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Preface

Severe pathologies, such as the diffuse liver diseases or tumors, can lead to the significant

degradation of the human health and sometimes to lethal stages. The most reliable methods

for the diagnosis of these affections, such as the classical biopsy or surgery, are invasive and

dangerous. Advanced computerized methods are urgently needed to reduce invasiveness and

enhance the information derived from medical images as much as possible by unveiling their subtle

aspects, conducting virtual biopsy. Computer Vision and Machine Learning can be successfully

employed to achieve this target. Thus, advanced image analysis combined with conventional

machine learning, as well as the deep learning techniques, can lead to a highly accurate automatic

diagnosis process. The corresponding features, together with the classification, segmentation, fusion

of multiple image modalities, and 3D reconstruction techniques, can be involved in the achievement

of appropriate 2D and 3D models for the considered affections, which are helpful in computer-aided

diagnosis and surgery. The purpose of the special issue “Deep Learning for Pathology Detection

and Diagnosis in Medical Imaging” is that of offering researchers the opportunity to disseminate

valuable and original results achieved in the corresponding field, with focus on the latest

deep-learning techniques, eventually compared and combined with conventional methods. The

Convolutional Neural Networks (CNNs), as well as the transformers, were successfully involved,

during the last decade, in Artificial Intelligence, positively impacting the field of pathology automatic

detection and diagnosis based on medical images, as well. Performing, at the same time, image

analysis, dimensionality reduction and classification, CNNs lead to a subtle disease characterization,

considerably improving the accuracy of the diagnosis process, while the transformers, endowed

with attention mechanisms, enhance even more the corresponding performance. Together with the

Explainable Artificial Intelligence (XAI) methods, one can achieve a deeper understanding upon the

whole process, but also upon the correlations between the imaging features and the morphological,

physical, respectively chemical properties of the pathologic tissues and structures. The dep-learning

based recognition, segmentation, as well as the 3D reconstruction methods have a real potential to

enhance current medical technologies, as well as human health, being therefore emphasized in the

current special issue.

Sergiu Nedevschi and Delia-Alexandrina Mitrea

Editors
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Abstract: Elbow computerized tomography (CT) scans have been widely applied for describing elbow
morphology. To enhance the objectivity and efficiency of clinical diagnosis, an automatic method
to recognize, segment, and reconstruct elbow joint bones is proposed in this study. The method
involves three steps: initially, the humerus, ulna, and radius are automatically recognized based
on the anatomical features of the elbow joint, and the prompt boxes are generated. Subsequently,
elbow MedSAM is obtained through transfer learning, which accurately segments the CT images by
integrating the prompt boxes. After that, hole-filling and object reclassification steps are executed to
refine the mask. Finally, three-dimensional (3D) reconstruction is conducted seamlessly using the
marching cube algorithm. To validate the reliability and accuracy of the method, the images were
compared to the masks labeled by senior surgeons. Quantitative evaluation of segmentation results
revealed median intersection over union (IoU) values of 0.963, 0.959, and 0.950 for the humerus, ulna,
and radius, respectively. Additionally, the reconstructed surface errors were measured at 1.127, 1.523,
and 2.062 mm, respectively. Consequently, the automatic elbow reconstruction method demonstrates
promising capabilities in clinical diagnosis, preoperative planning, and intraoperative navigation for
elbow joint diseases.

Keywords: elbow computerized tomography (CT) image; elbow MedSAM; bone recognition; medical
image segmentation; three-dimensional (3D) reconstruction

1. Introduction

Computerized tomography (CT) scans are widely applied in the medical imaging
field, providing rapid and accessible imaging for the musculoskeletal system [1]. Moreover,
CT scans have significant advantages in three-dimensional (3D) representation, allowing
for the detailed description and quantification of complex anatomical regions. They are
commonly employed in elbow examinations for various elbow pathologies [2–4], including
acute elbow trauma [5,6], fracture-dislocation [7], degenerative changes [8], and elbow
osteoarthritis [9,10]. Furthermore, elbow CT examinations assist in personalized implant
design, precise alignment [11], elbow joint kinematics, dynamic analysis [12], and personal-
ized treatment [13–15], thereby improving surgical accuracy and patient safety. However,
it is essential for senior surgeons to perform bone reconstruction before diagnosing based
on CT images.

In clinical practice, the reconstruction of bone surface models is often cumbersome.
Initially, bone reconstruction was performed using engineering modeling software [16],
including AutoCAD and SolidWorks. However, with recent advances in computer-aided
medicine, medical analysis software has made bone reconstruction more scientific and rea-
sonable. Willing et al. [12] generated 3D elbow joint models using threshold segmentation

Sensors 2024, 24, 4330. https://doi.org/10.3390/s24134330 https://www.mdpi.com/journal/sensors1
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and performed wrapped and smoothed operations based on Mimics. Bizzotto et al. [17]
created articular models by uploading images into OsiriX Dicom Viewer for initial process-
ing and then creating 3D models using surface rendering tools. Antonia et al. [18]. used
Mimics for elbow reconstruction as well as Geomagic Studio 9 (3D Systems, Morrisville,
NC, USA) for further refining and mesh repairing to ensure the reasonability of elbow
bone structure. Savic et al. [19] reconstructed 15 femurs using Mimics 18 (Materialize
Inc., Leuven, Belgium) to establish a parameterized femur model, spending five days and
achieving 97% accuracy compared to real bones. Grunert et al. [20] utilized D2PTM (3D
Systems Inc., Rock Hill, SC, USA) for bone segmentation, under the precision control of
senior joint surgeons, to acquire the STL file for 3D printing of the elbow joint.

Overall, the recognition, segmentation, and reconstruction of the elbow joint have
primarily been performed by engineers and senior surgeons. The accuracy of reconstruc-
tion was primarily influenced by the precision of segmentation, which commonly involves
threshold segmentation, region-growing, pixel trimming, and supplementation. Due to
the variations in bone mineral density (BMD) and the ambiguity of bone edges, ensuring
segmentation precision is often challenging. Additionally, this process is time-consuming,
labor-intensive, and subjective, requiring surgeons with extensive experience and special-
ized knowledge [21,22]. However, accurate image segmentation is paramount for precise
elbow joint manipulation. To improve segmentation efficiency and accuracy, advanced
image segmentation algorithms have been explored and continuously developed, especially
with the emergence of convolutional neural networks (CNNs) and deep learning [23].

Image segmentation based on deep learning allows for the acquisition of complex im-
age features and delivers accurate segmentation results in specific tasks [24]. Ronneberger
et al. [25] proposed U-Net, which consists of an encoder and decoder. It has been widely
applied in the field of biomedical image segmentation due to its effectiveness with small
datasets. Based on U-Net, researchers improved the network structure by optimizing
various components, such as the backbone network, skip connections, bottleneck struc-
ture, and residual design. These enhancements have led to the proposal of U-Net++ [26],
U-Net3+ [27], AReN-UNet [28], and HAD-ResUNet [29]. Moreover, transformer architec-
ture has been gradually applied in the field of medical image segmentation. It utilizes a
mechanism known as self-attention, allowing it to effectively capture relationships between
different words or elements in a sequence. Several researchers employed deep learning
methods for the segmentation of elbow joints. Wei et al. [30] used Faster R-CNN to detect
and locate elbow bones, and designed a global–local fusion segmentation network to solve
the overlapping area identification problem. Xu et al. [31] applied PointNet++ to perform
segmentation on the single-frame point cloud of the human body, enabling the generation
of six parts of the human body for estimating human joints in various poses, and realizing
the capture and simulation of human joint movement based on computer vision.

However, obtaining large-scale datasets is relatively difficult in some tasks, which
poses a significant obstacle to training neural networks. To address this issue, foundation
models have emerged and achieved remarkable progress in artificial intelligence (AI). Pre-
trained on extensive datasets, foundation models often exhibit impressive generalization
capabilities, showing promising performance across various downstream tasks [32]. In
the field of computer vision (CV), the segment anything model (SAM) has emerged as
a pivotal presence. Trained on over 11 million images, SAM serves as a foundational
segmentation model, which is promptable, capable of zero-shot and few-shot generations,
and demonstrates considerable potential in downstream image segmentation tasks [23,33].
However, due to significant disparities between natural and medical image fields, SAM
encounters challenges in medical image segmentation [34,35]. In response, MedSAM has
emerged as a foundational medical segmentation model [36]. Considering data privacy and
security in medical images, MedSAM demonstrates considerable promise and importance
in medical image segmentation.

The MedSAM model utilizes prompt boxes to assist in segmentation, contributing
to the improvement of segmentation accuracy and efficiency. The prompt boxes provide
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the region of interest (ROI), guiding models to locate and segment targets more accurately.
For elbow joint CT scans, multiple bones may be present in the same CT image, it is
crucial to minimize interference from other bones during segmentation. Traditionally, the
prompt boxes are marked manually by researchers. Undoubtedly, generating the prompt
boxes automatically based on the results of bone recognition can improve automation and
accuracy in bone segmentation and reconstruction.

Therefore, a method for recognizing, segmenting, and reconstructing elbow joint bones
automatically is proposed. This method can accurately and objectively identify adjacent
elbow bones and generate segmentation prompt boxes, thereby achieving automation in
elbow joint bone segmentation and facilitating seamless 3D reconstruction. Furthermore,
this method is expected to be applied even with limited training sample sizes in clinical ap-
plications. It will provide significant assistance in clinical diagnosis, preoperative planning,
and intraoperative navigation.

2. Method

The method can be divided into three steps, as shown in Figure 1. The elbow CT
images obtained through CT scanning are used as input [33]. Firstly, a spatial elbow joint
recognition is introduced, involving threshold segmentation, region-growing techniques,
and elbow anatomical knowledge, and the prompt boxes are generated. Subsequently, the
original CT images undergo clipping and encoding by an image encoder, obtained via
transfer learning from the MedSAM. The elbow bone masks are predicted by a segmentation
model, with mask correction and reclassification designed based on bone recognition results.
Finally, the three main bones at the elbow joint, namely the humerus, ulna, and radius,
are reconstructed and smoothed using the marching cube algorithm and Laplace smooth
operation.

Figure 1. The elbow recognition, segmentation, and reconstruction method. In figure, the humerus,
ulna and radius are shown in red, green, and blue, respectively.

2.1. Original Elbow CT Image Segmentation

MedSAM is a typical segmentation foundational model, generated by transfer learning
based on SAM [33] deploying over 11 million medical images. Functioning as a prompt
segmentation method, MedSAM employs prompt boxes to specify segmentation objects,
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thereby reducing segmentation ambiguity. Similar to SAM, MedSAM comprises an image
encoder, a prompt encoder, and a mask decoder, as illustrated in Figure 2. The image
encoder maps the original CT images to a higher dimensional space, and the prompt en-
coder converts the prompt bounding boxes into feature representation through positional
encoding. The mask decoder utilizes image embeddings, and prompt embeddings to gen-
erate masks. MedSAM demonstrates comparable or even superior segmentation accuracy
to professional models, as evidenced by its performance on over 70 internal tasks and
40 external validation tasks [36]. As a foundational segmentation model, it possesses robust
feature extraction capabilities due to its extensive pre-training on a large number of medical
images, implying that even in the absence of specific samples or with a limited dataset,
the model can leverage its internal feature representations to perform effective inference.
Consequently, the MedSAM model and the MedSAM model after transfer learning exhibit
powerful generalization capabilities with small sample sizes.

Figure 2. Automatic elbow CT image segmentation.

To improve the adaptability of MedSAM for elbow CT images, several series of CT
images are utilized for transfer learning. For clarity, the fine-tuned MedSAM is referred
to as elbow MedSAM. During dataset construction, several series of elbow CT images
are randomly selected to generate the training dataset, and a CT image is considered as a
sample. Specifically, each sample includes three parts: (1) original image, (2) image labeled
by senior surgeons (binary matrix with the same shape as the original image), and (3)
prompt box. The prompt box surrounding the target is automatically generated, by slightly
expanding the narrow box with a random amount ranging from 0 to 30 pixels, which
prevents the network from excessively relying on the boundary range of the rectangular
box, which is shown in Figure 3.

Figure 3. Composition of the training dataset. (a) Original image; (b) labeled image; (c) labeled image
with automatically generated prompt box. The red and green rectangular boxes are narrow box and
expanded box, respectively.

Manual drawing of prompt boxes is required for MedSAM, significantly impeding
the efficiency of elbow joint segmentation and reconstruction. It is crucial to automatically
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recognize elbow bones from original CT images to improve efficiency. An initial threshold
segmentation is performed, followed by the utilization of the region-growing technique to
determine the connected component labels of each voxel within the segmented foreground
by applying the breadth-first search algorithm (BFS). The connected components are then
sorted based on the number of voxels they encompass. Specifically, the initial threshold
setting should prevent bone adhesion from occurring at the elbow joint. Additionally, the
initial threshold should be set as small as possible to encompass more bone tissue during
the initial segmentation process.

In standard unilateral elbow joint CT scans, the four largest connected components
obtained through the initial threshold calculation correspond to the CT bed, humerus, ulna,
and radius, as shown in Figure 4. Considering that the joint space is smaller than the
distance between the bone and the CT bed, the minimum distances between every pair of
connected components are calculated using the KD tree algorithm, and the distance matrix
is recorded as follows:

D4×4
min =

{
dij

}4×4, (1)

where dij is the minimum distance between the ith and jth connected components, and the
index of CT bed can be determined as follows:

idCT bed = argmax
i

(
∑4

i=1 dij

)
, (2)

Figure 4. Main connected components after threshold segmentation and region-growing.

For the remaining three connected components, the relative distances are calculated.
Several points are uniformly chosen for each connected component, and the distances
from these points to other connected components are calculated. The average distance
is considered as the relative distance between bones. Since the relative distance between
the ulna and radius is the smallest among the three groups, the relative distance matrix
D3×3

mean can be utilized to select the humerus from the three bones, calculated similarly to
Equation (2).

The forearm shaft orientation (
→
n f) is estimated based on a vector defined by point A

(the distal point of the humerus) and point B (the farthest point from point A in the other
two connected components), as shown in Figure 5. The proximal projection location of the
ulna and radius in this direction can be calculated according to the following:

pp = max
(

C ×→
n f

)
(3)

where C ∈ RN×3 represents the connected component of the ulna or radius. The connected
component with the largest pp is recorded as the ulna.

The prompt box is generated based on the results of bone recognition. The voxels of
connected components are projected onto each layer. A narrow prompt box can be obtained:
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Boxnarrow =
[
xmin xmax ymin ymax

]
(4)

Bone recognition results cannot encompass the entire bone, it is necessary to expand
the narrow prompt box with an interval d (Figure 6). Therefore, the expanded prompt box
can be expressed as follows:

Boxexpand =
[
xmin − d xmax + d ymin − d ymax + d

]
(5)

The expanded prompt boxes are input into the segmentation model and encoded by
the prompt encoder. Finally, segmentation masks are predicted layer by layer.

Figure 5. Evaluation of forearm shaft orientation.

Figure 6. Automatic prompt box generation and expansion. (a) Bone recognition; (b) narrow prompt
box; (c) expanded prompt box.

2.2. Mask Correction and Reclassification

Several details need to be supplemented to reduce segmentation errors. Tiny holes
within segmentation bones are observed, which are caused by the inhomogeneity of BMD
within the bone marrow cavity. These holes should be filled using a hole-filling algorithm.

Near the elbow joint, multiple bones may appear in the same image with a narrow
spacing. The mask predicted from the prompt box may not only include the target bone
but also other bones. To address this issue, reclassification and validation operations
are performed for the predicted mask based on the bone recognition result. Considering
that a single bone might comprise multiple separated regions on a single layer, the bone
reclassification result can be expressed as follows:

C =
NC⋃
i=1

Ci · sign
(∥∥Ci ∩ Crecognize

∥∥) (6)

where Ci denotes the connected component calculated based on the segmentation mask,
Crecognize denotes the point set corresponding to the bone recognition result, and Nc indicates

6
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the number of connected components in the prompt box. Finally, the target bone can be
accurately predicted, as shown in Figure 7.

Figure 7. Schematic of mask reclassification. (a) Result of bone recognition; (b) automated segmenta-
tion; (c) mask after reclassification.

2.3. Elbow Reconstruction

The elbow bone is reconstructed using the marching cube algorithm based on the
elbow segmentation results. Then, the image acquisition coordinate system is transformed
into the spatial coordinate system, facilitating precise intraoperative localization in clinical
applications. Therefore, the coordinate transformation can be expressed as follows:

⎡
⎢⎢⎣P′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣OimageΔS

0
0

Δh
S

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣P

1

⎤
⎥⎥⎦ (7)

where P and P′ denote the vertices of the 3D bone model before and after the coordinate
transformation, Oimage and ΔS represent image orientation and pixel spacing obtained
from original CT data, Δh denotes slice distance, and S is the spatial position of the point in
the upper left corner of the first CT image. Following that, a Laplace smoothing operation
is conducted to reduce high-frequency noise while preserving the whole structure of the
bone shape. During this process, the smoothed positions are determined based on their
adjacent points for all vertices:

U(p) =
1
n

n−1

∑
i=1

Adji(P) (8)

where P and U(p) are points before and after smoothing.

3. Results and Discussion

3.1. Dataset

The study received approval from the Beijing Jishuitan Hospital Ethics Committee, and
informed consent was waived by the ethics committee. A total of 41 patients treated in the
Department of Trauma at Beijing Jishuitan Hospital were enrolled in the study. Inclusion
criteria were no history of congenital malformations and arthritis. All patients underwent
unilateral elbow CT scans (UIH/uCT500) with voltage and current settings of 100 kV and
65 mA. The resolution of the CT image was 512 × 512, with a pixel spacing ranging from
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0.29 to 0.57 mm, and a slice distance of 0.8 mm. Among 41 series of unilateral elbow joint
CT scans, there are 17 left elbow joints and 24 right elbow joints. The range of elbow
flexion angles was between 82.10◦ and 170.11◦. The entire dataset was divided into training
and validation datasets, with 11 series of CT images randomly selected for the transfer
learning of MedSAM, and the other 30 series of CT images applied for verification. Three
senior orthopedic experts collaborated to label the bones using Mimics 20.0, including the
humerus, ulna, and radius, which were regarded as the “ground truth (GT)”.

The transfer learning of MedSAM was conducted using Python 3.10 and PyTorch 2.0.
The checkpoint of MedSAM is used as the initial value. Adam optimizer was utilized to
train the network; the training spanned 100 epochs, utilizing a weight decay of 0.01, and a
learning rate set of 0.0001. The loss function is defined by the sum of cross-entropy loss
and dice loss, which is reduced from 0.022 to 0.007 for the training dataset.

3.2. Verification of Elbow Bone Recognition
3.2.1. Result of Elbow Bone Recognition

Figure 8 shows the bone recognition results and generated prompt boxes, demonstrat-
ing that elbow bone recognition can automatically identify multiple targets in the entire CT
images based on the bone position relationships. This facilitated more efficient and intuitive
classification of bones in elbow CT images. However, the recognized masks only depicted
the general shape of the bones. Specifically, only pixels with high CT intensity values can
be captured. The marrow cavity was omitted due to the low bone mineral de BMD, which
can be supplemented if the cortical bone is completely segmented. In addition, the BMD at
the bone end is relatively low due to the need for flexibility and shock absorption, resulting
in missing pixels, which typically require pixel-by-pixel segmentation refinement. Despite
these limitations, the recognized masks still provided an approximate indication of the
bone’s position, guiding the generation of prompt boxes. It helps enhance the automation
of subsequent segmentation and 3D reconstruction. To ensure complete segmentation of
elbow bones, expanding the prompt boxes is conducted. In our studies, the expansion size
was set to 20 pixels at the bone ends and 10 pixels at the bone shafts.

Figure 8. Results of elbow bone recognition and generated prompt boxes. In the figure, the humerus,
ulna, and radius are shown in red, green, and blue, corresponding to the prompt boxes.
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3.2.2. Impact of Automatic Prompt Box Generation

An ablation study was performed to verify the significance of prompt box generation,
which is shown in Figure 9. Obviously, without a prompt box, the segmented mask covered
almost the entire image, as shown in Figure 9b, resulting in an invalid segmentation. In
addition, for an inappropriate prompt box (such as an overly large prompt box, as shown
in Figure 9c), effective segmentation results could not be obtained. This indicates that
appropriate prompt boxes are crucial for achieving precise segmentation.

Figure 9. The contrasting impact of prompt boxes on elbow bone segmentation. (a) Original image;
(b) segmentation masks without a prompt box; (c) segmentation masks using an inappropriate
prompt box; (d) segmentation masks using an appropriate prompt box.

Furthermore, it is crucial to recognize elbow bones and generate prompt boxes auto-
matically, as manually drawing prompt boxes by surgeons is time-consuming and labor-
intensive. Additionally, identifying the specific elbow joint bone within the prompt box is
challenging when only a single image is available, particularly in scenarios where one bone
appears as two separate domains in the CT image.

3.3. Impact of Mask Correction and Reclassification

The comparison for a series of CT images before and after mask correction and re-
classification was performed, and the intersection over union (IoU) was utilized to gauge
segmentation accuracy, which is defined by the following:

IoU =
A ∩ B
A ∪ B

(9)

where A and B represent two masks being compared, and the numerator means the area of
the overlap regions of two masks, and the denominator means the total coverage of two
masks, as shown in Figure 10. Obviously, IoU is 1 if the two masks completely overlap,
while IoU is 0 if the two masks are entirely unrelated.

Figure 10. Diagram about the calculation of IoU.

It was noticeable that mask correction had little impact on the IoU at the bone shaft
(Figure 11a). The slight differences in IoU values for these layers were primarily due to
minor holes attributed to the complex shape and texture of bone tissue. The IoU values
were improved after these tiny holes were filled, as shown in Figure 11b.

9



Sensors 2024, 24, 4330

Figure 11. Comparison of the effect of mask correction and reclassification. (a) Comparison of IoU
values for all CT layers; (b,c) mask comparison for two specified layers.

However, in the region of the humeral trochlea and capitellum, the difference in IoU
values was substantial, with a maximum difference of 0.228 (Figure 11c). Due to the narrow
joint space at the humeroulnar joint, there was an overlap between the prompt boxes for the
ulna and humerus. As a result, segmented masks within the humerus prompt box might
not entirely belong to the humerus (Figure 11c). However, through mask reclassification
based on the initial bone recognition, pixels corresponding to the ulna were excluded,
resulting in a significant increase in IoU, highlighting the importance of reclassifying
segmentation targets.

3.4. Result of Elbow CT Segmentation
3.4.1. Qualitative Evaluation of Segmentation Results

Figure 12 demonstrates the qualitative evaluation of segmentation results using U-Net,
origin MedSAM, and elbow MedSAM. There was no significant difference observed for
the bone shafts of the humerus (Image 1), ulna, and radius (Image 2) among the three
segmentation models. However, the primary segmentation challenge arose near the elbow
joint, primarily due to the narrow joint space between the humerus and ulna, resulting in
an indistinct boundary between bone and soft tissue. For U-net, it is almost impossible
to separate different bones. In the region of the elbow joint, different bones might be
segmented as an entire bone (Image 4). Among three segmentation methods, elbow
MedSAM demonstrated excellent segmentation results (Images 3 and 4), attributed to the
transfer learning, which enhanced the model’s effectiveness in distinguishing between joint
gaps and bone tissues. Obviously, transfer learning resulted in a sharper feature recognition
capability. Even when confronted with small joint spaces, elbow MedSAM demonstrated
a reduced likelihood of identifying different bones as a single target, thereby ensuring
the relative integrity of bone segmentation. Furthermore, our investigation revealed that
even in cases where the elbow joint is in a flexed posture, meaning elbow bones are not
fully displayed in cross-section, elbow MedSAM can accurately identify and segment the
forearm bones (Image 5).
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Figure 12. Comparison of segmentation results between origin MedSAM and elbow MedSAM. In the
figure, the humerus, ulna, and radius are shown in red, green, and blue, respectively.

3.4.2. Quantitative Evaluation of Segmentation Accuracy

The U-Net exhibited extremely limited segmentation performance at the elbow joint
regions. Moreover, it has also been documented in the literature that its segmentation
effectiveness is inferior to that of MedSAM for medical images [36]. Therefore, only the
origin MedSAM and elbow MedSAM were compared for quantitative evaluation.

The quantitative evaluation was first conducted on a series of CT scans, as shown in
Figure 13. It was clear that the elbow MedSAM exhibited stability, with the IoU values
ranging from 0.911 to 0.983, 0.894 to 0.981, and 0.865 to 0.980 for the humerus, ulna, and
radius, respectively. Compared to the origin MedSAM, the IoU values were significantly
improved.
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Figure 13. IoU plot of a series of elbow joint CT segmentation results. (a) Humerus; (b) ulna;
(c) radius.

In fact, the bone shaft exhibits high BMD and clear bone texture, resulting in relatively
good segmentation results for both models. However, near the elbow joint, compared to
elbow MedSAM, the origin MedSAM experienced a maximum decrease in IoU values of
0.31, 0.138, and 0.38 for the humerus, ulna, and radius, respectively.

The CT images displaying the most significant disparities in IoU values were utilized
for further analysis. For the humerus and ulna, origin MedSAM exhibited the lowest
segmentation accuracy at the humeroulnar joint, mainly attributed to the extremely narrow
joint space and blurred edges, as shown in Figure 14. Without transfer learning, the
segmentation model might erroneously identify the humerus and ulna as a single bone,
and the accuracy was hardly enhanced through mask reclassification. For the radius, lower
segmentation accuracy was observed near the radial head due to physiological reasons. The
radial head requires flexibility and cushioning during elbow joint movement, thus resulting
in relatively lower BMD. Additionally, the BMD naturally decreases with increasing age.

Figure 14. Instances of segmentation result for each bone. In the figure, the humerus, ulna, and
radius are shown in red, green, and blue, respectively.

Lower IoU values mainly existed in several layers near the bone end. However,
the phenomenon did not indicate poor segmentation quality. In these regions of the CT
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images, the target bones occupied a very small proportion (just a few dozen pixels). As
a result, even a small number of pixels inconsistent with the ground truth can lead to a
significantly low IoU value. Moreover, influenced by the partial volume effect, the bone
edges appeared quite blurred. This implies that even senior surgeons might not provide
completely accurate segmentation results when labeling the ground truth. Furthermore,
we noted that despite the partial volume effect causing blurred bone edges, our model
demonstrated a certain degree of robustness. Overall, the results indicated that despite
encountering some challenges, the elbow MedSAM has achieved satisfactory results in
elbow joint CT image segmentation tasks.

Statistics analysis was conducted on the segmentation results among the entire test
dataset, and the results were visualized in a box plot, as depicted in Figure 15. The boxes
encompassed IoU values from 10% to 90%. From the figure, the median IoU values were
0.963, 0.959, and 0.950 for the humerus, ulna, and radius, respectively. For 90% of the elbow
CT images, the segmentation IoU values exceeded 0.939, 0.927, and 0.917, significantly
higher than the IoU values achieved by origin MedSAM, which were 0.77, 0.773, and 0.779,
respectively. This indicated that elbow MedSAM demonstrated higher stability and can be
applied to a broader range of elbow CT images. In contrast, the origin MedSAM showed
weaker specificity toward the elbow joint, resulting in slightly inferior performance.

Figure 15. Boxplot of segmentation IoU values of elbow CT images.

3.4.3. Objectivity Discussion of Elbow Joint Segmentation

In clinical practice, the segmentation results of elbow joint bones by senior surgeons
exhibit a certain degree of subjective judgment, highlighting the reliance on the clinician’s
experience for manual segmentation. This subjectivity can lead to inconsistencies and
variability in the results. To address this issue, we developed Elbow-MedSAM through
transfer learning based on MedSAM, which has been pre-trained on a large dataset of
medical images. This model leverages the extensive segmentation experience embedded in
these images, thereby eliminating the need for manual adjustments and human intervention.
By automating the segmentation process, Elbow-MedSAM ensures a more objective and
consistent approach, reducing the impact of individual biases and potentially improving
the accuracy and reproducibility of the segmentation outcomes.

3.5. Reliability and Accuracy of 3D Elbow Reconstruction
3.5.1. Result of 3D Elbow Reconstruction

The comparison between the 3D elbow bone surface models reconstructed by the
automatic method and ground truth was conducted, and the reconstruction results are
depicted in Figure 16. It is evident that the 3D elbow joint model obtained through the
automatic method is essentially consistent with the ground truth, showing no obvious
holes or bone adhesions.
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Figure 16. Comparison of reconstruction elbow bone model between ground truth (in purple) and
automatic method (in grey).

The surface error of the reconstructed model was calculated, with the statistical results
shown in Figure 17. The maximum surface error values were 0.877 mm, 1.246 mm, and
1.274 mm for the three elbow bones. These results underscored the reliability and accuracy
of our automatic reconstruction method in capturing the intricate details of the elbow joint
morphology, indicating a high degree of consistency with the ground truth.

Figure 17. Boxplot of surface error values of reconstructed models between automatic method and
ground truth.

3.5.2. Reliability Analysis of Elbow Joint Reconstruction

Further analysis of the reconstruction results of 30 elbow joints was conducted, and the
maximum surface errors are shown in Table 1 and Figure 18. Two main reasons accounted
for the occurrence of large surface errors at individual points: (1) incomplete segmentation
near the radius head in some cases, as depicted in Figure 18a. (2) For the bone shaft
positioned at the edge of the CT image, the edges of the rectangular box coincide with
the image edge. This situation primarily occurred in the ulnar and radial shaft regions,
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resulting in part bone marrow cavities in the reconstructed bone models, introducing
surface errors from the ideally reconstructed bones, as shown in Figure 18b. Since the
main functions of the elbow joint are flexion and extension, these errors are not expected to
significantly affect the analysis of elbow joint morphology and kinematic simulation.

Table 1. Max surface error for test CT series.

Mean (mm) Quartiles (Q1 to Q3) (mm) Range (Min. to Max.) (mm)

Humerus 1.127 0.654 to 1.433 0.262 to 2.247
Ulna 1.523 0.976 to 1.906 0.737 to 2.695

Radius 2.062 1.299 to 2.711 0.582 to 3.388

Figure 18. Main error in surface model reconstruction. (a) Incomplete segmentation near the radius
head; (b) interference of marrow cavity.

The automatic reconstruction was successfully implemented in all 30 cases of elbow
joint CT images, indicating its robustness and general applicability for elbow joint CT
images. As the checkpoint is fixed after transfer learning, the segmentation results are
repeatable. The reconstructed surface models generally align well with the ground truth
except for some special positions, and the reconstruction error is within an acceptable range,
further validating the reliability of the proposed method.

4. Conclusions

In this study, an automatic method for elbow joint recognition, segmentation, and
reconstruction is proposed. Prompt boxes are generated by automatic elbow bone recogni-
tion. Transfer learning is utilized to improve the segmentation accuracy, and hole-filling
and mask reclassification are applied to refine the segmented masks. The elbow bone recon-
struction can be conducted seamlessly. By comparing the segmentation and reconstruction
results with manually labeled images, this automatic method has proved to be reliable,
objective, and accurate. The main conclusions are as follows:

(1) This study employs an interpretable algorithm to automatically recognize the humerus,
ulna, and radius from elbow joint CT images. The algorithm exhibits stability and
effectiveness for elbow joints from flexion (82.10◦) to extension (170.11◦) postures.

(2) The IoU values near the joint are significantly increased by mask correction and reclas-
sification, with a maximum improvement of 0.028, conclusively boosting segmentation
accuracy.

(3) The segmentation accuracy is enhanced by the MedSAM after transfer learning,
allowing for more precise capture of bone edges and reducing instances of mistaking

15



Sensors 2024, 24, 4330

multiple bones as a single target. The median IoU values are 0.963, 0.959, and 0.950
for the humerus, ulna, and radius, respectively, notably surpassing the predictions of
the origin MedSAM.

(4) The maximum surface errors for the bone surface model reconstructed by the march-
ing cube algorithm are 1.127, 1.523, and 2.062 mm for the humerus, ulna, and radius,
respectively.

Author Contributions: Conceptualization, T.Z. and Y.Z. (Yejun Zha); methodology, Y.C.; software,
Y.C.; validation, Y.C.; formal analysis, X.Z. and Y.Z. (Yichuan Zhang); investigation, X.Z.; resources,
Y.Z. (Yejun Zha); data curation, S.J.; writing—original draft preparation, Y.C.; writing—review and
editing, T.Z. and S.J.; visualization: Y.C.; supervision, X.Z.; project administration, S.J.; funding
acquisition, Y.Z. (Yejun Zha). All authors have read and agreed to the published version of the
manuscript.

Funding: Supported by Beijing Natural Science Foundation (L192049).

Institutional Review Board Statement: All procedures performed in studies involving human
participants were in accordance with the ethical standards of the National Research Committee and
with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The
study was approved by the Beijing Jishuitan Hospital (K2022-197).

Informed Consent Statement: Patient consent was waived due to the retrospective design of
this study.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request. The data are not publicly available due to privacy concerns.
We are actively working with hospitals to obtain public permission for the dataset.

Acknowledgments: We are sincerely grateful to all novices and surgeons in the Beijing Jishuitan
Hospital who participated in the manual methods. We also thank all the patients who provided
elbow CT images in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Facchini, G.; Bazzocchi, A.; Spinnato, P.; Albisinni, U. CT and 3D CT of the Elbow. In The Elbow; Springer: Cham, Switzerland,
2018; pp. 91–96, ISBN 978-3-319-27805-6.

2. Jackowski, J.R.; Wellings, E.P.; Cancio-Bello, A.; Nieboer, M.J.; Barlow, J.D.; Hidden, K.A.; Yuan, B.J. Computed Tomography
Provides Effective Detection of Traumatic Arthrotomy of the Elbow. J. Shoulder Elb. Surg. 2023, 32, 1280–1284. [CrossRef]

3. Giannicola, G.; Sacchetti, F.M.; Greco, A.; Cinotti, G.; Postacchini, F. Management of Complex Elbow Instability. Musculoskelet.
Surg. 2010, 94, 25–36. [CrossRef] [PubMed]

4. Zubler, V.; Saupe, N.; Jost, B.; Pfirrmann, C.W.A.; Hodler, J.; Zanetti, M. Elbow Stiffness: Effectiveness of Conventional
Radiography and CT to Explain Osseous Causes. Am. J. Roentgenol. 2010, 194, W515–W520. [CrossRef] [PubMed]
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Abstract: Accurate paranasal sinus segmentation is essential for reducing surgical complications
through surgical guidance systems. This study introduces a multiclass Convolutional Neural Network
(CNN) segmentation model by comparing four 3D U-Net variations—normal, residual, dense, and
residual-dense. Data normalization and training were conducted on a 40-patient test set (20 normal,
20 abnormal) using 5-fold cross-validation. The normal 3D U-Net demonstrated superior performance
with an F1 score of 84.29% on the normal test set and 79.32% on the abnormal set, exhibiting higher
true positive rates for the sphenoid and maxillary sinus in both sets. Despite effective segmentation
in clear sinuses, limitations were observed in mucosal inflammation. Nevertheless, the algorithm’s
enhanced segmentation of abnormal sinuses suggests potential clinical applications, with ongoing
refinements expected for broader utility.

Keywords: paranasal sinuses; chronic sinusitis; Convolutional Neural Network (CNN); multiclass
segmentation

1. Introduction

In 1994, around 200,000 sinus surgeries were conducted in the United States [1]. By
1996, 12 percent of Americans under the age of 45 reported symptoms indicative of chronic
sinusitis [2]. This widespread condition imposes a substantial societal burden, manifest-
ing in frequent office visits, absenteeism from work, and missed school days [1]. When
medicinal treatments fail to alleviate the condition, patients are often referred for sinus
surgery. Many physicians refer to Computed Tomography (CT) scans when evaluating pa-
tients referred for sinus surgery [1,3]. Radiologists report anatomic variants, that can affect
operative techniques, and critical variants, that can complicate surgery [4]. Identification
of these anatomical variants affords the opportunity to avoid surgical complications [5].
Segmentation data can be used for the diagnosis, surgical planning, or workspace defi-
nition of robot-assisted systems. However, manual and semiautomatic segmentation of
the paranasal sinuses has been evaluated as impractical in clinical settings because of the
amount of time required for both systems [6,7]. The application of machine learning in this
process warrants attention due to its potential to substantially mitigate the time and labor
costs associated with manual segmentation. Ultimately, this holds promise for making the
segmentation process feasible and practical in clinical settings.
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Artificial intelligence is gaining popularity in the medical imaging field for devel-
oping models that produce human-interpretable results [8–10]. Because of the clustered
arrangement of regions, including the frontal, ethmoid, and sphenoid sinuses, developing
models that can produce practical results for the paranasal sinuses is an ongoing chal-
lenge. Two published studies focused on processing cone-beam computed tomography
images to achieve segmentation of the maxillary sinus. In 2022, Choi et al. [11] trained
a U-Net model to segment maxillary sinuses. The segmented results were refined using
post-processing techniques to isolate and remove disconnected false positives. The trained
model made predictions with a Dice similarity coefficient (DSC) value of 0.90 ± 0.19 before
post-processing and 0.90 ± 0.19 after post-processing. Morgan et al. [12] trained two U-Net
models to segment the maxillary sinus. The first model suggested crop boxes in the original
image of the maxillary sinus, which were used to train the second part of the model to
produce high-resolution segmentation results. The final segmentation results achieved
a DSC score of 0.98 for the first model and 0.99 for the second model. Kuo et al. [13]
proposed a 6-class segmentation model that segmented four different areas of the paranasal
sinuses, treating the ethmoid sinus as two different areas: the anterior and posterior eth-
moid sinus. A secondary model was trained to generate pseudo-labels on the unlabeled
datasets. The model used in this study was an adaptation of the U-Net model [14] with
the addition of depth-wise separable convolution, squeeze-and-excitation networks, and
residual connections. The model was able to make predictions with a DSC value of 0.90.
The approaches proposed by Choi et al. [11] and Morgan et al. [12] exhibited performance
adequate for clinical applications. However, the aim of both studies was limited to the
binary segmentation of the maxillary sinus.

We proposed a 5-class segmentation model for the four regions of the paranasal
sinus: frontal sinus, ethmoid sinus, sphenoid sinus, and maxillary sinus. Training and
validation were conducted on clinical-level CT scans sourced from patients exhibiting
high degrees of genetic and biological variations. The objective was to develop a model
capable of generating clinical data with sufficient accuracy to be practically applicable in
clinical settings.

2. Materials and Methods

This study was approved by the Institutional Review Board (IRB) of Gachon University
Gil Medical Center (GAIRB2022-182) and was conducted in accordance with the relevant
guidelines and ethical regulations.

A total of 39,605 paranasal CT scans were collected from 201 patients with varying de-
grees of chronic sinusitis, including 3821 images from 20 patients without sinusitis. A total
of 40 datasets were randomly selected as the hold-out test set, with 20 datasets originating
from the patient group without sinusitis. These subsets were then labeled as “normal” and
“abnormal” to reflect the respective patient group characteristics. Training was performed
on the remaining 161 datasets with 5-fold cross validation, where 128 datasets were used
for training and 33 for validation. In summary, the dataset was divided into sets comprising
128 patients for training, 33 patients for validation, and 40 patients for testing. Demographic
information of the participating patients is summarized in Table 1.

Table 1. Patient distribution by age group and gender.

Age Group Male Gender Ratio Female Gender Ratio Total Ratio by Age

10–20 6 40.00% 9 60.00% 15 7.58%

20–30 15 68.18% 7 31.82% 22 11.11%

30–40 21 84.00% 4 16.00% 25 12.63%

40–50 14 63.64% 8 36.36% 22 11.11%

50–60 34 62.96% 20 37.04% 54 27.27%
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Table 1. Cont.

Age Group Male Gender Ratio Female Gender Ratio Total Ratio by Age

60–70 32 71.11% 13 28.89% 45 22.73%

70–80 8 72.73% 3 27.27% 11 5.56%

80– 2 50.00% 2 50.00% 4 2.02%

Total 132 66.67% 66 33.33% 198 100%

Data collection and storage were performed using Excel (version 16.83, Microsoft,
Redmond, WA, USA) and statistical analyses were performed using MedCalc (version 22,
MedCalc Software Ltd., Ostend, Belgium). Training was performed on an Ubuntu server
(version 20.04.6 LTS) with four Nvidia A100 80Gb GPUs (NVIDIA, Santa Clara, CA, USA),
an AMD EPYC 7452 32-Core Processor (AMD, Santa Clara, CA, USA), and 1,031,900 Mb
of RAM. The following libraries were used for training: Python (version 3.7), TensorFlow
(version 2.6.0), and Keras (version 2.6.0).

Using the collected sinus data, we meticulously curated a ground truth dataset by
labeling the sinus region for each patient. The oversight and guidance of two experienced
otorhinolaryngologists was integral to this process, ensuring the utmost quality and accu-
racy of the dataset. The final ground truth data were congregated through a consensus
between the two physicians. The ground truth was labeled along the axial, sagittal, and
coronal axes, as visually depicted in Figure 1. The volumetric reconstruction (Figure 1d)
presents the data in its authentic form, providing insight into how it is inputted into the
deep learning model. The axial view (Figure 1a) shows the maxillary and sphenoid si-
nuses beneath the ethmoid sinuses. The sagittal view (Figure 1b) shows the left maxillary
sinus and part of the sphenoid sinus. The coronal view (Figure 1c) shows the frontal and
maxillary sinuses surrounding the ocular area.

Figure 1. CT image of the paranasal sinuses with ground truth data overlayed. (a) Axial view,
(b) sagittal view, (c) coronal view, and (d) volumetric reconstruction.

To facilitate the extraction of features within the CT scans, the datasets underwent
several enhancements (Figure 2A), including window setting adjustments, isotropic voxel
reconstruction, contrast-limited adaptive histogram equalization (CLAHE), and region of
interest (ROI) cropping. The preprocessed images were used to train the segmentation
model (Figure 2B) to produce segmentation results (Figure 2C). The overall training process
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is presented in Figure 2. A bone window with a width of 2,000 and a level of 0 was set and
converted into 8-bit encoding. This setting has been established as the imaging technique
of choice for examining patients before functional endoscopic sinus surgery [15,16].

Figure 2. Flowchart of the multiclass sinus segmentation training process.

Depending on the acquisition process, CT images can have varying slice thickness
and pixel spacing within the protocol range [17,18]. The acquired images exhibited a
consistent 1 mm slice thickness but varying pixel spacings, resulting in the disproportionate
volumetric ratio of planar CT images. To eliminate unwanted ratio variations among
the dataset, an isotropic voxel reconstruction algorithm was applied across the dataset to
equalize the slice thickness to pixel spacing ratio. The ratio of slice thickness to pixel spacing
was calculated to downsample the images accordingly using cubic spline interpolation [19]
such that the volumetry of the resized images matched real proportions.

Adaptive histogram algorithms are commonly used in medical imaging to create
images with equal intensity levels, thereby generating an image with an increased dynamic
range, leading to an increase in contrast [20,21]. CLAHE [22,23] was employed in this study
to restrict amplification and prevent overamplification of noise in areas with relatively
homogeneous contrast.

To equalize the image dimensions for training, a cropping algorithm was used to crop
images based on the region of interest. To guarantee the comprehensive inclusion of the
region of interest, specific dimensions were set, with a target depth of 192, a height of 128,
and a width of 128. The dimensions were chosen based on an analysis of the ground truth
data in the entire dataset. The algorithm used in the analysis calculated the 3-dimensional
coordinates of the edges for the largest ground truth data. As the voxel reconstruction
algorithm resized the CT scans in accordance with the actual proportions of the paranasal
sinuses, a greater amount of ground truth data became available along the depth axis.

The U-Net architecture is commonly used for medical image segmentation models
because of its reliable performance on medical images [24–26]. Furthermore, its utilization
of depth-wise 3D convolution operations allows for the simultaneous extraction of features
along the 3 axes: axial, sagittal, and coronal. Three variants of the 3D U-Net architecture,
each deeper than the last, were trained and compared: 3D U-Net with residual connec-
tions [27], 3D U-Net with dense blocks [28], and 3D U-Net with dense blocks and residual
connections [29]. The 3D U-Net architecture, which served as the basis for constructing our
model, is presented in Figure 3.
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Figure 3. Architecture of the 3D U-Net.

The 3D U-Net used in this study comprised 18 convolutional layers with 5,644,981 train-
able parameters. The residual 3D U-Net comprised 63 convolutional layers and
2,350,989 trainable parameters. The dense 3D U-Net comprised 28 convolutional layers and
10,960,437 trainable parameters. The residual dense 3D U-Net comprised 34 convolutional
layers and 47,078,117 trainable parameters. A summary of the parameter and layer
counts for each model is provided in Table 2, along with the kernel-wise feature map
details summarized in Table 3. All models were trained on the same hyperparameters.
The Adam [30] optimizer was used with an initial learning rate of 0.0001. Categorical
cross-entropy loss was used to monitor validation loss, and accuracy was used as the
evaluation metric. Learning rates on plateaus, early stoppers, and model checkpoints
were used to prevent issues such as overfitting and plateauing. The tolerance for learning
rate reduction was configured to 20 epochs, while the early stopper tolerance was set at
30 epochs.

Table 2. Parameter and layer count by model.

3D U-Net Residual Dense Residual-Dense

Count Parameter Layer Parameter Layer Parameter Layer Parameter Layer

block 1 7376 4 4456 13 42,352 10 84,480 17

block 2 41,536 4 19,840 13 125,088 9 388,416 17

block 3 166,016 4 78,592 13 499,008 9 1,550,976 17

block 4 663,808 4 312,832 13 1,993,344 9 6,198,528 17

block 5 2,654,720 3 1,248,256 12 2,657,664 8 24,783,360 16

block 6 1,589,632 4 517,632 13 4,117,504 9 10,622,208 18

block 7 397,504 4 129,792 13 1,063,424 9 2,656,896 18

block 8 99,424 4 32,640 13 266,496 9 664,896 18

block 9 24,880 4 8256 13 73,872 9 138,624 18

Output 85 1 165 1 85 1 4325 1

Total 5,644,981 36 2,352,461 117 10,838,837 82 47,092,709 157

22



Sensors 2024, 24, 1933

Table 3. Layer-by-layer kernel-wise details of each model. The 3D U-Net and dense 3D U-Net models
share feature map details, while the residual 3D U-Net and residual-dense 3D U-Net models also
share feature map details.

3D U-Net/Dense 3D U-Net
Residual 3D U-Net/Residual-Dense 3D

U-Net

Name Feat Maps (Input) Feat Maps (Output) Feat Maps (Input) Feat Maps (Output)

Encoding path

conv3d_block_1 192 × 128 × 128 × 1 192 × 128 × 128 × 16 192 × 128 × 128 × 1 192 × 128 × 128 × 32
maxpool3d_1 192 × 128 × 128 × 16 96 × 64 × 64 × 16 192 × 128 × 128 × 32 96 × 64 × 64 × 32
conv3d_block_2 96 × 64 × 64 × 16 96 × 64 × 64 × 32 96 × 64 × 64 × 32 96 × 64 × 64 × 64
maxpool3d_2 96 × 64 × 64 × 32 48 × 32 × 32 × 32 96 × 64 × 64 × 64 48 × 32 × 32 × 64
conv3d_block_3 48 × 32 × 32 × 32 48 × 32 × 32 × 64 48 × 32 × 32 × 64 48 × 32 × 32 × 128
maxpool3d_3 48 × 32 × 32 × 64 24 × 16 × 16 × 64 48 × 32 × 32 × 128 24 × 16 × 16 × 128
conv3d_block_4 24 × 16 × 16 × 64 24 × 16 × 16 × 128 24 × 16 × 16 × 128 24 × 16 × 16 × 256
maxpool3d_4 24 × 16 × 16 × 128 12 × 8 × 8 × 128 24 × 16 × 16 × 256 12 × 8 × 8 × 256

Bridge 12 × 8 × 8 × 128 12 × 8 × 8 × 256 12 × 8 × 8 × 256 12 × 8 × 8 × 512

Decoding path

conv3d_trans_1 12 × 8 × 8 × 256 24 × 16 × 16 × 128 12 × 8 × 8 × 512 24 × 16 × 16 × 256
conv3d_block_5 24 × 16 × 16 × 128 24 × 16 × 16 × 128 24 × 16 × 16 × 256 24 × 16 × 16 × 256
conv3d_trans_2 24 × 16 × 16 × 128 48 × 32 × 32 × 64 24 × 16 × 16 × 256 48 × 32 × 32 × 128
conv3d_block_6 48 × 32 × 32 × 64 48 × 32 × 32 × 64 48 × 32 × 32 × 128 48 × 32 × 32 × 128
conv3d_trans_3 48 × 32 × 32 × 64 96 × 64 × 64 × 32 48 × 32 × 32 × 128 96 × 64 × 64 × 64
conv3d_block_7 96 × 64 × 64 × 32 96 × 64 × 64 × 32 96 × 64 × 64 × 64 96 × 64 × 64 × 64
conv3d_trans_4 96 × 64 × 64 × 32 192 × 128 × 128 × 16 96 × 64 × 64 × 64 192 × 128 × 128 × 32
conv3d_block_8 192 × 128 × 128 × 16 192 × 128 × 128 × 5 192 × 128 × 128 × 32 192 × 128 × 128 × 5

3. Results

Each model was tested against the hold-out test set to generate segmentation results.
The segmentation results were evaluated using the following five performance metrics:
intersection over union (IoU), accuracy, recall, precision, and F1 score. The results are
expressed as the mean ± 95% confidence interval, with statistical significance set at p < 0.05.

The segmentation results from the normal test set were evaluated using the per-
formance metrics and summarized in Table 4. Overall, the models were able to make
predictions with an F1 score in the range of 0.843–0.785, of which the 3D U-Net model
achieved the highest F1 score with a value of 0.843. Conversely, the residual 3D U-Net
model recorded the lowest F1 score, standing at 0.785.

Table 4. Prediction results obtained on the normal test set, reported in performance metrics per model.

Metrics Base Residual Dense Residual-Dense

F1 score 0.843 ± 0.699 0.785 ± 0.066 0.790 ± 0.073 0.802 ± 0.093

Accuracy 0.995 ± 0.003 0.992 ± 0.001 0.993 ± 0.002 0.993 ± 0.003

Precision 0.857 ± 0.056 0.789 ± 0.059 0.801 ± 0.060 0.822 ± 0.073

Recall 0.854 ± 0.064 0.821 ± 0.060 0.822 ± 0.068 0.836 ± 0.078

Mean IoU 0.787 ± 0.071 0.703 ± 0.067 0.714 ± 0.074 0.742 ± 0.092

The segmentation results from the abnormal test set are summarized in Table 5. In
the abnormal test set, the segmentation results were evaluated to record a lower overall F1
score in the range of 0.793–0.740. The 3D U-Net model made predictions with the highest
F1 score of 0.793, whereas the predictions made by the residual-dense 3D U-Net model
recorded the lowest F1 score of 0.741.

A comparative plot of IoU values across the models in the normal and abnormal test
set is presented in Figure 4. The average IoU difference across the models was 0.082 ± 0.034
(mean ± 95% confidence interval). Paired t-tests of the IoU across the models showed
statistically insignificant differences in IoU values between the four models (p < 0.05). The
average F1 score difference, encompassing both test sets, between the 3D U-Net and the
other three models were as follows: 0.067 ± 0.016 for the residual model, 0.069 ± 0.028
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for the dense model, and 0.082 ± 0.037 for the residual-dense 3D U-Net. Paired t-tests
of the F1 scores between the models showed statistically insignificant F1 score variation
across the models (p < 0.05). The average differences in F1 scores between the two test
sets (normal and abnormal) were as follows: 0.170 ± 0.067 for the 3D U-Net, 0.188 ± 0.064
for the residual 3D U-Net, 0.206 ± 0.072 for the dense 3D U-Net, and 0.257 ± 0.099 for
the residual-dense 3D U-Net. Statistical analysis using paired t-tests showed a statistically
significant difference in the F1 scores between the normal and abnormal test sets (p > 0.05).

Table 5. Prediction results obtained on the abnormal test set, reported in performance metrics per model.

Metrics Base Residual Dense Residual-Dense

F1 score 0.793 ± 0.063 0.741 ± 0.069 0.747 ± 0.074 0.740 ± 0.095

Accuracy 0.994 ± 0.002 0.991 ± 0.002 0.992 ± 0.002 0.991 ± 0.003

Precision 0.839 ± 0.057 0.779 ± 0.067 0.785 ± 0.071 0.793 ± 0.089

Recall 0.785 ± 0.067 0.755 ± 0.076 0.756 ± 0.068 0.745 ± 0.092

Mean IoU 0.717 ± 0.061 0.653 ± 0.063 0.666 ± 0.074 0.670 ± 0.089

Figure 4. mIoU comparison of each model in the normal and abnormal test set (gray: normal dataset
results, black: abnormal dataset results, ****: statistical significance (p < 0.05)).

Visual overviews of the segmentation results for the normal and abnormal test sets
are shown in Figures 5 and 6, respectively. The figures show the segmentation results for
the ethmoid sinus, maxillary sinus, and sphenoid sinus; each area is color-coded for better
visual representation. The images were chosen randomly from the fold with the best mIoU
score. Each row represents predictions from different models. From left to right, the three
columns represent the ground truth, prediction, and overlay comparison of the ground
truth and prediction.
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Figure 5. 3D U-Net segmentation comparison for the normal test case. Color legend: green, orange—
maxillary sinus; blue, pink—ethmoid sinus; red, yellow—sphenoid sinus; (a) ground truth data,
(b) model prediction, (c) overlay comparison of ground truth and prediction.

Normalized true positive (TP) distribution per class as a heatmap for the 3D U-Net is
shown in Figure 6. For the normal dataset, the sphenoid sinus showed the highest TP rate
of 0.95, whereas the ethmoid sinus showed the lowest at 0.82. For the abnormal dataset,
the sphenoid sinus reported the highest TP rate at 0.88, and the lowest for the frontal sinus
at 0.67.
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Figure 6. 3D U-Net segmentation comparison for the abnormal test case. Color legend: green,
orange—maxillary sinus; blue, pink—ethmoid sinus; red, yellow—sphenoid sinus; (a) ground truth
data, (b) model prediction, (c) overlay comparison of ground truth and prediction.

4. Discussion

In this study, a 3D segmentation model for the four areas of the paranasal sinus based
on CT images was developed and evaluated. Four models based on the 3D U-Net were
trained and evaluated on a hold-out test set of 40 datasets, comprising 20 datasets from
patients without sinusitis and 20 datasets from patients with sinusitis. Prediction results
were further validated using 5-fold cross validation. In the normal test set, the models
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showed performances in the range of 0.843–0.785 with an average F1 score of 0.805. In the
abnormal test set, the models performed in the range of 0.793–0.740 with an average F1 score
of 0.755. In both test sets, the base 3D U-Net was able to make predictions with the highest
F1 score of 0.843, and 0.793, respectively, in the normal test set and the abnormal test set.
Statistical analysis of performance metrics was performed across the four models between
normal and abnormal test sets with statistical significance set at p = 0.05. Performance
metrics across the models exhibited statistically insignificant variations. However, mucosal
inflammation had a greater impact on the performance metrics across the models.

The method proposed by Choi et al. [11] reported an F1 score of 0.972 in normal sinuses
and 0.912 in sinuses with mucosal inflammation. Morgan et al. [12] reported an F1 score
of 0.984 and 0.996, respectively, for normal and abnormal sinuses. Note that these studies
were limited to binary segmentation of the maxillary sinus, manifesting in the higher F1
score. The study by Kuo et al. [13] trained multiple models with the aim of multi-class
segmentation of the sinus, in which the U-Net model reported an average F1 score of 0.896.
This is within 6.2% of the highest performing model in our study, the base 3D U-Net.

We performed a thorough analysis of prediction accuracy for the 3D U-Net model
across the four main sinus regions, focusing on true positive rates. The outcomes un-
derscored notable limitations in the precise prediction of the frontal and ethmoid sinus
regions. The abnormal test set showed lower prediction metrics, overall, in comparison to
the normal test set. The frontal and ethmoid sinuses showed particularly lower TP rates
in the abnormal test set, at 0.67 and 0.75, respectively. The frontal and ethmoid sinuses
are anatomically adjacent structures, and both have smaller volumes than the sphenoid
and maxillary sinuses [31]. In sinus cavities with mucosal inflammation, the cavities of the
ethmoid and frontal sinuses had much less pronounced features compared to other areas
of the paranasal sinuses. This limitation is evident in Figure 7 of the right ethmoid sinus,
where the contrast between the sinus bone and cavity appears less pronounced compared
to the left ethmoid sinus.

Figure 7. 3D U-Net prediction heatmap; (a) prediction results for the normal test set, (b) prediction
results for the abnormal test set.

Despite the substantial size of the dataset collected for this study, the clinical nature
of the CT scans led to an uneven distribution of data between patients with sinusitis
and those without the condition. Moreover, training data was obtained solely from a
single institution, suggesting the possibility that the trained models could exhibit limited
generalization capabilities on external datasets. A comprehensive follow-up study should
encompass a well-balanced dataset, including an equal distribution of data from patients
with sinusitis and those without the condition. It would be advantageous to source this
data from multiple institutes to enable internal and external validations.

Accurate segmentation of the paranasal sinuses is crucial for the preoperative eval-
uation of patients undergoing sinus surgery. To this end, this study aimed to evaluate
the segmentation efficacy in patients with mucosal inflammation. While limitations do
exist in the segmentation of paranasal sinuses with mucosal inflammation, the proposed
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method exhibited promising results. With minor refinements, our segmentation model has
the potential to enhance surgical accuracy when integrated into guidance systems. Such
integration can aid surgeons in avoiding healthy mucosal tissue, thereby reducing the risk
of complications.
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Abstract: The application of machine learning techniques to histopathology images enables advances
in the field, providing valuable tools that can speed up and facilitate the diagnosis process. The
classification of these images is a relevant aid for physicians who have to process a large number of
images in long and repetitive tasks. This work proposes the adoption of metric learning that, beyond
the task of classifying images, can provide additional information able to support the decision of the
classification system. In particular, triplet networks have been employed to create a representation
in the embedding space that gathers together images of the same class while tending to separate
images with different labels. The obtained representation shows an evident separation of the classes
with the possibility of evaluating the similarity and the dissimilarity among input images according
to distance criteria. The model has been tested on the BreakHis dataset, a reference and largely
used dataset that collects breast cancer images with eight pathology labels and four magnification
levels. Our proposed classification model achieves relevant performance on the patient level, with
the advantage of providing interpretable information for the obtained results, which represent a
specific feature missed by the all the recent methodologies proposed for the same purpose.

Keywords: metric learning; triplet networks; embedding; BreakHis; patient level accuracy; breast
cancer imaging; WSI; classification interpretability; visualization

1. Introduction

Van der Laak et al. in [1] point out that the digitisation of patient tissue samples,
usually called Whole Slide Images (WSI), enabled the development of a set of techniques in
the field of biomedical image analysis under the name of computational pathology. In the
histopathology field, deep learning algorithms perform similarly to trained pathologists,
but only very few of these have reached a clinical implementation.

The resolution of the WSI image can reach 10, 000 × 10, 000 pixels and may present
high morphological variance and various artifacts [2]. Due to the general complexity of
such kinds of images, the analysis of WSI requires a high degree of expertise and can
be very time-consuming. In addition, the complexity of this task is further increased by
the need to explore the samples at different magnification scales. As a consequence, a
complete diagnosis is often obtained through a discussion among specialised physicians
that compare the outcomes of different medical analyses (not only images).

Due to their dimensions, WSI images are challenging to process as a whole. For this
reason, they are broken into patches or tiles and given as input to the machine learning
(ML) algorithms for classification purposes. The attribution of the class to the WSI images is
then obtained by combining the labels predicted for the related patches [3]. This task is not
simple due to the morphological variance inside the WSI; however, patch analysis remains
the most-used technique for WSI processing, and the development of patch processing and
classification systems is an active research field.
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To measure and compare the contribution of such approaches, some datasets have
been proposed in the literature. One of them, considered as a standard, is the BreakHis
dataset (BH) [4]. This dataset comprises 7909 histopathological images of eight different
kinds of breast cancer collected from 82 patients. For a fair comparison among the proposed
approaches, the authors provided a specific split into a 5-fold structure. A deeper descrip-
tion of BH is reported in Section 3. Many deep neural networks (DNN) have been proposed
for histopathological image classification [1], due to their state-of-the-art performances in
the generic problem of image classification. In many cases, the architecture used to classify
BH images is very close to the ones proposed for other classification tasks, such as the case
of ImageNet Large Scale Visual Recognition Challenge [5], that are based on convolutional
layers [6]. These kinds of networks have a common architecture constituted by two parts:
a first one devoted to features extraction and a second combining the extracted features
for classification.

Despite the relevant performance that deep neural networks (DNNs) can achieve in
the image classification task, their adoption in the medical domain is not straightforward
because they are black-box methods, making it difficult to understand the logic behind
specific decisions.

Today explainability and interpretability are an important part of the discussion as
well as research work about deep neural systems and their performances [7]. What we need
are systems that make consistent decisions using an explainable mechanism and provide
information that users can understand and find meaningful, particularly in the medical
domain. An example of an interpretability mechanism giving information that is not fully
significant is CAM or Grad-CAM [8], which can highlight an image region crucial for the
classification result; however, this mechanism can not explain what, in that region, is truly
important or whether it fits with the shared medical knowledge [9].

The paper is structured as follows: the following section reports the related works in
the field of classification of the BreakHis dataset, and in the interpretable deep ANN, the
Section 3 reports the details on the BreakHis dataset, the proposed architecture and the
training method; the obtained results and the discussions are reported in Sections 4 and 5;
finally, in Section 6 some conclusions are drawn.

2. Related Works

We already proposed some studies on image classification supporting tools based on
metric learning with fuzzy techniques [10] or convolutional deep networks [11,12], or X-ray
image classification [13]. The issues related to the classification of histological images are
due to the variability of the different image acquisition equipment. For example, authors
in [14] indicate stain variability as one of the challenges in classification; stain normalisation
was also addressed in [15].

In this paper, we focus on the BreakHis dataset [4], which is widely adopted as a
workbench and used in all the papers discussed in this section. The structure of the dataset
will be discussed in the Section 3.1, but it is necessary to highlight here some characteristics
related to the image classes, the magnification level, and the train/test split. The dataset
has a hierarchical organisation with two super-classes (Benign and Malignant) and eight
sub-classes (four for each super-class). The images in the dataset have four different
magnification levels 40×, 100×, 200×, and 400×, which are hierarchically related. For
example, images at 200× will contain details of images at 100× and 40×.

The availability of images at different magnification levels leads to two possible set-
ups: the first is the study of magnification-specific (MS) classification when a classifier
is trained and tested for each magnification level and the second is the magnification-
independent (MI) classification when the classifier is trained and tested using all the images
regardless of their magnification level.

The developers of the BreakHis dataset released a 5-fold train/test split that can
be used to facilitate the comparison of the results among different approaches [4]. The
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proposed split is created at patient level so that images of the same patient are never in the
training and testing set of the same fold run.

This split is often overridden by many authors for various reasons, but in order to
make fair and reliable comparisons, its use is highly recommended, as in the case of
this manuscript.

The availability of patient information means that the assessment of the results can be
performed considering the images related to a single patient (patient-level assessment or
PLA) or the single images (image-level assessment or ILA). In this work, we have decided
to adopt only the PLA paradigm since it is undoubtedly the most reliable in terms of
closeness to the real case of histopathological image classification. The specific formulas of
PLA will be discussed in Section 3.

In the following subsections, we survey most of the methodologies proposed so far
for the histopathology image classification problem that use the BH dataset, differentiating
them in terms of image magnification, whether specific or independent. Special attention
will be devoted to the contributions that follow the folds separation suggested by the
BreakHis dataset developers, whose results can be directly compared with the methodology
we present in this manuscript.

2.1. Magnification Independent Methods

Magnification Independent Binary (MIB) classifiers are trained to separate benign from
malignant images using all the available images, regardless of magnification factors. Only
a few works fall into this category, and only two use the 5-fold split suggested by Spanhol
et al. in [4]. In the following, we will first introduce the two works that use this split, while
the latter uses a different split.For each examined work, the PLA value is reported. PLA
is an interesting comparison measure since it summarizes the accuracy for a patient and
is the most realistic measure of the system performance when a new patient is examined.
Other metrics, even if not present in the literature works, are computed for the proposed
approach and are shown in Section 4.

Bayramoglu et al. [16] propose two convolutional neural networks to classify breast
cancer histopathology images for the MIB case. These models are used to predict the malig-
nancy of the input sample (single-task fashion) or both the malignancy and magnification
factor of the input (multi-task fashion). For the single task, a PLA of 82% is obtained.

Another model, proposed by Sun et al. [17], uses an approach similar to the one
presented in this paper with both MIB and MSB tasks. Authors adopt a siamese and a
triplet network to create a new representation of the images, and they use a different
loss function that also considers the samples’ imbalance. The images, without any pre-
processing, are fed to the network that implements the classification, and the obtained PLA
accuracy is about 88%, which is slightly lower than ours.

The last work, proposed by Gupta et al. [18], adopts selected colour and texture de-
scriptors, baseline classifiers such as SVM, kNN, Decision Trees and Discriminant Analysis,
fused together with majority voting. For the model validation, a different train/test split
was used. A total of 58 patients (70%) were randomly chosen for the training set and the
remaining 24 (30%) for the test set and the process was repeated for five trials. For the
magnification-independent classification, the model achieves an average PLA of 87.53%.

2.2. Magnification Specific Methods

Several methodologies have been proposed for the case of Magnification Specific
Binary classification (MSB). We have decided to filter them on the basis of the adoption of
the training-test split proposed in [4] since this choice provides a solid comparison process.
As a consequence, all the accuracy values of the methodology reported in the following
works use the same training-test split. This is the case for the methodology proposed by
Sun et al. [17] described in the previous paragraph, which has also been used for the MSB
case. The results show an average PLA ranging from ∼87% (400×) to ∼91% (200×) (see
Table 1 for details).
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Apart from the provided split, the proposers Spanhol et al. have also investigated two
approaches based on patches extraction [19].

The patches for training were obtained by two strategies: using a sliding window with
50% overlap or a random extraction of 1000 patches with no overlap check. These strategies
were repeated twice to obtain patches of 32 × 32 pixels and patches of 64 × 64 pixels. For
the classification task, the authors proposed a variant of the AlexNet architecture. The
images of the test set were obtained by using patches extracted with a sliding window
and no overlap. The final classification of an image was the result of a combination of
classification results, each one computed on a single patch. The best results were obtained
with the training of 1000 patches of the largest dimension and using the Max Fusion Rule
as a combination paradigm. The patient accuracy values for each magnification level range
from 84% (200×) to 90% (200×) for PLA (see Table 1 for details).

Spanhol et al. have proposed another solution [20] exploiting the adoption of specific
image features, named DeCAF. They are obtained by extracting the outputs of the top
3 layers of a pre-trained AlexNet-like network and using them as the input of a CNN
classifier. The experiments were organised considering a patch-based recognition, using a
different number of patches ranging from 1 to 16. The achieved accuracy ranges from 82%
(400×) to 86% (200×) for PLA (see Table 1 for details).

The idea of DeCAF features has also been investigated by Benhammou et al. [21] using
a pre-trained Inception v3 [22]. To obtain the features, during the fine-tuning step, only the
weights of the last fully connected layer (situated before the softmax layer) are retrained,
while the other net layers are frozen. A pre-processing step on the images based on the
mean-pixel subtraction is used. The achieved accuracy ranges from ∼80% (400×) to 87%
(40×) for PLA (see Table 1 for details).

Another couple of studies that use pre-defined features was proposed by Song et al. [23].
The two approaches exploit Fisher Vectors encoding [24] as feature representation. In their
first approach [23], the authors used the descriptors together with a linear support vector
machine. First, the features of VGG-D network, pre-trained on the ImageNet dataset, were
extracted and then represented with Fisher vector encoding. Next, an adaptation layer
formed by two locally connected layers was adopted, and an additional classification layer
was also added. The descriptors obtained from the adaptation layer were used to train
linear-kernel support vector machines. The obtained average PLA is bounded by ∼86%
(400×) and ∼90% (40×) (see Table 1). The second approach [25] provides a supervised intra-
embedding algorithm that uses a neural network to transform the Fisher Vector encoding
into more discriminating feature representations. The input images are re-scaled to multiple
sizes, and for each re-scaled image, the VGG-VD ConvNet pre-trained on ImageNet is
applied so that the last layer produces a feature vector of size 512. The features collected
from all the re-scaled images are pooled together to generate the so-called ConvNet-based
Fisher Vectors (CVF) encoding of the image. To perform the classification, a Support Vector
Machine is used. The average PLA values are bounded by ∼87% (400×) and ∼90% (40×)
(see Table 1 for details).

Sudharshan et al. adopted a Multiple Instance Learning (MIL) framework for convo-
lutional neural networks [26]. MIL is concerned with learning from sets (bags) of objects
(instances), where the classification label is assigned to the bag, not to the single instance.
For the training phase, 1000 patches of size 64 × 64, are randomly extracted from each
image, while for the testing phase, a grid of non-overlapping patches is extracted, yielding
around 100 patches per image. Each patch is represented by a specific 162-long feature vec-
tor of Parametric-Free Threshold Adjacency Statistics (PFTAS) features. The work presents
an evaluation of twelve different MIL variants, both parametric and non-parametric.

The results are provided for two different settings: one where each patient is consid-
ered as a bag, considering multiple images for each of them and the second where each
image is a bag composed of patches. The best results are obtained at Patient Level using
a non-parametric MIL. They range from ∼87% (200×) to ∼92% (40×) and are listed in
Table 1 for details.
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Table 1. Triplet net embedding: MSB classification (PLA) results and comparison with the
other methods.

Method 40× 100× 200× 400×
Sun et al. [17] 87.51 ± 4.07 89.12 ± 2.86 90.82 ± 3.31 87.10 ± 3.80

Spanhol et al. [19] 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2
Spanhol et al. [20] 84.0 ± 6.9 83.9 ± 5.9 86.3 ± 3.5 82.1 ± 2.4

Benhammou et al. [21] 87.6 ± 3.9 82.4 ± 2.7 86.1 ± 0.7 79.7 ± 3.2
Song et al. [23] 90.0 ± 3.2 88.9 ± 5.0 86.9 ± 5.2 86.3 ± 7.0
Song et al. [25] 90.2 ± 3.2 91.2 ± 4.4 87.8 ± 5.3 87.4 ± 7.2

Sudharshan et al. [26] 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 87.8 ± 5.6
Proposed method (k-NN) 87.60 ± 3.92 88.17 ± 3.86 89.37 ± 3.26 85.98 ± 2.78

The papers reported and discussed so far are the ones that can be directly compared
with our proposal since all of them share the same dataset split for computing classifier
performances. Other train-test splits at the patient level are available, such as the one
proposed by Kumar and Rao [27], but it is not actually considered a benchmark dataset.
Interested readers could decide to adopt it in their benchmark studies.

As said before, it is very important that the train and test sets must not contain im-
ages from the same patients; otherwise, the samples from the same patient could occur
in both train and test sets at different magnification levels. This point makes the accu-
racy artificially higher than the other approaches. Several methodologies overlooking this
issue have been proposed. An example is the work in Wei et al. [28], which proposes a
CNN architecture trained from scratch with ImageNet first and fine-tuned with the BH
dataset, or in Bardou et al. [29], which compared the use of two sets of features, hand-
crafted and automatically extracted. Other works use GoogleNet [30], different versions of
VGG networks [31] and Restricted Boltzmann Machine [32]. Finally, some contributions
restrict the study to images at specific magnification sizes, such as [33,34], which used only
40× images.

3. Materials and Methods

3.1. The BreakHis Dataset

The BreakHis dataset comprises 7909 images at a resolution of 700 × 460 pixels ob-
tained from tissue samples of 82 breast cancer patients. These samples are divided into
two classes, Benign and Malignant, and each of them is separated into four sub-classes,
according to the structure in Table 2. The images were acquired at different magnification
levels (40×, 100×, 200×, 400×); Figure 1 reports sample images from the dataset.

In this paper, we are only interested in the dichotomy of Benign vs. Malignant, and
Table 2 shows that the number of images in the malignant class is double that of the number
of benign images.

Although many authors used pre-processing techniques on images, such as stain-
normalisation or whitening, we do not consider any of these techniques because our
preliminary experiments show that they provide no performance increase. Moreover, these
pre-processing techniques require an additional processing time, sometimes very long, and
add a new set of parameters: for example, in stain normalisation a reference image must be
selected from the training dataset; or in a whitening procedure, color mean and variance
must be calculated on available training images.

As said before, the original paper presenting the dataset [4] also proposes a train/test
split for the training of a classifier. This split is based on a 70–30% proportion that also
considers the patient set to avoid the presence of images of the same patient both in the
training and test set.

34



Sensors 2023, 23, 6003

Table 2. The BreakHis dataset: for each patient the set of images is divided in magnifications 40×,
100×, 200×, 400×.

Benign Cancer Types No. of Images No. of Patients

Adenosis 444 4
Fibroadenoma 1014 10
Tubular Adenoma 453 7
Phyllodes Tumour 569 3

Total 2480 24

Malignant Cancer Types No. of Images No. of Patients

Ductal Carcinoma 3451 38
Lobular Carcinoma 626 5
Mucinous Carcinoma 792 9
Papillary Carcinoma 560 6

Total 5429 58

Figure 1. Some images from BreakHis dataset. There is a column for each magnification factor and a
row for each subclass: A (Adenosis), F (Fibroadenoma), TA (Tubular Adenoma) and PT (Phillodes
Tumor) are benign, DC (Ductal Carcinoma), LC (Lobular Carcinoma), MC (Mucinous Carcinoma)
and PC (Papillary Carcinoma) are malignant.
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The availability of this specific partitioning is of great advantage for the assessment of
the overall quality and potential limitations of the results, which, in the general case, must
be carefully performed by the adoption of specific statistical tools [35].

Using this method, five training/test splits were generated and can be downloaded
with the dataset allowing a complete comparison of the classification results.

The classification results will be reported using the so-called PLA [4], i.e., a perfor-
mance index that takes into account the results on a patient level in the following way:

Patient Score =
Nrec

NP
(1)

where NP is the number of images available of the patient P, and Nrec is the fraction of NP
images correctly classified. The Patient Level Accuracy (PLA) is defined as follows:

PLA =
∑ Patient Score

Total Number o f patients
. (2)

Considering the images of the benign class as positive and the images of the malignant
class as negative, the Patient Score is defined as the accuracy for a single patient. PLA is an
average of the Patient Scores, evaluated as anaverage among the patients.

3.2. The Proposed Neural Network Architecture

The general architecture of a deep neural network image classifier can be viewed as a
stack comprising a feature extraction part, typically composed of pre-trained convolutional
layers, followed by a set of fully connected (FC) layers that implement a Multi-Layer
Perceptron (MLP) architecture and serve as a classifier. Among all the layers, only the final
layer is trained specifically for network specialisation.

Sometimes in these deep architectures, the last convolutional layer is followed by
a “squeeze” operation that precedes the fully connected part of the architecture. The
MLP layers have decreasing dimensions from thousands of units to the number of classes.
Connecting a layer with dimension H to a layer with dimension D units in a fully connected
architecture generates an H × D weight matrix. As explained in [36], introducing a linear
layer K, with K << D and K << H, results in two matrices H × K and K × D and in a
number of weights K × (H + D). The reduced number of weights result in a faster training
and can beneficial.

In our architecture, we used a linear layer as a filter for the “signals” generated by
the feature extraction lower layers. The training of this linear layer is aimed at separating
the input of different classes and can significantly improve the classification results. We
perform this training using the metric learning technique implemented with the triplet
network learning paradigm; separating the two classes allowed us to remove the MLP
layers and use a simpler classifier.

The network proposed in this work uses a ResNet152 network [37], pre-trained on the
ImageNet dataset [5] as feature extractor (indicated in Figure 2). These features are linearly
projected onto a lower-dimensional space embedding layer (see the Embedding block in
Figure 2a). The number of features generated by the ResNet152 is 2048, and the size of the
embedding layer is 512. The resulting embedding provides a data representation that is so
effective that the MLP layers can be substituted by a simpler k-NN classifier, as shown in
Figure 2a. In the ablation study (see Figure 2b), we will demonstrate that without the linear
embedding, the results are noticeably worse.
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(a) (b)

Figure 2. A representation of the classification network proposed in this work: (a) The architec-
ture with the embedding layer. (b) The architecture without the embedding layer used in the
ablation study.

The feature extraction of the proposed model is not interpretable or explainable, since
ResNet is a very complex model and is already trained via transfer learning.

The training procedure of the linear layer is aimed to transform the feature space,
obtained from the feature extraction layer, in a lower dimension space where images of
the same class are near each other and images of different classes are taken apart. In this
training mechanism, we are trying to confirm underlying information in the training set:
images of the same class should have similar characteristics and they should not share
features with images of another class.

3.3. Metric Learning

Deep metric learning aims to derive effective embeddings from the input data using
one or more neural networks and an optimisation strategy based on a chosen distance.
In this field, the most-used architectures are the siamese networks [38] and the triplet
networks [39]. Both models are constituted by neural networks with shared weights:
siamese networks use two neural networks while the triplet network, which we used in
this work, has three neural networks.

Figure 3 reports a representation of the training phase; in this figure three deep net-
works ResNet152 produce the representations xa, xp, xn of the three inputs: xa corresponds
to the anchor example, xp is the representation of the positive example, an input of the same
class of xa, and xn is the negative example, an input of a different class. The embedding
layer will transform the representations x∗ ∈ 
n to the embeddings r∗ ∈ 
n′

.

Figure 3. A representation of the network; the vertical double arrow indicates the weights sharing.
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Given a distance metric d, during training the shared weights of the embedding
layer are adjusted so that the value d(ra, rn) is greater than a prefixed margin m w.r.t. the
distance d(ra, rp). The distance d and the margin m are parameters of the model. The
most-used distances are defined using the cosine function or euclidean distance. The
representation with three networks and shared weights, like the one in Figure 3, is a
common way to indicate the training procedure; however, it is important to point out
that the implementation uses a single network receiving the three inputs organised into
a sequence, then collecting and storing the values to calculate the global result. The loss
function used for training the model is the so-called triplet margin loss [40], defined as:

ltriplet = max
{

0, d(ra, rp)− d(ra, rn) + m
}

. (3)

During the training phase a mining strategy searches—inside the input mini batch—
the most effective triplets to update the model. There are different mining strategies [40];
here we adopt the so-called semi-hard mining strategy, defined as:

d(ra, rp) < d(ra, rn) < d(ra, rp) + m. (4)

This strategy chooses the negative sample to be farther away from the anchor, with
respect to the positive, but always bounded by the margin m. As a consequence, the
network’s loss is bounded by the margin m.

3.4. Interpretability of the Proposed Model

The interpretability that distinguishes our proposed paradigm belongs to the category
of interpretable methodology based on visual analytics [41].

The deep metric learning network finds a proper embedding, where the mappings of
all the items to classify can be visualised in two or three dimensions using a dimension-
ality reduction algorithm. One possibility that we have adopted in this paper is the use
of Uniform Manifold Approximation and Projection (UMAP) [42], which accomplishes
dimensionality reduction using Riemannian geometry and algebraic topology. Metric
learning and UMAP introduce a first level of interpretability to the model since they enable
the visualisation of the training images that are close to the test ones, and consequently
perform neighbour detection (see Figure 4a for an example).

(a) (b)

Figure 4. Classification MIB: (a) Bi-dimensional representation of the input dataset both training
(upper part of Figure 4a) and test set (bottom part of Figure 4b); (b) Number of neighbours vs. average
accuracy.

The visualisation of the embedding could also be beneficial to study the distribution
of the images related to a specific chosen patient (see Figure 5).
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Figure 5. Position of the embedded images of the test patient 15687B in the embedding space w.r.t.
the training set embedded images. Our system does not correctly classify most images relating to
this patient.

The second level of interpretability is introduced by a classifier that clearly maps the
input to the output, such as a linear classifier, a Support Vector Machine, or a simple k-NN,
like the one we adopted here. Unlike the others, with k-NN, the nearest neighbors can
be used to visually estimate the support for a prediction, providing human-interpretable
explanations of predictions. Furthermore, it is always possible for each classified image to
display the training images that led to the class labeling (see Figure 6). We find this option
very useful as part of a decision support system, where analysts can have interpretable
information about the suggested output.

Figure 6. An example of correct classification of a benign image. The test image is on the (left); its
nearest neighbours with the associated distance are on the (right).

The performances of the proposed model are similar, if not better, to those of other
classification systems of the same kind, confirming that the interpretability can be obtained
without compromising the performances [7].

3.5. Experimental Setup

Experiments have been performed using a workstation equipped with a 12th Gen
Intel® Core™ i9-12900KS and an Nvidia 3090 Ti GPU. The total amount of system memory
is 32 Gbyte of DDR5. The GPU is also supplied with 24 Gbyte of DDR5 memory and adopts
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a CUDA parallel computing platform. The operating system is Ubuntu 22.10. We used the
TensorFlow Python library [43] to carry out the experiments. The training time for the MIB
configuration is about 11 min, while for the MSB configuration about 12 min (3 min for
each magnification). We have trained the network for 20 epochs with a mini-batch size of
32 and using the Adam optimisation algorithm [44] with a learning rate of 1 × 10−5 and
weight decay factor of 1 × 10−4. All the images were resized to 224 × 224.

4. Results

The classification performances obtained with the proposed architecture in both MIB
and MSB tasks are reported using the PLA approach. In order to justify the Embedding
Layer, an ablation study was carried out, which is described in Section 4.2, using the same
classification tasks with the architecture in Figure 2b. Finally, an example of the efficacy of
the projection is reported in Section 4.3.

4.1. Results with the Proposed Architecture: Triplet Net Embedding

The proposed architecture has been used to classify the BH images in the Magnification
Independent (MIB) and Magnification Specific (MSB) fashion. The train/test split used is
the 5-fold split proposed by the authors of the dataset.

The training with the MIB procedure uses all the available images in the training
set regardless of the magnification factor. After the training of the embedding system,
the UMAP procedure was used to visualise the images as points in the embedding space.
Then a set of trials was carried out to optimise the k-nearest neighbourhood value. The
UMAP visualisation and the plot of the accuracy vs. k-values are in Figure 4; the lower
section of Figure 4a shows the embedding of the test images. The upper part of Figure 4a
shows that the two clusters of the embedding points obtained from the training images are
well-separated. The left cluster collects all the malignant training image projections, and
the right cluster collects the benign ones. The same configuration can be observed at the
bottom of the sub-figure that reports the test image embeddings. It can be noticed that both
sets present two well-separated clusters, and no image is mapped outside these specific
areas. Even the misclassified test images are represented as dots in the wrong cluster; there
is only a small detached cluster of images on the upper part of the figure.

The plot in Figure 4b shows that the value of k has very little influence on the accuracy
results: the accuracy change from k = 3 to k = 21 is less than 1/100.

The PLA accuracy values are in Table 3, compared with the results obtained by
Bayramoglu et al. [16] and Sun et al. [17]. The proposed method shows a better performance
while requiring a simpler network.

Table 3. Triplet net embedding: MIB classification results and comparison with the other methods.

Method PLA

Bayramoglu et al. [16] 82.13
Sun et al. [17] 88.40 ± 4.10

Proposed method (k-NN) 88.90 ± 2.41

The confusion matrix is averaged over five folds and is reported in Figure 7. It shows
that the number of malignant images misclassified as benign is less than that of benign
images misclassified as malignant. This point is crucial in the medical domain since a
malignant tumor will receive more attention and probably require more exams than a
benign one, and the error has a significant probability of being corrected.
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Figure 7. MIB Classification, average confusion matrix.

Figure 8 reports the classification results for each patient of the five folds. Using a blue
scale, the ratio between the images labelled as malignant (benign) and the total number of
images for that patient is presented. The second level of interpretability is introduced by
a classifier that clearly maps the input to the output, such as a linear classifier, a Support
Vector Machine, or a simple k-NN, like the one we adopted here. Unlike the others, with
k-NN, the nearest neighbors can be used to visually estimate the support for a prediction,
providing human-interpretable explanations of predictions. Furthermore, it is always
possible for each classified image to display the training images that led to the class labeling
(see Figure 6). We find this option very useful as part of a decision support system, where
analysts can have interpretable information about the suggested output.

The assigned class is represented with a cross. The ground truth is presented according
to the rows. The first nine rows are from the benign class and the remaining are from the
malignant class. In the figure, we can see that 3 patients, 19854C, 9146, and 15687B, are
classified differently in the five folds. These samples show that the correct or incorrect
classification is heavily influenced by the composition of the network’s training set, which
requires further investigation. The images of these patients are distributed in both clus-
ters (for example, see Figure 5 for patient 15687B), and the patient classification changes
according to the fraction of images correctly classified.

Finally, we notice that each fold has a different error rate: Fold 5 has no errors, while
Fold 2 and 3 have one error, Fold 1 has two errors and Fold 4 has 4 errors.

MSB classification is obtained by training four classifiers, one for each magnification
factor. Also, in this case, we obtained two well-separated clusters for each training, and the
k value has little influence (less than 2/100) on the accuracy values, figures are not reported
in this case; we selected k = 3 for classification.
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Figure 8. Classification results for each test fold. The colour inside each cell represents the ratio
between the image labelled as malignant (benign) and the total number of images of the relative
patient. The assigned label is presented as a cross. The ground truth is represented according to
the rows.

The PLA is reported in Table 1, and compared with the other methods cited in Section 2.2.
Note that to evaluate the performance of an image classification system, the widely

used metrics are accuracy and F1-Score. According to us, in histopathological image clas-
sification, the metric that best simulates reality is patient-based accuracy (PLA); indeed,
the pathologist makes the diagnosis by evaluating images of different patients. For com-
pleteness, we have reported in Tables 4 and 5 the values of the other metrics we calculated
for the proposed approach: precision, recall, F1-score and the area under the ROC curve
(AUC).

Table 4. Triplet net embedding: MIB classification metrics.

Accuracy Precision Recall F1-Score AUC

88.71 ± 2.10 88.24 ± 2.78 85.87 ± 2.02 86.84 ± 2.28 85.87 ± 2.02

Table 5. Triplet net embedding: MSB classification metrics.

Metric 40 × 100 × 200 × 400 ×
Accuracy 84.60 ± 3.53 86.34 ± 3.13 88.70 ± 3.22 84.98 ± 3.17
Precision 85.48 ± 4.45 87.16 ± 3.40 88.36 ± 3.20 84.86 ± 2.78

Recall 94.42 ± 2.36 95.24 ± 3.13 94.79 ± 4.42 94.04 ± 4.50
F1-Score 89.15 ± 2.51 90.31 ± 2.25 91.90 ± 2.34 89.23 ± 2.36

AUC 82.36 ± 3.67 83.14 ± 3.70 87.68 ± 4.12 81.67 ± 2.94
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4.2. Ablation Study: ResNet152 Embedding

The ablation study was conducted to motivate the use of the embedding layer. The new
considered model is depicted in Figure 2b. Cancelling the linear layer after the ResNet152
model was used as a feature extractor, embeddings in the metric space were not generated,
and the extracted features were used to train the k-NN classifier. The visual representation
of the images in the 2048-dimensions space is obtained using the UMAP method [42].

Figure 9 reports the visualisation of the embeddings in the MIB case, together with the
plot of accuracy vs. k value. We can notice that the embedded training or test points are not
separated into two clusters, and the k value still has little influence on the accuracy value.
The same results can be observed for the MSB classification (results not shown), but in
order to obtain the best performance, the k value must be varied for each magnification; the
chosen values were 3, 7, 5 and 9 for the magnification values 40×, 100×, 200× and 400×,
respectively. The obtained PLA results are reported in Table 6 for MIB and MSB cases.

(a) (b)

Figure 9. Ablation study with classification MIB: (a) Bi-dimensional representation of the input
dataset; (b) number of neighbours vs. average accuracy.

Table 6. Ablation study: Magnification Independent (MIB) and Magnification Specific (MSB) classifi-
cation with k-NN.

PLA-k-NN

MIB 75%

MSB

40× 79%
100× 78%
200× 86%
400× 80%

4.3. Mapping Other Set Images in the Embedded Space

The purpose of the embedding layer is to map the input information into a space that
makes simple and effective the classification process and, to support this point, we used a
very simple classifier, still obtaining a very good classification accuracy. If we input a new
histopathology image, we expect that the system will correctly classify it as malignant or
benign, using, at its best, the image features obtained from the lower layers.

The embedding layer was trained with breast cancer histopathology images, and the
whole system has knowledge about this kind of images. According to this consideration,
the system should not recognise any other kind of image.

Of course, any image can be mapped in the embedding space and the k-NN will
always provide an output according to the k neighbourhoods. At the same time, we can
check the cluster, learned from the training process, where the image is placed.

If we input a random image into the system, it would be desirable that the system
answer that the features were not appropriate to classify it meaningfully. We expect that a
random image should be in an area of the embedding space far from the embedding of the
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BH images. In order to test this hypothesis, we visualise the position where the system,
trained with BreakHis dataset, maps the images of two different histological image datasets:
the MHIST dataset [45] (Minimalist HISTopathology contains images of colon-rectal polyps)
and the Epistroma dataset [46,47] (that contains histopathology images belonging to two
tissue types: epithelium and stroma). These image sets were selected because they are of
the same kind (histology images) but from a different origin. Figure 10a,b show the results:
the embedding point clouds are far away from the BH image projection.

(a) (b)

Figure 10. UMAP representation of the embeddings of the BreakHis with other histology image
datasets; (a) The embedding of the MHIST dataset obtained using the triplet net trained on the
BreakHis dataset; (b) The embedding of the Epistroma dataset obtained using the triplet net trained
on the BreakHis dataset.

5. Discussion

There is a common idea that interpretability should be paid with a substantial loss
of performance. This claim can be found in [48]; however, C. Rudin argued in [7] that
there is not evidence supporting this statement. In the last section, we show that this is
not necessarily true; it is possible to support interpretability without a significant loss of
performance. In the following, we will discuss the result comparison with the state of the
art and the interpretability of the proposed framework.

5.1. The Performances of the System

There are many works on the classification of BH dataset, those reported in Section 2
are only the one that contains enough information for a comparison using the PLA metrics,
the only metrics that make sense in this kind of studies. According to these premises, the
presented work can be compared with very few works on the MIB classification, while there
are more works for the MSB classification. Our results for MIB are better than the state-of-
the-art results, as reported in Table 3, and we notice that the accuracy values in the MSB task
are somewhat lower than the ones in the state-of-the-art works. In Table 1, we report the
results from seven different works; the comparison shows that only in 40× magnification
our results are less than 5% below the work of Sudharshan et al. [26]; for other magnification
values, the accuracy values are just 2 or 3% below. In the MSB classification, it is necessary
to train one neural network for each magnification value, and separating the training
images into the different magnification sub-classes results in a smaller number of training
images for each neural network. However, in our experiments, this effect is not recovered
using augmentation, and this requires more investigations. All the methods that perform
better than our proposal involve complex learning paradigms such as classifier combination
(for the case of Spanhol et al. [20] or Multiple Instance Learning (Sudharshan et al. [26])
or some kind of specific pre-processing (re-scaling for the case of Song et al. [23]). While
benefits can be observed from the performances, they remain not very interpretable.

The proposed method is based on a clear and simple mechanism, the ablation study
shows that the cluster separation is only due to the presence of the linear layer and the
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metric learning training, and this is clear comparing Figures 4a and 9a. Table 6 also shows
a significant performance drop both in MIB and MSB classification.

5.2. The Interpretability Aspects

The interpretability of the proposed method is based on the set of information that
can be obtained at the end of the embedding layer and from the k-NN classification
module. The metric learning layer rearranges the embedding space while reducing the
number of dimensions. In the new embedding space, the training images are meaningfully
clustered, and the visualisation allows the user to understand the system response. This
visualisation constitutes the first set of information that can help the user to understand the
first processing steps. Test images are clustered in the same areas of the training ones; this
happens for both classification methods MIB and MSB. The visualization of the training
image in the embedding space in Figure 4a shows that metric learning creates a sort of
“areas” where input images should be projected. The visualisation of the embedding space
is also useful during the classification of a new input. Observing the position of the images
of a new patient in the embedding space, such as the ones reported in Figure 5, the user
can check if this input is near the embeddings of the training images set, meaning that the
new input came from the same distribution of the training images.

Finally, the same visualisation can spot when the network is not able to process an
input image. Figure 10 shows what happens if the input is an out-of-distribution image set.
In this case, the images are embedded in points outside the two clusters obtained from the
BH training images. In cases like this, the k-NN classifier will assign a class to the input
based on the nearest images, but the visualisation shows that the features of the inputs are
different from the ones of the training images. This consideration allows an examiner to
say that the system classification output will have no meaning since the images are outside
what the system “knows”.

Focusing on the classification algorithm, notice that k-NN is considered one of the
naturally interpretable classification algorithm. For each classification result is always
possible to visualise the train images that produce the result and, thanks to the application
of metric learning, the number of neighbourhoods is very low, less than the one obtained in
the ablation study.

This organisation of the embedding space allows using a k-NN classifier with a very
low k, so that an user can visualise the neighbourhood of a test image and easily spot the
similarity and the differences with its neighbourhood. An example of classification in MIB
is reported in Figure 6, with the neighbour images. This figure shows the three nearest
neighbourhood images used to label the test image (left image). As pointed out in the
book [49], the interpretation of the classification results is translated to the interpretation of
the neighbourhood images, and a domain expert can give the right meaning to the images
similarity.

6. Conclusions

The high performances obtained with the DNN in the medical domain are confirmed
by many studies and applications, and histopathology image classification is one of these
applications. However, there are two main problems connected with many of these studies:
the first is connected with the train and test set; not all the works consider that the focus
is on the patient, not on the images, and the patient should be completely unknown for
the system undergoing testing. The second problem is related to the interpretability of
the supporting systems; in the medical domain the answer of a supporting system should
always be followed with an explanation of the decisions steps.

In this paper, we have presented a classification model based on a deep neural network
and an interpretable classifier, which take into account the above-mentioned considerations.
In particular, we used a triplet network based on a ResNet152 as a deep network, which
allows us to map the input samples into an embedding space learned to represent images
of different classes as separate clusters. The representation in this embedding space is
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viable for the comparison of a test image with its neighbourhood, providing an explanation
of the classification as compared with images of the same kind. The final classification
is performed with a simple classifier (k-NN) since the input information is represented
through the neural network. Interestingly, only a few layers of the model are trained, while
the majority of the network is pre-trained and does not need to be updated.

The results obtained with this technique are better than those obtained with the ad-hoc
full-trained deep neural networks and allow the user to visualise the representation of the
input image together with the most similar training image. The proposed technique can be
used in many classifier architectures based on representation/classification schema. Future
research will be focused on the analysis of the neighbourhood images in order to find the
details that can be considered characteristic of a specific class.
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Abbreviations

The following abbreviations are used in this manuscript:

BH BreakHis (dataset)
CNN Convolution Neural Network
CVF ConvNet-based Fisher Vectors
DNN Deep Neural Network
FC Fully Connected
ILA Image Level Accuracy
k-NN k Nearest Neighbour
MI Magnification Independent
MIB Magnification Independent Binary (classification)
MLP Multi Layer Perceptron
MS Magnification Specific
MSB Magnification Specific Binary (classification)
PFTAS Parametric-Free Threshold Adjacency Statistics
PLA Patient Level Accuracy
AUC Area under the Roc Curve
UMAP Uniform Manifold Approximation and Projection
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Abstract: Hexagonal grid layouts are advantageous in microarray technology; however, hexagonal
grids appear in many fields, especially given the rise of new nanostructures and metamaterials,
leading to the need for image analysis on such structures. This work proposes a shock-filter-based
approach driven by mathematical morphology for the segmentation of image objects disposed in
a hexagonal grid. The original image is decomposed into a pair of rectangular grids, such that
their superposition generates the initial image. Within each rectangular grid, the shock-filters are
once again used to confine the foreground information for each image object into an area of interest.
The proposed methodology was successfully applied for microarray spot segmentation, whereas
its character of generality is underlined by the segmentation results obtained for two other types of
hexagonal grid layouts. Considering the segmentation accuracy through specific quality measures for
microarray images, such as the mean absolute error and the coefficient of variation, high correlations
of our computed spot intensity features with the annotated reference values were found, indicating
the reliability of the proposed approach. Moreover, taking into account that the shock-filter PDE
formalism is targeting the one-dimensional luminance profile function, the computational complexity
to determine the grid is minimized. The order of growth for the computational complexity of our
approach is at least one order of magnitude lower when compared with state-of-the-art microarray
segmentation approaches, ranging from classical to machine learning ones.

Keywords: hexagonal grids; shock-filter; machine learning; image segmentation; computational
complexity; gene expression; microarray

1. Introduction

In digital-image processing and computer vision, image segmentation represents
the process of dividing an image into multiple segments, representing non-overlapping
pixel areas with homogeneous features. The resulting image segments are meaningful for
defining objects according to human visual perception within the image under analysis. In
biomedical and material science applications, when digital images are used to characterize
either multiple biological samples or material structural patterns, the image segments
(objects) are often disposed using a grid layout. By the grid layout, one can understand a
network of lines that cross each other to form a series of geometrical figures which confine
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all image objects according to their pattern. Hexagonal grid layouts are used when printing
space needs to be efficiently managed. An eloquent example is the microarray technology,
where the hexagonal grid is considered advantageous compared to the rectangular grid,
since it allows more DNA specific probes to be printed onto the same surface [1]. Moreover,
images illustrating the hexagonal grid layout of the material structure are registered in
cases of different applications. In cell-cluster-array fabrication, self-assembled hexagonal
superparamagnetic cone structures induce a local magnetic field gradient which inhibits
the cancer cells’ migration [2]. In material science applications, benefits such as increased
optical performance or material resistance are added by hexagonal grid structures. The
performances of the pixelated CsI(Tl) scintillation screens in X-ray imaging are enhanced
by using a hexagonal array structure for the micro-columns’ shapes [3]. Microlens arrays
consisting of circular nanostepped pyramids disposed in hexagonal arrangements have
shown efficient bidirectional light focusing and maximal numerical apertures [4]. Consid-
ering the above cases, imaging techniques such as grid alignment and registration can be
employed to determine the locations of objects in images. After targeting the resulting
locations, further analysis by means of image segmentation is performed in order to extract
the features of the image objects. Much research effort has been devoted to the development
of image segmentation methods, and a wide range of applications exist in the field of image
analysis and understanding. In medical image analysis for example, segmentation plays an
important role in tasks such as visualization, measurement and reconstruction of shapes
and volumes [5–7]; medical diagnosing [8,9]; and even image guided-surgery [10]. Recent
research has proposed a large variety of techniques for image segmentation, which can
be mainly classified as region-based segmentation, feature-based clustering or machine
learning ML-based segmentation. Clustering-based techniques divide the image pixels
based on their intensities into homogenous clusters while ignoring the spatial informa-
tion, which makes them sensitive to image artifacts [11]. Considering its efficiency among
the clustering-based algorithms, fuzzy C-means (FCM) has been widely used for image
segmentation [12]. Improved variants which make use of the spatial information have
been proposed to overcome the aforementioned limitations [13]. Regarding the machine
learning approaches for image segmentation, both supervised and unsupervised ones are
available. Unsupervised learning has the advantage of automatic segmentation without
any prior knowledge of the object features within the training dataset [14]. Computation-
ally expensive tools such as support vector machines, and probabilistic models such as
Markov-random fields or Gaussian mixtures [15,16], are nevertheless used. The supervised
ML techniques for image segmentation are more accurate and reliable, mainly since the
input data are labeled and well known. Despite their computational complexity, deep
learning algorithms, decision trees and Bayesian networks are broadly used in applied
research [17]. Thus, computer-aided medical diagnosis is carried out on the basis of deep
learning algorithms [18–21]. Bayesian networks [22–24] successfully conduct the detection
of different geometries related to objects of interest in medical images, such as coronary
arteries and retinal vasculature. A decision tree classifier can be used to obtain an adap-
tive threshold for the optic disc segmentation [25]. The advantages of both decision trees
and conditional random fields have also been exploited [26,27]. In order to overcome
the disadvantages of the supervised training, implicit deep supervision is assured by the
hyper-densely connected convolutional neural network (CNN) proposed for natural image
classification tasks [28,29], whereas level-set segmentation leads to semi-supervised CNN
segmentation [30]. Considering various imaging technologies, there are cases when image
objects are disposed of using a specific grid layout within the same image. In these cases,
prior to image segmentation, a grid alignment or image registration procedure is mandatory.
Thus, we focus on the registration and segmentation of hexagonal-grid-layout images.

As referred to the aforementioned image processing tasks (i.e., grid alignment and
segmentation), when taking into account the large variety of state-of-the-art segmentation
approaches, the main challenge is to choose the appropriate image-processing methods for
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feature extractions while considering both accuracy and computational complexity. In this
context, the main findings are presented as follows.

1.1. Main Findings

The present paper proposes a set of image-transformation methods based on shock-
filters applied on hexagonal-grid-layout images, aiming for both grid alignment and
segmentation of the image objects. The PDE formalism of the shock filter, together with
mathematical morphology, is used to evolve image profiles in order to determine the
grid layout, by identifying a pair of sub-images, each containing a rectangular grid. The
superposition of the two sub-images generates the initial image. Within each rectangular-
grid-layout image, another procedure of profile evolution based on the same shock-filter
formalism is used to confine the foreground information for each image object into an area
of interest. For accurate segmentation of non-homogenous or irregular image objects, pixel
intensity refinement classifies pixels to foreground or background, to better fit the true
shape of the object. The proposed image-processing workflow was successfully applied
to hexagonal-grid-layout microarray images, the hexagonal array structure of pixelated
scintilation screens and hexagonal nanodisk–nanohole structure arrays. For microarray
images classified as having a hexagonal grid layout, in spite of their advantages and
intensive use [31,32], relatively few image-processing methods have been proposed. In [1],
a spot-indexing algorithm successfully located microarray spots for hexagonal grids with
different spacing and rotation. Giannakeas et al. also proposed a growing concentric
hexagon algorithm [33], which detects spots in microarray images with a hexagonal grid
layout. As compared with existing approaches, the main benefits of the proposed work are
underlined as follows:

• The image-processing workflow represents a general solution for both rectangular
and hexagonal grid alignment, which has been successfully applied to both medical
images and images of material structures.

• The shock-filter-based grid alignment also delivers segmentation information, and
guided by an autocorrelation procedure, it estimates the locations of missing objects
within the hexagonal grid layout.

• The computational complexity required to determine the grid layout is minimized, taking
into account that the PDEs are targeting the one-dimensional luminance function profiles,

• The segmentation accuracy was evaluated by computing the means and standard
deviations of distances between the annotated and detected centers and showed
improved results compared with state-of-the-art research.

In order to underline the main findings, the paper is organized as follows. Firstly,
in the introductory section, the shock filters in the context of image segmentation and
grid alignment are shortly summarized. Section 2 describes the shock-filter-segmentation
approach applied for hexagonal-grid-layout microarray images. The results are shown
in Section 3, in terms of segmentation accuracy, and the same section underlines the
results obtained using the proposed methodology for two other types of hexagonal-layout
images. In addition, the computational complexity of our approach is evaluated in the
context of existing classical and machine learning solutions for grid alignment. Finally, the
Conclusions section summarizes the main results.

1.2. Shock-Filter Fundamentals

An important task in image processing is to separate image areas containing back-
ground from foreground information. A shock-filter-based approach involves a process of
selectively applying erosion or dilation in a localized manner in order to create a “shock”
between two image areas, one belonging to a maximum and the other to a minimum. By
iterating this process according to time increments, the resultant image reveals disconti-
nuities only at the edges of the initial image. Moreover, the image areas delineated by
the underlined edges become uniform in terms of pixel intensity values, delivering image
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segmentation information. Commonly, image enhancement processes, such as the one
described before, are modeled through a partial differential equation (PDE).

Taking account of the importance of total variations in TV principles which appear
for shock calculations in fluid dynamics, Osher and Rudin [34] have applied these ideas
to image processing. This was revealed to be a useful method to restore discontinuities in
images, such as edges. Their method relies on total variation techniques subject to a certain
nonlinear and time-dependent partial differential equation:

∂tu = −|∇u|F(L(u)), (1)

where L(u) is a second-order, nonlinear elliptic operator whose zero-crossings correspond
to edges. The filtering process (the edge enhancement process) is represented by the
evolution of the initial image data u0(x) into a steady-state solution u∞(x) as t → ∞,
through u(x, t), t > 0. The total variation of the solution,

TV(u) :=
∫

D
|∇u|dx, (2)

at any given state, is preserved and satisfies a maximum principle.
The steady state solution is achieved relatively fast, making it a good candidate for

microarray image segmentation. As mentioned in [34], it is an O(kN) method, where N is
the number of points and k the number of time iterations. It was pointed out by [35] that
the one-dimensional Equation of (1) with F(u) := sgn(u), i.e.,

ut = −sign(uxx)|ux|, (3)

is based on the image-enhancement algorithm of Kramer and Bruckner [36], which was
proved to converge after a finite number of iterations.

From a morphological perspective, such a filter aims to produce a flow field which is
directed from the interior of a region towards its edges, where it develops shock, gener-
ating a piecewise constant solution with discontinuities only at the edges of the original
image. However, TV preserving methods suffer from fluctuations due to noise, which also
create shocks. Therefore, Alvarez and Mazorra [37] considered the operator L(u) = uxx
in (1) to be the Gaussian-smoothed version L(G ∗ u) = G ∗ uxx, which supplemented the
evolution with a noise-eliminating mean-curvature process, for which they proved that the
discrete scheme is well-posed and satisfies a maximum—minimum principle. Smoothed
morphological operators (dilations, erosions) for shock filters were also employed in [38] to
enhance contours through smoothed ruptures, while preserving homogeneous regions.

2. Shock-Filter-Based Approach for Microarray Image Segmentation

Genes represent DNA sequences which determine particular characteristics in living
organism, as follows: the genetic information is transmitted from nucleus to cytoplasm
by an intermediate molecule called mRNA, which is further on translated into functional
gene products known as proteins. Genes’ expression levels are reflected in the amounts
of respective mRNA present in each cell, providing information on the cell’s biochemical
pathways and its functions. By measuring mRNA levels for fully sequenced genomes
printed on a solid surface, microarray technology is known to be a valuable tool for
determining genes’ functionality and expression levels in different conditions [39].

The workflow of a microarray experiment aiming at gene expression estimation starts
with labeling mRNA samples with different fluorescent markers and hybridized onto the
same solid surface. Depending on researchers’ needs, gene expression analysis is performed
by a one-color or a two-color experiment [40]. After hybridization, laser scanning is
performed using one or two light sources with different wavelengths, one for each marker.
The fluorescence induced by each light source is captured, and a composite image is
produced. The microarray image thus obtained represents a collection of microarray spots,
each spot corresponding to a specific gene.
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Current technologies allow accurate fluorescence quantification [41], considering dif-
ferent numbers of spots at different densities printed onto a microarray slide, offering a
broad view that represents all known genes and their transcripts in the human genome.
Two spot layouts can be distinguished: the rectangular grid layout and the hexagonal grid
layout, corresponding to the single-density and double-density microarrays, respectively.
Commonly, microarray manufacturers use single-density microarrays, where spots are
disposed in a rectangular grid. Nevertheless, taking into account that no matter the grid
format, sensitivity and performance are preserved, the hexagonal grid is considered ad-
vantageous compared to the rectangular grid, since it allows more probes to be printed
onto the same surface. Later-stage image-processing techniques, including object regis-
tration and segmentation, are used to estimate gene expression. Logical coordinates are
determined for each spot of the microarray image, and the segmentation classifies pixels
either as foreground, representing the DNA spots, or as background. A great deal of
research has been conducted for processing microarray images having a rectangular grid
layout. Bariamis et al. [42] used a SVM approach for automatic grid alignment. That,
and an approach consisting of optimal multilevel thresholding, followed by a refinement
procedure and hill climbing [43,44], lead to accurate grid detection. For spot segmenta-
tion, adaptive pixel clustering [45,46], snake fisher models [47,48], 3D spot modeling [49],
bio-inspired algorithms [50] and Markov random field modeling [51] were proposed by
state-of-the-art research. Nevertheless, considering the reduced publications tackling the
hexagonal-grid-layout images [1,33,52], as underlined in the main findings sub-section, we
propose a general approach for hexagonal- and rectangular-grid-layout microarray images.

2.1. Materials and Methods

The microarray scanning process delivers 16x bit gray-scale images, in TIFF format,
in which spot fluorescence levels are captured as intensities of the image pixels which fall
within the microarray spot. To identify the position, intensity and background intensity
values of each microarray spot, preprocessing techniques, image registration and image
segmentation approaches are applied. The preprocessing methods aim at image enhance-
ment based on logarithmic and top-hat image transforms to further improve the accuracy
of spot detection. Further on, using the shock-filtered image profiles, each spot line is
detected, and making use of a refinement procedure based on morphological filtering, the
original image is decomposed into two sub-images, each of them containing a rectangular
grid of spots. Next, the segmentation classifies pixels as belonging to the microarray spot
or to the image background using the same PDE formalism specific to the shock filters, and
the segmentation accuracy metrics are computed. The entire workflow can be depicted in
Figure 1. The subsequent sub-sections detail the proposed image-processing techniques for
automatic hexagonal-grid-layout microarray image analysis.

Figure 1. Image-processing workflow for hexagonal-grid-layout image registration and segmentation.
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2.2. Preprocessing

Weakly expressed spots and image rotation are common characteristics of the mi-
croarray images delivered by the scanning process. Thus, to enhance weekly expressed
spots, a logarithm point-wise transform was applied on the image, followed by an intensity
adjustment procedure so that the intensity histogram would fit the full dynamic range of
the image (the dynamic range was from 1 to 216). Moreover, a top hat transform was used
to reduce the background influence on the microarray spots [53]. In case of misaligned
input image, a rotation detection and correction algorithm (the Radon transform) was
employed [54]. Figure 2 shows the results of the aforementioned preprocessing techniques
for the US218398 microarray image.

Figure 2. Image preprocessing techniques applied to the AT218398 microarray image: (a) original
image, (b) logarithmically transformed and normalized image, (c) top-hat transformed image.

2.3. Grid-Line Detection for Image Registration

Let IP = pi,j be the preprocessed, M × N-pixel microarray image, with pi,j being the
16-bit intensity of the pixel found on row i and column j within the microarray image. The
vertical image profile was computed as described by the equation

V(i) =
1
N

N−1

∑
j=0

pi,j, i = 0, . . . , M − 1, (4)

whereas the horizontal profile is described by

H(j) =
1
M

M−1

∑
i=0

pi,j, j = 0, . . . , N − 1. (5)

The vertical profile is evolved further on using the shock-filter partial differential Equa-
tion (3) given by

ut = −sign(uxx)|ux|, (6)

where ux and uxx are the first- and the second-order derivatives of the image profile. The
initial value of u at time t = 0 is the image’s luminance function profile V(i).

Let the shock-filtered profile of the preprocessed microarray image vertical profile
be denoted by SFP = V(i). The inflexions points are marked within the SFP, and their
locations respect a specific pattern which reveals the borderlines for the separation of lines
of spots. Figure 3 shows how the spots’ line separation is performed. The total number of
lines of spots (see the line presented in Figure 3d), within the overall microarray image is
considered to be n. The positions of all inflexion points detected along the profiles are stored
in an uni-dimensional vector pos, and the resultant vector size is 2n. To define each line of
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spots, the positions of four inflexions points are considered. Thus, as shown in Figure 3a,
the uneven lines of spots are defined as the positions 4u − 1, 4u, 4(u + 1)− 1 and 4(u + 1)
within the pos vector. u ranges from 1 to n/2 − 1. In a similar manner, the positions 4u − 3,
4u− 2, 4u+ 1 and 4u+ 2 define the even lines of spots. The average position between 4u− 1
and 4u and the average position between 4(u + 1)− 1 and 4(u + 1) mark the positions of
the horizontal separation’s lines for the uneven line of spots denoted by u. As presented in
Figure 3b, the continuous lines over the 900-rotated section of the original image are the
separation lines for spot line u. Based on the aforementioned separation lines, all even and
uneven lines of spots were detected. An example of such a line is presented in Figure 3c. It
can be observed that the detected uneven lines of spots also include half of the spots within
the neighboring even lines of spots. A similar situation describes the even lines of spots.
In order to decompose the microarray image in two sub-images, one including the even
lines of spots and the other one with the uneven line of spots, mathematical morphology
is applied.

Figure 3. Hexagonal grid segmentation process: (a) horizontal profile of (b) the preprocessed microar-
ray image, (c) selected lines based on separation lines, (d) morphological exclusion of neighboring
spots, (e) final rectangular even spots Iev and (f) segmentation of the rectangular image.
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As denoted by Figure 3e, each microarray spot is defined by an elliptic shape charac-
terized by the horizontal radius a and the vertical radius b, confined in a rectangular area.
In the subsequent step, the average horizontal and vertical radii a and b considering all
spots are estimated based on the autocorrelation applied on vertical and horizontal profiles
of the image, described by Equations (4) and (5), respectively. A structuring element having
an elliptical shape with a and b radii was defined. The upper and lower parts of each line of
spots were padded with b/2 lines of pixels; each pixel has the lowest intensity value. The
resulting image was morphologically opened with respect to the defined structural element.
The outcome was similar to the lines of spots from Figure 3d, where the half spots from the
neighboring lines were excluded. Further on, the original image was reconstructed once
using the even lines of spots and once using the even lines of spots. Each resulted sub-image
is characterized by a rectangular grid layout of its microarray spots (see Figure 3e). The
sub-images containing the even lines of spots and uneven lines of spots are denoted by Iev
and Iuev, respectively.

By applying the shock filter to the original vertical profile, the inflexion points at the
positions 4u and 4(u + 1)−1 within the vertical profile (see Figure 3a,d) can determine
the locations on the vertical axes for all the spots from the column of spots denoted by
u. Within the sub-image containing the column u, the horizontal profile h, as referred to
in Figure 3d, is evolved using shock filters to determine the positions of spots on the x
axis. The autocorrelation-based approach applied on the h image profile, described in [55],
is used to estimate the positions of missing spots. Consequently, for each microarray
spot position within the initial hexagonal grid, an area of interest, denoted by S, which
confines the microarray spots, is determined according to Figure 3e. On each area S,
image segmentation is applied next to determine the pixels which belong to the microarray
spots and which belong to the spot’s local background. The aforementioned procedure is
consistent with the “cookie cutter” approach used by the software platform Agilent Feature
Extraction (FE) and detailed in [56].

2.4. Spot Segmentation

The shock filters deliver segmentation information by identifying simple geometric
objects of rectangles for the entire set of microarray spots. For accurate segmentation of
spots with spatial non-homogeneous intensity distribution and irregular shapes, a simple
threshold procedure is introduced for the S area. As demonstrated in [55], pixels intensity
refinement yields a rearrangement of pixels to the foreground and background that better
fits the true shape of the spots.

3. Results and Discussions

Our study included a set of four microarray images used for one-color analysis of
gene expression data performed using Agilent Technologies (G2505C scanner) on homo
sapiens samples. The samples were printed on microarray glass slides formatted with four
high-definition 44K, arrays and the images within the dataset have a hexagonal grid layout.

3.1. Microarray Image Registration and Segmentation Accuracy

We evaluate the results obtained using the proposed hexagonal grid alignment pro-
cedure compared with state-of-the-art results and with the results delivered by Agilent
Feature Extraction Software (FE). Spot centers were annotated by FE for each microarray
image from our dataset. The value di representing the distance between an annotated
spot’s center and the one determined using our proposed approach was computed for
each spot (i) included in the image under analysis. The mass center’s locations (mi) was
determined for each spot Ii, and compared to the mass center’s location (mFE

i ) determined
by FE software. The mean Euclidean distance mE between the two mass centers for the
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whole population of spots was used as a metric for the accuracy evaluation. The mean
Euclidean distance mE was measured in pixels, and it is denoted by the equation

mE =
1

Ns

Ns

∑
i=1

|mi − mFE
i |, (7)

Table 1 shows the average distance d = 1.52 for the whole population of spots included
in our dataset and underlines that the proposed approach delivered the lowest standard
deviation for the distance d distribution over the whole population of spots compared with
state-of-the-art hexagonal grid alignment approaches. The methodology’s accuracy given
by the percentage of spots correctly positioned by the grid alignment procedure on the
selected images was 100%.

Our proposed automatic image processing approach for hexagonal-grid-layout mi-
croarray images is evaluated in terms of accuracy and reproducibility, with regard to the
whole population of spots within the microarray dataset. The mean spot intensity value Ii
was computed by subtracting the mean intensity value of the background pixels and the
mean intensity value of pixels which fall within the microarray spots. The range of i is from
1 to NS, where NS is the total number of spots within the microarray image. The results are
compared with the ones delivered by the Agilent Feature Extraction software (FE) for the
same set of images. Consequently, the accuracy estimation of our proposed segmentation
method was performed independently on each microarray image from our dataset.

The regression ratio (R) represents an independent measure defined by the slope of
the least-squares best-fit regression line of the fluorescence intensity values for each pixel
against each other for a given microarray spot. The regression ratio indicates individual
spot quality. Considering the regression pixels used to calculate R values, the coefficient
of determination R2 for the least-squares-regression fit of a microarray spot is defined as
the square of the correlation coefficient and ranges in value between 0 and 1 [57]. For
validating our approach, we correlated the coefficients of determination computed by our
approach with the ones determined by FE for the entire population of microarray spots
within each microarray image. Let R2 be the coefficient of determination computed using
the proposed approach and R2

FE be the coefficient of determination annotated by FE. The
correlation coefficient, together with the mean difference between our results and the FE
results, is described by:

r = Pearson(R2, R2
FE), (8)

agvdi f f =
1

Ns

Ns

∑
i=1

|Ri − R2
FE|, (9)

The Pearson coefficient exceeded values of 0.98, and hence, indicated a high correla-
tion of our data (intensities) with the reference values. Moreover, the reproducibility of
the segmentation technique was quantified by means of mean absolute error MAE and
coefficient of variation CV, as presented in Equations (10) and (11), according to [58,59],
respectively. The lower the MAE and CV values are, the better the performance of the
proposed method. r = 4 replicates of the microarray experiment were used for evaluation.
MAE indicates the spot sameness of the spot’s intensities, Equation (10), where Ij is the
mean spot intensity over the j experimental replicates and I is the overall mean, computed
from the means of the spots within all the r replicates.

MAEspot =
1
r

r

∑
j=1

|Ij − I|, (10)

Spots intensity variations are expressed by the CV parameter denoted by Equation (11),
based on the standard deviation σ of spot intensity with subtracted background and the
mean spot intensity ν.

CVspot =
σ

ν
. (11)
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Table 1. Evaluation of the image registration and segmentation accuracy.

Exp. ID r(Ii, IFE
i ) avgdi f f avg. MAE avg. MAEFE CV CV FE

FE18398 0.988 0.075 0.420 0.412
FE18399 0.993 0.029 0.395 0.406
FE18400 0.982 0.093 536 524 0.414 0.385
FE18401 0.994 0.046 0.392 0.397

The small CV values correspond to small variation among the pixel intensity values for
given microarray spots, showing the reliability of the proposed grid alignment procedure
together with the spot segmentation approach. As referred to for the MAE values given in
Table 1, smaller values are obtained compared with the full dynamic range of the microarray
spot (i.e., spot intensity values range is 1 to 216).

To evaluate the performance of the proposed methodology for spot detection com-
pared with the one already available, the means and the standard deviations of the distances
between the centers of the Agilent annotations and the detected spots centers were com-
puted for the entire datasets included in Table 1 and denoted by FEdata. Moreover, the
accuracy of the detection denoted by the ratio of correctly identified microarray spots
and the total number of spots was also computed. The results are included in Table 2,
together with the results delivered by all approaches referenced in [52], employed for the
detection of microarray spots disposed in both rectangular and hexagonal grids. A mean of
1.52 pixels with a standard deviation of less than 1 pixel and a spot detection accuracy of
100% underline the superior performance of our approach.

Table 2. Results of the proposed grid alignment methodology: means and standard deviations of
distances between annotated and detected centers, and accuracy.

Reference/ Method Description Image, Grid Type Image Size (M, N)/ Spot Metric Value
Dataset Number of Spots Diam.

SMD Gridding based on support vector Real, Rectangular grid 1980 × 1917 10 Mean 2.52
[42,60] machines and genetic algorithms 9196 Std 2.59

Acc 96.4
Nycter K-nearest neighbor Synthetic, 3188 × 9552 14 Mean 1.77
[61] Rectangular grid 576,756 Std 1.16

Acc 98.9
CNV370 Voronoi diagrams Real, Rectangular grid 2800 × 2800 6 Mean 1.88
[52] 9216 Std 0.82

Acc 99.8
Nycter Gridding based on support vector Real, Rectangular grid 2800 × 2800 14 Mean 1.91

machines and genetic algorithms 9216 Std 1.03
Acc 99.3

SMD Voronoi diagrams Real, Synthetic with various sizes 14 Mean 1.94
Nycter rectangular and Std 2.32
[52] hexagonal grids Acc 97.5
FEdata Shock filter driven by mathematical Real, Hexagonal 1650 × 4320 14 Mean 1.52
(present) morphology 9196 Std 0.68

Acc 100
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3.2. Shock Filters as a General Approach for Hexagonal-Grid-Layout Registration

Hexagonal grid layouts are becoming increasingly popular as the fields of nano- and
meta-materials develop. In cell-cluster-array fabrication, self-assembled hexagonal super-
paramagnetic cone structures induce a local magnetic field gradient which inhibits the
cancer cells’ migration [2]. For materials science applications, benefits such as increased op-
tical performance and material resistance are added by hexagonal grid structures. Microlens
arrays consisting of circular nanostepped pyramids disposed in hexagonal arrangements
have showed efficient bidirectional light focusing and a maximal numerical aperture [4].
Considering the above cases, imaging techniques such as grid alignment and registration
can be employed to determine the locations of image objects and to analyze and validate
the respective structures of the materials in question.

Thus, in pixelated CsI(Tl) scintillation screens for X-ray imaging, the resolution for
the pixelated screen with the hexagonal array structure is approximately 8.5% higher
than for the screen with the square array structure [3]. Moreover, ultrathin hexagonal
nanodisk–nanohole hybrid structure arrays have been employed for developing a novel
plasmonic metasurface for subtractive color printing [62]. For the hexagonal-grid-layout
image segmentation approaches, a crucial challenge is to develop a robust method which
targets various types of hexagonal layout. In order to underline the generality of our
proposed approach, both the hexagonal array structure of pixelated CsI(Tl) scintillation
screens and the ultrathin hexagonal nanodisk-nanohole hybrid structure were processed
using the proposed workflow. The obtained results are presented in Figure 4.

Regarding the main limitations of the proposed approach, the small size of the datasets
considered for evaluation is mentioned. Nevertheless, the similarities between the seg-
mentation accuracy metrics delivered by our approach and the ones delivered by the
commercial Agilent Feature Extraction Software for over 100,000 microarray spots (Table 1)
show the reproducibility of the results. The generality of the approach has also been proven
by the results presented in Figure 4 for two other types of hexagonal grid layout. Since the
propose approach was designed for microarray images, extensive testing and validation
procedures are needed for segmentation procedures applied for other types of hexagonal-
grid-layout images (e.g., ultrathin hexagonal nanodisk-nanohole hybrid structure arrays,
pixelated CsI(Tl) scintillation screens), which are outside the the scope of current paper.
Another drawback of the proposed method is that images with skewed, rotated or irregular
hexagonal layouts require special attention. Rotation correction using the Radon transform
is included within the proposed workflow, but irregular and skewed layouts are still not
addressed. De-skewing algorithms are available [63,64], whereas for the irregular layouts,
correction algorithms are to be designed based on the specifics of the irregularities.

Figure 4. (a) Preprocessed images registered from hexagonal-array structure of pixelated CsI(Tl) scin-
tillation screens (top) and hexagonal nanodisk–nanohole hybrid structure arrays (bottom). (b) Dual
image decomposition based on shock filters driven by mathematical morphology; (c) segmentation.
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3.3. Computational Complexity Analysis for the Hexagonal-Grid-Layout Image Segmentation

A large variety of image segmentation approaches are available, from complex ones
such as deep learning approaches to reduced complexity ones which perform on image
profiles, for example. Moreover, as detailed in [65,66], an interest in reducing the complexity
of machine learning algorithms is shown. Thus, the user has to carefully evaluate the image
analysis task and choose the appropriate processing approach. For hexagonal-grid-layout
image segmentation, the computational complexity is estimated for the state-of-the-art
approaches and compared with the proposed approach, in order to offer an overview of
available methods from the computational complexity perspective. The comparison is
detailed as follows.

Firstly, we estimated the computational complexity for our proposed approach for
hexagonal-grid-layout microarray image registration. Considering a given M× N-pixel image,
the obtained results are compared with both the classical state-of-the-art approaches [1,33,52]
and the machine learning approaches [67,68] for microarray spot segmentation. The results
are summarized in Table 3. In our case, the computational cost for the image registration
procedure is detailed as follows:

(i) The morphological opening procedure and the autocorrelation spot size estimation
cost are given by the upper bound function f (M, N) = (2Se MN + 4MN)s, with s
representing one computational step, and Se representing the size of the structural
element used for morphological filtering.

(ii) The computational complexity of the shock-filter-based procedure for grid alignment
is based on the number of microarray spots found on each line and in each column of
spots, denoted by α and β, respectively. Let d be the average of the microarray spot
diameter and 2d be the average width for a line or a column of spots. We computed for
each spot line and spot column, the horizontal and vertical image profiles, respectively,
with the total complexity of 2αdM + 2βdN = 4MN. Shock filters were applied to
each of the determined profiles having a complexity of p(αM + βN), where pαM
represents p iterations performed on the number of α profiles (i.e., one profile for
each line of spots), and each profile was of size M. This led to the estimation of
the computational cost given by f (M, N) = 6MNs + pd(αM + βN)s, with p > d.
Consequently, the order of growth for the total computational cost was approximated
to O(2Se MN + p(αM + βN)), and it represents the total computational complexity
of the proposed method.

In [1,33] the Voronoi diagrams are used for the grid alignment in for hexagonal-
grid-layout microarray images. According to the analysis performed in [69], the
computational complexity is given by the order of growth of the computational cost
O( f (S)) = O(S2log(S)), where S represents the total number of spots (i.e., for our im-
ages S = 44,000). The main disadvantage is that a unique region is obtained if weekly
expressed spots are grouped together in the same area. This is overcome by the ap-
proach proposed in [52], where a preliminary step is added to the Voronoi diagram
algorithm. This step detects all the highly expressed spots, which represent starting
points for growing similar hexagonal areas for weakly expressed spots. In terms of the
computational cost, the following term dMN is added to the cost function, leading to
the total computational cost of f (M, N, S) = S2log(S) + dMN.

Considering the machine learning approaches, the computational cost is given by both
the training and prediction steps. Thus, according to Table 3, the order of growth for the
machine learning-based grid alignment procedure has two terms, corresponding to the
training and the prediction. For support vector machines, the total computational cost for
grid alignment is given by f (n, M, N) = n(MN)2 + nNM, where n is the number of grid
lines [70].
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Table 3. Computational complexity analysis for microarray grid alignment.

Reference Method Cost Arguments Order of Growth

[1,33] Voronoi diagrams S O(S2 log S)

[52] Growing concentric
hexagons S, (M, N) O(S2 log S + dMN)

[43,71] Support vector machines (M, N) O(n(MN)2 + nMN)
[72] Evolutionary algorithms S, (M, N) O(S2 + dMN)

[67,68] Deep neural Networks - -

present Shock filters driven by
morphology Se, (M, N)

O(2Se MN + p(αM +
βN))

Notes: S—represents total number of spots within the image under analysis (in round number 44,000); the pair
(M, N) = (1650, 4320) corresponds to the image size in pixels; Se = 144 represents the size of the structuring
element; the parameters denoted by lowercase letters are at least one order of magnitude smaller then the lowest
one, Se.

For the evolutionary algorithms, the gridding approach for microarrays [72] differs
from the classical ones, since it does not involve any 1D projection of the image. The
approach includes a measure of fitness for possible grids to achieve a robust grid align-
ment against high levels of image noise and a high percentage of weakly expressed spots.
Considering the fitness function, the evolutionary algorithm locates the regular grid that
best fits a set of spot center coordinates. According to [73], as referred to the algorithm’s
performance in terms of time complexity, the order of growth can be reduced to O(m2),
with m being the total number of graph edges. By approximating m with S (m > S), the
total number of spots, and considering the preliminary computational steps which consist
of image dilation and an approximate spot spacing calculation [72], the order of growth for
the computational complexity of O(S2 + dMN) is obtained.

Deep neural networks applied for microarray image analysis are discussed next in
terms of computational complexity. To our knowledge, state-of-the-art research does not
include deep neural networks applied for microarray grid alignment. Nevertheless, deep
learning is used for bio-medical image segmentation [66], and, more precisely, it is also
applied for microarray spot classification [68]. Since such approaches do not serve as grid
alignment tools, the computational complexity levels of the deep learning approaches used
for microarray spot segmentation were computed but not added to the Table 3 summary
of grid alignment approaches [67,68]. Calling s the number of training samples, f the
number of features and nli the number of neurons in layer i, we have the approximation
for the computational complexity given by O(s3 + f nl1 + nl1 nl2 + . . .), considering both
the training procedure and the prediction. Taking into account the increased complexity,
there is a great interest in reducing deep learning complexity, as shown in [66]. Herein, it is
demonstrated that the computational complexity of the convolutional neural networks can
be reduced by a factor of eight while achieving accurate bio-medical image segmentation.
Even so, the computational complexity of our approach, which delivers segmentation
information, as the results underline, is at least one order of magnitude lower than that of
the deep learning approaches.

Let us consider the size of the image under analysis given by the (M, N) pair, with
M = 1650 and N = 4320. As referred to in Table 3, we underline the cost arguments S,
Se and n having the values 44,000, 144 and 120, respectively. Consequently, as denoted in
Table 3, reduced computational complexity is achieved by the proposed grid-alignment
approach, despite the iterative nature, considering that shock filters are applied on 1D
image profiles. Thus, if the training procedure is excluded, the computational complexity
of the proposed approach is similar to that of the support vector machine [43,71], whereas
compared with the other approach, the computational complexity is at least one order of
magnitude lower. It is to be noticed that the grid alignment is accurately performed for
weekly expressed spots, due to the autocorrelation refinement procedure, and the accuracy
is comparable with the machine learning approaches for grid alignment.
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4. Conclusions

In this paper, we presented a novel segmentation approach for estimation of gene
expression levels based on shock filters, making it applicable to both hexagonal and rectan-
gular grid layouts. For hexagonal grids, the original image is divided into two rectangular
grid images, such that their overlap constitutes the initial image. The proposed method
was validated using specific quality measures such as the coefficient of variation and mean
absolute error, on a dataset which includes hexagonal-grid-layout microarray images. The
spot segmentation results obtained were compared with the ones delivered by Agilent Fea-
ture Extraction platform. Correlation coefficients between spot features (e.g., foreground
intensity) and the mean distance between spot location showed very good agreement.
Moreover, the computational cost of the described method was analyzed and compared
with state-of-the-art microarray spot segmentation methods, ranging from classical to deep
learning ones. Significantly lower computational complexity was achieved compared with
the discussed methods. The segmentation accuracy, however, was comparable with those
of machine learning approaches.
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Abstract: Hepatocellular Carcinoma (HCC) is the most frequent malignant liver tumor and the third
cause of cancer-related deaths worldwide. For many years, the golden standard for HCC diagnosis
has been the needle biopsy, which is invasive and carries risks. Computerized methods are due to
achieve a noninvasive, accurate HCC detection process based on medical images. We developed
image analysis and recognition methods to perform automatic and computer-aided diagnosis of HCC.
Conventional approaches that combined advanced texture analysis, mainly based on Generalized
Co-occurrence Matrices (GCM) with traditional classifiers, as well as deep learning approaches
based on Convolutional Neural Networks (CNN) and Stacked Denoising Autoencoders (SAE), were
involved in our research. The best accuracy of 91% was achieved for B-mode ultrasound images
through CNN by our research group. In this work, we combined the classical approaches with CNN
techniques, within B-mode ultrasound images. The combination was performed at the classifier level.
The CNN features obtained at the output of various convolution layers were combined with powerful
textural features, then supervised classifiers were employed. The experiments were conducted on two
datasets, acquired with different ultrasound machines. The best performance, above 98%, overpassed
our previous results, as well as representative state-of-the-art results.

Keywords: convolutional neural networks (CNN); conventional machine learning (CML);
advanced texture analysis methods; combination techniques; classification performance;
hepatocellular carcinoma (HCC); ultrasound images

1. Introduction

Cancer is a severe affection which seriously threatens human health and sometimes
leads to death. HCC is one of the biggest health problems in gastroenterology. It repre-
sents the most frequent primary cancer of the liver, the fourth most frequent cancer in
men and the seventh most frequent cancer in women. It is also the third most frequent
cancer-related cause of death, after lung cancer and colorectal cancer [1]. In the majority
of cases, HCC evolves from cirrhosis, after a liver parenchyma restructuring phase at the
end of which dysplastic nodules result, which can transform into HCC [2]. The presence of
cirrhosis makes both the diagnosis and the treatment harder to perform: the presence of an
underlying nodular pattern in cirrhosis makes the detection of the HCC nodular forms a
daunting task. For many years, the golden standard for HCC diagnosis has been the needle
biopsy, which is invasive and also raises risks, as it could generate infections and can lead
to the spread of the tumor through the human body, respectively. However, the only viable
way of detecting early HCC considered nowadays is medical imaging, because the clinical
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and biological markers lack sensitivity in this case. One way of diagnosing HCC is by
conducting vascular contrast-enhanced imaging studies, which rely on specific patterns
of contrast enhancement in malignant tumors due to the effects of oncogenesis on local
vascularity. The performance of these methods has gone so far that, in most cases, percuta-
neous biopsy is not even recommended for the definitive diagnosis [3]. However, of the
three imaging methods, namely computed tomography (CT), magnetic resonance imaging
(MRI) and ultrasonography (US), only the latter can be used as a screening option among
cirrhotic patients, due to lack of availability for large populations (for both CT and MRI)
and high radiation burden for CT, respectively. The B-mode (grayscale) ultrasound images
are two-dimensional images that render the tissues and structures of interest as points of
variable brightness. The ultrasound waves, generated by the transducer, are reflected by
these tissues and structures, so the pixel values are related to the intensity of this reflection.
These values contain important information concerning the nature of the corresponding tis-
sues and structures. The resulting complex textures inside the tumors, different from those
in the cirrhotic liver, might hold the answer for a better detection rate through computer
analysis. Thus, noninvasive, computerized methods are due for detecting HCC as early
and accurately as possible, revealing subtle aspects upon the tissue structure.

In ultrasound images, early HCC appears as a small, usually hypoechogenic nodule,
without a visible capsule, having 2–3 cm in diameter. In more advanced stages, HCC
increases in size, develops a hyperechogenic capsule, invades liver vessels and may present
various visual US aspects, usually becoming overall hyperechogenic and heterogeneous
due to the interleave of multiple tissue types, such as normal liver, fatty cells, active
growth tissue or necrosis. Thus, in some situations, the increased echogenicity, hetero-
geneity and delimiting capsule of HCC are not that obvious. As both HCC and cirrhotic
parenchyma represent forms of tissue restructuring, in many situations they can hardly be
differentiated by the human eye [2]. An eloquent example is provided in Figure 1.

Figure 1. The visual aspect of HCC in ultrasound images: the HCC contour is marked with green.

In the current approach, we developed and assessed appropriate methods for com-
bining conventional and deep learning techniques, the final purpose being to improve
automatic HCC recognition based on medical images, with respect to the already existing
results. These combinations were performed at classifier level. The values of the textural
features were fused in various manners with those of the features obtained at the outputs
of different layers of representative CNN architectures, then provided to a single super-
vised classifier. Appropriate dimensionality reduction methods, such as feature selection
techniques and Kernel Principal Component Analysis (KPCA), were applied in this context,
with the results being carefully analyzed. The relevance of the considered features and
the correlations between the textural and deep learning features, as well as the correspond-
ing medical significance, were discussed. The experiments were performed on two datasets,
acquired with two different ultrasound machines. These datasets contained regions of
interest corresponding to the HCC tumor and the cirrhotic parenchyma on which HCC
had evolved, respectively.
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In the context of our previous research, we developed and experimented with both
conventional and deep learning methods for HCC recognition from ultrasound images.
Regarding the conventional techniques, we defined the textural imagistic model of HCC,
as described in [4]. Original and advanced texture analysis methods were developed
and experimented with in this context, most of them based on Generalized Cooccurrence
Matrices (GCM) of second and superior order [5]. The values of the most relevant textural
features were provided at the entrances of powerful classifiers, such as Support Vector Ma-
chines (SVM), Multilayer Perceptron (MLP) and Random Forest (RF), along with AdaBoost
combined with the C4.5 method for decision trees. The maximum accuracy was 84.09%
when differentiated between HCC and the cirrhotic parenchyma, respectively, and it was
88.41% when differentiating between HCC and the hemangioma benign tumor [5]. As for
the deep learning methods, we developed and assessed multiple techniques, mainly based
on CNNs [6,7] but also on Stacked Denoising Autoencoders (SAE) [8]. A maximum classi-
fication accuracy of 91% resulted from the same dataset in the case when differentiating
HCC from the cirrhotic parenchyma on which it had evolved.

1.1. The State of the Art

Regarding other representative methods belonging to the state of the art of the domain,
conventional techniques combining texture analysis methods with traditional classifiers
were widely applied previously for performing the automatic diagnosis of tumors and
other affections within medical images [9–11]. Recently, the deep learning methods were
extensively employed in the field of computer vision, particularly in medical imaging,
leading to successful results. The CNNs demonstrated their value in both supervised
and unsupervised approaches, such as those presented in [12–14]. Relevant approaches,
referring to the automatic diagnosis of liver tumors, as well as of other affections (cirrhosis,
which precedes liver cancer and other type of tumors), are described below.

1.1.1. Existing Approaches Targeting the Automatic Recognition of Liver Tumors from
Medical Images

The conventional methods that combine texture analysis with supervised traditional
classifiers were previously used in order to perform liver tumor recognition within medical
images. The textural parameters were first employed by Raeth in [9] for differentiating
between normal liver, diffuse liver diseases and malignant liver tumors from ultrasound
images. Various types of textural features were employed for this purpose, such as those
derived from the intensity histograms, those obtained from the run-length matrix, edge-
and gradient-based features, the second-order Gray-Level Co-occurrence Matrix (GLCM)
matrix and the associated Haralick features, co-occurrence matrices based on edge orien-
tations and other gradient features and features derived through the Fourier transform,
as well as parameters referring to speckle noise. All these features were provided to a
decision-trees-based classifier that differentiated among pairs of classes, such as tumoral
and nontumoral tissue, fatty and cirrhotic liver, normal liver tissue and hepatitis. In another
similar approach, the run-length matrix and the corresponding parameters, in combination
with the Haralick features resulted from GLCM, were experimented with in conjunction
with ANN classifiers, SVM and Fisher Linear Discriminants (FLD), targeting the automatic
diagnosis of the liver lesions within ultrasound images [15]. The ANN classifier, having a
recognition rate close to 100%, overpassed the FLD technique, which yielded a classification
accuracy of 79.6%. The Wavelet transform, applied in a recursive manner [10], as well as in
combination with fractal features [16], was also involved in the ultrasound-images-based
recognition of HCC. In the first case, a recognition rate of 90% resulted from employing
an ANN classifier, while in the second case, an accuracy of 92% was achieved through the
same type of classifier. More recent approaches that performed the automatic recognition
of the liver tumors were based on CNNs. A relevant methodology that proposed a deep
learning model for HCC automatic diagnosis was presented in [17]. The authors employed
a ResNet18 CNN pretrained with the ImageNet dataset, the training being then refined
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using hematoxylinand eosin-stained pathological slides gathered from 592 HCC patients.
At the end, a slide-level accuracy of 98.77% resulted. Another method, aiming for liver
lesion segmentation from CT images, was presented in [18]. A specific CNN was trained
by using image patches obtained from 67 tumors of 21 patients, in order to perform voxel
classification as part of the segmentation process. These patches contained both tumor and
healthy liver tissue. A success rate of 95.4% and an average overlap error of 16.3% resulted.

1.1.2. Existing Approaches that Employ Deep Learning for the Recognition of Other
Affections Based on Medical Images

The estimation of the cirrhosis severity grades from 2D shear wave elastographic
images for patients affected by chronic B-type hepatitis was performed in [12], where a
CNN containing four convolution layers and a single fully connected layer was employed.
The training set consisted of 1990 images corresponding to 398 cases. At the end, an AuC of
0.85 was achieved. A relevant approach involving CNN-based techniques was presented
in [19]. The purpose was to detect breast tumor structures from ultrasound images using
a CNN-based method called Single Shot MultiBox Detector (SSD). The corresponding
dataset comprised 579 benign and 464 malignant breast lesion cases. The proposed method
yielded better performance in terms of precision and recall as compared with the other
existing state-of-the-art methods. A Deep Convolutional Neural Network (DCNN) was
implemented in [20] for detecting incipient lung cancer from CT images. The experimental
dataset consisted of 62,492 regions of interest extracted from 40,772 nodules, as well as of
21,720 non-nodules belonging to the Lung Image Database Consortium (LIDC) data store.
A maximum classification accuracy of 86.4% resulted for this methodology. In the latest
years, more complex approaches were developed for achieving an increased pathology
recognition performance. The combination of multiple image modalities was analyzed in
several studies, such as [21,22]. B-mode ultrasound images were combined with CEUS im-
ages through CNN-based techniques in order to automatically recognize breast tumors [21],
and histological and immunohistochemical image data were fused in [22] through a CNN-
based methodology for breast cancer diagnosis. Other approaches combined multiple types
of deep learning features. In [23], aiming to detect breast cancer within histopathology
images, the authors combined the deep learning features provided by the VGG16, Incep-
tionV3 and ResNet50 architectures, the concatenated features being provided to a VirNet
model, which performed the final feature fusion and classification. In the approach de-
scribed in [24], the authors combined the deep learning features provided by the ResNet50
and DenseNet201 architectures for performing brain tumor classification. After a feature
selection process, the relevant features were fused using a serial approach and provided to
an SVM classifier that provided an 87.8% classification accuracy.

1.1.3. Existing Approaches that Combine Conventional and Deep Learning Techniques

Moreover, the combination between conventional and deep learning techniques was
exploited in the domain for further improvement of the classification performance. As con-
ventional features, radiomic features (intensity and texture), as well as other types of
handcrafted features such as the Histogram of Oriented Gradients (HOG), were considered.
These types of approaches are analyzed in the next paragraphs, mainly referring to the
medical imaging domain. A relevant approach regarding classifier-level fusion is described
in [25], where the authors studied the combination of deep learning and radiomic features
for assessing PD-L1 expression level via preoperative MRI in HCC cases. An extended set
of radiomic features were derived from the Volumes of Interest (VOI) using the Pyradiomics
tool. These features included textural features, intensity features (first-order statistics)
and geometric (shape) characteristics. The textural features comprised GLCM features,
Gray-Level Size Zone Matrix (GLSZM) features, Neighboring Gray Tone Difference Matrix
(NGTDM) features, Gray-Level Run-Length Matrix (GLRLM) features and Gray-Level
Dependence Matrix (GLDM) features, respectively. In addition, the derived images were
determined by applying eight types of image filters: gradient, wavelet, square, square
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root, logarithm, exponential, Laplacian of Gaussian (LoG) and 3D Local Binary Pattern
(LBP-3D). The intensity and textural features were determined on the derived images
as well. In order to obtain the deep learning features, an original 3D CNN architecture
was developed, consisting of two 3D convolution layers and two fully connected layers.
The deep learning features were extracted from the output of the first fully connected layer
after applying the rectified linear unit (ReLu) activation function. The radiomic features
were concatenated with the deep learning features, then a normalization procedure was
applied, a redundant feature removal process was employed and the result was provided
to a supervised classifier of the Support Vector Machine–Recursive Feature Elimination
(SVM-RFE) type, which also performed feature selection. For eliminating the redundant
features, the Pearson Correlation Coefficient (PCC) was implemented. The experiments
were performed on an HCC dataset corresponding to 103 patients. The correlation be-
tween the relevant radiomic features and the PD-L1 expression level was also established,
the considered classes being correlated with the PD-L1 expression level as well. An ac-
curacy of 88.7% and a precision of 94.8% resulted, regarding the prediction of the PD-L1
expression level. Aiming to improve the state-of-the-art performance concerning the pre-
diction of lymph node metastasis in head and neck cancer, in [26], the authors combined
conventional radiomic and deep learning features resulted from CT and Positron Emission
Tomography (PET) images. A new many-objective radiomics model (MO-radiomics) was
designed for extracting valuable radiomic features, and an original 3D CNN architecture
that fully utilized spatial and contextual information was employed for yielding the deep
learning features. The MO-radiomics model consisted of textural features and intensity
features (first-order statistics), respectively, as well as geometric features. The textural
feature set comprised 3D GLCM features, a total of 257 features being finally extracted
from the CT and PET images. Then, the SVM method was employed in order to build a
predictive model, and an optimization problem was solved for selecting the final feature
set and model parameters. Concerning the 3D CNN model, the corresponding architecture
consisted of 12 convolutional layers, 2 max-pooling layers and 2 fully connected layers.
The conventional and deep learning features were fused through an evidential reasoning
method. The performance of this hybrid method was assessed for classifying normal,
suspicious and lymph node metastasis. The proposed hybrid methodology finally led to
a 92% accuracy, which overpassed the 79% accuracy of the conventional methods of the
proposed 3D CNN. Another approach was illustrated in [27], where the authors fused deep
learning features with radiomic features for predicting malignant lung nodules from CT
images. The deep learning features provided by VGG-type CNNs, as well as by originally
designed CNNs, were fused with classical radiomic features, including size, shape, GLCM,
Laws and Wavelet features. A Symmetric Uncertainty technique was employed to select
relevant attributes from both deep learning and conventional feature sets, then the fused set
was given as input to an RF classifier. The best accuracy of 76.79% was obtained when em-
ploying VGG-type CNNs. The methodology presented in [28] also demonstrated that the
combination of deep learning and radiomic features led to the highest performance in lung
cancer survival prediction. Thus, several pretrained CNNs were adopted to obtain deep fea-
tures from 40 contrast-enhanced CT images, representing non-small-cell adenocarcinoma
lung cancer, these being combined with handcrafted features. The deep learning features
were obtained before and after the last Rectified Linear Unit (ReLU) layer. Thereafter,
multiple supervised classifiers, receiving relevant features at their inputs, were compared,
achieving a maximum accuracy of 90% and a maximum AUC of 93.5%, respectively.

1.2. Contributions

According to the previous paragraph, there are many approaches that combine con-
ventional features with deep learning features, demonstrating classification performance
improvements. However, there are no relevant approaches that combine conventional and
deep learning features for performing HCC automatic diagnosis within ultrasound images.
We studied this possibility in our current work, aiming to further improve the accuracy

71



Sensors 2023, 23, 2520

of noninvasive HCC automatic diagnosis. Thus, the contributions of our current research
are the following: (1) We combined conventional machine learning methods, involving
advanced texture analysis methods with deep learning classifiers based on CNNs, to au-
tomatically recognize HCC tumors within B-mode ultrasound images. (2) We performed
classifier-level fusion by experimenting with combination schemes involving various di-
mensionality reduction methods for obtaining the most valuable information from the
whole data, such as relevant features or the main variation modes. An increase in the
computational efficiency was an objective as well. Thus, we considered dimensionality re-
duction methods from both categories of feature selection and feature extraction techniques,
the KPCA technique being taken into account for the second category. Regarding the
feature selection techniques, we considered both classical techniques, as well bio-inspired
approaches based on Particle Swarm Optimization (PSO). We mined for possible correla-
tions among the textural and deep learning features. (3) As for the conventional techniques,
we considered a large variety of textural features based on both classical and advanced
original texture analysis methods, such as the superior-order Generalized Co-occurrence
Matrices (GCM). We also considered multiresolution features, achieved after recursively
applying the Wavelet transform. (4) Regarding the CNN-based techniques, we consid-
ered existing, representative deep learning architectures, as well as new architectures,
improved by the authors in an original manner, starting from the standard architectures.
(5) We updated the definition for the textural imagistic model of HCC [4], considering
the combinations between the conventional and deep learning techniques, with appro-
priate experiments being performed. (6) We performed the experiments on two datasets
of B-mode ultrasound images, constituted by the authors, acquired with two different
ultrasound machines.

2. Materials and Methods

2.1. Description of the Experimental Datasets

For performing reliable experiments, two HCC B-mode ultrasound image datasets
were exploited. The first one, denoted by GE7, contained B-mode ultrasound images
corresponding to 200 HCC cases, acquired with a Logiq 7 (General Electric Healthcare,
Chicago, IL, USA) ultrasound machine, under the same settings: frequency of 5.5 MHz,
gain of 78, depth of 16 cm and a Dynamic Range (DR) of 111. The second dataset, denoted
by GE9, consisted of B-mode ultrasound images belonging to 96 patients affected by
HCC, acquired through a newer, Logiq 9 (General Electric Healthcare, Chicago, IL, USA)
ultrasound machine, using the following set-up parameters: frequency of 6.0 MHz, gain
of 58, depth of 16 cm and a DR of 69. These images were gathered by medical specialists
at the 3rd Medical Clinic in Cluj-Napoca, respectively, at the ”Octavian Fodor” Regional
Institute of Gastroenterology and Hepatology in Cluj-Napoca. All the patients included
in this study underwent biopsies for diagnostic confirmation. For each patient, multiple
images were considered, corresponding to various orientations of the ultrasound transducer.
Two classes were considered for differentiation in our study, these being HCC and the
cirrhotic parenchyma on which HCC had evolved (denoted by PAR). The two classes were
employed, as they are visually similar in many situations, it also being known that the
HCC tumor usually evolves on cirrhotic parenchyma. This focus was suggested by the
experienced radiologists, so no normal (healthy) cases were included in this study. The GE7
dataset included HCC tumors in various evolution phases. For this dataset, acquired
previously, rectangular regions of interest having 50 × 50 pixels in size were manually
selected by the specialized physicians inside the HCC tumor or on the cirrhotic parenchyma
using a specific application implemented by the authors. The GE9 dataset comprised mostly
advanced-stage HCC tumors. For this dataset, recently gathered, the HCC structures were
manually delineated by the medical specialists, using the VGG Image Annotator (VIA) [29]
application. Through the VIA interface, the specialists delimited the tumoral region through
a polygon. According to these delimitations, rectangular regions of interest (patches) having
56 × 56 pixels in size were automatically extracted from the tumoral regions, respectively,

72



Sensors 2023, 23, 2520

from the cirrhotic parenchyma zone, using a sliding window algorithm, which assumed the
traversal of the image with a window of 56 × 56 pixels in size. If the window was situated
inside the delimiting polygon and its intersection with the non-HCC regions was smaller
than 0.1%, the corresponding patch was assigned to the HCC class. If the window was
situated outside the polygon and its intersection with the HCC zone was smaller than 0.1%,
the current patch was integrated in the cirrhotic parenchyma class. Eloquent examples of
patches from each dataset are illustrated in Table 1.

Table 1. Relevant examples from the two considered datasets GE7 and GE9.

Dataset Class

GE7

HCC

PAR

GE9

HCC

PAR

For performing a reliable computerized analysis, a patch size of around 50 × 50 pixels
was chosen for being able to almost integrate in the tumor region entirely and to comprise
a significant number of pixels. The initially generated patches were augmented through
geometrical transforms (rotation, horizontal and vertical translation, scaling and horizontal
flip). Finally, 6910 HCC patches, 7148 cirrhotic parenchyma patches resulting from the GE7
dataset and 10,000 patches/class from the GE9 dataset were obtained. The classes were
almost equally distributed in both datasets.

2.2. The Proposed Solution

In our current study, the main objective was that of enhancing the HCC automatic
recognition performance through the fusion between deep learning and CML methods
at the classifier level, the newly obtained performance being compared with that achieved
when employing only deep learning methods and CML methods, respectively, on the
experimental datasets. This methodology is illustrated in Figure 2.

Figure 2. The graphical representation of the proposed methodology: the fusion between the CNN
and CML methods (in the middle), as well as the performance comparison (PC) with the deep
learning methods (left) and the CML methods (right), respectively.
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2.2.1. Deep Learning Techniques Involved in Our Solution

CNNs constitute deep feed-forward ANNs adequate for image recognition. Their
structure was inspired from biology, the organization of the connections between the
neurons resembling that of the animal visual cortex [30]. With the appearance of powerful
parallel computing devices such as graphics processing units (GPU), CNNs have started to
be widely used, their value being emphasized in computer vision in 2012, in the context of
the ImageNet competition. The main structural elements of CNNs are the convolutional
layers that are employed for compressing the input data into recognized patterns to reduce
the data size and to focus on the relevant patterns [31], respectively. As presented in [32],
the main power of a CNN is achieved through its deep architecture that allows to extract
discriminating features at multiple abstraction levels. As for the deep learning techniques
involved in our solution, we assessed both relevant and newly developed CNN-based
methods, considering both classical CNN architectures, as well as transformer-based
methods. Thus, we experimented with several standard architectures of the ResNet [33],
InceptionV3 [34], DenseNet [35], EfficientNet_b0 [36] and ResNext [37] type, the best
performance being achieved for ResNet101 and InceptionV3, respectively, for the recently
developed EfficienNet_b0. Thus, the residual connections of the ResNet architecture,
the inception modules of InceptionV3 and also the scaling properties of EfficientNet_b0
led to the best results in the case of the current dataset. Regarding the transformer-based
methods, the best performance was achieved for ConvNext_base, while other transformers
such as the Vision Transformer (ViT) and ConvNext_small [38] were also assessed. Some of
these architectures were enhanced for optimizing their performances. Thus, an improved
version of EfficientNet_b0, denoted EfficientNet_ASPP, was designed by introducing,
before the fully connected layer, an AtrousSpatial Pyramid Pooling (ASPP) module [30],
in order to extract multiscale features, and a dropout layer was also added thereafter
for avoiding the overfitting phenomenon. The ASPP module, which was inserted after the
usual convolutional part of EfficientNet_b0, immediately before the fully connected layers,
simultaneously performed a 1 × 1 convolution and two atrous convolutions of size 3 × 3
with the rates 2 and 3, respectively. At the end, a depthcat layer and a global average pooling
layer were added, respectively. Regarding the dropout layer, an output probability of 0.5
was associated to it. A systematic description of all these CNN architectures is provided
within Table 2. It also includes the size of the deep learning feature vector, as well the name
of the layer at the end of which these features were extracted.

Table 2. The description of the CNN architectures.

CNN Original Impr. Last Layer Vector Size

ResNet101 - pool5 2048
InceptionV3 - avg_pool 2048
EfficientNet_b0 dropout layer GlobAvgPool 1283
EfficientNet_ASPP ASPP module gapool 1283
ConvNext_base - adaptiveAvgPool2d 1024

2.2.2. Conventional Techniques Involved in Our Solution

• Texture analysis methods
Texture is an intuitive concept, inspired by the human perception, referring to the
visual appearance of surfaces, particularly to the aspect of human body tissues rep-
resented within medical images. Texture can be characterized through statistical
parameters, able to reveal subtle aspects upon the analyzed surface or tissue, over-
passing human perception. Concerning the texture-based methods involved in our
research as part of the CML approach, we analyzed both representative classical tech-
niques, as well as more advanced techniques, developed by the authors. As classical
textural features, we took into account first-order gray-level statistics, such as the cor-
responding arithmetic mean, maximum and minimum values, as well as second-order
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gray-level features, such as the Haralick parameters derived from GLCM [39], com-
puted as described in [4]. In this group of features, we included homogeneity, energy,
entropy, correlation, contrast and variance, which provided valuable information on
the properties of the tissue referring to the echogenicity, heterogeneity, granularity and
structural complexity. The autocorrelation index [39] was also considered, providing
information on the granularity of the tissue. The Hurst fractal index was included
as well in our feature set, providing information on the roughness and structural
complexity of the tissue. Edge-based statistics, such as edge frequency and edge
contrast [39], were also found useful in order to emphasize the structural complexity.
The statistics of textural microstructures, which resulted after applying the laws con-
volution filters [40], were also involved in our research for the same reason. Features
such as the frequency and density (arithmetic mean) of microstructures such as levels,
edges, spots, waves and ripples were estimated as potentially relevant for the detec-
tion of the malignant tumors. Simultaneously, multiresolution features, in the form
of the Shannon entropy computed after applying the Wavelet transform recursively
twice [4], were considered able to derive subtle information on the malignant tissues,
facilitating their differentiation from other tissue types. The Local Binary Pattern
(LBP) also represents a powerful texture analysis method, invariant to illumination
changes, particularly to those repetitive background changes due to wind or to water
waves. It was firstly introduced in [41]. For obtaining these features, around each
pixel, a circle of radius R can be considered. On this circle, N neighbors can be selected.
For effectively achieving the LBP code, the difference between the central pixel and
each of the N neighbors is computed. For each neighbor, if this difference is larger
than 0, a code with the value of 1 is considered, otherwise, a 0 valued code is stored.
The corresponding N codes constitute a number representing the LBP code. In our
work, the LBP features were derived by varying the values of the R and N parameters.
The following (R, N) value pairs were considered: (1,8), (2,16) and (3,24), respectively.
Compressed LBP histograms with a smaller number of bins (100) were computed on
each Region of Interest (ROI) of the dataset.
We also employed advanced, original textural features elaborated by the authors,
such as the edge orientation variability [4] and GCM of superior order, respectively.
The superior-order GCM were defined as described in (1). According to this mathe-
matical formula, each element of this matrix was equal with the number of n-tuples
of pixels, having the values (a1, a2, . . . , an) for the considered attribute A, which can
stand for the intensity level, edge orientation, etc. These pixels are in a specific spatial
report, defined by the displacement vectors.

CD(a1, a2, . . . , an) = #{((x1, y1), (x2, y2), . . . , (xn, yn) :

A(x1, y1) = a1, A(x2, y2) = a2, . . . , A(xn, yn) = an,

|x2 − x1| = |−→dx1|, |x3 − x1| = |−→dx2|, . . . , |xn − x1| = |−−−→dxn−1|,
|y2 − y1| = |−→dy1|, |y3 − y1| = |−→dy2|, . . . , |yn − y1| = |−−−→dyn−1|,

sgn((x2 − x1)(y2 − y1)) = sgn(
−→
dx1 ·

−→
dy1), . . . ,

sgn((xn − x1)(yn − y1)) = sgn(
−−−→
dxn−1 ·

−−−→
dyn−1))} (1)

The displacement vectors are defined by (2):

−→
d = ((

−→
dx1,

−→
dy1), (

−→
dx2,

−→
dy2), . . . , (

−−−→
dxn−1,

−−−→
dyn−1)) (2)

In the current study, we included the Haralick features derived from the third-order
GLCM. Regarding the spatial relation between the three considered pixels, they were
either collinear, with the current pixel in the central position, or they formed a right-
angle triangle, with the current pixel in the position of the 90◦ angle [4]. For each
configuration, the third-order GLCM was computed, the Haralick feature values
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being provided separately for each direction combination. A newly defined form
of Textural Microstructure Co-occurrence Matrix (TMCM) was employed for the
first time in the current work, assuming to compute the co-occurrence matrix after
applying the k-means algorithm [40] on the ROI. In this case, the considered attributes
A were the cluster labels assigned to each pixel as the result of the grouping algorithm.
The Haralick features yielded by the second- and third-order TMCM were derived
thereafter, considering several values of k (250 and 500), which led to significant results.
The Haralick features for both second-order and third-order TMCM were computed in
the same manner as for the second- and third-order GLCM. A systematic description
of the texture analysis methods involved in the current research, which highlights
their classical or original character, is provided in Table 3.

Table 3. The texture analysis methods involved in our research.

Texture Analysis Method Classical/Original

2nd-order GLCM and Haralick features Classical
Autocorrelation index Classical
Edge frequency, Edge contrast Classical
Density and frequency of textural microstructures (Laws) Classical
Shannon entropy computed after the application of the Wavelet transform Classical
LBP features Classical
Edge orientation variability Original
GCM (3rd-order GLCM, 2nd- and 3rd-order TMCM) and Haralick features Original

• Dimensionality reduction techniques
After computing these potentially relevant textural features, the resulting vector was
combined with the deep learning feature vector using specific fusion schemes de-
scribed in the next subsection. These schemes involved dimensionality reduction
methods from both classes of feature selection and feature extraction (KPCA). As fea-
ture selection methods, we employed both classical and bio-inspired techniques.
Regarding the classical techniques, we employed Correlation-based Feature Subset
(CFS) and Information Gain Attribute Selection (IGA) [42] that provided the best
results in our previous research [5]. CFS represents a powerful method from the class
of filters [42]. In the center of the corresponding algorithm, an appropriate heuris-
tic is considered, which confers, to a certain attribute subset, a score that increases
according to the strength of the correlation of this attribute with the class where the
instance belongs and decreases when the same attribute is correlated with the other
attributes, respectively. This method is employed together with an appropriate search
algorithm (best first and genetic search) that provides all the potentially relevant
attribute subsets [43]. Another representative method from the filters category is IGA.
This technique assigns a score to each attribute reflecting the Information Gain, then it
ranks the attributes in descending order based on this score. The method determines
the entropy of the class C, before and after observing the attribute A [42]. The gain
corresponding to the attribute A is given by the measure in which the attribute A
conducts the decrease in the entropy of the class C. Thus, the score assigned to each
attribute is computed as the difference between the entropy of the class C and the
entropy of the class C obtained after observing the attribute A, respectively. The
above-presented feature selection techniques were exploited in a combined manner
by employing the intersection between the resulted feature subsets.
From the class of the bio-inspired feature selection methods, the Particle Swarm
Optimization (PSO) algorithm was considered. The elements of the particle swarm are
associated to the items of the search space, these particles continuously changing their
position in order to reach the optimal solution according to a well-defined criterion
materialized through a fitness function [44]. In the context of the feature selection
process, PSO is usually employed together with wrapper methods in order to search for
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the best feature subset that maximizes the performance of a given classifier. The fitness
function to be minimized usually refers to the classifier error rate (i.e., 1 − accuracy).
In the current work, our newly defined fitness function had the form provided by (3).
The current fitness function represents the weighted mean between the classification
error, the ratio between the number of the selected features and the total number of
features, respectively, the classification error having a higher weight associated with it
(0.8). The classification error was computed as the arithmetic mean between the errors
of two basic classifiers, k-nn and the Bayesian classifier.

f = 0.8 · error + 0.2 · no_selected_ f eatures
no_ f eatures

(3)

The feature extraction methods project the original feature vectors onto a new feature
space, having a lower dimensionality, simultaneously highlighting important charac-
teristics of the data. A very popular feature extraction technique, the Principal Compo-
nent Analysis (PCA), performs the mapping of the initial data to a lower dimensional
space, where the main variation modes are emphasized. Kernel PCA (KPCA), the gener-
alization of PCA, implies the transposition of PCA in a space of larger dimensionality,
built by employing the kernel function K of the form K = gram(X, X, kerneltype),
where kernetype can be linear Gaussian of polynomial [45]. In our work, all the three
versions of KPCA, linear, polynomial and Gaussian, respectively, were assessed. The
fused vector was provided at the entrances of a powerful conventional classifier.
The conventional supervised classifiers or metaclassifiers adopted in this situation
were the Support Vector Machines (SVM), Random Forest (RF) and AdaBoost com-
bined with the C4.5 algorithm for Decision Trees, respectively. These techniques,
acknowledged in the domain for their increased performance, provided the best
results in our former studies [5], as well as in our current study.

2.2.3. Combining the Traditional and Deep Learning Techniques at the Classifier Level

The combination (fusion) of the CNN-based methods and of the CML methods at
the classifier level was assumed to provide the initial dataset consisting of HCC and PAR
patches, at the input of a CNN classifier and to the texture analysis methods, respecitvely,
as illustrated in Figure 3. Then, the deep learning features, extracted at the end of the
convolutional part of the CNN, were fused with the textural feature vector through a simple
concatenation or through a combination procedure that involved dimensionality reduction,
such as Feature Selection (FS) or KPCA. At the end, a supervised traditional classifier
was employed for completing the resulted hybrid classifier architecture to assess the
classification performance. In this study, the above-described textural features formed the
conventional feature vector. As for the deep learning features, they were gathered at the end
of the last layer, which preceded the fully connected layers, as described within Section 2.2.1.
In this context, appropriate fusion methods for yielding combined deep learning and
textural feature vectors were elaborated by employing the following combination schemes:
(1) the simple concatenation of the deep learning and textural feature vectors (Concat);
(2) the concatenation of the deep learning and textural feature vectors, after the application
of the classical feature selection procedure (FS+Concat); (3) the concatenation of the two
feature vectors, followed by the application of the classical feature selection procedure
(Concat+FS); (4) the concatenation of the two feature vectors, followed by the application
of the PSO-based feature selection procedure (Concat+PSO); (5) the concatenation of the
deep learning and textural feature vectors, after the application of the KPCA method,
in order to yield the generalized principal components for each category, which were fused
thereafter (KPCA+Concat); and (6) the concatenation of the two feature vectors, followed by
the application of KPCA (Concat+KPCA).
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Figure 3. The graphical representation of the methodology for classifier-level fusion: (1) the images
in the dataset are simultaneously provided to the CNN and to the texture analysis module; (2) then,
the two resulting feature vectors are concatenated, feature selection methods or KPCA being even-
tually applied before or after the concatenation procedure; and (3) the fused feature vector is then
provided at the entrance of a powerful conventional supervised classifier.

Concerning the classical feature selection methods, the CFS and IGA techniques were
adopted, the PSO algorithm being implemented as described in Section 2.2.2. As for
KPCA, in the case of the Concat+KPCA fusion scheme, 500 components were extracted,
while in the case of the KPCA+concat fusion scheme, 300 components were derived from
the deep learning, as well as from the textural feature vector, in order to balance the
lengths of the final feature vectors that resulted in each case. Thereafter, the correlations
between the deep learning features and the textural features were analyzed in order to
explain the significance of the deep learning features with respect to the visual and physical
properties of the malignant tissue. For this purpose, the Pearson correlation method was
employed [40].

2.2.4. The Newly Defined Imagistic Model of HCC

In the context of our former research, we defined the imagistic textural model of HCC,
consisting of (1) the complete set of relevant textural features which best differentiated
among HCC and the visually similar classes: cirrhotic parenchyma on which HCC had
evolved and benign liver tumors, respectively, as well as (2) the specific values associated
with the relevant textural features: arithmetic mean, standard deviation and probability
distribution [4]. In this study, this model was extended by adding the most relevant deep
learning features extracted at the end from various levels of the CNNs, together with
their specific values. Thus, the new set of best discriminative features (RelF) resulted by
employing the most appropriate combination schemes (Comb) upon the textural (CML)
and deep learning (DL) features, as illustrated in (4).

RelF = Comb(DL_ f eatures, CML_ f eatures) (4)

The newly resulting imagistic model of HCC consisted of the specific values associated
to each feature of the RelF set and of the properties associated to the relevant feature map
image, respectively, such as the arithmetic mean of the gray levels and the standard
deviation, as depicted in (5). The feature map image resulted by transposing the final
relevant feature vector into a gray-scale image. The discovered correlations between the
textural and the deep learning features were also part of this model.

IM =
⋃

r f∈RF

(mean(r f ), stdev(r f ), prob_distrib(r f ))
⋃

Prop( f eature_map_img) (5)
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2.2.5. Performance Assessment

For classification performance assessment, the following metrics, appropriate for
automatic diagnosis in the medical domain, were approached: accuracy or recognition
rate, sensitivity or True-Positive (TP) Rate, specificity or True-Negative (TN) Rate and Area
under ROC (AuC), respectively [40]. In our experimental context, HCC was considered the
positive class, while PAR was considered the negative class. As for the automatic cancer
diagnosis, both sensitivity and specificity are important, referring to the probability of the
presence and lack of disease, respectively. Thus, the presence of cancer should be detected
as early as possible, but the situation of erroneous cancer detection should be avoided,
as those patients who are not affected by malignancy should not be sent to specific, often
harmful treatments.

2.3. Experimental Settings

The above-mentioned techniques were implemented as follows:

• Most of the CNNs were implemented in the Matlab R2021b environment, except Con-
vNext_base, which was available only in Python [37].

• The conventional classifiers and the classical feature selection methods were employed
with the aid of the Weka 3.8. library [43].

• KPCA for feature extraction and PSO for feature selection were implemented in
Matlab R2021b.

• Most of the texture analysis methods were implemented in Visual C++, except LBP,
which was implemented in Python.

Thus, the majority of the CNNs, i.e., ResNet101, InceptionV3, EfficientNet_b0 and the
improved EfficientNet_b0 were implemented in Matlab R2021b, with the aid of the Deep
Learning Toolbox [46]. The improved EfficientNet_b0 architecture, enhanced with an ASPP
module and a dropout layer, was built in the Deep Network Designer environment, starting
from the EfficientNet_b0 architecture, as described in Section 2. All these networks were
trained in the following conditions:

• The Stochastic Gradient Descent with Momentum (SGDM) strategy was employed;
• The learning rate was set to 0.0002;
• The momentum was set to 0.9;
• The minibatch size was set to 30;
• The duration of the training process was 100 epochs.

These hyperparameter values were set for achieving an accurate, efficient learning
process and to simultaneously avoid overtraining, as well as considering the memory
constraints of the computer (the minibatch size). All the above-mentioned networks were
pretrained on the ImageNet dataset, the training being refined thereafter using the specific
data from the B-mode ultrasound images of our datasets. The ConvNext-type CNN, as a
recent, powerful architecture, was implemented in Python with the aid of the Torchvision
library [37]. It was trained in a similar manner, using the same strategy and the same values
of the hyperparameters as those adopted for the other CNN architectures. The last layer
was reshaped for all the considered networks in order to provide only two outputs, which
corresponded to the HCC and PAR classes. The feature maps were derived from the trained
CNNs, as mentioned within Section 2.2.1, using specific Matlab and Python functions
(activations and get_activations, respectively). Regarding the dimensionality reduction
techniques, the method of KPCA was employed in Matlab 2021, with the aid of the Matlab-
Kernel-PCA toolbox [47], the linear, third-degree polynomial and Gaussian kernels being
experimented on. The PSO-based feature selection method was implemented in Matlab
as well, using a specific framework [48]. The classical feature selection methods were
implemented by using the Weka 3.8. library [43]. Thus, the CfsSubsetEval(CFS) technique
was implemented with BestFirst search, while the InfoGainAttributeEval method was
employed in conjunction with Ranker search. The conventional classifiers were employed,
as well, using the Weka 3.8. library [43], as follows:
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• The John Platt’s Sequential Minimal Optimization (SMO) algorithm [43], the Weka
equivalent of SVM, was assessed, the best performance resulting for the polynomial
kernel of 3rd degree.

• The AdaBoost metaclassifier was assessed for 100 iterations in conjunction with the
J48 method, the equivalent of the C4.5 algorithm in Weka.

• The RandomForest (RF) technique of Weka was adopted as well.

Some of the textural features were computed using our own Visual C++ software
modules, as described in Section 2.3, independently on orientation, illumination and scale,
after applying a median filter for speckle noise reduction. The LBP features were computed
in Python using the Numpy library.

All these experiments were conducted on a computer having an i7 processor of
2.60 GHz, 8 GB of internal (RAM) memory and an Nvidia Geforce GTX 1650 Ti GPU.
Regarding the performance evaluation strategy for the CNN-based methods, 75% of the data
constituted the training set, 8% of the data stood for the validation set and 17% of the data
were integrated in the test set. For the conventional classifiers, 75% of the data constituted
the training set, while 25% of the data were integrated in the test set.

3. Results

3.1. CNN Performance Assessment

In Table 4, the values of the classification performance parameters for the individual
CNNs, obtained through transfer learning, on both considered datasets were provided.
The maximum values resulted for each classification performance parameter, for each
dataset, were highlighted with bold. Thus, for the first dataset (GE7), the highest classifi-
cation accuracy, the highest sensitivity, the most increased specificity and the best AUC
resulted for the ResNet101 architecture. EfficientNet_ASPP, the improved version of the Effi-
cientNet_b0 architecture, led to an increase in the classification performance in comparison
with EfficientNet_b0 regarding all the assessed metrics.

For the second dataset, GE9, InceptionV3 provided the best classification accuracy,
followed by ResNet101. The best sensitivity resulted for ResNet101, while the highest
specificity was achieved for ConvNext_base. The most increased AuC was obtained for
InceptionV3. For the GE9 dataset, EfficientNet_ASPP, the enhanced version of EfficientNet,
led, once again, to an increased classification performance in terms of accuracy, sensitivity
and AUC, in comparison with the original, EfficientNet_b0 architecture. As we can notice,
the values of the classification performance parameters achieved for the first dataset, GE7,
were higher than the values resulted for the same parameters in the case of the GE9 dataset.
The reason could be the fact that the GE7 dataset included a smaller number of HCC
patches that were manually selected, emphasizing a specific HCC region that in many cases
was visually different from the cirrhotic parenchyma, while in the case of the GE9 dataset,
the patches were automatically selected from the entire tumor surface.

Table 4. Results obtained using transfer learning.

Dataset Method Accuracy Sensitivity Specificity AUC

ResNet101 95.9% 95.6% 91.2% 93.4%
InceptionV3 88.7% 88.8% 88.6% 89%

GE7 EfficientNet_b0 74.93% 72.9% 77.5% 75.2%
EfficientNet_ASPP 76.9% 77.4% 76.1% 76.75%
ConvNext_base 83% 78% 88% 83%

ResNet101 78.4% 82.0% 75.5% 78.75%
InceptionV3 80.39% 81.63% 79% 86%

GE9 EfficientNet_b0 74.32% 75.22% 73.22% 82%
EfficientNet_ASPP 76.2% 79.8% 73.22% 76.51%
ConvNext_base 81% 75% 86% 80.50%
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3.2. Assessing the Performance of the Textural Features through Conventional Classifiers

In Table 5, the values of the classification performance parameters obtained on each
dataset by providing the relevant textural features at the entrances of conventional classi-
fiers are depicted. The maximum values are highlighted in bold for each parameter for each
dataset. For the first dataset, GE7, the highest classification accuracy and the best sensi-
tivity, as well as the best AUC, resulted for AdaBoost, while the highest specificity was
obtained for SVM. As for the GE9 dataset, the most increased accuracy, the best sensitivity
and the best specificity, as well as the highest AUC, resulted for AdaBoost. As we can
infer by comparing Tables 4 and 5, the values of the classification performance parameters
achieved through the CNN techniques were comparable to those obtained when employing
conventional CML for both datasets. However, the maximum values were achieved for the
CNNs in most of the situations.

Table 5. Results obtained on the set of relevant textural features through conventional classifiers.

Dataset Method Acc. Sens. Spec. AUC

SMO (poly grd.3) 92.85% 92.6% 93.1% 92.85%
GE7 AdaBoost+J48 92.92% 94.1% 92.8% 93.45%

RF 89.9% 93.3% 88.5% 90.9%

SMO (poly grd. 3) 78.136% 77.9% 78.4% 78.1%
GE9 AdaBoost+J48 82.5% 81.1% 83.2% 89.7%

RF 75.85% 69.4% 82.1% 84.5%

3.3. Assessing the Performance of the Combination between the Textural and CNN Features
3.3.1. Performance Assessment on the GE7 Dataset

Within Table 6, the arithmetic mean of the values of the performance parameters
obtained on the GE7 dataset trough the three considered conventional classifiers for each
combination of the textural features with deep learning features derived from a certain type
of CNN are depicted. For each parameter, the highest values are emphasized in bold in the
case of each CNN. As we can notice, the absolute maximum of the mean accuracy, 97.47%,
as well as the absolute maximum of the mean sensitivity, 97.53%, resulted when combining
ResNet101 with the textural features through the Concat+FS fusion scheme; the absolute
maximum of the average specificity, 98.63%, resulted when combining InceptionV3 with
the textural features for the KPCA+concat fusion scheme, while the absolute maximum of
mean AUC, 97.86%, resulted when combining ResNet101 with the textural features through
the PSO scheme. The best overall accuracy of 98.23% resulted when the InceptionV3 CNN
architecture was involved for the KPCA+concat combination scheme. In the case of Ad-
aBoost, the best overall sensitivity of 98.2% resulted when ResNet101 was involved; in the
case of the KPCA+concat, for the AdaBoost metaclassifier, the highest overall specificity
of 98.9% was achieved for the KPCA+concat fusion scheme in the case of the RF classifier
when the InceptionV3 CNN was involved, while the highest AUC of 99.3% resulted for
KPCA+concat, in the case of the RF classification technique, when the EfficientNet_ASPP
CNN architecture was employed.

In Figure 4, the comparisons between the average accuracy values corresponding to
the considered combination schemes, in the case of each CNN, are illustrated. These values
are also compared with the accuracy values obtained when using only the CNN by itself.
Above each group, which corresponds to a certain combination scheme, the arithmetic
mean of the accuracy values per group was depicted. As it can be noticed, the performance
of the considered combination schemes overpassed that of the individual CNNs in most of
the situations. Moreover, all the combination schemes involving feature selection and KPCA
provided a better performance than that achieved when employing a simple concatenation
between the CNN and the textural feature vectors. Thus, a maximum average accuracy
of 93.46% was achieved in the case of KPCA+Concat, followed by an average accuracy of
91.13% achieved for the Concat+KPCA combination. Regarding the CNN architectures,
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ResNet101, followed by InceptionV3, provided the highest accuracy values for most of the
considered fusion schemes. In Appendix A, within Figure A1, the standard deviations of
the classification accuracy values for each combination scheme are provided. As it can be
noticed, in the case of the GE7 dataset, the smallest standard deviation of 1.3 was achieved
for the Concat+FS combination scheme and then by the PSO combination scheme (1.43),
followed by the FS+Concat fusion scheme (1.51). On the last position, the KPCA+concat
fusion scheme was situated, the standard deviation being 5.83.

Table 6. Results obtained on GE7 through various combination methods.

Combination Fusion Method Acc. Sens. Spec. AUC

ResNet101+TF

Concat 95.25% 95.4% 95.13% 93.03%
FS+Concat 96.71% 95.8% 97.76% 96.1%
Concat+FS 97.48% 97.53% 97.56% 92.1%

PSO 96.65% 95.26% 98% 97.86%
KPCA+Concat 97.01% 97.26% 96.8% 93.16%
Concat+KPCA 96.92% 95% 96.76% 91.53%

InceptionV3+TF

Concat 91.74% 92.43% 91.1% 95.7%
FS+Concat 91.69% 95% 93.8% 97.06%
Concat+FS 94.39% 95.2% 90.2% 94.53%

PSO 93.87% 96.4% 91.33% 95.86%
KPCA+Concat 95.49% 92.16% 98.63% 96.6%
Concat+KPCA 86.87% 88.36% 85.4% 90.96%

EfficientNet_b0+TF

Concat 77.42% 74.06% 81.1% 81%
FS+Concat 78.48% 77.76% 79.26% 82.78%
Concat+FS 77.03% 71.43% 80.9% 80.66%

PSO 78.1% 78% 78.2% 82.6%
KPCA+Concat 93.22% 90.63% 95.26% 94.33%
Concat+KPCA 92.8% 90.33% 95.63% 94.26%

EfficientNet_ASPP+TF

Concat 72.75% 71.13% 74.4% 78.2%
FS+Concat 79.67% 81.06% 78.3% 84%
Concat+FS 78.7% 79.6% 77.66% 83.23%

PSO 78.1% 78% 78.2% 82.6%
KPCA+Concat 94.99% 92.53% 96.9% 95.96%
Concat+KPCA 90.01% 90.43% 91.53% 93.53%

Convnext_base+TF

Concat 69.33% 69.2% 69.43% 74.1%
FS+Concat 79.31% 83.4% 80.7% 88.4%
Concat+FS 73.97% 73.16% 74.8% 78.3%

PSO 72.77% 72.23% 73.5% 76.66%
KPCA+Concat 86.57% 86.23% 82.53% 87.16%
Concat+KPCA 89.03% 88.5% 90.23% 93.4%

Figure 4. The comparisons between the average accuracy values obtained for each combination
scheme for the considered CNN architectures in the case of the GE7 dataset.
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3.3.2. Performance Assessment on the GE9 Dataset

Table 7 illustrates the arithmetic mean of the performance parameters resulted from
the GE9 dataset for each combination of the textural features, with deep learning features
extracted from a certain CNN, for each fusion scheme. For each parameter, for each type of
CNN, the highest values were emphasized in bold. We can infer that the maximum overall
value of the mean accuracy of 98.01%, the maximum mean sensitivity of 98.26%, the max-
imum mean specificity of 97.9% and the maximum mean AUC of 94.16% were obtained
for the KPCA+concat fusion scheme when ResNet101 was involved. As for the individual
values, obtained through each conventional classifier, the best overall accuracy of 98.9%
and the best overall specificity of 98.6% resulted for the combination between InceptionV3
and the textural features for the KPCA+concat combination scheme when employing the Ad-
aBoost metaclassifier. The best sensitivity of 99.2% was achieved in the case of KPCA+concat
for AdaBoost for the combination between ResNet101 and the textural features, while the
most increased AUC of 99.7% resulted for KPCA+concat for the RF classification technique
in the case when InceptionV3 was combined with the textural features.

Table 7. Results obtained on GE9 through various combination methods.

Combination Fusion Method Acc. Sens. Spec. AUC

ResNet101+TF

Concat 86.3% 84.6% 86.73% 90.26%
FS+Concat 83.9% 88% 79.8% 88.96%
Concat+FS 84.22% 87.4% 81.03% 89.1%

PSO 75.42% 76.73% 74.16% 79.56%
KPCA+Concat 98.01% 98.26% 97.9% 94.16%
Concat+KPCA 96.92% 96% 97.76% 92.53%

InceptionV3+TF

Concat 82.85% 86.93% 78.66% 87.8%
FS+Concat 84.21% 87.4% 81.03% 89.1%
Concat+FS 82.04% 86.9% 76.73% 85%

PSO 84.2% 87.46% 80.93% 89.36%
KPCA+Concat 87.23% 89.9% 82.86% 86.36%
Concat+KPCA 83.33% 82.9% 84.16% 88.66%

EfficientNet_ASPP+TF

Concat 82.04% 83.36% 77.56% 87%
FS+Concat 83.83% 88.16% 79.3% 88.73%
Concat+FS 85.72% 88.66% 80.66% 89.43%

PSO 85.2% 88.46% 81.93% 90.36%
KPCA+Concat 88.86% 89.8% 87.76% 92.53%
Concat+KPCA 81.29% 87.06% 71.93% 84.33%

ConvNext_base+TF

Concat 85.63% 84.6% 86.73% 90.26%
FS+Concat 86.33% 87.06% 87.06% 91.36%
Concat+FS 85.79% 86.7% 84.93% 89.2%

PSO 86.94% 87.06% 79.8% 91.93%
KPCA+Concat 76.22% 76.63% 75.53% 78.16%
Concat+KPCA 85.48% 88.76% 81.86% 90.16%

Within Figure 5, the comparison among the arithmetic mean of the accuracy values
for each combination scheme for the considered CNN architectures is depicted, the arith-
metic mean of the accuracy values per fusion scheme being illustrated above each corre-
sponding group. The best average accuracy of 87.58% was achieved in the case of KPCA,
followed by concatenation, while the second best mean value of 86.71% was obtained in the
case of concatenation followed by KPCA. The information inferred by Figure 5 confirms
that provided by Figure 4, the ranking of the fusion schemes being almost similar according
to these figures. It must also be noticed that simply performing concatenation led to worse
results than all the other combination schemes. Concerning the best performing CNN archi-
tectures, ResNet101, as well as ConvNext_base, provided very good performances in most
of the situations. Regarding the standard deviations of the accuracy values achieved for
each fusion scheme in the case of the current dataset, according to Figure A1, the smallest
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standard deviation resulted from the FS+Concat fusion scheme (1.27), followed by PSO
(1.66) and then by Concat+FS (1.89), Concat+KPCA (11.83) being situated on the last position.

Figure 5. The comparisons between the average accuracy values obtained for each combination
scheme for the considered CNN architectures in the case of the GE9 dataset.

3.4. The Newly Defined Imagistic Model of HCC

The relevance of the considered textural features in the classification process was
assessed in the context of the entire feature vector when considering their combination with
the CNN features. In Figures 6 and 7, the ranking of the most relevant textural features
from each dataset is provided, this ordering being derived after the application of the IGA
technique upon the combined feature vector, containing both textural and CNN features.
The length of each line of the graphic represents the arithmetic mean of the particular
scores resulted from the application of IGA upon the combination between the textural
features and the CNN features provided by each CNN technique. In both these figures,
we notice, on the first positions, the presence of the features derived from the generalized
co-occurrence matrices, including the second- and third-order TMCM and GLCM features.

For the GE7 dataset, the most relevant feature is the contrast obtained from the TMCM
matrix, computed for k = 500, having an average score of 0.066, the maximum average
score among the entire feature set being 0.357. The Haralick features derived from the
GLCM matrices of order 2 and 3, computed for various directions of the displacement
vectors, followed thereafter, emphasizing the heterogeneous, chaotic structure of the tu-
mor tissue through the GLCM_Energy, GLCM_Entropy and GLCM_Variance. They also
revealed differences in granularity between the HCC and PAR tissue classes, through the
GLCM_Correlation. Towards the end of the ranking, we notice the presence of the entropy
computed after the application of the Wavelet transform at the first level on the third
component (high–low) and of the LBP features, respectively, emphasizing again the chaotic
structure, as well as the complexity of the malignant tumor.
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Figure 6. The ranking of the most relevant textural features among the combined feature vector for
the GE7 dataset.

Figure 7. The ranking of the most relevant textural features through the combined feature vector for
the GE9 dataset.
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As for the GE9 dataset, as depicted in Figure 7, the first position among the whole
feature vector was occupied by the homogeneity derived from the third-order TMCM
matrix when the displacement vectors were collinear on the horizontal direction and the
value of k was 250, being associated with the highest relevance score of 0.2, immediately
followed by the same parameter derived from the second-order GLCM matrix. These
attributes emphasized the differences in homogeneity between HCC and the cirrhotic
parenchyma on which it had evolved. Towards the end of the ranking, we notice the
presence of the edge orientation variability, of the GLCM correlation, of the density of the
spot microstructures computed after employing the Laws’ convolution filters, denoting
both the complexity of the HCC tissue as well as the difference in granularity between
the HCC and PAR tissues, respectively. The correlations between the textural features
and the CNN features were evaluated as well for each CNN architecture on both datasets.
The plots of the pairwise correlations between the considered textural features and the
CNN features, assessed with the aid of the Pearson correlation method, are depicted in
Appendix B, Fiugre A2. The fact that there exist increased correlations among the CNN
features themselves can be noticed; there are some medium correlations among the textural
features, as well as smaller correlations between the textural features and the CNN features,
respectively. As for the correlations between the textural features and the CNN features,
the highest correlations were those met for the GLCM_variance with three ResNet101
features for the GE9 dataset, the maximum correlation coefficients being 0.429, 0.26 and
0.17, respectively, followed by the correlations met between the TMCM500_contrast and
the InceptionV3 features on the GE7 dataset of 0.197, 0.194, 0.184, 0.176 and 0.171, then
by the correlations obtained on the GE7 dataset between the GLCM3_45_225_energy, the
GLCM_90_270_energy with the EfficientNet_ASPP features of 0.179, by those between the
TMCM500_contrast and the ResNet101 features on the GE9 dataset of 0.176, respectively,
and by those between the GLCM_homogeneity and the InceptionV3 features on the GE7
dataset of 0.124. As part of the newly approached textural model, the comparisons between
the activation maps corresponding to the CNN features derived from EfficientNet_ASPP
and those obtained from the fusion of these types of CNN features with the textural
features when employing the Concat+KPCA combination scheme, for both datasets, GE7
and GE9, are depicted in Figure 8. The Concat+KPCA combination scheme was taken
into account as being one of the best performing fusion schemes that also transformed
the elements of the original concatenated vector, yielding more refined fused features,
which emphasized the main variation modes. These activation maps were achieved by
adequately reshaping the feature vectors for obtaining a maximal square image. The first
and second lines correspond to the results achieved on the first dataset, GE7, while the
third and fourth lines correspond to the results obtained on the GE9 dataset. The left-
hand-side column corresponds to the HCC class, while the right-hand-side column stands
for the PAR class. The first and third lines correspond to the activation maps achieved
in the case of the fusion between the EfficientNet_ASPP CNN features and the textural
features, while the second and fourth lines to the activation maps obtained in the cases
when only the EfficientNet_ASPP CNN features were taken into account. It can be noticed
that, in the case of HCC, the patterns are more heterogeneous and the frequency of the
increased pixel values is larger than in the case of PAR, these differences being more
emphasized for the activation maps corresponding to the fusion between the CNN and
textural features. This remark is confirmed by the numerical differences obtained between
the corresponding values of the mean gray levels and standard deviations of these maps,
respectively. Thus, in the case of the EfficientNet_ASPP activation maps obtained for the
GE7 dataset, the difference between the standard deviations for the HCC and PAR classes
was 0.0034, while the difference between the HCC and PAR gray-level means was 0.0091.
For the same dataset, when considering the activation maps for the fusion between the
CNN and textural features, the difference between the standard deviations corresponding
to the HCC and PAR classes was 0.0169, while the difference between the gray-level means
was 0.2545. In the case of the EfficientNet_ASPP activation maps achieved for the GE9
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dataset, the difference between the standard deviations for the HCC and PAR classes
was 0.0042, while the difference between the HCC and PAR gray-level means was 0.0079.
When taking into account the activation maps for the combination between the CNN and
textural features, the difference between the HCC and PAR standard deviations was 0.0129,
the difference between the gray level means being 0.0759.

Figure 8. The comparisons between the activation maps for EfficientNet_ASPP for the combination
between EfficientNet_ASPP and the textural features through the Concat+KPCA fusion scheme,
respectively: (a,b,e,f) the maps for EfficientNet_ASPP combined with the textural features for HCC
(a,e), respectively, PAR (b,f); (c,d,g,h) the maps achieved in the case of EfficientNet_ASPP for HCC
(c,g), respectively, for PAR (d,h); (a–d) stand for GE7; (e–h) stand for GE9.

4. Discussion

As it results from the previous sections, as well as from Figure 9, the combinations
between the CNN-based techniques and the CML techniques at the classifier level achieved
better classification performances in terms of accuracy, sensitivity, specificity and AUC,
in comparison with the individual application of each class of methods.

Figure 9. Comparison between the maximum value of the classification performance metrics for
the three considered classes of methods: CML, CNN and the combination between CML and CNN
(CML+CNN): (a) on the GE7 dataset; (b) on the GE9 dataset.
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The best classification performances were achieved for KPCA+concat, followed by
concat+KPCA, FS+concat being situated on the third position. However, the standard devi-
ations of the accuracy values were best when employing feature selection before or after
concatenation, as it results from Figure A1 form Appendix A. Regarding the KPCA tech-
nique, the best results, in all the considered situations, were achieved when employing the
Gaussian kernel. It can also be noticed that firstly applying FS and KPCA, followed by con-
catenation, provided better classification performances than when applying concatenation
and then FS and KPCA, respectively. The conventional dimensionality reduction methods
led to higher classification performances than the bio-inspired feature selection method,
based on PSO, when being applied in the same conditions. Concerning the CNN architec-
tures that were combined with the conventional techniques, the best results were provided
when involving ResNet101, followed by those obtained when InceptionV3 was involved.
Thus, the residual connections that contributed to overpassing the gradient vanishing
problem, as well as the inception modules, significantly contributed to the enhancement of
the classification performance. Convnext_base, the transformer-based architecture involved
in our experiments, yielded a very good classification performance as well, especially in the
case of the GE9 dataset. The newly designed EfficientNet_ASPP architecture also provided
satisfying results, overpassing EfficientNet_b0 in many situations. As for the conventional
classifiers, as it results from the previously presented experiments, the best classification
performance was achieved by AdaBoost combined with decision trees, followed by RF and
SVM, respectively. For the last-mentioned classifier, the best performance resulted when
considering the 3rd-degree polynomial kernel. The computational efficiency of our solution
is also satisfying, as most of the CNN architectures and most of the conventional classi-
fiers that led to the best solution were based on less complex algorithms, dimensionality
reduction also being performed upon the involved feature vectors. Regarding the textural
features involved in the current work, they demonstrated their importance when assessed
together with the deep learning features, achieving relevance values situated in most cases
in the interval 0.05–0.2, slightly below the maximum relevance value, around 0.3, of the
entire feature vector. The contrast and homogeneity derived from the TMCM matrix con-
firmed the heterogeneity, as well as the complex structure of the HCC tissue, as compared
with that of the cirrhotic parenchyma on which it had evolved. These properties are due
to the coexistence of multiple tissue types, as well as to the rich vascularization of HCC.
Other relevant textural features, such as the correlation derived from the GCM, revealed
differences in granularity between HCC and the cirrhotic parenchyma on which it had
evolved. Some correlations between the textural features and the deep learning features,
assessed through the Pearson Correlation Coefficient, resulted as well, especially between
the second- and superior-order textural features, derived from the newly defined GCM,
and the ResNet101, InceptionV3 and EfficientNet_ASPP CNN features, respectively. These
correlations revealed the capacity of the deep learning features to emphasize the properties
of the HCC and cirrhotic parenchyma tissues.

The comparisons with the already existing state-of-the-art results, in terms of classifi-
cation performance metrics, are depicted in Table 8. For assessing the significance of the
improvements for each state-of-the-art method, a specific metric was computed, expressed
as an average difference according to the formula (6). In (6), Acc, Sens, Spec and AUC were
the performance metrics corresponding to the current work, while Accsa, Senssa, Specsa
and AUCsa were the metric values corresponding to the state-of-the-art techniques.

Avg_di f =
(Acc − Accsa) + (Sens − Senssa) + (Spec − Specsa) + (AUC − AUCsa)

4
(6)

Thus, the maximum obtained classification performances in the current work over-
passed the maximum performance achieved in the research paper [7]. In [7], the authors
assessed the combinations, at the classifier level, between representative CNN architectures,
such as ResNet101, InceptionV3 and EfficientNet_b0, on the GE9 dataset. In this case, the
average difference in the performances was −1.002. The maximum classification perfor-
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mance achieved in the current work also overpassed that reported in [24], the average
difference between the corresponding metrics being −14.38, which is larger than that which
previously resulted. Thus, the method described in [24] was reproduced in the current work
in the following manner: the DenseNet201 and ResNet50 CNN architectures were trained
in Matlab2021 using the Deep-Learning toolbox, then our conventional FS methodology
based on the combination between the CFS and IGA techniques was applied on each CNN
feature vector. The experiments were performed on the most recently acquired dataset, GE9.
Thereafter, the results were concatenated and the SMO classifier was applied with the aid
of the Weka 3.8 library. The method described in [27] was also considered for comparison.
In order to reproduce this method, we trained a VGG-16 CNN on the GE9 dataset, using
the same training parameters as specified in this paper. Concerning the conventional
feature vector, for characterizing the local shape, we also derived HOG features on the GE9
dataset, using Matlab-specific functions, which were added to the previously extracted
textural features. Thereafter, the Symmetrical Uncertainty feature selection technique in
conjunction with Ranker was applied in Weka 3.8 [43] in order to retain the most important
features from each feature vectors, the resulting conventional and deep learning features
being concatenated thereafter. As it can be noticed from Table 8, an average difference of
−7.43 resulted between the corresponding classification performance parameters of this
state-of-the-art method and the maximum performance our current research, respectively.
Regarding the computational complexity of the methods analyzed in this paragraph, we
can infer that our methodology is more efficient. Thus, the approaches presented in [7]
and [24] required training two types of CNNs, as well as a conventional classifier, while our
technique required training only one CNN and a traditional classifier for the best solution.
Moreover, in the case of the technique described in [27], a VGG-type network corresponded
to the best solution, this being a complex network having many parameters, so that the
training time was much more increased than that required for our CNNs.

Table 8. Comparisons with other relevant state-of-the-art approaches.

Method Accuracy Sensitivity Specificity AUC Avg_dif

D. Mitrea et al., 2022 [7] 97.79% 97.9% 98.9% 97.8% −1.002
Aziz et al., 2021 [24] 84.77% 90% 79.4% 84.7% −14.38
Paul et al., 2018 [27] 90.28% 94.1% 86.4% 95.9% −7.43
Current approach 98.9% 98.6% 99.2% 99.7% -

Moreover, the current work approaches a similar subject and methodology as the
research described in [25]. However, in our approach, the HCC automatic recognition was
performed in a noninvasive and efficient manner based on ultrasound images, while in [25],
the authors conducted their analysis on MRI images, which might involve additional
costs and risks. One of the similarities between these two approaches is the application of
feature selection on the concatenated vector, followed by the employment of a traditional
classifier. While in [25], a single, complex feature selection procedure was applied upon
the combined feature vector, followed by the employment of the SVM classifier, in the
current approach, multiple fusion methods, involving various dimensionality reduction
methods were assessed, followed by the application of various conventional classification
techniques, including SVM.

5. Conclusions

The fusion between CNN-based techniques and conventional ML methods based on
advanced texture analysis proved to be very efficient, leading to increased classification
accuracies higher than 95% in many situations. The combination schemes that provided the
best results were KPCA+Concat, Concat+KPCA and FS+Concat, respectively, highlighting the
role of the KPCA technique in this context. The computational efficiency of our solution was
also satisfying, as discussed in Section 4. A new approach of the imagistic textural model
of HCC was also elaborated, emphasizing the relevant textural features and the capacity
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of the newly resulted hybrid feature maps to differentiate between the HCC and PAR
classes, as well the correlations between the deep learning features and the textural features.
It resulted that many deep learning features were correlated with the textural features,
the deep learning features also being able to reveal the HCC and PAR tissue properties.
All the resulted relevant features confirmed the heterogeneous and complex structure of
the HCC tissue, also revealing differences in granularity between the HCC and PAR tissue
classes. Thus, the newly elaborated methodology can be appropriate for the computer-
aided and automatic diagnosis of HCC. The corresponding classification performances
overpassed those obtained when considering the CNN methods and conventional ML
methods by themselves, as well as those resulted from the case of some representative state-
of-the-art methods. As future developments, we aim to involve multiple medical image
types, such as CT and MRI in this analysis, as well as to refer to multiple classes of tumors,
such as pancreatic and renal tumors, including benign tumors as well. Concerning the
fusion methods, the Canonical Correlation Analysis [49] is also targeted for classifier-level
fusion, while decision-level fusion will also be considered.
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The following abbreviations are used in this manuscript:

HCC Hepatocellular Carcinoma
PAR Cirrhotic Parenchyma on which HCC had evolved
CNN Convolutional Neural Networks
ML Machine Learning
US Ultrasonography
CT Computer Tomography
MRI Magnetic Resonance Imaging
AUC Area under the ROC
FS Feature Selection
RF Random Forest
SVM Support Vector Machines
SMO The John Platt’s Sequential Minimal Optimization algorithm
PSO Particle Swarm Optimization
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Appendix A

In Figure A1, the average standard deviations of the accuracy values for each dataset,
GE7 and GE9, are depicted. The values for the average standard deviations resulted from
computing the arithmetic mean of the standard deviations of the classification accuracies
for each considered CNN for each considered fusion scheme.

(a)

(b)

Figure A1. The standard deviations of the accuracy values for each combination scheme: (a) for the
GE7 dataset; (b) for the GE9 dataset.

Appendix B

In Figure A2, the plots of the pairwise correlations between the textural features and
the CNN features are depicted. In each plot, each feature is denoted by an index. In the
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case of the first dataset, GE7, the textural features have associated indexes from 1 to 550,
while the CNN features have indexes from 551 to 2598 in the case of InceptionV3 and
ResNet101, from 551 to 1788 in the case of EfficientNet_ASPP and from 551 to 1575 in the
case of Convnext_base, respectively. In the case of the GE9 dataset, the textural features
have associated indexes from 1 to 98, while the CNN features have indexes from 99 to 2047
in the case of InceptionV3 and ResNet101, from 99 to 1237 in the case of EfficientNet_ASPP
and from 99 to 1122 in the case of Convnext_base, respectively. The fact that there exist
high correlations (≥0.5) between the CNN features themselves can be noticed. There also
exist correlations between the textural features and the CNN features but of smaller values
(≤0.429). In Figure A2, the first column corresponds to the correlations derived from
the first dataset, while the second column to the correlations computed on the second
dataset; the first row corresponds to the correlations between the InceptionV3 features and
the textural features, the second row to the correlations between the ResNet101 features
and the textural features and the third row corresponds to the correlations between the
EfficeintNetb0_ASPP features and the textural features, while the last row stands for the
correlations between the the Convnext_base CNN features and the textural features.

Figure A2. Cont.
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Figure A2. The correlations between the textural and CNN features.
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Abstract: Tumor segmentation is a fundamental task in histopathological image analysis. Creating
accurate pixel-wise annotations for such segmentation tasks in a fully-supervised training framework
requires significant effort. To reduce the burden of manual annotation, we propose a novel weakly
supervised segmentation framework based on sparse patch annotation, i.e., only small portions of
patches in an image are labeled as ‘tumor’ or ‘normal’. The framework consists of a patch-wise
segmentation model called PSeger, and an innovative semi-supervised algorithm. PSeger has two
branches for patch classification and image classification, respectively. This two-branch structure
enables the model to learn more general features and thus reduce the risk of overfitting when learning
sparsely annotated data. We incorporate the idea of consistency learning and self-training into the
semi-supervised training strategy to take advantage of the unlabeled images. Trained on the BCSS
dataset with only 25% of the images labeled (five patches for each labeled image), our proposed
method achieved competitive performance compared to the fully supervised pixel-wise segmentation
models. Experiments demonstrate that the proposed solution has the potential to reduce the burden
of labeling histopathological images.

Keywords: histology images; tumor segmentation; sparse annotation; weakly-supervised learning;
semi-supervised learning

1. Introduction

Deep learning has made rapid development and remarkable progress in pathological
image analysis in recent years [1–7]. The application of deep learning in pathological
diagnosis and prognosis cannot be imagined without high-quality annotations. However,
acquiring precise annotations is difficult since it requires knowledge of pathology and
is time-consuming and labor-intensive, particularly for segmentation tasks that involve
manually outlining the specific structures.

Unfortunately, experts with a wealth of pathological knowledge, the source of high
quality and clean clinical tagging of key data, are often scarce and have limited energy to
spend on data labeling. Therefore, deep-learning methods based on sparsely annotated
labels are critical to reducing their workload of labeling and pushing the application of
deep learning in the field of pathology. Tumor segmentation has been one of the most
fundamental tasks in digital pathology for accurate diagnosis.

Since a whole slide image (WSI) usually has an extremely high resolution, e.g.,
50,000 × 50,000 pixels, common practice is to crop it into smaller images and assign each
of them a label for model training. There are two typical models, including an image-wise
segmentation model [8–13] and pixel-wise segmentation model [14–18]. An image-wise
segmentation model predicts whether the given image contains tumorous regions.

A binary label (‘tumor’ or ‘normal’) is assigned to each image in the training set to train
these models. However, the performance of an image-wise segmentation model is limited
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by the insufficiency of the labeling information. Since a mere binary label ‘tumor’ cannot
reflect the location and proportion of the tumor, assigning the same label ‘tumor’ to different
images as long as they contain the tumor may confuse the network training and lead to
inaccurate segmentation results, which is unacceptable—in particular for small tumors.

In contrast, a pixel-wise segmentation model can produce more accurate segmentation
results. However, pathologists must annotate the tumor regions as masks to train the model,
which takes much more time and energy. More importantly, unlike other medical images,
such as MRI and CT images, pathology images usually lack a clear distinction between the
normal and tumor areas [19], which imposes additional difficulties for labeling.

To compensate for the shortcomings of the above two methods, we propose the concept
of the patch-level label. Note that, in our proposed method, a patch refers to a grid cell
of an image, which is different from the definition in other articles [11,18]. Suppose we
divide the image with the size of 224 × 224 pixels into a 14 × 14 grid, then the patch size
is 16 × 16 pixels. For each image in the training set, pathologists only need to annotate
several (usually 5–10) patches as the label, significantly saving the annotation cost. The left
of Figure 1 shows different types of labels.

Figure 1. Left: The illustration of different types of labels. (a) Pixel-level label, where the red area
denotes tumor region and the black area denotes non-tumor region. (b) Image-level label, suggesting
that the image contains tumor region. (c) Patch-level label (proposed), where the red patches and
green patches are manual annotations indicating tumor and non-tumor regions, respectively. Right: A
software we developed for sparse patch annotation.

We designed a patch-wise segmentation model called Pseger to accommodate this new
label. It has two branches for image classification and patch classification, respectively. The
image classification is an auxiliary task that helps improve the performance of the patch
classification branches. Due to the superior performance the Trasformer-based networks [20]
have achieved in recent years, we select Swin Transformer [21], a representation of them as
the backbone of the model. Moreover, this method can be easily extended to other backbones.

To take advantage of the unlabeled data, we trained our Pseger with an innovative
semi-supervised algorithm. The algorithm is developed based on the characteristics of the
patch-level label, integrating the ideas of consistent learning [22] and self-training [23]. The
contributions of this paper are summarized as follows:

• We proposed the concept of sparse patch annotation for tumor segmentation, which
can significantly reduce the annotation burden. To achieve this new way of labeling,
we developed an annotation tool (Figure 1, right).

• In order to handle this new label, we created a patch-wise segmentation model called
Pseger, which was equipped with an innovative semi-supervised algorithm to make
full use of the unlabeled data.

• We comprehensively evaluated our proposed method on two datasets. The experi-
mental results showed that when trained with only 25% labeled data (five patches
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for each labeled image), our approach can yield a competitive result compared to the
pixel-wise segmentation models trained using 100% labeled data. The ablation study
showed the effectiveness of the semi-supervised algorithm.

2. Related Works

2.1. Weakly-Supervised Learning

Pixel-level labels require a considerable amount of time and effort, and the frequently
occurring manual errors may give the network the wrong guidance. Weakly-supervised
learning (WSL) has recently emerged as a paradigm to relieve the burden of dense pixel-
wise annotations [24]. Many WSL techniques have been proposed, including global image-
level labels [25,26], scribbles [19,27], points [28,29], bounding boxes [30,31], and global
image statistics, such as the target-region size [32,33].

Although these weakly supervised methods have achieved good performance in natural
and medical image segmentation, most weak annotations may not necessarily be best or most
suited for tumor segmentation. As mentioned above, the image-level label cannot reflect the
location and proportion of the tumor, which may result in inaccurate segmentation results.
Other label types are more suitable for segmentation tasks where the instances have clear
boundaries, such as glands and nuclei. Nevertheless, the boundary between the normal and
the tumor area in pathology images is usually fuzzy and ambiguous. Unlike existing weak
annotations, we propose patch-level annotation for patch-wise tumor segmentation.

2.2. Multi-Task Learning

Multi-task learning is an emerging field in machine learning that seeks to improve the
performance of multiple related tasks by leveraging useful information among them [34].
A deep-learning model for multi-task learning usually consists of a feature extractor shared
by all the tasks and multiple branches for each task. In recent years, multi-task learning has
been widely exploited in the field of pathological image analysis [18,35,36]. For example,
Wang et al. [18] proposed a hybrid model for pixel-wise HCC segmentation of H&E-
stained WSIs.

The model had three subnetworks sharing the same encoder, corresponding to three
associated tasks. Guo et al. [37] employed a classification model to filter images containing
tumorous regions and subsequently refined the segmentation results by a pixel-wise seg-
mentation model. Inspired by these seminal works, we adopted a two-branch model, one
branch for image classification and another for patch segmentation, to learn more general
features and thus reduce the risk of overfitting.

2.3. Semi-Supervised Learning

Semi-supervised learning (SSL) is a combination of both supervised and unsupervised
learning methods, in which the network is trained with a small amount of labeled data
and a large amount of unlabeled data. SSL methods can make full use of the information
provided by unlabeled data, thereby improving the model performance. In recent years,
SSL methods have been widely used in the computer vision field [38–43].

There are two common SSL strategies, including consistent learning [22] and self-
training [23]. The general idea of consistent learning is that model prediction should keep
constant under different perturbations to the input. This method allows for various pertur-
bations to be designed depending on the characteristics of the data and the network. For
instance, Xu et al. [40] proposed two novel data augmentation mechanisms and incorporated
them into the consistency learning framework for prostate ultrasound segmentation.

Another strategy, self-training, can be broadly divided into four steps. First, train a
teacher model using labeled data. Second, use a trained teacher model to generate pseudo
labels for unlabeled images. Third, learn an equal-or-larger student model on labeled and
unlabeled images. Finally, use the student as a teacher and repeat the above procedures
several times. Wang et al. [41] proposed a few-shot learning framework by combining ideas
of semi-supervised learning and self-training. They first adopted a teacher-student model
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in the initial semi-supervised learning stage and obtained pseudo labels for unlabeled data.
Then, they designed a self-training method to update pseudo labels and the segmentation
model by alternating downsampling and cropping strategies.

3. Materials and Methods

Here, we propose a novel patch-wise segmentation model called PSeger. Equipped
with an innovative semi-supervised algorithm, it can learn from the patch-level label and
take advantage of the unlabeled data. Figure 2 gives an overview of the training procedure.
It involves three steps: (1) basic training; (2) pseudo label generation; and (3) consistency
learning. They are described in detail in the following. The information about the two
datasets we used is also described later.

Figure 2. Overview of the framework for training PSeger. DA(·) indicates data augmentation module.

3.1. Basic Training

Since the idea of patch-level label is inspired by Vision Transformer (ViT) [20], we
take it as the backbone of PSeger to illustrate the process of basic training. An overview of
the model is depicted in Figure 3, which consists of an embedding projection module, a
sequence of transformer encoder blocks, and two classifiers for image classification and
patch classification, respectively. In the process of forward propagation, an input image
x ∈ R

H×W×NC (H, W, and NC represent the height, width, and number of channels of x,
respectively) is first flattened into M = HW/P2 non-overlapped patches with the size of
P × P pixels. Then, a 2-D convolution operation is employed to obtain patch embeddings,
supplemented with position encoding:

z0 =
[

x1PE; x2PE; . . . ; xMPE

]
+ Ppos

E , (1)

where z0 ∈ R
M×L (L represents the embedding length) is the input of the first transformer

encoder block, xk ∈ R
P×P×C is the kth patch, PE is the embedding projection, and Ppos

E is
the position encoding. Then, the embeddings are processed by the transformer encoder
blocks. Each block includes a multi-head self-attention (MSA) [44] module and a multi-
layer perceptron (MLP) module, both of which are operating as residual operators, and
with a layer normalization (LN) [45]. The output of the lth transformer encoder block can
be described as follows,

z′l = MSA(LN(zl−1)) + zl−1, l = 1 . . . L, (2)

zl = MLP
(

LN
(
z′l
))

+ z′l , l = 1 . . . L, (3)
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where zL is the final output of the transformer encoder. Each element of the output zk
L ∈ zL

contains contextual features due to the attention mechanism, which makes it possible to
classify a patch based on the information of the related patches. We adopt an MLP head
Hpatch for patch classification. By these means, zl processed by an LN is sent to Hpatch
before applying a softmax function to obtain predictions of each patch:

ŷ = So f tmax(Hpatch(LN(zL))), (4)

where ŷ ∈ R
M×C are the patch predictions, and C is the number of categories.

In addition to the patch classifier, we introduce an auxiliary image classifier Himage
to the network, which determines whether an input image has a tumor or not. The
main motivation for use of image classifier is to help the patch classifier achieve better
performance, since in multi-task learning the network tends to find more representative
features shared by different tasks [18]. Similar to the patch classifier, the image classifier
receives the average of the Lth transformer encoder output zL ∈ R

M×L with an LN, and
produces the classification result ŷimg ∈ R

C through a softmax function:

ŷimg = So f tmax

(
Himage

(
LN

(
M

∑
i=1

zk
L/M

)))
. (5)

The loss function for the basic training is defined as:

Lsup = Lpatch + αLimg, (6)

where Limg and Lpatch are the losses for image classification task and patch classification
task, respectively. α is a weighting factor for the two losses. Both Limg and Lpatch are cross-
entropy loss functions; however, Lpatch only considers the annotated patches. Specifically,
Lpatch is defined as:

Lpatch = − 1
K

K

∑
k

C

∑
c

yk log ŷ(k,c), (7)

where K is the number of the labeled patches in the sample x, C is the number of classes, yk

is the binary indicator (0 or 1) if class label c is the correct classification for the kth patch.
ŷ(k,c) is the prediction of the kth patch at the cth class.

Figure 3. Illustration of PSeger (using Vistion Transformer as backbone).
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3.2. Pseudo Label Generation

After the basic training process, the model with the best patch classification accuracy on
the validation set is used to generate the pseudo labels for samples in the unlabeled data XU ,
as is depicted in Figure 4. The trained model receives as input an image xi ∈ XU and infers
the image prediction ŷi,img and patch predictions ŷi, which are subsequently transformed
into the image probability pi,img and patch probabilities pi by the softmax function. The
latter are then ranked by their dominant values. We move xi from XU to XL along with its
pseudo label if pi,img and ranked pi (denoted as r(pi)) meet the following criteria:

1. max(pi,img) > τ1, where τ1 is the confidence threshold for the image prediction.
2. max(r(pi[K])) > τ2, where τ2 is the confidence threshold for the patch prediction.
3. ∀k ∈ [1, K], argmax(r(pi)[k]) = argmax(pi,img), which means the patch predictions

should remain consistent with the image prediction.

We made some attempts with small-scale data in the early stage and found that the
image prediction confidence scores were high (usually above 0.9); however, the patch pre-
diction confidence scores were relatively low (usually below 0.7). Therefore, we empirically
set τ1 to 0.8 and τ2 to 0.6.

Figure 4. Illustration of the pseudo label generation process. Note that the ranked top K probabilities
r(pi) only displays the dominant values for each r(pi)[k], k ∈ [1, K]. For example, if r(pi)[k] is ’tumor’:
0.6, ’normal’: 0.4, then the dominant value of r(pi)[k] is ’tumor’: 0.6. Thus, max(r(pi)[k]) = 0.6 and
argmax(r(pi)[k]) = ’tumor’.

3.3. Consistency Learning

When the step of pseudo label generation is finished, the model begins to retrain on
the updated training set XL. The details are as follows. First, for an input image x ∈ XL, it
is transformed into aug_x and aug_x′ by twice independent data augmentation operation.
Then, the student model and the teacher model take them as input and output two sets of
patch predictions ŷ and ŷ′, respectively. These two sets should remain consistent based on
the smoothness assumption in semi-supervised learning [46]. Therefore, we apply the KL
divergence consistency loss between ŷ and ŷ′:

Lcons = − 1
M

M

∑
m

C

∑
c

ŷ(m,c) log
ŷ(m,c)

ŷ′(m,c)
. (8)
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where M is the number of patches in the sample x; C is the number of categories; ŷ(m,c)

and ŷ′(m,c) are the predictions of the mth patches at the cth category. Thus, the total loss
function can be written as,

Ltotal = Lsup + λ(E)Lcons, (9)

where Lsup is previously defined in Equation (6). λ(E) is a function of training epoch index
E, which helps control the balance between the supervised loss and the consistency loss.
As is the case with other consistency learning methods [40,47], we use a Gaussian ramp-up
function as λ(E):

λ(E) =

{
λmax · exp[−5(1 − E

Emax
)2], E < Emax

λmax, otherwise
, (10)

where E is the epoch index. When E = Emax, λ reaches the maximum weight λmax for the
consistency loss. We empirically set λmax to 1 and Emax to 20 epochs. For the student model,
the parameters θ are updated through back-propagation algorithm by minimizing Ltotal .
For the teacher model, the parameter θ′ are initially set to θ0 and updated by computing
the exponential moving average of θ:

θ′t = αθ′t−1 + (1 − α)θt. (11)

where t represents the index of the global training steps. α helps control the speed at which
the teacher model parameters θ′ are updated, and we empirically set it to 0.99.

3.4. Datasets

We evaluated our proposed method on a public dataset BCSS [48] and an in-house
dataset. BCSS dataset includes 151 hematoxylin and eosin-stained images corresponding
to 151 histologically-confirmed breast cancer cases. The mean image size is 1.18 mm2

(SD = 0.80 mm2). We followed the train-test splitting rule (https://bcsegmentation.grand-
challenge.org/Baseline/ (accessed on 1 June 2022) ) that the images from these institutes
were used as an unseen testing set to report accuracy: OL, LL, E2, EW, GM, and S3. (The
abbreviations stand for tissue source sites (For more details, see https://docs.gdc.cancer.
gov/Encyclopedia/pages/TCGA_Barcode/) (accessed on 1 June 2022)). Then, the remained
108 images were cropped into 27,207 smaller images (with the size of 224 × 224). We used
1018 of these smaller images for validation and the remained were for training.

The in-house dataset came from Department of Pathology, the First Affiliated Hospital
of Sun Yat-sen University, China. This study was approved by the Ethics Committee of
First Affiliated Hospital of Sun Yat-sen University, and data collection were performed in
accordance with relevant guidelines and regulations. The dataset contains 28,187 images
from 111 cases (WSIs). We used the images of 84 cases for training and validation, and the
images from the remaining cases for test. For the training set, 292 images were from the
non-tumor regions, labeled as ‘normal’.

A total of 24,971 images were from tumor regions but many of them did not contain
any tumor cells. We selected 407 out of these images and labeled 10 patches for each images
using our self-developed annotation tool. Among these labeled images, if one contains
any tumor cells, then at least one patch will be labeled as ‘tumor’, and the image label will
be ‘tumor’, as well. Details about the BCSS dataset and the in-house dataset are shown in
Tables 1 and 2, respectively.
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Table 1. Summary of the BCSS dataset.

Cases/WSIs/ROIs 151
ROIs for training and validation 106
Images (224 × 224) for training 26,189
Images (224 × 224) for validation 1018
ROIs for test 45
Images (224 × 224) for test 9444

Table 2. Summary of the in-house dataset.

Cases/WSIs 111
Cases for training and validation 84
Patch-level-labeled Images (224 × 224) for training 407
Patch-level-labeled Images (224 × 224) for validation 292
Images (224 × 224) from non-tumor regions for training 222
Unlabeled images (224 × 224) for training 24,564
Cases for test 27
Patch-level-labeled Images (224 × 224) for test 2702

4. Results

4.1. Experimental Setup
4.1.1. Training Settings

In the training step, we employed the AdamW optimizer [49] with a base learning rate
of 5 × 10−4. For the learning rate schedule, we adopted a linear warmup for five epochs
(the warmup learning rate was 5 × 10−7), followed by cosine annealing for 20 epochs. The
batch size was 16, and the backbones used for Pseger were pre-trained on ImageNet. All
experiments were done with a RTX 3090. There are five training strategies for PSeger:

- Baseline: train the model only on the labeled data.
- Baseline+CL: train the model only on the labeled data with consistency learning.
- Baseline+CL with Xu: train the model on both the labeled data and unlabeled data with

consistency learning.
- Baseline+ST with Xu: first train the model on the labeled data, then use the trained

model to infer the pseudo labels of the unlabeled data, and finally retrain the model
on both the labeled data and pseudo-labeled data.

- Baseline+ST+CL with Xu: first train the model on the labeled data, then use the trained
model to infer the pseudo labels of the unlabeled data, and finally retrain the model
on both the labeled data and pseudo-labeled data with consistency learning.

4.1.2. Evaluation Metrics

In the experiment of comparison with segmentation models, we choose Intersection
over Union (IoU) as the evaluation indicator, which is calculated as follows,

IoU =
A ∩ B
A ∪ B

, (12)

where A and B are the predicted tumor area and ground truth, respectively. The final IoU
score is obtained by averaging the IoU for each RoI in the BCSS test set.

In the ablation study, since our in-house dataset has no pixel-wise annotations, we
select patch-level and image-level Acc, AUC, and F1 as evaluation indicators. AUC (Area
Under the Curve) score is simply the area under the Receiver Operating Characteristic
(ROC) curve. Acc and F1 are calculated as follows,

Acc =
TP + TN

TP + TN + FP + FN
, (13)

F1 =
2TP

2TP + FP + FN
, (14)
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where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively. The final scores of each evaluation indicator are calculated by averaging the
score for each image in BCSS or the in-house test set.

4.2. Comparison with Segmentation Models

We compared our proposed method to a variety of segmentation models on the BCSS
dataset (Figure 5). We trained PSeger with two strategies: Baseline and Baseline+ST+CL
with Xu. Five patches were labeled for each images in the labeled training set, and ratios
of labeled training data were from 1% to 25%. In comparison, we chose two architectures
of segmentation models, DeepLabv3+ [50] and Unet++ [51], and equipped them with six
backbones: ResNet18, ResNet34, ResNet50 [52], EfficientNet-B1, EfficientNet-B3 [53], and
RegNetX-1.6GF [54], respectively.

Therefore, 12 segmentation models were trained and tested on the BCSS dataset. These
segmentation models and the training and test steps were implemented base on Segmenta-
tionModels [55]. By comparing the two graphs in Figure 5, we can see that when the propor-
tion of labeled training data reaches 25%, our proposed method can achieve 80.31 ± 0.23%
IoU on the test set, comparable with the third-best model (DeepLabv3plus+EfficientNet-b1:
IoU = 80.31 ± 0.95%) out of 12 segmentation models.

Figure 5. Comparison between our proposed method and pixel-wise segmentation models on the
BCSS dataset. Left: IoU values of PSeger trained on different ratios of labeled training data by two
training strategies (Baseline, Baseline+ST+CL with Xu). Right: IoU values of different segmentation
models trained on the full training set. The values of the black dotted lines in the left and right are
both 80.31, representing the IoU that PSeger (trained by Baseline+ST+CL with Xu on the training set
with 25% labeled data) and the third-best segmentation model (DeepLabv3plus+EfficientNet-b1)
have achieved.

4.3. Visualization of Segmentation Results

To further compare our proposed method with the pixel-wise segmentation method,
we selected one of the best performing PSegers (trained by Baseline+ST+CL with Xu with
25% images in the training set labeled, IoU = 80.65%) and compared it with the best
performing model in segmentation models (Unetplusplus+EfficientNet-b3, IoU = 81.74%),
as is shown in Figure 6.

In general, the performance of PSeger is comparable to that of Unetplusplus+EfficientNet-
b3. The largest prediction differences aroused in case 1 and case 4. In case 1, PSeger per-
formed worse because of more false detection on non-tumorous area; in case 4,
Unetplusplus+EfficientNet-b3 performed poorly because of more false positive regions and
much more missed detection on tumorous area.

In addition, Figures 7 and 8 display some segmentation results on our in-house
dataset. Red and green overlays are tumor regions and non-tumor regions judged by
PSeger, respectively, while regions not covered by any overlay are background areas. It
can be seen from Figure 8 that our method can accurately segment the invasive tumor and
distinguish some non-tumor structures easily confused with tumors.
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Input image PSeger
Unetplusplus+
EfficientNet-b3 Ground Truth

Figure 6. Comparison between PSeger and Unetplusplus+EfficientNet-b3. Left: IoU values
(orange bars) of PSeger on 45 tested ROIs and their differences (sky-blue bars) with those of
Unetplusplus+EfficientNet-b3. The bar pairs are sorted in descending order of the values of the blue
bars. Right: Images of four representative cases. From top to bottom, rows are case 1–4, also framed
by black dotted rectangles in the bar graph on the left. From left to right, columns are input images,
segmentation results by PSeger, segmentation results by Unetplusplus+EfficientNet-b3, and ground
truths. Green overlays are annotated or predicted tumor regions, black overlays are ignored regions,
and others are non-tumor regions.

250 μm

1 mm

Figure 7. Segmentation results on a whole slide image.
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250 μm

250 μm

250 μm

250 μm

Figure 8. Segmentation results of some ROIs. (a,b) Examples of invasive tumor. (c) An example of
lobules (a normal structure in breast tissue). (d) An example of lobules surrounded by the invasive
tumor. Lobules in (c,d) are outlined by green dashed polygons.

4.4. Ablation Study
4.4.1. The Effect of the Amount of Labeling

As an important factor affecting model performance, the amount of labeling is reflected
in two aspects: the ratio of annotated training samples to all training samples (denoted
as Xl%), and the number of the labeled patches in each sample (denoted as K). We
conducted experiments on the BCSS dataset to examine the effect of Xl% and K on the
model performance. Figure 9 shows the patch-level AUC values and the image-level AUC
values of Baseline and Baseline+ST+CL with Xu under different Xl% and K, respectively,
and the results are given as the mean of three experiments performed in duplicate.

Overall, the two AUC values have increased with increased Xl% and K. However,
the increase has slowed down with higher Xl% and K. More importantly, Baseline+ST+CL
with Xu always outperforms Baseline on image-level AUC, while the former has better
patch-level AUC than the latter only when Xl = 1% or K = 3.

Figure 9. The effect of the amount of labeling.
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4.4.2. Training with Different Strategies

To assess the contributions of self-training and consistency learning separately, we
performed experiments on the BCSS dataset and the in-house dataset with five different
training strategies mentioned before. Each experiment was repeated five times indepen-
dently and the results are summarized in Tables 3 and 4, where bold and underlined values
represent the best and second-best results on a metric, respectively.

Table 3. Model performance on the BCSS dataset with different training strategies.

Training Strategy AUC Acc F1 AUCimg Accimg F1img

Baseline 88.62 ± 0.99 84.28 ± 0.68 78.63 ± 1.44 93.25 ± 0.71 85.91 ± 0.62 87.21 ± 0.67
Baseline+CL 88.41 ± 1.20 83.71 ± 1.43 77.62 ± 2.45 93.23 ± 0.84 86.06 ± 0.63 87.41 ± 0.70

Baseline+CL with Xu 88.67 ± 0.82 84.02 ± 0.74 78.29 ± 1.68 93.09 ± 0.81 86.17 ± 0.59 87.55 ± 0.61
Baseline+ST with Xu 91.98 ± 0.49 85.58 ± 0.57 80.05 ± 1.28 94.05 ± 0.74 85.48 ± 1.57 86.39 ± 1.83

Baseline+ST+CL with Xu 92.04 ± 0.36 85.72 ± 0.65 80.40 ± 1.53 94.31 ± 0.32 85.89 ± 1.49 86.85 ± 1.75

Table 4. Model performance on the in-house dataset with different training strategies.

Training Strategy AUC Acc F1 AUCimg Accimg F1img

Baseline 89.73 ± 0.60 81.79 ± 0.61 82.98 ± 0.47 97.07 ± 0.72 92.28 ± 0.76 92.36 ± 0.74
Baseline+CL 89.92 ± 0.52 81.96 ± 0.41 83.17 ± 0.27 96.57 ± 0.67 92.46 ± 0.62 92.53 ± 0.61

Baseline+CL with Xu 89.64 ± 0.24 82.12 ± 0.58 83.28 ± 0.4 96.70 ± 1.07 92.84 ± 0.27 92.90 ± 0.26
Baseline+ST with Xu 90.26 ± 0.45 82.97 ± 0.52 83.9 ± 0.37 97.11 ± 1.03 92.65 ± 0.42 92.72 ± 0.41

Baseline+ST+CL with Xu 89.26 ± 0.74 82.14 ± 0.4 83.22 ± 0.4 96.78 ± 0.42 92.86 ± 0.26 92.92 ± 0.25

From Table 3, the strategy of Baseline+ST+CL with Xu helps PSeger achieve the best
performance on four of the six indicators (AUC = 92.04%, Acc = 85.72%, F1 = 80.4%,
AUCimg = 94.31%), significantly higher than the value that the strategy of Baseline has
achieved (AUC = 88.62%, Acc = 84.28%, F1 = 78.63%, AUCimg = 93.25%). The strategy of
Baseline+ST with Xu achieves the second-best performance (AUC = 91.98%, Acc = 85.58%,
F1 = 80.05%, AUCimg = 94.05%), which is roughly similar to that of Baseline+ST+CL with Xu.
Additionally, the performance of Baseline+CL is inferior to that of Baseline. Furthermore,
when Xu is involved in the training procedure, the model (Baseline+CL with Xu) performs
better than Baseline and has reached the highest in the two indicators of Accimg (86.17%)
and F1img (87.55%).

From Table 4, while the performance of PSeger trained by Baseline+ST+CL with Xu
on the in-house dataset is still better than that trained by Baseline, combining the two
semi-supervised strategies (consistency learning and self-training) does not achieve better
performance than either.

4.4.3. Backbone Selections

In this experiment, we used all labeled data in the BCSS training set to train the models
with different backbones, including DenseNet121 [56], EfficientNet-B0, EfficientNet-B1 [53],
HRNet-w18 [57], ResNet18, ResNet34, ResNet50 [52], ResNeXt-101 (32 × 8d) [58], ViT-base [20],
and Swin-base [21] and tested their performance on the BCSS test set (Table 5). The experiment
was repeated five times. From the results, the model using Swin-base as backbone achieves the
best performance, significantly better than other models.

Nevertheless, the CNN-based models still achieve decent outcomes. It is somewhat
surprising that the model using ViT-base as the backbone is not as good as the models using
the CNN architecture in the patch-level evaluation indexes; however, it can surpass most
CNN architecture models in the image-level evaluation indexes (second only to ResNeXt-101
(32 × 8d)).
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Table 5. Model performance on the BCSS dataset using different backbones.

Backbone AUC ACC F1 AUC (Image) ACC (Image) F1 (Image)

DenseNet121 94.33 ± 0.06 87.47 ± 0.09 83.04 ± 0.13 95.68 ± 0.12 89.67 ± 0.22 91.22 ± 0.20
EfficientNet-B0 94.76 ± 0.12 87.57 ± 0.19 83.00 ± 0.37 95.66 ± 0.08 89.57 ± 0.24 91.14 ± 0.18
EfficientNet-B1 94.57 ± 0.04 87.30 ± 0.04 82.71 ± 0.17 95.80 ± 0.10 89.60 ± 0.07 91.15 ± 0.02

HRNet-w18 94.31 ± 0.09 87.21 ± 0.14 82.47 ± 0.27 95.99 ± 0.10 89.99 ± 0.18 91.39 ± 0.14
ResNet18 94.03 ± 0.09 87.04 ± 0.12 82.26 ± 0.21 95.35 ± 0.19 88.96 ± 0.26 90.56 ± 0.22
ResNet34 94.35 ± 0.05 87.37 ± 0.09 82.85 ± 0.16 95.72 ± 0.16 89.62 ± 0.28 91.17 ± 0.21
ResNet50 94.11 ± 0.12 87.33 ± 0.13 82.76 ± 0.29 95.94 ± 0.18 90.01 ± 0.38 91.48 ± 0.30

ResNeXt-101 (32 × 8d) 94.64 ± 0.09 87.58 ± 0.09 83.11 ± 0.13 96.25 ± 0.07 90.34 ± 0.14 91.64 ± 0.09
ViT-base 94.47 ± 0.07 87.39 ± 0.06 82.94 ± 0.08 96.16 ± 0.09 90.20 ± 0.21 91.66 ± 0.17

Swin-base 95.41 ± 0.05 88.40 ± 0.08 84.29 ± 0.12 96.64 ± 0.10 91.47 ± 0.04 92.70 ± 0.05

5. Discussion

In the ablation study, we first investigated the effect of the amount of labeling on model
performance (Figure 9). On the image-level AUC, the model trained by Baseline+ST+CL
with Xu was always better than that trained by Baseline under otherwise equal conditions.
However, on the patch-level AUC, that was not always true, particularly when K > 3
and Xl% > 1%. This meant that the proposed semi-supervised method can effectively
improve the image classification performance; however, it enhanced the patch classification
performance only when the amount of annotation was small. When the annotation amount
increased, the semi-supervised learning method was not as good as the fully-supervised
learning method. Further study is therefore needed to optimize semi-supervised training.

Next, we performed experiments on different training strategies (Tables 3 and 4).
Both consistency learning and self-training benefited the model, and self-training im-
proved the model performance more significantly. Additionally, combining the consistency
learning strategy with the self-training strategy has the potential to fully utilize the pseudo-
annotated data and further improve model performance. However, it depends on the
dataset and requires appropriate parameter settings to achieve the expected result.

Finally, the experiment of training with different backbones (Table 5) proves that our
proposed method is suitable for transformer-based models and models with CNN architec-
ture. By comparing the performance of different models, we found that Swin Transformer
was better than CNN models on both image-level metrics and patch-level metrics.

In comparison, Vision Transformer was only better than most CNNs on image-level
metrics and inferior to many CNNs on patch-level metrics. This may because the patch
classification accuracy depends on the ability to capture localized features and the sensitiv-
ity to context-driven features. Although Vision Transformer is more sensitive to contextual
features than CNN models, its local feature extraction ability is poorer, which affects the
final patch classification accuracy.

Our proposed method can be improved in several ways:

- Hierarchical patch-level label. Here, we only considered the annotation form at a sin-
gle scale, which did not take advantage of the information at different magnifications
of the pathological images. Therefore, the annotation can be extended to multiple
scales, allowing the model to learn from hierarchical information.

- Automatic patch selection for labeling. Choosing which patches to label is subjective
and will affect the learning effect of the model. Hence, an active learning mecha-
nism [59] can be introduced to automatically find the most informative patches to
label, improving learning efficiency.

- Hybrid CNN-transformer architecture. In terms of local feature extraction and global
feature capture, CNN and transformer have respective advantages, as analyzed before.
Therefore, a hybrid CNN-transformer architecture, like in [60,61], might combine the
benefits of the two better to achieve greater performance.

- More advanced semi-supervised algorithm. Our semi-supervised algorithm still has
problems, such as being sensitive to hyperparameters. In the future, ideas from some
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advanced semi-supervised algorithms in recent years, such as Mixmatch [62], can be
introduced into the training algorithm. At the same time, some constraints can be
added to prevent the model from overfitting, such as the consistency of prediction
results between the patch classification branch and the image classification branch.

6. Conclusions

In this work, we proposed a novel form of annotation, sparse patch annotation, and
developed an annotation tool to achieve this new way of labeling. We created a patch-wise
segmentation model called Pseger to handle this new label, which was equipped with an
innovative semi-supervised algorithm to fully utilize the unlabeled data. We compared the
proposed method to various pixel-wise segmentation models (Figure 5). It was shown that,
when trained with only 25% labeled data (five patches for each labeled image), our model
achieved comparable segmentation results with the semantic segmentation models trained
on fully pixel-level labeled data.

Our proposed method enables pathologists to focus their time and energy on labeling
the representative parts of the image rather than carefully delineating complex boundaries,
significantly reducing the annotation burden.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC Area Under the Curve
BCSS Breast Cancer Semantic Segmentation
CT Computed Tomography
CL Consistency Loss
HCC Hepatocellular Carcinoma
H&E Hematoxylin and Eosin
IoU Intersection over Union
LN Layer Normalization
MLP Multi-layer Perceptron
MRI Magnetic Resonance Imaging
MSA Multi-head Self-attention
ROC Receiver Operating Characetristic
ROI Region of Interests
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SD Standard Deviation
SSL Semi-supervised Learning
ST Self-training
ViT Vision Transformer
WSI Whole Slide Image
WSL Weakly-supervised Learning
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Abstract: Malaria is a life-threatening disease caused by female anopheles mosquito bites. Various
plasmodium parasites spread in the victim’s blood cells and keep their life in a critical situation. If
not treated at the early stage, malaria can cause even death. Microscopy is a familiar process for
diagnosing malaria, collecting the victim’s blood samples, and counting the parasite and red blood
cells. However, the microscopy process is time-consuming and can produce an erroneous result in
some cases. With the recent success of machine learning and deep learning in medical diagnosis, it is
quite possible to minimize diagnosis costs and improve overall detection accuracy compared with
the traditional microscopy method. This paper proposes a multiheaded attention-based transformer
model to diagnose the malaria parasite from blood cell images. To demonstrate the effectiveness
of the proposed model, the gradient-weighted class activation map (Grad-CAM) technique was
implemented to identify which parts of an image the proposed model paid much more attention to
compared with the remaining parts by generating a heatmap image. The proposed model achieved a
testing accuracy, precision, recall, f1-score, and AUC score of 96.41%, 96.99%, 95.88%, 96.44%, and
99.11%, respectively, for the original malaria parasite dataset and 99.25%, 99.08%, 99.42%, 99.25%,
and 99.99%, respectively, for the modified dataset. Various hyperparameters were also finetuned to
obtain optimum results, which were also compared with state-of-the-art (SOTA) methods for malaria
parasite detection, and the proposed method outperformed the existing methods.

Keywords: malaria parasite; image analysis; deep learning; transformer-based model; grad-cam
visualization

1. Introduction

The World Health Organization states that about 438,000 and 620,000 people died
from malaria in 2015 and 2017, respectively, whereas 300 to 500 million people are infected
by malaria [1]. Malaria virus transmission is influenced by weather conditions that are
suitable for a mosquito to live for extended periods, where environmental temperatures are
high enough, particularly after rain. For that reason, 90% of malaria cases occur in Africa,
and cases are also frequent in humid areas, such as Asia and Latin America [2–4]. If the
disease is not treated at the early stages, this may even lead to death. The usual process
for detecting malaria starts with collecting blood samples and counting the parasites and
red blood cells (RBCs). Figure 1 shows images of RBCs both uninfected and infected by
the malaria parasite. This process needs medical experts to collect and examine millions
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of blood samples, which is costly, time-consuming, and error-prone processes [5]. There
are two traditional approaches for detecting malaria: one is very time-consuming because
it needs to identify at least 5,000 RBCs, and another is an antigen-based fast diagnostic
examination that is very costly. To overcome the limitations of the traditional approaches, in
the last few years, researchers have focused on solving this problem using several machine
learning and deep learning algorithms.

Figure 1. (a) Normal and (b) malaria-infected RBC images.

A number of studies have been carried out recently to identify malaria using image
analysis by artificial intelligence (AI). Bibin et al. proposed a deep belief network (DBN)
to detect malaria parasites (MPs) in RBC images [6]. They used 4100 images for training
their model and achieved a specificity of 95.92%, a sensitivity of 97.60%, and an F-score of
89.66%. Pandit and Anand detected MPs from the RBC images using an artificial neural
network [7] using 24 healthy RBC and 24 infected RBC images in order to train their model
and obtained an accuracy of between 90% and 100%. Jain et al. used a CNN model to
detect MPs from RBC images [8] without using GPU and preprocessing techniques while
providing a low-cost detection algorithm, which achieved an accuracy of 97%. Rajaraman
et al. pretrained CNN models for extracting the features from 27,558 RBC cell images to
detect MPs and achieved an accuracy of 92.7% [5]. Alqudah et al. developed a lightweight
CNN to accurately detect MPs using RBC images [9]. They trained their model using
19,290 images with 4134 test data and achieved an accuracy of 98.85%. Sriporn et al.
used six transfer learning models (TL): Xception, Inception-V3, ResNet-50, NasNetMobile,
VGG-16, and AlexNet to detect MPs [10]. Several combinations of activation function and
optimizer were employed to improve the model’s effectiveness. A combined accuracy of
99.28% was achieved by their models trained with 7000 images. Fuhad et al. proposed
an automated CNN model to detect MPs from RBC images [11] and performed three
training techniques—general, distillation, and autoencoder training—to improve model
accuracy after correctly labeling the incorrectly labeled images. Masud et al. proposed
leveraging the CNN model to detect MPs using a mobile application [12] and a cyclical
stochastic gradient descent optimizer and achieved an accuracy of 97.30%. Maqsood et al.
developed a customized CNN model to detect MPs [13] with the assistance of bilateral
filtering (BF) and image augmentation methods and achieved an accuracy of 96.82%. Umer
et al. developed a stacked CNN model to predict MPs from thin RBC images and achieved
an outstanding performance with an accuracy of 99.98%, precision of 100%, and recall
of 99.9% [14]. Hung and Carpenter proposed a region-based CNN to detect the object
from the RBC images [15]. The total accuracy using one-stage classification and two-stage
classification was 59% and 98%, respectively. Pattanaik et al. suggested a methodology
for detecting malaria from cell images using computer-aided diagnosis (CAD) [16]. They
employed an artificial neural network with a functional link and sparse stacking to pretrain
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the system’s parameters and achieved an accuracy of 89.10% and a sensitivity of 93.90% to
detect malaria from a private dataset of 2565 RCB pictures gathered from the University
of Alabama at Birmingham. Olugboja et al. used a support vector machine (SVM) and
CNN [17] to obtain accuracies of 95% and 91.66%, respectively. Gopakumar et al. created
a custom CNN based on a stack of images [18]. A two-level segmentation technique was
introduced after the cell counting problem was reinterpreted as a segmentation problem.
An accuracy of 98.77%, a sensitivity of 99.14%, and a specificity of 99.62% were achieved
from the CNN focus stack model.

Khan et al. used three machine learning (ML) models—logistic regression (LR), deci-
sion tree (DT), and random forest (RF)—to predict MPs from RBC images [19]. Firstly, they
extracted the aggregated features from the cell images and achieved a high recall of 86%
using RF. Fatima and Farid developed a computer-aided system (CAD) to detect MPs from
RBC images [20] upon removing the noise and enhancing the quality of the images using
the BF method. To detect the MPs, they used adaptive thresholding and morphological
image processing and achieved an accuracy of 91%. Mohanty et al. used two models,
autoencoder (AE) [21] and self-organizing maps (SOM) [22], to detect MPs and found that
AE was better than SOM, which achieved an accuracy of 87.5% [23]. Dong et al. proposed
three TL models, LeNet [24], AlexNet, and GoogLeNet [25], to detect MPs [26]. SVM was
used to make a comparison with the TL models, which achieved an accuracy of 95%, which
was more significant than the accuracy of 92% using the support vector machine (SVM).
Anggraini et al. proposed a CAD to detect MPs from RBC images [27] with gray-scale
preprocessing for stretching the contrast of the images and global thresholding to gain the
different blood cell components from the images.

So far, many computerized systems have been proposed; most of them were based
on traditional machine learning or conventional deep learning approaches, which pro-
vided satisfactory performances, but there is still scope for further improvement. After
developing the vision transformer model [28], the attention-based transformer model has
shown promising results in medical imaging, bioinformatics, computer vision tasks, etc.
compared with the conventional convolution-based deep learning model. However, to
date, no attention-based works have been carried out to detect malaria parasites. Again,
the interpretability of a deep CNN model is a major issue. More recently, visualizing what
a deep learning model has learned has attracted significant attention to the deep learning
community. However, most previous works have failed to introduce the interpretability
of the model for malaria parasite detection. To overcome these issues, in this work, an ex-
plainable transformer-based model is proposed to detect the malaria parasite from the cell
image of blood smear images. Various hyperparameters, such as encoder depth, optimizer
(Adam and stochastic gradient descent (SGD)), batch size, etc., were experimented with to
achieve better performance. Two malaria parasite datasets (original and modified) were
taken into consideration to conduct the experiments.

The key contributions of this paper are:

(1) A multiheaded attention transformer-based model was implemented for the detection
of malaria parasites for the first time.

(2) The gradient-weighted class activation map (Grad-CAM) technique was applied to
interpret and visualize the trained model.

(3) Original and modified datasets of malaria parasites were used for experimental analysis.
(4) The proposed model for malaria parasite detection was compared with SOTA models.

2. Proposed Methodology

Figure 2 shows the overall design of the proposed methodology. Firstly, the raw
images were preprocessed, followed by dataset splitting into training and testing sets to
build the model. Finally, to visualize the trained model, Grad-CAM was used to show the
heatmap image.
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Figure 2. The overall design of the proposed methodology.

2.1. Dataset Description

The dataset for malaria detection contains segmented RBC images. It is archived at the
National Library of Medicine and is also openly accessible at “https://lhncbc.nlm.nih.gov/
LHC-publications/pubs/MalariaDatasets.html” (accessed on 10 May 2022). Rajaraman
et al. [5] developed a segmentation process and implemented it for segmenting RBC images
from thin blood smear images. The dataset has a total 27,588 RBC images, among which
13,779 are infected and 13,779 are uninfected images of the malaria parasite. A detailed
distribution of the dataset is given in Table 1. This dataset was further studied by a
medical expert in the research work conducted by Fuhad et al. [11]. They discovered some
suspicious data in the dataset, including data that seemed to be infected but was labeled as
uninfected, as well as data that appeared uninfected but was labeled as infected. The data
that had been mislabeled was afterward manually annotated. These incorrectly labeled
data were simply set aside during annotation, with 647 false infected and suspicious data
and 750 false uninfected and suspicious data being eliminated. The updated dataset was
uploaded to Google Drive [29], which is open to the public and also taken into account in
this work. In both datasets, 20% of the images were used for testing purposes, and 80% of
the images were used for training the proposed model.

Table 1. Data distribution in the dataset used in this work.

Dataset
Number of

Healthy Images
Number of

Infected Images
Total

Total Training
Samples (80%)

Total Testing
Samples (20%)

Original dataset [5] 13,779 13,779 27,558 22,046 5512
Modified dataset [11] 13,029 13,132 26,161 20,928 5233

2.2. Preprocessing (Resize)

The raw images of the dataset come in a variety of sizes. As the proposed model
contains fully connected layers in the classifier layer, the model needs a fixed-sized input
image [30]. Therefore, the raw images were resized into 96 × 96 × 3.

2.3. Model Architecture

Various attention-based models have been developed recently. To date, the vision
transformer has most attracted researchers for computer vision tasks [28]. The compact
convolutional transformer (CCT) is a slightly modified model from the vision transformer
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introduced in 2021 [31]. CCT with Grad-CAM visualization was implemented in this study
to detect the malaria parasite. Figure 3 shows the model architecture of CCT.

Figure 3. Compact convolutional transformer (CCT) model architecture.

2.3.1. Convolutional Block

The traditional convolutional layer and the ReLU(.) activation function was used. A
3 × 3 kernel size with stride 3 was used to make it a nonoverlapping slide. After that, a
maxpool layer was used. Instead of a full input image in the transformer model, the input
image is divided into patches/grid images, which are given to the transformer’s encoder.
In the proposed transformer-based model, the convolution filter was used for patching.
Instead of patching images directly, these convolutional blocks took the input images to a
latent representation that provides more flexibility than the vision transformer. Filters for
the convolutional layer were employed to align with the vision transformer embedding
dimension. Given an input image X ∈ R

H×W×C

X′ = MaxPool(ReLU(Conv2d(X))) ∈ R
H′×W ′×E (1)

where E is the number of filters = 768.
After the convolutional layer, the output image was reshaped from R

H′×W ′×E to R
N×E

for converting it to the convolutional patches, where the number of sequences or patches
N ≡ (H′W ′). This convolutional block maintains the locally spatial information. To keep
tracking the position or sequence number of each patch, a learnable positional embedding
was added.

2.3.2. Multiheaded Attention Mechanism

The main part of the compact convolutional transformer is the multiheaded self-
attention (MSA). The whole part of an image is not necessary for extracting valuable
information; the attention mechanism focuses on the valuable part. Various attention
mechanisms have been developed so far. However, the multiheaded self-attention was
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first introduced in the vision transformer. Figure 4 shows the scaled dot-product-based
multihead attention mechanism [32].

Figure 4. Scaled dot-product-based multihead attention mechanism.

The input is projected to queries, keys, and values using different learnable weights
with linear layers in self-attention.

Q = (X′ ∈ R
N×E)×

(
WQ ∈ R

E×d
)

(2)

K = (X′ ∈ R
N×E)×

(
WK ∈ R

E×d
)

(3)

V = (X′ ∈ R
N×E)×

(
WV ∈ R

E×d
)

(4)

Now queries, Q ∈ R
N×d; keys, K ∈ R

N×d; and values, V ∈ R
N×D. In the case of a

scaled dot-product form of attention, the dot product is computed between the queries and
keys, which is scaled by √dk . After that, nonlinear softmax function is imposed to obtain
the attention weights.

Z′ =
(

Q ∈ R
N×d

)
×

(
KT ∈ R

d×N
)

(5)

Z = so f tmax
(
(Z′ ∈ R

N×N
)

/√dK) (6)

This Z ∈ R
N×N is the attention weight among the patches. This attention weight is

then multiplied with values to obtain the self-attention weighted output H ∈ R
N×d

H =
(

Z ∈ R
N×N

)
x
(

V ∈ R
N×d

)
(7)

Therefore, the scaled dot-product attention function can be written in shorted form
as below:

Attention(Q, K, V) = so f tmax

(
QKT

√dK

)
V (8)

Rather than performing a single attention function with d-dimensional queries, keys,
and values, it is advantageous to linearly project queries, keys, and values to dh, dk, and
dv dimensions, h times using different learnable weights with linear layers. After that, the
scaled dot-product attention function is applied in parallel in all the h heads, resulting in h
number of dv-dimensional values. These attention-weighted values are then concatenated
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and further projected with linear layers. The multiheaded attention mechanism helps the
model attend to different parts from different representation subspaces. In this work, dh =
dk = dv = d was applied, and the number of heads used was h = 8.

headi = Attention(Q, K, V) ∈ R
N×d (9)

MultiHead(Q, K, V) = Concatenate[head1, head2, . . . headh]W0 (10)

where W0 ∈ R
hd×d.

2.3.3. Transformer Encoder

The image patches come from the convolutional block and are passed through the
transformer encoder. Firstly, layer normalization is applied to the image patches that
normalize the activations along the feature direction instead of the mini-batch direction
in batch normalization. Then multiheaded self-attention is applied to these normalized
patches. The results are added with the residual connected original patches, as shown in
Figure 4. Further layer normalization and a feed-forward block are imposed along with
another residual connection. The feed-forward block has two linear layers along with a
dropout layer and a GELU nonlinearity. The first linear layer expands the dimension four
times, and the second linear layer reduces the dimension back (feed-forward block).

O′ = Linear
(

A ∈ R
N×d

)
∈ R

N×4d (11)

O′′ = Dropout
(
GELU

(
O′)) ∈ R

N×4d (12)

O = Linear
(

O′′ ∈ R
N×4d

)
∈ R

N×d (13)

The outcomes from these two paths are added again. For this work, 16 transformer
encoders were implied sequentially.

2.3.4. Sequence Pooling

In the vision transformer, a class token is used to classify the final output. However, in
the compact convolutional transformer, instead of using a class token, sequence pooling is
used. Sequence pooling pools over the entire sequence of data. Given the output of the
last transformer encoder block XL ∈ R

b×N×d, b is the mini-batch size, N is the number of
sequences, XL is sent through a linear layer, and then the output X′

L from this linear layer
is multiplied with XL.

X′
L =∈ so f tmax

(
Linear

(
XL ∈ R

b×N×d
))

∈ R
b×N×1 (14)

F =
(

X′
L ∈ R

b×N×1
)

.
(

XL ∈ R
b×N×d

)
=

(
X′T

L ∈ R
b×1×N

)(
XL ∈ R

b×N×d
)

= Reshape
(

X′′
L ∈ R

b×1×d
)
∈ R

b×d

(15)

The output F is then sent to the final linear classifier to classify the input data.

3. Grad-CAM Visualization

The gradient-weighted class activation map (Grad-CAM) is a technique to interpret
what the model has actually learned [33]. This technique generates a class-specific heatmap
using a trained deep learning model for a particular input image. This Grad-CAM approach
highlights the input image regions where the model pays much attention to producing
discriminative patterns from the last layer before the final classifier, as the last layer con-
tains the most highly semantic features. Grad-CAM uses the feature maps from the last
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convolutional layer, providing the best discriminative semantics. Let yc be the class score
for class c from the classifier before the SoftMax layer. Grad-CAM has three basic steps:

Step-1: Compute the gradients of class score yC with respect to the feature maps Ak of
the last convolutional layer before the classifier, i.e.,

∂yc

∂yk ∈ R
F×U×V

where the feature map is
Ak ∈ R

F×U×V

Step-2: To obtain the attention weights αc, global average pool the gradients over the
width (indexed by i) and height (indexed by j).

αc
k = 1

Z ∑
i

∑
j

∂yc

∂Ak
ij

=∈ R
F×1×1

=∈ R
F[simpli f y]

(16)

Step-3: Calculate the final Grad-CAM heatmap by the weighted (αc) sum of feature
maps (Ak) and then apply the ReLU (.) function to retain only the positive values and turn
all the negative values into zero.

Lc
heatmap = ReLU

(
∑
k

αc
k Ak

)
=∈ R

U×V
(17)

Firstly, the proposed model was trained with the training samples from the dataset.
After the training phase was completed, the trained model was used for evaluation with
the testing parts of the dataset. In addition, to explain what the trained model had actually
learned, the Grad-CAM technique explained above was applied. Various test images were
selected randomly to generate the corresponding heatmap from the trained model using the
Grad-CAM approach. In this case, the multilayer perceptron layer of the last transformer
encoder before the final classifier was chosen as the target layer. Features and gradients
were extracted from that layer, and a heatmap was generated using the above Grad-CAM
formula. Subsequently, the heatmap was resized with nearest-neighbor interpolation as
the same size as the input image, and the heatmap was overlaid with the input image.
Figure 5 shows the original input images and their corresponding heatmap images. For
the heatmap image conversion, a jet color map was used. It can be seen from the overlaid
heatmap images that the lesion areas are much more reddish than the other regions of the
image. These reddish areas are the main lesions responsible for the malaria parasite [34].

There is no existing segmentation dataset of RBC cell images with the parasite mask
on the RBC cell image for quantitative analysis. Annotation made in the dataset used in
this work was that normal RBC images come with a clean version without any lesions,
but the parasite images come with lesions [34]. Based on the presence of these lesions,
the RBC cell images were classified either as normal or parasite. To show explainability
of the trained model, the CAM technique was applied to generate heatmap images that
showed the actual parts (lesions) the model paid attention to during feature extraction and
classification. This technique can bring new insights toward detecting MPs accurately.
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Figure 5. Grad-CAM localization map of the input images (a,b) and their corresponding overlaid
heat map (a’,b’).

4. Result Analysis

4.1. Performance Evaluation Procedure

Pytorch python framework was used to conduct the whole experiment. The model
was run on a highly computing GPU-supported Desktop PC with 11th Generation Intel (R)
Core (TM) i9-11900 CPU @2.50GHz, 32 GB RAM, NVIDIA GeForce, and RTX 3090 24 GB
GPU running on a 64-bit Windows 10 Pro operating system.

The cell images were preprocessed, then the proposed transformer-based model was
trained using original and modified datasets. The performance of the model was tested
using 20% of the dataset in both cases. In both cases, the proposed model was trained
for 50 epochs, and the learning rate was fixed to 0.001. Various hyperparameters such
as optimizers, batch size, and transformer’s encoder depth were experimented with for
performance analysis.

For measuring the performance of the deep learning model, various evaluation metrics
were used. The proposed work was evaluated with confusion matrix (CM), accuracy,
precision, recall, f1-score, and area under the curve (AUC) [35,36]:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(21)
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where TP = true positive means that a malaria-infected person is correctly detected as a
malaria-infected person, TN = true negative means that a noninfected person is correctly
detected as a noninfected person, FP = false positive means that a noninfected person is
wrongly detected as an infected person, and FN = false negative means that an infected
person is wrongly detected as a noninfected person.

The original and modified datasets were considered for balanced binary classifica-
tion. To examine the performance of the proposed model, various hyperparameters were
considered. Among various optimization methods developed so far for deep learning,
“Adam” [37] and “SGD” [38] are the two most used and popular optimization ones. There-
fore, to demonstrate their effectiveness in malaria parasite detection, the proposed model
was trained using both optimizers. Batch size is also a key factor for the model’s learning
and obtaining more generalized results. A larger batch size makes a model speed up the
training process, whereas a much larger batch size very often provides poor generalization.
In this study, the proposed model was also tuned with various batch sizes (8, 16, 32, and
64). Furthermore, different encoder depths (8, 12, and 16) were also experimented with.

4.2. Results Obtained with Original Dataset
4.2.1. Adam Optimizer for Original Dataset

The different performance criteria of the proposed model with the ADAM optimizer,
for instance, precision, recall, F1-score, and accuracy, were calculated and are presented
in Table 2. The ROCs of the model with the ADAM optimizer for different batch sizes are
presented in Figure 6, which shows that the highest AUC of 64.61% was achieved using
a batch size of 8. This could be due to the fact that the model trained with larger batch
sizes with the Adam optimizer did not show a continuous improvement. Even though the
ADAM optimizer produced very high precision, the other results for recall, F1-score, and
accuracy were disappointing.

Table 2. Model’s performance for various batch sizes with ADAM optimizer and original dataset.

Batch Size Precision (%) Recall (%) F1-Score (%) Accuracy (%)

8 52.10 62.03 56.64 60.11
16 63.17 56.05 59.40 56.82
32 100 50 66.67 50
64 99.96 49.99 66.65 49.98

Note: Bold numbers indicate highest value within a column.

Figure 6. The ROCs of the proposed model obtained with original dataset and ADAM optimizer.
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4.2.2. SGD Optimizer for Original Dataset

The effectiveness of the model with the SGD optimizer, along with various batch sizes,
is briefly discussed in this section. The model’s training and test accuracies for the original
dataset are shown in Figure 7, and the training loss curve in Figure 8.

Figure 7. Accuracy curves of (a) training and (b) test phases of the proposed model obtained with
original dataset and SGD optimizer.

Figure 8. Loss curve of training phase of the proposed model obtained with original dataset and SGD
optimizer.

The proposed model’s highest training accuracy was 98.61%, which was achieved
with a batch size of 8, whereas the highest testing accuracy was 96.86% with a batch size of
64. A batch size of 64 resulted in the shortest training loss of 0.1%. To calculate how well
the proposed model with the SGD optimizer detects malaria-infected patients, the same
number of cell images as in Adam was used for testing. A number of predicted patients are
shown by the CM in Figure 9. The highest accuracy of 96.41% was achieved with the SGD
optimizer and a batch size of 32, and the highest recall of 95.88% was achieved for the same
batch size (Table 3).

Table 3. Model’s performance for various batch sizes with SGD optimizer and original dataset.

Batch Size Precision (%) Recall (%) F1-Score Accuracy (%)

8 97.06 94.66 95.84 95.79
16 96.73 95.56 96.14 96.12
32 96.99 95.88 96.44 96.41
64 97.50 92.53 94.95 94.81

Note: Bold numbers indicate highest value within a column

123



Sensors 2022, 22, 4358

Figure 9. Confusion matrix of the proposed model obtained with original dataset, SGD optimizer,
and batch sizes of (a) 8 (b) 16 (c) 32, and (d) 64.

Figure 10 shows the ROCs of the proposed model with the SGD optimizer for various
batch sizes, and the results indicated the greatest AUC of 99.11% was reached with batch
sizes of 16 and 32.

Figure 10. The ROC of the proposed model obtained with original dataset and SGD optimizer.

4.2.3. Encoder Depth for Original Dataset

To show the impact of different depths of the encoder, the SGD optimizer was used,
and the batch size was fixed to 16. The highest test accuracy of 96.66% was obtained with
an encoder depth of 8 (Figure 11).

ROC scores of ~99% were achieved from the model with all encoder depths of 8, 12,
and 16 (Figure 12).
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Figure 11. (a) Training curves and (b) test curves of the proposed model obtained with original
dataset and encoder depths of 8, 12, and 16.

Figure 12. ROC curves of the proposed model obtained with original dataset and encoder depths of
8, 12, and 16.

4.3. Results Obtained with Modified Dataset
4.3.1. Adam Optimizer for Modified Dataset

The proposed transformer-based model’s classification performance with the modified
dataset and Adam optimizer was evaluated and is presented in Table 4. Again, other than
precision, the other performance results were poor. The highest ROC of 59.7% was achieved
with a batch size of 16 (Figure 13), indicating no promising results.

Table 4. Model’s performance for various batch sizes with ADAM optimizer and modified dataset.

Batch Size Precision (%) Recall (%) F1-Score (%) Accuracy (%)

8 58.37 53.58 55.87 54.08
16 48.12 59.69 53.28 57.98
32 100 49.80 66.49 49.80
64 100 49.80 66.49 49.80

Note: Bold numbers indicate highest value within a column.

125



Sensors 2022, 22, 4358

Figure 13. The ROC of the proposed model obtained with modified dataset and ADAM optimizer.

4.3.2. SGD Optimizer for Modified Dataset

Furthermore, the SGD optimizer was used with various batch sizes for the modified
dataset, and accuracy and loss curves are shown in Figures 14 and 15, respectively.

Figure 14. Accuracy curves of (a) training and (b) test phases of the proposed model obtained with
modified dataset and SGD optimizer.

Figure 15. Loss curve of training phase with modified dataset, SGD optimizer, and batch sizes of 8,
16, 32, and 64.
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The CMs for the model with the SGD optimizer are shown in Figure 16. Although the
highest accuracy of 99.25% and recall of 99.50% were achieved for a batch size of 64 with
the SGD optimizer, the results showed insignificant differences between the batch sizes
(Table 5). The ROCs of each batch size are demonstrated in Figure 17; the results did not
show much difference, with AUC values close to 1.0 in all cases.

Figure 16. Confusion matrix of the proposed model obtained with modified dataset, SGD optimizer,
and batch sizes of (a) 8, (b) 16, (c) 32, and (d) 64.

Table 5. Model’s performance for various batch sizes with SGD optimizer and modified dataset.

Batch Size Precision (%) Recall (%) F1-Score (%) Accuracy (%)

8 99.08 99.42 99.25 99.25
16 99.12 99.16 99.14 99.14
32 99.19 99.27 99.23 99.24
64 99.00 99.50 99.25 99.25

Note: Bold numbers indicate highest value within a column.

Figure 17. The ROC of the proposed model obtained with SGD optimizer and modified dataset.
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4.3.3. Encoder Depth for Modified Dataset

Encoder depth was also finetuned for the modified dataset. The larger model with
higher encoder depth showed higher fluctuation, and the highest test accuracy of 99.29%
was obtained from the proposed model with encoder depths of 8 and 16. ROC curves in
Figure 18 ensured that all models achieved the same high AUC score of approximately 99.9%.

Figure 18. ROC curves of the proposed model obtained with modified dataset and encoder’s depth
of 8, 12, and 16.

4.4. Performance Comparison between Two Datasets

With smaller batch sizes, the learning process became easier and provided the best
evaluation results, but on the other hand, with greater batch sizes, the transformer-based
model converged faster and provided much more generalization. After correcting the
mislabeled data in the original datasets, the problem became a much easier balanced
binary classification. From the above experimental results, it was observed that the Adam
optimizer showed poor results in all cases, as it was not guaranteed to converge to the
global optimum point. On the other hand, the results obtained using the SGD optimizer
were significantly better than that obtained by the Adam optimizer for all performance
criteria employed in this work. From Figure 19, it was observed that the classification
performance of the model was optimistic with the modified dataset rather than the original
dataset. Therefore, the proposed model with the SGD optimizer and modified dataset
could be the best combination for accurate MP detection.

Figure 19. Performance comparison of original and modified datasets for the transformer-based
model with SGD optimizer.
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However, a similar comparison made between the two datasets using the Adam
optimizer showed no improvement with the modified dataset. Furthermore, this indicated
that for both datasets, the SGD optimizer could produce optimistic results.

4.5. Performance Comparison with Previous Works

In this section, the performance of the proposed model is compared with several SOTA
methods for both datasets. The details of the SOTA methods have been described in the
Introduction section.

For the original dataset, the first five rows show the results of the SOTA models in
Table 6. It was observed that the highest accuracy score of 91.80% was achieved from the
previous work by Fatima and Farid [20]. On the other hand, the proposed transformer-
based model achieved a promising accuracy of 96.41% when the SGD optimizer was used
with a batch size of 32 and a learning rate of 0.001, almost 5% higher than the other best
work reported to date. This suggests that the proposed model could produce even better
results than that reported using the same dataset.

Table 6. Performance comparison with previous works.

Reference No Model Used Optimizer
Learning

Rate
Batch Size

Precision
(%)

Recall (%) AUC (%)
Accuracy

(%)

[39] Custom CNN Adam - - - - - 95

[20] Image
processing - - - 94.66 - - 91.80

[19] Random
forest - - - 82.00 86.00 - -

[5] CNN SGD 0.0005 - 94.70 95.90 99.90 -

[16] Neural
network - - - 93.90 - - 83.10

Proposed
work (original

dataset)
Transformer SGD 0.001 32 96.99 95.88 99.11 96.41

[9] CNN Adam 0.001 128 98.79 - - 98.85
[11] Custom CNN SGD 0.01 32 98.92 99.52 - 99.23

Proposed
work

(modified
dataset)

Transformer SGD 0.001 32 99.00 99.50 99.99 99.25

Note: Bold numbers indicate highest value within a column.

For the modified dataset, the highest accuracy of 99.23% was achieved by Fuhad
et al. [11]. However, the AUC of the SOTA models did not achieve a satisfactory level,
whereas the proposed model showed an optimistic AUC score of 99.99% when the SGD
optimizer with a batch size of 64 and a learning rate of 0.001 was employed. The highest
AUC of the proposed model proved the highest differentiation capability between malaria-
infected and uninfected patients. The table suggested that the proposed transformer-
based model achieved a satisfactory classification performance compared with the SOTA
models mentioned.

RBC images were collected from an open-source repository. However, the real working
procedure starts with segmenting, first, the RBCs in blood smear images that contain
various other cells. Afterward, from the affected regions of the RBCs, the malaria parasite is
classified. In this work, the segmentation task was ignored, and readymade RBC cell images
were used only to classify the malaria parasite. Conventional CNN models show image-
specific inductive bias [40], and they are based on a local receptive field. To capture global
information, CNN models need larger kernels or very deep network models. However, the
transformer models are free from these shortcomings, and, therefore, the transformer-based
model proposed for the malaria parasite showed excellent performance. Moreover, the
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Grad-CAM visualization demonstrated its explanation visibility. It was also noticed that
similar to this study, the application of the SGD optimizer by other studies also produced
the highest performance.

5. Conclusions

A multiheaded attention-based transformer model was proposed for malaria parasite
detection. In addition, to interpret the trained model, Grad-CAM visualization was used
to verify the learning. The proposed work with the transformer model achieved accuracy,
precision, recall, and an AUC score of 99.25%, 99.00%, 99.50%, and 99.99%, respectively.
Various SOTA works for malaria parasite detection were compared with the proposed
model. The model outperformed all the previous works for detecting malaria parasites. Our
future work will be focused on segmenting RBCs from blood smear images and classifying
malaria parasites from the segmented RBC images.
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Abstract: Every year, nearly two million people die as a result of gastrointestinal (GI) disorders. Lower
gastrointestinal tract tumors are one of the leading causes of death worldwide. Thus, early detection
of the type of tumor is of great importance in the survival of patients. Additionally, removing benign
tumors in their early stages has more risks than benefits. Video endoscopy technology is essential
for imaging the GI tract and identifying disorders such as bleeding, ulcers, polyps, and malignant
tumors. Videography generates 5000 frames, which require extensive analysis and take a long time to
follow all frames. Thus, artificial intelligence techniques, which have a higher ability to diagnose and
assist physicians in making accurate diagnostic decisions, solve these challenges. In this study, many
multi-methodologies were developed, where the work was divided into four proposed systems; each
system has more than one diagnostic method. The first proposed system utilizes artificial neural
networks (ANN) and feed-forward neural networks (FFNN) algorithms based on extracting hybrid
features by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM),
and fuzzy color histogram (FCH) algorithms. The second proposed system uses pre-trained CNN
models which are the GoogLeNet and AlexNet based on the extraction of deep feature maps and
their classification with high accuracy. The third proposed method uses hybrid techniques consisting
of two blocks: the first block of CNN models (GoogLeNet and AlexNet) to extract feature maps; the
second block is the support vector machine (SVM) algorithm for classifying deep feature maps. The
fourth proposed system uses ANN and FFNN based on the hybrid features between CNN models
(GoogLeNet and AlexNet) and LBP, GLCM and FCH algorithms. All the proposed systems achieved
superior results in diagnosing endoscopic images for the early detection of lower gastrointestinal
diseases. All systems produced promising results; the FFNN classifier based on the hybrid features
extracted by GoogLeNet, LBP, GLCM and FCH achieved an accuracy of 99.3%, precision of 99.2%,
sensitivity of 99%, specificity of 100%, and AUC of 99.87%.

Keywords: deep learning; hybrid techniques; neural network; gastrointestinal diseases; LBP; GLCM;
FCH; endoscope

1. Introduction

Cancer is the greatest threat to human life and is the world’s second leading cause
of death, following heart disease and atherosclerosis. There are numerous upper and
lower gastrointestinal malignancies. Upper gastrointestinal cancers include malignancies
of the esophagus and stomach, whereas lower gastrointestinal cancers include colon and
rectal cancers. According to a World Health Organization estimate, 3.5 million instances
of GI cancer were registered in 2018. The least common type of gastrointestinal cancer is
esophageal cancer, but stomach cancer is the fifth most prevalent type of cancer and the
third leading cause of death. In contrast, lower-GI tumors are the third most common
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cancer and the second most common cause of death [1]. Gastrointestinal diseases vary
between ulcers, bleeding and polyp, which require early diagnosis otherwise they will
develop and be a cause of death. There are many biomarkers to predict health problems
in the gastrointestinal tract. However, the high mortality rate shows that there are still
possibilities for early diagnosis to receive treatment on time and reduce side effects. If
polyps are not diagnosed early, they turn into gastrointestinal cancer [2], which is abnormal
cells on the mucous membrane of the colon and stomach. Polyps grow very slowly, and
symptoms do not appear until significant [3]. Endoscopy devices that cause pain were
used to detect polyps, bleeding and ulcers, and the results of their analysis were inaccurate
due to their complex structure [4]. This challenge was overcome in 2000 by using new
endoscopic techniques called wireless capsule endoscopy (WCE). WCE is a modern method
for detecting and diagnosing diseases of the GI, which has the ability to scan the GI as
a whole from the esophagus to the colon in a large video that is divided into frames of
thousands of images. Therefore, this massive number of pictures poses a challenge for
manual diagnosis because polyps, bleeding, and ulcers may appear in very few frames.
In contrast, a massive number of frames look normal. Therefore, all frames must be
carefully monitored by experts and doctors, which may take two hours or more to make
a proper diagnosis. The WCE technology detects many serious diseases such as polyps,
bleeding and ulcers. The large WCE images represent a burden on the gastroenterologist,
as it is challenging to track all the images. The morphological features of each disease
vary in terms of shape, color, and structure, as well as the etiology of each disease. Each
disease has anatomical features that can be distinguished through the endoscope. The
endoscope detects the type and location of the disease and gives a brief description and
detailed documentation of the most important anatomical landmarks. Additionally, the
pathological finding considers abnormal features in the gastrointestinal tract, which can be
detected by endoscopy, as a change in the mucous membrane. These signs may be polyps
or malignant tumors or persistent disease. Therefore, the early diagnosis of diseases such
as polyps and tumors by endoscopy is important in receiving appropriate treatment and
survival. Additionally, manual diagnosis is a tedious task that requires tracking all video
frames and high experience and clinical knowledge. These challenges can be solved by
developing effective computer-aided diagnostic systems represented by machine, deep
learning and hybrid techniques. These techniques can assist physicians in deciding on an
appropriate diagnosis during the initial stage of the disease [5].

Artificial intelligence systems have shown enormous promise in diagnosing medical
images, assisting doctors and specialists in visualizing minute details that the naked eye
cannot see [6]. Endoscopic images are used to extract subtle and complicated information
using these techniques. They can also distinguish between malignant (neoplastic) and
benign tissues. Machine learning approaches can also extract texture, color, form, and
edge data with high accuracy and classify all endoscopic pictures according to the type
of disease they represent. [7]. Convolutional Neural Networks have proven their great
ability to extract feature maps and solve all geometrical feature constraints, which led to
accurate diagnosis of GI images. The hybrid technique between machine and deep learning
has superior advantages in extracting the deep features by CNN models and sorting
them with great speed and accuracy by machine learning algorithms. Thus, artificial
intelligence techniques have proven their superiority over the best-specialized experts [8].
ReedT et al. proposed artificial intelligence methods for diagnosing endoscopic images
taken from the HyperKvasir dataset. They used grid search to set the best parameters
by checking the intersection [9]. Sebastian et al. focused on the detection of polyps in
the colon using artificial intelligence techniques that help doctors distinguish the type of
tumor [10]. Sharib Ali et al. Due to the presence of artifacts in the internal endoscopy
images, which hinder deep learning models for accurate diagnosis. Thus, the researchers
focused on removing artifacts, segmentation the lesion area (EAD2020), and detecting the
type of disease (EDD2020) [11].

The main contributions of this study are as follows:
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• Enhance images using overlapping filters to remove noise, increase contrast, and
reveal the edges of the lesion.

• Extracting features by using a hybrid method between three algorithms: LBP, GLCM
and FCH.

• Applied hybrid technology consisting of two blocks: the first block is CNN models for
extracting feature maps, and the second block is the SVM algorithm for classifying
feature maps.

• Fusing features extracted by both CNN models and traditional algorithms (LBP, GLCM,
and FCH) to form feature vectors that are more representative of each disease.

• The development of many proposed systems to assist physicians and endoscopy
specialists in supporting their diagnostic decisions.

The remainder of the paper is organized as follows: Section 2 reviews the relevant
previous studies. Section 3 includes several of methodologies for analyzing and diagnosing
the lower gastrointestinal disease dataset. Section 4 presents the experimental results for
evaluating the dataset on the proposed systems. Section 5 summarizes the discussion and
comparison of the proposed approaches’ performance. Section 6 concludes the paper with
future directions.

2. Related Work

This section will go over a number of prior studies on the diagnosis of gastrointestinal
diseases. In addition, we will develop our technique and vary our methods and materials
in order to get superior results in identifying lower GI disorders.

Akshay et al. proposed a colon cancer diagnosis system. The noise was removed
to improve the images. Each image was divided into several blocks, and each block was
diagnosed using CNN and machine learning algorithms. The system achieved 87% accuracy
with the CNN model and 83% accuracy with the KNN algorithm [12]. Tsuyoshi et al.
presented a CNN model called Single Shot MultiBox Detector to evaluate the colon dataset.
The model was trained on 16,418 images and tested on 7077 images. Each frame was
processed for twenty seconds, and the model achieved a sensitivity of 92%, and adenomas
were detected with an accuracy of 97% [13]. Alexandr et al. suggested a methodology
for early detection of polyps; The system goes through two stages: First, based on the
universal features, polyps are classified as having a tumor or not. In the second stage, using
CNN models for lesion segmentation, the system achieved a sensitivity and specificity of
93% and 82%, respectively [14]. Ruikai et al. developed a methodology to detect polyps
in the colon and rectum. The system worked to identify polyps and predict polyps. The
method achieved an accuracy of 87.3% compared to an accuracy of 86.4% by endoscopic
specialists [15]. Eduardo et al. presented the CNN model of colonic mucosa diagnosis for
colonic polyps. The network extracts and classifies features by exploiting the input pixels
and optimizing all noise [16]. Min et al. developed an Asymptotic Laplacian-energy-like
invariant of lattices of a system that analyzes the color of the lesions to predict polyps. The
dataset was divided into 108 images for training the system and 181 images for testing the
system and compared with the results of endoscopy specialists. The system reached an
accuracy of 87% during the training phase, and the system achieved an accuracy of 78.4%
during the testing phase, compared to an accuracy of 79.6% by endoscopy specialists [17].
Eun et al. Developed an automated computer-aided system to predict the types of diseases
in the colon and rectum using CNN models. The system distinguishes between three
polyps: serrated polyp (SP), benign adenoma (BA), and deep submucosal cancer (DSMC).
The system achieved the highest accuracy of 82.4% [18]. Mehshan et al. presented a
method based on deep learning for diagnosing gastrointestinal diseases. The lesion area
was segmented by the modified mask and isolated from the rest of the image. ResNet101’s
pre-trained model is configured to extract the most critical features and categorize them by
MSVM [19]. Mustaine et al. discussed improving the way polyps are detected and helping
clinicians focus on the most critical areas to diagnose. Colored waveforms and features by
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a CNN model were extracted to train an SVM classifier. SVM works to see if the images
contain a tumor or not [20].

Mahmodul et al. presented a method for polyp diagnosis by fusion of CNN model
and contour transformation. Dimensions were reduced and the most important features
were combined by Minimum Redundancy Maximum Relevance (MRMR) and Principal
Component Analysis (PCA) methods [21]. Chathurika et al. presented a method for
integrating the deep features extracted from three CNN models and pooling them into
a global average pooling (GAP) layer. The method achieved promising results in the
diagnosis of gastrointestinal diseases [22]. Jasper et al. proposed a methodology for
evaluating endoscopic images of lesions, including the size and location of the lesion. The
method also helps assess the surface pattern and the possibility of excision of the lesion
by endoscopic [23]. Roger et al. extracted features by the Global Average Pooling (GAP)
to distinguish tumors. Data augmentation technique was applied to balance the dataset;
the method reached good results [24]. Şaban et al. provided CNN models to classify
the GI dataset; pooling layer features were transferred to the LSTM layer, then all LSTM
layers were collected to classify each image [25]. Maghsoudi et al. presented a model for
segmentation of polyps of endoscopic images using simple linear iterative clustering (SLIC).
The highest sensitivity is found by examining SLIC super-pixels and then classifying them
by the SVM classifier, which reached a sensitivity of 91% [26].

Jeph Herrin et al. presented three machine learning algorithms, namely, random sur-
vival forests, XGBoost, and RegCox, to predict gastrointestinal bleeding to help clinicians
make their decisions. The performance of machine learning algorithms for predicting
gastrointestinal bleeding was evaluated using accuracy, sensitivity, and AUC measures.
The RegCox algorithm has an AUC of 67%, better than the others [27]. Jayeshkumar et al.
presented a random forest algorithm for diagnosing gastrointestinal disorders. The study
was conducted on a group of older people with osteoporosis and extract the features. The
features were fed to the random forest to diagnose people with gastrointestinal disor-
ders [28]. Hye Jinet al. suggested CAD models for diagnosing gastrointestinal lesions by
endoscopic images. Image optimization, noise removal, lesion area segmentation, essential
feature extraction, then classification was carried out by machine learning algorithms. The
system achieved a sensitivity of 86%, a specificity of 90%, and an AUC of 94% [29].

Previous studies contain drawbacks when applying deep learning models, which
are very time-consuming when training the dataset and require costly computers and the
inability of the systems to reach the required accuracy. For machine learning algorithms, the
drawbacks are that they cannot train a huge dataset. Thus, these obstacles were overcome
in this work using hybrid techniques between deep learning to extract feature maps and
classify them by the SVM algorithm. Additionally, features from three algorithms were
extracted and combined into one feature vector, in addition to the application of a novel
method, which is a hybrid technology for extracting features in a hybrid way between deep
learning models and GLCM, LBP, and FCH algorithms, then integrating all the features in
one vector and classifying them using neural networks, which reached promising results.

3. Materials and Methodology

In this section, the methodology and materials are presented to diagnose endoscopic
images for the early detection of lower gastrointestinal diseases, as shown in Figure 1. The
first step was to optimize all the images to remove noise and increase the contrast of the
edges. Then, the optimized images were fed into four suggested methods. The first method
is to classify a dataset using ANN and FFNN based on the hybrid features between LBP,
GLCM and FCH algorithms. The second method is to diagnose a dataset by the CNN
models GoogLeNet and AlexNet. The third method uses a hybrid technique between CNN
models and machine learning (SVM) to diagnose the dataset. The fourth method of dataset
diagnosis uses ANN and FFNN based on hybrid features extracted from CNN models and
LBP, GLCM and FCH algorithms.
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Figure 1. The general methodology for diagnosing lower GI disease dataset.

3.1. Description of the Dataset

The Kvasir dataset was obtained using high-resolution endoscopic cameras by Vestre
Viken Health Trust (VV) from the Department of Lower GI, Bærum Hospital, Gjettum,
Norway. All images were described by several experts from the Cancer Registry of Norway
(CRN) and VV. The CRN is the national body at the University of Oslo Teaching Hospital,
responsible for the diagnosis and early detection of cancer to prevent its spread. CRN
provides knowledge about cancer and is affiliated with the southeast Norway Health
Authority under the supervision of Oslo University Hospital. CRN is responsible for
detecting precancerous lesions to prevent death by cancer. All images were described
by medical experts, including anatomical landmarks, pathological findings, and regular
findings. The dataset contains 5000 images evenly distributed across five classes of diseases:
dyed-lifted polyps, normal cecum, normal pylori, polyps, and ulcerative colitis. All images
are in RGB color space and have resolutions ranging from 700 × 575 to 1925 × 1075 pixels.
Anatomical landmarks include the cecum and pylorus, while pathological findings include
polyps and ulcerative colitis, in addition to other images related to removing lesions, such
as a lifted polyp. Some image classes contain green images showing the location of the
endoscope of the bowel through the electromagnetic imaging system. Figure 2a describes a
dataset sample for all the classes contained in the Kvasir dataset [30]. The following link
is open source and includes the dataset https://datasets.simula.no/kvasir/#download
(accessed on 30 January 2022).
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Figure 2. Images of the dataset for all types of diseases (a) Before enhancement (b) After enhancement.

3.2. Images Enhancement

When using endoscopes to perform interior imaging, several restrictions and obstruc-
tions appear as artifacts owing to movement, bubbles, low contrast, bodily fluids, debris,
residual feces, and blood. These artifacts impede image classification; hence, all artifacts
must be removed to achieve superior outcomes in the subsequent stages of medical image
processing. All photos in our study were optimized before being given to the subsequent
stages: the dataset images were optimized by averaging RGB colors and passing images
through both average and Laplacian filters for removing artifacts, improving image con-
trast, and showing lesion edges [31]. First, a 5 × 5-pixel averaging filter is defined which
removes artefacts and increases image contrast by replacing each central pixel with an
average of 24 adjacent pixels. The filter in each iteration works by taking a center pixel and
replacing the central pixel’s value with the average value of 24 adjacent pixels. Equation (1)
describes how the average filter works, and the process continues until the last pixel of the
image [32].

F(L) =
1
L

L−1

∑
i=0

z(L − 1) (1)

where F (L) refer to the enhanced image, z (L − 1) refers to the input of previous, and L
refers the pixel’s number in the image.

Secondly, the Laplacian filter is applied which makes the edges of the tumors visible
and distinguishes them from the rest of the image. Equation (2) describes the filter’s
mechanism of action.

∇ 2 f =
d 2 f
d 2 x

+
d2 f
d 2 y

(2)

where x, y are to the 2D matrices and ∇ 2 f is a second-order differential equation.
Finally, the two images are merged together by subtracting the image generated by the

average filter from the image generated by the Laplacian filter as shown in Equation (3).

O(X) = f (L)−∇ 2 f (3)

where O(X) represents output image enhanced.
Thus, an improved image is obtained that is fed to all the proposed systems in this

study. Figure 2b describes many image samples for all diseases of the dataset after enhance-
ment operations.
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3.3. The First Proposed System (Neural Networks)
3.3.1. Segmentation (Active Contour Algorithm)

All lower digestive system endoscopy images contain a specific region affected by a
lesion and the rest of the image is healthy. Therefore, analyzing the entire image, including
the healthy part, and extracting the features from the complete image will lead to incorrect
diagnostic results. Thus, the segmentation technique is necessary to segment the lesion
area (area of interest) and isolate it from the healthy part, which will lead to the analysis
and extraction of features from the lesion area only to obtain promising diagnostic results.

The lesion area is determined by the curve � defined by the level function ∅: Ω →,
where Ω represents the lesion area, and zero is at the first border area in the image of
the lower gastrointestinal lesion I. The curve is divided of lesion regions Fk ⊂ Ω into
sub-regions F, F with φ, as shown in Equations (4) and (5).

inside (�) = F = { x ∈ Fk : ∅(x) > 0} (4)

outside (�) = F = { x ∈ Ω : ∅(x) < 0 ∪ x ∈ Ω \Fk} (5)

The Active Contour algorithm develops by moving the curve (contour) inward. The
first seed is placed at the lesion boundary to map the lesion area (polyp). The curve moves
inside to define the polyp subregion when φ > 0 is set. The outer region is determined by
subtracting the formerly selected region from the presently selected region as described in
Equation (6).

F0 = F1 + F1 ⇒ F1 = F0 − F1,
F2 = F1 − F2,
F3 = F2 − F3.

(6)

Finally, the outer sub-region can be calculated as Equation (7).

Fk = Fk − 1 − Fk (7)

The Active Contour moves toward the lesion boundary by defining the external energy
that moves the first point (the zero level) toward the lesion boundary, as described by the
functional energy function Equation (8).

fspz(∅) = λLspz(∅) + ν Aspz(∅) (8)

where ν are constants and λ > 0. The Lspz and Aspz are the defined as Equations (9) and
(10).

Lspz(∅) =
∫

Ω
spz(I)δε(∅) |∇∅| dx (9)

Aspz(∅) =
∫

Ω
spz(I)Hε(∅) (−∅) dx (10)

the term spz(I) will be defined in an equation later, Hε denotes the Heaviside function and
δε is the univariate dirac delta function. The curve is driven from zero point to smooth
curve by Lspz(φ) equation. Thus, the small energy spz(I) will speeds up the curve towards
the lesion. The coefficient v is a positive or negative value that depends on the position of
the curve over the lesion area; If the curve is within the lesion region, v is positive while v
is negative for acceleration of the curve at the lesion boundary [33].

We proposed the Eproposed for the SPF function which previously used. Let I: Ω → R
be endoscopic image of lower gastrointestinal diseases, C is a closed curve energy functional
is defined as by Equation (11).

Eproposed =
∫

Ω
|I(x)− C1|2Hε(∅(x))Mk(x) dx +

∫
Ω
|I(x)− C1|2 (1 − Hε(∅(x)))Mk(x) dx (11)
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when the energy Eproposed is reduced, φ is preserved constant, we get the curve C1 for F
region w and the curve C1 for area F as Equations (12) and (13).

C1(φ) =

∫
Ω I(x) Hε(∅(x))Mk(x) dx∫

Ω Hε(∅(x))Mk(x) dx
(12)

C2(φ) =

∫
Ω I(x) (1 − Hε(∅(x)))Mk(x) dx∫

Ω (1 − Hε(∅(x)))Mk(x) dx
(13)

Mk refers to the function of characteristic for sub-region as Equation (14).

Mk(x) = φ > 0, (14)

M0 : Ω → −1,

The contour curve continues to move along the edges of the lesion, and when the
pixels are similar between two successive contours, the curve will stop, and the algorithm
stops by a certain stop value.

If

∑row
i=0

col

∑
j=0

Mk
i,j <

(
SV
100

)
∑row

i=0

col

∑
j=0

oldMk
i,j (15)

where SV represents the stop value when the curve reaches the last point to separate the
pest region from the rest of the image.

Then, the contour curve will be stopping moving.
Where oldMk

i,j refers to the last computed mask, and Mk
i,j refers to the current mask of

the contour curve, col and row are the max number of columns and rows, respectively, in
the lesion.

Finally, the polyp lesion area is identified with high accuracy and isolated from the
rest of the image, as shown in Figure 3b. After the segmentation process, a binary image of
the lesion area is produced and isolated from the rest of the image. Still, some holes appear
that do not belong to the lesion, and therefore these holes must be filled to improve the
image [34]. Thus, the morphological method was applied, which produces an enhanced
binary image, as shown in Figure 3c.

Figure 3. Samples of the dataset (a) original image (b) After the segmentation (c) After the morphological.

3.3.2. Feature Extraction

The feature extraction stage is one of the most critical stages in image processing, which
determines the accuracy and efficiency of classification. The image contains thousands of
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information that is difficult to analyze. Therefore, extracting representative features with
high accuracy reduces image dimensions and extracts features from a region of interest
(ROI). In this work, the features were extracted by three algorithms: LBP, GLCM and FCH.
The features extracted from the three methods are then combined into a single feature
vector for each image to obtain more representative features. Combining features is a
modern and important method in obtaining more effective and representative features for
each lesion.

First, the LBP algorithm extracts the essential features, which is an efficient way to
extract the texture features of the binary surface. In this work, an algorithm was tuned on
size of 6 × 6; it works to select the central pixel (gc) and select the 35 pixels adjacent to it
(gp) [35]. According to the algorithm, the central pixel is replaced by neighboring pixels in
each iteration. Neighboring pixels are selected according to the radius R. Equations (16)
and (17) describe the working mechanism of the LBP algorithm, which replaces the central
pixel with adjacent pixels and continues until all pixels of the image are targeted. This
algorithm extracted 203 essential features for each image, stored in one attribute vector for
each image.

LBP (xc, yc)R,P =
P−1

∑
P=0

s
(

gp − gc
)

2P (16)

x(c) =
{

0, c < 0
1, c ≥ 0

(17)

P is the number of pixels in the image and R is the number of adjacent pixels.
Second, the GLCM algorithm extracted the features, which extracts texture features

from the area of interest (tumors).
The algorithm shows multiple levels in the grayscale of an area of interest. The

algorithm extracts the statistical features based on its working mechanism. The algorithm
relies on distinguishing between smooth and rough pixels through spatial information.
An area is rough when its pixel values are far apart, while when the pixel values are close
together, the area is smooth. Additionally, spatial information is essential in determining
the correlation between pairs of pixels through the distance d between the pixels and
the directions θ that determine the location of each pixel from the other [36]. There are
four directions for θ, which are 0◦, 45◦, 90◦ and 135◦; when the angle is vertical θ = 90
or horizontal θ = 0, the distance between one pixel and the other d = 1. When the angle
θ between pair pixel θ = 45 or θ = 135, the distance d =

√
2. This algorithm generated

13 statistical features for each image.
Third, the features are extracted from a region of interest by the FCH algorithm. FCH

is considered one of the best algorithms for extracting the chromatic features from the pest
area. The color is one of the most important features used in medical images to distinguish
and diagnose images of gastrointestinal tumors [37]. The lesion region contains many
colors, so each color is represented in the histogram bin. Each color in the region of interest
represents several histogram bins. Each local color is represented in histogram bin and
thus pest colors are distributed over many histogram bins. All two similar colors must be
in the same histogram bin, also if the two colors in the histogram bin are different, it means
that they are different even if they are almost the same. Thus, the FCH algorithm uses the
membership value of each pixel and distributes the pixels based on the total histogram bin.
We consider the number of colors in a lesion area containing n pixels as X(I) = x1,x2, . . . xi
where ni is the image pixels, ith is the all-color bins, xi=ni/n is the probability that any color
image belongs to a histogram bin.

xi =
n

∑
j=1

pi/j pj=
1
n

n

∑
j=1

pi/j (18)
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where pj is image pixels, conditional probability pi/j, means the probability of jth pixel
belonging to I histogram color bins using the FCH algorithm.

pi/j =

{
1, if jth pixels belongs to ith histogram color bin
0 , Otherwise

(19)

Finally, the features extracted from the three algorithms are combined into one feature
vector for each image. The LBP method produce of 203 features, 13 features produced
from the GLCM method, and the FCH method produce 16 features. Therefore, when all
the features were hybrid, the Fusion method produced 232 representative features for
each image, representing each gastrointestinal polyp’s lesion’s essential and distinguishing
features. Figure 4 describes the fusion method between the three algorithms, LBP, GLCM
and FCH.

 

Figure 4. The fusion method between the three algorithms LBP, GLCM and FCH.

3.3.3. ANN and FFNN Algorithms

In this section, the endoscopic dataset for lower GI is evaluated using the ANN and
FFNN neural network algorithms. ANN is a type of intelligent neural network that consists
of three main layers, each layer having many interconnected neurons. ANN is characterized
by its profound ability to solve many complex problems by analyzing, interpreting and
transforming complex data into information to solve the required tasks. ANN consists of
three layers: the input layer, the hidden layers, and the output layer. Data moves from one
layer to another through connections called weights. The first layer of the algorithm is the
input layer, which receives information from (the features extracted) and passes it to the
hidden layer. In our study, the number of neurons in the input layer is 232 neurons (features
extracted). Hidden layers solve complex problems and analyze and interpret inputs across
many hidden layers, and each hidden layer has many interconnected neurons. In our
study, the hidden layers were set to 30 hidden layers. The output layer receives the output
from the last hidden layer and consists of many neurons according to the classes of the
dataset. In our study, the output layer produces five neurons: dyed-lifted-polyps, normal-
cecum, normal-pylorus, polyps, and ulcerative-colitis. Neurons are interconnected through
weights, and information is transmitted from one neuron to another and from one layer
to another in each repetition [38]. The algorithm is characterized by many interconnected
neurons, the interconnected processing unit, and the activation and bias function associated
with each neuron. It is characterized by the basis of learning and calculating the error rate
in each iteration. The error rate is calculated between each iteration’s actual and predicted
output. The process continues, and in each iteration, the weights are updated until the
minimum sum squared (MSE) is obtained between the actual and predicted output, as
described by Equation (20).

MSC =
1
n

n

∑
i=1

( a(x)i − p(y)i)
2 (20)

where a(x)i represents the actual values and p(y)i represents the predicted values.
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FFNN is a type of intelligent neural network that consists of three layers, with each
layer having many interconnected neurons that forward data. It is distinguished by its
superior ability to solve, interpret and analyze many complex problems efficiently [39]. The
algorithm consists of three layers: the input, hidden, and output layers. The input layer
consists of 232 neurons that receive inputs as features extracted from the feature extraction
stage. The algorithm also consists of 30 hidden layers that solve complex problems, analyze,
interpret, and send them to the output layer. The output layer consists of five neurons to
show the results of classifying each image into its appropriate class as shown in Figure 5.
In our study, the algorithm produces five neurons: dyed-lifted-polyps, normal-cecum,
normal-pylorus, polyps, and ulcerative-colitis. In this network, information flows between
neurons in the forward direction; neurons are interconnected by weights w, and weights
are transmitted from one cell to another in the forward direction. Each neuron produces
a weight multiplied by the value of the weights of the previous neurons, and the process
continues, and with each iteration, the weights are updated. The weights are spoken in
each iteration until the minimum sum squared is obtained between the actual and expected
output described by the above equation.

Figure 5. Structure of neural network algorithms for classifying the endoscopy image dataset of
lower gastrointestinal diseases.

3.4. The Second Proposed System (CNN Models)

Convolutional neural network (CNN) techniques are compatible with machine learn-
ing techniques, and what distinguishes them is the use of many deep layers to analyze
and interpret the required tasks with high accuracy and efficiency [40]. CNN models are
called deep learning due to the use of deep convolutional layers and the essence of their
work is to obtain a representation of many levels to represent the problem starting from
simple modular levels that transform the required tasks (endoscopic images of lower GI)
from levels to more deeper levels to extract features deeper and more abstract. CNNs are
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used in classification, regression, texture modelling, image recognition, natural language
processing, biomedical image classification, robotics, and other tasks. In classification tasks,
networks amplify representation layers to extract the essential features to distinguish each
image into its appropriate class and suppress irrelevant differences. CNN architecture
refers to many non-linear levels that learn something specific in each layer; for example,
one layer works to extract geometric features, while another layer focuses on extracting
color features, a layer for texture features, another layer for showing edges, and so on. A
CNN consists of many layers, the most important of which are the convolutional layers,
the pooling layer, the fully connected layer, and many auxiliary layers.

Convolutional layers are one of the most important layers in CNN models and derive
their name from convolutional neural networks. Three parameters that control convo-
lutional layers are filter size, zero-padding, and p-step. The filters work on the process
of convolution between w(t) and the target images x(t), which is called the process of
convolution (x × w)(t) or s(t) as shown in Equation (21). The larger the filter size, the more
wrap around the image. Each filter has a specific function, some work to discover edges,
some filters to extract geometry features, and some to extract texture, shape, color features,
and so on. For zero-padding, which preserves the size of the original image, the edges of
the image are padded with zeros, and the size of zero-padding is determined based on
the size of the filter convoluting around the original image [41]. For p-step, determine the
number of steps the filter can move around the image.

s(t) = (x × w)(t) =
∫ ∞

−∞
x(a)w(t − a) da (21)

where (x × w) (t) is the process of convolution, x(a) is the image to be processed, and
w(t − a) is the filter convolted around the image.

Pooling layers are one of the primary layers that reduce the dimensions of the input
image. After convolutional operations, it produces millions of parameters and thus slows
down the training process. Therefore, to represent the high-dimensional data space in
the low-dimensional space while preserving the most important features and to speed up
the training process, Pooling layers work to solve these challenges. Pooling layers work
as convolutional layers, where the size of a filter is determined in the layers Pooling and
moving on the image and the representation of groups of pixels by one pixel based on the
methods Max-Pooling and Average-Pooling. The Max-Pooling mechanism identifies pixels
and represents them by the maximum value [42]. Equation (22) describes the mechanism
of Max-Pooling. While in the Average-Pooling method, groups of pixels are selected, their
average value is calculated, and groups of pixels are represented by their average value.
Equation (23) describes how the Average-Pooling method works.

P(i; j) = maxm,n=1....k A[(i − 1)p + m; ( j − 1)p + n] (22)

P(i; j) =
1
k2 ∑

m,n=1....k
A[(i − 1)p + m; ( j − 1)p + n] (23)

where A is filter size, m,n are filtered size dimensions, p is filtered step size, k is capacity of filter.
Fully Connected Layers (FCL) is one of the primary layers in CNN and is responsible

for classifying input images into their appropriate classes. The FCL comprises millions of
neurons connected by junctions called weights. FCL converts the dimensions of deep fea-
ture maps from 2D to 1D. Some CNN models have many FCL layers. Finally, the FCL layer
sends its output to the Softmax activation function, producing neurons with the number
of classes in the dataset. In our study, the Softmax layer produces five neurons: dyed-
lifted-polyps, normal-cecum, normal-pylorus, polyps, and ulcerative-colitis. Equation (24)
describes how the Softmax activation function works.

y(xi) =
exp xi

∑n
j=1 exp xj

(24)
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y(x) between 0 ≤ y(x) ≤ 1.

There are also many auxiliary layers such as Rectified Linear Unit (ReLU), dropout
layer, and others. ReLU follows convolutional layers to process the output of convolutional
layers. This layer passes only positive outputs, while converting negative outputs to zeros.
Equation (25) describes the working mechanism of the ReLU layer.

ReLU(x) = max(0, x) =
{

x, x ≥ 0
0, x < 0

(25)

Convolutional layers produce millions of operands, and thus networks experience over-
fitting. Therefore, CNNs provide a dropout layer to solve these challenges. The dropout layer
passes a set number of neurons on each iteration. In this study, CNNs models pass 50% of the
neurons in each iteration, but this layer will double the training time of the dataset.

This study will focus on two models, GoogLeNet and AlexNet.

3.4.1. GoogLeNet Model

GoogLeNet is a convolutional neural network used in many applications for pattern
recognition and classification purposes, including biomedical image processing. GoogLeNet
consists of 27 layers. This model is distinguished from other models in that it contains
layers that can significantly reduce the dimensions while preserving the essential features.
The network has a convolutional layer with a 7 × 7 filter that quickly extracts feature maps.
The network also contains three 3 × 3 pooling layers, which can reduce the dimensions
and reduce the width and height of the image; Additionally, the network has a pooling
layer of 7 × 7 size which greatly reduces the dimensions and is effective while preserving
the essential features [41]. All layers of the network produce seven million parameters.
Figure 6 shows the GoogLeNet architecture for classifying endoscopy images of the lower
GI dataset.

Figure 6. General structure of the GogLeNet model for classifying the lower GI endoscopy image dataset.

3.4.2. AlexNet Model

AlexNet is a type of convolutional neural network that contains many deep layers.
AlexNet consists of 25 layers divided between convolutional, pooling, fully connected, and
helper layers. The first layer is the input layer, which receives the endoscopy images of the
lower GI dataset and adjusts the size of all images to a uniform size of 227 × 227 × 3. There
are five convolutional layers for feature map extraction, ReLU layers for further feature
processing, and three pooling layers from the max-pooling layers that reduce dimensions;
two dropout layers to overcome the problem of overfitting; and three fully connected
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layers with softmax activation function [43]. AlexNet produces 62 million parameters and
650,000 neurons interconnected by 630 million connections. Figure 7 shows the structure of
the AlexNet model to classify the lower GI dataset.

 

Figure 7. General structure of the AlexNet model for classifying the lower GI endoscopy image dataset.

3.5. The Third Proposed System (Hybrid of Deep Learning and Machine Learning)

In this section, a new technique is introduced, a hybrid between CNN modelling
techniques and a machine learning algorithm for classifying endoscopic images of the lower
GI dataset. Since CNN models require high-resource and expensive computer specifications
and take a long time to train the dataset, these hybrid techniques solve these challenges [44].
Therefore, in this study, a hybrid technique is presented between (GoogLeNet and AlexNet)
models and the SVM machine learning algorithm, which requires medium computer
resources and is fast to train the data and produces high performance. The basic idea in this
technique consists of two blocks; the first block is CNN models that extract the maps of the
deep features of the endoscopic images and send them to the second block. The second block
is an SVM algorithm that receives deep feature maps and classifies them with high accuracy
and efficiency. Figure 8a,b shows the basic structure of the hybrid technique, where it is noted
that the technique contains two blocks are CNN models (GoogLeNet and AlexNet). The
second block is the SVM algorithm, and therefore the technique is called GoogLeNet+SVM
and AlexNet+SVM. It is worth noting that the fully connected layer was removed from the
CNN models and replaced with the SVM algorithm.

Figure 8. The general structure of the hybrid method between CNN models and SVM (a)
GoogleNet+SVM and (b) AlxNet+SVM.
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3.6. The Fourth Proposed System (Hybrid Features)

This section presents modern methods using hybrid techniques between deep feature
maps extracted by CNN models and features extracted by traditional algorithms. CNN
models require high specification and expensive computer resources and take a long time
to train the dataset. Therefore, the hybrid features are classified using the ANN and FFNN
algorithms to solve these challenges [45]. The main idea of this technique is as follows: First,
extract the deep feature maps from GoogLeNet and AlexNet models and store them in
feature vectors, where 4096 features are extracted for each image from each model. Second,
combine the features extracted from the LBP, GLCM and FCH algorithms, producing
232 features after fusing them. Third, the deep feature maps were converted into a unified
data format. Fourth, the deep feature maps extracted from CNN models (the third step) are
combined with the features extracted by traditional algorithms (the second step), so after
fusion, it produced 4328 features representing each image (vector). Fifth, these features are
fed to the ANN and FFNN algorithms to classify them. Figure 9 shows the methodology
for extracting deep feature maps by GoogLeNet and AlexNet and combining them with the
features extracted by LBP, GLCM and FCH and then fed to ANN and FFNN algorithms.

Figure 9. The general structure of feature fusion between CNN models and LBP, GLCM, and FCH
algorithms.

4. Experimental Results

4.1. Splitting Dataset

In this study, endoscopic images of the lower gastrointestinal disease dataset were
evaluated by four proposed systems, each with more than one algorithm. There are
various methods of dataset analysis using neural network algorithms, CNN models, SVM,
and hybrid methods for classifying and extracting hybrid features. The dataset contains
5000 images equally divided into five types of diseases: dyed-lifted-polyps, normal-cecum,
normal-pylorus, polyps, and ulcerative-colitis. The dataset was divided into 80% for
training and validation (80:20) and 20% for testing, as described in Table 1. All the proposed
systems in this study were implemented using MATLAB 2018b environment and with
Intel® i5 processor specifications, RAM 12GB and GPU 4GB.
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Table 1. Splitting of the endoscopy image of lower GI dataset for training and testing.

Phase 80% for Training and Validation (80:20%)
Testing (20%)

Classes Training (80%) Validation (20%)

dyed-lifted-polyps 640 160 200
normal-cecum 640 160 200

normal-pylorus 640 160 200
polyps 640 160 200

ulcerative-colitis 640 160 200

4.2. Evaluation Metrics

In this study, the lower GI dataset was evaluated by several systems proposed, which
are neural networks (ANN and FFNN), CNN models (GoogLeNet and AlexNet), hybrid
method between CNN models and SVM (GoogLeNet+SVM, AlexNet+SVM), and hybrid
features extracted between CNN models (GoogLeNet and AlexNet) and algorithms (LBP,
GLCM and FCH) by many statistical measures. The proposed systems were evaluated
by using the same scales which are accuracy, precision, sensitivity, specificity, and AUC
described in Equations (26)–(30). All the proposed systems produced a confusion matrix
that contains all the test samples that are classified as correct and incorrect. Correctly
labeled samples are called true positive (TP) for confirmed samples and true negative (TN)
for healthy samples. Incorrectly labeled samples are called false negative (FN) and false
positive (FP) [46].

Accuracy =
TN + TP

TN + TP + FN + FP
× 100% (26)

Precision =
TP

TP + FP
× 100% (27)

Sensitivity =
TP

TP + FN
× 100% (28)

Specificity =
TN

TN + FP
× 100 (29)

AUC =
True Positive Rate
False Positive Rate

=
Sensitivity
Specificity

(30)

where TP is the number of properly classified GI endoscopy images of as diseases. TN is
the number of GI endoscopy images correctly classified as normal. FP is the number of
endoscopy images of a normal GI tract but it is classified as diseases. FN is the number of
endoscopic images of GI diseases classified as normal.

4.3. Segmentation Performance Evaluation

The segmentation method is one of the most important steps to biomedical image
processing, which is widely used in this field to select the affected region and separate it
from the rest of the image. In this study, the Active Contour method was applied, which
acts as a snake movement and starts with a point and moves along the edges of the lesion
until the region of interest (the lesion region) is completely selected, then separated it from
the rest of the image. The segmentation method based on Active Contour models was
validated by accuracy, precision and recall measures, which reached 99.3%, 99.7%, and
99.6%, respectively. Thus, the lesion region was separated with a promising accuracy and
high efficiency, and the region of interest was sent to the feature extraction stage, to extract
the most important color, texture, and shape features.

4.4. Results of the First Proposed System (Neural Networks Algorithms)

In many domains, including medical image diagnosis, neural networks are among the
most important and successful artificial intelligence networks. The final stage of categoriza-
tion is neural network algorithms, which are based on their efficiency in previous stages
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of image processing (pre-processing, segmentation and feature extraction). Endoscopic
images of lower gastrointestinal illnesses were classified in this work using the algorithms
ANN and FFNN, which were fed the features derived by the hybrid technique. The dataset
was separated into two parts: 80 percent for training and validation and 20% for testing.
Figure 10 shows the process of training the ANN and FFNN networks, where it is noted
that the network consists of an input layer with 232 neurons, 30 hidden layers for both
ANN and FFNN, and an output layer with five neurons; each neuron represents one of the
classes of the dataset.

 
Figure 10. Display performance of the ANN and FFNN algorithms for training a low GI dataset.

4.4.1. Gradient

There are many methods for assessing the lower GI dataset using the ANN and FFNN
algorithms, and one of these scales is the gradient values. The gradient value measures the
error rate between actual and predicted values. Figure 11a,b shows the gradient values and
validation check for the performance of the ANN and FFNN algorithms for evaluating the
lower GI dataset. It can be seen from Figure 11a that the dataset was evaluated by ANN,
which found the best gradient at a value of 0.012073 at epoch 47 and validated at a value of
6 during the same epoch. It can also be seen from Figure 11b that the dataset was evaluated
by the FFNN algorithm, which reached the best gradation at a value of 0.076519 at epoch
12 and was validated at a value of 6 during the same epoch.

Figure 11. Displays gradient and validation value of lower GI dataset using (a) ANN (b) FFNN.

4.4.2. Performance Analysis

Cross-entropy loss is one of the performance measures of ANN and FFNN, which
measures mean squared error between actual and predicted values. Figure 12 shows the
performance of the ANN and FFNN networks for assessing the lower GI dataset during
the training, validation and testing phases. It is noticed from the figure that the crossed
lines represent the best point reached by the algorithms, and the blue line is for the training
stage, green for the validation stage and red for the testing stage. The ANN algorithm
achieved the best performance with a value of 0.068474 at epoch 41, as shown in Figure 12a.
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The FFNN algorithm achieved the best performance with a value of 0.047785 at epoch 6, as
shown in Figure 12b. When the validation stage reaches optimal performance, the network
parameters are adjusted, and the network stops training.

Figure 12. Displays performance for evaluating a lower GI dataset using (a) ANN (b) FFNN.

4.4.3. Receiver Operating Characteristic (ROC)

ROC is one of the performance measures of neural networks to evaluate their per-
formance on the lower GI dataset. ROC is measured by measuring the positive and false
samples rate ratio during the training, validation, and testing phases. Figure 13 describes
the performance of the ANN network for assessing the lower GI dataset, where the x-axis
represents samples for the false positive rate (FPR) with specificity. In contrast, the y-axis
represents samples for the true positive rate (TPR) labelled with sensitivity. It is noted
from the figure that there are five colors; each color represents a class in the dataset. ANN
achieved an overall ROC of 98.82% for all five types of diseases in the dataset.

Figure 13. Displays the performance of ANN through ROC for endoscopic image diagnosis.
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4.4.4. Regression

Regression is one of the performance measures of neural networks for evaluating a
dataset. The network finds the regression value by predicting continuous variables through
other available variables by measuring the error rate between the target and output values.
The network finds the best value for the regression when it approaches the value 1, which
means that the error rate between the target and output values is zero. Figure 14 shows
the performance of the FFNN for evaluating the regression of the dataset and predicting
continuous values according to the available values. FFNN reached a regression of 93.55%
during the training phase and 84% during the validation phase, and during the testing
phase, it reached 82.71% and achieved an overall regression of 90.13%.

Figure 14. Displays the performance of FFNN through regression values for endoscopic image diagnosis.

4.4.5. Error Histogram

The error histogram measures the performance of the ANN and FFNN algorithms on
the lower GI dataset. The ANN and FFNN algorithms find the minimum error between the
actual and predicted output during the dataset’s training, validation, and testing phase.
Figure 15 describes the performance of the ANN and FFNN algorithms on the dataset,
where the blue histogram bin is represented during the training phase, the green histogram
bin is during the validation phase, the red histogram bin is during the test phase of the
dataset, and the orange line is the zero line between the actual and predicted values.
Figure 15a shows the performance of the ANN algorithm, which reached the minimum
error between the actual and predicted values at 20 bin between the values −0.9494 and
0.95. While Figure 15b shows the performance of the FFNN algorithm, which reached
the minimum error between the actual and predicted values at 20 bin between the values
−1.333 and 1.054.
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Figure 15. Displays error histogram bin for evaluating a lower GI dataset using (a) ANN (b) FFNN.

4.4.6. Confusion Matrix

The confusion matrix is the comprehensive and most important measure for evaluating
networks on a dataset. It is a matrix-like form in which a row and a column represent each
class (disease) of the dataset. The rows represent the (actual) output images, while the
columns represent the predicted images. The confusion matrix contains all dataset samples
that are correctly and incorrectly classified. Correctly classified samples are called true
positive (TP) and true negative (TN); incorrectly labelled samples are called false positive
(FP) and false negative (FN). In this study, endoscopic images of the lower GI dataset were
evaluated by ANN and FFNN during the training, validation and testing phase. Figure 16
shows the resulting confusion matrix from ANN and FFNN algorithms representing the
evaluation of the dataset for five diseases as follows: class 1 represents dyed-lifted-polyps,
class 2 represents normal-cecum, class 3 represents normal-pylorus, class 4 represents
polyps, and class 5 represents ulcerative-colitis. Figure 16a shows the performance of the
ANN algorithm, which reached an overall accuracy of 97.4%. Figure 16b also shows the
performance of the FFNN algorithm, which reached an overall accuracy of 97.6%.

Figure 16. Confusion matrix for the low GI dataset generated by using (a) ANN (b) FFNN.

Table 2 summarizes the results of the evaluation of the ANN and FFNN algorithms
on endoscopic images for the early diagnosis of lower gastrointestinal disease. It is noted
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that the FFNN algorithm is superior to the ANN algorithm. The ANN algorithm achieved
an accuracy of 97.4%, a precision of 97.25%, a sensitivity of 96.5%, a specificity of 99.25%,
and an AUC of 98.82%. In contrast, the FFNN algorithm achieved an accuracy of 97.6%,
precision of 97.25%, the sensitivity of 97.75%, specificity of 99.3%, and AUC of 98.25%.
Figure 17 presents the performance of the ANN and FFNN algorithms for evaluating the
lower GI dataset.

Table 2. The results of the ANN and FFNN algorithms on the gastroenterology dataset.

Measure ANN FFNN

Accuracy % 97.4 97.6
Precision % 97.25 97.25

Sensitivity % 96.5 97.75
Specificity % 99.25 99.3

AUC % 98.82 98.25

Figure 17. Display of the performance of the ANN and FFNN algorithms for diagnosing a low GI dataset.

4.5. Results of Second Proposed System (CNN Models)

In this section, the endoscopic image of the lower GI dataset is evaluated using the
pre-trained CNN models, GoogLeNet and AlexNet. Transfer learning method is pre-trained
CNN models on more than one million images to produce more than a thousand classes.
Thus, the performance of the experience of the previously trained models is transferred
to perform new tasks, as in this study, where the experience of the CNN models for
diagnosing lower GI dataset is transferred. One of the challenges facing CNN models is the
overfitting problem during the training phase of the dataset. Thus, CNN models introduce
the data augmentation technique to overcome this challenge, which artificially augments
dataset images. Table 3 summarizes the lower GI dataset before and after using the data
augmentation during the training phase. Images are artificially augmented through many
operations such as rotation, flipping, shifting, and others. Each image was incremented
seven times for all classes equally.

Table 3. Data augmentation method during the training phase.

Phase Training Phase 80%

Class name dyed-lifted-
polyps

normal-
cecum

normal-
pylorus polyps ulcerative-

colitis

No images before augmentation 640 640 640 640 640
No images after augmentation 5120 5120 5120 5120 5120

Table 4 summarizes the tuning of the CNN GoogLeNet and AlexNet models, where
the adam optimizer and Mini Batch Size, Mini Batch Size, Initial Learn Rate, dataset training
time for each model and Validation Frequency were set.
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Table 4. Seting parameter options for GoogLeNet and AlexNet models.

Options GoogleNet AlexNet

training Options adam adam
Mini Batch Size 18 120

Max Epochs 6 10
Initial Learn Rate 0.0003 0.0001

Validation Frequency 3 50
Training time (min) 301 min 23 s 144 min 38 s

Execution Environment GPU GPU

The GoogLeNet and AlexNet models achieved superior results for diagnosing en-
doscopic images of the gastro-intestinal disease dataset. Table 5 describes the evaluation
results of the GoogLeNet and AlexNet models, where it is noted that the GoogLeNet
model is superior to the AlexNet model. The GoogLeNet model achieved an accuracy
of 96%, a precision of 96.2%, a sensitivity of 96%, a specificity of 99.2%, and an AUC of
96%. In contrast, the AlexNet model achieved an accuracy of 91.5%, a precision of 91.8%, a
sensitivity of 91.4%, a specificity of 98%, and an AUC of 99.53%.

Table 5. The results of the GoogLeNet and AlexNet models on the lower GI dataset.

Measure GoogLeNet AlexNet

Accuracy % 96 91.5
Precision % 96.2 91.8

Sensitivity % 96 91.4
Specificity % 99.2 98

AUC % 96 99.53

Figure 18 presents the evaluation results of the performance of the GoogLeNet and
AlexNet models on the lower GI dataset in a graph.

Figure 18. Display results of the GoogLeNet and AlexNet models for diagnosing a low GI dataset.

Figure 19 describes the confusion matrix generated by the CNN models, GoogLeNet
and AlexNet for the early diagnosis of lower GI disease. In contrast, the confusion matrix
describes all dataset samples that are correctly or incorrectly categorized. It also describes
the diagnostic accuracy reached by the models for each class. The figure shows that dyed-
lifted-polyps was diagnosed with 98% and 94% accuracy for GoogLeNet and AlexNet,
respectively. Normal-cecum was diagnosed with 100% and 94% accuracy for GoogLeNet
and AlexNet, respectively. Normal-pylorus was diagnosed with 99.5% and 99% accuracy
for GoogLeNet and AlexNet, respectively. Polyps were diagnosed with an accuracy of 92%
and 86.5% for GoogLeNet and AlexNet, respectively. Ulcerative colitis was diagnosed with
an accuracy of 90.5% and 84% for GoogLeNet and AlexNet, respectively.
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Figure 19. Confusion matrix for the lower GI dataset generated by using (a) GoogLeNet (b) AlexNet.

4.6. Results of Third Proposed System (Hybrid CNN with SVM)

This section presents the findings of the hybrid techniques between CNN models
(GoogLeNet and AlexNet) and the SVM algorithm. The technique consists of two blocks:
the first is CNN models for extracting feature maps, and the second block is the SVM
algorithm for classifying feature maps. One of the most important reasons for using this
technique is that it requires medium-specification computer resources, speed in training
the dataset, and high accuracy in diagnosis. Table 6 summarizes the assessment of the
lower gastrointestinal diseases dataset by hybrid GoogLeNet+SVM and AlexNet+SVM
technique for early diagnosis of gastrointestinal tumors and ulcers. The GoogLeNet+SVM
hybrid technique is superior to AlexNet+SVM. The GoogLeNet+SVM achieved an accuracy
of 96.7%, a precision of 96.8%, a sensitivity of 96.8%, a specificity of 99%, and an AUC of
99.1%. In contrast, the AlexNet+SVM model achieved an accuracy of 94.7%, a precision of
94.8%, a sensitivity of 94.8%, a specificity of 98.6%, and an AUC of 99.6%.

Table 6. The results of the hybrid method on the lower GI dataset.

Measure GoogLeNet+SVM AlexNet+SVM

Accuracy % 96.7 94.7
Precision % 96.8 94.8

Sensitivity % 96.8 94.8
Specificity % 99 98.6

AUC % 99.1 99.62

Figure 20 displays the evaluation results of the GoogLeNet+SVM and AlexNet+SVM
techniques on the lower GI dataset in a graph.
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Figure 20. Display results of the GoogLeNet+SVM and AlexNet+SVM techniques for diagnosing a
low GI dataset.

Figure 21 shows the performance of the hybrid techniques GoogLeNet+SVM and
AlexNet+SVM for diagnosing lower gastrointestinal disease dataset in the form of a confu-
sion matrix. The hybrid methods produced a confusion matrix that describes all samples
of the dataset correctly labelled represented in the primary diameter and all samples in-
correctly classified and distributed over the rest of the matrix cells. The figure shows
the performance of hybrid techniques for diagnosing each disease and the overall ac-
curacy. The figure shows that dyed-lifted-polyps was diagnosed with 98.5% and 95%
accuracy for GoogLeNet+SVM and AlexNet+SVM, respectively. Normal-cecum was diag-
nosed with 100% and 95% accuracy for GoogLeNet+SVM and AlexNet+SVM, respectively.
Normal-pylorus was diagnosed with 100% and 100% accuracy for GoogLeNet+SVM and
AlexNet+SVM, respectively. Polyps were diagnosed with an accuracy of 93.5% and 90% for
GoogLeNet+SVM and AlexNet+SVM, respectively. Ulcerative colitis was diagnosed with
an accuracy of 91.5% and 93.5% for GoogLeNet+SVM and AlexNet+SVM, respectively.

Figure 21. Confusion matrix for evaluating of lower GI dataset using (a) GoogLeNet+SVM and
(b) AlexNet+SVM.

4.7. Results of Fourth Proposed System (Hybrid Features CNN and Traditional Algorithms)

This section presents the evaluation results of hybrid feature techniques between CNN
models (GoogLeNet and AlexNet) and features extracted by traditional algorithms (LBP,
GLCM and FCH); after fusion, all the features are classified by ANN and FFNN algorithms.
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These techniques require low-resource computer specifications, execution speed, and high
accuracy in diagnosing endoscopic images of the lower GI dataset. Table 7 summarizes
the evaluation results of the performance of the ANN algorithm. When using the hybrid
features extracted by CNN models and traditional algorithms (LBP, GLCM and FCH), the
systems reached superior results in diagnosing the lower GI dataset. All features are fused
into a single feature vector for each image, where each feature vector contains 4328 features
fed into the ANN and FFNN classifiers.

Table 7. Results of dataset evaluation by ANN and FFNN based on hybrid features.

Classifiers ANN FFNN

Hybrid Features
GoogLeNet Feature +
LBP, GLCM and FCH

AlexNet Feature + LBP,
GLCM and FCH

GoogLeNet Feature +
LBP, GLCM and FCH

AlexNet Feature + LBP,
GLCM and FCH

Accuracy % 98 99.1 98.5 99.3
Precision % 98.25 99 98.6 99.2

Sensitivity % 97.8 98.8 98.2 99
Specificity % 99.4 99.8 99.75 100

AUC % 98.69 99.76 98.83 99.87

First, when diagnosing by ANN algorithm based on the combined features of GoogLeNet
and traditional algorithms (LBP, GLCM and FCH), the system reached accuracy, precision,
sensitivity, specificity and AUC of 98%, 98.25%, 97.8%, 99.4% and 98.69%, respectively.
When using the hybrid features between AlexNet and traditional algorithms (LBP, GLCM
and FCH), the system reached accuracy, precision, sensitivity, specificity and AUC with a
percentage of 99.1%, 99%, 98.8%, 99.8% and 99.76%, respectively.

Second, when diagnosing by FFNN algorithm based on the combined features of
GoogLeNet and traditional algorithms (LBP, GLCM and FCH), the system reached accuracy,
precision, sensitivity, specificity and AUC of 98.8%, 98.6%, 98.2%, 99.75% and 98.83%,
respectively. When using the hybrid features between AlexNet and traditional algorithms
(LBP, GLCM and FCH), the system reached accuracy, precision, sensitivity, specificity and
AUC with a percentage of 99.3%, 99.2%, 99%, 100% and 99.87%, respectively.

Figure 22 displays the evaluation of the ANN and FFNN algorithms based on the
fusion of features between CNN models and traditional algorithms to classify the lower GI
dataset accurately.

 

Figure 22. Display of the performance of the ANN and FFNN based on hybrid features for diagnosing
a low GI dataset.

Figure 23 shows the evaluation results of the ANN algorithm based on the hybrid
features between CNN models (GoogLeNet and AlexNet) with the features extracted by
LBP, GLCM and FCH methods for early diagnosis of lower gastrointestinal diseases. The
figure summarizes all samples of the correctly classified and incorrectly classified dataset
and displays the diagnostic accuracy of each class (disease) in the dataset. First, when using
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hybrid features extracted from GoogLeNet and conventional, ANN reached an accuracy of
95.4%, 98.5%, 99.5%, 99.5%, and 100% for diagnosing dyed-lifted-polyps, normal-cecum,
normal-pylorus, polyps, and ulcerative-colitis, respectively. Second, when using the hybrid
features extracted from AlexNet and conventional, ANN reached an accuracy of 97.2%, 99%,
100%, 99.4%, and 100% for diagnosing dyed-lifted-polyps, normal-cecum, normal-pylorus,
polyps, and ulcerative-colitis, respectively.

Figure 23. Performance results of the ANN for diagnosing lower gastrointestinal diseases based on
hybrid features (a) GoogLeNet with traditional algorithm and (b) AlexNet with traditional algorithm.

Figure 24 shows the confusion matrix produced by the FFNN algorithm based on
the hybrid features between CNN models (GoogLeNet and AlexNet) with the features
extracted by LBP, GLCM and FCH methods for early diagnosis of lower gastrointestinal
diseases. The figure summarizes all samples of the correctly classified and incorrectly
classified dataset and displays the diagnostic accuracy of each class (disease) in the dataset.
First, when using hybrid features extracted from GoogLeNet and conventional, FFNN
reached an accuracy of 99.5%, 98%, 98.5%, 97%, and 99.5% for diagnosing dyed-lifted-
polyps, normal-cecum, normal-pylorus, polyps, and ulcerative-colitis, respectively. Second,
when using the hybrid features extracted from AlexNet and conventional, FFNN reached
an accuracy of 99.5%, 99%, 99.5%, 99.5%, and 99% for diagnosing dyed-lifted-polyps,
normal-cecum, normal-pylorus, polyps, and ulcerative-colitis, respectively.
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Figure 24. Results of the FFNN for diagnosing lower gastrointestinal diseases based on hybrid
features (a) GoogLeNet with traditional algorithm and (b) AlexNet with traditional algorithm.

5. Discussion and Comparative Analysis

This study presented many methods of artificial intelligence techniques that vary
between neural network algorithms, CNN models, hybrid techniques between CNN
models, SVM algorithm, and feature merging techniques for early detection of lower GI
diseases, which includes 5000 images. Moreover, proposed systems detect and diagnose
lower gastrointestinal diseases with a high performance, thus helping to treat and reduce
treatment that benefits patients. Clinicians must apply artificial intelligence techniques to
diagnose patients and support their diagnostic decisions. The process of data collection
and image acquisition from several devices and under different conditions; the influence of
external factors such as light reflection; some noise; and internal factors such as mucous
membranes and some traces of stool have a negative impact on the diagnostic process, so
the average is applied to the three RGB channels. In addition, average and Laplacian filters
were applied to enhance the images. Due to the scarcity of medical images, CNN models
augment training images by applying the method of data augmentation through flipping,
zooming, zooming, and rotating.

Table 8 describes the performance of all proposed systems for diagnosing endoscopic
images of the lower gastrointestinal disease dataset. First, for dyed lifted polyps, the ANN
algorithm based on fusion features (AlexNet and traditional algorithms) and the FFNN
algorithm based on fusion features achieved the best performance for diagnosing this
disease with an accuracy of 99.5%.
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Table 8. The accuracy achieved by all the proposed systems for evaluating the gastroenterology dataset.

Diseases
Dyed-Lifted-

Polyps
Normal-
Cecum

Normal-
Pylorus

Polyps
Ulcerative-

Colitis
Accuracy %

Neural Networks
ANN 96.5 98.5 96.5 96.5 99 97.4
FFNN 97 98 99.5 97.5 96 97.6

Deep learning GoogLeNet 96 100 99.5 92 90.5 96
AlexNet 94 94 99 86.5 84 91.5

Hybrid GoogLeNet+SVM 98.5 100 100 93.5 91.5 96.7
AlexNet+SVM 95 95 100 90 93.5 94.7

Hybrid
Features

ANN

GoogLeNet
and

traditional
97.5 100 96.5 97 99 98

AlexNet and
traditional 99.5 100 97 99.5 99.5 99.1

FFNN

GoogLeNet
and

traditional
99.5 98 98.5 97 99.5 98.5

AlexNet and
traditional 99.5 99 99.5 99.5 99 99.3

Second, for Normal-cecum, GoogLeNet, the hybrid technique between GoogLeNet
with SVM and the ANN algorithm based on fusion features (GoogLeNet with traditional
algorithms and AlexNet with traditional algorithms) achieved the best performance for di-
agnosing this disease with 100% accuracy. Third, for normal pylorus, the GoogLeNet+SVM
and AlexNet+SVM achieved the best performance for diagnosing this disease with 100%
accuracy. Fourth, for polyps, the ANN algorithm based on fusion features (AlexNet with
traditional algorithms) and the FFNN algorithm based on fusion features (AlexNet with
traditional algorithms) achieved the best performance for diagnosing this disease with an
accuracy of 99.5%. Fifthly, for ulcerative colitis, the ANN algorithm based on fusion features
(AlexNet with traditional algorithms) and the FFNN algorithm based on fusion features
(GoogLeNet with traditional algorithms) achieved the best performance for diagnosing
this disease with an accuracy of 99.5%.

Figure 25 presents the performance of all proposed systems for diagnosing endoscopic
images for early detection of lower gastrointestinal diseases in graphic form.

Figure 25. Display of results comparison of all the proposed methods for diagnosing a low GI dataset.

160



Sensors 2022, 22, 4079

6. Conclusions

The increase in deaths due to lower GI diseases, especially tumors, results from the lack
of manual diagnosis due to the difficulty in tracking all the frames. Therefore, this study
presents a set of proposed multi-method systems for the early diagnosis of endoscopic
images of a lower GI dataset. The first proposed system uses the neural networks ANN and
FFNN, which are based on segmentation of the region of interest and feature extraction by
LBP, GLCM and FCH algorithms and merging them into one feature vector for each image.
The second proposed system uses the CNN models GoogLeNet and AlexNet, which are
based on extracting deep feature maps and classifying them accurately. The third proposed
system uses hybrid techniques based on CNN models (GoogLeNet and AlexNet) to extract
deep feature maps and classify them by the SVM algorithm. The fourth proposed system
using ANN and FFNN neural network algorithms is based on fused features extracted by
CNN models (GoogLeNet and AlexNet) and LBP, GLCM and FCH algorithms. All the
proposed systems achieved highly accurate diagnostic results in diagnosing endoscopic
images of the lower gastrointestinal disease dataset with high efficiency.

Future work will apply the principal component analysis (PCA) algorithm to reduce
the dimensions of deep feature maps extracted by CNN models, in addition to integrating
deep feature maps from more than one CNN model and reducing their dimensions by the
PCA algorithm.

Author Contributions: Conceptualization, S.M.F., E.M.S. and A.T.A.; methodology, E.M.S., S.M.F. and
A.T.A.; validation, S.M.F., A.T.A. and E.M.S.; formal analysis, A.T.A., S.M.F. and E.M.S.; investigation,
E.M.S., S.M.F. and A.T.A.; resources, S.M.F., E.M.S. and A.T.A.; data curation E.M.S., S.M.F. and
A.T.A.; writing—original draft preparation, E.M.S.; writing—review and editing, S.M.F. and A.T.A.;
visualization, A.T.A., S.M.F. and E.M.S.; supervision, S.M.F., E.M.S. and A.T.A.; project administration,
S.M.F. and A.T.A.; funding acquisition, S.M.F. and A.T.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Prince Sultan University.

Data Availability Statement: In this study, the data supporting all the proposed systems were
collected by the Kvasir dataset available at this link: https://datasets.simula.no/kvasir/#download
(accessed on 30 January 2022).

Acknowledgments: The authors would like to acknowledge the support of Prince Sultan University
for paying the Article Processing Charges (APC) of this publication. Special acknowledgement to
Automated Systems & Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

2. Liu, J.B.; Cao, J.; Alofi, A.; Abdullah, A.M.; Elaiw, A. Applications of Laplacian spectra for n-prism networks. Neurocomputing 2016,
198, 69–73. Available online: https://www.sciencedirect.com/science/article/pii/S0925231216003088 (accessed on 1 February 2022).
[CrossRef]

3. Liu, J.B.; Pan, X.F. Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput. 2016, 291,
84–88. [CrossRef]

4. Lan, L.; Ye, C.; Wang, C.; Zhou, S. Deep convolutional neural networks for WCE abnormality detection: CNN architecture,
region proposal and transfer learning. IEEE Access 2019, 7, 30017–30032. Available online: https://ieeexplore.ieee.org/abstract/
document/8651510/ (accessed on 1 February 2022). [CrossRef]

5. Owais, M.; Arsalan, M.; Choi, J.; Mahmood, T.; Park, K.R. Artificial intelligence-based classification of multiple gastrointestinal
diseases using endoscopy videos for clinical diagnosis. J. Clin. Med. 2019, 8, 986. Available online: https://www.mdpi.com/4927
80 (accessed on 1 February 2022). [CrossRef]

6. Liu, J.B.; Pan, X.F.; Hu, F.T.; Hu, F.F. Asymptotic Laplacian-energy-like invariant of lattices. Appl. Math. Comput. 2015, 253, 205–214.
Available online: https://www.sciencedirect.com/science/article/pii/S0096300314016890 (accessed on 1 February 2022). [CrossRef]

7. Liu, J.B.; Pan, X.F.; Yu, L.; Li, D. Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discret. Appl. Math.
2016, 200, 95–107. Available online: https://www.sciencedirect.com/science/article/pii/S0166218X15003236 (accessed on 1
February 2022). [CrossRef]

161



Sensors 2022, 22, 4079

8. Ueyama, H.; Kato, Y.; Akazawa, Y.; Yatagai, N.; Komori, H.; Takeda, T.; Matsumoto, K.; Ueda, K.; Matsumoto, K.; Hojo, M.;
et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on
magnifying endoscopy with narrow-band imaging. J. Gastroenterol. Hepatol. 2021, 36, 482–489. [CrossRef]

9. Sutton, R.T.; Zaïane, O.R.; Goebel, R.; Baumgart, D.C. Artificial intelligence enabled automated diagnosis and grading of ulcerative
colitis endoscopy images. Sci. Rep. 2022, 12, 2748. [CrossRef]

10. Milluzzo, S.M.; Cesaro, P.; Grazioli, L.M.; Olivari, N.; Spada, C. Artificial intelligence in lower gastrointestinal endoscopy: The
current status and future perspective. Clin. Endosc. 2021, 54, 329. [CrossRef]

11. Ali, S.; Dmitrieva, M.; Ghatwary, N.; Bano, S.; Polat, G.; Temizel, A.; Rittscher, J. Deep learning for detection and segmentation of
artefact and disease instances in gastrointestinal endoscopy. Med. Image Anal. 2021, 70, 102002. [CrossRef]

12. Godkhindi, A.M.; Gowda, R.M. Automated detection of polyps in CT colonography images using deep learning algorithms in
colon cancer diagnosis. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 1722–1728. Available online: https://ieeexplore.ieee.org/abstract/
document/8389744/ (accessed on 1 February 2022).

13. Ozawa, T.; Ishihara, S.; Fujishiro, M.; Kumagai, Y.; Shichijo, S.; Tada, T. Automated endoscopic detection and classification of
colorectal polyps using convolutional neural networks. Ther. Adv. Gastroenterol. 2020, 13, 1756284820910659. [CrossRef]

14. Pozdeev, A.A.; Obukhova, N.A.; Motyko, A.A. Automatic analysis of endoscopic images for polyps detection and segmentation.
In Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
Saint Petersburg and Moscow, Russia, 28–31 January 2019; pp. 1216–1220. Available online: https://ieeexplore.ieee.org/abstract/
document/8657018/ (accessed on 1 February 2022).

15. Zhang, R.; Zheng, Y.; Mak, T.W.C.; Yu, R.; Wong, S.H.; Lau, J.Y.; Poon, C.C. Automatic detection and classification of colorectal
polyps by transferring low-level CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 2016, 21, 41–47. [CrossRef]

16. Ribeiro, E.; Uhl, A.; Häfner, M. Colonic polyp classification with convolutional neural networks. In Proceedings of the 2016
IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS), Belfast and Dublin, Ireland, 20–24 June 2016;
pp. 253–258. [CrossRef]

17. Min, M.; Su, S.; He, W.; Bi, Y.; Ma, Z.; Liu, Y. Computer-aided diagnosis of colorectal polyps using linked color imaging
colonoscopy to predict histology. Sci. Rep. 2019, 9, 2881. Available online: https://www.nature.com/articles/s41598-019-39416-7
(accessed on 1 February 2022). [CrossRef]

18. Song, E.M.; Park, B.; Ha, C.; Hwang, S.W.; Park, S.H.; Yang, D.H.; Byeon, J.S. Endoscopic diagnosis and treatment planning for
colorectal polyps using a deep-learning model. Sci. Rep. 2020, 10, 30. Available online: https://www.nature.com/articles/s41598
-019-56697-0 (accessed on 1 February 2022). [CrossRef]

19. Khan, M.A.; Khan, M.A.; Ahmed, F.; Mittal, M.; Goyal, L.M.; Hemanth, D.J.; Satapathy, S.C. Gastrointestinal diseases segmentation
and classification based on duo-deep architectures. Pattern Recognit. Lett. 2020, 131, 193–204. Available online: https://www.
sciencedirect.com/science/article/pii/S016786551930399X (accessed on 1 February 2022). [CrossRef]

20. Billah, M.; Waheed, S. Gastrointestinal polyp detection in endoscopic images using an improved feature extraction method.
Biomed. Eng. Lett. 2018, 8, 69–75. [CrossRef]

21. Hasan, M.M.; Islam, N.; Rahman, M.M. Gastrointestinal polyp detection through a fusion of contourlet transform and Neural
features. J. King Saud Univ. Comput. Inf. Sci. 2020, 11, 2022. Available online: https://www.sciencedirect.com/science/article/
pii/S1319157819313151 (accessed on 1 February 2022). [CrossRef]

22. Gamage, C.; Wijesinghe, I.; Chitraranjan, C.; Perera, I. GI-Net: Anomalies classification in gastrointestinal tract through endoscopic
imagery with deep learning. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa,
Sri Lanka, 3–5 July 2019; pp. 66–71. Available online: https://ieeexplore.ieee.org/abstract/document/8818929/ (accessed on 1
February 2022).

23. Vleugels, J.L.; Hazewinkel, Y.; Dekker, E. Morphological classifications of gastrointestinal lesions. Best Pract. Res. Clin.
Gastroenterol. 2017, 31, 359–367. Available online: https://www.sciencedirect.com/science/article/pii/S1521691817300434
(accessed on 1 February 2022). [CrossRef]

24. Fonollá, R.; van der Sommen, F.; Schreuder, R.M.; Schoon, E.J.; de With, P.H. Multi-modal classification of polyp malignancy using
CNN features with balanced class augmentation. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 74–78. Available online: https://ieeexplore.ieee.org/abstract/document/
8759320/ (accessed on 1 February 2022).
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Abstract: Breast cancer grading methods based on hematoxylin-eosin (HE) stained pathological
images can be summarized into two categories. The first category is to directly extract the pathological
image features for breast cancer grading. However, unlike the coarse-grained problem of breast
cancer classification, breast cancer grading is a fine-grained classification problem, so general methods
cannot achieve satisfactory results. The second category is to apply the three evaluation criteria
of the Nottingham Grading System (NGS) separately, and then integrate the results of the three
criteria to obtain the final grading result. However, NGS is only a semiquantitative evaluation
method, and there may be far more image features related to breast cancer grading. In this paper, we
proposed a Nuclei-Guided Network (NGNet) for breast invasive ductal carcinoma (IDC) grading
in pathological images. The proposed nuclei-guided attention module plays the role of nucleus
attention, so as to learn more nuclei-related feature representations for breast IDC grading. In
addition, the proposed nuclei-guided fusion module in the fusion process of different branches can
further enable the network to focus on learning nuclei-related features. Overall, under the guidance
of nuclei-related features, the entire NGNet can learn more fine-grained features for breast IDC
grading. The experimental results show that the performance of the proposed method is better than
that of state-of-the-art method. In addition, we released a well-labeled dataset with 3644 pathological
images for breast IDC grading. This dataset is currently the largest publicly available breast IDC
grading dataset and can serve as a benchmark to facilitate a broader study of breast IDC grading.

Keywords: breast cancer grading; histopathological image; nuclei segmentation; convolutional
neural network; attention mechanism

1. Introduction

Breast invasive ductal carcinoma (IDC) is the most widespread type of breast cancer,
making up approximately 80% of all diagnosed cases. Histological grading has direct
guiding significance for the prognostic evaluation of IDC. The most popular grading scheme
is the Nottingham Grading System (NGS) [1] which gives a more objective assessment
than previous grading systems. NGS includes three semi-quantitative criteria: mitotic
count, nucleus atypia, and tubular formation. However, in clinical practice, the burden
of pathological diagnosis is very heavy, and many pathologists cannot accurately grasp
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NGS, which will greatly weaken the guiding significance of histological grading for clinical
prognosis evaluation, and even mislead the clinical judgment of prognoses. Therefore,
there is an urgent need for an automatic and accurate pathological grading method.

The automatic breast cancer grading methods based on pathological images can be
summarized into two categories. The first category is to use machine-learning or deep-
learning methods to directly extract the features of the pathological image for breast cancer
grading. However, unlike the coarse-grained problem of breast cancer classification, IDC
grading is a fine-grained classification problem. Using only general methods cannot classify
IDC well because the classification boundaries among intermediate-grade and low- and
high-grade IDC pathological images are blurred.

The second category is to compute the three evaluation criteria of NGS separately
and then integrate those results to obtain the final IDC grading result. However, NGS is
only a semiquantitative evaluation method. The inherent medical motivation of NGS is
to classify IDC based on the morphological and texture characteristics of the cell nucleus
and the topological structure of the cell population. With the end-to-end advantage of deep
learning, not only can the medical goal of emphasizing nuclei-related features be achieved,
but more fine-grained feature representations of pathological images that are too abstract
for pathologists to understand can also be learned.

In this paper, we propose a Nuclei-Guided Network (NGNet) for IDC grading in
hematoxylin-eosin (HE) stained pathological images. Specifically, our network includes
two branches. The main branch is used to extract the feature representation of the entire
pathological image, and the nuclei branch is used to extract the feature representation of the
nuclei image. Then, the nuclei-guided attention module between the two branches plays
the role of nucleus attention in end-to-end learning, so that more nuclei-related feature
representations for IDC grading can be learned. In addition, the proposed nuclei-guided
fusion module in the fusion process of two branches can further enable the network to
focus on learning nuclei-related features. Overall, under the guidance of nuclei-related
features, the entire NGNet can learn more fine-grained features for breast IDC grading. It
should be pointed out that this is different from the general attention mechanism [2–4] that
cannot artificially emphasize the region of interest.

Experimental results show that the proposed NGNet significantly outperforms the
state-of-the-art method, achieving 93.4% average classification accuracy and 0.93 AUC with
our released dataset. In addition, we release a new dataset containing 3644 pathological
images with different magnifications (20× and 40×) for evaluating the IDC grading meth-
ods. Compared with the previous publicly available breast cancer grading dataset with
only 300 images in total, the number of images in our dataset has increased by an order
of magnitude. The dataset is publicly available from https://github.com/YANRUI121
/Breast-cancer-grading (accessed on 1 April 2022).

2. Related Works

Recently, the application of deep learning has enabled breast cancer pathological
image classification to achieve high performance. However, breast cancer classification
is not enough for the final medical diagnosis. The classification must be subdivided and
accurate to the extent of the pathological grade of the cancer, because the gold standard
of the final medical diagnosis, the choice of treatment plan and the prediction of patient
outcome are all based on the results of the pathological grade.

The classification boundaries among intermediate-grade and low- and high-grade
IDC pathological images are ambiguous; thus, general methods cannot classify the IDC
grade well. The current IDC grading methods can be divided into two categories. The
first category is to classify the features extracted directly from the pathological image.
The second category is to first calculate the three evaluation criteria of NGS (1) mitotic
count [5–8], (2) nucleus atypia [9,10], and (3) tubular formation [11–13], and then artificially
integrate these three criteria to obtain the final result. Figure 1 is a brief description of
NGS. By analyzing the three evaluation criteria of NGS, we observe that nuclei-related
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features are very important for breast cancer pathological diagnosis. Specifically, mitotic
count and nucleus atypia are concerned with the morphological and texture characteristics
of the cell nucleus, whereas tubular formation is concerned with the topological structure
of the cell population. Because we are primarily concerned with end-to-end breast cancer
grading studies, we will only briefly introduce the related works of the first category in the
following.

Figure 1. A brief description of the three evaluation criteria of NGS adopted by the World Health
Organization. (1) Mitotic count: the images represent prophase, metaphase, anaphase and telophase
stages of mitosis from left to right. (2) Nucleus atypia: the nucleus atypia score reflects the variations
in the size, shape, and appearance of the cancer cells relative to normal cells. The nuclear atypia score
values are 1, 2, and 3 from left to right. (3) Tubular formation: a large number of tubules are formed
in the pathological image on the left. As the grade increases, the tubules gradually disappear from
left to right.

Before the era of deep learning, research on breast cancer pathological image grading
was mainly based on traditional machine-learning methods. For example, Doyle et al. [14]
proposed a novel method to classify low- and high-grade of breast cancer histopathological
images by using architectural features. Naik et al. [15] classify the low- and high-grade
breast cancer by using a combination of low-level, high-level, and domain-specific informa-
tion. They first segment glands and nuclei. Then, morphological and architectural attributes
derived from the segmented gland and nuclei were used to discriminate low-grade from
high-grade breast cancer. Basavanhally et al. [16] conducted a multifield-of-view classifier
with robust feature selection for classifying ER+ breast cancer pathological images. Their
grading system can distinguish low- vs. high-grade patients well, but fails to distinguish
low- vs. intermediate-, and intermediate- vs. high-grade patients well.

Deep learning has made great progress in breast cancer pathological image grading.
The most representative work was proposed by Wan et al. [17]. They integrated semantic-
level features extracted from a convolutional neural network (CNN), pixel-level texture
features, and object-level architecture features to classify low-, intermediate-, and high-
grade breast cancer pathological images. The method achieved an accuracy of 0.92 for low
vs. high, 0.77 for low vs. intermediate, and 0.76 for intermediate vs. high, and an overall
accuracy of 0.69 when discriminating all three grades of breast cancer pathological images.
Our preliminary work that shows that only using deep learning can help achieve better
grading performance was published in BIBM2020 [18]. Compared to the previous work,
we put forward new contributions in nuclei-guided branch fusion and further disclosed
one of the largest IDC grading datasets.
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In the field of computer vision, there are many excellent networks based on atten-
tion mechanisms, such as SENet [19], Position and Channel Attention [20], CBAM [4],
Criss-Cross Attention [21], and Self-Attention [22,23]. SENet [19] is the abbreviation of
Squeeze-and-Excitation Networks. SENet mainly recalibrates the feature responses of
channels adaptively by explicitly modeling the interdependence between channels. In
other words, the correlation between channels is learned. Convolutional Block Attention
Module (CBAM) [4] combines spatial and channel attention mechanism, which can achieve
better results than SENet’s attention mechanism that only focuses on channels. Because
CBAM is a lightweight general module, it can be integrated into any CNN architecture with
negligible overhead of this module, and can be trained end-to-end together with the base
CNN. Transformer is a deep neural network based on self-attention mechanism, which has
been considered as a viable alternative to convolutional and recurrent neural networks. In
the field of computer vision, Vision Transformer (ViT) proposed by Dosovitskiy et al. [24] is
a pioneering work. Following the paradigm of ViT, a series of ViT variants [25,26] have been
proposed to improve the performance. The complexity of the ViT-like model is very high,
so it needs a very large training dataset. Therefore, the application of the ViT-like model
in the field of pathological images analysis is still few at present, especially for the breast
cancer grading tasks that are difficult to manually label. These above-mentioned attention
mechanisms are adaptively learned from the data, and are the areas where the algorithm
thinks attention should be focused. However, if we need to customize the area where
the algorithm focuses attention based on prior knowledge, this is not possible. A more
comprehensive review of attention mechanisms can be found in [27,28]. Our proposed
network can focus on a specific area. This is different from the general attention mechanism
that cannot artificially emphasize the region of interest. This provides a new paradigm for
embedding medical prior knowledge into algorithms.

3. Dataset

Deep-learning methods have an important dependence on well-labeled datasets such
as BreaKHis dataset [29], the Yan et al. dataset [30], and the BACH dataset [31]. However,
due to the difficulty of the IDC grading task, there are few related works. To the best of
our knowledge, only Kosmas et al. [32] has released one IDC grading dataset containing
300 pathological images, which is insufficient for deep-learning research. In this work,
we cooperated with Peking University International Hospital to release a new benchmark
dataset for IDC grading. We conducted experiments on these two datasets to comprehen-
sively verify the effectiveness of our proposed NGNet method. Next, we will introduce
these two datasets.

3.1. IDC Pathological Images Dataset

The dataset released by Kosmas et al. [32] includes 300 images (107 Grade1 images,
102 Grade2 images, and 91 Grade3 images). All images were acquired at 40× magnification.
Although this released dataset has played a significant role in the IDC grading research,
300 images are not enough for the deep-learning method.

To meet the needs of deep-learning research, we cooperated with Peking University
International Hospital to release a new IDC grading dataset. Our annotated HE-stained
pathological image dataset consists of 3644 pathological images (1000 × 1000 pixels).
Figure 2 is an example of the images and a summary of the dataset. We named it the
PathoIDCG dataset, which is an abbreviation of the Pathological Image Dataset for Invasive
Ductal Carcinoma Grading. The overall description of the PathoIDCG dataset is shown in
Table 1. The preparation procedure used in our research is the standard paraffin process,
which is widely used in routine clinical practice. The thickness of pathological sections is
3–5 μm. Each image is labeled Grade1, Grade2, or Grade3 according to the three evaluation
criteria of NGS. Image annotation was independently performed by two pathologists in
strict accordance with NGS standards, and the images with different annotations were rean-
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notated by a senior pathologist. The Ethics Committee of Peking University International
Hospital reviewed and approved the study, and all the related data are anonymous.

Figure 2. Pathological image examples and quantity statistics of our proposed dataset for IDC
grading.

Table 1. The overall description of the PathoIDCG dataset.

Description Value

No. pathological images (total) 3644
No. pathological images (40×) 1158 (361 G1, 480 G2, 317 G3)
No. pathological images (20×) 2486 (600 G1, 641 G2, 1245 G3)

Size of pathological images 1000 × 1000 pixels
Magnification of pathological images 20×, 40×
Color model of pathological images R(ed)G(reen)B(lue)

Memory space of pathological images ~1 MB
Type of image label Image-wise

Our dataset is mainly acquired under a 20× magnified field of view, because the 20×
magnified pathological image can contain more information about the topology of the
cell population. Another reason is that the commonly available 20× slides are easier to
obtain, and the current cell nucleus segmentation technology can also segment pathological
images under 20× magnification. At the same time, we also collected pathological images
at 40× magnification because a larger magnification can better reflect the texture and
morphological characteristics of individual nuclei.

3.2. Nuclei Segmentation Dataset

The dataset released by Kumar et al. [33] included HE-stained pathological images
with 21,623 annotated nucleus boundaries, and Figure 3 is an example of this dataset.
Kumar et al. [33] downloaded 30 whole slide pathological images of several organs from
The Cancer Genomic Atlas (TCGA) [34] and used only one WSI per patient to maximize
nuclear appearance variation. In addition, these images come from 18 different hospitals,
which makes the dataset sufficiently diverse. It is important to emphasize that although
we only segmented the nucleus of breast cancer pathological images, our segmentation
model was trained on pathological images of all seven organs: breast, liver, colon, prostate,
bladder, kidney, and stomach. For the above reasons, our segmentation model is more
robust and generalizable.
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Figure 3. The nuclei segmentation dataset we used for breast cancer grading. We only need binary
mask annotations to train the segmentation model. For better visualization, each nucleus is shown in
a different color.

4. Methods

The key idea of NGNet is shown in Figure 4. Our method consists of two stages: in
the first stage, we segmented the nucleus of each pathological image to obtain all images
that only contain the nucleus region. In the second stage, two images (original pathological
image and corresponding nuclei image) are input at the same time and sent to the NGNet
to obtain the final classification result.

 

Figure 4. The key idea of the proposed method. NGNet forces the network to focus on learning
features related to the nuclei. At the same time, under the guidance of nuclei-related features, the
entire network learns more fine-grained features. The visual heat map is obtained through Grad-CAM
using our proposed NGNet.

4.1. Nuclei Segmentation

We use DeepLabV3+ [35] as our nuclei segmentation network because it can better
address the following challenges. In the HE-stained pathological image, some cell nuclei
are very large, whereas some are very small. Moreover, under different magnifications,
such as 20× and 40×, the difference in the size of the nucleus is more significant. Therefore,
our network is required to be able to use multiscale image features, especially to be able to
reconstruct the information of small objects. At the same time, many overlapping nuclei
boundaries make nuclei segmentation more difficult, so the segmentation algorithm is
required to have the ability to reconstruct nuclei boundaries.

Given a pathological image, the output of DeepLabV3+ is a nuclei segmentation mask.
The backbone of the DeepLabV3+ algorithm we applied is Xception [36]. When our training
steps are 100,000, we have achieved the best experimental results. The values of atrous
rates we used are 6, 12, and 18. We adopt an output stride equal to 16. Here, we denote the
output stride as the ratio of input image spatial resolution to the final output resolution.

169



Sensors 2022, 22, 4061

4.2. NGNet Architecture

The overall network architecture is shown in Figure 5. The proposed NGNet has two
inputs [Imain, Inuclei]. The input to the main branch is the original pathological image Imain,
and the input to the guide branch is the image Inuclei containing only the nuclei, respectively.
The relationships between the two inputs are:

Inuclei = S × Imain, (1)

where S is the nuclei segmentation result corresponding to the original pathological image.

Figure 5. The overall network architecture of NGNet we proposed. The input of NGNet has
two corresponding images: one is the original pathological image, and the other is the result of
nucleus segmentation corresponding to this original pathological image. The entire NGNet is trained
end-to-end.

The guide branch and main branch contain the same number of convolutional layers.
Between the corresponding convolutional layers of the two branches, the Nuclei-Guided
Attention (NGA) module transfers the nuclei-related features of the guide branch to the
main branch. On top of the last convolution layer of each branch, feature maps FM

main(n)
and FM

nuclei(n) were flattened to several feature vectors PM
main(n) and PM

nuclei(n), respectively,
where M represents the number of convolutional layers of each branch, and n represents
the n-th feature map. Then, the feature vectors PM

main(n) and PM
nuclei(n) were passed through

the Nuclei-Guided Fusion (NGF) module to obtain fused feature representation. Finally,
the grading result is obtained through the multilayer perceptron (MLP) module.

The following is a detailed introduction to the NGA module and NGF module. The
specific implementation details of the NGA module can be illustrated by the specific
example of the “Guide 21” step in NGNet, as shown in Figure 6. Given a pathological
image I, Fm

main(Imain) and Fm
nuclei(Inuclei) is denoted as the convolutional feature maps from

the m-th convolutional layer of the main branch and guide branch, respectively. In each
corresponding convolutional layer, the guide branch extracting nuclei features has a guide
block Fm

guide(Inuclei) pointing to the main branch extracting pathological image features.
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Figure 6. Detailed schematic diagram of the nuclei-guided attention module in the NGNet we
proposed; the example comes from the “Guide 21” step.

We first perform a 1 × 1 convolution on the feature maps of the corresponding
nuclei block Fm

nuclei(Inuclei), in which the input and output dimensions are equal. After
performing the 1×1 convolution operation on the feature maps of the corresponding
nuclei block Fm

nuclei(Inuclei), the Softmax activation function is used to generate the attention
map Am. Thus, the value of the feature map is adjusted to between 0 and 1. Then, we
perform elementwise multiplication with the feature map of the corresponding main branch
Fm

main(Imain), thereby increasing the weight of the important area of the feature map. The
purpose of this is to focus on the features related to the nuclei. Specifically, we calculate the
attention map Am and guide block Fm

guide(Inuclei) as follows:

Am = Softmax( (Conv1×1(Fm
nuclei(Inuclei))), (2)

Fm
guide(Inuclei) = Fm

main(Imain)⊗ Am, (3)

where the Softmax (.) is the Softmax activation function, Conv1×1 (.) is a 1 × 1 convolution
operation, ⊗ represents elementwise multiplication. At the end of each NGA module, an
elementwise addition ⊕ is performed:

Fm
f use(I) = Fm

main(Imain) ⊕ Fm
guide(Inuclei), (4)

where Fm
f use(I) is the feature maps guided by nuclei-related features from the m-th convolu-

tional layer.
The NGF module (see Figure 5) is inspired by the self-attention mechanism which

can capture various dependencies within a sequence (e.g., short-range and long-range
dependencies). The self-attention mechanism is implemented via the Query-Key-Value
(QKV) model. Given a sequence and its packed matrix representations of Q, K, and V, the
scaled dot-product attention is given by

Att(Q, K, V) = Softmax
(

QKT
√

dk

)
V = AV, (5)

where dk is the dimension of key, and A is often called the attention matrix which com-
putes the similarity score of the QK pairs. Different from the standard self-attention
QKV which comes from the same input sequence, our Qnuclei is the feature vector from
the guide branch, and the Kmain, Vmain are the feature vectors from the main branch.
Therefore, the QnucleiKmain similarity we calculated represents the similarity between the
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nuclear features and the original pathological image features. The similarity score of
QnucleiKmain is then mapped to Vmain, allowing the network to pay more attention to the
nuclei-related features. The Ql

nucleiK
l
mainVl

main calculation can be performed one or more
times (L); here we set L = 3. In addition, we also added a residual connection between Vl

main

and Att
(

Ql
nuclei, Kl

main, Vl
main

)
to preserve the information of the main branch. At the end

of the NGF module, we obtained the fused feature representation of the guide and main
branch. Formally, we have

P = VL
main + Att

(
QL

nuclei, KL
main, VL

main

)
. (6)

To get the final classification result, P is flattened into the vector, and then goes through
the fully connected layer. The loss function for NGNet is defined as the cross entropy (CE)
loss:

LCE = − 1
m

z

∑
i=1

k

∑
k=1

qz
k log(pz

k), (7)

where qz
k and pz

k indicates the ground truth and prediction probability of the z-th image for
k-th class.

It should be emphasized that our method is universal and can be easily generalized to
another task that needs to emphasize a certain local area (such as a lesion) in the model.
First, determine the image area of interest through prior knowledge and segment this
area. Then, our algorithm framework can model this particular part of attention into the
algorithm through end-to-end learning. The design of this network structure provides an
end-to-end modeling methodology for custom attention.

5. Results and Discussion

In this section, we will evaluate the performance of NGNet. We randomly selected 80%
of the dataset to train and validate the model, and the remaining 20% was used for testing.
All experiments in this paper are finished on three NVIDIA GPUs by using the Keras
framework with TensorFlow backend. We mainly use the average accuracy to evaluate the
performance of NGNet. Apart from the average accuracy, the classification performance of
an algorithm can be further evaluated by using the sensitivity, specificity, confusion matrix,
and AUC. The accuracy, sensitivity, and specificity metrics can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP (TN) represents number of true positive (true negative) classified pathological im-
ages, and FP (FN) represents number of false positive (false negative) classified pathological
images.

5.1. Comparison of the Accuracy with Previous Methods

To verify the effectiveness of the method, we conduct comprehensive comparative
experiments. For the three-class classifications, our method achieved 93.4% average accu-
racy based on the PathoIDCG dataset (see Table 2). The morphological differences between
grade 1 (G1) and grade 2 (G2), as well as grade 2 (G2) and grade 3 (G3), is very subtle, so it is
difficult to distinguish. This problem is reflected by our experimental results and previous
studies. For this reason, previous studies have only focused on the classification tasks of G1
and G3. We have made comprehensive comparisons with previous state-of-the-art studies
and the classic CNN: ResNet50 [37] and Xception [36]; the experimental results are shown
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in Table 2. It can be seen from the results that our method has achieved good classification
accuracy in each category. However, only 94.1% and 93.9% accuracy are achieved on G1
vs. G2 and G2 vs. G3, respectively. Compared with the classification results of these two
difficult categories, the classification accuracy of G1 vs. G3 is much better, reaching 97.8%.

Table 2. Comparison of accuracy with previous methods.

Methods
Acc (%)

G1 vs. G2
Acc (%)

G1 vs. G3
Acc (%)

G2 vs. G3
Acc (%)

G1 vs. G2 vs. G3

Naik et al. [15] - 80.5 - -
Doyle et al. [14] - 93.0 - -

Basavanhally et al. [16] 74.0 91.0 75.0 -
Wan et al. [17] 77.0 92.0 76.0 69.0
ResNet50 [37] 87.5 91.0 88.5 87.2
Xception [36] 88.3 92.3 88.6 87.9

NGNet 94.1 97.8 93.9 93.4

5.2. Confusion Matrix and AUC

We conduct experiments on the PathoIDCG dataset to comprehensively evaluate
the performance of our method. The confusion matrix of the predictions is presented in
Figure 7 by using the proposed NGNet on the test set. Figure 8 shows the mean area under
curve (AUC) of 0.93, corresponding to 0.94, 0.91, and 0.93 based on receiver operating
characteristic analysis.

Figure 7. Visualization of normalized confusion matrix.

Figure 8. Visualization of receiver operating characteristic curve (ROC) and area under curve (AUC).

As seen from the experimental results in Figures 7 and 8, the results obtained in G1
vs. G2 and G2 vs. G3 are not as good as the classification results of G1 vs. G3. This also
further illustrates that the classification bottleneck is to learn more distinguished features
for similar categories.
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5.3. Nuclei Segmentation Results

To select the suitable method for nucleus segmentation, we compare with three meth-
ods: Watershed, UNet [38], and DeepLabV3+ [35]. The watershed is the most representative
traditional image processing method, and the version we used in the experiment is Fiji [39].
At the same time, we also conduct experiments on representative deep-learning methods
UNet [38] and DeepLabV3+. As can be seen from Figure 9, DeepLabV3+ is suitable for our
cell nucleus segmentation task, and achieved satisfactory results.

Figure 9. Nuclei segmentation results using Fiji (Watershed), UNet, and DeepLabV3+ (proposed).
The left three rows are comparisons of the segmentation results at 20× magnification, and the right
three rows are comparisons of the segmentation results at 40× magnification.

We perform a visual qualitative analysis of the segmentation results only. The visual
display of the segmentation results is shown in Figure 9. Because we do not have the
ground truth of nuclei segmentation for the PathoIDCG dataset, we did not use traditional
quantitative indicators such as mean intersection over union (mIOU) to measure the
segmentation effect. Our segmentation network is trained on the well-annotated dataset
proposed by Kumar et al. [33]. After the segmentation network is well-trained, we directly
use this trained segmentation network to segment the IDC grading dataset. Moreover,
traditional metrics cannot measure the segmentation results we need. For example, we
think that a slightly larger segmentation that includes the edge background of the nuclei
may be better. However, the segmentation of nuclei containing a large number of missing
nuclei is very poor.

5.4. Grad-CAM Visualization

Gradient-weighted class activation mapping (Grad-CAM) is a method proposed by
Selvaraju et al. [40] to produce visual explanations (heat map) of decisions, making CNN-
based methods more transparent and explainable. Grad-CAM can generate a rough location
map to highlight important areas in the image for prediction. This method only considers
the pixels and locations that have a positive impact on the classification result because we
only care about the locations that have a positive impact on the classification.

In this section, we use the Grad-CAM method to visualize the pathological image
regions that provide support for a particular classification result. We compare the Grad-
CAM experimental results of NGNet with VGG16, as shown in Figure 10. From the
experimental results, it can be found that the experimental results of NGNet are more
focused on the area related to the nuclei. Moreover, NGNet can further refine the nuclei-
related feature representations. As shown in the pathological image and the corresponding
heat map in Figure 10, attention not only focuses on the nuclei-related area but also focuses
on the gland-related nucleus area. This is consistent with the medical knowledge of NGS.
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Clinically, breast cancer grading is adopted by pathologists through NGS, and one of the
key evaluation criteria is the formation of glands.

 
Figure 10. Visualization of class activation maps using Grad-CAM method. Red regions indicate a
high score of a certain class. The first line is the pathological image. The second line and third line
are the visual heat map using VGG16 and our proposed NGNet, respectively, as the backbone of
Grad-CAM. Figure best viewed in color.

5.5. Ablation Study

To evaluate the effectiveness of each component in our proposed method, we con-
ducted an ablation study. The experimental results on the test set are shown in Table 3.
The hyperparameters of the experiment include the following: the loss function is categor-
ical cross-entropy, the learning rate is 0.00002, the optimizer is RMSProp, and a total of
300 epoch iterations are performed.

Table 3. Ablation study results with different configurations on the test set.

Methods Acc. Sensitivity Specificity AUC

VGGNet (pathology image only) 85.1% 86.0% 85.3% 0.87
VGGNet (nuclei image only) 80.6% 81.2% 79.2% 0.79
NGNet (w/o NGA and NGF) 90.6% 89.3% 89.8% 0.89

NGNet (w/o NGF) 92.2% 93.8% 91.1% 0.92
NGNet (w/o NGA) 91.8% 91.6% 90.9% 0.90
NGNet (proposed) 93.4% 95.3% 92.9% 0.93

We conduct comparative experiments on accuracy, sensitivity, specificity and AUC.
First, because our single branch network structure is similar to VGG16, we compare the
classification performance of NGNet and VGG16. The experimental results show that
NGNet has achieved much better results than just using VGG16. Then, we compare the
experimental results of NGNet with different experimental configurations. NGNet has
achieved better results even with a simple fusion of pathological images and nuclear
images; that is NGNet without nuclei-guided attention (NGA) and nuclei-guided fusion
(NGF) module. After adding the NGA module and NGF module to NGNet, the best
results are achieved. Specifically, compared with NGNet without NGA and NGF module,
NGA and NGF module bring an AUC improvement of 0.01 and 0.03 to the network,
respectively. When using the NGA and NGF module at the same time—that is, our
proposed NGNet—it brings an AUC improvement of 0.04 to the network. The experimental
results fully demonstrate the advantages of NGA module and NGF module in NGNet, and
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also demonstrate that each module is indispensable. The experimental results are shown in
Table 3.

6. Conclusions

In this paper, the proposed NGNet can ensure that the network is focused on nuclei-
related features, so as to learn fine-grained feature representations for breast IDC grading.
Through extensive experimental comparisons, it was shown that NGNet outperforms the
state-of-the-art method and has the potential to assist pathologists in breast IDC grading
diagnosis. In addition, we released a new dataset containing 3644 pathological images
with different magnifications (20× and 40×) for evaluating breast IDC grading methods.
Compared with the previous publicly available dataset of breast cancer grading with only
300 images in total, our number of images is an order of magnitude greater. Therefore, the
dataset can be used as a benchmark to facilitate a broader study of the breast IDC grading
method.

In future work, to further improve the classification performance of breast IDC grading,
medical knowledge embedding and semi-supervised learning are two promising directions.
Whether in the field of natural image analysis or medical image analysis, the research
on the network structure of deep learning has been very comprehensive. Therefore, only
by improving the network structure to further improve the classification performance is
limited. There are few studies on how to combine medical knowledge with pathological
image to further improve classification performance [41]. If we can embed medical knowl-
edge in the end-to-end network learning, the performance of the IDC grading method
will be further improved. In terms of pathological image datasets for IDC grading, it is
impractical to label a sufficiently large dataset because the cost of labeling pathological
images is high. However, the amount of unlabeled pathological image data in each hospital
is very large [42]. If a small labeled dataset and a large unlabeled dataset can be used at the
same time, the performance of the IDC grading method may be further improved to a level
that can be used clinically.
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Abstract: The aim of this study was to develop and evaluate a 3D ultrasound scanning method.
The main requirements were the freehand architecture of the scanner and high accuracy of the
reconstructions. A quantitative evaluation of a freehand 3D ultrasound scanner prototype was
performed, comparing the ultrasonographic reconstructions with the CAD (computer-aided design)
model of the scanned object, to determine the accuracy of the result. For six consecutive scans, the
3D ultrasonographic reconstructions were scaled and aligned with the model. The mean distance
between the 3D objects ranged between 0.019 and 0.05 mm and the standard deviation between
0.287 mm and 0.565 mm. Despite some inherent limitations of our study, the quantitative evaluation
of the 3D ultrasonographic reconstructions showed comparable results to other studies performed on
smaller areas of the scanned objects, demonstrating the future potential of the developed prototype.

Keywords: 3D ultrasonography; freehand 3D ultrasound scanner prototype; quantitative 3D
reconstruction evaluation; 2D image segmentation; pose sensor; coordinate measuring machine

1. Introduction

Ultraportable imaging equipment, such as handheld sonographic machines with wire-
less systems, shows adequate accuracy, performance and good quality of images compared
to high-end sonographic machines [1]. The low cost and the handling of such portable
sonographic machines might raise an increased interest among clinicians, especially in
emergency medicine departments, but having diagnostic imaging competence may be
decisive in driving the correct therapeutic decision. Ultrasound quality is operator depen-
dent and subjective to interpretive error; in order to successfully integrate this technology
into their clinical practices, physicians must be familiar with the normal and abnormal
appearance of tissues [2]. Conventional two-dimensional (2D) ultrasound imaging is a
powerful diagnostic tool in the hands of an experienced user; however, 2D ultrasound
remains clinically underutilized and inherently incomplete, with the output being very
operator dependent. Providing a simple and inexpensive method of acquiring complete
volumetric 3D ultrasound images, with sensed pose information and intuitive feedback
displayed to the user, is an important step towards solving the problem of operator depen-
dence. The usefulness of the real-time 3D US was demonstrated by a large variety of clinical
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applications, further indicating its role and significance in the fields of medical imaging
and diagnosis [3]. Its cost is relatively low in comparison to CT and MRI, no intensive
training or radiation protection are required for its operation, and its hardware is movable
and can potentially be portable [4]. Previous studies showed that a volume measurement
using the 3D US devices has a similar accuracy level to that of CT and MR [5].

The accuracy of ultrasound medical systems seems to depend significantly on set-
tings, as well as on phantom features, probes and investigated parameters. The relative
uncertainty due to the influence of probe manipulation on spatial resolution can be very
high (i.e., from 10 to more than 30%), and field of view settings must also be taken into
account [6]. However, previous studies have shown that an ultrasound scanner was able
to scan teeth with an accuracy similar to that of conventional optical scanners when no
gingiva was present [7], and ultrasonography is suitable for periodontal imaging [8], even
if it requires an extremely high accuracy, due to the size and complexity of the investigated
anatomical elements.

Three-dimensional ultrasounds may store volumes describing the whole lesion or
organ. A detailed evaluation of the stored data is possible by looking for the features that
were not fully appreciated at the time of data collection, or by applying new algorithms for
volume rendering, in order to glean important information [9]. Three-dimensional imaging
could be an advantage, especially in the education of future surgical generations. Recent
studies have shown that the modern 3D technique is superior to 2D, in an experimental
setting [10]. The manual guidance of the probe makes reproducible image acquisition al-
most impossible. Volumetric data offer the distinct advantage of covering entire anatomical
structures, and their motion paths can then be used for automated robotic control [11].

The aim of this study was to develop and evaluate a highly accurate 3D ultrasound
scanning method. The main requirements imposed on the new scanning method were
the free hand architecture of the scanner and the high accuracy of the reconstructions,
ranging between the computer tomography reconstructions and optical scans, as well as
no movement restrictions during scanning.

The main contributions of this paper are as follows: it documents a quantitative
evaluation of a freehand 3D ultrasound scanner prototype, comparing the ultrasonographic
reconstructions with the CAD (computer-aided design) model of the scanned object to
determine the accuracy of the result; proposes a semi-automatic segmentation method
of the raw US images (region growing-based segmentation, followed by morphological
filtering and a customized upper contour (envelope) extraction); proposes an evaluation
method by comparing the 3D ultrasound reconstructed object with the original 3D CAD
model, by computing the mean distance and standard deviation after their alignment.

2. Materials and Methods

A 3D ultrasound scanner prototype based on a 2D standard ultrasound machine and
a spatial pose reading sensor was developed using Vinno 6 (Suzhou, China) equipment
with a high frequency (10-23 MHz) and a small aperture (12.8 mm) linear transducer
(X10-23L) and as a pose reading sensor, an articulated measurement arm (Evo 7, RPS
Metrology (Sona/Italy). The articulated measurement arm RPS EVO 7 accuracy was 34 μm.
According to the technical specifications, the following information was obtained: “It has
no need for calibrations or warm-up time, thanks to its extremely reliable mechanical
and electronical design, the automatic temperature compensation and the lightweight
structure.” The transducer was attached to the articulated arm (coordinate measuring
machine, CMM). The spatial and temporal calibration of the employed devices were
performed using proprietary algorithms. After calibration, a CAD/CAM manufactured
object, used as a phantom, was immersed in a water tank and scanned 6 consecutive times.
The CAD/CAM manufactured object was a custom mouth guard, simulating a dental
arch, having attached an object with regular contours and planar surfaces, exhibiting both
right angles and concave surfaces (Figure 1). The mouth guard was manufactured using
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DATRON D5 Linear Scales (Darmstadt, Germany,), with an accuracy of ±5 μm according
to the technical specifications and PMMA as the material.

 

Figure 1. The scanned CAD/CAM manufactured mouth guard, the attachment exhibiting both
curved and rectilinear contours and positive and negative relief with regular and irregular multiple
concavities and convexities.

Every scanning procedure generated between 452 and 580 bi-dimensional consecu-
tive ultrasound images (Table 1, second column), with a mean scanning time of approx-
imately 14.3 s (the frame rate was 33 frames/second). The ultrasound scanning plane
cross-sectioned the object transversally. The scanning procedure started each time at the
last molar, going in mesial direction, a 6 teeth area and then backwards, in distal direction,
back to the starting point. A total number of 2840 bi-dimensional ultrasound images were
acquired and used for the accuracy evaluation of the 3D ultrasound reconstructions.

Table 1. Statistical analysis: mean distance and standard deviation for the 3D ultrasonographic point
clouds of six consecutive scans of the same CAD/CAM manufactured object.

Scan
Range of 2D
Ultrasound

Frames
Segmentation Mode Scanning Time

Number of 3D
Points

Mean Distance Std Deviation

1 300–752 Segmentation without
contour extraction 13.69 s 279,189 0.033 mm 0.387 mm

2 232–611 Segmentation and
contour extraction 11.48 s 46,537 0.031 mm 0.287 mm

3 252–703 Segmentation and
contour extraction 13.66 s 65,535 0.050 mm 0.350 mm

4 260–779 Segmentation and
contour extraction 15.72 s 70,774 0.014 mm 0.352 mm

5 220–674 Segmentation and
contour extraction 13.75 s 54,378 0.023 mm 0.372 mm

6 400–979 Segmentation and
contour extraction 17.54 s 76,735 0.019 mm 0.565 mm

2.1. Measuring and Verifying the CAD/CAM Manufactured Object, the Mouth Guard, Using a
Method with Known and Determined Measurement Error (Intraoral Optical Scanning Method)

The mouth guard was scanned using a TRIOS 3, 3Shape (Denmark) intraoral scanner
with an accuracy (trueness) of 6.9 ± 0.9 μm, according to the technical specifications. Using
the protocol described below in chapter 2.5 and the CloudCompare open-source software
(CCOSS) for evaluating the freehand 3D ultrasound scanner prototype, the mean distance
and standard deviation were calculated for the optical scan of the mouth guard aligned
with the original STL project, after adjusting the scale of the two 3D objects.
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2.2. Semiautomatic Segmentation of the 2D Ultrasound Images

An original semiautomatic segmentation tool for the 2D US images was developed
using a customized region growing-based segmentation algorithm (Figure 2). In the process,
the user was supposed to click on seed points that were “grown” by iteratively adding
neighboring pixels with similar intensities. The algorithm was customized in such a way
that the already labeled pixels were not considered. The similarity predicate was controlled
by a threshold (T), tunable by the user using a track-bar control and the result (the local
grown region) was visible on the fly for any instant position of the track-bar. In general, the
initial value for T should be chosen between 2σ and 3σ, where σ is the standard deviation
of the Gaussian distribution of the regions of interest (ROIs) computed on some sample
image patches and is application dependent. For the current application, the initial value
of T was set to T ≈ 15, since σ was estimated to σ ≈ 5 for a set of samples of whitish
ROIs, corresponding to the mouth guard surface regions. There was also available the
option of applying morphological-based post-processings (dilation followed by erosion), in
order to fill in the holes occurring after the segmentation process. Once the user (which
should be a qualified/specialized operator and in this case a dentist specialized in dental
ultrasonography) was satisfied with the result (criteria were as follows: maximization
of the smoothness and continuity of the upper envelope of the mouth guard in each 2D
image/section), the local grown region (local labels matrix) was appended to the global
grown region (global labels matrix), which stored the final segmentation result in the form
of a binary image.

Figure 2. Flowchart of the semiautomatic label constrained region growing (RG)-based segmentation
algorithm.

The region growing algorithm is based on the breadth-first search (traversal) algorithm
of graphs [12] and uses a queue structure (FIFO list) for optimal implementation. The grown
process of each region was constrained to the selected label; therefore, the implementation
can be used out-of-the-box for multi-label annotation of more complex anatomical structures
in medical imaging. For the current purpose of segmenting the outer surface of the mouth
guard, only one label was used (variable label was set to 1 in the segmentation and
morphological post-processing algorithms) and a binary result image was obtained. The
pseudocode of the proposed labeled constrained region growing-based segmentation
algorithm is presented below (Algorithm 1).
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Algorithm 1 Label Constrained Region Growing

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

procedure Grow(src; local_labels; label = 1; x; y; T; applyMorph)
h ← src height
w ← src width
Q ← [ ]
W ← 3
d ← W/2
avgColor ← average(src(y − d: y + d; x − d: x + d))
d ← 1
N ← 1
Q:append((y,x))
if labels(y,x) = 0 then

labels(y,x) = label
end if

while Q is not empty do

oldest ← Q.pop()
for m ← −d to d, n ← −d to d do

i ← oldest.y + m
j ← oldest.x + n
if (i,j) inside of src then

color ← src(i,j)
if |color – avgColor| < T and labels(i,j) = 0 and glabels(i,j) = 0 then

labels(i,j) ← label
Q.append(i,j))
avgColor ← (avgColor × N +color)/(N + 1)
N ← N + 1

end if
end if

end for

end while

dst ← labels
if applyMorpho = true then

dst ← Dilate(dst,R,label)
dst ← Erode(dst,R,label)

end if

return dst
end procedure

> Empty queue
> Averaging window
size

> No. of pixels in the
region

> If pixel is unlabeled

> Take out the oldest
element from the queue

> Search across its
neighbors and add them
to the queue if they are
not labeled and are
similar in terms of color
with the region

> Update the average
color of the region

> Convert the local
labels matrix into the
destination image

> Post-process the result
by morphological
operations

2.3. Morphological Post-Processing

An optional step of the segmentation algorithm was to perform morphological post-
processing [13] in order to refine each resulted segment (grown region), mainly for filling
up the small holes that occur in the segmented process. For this purpose, a dilation
(Algorithm 2), followed by an erosion (Algorithm 3), was applied with a circular structuring
element of adjustable radius. The implementation of the algorithms was adapted to the
following proposed label constrained paradigm: the foreground pixels were dilated and
eroded at the label level. The two complementary morphological operations were applied
in pairs with the same structuring element (in terms of size and shape), in order to not alter
the area and the overall shape of the segmented regions.
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Algorithm 2 Label Constrained Dilation

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

procedure Dilate(src, R, label = 1)
dst ← copy(src)

h ← img height
w ← img width
for i ← R to h − R − 1, j ← R to w − R − 1 do

if src(i,j) = label then

for m ← −R to R, n ← −R to R do

if R > 2 then

radius ← √
m2 + n2

if radius < R and src(i + m, j + n) = 0 then

dst(i + m,j + n) ← label
end if

else

if src(i + m; j + n) = 0 then

dst(i + m; j + n) ← label
end if

end if

end for

end if

end for

return dst
end procedure

> Clone source image into the destination

> Image scan with safety border

> Apply dilation using a circular structuring
element of radius R (R > 2) only on pixels with
the specified label. All pixels in the
neighborhood masked by the structuring
element are marked with the current label

> If R ≤ 2, the structuring element has a square
shape

Algorithm 3 Label Constrained Erosion

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
22:
22:

procedure Erode(src, R, label = 1)
dst ← copy(src)
h ← img height
w ← img width
for i ← R to h − R − 1, j ← R to w − R − 1 do

frontier ← false
if src(i,j) = label then

for m ← −R to R, n ← −R to R do

if R > 2 then

radius ← √
m2 + n2

if radius < R and src(i + m, j + n) = 0 then

frontier ← true
end if

else

if src(i + m; j + n) = 0 then

frontier ← true
end if

end if

end for
end if

if frontier ← true then

dst(i,j) ← 0
end for

return dst
end procedure

> Clone source image into the destination

> Image scan with safety border

> Apply erosion using a circular structuring
element of radius R (R > 2) only on pixels with
the specified label. If there is a background
pixel in the neighborhood masked by the
structuring element, a flag (frontier) is set

> If R ≤ 2, the structuring element has a square
shape

> If a flag is set, the current pixel is removed
from the result

2.4. Upper Envelop/Contour Extraction of the Segmented Objects

Before 3D reconstruction could be applied, the upper/outer envelope of the segmented
objects from the 2D binary images had to be extracted in the form of a contour. This contour
should correspond to the surface of the mouth guard observed in each 2D US image. The
Algorithm 4 is presented below. First, the external contours of the segmented binary objects
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were detected and drawn as a binary image in the findExternalContours function using the
following OpenCV [14] methods: findContours and drawContours. Then, the binary contours
image was scanned column by column, from top to bottom and the first vertical sequence
of white pixels from each column was stored in the destination image. This approach also
dealt with cases of vertical contour segments in the upper envelope.

Algorithm 4 Find Upper Envelope

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

procedure FindEnvelope(src)
contours ← findExternalContours(src)
h ← img height
w ← img width
dst ← (h,w,0)
for j ← 0 to w − 1 do

while contours(i,j) = 0 and i < h − 1 do

i ← I + 1
end while

while contours(i,j) = 255 and i < h − 1
do

dst(i,j) ← 255
i ← I + 1
break

end while

end for

return dst
end procedure

> Detect external contours in the binary source image and
store them (as white pixels) in the contours image

> Create a black destination image
> Scan the binary contour image contours on columns

> Skip the first vertical sequence of black pixels

> Store the first vertical sequence of white (object/contour)
pixels in the destination image dst
> At the end of the sequence, break the for loop (j ← j + 1, i
←0)

The step-by-step results of the segmentation Algorithms 1–4 are shown in Figure 3.

 
Figure 3. (a,b)—original ultrasound frames in greyscale ((a)—first premolar, regulated shaped
object having plane surfaces, right angles; (b)—lateral incisor); (c,d)—results after region growing-
based segmentation and morphological post-processing (Algorithms 1–3); (e,f)—results after contour
extraction (findExternalContours function in Algorithm 4); (g,h)—results after upper contour (envelope)
extraction (Algorithm 4).

2.5. Generating 3D Ultrasound Reconstructions

Data acquisition and 3D reconstruction were performed using the 3D US scanner
prototype and the software developed by Chifor Research’s team. After the US data
were acquired, each frame was paired or matched with the sensor’s readings. The spatial
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coordinates and orientation of each frame were determined through the time and spatial
calibration processes [15].

The 3D reconstruction was performed by introducing the scan planes corresponding
to the raw 2D ultrasound images into a tridimensional space. This was carried out by using
a series of rotations and translations performed in several stages, as described below. The
first step was to create a 3D space to hold the voxels corresponding to the pixels in the
image. The next step was to apply a calibration matrix transformation to the 2D frame
corresponding to this 3D space. The third step applied the final pose transformation on the
output of the previous step, in order to finalize the positioning of the original 2D frame
in the corresponding 3D space allocated for it in the beginning. This final transformation
represented a bijection between the points in the 2D frame and their 3D correspondents.
Finally, the intensity of the original pixel in the 2D frame was assigned to the corresponding
voxel in the 3D space. The previous steps were repeated for each acquired 2D ultrasound
frame, until all the 2D frames were represented in the 3D space [16].

The segmented envelop/contour points from each 2D US scan were used to mask the
3D points associated with each scan and to generate the 3D point cloud corresponding to
the mouth guard’s surface, which was further used for the quantitative evaluation of the
reconstruction algorithm.

2.6. Evaluating the Accuracy of the 3D Ultrasound Reconstructions

The accuracy of the 3D virtual reconstruction, obtained by the ultrasound scanning of
the CAD/CAM manufactured phantom, was evaluated by comparing it with the standard
STL project, designed and used for its execution. The alignment, scaling and statistical
analysis of the distances between the 3D points of the 3D ultrasound reconstruction point
cloud and the reference object, the STL project, were performed using the CloudCompare
open-source software (CCOSS). The CCOSS statistically analyzed the distances between
the ultrasound point cloud and the STL object after the objects were spatially aligned.

After ultrasound scanning using the developed prototype and generating the 3D re-
construction of the segmented mouth guard’s surface, the obtained point cloud was aligned
with the CAD project. The mean deviation (distance) of the 3D ultrasound reconstruction
from the reference model was calculated, as well as the standard deviation of the distances
using CCOSS.

The calculation of the mean distance and the standard deviation was computed during
cloud point alignment to the reference point cloud or mesh, as part of the alignment
algorithm. This was done in two stages. The first stage was a rough alignment, giving a
rough value for the RMS (root mean square) index, representing the square root of the mean
value of the squared distances di, as described by Equation (1) [17], which is as follows:

RMS =
√

∑
(
d2

i
)
/n (1)

where di
2 is the squared distance between the reconstructed 3D points and corresponding

CAD model points, computed over n points.
Once the rough alignment was completed and its corresponding 4 × 4 transformation

matrix was calculated so that the two point clouds were moved and scaled into proximity
according to at least 3 corresponding points on their surface, the second step of the align-
ment was performed, providing a fine tuning of the RMS value, by incrementally moving
and scaling the two point clouds in order to minimize the RMS. At the end of this pro-
cess, the corresponding standard deviation and mean distance, which were proportionally
correlated with the RMS, were calculated [18,19].

3. Results

The virtual alignment with the reference object (the mouth guard STL project) and the
statistical accuracy evaluation were performed on six consecutive 3D ultrasound recon-
structions, acquired using the handheld 3D ultrasound scanner prototype.
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3.1. Measuring and Verifying the CAD/CAM Manufactured Object, the Mouth Guard, Using a
Method with Known and Determined Measurement Error (Intraoral Optical Scanning Method)

The alignment errors measured for the optical scan aligned with the CAD project STL
of the mouth guard (Figure 4) are as follows: mean distance of 13,65 μm and standard
deviation of 117.14 μm. The measured distances are represented in a Gaussian characteristic
symmetric “bell curve” shape and most of the measurements are close to 0, as one can
observe in the righthand section of Figure 4.

 

Figure 4. The spatial distribution of the 128,570 measurements between the optical scan of the mouth
guard with the reference object (CAD project STL format) after alignment. The distribution of the
alignment errors is figured in the form of a colored Gaussian shape on the right side of the color code
bar. In light green are the measurements close to 0.

The recalculation of the mean distance and the standard deviation according to the
adjusted scale (15 mm = 14.81 mm) can be observed in Figure 5, generated by CCOSS after
aligning the two objects with the following errors: mean distance of 13.83 μm and standard
deviation of 118.64 μm

 

Figure 5. The scaling of the optical scan of the mouth guard, after it had been aligned with the
reference object.
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3.2. Preparing the 2D Ultrasonographic Images, Performing 3D Ultrasound Reconstructions and
Aligning Them with the Reference Object for Statistical Analysis

For scan 1: The original 2D ultrasound images have been segmented without extracting
the contours. Subsequently, the 3D reconstruction was performed based on the semi-
automatically segmented 2D images and the spatial position reading data related to each
2D frame, resulting in a point cloud of 272,189 3D points.

• The rectangular landmark, used for scaling the objects, measures in real world 15 mm
in length. Its length in CCOSS after alignment was 13.939. Thus, 1 mm length in real
world equaled 1.07 in CCOSS (Figure 6).

 

Figure 6. The scaling of the point cloud after it had been aligned with the reference object.

• The spatial distribution of the 272,189 3D ultrasonographic points was compared
to the reference object (CAD project in STL format) after alignment. The distance
errors of the 3D ultrasonographic points were uniformly distributed, meaning that the
reconstruction respected the shape of the scanned object (Figure 7). The mean distance
of the 3D ultrasonographic points from the reference object was 0.033 mm and the
standard deviation equaled 0.387 mm (Table 1). The deviations were most probably
due to the artifacts and to the noise in the 2D ultrasound original frames.

 

Figure 7. The spatial distribution of the 272,189 3D ultrasonographic points compared to the reference
object (CAD project STL format) after alignment. The distribution of the alignment errors is figured
in the form of a colored Gaussian shape on the righthand side of the color code bar.

• Scan 2. After segmentation of the 2D images, the contours were extracted, before
reconstructing the 3D object. The total number of 3D ultrasonographic points (masked
by the segmented contours) was significantly lower (46,537) compared to the scan
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1 (279,189 3D points as they were obtained without extracting the contours); the
obtained 3D point cloud was aligned with the reference object (STL project), as shown
in Figure 8, and the computed mean distance was 0.031 mm and the standard deviation
was 0.287 mm (Figure 9a and Table 1). The deviations/errors were isolated to certain
areas, probably due to the artifacts in some of the 2D original frames.

 
Figure 8. Scan 2 aligned with the reference object using CloudCompare software.

 

 

a b 

c d 

Figure 9. Distribution of the alignment distances/errors of the 3D ultrasonographic points from
the scanned reference object after alignment in CCOSS: (a) Scan 2—aligned with STL reference
object. The farthest points are colored in gray, alignment errors are evenly distributed along the
scanned object (observe the blueish distances’/errors’ distribution on the righthand side of the figure);
(b) Scan 3—aligned with the reference STL object (observe the greenish distances’/errors’ distribution
between the 3D points and reference object on the righthand side of the figure); (c) Scan 4 aligned
with STL reference object (3D points distances’/errors’ spatial distribution in green on the righthand
side of the figure); (d) Scan 5—aligned with STL reference object (3D points distances’/errors’ spatial
distribution in blueish on the righthand side of the figure).

• For Scans 3 to 5, the alignment errors are presented in Figure 9b–d. The mean distance
between the 3D points of the ultrasonographic reconstructions (obtained by masking
the 3D point cloud with the segmented contours) and the reference scanned object
varied in the range between 0.019 mm to 0.05 mm (Table 1).

3.3. Quantitative Evaluation by Statistical Error Analysis

The mean and standard deviations of the distances/errors of the 3D ultrasonographic
points from the scanned reference object after alignment in CCOSS are presented in Table 1.
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The advantage of the method proposed in the present study is that the scanner pro-
totype has six axes freedom of movement during scanning. The accuracy of the recon-
struction was not influenced by the length of the reconstructed area. As one can observe
in Figure 9a–c, there is a homogeneous distribution of the ultrasonographic 3D points
situated at more than 350 microns from the reference, colored in grey, probably due to the
artifacts in the 2D ultrasonographic images. If those artifacts had been due to 3D reconstruc-
tion errors, the 3D object would have been distorted, with spatially concentrated errors.

In a normal distribution (which can be assumed based on the large number of mea-
surements), approximately 95% of the deviations of the virtual model from the reference
model range within the average +/− two standard deviations. In addition, approxi-
mately 99% of the deviations of the virtual model from the reference model range within
average +/− three standard deviations.

4. Discussion

The aim of the current study has been reached, by developing and evaluating a highly
accurate 3D ultrasound scanning method.

The verification of the 3D ultrasound scanned object confirmed that the shape and the
size of the scanned object is very close to the technical specification range of the CAD/CAM
process, and also confirmed that the method used to appreciate the accuracy of the 3D
ultrasound prototype is reliable. Datron D5, used for the manufacturing the mouth guard,
has an accuracy of 5 μm and Trios 3 from 3Shape, used to optical scan the mouth guard,
has an accuracy of 6.9 μm and 0.9 μm, resulting in a 12.8 μm possible error according to the
technical specification of the two devices, because the errors can cumulate.

A previously published low-cost volumetric ultrasound imaging method has been
developed by Herickhoff et al. [20], using the augmentation of bidimensional systems
generating freehand 3D ultrasounds via probe position tracking. The method allowed a
variety of scanning patterns (e.g., linear translation normal to the image plane or panoramic
sweep), but it presented the drawback of an expandable, but still limited, field of view, due
to its fixture in constraining the probe motion to pivoting about a single axis [20].

Our 3D ultrasound scanning method is based on a closed platform, a standard ultra-
sound machine. The 3D ultrasound reconstruction is generated from the DICOM files and
the data from the coordinate measuring machine (CMM), an articulated arm (as the spatial
pose reading sensor). The synchronization method and algorithms of the two data flows
were developed in house. This constitutes another advantage compared to other developed
methods, because direct data access is typically not enabled by commercial diagnostic
systems and, thus, requires the development of open platforms or close collaborations with
manufacturers for integration [11].

Other studies [21] measured the difference in the length from the surface of a phantom
to the bottom part, using the ultrasound image, and found it to be 6.48 mm. At the
same time, the difference in the position data from the ultrasonic sensor was 5.85 mm.
The difference between the measured ultrasound image and the position data was only
0.65 mm (9.72%) [21].

A scanner with three translational degrees of freedom was used in another study
to scan the teeth from an occlusal direction. One tooth per scan was 3D ultrasound
reconstructed. The mean difference between the reconstructed casts and the optical control
group was in the range 14–53 μm. The standard deviation was between 21 and 52 μm [22].

Comparing the aforementioned results with the ones obtained in the present study, a
similar or better accuracy can be noted in the current study, regarding the mean difference.
The overall mean distance ranged between 0.014 mm and 0.050 mm and the standard
deviation ranged between 0.287 mm and 0.565 mm. The standard deviation was higher
in our case because of the freehand scanning technique, which generated higher artifacts
in the acquired 2D ultrasound images. The homogenous distribution of the errors at the
scanned area level, the extension of the scanned area, six teeth instead of a single tooth
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scan and the Gaussian distribution of the errors generate promising premises for the future
evaluation and use of a freehand 3D ultrasonographic scanning method in clinical settings.

A study performed by Marotti et al. on extracted teeth covered with porcine gin-
giva reported mean deviations for 3D ultrasound scans, ranging from between 12.34 to
46.38 μm [23].

The performance of intraoral optical scanners, reported by Winkler et al. in their study
about TRIOS 3, displayed slightly higher precision (approximately 10 μm) compared to CS
3600, only after superimposition on the whole dental arch (p < 0.05). Both intraoral scanners
showed good performance and comparable trueness (median of 0.0154 mm; p > 0.05) [24].
Comparing their results with our 3D ultrasound imaging method showed lower precision
on our side, mostly due to the artefacts and noise in the acquired 2D ultrasound images.
The precision of our pose reading sensor device was a maximum of 25 μm, according to
the manufacturer’s technical specifications. This also contributed to the accumulated error,
which ranged between 14 and 50 μm for the 3D ultrasound reconstructions, compared to
the CAD reference object. In addition, the CAM of the reference scanned object has induced
errors of at most 7 μm, according to the technical specifications of the device.

The following are the main limitations of the current study: the 3D ultrasound re-
constructions were performed only for the surfaces of the scanned object. Comparing the
results with the STL CAD project of the object allowed the appreciation of the accuracy
(trueness and reproducibility) of the scanning method. Future studies should also evaluate
the prototype’s scanning accuracy of deep soft tissue and bone surfaces. Another limitation
of the current study drew from the fact that only a single object had been scanned. In future
studies, we intend to evaluate the proposed prototype by scanning different patients and
different types of tissue, so that the segmentation process will also be challenged by the
need to correctly identify the anatomical parts or pathological tissues.

5. Conclusions

The quantitative evaluation of the proposed 3D ultrasonographic reconstruction
method showed comparable results to other studies performed on smaller areas of scanned
objects, thus, demonstrating the future potential of the developed prototype to be used
in clinical practice. The freedom of movement during scanning and the accuracy of the
3D reconstructions will have to be exploited in future research to evaluate and monitor
the evolution of diseases, by comparing the 3D models. This process can be performed by
integrating automatic or semi-automatic methods for the segmentation and alignment of
the 3D objects.
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Abstract: Background: Cone-beam breast computed tomography (CBBCT) and digital breast to-
mosynthesis (DBT) remain the main 3D modalities for X-ray breast imaging. This study aimed to
systematically evaluate and meta-analyze the comparison of diagnostic accuracy of CBBCT and
DBT to characterize breast cancers. Methods: Two independent reviewers identified screening on
diagnostic studies from 1 January 2015 to 30 December 2021, with at least reported sensitivity and
specificity for both CBBCT and DBT. A univariate pooled meta-analysis was performed using the
random-effects model to estimate the sensitivity and specificity while other diagnostic parameters
like the area under the ROC curve (AUC), positive likelihood ratio (LR+), and negative likelihood
ratio (LR−) were estimated using the bivariate model. Results: The pooled sensitivity specificity, LR+

and LR− and AUC at 95% confidence interval are 86.7% (80.3–91.2), 87.0% (79.9–91.8), 6.28 (4.40–8.96),
0.17 (0.12–0.25) and 0.925 for the 17 included studies in DBT arm, respectively, while, 83.7% (54.6–95.7),
71.3% (47.5–87.2), 2.71 (1.39–5.29), 0.20 (0.04–1.05), and 0.831 are the pooled sensitivity specificity,
LR+ and LR− and AUC for the five studies in the CBBCT arm, respectively. Conclusions: Our study
demonstrates that DBT shows improved diagnostic performance over CBBCT regarding all estimated
diagnostic parameters; with the statistical improvement in the AUC of DBT over CBBCT. The CBBCT
might be a useful modality for breast cancer detection, thus we recommend more prospective studies
on CBBCT application.

Keywords: breast cancer; cone-beam computed tomography; digital breast tomosynthesis; meta-analysis;
sensitivity; specificity

1. Introduction

Breast cancer is the most commonly diagnosed type of cancer among women that
has led to the cause of cancer death in women of all ages [1,2]. This mortality rate can be
reduced drastically if those cancers are detected early [1]. Digital mammography (DM) has
been a conventional tool for early breast cancer diagnosis [3,4]. Recent research on both
randomized controlled trials and observational studies has indicated that regular screening
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DM can reduce breast cancer drastically, which has a limitation of inability to image overlap
dense breast tissue [5]. Digital breast tomosynthesis (DBT) has been developed to solve
the tissue overlap of DM, and DBT acquisition involves an X-ray tube moving in an arc
over the compressed breast taking multiple images from different angles. These images
are reconstructed or synthesized into three-dimensional (3D) images via a reconstruction
algorithm [6]. Several studies have recorded the improved diagnostic accuracy parameter
such as sensitivity and specificity of 3D DBT alone or a combination with the DM [7–10].
A promising new technique is the dedicated cone-beam computed tomography (CBBCT)
which provides real isotropic spatial resolution 3D images [6]. This modality also provides
maximum breast comfortability to patients due to its reduced breast compression, unlike
conventional DM and its DBT counterpart. Of particular importance is the CBBCT, which
provides high-quality images and real-time 3D visualization of breast imaging and has
proven to better visualize overlapping breast tissues than other imaging modalities like
DM and ultrasound (US) [11–13]. Few studies have been documented on the review of
diagnostic accuracy of DBT [14–17], while few pieces of literature have been recorded on
the screening using CBBCT [18]. Contrast-enhanced cone-beam breast CT (CE-CBBCT)
may improve the detection of breast cancer with possibly high specificity compared to that
of DM, but with the cost of the high radiation exposure due to double scan. Uhlig et al. [19]
carried out a meta-analysis study to compare the diagnostic performance of CE-CBBCT
and that of non-contrast CBBCT (NC-CBBCT). They found a non-significant difference
in sensitivity and specificity of CE-CBBCT, but considerable significance between-study
heterogeneity in the NC-CBBCT.

Studies carried out about 10 years ago by Belair et al. [20] and Zuley et al. [21] com-
pared the diagnostic accuracy of CBBCT and DBT, and their results showed that overall
confidence in diagnosis was higher for both benign and malignant breast lesions using DBT.
The authors suggested that future advances in technology and improvement in the readers’
performance might lead to better performance of CBBCT in the future. In the last 7 years,
few studies have reported on the diagnostic accuracy of CBBCT, none of these studies has
directly compared CBBCT with DBT or used a meta-analysis approach to address this issue
by comparing the potential diagnostic ability of these two 3D breast imaging modalities is
still a hanging fruit yet to plug. Therefore, this study aims to systematically review and
analyze the diagnostic accuracy of existing studies on CBBCT and DBT for breast cancer
detection, thereby increasing the statistical power and thus eliminating any disagreement
between individual studies.

2. Materials and Methods

This systematic review and meta-analysis was prospectively registered at PROS-
PERO with the registration number of CRD: 42020180192 [22]. The systematic review
was performed by two independent reviewers (TEK and OAO or CZ and GY) using a
well-established review protocol adapted from the Cochrane collaborative approach for
evaluating diagnostic test accuracy [23] with Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines [24], see Supplementary File S1. The
two reviewers discussed the discrepancies between the two results, and then a more ex-
perienced third reviewer (XY or JZ or ML) was consulted if the interrater consensus was
not reached. We searched for women who underwent breast imaging screening using
either CBBCT or DBT, which reported the characterization of malignant and benign lesions
with well-documented diagnostic accuracy. We searched separately because no available
literature reported comparison studies on CBBCT and DBT for diagnostic or screening
purposes. This search includes comparative, prospective and retrospective studies, and
interrater consensus.

2.1. Data Sources and Search Strategy

PubMed, Inspec, Web of Science and Cochrane Central Register of Controlled Trials
(CENTRAL) libraries were searched for relevant literature published from January 2015
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up to and including December 2021. We used selected controlled terms extracted from
different studies retrieved from each database to build the text words and subject terms
as “breast computed tomography”, “Sensitivity”, “Specificity” for the CBBCT arm, and
“Digital breast tomosynthesis”, “Sensitivity”, “Specificity” for CBBCT arm and DBT arm,
respectively, as shown in the complete PRISMA search path (Figure 1). These selected
controlled terms gave a wide representation for the review. In PubMed and CENTRAL
databases, selected controlled terms were input as MeSH terms while in the Web of Science
and Inspec, we used them as text words for detail see Supplementary File S2.

Figure 1. PRISMA flowchart of inclusion and exclusion criteria, nA = number of literature in the
CBBCT arm and nB = the number of literature in the DBT arm. PRISMA = Preferred Reporting
Items for Systematic Reviews and Meta-analyses. DBT = Digital breast tomosynthesis, DM = Digital
mammography, CE-CBBCT = Contrast-Enhanced Cone-beam breast computed tomography, and
NC-CBBCT = Non-Contrast Cone-beam breast computed tomography.

2.2. Eligibility Criteria

Studies were eligible for inclusion in this meta-analysis if they met eligibility criteria
adapted from Cochrane diagnostic test accuracy protocol using PRISMA guidelines [24].
Literature was included in the study if it utilized dedicated CBBCT and DBT to detect
breast cancer, with at least the sensitivity and specificity reported. The included studies
were retrospective, prospective studies, an observer performance study, clinical trials,
and comparative studies in different modalities. The exclusion criteria were studies that
involved literature reviews, phantom or simulation studies, other radiation studies apart
from CBBCT and DBT like radiotherapy and studies with computer-aided detection (CAD),
i.e., machine and deep learning application in diagnostic accuracy.

Additionally, a study that reported two or more hybrid modalities like DBT with DM
or contrast-enhanced CBBCT (CE-CBBCT) with non-contrast CBBCT (NC-CBBCT) was
excluded. However, if it reports both modalities separately, the data for the modality under
consideration will be extracted and vice versa. Likewise, for multiple publications that
reported the same study or sub-set, the most detailed study in terms of data availability
was used.

2.3. Study Selection

Articles retrieved for both arms were manually sorted, and duplicates were removed
using titles/abstracts, then followed by full text according to the predefined search criteria,
and final eligible studies were selected.
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2.4. Data Collection Process

A standardized extraction sheet was developed, and two independent blinded re-
viewers (TEK and OAO or CZ and GY) extracted the information needed and resolved the
conflict by interrater consensus from eligible studies, which include: study type (prospec-
tive or retrospective studies), study clinical settings (diagnostic or screening), number of
patients and mean age of the patients, diagnostic equipment model, mean glandular dose,
number of radiologists that interpreted the index test and year of experience, sensitivity
and specificity. The positive and negative likelihood ratios are computed when they cannot
be extracted [25], and other details of formulations of estimated diagnostic test accuracy
parameters can be found in [26]. Additionally, the percentage of benign and malignant
cases with a brief intervention description is included (Table 1).

2.5. Risk of Bias and Quality Appraisal

The quality of included studies was assessed using Quality Assessment of Diagnostic
Accuracy Studies-Comparative (QUADAS-C), a tool for comparative diagnostic accuracy
tests with different cohorts [27], a modified version of QUADAS-2 [28] to ensure appropri-
ateness for comparing the two modalities. The domains assessed were patient selection,
index tests, reference standard, flow and timing, and applicability. Two reviewers per-
formed an independent quality assessment, and the final result was based on consensus.
The overall study quality is shown in Figure 2.

Figure 2. Risk of bias and applicability concerns: reviewers’ judgments about each domain for each
included study.
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2.6. Data Analysis

A univariate meta-analysis was performed separately for sensitivity and specificity
in both CBBCT and DBT to estimate the diagnostic accuracy of each modality using the
random-effects model (RE) [29]. The primary outcomes were sensitivity, specificity and
summary receiver operating characteristic (SROC) curve. We calculated point estimates
and 95% confidence intervals (CI) for each study to ensure consistency in sensitivity and
specificity. To plot the SROC curve, we used a bivariate meta-analysis of sensitivity and
specificity using R version 4.1.2 with RStudio version 2021.09.1 + 372 implementing “mada”
and “meta”, R-packages to estimate the AUC of SROC [30]. Additionally, secondary
outcomes like positive likelihood and negative likelihood ratios were estimated using
MetaDiSc 1.4 software [31]. Statistical heterogeneity between studies was evaluated with
Cochran’s Q test and the I2 statistic [32]. For the Q statistic, values range 0–40% imply
insignificant heterogeneity, 30–60% connote moderate heterogeneity, and 75–100% implies a
considerable heterogeneity. Publication bias was evaluated and visualized by constructing
a funnel plot [33]. The p-values were based on two-sided tests, and the p-value < 0.05 was
considered statistical significance.

3. Results

3.1. Study Inclusion

For the DBT arm, a total of 489 different studies were found eligible for abstract
screening, 33 studies were checked at full-text (Figure 1). Seventeen studies [10,34–49]
met our inclusion criteria for synthesis and meta-analysis. Additionally, for the CBBCT,
836 different studies were eligible for the title and abstract screening, nine were assessed
for full text, and finally, only five studies met our predefined condition [11–13,48,49]. The
meta-analysis was performed separately using univariate analysis for both CBBCT and
DBT. Full details about the inclusion and exclusions criteria are given in the Preferred Items
for Systematic Reviews and Meta-Analyses (PRISMA) flowchart (Figure 1).

3.2. Overview of Included Studies

For the DBT arm, with 17 studies included, which comprise of retrospective screening
studies [34,40,42,44–46,48–51] and prospective studies [35–38], few prospective clinical
trials [10,39], above 95% of all included studies are comparative. All the studies reported
sensitivity and specificity, in which the (2 × 2) confusion matrix can be derived, other
parameters like positive and negative likelihood ratios and AUC of SROC were estimated
using MetaDiSc [31] and “mada” package of R, respectively [30]. Most of the studies
specified the total number of benign and malignant lesion cases [10,35,37,38,41–47]. Ap-
proximately 53 % of the studies data were acquired using the Hologic Selenium Dimension
model [10,34,36,40,44–47], 13% goes for Siemens Mammomat Inspiration model [38,39],
and 13% also for GE Senographe Essential model [37,42].

The CBBCT arm comprises five studies only, retrospective observers’ studies [12,47],
prospective study [48], and retrospective diagnostic study [11]. This majorly consists of
comparison studies, i.e., CBBCT vs. DM [12,13], CBBCT vs. DM vs. US, or MRI [11,49].
All the studies reported both the sensitivity and specificity of the diagnostic equipment,
while the AUC of SROC was estimated separately like that of the DBT arm. All the studies
reported the number of benign and malignant cases, 80% of studies acquired data via the
Koning Breast CT (KBCT 1000) model [11–13,49].

3.3. Quality Assessment and Publication Bias

In the DBT arm, one study reported a high risk of bias due to inappropriate exclusion
and method of patient selection [47]. Two studies (11.8%) reported an unclear risk of bias
because the diagnostic threshold was not specified, and no information on whether the
readers were blinded to the result of clinical outcomes [34,44]. One study (6.7%) did not
give enough information about the pathological findings and, if necessary, follow-up was
made, thus providing an unclear risk of bias for a reference standard [40]. Three studies
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(17.6%) did not give details information if the patients received the reference standard or if
the appropriate time interval between the reference standard and index test, thus providing
an unclear risk of bias for flow and timing [34,40,51]. Additionally, eight studies (47.1%)
had a high risk of bias for applicability concerns regarding patient selection as the criteria
for selecting patients did not match exactly our review questions, three studies (17.6%)
provided high risk and unclear risk of bias regarding applicability for index test, only one
study (5.9%) gave unclear applicability concerns regarding reference standard. The risk
of bias and applicability concern and reviewers’ judgment about each domain for all the
included study is shown in Figure 2. Likewise, for the CBBCT arm, none of the studies
reported a high risk of bias, although the unclear risk of bias exists in patient selection,
reference standard, and flow and timing in one study due to scanty information [12,48].
The overview of bias and applicability risk is shown in Figure 3. A visual assessment
of funnel plots revealed asymmetrical distribution around inverted funnel for included
studies of DBT which signifies publication bias which might be attributed to reporting
bias [33], as shown in Figure 4. However, the likelihood of publication bias might also exist
in the CBBCT arm due to the small number of studies included in the meta-analysis. More
details about the risk of bias and applicability of concerns using QUADASS-2 assessment is
shown in Figure 3.

Figure 3. Risk of bias and applicability concerns expressed as percentages across all included studies.
(a) Risk of bias for DBT; (b) Applicability concerns for DBT; (c) Risk of bias for CBBCT; (d) Applicability
concerns for CBBCT.

Figure 4. Funnel plots of the likelihood of bias in included studies. (a) DBT; (b) CBBCT.
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3.4. DBT Meta-Analysis

A total of 17 studies with different observations on sensitivity, specificity, and AUC
contributed to the meta-analysis of the DBT arm [10,34–49]. The forest plot of sensitivity
and specificity with point estimates of 95% confidence intervals across different studies
are shown in Figure 5. The pooled sensitivity was 86.7% (95% CI: 80.3–91.2, I2 = 89) and
specificity is 87.0% (95% CI: 79.9–91.8, I2 = 95). Since all the within studies had Higgins I2

for both sensitivity and specificity above 75%, and the p-value of Cochran Q statistic is less
than 0.05, which implies there is substantial heterogeneity.

Figure 5. Forest plots using random effect model univariate meta-analysis model for DBT showing
pooled sensitivity and pooled specificity.

To show both practical and statistical significance between DBT and CBBCT modalities,
the difference in sensitivity and specificity of these modalities were estimated, the result
of the difference in effect size for sensitivity is 3% (p-value = 0.7622) and specificity is
16.4% (p-value = 0.0622). The effect size for DBT exceeded CBBCT by 3% and 15.3%
for sensitivity and specificity, respectively, which indicate better performance for DBT.
Although it is statistically is non-significant since both p-values are greater than 0.05. The
pooled positive likelihood ratio (LR+) is 6.28 (95% CI: 4.40–8.96, I2 = 93), while the pooled
negative likelihood ratio (LR−) is 0.17 (95% CI: 0.12–0.25, I2 = 92), as shown in Figure 6.
The pooled AUC of SROC is 0.925, as shown in Figure 7a.

Figure 6. Forest plots of summary of positive (LR+) and negative (LR−) likelihood ratios of DBT
using random effects bivariate model.
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Figure 7. The plot of diagnostic performance using bivariate Summary Receiver Operating Char-
acteristics (SROC) curve. (a) SROC of DBT; (b) SROC of CBBCT. The prediction region is shown in
a dashed dark line, the confidence region shown in a small black ellipse, summary point in black
diamond plus ad scaled dataset points for each study in a small triangle. CI: Confidence interval;
AUC: area under the curve.

3.5. CBBCT Meta-Analysis

A total of five different observation studies were included in the meta-analysis of the
CBBCT arm; the summary of all necessary information is tabulated in Table 1. Pooled sensitivity
with 95% confidence intervals across the studies is 83.7% (95% CI: 54.6–95.7, I2 = 94); while the
pooled specificity is 71.3% (95% CI: 47.5–87.2, I2 = 94); as shown in Figure 8. There is substantial
heterogeneity within studies for both sensitivity and specificity as the value of I2 is higher
than 75% and a p-value less than 0.05. Due to the small number of included studies, further
subgroup analyses for evaluating a potential source of heterogeneity were not performed. The
pooled positive likelihood ratio (LR+) is 2.71 (95% CI: 1.39–5.29, I2 = 95), while the pooled
negative likelihood ratio (LR−) is 0.21 (95% CI: 0.07–0.32, I2 = 97), as shown in Figure 9. The
pooled AUC of SROC is 0.831, as shown in Figure 7b.

Figure 8. Forest plots using random effects univariate meta-analysis model for CBBCT showing
pooled sensitivity and pooled specificity.

Figure 9. Forest plots of summary of positive and negative likelihood ratios of CBBCT using random
effects bivariate model.
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4. Discussion

The systematic review identified 17 studies for the DBT arm and five studies for the
CBBCT arm, comparing the diagnostic accuracy using sensitivity, specificity, mean AUC of
SROC, positive and negative likelihood ratios as a figure of merits. Our results showed
that the pooled sensitivity of DBT was 86.7% (95% CI: 80.3–91.2) and was higher than that
of the pooled sensitivity of CBBCT 83.7% (95% CI: 54.6–95.7), with about 3% with a p-value
of 0.7622. Likewise, the pooled specificity of DBT showed an improvement over CBBCT
from 87.7% (95% CI: 79.9–91.8) and 71.3% (95% CI: 47.5–87.2) by 16.4%. The pooled LR+ of
DBT is 6.28 (95% CI: 4.40–8.96) and was slightly higher than that of CBBCT with pooled
LR+ of 2.71 (95% CI: 1.39–5.29). The result signifies that DBT is six times more likely to
detect patients with breast cancer than patients without breast cancer, as LR+ is greater
than 10 and LR− is less than 0.1 produces the greatest efficiency [25]. The pooled AUC
of SROC of the DBT arm is 0.925 and was significantly higher than that of the CBBCT
arm (p-value = 0.016), 0.831. The pooled LR+ and LR− of the CBBCT are 2.71 and 0.21,
respectively, which cause a small change in the pre-test probability [25]. Although the
result presented by Uhlig et al. [19] showed a pooled sensitivity of 78.9%, the specificity
of 69.7% and AUC of 0.817, the result of our CBBCT arm showed higher improvement in
terms of pooled sensitivity and sensitivity and mean AUC value. The summary of pooled
results is shown in Table 2.

Table 2. Summary of all estimated diagnostic test accuracy.

DOR Parameters Pooled Value at 95% CI (DBT) Pooled Value at 95% CI (CBBCT)

Sensitivity 86.7% (80.3–91.2, I2 = 89%) 83.7% (54.6–95.7 I2 = 94%)

Specificity 87.0% (79.9–91.8, I2 = 95%) 71.3% (47.5–87.2, I2 = 94%)

LR+ 6.28 (4.40–8.96, I2 = 93%) 2.71 (1.39–5.29, I2 = 95%)

LR− 0.17 (0.12–0.25, I2 = 91%) 0.21 (0.04–1.05, I2 = 97%)

AUC of SROC 0.925 0.831
Note: LR+ = Positive likelihood ratio, LR− = Negative likelihood ratio, DBT = Digital breast tomosynthesis,
DM = Digital mammography, CBBCT = Cone-beam breast computed tomography, SROC = Summary Receiver
Operating Characteristics, CI = Confidence interval; AUC = area under the curve.

We decided to check the effect of the different study protocols (prospective and ret-
rospective studies) on diagnostic performance by conducting a sub-group analysis. The
analysis with retrospective studies has a sensitivity of 84.6% (95% CI: 74.6–91.1, I2 = 84%
for 8 studies), while that of prospective studies was 86.7% (95% CI: 80.3–91.3, I2 = 89%
for 9 studies), indicating no significant heterogeneity between the sensitivity as shown in
Appendix A (Figure A1). In addition, the specificity is 83.0% (95% CI: 69.2–91.3, I2 = 93%
for 6 studies) for retrospective studies, while the specificity of prospective studies is 87.0%
(95% CI: 79.9–91.8, I2 = 96% for 9 studies) in Appendix A (Figure A1). The result indi-
cates that prospective studies of DBT show a slight non-significantly improvement over
retrospective studies in terms of sensitivity and specificity with a p-value of 0.2509.

This increase in mean AUC of DBT might have resulted from the significantly higher
value of sensitivity and specificity recorded by most of the included studies [34–36,39,40,42–44].
In contrast, similar lower specificity has been recorded in the CBBCT counterparts [12,48,49],
contrarily [11,13] reported higher specificity like that of its DBT counterparts as likely sup-
ported by Chappell et al. [30], that an effective diagnostic test should have corresponding high
sensitivity and specificity, which significantly contribute to the AUC of the SROC curve. The
pooled result of our study has demonstrated the diagnostic potency of DBT over the CBBCT
for both sensitivity, specificity, positive and negative likelihood ratio, and AUC. When we
compared our pooled sensitivity and specificity with that of Belair et al. [20], which had a
sensitivity of 87% (95% CI: 80–92) and 70% (95% CI: 60–79) for DBT and CBBCT and specificity
of 81% (95% CI: 72–87) and 67% (95% CI: 57–77), we discovered that our pooled sensitivity for
the DBT is within the same range, while the pooled specificity has improved by approximately
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7.2%. Comparing Belair et al. [20] with our pooled result for CBBCT showed that sensitivity
and specificity have improved by 13.7% and 4.3 %, respectively. According to Zuley et al. [21],
for lesion visibility and diagnostic accuracy of CBBCT, DBT, and MRI, the AUC of 0.84 and
0.75 was estimated for DBT and CBBCT pooled AUC result improved by 11.3% and 10.8%.
The result shows a statistical significance in the pooled AUC for DBT with p-value = 0.016, as
this will provide better diagnostic power compared to univariate sensitivity and specificity.
Although the abbreviated 3D breast MRI has been used to screen patients with a high risk of
breast cancer due to its high sensitivity between 80–94% and specificity of 80–100% [52,53],
however, some small lesions of less than 5 mm in size and ductal carcinoma in situ (DCIS) are
not easily visible due to their diffuse pattern of spread [53,54]. Additionally, the cost of an MRI
examination and the time cost for each examination has limited its widespread application [55].
Previous studies on the comparison of CBBCT with DM have shown the higher performance
of CBBCT on breast masses characterization [12,13], in cancer detection [48] and improved
performance and good interrater agreement among readers [47], therefore making CBBCT a
potential modality for improved diagnosis of breast cancer.

The studies have several limitations; firstly, the result of both arms was not extracted
from the same studies (comparison with a different cohort) according to Yang et al. [27],
as no comparison studies between CBBCT and DBT were available within the study’s
scope and range of year covered, which might have introduced a potential bias between
the result. Secondly, the sample size of the CBBCT arm is also one-third of that of the
DBT arm, the pooled estimate may not fully represent the statistical power we are looking
for; thus, the CBBCT result is underrepresented; therefore, the statistical significance of
CBBCT might reduce as more sample size tends to increase the statistical significance of
a model. Thirdly, due to the recent introduction of CBBCT as a screening or diagnostic
imaging modality, no large multicenter prospective or clinical trial studies are available
with no standardized acquisition protocol [19], thus making a direct comparison with the
DBT modality a daunting task.

5. Conclusions

Our study demonstrates that DBT shows improved diagnostic performance over
CBBCT with pooled sensitivity, specificity AUC, and positive and negative likelihood ratios.
This improvement shows a statistical significance for AUC diagnostic parameter, as this
parameter would represent higher diagnostic power compared to its derivative sensitivity
and specificity. We believe that the diagnostic performance of CBBCT would continue to
improve due to more understanding of the underpinned imaging physics of this modality
coupled with computer-aided detection application and better experiences of a radiologist.
We recommended more prospective studies on the direct comparison of diagnostic accuracy
of CBBCT and DBT for breast cancer characterization and detection.
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