image
and detection results with the FPGA and DSP processing the image data. A Xilinx Kintex-
7 XC7K325TFFG900 FPGA device with 326,080 logic cells, 16,020 KB Block RAM, and
840 DSP slices is used in the image processing system. The TMS320C6678 DSP processor
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with eight C66x cores from TI, whose main frequency can reach 1GHz, has been adopted.
Additionally, each C66x Core-Pac contains a 512 KB secondary memory (L2), a 32 KB
primary program memory (L1P), and a 32 KB data memory (L1D) and can access 4 MB
multicore shared memory (MSM). The external storage module contains SDRAM and flash,
which are used to cache the image and software program data. The integrated control
system sends operation commands to change the working mode of the system and receives
the feedback data of the running state through the RS422 interface. It also receives image
data and target detection results through the LVDS interface.

Figure 5. Overview of system conceptual schematic hardware structure.

The overall block structure of the algorithm implementation architecture is shown
in Figure 6. The hardware implementation of the detection and tracking algorithm is
separated into two parts. The detecting procedure, which requires pixel-by-pixel filtering of
the image, is carried out on the FPGA with quick parallel processing capacity. The tracking
procedure that executes predictive correlation on the detection target is carried out in the
DSP with high-precision digital computing performance. The implementation architecture
of the image processing platform comprises the functional modules and processing units.
The input to the implementation is the LVDS digital image signals and the RS422 command
signals, and the output is the detected target results. In a nutshell, the proposed architecture
receives the digital image data from the LVDS interface and executes target detection and
tracking operations.

The FPGA implementation comprises the data receive and analysis unit, the command
analysis unit, the data cache and output buffer, the system configuration manager, the SRIO
communicator, the image cache and slice extract unit, and the target detection module. The
data receive and analysis unit first receives the digital image data, converts the serial LVDS
data into parallel data, and reads the data packet headers to parse the data according to
the communication protocol. Then, the data cache and output buffer store the image data
in the external memory. The image cache and slice extract unit stores a whole frame of
image data and sends it to the target detection module. The target detection module uses
the local feature contrast filter to detect the space and stellar target. The command analysis
unit receives various commands such as image processing parameters and configuration
management commands from the integrated management unit via the RS422 interface.
This unit is also responsible for forwarding instruction data to the DSP processor. Finally,
the SRIO communicator packages and send the detected target coordinate and slice data
and the auxiliary data to the DSP via the SRIO interface.
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Figure 6. Architecture schematic of system hardware.

The DSP implementation consists of the target tracking module, the SRIO commu-
nicator, the stellar target suppression module, the target feature extraction module, and
the command analysis unit. The SRIO communicator receives the detected target data
and sends them to the target tracking module. The target tracking module adopts the
Kalman filter and Hungarian matching algorithm to predict the target state and associated
trajectories. The target coordinate data are stored in the internal data memory and read
by the target tracking module when updating and associating the target trajectories. The
stellar target suppression module uses the real-time satellite attitude data in the auxiliary
data package to classify the sidereal and space targets. The feature information of the
identified space target are calculated by the target feature extraction module, including
the local SNR, the type of targets, and the azimuth and pitch angle. Then, the processing
results are packaged and sent to the FPGA chip by the SRIO communicator. The data cache
and output buffer in FPGA consolidate the detected results and send them to the integrated
control system via the LVDS interface.

4.2. FPGA Implementation

The essential task of the target detection module is to run the LFC algorithm for the
optical image sequences. After receiving the image from the space-based image acquisition
system through the LVDS interface, FPGA executes the target detection module. The
process of the target detection module is illustrated in Figure 7. This module contains
five processing stages, including image down-sample, LFC filter, threshold segmentation,
connected domain notation, and target centroid extraction. FPGA loads configuration data
from Flash by self-starting. After sufficient testing and debugging, software configuration
data with default parameters are burned into Flash. During the operation of the system,
we can send relevant instructions via UART (universal asynchronous receiver/transmitter)
to modify the algorithm parameters.

The hardware architecture of the LFC filter stage is shown in Figure 8. This module
will perform the filtering operation in parallel for each pixel during the LFC filter stage. In
detail, we split the n×m filter window from the image pixel stream centered on the point
(x, y). The filter window is scanned across the image in Figure 8a from top to bottom and
left to right. To quickly calculate the grayscale average value and standard deviation of the
filtering region, the filtering window is divided into nine image blocks.
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Figure 7. Block diagram of the target detection module.

Figure 8. The hardware structure of the LFC filtering: (a) the filter window sliding operation; (b) the
hardware structure of the image block gray mean calculation; (c) the hardware structure of the image
block gray standard deviation calculation; (d) the hardware structure of the LFC value.
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This module runs related calculations for the divided image blocks in parallel, as
depicted in Figure 8b,c. Then, a series of calculating operations mentioned in Section 3 are
also performed for the filtering window. Finally, the LFC value of the center point (x, y) is
calculated, as shown in Figure 8d.

In the hardware implementation, the sliding window size of the LFC filter is set to
9 × 9. In practical scenarios, the projection area of the target on the detector may expand,
given the target movement and the change of detector lens parameters. As shown in
Figure 9, the uneven grayscale distribution and threshold segmentation processing of large
targets may lead to the segmentation of one target into several targets, which increases the
difficulty of subsequent target tracking. However, by altering the size of the image filter
window, the proposed algorithm might be able to adapt to the target size variation.

Figure 9. Region of the large target and adjacent neighbor before and after the down-sample operation:
(a) the region of the large target and adjacent neighbor; (b) the 3D plot of the large target; (c) the
saliency map of the large target; (d) the region of the large target and adjacent neighbor after the
down-sample operation; (e) 3D plot of the large target after the down-sample operation; (f) the
saliency map of the large target after the down-sample operation.

This will increase the difficulty and cost of the hardware implementation for the
detection algorithm. To guarantee the precision and processing speed of target detection,
the image downscaling stage executes the down-sample operation on the optical image
sequence. We also apply the same scale LFC filter operation to the down-sampled image to
extract large-size targets. As shown in Figure 9, the large targets can be accurately detected
after the down-sample operation. Since the processing of original and down-sample data is
independent, the two LFC filtering procedures for these images are executed concurrently
in the FPGA implementation.

After the image LFC filter, the adaptive threshold segmentation is conducted on the
local feature contrast image to extract the potential target. The selection of the adaptive
segmentation threshold is discussed in Section 5.3. Then, this module applied the scanning
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line technology to label the connected domain of the target. The distance-weighted centroid
method is also adopted to calculate the target centroid coordinate data. Finally, we can
obtain the detection target coordinate data based on the original and down-sampled images.
The target centroid coordinates and the slice data segmented according to the coordinate
data are packaged and sent to the DSP processor.

4.3. DSP Implementation

The flowchart of the software in the DSP system is shown in Figure 10. The DSP
system mainly performs image processing tasks such as the multi-frame association of
detected targets, matching update of candidate trajectories, stellar target suppression, and
target feature calculation.

Figure 10. DSP software flow block diagram.

We employ the main Core 0 for software program development and use the kernel’s
local L2 SDRAM and MSM SDRAM as data storage because the DSP software processing
tasks in this system are relatively simple and the amount of data processed is small. The
peripheral interfaces of other cores are turned off to reduce system power consumption.
The DSP is started by SPI boot mode, and the configuration interface is connected to the
FPGA. The FPGA realizes the option of the SPI configuration mode by controlling the
high and low levels of the configuration interface. After the DSP is powered up in the
prescribed order and the configuration mode is set up, it reads the program data through
the SPI interface and loads it into the program storage space in the core and starts to run
the program. After sufficient testing and debugging, the DSP software program is written
into FLASH, and it comes with a set of default algorithm parameters. During the process
of software operation, we can send the relevant execution through the UART interface to
change and optimize the algorithm parameters to achieve the optimal processing effect.

When the DSP system completes the program loading and system initialization, it
enters the idle state and waits for the SRIO doorbell interrupt. After the FPGA completes
the candidate target extraction of a frame image, the detection result data package is
written to the memory of the DSP through the SRIO interface, and the doorbell signal is

272



Remote Sens. 2023, 15, 3156

delivered to the DSP after the data transmission is completed by the FPGA. The DSP starts
the processing of the candidate target data for the current frame under the trigger of the
doorbell interrupts. Firstly, the software parses the candidate target data and auxiliary
calculation data in the data packet according to the relevant protocol. The software updates
the candidate target data and auxiliary calculation data in the packet to the corresponding
storage array. Then, the software calls different functions according to the processing stage
to associate the target. In the initial tracking stage, the software performs multi-frame
correlation to confirm the real target for multiple consecutive frames of candidate targets.
In the middle tracking stage, the software creates the tracking trajectory for the real targets
and predicts their motion state in subsequent frames. In the subsequent stable tracking
stage, multi-frame association and trajectory association operations are alternated between
the candidate target queue and the trajectory sequence, and for the trajectory sequence, the
software discriminates the type of the target and suppresses the stellar target to confirm
the real space target. Finally, after continuous multi-frame stable tracking correlation and
recognition, the feature data of the real target are calculated by the software, packaged,
and sent to FPGA. If there is no target in the current frame that is judged to be the true
target, the relevant data are not sent. The software enters the idle state after completing the
processing of the current frame.

4.3.1. Target Tracking Module

In the DSP implementation, the target tracking module predicts the candidate target
state prediction and associates the tracking trajectories with the detected target sequence.
Figure 11 illustrates the block diagram of this module. Firstly, this module executes the
multi-frame association before the tracking trajectory update to suppress noise points. It
calculates the distance between targets in the current frame detected target sequence and
the former target sequence in the candidate target queue. When the separation between
the targets is below a predetermined threshold, the target is considered a potential target,
and the coordinates of the latest frame are updated to the candidate target queue. The
target data in the detected target sequence are directly updated to the candidate target
queue when the system first receives the target data. This module generates the associated
tracking trajectory for subsequent target state prediction and trajectory association when
the target in the candidate target queue has more occurrences than a set threshold. In
detail, we use the Vision Library, a collection of optimized computer vision algorithm
libraries developed by Texas Instruments for digital media processors. It contains the Ap-
plication Programming Interface for Kalman filter algorithms, which can quickly perform
complex function operations in hundreds of machine cycles. The VLIB_kalmanFilter_2 × 4
is the structural variable type used for the Kalman filter calculation with two-dimensional
observation and four-dimensional state vectors. This module creates the corresponding
VLIB_kalmanFilter_2 × 4 structural variable for each tracking trajectory, which is conve-
nient for calling the predict and correct API function to achieve the prediction and state
update of the tracking trajectory.

Moreover, this module employs the Hungarian matching algorithm to associate the
tracking trajectory queue and the detected target sequence. The distance between the
tracking trajectory predicted sequence and the detected target sequence is calculated and
integrated into a distance matrix used as the weight of trajectory matching. The Hungarian
matching algorithm uses a recursive method to find the path with the maximum expectation
value to match the trajectories with the target sequence. The detected target sequence of
each frame image is preferentially associated with the tracking trajectories in this module.
Moreover, in the multi-frame association stage, the targets in the detected target sequence
that successfully matched the tracking trajectory are not associated with the candidate
target queue.
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Figure 11. Block diagram of the target tracking module.

4.3.2. Stellar Target Suppression Module

After the latest tracking trajectories of the candidate targets are associated and updated,
the potential target type needs to be confirmed, as mentioned in Section 2. The stellar
target suppression module, which predicts the target position using the real-time satellite
attitude data to classify the stellar targets and space targets, is shown in Figure 12. In the
implementation, in order to eliminate the influence of platform jitter on the detection results,
the historical coordinate data in the candidate tracking trajectory are utilized to identify the
target type. As shown in the diagram, this module computes the target coordinate data
relative to the Earth by using the image plane coordinate data and the satellite platform
attitude data. Each frame’s satellite platform attitude data are included in the auxiliary
package transmitted together with the detected target package sent by FPGA. Moreover,
the predicted target coordinate data at time n in the image coordinate system could be
calculated with the attitude data of the satellite platform at time n. The mean value of the
difference between the target actual coordinate and the predicted coordinate calculated is
used to judge whether the target is a real space target or not. In detail, this module begins
to classify the type of candidate target for each tracking trajectory when its length surpasses
a specific value. The threshold value that determines the target type also can be changed
by sending instructions from the integrated management system.
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Figure 12. Stellar target suppression module.

5. Experiment

The hardware architecture described in Section 4 was implemented on a dedicated
embedded image processing platform. The pictorial diagram of the platform is shown
in Figure 13. The architecture was implemented using Verilog and C. To better evaluate
the performance of the target detection algorithm, the simulations were conducted using
Matlab2018b in the Win10 system, using an i7-10750H CPU with 2.6 GHz and 16 GB of
main memory. The remainder of the section is organized as follows. First, the optical image
dataset used in the experiment is described. Then, we assess the proposed architecture
regarding the target detection rate, the efficiency of the stellar target suppression algorithm,
and the target angle calculation accuracy. Finally, we present an evaluation of processing
efficiency for the hardware implementation.

5.1. Experimental Dataset

To validate the detection performance of the proposed algorithm, we use the simulated
and real image sequences. The simulated image dataset comprises image sequences of
the wide and narrow field of view, of which the image size is 1024 × 1024 pixels and the
grayscale value is 12 bits. The simulated images whose background is the deep space
background contain stellar targets and moving space targets that simulate the space optical
image in space-based scenarios. The motion attitude data of the satellite platform are
synchronously generated with the image sequences.
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Figure 13. Picture of the embedded image processing platform.

Furthermore, the real image data are captured by two cameras of the space-based
optical image acquisition system introduced in Section 4 in the ground simulation scenario.
The wide and narrow field-of-view camera covers the range of 90◦ × 90◦ and 8◦ × 8◦ field
of view, respectively. The image size and pixel gray level are the same as the simulated
image. The real image data are taken on a clear cloudless night, and the camera is placed
vertically on the ground, capturing the sidereal points and the unmanned aerial vehicle
and civil aviation aircraft targets that simulate the moving space target under the night
sky background. The image dataset introduced in detail in Table 1 contains two groups of
simulated image sequences and two groups of real image sequences.

Table 1. Details of the space target image sequences.

Sequence Frame Field View Background Details Target Details

Seq.1 300 Wide field Simulated deep space background;
random noise Simulated target; 3 × 3

Seq.2 300 Narrow field Simulated deep space background;
random noise Simulated target; 3 × 3

Seq.3 300 Wide field Real background; sky Civil aviation aircraft; 3 × 3
Seq.4 300 Narrow field Real background; cloud and sky Unmanned aerial vehicle; 12 × 12

5.2. Target Detection and Tracking Experiment

In this section, we evaluate the performance of the proposed space target detection
and tracking algorithm, including the accuracy of target detection, the efficiency of tar-
get tracking, and the accuracy of the stellar target suppression algorithm, by using the
simulated and real image sequence.

First, we evaluate the proposed target detection algorithm using the four groups of
image datasets mentioned in the previous section. To quantitatively assess the performance
of the detection algorithm, we use two evaluation criteria: the detection probability and the
false alarm rate. The detection probability Pd and false alarm rate Pf are defined as
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Pd =
Nd
Nt

(43)

Pf =
Nf

Np
(44)

where Nd represents the number of the true detected targets, Nt denotes the number of real
targets, Nf indicates the number of false targets, and Np denotes the total number of pixels
in the processed images. Meanwhile, we present the receiver operating characteristic (ROC)
curves and calculate the area under the curve (AUC) to intuitively appraise the algorithm’s
performance. The ROC curve could illustrate the corresponding relationship between the
detection probability and the false alarm rate, which is one of the quantitative methods to
evaluate detection efficiency. The closer the curve is to the upper left corner, the better the
algorithm performs.

Simultaneously, the proposed algorithm is compared with state-of-the-art small target
detection algorithms, including the multiscale tri-layer local contrast measure (TLLCM)
and the weighted strengthened local contrast measure (WSLCM) [55]. Figure 14 shows the
ROC curves of these three algorithms for four groups of space optical image sequences. As
shown in Figure 14a, the proposed method obtained a Pd exceeding 95% when Pf reached
10−4. As shown in Figure 14c,d, the proposed and comparative algorithm could reach
95% Pd when Pf < 10−6. As shown in Figure 14b, both the proposed algorithm and the
comparison algorithm reach 95% Pd when the Pf does not exceed 10−4. Since the target is
weak, the performance of the proposed algorithm is slightly inferior to that of WSLCM.
The area under the curve (AUC) can further be used to evaluate the performance of the
target detection method and provide a more comprehensive comparison. The results of
AUC are shown in the figure. The AUC values of the proposed method were 0.9759, 0.9819,
0.9843, and 0.9919. In contrast to Seq.2, the proposed algorithm obtains the maximum AUC
value on the other three datasets. The experimental results show that compared with other
algorithms, the energy accumulation step in the proposed algorithm enhances the target,
achieving a better target detection performance and ensuring the algorithm implementation
detection efficiency.

The adaptive segmentation threshold is a significant factor that decides the accuracy of
target detection. Figure 15 demonstrates the detection rate and false alarm rate performance
of the algorithm on four sequences under different values of the parameter k1. Figure 15a
indicates that when the parameter k1 is between 30 and 50, the target detection rate exceeds
95%, which is sufficient for practical applications. When the parameter k1 is less than 35,
the Pf is less than 10−4, which satisfies the majority of application requirements, as shown
in Figure 15b. In conclusion, we recommend that the parameter k1 should have a range
of values between 35 and 50, so that the detection performance can attain over 95% Pd
and Pf < 10−4.

After this, we performed a series of experiments using the simulated wide-field and
narrow-field image sequences. There are twenty to thirty sidereal points and one space
target setting in the two simulated groups of image sequences. The wide- and narrow-field
image detection results are shown in Figure 16a,b. It can be seen from the figure that the
detection algorithm can accurately detect space targets and stellar points. For the target
sequence of each image frame, we created the corresponding tracking trajectory to track
the target. When the number of consecutive occurrences of the target is greater than seven,
the satellite attitude data generated via simulation are used to classify the space target and
the sidereal points of the track trajectories. The results of trajectory tracking and stellar
target suppression can be seen in Figure 16b,c, and the efficiency of target tracking after the
stellar target suppression is shown in Figure 16e,f. The results show that the algorithm can
successfully identify space targets.
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Figure 14. ROC curves of four groups of the image sequences. (a) ROC curve of Seq.1; (b) ROC curve
of Seq.2; (c) ROC curve of Seq.3; (d) ROC curve of Seq.4.

 
(a) (b) 

Figure 15. Influence of k1. (a) Relationship between k1 and Pd; (b) relationship between k1 and Pf .
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Figure 16. Simulation image detection and tracking results. (a) Target detection results of Seq.1
(left upper corner is space target area slice); (b) trajectory tracking results of Seq.1 (red is space
target trajectory, white is star trajectory); (c) tracking trajectory result of Seq.1 after the stellar target
suppression; (d) target detection results of Seq.2 (upper left corner is target area slice); (e) trajectory
tracking results of Seq.2; (f) tracking trajectory result of Seq.2 after the stellar target suppression.

In addition, to illustrate the effect of the stellar target suppression algorithm, we
define the detection probability and false alarm rate based on the whole image sequence to
quantitatively evaluate the stellar target suppression algorithm. The detection probability
Pt and false alarm rate Fa are defined as

Pt =
Nrd
Nrt

(45)

Fa =
Nr f

Np f
(46)

where Nrd represents the number of detected frames of real space targets, Nrt denotes
the frame number of real space targets, Nr f represents the number of detected frames
of false space targets, and Np f denotes the total number of frames in the sequence of
images. Table 2 shows the calculation results of this algorithm’s detection rate and false
alarm rate on two sets of simulated image sequences. The target tracking stage monitors
potential targets in multi-frame optical image sequences and suppresses the stellar targets
using platform attitude data and historical coordinate data that can reflect target motion
differences. The experimental results show that this stage achieves high-precision detection
of real space targets.
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Table 2. Detection probability and false alarm rate of the stellar target suppression algorithm on
different image sequences.

Sequence Pt Fa

Seq.1 91.72% 1.33%
Seq.2 97.25% 0%
Seq.3 80.9% 0%
Seq.4 95.67% 0%

We also conducted relative experiments for the real image set, including space target
detection, tracking, and stellar target suppression. First, we perform the target detection
experiment on the image sequence. Besides the target detection of the original image, we
also detect the target in the down-sample real image sequence, which is used to realize
the detection of large-size targets. As shown in Figure 17e, when the target is close
to the detector, the number of pixels occupied by the target on the detector plane will
increase, leading to the algorithm marking one target as two targets. The down-sample
processing step of the image reduces the area of the big target to ensure the accuracy of
the target detection. Specifically, this step reduces the image size from 1024 × 1024 pixels
to 256 × 256 pixels by sampling the original image every four pixels. The target can be
down-sampled from 12× 12 to 3× 3 by quadrupling this down-sample rate. The hardware
implementation of the detection algorithm’s filter window can accurately detect targets
with a diameter of less than 3, and after down-sampling, the diameter of targets with a
diameter of 4 to 12 is reduced to between 3 and 1, allowing our hardware implementation to
also accurately detect the target. A target with an area greater than 12× 12 is not considered
in this paper. The detection results of the original image and down-sampled image are
shown in Figure 17. We obtain two sets of target sequences after the space detection of the
original image and the down-sampled image. A fusion operation is executed to merge the
two target sequences.

Figure 17. Real image detection and tracking results: (a) the detection results of the original image
and the down-sampled image of Seq.3; (b) the fusion results of the dual-size target detection results
of Seq.3; (c) trajectory tracking results of Seq.3; (d) tracking trajectory results of Seq.3 after the stellar
target suppression; (e) the detection results of the original image and the down-sampled image of
Seq.4; (f) the fusion results of the dual-size target detection results of Seq.4; (g) trajectory tracking
results of Seq.4; (h) tracking trajectory results of Seq.4 after the stellar target suppression.

The detection results are shown in Figure 17b,f, and the large target is marked as one
target after fusion. We create the corresponding tracking trajectories for the target sequence
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in the target tracking experiments. When the length of the tracking trajectory is greater
than 7, we use the simulated satellite attitude data to classify the space targets and sidereal
points in the trajectory sequence. The target tracking results are shown in Figure 17c,g,
in which the white trajectories belong to sidereal points and the red one belongs to the
simulated space target (UAV and aircraft) trajectory. The results of target tracking after the
stellar target suppression are shown in Figure 17d,h. It can be seen from the figure that the
stellar points and space targets are precisely distinguished using the difference in motion
between them. Table 2 also shows the stellar target suppression results of the proposed
algorithm on the real image sequences.

Finally, the target angle information of the space target is calculated. The accuracy of
the target angle measurement method will also be calculated in the following experiment.
For the wide-field camera with a 90◦ × 90◦ field of view, camera distortion correction
is required to ensure the accuracy of the angle calculation before performing the target
angle calculation. The specific correction scheme is as follows. The camera is mounted
on a two-dimensional rotating platform, and a point target is set in front of the rotating
platform to simulate a space target. The correction method is shown in Figure 18a. First,
we calculate the mounting matrix of the camera, in which the rotating platform rotates to
the corresponding angle according to the set angle sequence. The camera acquires 25 target
images of the angle near the center point to generate a set of image sequences. We extract
the coordinates of 25 target points and fit the camera mounting matrix using these points.

Figure 18. Wide-field camera distortion correction method. (a) Distortion correction method;
(b) collated sampled point grid image.

Then, the rotating platform also rotates to the corresponding angle according to the
set angle sequence, and the camera acquires 225 setting target points images to generate a
set of image sequences. We also detect and extract the coordinates of target points for the
acquired image sequence, and the collated sampled point grid image is shown in Figure 19a.
Due to the barrel distortion of the wide-field camera, the target’s actual imaging position is
often not in the ideal projection model coordinates. Consequently, we use the target ideal
coordinate sequence and the actual imaging coordinate sequence to generate the inverse
distortion model. The grid of sampling points corrected by the inverse distortion model
is shown in Figure 19b. To verify the accuracy of this inverse distortion model, we take
images of 25 test target points. The target points are detected using the proposed algorithm,
and the azimuth and pitch angle are also calculated using the inverse distortion model. The
measured angle results of the test target point before and after the distortion correction are
shown in Figure 19c,d. The red star mark in the figure is the angle value calculated using
the imaging position of the target image plane, and the blue is the actual angle value of
the target. As shown in the figure, the azimuth and pitch angle of the target are accurately
calculated after the aberration correction. The average angle measurement error is 0.1334,
and the maximum value of the side angle error is 0.2419. The angle measurement accuracy
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can reach 99.73%. The formula of the side angle error φ and the angle measurement
accuracy ε are as follows.

φ =

√
(θi − θr)

2 + (ϕi − ϕr)
2 (47)

ε = 1− φ/FOV (48)

where (θi, ϕi) denotes the actual value of the azimuth and pitch angle of the target point,
(θr, ϕr) represents the corrected value of the calculated azimuth and pitch angle of the
target point after the distortion correction operation, FOV denotes the camera field of view,
and ε is the angle measurement error.

Figure 19. Wide-field camera distortion correction results. (a) Distribution of scanned target imaging
position and theoretical position before aberration correction; (b) distribution of scanned target
correction position and theoretical position after aberration correction; (c) calculated and actual
angles of test target points before distortion correction; (d) calculated and actual angles of test target
points after distortion correction.

5.3. Hardware System Computational Performance Analysis

In this section, we conduct several experiments to evaluate the proposed implementa-
tion’s computational performance and operational efficiency. As described in Section 4, the
proposed target detection algorithm is implemented on the Xilinx Kintex-7 FPGA with the
specific hardware resource consumption rates shown in Table 3. We utilized these resources
in the FPGA implementation to optimize the design. Table 4 reports the processing time and
power consumption obtained for the hardware implementation of the proposed algorithm
on the considered FPGA and DSP architecture. The single-frame image processing time
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measured in the FPGA is only 22.064 ms. Therefore, the designed space target detection
architecture can realize a processing speed of 45 frames per second. In experimental tests,
the power consumption of DSP and FPGA is 7.02 W and 6.168 W, respectively, and the
overall power consumption can be controlled within 15 W, which satisfies the space-based
platform application requirements.

Table 3. Summary of resource utilization for the FPGA implementation of the proposed target
detection algorithm.

Component
Number of

LUTs
Number of

FFs
Number of

BRAMs
Number of

DSPs
Number of

BUFGs

Units 4.9999 6.1274 233 53 22
Percentage 24.53% 15.03% 52.36% 6.31% 68.75%

Table 4. Processing time measured for space detection and tracking method in the hardware system.

Hardware
Platform

Processing
Time

Clock
Period

Hardware Operation
Frequency

Hardware Power
Consumption

FPGA 22.046 ms 1,102,300 50 MHz 7.02 W
DSP 0.5946 ms 595,460 1000 MHz 6.168 W

Finally, we use the simulated image sequences Seq.1 and Seq.2 to evaluate the perfor-
mance of the hardware implementation for target detection and tracking. The experiment
results of the target detection and stellar target suppression are shown in Table 5. Due
to the complexity of implementation, we have not drawn the ROC curve on the FPGA
implementation program. The threshold of the adaptive segmentation algorithm is set
between 10 and 20 for testing. Finally, a detection rate of 96.36% can be achieved when the
false alarm rate is less than 0.4% during the detection stage of the FPGA implementation.
The stellar suppression algorithm of the target tracking algorithm module implemented by
DSP can accomplish an average detection rate of 87.8% for actual space targets in sequence
images. The DSP implementation is inferior to that of the PC platform. The primary reason
is that the multi-frame correlation module will confirm the target in the first few frames
of the target. The target tracking stage of the DSP implementation will execute the stellar
suppression algorithm when the tracking trajectory length exceeds a certain threshold.
Consequently, the detection rate will be low in the early stages of tracking and will increase
as the trajectory length increases.

Table 5. The result of the hardware implementation for the proposed algorithm.

Hardware Platform Sequence Seq.1 Seq.2

FPGA
implementation

Pd 97.37% 96.36%
Pf 0.0332% 0.0335%

DSP implementation Pt 87.27% 88.33%
Fa 0% 0%

6. Discussion

In this paper, a space target detection and tracking model is presented with its hard-
ware implementation scheme. A dim small space target detection approach is proposed
in the target detection stage, which improves the local contrast method. According to the
experimental results on the real and simulated image datasets, as illustrated in Figure 14,
its detection performance is stronger than that of TLLCM and WSLCM. In detail, our algo-
rithm can obtain 95% Pd when Pf < 10−4 on all sequences. The target detection method is
implemented on an FPGA, and Tables 3–5 reveal the resource and time consumption and
the experimental results. The target detection software is self-started by the FPGA, and
the segmentation parameter will remain constant for a while. The detection performance
is significantly impacted by the selection of the adaptive segmentation threshold. On the
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one hand, we define the default threshold using the results of the PC platform. On the
other hand, the detection rate and false alarm rate information are calculated with the
output of the detection results from the FPGA, and the best detection effect can be obtained
by appropriately modifying the segmentation threshold parameters in accordance with
the detection effect. Furthermore, the hardware development could complete the target
detection of a single frame image in 22 ms thanks to the parallel processing capabilities of
FPGA, which guarantees real-time performance of image processing.

The Kalman filter algorithm and the Hungarian matching algorithm collaborate at
the target tracking stage to stabilize the tracking target. The experimental results of the
model and the detection effect are displayed in Figure 17 and Table 2. The satellite’s
attitude data are easily obtained on the space-based platform. Given that attitude data
undoubtedly contain errors, we begin the stellar suppression algorithm once the tracking
trajectory reaches a particular threshold to avoid the effects of incorrect attitude data on the
star suppression effect. We utilize simulated attitude data for the experiment on the PC
platform, and the threshold is set at 8 since the simulated data error is minor. On the one
hand, calculation errors due to platform differences may have an impact on the detection
effect. On the other hand, employing more frames of historical target coordinate data for
statistics can eliminate the calculation error caused by attitude data error and ensure the
target’s detection rate in the actual space-based scene. In order to provide accurate target
angle information, we also present a distortion correction scheme for the large field-of
view-optical lens. As illustrated in Figure 19, the distortion correction scheme could reduce
the angle measurement error to less than 0.3%.

In conclusion, the experimental results validate the efficacy and viability of the model
and hardware architecture and confirm that the processing system is capable of real-time
space target detection and tracking, thereby meeting the requirements of the space-based
platform application.

7. Conclusions

In this paper, a multi-stage joint detection and tracking model is developed to solve
the problem of space target detection and tracking in the deep space background and
a hardware implementation of this model for space-based surveillance applications is
provided. The experiments conducted with the simulated and real image sequences
demonstrate that the proposed implementation can lead to improvements in detection
accuracy while maintaining real-time processing speed. However, the proposed model
may not have a good detection performance for low SNR targets and depends on real-
time satellite attitude data. In future work, we will improve the method to address these
shortcomings and apply it in other complex scenarios.
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Abstract: In computer vision tasks, the ability to remove rain from a single image is a crucial element
to enhance the effectiveness of subsequent high-level tasks in rainy conditions. Recently, numerous
data-driven single-image deraining techniques have emerged, primarily relying on paired images
(i.e., in a supervised manner). However, when dealing with real deraining tasks, it is common to
encounter unpaired images. In such scenarios, removing rain streaks in an unsupervised manner
becomes a challenging task, as there are no constraints between images, resulting in suboptimal
restoration results. In this paper, we introduce a new unsupervised single-image deraining method
called SE-RRACycleGAN, which does not require a paired dataset for training and can effectively
leverage the constrained transfer learning capability and cyclic structures inherent in CycleGAN. Since
rain removal is closely associated with the analysis of texture features in an input image, we proposed
a novel recurrent rain attentive module (RRAM) to enhance rain-related information detection
by simultaneously considering both rainy and rain-free images. We also utilize the squeeze-and-
excitation enhancement technique to the generator network to effectively capture spatial contextual
information among channels. Finally, content loss is introduced to enhance the visual similarity
between the input and generated images. Our method excels at removing numerous rain streaks,
preserving a smooth background, and closely resembling the ground truth compared to other
approaches, based on both quantitative and qualitative results, without the need for paired training
images. Extensive experiments on synthetic and real-world datasets demonstrate that our approach
shows superiority over most unsupervised state-of-the-art techniques, particularly on the Rain12
dataset (achieving a PSNR of 34.60 and an SSIM of 0.954) and real rainy images (achieving a PSNR
of 34.17 and an SSIM of 0.953), and is highly competitive when compared to supervised methods.
Moreover, the performance of our model is evaluated using RMSE, FSIM, MAE, and the correlation
coefficient, achieving remarkable results that indicate a high degree of accuracy in rain removal and
strong preservation of the original image’s structural details.

Keywords: content loss; Recurrent Rain-Attentive Module; single-image deraining; squeeze-and-
excitation

1. Introduction

Weather conditions, including snow, haze, rain, and wind, cause low visibility in
images and videos. This can considerably impair the performance of outdoor vision tasks,
such as facial recognition, pedestrian detection, visual tracking, traffic sign identification,
object detection, and intelligent surveillance [1–6]. As a result, it is crucial to remove rain
from input rainy images to develop trustworthy computer vision systems. Thus, algorithms
that can successfully remove rain from a rainy image are of great interest [7].
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To address the restoration of rain degradation, various strategies have been proposed,
including video deraining [8,9] and single-image deraining (SID) [10–13]. Video deraining
uses continuous information between frames to recognize the rain line and restore the
background image. This method suffers from poor performance when the camera move-
ments are dynamic. Additionally, as they analyze multiple sequential frames, they require
significant computational time, which is critical for some applications, like self-driving
cars [10]. On the other hand, SID relies solely on spatial information between adjacent
pixels and the visual characteristics of the rain line to remove rain [14]. SID approaches
are more difficult since they can only exploit the spatial information in an image, unlike
video deraining methods, which can benefit from the dynamics of rainfall and temporal
redundancy. In this study, we mainly concentrate on the issue of removing rain streaks
from a single image. The goal of single-image rain removal is to eliminate raindrops or
streaks from an input image and restore the clean backdrop. Removing rain streaks from
single-image is therefore an important research topic that has recently gained a lot of
attention in the field of computer vision and pattern recognition [15,16].

SID techniques from the past can be largely split into two categories: model-based
methods and data-driven methods [10,12]. The model-based methods focus on incorporat-
ing rain’s physical characteristics and background scene knowledge into an optimization
problem, and they develop logical algorithms to solve it. They often estimate raindrops
or rain streaks using various priors or assumptions, such as sparse coding, low rank,
and Gaussian. Despite the significant advancement gained by these approaches, their per-
formance is usually limited, especially when the background is messy and contains intricate
illuminations. The main reason for this limited performance is that real-world raindrops
and rain streaks do not strictly conform to a sparse or Gaussian distribution. Recently,
data-driven methods have been developed by creating certain network architectures and
pre-collecting pairs of rainy and clean (ground-truth) images to train network parameters
in a supervised manner, aiming to achieve sophisticated rain removal functions [10,17].
However, obtaining accurate paired datasets in the real world is challenging due to en-
vironmental constraints. Consequently, supervised learning methods rely on synthetic
datasets, posing a challenge to generalization due to the disparity between synthetic and
real datasets.

Hence, studying unsupervised SID techniques is essential for enhancing rain removal
performance on real images, as they can be trained with real rainy images without a ground
truth. The unsupervised CycleGAN network [18] is a logical choice for rain removal. While
CycleGAN has demonstrated effectiveness in multiple low-level tasks, applying it to remove
rain from single images remains challenging due to the asymmetrical domain knowledge
between rainy and rain-free images. In particular, a rainy image consists of both background
and rain information, whereas the rain-free image only comprises the background. Conse-
quently, directly employing CycleGAN may lead to issues with color and structural distortion,
as well as difficulty in completely erasing rain marks (see Figure 1b).

(a) (b) (c) (d)

Figure 1. Comparisons of our result with CycleGAN [18] on Rain100L. (a) Input, (b) CycleGAN [18],
(c) our approach, and (d) GT.

In this study, we introduce a novel unsupervised approach to SID, eliminating the need
for aligned image pairings. Our method incorporates a rain-attentive module, allowing it
to adapt to any image and leverage the circulatory architecture of CycleGAN. Our model is
specifically tailored for unsupervised single-image deraining (SID), with the ability to retain
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the color and structure of images achieved through the multi-loss constrained rain-attentive
module (see Figure 1c). The contribution of our work can be summarized as follows:

1. We propose SE-RRACycleGAN, which can generate high-quality, clean, derained
images without supervision in the form of aligned rainy and clean images.

2. We propose a novel rain streak extractor termed the Recurrent Rain-Attentive
Module (RRAM), which can detect rain information in both rainy and rain-free images.

3. A squeeze-and-excitation (SE) component is introduced to the generator network,
so that it can push the network to learn more useful features, prevent model overfitting, and
reinforce the network’s generalization ability. We also introduce content loss to generate an
image that is visually similar to the input image.

4. Extensive experiments on synthetic and real datasets show that our method gives
a competitive result with semi-supervised and supervised methods and outperforms the
state-of-the-art unsupervised methods on real rainy images.

The paper is structured as follows: Section 2 describes related works; Section 3 intro-
duces the proposed method, detailing its components and the objective function; experi-
mental results and discussions are presented in Section 4; and the final section summarizes
the work presented in this paper.

2. Related Works

In this section, we provide a concise overview of the existing literature on SID and
position the proposed method within the appropriate context. As discussed in Section 1,
methods for SID can be broadly categorized into two groups: model-based approaches and
data-driven approaches.

2.1. Model-Based Approaches

Numerous model-based methods consider the deraining of a single image as an image
decomposition problem, where a rainy image is typically represented as the sum of a rain
layer and a rain-free background layer. Using a bilateral filter, Kang et al. [19] decomposed
a rainy image into low-frequency (LF) and high-frequency (HF) components. They used
sparse coding and morphological component analysis (MCA)-based dictionary learning to
separate the rain streaks in the HF component. Luo et al. [20] developed an image patch-
based discriminative sparse coding framework that distinguished between rain streaks
and the rain-free background. Li et al. [21] proposed a patch-based priors for the rain
and rain-free background layers. These priors can take into account different rain streak
directions and scales since they are based on Gaussian mixture models. Wang et al. [22]
proposed an algorithm that takes an advantage of image decomposition and dictionary
learning methods. While these model-based techniques, relying on assumptions and priors,
perform well in certain scenarios, they face challenges in eliminating complex rain patterns
in real-world environments. This is because the assumptions and priors upon which they
rely do not always hold, as real-world raindrops and rain streaks do not strictly adhere to a
sparse or Gaussian distribution.

2.2. Data-Driven Approaches
2.2.1. Supervised Learning Method

To enhance prediction accuracy, this method employs a network specifically designed
to automatically learn rainline properties from extensive paired data. Ahn et al. [10] pro-
posed a two-step rain removal method. The proposed method first predicts rain streaks, in-
cluding rain density and streak intensity, from an input rainy image. Then, it can effectively
remove rain streaks from images taken under diverse rain conditions. Zhang et al. [23]
presented a framework termed an image-deraining conditional generative adversarial net-
work (ID-CGAN), which incorporates discriminative, quantitative, and visual performance
into the objective function. Yang et al. [24] introduced a rain removal architecture that
effectively detects and removes rain streaks, demonstrating superior performance in heavy
rain conditions. They utilized a recurrent process to progressively eliminate overlapping
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rain streaks in diverse forms and directions. Wang et al. [17] proposed a kernel-guided
convolutional neural network (KGCNN) and achieved a good result in solving the problem
of over- and under-deraining. However, all of the techniques mentioned above rely on
paired datasets, which are difficult to obtain in real-world scenarios.

2.2.2. Unsupervised Learning Method

Recently, some researchers have proposed a GAN-based unsupervised learning ap-
proach for SID, drawing inspiration from GANs’ remarkable success in image-to-image
translation [25]. Zhu et al. [18] proposed a CycleGAN for learning image-to-image trans-
lation in the absence of paired images. The proposed method was constrained by using
adversarial loss and cycle consistency loss to make the translated image indistinguishable
from the ground truth. Yang et al. [26] presented an unsupervised end-to-end rain removal
network termed Rain Removal-GAN (RR-GAN). By introducing a physical model that ex-
plicitly learns recovered images and related rain streaks from a differentiable programming
perspective, their network mitigates the paired training constraints. Moreover, to recover
the clean image, the multi-scale attention memory generator and multi-scale discriminator,
which impose constraints on the clean output image, were employed. However, the at-
tention memory used relies only on the single branch from rainy to rain-free images and
is also not constrained to learn more about the rain line in the rainy image, which makes
it unstable for an unsupervised model due to its limited detection ability. Guo et al. [13]
proposed unsupervised derain attention-guided GAN (Derain Attention GAN), which
contains a generator featuring an attention mechanism and a multi-scale discriminator to
produce rain-free images and distinguish the generated rain-free images, respectively. Also,
perceptual consistency loss and internal feature perceptual loss are presented to reduce the
artifact features on the generated images. However, they cannot accurately extract rain
streaks from a rainy image solely by considering cycle-consistency loss. This is because
they do not consider the constraint on the attention mechanism, resulting in a weak con-
straint between the rainy and rain-free images. Wei et al. [11] presented an unsupervised
framework for single-image rain removal and generation termed DerainCycleGAN. They
developed an unsupervised rain-attentive detector (URAD) to improve the detection of
rain information in both rainy and rain-free images. Moreover, they generated a rain streak
with varied shapes and directions, which is distinct from the previous methods. However,
the constraint of URAD is weak, and it detects rain masks from rain-free images.

2.3. Visual Attention

Visual attention models have been utilized to pinpoint specific areas within an image
for the purpose of capturing distinctive local features [27]. The idea has been employed
for visual identification, categorization, and image classification [28–30]. Likewise, the con-
cept has demonstrated its effectiveness in both the supervised SID method [31] and the
unsupervised SID method [12,26], as it enables the network to determine the specific areas
where the removal or restoration process should be concentrated and enhance the precision
of the SID task. However, it is important to note that the attention module used in [26,31]
primarily relies on a single branch, focusing only on a mapping from rain to rain-free.
Furthermore, their constraints are relatively weak, and the attention module used in [12] is
unconstrained. Thus, in unsupervised mode, they tend to be unstable due to their limited
detection capability, as they rely solely on the rain information from rainy images. On the
contrary, we introduced RRAM, which detects rain-related information by simultaneously
considering both rainy and rain-free images and is constrained by attentive loss to learn
without supervision. So the rain information detected by our RRAM is more stable and
accurate than the attention modules used previously.

3. The Proposed Method

Our objective is to acquire the ability to eliminate rain streaks from a sole input
image without relying on paired training data. Figure 2 illustrates the architecture of our
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SE-RRACycleGAN, which consists of three components: (1) RRAM, which focuses on
rain-related details in both images with and images without rain, (2) a pair of generators G
and F, responsible for generating rain-free and rainy images, respectively, and (3) a pair of
discriminators DG and DF, designed to distinguish real images from generated ones. In the
subsequent sections, we present detailed explanations of each of the three components and
the objective function.

Figure 2. The architecture of SE-RRACycleGAN. The SE-RRACycleGAN process involves two distinct
branches. The rainy-to-rainy branch starts with a rainy image and employs a generator G to produce
a rain-free image. Then, this rain-free image is utilized to reconstruct a rainy image using generator F.
On the other hand, the rain-free to rain-free branch, begins with a rain-free image, which is initially
transformed into a rain image by F and then reversed back to a rain-free image using G.

3.1. Recurrent Rain-Attentive Module (RRAM)

In Figure 3, we introduced RRAM to enhance rain-related information detection by
simultaneously considering both rainy and rain-free images. To identify rain information
within arbitrary images, our RRAM is constrained by attentive loss in both rain-free and
rainy images when learning without supervision. As a result, the rain information detected
by our RRAM offers a higher level of accuracy compared to the attention modules used
previously. RRAM differs from Cycle-Attention-Derain [12] and CBAM [32] in that it not
only incorporates channel and spatial attention blocks, but also utilizes an LSTM unit [33].
This combination allows RRAM to effectively capture spatial and temporal dependencies
in images, facilitating the modeling of intricate patterns of rain streaks interacting with the
scene. LSTM, with its ability to retain past states [34], effectively models the accumulation of
rain streaks and the evolution of rain patterns over time in a single image while mitigating
the vanishing gradient problem. Furthermore, LSTM can discern between rain streaks and
other image elements, ensuring that the generated rain mask by our RRAM accurately
represents the presence of rain compared to those generated by previously used attention
modules. Its ability to handle variable-length sequences is crucial in situations where the
density and size of rain streaks vary throughout the image.

In our RRAM, each iteration involves Conv + ReLU operations for feature extraction
from the input image and the preceding segment’s mask. This is followed by an LSTM
unit [33], CSAB, and a concluding Conv layer for generating 2D attention maps. The LSTM
unit comprises input gate it, forget gate ft, output gate ot, and cell state ct. The interactions
of these states and gates over time are described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

it = δ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi)

ft = δ(Wx f ∗ Xt + Wh f ∗ Ht−1 + b f )

gt = tanh(Wxg ∗ Xt + Whg ∗ Ht−1 + bg)

ct = ft ◦ ct−1 + it ◦ gt

ot = δ(Wxo ∗ Xt + Who ∗ Ht−1 + bo)

ht = ot ◦ tanh(ct)

(1)
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where Xt represents the features obtained by Conv + ReLU unit; ct denotes the cell state that
will be fed to the next iteration of the LSTM unit; Ht denotes the output features of the LSTM
unit, W and b are convolutional matrix and bias vector, respectively; ∗ denotes the convolution
operation; [◦] represents the concatenate operation; and δ denotes the sigmoid activation
function. Each convolution in LSTM uses 32 + 32 input channels, 32 output channels, a kernel
size of 3 × 3, 1 stride, and 1 padding.

Figure 3. Recurrent rain attentive module architecture.

In our RRAM, CSAB denotes a combination of a channel attention block (CAB) and a
spatial attention block (SAB), as illustrated in Figure 4. We suggest employing the CAB to
distinguish rain streak features from the background and utilizing the SAB to recognize
specific attributes such as the sizes, shape, and positioning of the rain streaks. The LSTM
unit output, Ht, passes through three convolution layers with kernel size of 3× 3, which
is represented by Convs in Figure 4. The first layer is followed by batch normalization
and ReLU [35], the second layer is followed by batch normalization, and the third layer
produces the intermediate feature map, Y = RC×H×W . Y is input to the CAB to obtain the
channel attention map of C× 1× 1, multiplied with Y to yield the feature map of Zc. Zc
passes through SAB to generate the spatial attention map of 1× H ×W, multiplied by Zc
to yield Zs, summarized as follows:{

Zc = Mc(Y)⊗Y

Zs = Mc(Zc)⊗ Zc
(2)

where ⊗ denotes element-wise multiplication, Mc(·) represents the CAB, and Ms(·) repre-
sents the SAB.

Lastly, the output feature F is obtained by adding Ht to Zs and passing the result
through ReLU nonlinearity (Equation (3)). This output is then passed through the last
convolution layer of RRAM to generate the rain mask (Equation (4)).

F = ReLU(Ht ⊕ Zs) (3)

Rainmask = Conv(F) (4)

where ⊕ denotes element-wise addition, ReLU is the ReLU activation function, and Conv
is the convolution layer with 3× 3 kernel size, 1 stride and 1 padding.

The following presents the specifics of the channel attention block and the spatial
attention block.

Channel Attention Block (CAB): As each channel within a feature map is considered as
a feature detector, channel attention directs its focus toward determining the rain streak
of the input rainy image. Thus, to more effectively differentiate rain streak characteristics
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from background attributes, we have integrated the CAB [32] into RRAM. In our CAB, we
employ both average-pooling and max-pooling simultaneously for feature aggregation, for
which it is confirmed that it improves the representation power of RRAM rather than using
each independently. Spatial information is gathered from the feature map Y by employing
average-pooling and max-pooling operations, forming two distinct spatial context features:
average-pooled and max-pooled features. Then, both features are fed into the convolutional
network, and their outputs are summed together by using element-wise summation to
obtain channel attention map Mc(Y)εRC×1×1 [32]. The convolutional network consists of
two convolution layers, as shown in (Equation (5)). In summary, the computation of the
channel attention map is as follows:

Mc(Y) = δ(Conv(AvgPool(Y)) + Conv(MaxPool(Y))) (5)

where δ represents the sigmoid activation function, Conv denotes two convolutional layer
with 1× 1 kernel size, 1 stride and 0 padding.

Spatial Attention Block (SAB): Unlike the channel attention map, the spatial attention
map focuses on locating rain streaks in rainy images, complementing channel attention. We
employ average-pooling and max-pooling along the channel axis, concatenating the results
to create an effective feature descriptor for spatial attention computation. The effective
highlighting of rain streak regions is achieved through pooling operations along the channel
axis [36]. We form a spatial attention map, Mc(Y)εR1×H×W , to indicate areas for emphasis
or suppression. This is achieved by applying a convolution layer to the concatenated feature
descriptor. The process involves creating two 2D maps, ZsmaxεR1×H×W (max-pooled
features) and ZsavgεR1×H×W (average-pooled features), through channel information
combination using two pooling methods. The final spatial attention map is obtained by
concatenating and convolving these features with a typical convolution layer (Equation (6)).

Ms(Zc) = σ(Conv(AvgPool(Zc); MaxPool(Zc))) (6)

where σ represents the sigmoid activation function and Conv denotes convolutional layer
with 7× 7 kernel size, 3 stride, and 0 padding.

Figure 4. The structure of our CSAB. Convs represents three convolution layers with kernel size of
3× 3, where the first convolution layer is followed by batch normalization and ReLU, the second
convolution layer is followed by batch normalization, and the third convolution layer results in the
intermediate feature map.

To validate our RRAM’s effectiveness, in Figure 5, we present rain masks detected
by RRAM in both rainy and rain-free images. The RRAM input can be rainy images or
rain-free images, with the output specifically addressing rain information present in the
input image. In Figure 5a, rainy images and their corresponding rain masks identified
by RRAM are displayed. It is evident from the illustration that the rain mask becomes
clear from iteration to iteration. In Figure 5b, rain-free images are shown, where RRAM
correctly identifies the absence of a rain mask from the outset. This distinguishes our
RRAM from previous rain attention mechanisms, which erroneously detect rain masks
in rain-free images during initial iterations. In order to clearly illustrate the differences
between iterations, we made adjustments to the grey color scale of the rain masks detected
by our RRAM. Specifically, we shifted the scale from 255 to 176 and reduced the brightness
from 0 to −6. This modification enhances the visibility of subtle variations in the rain
mask, ensuring they are clearly discernible while maintaining a distinct contrast with
the background.

293



Remote Sens. 2024, 16, 2642

Rainy images It = 1 It = 2 It = 3

It = 4 It = 5 It = 6

(a) The rain mask detected by our RRAM in rainy images.

Rain-free It = 1 It = 2 It = 3
images

It = 4 It = 5 It = 6

(b) The rain mask detected by our RRAM in rain-free images.

Figure 5. The rain mask detected by RRAM in both (a) rainy images and (b) rain-free images. The rain
mask in rainy images becomes clearer as the number of iterations increases, while there is no rain
mask detected in rain-free images. where It denotes iteration.
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3.2. Generator

To generate rain-free images from rainy images, we used a generator with a structure
similar to the U-net contextual encoder–decoder network [37]. However, our generator
differs by incorporating squeeze-and-excitation (SE) blocks [38], which adaptively re-weight
feature channels. The encoder module comprises eight Conv-ReLU blocks with strided
convolutions, aimed at reducing the spatial dimensions of the feature maps, effectively
downsampling the input image to extract hierarchical features. Additionally, one block of
SE is included, as depicted in Figure 6a (the SE blocks are highlighted in blue, with the left
part for the encoder and the right part for the decoder). The output feature of the fourth
Conv-ReLU serves as the input features for the SE block, and the output feature of the
SE block is then used as the input feature for the fifth Conv-ReLU. Similarly, the decoder
is structured with eight Conv-ReLU blocks and one SE block. In the decoding stage,
transposed convolutional layers (also known as deconvolutional layers) are used to increase
the spatial dimensions of feature maps (i.e., upsampling). The SE block is inserted into the
decoder part of the Conv-ReLU blocks, mirroring its position in the encoder part of the
Conv-ReLU blocks. Moreover, two skip connections are utilized to propagate fine-grained
information from earlier layers to later layers in the network, aiding in the recovery of
spatial details lost during encoding. Our generator takes as input the concatenation of
the original image and the rain information identified by our proposed RRAM. Notably,
this marks the first instance of incorporating SE in a generator for unsupervised single-
image rain streak removal, as far as our knowledge extends. A detailed discussion of SE is
given below.

(a)

(b)
Figure 6. The structure of (a) generator and (b) discriminator.
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Squeeze-and-Excitation Block

Hu et al. [38] introduced SE, a channel relationship representation that adaptively
recalibrates channel-wise feature responses by modeling interdependencies between chan-
nels. Each channel has a varied capacity to extract rain components, which can have
varying densities and directions in SID tasks. It is generally not fair to consider all feature
maps identically when extracting the rain component layer. The contributions made by
various feature maps to the rain component layer may vary. We thus apply SE enhance-
ment within our generator network, leveraging its ability to capture spatial contextual
information effectively among channels, which has been found to be significant for SID
tasks. In SID, certain channels may hold essential information for rain streak removal, while
others contain noise or irrelevant details. The novelty of our approach lies in leveraging
SE blocks to enhance rain-related features, thereby minimizing the impact of noise and
leading to more accurate and effective deraining results. By integrating an SE block into
the generator, the model is empowered to learn discriminative features, facilitating the
capture of complex rain patterns and the representation of the image’s underlying structure.
This capability is particularly significant for deraining tasks that necessitate both local and
global feature consideration. Moreover, the SE block contributes to the generator’s ability
to generalize across diverse rain patterns by dynamically adjusting the weights of features
based on the characteristics of the input image. Consequently, this enhances the robustness
and effectiveness of the deraining model across various rain scenarios. The SE process
is illustrated in Figure 7 and briefly reviewed as follows. We consider F = [ f1, f2, . . . , fc]
as the input feature map for the SE block. First, F is operated by global average pooling,
producing a vector vc ε R1×1×C with its cth element as shown in Equation (7):

vc =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (7)

where fc(i, j) and vc represent the value at position (i, j) of the cth channel and the corre-
sponding output, respectively.

To fully capture interdependencies among channels resulting from the aggregated
information via global average pooling, we follow it with a second operation. The function
must satisfy two requirements in order to achieve this goal: Firstly, it should have the
capacity to learn nonlinear interactions among channels. Secondly, it should be capable
of learning a relationship that is not mutually exclusive, allowing for the emphasis of
multiple channel-wise features rather than a one-hot activation. In order to fulfill these
requirements, we choose to utilize a straightforward gating mechanism featuring a sigmoid
activation function:

β = σ(W2 ∗ δ(W1 ∗ vc)) (8)

where the sigmoid and ReLU functions are denoted by σ(·) and δ(·), respectively. ∗ Indicates
the convolution operation. W1 represents the weight set of a convolutional layer, serving as
channel downscaling with a reduction ratio of r. Following activation by ReLU, the signal
of lower dimensionality is subsequently augmented with a ratio of r by a channel-upscaling
layer, characterized by the weight set W2. Afterward, we acquire the ultimate channel
statistics, denoted as β, which is utilized to recalibrate the input.

Finally, the output of SE is expressed as Equation (9):

FSE = β⊗ F (9)

where ⊗ denotes channel-wise multiplication for feature channels and corresponding
channel weights.

Generally, the SE block is used to assign weight to each channel. This process makes
it possible to adaptively recalibrate each feature map’s feature response, which makes it
easier to capture additional spatial contextual information [39].
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Figure 7. Squeeze-and-excitation [40]: where HGP and f (·) denote the global pooling function
and activation function, respectively.

3.3. Discriminator

In the GAN framework, removing rain from a rainy image goes beyond enhanc-
ing visual appeal and achieving quantitative comparability with the ground truth. It
requires ensuring that the derained output closely resembles the original ground truth
image. To achieve this, employing a robust discriminator that captures both local and
global information is crucial for distinguishing between real and fake images. We use
two discriminators, DG and DF, with structures similar to [41], employing a multi-scale
structure with feature maps passed through five convolutional layers and supplied into the
sigmoid (Figure 6b). The input to the discriminator network is the ground truth image and
the generated image by our generator.

3.4. Objective Function

Our objective function contains four types of losses as elaborated below.
Attentive losses: Like in Derain CycleGAN [11], constraining the unsupervised learning

of RRAM is essential to identify rain-related details in any given image. Due to the absence
of ground truth for rain information, we use a combination of prior knowledge and self-
supervision techniques in RRAM training. In particular, we conduct an initial assessment
on the mask of the rain-free image, denoted as Latty , as shown in Equation (10):

Latty = ‖R(y)− Z‖2
2 (10)

where R(y) is the mask of the rain-free image identified by RRAM. Z is a distribution
comprising zeros with the same shape as the mask. As there is no rain information present
in the rain-free image y, the distribution R(y) should closely resemble Z.

Then, we perform self-supervision on the rain image mask, identified as Latty

(Equation (11)).
Latty = ‖(R(x) + ŷ)− x‖2

2 (11)

where R(x), the mask, identifies the rainy regions in the rainy image as detected by RRAM.
ŷ and x refer to the derained image and original rainy image, respectively. Engaging in
self-supervised learning enables RRAM to focus on rain-related information, as illustrated
in Figure 5.

Cycle-consistency losses: Like in CycleGAN [18], we define a cycle-consistency loss with
the aim of promoting similarity between the reconstructed image F(G(x)) and the original
real rain image x and ensuring that G(F(y)) matches the input y.

Lcyc = Ex∼Pdata(x)[‖x̃− x‖1] + Ey∼Pdata(y)[‖ỹ− y‖1] (12)

where Lcyc is cyclic-consistency losses and x̃ = F(G(x)) and ỹ = G(F(y)). Pdata(y) and
Pdata(x) represent the data distributions of locally cropped patches randomly extracted
from generated rain-free images and rain images, respectively.

Adversarial losses: The goal of a GAN is to employ a min-max game strategy, aiming to
train generators G and F to produce samples resembling the data distribution so that the
discriminator cannot distinguish between generated and real samples [42]. Simultaneously,
the goal is to train discriminators DG and DF to effectively discern generated and real
images. To achieve this, the suggested approach iteratively updates both the generators
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and discriminators following the framework outlined in [43]. Ladv(G, DG) denotes the
adversarial relationship between G and DG, as shown in Equation (13):

Ladv(G, DG) =Ey∼Pdata(y)[log DG(y)]

+ Ex∼Pdata(x)[log(1− DG(G(R(x), x)))]
(13)

where DG works to maximize the objective function, aiming to differentiate between the
generated rain-free image and real ones. Conversely, G minimizes the loss, striving to
enhance the realism of the generated rain-free image. Similarly, we can find Ladv(F, DF))
by changing the role of G and DG to F and DF.

Content losses: The cycle consistency loss minimizes differences between the original
image x (or y) and its reconstructed counterpart, F(G(x)) (or G(F(y))). This approach does
not consider whether the generated image G(x) (or F(y)) visually resembles the original x
(or y). Inspired by [44], we decide to include the content loss regularizer in the objective
function of SID. We seek to preserve the detailed information of the input image x (or y)
while adjusting color for improved visual quality in the resulting image G(x) (or F(y)).
To achieve this, a VGG16 pre-trained network is employed to extract feature maps from the
Conv2_3 layer for both input and generated images. We also utilize the 1-norm for assessing
content loss, as it demonstrates greater robust to noise and outliers, facilitating a more
effective recovery of details of the rainy image. The content loss regularizer is formulated as

Lcon(G, F) =Ex∼Pdata(x)[‖VGG(G(x))−VGG(x)‖1]

+ Ey∼Pdata(y)[‖VGG(F(y))−VGG(y)‖1]
(14)

where Lcon(·) is content loss, and VGG(·) denotes the Conv2_3 layer of the VGG 16 net-
work [45] pre-trained on ImageNet [46]. To our knowledge, this is the first time that content
loss has been added to the objective function for single-image rain streak removal.

Total losses: The overall loss function of our proposed network for unsupervised
training is expressed as follows:

Ltotal = α1Latt + α2Ladv + α3Lcyc + α4Lcon(G, F) (15)

where Ladv = Ladv(G, DG) + Ladv(F, DF), Latt = Lattx + Latty and α1, α2, . . . , α4 are trade-
off parameters.

4. Experimental Results and Discussion

In this section, we provide details of the conducted experiments and the quality
metrics used to assess the effectiveness of the proposed approach. Additionally, we discuss
the dataset and training procedures, followed by a comparison of the proposed method
with state-of-the-art approaches, along with the ablation studies.

4.1. Network Training and Parameter Setting
4.1.1. Implementation Details

Our model is trained using the PyTorch 2.2.2 with CUDA 11.8 framework [47] in a
Python 3.11.3 environment, leveraging the computational power of an NVIDIA GeForce
GTX 2080Ti GPU, manufactured by NVIDIA Corporation, Taipei, Taiwan, with 16 GB of
memory. During training, we employ random cropping to extract 256 × 256 image patches
from the original input images, augmenting the dataset by including their horizontal flips.
We optimize the model’s parameters using the Adam optimizer [48] with a mini-batch size
of 1, a weight decay of 0.0001, and a momentum of 0.9. The choice of these hyperparameters
is based on empirical observations and prior research, where similar values have shown
effectiveness in optimizing deep learning models. The training process spans 400 epochs,
starting with an initial learning rate of 0.0001, which is annealed using a PyTorch policy
after 200 epochs to aid convergence. We select the number of epochs and the learning
rate schedule empirically. The parameters α1 = 1, α2 = 10, α3 = 10 and α4 = 0.01 in
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Equation (15) are meticulously tuned through a process of trial and error, balancing the
contributions of different components in the loss function. We conduct experiments with
various values for these parameters and select the ones that yield the best performance
on the test set. To obtain the final rain mask, we set the number of iterations, It = 6. We
employ SE = 2 blocks in our generator, considering the trade-off between performance
and model complexity. Increasing the number of SE blocks augments the network’s
complexity, necessitating additional training time and memory resources. The choice of
SE = 2 blocks is based on empirical observations, where it strikes a good balance between
performance and computational cost. Generally, the selection of parameters is guided by
empirical observations and experimentation on the available training and test sets, aiming
to achieve the best performance on the given task. The training model parameters for the
generator and RRAM are shown in Tables 1 and 2, respectively, while the parameters for
the discriminator are clearly depicted in Figure 6b.

Table 1. The architecture of the generator and parameter settings.

Layer Channel Kernel Size Striding Padding Dilation
(Input, Output)

Conv + ReLU (4, 64) 5 × 5 1 × 1 2 × 2 -

Conv + ReLU (64, 128) 3 × 3 1 × 1 1 × 1 -

Conv + ReLU (128, 128) 3 × 3 1× 1 1 × 1 -

Conv + ReLU (128, 256) 3 × 3 1 × 1 1 × 1 -

AvgPool
Conv (256, 256/r) 1 × 1 1 × 1 - -
ReLU

Conv (256, 256/r) 1 × 1 1 × 1 - -
Sigmoid

Conv + ReLU (256, 256) 3 × 3 1 × 1 1 × 1 -

Conv + ReLU (256, 256) 3 × 3 1 × 1 1 × 1 -

Conv + ReLU (256, 256) 3 × 3 1 × 1 2 × 2 2

Conv + ReLU (256, 256) 3 × 3 1 × 1 4 × 4 4

Conv + ReLU (256, 256) 3 × 3 1 × 1 8 × 8 8

Conv + ReLU (256, 256) 3 × 3 1 × 1 16 × 16 16

Conv + ReLU (256, 256) 3 × 3 1 × 1 1 × 1 -

Conv + ReLU (256, 256) 3 × 3 1 × 1 1 × 1 -

AvgPool
Conv (256, 256/r) 1 × 1 1 × 1 - -
ReLU

Conv (256, 256/r) 1 × 1 1 × 1 - -
Sigmoid

ConvTranspose (256, 128) 4 × 4 2 × 2 1 × 1 -
AvgPool

ReLU

Conv + ReLU (128, 128) 3 × 3 1 × 1 1 × 1 -

ConvTranspose (128, 64) 4 × 4 2 × 2 1 × 1 -
AvgPool

ReLU

Conv + ReLU (64, 1) 3 × 3 1 × 1 1 × 1 -
Blue color indicates the SE block; r represents the reduction ratio, which is 2 in our case; Conv denotes the
convolution; ConvTranspose denotes the transposed convolution; AvgPool denotes the average pooling; and ReLU
indicates the ReLU activation function.
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Table 2. The architecture of RRAM and parameter settings.

Layer Channel Kernel Striding Padding
(Input, Size
Output)

Conv (4, 32) 3 × 3 1 × 1 1 × 1 Conv + ReLUReLU

Conv (64, 32) 3 × 3 1 × 1 1 × 1

LSTM

Sigmoid

Conv (64, 32) 3 × 3 1 × 1 1 × 1
Sigmoid

Conv (64, 32) 3 × 3 1 × 1 1 × 1
Tanh

Conv (64, 32) 3 × 3 1 × 1 1 × 1
Sigmoid

Conv (64, 128) 3 × 3 1 × 1 1 × 1

CSAB

BatchNorm
ReLU

Conv (128, 128) 3 × 3 1 × 1 1 × 1
BatchNorm

Conv (128, 64) 3 × 3 1 × 1 1 × 1

Avg out = AvgPool
Conv (64, 4) 1 × 1 1 × 1 -
ReLU
Conv (4, 64) 1 × 1 1 × 1 -

Max out = MaxPool
Conv (64, 4) 1 × 1 1 × 1 -
ReLU
Conv (4, 64) 1 × 1 1 × 1 -

Sigmoid
(Avg out +
Max out)

Conv
(AvgPool;
MaxPool) (2, 1) 7 × 7 3 × 3 -
Sigmoid

ReLU

Conv (64, 1) 3 × 3 1 × 1 1 × 1 Conv
Conv denotes the convolution, ReLU indicates the ReLU activation function, Sigmoid indicates the sigmoid
activation function, Tahn denotes the tahn activation function, BatchNorm denotes the batch normalization,
AvgPool denotes the average pooling, and MaxPool denotes the maximum pooling.

4.1.2. Datasets and Evaluation Metrics

To train and evaluate the proposed SE-RRACycleGAN for single-image rain streak
removal, we utilized widely recognized synthetic and real-world image datasets. The syn-
thetic datasets utilized for training and testing include (1) Rain100L [49], comprising
200 rainy image pairs for training and 100 pairs for testing; (2) Rain800 [23], consisting
of 700 rainy image pairs for training and 100 pairs for testing; and (3) Rain12 [21], which
includes 12 pairs of rain-free and rainy images specifically utilized for testing the model
trained on Rain100L. The real-world image datasets employed are (1) SPANet-Data [50],
a collection of 1000 rainy images along with corresponding ground-truth images, and
(2) SIRR-Data [51], which comprises 147 rainy images without corresponding ground-
truth images. These datasets were chosen due to their wide recognition in the research
community and their capability to encompass a diverse range of real-world rainy image
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scenarios. The synthetic datasets provide controlled conditions for training and testing,
while the incorporation of real-world image datasets enables the assessment of the model’s
performance under more challenging and varied environmental conditions.

We evaluate the experimental result of various technique using two widely employed
quantitative measures, namely Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) [52] for images with ground truth, while visual results are provided for
SIRR-Data due to the lack of ground truth. In addition to the above quantitative measures,
our model’s performance is assessed using Root Mean Square Error (RMSE) [53], Feature
Similarity Index (FSIM) [54], Mean Absolute Error (MAE) [55], and Correlation Coefficient
(CC) [56]. It is noteworthy that the state-of-the-art methods we compared our model with
did not employ these specific quantitative measures, thereby restricting direct comparisons
based on these measures.

4.2. Comparisons with State-of-the-Art Methods

We evaluate the performance of our method by comparing it with five supervised
networks (i.e., DetailNet [57], Clear [58], RESCAN [59], PReNet [60], SPANet [50]), one semi-
supervised technique (SIRR [51]), and five unsupervised techniques (i.e., CycleGAN [18],
RR-GAN [26], DerainCycleGAN [11], Derain Attention GAN [13], and Cycle-Attention-
Derain [12]). Since our model is unsupervised, the unsupervised methods are primarily
compared, although our method is highly competitive with the existing semi-supervised
and supervised methods.

4.2.1. Comparisons Using a Synthetic Datasets

We evaluate the proposed method on test images from the synthetic datasets (i.e.,
Rain100L [49], Rain800 [23], and Rain12 [21]) in the first set of experiments and compare
its quantitative and qualitative performance against numerous state-of-the-art methods.
For a fair comparison, for certain supervised deep-learning networks, such as DetailNet [57],
Clear [58], and SPANet [50], and the semi-supervised deep-learning network SSIR [51], we
directly adopt the results reported in [11,61], since the evaluation metrics are the same. More-
over, we utilized the source code provided by the authors in the CycleGAN [18], PReNet [60],
Derain CycleGAN [11], and RESCAN [59] papers to train and test on synthetic datasets.
Lastly, for the comparison with unsupervised rain removal techniques such as RR-GAN [26],
Derain Attention GAN [13], and Cycle-Attention-Derain [12], we directly used the results
provided in their respective papers as their code is not publicly available. The quantitative
and qualitative comparison results are depicted in Table 3 and Figures 8 and 9, respec-
tively. Table 3 clearly indicates that, compared to unsupervised techniques, the proposed
SE-RRAMCycleGAN method achieves the best performance on Rain12 and SSIM on Rain800,
and better performance on Rain100L and PSNR on Rain800, following Derain Attention
GAN [13] and Cycle-Attention-Derain [12], respectively. The proposed method even outper-
forms the semi-supervised method SIRR, which can gain an advantage from semi-supervised
learning, on Rain12. Moreover, the performance of supervised methods declined rapidly from
Rain100L to Rain800, whereas our network remains stable. This stability could be attributed
to the ability of the RRAM in our unsupervised network to gain a deeper understanding of
rain-related features when handling challenging samples. Furthermore, as shown in Table 4,
our model’s performance is evaluated using RMSE, FSIM, MAE, and CC. These quantitative
metrics collectively assess the model’s effectiveness in single-image deraining tasks. The re-
markable performance across these metrics underscores our model’s capability to effectively
remove rain while preserving important image details, positioning it as a promising approach
for real-world applications such as improving visibility in rainy conditions.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Comparisons of qualitative results on Rain100L [49]. (a–f) are input rainy images, RES-
CAN [59], CycleGAN [18], PReNet [60], ours, and ground truth, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 9. Comparisons of qualitative results on Rain800 [23], (a–i) are Input rainy images, SPANet [50],
CycleGAN [18], RR-GAN [26], DerainCycleGAN [11], Derain Attention GAN [13], Cycle-Attention-
Derain [12], ours, and ground truth, respectively.

We proceed to qualitatively compare Rain100L [49] and Rain800 [23] in Figures 8 and 9.
CycleGAN [18] changes the color of the output image and also leaves rain streaks on the
image, and even the supervised method RESCAN [59] leaves some amount of rain streaks
(Figure 8). However, our method excels in removing numerous rain streaks, preserving
a smooth background, and closely resembling the ground truth compared to other ap-
proaches. Figure 9 illustrates that most of the methods left some amount of rain streaks,
while others, such as CycleGAN [18] and Cycle-Attention-Derain, exhibit noticeable color
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shifts. Conversely, our method demonstrates superior performance by eliminating rain
streaks while preserving the background color (i.e., similar to the ground truth).

Table 3. Quantitative experiments evaluated on four datasets.

Rain100L [49] Rain12 [21] Rain800 [23] SPANet-Data [50]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DetailNet [57] 32.38 0.926 34.04 0.933 21.16 0.732 34.70 0.926

Clear [58] 30.24 0.934 31.24 0.935 - - 32.66 0.942

RESCAN [59] 38.52 0.981 36.43 0.952 24.09 0.841 - -

PReNet [60] 37.45 0.979 36.66 0.961 26.97 0.898 35.06 0.944

SPANet [50] 34.46 0.962 34.63 0.943 24.52 0.51 35.24 0.945

SSIR ** [51] 32.37 0.926 34.02 0.935 - - 34.85 0.936

CycleGAN * [18] 24.61 0.834 21.56 0.845 23.95 0.819 22.40 0.860

RR-GAN * [26] - - - - 23.51 0.757 - -

Derain
CycleGAN * [11] 31.49 0.936 34.44 0.952 24.32 0.842 34.12 0.950

Derain Attention
GAN * [13] 34.01 0.969 - - 25.22 0.856 - -

Cycle-attention-
derain * [12] 29.26 0.902 30.77 0.911 28.48 0.874 33.15 0.921

Ours * 31.87 0.941 34.60 0.954 27.92 0.879 34.17 0.953

** = semi-supervised, * = unsupervised, Bold is for the best value, and Italic is for the better value for unsuper-
vised methods.

Table 4. Quantitative experiments evaluated on four datasets using our model.

Qualitative Measures

Datasets RMSE FSIM MAE CC

Rain100L [49] 0.167 0.899 0.145 0.918

Rain12 [21] 0.159 0.915 0.138 0.926

Rain800 [23] 0.215 0.847 0.189 0.861

SPANet-Data [50] 0.162 0.908 0.143 0.922
RMSE values are normalized to a range between [0, 1].

4.2.2. Comparisons Using a Real Datasets

We then evaluate each approach on two real rainy datasets: SPANet-Data [50] and
SIRR-Data [51]. These datasets are used to test the model that is trained on Rain100L [49] for
all methods. Numerical metrics can be employed to evaluate SPANet-Data since it contains
ground-truth images. As shown in Table 3, our method obtains the best result among
unsupervised methods and is highly competitive with semi-supervised and supervised
approaches on SPANet-Data. We also visually compare our method with a supervised
and an unsupervised method using SIRR-Data. As illustrated in Figure 10, the supervised
PReNet [60] method left the rain streak on the image, and the unsupervised CycleGAN [18]
resulted in a color change on the output image. Our unsupervised method demonstrates
better performance than even the supervised method. This may be due to the inflexibility
of conventional supervised methods in handling real rainy images because the distribution
of real rain is very different from the synthetic dataset on which the supervised methods
are trained.
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(a) (b)

(c) (d)

Figure 10. Comparisons of deraining results on SIRR-Data [51]. (a–d) are rainy images, PReNet [60],
CycleGAN [18], and ours, respectively.
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4.3. Ablation Study

We conducted ablation experiments on Rain100L [49] to evaluate the effectiveness of
each component in our proposed method. The five experiments included CycleGAN as a
baseline, CycleGAN + SE, SE-RRACycleGAN without LSTM, SE-RRACycleGAN without
SE, and SE-RRACycleGAN. The results, depicted in Figure 11 and Table 5, demonstrate that
the introduced components significantly enhanced rain removal performance compared to
CycleGAN. All components proved to be crucial for our method, although Figure 11c–e
exhibits some undesired artifacts. This experiment underscores the significance of LSTM in
our recurrent rain-attention module and SE blocks in the generator. Our method effectively
addresses these artifacts, resulting in a smoother background.

(a) (b) (c) (d)

(e) (f) (g)

Figure 11. Visual comparisons of components used in our method. (a–g) are a rainy image, only
CycleGAN, CycleGAN + SE, SE-RRACycleGAN without LSTM, SE-RRACycleGAN without SE, our
SE-RRACycleGAN, and ground truth, respectively.

Table 5. Ablation study on different components of our method.

Dataset Metrics Baseline Baseline + SE
Ours w/o

LSTM
Ours w/o SE Ours

Rain100L
PSNR 24.61 26.94 28.43 30.25 31.87

SSIM 0.834 0.859 0.878 0.912 0.941

Bold indicates best result. Note: w/o represents without, baseline is CycleGAN, and Ours represents SE-
RRACycleGAN.

5. Conclusions

In this paper, we introduce an unsupervised SE- RRACycleGAN network for SID. We
propose a novel RRAM to enhance the detection of rain-related information by simultane-
ously analyzing both rainy and rain-free images. In addition, we incorporate the SE into the
generator architecture to improve the generator’s ability to generalize across diverse rain
patterns by dynamically adjusting the weights of features based on the characteristics of
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the input image. Moreover, we add the content loss into the objective function to enhance
the visual similarity of the generated image with the input image. Extensive experiments
conducted on both synthetic and real-world datasets reveal that our method surpasses
most of the unsupervised state-of-the-art methods both quantitatively and qualitatively,
especially on Rain12 and real rainy images, and is highly competitive with supervised
techniques. However, our method may not achieve optimal results in situations where
rain streaks closely resemble the background texture in the input images. For instance,
as shown in the top row of Figure 8, while our method outperforms other techniques in
rain removal, it does introduce some blurring in the background regions. Therefore, in the
future, we aim to extend our model’s capabilities to address this issue and also handle
images with intense rain conditions, such as those in the Rain100H dataset, snow and fog,
where the background is heavily obscured, making it challenging to accurately restore the
images without reference values (i.e., ground truth).
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