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Preface

Deep-learning-based sensing, imaging, and video processing have become essential tools in

various applications, such as autonomous driving, robotics, medical diagnosis, and surveillance. The

scope of this Topical Collection widely covers the fundamentals of deep learning and its applications,

such as imaging, visual enhancement, image quality assessment, and encryption for low-level

image processing category, object detection, semantic segmentation, image classification, and visual

understanding for high-level pattern recognition category. This Topical Collection aims to provide a

reference for researchers, students, and engineers who are interested in the latest developments and

applications of deep-learning-based sensing, imaging, and video processing. This Topical Collection

is also for professionals who work in industries that involve computer vision, machine learning,

and image processing. The authors in this Topical Collection have extensive experience in the field

of deep learning and provide the state-of-the-art research works, with particular emphasis on the

latest advances in deep learning algorithms, architectures, and applications in the fields of sensing,

imaging, and video processing.

We would like to express our gratitude to the authors and reviewers for their contributions to the

Special Issue and the publisher, who has provided us with the opportunity to share our knowledge

and insights with a wider audience. We also acknowledge the sponsorship of the National Natural

Science Foundation of China under Grant 62172400, 62171134, and 11790305. We hope that this

Topical Collection will be a valuable resource for researchers, students, and professionals who work

in the field of deep-learning-based sensing, imaging, and video processing.

Yun Zhang, Sam Kwong, Xu Long, and Tiesong Zhao

Editors
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Editorial

Advances in Deep-Learning-Based Sensing, Imaging, and
Video Processing

Yun Zhang 1,*, Sam Kwong 2, Long Xu 3 and Tiesong Zhao 4

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2 Department of Computer Science, City University of Hong Kong, 83 Tatchee Ave., Kowloon,

Hong Kong, China
3 State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences,

Beijing 100190, China
4 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
* Correspondence: yun.zhang@siat.ac.cn

Deep learning techniques have shown their capabilities to discover knowledge from
massive unstructured data, providing data-driven solutions for representation and deci-
sion making. They have demonstrated significant technical advancement potential for
many research fields and applications, such as sensors and imaging, audio–visual signal
processing, and pattern recognition. Today, with the rapid advancements of advanced deep
learning models, such as conventional neural network (CNN), deep neural network (DNN),
recurrent neural network (RNN), generative adversarial network (GAN), and transformer
network, learning techniques, such as transfer learning, reinforcement learning, federal
learning, multi-task learning, and meta-learning, and the increasing demands around
effective visual signal processing, new opportunities are emerging in deep-learning-based
sensing, imaging, and video processing.

After a careful peer-review process, this editorial presents the manuscripts accepted
for publication in the Special Issue “Advances in Deep-Learning-Based Sensing, Imaging,
and Video Processing” of Sensors, which includes fourteen articles. These articles are
original research papers describing current challenges, innovative methodologies, technical
solutions, and real-world applications related to advances in deep-learning-based sensing,
imaging, and video processing. They can generally be divided into two categories.

The first category is the deep-learning-based image and video processing by exploiting
low-level visual features, including five articles [1–5]. Inspired by biological structure of
avian retinas, Zhao et al. [1] developed a chromatic LED array with a geometric arrangement
of multi-hyper uniformity to suppress frequency aliasing and color misregistration. The
proposed concept provides insights for designing and manufacturing future bionic imaging
sensors. To enhance image quality of imaging systems, Wang et al. [2] developed a novel
color-dense illumination adjustment network (CIANet) for removing haze and smoke from
fire scenario images. Schiopu et al. [3] explored a novel filtering method based on deep
attention networks for the quality enhancement of light field (LF) images captured by
plenoptic cameras and compressed by the high efficiency video coding (HEVC) standard.
Tian et al. [4] proposed a dynamic neighborhood network (DNet) to dynamically select
the neighborhood for local region feature learning in point clouds which improved the
performances of point cloud classification and segmentation tasks. To access visual quality
of videos, Lin et al. [5] proposed a no-reference objective video quality metric called saliency-
aware artifact measurement (SAAM), which consists of an attentive CNN-LSTM network
for video saliency detection, Densenet for distortion type classification, and support vector
regression for quality prediction. These works reveal that deep learning models can exploit
low-level visual features and promote imaging, image/video enhancement, segmentation,
and quality assessment.

Sensors 2022, 22, 6192. https://doi.org/10.3390/s22166192 https://www.mdpi.com/journal/sensors1
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The second category relates to deep-learning-based visual object detection and analysis
by exploiting higher-level visual and cognitive features. It contains nine articles [6–14].
Li et al. [6] developed a wheat ear recognition method based on RetinaNet and transfer
learning by detecting the number of wheat ears as an essential indicator. This method can
be used for automatic wheat ear recognition and yield estimation. To detect surface defects
with variable scales, Xu et al. [7] proposed a multi-scale feature learning network (MSF-Net)
based on a dual module feature (DMF) extractor, which classified the surface defects with
multifarious sizes. In addition, Yu et al. [8] developed a deep-learning-based automatic pipe
damage detection system for pipe maintenance. This detection system was composed of a
laser-scanned pipe’s ultrasonic wave propagation imaging (UWPI) and CNN-based object
detection algorithms. To inspect condition of hull surfaces by using underwater images
acquired from a remotely controlled underwater vehicle (ROUV), Kim et al. [9] proposed a
binary classification method by resembling multiple CNN classifiers which were transfer-
learned from larger natural image datasets. Kim et al. [10] proposed a neg-region attention
network (NRA-Net) to suppress negative areas and emphasize the texture information of
objects in positive areas, which was then applied in an auto-encoder architecture based
salient objects detection. He et al. [11] developed a small object detection algorithm named
YOLO-MXANet for traffic scenes, which reduced the computational complexity of the
object detection and meanwhile improved the detection accuracy. Alia et al. [12] proposed
a hybrid deep learning and visualization framework of pushing behavior detection for
pedestrian videos, which comprised a recurrent all-pairs field transforms (RAFT)-based
motion extraction and an EfficientNet-B0-based pushing patches annotation. Deepfakes
may cause information abuse by creating fake visual information. To verify video integrity,
Lee et al. [13] presented a deep learning-based deepfake detection method by measuring
changing rate of a number of visual features among adjacent frames. Then, a learned
DNN was used to identify whether a video was manipulated. Xu et al. [14] proposed a
timestamp-independent synchronization method for haptic–visual signals by exploiting a
sequential cross-modality correlation between haptic and visual signals, where the deep
learning network YOLO V3 was employed in visual object detection. In these works, deep
learning technologies were applied to promote the performances of defect detection, object
detection, anomaly detection, and recognition tasks in practical sensing, imaging, and
video processing applications.

We would like to thank all the authors and reviewers for their contributions to the
Special Issue. We hope this Special Issue can provide some research insights, useful
solutions, and exciting applications to scholars in academics and researchers in the industry
interested in Deep-Learning-Based Sensing, Imaging, and Video Processing.

Author Contributions: All the authors contributed equally to this editorial. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62172400, 62171134, and 11790305.
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Abstract: Digital cameras obtain color information of the scene using a chromatic filter, usually a
Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter ar-
ray and the detector array introduces frequency aliasing in sampling and color misregistration during
demosaicking process which causes degradation of image quality. Inspired by the biological structure
of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of
multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity
on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval.
Experiments were performed with a single-pixel imaging system using the multi-hyperuniform
chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at
32 × 32 pixel resolution. By comparing the experimental results with the images captured with
a conventional digital camera, it has been demonstrated that the proposed imaging system forms
images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed
verified here could provide insights for the design and the manufacturing of future bionic imaging
sensors.

Keywords: multi-hyperuniform; single-pixel imaging; frequency aliasing; color misregistration

1. Introduction

Both spatial and spectral information provides us crucial knowledge of the world.
Chromatic digital cameras obtain spatial and spectral information simultaneously by plac-
ing an absorbing color-filter array (a.k.a. the Bayer filter) on top of a detector array [1],
because photoelectronic sensors are only sensitive to light intensity, regardless of its wave-
length. Due to technical limitations and commercial considerations, the elements of the
pixelated detectors, as well as those of the filter arrays, are usually arranged in a Cartesian
geometry. Such periodic arrangement of both the detector array and the Bayer filter ar-
ray introduces artificial effects decreasing the fidelity of the captured images. Frequency
aliasing, which converts frequencies above the Nyquist limit into moiré fringes during
the optical sampling, is one such effect. Color misregistration, which causes inauthentic
color shifts during the demosaicking process, is another. Many post-processing algorithms
have been proposed [2–9] to suppress these artificial effects in the captured images, which
increase the computational burden on imaging system. However, these effects could be
avoided or suppressed if raw image data could be sampled in a different manner with low
cost.

The evolution of species is governed by neither technical limitation nor commercial
consideration, but environmental requirements, and environment requires diurnal animals
to evolve eyes which can obtain images with high fidelity and dynamic performance.
Some researches about human retinas showed that arrangement of the photoreceptors
is random and uniform, which is able to yield images with better reconstruction quality
by suppressing frequency aliasing [10]. The similar structures exist in the avian vision
system as well. Recent biological investigations have found that birds, being the vertebrate

Sensors 2021, 21, 4084. https://doi.org/10.3390/s21124084 https://www.mdpi.com/journal/sensors4
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with the most sophisticated vision, have retinas consisting of five types of cones, each of
which independently exhibits a disorder on small-length scales but a quasi-uniformity
on large scales [11,12]. The fantastic structure of correlated disorder is known as hype-
runiformity [13], and the fact that such arrangement can obtain high fidelity images is
explained by the theory that a slight irregularity in the optical sampling arrangement can
avoid frequency aliasing [14]. It has been shown that the evolution of the avian vision
system may be most sophisticated among all animals. Another biological research [15]
shows that the birds can achieve continuous imaging with up to 145 fps frame rate. A
recent hyperuniform sampling experiment [16] further verified the feasibility of the the-
ory. However, the experiment was performed with a single-pixel imaging [17–21] system
using a digital-micromirror-device which is commonly used in many applications [22,23].
While the sampling patterns were designed to be hyperuniform, the micromirrors forming
the patterns were arranged in Cartesian coordinates and displayed at an up-to-22 KHz
modulational rate. Consequently, the frequency aliasing in the sampled image was not
suppressed completely and the system cannot perform high dynamic tasks.

In this paper, we addressed that the periodic sampling caused frequency aliasing and
color misregistration by utilizing a customed chromatic LED array in which red-green-blue
luminous points formed a multi-hyperuniform arrangement [11], that is, luminous points
of one color form a hyperuniform point pattern, and all points together, regardless of their
colors, exhibit hyperuniformity as well. Such arrangement of the chromatic LED array
was designed to mimic the multi-hyperuniform structure of the chicken retina system [12].
Optical sampling using multi-hyperuniformity was performed experimentally via a single-
pixel imaging system. The high-speed hyperuniform LED array developed in this work,
which have a maximum illumination rate of 2.5 MHz, can effectively improve the dynamic
performance of the imaging system. Both numerical and experimental results indicated
that the images retrieved by multi-hyperuniform sampling contained less chromatic moiré
patterns at high frequencies and less color misregistration artifacts at the edge of color
transition, where the proposed imaging system achieved 208 fps frame rate in experiment.
The work is different from the methods of optimizing interpolation algorithm, which can
solve these artificial effects in hardware through a simple imaging system. The proof-of-
principle system demonstrated here might push us one step closer to the biomimetic digital
camera which the imaging community aimed to invent for so long.

2. Theory

Hyperuniform structure exists in not only avian retinas but also physical systems
such as crystal [24], or even the large-scale structure of the universe [13]. The property of
a hyperuniform system can be quantified as the density fluctuation in its corresponding
point patterns. For a 2D point pattern with hyperuniform distribution, the variance of the
number of points σ2(R) within a circular domain S is approximately proportional to the
R [13] i.e.,

σ2(R) =
〈

N2
S

〉
− 〈NS〉2 ∝ R (1)

where Ns is the number of points contained in S, and angular brackets represent an
ensemble average. R is the radius of a circular observation window. Equation (1) indicates
that the variance of the hyperuniform point patterns grows more slowly than the area of the
domain, while for any statistically homogeneous and isotropic point pattern, the variance
cannot grow more slowly than the area of circle S or other strictly convex domains [25,26].

A special hyperuniformity, known as multi-hyperuniformity [11], contains more than
one type of points. For example, five types of cone photoreceptors exist in chicken retina:
violet, blue, green, red species to sense color and double species to detect luminance. The
point patterns of these five types of cones are arranged individually and never occurred in
the near vicinity of other cones of the same type, which ensure each cone pattern achieves
a much more uniform arrangement [11]. All types of photoreceptors grow simultane-
ously with the constraints of cell size, and such competing interactions ensure that all
cone patterns are arranged in a hyperuniformity. Multi-hyperuniform structure contains
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multiple point species where both the total population and the individual point types are
simultaneously hyperuniform. It is worth noting that the overall point arrangement in
multi-hyperuniform obey Equation (1) as well, which means that the point patterns are
independent with each other and display hyperuniform in total whether the individual
species is removed or not. Such multi-hyperuniform structure is believed to be the main
reason that birds have the most sophisticated vision of any vertebrate. It would be inter-
esting to exploit the concept in optical sampling by using such geometry, and here it was
performed in the manner of structured illumination in a single-pixel imaging scheme.

A chromatic LED array was developed, in which its red-green-blue luminous points
were arranged in multi-hyperuniformity. Specifically, a hyperuniform point pattern was
generated by a ‘cell-growing’ random procedure based on a regular hexagonal geome-
try [16]; the green luminous points, being the center of the LED chips, were then arranged
following the hyperuniform point pattern, as shown in Figure 1a. As the red-green-blue
luminous points in an LED chip have a fixed geometry (Figure 1b), a periodicity would
exist in the LED array if each chip were arranged in the same manner. Therefore, an extra
irregularity was introduced by rotating the LED chip of the ith column and the jth row
with a randomly generated angle θij (Figure 1c). The LED array, as shown in Figure 1d, was
fabricated by placing 32 × 32 LED chips on corresponding positions and integrating them
on the printed circuit board, where the red-green-blue luminous points on each chip have
center wavelengths of 632 nm, 518 nm, and 468 nm, respectively. It is worth mentioning
that, for the purpose of variance σ2(R) estimation and further numerical simulation, the
multi-hyperuniform arrangement were generated on an underlying Cartesian grid of 544
× 544 pixels with one pixel corresponding to 0.1 mm × 0.1 mm. The actual LED array,
however, was not limited by Cartesian coordinates. Recent research has found that the
quantities of five types of cones are different in avian retina, where the double cones were
the most abundant cone type (40.7%) followed by green (21.1%), red (17.1%), blue (12.6%)
and violet (8.5%) single cones. Due to the fixed arrangement of R-G-B channels of each
LED chip, the three channels have the same spatial density on the multi-hyperuniform
LED array with 32 × 32 chips.

 

Figure 1. Schematics of multi-hyperuniform sampling arrangement: (a) Hyperuniform point pattern
generated by the randomization procedure for green luminous point; (b) The geometry of a single
LED chip; (c) Randomized rotations were introduced to each LED chip; (d) Multi-hyperuniform
point pattern of the LED array.

6



Sensors 2021, 21, 4084

To evaluate the hyperuniformity of the chromatic LED array, as in the calculating
process in [11], the variances σ2(R) were computed directly for each monochromatic point
patterns separately, and for overall point pattern, as shown in Figure 2. Specifically, for each
R value, 2500 circular domains S were randomly placed in the pattern without overlapping
the system boundary. The maximum radius was chosen to be Rmax = L/2, limited by the
pattern size L. The variances of each pattern were fitted (dashed lines in Figure 2) using the
fitting function:

σ2
(

R
D

)
= P
(

R
D

)(
1 + Q cos

(
π

2
R
D

+
π

3

))
(2)

where a cosine term represented that the patterns were originated from the regular hexago-
nal arrangement [16], the window size R is normalized by the averaged points’ distance
D = 17 for monochromatic point patterns and D = 5.67 for overall point pattern. According
to the previous research [11], the structural properties of individual and overall point pat-
terns could be obtained in the same manner, so the Equation (2) is suitable for hyperuniform
evaluation of chromatic LED point array.

Figure 2. Number variance σ2(R/D) of all monochromatic point patterns and the overall point pattern,
and their corresponding fitting curves.

The parameters of the fitting curves in Figure 2 are listed in Table 1. The fitting curves
and their fitting parameters, listed in Table 1, indicated that the variances of all four pat-
terns grew proportionally to R rather than R2, which met the criterion of hyperuniformity
described by Equation (1). Each monochromatic luminous point pattern exhibits hyper-
uniformity individually, and combined as an overall point pattern, the LED array remains
hyperuniform, therefore, the arrangement of the LED array was multi-hyperuniform.

Table 1. Fitting coefficients for different types of point patterns.

Green Red Blue Overall

P 0.4675 0.5932 0.5725 0.5663
Q 0.1274 0.0271 0.0335 0.1505

It is worth mentioning that Q is the coefficient for the cosine term in Equation (2),
representing the hexagonal geometry. In Table 1, coefficient Q of the green point pattern
is larger than the red and blue ones because the latter ones had an extra random rotation
introduced during the generation of the pattern, meaning the red and blue point patterns
had a larger deviation from the regular hexagonal geometry than the green point pattern.
The parameter P is a coefficient for fitting curves.
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3. Numerical Simulations

Numerical simulations were performed using a multi-hyperuniform sampling point
pattern, which was generated based on the multi-hyperuniform LED array. The point
pattern, having a 544 × 544 underlying pixel grid, contained 3072 sampling points, 1024
for red, green, and blue each. Figure 3a showed a partial area of the arrangement with 4
red, 4 green, and 4 blue points. Each LED luminous point, not strictly a point, had the size
of 6 pixel grids, representing its 0.3 mm × 0.2 mm physical size.

 

Figure 3. Partial areas of sampling patterns containing 12 sampling points: (a) Multi-hyperuniform
sampling pattern; (b) Regular sampling pattern; (c) Bayer sampling pattern.

For comparison, two other types of sampling patterns were also used in the numerical
simulation. The regular LED pattern, a part of which was shown in Figure 3b, represented
that the LED chips were arranged in a regular geometry. The regular LED pattern also
contained 3072 sampling points, 1024 for red, green, and blue each. The Bayer pattern, a
part of which was shown in Figure 3c, is a common arrangement used in conventional
chromatic digital cameras. The Bayer pattern, having a 1:2:1 ratio of red, green, and blue
points, contained 3072 sampling points which consisted of 768 red, 1536 green, and 768
blue points.

To ensure that the comparison is fair, the three sampling patterns had the same number
of sampling points and the same size of underlying pixel grid, therefore, the same sampling
frequency and the same field-of-view for the optical sampling.

In numerical simulation, a group of 35 chromatic images, whose pixel resolution is
544 × 544, were used as the objects. Each chromatic image I was under-sampled by the
three sampling patterns, and a demosaicking algorithm [4,5] was applied to the under-
sampled monochromatic data of red, green, and blue to reconstruct the chromatic image I’.
There are many sophisticated demosaicking methods for various applications [6–8] and
the gradient-based interpolation algorithm [9] was applied in this work. The gradients of
different directions are calculated according to the sampling structure, which can ensure
for selecting the proper direction to estimate the missing pixel values of the images. This
algorithm is efficient to reduce the pseudo color of color-transition area in reconstructed
images for three sampling patterns without much time cost. It is worth mentioning that the
demosaicking algorithm used here is not best for three sampling structures but valid and
simple, which can ensure the fair comparison of image reconstruction with three sampling
patterns. There are some complicated algorithms to improve the quality of images as well,
which would cause more time costs of imaging. It is verified that the multi-hyperuniform
sampling structure could be used to improve the image quality in a hardware way without
more computational burden.

The qualities of reconstruction images were evaluated using the root mean square
error (RMSE) between each original image I and its reconstruction I’ as:

RMSEchannel =

√
∑m,n

i,j=1 (I′channel(i, j)− Ichannel(i, j))2

m × n
(3)
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where m = n = 544 were the pixel resolution of the images, and channel, being red, green,
or blue, represented the monochromatic data of different channels. The final RMSE is the
averaging value of the RMSEs for three monochromatic channels, i.e.,

RMSE =
R,G,B

∑
channel

RMSEchannel/3 (4)

Both original images and the reconstructions were normalized to the same scale.
The RMSEs of all resulting images, sorted in descending order of multi-hyperuniform

pattern RMSEs, are shown in Figure 4. In most cases, 33 out of 35, the proposed multi-
hyperuniform pattern yielded the best resulting images among the three sampling patterns.
The average RMSE for all 35 images reconstructed from multi-hyperuniform sampling,
being 0.1214, is the smallest of the RMSEs yielded from the three sampling patterns. Regular
and Bayer patterns each yielded the lowest RMSE in two cases, where the original images
contain large blocky areas with no color transitions and high-frequency details. The slight
degradation of image quality by using multi-hyperuniform sampling in such cases, was
predicted by the fact that the irregularity in optical sampling degrades image quality [27].
The RMSEs of the reconstructed images by multi-hyperuniform structure demonstrate the
improvement of the image quality on a pixel-wise level.

 
Figure 4. RMSEs of the reconstructed chromatic images using multi-hyperuniform (blue dot), regular
(red diamond), and Bayer (green square) sampling patterns. The averaged values of 35 image RMSEs
are listed on the label.

For considering larger-scale features of reconstructed images, the structural similarity
(SSIM) between each original image I and its reconstruction I’ is calculated as:

SSIM(I′channel , Ichannel) =

(
2μIchannel μI′channel

+ c1
)(

2σIchannel ,I′channel
+ c2

)(
μ2

Ichannel
+ μI′channel

+ c1

)(
σ2

Ichannel
+ σ2

I′channel
+ c2

) (5)

where, μ is the average value of images, σ2 is the variance of images, c1 and c2 are constants.
σI,I′ is covariance of I and I’, c1 = 0.01 and c2 = 0.03 are constants for ensuring the
validation of this equation. The meaning of the channel is the same as the previous
calculation process. The final SSIM is the averaging value of the SSIMs for three channels,
i.e.,

SSIM =
R,G,B

∑
channel

SSIM(I′channel , Ichannel)/3 (6)
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The SSIMs of all images reconstructed are shown in Figure 5, where image indexes
are consistent with the results in Figure 4. The averaging SSIM for all 35 images from
multi-hyperuniform sampling is the largest compared with other results yielded from
regular and Bayer sampling. The two images with the large block can be reconstructed
better by regular sampling pattern and their indexes are the same with the two cases where
we find lower RMSEs by using regular and Bayer patterns in Figure 4. The SSIMs of the
reconstructed images demonstrate that image quality can be improved on larger-scale
features by multi-hyperuniform sampling as well.

 
Figure 5. The SSIM values of the reconstructed chromatic images using multi-hyperuniform (blue

dot), regular (red diamond), and Bayer (green square) sampling patterns. The averaged values of
35 image SSIMs are listed on the label.

Since aliasing errors are usually caused by insufficient sampling, it is necessary to
compare the proposed sampling with other random sampling strategies. The blue-noise
sampling strategy is another random strategy, which is derived by the human vision system.
This method is used here and the reconstruction results are listed in Figures 6 and 7. The
points in blue-noise sampling pattern are arranged randomly but the distances of any
two adjacent points are uniform, which causes the reconstructed images to be close to the
results using multi-hyperuniform sampling structure.

Due to the fact that different images have different power distribution of image
spatial frequency [28,29], more various scenes are used for comparisons, where the recon-
structed images of artificial scenes and natural scenes are obtained by different patterns in
Figures 6 and 7. In Figure 6, it is obvious that less color misregistration artifacts and moiré
fringes were observed in reconstructed images by multi-hyperuniform sampling pattern
compared with the other structures. It is worth noting that the color misregistration could
be considered as one of the small-scale features and the chromatic moiré fringes could be
treated as one of the large-scale features. The RMSEs and SSIMs are sequentially listed
under the resulting images, which indicate that multi-hyperuniform sampling structure can
suppress the color misregistration and chromatic moiré fringes in different scale features.
The reconstructed results in Figure 7 demonstrated that the multi-hyperuniform sampling
structure is valid to improve the qualities of natural scenes with sparse periodic patterns as
well.
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Figure 6. Comparison of reconstructed images of artificial scenes using different sampling patterns.
From the left to right are the original images, reconstructions from multi-hyperuniform, regular
and Bayer sampling patterns. The corresponding RMSEs and SSIMs are listed below the images,
respectively. (a) The scene of Colosseum with color transition area and corresponding reconstructed
images in numerical simulations; (b) The scene of bird with periodic patterns on the wings and
corresponding reconstructed images; (c) The scene of fish with periodic stripes and corresponding
reconstructed results.

 
Figure 7. Comparison of reconstructed images of natural scenes using different sampling patterns.
From the left to right are the original images, reconstructions from multi-hyperuniform, blue-noise
sampling patterns, regular and Bayer sampling patterns. The corresponding RMSEs and SSIMs are
listed below the images, respectively. (a) The scene of forest and corresponding reconstructed image;
(b) The scene of sky and corresponding reconstructed images; (c) Natural scene with the different
contents and corresponding reconstructed results.

4. Experimental Results

It is difficult to perform the multi-hyperuniform optical sampling with an actual
detector array, because such a chromatic detector array would be impossible to manu-
facture. However, it is possible to perform a multi-hyperuniform optical sampling ex-
periment utilizing the computational imaging methods which have emerged during the
last decade [30–33]. Single-pixel imaging, being a typical computational imaging method,
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forms an image by sampling the scene with varying structured illuminations, and asso-
ciating the illumination patterns with the corresponding light intensities recorded with
a single-pixel detector. This imaging strategy provides advantages for imaging in situa-
tions that are challenging with a detector array, such as special spectrum imaging [34,35],
adaptive imaging [36–38], optical phased array imaging [39] and 3D profiling [40–43].

In this work, a single-pixel imaging experimental system was set up as shown in
Figure 8. The multi-hyperuniform chromatic LED structured illumination module was
used in the system to sample the scene, which consists of a field-programmable gate
array (Xilinx Spartan XC6SLX9-2FTG256C), a drive circuit and an LED array developed
in Section 2. During the experiment, for each monochromatic channel, a projection lens
(f = 150 mm) projected N masks Pi (I = 1, . . . , N) displayed on the LED array. The mask
Pi is orthonormal and derived from the Hadamard matrix, a square matrix with elements
±1 whose rows (or columns) are orthogonal to one another [44]. The LED array displays
monochromatic illumination masks at the rate of 1.25 MHz. The high illumination rate
was achieved by using the line control modulational strategy proposed in our previous
work [45]. A single-pixel bucket detector (Thorlabs PMT2102) and a digitizer (PicoScope
6404D) were used to record the corresponding reflecting total light intensities Si (I = 1, . . . ,
N). The image I’channel for the monochromatic channel can be reconstructed as:

I′channel =
N

∑
i=1

Si·Pi (7)

where the N is the quantity of the Hadamard basis masks. The problem of reconstructing the
single channel image of the scene becomes a problem of solving N independent unknowns
using a set of linear equations. Due to the orthonormal property of the mask, the Equation
(7) can be solved perfectly if the number of Hadamard basis masks is equal to pixels of
the image [16,21,44,45]. Provided the scene is sparse, compressive sensing [18,21,44] can
be used to reconstruct image with N < 32 × 32 measurements by sub-sampling the scene
and solving the optimization problem. To yield one 32 × 32 monochromatic image, 2048
masks (1024 Hadamard masks and their inverses) were used to perform a fully Hadamard
sampling. After images I’channel for red, green, and blue were reconstructed separately,
the gradient-based interpolation algorithm was applied to yield the chromatic image I’
of the object. A chromatic image required 6144 illumination masks, or 4.8 ms acquisition
time, resulting in a 208 fps frame rate for the multi-hyperuniform chromatic LED array-
based single-pixel imaging system. Due to the lab manufacturing limitation, the imaging
experiment only can achieve 32 × 32 pixels resolution.

Figure 8. Experimental set-up. A multi-hyperuniform chromatic 32 × 32 × 3 LED array provided
structured illumination to sample the object through a projection lens (f = 150 mm). A single-pixel
bucket detector (Thorlabs PMT2102) and a digitizer (PicoScope 6404D) collected the reflected light
intensity and transferred it to a computer for reconstruction.

12



Sensors 2021, 21, 4084

For comparison, another LED array with regular sampling arrangement, as shown in
Figure 3b, was used in the experimental system to obtain images with regular sampling. An
ordinary smartphone camera was also used to capture images with Bayer sampling, where
the method of sub-sampling is chosen to ensure the same sampling structure compared
with the simulation. All images were obtained with the same number of spatial sampling
points to make sure the comparison was fair.

Figure 9 illustrated the resulting images yielded from multi-hyperuniform, regular and
Bayer sampling patterns. Like numerical simulation, color misregistration and chromatic
moiré fringes were observed in images yielded by regular and Bayer sampling, while
multi-hyperuniform sampling suppressed both artifacts. The calculated RMSEs and SSIMs
listed below the images are in a good agreement with the numerical simulation. It is
showed below that the images reconstructed by multi-hyperuniform have the lowest
RMSE and highest SSIM values, demonstrating the effectiveness of suppression of color
misregistration and frequency aliasing.

Figure 9. Experimental results of two group scenes. Chromatic images are reconstructed experimen-
tally by multi-hyperuniform, regular and Bayer sampling patterns with their RMSEs and SSIMs listed
below. (a) The scene of Colosseum with color transition area and corresponding reconstructed results
in experiments; (b) The scene of fish with periodic stripes and corresponding recon-structed results.

5. Discussions and Conclusions

In summary, we developed a chromatic LED array with multi-hyperuniform structure,
that is, luminous points of each monochromatic chip exhibited hyperuniformity inde-
pendently, and red-green-blue luminous points combined to show hyperuniformity as
well. The chromatic LED array was developed to mimic the virtues of avian retina opti-
cal sampling, specifically, suppressing color misregistration and chromatic moiré fringes
caused by periodic optical sampling. The placement and orientation of LED array has an
impact on whether the arrangement of LED array is multi-hyperuniform, and two random
procedures are used here to ensure LED array is of multi-hyperuniformity. Comparisons
were performed numerically and experimentally by reconstructing images by different
sampling methods in a single-pixel imaging system. Both numerical and experimental
results indicated that the multi-hyperuniform sampling method yielded images with better
image quality compared to the other two methods by using the same and basic interpo-
lation algorithm. Besides the improvement of the images’ quality, the proposed imaging
system achieved 208 fps frame rate experimentally, which has a potential in high dynamic
applications.

This work is a proof-of-principle to demonstrate the feasibility of multi-hyperuniformity
in high dynamic chromatic optical sampling. The chromatic LED array developed in this
work contains only 1024 chromatic luminous LED chips due to the lab manufacturing
limitation. The capability of improvement of image quality is almost the same by 32 × 32
multi-hyperuniform LED array with different orientations and placements, which can be
enhanced by integrating more LED chips on the sampling array due to the property of the
hyperuniform structure. Although the low-resolution color images are reconstructed, the
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method in this paper can offer a new solution to suppress the artificial effects in high reso-
lution imaging which would not increase imaging time. Cutting-edge LED manufacturing
techniques such as micro-LED or OLED could be used to develop multi-hyperuniform LED
array with a much larger chip number and a higher density to take full advantages of such
a sampling structure in high-resolution imaging. In this work, the multi-hyperuniform pat-
tern has been verified to be able to improve image quality with a high frame rate. In future,
LEDs could be used not only for illumination and display, but also for the development of
new bionic imaging sensors.
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Abstract: The atmospheric particles and aerosols from burning usually cause visual artifacts in single
images captured from fire scenarios. Most existing haze removal methods exploit the atmospheric
scattering model (ASM) for visual enhancement, which inevitably leads to inaccurate estimation of
the atmosphere light and transmission matrix of the smoky and hazy inputs. To solve these problems,
we present a novel color-dense illumination adjustment network (CIANet) for joint recovery of
transmission matrix, illumination intensity, and the dominant color of aerosols from a single image.
Meanwhile, to improve the visual effects of the recovered images, the proposed CIANet jointly
optimizes the transmission map, atmospheric optical value, the color of aerosol, and a preliminary
recovered scene. Furthermore, we designed a reformulated ASM, called the aerosol scattering model
(ESM), to smooth out the enhancement results while keeping the visual effects and the semantic
information of different objects. Experimental results on both the proposed RFSIE and NTIRE’20
demonstrate our superior performance favorably against state-of-the-art dehazing methods regarding
PSNR, SSIM and subjective visual quality. Furthermore, when concatenating CIANet with Faster
R-CNN, we witness an improvement of the objection performance with a large margin.

Keywords: haze removal; visual enhancement; aerosol scattering model

1. Introduction

The phenomenon of images degradation from fire scenarios is usually caused by the
large number of suspended particles generated during combustion. When executing the
robot rescue in such scenes, the quality of the images collected from the fire scenarios will
be seriously affected [1]. For example, most of the current research in the computer vision
community is based on the assumption that the input datasets are clear images or videos.
However, burning is usually accompanied by uneven light and smoke, reducing the scene’s
visibility and failing many high-level vision algorithms [2,3]. Therefore, removing haze and
smoke from fire scenario scenes is very important to improve the detection performance
for rescue robots and monitoring equipment.

Generally, the brightness distribution in the fire scenarios is uneven, and different
kinds of materials will produce different colors of smoke when burning [4]. Therefore, the
degradation of the images in fire scenarios is more variable than common hazy scenes.
Optically, poor visibility in fire scenarios is due to the substantial presence of solid and
aerosol particles of significant size and distribution in the participating medium [5,6]. Light
from the illuminant reflected tends to be absorbed and scattered by those particles, causing
degraded visibility of a scene. The brightness is not evenly distributed in the background.

Sensors 2022, 22, 911. https://doi.org/10.3390/s22030911 https://www.mdpi.com/journal/sensors16
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The uncertain light source is the two main factors that cause the hazy fire scenarios to be
far different from the common hazy scenarios.

Recently, many dehazing algorithms for single images have been proposed [7–10],
aimed at improving the quality of the images captured from hazy or foggy weather. Image
dehazing algorithms can be used as a preprocessing step for many high-level computer
vision tasks, such as video coding [11–13], image compression [14,15] and object detec-
tion [16], etc. The dehazing algorithms can be roughly divided into two categories: the
traditional prior-based methods and the modern learning-based methods [17]. The conven-
tional techniques get plausible dehazing results by designing some hand-crafted priors,
which lead to color distortion due to lack of consideration and comprehensive understand-
ing of the imaging mechanism of hazy scenarios [18–20]. Therefore, traditional prior-based
dehazing methods are difficult to achieve desirable dehazing effects.

Learning-based dehazing methods adopt convolution neural networks (CNNs) to sim-
ulate the mapping relationships between the hazy images and the clear images [21]. How-
ever, since the parameters and weights of the model are fixed after training, the datasets
will seriously affect the performance of learning-based dehazing methods. Therefore, the
learning-based dehazing methods lack sufficient flexibility to deal with the changeable fire
environment. In addition, many synthesized training datasets for the dehazing algorithms
are based on the atmospheric scattering model (ASM) [22,23], in which only white haze
can be synthesized, and the other potential colors of smoke cannot be synthesized. These
limitations will affect the application of current leaning-based dehazing models in fire
monitoring systems [24]. Therefore, both prior-based methods and the learning-based
methods are limited in the fire scenario dehazing.

This paper modifies ASM and proposes a new imaging model named aerosol scattering
model (ESM) for enhancing the quality of images or videos captured from fire scenarios.
In addition, this paper also presents a novel deep learning model for fire scenarios image
dehazing. Specifically, instead of directly learning an image-to-image mapping function,
we design a three-branch network to handle the transmission, suspend the particle color,
and obtain a preliminary dehazing result separately.

This strategy is based on two observations. Firstly, the illumination intensity of most
fire scenarios is uneven, the area near the fire source is significantly brighter than other
areas. Second, different types of combustion usually produce various forms of smoke.
For example, solid combustion usually produces white smoke, while combustible liquids
generally generate black smoke. Therefore, the degraded images of fire scenarios present
generally different styles. The reliability of most current dehazing methods is higher only
under even illumination conditions [25]. To address the above-mentioned problems, this
paper proposed a novel CIANet that can effectively improve the haze images captured
from fire scenarios.

The proposed method can be seen as a compensation process that can enhance the
quality of the images affected by combustion. The network learns the features of the
images from the training data. The three branches of the structure generate an intermediate
result, a transmission map and a color value, respectively. To a certain extent, our method
integrates all the conditions for compensating or repairing the loss caused by scattering. The
improved ESM is post-processing to transform the intermediate results to higher-quality
images. After ESM processes the intermediate results, the color of the image is brighter, and
the contrast is more elevated. ESM can also be employed in conventional image dehazing
tasks, especially natural conditions.

The contributions of this work are summarized as follows:

• This paper proposes a novel learning-based dehazing model to improve the quality of
images captured from fire scenarios, built with CNN and a physical imaging model.
Combining the modern learning-based strategy with a traditional ASM makes the
proposed model handle various hazy images in the fire scenarios without incurring
additional parameters and computational burden.
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• To improve the effect of image dehazing, we improve the existing ASM and propose a
new ASM called the aerosol scattering model (ESM). The ESM uses brightness, color,
and the transmission information of the images and can generate a more realistic
images without causing over enhancement.

• We conducted extensive experiments on multiple datasets, and experiments show that
the proposed CIANet achieves better performance quantitatively and qualitatively.
The detailed analysis and experiments show the limitation of the classical dehazing
algorithms in fire scenarios. Moreover, the insights from the experimental results
confirm what is useful in more complex scenarios and suggest new research directions
in image enhancement and image dehazing.

The remaining part of this paper is organized as follows. In Section 1, we review the
ASM and some state-of-the-art image dehazing algorithms. In Section 2, we present the
proposed CIANet in detail. Experiments are presented in Section 3, before conclusion is
drawn in Section 4.

2. Related Works

Generally, the existing image haze removal methods can be roughly divided into
two categories: the prior-based and learning-based methods. The prior-based strategy
use hand-crafted prior inspired by statistical assumptions, while the learning-based meth-
ods automatically obtain the nonlinear mapping between images pairs from the training
data [26]. We will discuss the differences between the two paradigms in this chapter.

2.1. Atmospheric Scattering Model

The prior-based dehazing algorithms can be regarded as an ill-posed problem. In
this line of methods, the physical imaging model and various prior statistics are used to
estimate the expected results from degraded inputs. In the dehazing community, the most
authoritative model is the ASM proposed by McCartney [27], which can be formulated as:

I(x) = J(x)t(x) + a(1 − t(x)) (1)

where, J(x) is the clear images to be recovered, I(x) is the captured hazy images, α is the
global atmospheric light, and t(x) is the transmission map. Equation (4) suggests that the
clear images J(x) can be recovered after t(x) and α are estimated.

The transmission map t(x) describes that the light reaches the camera instead of being
scattered and absorbed, t(x) is defined as:

t(x) = e−βd(x) (2)

where d(x) is the distance between the scene point and the imaging devices, and β is the
scattering coefficient of the atmosphere. Equation (2) shows that t(x) approaches 0 as d(x)
approaches infinity.

2.2. Prior-Based Methods

The unknown items α and t(x) are the main factors that cause the image dehazing
problem to be ill-posed. Therefore, various traditional prior-based methods [28] have
been proposed to obtain an approximate dehazed result. In [29], the authors adopted
haze-lines prior for estimating the transmission. In [30], the transmission map is calculated
by proposing a color attenuation prior, which exploited the attenuation difference among
the RGB channels. The paradigm of these kind of methods are illustrated in Figure 1a.

However, these prior-based methods often achieve sub-optimal restoration perfor-
mance. For example, He et al. [31] utilize the dark channel prior to estimate the transmission
map t(x) and employ a simple method to estimate the atmospheric light value a for restor-
ing the clear images according to Equation (1). However, the sky region in the hazy images
suffers from a negative visual effect when a dark channel prior is used. Zhu et al. [30]
propose the color attenuation prior (CAP) for estimating the depth information of the hazy
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images to estimate the transmission maps t(x). Berman et al. [29] propose the non-local
prior for estimating the transmission maps t(x) of hazy images in RGB space by varying
the color distances. Even though these prior-based methods can restore clear images from
the hazy images, the process can easily lead to incorrect estimation of the atmospheric
lights a and transmission map t(x), which cause the color distortion in the restored images.

I

t a

J

I

CNN

t a

J

I

CNN

J

I

CNN

t a

c

J

a b c d

Figure 1. Different diagrams of dehazing schemes: (a) traditional two-step dehazing strategy; (b)
estimate the transmission matrix through CNN; (c) end-to-end diagrams; (d) the proposed diagrams
that estimates the transmission t, atmospheric light a, aerosol color c, and preliminary enhancement
results Jdirect.

2.3. Learning-Based Methods

Some learning-based methods are proposed to estimate the transmission maps t(x).
For example, Cai et al. [17] and Ren et al. [32] first employ the CNNs for estimating the
transmission map t(x) and use simple methods to calculate the atmospheric light a from
the single hazy images. The paradigm of such models is shown in Figure 1b.

Although such CNN-based methods can remove haze by separately estimating the
transmission map and the atmospheric light, it will introduce errors that affecting the image
restoration. To avoid this problem, Zhang et al. [33]. adopted two CNN branches to estimate
the atmospheric light and transmission map, respectively, and restoring clear images from
the hazy images according to Equation (1). Compared with a separate estimation of
atmospheric lights and transmission maps, the strategy proposed in [33] can significantly
improve the dehazed results.

As shown in Figure 1c, several CNN-based algorithms regard image dehazing as
enhancement tasks and directly recover clear images from hazy inputs. The GCANet [34]
was proposed by Chen et al. for image dehazing with a new smoothed dilated convolution.
The experimental results show that this method can achieve the better performances than
previous representative dehazing methods. The training dataset mainly determines the
performances of the algorithms. For example, when the image rain removal dataset replaces
the training data, the algorithm can still achieve a good image rain removal performance
as long as there is sufficient training. However, the pixel value of aerosols default to
(255, 255, 255) in the traditional ASM and assume that the intensity of light in the scene
is uniform.

The existing image dehazing methods and the traditional ASM give us the follow-
ing inspirations:

• The image dehazing task can be viewed as a case of the decomposing images into
clear layer and haze layer [35]. In the traditional ASM [27], the haze layer color is
white by default, so many classical prior-based methods, such as [31], fail on white
objects [2]. Therefore, it is necessary to improve the atmospheric model for adapting
the different haze scenarios.

• The haze-free images obtained by Equation (4) has obvious defects when the value of
atmospheric light received by the prior-based methods and the transmission maps
obtained by the learning-based methods are used, due to they fail to cooperate with
each other when two independent systems calculate two separate projects.
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• The learning-based algorithms can directly output a clear images without using ASM.
Such a strategy can achieve good dehazing performance on some datasets [36–38]. As
CNN can have multiple outputs, one of the branches can directly output haze-free
images.

As shown in Figure 1d, we propose another image dehazing paradigm for fire scenar-
ios. In this paradigm, the deep learning model outputs four variables at the same time, and
these four variables will act on the final dehazing result.

3. Proposed Method

To solve the problems encountered by the traditional image dehazing algorithms in
the fire scenario, a novel network build with CNN and a new physical model are proposed
in this paper. Unlike the general visual enhancement model, the proposed method is
committed to adapting to the image degradation caused by different colors of the haze.
Firstly, the proposed method adopts CNN similar to extract the low-dimensional features
of the inputs and then outputs the scene transmittance map t(x), the atmospheric light
value a, the color value of haze c(x), and the preliminary image recovered results JDirect.
After obtaining these crucial factors, CIANet adopts ESM to complete the fire scenario
image dehazing task. Different from the traditional image dehazing methods, the proposed
method can deal with the different scenes with different colors and degrees of haze and
adapt to the overall atmospheric light value of the environment. This section will introduce
the proposed CIANet in detail and explain how to use the ESM to restore the haze images
in the fire scenario.

3.1. Color-Dense Illumination Adjustment Network

As described in [39], the hazy-to-transmission paradigms can achieve better perfor-
mance than hazy-to-clear paradigms in uneven haze and changing illumination regions.
Therefore, the proposed network utilizes these parameters to directly estimate clear images
and ASM-related maps, i.e., illumination intensity, haze color, and transmission map. The
proposed network is mainly composed of the following building blocks: (1) one shared
encoder, which is constructed based on feature pyramid networks [40]; (2) three bottleneck
block branches used to bifurcate features from the encoder to specific flows for decoders;
(3) three separate decoders with different outputs. The complete network structure is
shown in Figure 2.

(ݔ)ݐ1 × (J୧௧ −α C ݔ − (ݔ)ݐ C ݔ ))

Conv + Group Normalization Deconv + Group Normalization PReLU RPReLU

(ݔ)ܥ
(ݔ)ݐ

/

(ݔ)ݐ C(ݔ)
ଵ݁ݐݏ

C ݔ − (ݔ)ݐ C(ݔ)݁ݐݏଶ
ଷJ୧௧݁ݐݏ J୧௧ − α C ݔ − (ݔ)ݐ C ݔ )

ସ݁ݐݏ

α

Jி

Figure 2. The structure of the proposed CIANet. All decoders are identical except for the c&α decoder,
which outputs two floating point numbers The T-decoder and D-decoder outputs images.
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Encoder: The structure of the shared encoder is shown in Table 1. DRHNet was
initially being proposed for image dehazing and deraining, which proved that such an
encoder could extract detailed features effectively by achieving a good performance in
dehazing and deraining tasks. Therefore, the proposed CIANet utilizes the same model
structure as the encoder part of DRHNET as the encoder.

Bottleneck: The bottleneck structure is used to connect the encoder and decoders. Ren
et al. [32] prove that representing features at multiple scales is of great importance for
image dehazing tasks. The Res2Net [41] represents multi-scale features that can expand the
range of receptive fields for each layer. Gao et al. prove that the Res2Net can be plugged
into the state-of-the-art CNN models, e.g., ResNet [42], ResNetXt [43] and DLA [44]. Due
to the performance of the algorithms can be improved by increasing the receptive field of
the convolution layer, Res2Net can significantly improve the receptive field of the CNN
layer without incurring a significant increase in parameters. Different bottleneck structures
connect to different decoders according to the function of the decoders. We use a shared
bottleneck to estimate the global atmospheric light α and color c, which reducing the
number of parameters in the network.

Decoders: The network includes three different decoders: the t-decoder, c&α-decoder
and J-decoder, for predicting the color value c, global atmospheric light α, transmission
map t and intermediate result J, respectively. The decoders share similar structures as the
encoder but have different intermediate structures. In the c&α-decoder, we add a specially
designed dilation inception module for the J-decoder, which we will describe in detail in
the next section. Table 2 shows the details of the decoders.

Table 1. Encoder structure.

Enc. 1 Enc. 2 Enc. 3 Enc. 4 Enc. 5 Enc. 6 Enc. 7

Input Input Input Input Input Input Input Input

Structure
∣∣∣∣ 3 × 3 Conv.

Stride = 2,Pool = 0

∣∣∣∣ ∣∣∣∣1 × 1 Conv
3 × 3 Conv

∣∣∣∣ ∣∣∣∣ 3 × 3 Conv
Stride = 2,Pool = 0

∣∣∣∣ ∣∣∣∣1 × 1 Conv
3 × 3 Conv

∣∣∣∣ ∣∣∣∣ 3 × 3 Conv
Stride = 2, Pool = 1

∣∣∣∣ ∣∣∣∣1 × 1 Conv
3 × 3 Conv

∣∣∣∣ ∣∣∣∣ 3 × 3 Conv
Stride = 2,Pool = 1

∣∣∣∣
Output 310 × 230 × 32 310 × 230 × 32 155 × 115 × 64 155 × 115 × 64 78 × 58 × 128 78 × 58 × 128 39 × 29 × 256

Table 2. Decoder structure.

Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6

[Res. 1] [Res. 2] [Res. 3] [Res. 4] [Res. 5] [Res. 6]

T-Decoder

⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 512

upsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 512

upsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 512

upsample 2

]
39 × 29 × 512 78 × 58 × 512 78 ×58 × 512 156 × 116 × 512 155 × 115 × 512 310 × 230 × 512

Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6

[Res, 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2]

c&a-Decoder

⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 256
downsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 256
downsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦
39 × 29 × 512 20 × 14 × 512 20 × 14 × 512 10 × 7 × 512 10 × 7 × 512 10 × 7 × 512

Dec. 1 Dec. 2 Dec. 3 Dec. 4 Dec. 5 Dec. 6

[Res, 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2] [Res. 4, Trans. 2]

J-Decoder

⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 256
downsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 256
downsample 2

] ⎡⎣ 1 × 1 Conv, 256
3 × 3 Conv, 256
1 × 1 Conv, 512

⎤⎦ [
1 × 1 Conv, 512

upsample 2

]
39 × 29 × 512 78 × 58 × 512 78 × 58 × 512 156 × 116 × 512 155 × 115 × 512 310 × 230 × 512

3.2. Aerosol Scattering Model

The traditional ASM has been widely used in the image dehazing community, which
can reasonably describe the imaging process in a hazy environment. However, many ASM-
based dehazing algorithms suffer from the same limitation that may be invalid when the
scene is inherently similar to the airlight [31]. The ineffectiveness is due to the assumption
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that the color of haze is white in the traditional ASM, which does not apply to all hazy
environments due to the aerosols in the air may be mixed with some colored suspended
particles. Therefore, the haze in different scenes has different color characteristics.

Due to the aerosol suspended in the air has a greater impact on the imaging results,
we modified the traditional ASM and propose a new ESM. The default pixel value of haze
in the air of traditional ASM is (255,255,255), which obviously does not conform to the
appearance characteristics of degraded images in fire scenarios. In order to solve this
problem, the ESM proposed in this paper combines color information c(x) to the haze and
smoke generated in the fire scenarios. The schematic diagram of ESM is shown in Figure 3,
and the formula expression is as follows:

I(x) = J(x)t(x) + α(1 − t(x))c(x) (3)

where, I(x) is the images captured by the devices, and J(x) is the clear images. Consistent
with the traditional ASM, t(x) represents the transmission map, and α) represents the
airlight value. The difference is that ESM introduces color information c(x), which is a
1 ∗ 3 array, including RGB values of haze color. In the model, Equation (3) is rewritten
as follows:

JFinal =
JDirect − α(c(x)− c(x)t(x))

t(x)
(4)

where, JFinal is the final output result, t(x) is the estimated transmission map, JDirect is the
intermediate result produced by the proposed network directly, α is the global atmospheric
light, and c(x) is the color.

aerosol

aerosol

Airlight

Transmission

Object Sensor Image

Color

Figure 3. The imaging process in hazy fire scenarios. The transmission attenuation J(x)t(x) is caused
by reducing reflection energy and making the color distortion and low brightness. The color value of
aerosol in traditional ASM [27] is (255, 255, 255) by default, but the proposed ESM presents different
visual characteristics of aerosols in different scenes.

3.3. Loss Function
3.3.1. Mean Square Error

Recently, many data-driven image enhancement algorithms have used the mean
square error (MSE) as the loss function to guide the direction of optimization [17,33]. To
clearly describe the image pairs needed in calculating the loss function, let
Jn = (Jn, n = 1, ..., N) represent the dehazing result of the proposed model, where
Gn = (Gn, n = 1, ..., N) is the corresponding ground truth for the corresponding images. In
the sequel, we omit the subscript n due to the inputs are independent. The mathematical
expression of MSE is as follows:

L =‖ G − J ‖ (5)

where G is the ground truth images, J is the dehazed images.

3.3.2. Feature Reconstruction Loss

We use both feature reconstruction loss [45] and MSE as the loss function. Li et al.
prove that similar images are close to each other in their underlying and high-level features
extracted from the deep learning model. This model is called “loss network” [45]. In this
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paper, we chose the VGG-16 model [46] as the loss network and used the reciprocal first,
second, and third layers of the network as measurements to determine the loss function.
The formula is as follows:

Lp =
3

∑
i=1

1
Ci HiWi

‖VGGi(R)− VGGi(DRHNet(I))‖2
2 (6)

where VGG() is the VGG-16 model, and R is the residual between the ground truth and
the hazy images. H, W, and C represent the length, width, and the number of the feature
map channels, respectively.

The final loss function can be described as follows:

Ltotal = L + γLp (7)

where, γ is set to 0.5 in this paper, it should be noted that the design of loss function is not
important in this paper, but the CIANet still can achieve good results with such simple
loss function.

4. Experiment Result

We first introduce the experimental details in this section including the experimental
datasets and the comparative algorithms, and then analyze and validate the effectiveness
of different modules in the proposed CIANet. Finally, we compare with state-of-the-
art dehazing methods by conducting extensive experiments both in synthetic and real-
world datasets.

4.1. Experimental Settings

Network training setting: We adopt the same initialization scheme as DehazeNet [17]
due to it is an effective dehazing algorithm based on the ASM and CNN. The weights of
each layer are initialized by drawing randomly from a standard normal distribution, and
the biases are set to 0. The initial learning rate is 0.1 and decreases by 0.01 every 40 epochs.
The “Adam” optimization method [47] is adopted to optimize two networks.

The proposed network was trained end-to-end and implemented in the PyTorch
platform, and all experiments were performed on a laptop with Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz 2.20 GHz, 16GB RAM, and NVIDIA GeForce GTX 1070.

Dataset: Regarding the training data, 500 fire scenarios images with low image degra-
dation were used as the training data. We uniformly sampled ten random gray values
color ∈ [140, 230] to generate the hazy images for each images. Therefore, a total of
5000 hazy images were generated for training. We named this dataset the realistic fire
single image enhancement (RFSIE). Besides, the haze in the fire scenarios is usually non-
homogeneous. Therefore, the training set provided in NTIRE’20 competition [48] can
also be used as the training set for fire scenarios image dehazing algorithms. The images
provided by NTIRE’20 were collected by a professional camera and haze generators to
ensure the captured image pairs are the same except for the haze information. Moreover,
due to the non-homogeneous haze was captured by [49], it has some similarities with the
images of fire scenarios, so it is suitable for image enhancement for fire scenarios.

Compared methods: We compare our model with several state-of-the-art methods both
on RFSIE and NTIRE’20, including He [31], Zhu [30], Ren [32], Cai [17], Li [2], Meng [49],
Ma [50], Berman [29], Chen [34], Zhang [33] and Zheng [5].

4.2. Ablation Study

This section discusses different modules in CIANet and evaluates its impacts on the
enhancement results.

Effects of ESM: Three groups of experiments were designed to verify the effectiveness
of ESM. Table 3 presents the quantitative evaluation results of the proposed CIANet with
different physical scattering models. In Table 3, JDirect represents the output of the J-decoder,
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and JASM is the dehazing result obtained by using the traditional ASM with the default
color of aerosol being white, JESM represents the output of CIANet using the proposed
ESM.

Table 3. Average PSNR (dB) and SSIM results of different outputs from CIANet on RFSIE and
NTIRE’20. The first and second best results are highlighted in red and blue.

NTIRE’20 RFSIE
Time/Epoch

Metric PSNR SSIM PSNR SSIM

CIANet
Jdirect 13.11 0.56 24.81 0.82

63 minJASM 14.23 0.58 25.34 0.81
JESM 18.34 0.62 31.22 0.91

Jdirect-only 12.11 0.51 24.96 0.78 21 min
JASM-only 14.21 0.59 25.91 0.80 21 min

According to Table 3, JESM achieves the best PSNR and SSIM values. The reasons
are: (1) The image-to-image strategy usually disable to estimate the depth information
of the image accurately, which leads to the inconspicuous dehazing performances in the
area with dense haze. Therefore, the PSNR and SSIM values obtained by JDirect − only are
slightly lower. (2) ESM can propose appropriate image restoration strategies for images
with different styles and degrees of damage, while the traditional ASM assumes the color of
aerosol is white by default, so it is easy to estimate the degree of damage falsely. Therefore,
JASM − only cannot achieve good dehazing performances. When the T-decoder, c&a-decoder,
and D-decoder are trained together, the common backpropagation will promote each effect
of the decoder and ensure that the encoder can extract the most effective haze features.
Therefore, PSNR and SSIM values of JDirect and JASM are slightly higher than those of
JDirect − only and JASM − only.

Figure 4 shows the effectiveness of ESM intuitively. As can be seen from the first line
of images in Figure 4, when the color of aerosol becomes milky white, the dehazing results
of JASM and JESM are very similar. However, due to the obvious highlighted area in the fire
scenarios, the traditional algorithm used to estimate the value of atmospheric light tends to
overestimate the brightness, resulting in lower brightness of the dehazed result. When the
color of aerosols in the air is dark, the dehazing effect of JESM is better than that of JASM.
The second row of images is from the position circled by the red rectangle. It can be seen
that JASM cannot restore the color of grass very well due to the default color of aerosol in
ASM is lighter than the actual color. Hence, the performance of haze removal using ASM is
lower than the real pixel value, and the overall color is dark.

(a) Input (c) Jாௌெ(b) Jௌெ
Figure 4. The effectiveness of the ESM on real-world images. The dehazed results of JESM are much
clearer than JASM.
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4.3. Evaluation on Synthetic Images

We compare the proposed CIANet with some of the most advanced single-image
dehazing methods on RFSIE, and adopt the indices of the peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [51] to evaluate the quality of restored images.

Table 4 shows the quantitative evaluation results on our synthetic test dataset. Com-
pared with other state-of-the-art baselines, the proposed CIANet can obtain higher PSNR
and SSIM values. The average PSNR and SSIM of our dehazing algorithm are 18.37 db and
0.13 higher than the input hazy images, which indicates that the proposed algorithm can
effectively remove haze and generate high-quality images.

Table 4. Average PSNR and SSIM results on RFSIE. The first, second, and third best results are
highlighted in red, blue, and bold, respectively.

Methods Hazy He Zhu Ren Cai Li Meng Ma Berman Chen Zhang Zheng Ours

PSNR 12.85 17.42 19.67 23.68 21.95 23.92 24.94 26.19 26.95 27.25 27.36 26.11 31.22
SSIM 0.78 0.80 0.82 0.85 0.87 0.82 0.82 0.82 0.85 0.85 0.85 0.82 0.91

As shown in Figure 5, the proposed method can generate clearer enhancement results
than the most advanced image dehazing algorithms on hazy indoor images. The first and
second rows of Figure 5 are the synthetic smoke and haze images of the indoor fire scenarios,
and the third and fourth rows are the indoor haze images taken from the landmark dataset
NTIRE2020. The dark channel algorithm proposed by He et al. produces some color
distortion or brightness reduction (such as the first row and the third row of walls). The
results show that the color attenuation prior algorithm proposed by Zhu et al. is not very
effective, some images have a large amount of haze residues (such as the first row of
images). The BCCR image dehazing algorithm proposed by Meng et al. can also cause
image distortion or brightness reduction (such as the third and fourth rows of images). The
Dehazenet algorithm proposed by Cai et al. can achieve a good dehazing effect in most
cases, but there is an obvious haze residual in the first row of scene. The NLD algorithm
proposed by Berman et al. can better complete the image dehazing task for indoor scenes,
but there is less color distortion in the third row of images compared with the ground truth.

12.90/0.71
(a) Input

14.85/0.80
(b) He

13.14/0.64
(c) Zhu

14.99/0.77
(d) Meng

15.44/0.74
(e) Cai

15.43/0.78
(f) Berman

27.61/0.92
(g) Ours

+∞/1
(h) GT 

15.54/0.74 9.19/0.62 11.11/ 0.70 13.23/0.79 11.63/0.73 14.57/ 0.80 29.32/0.91 +∞/1 

6.91/0.53 4.97/0.34 10.25/ 0.71 7.07/0.55 11.96 0.75 23.02/0.95 26.50/0.96 +∞/1 

10.99/0.67 18.34/0.86 18.96/0.86 21.25/0.88 17.83/0.86 21.33/0.88 25.86/0.98 +∞/1 

Figure 5. The performances of different image dehazing algorithms on synthetic indoor images.
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Figure 6 shows that the proposed method can also generate clearer images for outdoor
scenes. Figure 6 can be divided into two parts. The first row and the second row of Figure 6
are taken from the landmark image dehazing database NTIRE2020, and the third and
fourth rows of images are taken from the fire-related videos of traffic scenes captured
by monitoring equipment. The image dehazing algorithm based on dark channel prior
proposed by He et al. tends to estimate the transmission rate of the images and the
atmospheric light value, resulting in large distortion in some parts of the images (such
as the third and fourth rows of images). The color attenuation prior algorithm proposed
by Zhu et al. can complete the image dehazing task to a certain extent, but there are still
haze residues in the images (such as the second, third and fourth rows of images). The
BCCR algorithm proposed by Meng et al. usually overestimates the brightness of the result.
Although this estimation method can improve the detailed information of images, the result
obtained is not similar to the ground truth. Dehazenet proposed by Cai et al. is based on
the combination of deep learning and the traditional image dehazing algorithm. The results
obtained by Dehazenet are very similar to that of CAP, and there are many haze residues.
For outdoor images, the NLD algorithm can achieve good image dehazing effects, but
some dehazing results are not as good as the results obtained with the proposed algorithm
(such as the first row of images). Furthermore, the proposed algorithm can achieve better
dehazing effects for outdoor scenes.

11.03/0.72
(a) Input

11.17/0.70
(b) He

15.24/0.77
(c) Zhu 

13.13/0.88
(d) Meng 

15.53/0.79
(e) Cai 

14.62/0.74
(f) Berman 

25.38/0.93
(g) Ours (h) GT

11.55/0.74 11.82/0.67 15.78/0.77 12.21/0.88 15.39/0.77 14.99/0.79 24.56/0.94 +∞/1 

+∞/1 

12.79/0.60 13.84/0.74 15.89/0.64 11.74/0.71 13.06/0.58 19.05/0.82 23.16/0.87 +∞/1 

15.28/0.68 15.73/0.77 18.70/0.72 15.01/0.69 16.62/0.73 16.05/0.78 27.07/0.91 +∞/1 

Figure 6. The performances of different image dehazing algorithms on synthetic outdoor images.

4.4. Evaluation on Real-World Images

Figure 7 shows the dehazing effect of the proposed algorithm compared with other
state-of-the-art algorithms from real-world images. The first three rows of images are taken
from NTIRE’20, and the last three rows are taken from the real images of fire scenarios.
The most evident characteristic of the first three rows of images is that the thickness of
the haze in image is uneven. For example, in the image of the second row in Figure 7, the
haze thickness in the upper left corner of the image is obviously higher than that in the
image area. The following three rows of images have similar characteristics with the first
three rows of images, that is, different areas have varied degrees of damage. In addition,
there is another remarkable feature on the last three rows of images, that is, each image has
obvious highlighted area. These two characteristics basically cover all the features of the
hazy images with the scenes of fire and smoke.
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From the first row of images in Figure 7, we can see that the clarity of images obtained
the proposed algorithm is significantly higher than that obtained with other algorithms,
and there is no obvious artifact area. From the annotated area, the definition of this area is
significantly higher than that of images obtained with other algorithms for comparison. On
the second row of images in Figure 7, we can see that most algorithms cannot achieve the
image dehazing well due to the left half of the images is seriously affected by haze. Com-
pared with other algorithms, the proposed algorithm can still generate good performances.
As shown in the marked area, the color saturation and clarity in the area can be reflected.
The algorithm proposed in this paper can obtain better image dehazing effects. From the
third row of images, we can still see that the algorithm can achieve better image dehazing
effects. Both the brightness and the saturation of color are significantly higher than that of
other algorithms.

In Figure 7, the images in the last three rows are obviously more complex than those in
the first three rows. First of all, the images in the last three rows have obvious highlighted
areas. Secondly, the haze color of the images in the last three rows is darker, which is
more challenging than the images in the first three rows. It can be seen from the fifth
row of Figure 7 that the algorithm proposed in this paper can remove most of the haze in
the images, and basically maintain the structural information of the images, while other
algorithms in comparison, such as AODNet, hardly remove any haze from the images.
The image on the sixth row reflects that the proposed algorithm can almost remove all the
haze in the images, and ensure that the result of the image will not change. In contrast,
the dehazing effects of other algorithms are not obvious in this images, and it can be
considered that the image dehazing task is completed to a large extent. Therefore, the
CIANet proposed in this paper can be used to achieve dehazing of real hazy images to a
certain extent.

(a) Input (b) He (c) Zhu (d) Meng (e) Cai (h) Ours(f) Li (g) Chen

Figure 7. Visual comparisons on real-world images. The proposed method can effectively enhance
the quality of different real-world hazy images with naturalness preservation.
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4.5. Qualitative Visual Results on Challenging Images

Haze-free images: In order to prove the robustness of the proposed algorithm for
all scenarios, we input the fire images which are not affected by the air particles into
the network model. It can be seen from Figure 8 that the algorithm proposed in this
paper has little effect on the fire scenarios image without fog, and it only slightly changes
the color of the images, increasing the saturation of the image without damaging the
structural information of the images. Therefore, this experiment proves the robustness of
the algorithm. Hence, when the algorithm is embedded in the intelligent edge computing
devices, it is not necessary to choose whether to run CIANet according to the change
of situation.

(a) Input clear images (b) Our results

Figure 8. Examples for haze-free scenarios enhancement. (a): haze-free real photos with fire and.
(b):enhancement results by CIANet.

4.6. Potential Applications

The CIANet proposed in this paper can effectively improve the visibility and clarity
of the scene to promote the performance of other high-level visual tasks, which is the
application significance of the algorithm proposed in this paper. To verify the proposed
CIANet could benefit other vision tasks, we perform two applications: fire scenarios
object detection and local keypoints matching. As can be seen from Figures 9 and 10, the
algorithm proposed in this paper can not only improve the visual quality and the quality of
the input image, but also significantly improve the performance of subsequent important
high-dimensional vision. The following two sections will discuss in detail the improvement
of CIANet on object detection and local keypoint matching tasks.

4.6.1. Object Detection

Most existing deep models for high-level vision tasks are trained using clear images.
Such learned models will have low robustness when applied to degraded hazy fire sce-
narios images. In this case, the enhanced results can be useful for these high-level vision
applications. To prove the proposed model can improve the detection precision, we analyze
the performances of the object detection on our dehazed results. Figure 9 shows that using
the proposed model as pre-processing can improve the detection performance.
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Figure 9. Pre-processing for object detection (Faster R-CNN [52], threshold = 0.3). (a): detection on
hazy fire scenarios; (b): detection on the enhancement result.

4.6.2. Local Keypoint Matching

We also adopt local keypoints matching, which aims to find correspondences between
two similar scenarios, to test the effectiveness of the proposed CIANet. We utilize the
SIFT operator for a pair or hazy fire scenarios images and as well as for the corresponding
dehazed images. The matching result are shown in Figure 10. It is clear that the number of
matched keypoints is significantly increased in the dehaze fire scenarios image pairs. This
verifies that the proposed CIANet can recover the important features of the hazy images.

(a) Hazy: 138 matches (b) Our result: 440 matches

Figure 10. Local keypoints matching by applying the SIFT operator. Compared with the hazy images,
the matching results shown that the proposed method can improved the quality of inputs significantly.

4.7. Runtime Analysis

The light-weight structure of CIANet leads to faster image enhancement. We select
only one image from real-world and then repeat runing 100 times by different dehazing
algorithms, on the same machine (Intel(R) Core(TM) i7-8750H CPU @2.20GHz and 16GB
memory), without GPU acceleration. The per-image average running time of all models
are shown in Table 5. Despite other slower MATLAB implementations, it is fair to compare
DehazeNet (Pytorch version) and ours methods. The results illustrate the promising
efficiency of CIANet.

Table 5. Comparison of average model running time (in seconds).

Image Size 480 × 640 Platform

He 26.03 Matlab
Berman 8.43 Matlab
Meng 2.19 Matlab
Ren 2.01 Matlab
Zhu 1.02 Matlab
Cai (Matlab) 2.09 Matlab
Cai (Pytorch) 6.31 Pytorch
CIANet 4.77 Pytorch

5. Conclusions

This paper proposes CIANet, a color-dense illumination adjustment network that
reconstructs clear fire scenario images via a novel ESM. We compare CIANet with the state-

29



Sensors 2022, 22, 911

of-the-art dehazing methods, both on synthetic and real-world images both quantitatively
(PSNR, SSIM) qualitatively (subjective measurements). The experimental results have
shown that the superiority of the CIANet. Moreover, the experiments show that the
proposed ESM is more reasonable than the traditional ASM in the fire scenarios imaging
process. In the future, we will study the image enhancement algorithm of fire scenario on
lidar image, so as to solve the problem that the traditional computer vision algorithm can
not deal with the scene where there is a large amount of smoke and all visual information
is lost.
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Abstract: In this paper, we propose a novel filtering method based on deep attention networks for
the quality enhancement of light field (LF) images captured by plenoptic cameras and compressed
using the High Efficiency Video Coding (HEVC) standard. The proposed architecture was built using
efficient complex processing blocks and novel attention-based residual blocks. The network takes
advantage of the macro-pixel (MP) structure, specific to LF images, and processes each reconstructed
MP in the luminance (Y) channel. The input patch is represented as a tensor that collects, from an
MP neighbourhood, four Epipolar Plane Images (EPIs) at four different angles. The experimental
results on a common LF image database showed high improvements over HEVC in terms of the
structural similarity index (SSIM), with an average Y-Bjøntegaard Delta (BD)-rate savings of 36.57%,
and an average Y-BD-PSNR improvement of 2.301 dB. Increased performance was achieved when the
HEVC built-in filtering methods were skipped. The visual results illustrate that the enhanced image
contains sharper edges and more texture details. The ablation study provides two robust solutions to
reduce the inference time by 44.6% and the network complexity by 74.7%. The results demonstrate
the potential of attention networks for the quality enhancement of LF images encoded by HEVC.

Keywords: attention network; quality enhancement; light field images; video coding

1. Introduction

In recent years, the technological breakthroughs in the sensor domain have made
possible the development of new camera systems with steadily increasing resolutions and
affordable prices for users. In contrast to conventional Red-Green-Blue (RGB) cameras,
which only capture light intensity, plenoptic cameras provide the unique ability of distin-
guishing between the light rays that hit the camera sensor from different directions using
microlens technology. To this end, the main lens of plenoptic cameras focus light rays
onto a microlens plane, and each microlens captures the incoming light rays from different
angles and directs them onto the camera sensor.

For each microlens, a camera sensor produces a so-called Macro-Pixel (MP). The raw
LF image contains the entire information captured by the camera sensor, where the array
of microlenses generates a corresponding array of MPs, a structure also known as lenslet
images. Since each pixel in the MP corresponds to a specific direction of the incoming light,
the lenslet image is typically arranged as an array of SubAperture Images (SAIs), where
each SAI collects, from all MPs, one pixel at a specific position corresponding to a specific
direction of the incoming light. The captured LF image can, thus, be represented as an
array of SAIs corresponding to a camera array with a narrow baseline.

LF cameras have proven to be efficient passive devices for depth estimation. A broad
variety of depth estimation techniques based on LF cameras have been proposed in the
literature, including multi-stereo techniques [1,2], artificial intelligence-based methods [3]
as well as combinations of multi-stereo and artificial intelligence-based techniques [4].
Accurately estimating depth is of paramount importance in view synthesis [5] and 3D
reconstruction [6,7].
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The LF domain was intensively studied during recent decades, and many solutions
were proposed for each module in the LF processing pipeline, such as LF acquisition,
representation, rendering, display, and LF coding. The LF coding approaches are usually
divided into two major classes, including transform-based approaches and predictive-
based approaches, depending on which module in the image or video codec is responsible
for exploiting the LF correlations.

The transform-based approaches are designed to apply a specific type of transform,
such as Discrete Cosine Transform [8,9], Discrete Wavelet Transform [10,11], Karhunen
Loéve Transform [12,13], or Graph Fourier Transform [14,15], to exploit the LF correlations.

However, the predictive-based approaches received more attention as they propose
a more straightforward solution where different prediction methods are proposed to
take advantage of the LF structure. These approaches propose to exploit the correlations
between the SAIs using the coding tools in the High Efficiency Video Coding (HEVC)
standard [16].

The pseudo-video-sequence-based approach proposes to select a set of evenly dis-
tributed SAIs as intra-coded frames and the remaining SAIs as inter-coded frames,
e.g., [17,18]. In [19,20], the non-local spatial correlation is exploited when using the lenslet
representation. The view-synthesis-based approach proposes to encode only a sparse set of
reference SAIs and additional geometry information and then to synthesize the remaining
SAIs at the decoder side [21,22]. In this work, we first employ HEVC [16] to encode the
SAI video sequence and then to enhance the reconstructed lenslet image. The proposed
Convolutional Neural Network (CNN)-based filtering method can be used to post-process
any HEVC-based solution.

The attention mechanism was first proposed in the machine translation domain [23].
The main idea is that instead of building a single context vector, it is better to create
weighted shortcuts between the context vector and the entire source input. This revo-
lutionary concept now provides outstanding improvements in different domains, such
as hyperspectral image classification [24], deblurring [25], image super-resolution [26],
traffic sign recognition [27], and small object detection [28], to name a few. Many different
network architectures have leveraged the attention mechanism to significantly improve
over the state-of-the-art. In this work, an attention-based residual block is introduced to
help the architecture learn and focus more on the most important information in the current
MP context.

In our prior work, research efforts were invested to provide innovative solutions for
LF coding based on efficient Deep-Learning (DL)-based prediction methods [20,29–32]
and CNN-based filtering methods for quality enhancement [33,34]. In [29], we introduced
a lossless codec for LF images based on context modeling of SAI images. In [30], we
proposed an MP prediction method based on neural networks for the lossless compression
of LF images.

In [31], we proposed to employ a DL-based method to synthesize an entire LF image
based on different configurations of reference SAIs and then to employ an MP-wise predic-
tion method to losslessly encode the remaining views. In [32], we proposed a residual-error
prediction method based on deep learning and a context-tree based bit-plane codec, where
the experimental evaluation was carried out on photographic images, LF images, and
video sequences. In [20], the MP was used as an elementary coding unit instead of HEVC’s
traditional block-based coding structure for lossy compression of LF images. In recent
work, we focused on researching novel CNN-based filtering methods.

In [33], we proposed a frame-wise CNN-based filtering method for enhancing the
quality of HEVC-decoded videos. In [34], we proposed an MP-wise CNN-based filtering
method for the quality enhancement of LF images. The goal of this paper is to further
advance our findings in [34] by introducing a novel filtering method based on attention
networks, where the proposed architecture is built based on efficient processing blocks
and attention-based residual blocks and operates on Epipolar Plane Images (EPI)-based
input patches.
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In summary, the novel contributions of this paper are as follows:

(1) A novel CNN-based filtering method is proposed for enhancing the quality of LF
images encoded using HEVC [16].

(2) A novel neural network architecture design for the quality enhancement of LF images
is proposed using an efficient complex Processing Block (PB) and a novel Attention-
based Residual Block (ARB).

(3) The proposed CNN-based filtering method follows an MP-wise filtering approach to
take advantage of the specific LF structure.

(4) The input patch is designed as a tensor of four MP volumes corresponding to four
EPIs at four different angles (0◦, 45◦, 90◦, and 135◦).

(5) The elaborated experimental validation carried out on the EPFL LF dataset [35]
demonstrates the potential of attention networks for the quality enhancement of
LF images.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the state-of-the-art methods for quality enhancement. In Section 3, we describe the
proposed CNN-based filtering method. Section 4 presents the experimental validation on
LF images. Finally, in Section 5, we draw our conclusions from this work.

2. Related Work

In recent years, many coding solutions based on machine learning techniques have
rapidly gained popularity by proposing to simply replace specific task-oriented coding tools
in the HEVC coding framework [16] with powerful DL-based equivalents. The filtering
task was widely studied, and many DL-based filtering tools for quality enhancement were
introduced to reduce the effects of coding artifacts in the reconstructed video.

The first DL-based quality enhancement tools were proposed for image post-filtering.
In [36], the Artifact Reduction CNN (AR-CNN) architecture was proposed to reduce
the effect of the coding artifacts in JPEG compressed images. In [37], a more complex
architecture with hierarchical skip connections was proposed. A dual (pixel and transform)
domain-based filtering method was proposed in [38]. A discriminator loss, as in Generative
Adversarial Networks (GANs), was proposed in [39]. An iterative post-filtering method
based on a recurrent neural network was proposed in [40].

Inspired by AR-CNN [36], the Variable-filter-size Residue-learning CNN (VRCNN)
architecture was proposed in [41]. The inter-picture correlation is used by processing
multiple neighboring frames to enhance one frame using a CNN [42]. In [43], the authors
proposed to make use of mean- and boundary-based masks generated by HEVC parti-
tioning. In [44], a CNN processes the intra prediction signal and the decoded residual
signal. In [45], a CNN processes the QP value and the decoded frame. In [46], the CNN
operates on input patches designed based on additional information extracted from the
HEVC decoder, which specifies the current QP value and the CU partitioning maps.

In another approach, the authors proposed to replace the HEVC built-in in-loop
filtering, the Deblocking Filter (DBF) [47], and the Sample Adaptive Offset (SAO) [48]. This
is a more demanding task as, in this case, the filtered frame enters the coding loop and
serves as a reference to other frames. In [49], a CNN was used to replace the SAO filter.
Similarly, in [50], a deep CNN was applied after SAO and was controlled by the frame-
and coding tree unit (CTU)-level flags.

In [51], the authors used a deep residual network to estimate the lost details. In [52],
the Multistage Attention CNN (MACNN) architecture was introduced to replace the HEVC
in-loop filters. Other coding solutions focus on inserting new filtering blocks in the HEVC
framework. In [53], an adaptive, in-loop filtering algorithm was proposed using an image
nonlocal prior, which collaborates with the existing DBF and SAO in HEVC. In [54], a
residual highway CNN (RHCNN) was applied after the SAO filter. In [55], a content-aware
CNN-based in-loop filtering method was integrated in HEVC after the SAO built-in filter.

In this work, we propose to employ the attention mechanism for the quality en-
hancement of LF images (represented as lenslet images) by following an MP-wise filtering
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approach. Our experiments show that an increased coding performance was achieved
when the SAI video sequence was encoded by running HEVC without its built-in filtering
methods, DBF [47] and SAO [48].

3. Proposed Method

In the literature, the LF image is usually represented as a 5D structure denoted by
LF(p, q, x, y, c), where the (p, q) pair denotes the pixel location in an MP matrix, usually of
N × N resolution; the (x, y) pair denotes the pixel location in an SAI matrix of size W × H;
and c denotes the primary color channel, c = 1, 2, 3. Let us denote MPx,y = LF(:, :, x, y, c)
as the MP captured by the microlens at position (x, y) in the microlens array; SAIp,q =
LF(p, q, :, :, c) as the SAI corresponding to view (p, q) in the SAI stack; and LL as the lenslet
image of size NH × NW, which is defined as follows:

LL((x − 1)N + 1 : xN, (y − 1)N + 1 : yN, c) = MPx,y, ∀x = 1 : W, ∀y = 1 : H. (1)

The experiments were conducted using the EPFL LF dataset [35] where N = 15 and
W × H = 625 × 434. The LF images were first color-transformed from the RGB color-space
to the YUV color-space, and only the Y (luminance) channel was enhanced. Therefore,
c = 1 and MPx,y were of size 15 × 15.

In this paper, a novel CNN-based filtering method is proposed to enhance the quality
of LF images encoded using the HEVC video coding standard [16]. Figure 1 depicts the
proposed CNN-based filtering scheme. The LF image, represented as an array of SAIs,
is first arranged as an SAI video sequence and then encoded by the reference software
implementation of HEVC called HM (HEVC Test Model) [56] under the All Intra (AI)
profile [57]. Any profile can be used to encode the SAI video sequence as the proposed
CNN-based filtering scheme is applied to the entire SAI video sequence. Therefore, in this
work, a raster scan order is used to generate the SAI video sequence, while in the literature,
a spiral order starting from the center view and looping in a clockwise manner towards
the edge views is used to generate the SAI video sequence. Next, the reconstructed SAI
sequence is arranged as a lenslet image using Equation (1), and EPI-based input patches
were extracted from the reconstructed lenslet image, see Section 3.1.
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Figure 1. The proposed CNN-based filtering scheme. (Top) Compression: The LF Image (represented
as an array of SAI) is arranged as a SAI video sequence and then encoded by HEVC. (Bottom) Quality
Enhancement: The reconstructed sequence is arranged as a lenslet image (represented as an array
of MPs) and each MP is enhanced by the proposed CNN-based filtering method using an AEQE-
CNN model.

A CNN model with the proposed novel deep neural architecture called Attention-
aware EPI-based Quality Enhancement Convolutional Neural Network (AEQE-CNN),
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see Section 3.2, processed the input patches to enhance the MPs and obtain the enhanced
lenslet image. Finally, the enhanced lenslet image is arranged as a LF image to be easily
consumed by users.

Section 3.1 presents the proposed algorithm used to extract the EPI-based input
patches. Section 3.2 describes in detail the network design of the proposed AEQE-CNN
architecture. Section 3.3 presents the training details.

3.1. Input Patch

In this paper, input patches of size 15 × 15 × 9 × 4 were extracted from the recon-
structed lenslet image. More exactly, the input patch concatenated four EPIs corresponding
to 0◦ (horizontal EPI), 45◦ (first diagonal EPI), 90◦ (vertical EPI), and 135◦ (second diagonal
EPI) from the MP neighbourhood of b = 4 MPs around the current MP, as depicted in
Figure 2. Let us denote Nx,y as the MP neighbourhood around the current MP, MPx,y, where

Nx,y =

⎡⎢⎢⎢⎢⎢⎢⎣

MPx−b,y−b . . . MPx−b,y . . . MPx−b,y+b
...

...
...

MPx,y−b . . . MPx,y . . . MPx,y+b
...

...
...

MPx+b,y−b . . . MPx+b,y . . . MPx+b,y+b

⎤⎥⎥⎥⎥⎥⎥⎦. (2)

Four EPIs of size N × N × (2b + 1) = 15 × 15 × 9 were extracted from Nx,y as follows:

(1) The 0◦ EPI of MP volume: [MPx,y−b MPx,y−b+1 . . . MPx,y+b];
(2) The 45◦ EPI of MP volume: [MPx−b,y−b MPx−b+1,y−b+1 . . . MPx+b,y+b];
(3) The 90◦ EPI of MP volume: [MPx−b,y MPx−b+1,y . . . MPx+b,y]; and
(4) The 135◦ EPI of MP volume: [MPx+b,y−b MPx+(b−1),y−(b−1) . . . MPx−b,y+b].
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Figure 2. Extraction of the EPI-based input patch from the lenslet image represented as an array of
MPs. Four EPIs are selected: 0◦ (horizontal) EPI marked with red, 45◦ (first diagonal) EPI marked
with cyan, 90◦ (vertical) EPI marked with blue, and 135◦ (second diagonal) EPI marked with green.
The current MP is marked with black.

The four EPIs were processed separately by the AEQE-CNN architecture as described
in the following section.
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3.2. Network Design

Figure 3 depicts the proposed deep neural network architecture. AEQE-CNN is
designed to process the EPI-based input patches using efficient processing blocks and
attention-based residual blocks. 3D Convolutional layers (Conv3D) equipped with 3× 3× 3
kernels are used throughout the network architecture.

AEQE-CNN was built using the following types of blocks depicted in Figure 4: (i) the
Convolutional Block (CB) contains a sequence of one Conv3D, one batch normalization
(BN) layer [58], and one Rectified Linear Unit (ReLU) activation function; (ii) the proposed
Processing Block (PB) contains a two branch design with one and two CB blocks where
the feature maps of the two branches are concatenated to obtain the output feature maps;
(iii) the proposed Attention-based Residual Block (APB) contains a sequence of two PB
blocks and one Convolutional Block Attention Module (CBAM), see Figure 5, and a skip
connection to process the current patch.
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Figure 3. The proposed network architecture called Attention-aware EPI-based Quality Enhancement
Convolutional Neural Network (AEQE-CNN).
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modified here as depicted in Figure 5.
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Figure 3 shows that the AEQE-CNN architecture processes the EPI-based input patch
using three stages. In the first stage, called EPI Pre-Processing, the MP volume correspond-
ing to an EPI is processed using one CB block and one PB block, each equipped with N/2
filters, to extract the EPI feature maps, which are then concatenated and further processed
by CB5 and PB5, which are both equipped with N filters. CB5 uses the stride s = (1, 1, 3) to
reduce the current patch resolution from 15× 15× 9 to 15× 15× 3 to decrease the inference
time and to reduce the MP neighbourhood from 9 MPs to 3 MPs.

In the second stage, called Attention-based Residual Processing, a sequence of four
APB blocks with N filters are used to further process the patch and extract the final feature
maps of size 15 × 15 × N. The final stage, called CNN Refinement Computation, is used to
extract the final CNN-refinement using one Conv3D layer with ReLU activation and one
Conv2D layer (equipped with a 3 × 3 kernel) with one filter. The CNN-refinement is then
added to the currently reconstructed MP to obtain the enhanced MP.

In this paper, we propose to employ an attention-based module designed based on the
CBAM module introduced in [59]. Figure 5 depicts the layer structure of CBAM. CBAM
proposes the use of both channel attention and spatial attention. The channel attention
uses the shared weights of two dense layers to process the two feature vectors extracted
using global average pooling and global maximum pooling, respectively. The spatial
attention uses a Conv3D layer to process the feature maps extracted using average pooling
and maximum pooling. The two types of attention maps are obtained using a sigmoid
activation layer and then applied in turn using a multiplication layer. The CBAM block was
proposed in [59] for the processing of two-dimensional patches, while, here, the CBAM
design was modified to be applied to MP volumes (three-dimensional patches).

3.3. Training Details

The AEQE-CNN models were trained using the Mean Squared Error (MSE) loss
function equipped with an �2 regularization procedure to prevent model over-fitting. Let
us denote: ΘAEQE-CNN as the set of all learned parameters of the AEQE-CNN model; X(i)

as the i-th EPI-based input patch in the training set of size 15 × 15 × 9 × 4; and Y(i) as the
corresponding MP in the original LF image of size 15 × 15. Let F(·) be the function that
processes X(i) using ΘAEQE-CNN to compute the enhanced MP as Ŷ(i) = F(X(i), ΘAEQE-CNN).
The loss function is formulated as follows:

L(ΘAEQE-CNN) =
1
L

L

∑
i=1

‖vec(Y(i))− vec(Ŷ(i))‖2
2 + λ||ΘAEQE-CNN||22, (3)

where L is the number of input patches, λ is the regularization term that is set empiri-
cally as λ = 0.001, and vec is the vectorization operator. Here, the Adam optimization
algorithm [60] is employed.
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By setting N = 32, the AEQE-CNN models contain 782,661 parameters that must
be trained. Experiments using a more lightweight AEQE-CNN architecture were also
performed, see Section 4.4. Version HM 16.18 of the reference software implementation
is used for the HEVC codec [16]. Note that other software implementations of HEVC,
such as FFmpeg [61], Kvazaar [62], and OpenHEVC [63,64] are available; however, in this
work, the reference software implementation of HEVC was used due to its high popularity
within the research community. The proposed CNN-based filtering method trained four
AEQE-CNN models, one for each of the four standard QP values, QP = {22, 27, 32, 37}.

The proposed neural network was implemented in the Python programming language
using the Keras open-source deep-learning library, and was run on a machine equipped
with Titan Xp Graphical Processing Units (GPUs).

In our previous work [33,34], the experimental results showed that an improved
performance was obtained when HEVC was modified to skip its built-in in-loop filters,
DBF [47] and SAO [48]. Therefore, here, four models were trained using EPI-based input
patches extracted from reconstructed LF images obtained by running HEVC with its built-in
in-loop filters, called AEQE-CNN + DBF&SAO, and four models were trained using EPI-
based input patches extracted from reconstructed LF images obtained by running HEVC
without its built-in in-loop filters, called AEQE-CNN. This training strategy demonstrates
that the proposed CNN-based filtering method can be integrated into video coding systems
where no modifications to the HEVC anchor are allowed.

The proposed AEQE-CNN architecture differs from our previous architecture design
named MP-wise quality enhancement CNN (MPQE-CNN) [34] as follows. MPQE-CNN
operates on MP volumes extracted from the closest 3 × 3 MP neighbourhood, while AEQE-
CNN operates on EPI-based input patches extracted from an 9 × 9 MP neighbourhood.
MPQE-CNN follows a multi-resolution design with simple CB blocks, while AEQE-CNN
follows a design of multi-EPI branch processing and sequential residual block processing
built based on more efficient PB blocks and novel attention-aware ARB blocks.

4. Experimental Validation

Section 4.1 describes the experimental setup used to compare the proposed CNN-
based filtering method with the state-of-the-art methods. Section 4.2 illustrates the experi-
mental results obtained over the test. Section 4.3 presents the visual results of the proposed
CNN-based filtering method in comparison with the HEVC anchor. Finally, Section 4.4
presents an ablation study that analyses the possibility to reduce the network complexity
and runtime using different approaches.

4.1. Experimental Setup

LF image Dataset. The experimental validation was carried out on the EPFL LF
dataset [35], which contained 118 LF images in the RGB format, divided into 10 categories.
Similar to [34], here, only the first 8 bits of the RGB color channels were encoded, and,
similar to [29], 32 corner SAIs (8 from each corner) were dropped from the array of SAIs as
they contained sparse information due to the shape of the microlens used by the plenoptic
camera. Since the SAIs were color-transformed to the YUV format and only the Y channel
was enhanced, the SAI video sequence contained 193 Y-frames. The closest frame resolution
that HEVC [16] accepted as input was W × H = 632 × 440.

For a fair comparison with MPQE-CNN [34], the experiments were carried out on
the same Training set (10 LF images) and Test set (108 LF images) as defined in [34],
i.e., the Training set contained the following LF images: Black_Fence, Chain_link_fence_1,
ISO_chart_1, Houses_&_lake, Backlight_1, Broken_mirror, Bush, Fountain_&_Vincent_1, Anky-
losaurus_&_Diplodocus_1, and Bench_in_Paris. A total number of 625 × 434 × 10 = 2,712,500
EPI-based input patches were collected from the 10 training images, and a 90%–10% ratio
was used for splitting the training set into training−validation data. A batch size of 350
EPI-based input patches was used.
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Comparison with the state-of-the-art methods. The two proposed methods, AEQE-
CNN + DBF&SAO and AEQE-CNN, were compared with (i) the HEVC [16] anchor, denoted
by HEVC + DBF&SAO; (ii) the FQE-CNN architecture from [33] where each SAI in the LF
image was enhanced in turn; and (iii) the MPQE-CNN architecture from [34] based on a
similar MP-wise filtering approach. The distortion was measured using the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [65]. The standard
Bjøntegaard delta bitrate (BD-rate) savings and Bjøntegaard delta PSNR (BD-PSNR) im-
provement [66] were computed using the four standard QP values: QP = {22, 27, 32, 37}.

4.2. Experimental Results

Figure 6 shows the compression results over the test set (108 LF images) for the rate-
distortion curves computed as Y-PSNR-vs.-bitrate and SSIM-vs.-bitrate. Figure 7 shows the
Y-BD-PSNR and Y-BD-rate values computed for each LF image in the test set. The proposed
methods provide an improved performance compared with HEVC [16] + DBF&SAO, FQE-
CNN [33], and MPQE-CNN [34] at both low and high bitrates. The results show that
AEQE-CNN provided a small improvement over AEQE-CNN + DBF&SAO. The proposed
CNN-based filtering method was able to provide a large improvement even when no
modification was applied to the HEVC video codec.

Table 1 shows the average results obtained over the test set. AEQE-CNN provided
Y-BD-rate savings of 36.57% and Y-BD-PSNR improvements of 2.301 dB over HEVC [16],
i.e., a more than 40% improvement was achieved compared with MPQE-CNN [33].

Table 1. Average results obtained over the test set.

Method
Bjøntegaard Metric

Y-BD-PSNR (dB) Y-BD-Rate (%)

FQE-CNN [33] 0.4515 −9.1921
MPQE-CNN [34] 1.5478 −25.5285
AEQE-CNN + DBF&SAO 2.2044 −35.3142
AEQE-CNN 2.3006 −36.5713

Figure 8 shows the Rate-Distortion (RD) results for three randomly selected LF images
in the test set, Chain_link_fence_2, Flowers, and Palais_du_Luxembourg. AEQE-CNN provided
an Y-BD-PSNR improvement of around 2 dB at both low and high bitrates. The SSIM-
vs.-bitrate results show that the visual quality at low bitrates was highly improved of
around 0.08.
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Figure 6. The Rate-Distortion results over the test set. (a) Y-PSNR-vs.-bitrate. (b) SSIM-
vs.-bitrate.
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Figure 7. The Bjøntegaard metric results for every LF image in the test set: (a) Y-BD-PSNR
gains (dB); (b) Y-BD-rate savings (%).
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Figure 8. The Rate-Distortion results for three LF images in the test set. (a) Y-PSNR-vs.-bitrate for
Chain_link_fence_2; (b) SSIM-vs.-bitrate for Chain_link_fence_2; (c) Y-PSNR-vs.-bitrate for Flowers;
(d) SSIM-vs.-bitrate for Flowers; (e) Y-PSNR-vs.-bitrate for Palais_du_Luxembourg; (f) SSIM-vs.-bitrate
for Palais_du_Luxembourg.

4.3. Visual Results

Figure 9 shows the pseudo-coloured image comparison between AEQE-CNN and
HEVC [16] + DBF&SAO for two LF images in the test set, Chain_link_fence_2 and Flow-
ers. The green, blue, and red pixels mark the positions where AEQE-CNN provided an
improved, similar, and worse performance, respectively, compared with HEVC [16] +
DBF&SAO anchor. Green is the dominant color, which shows that AEQE-CNN enhanced
the quality of almost all pixels in the LF image.

44



Sensors 2021, 21, 3246

(a)

(b)

Figure 9. Pseudo-coloured image comparison between AEQE-CNN and HEVC [16] + DBF&SAO
based on the absolute reconstruction error for the center SAI at position (p, q) = (8, 8), and for
QP = 37. Green marks the pixel positions where AEQE-CNN achieved better performance. Blue
marks the pixel positions where the two methods had the same performance. Red marks pixels
where HEVC [16] + DBF&SAO achieved better performance. The cyan rectangle marks an image area
shown zoomed-in at the top-left corner and the corresponding Y channel in Figure 10. The results for
two LF images in the test set: (a) Chain_link_fence_2; (b) Flowers.
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Figure 10 shows the visual result comparison between AEQE-CNN and HEVC [16] +
DBF&SAO for the corresponding Y channel of the two zoomed-in image areas marked by
cyan rectangles in Figure 9. AEQE-CNN provided much sharper image edges and added
more details to the image textures.
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Figure 10. Visual comparison between AEQE-CNN and HEVC [16] + DBF&SAO for the Y channel of
the zoomed-in image area marked by the cyan rectangle in Figure 9 above.

4.4. Ablation Study

In this work, we also studied the possibility to reduce the network complexity and
runtime using two different approaches. In the first approach, an architecture variation
of AEQE-CNN was generated by halving the number of channels used throughout the
architecture by the 3D Convolution layers from N = 32 to N = 16. This first AEQE-CNN
architecture variation is called AEQE-CNN [N=16]. In the second approach, the size of
the MP neighbourhood, Nx,y (see Section 3.1), was reduced from 9 × 9 MPs (i.e., b = 4) to
3 × 3 MPs (i.e., b = 1).

More precisely, the same neighbourhood window as in [34] was used here with the goal
of evaluating the influence of the size of the MP neighbourhood in the final enhancement
results. In this case, the EPI volumes were of the size 15 × 15 × 3; therefore, the CB5 block
in the AEQE-CNN architecture (see Figure 3) used a default stride of s′ = (1, 1, 1) instead
of s = (1, 1, 3). This second AEQE-CNN architecture variation is called AEQE-CNN [3×3].

Table 2 shows the average results obtained over the test set for the three AEQE-CNN
architectures. The AEQE-CNN provided the best performance using the highest complexity
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and runtime. The network variations corresponding to the two approaches for complexity
reduction still provided a better performance compared with the state-of-the-art methods
and a close performance to AEQE-CNN. AEQE-CNN [N=16] offered a reduction of 44.6%
in the inference runtime and a reduction of 74.7% in the network complexity, with a drop
in the average performance of only 8.93% in Y-BD-PSNR and 3.59% in Y-BD-Rate.

Table 2. The average results obtained over the test set for the three AEQE-CNN network variations.

Method
Bjøntegaard Metric Nr. of Trained Inference Time

Y-BD-PSNR Y-BD-Rate Parameters Per Img.

AEQE-CNN [N=16] 2.0954 dB −35.2581% 197,661 (−74.7%) 98 s (−44.6%)
AEQE-CNN [3×3] 2.0799 dB −35.0914% 782,661 105 s (−40.7%)
AEQE-CNN 2.3006 dB −36.5713% 782,661 177 s

AEQE-CNN [3×3] offered a reduction of 40.7% in the inference runtime, with a drop
in the average performance of only 9.6% in Y-BD-PSNR and of 4.05% in Y-BD-Rate. The
ablation study demonstrate that AEQE-CNN [3×3] provided a large reduction in the
network complexity and inference runtime while accepting a small performance drop
compared with AEQE-CNN.

Figure 11 shows the rate-distortion curves computed over the test set for AEQE-
CNN [N=16], AEQE-CNN [3×3], and AEQE-CNN. The results demonstrate again that
the two network variations provided a close performance to AEQE-CNN. The perfor-
mance dropped with less than 0.2 dB at low and high bitrates for the two architecture
variations. The results obtained by AEQE-CNN [3×3] demonstrate that the proposed
AEQE-CNN architecture, built using the PB and ARB blocks, provided an improved per-
formance compared with the MPQE-CNN architecture [34] when operating on the same
MP neighbourhood.
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Figure 11. The Rate-Distortion results over the test set for the three network variations. (a) Y-PSNR-vs.-bitrate.
(b) SSIM-vs.-bitrate.

Figure 12 shows the results of the Bjøntegaard metrics, Y-BD-PSNR and Y-BD-rate,
computed for each LF image in the test set. The results demonstrate again that the two
network variations provided a close performance to AEQE-CNN.
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Figure 12. Bjøntegaard metrics results for every LF image in test set for the three network variations: (a) Y-BD-PSNR gains;
(b) Y-BD-Rate savings.

5. Conclusions

In this paper, we proposed a novel CNN-based filtering method for the quality en-
hancement of LF images compressed by HEVC. The proposed architecture, AEQE-CNN,
was built using novel layer structure blocks, such as complex processing blocks and
attention-based residual blocks. AEQE-CNN operated on an EPI-based input patch ex-
tracted from an MP neighbourhood of 9 × 9 MPs and followed an MP-wise filtering
approach that was specific to LF images. Similar to previous research works, the proposed
AEQE-CNN filtering method provided an increased performance when the conventional
HEVC built-in filtering methods were skipped. The results demonstrate the high potential
of attention networks for the quality enhancement of LF images.

In our future work, we plan to study different strategies to reduce the inference
runtime using lightweight neural network architectures, and to employ the CNN-based
filtering method to enhance the quality of the light field images compressed using other
video codecs, such as AV1 and VVC.
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Abstract: Neighborhood selection is very important for local region feature learning in point cloud
learning networks. Different neighborhood selection schemes may lead to quite different results
for point cloud processing tasks. The existing point cloud learning networks mainly adopt the
approach of customizing the neighborhood, without considering whether the selected neighborhood
is reasonable or not. To solve this problem, this paper proposes a new point cloud learning network,
denoted as Dynamic neighborhood Network (DNet), to dynamically select the neighborhood and
learn the features of each point. The proposed DNet has a multi-head structure which has two
important modules: the Feature Enhancement Layer (FELayer) and the masking mechanism. The
FELayer enhances the manifold features of the point cloud, while the masking mechanism is used to
remove the neighborhood points with low contribution. The DNet can learn the manifold features
and spatial geometric features of point cloud, and obtain the relationship between each point and its
effective neighborhood points through the masking mechanism, so that the dynamic neighborhood
features of each point can be obtained. Experimental results on three public datasets demonstrate that
compared with the state-of-the-art learning networks, the proposed DNet shows better superiority
and competitiveness in point cloud processing task.

Keywords: point cloud; dynamic neighborhood; feature learning; attention mechanism; masking
mechanism

1. Introduction

With the rapid development of three dimensional (3D) sensing technologies, using
deep learning to understand and analyze point clouds is becoming one of the important
research topics [1–3]. As the output of 3D sensor, point cloud is composed of much number
of points in 3D space. The neighborhood of point cloud is similar to the neighborhood of
pixels in image, but point cloud does not have the regular grid structure as the image [4,5].
For learning-based point cloud processing, too large a neighborhood may lead to incorrect
learning, but too small a neighborhood cannot ensure sufficient information being included
for learning.

In recent years, deep learning has made great progress in point cloud classification and
segmentation [6,7], and the existing methods can be roughly divided into the multi-view
approach, the voxel approach, the graph convolution approach, and the point set approach.
The multi-view approach projects point cloud to 2D plane from multiple angles to generate
image data, then the traditional Convolutional Neural Network (CNN) is used for feature
learning [8–10]. For this kind of approach, when the objects in the scene are obscured
or the point density changes, the accuracy of object classification and segmentation will
be reduced. The voxel approach converts point cloud into regular 3D meshes, and then
processes the meshes with 3D convolutions [11,12]. However, the voxel approach is greatly
limited because of the reduced resolution resulted from quantization, a large amount of data
preprocessing and the computational complexity of 3D convolution. In addition, the voxels
of point cloud will make 3D convolution away from the surface of the point cloud, leading
to the loss of effective surface information. Riegler et al. [13] and Klokov et al. [14] used
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different spatial segmentation methods to solve the problem of computational complexity.
However, these methods still rely on the accuracy of spatial segmentation and cannot
effectively extract surface features of point cloud, thus they may lose some information of
the fine-grained geometric manifolds.

Since the points in point cloud are similar to the nodes in graph, some works used
graph convolution approaches to process the point cloud [15–19]. The graph convolution
approach can be divided into the spectral convolution and the spatial convolution [7]. The
spectral convolution method uses the eigenvector decomposition of the Laplacian matrix,
and then obtains the global descriptor of the point cloud through network learning, based
on which the classification and segmentation of the point cloud can be achieved [15]. Since
the Laplacian matrix of each point cloud should be calculated, the computational cost is
huge. At the same time, because the spectral convolution is associated with the Laplacian
matrix, its generalization ability is weak. By contrast, the spatial convolution approach can
directly perform convolution on the local neighborhoods of point cloud [16–19], and has
high computational efficiency and strong generalization.

The point set approach can learn features from point cloud directly and efficiently.
Qi et al. [20] designed the PointNet, which learns each point individually and uses a
symmetric max-pooling function to maintain the permutation invariance of the points.
In the PointNet, the network only considers every point itself, without combining its
neighborhood information. To improve the PointNet, Qi et al. [21] further proposed the
PointNet++ with a multi-scale mechanism to capture multi-scales local regions. Graham
et al. [22] constrained the execution of volumetric convolution only along the input sparse
set of active voxels of the grid. Hua et al. [23] put the points into a kernel unit, and then
convolved the point cloud with the kernel weights. Su et al. [24] mapped the input data
to a high-dimensional grid and processed it using bilateral convolution. Li et al. [25]
proposed learning the X-transform from the input point cloud, and then obtained the
invariant feature of point cloud permutation with traditional convolution. Huang et al. [26]
designed the RSNet, which projects unordered points onto an ordered sequence of feature
vectors through a slice pooling layer, and then used Recurrent Neural Network (RNN) to
learn the sequence. Tchapmi et al. [27] combined trilinear interpolation and conditional
random fields to perform segmentation on point clouds. Li et al. [28] simulated the
spatial distribution of point cloud by establishing a self-organizing map (SOM), and then
extracted the hierarchical features from SOM nodes. Huang et al. [29] used multi-scale
point embedding, manifold learning and global graph-based optimization to deal with
laser scanning point clouds.

For the point set approach, in order to learn the features of point cloud more effectively,
many methods have been proposed. Wu et al. [6] regarded the convolution kernel as a
non-linear function of local coordinates composed of a weight function and a density
function, and then used it to convolve point cloud. Xu et al. [7] processed irregular data
through the parameterized filters. Groh et al. [30] extended the traditional convolution
to larger scale point cloud processing through exploring different parameterizations to
generate the edge-dependent filters. Verma et al. [31] used soft-assignment matrices to
extend traditional convolution into point cloud. Wang et al. [32] proposed a learnable
operator to learn feature from non-grid structured data. Hermosilla et al. [33] proposed the
density-based 3D convolution Markov approximation, which is used to learn the features of
non-uniform point clouds. Shen et al. [34] defined the point set kernel as a set of learnable
3D points by measuring the geometric relationship between adjacent points, and then used
the point set kernel to extract the feature of point cloud.

Although the methods mentioned above can be used to learn point clouds, most of
them have the problem that feature extraction of local regions is rough because only simple
regular range (such as the k-nearest neighborhood, spherical neighborhood, etc.) is defined
as the neighborhood, without considering the semantics of the neighborhood. To solve this
problem, this paper proposes a Dynamic neighborhood Network (DNet) with an adaptive
selection strategy of the neighborhood. Firstly, the single-head structure is designed to
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obtain the attention weight of the neighborhood by learning the self-features, manifold
features and neighborhood features of the point cloud. Then, the mask mechanism is used
to remove some pseudo neighborhood points, and the dynamic neighborhood features
are obtained. Finally, the multi-head structure is utilized to learn features in different
neighborhood range so that multi-scale features can be obtained. The contributions of this
paper are as follows:

• To learn the features of different scales of a point cloud, a multi-head structure is
designed to effectively capture multi-scale features, and the Feature Enhancement
Layer (FELayer) inside each head supplements the manifold features of local regions
of the point cloud, so that each head can learn enough contextual information;

• An attention mechanism is proposed to obtain the contribution degree of each neigh-
borhood point in a local region through learning the self-features, 2D manifold features
and neighborhood features of the local region;

• A masking mechanism is designed to remove the pseudo neighborhood points that
may mislead the neighborhood learning but keep the ones which are conducive to
network understanding, so that the network can learn neighborhood features more
reasonably and effectively.

The rest of this paper is organized as follows. Section 2 analyzes the motivation of
this paper, and the proposed method is described in detail in Section 3. Section 4 gives
the comparison results of the DNet and the state-of-the-art point cloud classification and
segmentation networks. Section 5 concludes this paper.

2. Motivation

In this section, the works of point cloud neighborhood learning are reviewed. Then,
the difference between the proposed attention mechanism and some traditional attention
networks is introduced. Finally, the neighborhood problem worth thinking about and the
motivation of this paper are put forward.

Local feature of point cloud is very important to understanding point cloud. For
determining the neighborhood of a point in point cloud, most existing methods usually
calculate the k-Nearest Neighbor (k-NN) points or use the spherical neighborhood with
radius r, and then learn features on the neighborhood. For the neighborhood learning,
PointNet++ [21] divided point cloud into multiple spherical neighborhoods to extract multi-
scale context information. Wang et al. [35] proposed a dynamic graph CNN (DGCNN) to
aggregate the features learned from local regions by calculating the k-NN points of each
point. Thomas et al. [36] defined a new multi-scale neighborhood method of point cloud
and maintained a reasonable point density in network learning. Weinmann et al. [37]
defined the neighborhood of point cloud in advance, which is independent of network
training. By contrast, the purpose of this paper is to select neighborhood points while
training the network.

The non-adaptive neighborhood selection, such as the k-NN method and spherical
neighborhood method, may result in pathological neighborhoods. Figure 1 shows two
point cloud models with such pathological neighborhoods, where the k-NN method is used
to find the neighborhood (marked as green points) of the red point, and the brown line
indicates the geodesic distance from the red point to one of its pathological neighborhood
points (the black point). For the red point at fishing rod in Figure 1a, its correct neighbor-
hood points should also be points at the fishing rod, but not the points representing the
fisherman. For the red point on a man’s right knee in Figure 1b, the correct neighborhood
points should be the points on the right knee, not the points on the left knee. Obviously,
such pathological neighborhoods will lead to the network learning incorrect local infor-
mation and further lead to pathological inferences. It is clear that discarding the pseudo
neighborhood points with small Euclidean distance but large geodesic distance is helpful
for the network to better understand the local surface information. Since surface-based
geodesic topology is conducive to semantic analysis and geometric modeling of objects,
He et al. [38] proposed deep geodesic networks for point cloud analysis.
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(a) (b) 

Figure 1. Examples of pathological neighborhood. (a) The pathological neighborhood of the fishing
rod. (b) The pathological neighborhood of the knee.

Attention mechanism was used for weighting aggregation of point features in local
regions [17,39–41], and it is also important for neighborhood learning. Chen et al. [17]
used graph attention mechanism to learn local geometric representations of point clouds.
Xie et al. [39] designed a self-attention module, which can realize the functions of feature
transformation and feature aggregation. Feng et al. [40] proposed a Local Attention-Edge
Convolution (LAE-Conv) to construct a local graph based on the neighborhood points
searched in multi-directions. Xie et al. [41] used the local graph structure and the global
graph structure to enhance the feature learning of point clouds. However, the traditional
attention mechanism mainly focuses on using different features to obtain the weights of
the neighborhood points, even for the pathological neighborhood as shown in Figure 1,
such a kind of attention network also counts these pathological neighborhood points. By
contrast, in this paper, the proposed attention mechanism will be used to evaluate the
contribution degree of the neighborhood points, so as to filter out pseudo neighborhood
points according to the evaluated contribution degree. Thus, it is necessary to consider
which kind of features can be used to effectively obtain the contribution degree.

Figure 2 shows the neighborhoods obtained with two common methods, in which
the green points are the neighborhood points of the red point. The two methods are the
k-NN neighborhood, and the spherical neighborhood, respectively. As shown in Figure 2,
for the red point at the wing of the aircraft, theoretically, the network is expected to learn
the features of the edge of the aircraft wing, rather than the features of the plane of this
region. Therefore, it is better to remove points on the plane of the wing as much as possible
to reduce the impact of these points on the network, but retain points at the edge of the
wing. This indicates that the following problems are worth to be considered:

(1) How to choose the number of points in a neighborhood, and whether the number of
neighborhood points of all points in a point cloud should be equal.

(2) If the neighborhood is determined, whether all points in the neighborhood help to
understand the point cloud.

(3) Do these neighborhood points contribute equally to the correct understanding of
point clouds?

Considering the pathological neighborhood in Figure 1 and unreasonable neighbor-
hood in Figure 2, the motivation of this paper starts from the following two points:

(1) When the point cloud has pathological neighborhood (as shown in Figure 1), the
network is expected to have the ability of learning the correct neighborhood points
and discarding the pseudo neighborhood point.

(2) When the center point is at the edge (as shown in the red point in Figure 2), the net-
work is hoped to learn the edge features of the point cloud instead of the plane features.
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(a) (b) 

Figure 2. Neighborhoods obtained with two commonly used methods. (a) The k-NN neighborhood. (b) The spherical
neighborhood with the radius r of 0.15.

3. The Proposed Network

Based on the above analyses, this paper propose a Dynamic neighborhood Network,
denoted as DNet, to enhance neighborhood features learning for point cloud, so as to
improve classification and segmentation of point cloud. Figure 3 shows the architecture of
the DNet proposed in this paper, which has two branches: the classification sub-network
and the segmentation sub-network. The core of the proposed DNet is a multi-head structure
and its internal masking mechanism. Each head uses the attention mechanism to learn
the contribution degree of each neighborhood point, and uses the masking mechanism
to remove the neighborhood points with low contribution degree. Then, the weighted
summation of the remaining neighborhood points is calculated to replace the maximum
pooling of the neighborhood, so that the designed network has the ability to dynamically
learn the effective neighborhood features of each point in the point cloud. Finally, multi-
head structure composed of multiple single-head structures is used to learn multiple
effective neighborhood features which are stacked as the final feature for subsequent point
cloud classification and segmentation tasks.

Here, the neighborhood convolution of point cloud is first defined. Then, the multi-
head structure in the proposed DNet is designed and its internal masking mechanism is
described. Finally, the working principle and loss function of DNet are described.

Figure 3. The architecture of the proposed Dynamic neighborhood Network (DNet).

3.1. Neighborhood Convolution

Given an unordered point set P in 3D space as a point cloud, where P = {Pi | i = 1, . . . ,
n}, Pi ∈ Rd (generally, d = 3), which is the coordinate of the i-th point, denoted as Pi = {x, y, z},
and n is the number of points in the point cloud. Then, let Nall(Pi) denote the neighborhood
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of the point Pi,Nall(Pi) =
{

Pj
i

∣∣∣j = 1, · · · , k
}

, where Pj
i is the j-th neighborhood point of Pi,

and k is the number of neighborhood points of the point Pi. Since it is easy for the k-NN
method to quickly construct a neighborhood graph, the k-NN neighborhood is used as the
initial neighborhood in the proposed DNet. For the constructed neighborhood graph of
Pi, neighborhood learning can be performed on all points of Nall(Pi) to obtain the feature
Fall(Pi) with respect to the point Pi as follows

Fall(Pi) = Max(σ(hθ(Pj
i ))), ∀Pj

i ∈ Nall(Pi) (1)

where Max(·) is the max-pooling operation, σ(·) is the activation function, and hθ(·) is
point-wise convolution with a set of learnable parameters θ. For 2D image, hθ(·) can be
a convolution kernel with the size of 3 × 3 and 5 × 5. However, for point cloud, since
it is unstructured, hθ(·) is a convolution kernel with the size of 1 × 1, which is called as
point-wise convolution [20].

In order to make Equation (1) more generalized, it is modified as follows

Fall(Pi) = A(σ(hθ(Pj
i , Oth))), ∀Pj

i ∈ Nall(Pi) (2)

where A(·) is the aggregation function (such as the max-pooling, summing, averaging, etc.).
“Oth” represents some additional information such as the density of the local region, the 3D
Euclidean distance from the neighborhood point to the center point Pi, etc. [35].

The traditional network only conducts neighborhood learning from all points of
Nall(Pi) in the local region, no matter whether the points in the neighborhood are suitable
or not. Therefore, this work tries to remove some of the points in the neighborhood Nall(Pi)
through network learning, so as to adaptively obtain an effective neighborhood of the point
Pi, namely Ne f f (Pi) =

{
Pj

i

∣∣∣j = 1, · · · , m
}

, m ≤ k. Thus, the more effective feature Feff(Pi)
of the point Pi can be learned as follows

Fe f f (Pi) = A(σ(hθ(Pj
i )), ∀Pj

i ∈ Ne f f (Pi) and Ne f f (Pi) ⊆ Nall(Pi) (3)

As an example, Figure 4 shows the feature learning with two different neighborhood
methods, where the green and orange points mark the neighborhood of the red point. In
the figure, since the red point is located at the edge of the airplane wing, the feature of
the red point should reflect the characteristics of the wing edge. It is seen that for the
Nall(Pi), which is selected with k-NN method, some of the neighborhood points are not
suitable for the feature learning of the wing edge. By contrast, the effective neighborhood
Neff(Pi) marked as the orange is more helpful for learning the features of wing edge. In
other words, Neff(Pi) is more expected for feature learning of the edge of the airplane wing
compared with Nall(Pi).

  
(a) (b) (c) 

Figure 4. The diagram of the neighborhood learning. (a) Aircraft tail. (b) Feature learning on the
k-NN neighborhood of the point Pi. (c) Feature learning on the effective neighborhood (the orange
points) which is more appropriate for feature learning of the edge of the wing.

3.2. Multi-Head Structure

The proposed DNet utilizes the attention mechanism and masking mechanism to learn
the more effective feature Feff(Pi). The main modules in the proposed DNet are the multi-
head structure, which allows the network to learn information of different neighborhood
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ranges of the point clouds, that is, multi-scale features, so as to obtain sufficient context
information and stabilize the network. Given a point cloud P, the effective feature F(P) of
the point cloud learned by the multi-head structure can be expressed as follows

F(P) =
m
||

t=1
Fe f f (P)

(t) (4)

where || is the multi-channel cascade operation, m is the number of heads, and m = 3 in
this paper, Feff(P)(t) denotes the effective feature learned by the t-th head.

The proposed multi-head structure does not need to manually set multi-scale receptive
fields as in [21]. For each head, as long as the number of initial neighborhood points in a
neighborhood is set, an adaptive masking mechanism inside the heads will spontaneously
filter out the neighborhood points with low contribution to obtain the features of different
neighborhood ranges.

After designing the structure that captures multi-scale features, the next task is how to
design the structure of each head so that it can select effective points in the neighborhood to
promote network understanding of point cloud. Figure 5 shows the designed single-head
structure. The attention mechanism can be used to obtain the feature of a point by weighted
aggregation of features of the point’s neighborhood points. The attention mechanism will
be used to assign a contribution degree to each point in the neighborhood, which indicates
the contribution of the point to the learning of this local region. Therefore, the contribution
of the neighborhood points can be identified according to the attention mechanism, based
on which an adaptive masking mechanism can be designed. For a point Pi ∈ P with the
neighborhood Nall(Pi), the effective feature Feff(Pi) of the point Pi can be defined as follows

Fe f f (Pi) =
k

∑
j=1

Mj
i · α

j
i ·F

j
i + bi (5)

where αi
j is the contribution degree of the neighborhood point learned by the network, bi is

the bias term, and Mi
j denotes an adaptive mask determined by the contribution degrees of

the neighborhood. Fj
i is the integration feature that needs to be multiplied with the mask,

it is composed of neighborhood features and manifold features, and defined as follows

Fj
i = hθ(Fj

i ⊕ hθ(C(Pj
i ))) (6)

where ⊕ represents channel concatenate, C(Pi
j) is the coding feature of Pi

j, and hθ(C(Pi
j))

is the manifold features of Pi
j. hθ(C(Pi

j)) is extracted from FELayer, which contains an
autoencoding and point-wise convolution.

In order to establish the connection between different local regions, the covariance
feature of the local region is added for each point Pi

j in the local region, and Fi
j can be

expressed as follows
Fj

i = hθ(COV(Nall(Pi))⊕ Pj
i ) (7)

In probability theory, covariance is used to measure the error between different vari-
ables, because it can well represent the statistical characteristics of the local regions. There-
fore, the 3 × 3 covariance matrix of each region is calculated, and flattened to get a
9-dimensional covariance feature COV(Nall(Pi)), then it is concatenate with each point in
the neighborhood to obtain the 12-dimensional data, which extends the neighborhood
features of the point cloud.

The contribution degree αi
j of the point Pi is obtained through the feature F̃j

i . F̃j
i

learned inside each head is composed of two parts: the self-features Fi and integration
feature Fj

i . Therefore, F̃j
i can be denoted as follows

F̃j
i = Fi ⊕ Fj

i (8)

58



Sensors 2021, 21, 2327

Figure 5. Single-head structure.

Then, for the point Pi and its neighborhood point Pi
j, the weight Ci

j of the neighbor-
hood point Pi

j is learned through the single-head structure as follows

Cj
i = hθ(F̃j

i ) (9)

Finally, in order to better compare the attention coefficients Ci
j, it is normalized as the

contribution degree of the neighborhood points, which is defined as follows

α
j
i =

exp(Cj
i )

k
∑

l=1
exp(Cl

i )

(10)

where exp(·) is an exponential function, and k is the number of neighborhood points.
In order to better understand the multi-head structure, Figure 6 shows the contribution

degree of neighborhood points when the center point (red point) is an edge point. The
contribution degree indicates how much the network learns from the neighborhood points
of the red point.

(a) (b) (c) (d)  

Figure 6. The contribution degree output from the three heads when the center point is an edge point.
(a) Two point cloud models. (b) The first head. (c) The second head. (d) The third head.

In Figure 6, as shown in the right colored bar, the closer the color of a neighborhood
point is to yellow, the more features the network learns from the neighborhood point when
processing the local region of the red point. Figure 6a shows the input models in which
the green points indicate the initial neighborhood of the red point. Figure 6b–d show the
contribution of the neighborhood points learned by the three heads to the center point. It
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is clear that the neighborhood range learned by each head is different. From the Figure 6,
there are two points worth noting. Firstly, it is not that the closer the neighborhood point
is to the red point, the more important it is; secondly, since the red point is at the edge of
the airplane wing, the contribution degree of other edge points is significantly higher than
that of the point on the wing plane. This indicates that the network is more willing to learn
local features that are conducive to understand point clouds.

3.3. Masking Mechanism

As an important part of the multi-head structure, the masking mechanism is adopted
to filter out the pseudo neighborhood points in the initial neighborhood so that the pro-
posed network can learn neighborhood features more effectively. The adaptive mask Mi

j in
Equation (5) can be expressed as follows

Mj
i =

{
0, i f α

j
i < T

α
j
i , otherwise

(11)

where T is a threshold of the mask. The threshold can be obtained by different methods
(e.g., the mean value of the weight of neighborhood points). If the contribution degree of a
neighborhood point is less than the threshold, the point is regarded as the pseudo neigh-
borhood point and will be removed from the neighborhood; otherwise, the neighborhood
point is retained.

Assume that the dimension of the input point cloud is (n, 3), where n is the number of
points with 3D coordinate (x, y, z). Ideally, the network is expected to be able to select ki
neighborhood points of Pi for effective neighborhood learning, and ki is different for the
different center point Pi. However, because the shape of the convolution kernel is fixed, the
network cannot handle irregular data. For example, if the first point has 10 neighborhood
points with the shape of (1,10,3), while the second point has 20 neighborhood points with
the shape of (1,20,3), the network cannot stack these two points for learning. However,
if both of the shapes of the two points is (1,20,3), the network can stack the two points
into the shape of (2,20,3). Therefore, in this paper, the number of initial neighborhood
points is fixed to k, and the mask Mi

j is used to remove the pseudo neighborhood points
from the neighborhood since these points are not conducive to the network learning of the
local region.

The traditional neighborhood learning methods do not consider the geodesic informa-
tion, which may result in pathological neighborhood, as shown in Figure 1. By contrast,
GeoNet [38] learns the point cloud with geodesic information to avoid learning pathologi-
cal neighborhood features. For the proposed DNet, it can use the mask Mi

j to remove the
neighborhood points with low contribution so that more effective neighborhood features
can be learned even if only coordinate information of point cloud is available. This can
effectively prevent the network from learning pathological region features such as the body
or another knee in Figure 7a, where the green points are the initial neighborhood points of
the red point. Figure 7b–d show the neighborhood points selected by the first, second and
third heads, respectively. It can be seen from Figure 7 that the masking mechanism shields
many pseudo neighborhoods points with large geodesic distance, thereby it effectively
summarizes the neighborhood. Instead, if the pseudo neighborhood is not shielded by
mask, the point cloud learning network will learn the wrong neighborhood information,
leading to a decrease in the accuracy of classification or segmentation.
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(a) (b) (c) (d) 

Figure 7. Neighborhood learning of multi-head structure under pathological conditions. (a) Two point cloud models. (b)
The first head. (c) The second head. (d) The third head.

3.4. Learning with DNet

The architecture of the proposed DNet in Figure 3 can be used for point cloud classifi-
cation (the upper branch) or segmentation (the lower branch). The point cloud classification
sub-network in Figure 3 takes the coordinates of the whole point cloud as the input of the
network, and after extracting multi-scale effective neighborhood features, it aggregates the
point features through the max-pooling to output the classification results. The point cloud
segmentation sub-network in Figure 3 concatenates global features with shallow features
and outputs the segmentation results.

The core of the network consists of three heads, each of which can learn local infor-
mation of different neighborhood ranges. Inside each head, the original local 3D space
coordinates are used as the input, and the effective neighborhood features are learned as
the output. The head obtains the attention weight of the neighborhood points by learn-
ing self-features, manifold features and neighborhood features. Then, the mask is used
to remove some pseudo neighborhood points to obtain dynamic neighborhood features.
Finally, a multi-head structure is used to learn multiple effective neighborhood features
and stack them as the final feature for subsequent classification and segmentation tasks.

3.5. Loss Function

In this paper, an autoencoder is used to extract the 2D manifold features of the
point clouds. Usually, for reconstruction networks whose purpose is to reconstruct the
entire point cloud model, the complex loss of Chamfer Distance (CD) or Earth Mover’s
distance (EMD) are used as the loss function because of the disorder of point cloud.
However, the task of this paper is not to reconstruct the entire point cloud model, but to
roughly reconstruct the shape of the local neighborhood so as to extract the 2D manifold
features of the point clouds. Therefore, since the local neighborhood is generally with
simple topological structure, a simple L2 loss function is used in this work, and expressed
as follows

LAE =
n

∑
i=1

k

∑
j=1

(Pj
i − P̃j

i )
2

(12)

where P̃j
i is the reconstructed point of Pj

i .
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Figure 8 illustrates the effectiveness of the autoencoder with L2 loss function. We
draw a grid in the figure to distinguish 3D points from 2D points. Figure 8a is the original
input 3D point cloud, and Figure 8b enlarges the green local neighborhood in Figure 8a.
Figure 8c depicts the result of using an autoencoder to compress Figure 8b to a 2D plane,
and Figure 8d depicts the 3D points reconstructed from Figure 8c. It is clear that even
though the simple L2 loss function is used instead of the more complex loss function in the
autoencoder, the shape of the reconstructed 3D points is similar with that of the original
shape of the local neighborhood.

Let y be the label of point cloud classification or segmentation, and ŷ be the predic-
tion result of DNet. The loss function of point cloud classification or segmentation is
Ltask = −y · log(ŷ), the final loss function of the proposed DNet is defined by

Ltotal = Ltask + LAE (13)

(a) (b) (c) (d) 

Figure 8. Compression and reconstruction of point cloud by using autoencoder with L2 loss function.
(a) 3D point cloud. (b) 3D points at the green area of (a). (c) Compressed result of (b). (d) 3D points
reconstructed from (c).

4. Experimental Results and Discussions

In this section, the training configuration of the networks is first introduced, and then
the proposed DNet is tested on the benchmark dataset ModelNet40 [42] for point cloud
classification, and on the benchmark datasets ShapeNet [43] and S3DIS [44] for point cloud
segmentation, compared with other deep learning networks.

4.1. Network Training

The proposed DNet is constructed on Tensorflow, and the experiments are imple-
mented on a computer with Intel Core I7-7820X CPU (3.6 GHz, 128GB memory) and
GeForce RTX2080Ti GPUs. For the point cloud classification, 1024 points are uniformly
sampled from the 3D grid of each point cloud as the network input, and the number
of initial neighborhood points, that is, k, is set to 40. For part segmentation and indoor
segmentation of point cloud, the number of input points of the DNet is 2048 and 4096,
respectively, and k is set to 50. For the multi-head structure, in total three heads are used,
and the output dimension of each head is 16. During the training phase, Adaptive Moment
Estimation (ADAM) solver is used with the base learning rate of 0.001, the learning rate
decay is executed every 40 epochs. ReLU and batch normalization are applied after each
layer except the last fully connected layer. For the classification dataset, 200 epochs are
trained with the batchsize of 32; while for the segmentation datasets, 100 epochs are trained
with the batchsize of 16.

4.2. Point Cloud Classification

The performance of the proposed DNet on point cloud classification is tested on
the ModelNet40 dataset [42]. This dataset contains 40 categories, including beds, chairs,
airplanes, etc., with a total of 12,311 3D mesh models. In the experiments, 9843 models
in the ModelNet40 dataset are used as the training set, while the remaining 2468 models
constitute the testing set. For each model, 1024 points are uniformly sampled from the
grid model and normalized into the unit circle. During the training, data augmentation
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techniques are used to scale point clouds in the range of [0.8, 1.25] and translate the point
clouds in the range of [−0.1, 0.1].

Table 1 shows the classification results of the proposed DNet compared with the other
sixteen advanced networks. As shown in the “input” column of Table 1, the methods,
including the Spec-GCN [15], Pointconv [6], AGCN [41], PointNet++ [21], SpiderCNN [7]
and SO-Net [28], require coordinates of point cloud as well as normal information as the
input of their networks, while the other eleven comparison networks and the proposed
DNet only need the coordinates of point cloud. Moreover, the networks listed in the last
three (PointNet++ [21], SpiderCNN [7] and SO-Net [28]) for comparison use 5k points,
rather than 1k points as other networks do. To evaluate the performance of different
networks, the mean accuracy of each class of point cloud classification (mA) and the overall
accuracy of point cloud classification (OA) are used, as shown in Table 1. It can be found
that the proposed DNet has achieved good results. However, for most of the networks in
Table 1, their focus is not on the effective neighborhood selection, which is emphasized
by the proposed DNet. Therefore, in order to make a fairer comparison, the proposed
DNet is mainly compared with DGCNN [35] and the PointNet++ [21] without normal
information, because DGCNN also utilizes the k-NN neighborhood while PointNet++
adopts a spherical neighborhood. Table 1 shows that in terms of OA, the proposed DNet
has 1.4% and 2.9% improvement over the DGCNN and the PointNet++ without normal
information, respectively. It illustrates the importance of effective neighborhood selection
for feature learning in the learning-based point cloud classification methods.

Table 1. Classification accuracy of different networks (%). (mA and OA denote the mean accuracy
of each class of point cloud classification and the overall accuracy of point cloud classification,
respectively.).

Method Input Points mA OA

Pointwise-CNN [23] xyz 1k 81.4 86.1
ECC [18] xyz 1k - 87.4

PointNet [20] xyz 1k 86.2 89.2
SCN [39] xyz 1k 87.6 90.0

Kd-Net [14] xyz 1k 86.3 90.6
PointNet++ [21] xyz 1k - 90.7

KCNet [34] xyz 1k - 91.0
Spec-GCN [15] xyz 1k - 91.5
PointCNN [25] xyz 1k 88.1 92.2
DGCNN [35] xyz 1k 90.2 92.2
GAPNet [17] xyz 1k 89.7 92.4

Spec-GCN [15] xyz+normal 1k - 91.8
Pointconv [6]
AGCN [41]

xyz+normal
xyz+normal

1k
1k

-
90.7

92.5
92.6

PointNet++ [21] xyz+normal 5k - 91.9
SpiderCNN [7] xyz+normal 5k - 92.4

SO-Net [28] xyz+normal 5k 90.8 93.4

DNet xyz 1k 90.9 93.6

To test the influence of the number of initial neighborhood points k on the networks,
GAPNet [17], DGCNN [35], and the proposed DNet are compared with each other, and
all of them are the k-NN neighborhood-based networks. In the experiments, k is set to
10, 20, 30, 40, 50, and 60, respectively, and the networks are trained at each k separately,
without using any data augmentation techniques. Figure 9 gives the corresponding OAs of
the three networks with respect to each k. As shown in Figure 9, GAPNet and DGCNN
achieve their highest accuracy when k is 20, and then the accuracy decreases with the
increase in k. By contrast, the proposed DNet can achieve higher accuracy under more
neighborhood points benefiting from the attention mechanism and masking mechanisms,
and the highest accuracy is achieved when k is 40. On one hand, more initial neighborhood
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points can ensure that there are enough points describing the local region to be included in
the network learning. On the other hand, the masking mechanism can filter out the pseudo
neighborhood points with low contribution which are not conducive to the correct learning
of the network. Therefore, the proposed DNet achieves higher classification accuracy.

Figure 9. The influence of the number of initial neighborhood points on classification accuracy.

Additionally, in order to further analyze the influence of the number of initial neigh-
borhood points on the performance of multi-head structure, the average numbers of the
neighborhood points retained by the three heads of DNet are calculated, as shown in
Figure 10, where all “airplane” models are used for the calculation. It should be noted
that the neighborhood points retained by the three heads are the real learning content of
the network. As shown in Figure 10, when the number of initial neighborhood points,
k, is small, the average numbers of neighborhood points retained by the three heads are
similar, and this will reduce the ability of the multi-head structure to capture multi-scale
features. However, when k reaches 40, 50 or 60, the difference of the number among the
three heads is obvious, indicating that the multi-head structure can capture multi-scale
features. However, if k is too large, it will increase the burden of searching neighborhood
and wash out high-frequency features [45], so k is set to 40 in this work.

Figure 10. The average number of neighborhood points retained by the multi-head structure.

In the proposed DNet, the multi-head structure is utilized to learn multi-scale neigh-
borhood features. However, too many heads will increase the complexity of the network.
Therefore, to balance the complexity and accuracy, the number of head N is set to 3 in this
paper. We have also tested the computational complexity of the proposed DNet with N = 3,
compared with PointNet [20], PointNet++ [21] and DGCNN [35]. The comparison experi-
mental results are given in Table 2. PointNet is not a neighborhood-based method, and it
has the lowest complexity but also lowest classification accuracy in Table 2. PointNet++ and
DGCNN are the representations of spherical neighborhood and k-NN neighborhood-based
methods, respectively. In this experiment, for DGCNN, the number of neighborhood points
k is 20, which is the default set by the author, while for the proposed DNet, k is set to 40.
For PointNet++, the default parameters are used. It is seen that compared with the other
networks, the proposed DNet is more lightweight, faster and more accurate.
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Table 2. Comparison of different methods on model complexity, forward time, and
classification accuracy.

Method Model Size (MB) Time (ms) Accuracy (%)

PointNet [20] 40 6.7 89.2
PointNet++ [21] 12 21.3 90.7

DGCNN [35] 21 24.6 92.2
Proposed DNet 17 19.2 93.6

As a very important part of DNet, the masking mechanism can remove the pseudo
neighborhood points in the initial neighborhood to achieve effective feature learning.
There are some different kinds of masking mechanisms: for example, the mean masking
and median masking mechanisms. The mean masking mechanism uses the average of
contribution degrees of all the initial neighborhood points as the threshold to remove the
pseudo neighborhood points. However, in the median masking mechanism, the median
is used as the threshold instead of the average, and therefore the number of retained
neighborhood points is fixed. Table 3 gives the point cloud classification results with
respect to the two different masking mechanisms. The median masking mechanism is
superior to the no masking scheme but inferior to the mean masking mechanism because
of the fixed number of retained neighborhood points. Therefore, the mean masking
mechanism is used in this paper. The experimental results indicate that not all points in a
local region are helpful to network learning, in fact, some of them may weaken the learning
and understanding ability of the network to point cloud processing.

Table 3. Effect of different masking mechanisms on point cloud classification (%).

Mask mA OA

No mask 92.9 89.2
Median mask 93.3 90.1
Mean mask 93.6 90.9

4.3. Point Cloud Segmentation

Point cloud segmentation is a fine-grained recognition task that requires understand-
ing the role of each point playing in its respective category, so it is one of the challenging
point cloud processing tasks.

4.3.1. Part Segmentation of Point Cloud

The part segmentation is tested on a ShapeNet dataset [43], which has 16,881 models
in 16 categories, with 50 annotated parts in total. In the experiments, for each model in the
ShapeNet dataset, 2048 points are extracted as the input of the networks. On the premise
that the model category is known, the one-hot encoding of the category is concatenated
to the last feature layer as the input of the fully connected layer in DNet, and finally the
prediction result is obtained.

Intersection over Union (IoU) is used to evaluate the performance of the proposed
DNet and other comparison networks. The IoU of a class refers to the average of all IoUs
with respect to such kind of objects, denoted as class mean IoU (cIoU). The average of
cIoU of all classes is denoted as mcIoU. The average IoU of all classes refers to the average
of the IoU of all test objects, denoted as instance mean IoU (mIoU). Table 4 gives the
cIoU, mcIoU and mIoU results of several different networks implemented on ShapeNet
dataset, and the best results are shown in bold. Compared to the PointCNN [25] which
is not a neighborhood-based method, the proposed DNet has demonstrated its potential,
surpassing in several categories. For the sake of fairness, the proposed DNet is further
compared in detail with the two representative neighborhood-based learning networks,
that is, PointNet++ and DGCNN. PointNet++ does not consider how to learn effective
regional features, but simply stacks features in multiple ranges; its mcIoU and mIoU
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are of 81.9% and 85.1%, respectively. Although DGCNN considers the neighborhood
information of both the spatial and feature spaces, it does not consider which features of
the neighborhood points are effective, its performance of mcIoU and mIoU is 82.3% and
85.2%, respectively. By contrast, the proposed DNet can reasonably learn the effective
neighborhood information to achieve better results. We also carried out a qualitative
analysis, and the visualization results of the components were visualized in Figure 11.

Table 4. Comparison of part segmentation of point cloud (%).

Method mcIoU mIoU
cIoU

Air
Plane

Bag Cap Car Chair Ear
Phone

Guitar Knife Lamp Laptop Motor
Bike

Mug Pistol Rocket Skate
Ball

Table

Kd-Net [14] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [20] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SPLATNet [24] 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3

KCNet [34] 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

GAPNet [17] 82.0 84.7 84.2 84.1 88.8 78.1 90.7 70.1 91.0 87.3 83.1 96.2 65.9 95.0 81.7 60.7 74.9 80.8

RSNet [26] 81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

SpiderCNN [7] 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

AGCN [41] 82.6 85.4 83.3 79.3 87.5 78.5 90.7 76.5 91.7 87.8 84.7 95.7 72.4 93.2 84.0 63.7 76.4 82.5

SCN [39] - 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8

PointCNN [25] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

PointNet++ [21] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN [35] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

DNet 83.8 86.1 84.5 85.2 88.6 79.3 91.7 77.8 91.5 88.7 84.7 95.7 73.4 95.3 82.3 62.8 76.8 82.1

(a) (b) (c) (d) 

Figure 11. Part segmentation results of three models in ShapeNet dataset. (a) Ground
Truth. (b)PointNet++. (c) Dynamic Graph Convolutional Neural Network (DGCNN). (d) the
proposed DNet.

Figure 11 shows some of the part segmentation results, where Figure 11a shows the
ground truth of the part segmentation. In Figure 11, the parts marked with red circles
are segmented incorrectly by PointNet++ and DGCNN, while the segmentation results
achieved by the proposed DNet are consistent with the ground truth. The segmentation re-
sults of PointNet++ and DGCNN at some of the parts of the connection are incorrect, while
the DNet can predict these parts better. From the perspective of an effective neighborhood,
the proposed DNet assigns lower contribution degree to the neighborhood point whose
label is different from that of the central point, thereby the segmentation accuracy of the
proposed DNet is improved.

66



Sensors 2021, 21, 2327

4.3.2. Scene Segmentation of Point Cloud

For scene segmentation, comparative experiments are implemented on S3DIS dataset [44].
The dataset has six areas, including 271 indoor scenes (for example conference room, hall-
way, office etc.) with a total of 13 types of objects (such as chair, table, floor, wall and so
on). In S3DIS dataset, each point has nine attributes: XYZ space coordinates, RGB color
information, and a normalized location in the room. In the experiments, the same training
strategy as in PointNet [20] is adopted, and 4096 points are randomly sampled from the
scene as the network input.

In the experiments, 6-fold cross validation is adopted to verify the performance of the
comparison networks. In this case, five areas of S3DIS dataset are used for training while
the remaining one area is for testing. Then, the average results of the six tests are reported
as the indicators of the performance of the networks, as shown in Table 5. In this table,
the experimental results of the comparison networks also come from the corresponding
literature. Considering that some of the networks only provided the experimental results
of the segmentation of Area 5, that is, only Area 5 is used for testing while the other
five areas are used for training, we also show such experimental results in Table 6. In
Tables 5 and 6, the best results are in bold. It is seen that the proposed DNet achieves better
results compared with other networks except the PointCNN and PCCN. Figure 12 shows
the scene segmentation results obtained with different learning networks. It is seen that for
the points in red circles, the segmentation achieved by the proposed DNet is closer to the
label compared with the DGCNN.

PointCNN transforms the point cloud into the feature space by learning an X-matrix,
and then weights and sums it using traditional convolution. This method maintains the
invariance of the displacement of the point cloud in the feature space. When the point
cloud is rotated or translated, PointCNN can still capture the fine-grained information
of each point, so it achieves better results in point cloud segmentation. By contrast, the
proposed DNet learns the point cloud from the perspective of the neighborhood and also
shows its competitive performance. Compared with PointNet++ and DGCNN, which
are also neighborhood-based learning networks, DNet achieves better performance in
classification and segmentation of point cloud. This indicates that both of point cloud
permutation invariance and effective neighborhood learning are indispensable for deep
learning-based point cloud processing.

Table 5. Scene segmentation results on S3DIS dataset evaluated with 6-fold cross validation (%).

Method OA mA mIOU

PointNet [20]
SCN [39]

78.5
81.6

66.2
-

47.6
52.7

DGCNN [35] 84.1 - 56.1
RSNet [26] - 66.4 56.4
AGCN [41]
SPGraph [19]

84.1
85.5

-
73.0

56.6
62.1

PointCNN [25] 88.1 75.6 65.3

DNet 86.3 75.3 66.7

Table 6. Scene segmentation results of Area 5 in S3DIS dataset (%).

Method OA mA mIOU

PointNet [20] - 49.0 41.1
SegCloud [27] - 57.4 48.9
PointCNN [25] 85.9 63.9 57.3
SPGraph [19] 86.4 66.5 58.0
PCCN [32] - 67.0 58.3

DNet 86.5 66.3 59.7

67



Sensors 2021, 21, 2327

(a) (b) (c) (d) (e) 

Figure 12. Comparison of point cloud segmentation with indoor scenes in the S3DIS dataset. (a) ConferenceRoom.
(b) Hallway. (c) Office. (d) Pantry. (e) Storage.

4.4. Ablation Experiments

To clearly show the effect of the three different kinds of features in DNet, ablation
experiments are implemented, and the results are given in Table 7. It is seen that if
the neighborhood features are absent, the classification accuracy of DNet is significantly
reduced, implying that the neighborhood features are very important for the network to
understand the point cloud. Figure 13 gives the visualized results of the neighborhood
points selected by the proposed DNet in the absence of some features. In Figure 13, the self-
features have relatively less influence on neighborhood point selection, while neighborhood
features, manifold features and neighborhood features can improve the performance of
the DNet.

Table 7. Classification accuracy of DNet using different features on ModelNet40 dataset.

DNet Using Different Features OA

without self-features 93.0
without manifold features 92.3
without neighborhood features 90.2
all features 93.6

(a) (b) (c) (d) (e) 

Figure 13. Neighborhood points selected by multi-head structure with different features. (a) Model. (b) All features. (c)
Without self-features. (d) Without manifold features. (e) Without neighborhood features.

4.5. Robustness Analysis

In order to verify the robustness of the proposed DNet, uniform noise is added to the
point cloud models in the testing set of the ModelNet40 dataset, and the number of noise
points is set to 10, 50, 100 and 200, respectively, as shown in Figure 14a–d. Since the input
points of networks are uniformly sampled from the point cloud model and normalized
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into the unit circle, the coordinates of the added noise points are also limited to the range
of [−1, 1]. The training set is noise-free, and the data augmentation is not used in the
training process. The final result is shown in Figure 14e, where the abscissa is the number
of noise points, and the ordinate denotes the overall accuracy of classification of a network.
For the four comparison networks, it is seen that the classification accuracy decreases at
different rate with the increase in the number of noise points. PointNet does not consider
the neighborhood, so it is most affected by noise points. PointNet++ and DGCNN are
relatively better than PointNet. By contrast, the proposed DNet further considers the
dynamic neighborhood, so it has strong robustness to noise compared with the other
three networks.

(a) (b) (c) (d) (e) 

Figure 14. The influence of noise on the classification accuracy of different networks. (a) 10 noise points. (b) 50 noise points.
(c) 100 noise points. (d) 200 noise points. (e) Classification accuracy.

5. Conclusions

In view of the lack of an effective learning network for point cloud neighborhood
selection, a new Dynamic neighborhood Network, known as DNet, has been proposed to
extract effective neighborhood features in this paper. The proposed DNet has a multi-head
structure with two important modules: the Feature Enhancement Layer (FELayer) and the
masking mechanism. The FELayer enhances the manifold features of the point cloud, while
the masking mechanism can suppress the effects of some pseudo neighborhood points, so
that the network can learn features that are conducive to understanding the local geometric
information of the point cloud. In order to obtain sufficient contextual information in the
proposed DNet, the multi-head structure is designed to allow the network to autonomously
learn multi-scale features of a local region. The experimental results on three benchmark
datasets have proved the effectiveness of the proposed DNet. The visualization results also
show that the proposed DNet can capture more effective neighborhood features that are
easy to understand.
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Abstract: Video coding technology makes the required storage and transmission bandwidth of video
services decrease by reducing the bitrate of the video stream. However, the compressed video signals
may involve perceivable information loss, especially when the video is overcompressed. In such
cases, the viewers can observe visually annoying artifacts, namely, Perceivable Encoding Artifacts
(PEAs), which degrade their perceived video quality. To monitor and measure these PEAs (including
blurring, blocking, ringing and color bleeding), we propose an objective video quality metric named
Saliency-Aware Artifact Measurement (SAAM) without any reference information. The SAAM metric
first introduces video saliency detection to extract interested regions and further splits these regions
into a finite number of image patches. For each image patch, the data-driven model is utilized to
evaluate intensities of PEAs. Finally, these intensities are fused into an overall metric using Support
Vector Regression (SVR). In experiment section, we compared the SAAM metric with other popular
video quality metrics on four publicly available databases: LIVE, CSIQ, IVP and FERIT-RTRK. The
results reveal the promising quality prediction performance of the SAAM metric, which is superior
to most of the popular compressed video quality evaluation models.

Keywords: video quality assessment; saliency detection; perceivable encoding artifacts; Dense
Convolutional Network (DenseNet)

1. Introduction

Video coding technology largely reduces storage capacity and transmission band-
width. However, lossy compression and transmission via changeable channel inevitably
cause various distortions. Thus, compressed video often shows visually annoying distor-
tions, named Perceivable Encoding Artifacts (PEAs), which greatly affect video perceived
quality [1].

For effective analysis and improvement of user experience, it is necessary to accurately
evaluate visual quality of video. Subjective Video Quality Assessment (VQA) is the most
accurate and reliable reflection of human perception, because it is the quality scored
by viewers. At present, only the results of subjective quality evaluation are used as a
benchmark to measure the accuracy of objective quality evaluation methods. According to
the standard given by International Telecommunications Union (ITU) [2], Mean Opinion
Score (MOS) and Different Mean Opinion Score (DMOS) are employed to expressed video
subjective quality. Therefore, MOS and DMOS are the most reliable quality indicators and
are used to assessment objective quality of videos. However, subjective experiments are
tedious, time-consuming and expensive. Consequently, it is imperative to establish reliable
objective VQA index.
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According to the availability of reference, the objective VQA metrics can be categorized
into Full-Reference (FR), Reduced-Reference (RR) and No-Reference (NR) metrics. Typical
FR metrics such as Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) [3]
have been extensively applied. RR-VQA metrics, such as Spatio-Temporal RR Entropic
Differences (STRRED) [4] and Spatial Efficient Entropic Differencing for Quality Assessment
(SpEED-QA) [5], also show good performance. In real-life video display, the unimpaired
original video source is inaccessible to end users, thus NR metric is highly desirable. It is also
the most difficult one among three types of VQA metrics due to the lack of prior knowledge
from reference video. However, it is the most widely used in different applications.

As mentioned above, NR-VQA metrics have a wide range of applications, but they
require that the extracted features are not sensitive to the video content and highly related
to the degree of distortion. Furthermore, they have high computational complexity and
still have room for improvement in the accuracy. With the development of the Natural
Video Statistic (NVS) model, researchers extracted features from natural scenes. These
features can describe the temporal and spatial statistical characteristics of video, and
were fed into the regression model (RM) to realize the evaluation of video quality in the
transform domain [6–8]. Motivated by the effort of unsupervised feature learning for NR
image quality assessment [9], Xu et al. [10] presented a NR-VQA algorithm named video
COdebook Representation for No-reference Image quality Assessment (CORNIA), where a
linear Support Vector Regression (SVR) is utilized to predict the video quality based on
frame-level features. In [11], a blind NR-VQA model was developed by using the statistical
properties in natural videos. The model employs the output data to directly predict the
video quality, without any external information about the reference video such as subjective
quality score. Zhu et al. [12] presented a blind VQA method considering the characteristics
of human visual system (HVS). Reddy et al. [13] proposed a NR-VQA metric utilizing an
asymmetric generalized gaussian distribution model, which performs the statistics of the
characteristic parameters in natural videos.

The distortion-specific NR-VQA approaches assess video quality under the premise
that distortion types of video are known. In [14], a method was proposed to measure
the perceived strength of blocking artifact in decoded video at the position of the non-
fixed grid. Next, it was combined with the entropy measurement to predict video quality.
Amor et al. [15] proposed a NR-VQA index based on blocking artifact estimation in spatial
domain by calculating the difference of gray-level conversion between adjacent blocks.
Xue et al. [16] proposed a VQA metric method to evaluate the impact of frame freezing
caused by packet loss or delay on perceived quality. In [17], a NR-VQA model based on
discrete cosine transform was developed to measure distortion, such as blocking, clearness
and noise, in which a multilayer neural network was used to obtain the prediction scores
of videos. A model was built by Men et al. [18] to achieve the prediction of video qual-
ity scores by combining features including blurring artifact, contrast and color bleeding.
In [19], blocking, packet-loss and freezing artifacts were obtained to predict video quality.
Rohil et al. [20] developed a holistic NR-VQA model based on quantifying certain distor-
tions in video frames, such as ringing and contrast distortion. Next, the intensity values of
various distortions were input to the neural network to evaluate the quality of videos. In
summary, most of the existing NR-VQA algorithms are aimed at traditional videos. Some
algorithms involve the transmission distortion caused by channel error, such as packet loss
and frame freezing. However, there are few NR-VQA researches on compressed videos,
and most of existing works only detect a single type of compression artifact. These methods
can not abundantly reflect the impact of PEAs on HVS. Therefore, it is necessary to develop
a NR compressed video quality evaluation algorithm combined with two or more PEAs,
which shows highly correlated with subjective perception quality.

To further improve the NR-VQA performance, it is feasible to detect more artifacts. In
this paper, we propose a NR-VQA metric named Saliency-Aware Artifact Measurement
(SAAM) to estimate video quality by analyzing four typical types of spatial PEAs including
blocking, blurring, color bleeding and ringing. We also exploit visual saliency detection
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and patch segmentation of interested regions to map the PEA intensities to objective score
with reduced complexity. We sum up major contributions of this work as follows.

(1) Proposed a NR-VQA method based on PEA detection. The PEA detection module
accurately identifies four typical types of PEAs (i.e., blurring, blocking, ringing and
color bleeding). Based on the PEA detection module, the PEA intensities are obtained
to analyze video quality.

(2) Introduced visual saliency detection and patch segmentation for high VQA accuracy
and reduced complexity. The visual saliency detection can make useful information of
videos and maximize utilization of computing resources, as well as help to eliminate
the impact of redundant visual information on subjective evaluation.

(3) Achieved the superior performance of our method in terms of compressed videos.
Compared with multiple typical VQA metrics, our index has the highest overall
correlation coefficient with the subjective quality score. In addition, our algorithm can
achieve reasonable performance in cross-database verification, which shows that our
algorithm has good generalization and robustness.

2. PEA-Based Video Quality Index

The overall architecture of the SAAM metric is shown in Figure 1. It consists of four
steps: video saliency detection with Attentive CNN-LSTM Network (ACLNet) [21] (input
video frame Fi, output saliency map Si), image patch segmentation (enter saliency map Si
to guide the generation of 72 × 72 image patches Pij), PEA detection (input image patches
Pij, output PEA intensities Iij of patches) and SVR prediction (input PEA intensities IV of
video, output predicted quality QV). These detail contents are elaborated as follows.

2.1. Perceivable Encoding Artifacts

In this section, we review PEA classification in [1] and select typical PEAs (including
blocking, blurring, ringing and color bleeding) to develop our SAAM algorithm.

2.1.1. Four Typical PEAs

The causes and manifestations of four typical types of PEAs are summarized as follows.
(1) Blurring: Modern video compression techniques involve a frequency transforma-

tion step followed by a quantization process, which usually eliminates small amplitude
transformation coefficients. Because the energy of natural visual signals is concentrated at
low frequencies, quantification reduces high frequency energy in such signals. It results in
a significant blurring artifact in the reconstructed signal. Besides, de-blocking filter also
leads to blurring artifact. Visually, blurring typically manifests itself as damage to spatial
structure or reduced sharpness at edge or texture areas in images [22]. A blurring artifact
example is shown in Figure 2b, which exhibits the spatial loss of the building field.
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Figure 1. The overall architecture of SAAM.
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(a) Reference frame

(b) Compressed frame with blurring artifact

Figure 2. An example of blurring [23–25].

(2) Blocking: Standard video compression techniques utilize blocks of different sizes
as basic units for frequency transformation and quantization. The quantization errors
introduced in each block are presented in different forms, which result in discontinuities
on block boundaries. In decoded videos, different forms of the blocking artifact are
demonstrated, such as mosaic artifact, ladder artifact and pseudo-edge artifact. Blocking
refers to discontinuities on the boundaries of adjacent blocks. The visual shape of blocking
depends on the region where blocking occurs [26]. A blocking artifact example is shown in
Figure 3b, which demonstrates the visual blocks of the face field.

(a) Reference frame

(b) Compressed frame with blocking artifact

Figure 3. An example of blocking [27].

(3) Ringing: When the quantization error of the high-frequency component corre-
sponding to strong edges of image occurs, a corrugated pseudo-boundary will appear
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near the strong edge. With high-contrast edges, the ringing artifact is the most obvious
in areas with smoother textures during the reconstruction process. Ringing shows ripple
or vibration structures near the strong edge [20]. A ringing artifact example is shown in
Figure 4b, in which the marked letters show the phenomenon of boundary ripples.

(a) Reference frame

(b) Compressed frame with ringing artifact

Figure 4. An example of ringing.

(4) Color bleeding: Color bleeding is the result of coarse quantification of chroma
information. Color diffusion occurs in areas with very large chroma variation, resulting
in blurring of chroma. After compression, due to low resolution of the color channel,
interpolation operation is inevitably involved in the rendering process, which results in
additional inconsistent color diffusion. Color bleeding is the result of inconsistent image
rendering between brightness and chromaticity channels. A color bleeding artifact example
is shown in Figure 5b, which exhibits a color diffusion in the marked rectangular field.

(a) Reference frame

(b) Compressed frame with color bleeding artifact

Figure 5. An example of color bleeding.
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2.1.2. Correlation between PEAs and Visual Quality

To verify the effects of four typical types of PEAs on visual quality, the correlation
between PEAs and visual quality is studied. The sensitivity of human eyes to different
types of PEAs is different. In [28], the blocking and blurring artifacts were observed to
show significant impacts on visual quality of compressed videos. To explore the correlation
between PEAs and compressed video quality [29], it is necessary to adopt a PEA detection
algorithm. In this work, a PEA recognition model [1] is adopted, which can detect different
types of PEAs with superior performance. The intensities of color bleeding, blocking, blur-
ring and ringing are measured on the LIVE Video Quality Database [30], which consists of
10 reference videos and 40 compressed videos. The scatterplot of each PEA intensity value
and video subjective quality score DMOS is shown in Figure 6, where the abscissa is PEA
intensity, the ordinate represents DMOS value and each legend denotes compressed videos.

Figure 6. The scatterplot of each PEA intensity and DMOS on the LIVE Video Quality Database.

In addition, to study the influence of PEAs on video quality, it is necessary to analyze
compressed videos with different distortion degrees. As can be seen from Figure 6, for
different compressed videos with same content, there is a positive correlation between four
PEA intensity values and their subjective quality scores, respectively, that is, the higher
the PEA intensity value, the higher the DMOS value, the worse the video quality will be.
Therefore, the existence of PEAs will reduce the quality of compressed videos. In order to
further study the overall correlation between four types of PEAs and compressed video
quality, the Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Correlation
Coefficient (SRCC) of four PEA intensity values and their DMOS values are listed in Table 1,
where the optimal and suboptimal correlation are represented in bold.

Table 1. Correlation between the PEA intensity and DMOS on the LIVE Video Quality Database.

Correlation Blocking Blurring Ringing Color Bleeding

PLCC 0.5551 0.1921 0.1900 0.1902
SRCC 0.4208 0.1848 0.1340 0.1109
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The above results show that the PLCC and SRCC of blocking artifact are the best, and
that of blurring artifact are second best. Therefore, the blocking and blurring artifacts are
the most important factors leading to the deterioration of compressed video quality. It also
confirms the finding that the human eye shows the highest sensitivity to the blocking and
blurring artifacts.

2.2. Video Saliency Detection with ACLNet

Visual saliency is an inherent attribute of HVS and is also a key factor affecting video
perceptual quality [31]. The advantages of introducing visual saliency into video quality
assessment are primarily reflected in two aspects: first, it allocates constrained hardware
resources to more significant regions, and second, video quality analyze considering
visual saliency is more consistent with human visual perception. Therefore, we select
ACLNet as our video saliency model based on comprehensive comparison and analysis
of popular video saliency models. ACLNet has strong applicability and its high real-time
processing speed.

ACLNet combines attention module to improve features extracted by CNN [32], and
utilizes a convLSTM [33] to obtain temporal characteristic. Then, convLSTM [33] is em-
ployed to model the temporal characteristic of this sequential issue, which is completed by
merging memory units with gated operations. Finally, saliency maps of all frames are sum-
marized as video saliency map. In addition, ACLNet uses the first five convolution blocks
of VGG16 [34] and removes pool4 and pool5 layers to preserve more spatial details [22].
Saliency map can be expressed as

Si = fs(Fi), (1)

where Si refers to saliency map of the i-th frame. fs(·) represents saliency algorithm.

2.3. Image Patch Segmentation

To make ease of PEA detection, saliency regions are segmented into image patches,
which is shown in Figure 7. First, the saliency map of each frame is binarized. In this
work, we adopt grayscale transformation to obtain a appropriate threshold. The saliency
regions below the threshold are ignored. All bright regions in enhanced map are clipped
into patches. We utilize 72 × 72 as patch size, in accordance with the input patch size of our
PEA detection module. To minimize the number of image patches, the connected regions
in the binary image are framed by smallest circumscribed rectangles. Ri represents the
binary images with minimum rectangle. The binary image marked with 72 × 72 square is
denoted as Bi. All clipped image patches are grouped for PEA detection. The relationship
between the original image marked with 72 × 72 square and image patches is calculated
as follows:

{Oij , j ∈ [1...N]} = Pij, (2)

where Oi represents the original images marked with 72 × 72 square. Oij denotes the j-th
original image marked with 72 × 72 square, respectively. N (j ∈ [1...N]) is the total number
of original images marked with 72 × 72 square. Pij refers to all the clipped image patches
of the video and is grouped for PEA detection.
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Figure 7. The process of image patch segmentation.

2.4. PEA Detection

To detect four typical types of PEAs, we utilize our DenseNet for PEA Recognition
(Dense Net-PR) [1]. The specific structure of the DenseNet-PR is shown in Figure 8. First,
Dense Block contains many layers, where the size of feature maps of each layer is the
same. A feedforward fashion is utilized to establish connections between layers. The input
of each layer is the feature maps of all previous layers, and the output feature maps of
each layer are delivered to all subsequent layers. The nonlinear transformation function
between layers is composed of Batch Normalization (BN), a rectified linear unit and a 3 × 3
convolution. Low computational complexity of the algorithm can be achieved by inserting
a 1 × 1 convolution as the bottleneck layer before 3 × 3 convolution. The essence of this
operation is to decrease the number of input feature maps. Additionally, we integrated the
3 × 3 convolution into a 3 × 3 and a 1 × 1 pointwise convolution to learn deeper features
of feature channel. Second, we inserted a Squeeze and Excitation (SE) Block between
each Dense Block and the transition layer to highlight vital characteristics of training
set. Because this process also reused critical features of the transition layer, recognition
accuracy is improved. Third, the transition layers are composed of a BN layer, a 1 × 1
convolutional layer and a 2 × 2 average pooling layer, where the 1 × 1 convolutional layer
can decrease the number of feature maps. Finally, we utilize softmax classifier to return a
list of probabilities. The label with the largest probability is chosen as the final classification.

The DenseNet-PR alleviates the vanishing-gradient problem, enhances feature propa-
gation and greatly reduces the number of parameters. Based on the DenseNet-PR archi-
tecture, we randomly choose 50,000 ground-truth PEA samples to individually train four
types of PEA recognition models from our subject-labeled database, which is composed of
324 compressed videos containing various PEAs [1]. The ratio of training sets and testing
sets is 75:25 in these samples. Stochastic Gradient Descent (SGD) is adopted and the batch
size is 256. The momentum is set to 0.9000. 0.0001 is the value of weight decay. The learning
rate is adjusted following the schedule in [35] and its initial value is 0.1. The weight is
initialized according to [35]. The depth and width of the DenseNet-PR network are set to
46 and 10, respectively. Based on the DenseNet-PR network, we individually trained four
types of PEA recognition models to detect the presence of PEAs in image patches. It is
worth mentioning that multi-objective classification is not utilized here because different
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types of PEAs may be coexist in one patch. Finally, based on the above models, a list of
probabilities of each 72 × 72 patch are obtained to measure the PEA intensities, namely, Iij.
Then, we can calculate the intensity of each PEA for a video sequence. We calculate the
PEA intensity value of each patch and assume that the intensity of each pixel in the patch
is equal to the intensity of the patch. For a few pixels that belong to overlapping patches,
we use their average intensity values as the intensity values of these pixels. Finally, the
intensity of each PEA of each video is calculated as follows:

Iframek
=

1
Npixel

Npixel

∑
n=1

Iij, (3)

IVk =
1

Nframe

Nframe

∑
n=1

Iframek
, (4)

where Npixel refers to the total number of pixels in the saliency region of each frame. Iframek
denotes the intensity value of the k-th type of PEAs per frame. Nframe is the total number
of video frames. IVk represents the intensity values of the k-th type of PEAs of each video,
respectively.

Figure 8. The structure of the DenseNet-PR [1]. (© 2020 IEEE)

2.5. Video Quality Prediction

To improve the generalization ability of our proposed SAAM metric, we design
an ensemble model using Support Vector Regression (SVR) model based on Boostrap
Aggregating (Bagging) as shown in Figure 9.

Figure 9. SVR model based on bagging.

After obtaining the intensity values of PEAs, ensemble learning model is adopted to
map the intensity values of four types of artifacts to MOS|DMOS values. First, for anyone
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selected VQA database, we form a complete data set D by matching the intensity values of
four types of artifacts to MOS|DMOS, which can be expressed as

D = {(IV1 , MOS1|DMOS1), (IV2 , MOS2|DMOS2), ..., (IVk , MOSm|DMOSm)}, (5)

where MOSm|DMOSm represents the quality score MOS|DMOS of the m-th compressed
video. Second, the date set is randomly split into training set DTrain and testing set DTest at
a ratio of 80:20, and 10 sub-training sets [T1, T2, ..., T10] are resampled from the DTrain. Note
that the sub-training set [T1, T2, ..., T10] and DTrain contain the same number of samples.
Then, we train 10 SVR models as the base learners through [T1, T2, ..., T10], that is, the
intensity values of four types of PEAs for video sequences are fed into SVR, and then SVR
output a predicted value for each video. In this work, we chose the radial basis function
as the kernel of SVR due to its better performance. Next, DTest is utilized to evaluate the
performance of these base learners by the PLCC between the predicted quality scores and
the true quality scores. Finally, the final prediction result QV is obtained as follows:

QV = f(∑ ∑ Iij) =
L

∑
l=1

ωlyl(x), (6)

L

∑
l=1

ωl = 1 ωl ≥ 0, (7)

where f(·) refers to summation operation. x represents DTest. yl(x) refers to the prediction
output of the l-th base learner. L is the number of base learners, which value is 10. ωl
denotes the weight of the l-th base learner. In this work, we set the weights of based
learners with the top three PLCC to 1/3, and the weights of the remaining base learners
are set to 0.

3. Experiments and Discussions

To evaluate the performance of our proposed algorithm, it is examined on four publicly
and widely used Video Quality Databases (VQD): LIVE, CSIQ, IVP and FERIT-RTRK.
Among them, the compressed videos generated by H.264 encoder are utilized here to
evaluate the performance of SAAM. The LIVE VQD contains 40 compressed videos with
a resolution of 768 × 432 [30]. The CSIQ VQD contains 36 compressed videos with a
resolution of 832 × 480 [36]. The IVP VQD contains 40 compressed videos with a resolution
of 1920 × 1088 [37]. The FERIT-RTRK VQD consists 30 compressed videos with a resolution
of 1920 × 1080 [38]. Based on the compressed videos from the four VQA databases, we
individually form four complete data sets by matching the intensity values of four types of
artifacts to their MOS|DMOS as described in Section 2.5.

To show the superiority of our method, it is compared with typical video quality met-
rics including PSNR, SSIM [3], MS-SSIM [39], STRRED [4], SpEED-QA [5], BRISQUE [40],
NIQE [41] and VIIDEO [11]. Among them, PSNR, SSIM and MS-SSIM are FR metrics.
STRRED and SpEED-QA are RR metrics, and BRISQUE, NIQE and VIIDEO are NR met-
rics. All methods are compared in terms of the PLCC and SRCC, which characterize the
correlation between VQA results and MOS|DMOS values. The results are reported in
Tables 2 and 3. Among them, as our SAAM metric is based on machine learning, to fairly
verify its performance, the result of our metric is the median value of 15 repeated processes.
In addition, the overall performance of each VQA algorithm on the four video databases
is listed in the last column of the tables, expressed by weighted PLCC and SRCC. The
weight of each database depends on the number of distorted videos in the database, and
the optimal performance is given in bold.
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Table 2. Performance comparison in terms of PLCC.

Methods LIVE CSIQ IVP FERIT-RTRK Overall

PSNR 0.5735 0.8220 0.7998 0.7756 0.7383
SSIM 0.6072 0.8454 0.8197 0.6870 0.7406

MS-SSIM 0.6855 0.8782 0.8282 0.8724 0.8105
STRRED 0.8392 0.8772 0.5947 0.8425 0.7823

SpEED-QA 0.7933 0.8554 0.6822 0.6978 0.7586
BRISQUE 0.2154 0.5526 0.2956 0.7653 0.4335

NIQE 0.3311 0.5350 0.3955 0.5817 0.4505
VIIDEO 0.6829 0.7211 0.4358 0.3933 0.5651
SAAM 0.9023 0.9244 0.8717 0.9499 0.9091

Table 3. Performance comparison in terms of SRCC.

Methods LIVE CSIQ IVP FERIT-RTRK Overall

PSNR 0.4146 0.8028 0.8154 0.7685 0.6928
SSIM 0.5677 0.8440 0.8049 0.7236 0.7328

MS-SSIM 0.6773 0.9465 0.7917 0.8508 0.8107
STRRED 0.8358 0.9770 0.8595 0.8310 0.8761

SpEED-QA 0.7895 0.9639 0.8812 0.7945 0.8587
BRISQUE 0.2638 0.5655 0.1051 0.7574 0.3961

NIQE 0.1769 0.5012 0.2351 0.4855 0.3362
VIIDEO 0.6593 0.7153 0.1621 0.3177 0.4667
SAAM 0.8691 0.8810 0.8413 0.9429 0.8796

From the tables, our algorithm delivers strong competitive performance on these
datasets. First, the PLCC of the proposed SAAM approach outperforms all of compared
methods on the four databases. Second, on the CSIQ database, the SRCC of the SAAM
outperforms that of PSNR, SSIM, BRISQUE, NIQE and VIIDEO and is competitive with
the performance of MS-SSIM, STRRED and SpEED-QA. Finally, the overall performance
of the SAAM is better than all of compared VQA methods. The experimental results also
show that there is a strong correlation between the PEA intensity and subjective quality of
a compressed video, and the PEAs affect the viewing experience of end users.

To further verify the generalization of the proposed algorithm, we also studied cross-
dataset evaluation in Table 4. It can be observed that when CSIQ VQD is used as the
testing set, the performance of using LIVE VQD as the training set is relatively better
than that of utilizing FERIT-RTRK VQD as the training set. The most likely reason may
be that the resolutions of LIVE and CSIQ databases are very close, but the difference of
resolutions between FERIT-RTRK and CSIQ VQD is relatively bigger. In addition, the
subjective quality scores provided by LIVE and CSIQ VQD are MOS values, while the
scores provided by FERIT-RTRK VQD are DMOS values. Therefore, different scoring
standards of the subjective quality scores may also cause differences in cross-database
performance. Generally, the performances of image processing algorithms are usually not
very good in cross-database performance verification, especially considering that the video
resolutions and contents of various databases are different. At this point, our performance
of cross-database experiment is acceptable. It also shows that our proposed model has
good generalization and robustness. In our algorithm, we can adjust the PEA recognition
models to further improve the recognition accuracy of artifacts and increase the correlation
between SAAM results and MOS|DMOS, which will become our next work.

Table 4. Cross-database validation.

Training Set Testing Set PLCC SRCC

LIVE CSIQ 0.7107 0.7290
FERIT-RTRK CSIQ 0.4437 0.5302
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Besides, we also perform ablation experiments on CSIQ VQD to verify the advantages
of saliency detection. We crop the whole frame into patches for PEA detection, and the
size of data is 1.11 GB. We only retain the patches containing saliency regions for PEA
detection, the size of data is reduced to 0.37 GB and the storage is saved by 66.49%. The
time consumption of PEA detection is reduced from 6.47 h to 1.50 h, saving by 76.82%, as
shown in Table 5.

Table 5. Ablation experiments on the CSIQ VQD database.

Data Size Time of PEAs Detection PLCC SRCC

Without Saliency 1.11 GB 6.47h 0.9557 0.8929
With Saliency 0.37 GB 0.50h 0.9244 0.8810

4. Conclusions

In this paper, we propose a NR-VQA metric called SAAM, based on the intensity
values of four typical types of artifacts (i.e., blurring, blocking, ringing and color bleeding).
To the best of our knowledge, this is the first work combining video saliency with artifacts
detection to predict the quality of compressed video. The experimental results demonstrate
that the proposed algorithm delivers competitive performance with common video quality
metrics in different datasets. As future work, we plan to design a NR-VQA algorithm
based on natural video statistics, which can detect more types of video PEAs.
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Abstract: The number of wheat ears is an essential indicator for wheat production and yield estima-
tion, but accurately obtaining wheat ears requires expensive manual cost and labor time. Meanwhile,
the characteristics of wheat ears provide less information, and the color is consistent with the back-
ground, which can be challenging to obtain the number of wheat ears required. In this paper, the
performance of Faster regions with convolutional neural networks (Faster R-CNN) and RetinaNet to
predict the number of wheat ears for wheat at different growth stages under different conditions is
investigated. The results show that using the Global WHEAT dataset for recognition, the RetinaNet
method, and the Faster R-CNN method achieve an average accuracy of 0.82 and 0.72, with the
RetinaNet method obtaining the highest recognition accuracy. Secondly, using the collected image
data for recognition, the R2 of RetinaNet and Faster R-CNN after transfer learning is 0.9722 and
0.8702, respectively, indicating that the recognition accuracy of the RetinaNet method is higher on
different data sets. We also tested wheat ears at both the filling and maturity stages; our proposed
method has proven to be very robust (the R2 is above 90). This study provides technical support and
a reference for automatic wheat ear recognition and yield estimation.

Keywords: RetinaNet; deep learning; transfer learning; wheat ears; Global WHEAT

1. Introduction

Wheat is the largest grain crop in world trade [1,2]. Recently, with population growth
and social and economic development, the demand for wheat has increased. However,
due to extreme weather, pests, crop diseases, and yield, the wheat supply is unstable [3].
Therefore, maintaining a high and stable wheat yield is essential to improving people’s
living standards, maintaining social stability, and promoting the development of the
national economy [4]. The number of wheat ears is an important factor that directly affects
wheat yield [5–7]. Therefore, rapid and accurate identification and statistics of wheat ears
are fundamental for crop growth monitoring and yield estimation [8]. Traditional counting
methods rely on field surveys, sampling, and weighing. These methods are inefficient,
costly, and difficult to determine accurate yield estimation for large areas, severely limiting
their application for breeding, monitoring plant performance in crop management, or
predicting grain yield. No model has been able to perform consistently across different
wheat reproductive stages and identify the derived wheat spikes well. Additionally, some
spike counting methods are based on wheat spike data collected at maturity and other
traits, which are not suitable for early yield prediction [9]. In recent years, many studies
that apply deep learning techniques [10] to unmanned aerial systems [11,12] for wheat
spikelet detection under field conditions have received much attention.
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In recent years, with the development of artificial intelligence [13], the target detection
models built using deep learning, e.g., Faster regions with convolutional neural networks
(R-CNN), has far surpassed traditional target detection techniques in feature representa-
tion, reaching top performance in terms of detection accuracy and speed [14]. However,
deep learning techniques are limited by a large number of training datasets and training
equipment. Since the color, shape, and awn of wheat ears change with growth, the same
wheat varieties differ in performance in different growing regions. Thus, it is crucial to
study a deep learning model for regional wheat detection. The current Faster R-CNN
method achieves better detection accuracy in wheat ear detection [15], but its detection
speed cannot meet the integration requirements in the unmanned aerial vehicle (UAV)
system. Therefore, it is of great significance and application value to develop a wheat
detection model with high detection accuracy, migration ability and be integrated into the
UAV system.

The target detection models built using deep learning are mainly divided into two
categories: two-stage and one-stage. The most representative target detection algorithms for
two-stage detectors are Fast R-CNN [16], Faster R-CNN [14], and the most representative
target detection algorithms for one-stage detectors are YOLO (You Only Look Once) [17,18]
and RetinaNet [19]. Two-stage detectors are usually slower than one-stage detectors. In
two-stage detectors, the first step determines the regions (regions of proposals) that might
contain a target to be detected (location). The second step performs a detailed identification
of the target contained in each candidate region (classification) [14]. RetinaNet combines
the advantages of multiple target recognition methods, especially the“anchor” concept
introduced by Region Proposal Network (RPN) [14], and the use of feature pyramids
in Single Shot Multibox Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21].
Retinanet has a wide range of applications, such as ship detection in remote sensing images
of different resolutions [22], identification of storm drains and manholes in urban areas [23],
fly identification [24], and rail surface crack detection [25].

The future development trend of the image-based automatic recognition method is to
obtain wheat ears and yield data in real-time over a large area. Using machine learning
techniques, the image-based recognition method exploits the color, texture, and shape of
the target image to encode and represent the image. Thus, image feature representation is
essential [26]. However, these features are different in different environmental conditions,
limiting the effectiveness of these features. For example, [27] exploited color consistency
coefficient, gray symbiosis matrix, and edge histogram to construct wheat ear feature
matrix. The authors of [28] used scale-invariant feature transform (SIFT), and Fisher vector
(FV) features to identify the wheat ears at the heading stage accurately. The authors of [9]
created a binary image through the local maximum value of the pixel and the variance of the
nearest neighbor pixel to calculate the number of wheat ears in the image. The experimental
results of these studies may suffer from degradation due to different recognition angles
of the wheat ears being photographed, the period of growth of the ears, and the field
environment in which the wheat ears were photographed. As a branch of machine learning,
current deep learning techniques can solve this problem for wheat recognition. Deep
Learning [29] exploits a perceptron containing multiple hidden layers, and it transforms
the features of samples from the original space to a new feature space based on the principle
of learning hierarchical data. In this process, the hierarchical feature representation was
automatically learned and obtained, and the accuracy of recognition improved [29]. The
main advantage of deep learning techniques is that the characteristics of the input data are
automatically learned, overcoming the bottleneck in many intelligent applications. Thus,
the use of deep learning techniques has become the frontier in the field of crop phenotypes.

The current application of drones combined with deep learning technology has greatly
promoted the development of precision agriculture. In recent years, some meaningful
research [7–9,15,27,28,30–42] has emerged. These studies have used RGB (red, green, blue),
multispectral, hyperspectral, and thermal infrared data acquired by UAV and CNN to
evaluate the phenotypic characteristics of citrus crops [38], obtain key points of plants/plant

88



Sensors 2021, 21, 4845

leaves [39], plant stress analysis and plant disease identification [40,41]. The research on
automatic recognition and counting wheat ears with deep learning technology has made
great progress [8,15,37]. Hasan et al. [8] used R-CNN to identify and count wheat ears.
Madec et al. [15] used Faster R-CNN to identify wheat ears in RGB images with different
spatial resolutions. Sadeghi–Tehran et al. [37] proposed a visual recognition method based
on linear iterative clustering and deep CNN to automatically identify and count wheat
ears in the images obtained under natural field conditions. The research works [8,15,37]
achieved a lower detection speed than [30,42], and cannot be integrated into UAV systems
for real-time detection.

To our knowledge, there are no other systematic, quantitative assessments of how
training sample size and sample selection methods affect the results of wheat identification
models. This paper aims to: (1) Obtain a model with high recognition accuracy at different
growth stages; (2) evaluate the impact of training samples on Faster-RCNN and RetinaNet
in combination with transfer learning; (3) evaluate the detection speed of Faster-RCNN
and RetinaNet. To achieve these goals, there are many different types of wheat ears in
different growth environments considered in this paper, and a model suitable for regional
wheat identification is proposed. The idea of transfer learning is integrated into the
proposed model to explore its performance in different training samples, wheat fertility
training samples, and obtain the recognition performance of the model in wheat ear images.
Specifically, images of wheat ears in different fertility periods collected in the field are
used in combination with the wheat ears recognition image database (Global WHEAT).
Different deep learning models based on different data samples of wheat ears in different
fertility periods are trained by labeling wheat ears. The recognition accuracy and detection
speed of these models are then compared and analyzed. The model proposed in this paper
achieves high detection accuracy and migration capability, and it can be integrated into
UAV systems.

2. Materials and Methods

2.1. Data Acquisition and Processing
2.1.1. Global Wheat Data Acquisition

Global Wheat Head Detection (Global WHEAT) [43] obtains data from the wheat
ear recognition image database (data source: https://www.kaggle.com/c/global-wheat-
detection/data, accessed on 12 June 2020). The database was carefully produced by seven
countries, nine research institutes, and more than ten phenotyping experts in a year. This
database is composed of train.zip, test.zip, sample_ssubmission.csv, train.csv, and other
files. The information contained in each file is listed in Table 1.

Table 1. The information of the data files in the Global WHEAT database.

Files Information

train.csv the training data
sample_submission.csv a sample submission file in the correct format

train.zip training images
test.zip test images

The Global WHEAT data set contains a total of 3422 images, and each image has a size
of 1024 × 1024 pixels. The Ground Sampling Distance (GSD) of the GWHD dataset ranges
from 0.28 to 0.55 mm [43]. Part of the image data is shown in Figure 1.
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Figure 1. Part of the image data in the Global WHEAT database.

2.1.2. Digital Image Data Acquisition

The digital image of wheat in the filling stage and mature stage are obtained by a
high-definition digital camera. In clear and windless conditions, the backlit hand-held
Sony DSC-H9 digital camera was used for vertical shooting. The shooting height was
approximately 1 m higher than the top of the wheat canopy, and the shooting area was
approximately 0.75 M2 (5 rows of wheat with a spacing of 15 cm). Each digital image has
3088 × 2056 pixels, and the horizontal and vertical resolution is 72 dpi. A total of 715
images are taken. Among these 715 images, 365 images present the wheat ears in the filling
stage and 350 in the mature stage with an approximate ratio of 1:1. The digital images of
wheat ears in the partial filling stage and mature stage are illustrated in Figure 2.

According to the number of images, three groups of digital images of wheat in the
filling and mature stages are set as the training data set, and the number of images in each
group is 50, 100, and 150, respectively. The denotations of the three situations are listed
in Table 2, where Filling Stage Model (FSM) and Mature Stage Model (MSM) represent a
wheat data set at the grain filling stage and mature stage.

According to the number of wheat ears in each image, the test data set is divided into
three groups, and the number of images in each group is 30. The detailed information
of the training data set and the test data set is listed in Tables 2 and 3. Testing the same
number of images ensures that each model has the same evaluation benchmark, and the
test set is 180 images in total. The ratio of 90 images for each fertility period is 1:1, which
guarantees the reliability of the results.
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(a) (b) 

Figure 2. Digital images of wheat in key growth stages. (a) Partial Filling stage; (b) Mature stage.

Table 2. Training database.

Growth Period Database Number of Images Per Group Number of Wheat Ears Per Piece

Filling stage
FSM50 50 6409

FSM100 100 12,733
FSM150 150 19,275

Mature stage
MSM50 50 6684

MSM100 100 13,404
MSM150 150 20,132

Table 3. Testing database.

Growth Period
Number of Wheat
Ears in Each Image

Number of Images Per
Group

Number of Wheat
Ears Per Piece

Total Number of
Wheat Ears Per Piece

Filling stage
less than 50 30 1125

681450–100 30 2458
more than 100 30 3231

Mature stage
less than 50 30 1128

669950–100 30 2116
more than 100 30 3455

2.1.3. Data Processing

(1) Image marking

To obtain better recognition results, many deep learning models require annotated
training data sets. Although image-based high-throughput crop phenotyping systems
already exist, such as Field Scanalyzer [44], which generates a large amount of image data
every day, the annotated images with ground truth values are not available among the
obtained crop image data. Therefore, the obtained images must be labeled to generate a
training data set.

LABELIMG [45] is a free and open-source graphic image annotation tool
(https://github.com/tzutalin/labelImg, accessed on 13 June 2020) that grants simultane-
ous access to different users and is available to all institutions. The LABELIMG tool outputs
an annotation file with an interactive drawing of a bounding box containing all the pixels
of the wheat ears. After the digital image is obtained, theannotation tool of LABELIMG can
be used to draw bounding boxes around each identified wheat ear in the images. Specific
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information for each image is shown in Figure 3; Figure 3a exhibits the position of wheat
ears in the image; Figure 3b illustrates the name of the target, and Figure 3c indicates the
shape of the image. The bounding boxes contain all the pixels of the wheat ears, however,
sometimes the bounding box can be too large and includes background lawns. If possible,
the boxes also contain a small portion of the wheat stem. When the identification results
from one of the developed models were compared, it was found that a few wheat ears were
forgotten by the operator during the interactive labeling process. Therefore, the images
were reprocessed with greater care.

Figure 3. Wheat ear label image data. (a) the position of wheat ears in the image; (b) the name of the target; (c) the shape of
the image.

Each labeled image has an additional text file containing the coordinates of the anno-
tated bounding boxes. In this file, the boxes are stored as a 4-tuple (xmin, ymin, xmax, ymax),
where (xmin, ymin) and (xmax, ymax) denote the top left corner and the lower right corner of
the box, respectively.

(2) Denoising and enhancement

During the shooting process, the wheat image is easily affected by the changes in
natural light, growth environment, shaking of the shooting equipment, and the unstable
focus of the lens. Meanwhile, the obtained image may contain some noise caused by
random signals in the process of transmission [34]. Therefore, the method of data denoising
is exploited to remove the noise points in the obtained image and reduce the influence of
noise on the recognition results. Firstly, the median filtering method with a kernel of 5 is
used to remove the noise in the wheat image. The specific denoising process exploits the
Python language to call the medianBlur function provided by the OpenCV library, and the
parameter ksize is set to 5 [34].

In the training process, the training samples cannot always reflect all the information
for each real target. Thus, the image data is enhanced by different transformations to
improve the training data and generalization ability. The diversity allows the model to be
applied to various situations and has more robustness. Additionally, most deep learning
algorithms require a large amount of training data to obtain accurate recognition results.
Although this work obtained approximately 3000 images, there were not enough to train
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and validate the model, emphasizing the need for data enhancement. In order to address
this issue, programs have been written in Python language to shrink, enlarge, and flip
the original image [34]. In order to simulate the change of light, the HSV (hue, saturation,
and value) [46], color space, and various conversions are exploited, such as linear change
of hue, linear change of saturation, and linear change of brightness. PIL (Python Image
Library) [47] is a third-party image processing library provided by the python (https://
python-pillow.org/, accessed on 10 September 2020) language. This library is featured with
extensive file format support, efficient internal representation, and strong image processing
capabilities. It provides a solid foundation for general image processing tools. The function
FLIP_LEFT_RIGHT can flip an image horizontally. Specifically, a Python program is
written to call the transpose function provided by the PIL library, and the parameter of
FLIP_LEFT_RIGHT is used. Based on this, each HSV channel’s value is changed linearly
and randomly; the rand function provided by the Numpy library randomly returns a value
between 0 and 1 for multiplication. The image denoising and data enhancement effects are
illustrated in Figure 4.

 
Figure 4. Image denoising and data enhancement. (a) original image; (b) filtered image; (c) enhanced image.

2.2. Method

The application of deep learning techniques has greatly contributed to the develop-
ment of precision agriculture. Faster R-CNN has been widely applied and used in maize
tassels detection [35] and wheat ears recognition [15]. RetinaNet combines the advantages of
multiple target recognition methods, especially the “anchor” concept introduced by Region
Proposal Network (RPN) [14], and the use of feature pyramids in Single Shot Multibox
Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21]. Retinanet has a wide range
of applications, such as ship detection in remote sensing images of different resolutions [22],
identification of storm drains and manholes in urban areas [23], fly identification [24], and
rail surface crack detection [25]. The experiment described in this paper was conducted on
a computer equipped with Intel® Xen(R) W-2145 CPU and NVIDIA GeForceRTX 2080Ti.
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The Keras library based on the Tensorflow environment in Windows was employed. Addi-
tionally, the Python language was employed to realize the automatic recognition of wheat
ears based on Faster R-CNN and RetinaNet and verify the recognition accuracy.

2.2.1. Faster R-CNN

As a typical two-stage target recognition algorithm, Faster regions with convolutional
neural networks (Faster R-CNN) [14] has been widely applied to many fields since it was
proposed. Faster R-CNN is an improved version of Fast-RCNN [16], which uses RPN
network (Region Proposal Network) instead of Selective Search to generate candidate
boxes. Additionally, the anchor concept is introduced and can be used in future target
recognition models.

As shown in Figure 5, Faster R-CNN consists of four parts:

(1) Convolution layer.

 

Figure 5. The diagram of the Faster R-CNN framework.

As a CNN network for target recognition, the convolution layer in Faster R-CNN
uses ResNet50 as the feature extraction network. The network in this layer extracts the
feature map of the image, which is passed to the subsequent RPN layer and the fully
connected layer;

(2) RPN layer.

This layer is used to generate target candidate regions, eliminating the time consumed
by the process of Selective Search (pre-SS) [48] that generates candidate frames. Faster
R-CNN uses an RPN network that shares part of the weight with the recognizer to generate
candidate frames for the image directly, and then perform classification and position
regression based on the candidate frames obtained by RPN;

(3) Region of Interest (ROI) pooling layer [14].

This layer uses the feature map and suggestion box information output by the RPN
layer to map to feature maps of the same size;

(4) Recognition.

The feature map of the candidate target area is used to calculate the category of the
candidate target area, and the coordinate frame position of the target is regressed again to
obtain the final precise position of the target [49]. The score threshold of 0.5 was used to
determine whether the bounding box contains wheat ears. In order to limit the overlap
between bounding boxes containing the same wheat ear, the Intersection-over-Union (IOU)
threshold was set to 0.5 so that only one bounding box was selected [28].

94



Sensors 2021, 21, 4845

2.2.2. RetinaNet

Retinanet combines the advantages of multiple target recognition methods, especially
the “anchor” concept introduced by RPN and the use of feature pyramids in Single Shot
Multibox Detector (SSD) [20] and Feature Pyramid Networks (FPN) [21]. The structure
of RetinaNet is composed of three parts: a convolutional neural network for feature
extraction and two sub-networks for classification and box regression [19]. The structure
is shown in Figure 6, where Figure 6a represents the backbone network, i.e., ResNet50;
Figure 6b illustrates that FPN is used as a decoder to generate a multi-scale convolutional
feature pyramid, and Figure 6c shows that two subnets are used for classification and
bounding box regression. Based on feature mapping, two sub-networks of classification
and box regression are constructed through simple convolution operations. Specifically,
the classification sub-network performs object classification, and the box regression sub-
network is used to return the position of the bounding box. The advantage of FPN is
that the hierarchical structure of the deep convolutional network can be used to represent
multi-scale objects to help the recognizer create a better prediction of the position.

Figure 6. The structure of RetinaNet. (a) Backbone network; (b) decoder; (c) subnet).

This paper uses ResNet50 to extract image features [50]. Compared with the two-stage
recognition method, the low accuracy of the one-stage target recognition is mainly caused
by the extreme imbalance between the foreground and the background during the training
process of the dense recognizer, which creates a large number of negative samples during
the training process [19]. The focus loss is used to solve the problem of extreme imbalance
of categories; it is implemented by modifying the standard cross-entropy, reducing the loss
assigned to well-classified examples [19]. Under the supervision of focus loss, the retina
can achieve significant improvements on the universal object recognition benchmark. It
is expressed as Equation (1) and has been used to improve detection accuracy [19]. The
definition of an a-balanced variant of the focus loss is:

FL(pt) = −αt(1 − pt)
y log(pt) (1)

where αt and γ are hypermeters. αt ∈ [0, 1] is the weighting factor to address class
imbalance; parameter γ smoothly adjusts the rate at which easy examples are down-
weighted [19]. For a convenient notation, pt is defined as follows.

pt =

{
p i f y = 1

1 − p otherwise
(2)

where p ∈ [0, 1] is the probability estimated by the model, and y = 1 specifies the
ground truth.
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2.2.3. Recognition Accuracy Evaluation Index

The accuracy of wheat ear recognition is evaluated by precision and recall [51,52]. Pre-
cision measures the accuracy of the algorithm, recall measures the integrity of recognition,
and F1-score is used to balance precision and recall. The classifier with a high F-score is now
shown to have good recall and accuracy. The three indicators can be calculated as follows:

Precision =
TP

FP + TP
(3)

Recall =
TP

FN + TP
(4)

F1 − score = 2 × Precision × Recall
Precision + Recall

× 100% (5)

If the predicted bounding box overlaps with the marked ear bounding box and exceeds
the IOU threshold (set to 0.5 in this paper), then the predicted bounding box represents
the wheat ear sample; otherwise, it is the background sample. TP indicates the number of
correctly classified wheat ear samples, and FN indicates the number of wrongly classified
wheat ear samples. FP indicates the number of background samples that are wrongly
classified, and TN indicates the number of background samples that are correctly classified.

Average Precision (AP) balances the precision and recall values, reflecting the model’s
performance [53]. Considering the accuracy as the ordinate and the recall as the abscissa, a
Precision and Recall (PR) curve can be obtained; the area under the curve is AP.

AP =
∫ 1

0
P(R) (6)

Additionally, indicators such as the mean absolute error (MAE), the root mean squared
error (MSE), the relative RMSE (rRMSE), bias (BIAS), and coefficient of determination (R2)
are used to evaluate the result of wheat ear recognition. MAE and rRMSE represent the
accuracy of recognition, and MSE represents the robustness of the recognition model. The
lower the scores of RMSE, rRMSE, and MAE, the better the performance of the model.
These indicators can be calculated as follows:

RMSE =

√
1
N

n

∑
k=1

(Truthk − Predictedk)
2 (7)

rRMSE =

√√√√ 1
N

n

∑
k=1

(
Truthk − Predictedk

Truthk
)

2
(8)

BIAS =
1
N

n

∑
k=1

(Truthk − Predictedk) (9)

MAE =
1
N

n

∑
k=1

|Truthk − Predictedk| (10)

R2 = 1 −

n
∑

k=1
(Truthk − Predictedk)

2

n
∑

k=1
(Truthk − Truthk)

2
(11)

In Equations (7)–(10), N represents the number of test images for the model, the actual
number of wheat ears, the number of identified wheat ears of the k-th image, and the
average actual number of wheat ears, respectively.
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3. Results

3.1. Analysis of the Recognition Results Obtained by Different Methods on the Global WHEAT Dataset

In order to evaluate the performance of the method used to identify wheat ears in
this paper, two target recognition algorithms, Faster R-CNN and RetinaNet, as shown in
Figures 5 and 6, are used. These three models are trained on the same data set (Global
WHEAT data set), and the mean average precision (mAP) results of the test data set are
shown in Figure 7. Since the wheat ear is the only identification target, mAP is equal to
average precision (AP).

 
Figure 7. The AP value of Faster R-CNN and RetinaNet for identifying wheat ears.

A total of 90,000 iterations were executed to train the model, where 10,000 iterations
were executed to calculate the AP value of the Faster R-CNN and RetinaNet (IOU set
to 0.5). Each model uses the VOC data set for pre-training and initialization. The AP
value and loss of Faster R-CNN and RetinaNet for identifying wheat ears are shown in
Figure 7. As the number of iterations increases, the accuracy of the model gradually
increases. When the number of iterations reaches 40,000, the accuracy of the model reaches
its maximum. The Faster R-CNN model achieves high accuracy from the beginning, and
the AP value does not increase significantly as the number of iterations increases. The
AP value of the RetinaNet increases significantly between 30,000 to 40,000 iterations and
then becomes stable to the maximum. This result is related to the two-part detection of
Faster R-CNN. In Faster R-CNN, the first step generates region proposals that may contain
a target to be localized, and the second step performs a fine distinction between the specific
targets contained in each candidate region. Therefore, high accuracy is achieved at the
beginning of the iterative process. By contrast, RetinaNet performs one-stage detection,
and it directly generates the position and category information of the target that derived
from the object. This method is prone to category classification errors and inaccurate
target location information at the beginning. Through continuous iterative training, the
focal loss mechanism of RetinaNet continuously and rapidly reduces the loss value, and a
stable detection result can be obtained after 35,000 iterations. Additionally, it can be seen
from Figure 7 that the AP value of the RetinaNet is higher than that of the Faster R-CNN,
indicating that the RetinaNet achieves the best AP; this is because RetinaNet extracts
multi-scale semantic features, which greatly improve the AP value. The RetinaNet model
has a strong advantage in wheat ear classification and box regression using derivatives.

Though the Global WHEAT data set contains many types of wheat ear data, there are
many wheat varieties globally, and even the same wheat varieties show great differences
due to different growth environments. To better evaluate the performance of the Faster
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R-CNN and RetinaNet models trained on the Global WHEAT data set, the wheat images
collected in the field during the grain filling phase and the mature stage were used as
the test set. Using the number of wheat ears identified by different models and obtained
by manual methods to calculate the RMSE, rRMSE, MAE, Bias, and R2, the results are
shown in Figure 8.

 
Figure 8. Wheat ear recognition accuracy of Faster R-CNN and RetinaNet models on the test set with images collected in (a)
in filling stage; (b) in mature stage.

The results in Figure 8 show that R2 of the Faster R-CNN and RetinaNet models on
the test data set with images collected in the filling stage are 0.792 and 0.907, respectively.
The R2 of the RetinaNet is 14.5% higher than that of the Faster R-CNN, indicating that
the RetinaNet model achieves the highest recognition accuracy for wheat ears in the
filling stage. As for recognizing the wheat ear in the mature stage, the Faster R-CNN
model achieves the R2 of 0.844, and the RetinaNet model achieves the R2 of 0.514. The
number under each image represents the number of identified wheat ears, showing that
the predicted value differs from the true value by more than 10 wheat ears. Figures 8 and 9
indicate that Faster R-CNN and RetinaNet models trained on the Global WHEAT dataset
do not transfer well to the field for wheat ears identification. According to [43], most of
the images fromthe Global WHEAT dataset are acquired before the appearance of head
senescence. It also demonstrates the limitations of the Global WHEAT dataset. Therefore, it
is important to obtain a model that can migrate to the field and perform with high accuracy
for wheat ears of different fertility stages.
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Figure 9. The predicted number of wheat ears (partial) by the Faster R-CNN and RetinaNet models on the test data set.

3.2. Results and Analysis of Wheat Ear Recognition Based on Transfer Learning
3.2.1. Recognition Results and Analysis of Different Numbers of Training Samples after
Transfer Learning

In order to study the influence of training samples on the model’s performance in
the process of transfer learning, the Faster R-CNN and RetinaNet models trained on the
Global WHEAT dataset were used as the initial models for transfer learning. Each model
was trained 90,000 times. The samples in the test set were used to verify the accuracy of
these models, and the results are shown in Figure 10. In this figure, FFSM indicates that the
Faster R-CNN model is trained on wheat images collected in the filling stage, and FMSM
indicates that the Faster R-CNN model is trained on wheat images collected in the mature
stage. Similarly, RFSM and RMSM represent the training of the RetinaNet model on wheat
images collected in the filling stage and the mature stage, respectively. Meanwhile, 50, 100,
and 150, respectively, represent the number of training sample images.

99



Sensors 2021, 21, 4845

 

Figure 10. The performance of the models after transfer learning on the test data set with images collected in (a) filling
stage; (b) mature stage.

For different numbers of training samples, manual counting and recognition results
have a strong positive correlation. The comprehensive analysis of Figures 8 and 10 indicates
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that the recognition capabilities of Faster R-CNN and RetinaNet models have greatly
improved by transfer learning, and the accuracy of the RetinaNet for recognizing the
wheat ear in the filling stage and the mature stage is 97.77% and 98.65%, respectively.
Meanwhile, the highest accuracy of the Faster R-CNN model for recognizing the wheat
ear in the filling stage and the mature stage is 94.09% and 84.40%, respectively. Therefore,
the use of the transfer learning method to place the wheat ear images collected in the field
for model training can improve the recognition performance of the model. According
to the overall analysis results shown in Figure 10, after 50 training samples were used
for training, the recognition performance of RetinaNet and Faster R-CNN models greatly
improved compared with the initial model. However, as the number of training samples
increased, the recognition accuracy o the two models slowly improved, especially the
accuracy of the Faster R-CNN model for recognizing that the wheat in the filling stage
was slowly decreasing.

3.2.2. Recognition Results and Analysis of Transfer Learning in Different Growth Stages

The deep learning model consumes a lot of time and equipment (such as GPU) for
model training. Therefore, a recognition model with high identification accuracy for
wheat ears at different fertility stages is essential for crop yield estimation and a better
understanding of the wheat ears and canopy. This paper is based on transfer learning to
study the recognition performance of the Faster R-CNN and RetinaNet models in different
growth stages of wheat ears. For the filling state and the mature state, the R2 of the Faster
R-CNN and RetinaNet models are calculated and the results are shown in Figure 11.

 
Figure 11. The accuracy of wheat ear recognition by different models in different growth stages.

R-model0 and F-model0 in Figure 11 are two initial models trained on the Global
WHEAT dataset. It can be seen from Figure 11 that the Faster R-CNN and RetinaNet
models trained on images of wheat ears in a specific growth stage obtain good results
for identifying wheat ears in the same growth stage. For identifying wheat ears in other
growth stages, the recognition performance of the two models decreases; this is mainly
due to the change in the color and awns of wheat ears, which result in changes to wheat
features extracted by Faster R-CNN and RetinaNet and the corresponding decline in the
performance of wheat ear recognition.
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Meanwhile, it was found that the RMSM150 model achieves high recognition accuracy
for identifying wheat ears at different growth stages (R2 = 0.9434 for filling stage and
R2 = 0.9865 for mature stage), indicating that the wheat ears in the mature stage exhibit
better characteristics for recognition. Thus, the RetinaNet model achieves more robustness
in recognition performance. Although RFSM achieves a higher accuracy for recognizing
wheat ears, it does not perform as stable as the FFSM model on the test data set with
wheat ears in different growth stages. In order to have the RetinaNet model achieve higher
recognition accuracy for wheat ears in different growth stages, the combination of images
collected for wheat ears in different growth stages can be used in the future.

3.3. The Recognition Results and Analysis of RetinaNet

A comprehensive analysis of the experiments presented above indicates that the
recognition accuracy of the RetinaNet model is better than that of the Faster R-CNN model.
However, these experiments only focus on the wheat ears in a single growth stage and
do not consider the wheat ears of multiple growth stages. Therefore, the images of wheat
ears in different growth stages can be used as the training data set to study recognition
performance of RetinaNet and Faster R-CNN models. Firstly, 150 images of wheat ears in
the filling stage and 150 images of wheat ears in the mature stage were used for training.
The 300 images contain 39,407 wheat ears in total. The images of the same wheat variety
and similar shooting environment are used as test samples. As listed in Table 3, there are
180 images in total, including 13,513 wheat ears.

As for the number of wheat ears in 180 images, the relationship between the true value
and the recognition value obtained by RetinaNet and Faster R-CNN models is illustrated
in Figure 12. For RetinaNet, the slope of the linear equation between the true value and
the identification value is 0.9206. The intercept of the linear equation is 3.3608, and it
is approximate to 1, indicating that the use of the RetinaNet to identify wheat ears can
obtain a result in good agreement with the ground truth value (only 3.36 wheat ear errors,
R2 = 0.9722). Thus, the model can be used for wheat ear identification. Compared with
the RetinaNet model, the slope of the linear equation between the recognition value and
the true value of the Faster R-CNN model is 0.7106, and the intercept is 16.7735, with
R2 = 0.8702. It can be concluded from the above results that the RetinaNet method is more
suitable to identify wheat ears.

It can be seen from Table 4 that the F1-score of RetinaNet improved by 8.92% compared
with Faster R-CNN. In addition, based on the same Keras framework and operating
environment, the running time of different recognition methods was measured and used
to calculate the time needed to recognize the wheat ears in 180 images and calculate the
average time needed to recognize wheat ears in a single image. The results indicate that
the average time of the Faster-RCNN and RetinaNet is 9.19 and 6.51 s, respectively. The
RetinaNet method proposed in this paper can meet the requirements of high recognition
accuracy and recognition speed.

Table 4. Using different methods for wheat ear recognition.

Methods F1-Score (%) Times (s)

Faster R-CNN 82.25 9.19
RetinaNet 91.17 6.51
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Figure 12. Scatter plot of recognition value and real value of wheat ear in RetinaNet and Faster
R-CNN models.

4. Discussion

Earlier studies [27,28] on wheat recognition are limited by the wheat dataset, which
causes the studied wheat recognition models not to be well-migrated for application to
other regions. Transfer learning [54] transfers the characteristic information of the target in
the source domain to the target recognition, which can greatly solve the problem of lack
of data in the target domain. The deep learning method needs a large amount of data
to train a model and achieve excellent performance, but data in the field for wheat ear
recognition is difficult to obtain and costly to label. To our knowledge, there are no other
systematic, quantitative assessments of how training sample size and sample selection
methods affect the results of wheat identification models. This paper combines deep
learning and transfer learning to study a wheat crop detection model with high accuracy
and capable of migration. This technique can be extended to any crop identification.

The method proposed in this paper for recognizing wheat ears based on RetinaNet is
compared with the method based on Faster R-CNN proposed by Madec et al. [15]. The
RetinaNet method achieves the best recognition performance (AP exceeds 82%) by using
the Global WHEAT database [43] as the training set; this shows that the RetinaNet method
can be applied to most countries in the world, and appliesto the identification of wheat
ears under different wheat distribution densities, different wheat varieties, and different
growth environments.

Meanwhile, the RetinaNet and Faster R-CNN models trained on the Global WHEAT
data set are applied to the field-collected wheat data based on transfer learning. Compared
with the Faster R-CNN method, the recognition performance of the RetinaNet is greatly
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improved, and the RetinaNet performs the best for recognizing wheat ears in different
growth stages; this also indicates that the RetinaNet model has stronger transfer learning
ability and better wheat ear recognition performance. These abilities are due to how
RetinaNet exploits FPN to extract low-level high-resolution and high-level low-resolution
semantics and then uses horizontal connections to combine the corresponding feature maps
with reconstructed layers, helping the recognizer better predict the position. Therefore,
RetinaNet is more sensitive to the target and achieves excellent recognition performance
with transfer learning. Meanwhile, ResNet50 acts as a feature extraction network for
both RetinaNet and Faster R-CNN. By adopting a feature pyramid with multi-size feature
extraction and output, RetinaNet has an advantage in small target detection such as wheat
ears, whereas Faster R-CNN only exploits the last layer of features of the underlying
network. Therefore, compared with Faster R-CNN, RetinaNet performs better and is more
suitable for wheat ear detection. Since ResNet50 is used as a feature extraction network
for RetinaNet, the feature extraction network can also be optimized further to improve the
accuracy of wheat recognition in the future.

Additionally, the recognition effect of RetinaNet and Faster R-CNN methods for
wheat ears in different growth stages is analyzed. The analysis results show that the R2

of recognizing wheat ears in the filling stage by RetinaNet and Faster R-CNN methods
are 0.978 and 0.844, respectively. Meanwhile, the R2 of recognizing the wheat ears in the
mature stage by RetinaNet and Faster R-CNN methods are 0.986 and 0.941, respectively.
It can be seen that RetinaNet achieves the best recognition effect in the mature stage; this
is mainly because the characteristics of wheat change with the growth stage. When the
wheat grows to maturity, the shape and awns of wheat ears tend to be stable, and the
contrast between the wheat ears and leaf background is enhanced, causing difficulty in
identifying wheat ears; this is consistent with the conclusions of Hasan et al. [8], Madec
et al. [15], and Zhu et al. [28]. Simultaneously, using the RetinaNet method, the accuracy
for recognizing wheat ears in the filling stage is only 0.8% lower than that in the mature
stage, which also indicates that RetinaNet has a better recognition effect. However, the
causes of performance differences between the RetinaNet method and Faster R-CNN for
recognizing wheat ears in different growth stages are currently unknown, which will be
explored in our future work.

The recognition performance of RetinaNet and Faster R-CNN models trained with
different fertility data was analyzed. It can be found in Figure 11 that the accuracy of
RetinaNet and Faster R-CNN increased with the number of training data samples. It can
also be found that RFSM50, RFSM100, and RFSM150 obtain good recognition results for
wheat in the filling stage, but the recognition results for wheat ears in the maturity stage
are degraded. The first reason for this is that the color, shape, and awn of the wheat ears
change significantly as the wheat grows, and the RetinaNet model trained only with the
data of the filling stage fails to detect the mature wheat ears well. It demonstrates the
relevance of training samples to the performance of the model, consistent with the current
studies [55,56]. Furthermore, it is found that the RMSM50, RMSM100, and RMSM150
models trained only with the data of wheat maturity stage perform the best in detecting
wheat ears in the maturity stage; they also achieve better recognition accuracy for the wheat
ears in the filling stage. Thus, adding the training of wheat ears at maturity can cause the
RetinaNet model to obtain higher recognition performance for both filling and maturity
stages. This finding can help transfer the RetinaNet method to wheat ears recognition in
other growth regions and different growth stages of wheat and can be useful for studying
ear detection models for small samples.

Additionally, the recognition speed of the RetinaNet and Faster R-CNN methods
is analyzed in this paper. Under the same framework and operating environment, the
average time consumption of the two methods is 9.19 and 6.51 s, respectively. It can be
seen that the recognition speed of the RetinaNet method is relatively fast, which is mainly
due to the time-consuming extraction of candidate frames in the second stage of the Faster
R-CNN network.
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The comprehensive analysis of the recognition effect and recognition speed of the two
methods indicates that the RetinaNet method is more suitable for wheat ear recognition.

5. Conclusions

This paper studies the application of deep learning technology to wheat ear recognition
and chooses a better recognition model for recognizing what ears are in different growth
stages and the number of wheat ears in a single image. Additionally, the Global WHEAT
data set containing images of wheat from different growing environments and varieties
are used to generalize training data to create a more robust model. Moreover, the model is
integrated with transfer learning to study the transfer ability and recognition performance
of the Faster R-CNN and RetinaNet. The comprehensive analysis of the experimental
results indicates that the proposed RetinaNet achieves both high recognition performance
and recognition speed, which can better meet the requirements of real applications. In
our future work we aim to investigate wheat ear recognition on images obtained by
unmanned aerial vehicles, which provides a new approach for wheat ear recognition and
yield estimation. In order to help researchers reproduce the proposed method, the program
file used in our study is provided (https://github.com/lijignbo1024/Program.git, accessed
on 8 June 2021).
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Abstract: In the field of surface defect detection, the scale difference of product surface defects is often
huge. The existing defect detection methods based on Convolutional Neural Networks (CNNs) are
more inclined to express macro and abstract features, and the ability to express local and small defects
is insufficient, resulting in an imbalance of feature expression capabilities. In this paper, a Multi-Scale
Feature Learning Network (MSF-Net) based on Dual Module Feature (DMF) extractor is proposed.
DMF extractor is mainly composed of optimized Concatenated Rectified Linear Units (CReLUs) and
optimized Inception feature extraction modules, which increases the diversity of feature receptive
fields while reducing the amount of calculation; the feature maps of the middle layer with different
sizes of receptive fields are merged to increase the richness of the receptive fields of the last layer of
feature maps; the residual shortcut connections, batch normalization layer and average pooling layer
are used to replace the fully connected layer to improve training efficiency, and make the multi-scale
feature learning ability more balanced at the same time. Two representative multi-scale defect data
sets are used for experiments, and the experimental results verify the advancement and effectiveness
of the proposed MSF-Net in the detection of surface defects with multi-scale features.

Keywords: surface defect classification; deep learning; convolutional neural network; multi-scale
features; multi-size defects

1. Introduction

With the rapid development of the manufacturing industry, people are paying more
and more attention to the surface quality of various industrial products. The surface quality
of the product will not only affect the appearance and visual effect of the product, but also
affect the internal quality and performance of the product. In order to reduce production
costs, improve production efficiency and product quality, it is very necessary to effectively
detect surface defects in the product manufacturing process.

At present, the commonly used surface defect detection methods are as follows [1]:

1. Artificial visual inspection, which has the disadvantages of low detection efficiency,
high false detection rate and high missed detection rate, high labor intensity, and low
speed.

2. The non-contact detection method based on machine vision [2,3] usually adopts image
processing algorithms or manual design feature extractors to combine the classifier.
Liu T.I. [4] proposed a fuzzy logic expert system for roller bearing defect detection,
the system combines frequency response and fuzzy reasoning and has achieved good
results. Baygin et al. [5] used Otsu thresholding and Hough transform to extract
features from the reference image for the problem of printed circuit board with defects
and matched the image to be inspected with the reference image to accurately detect
the missing holes on the circuit board. Zhang Lei et al. [6] proposed a fabric defect
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classification algorithm combining Local Binary Pattern (LBP) and Gray Level Co-
occurrence Matrix (GLCM). The algorithm first uses the LBP algorithm to extract the
local feature information of the image and then uses the GLCM to describe the overall
texture information, and finally, the feature information of the two parts as a whole
constructed as the input of the BP neural network, and a higher classification accuracy
is obtained. Denis Sidorov et al. [7] proposed an automatic defect classification method
based on the p-median clustering technique, the proposed method uses the p-median
combinatorial optimization problem to complete the clustering problem, which can
be sued in semiconductor and other manufacturing industries. In general, compared
with artificial visual inspection methods, the above methods have the advantages of
safety and reliability, high detection accuracy, and long-term operation in complex
production environments, which effectively improves production efficiency and
quality inspection efficiency. However, in a real and complex industrial environment,
there are generally small differences between surface defects and background, low
contrast, large differences in defect scales, and various types of defects. The design
of image processing algorithm schemes and artificially designed feature extraction
schemes typically requires rich expert experience and a large number of experiments,
resulting in high cost and time consumption, and the effectiveness and generalization
cannot be guaranteed, and it is difficult to obtain better detection results.

In recent years, with the successful application of deep learning models represented
by convolutional neural networks (CNNs) [8] in computer vision fields such as face recogni-
tion [9], scene text detection [10], target tracking, and autonomous driving [11], the surface
defect detection methods based on deep learning have also been widely used in various in-
dustrial scenarios and have become the mainstream method in the field of defect detection.
Weimer [12] explored the influence of the design of CNN and different hyper-parameters
on the accuracy of defect detection results. Ren [13] built a classifier based on the features of
image patches, transferred the features from the pre-trained deep learning model, and con-
volved the trained classifier on the input image to obtain pixel-level predictions, compared
with multi-layer perception and support vector machine, its error rate is lower. Masci [14]
proposed a max-pooling CNN method for steel defect classification, experiments were
performed on seven types of defects, the accuracy rate reached 93%, and its performance is
far better than SVM classification trained on feature descriptors. Aiming at the problem of
jujube surface defect detection, Guo [15] has done a series of work on data preprocessing,
data augmentation, and composite convolutional neural network design, and achieved
good results. Deitsch [16] used a modified VGG 19 network to identify solar panel image
defects with a resolution of 300 × 300, with an accuracy rate of 88.42%, which exceeds
a variety of manual design features and supported vector machine methods. Xu [17]
presented a small data-driven convolutional neural network (SDD-CNN) to detect the
subtle defects of rollers, the method first used label dilation to solve the problem of the
imbalance of the number of classes, then a semi-supervised data augmentation method
is proposed, and finally, CNNs were trained, experimental results show that compared
with the original CNNs, SDD-CNNs has significantly improved the convergence time and
classification accuracy. In addition, some advanced CNN structures have also achieved
good detection results, including but not limited to references [18–23].

CNNs are currently used by domestic and foreign researchers and engineers as the
preferred architecture for product surface defect classification. However, difficulties and
challenges still exist.

For different types of products, the surface defects often have the characteristics of
different sizes, uncertain positions, and different shapes; even for the same type of product,
the color, texture, shape, and size between different types of defects is also very different.
The general CNN often contains a few specific scales of receptive fields and is more inclined
to express macroscopic and abstract features. It is not strong in expressing local and small
defects, which leads to an imbalance in feature expression capabilities. Therefore, how to
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design a deep CNN that can simultaneously take into account multi-scale feature extraction
has become the focus of research.

Since the receptive fields of the convolution kernels in the CNN are closely related
to the sizes of the target features, the CNN’s ability to express features at different scales
directly determines its ability to detect defects of different sizes [24]. This paper starts with
the analysis of the appearance and size characteristics of product surface defects, analyzes
the processing mechanism of mainstream CNNs for different scale features, and tries to
improve the expression and classification capabilities of deep CNNs for different scale
features. On the basis of the above research, a Multi-Scale Feature Learning Network
(MSF-Net) based on Dual Module Feature (DMF) extractor is proposed, experiments are
carried out on two public multi-scale defect data sets, the experimental results verify the
effectiveness and superiority of the MSF-Net proposed in this paper.

The structure of this paper is as follows. Section 2 introduces the related work.
Section 3 is the research method. Section 4 is the experimental results and discussion,
and Section 5 summarizes the paper.

2. Related Work

The receptive field refers to the input area that neurons can “see” in the CNN [25],
as shown in Figure 1, the calculation of an element on the feature map in a CNN corre-
sponds to a certain area on the input image, so the corresponding area is the receptive
field of the element. It can be seen from Figure 1 that the receptive field is a relative
concept, the elements on the feature map of a certain layer can see different areas on the
previous layers.

Figure 1. Schematic diagram of the receptive field in CNNs.

The receptive field RFi of the feature map of the i-th layer is shown by Formula (1):

RFi = RFi−1 + (Ki − 1) ∗
i−1

∏
k=1

Sk i ≥ 1 (1)

where Ki and Si respectively represent the size of the convolution kernel and the stride of
the i-th convolution layer. In addition, for the input layer, RF0 = 1, S0 = 1.

In recent years, some researchers have tried to improve the classification performance
of CNNs on multi-scale target data sets by optimizing the CNNs’ structure, such as the
works of Tang [26] and Kim [27]. In essence, the optimization ideas for these works are
derived from the classic CNN architecture, so the distribution of the receptive field in the
classic CNNs are analyzed.

2.1. AlexNet and VGGNet

As we all know, there is no branch structure in the two CNNs of AlexNet [28] and
VGGNet [29]. Therefore, the receptive field size of the last convolution layer before the
fully connected layer is uniform, and the receptive field size is shown in Table 1.
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Table 1. The receptive fields of the last convolution layer of feature maps of AlexNet and VGG-16.

CNNs
Feature Maps of the Last

Convolution Layer
Receptive Field

AlexNet pool5 195 × 195
VGG-16 pool5 212 × 212

It can be seen from Table 1 that the size of the feature map output by the last convolu-
tional layer of AlexNet is 195 × 195, while the size of the feature map output by the last
convolutional layer of VGG-16 is 212 × 212, and the input image size of the two CNNs is
224 × 224. In other words, what the two CNNs finally extract are macroscopic and abstract
features, and the extraction of tiny and concrete features is insufficient.

2.2. GoogLeNet and ResNet

Unlike AlexNet and VGGNet, GoogLeNet [30] and ResNet [31] have rich branch
structures. This is due to the modularization of the two CNNs, the smallest module unit of
GoogLeNet is called the Inception module, and the smallest module unit of ResNet is the
Residual Block.

Figure 2 shows the structure of four simplified Inception modules connected in series,
for the convenience of calculation, the ratio of the number of output feature maps of the
three branches of 1 × 1, 3 × 3, and 5 × 5 is set to 2:1:1. Figure 3 shows the structure of two
residual modules connected in series, and the output ratio of feature maps of all branches
is set to 1:1.

Figure 2. Four Inception modules in series structure.

Figures 4 and 5 respectively reveal the evolution of the receptive fields of the corre-
sponding feature maps of the GoogLeNet and ResNet as the convolutional layer deepens.
It can be seen that although the specific number of receptive fields at each scale is not
completely the same, both of them reveal a common phenomenon. That is, in the initial
stage of feature extraction by CNNs, the size of the receptive field is small, it is sensitive
to the micro and local feature information of the image, and the learning ability is strong;
in the middle and last stages of feature extraction by CNNs, as the number of convolution
operations increases, the feature map becomes more abstract and is more inclined to express
macro and global information.
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Figure 3. Two residual modules in series structure.

Figure 4. Distribution of the receptive field of the series structure of four Inception modules.

Figure 5. Distribution of the receptive of receptive field of the series structure of two residual blocks.

In addition, although in the distribution map of the fourth module in Figures 4 and 5,
three are still small receptive fields such as 1 × 1, 3 × 3, and 5 × 5, but as the convolutional
neural network becomes deeper, these local receptive fields will gradually disappear. Table 2
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shows the minimum and maximum receptive field scale distributions of the last layer
of feature maps in the GoogLeNet and ResNet-18, it can be seen that the local receptive
fields have disappeared and been replaced by macroscopic large and even super large
receptive fields.

Table 2. The maximum and minimum values of the receptive field of the last convolution layer of
feature maps of GoogLeNet and ResNet-18.

CNNs
Feature Map of the Last

Convolutional Layer
Minimal Receptive

Field
Maximum Receptive

Field

GoogLeNet pool5/7 × 7_s1 267 × 267 907 × 907
ResNet-18 pool5 203 × 203 627 × 627

In summary, the existing CNNs have similar characteristics in design, that is, in the
early stage of feature extraction of CNNs, they focus on learning the local and concrete
information of images, and in the middle and later stages of feature extraction of CNNs,
the macro, and abstract feature information are more likely to be learned. Of course,
the above law is logical and effective in most classification and detection tasks, but for the
surface defect data sets with multi-scale features studied in this paper, the above design
ideas of CNNs are obviously not the optimal choice.

3. Methods

3.1. Data Set Preparation

(1) The magnetic tile defect data set [17] was collected by the Institute of Automation
of the Chinese Academy of Sciences, the data set has six categories, including non-defective
samples, the representative samples of each category are shown in Figure 6. It should
be noted that when using a CNN to train the magnetic tile data set, there is a problem
with an insufficient number of samples, therefore, in this paper, the Semi-Supervised Data
Augmentation (SSDA) method is used, the SSDA method takes into account the shape and
location characteristics of the defective target on the basis of the classic data augmentation
operation, and maintains the original label attributes of the samples while performing data
augmentation, which provides high-quality data support for the training of CNNs [17],
and finally get 10,320 sample images, including 6192 images in the training set, 2064 images
in the validation set and 2064 image in the test set, the ratio of the training set, validation
set and test set is 3:1:1.

(2) Roller surface defect data set [17], which is from the data set collected and published
by the Institute of Automation of the Chinese Academy of Sciences (CAS). The roller
surface defect data set collects various morphological samples of the roller surface in
the air-conditioning compressor. The data set is made from the original image after
preprocessing such as ring region expansion, sliding window cutting, image enhancement,
etc. The sample examples and numbers of each category are shown in Table 3. Among them,
EFQ and CQ are non-destructive surface samples, and the other categories are defective
samples. After data augmentation, 22,400 samples are finally obtained, among them, there
are 13,440 images in the training set, 4480 images in the validation set, and 4480 sheets in
the test set, the ratio between them is also 3:1:1.
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Figure 6. Samples of magnetic tile data set.

Table 3. The sample examples and numbers of each category in the roller surface defect data set.

Category Name EFQ * EFC EFI EFSc EFSt EFSF

Number of samples 1500 470 70 160 90 220

Sample example

Category name CQ CC CI CSc CSt

Number of samples 1000 350 155 30 105

Sample example

* EFQ: end-face qualified; EFC: end-face cracks; EFI: end-face indentations; EFSc: end-face scratches; EFSt: end-face stains EFSF: end-face
serious fracture CQ: chamfer qualified CC: chamfer cracks CI: chamfer indentations CSs: chamfer scratches CSt: chamfer stains.

3.2. Sample Defect Size Analysis

Figures 7 and 8 respectively show samples with large differences in defect scales in the
two datasets and their corresponding defect labeling positions, it can be seen that the size
differences between different defect types are quite huge, which poses a great challenge
to classification and recognition tasks. In addition, even for defects of the same type,
the size of the defect varies from sample to sample. Figure 9 shows the area statistics of all
defect types in the two datasets. It can be seen that in the defect data set of magnetic tile,
the average area of wear defects and uneven defects is more than 60 times that of stomatal
defects; the maximum defect area of the wear defect sample exceeds the maximum area of
the stomatal defect sample by 140 times.
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Figure 7. The samples with large scale difference of surface defects of magnetic tile and their corresponding defect
labeling positions.

Figure 8. The samples with large scale difference of surface defects of roller and their corresponding defect labeling positions.

Figure 9. Defect area statistics of chart of different types of defect samples in the two data sets (The upper and lower lines of
each column in the figure represent the maximum and minimum values respectively, and the middle line of each column
represents the average value).
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In the roller defect data set, the average defect area of defect samples of CI type is
close to 17,000 pixels, while the average defect area of defect sample types such as CC, CSc,
CSt, EFC, EFSc, EFSt do not exceed 1000. From the above analysis, it can be seen that these
two defect data sets have obvious multi-scale defects problems.

3.3. Multi-Scale Feature Learning Network Based on Dual Module Feature Extractor

In order to solve the problem that the existing CNNs are not strong in learning
small-scale defect features, and to improve the classification and recognize the ability of
multi-scale surface defects, this paper proposes Multi-Scale Feature Learning Network
(MSF-Net) based on Dual Module Feature Extractor (DMF), where DMF is built by the
Concatenated Rectified Linear Units (CReLUs) and the Inception modules. The main
design ideas of MSF-Net are as follows:

(1) Increase the diversity of the receptive field of a single convolution module in CNNs
From the analysis of the receptive field of CNN in Section 2.1, it can be seen that
single branch CNNs, such as AlexNet and VGGNet, have a relatively single receptive
field scale. As the number of layers of the CNN deepens, the small-scale receptive
field gradually disappears, which is not conducive to the feature expression of subtle
defects in the classification task of surface defects. Therefore, this paper chooses the
convolution module with branch structure as the basic unit of MSF-Net. Among
the many representative modules with branch structures, the Inception module
has favored domestic and foreign researchers in the field of target classification
and detection, because of its lightweight design ideas and excellent characteristic
expression ability and classification accuracy. In this paper, the Inception v3 [32]
structure is used as the design prototype, as the feature extraction module in the
middle and late stages of MSF-Net; and in the early stage of MSF-Net, in order to
reduce the parameter quantity and calculation amount, this paper selects the CReLU
module [33] as the prototype design feature extraction module. In this way, the Dual
Module Feature (DMF) extractor is formed.

(2) Increase the diversity of the receptive field of the feature map output by the last
convolutional layer of CNNs In order to improve the classification accuracy of multi-
scale defect samples, it is necessary to ensure that the feature map output by the
last convolutional layer before the fully connected layer has sufficient receptive field
scales, especially the number of small-scale receptive fields. Therefore, inspired by
HyperNet [34], the feature maps of several convolution modules with different scale
receptive fields are combined to effectively increase the diversity of the receptive
fields of the feature maps of the last convolution layer before the fully connected layer.

(3) Improve training efficiency The improvement of feature expression ability inevitably
means the deepening of the number of layers of CNNs. Therefore, it is essential
to improve training efficiency. MSF-Net improves training efficiency and avoids
over-fitting by using residual shortcuts and batch normalization (BN) layers.

3.3.1. Dual Module Feature Extractor

The Dual Module Feature Extractor (DMF) contains two different convolutional mod-
ules: the CReLU modules are mainly used in the early stage of feature extraction of
MSF-Net, which aims to reduce the calculation cost and speed up the calculation of for-
ward propagation; in the later stage of feature extraction of MSF-Net, the Inception modules
are used to increase the depth and width of MSF-Net and improve feature learning ability.

Optimized CReLU Feature Extraction Modules

The research of Shang et al. [33] revealed that in the early stage of feature extraction of
CNNs, the filters in the lower layers form pairs, the phase of each pair of filters is opposite,
that is, CNN has a tendency to learn both positive and negative phase information at the
same time, however, the Rectified Linear Units (ReLU) [35] will suppress the negative
response, making the feature of the lower convolutional layer of the CNN redundant.
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CReLU takes these negative responses as the output of the convolutional layer by inverting
the feature map and then using the ReLU function, the structure of CReLU is shown in
the dashed box in Figure 10. The above operation can convert redundant features into
usable features, and extract twice as many feature maps, thereby improving the utilization
of features in the lower convolutional layer of CNN. In this paper, the CReLU feature
extraction module is designed on the basis of the native CReLU module, as shown in
Figure 10. A 1 × 1 convolutional layer is added to the input and output of the native
ReLU module to achieve dimensionality reduction and dimensionality increase of the
number of convolution kernel channels, which increases the nonlinearity of CNNs and
reduces the amount of calculation. In addition, the shortcut connections in ResNet are also
introduced into the CReLU feature extraction module to reduce the loss of information in
the transmission process and protect the integrity of the information.

Figure 10. Optimized CReLU feature extraction module.

Optimized Inception V3 Module

The Inception V3 module uses convolution kernels of different sizes such as 1 × 1,
3 × 3, and 5 × 5 to obtain different scales of receptive fields, which improves the diversity
of features. In addition, the design of the branch structure saves computational costs while
enhancing the width and depth of CNN.

Based on the native Inception V3 module, this paper proposed an optimized version of
the Inception feature module, as shown in Figure 11. Similar to the optimized version of the
ReLU module, a 1 × 1 convolutional layer is added to the output of the optimized module
to realize the dimension increase of the feature output; in addition, shortcut connections
are also introduced into the optimized Inception module.

Figure 11. Optimized Inception feature extraction module.
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3.3.2. Multi-Scale Feature Learning Network

In order to increase the diversity of the receptive field of the last convolutional layer
of CNNs and improve the ability to learn and express features of different scales, especially
small and local features, MSF-Net aligns and integrates the feature outputs of several
intermediate layers, and then the fully connected layer is used for classification. Figure 12
shows the overall architecture of MSF-Net, and Table 4 lists the specific parameters and
indicators in detail. As can be seen from Figure 12, MSF-Net is mainly composed of five con-
volutional module chains in the feature extraction stage, including two optimized CReLU
modules and three optimized Inception V3 modules. In addition, all convolutional layers in
MSF-Net, except for the optimized CReLU modules, are designed with batch normalization
(BN) layers, scale layers, and ReLU activation layer to better accelerate convergence.

Figure 12. The overall architecture of MSF-Net.
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Table 4. The parameters of MSF-Net.

Layername Type Output
Dimension

Depth

CReLU
Output

Inception Output

Parameters

#1×1-3×3-1×1
Pool
Proj

#1×1 #3×3 #5×5
#1×1
out

conv1_1 3 × 3 CReLU 224 × 224 × 32 1 NA-16-NA
/

480

pool1_1 3 × 3 Max pool. 112 × 112 × 32 0 / /

conv2_1 3 × 3 CReLU 112 × 112 × 64 3 24-24-64
/

13,440
conv2_2 3 × 3 CReLU 112 × 112 × 64 3 24-24-64 13,440
conv2_3 3 × 3 CReLU 112 × 112 × 64 3 24-24-64 13,440

conv3_1 3 × 3 CReLU 56 × 56 × 128 3 48-48-128
/

53,760
conv3_2 3 × 3 CReLU 56 × 56 × 128 3 48-48-128 53,760
conv3_3 3 × 3 CReLU 56 × 56 × 128 3 48-48-128 53,760

conv4_1 Inception 28 × 28 × 256 4
/

32 64 96-128 16-32-32 256 322,560
conv4_2 Inception 28 × 28 × 256 4 32 64 96-128 16-32-32 256 322,560
conv4_3 Inception 28 × 28 × 256 4 32 64 96-128 16-32-32 256 322,560

conv5_1 Inception 14 × 14 × 512 4

/

64 128 128-192 32-96-96 512 1,040,384
conv5_2 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384
conv5_3 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384
conv5_4 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384

conv6_1 Inception 7 × 7 × 1024 4
/

128 256 160-320 32-128-128 1024 3,010,560
conv6-2 Inception 7 × 7 × 1024 4 128 256 160-320 32-128-128 1024 3,010,560

concat Concatenation 7 × 7 × 1920 0
/ / /avg pool 7 × 7 Avg pool. 1 × 1 × 1920 0

linear Inner product 1 × 1 × NClass 1 19,200

Total 47 11,371,616

In order to realize the learning and expression of multi-scale features, the specific
design details of MSF-Net are as follows:

(1) At the input of the convolution modules conv3_1, conv4_1, conv5_1, and conv6_1,
the convolution kernel with a size of 1 × 1 and a stride of 2 is used instead of the
pooling layer to achieve the proportional reduction of the feature map size, so that
the feature maps output by conv3, conv4, conv5, conv6 is 1/4, 1/8, 1/16, and 1/32 of
the input image, respectively.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sizeconv3 =
Sizeinput

4

Sizeconv4 =
Sizeinput

8

Sizeconv5 =
Sizeinput

16

Sizeconv6 =
Sizeinput

32

(2)

(2) The output feature maps of the convolution modules conv3_3, conv4_3, and conv5_4
are down-sampled, and the average pooling layers with kernel sizes of 8 × 8, 4 × 4,
and 2 × 2 are used, so that their respective output feature maps are consistent with
the feature map output by conv6_2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fc1 = Pool8×8

Avg( fconv3_3)

fc2 = Pool4×4
Avg( fconv4_3)

fc3 = Pool2×2
Avg( fconv5_4)

fc4 = fcon6_2

(3)

where fconv3_3, fconv4_3, fconv5_4 and fconv6_2 represent the output feature maps of conv3_3,
conv4_3, conv5_4 and conv6_2, respectively, fc1, fc2, fc3 and fc4 , respectively, represent
the four input feature maps of the concatenation layer.

(3) The above four feature maps are combined and connected to form the final output
feature map, the formula is as follows:

fconcat = concat( fc1, fc2, fc3, fc4) (4)
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where fconcat represents the feature map output by the concatenation layer. In this way, the fi-
nal output features include small-local concrete features and macro-global abstract features.

It is worth mentioning that the architecture design of MSF-Net follows many experi-
ences and guidelines for the design of CNNs, as follows:

(1) Avoiding expression bottlenecks in the early stage of feature extraction. That is,
the information flow should avoid highly compressed convolution layers in the
forward propagation process, and the width and height of the feature map should be
gradually reduced in an orderly manner, especially for surface defect datasets with
subtle defect features, it is not wise to compress the feature map too early. Therefore,
the convolutional layer conv1_1 (size 3 × 3, stride 1) and pooling layer pool1_1 (size
3 × 3, stride 2) are concatenated to slow down the reduction speed of the feature map.

(2) In the middle and late stages of feature extraction in CNNs, the width and depth
of CNNs should be balanced as much as possible. That is, as the CNN deepens,
the feature map gradually shrinks, and the output matrix dimension of each convolu-
tional layer should gradually increase. Therefore, the number of modules, the feature
map sizes, and the number of channels of the three module chains of conv 4, conv 5,
and conv 6 are designed with full reference to Inception V1 [29] and Inception V3 [32]
to improve the rationality of CNN’s evolution.

(3) Average pooling layer is used to replace the fully connected layer, which can greatly
reduce the number of parameters and save calculation costs. Specifically, MSF-Net
uses an average pooling layer with a kernel size of 7 × 7 and a strider of 1 to replace
the fully connected layer. It can be calculated from Table 4 that this adjustment can
reduce 180,635,529 parameters.

(4) The residual shortcut connections are used to effectively accelerate training and
promote CNN’s convergence. Specially, almost every convolution module in MSF-
Net, except conv1_1, uses a shortcut connection, which effectively avoids the problem
of gradient disappearance and speeds up training.

4. Experimental Results and Analysis

4.1. Experimental Setup

The performance indicators and parameters of the experimental platform are shown
in Table 5.

Table 5. Parameters of the experimental platform.

CPU Intel E3-1230 V2*2 (3.30 GHz) RAM 16 GB DDR3 GPU NVIDIA GTX-1080Ti

OS Ubuntu 16.04 LTS Software Visual Studio Code with Python 2.7

4.2. CNNs for Comparison

Inception v3 and ResNet-50 are used as the comparison CNNs for the following reasons:

(1) Inception v3 and ResNet-50 are closer to MSF-Net in terms of the number of convolu-
tional layers and parameters, as shown in Table 6, which makes the comparison of
experimental results fairer.

(2) MSF-Net is deeply influenced by GoogLeNet v3 in terms of the design of feature
extraction modules, the number of modules, and the width and depth of CNN.
Therefore, comparing MSF-Net with Inception v3 can more accurately assess the
impact of CNN’s structure on classification performance.

(3) Except conv1_1, all feature extraction modules of MSF-Net use residual shortcut connections.

Therefore, it is also essential to conduct comparative experiments with ResNet-50,
which is similar in size.
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Table 6. Comparison of the number of convolutional layers and parameters of three CNNs.

CNNs Convolution Layers Parameters

Inception v3 48 24,734,048
ResNet-50 50 ~25.5 × 106

MSF-Net 56 11,371,616

4.3. Training Efficiency Evaluation of CNNs

Figure 13 shows the comparison of the time and number of iterations required to
reach convergence when the three CNN models are trained on two multi-scale surface
defect data sets. It can be seen from Figure 13a that MSF-Net achieves convergence in the
shortest time on the training performance of the two multi-scale surface defect data sets.
Specifically, the convergence time of MSF-Net is shortened by at least 25% compared with
that of ResNet-50, and it is also shortened by nearly 10% compared with that of Inception
v3. Figure 13b shows the comparison of the number of epochs for the three models to reach
convergence. Through the comparative analysis of three CNNs, it can be seen that the
efficient training performance of MSF-Net mainly comes from the following two aspects:

(1) Compared with ResNet-50 and Inception v3, MSF-Net’s parameters is reduced by
more than 54%, which greatly reduces the computational cost, the most intuitive man-
ifestation is that the number of epochs required for MSF-Net to achieve convergence
is greatly reduced;

(2) Compared with the Inception modules fully used by Inception v3, MSF-Net uses
the optimized CReLU module in the early stage of feature extraction, the opti-
mized CReLU module has outstanding performance in reducing computational costs,
which effectively shortens the time consumption of forward back propagation and
improves the training performance of MSF-Net.

Figure 13. Comparison of the time and the number of epochs required for three CNNs to reach convergence.

4.4. Classification Performance Evaluation on Two Multi-Scale Defect Data Sets

Table 7 and Figure 14 respectively show the classification performance of ResNet-50,
Inception v3, and MSF-Net on the test of the surface defect data set of roller. It can be seen
from Table 7 that the three CNNs have excellent performance in the defect categories of
CI, CSs, CSt, EFI, EFSc, and EFSt, with an accuracy rate of 100%. In the remaining five
categories, CQ and EFQ are non-defective samples; CC and EFC are small-size defects,
and the appearance of the samples is very close to CQ and EFQ respectively, EFSF represents
larger defect samples. Therefore, the roller surface defect data set is very suitable for the
evaluation and verification of multi-scale feature learning capabilities of CNNs. ResNet-50
and Inception v3 achieved the highest recall rates in the EFC and EFSF defect categories,
respectively, while MSF-Net performed better than the other two CNNs in the CC defect
category. In addition, MSF-Net has an outstanding performance in the accuracy rate of CQ
and EFQ, which has important application value in actual production. Overall, the average
recall rate of MSF-Net on the roller defect set is 99.29%, while the recall rates of ResNet-50
and Inception v3 are 98.44% and 99.06%, respectively; at the same time, MSF-Net has the

121



Sensors 2021, 21, 5125

smallest standard deviation in recall rate, showing a more balanced expression and learning
ability for defects of different scales. Similarly, compared with ResNet-50 and Inception v3,
MSF-Net also achieves the best performance in precision, micro-F1 and macro-F1 indicators,
which verified its superiority.

Table 7. Classification performance of three CNNs on the surface defect data set of roller (%).

CQ CC CI CSc CSt Precision micro-F1

ResNet-50 93.75 96.25 100.00 100.00 100.00 98.46 ± 0.017 98.381
Inception v3 97.50 96.88 100.00 100.00 100.00 99.09 ± 0.008 99.055

MSF-Net 98.13 98.75 100.00 100.00 100.00 99.29 ± 0.006 99.301

EFQ EFC EFI EFSc EFSt EFSF Recall macro-F1

ResNet-50 95.42 97.71 100.00 100.00 100.00 98.96 98.44 ± 0.022 98.367
Inception v3 97.92 97.29 100.00 100.00 100.00 99.79 99.06 ± 0.013 99.051

MSF-Net 98.33 97.50 100.00 100.00 100.00 99.58 99.29 ± 0.009 99.298

Figure 14. Confusion matrix of three CNNs on the surface defect data set of roller (unit: %).

Table 8 and Figure 15 show the classification performance of ResNet-50, Inception v3,
and MSF-Net on the test set of surface defect data set of magnetic tile. It can be seen
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from Table 8 that the three CNNs have excellent performance in the categories of fracture
defects and good products. MSF-Net has the highest accuracy rate for stomatal and uneven
defects, and Inception v3 has the best performance on the gap and wear defect categories.
In general, the average recall rate of MSF-Net on the magnetic tile defect set reached 98.93%,
while the recall rate of ResNet-50 and Inception v3 were 98.69% and 98.89% respectively; at
the same time, among the three CNNs, MSF-Net has the smallest standard deviation in
recall rate. Similarly, MSF-Net performs better on precision, micro-F1 and macro-F1 than
ResNet-50 and Inception v3.

Table 8. Classification performance of three CNNs on the surface defect data set of magnetic tile (%).

Stomatal Gap Fracture Precision Micro-F1

ResNet-50 98.26% 97.67% 100.00% 98.70 ± 0.008 98.70
Inception v3 97.97% 99.13% 99.71% 98.90 ± 0.010 98.90

MSF-Net 98.55% 98.26% 100.00% 98.94 ± 0.007 98.94

Wear Uneven Good Recall Macro-F1

ResNet-50 98.55% 97.67% 100.00% 98.69 ± 0.009 98.69
Inception v3 99.42% 97.09% 100.00% 98.89 ± 0.010 98.89

MSF-Net 98.84% 97.97% 100.00% 98.93 ± 0.008 98.93

Figure 15. Confusion matrix of three CNNs on the surface defect data set of magnetic tile (Abbreviation description—stom:
stomatal; frac: fracture; unev: uneven).
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5. Conclusions

Aiming at the problem that the commonly used CNNs are not ideal for detecting small
and local defects on the products’ surface, the multi-scale feature extraction mechanism
involved in several mainstream CNNs in the current deep learning field is analyzed, and a
multi-scale feature learning network based on dual module feature extractor is proposed,
named MSF-Net, the design of the dual module feature extractor, the specific architecture
and parameters of MSF-Net, and the optimization to improve training efficiency are
introduced in detail. The proposed MSF-Net was trained and tested on two multi-scale
surface defect data sets, which verified the advancement and effectiveness in multi-scale
defect detection. Future work will focus on exploring the generalization of MSF-Net in more
research fields, such as radar image classification and remote sensing image classification.
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Abstract: With the advent of the Fourth Industrial Revolution, the economic, social, and technological
demands for pipe maintenance are increasing due to the aging of the infrastructure caused by
the increase in industrial development and the expansion of cities. Owing to this, an automatic
pipe damage detection system was built using a laser-scanned pipe’s ultrasonic wave propagation
imaging (UWPI) data and conventional neural network (CNN)-based object detection algorithms.
The algorithm used in this study was EfficientDet-d0, a CNN-based object detection algorithm which
uses the transfer learning method. As a result, the mean average precision (mAP) was measured to
be 0.39. The result found was higher than COCO EfficientDet-d0 mAP, which is expected to enable
the efficient maintenance of piping used in construction and many industries.

Keywords: plumbing maintenance; deep learning; ultrasonic wave propagation imaging; CNN;
external damage

1. Introduction

Piping is widely used as an important material not only in construction but also in
many industrial fields such as aviation and machinery, and as a result the economic, social
and technical demands for maintenance due to aging are increasing. In many industrial
fields, it is required to apply inspection technology that can detect pipe damage at an early
stage [1].

Through laser scanning-based research conducted in previous studies, the applicability
to steel and bolt loosening was confirmed [2–7]. On account of this, we aim to detect
damage to the pipe with ultrasonic wave propagation imaging (UWPI) in the current work.

The UWPI is one of the signal processing methods that excites a test object with a
Q-switched pulse laser system, measures it with an acoustic emission (AE) sensor that
acquires the wave propagation data, and displays it as waveform data using an image [8].

Many academic research activities are being carried out on piping. Intensity-based
optical system [9,10], microwave nondestructive testing [11], pipe NDT inspection using
an automated robot [12–14], eddy-current-based crack recognition [15], etc., are among
the investigated techniques. However, most damage detection techniques depend on the
empirical and subjective judgment of experienced experts. To overcome this problem,
a lot of research based on computer vision technology using machine learning [16] is
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being conducted in the fields of structural health monitoring (SHM) and nondestructive
evaluation (NDE) [17].

Recently, research using deep learning technology among various machine learning
technologies has been actively conducted. Among the various deep-learning-based tech-
nologies, image classification using CNN shows better performance results than existing
image classification algorithms and is continuously being researched and developed [18].
To detect pipe damage through CNN-based object detection, a large amount of data is
required. In addition, it is difficult to obtain data and a lot of learning time is required. In
this regard, we intend to utilize the transfer learning [19] technique that enables efficient
learning using a small amount of data. Using the pre-learned COCO 2017 EfficientDet-d0
model, it is proposed to detect a damage in piping by laser scanning utilizing UWPI. The
main objectives of this study are as follows. The primary goal of this study is to confirm
the possibility of establishing a damage detection system through CNN learning on the
ultrasonic wave propagation images found from the laser scanning of a pipe. Next, by ap-
plying the transfer learning technique, we want to check whether it is possible to efficiently
detect damage with only a small amount of UWPI learning data. The structure of this
paper is as follows. Section 2 describes the UWPI system and its theory that utilizes laser
scanning technology to create training data. Section 3 describes the CNN algorithm and
EfficientDet-d0 model used to detect pipe damage. In Section 4, we present the experiments
and experimental results, and in Section 5 we present the conclusion of the study.

2. Ultrasonic Wave Generation Mechanism Using Pulsed Laser

2.1. Ultrasonic Wave Mode Generation Theory

The generation of ultrasonic waves by a pulsed laser and the sensing of the generated
waves takes place as shown in Figure 1 [20]. A source of impulsive pressure is applied to the
surface and the resulting time records are tracked at different locations on the surface. When
a pulsed laser beam collides with a target structure, various physical phenomena can occur.
The basic problems of ultrasonic thermoelasticity generation can be divided into three
sub-problems: moderate absorption of electromagnetic energy, reflection, transmission of
the laser radiation. As a result of these processes, the absorbed laser energy causes local
heating of the area, leading to a thermoelastic expansion of the material and the generation
of ultrasonic waves [20–22].

Figure 1. Ultrasonic wave mode generation in a plate [20].

2.2. Ultrasonic Wave Propagation Imaging System Configuration

The UWPI system consists of a Q-switched laser system, a galvanometer (laser mirror
scanner), an AE sensor (ultrasonic sensor), a digitizer and an image processor as shown in
Figure 2. All devices are synchronized and the ultrasonic response signal is measured by
the AE sensor in the digitizer at the same time.
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Figure 2. Conceptual diagram of an UWPI system.

A galvanometer is used to target a structure with a laser mirror scanner, to specify a
point at the desired location and use it for laser pulse incidence. The laser mirror scanner is
driven by two tilting mirrors and is designed to operate at a wavelength of 1064 nm. The
maximum angular velocity of the galvanometer is 100 rad/s within the range of ±0.35 rad
(±20.05◦). The rotation axes of the two tilting mirrors are perpendicular to each other,
which allows the laser mirror scanner to scan the 2D scan area at high speed. The scanning
takes place as follows: the laser mirror scanner first performs an upward scan on the
vertical axis, then moves to the horizontal axis to perform a downward scan after the
vertical axis scan is complete. Through these scanning processes, ultrasonic waves are
arranged on the target structure in the form of a grid. The details of the laser system are as
specified in Table 1.

Table 1. Specifications of the laser system.

Laser Head:
Brilliant Ultra GRM100

Galvanometer:
Scancube 10

Wavelength: 1064 nm Wavelength: 1064 nm
Energy per pulse: 100 mJ Tracking error: 0.16 ms

Pulse repetition rate: 20 Hz Positioning speed: 10 m/s
Pulse duration: 6.5 ns Max. angular velocity: 100 rad/s
Beam diameter: 3 mm (within 0.35 rad)

To drive the UWPI system and acquire the data required for ultrasound images from
the acoustic emission sensor (AE sensor) with a built-in amplifier, the UWPI control system
was configured as shown in Figure 3 using LabVIEW. The software program consists of a
scanning grid configuration for a test object, a parameter setting part (sampling, frequency,
number of measured samples, trigger signal level, etc.) necessary for a digitizer, a laser
system and laser mirror scanner communication parameter setting part and an ultrasound
imaging part.
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Figure 3. Laser-induced UWPI system.

2.3. Ultrasonic Wave Propagation Imaging Algorithm

The steps to generate an ultrasonic wave image using the ultrasonic signal in the time
domain measured by the UWPI system consist of a total of three steps as shown in Figure 4.
First, the measured time domain signals are arranged on a vertical plane. At this time, each
measurement signal is positioned at the laser beam incident point to construct 3D data of
the horizontal axis, the vertical axis, and the time axis. The value at each excitation point
on this plane becomes the ultrasonic amplitude value at a specific time instant, and if the
image is reproduced repeatedly along the measurement time on the time axis and then
played in quick succession, an ultrasonic wave propagation movie can be obtained [5].

Figure 4. Process of ultrasonic wave propagation imaging (UWPI) system [5].

3. Deep Learning-CNN

Deep learning refers to machine learning techniques that construct a model with a large
number of neural layers for pattern recognition problems or feature point learning [23].
Since the publication of the deep belief network paper by Hinton at the University of
Toronto in Canada in 2009 [24], deep learning has been developed along with various
algorithms in many industries [25]. The neural network structures to which deep learning
technology is applied include auto-encoders, restricted Boltzmann machines (RBMs),
convolutional neural networks (CNNs), and recurrent neural networks (RNNs) [26–29].
In this study, we intend to utilize a CNN, which has been in the spotlight in image
recognition and classification fields, to determine the presence or absence of damage to
piping structures through image learning.
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3.1. CNN

The conventional neural network (CNN) was devised by LeCun of New York Uni-
versity, USA, and it is one type of deep learning. It is the most popular algorithm in
the field of image recognition and classification [30]. CNNs have made great strides in
image recognition and classification and has shown tremendous performance in computer
vision [31].

The basic structure of the CNN is shown in Figure 5 below. As indicated, it passes
the image through the filter of the convolution layer and the pooling layer repeatedly, and
classifies the image through the existing fully connected network, multilayer perceptron
and softmax algorithm.

Figure 5. Convolutional neural network (CNN) for image processing [25].

Typically, through TensorFlow [32] and Keras [33], which are open source software
provided by Google, people who are not computer developers can use image recognition
and classification using deep learning and CNN.

3.2. Object Detection

Object detection (OD) refers to an important computer vision task in digital image
processing that can detect instances of visual objects of a specific class (human, animal,
car, etc.) [34]. Generally, it is divided into general object detection and detection applica-
tions. Detection applications refer to applied detection technologies such as COVID-19
mask detection and automatic vehicle number recognition systems that are commonly seen
around. In this study, we intend to perform the learning on laser scanning images of the
pipe and detect the damage by using application-specific detection.

3.3. EfficientDet

EfficientDet used in this study ranked first among the models whose performance
was measured without extra training data in the 2019 Dataset Object Detection competition
on the COCO minival dataset, and it was found that it is an efficient network with good
performance, that is, with a low amount of computation (FLOPS) and good accuracy [35]. It
is an object detection algorithm that achieved the highest mAP in performance comparison
experiments conducted with single-model single-scale and updated SOTA (state-of-the-
art, the current highest level of results). Therefore, EfficientDet presents two differences
compared with existing models. First, the existing models have developed a cross-scale
feature fusion network structure, but EfficientDet pointed out that the contribution to
the output feature should be different because each resolution of the input feature is
different. To resolve this problem, a weighted bidirectional FPN (BiFPN) [35] structure
was proposed as shown in Figure 6. EfficientDet employs EfficientDet [36] as the backbone
network, BiFPN as the feature network, and a shared class/box prediction network. Second,
the existing models depended on huge backbone networks for large input image size
for accuracy, but EfficientDet used compound scaling, a method of increasing the input
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resolution, depth, and width, which are factors that determine the size and computational
amount of the model simultaneously and increase them.

Figure 6. EfficientDet architecture [35].

4. UWPI-System-Based Pipe Damage Detection Experiment and CNN Learning

4.1. Detecting External Damage to Pipe Bends Using UWPI System

To obtain an image of pipe damage to be used in this study, a Nd:YAG pulse laser was
used to generate Lamb waves, and an AE sensor was used to measure the waveform. The
laser system used in the experiment is shown in Figure 7.

 

Figure 7. A noncontact laser ultrasonic scanning system composed of a Q-switched Nd:YAG pulsed
laser with a galvanometer for ultrasonic excitation scanning [5].

The Q-switched Nd:YAG pulse laser emits a laser beam through a galvanometer after
a trigger signal is delivered [5]. Using the mirror inside the galvanometer, the laser beam
is emitted to the target point along the scan path, and the measured data are sent to the
digitizer through the acoustic emission (AE) sensor. Then, the digitized signal reaches the
image processor, where the UWPI process occurs [6].

For the test pipe utilized in this study, a stainless steel 304 specimen was used, and on
the curved surface of a pipe a 1 mm deep damage was artificially applied to a diameter of
30 mm, as shown in Figure 8.
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(a) (b) (c) 

Figure 8. Stainless steel pipe damage diagnosis test specimens. (a) Stainless steel 304 specimen drawing; (b) stainless steel
pipe specimen; (c) artificial damage carved on the specimen.

The laser scanning area is 240 mm wide and 250 mm high, and the laser excitation
interval is 2 mm. The number of laser excitation points is 15,125, and the scanning time is
12.6 min. The result of the UWPI after scanning the pipe bend is shown in Figure 9.

Figure 9. UWPI unfiltered video data to be used for deep learning.

4.2. CNN Learning Using Damage Data

In this study, to find out the applicability of the pipe damage detection model using
the laser scanning data of the curved pipe part, dataset construction, data learning and
detection, and evaluation were performed in three steps as shown in Figure 10.

Figure 10. Experimental procedure of the CNN training.
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In the first step, an ultrasound image of the pipe was acquired using a laser scanning
technique, and an image dataset was constructed using it. In the second step, the CNN
(EfficientDet) model was trained using the image dataset. Finally, the learned model was
evaluated using the test set.

4.2.1. Transfer Learning

The dataset used in this study comprises about 1280 images, and it is difficult to
evaluate it with a general learning method. To this end, a transfer-learning-based Effi-
cientDet model was applied using a COCO dataset [37] that was pretrained with about
330,000 images and 80 categories. The structure of the deep learning network is very
complex, and as the amount of training data is small, problems such as overfitting occur
and the learning performance deteriorates. As the amount of training data increases, the
deep learning network performance improves [38]. In the field of image object detection,
when it is difficult to collect specific data, such as an UWPI image used in this study, a
transfer learning technique that learns new data using a model pretrained with a lot of data
is a widely used technique in various deep learning applications [19,39]. The difference
between the existing learning method and the transfer learning is shown in Figure 11. In
this study, we train and evaluate the detection and evaluation of pipe bend damage by
using the EfficientDet pretrained model using transfer learning.

 

Figure 11. Basic frameworks of traditional machine learning approaches and knowledge transfer approaches [19].

4.2.2. Train Dataset

In general, when developing deep learning algorithms, open image data that are freely
available on the Internet such as ImageNet and COCO [37] are used a lot. However, in the
case of open image data, the image is object-centered, and the background of the object
is often simple and uncomplicated. However, open image data that can be used free of
charge on the Internet did not have the UWPI images used in this study. Therefore, the
images used in this study were acquired using laser scanning technology, which is detailed
in Section 2 of this paper.

The damage to the curved part of the pipe was scanned and the scan data were
produced as UWPI image data using MATLAB software. The number of image data
produced was 500, with size 1024 × 1024. Of the 500 scanned images, 320 pieces of data
that can predict damage information were extracted. A total of 1280 training images
were constructed by rotating by 90 degrees, as shown in Figure 12, for accurate deep
learning construction.

To increase the resolution consistency and learning precision of the 1280 images, re-
sizing was performed to a size of 512 × 512. The image data were divided into 1000, 200,
and 80 images for the training, validation, and test sets, respectively. After dividing the
image data set into training, validation, and test sets, the coordinate labeling work of the
bounding box (the area of the actual damage location) was performed on each image using
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LabelImg software. In the case of the images used in this study, the class name was not
designated, as damage was determined based on the laser scanning image of the pipe, and
a collective label name “damage” was used.

Figure 12. Laser scanning image dataset configuration.

4.2.3. Training Dataset

The hardware specifications used in this study were: Intel Xeon® Silver 4210 CPU,
Nvidia GeForce RTX 3060, and 32GB RAM. The main software environment consisted of
Anaconda, Python 3.8, TensorFlow 2.5.0, CUDA 11.2, Cudnn 8.1.1. The CNN-based pipe
bend damage model was trained using the EfficientDet-d0 model [35].

The model was evaluated using intersection over union (IOU) and mean average
precision (mAP), which are evaluation indicators that are often used in object detection.
Unlike the existing object classification evaluation method, object detection requires both
the evaluation of the class classification and the bounding box to find the position. In this
study, since there is only one class (damage), the bounding box was evaluated.

The calculation method of IOU is as shown in Figure 13, and it is an indicator of
how well the bounding box is predicted. IOU indicates the ratio of the intersection of
the bounding box labeled during the composition of the predicted area and the actual
dataset to their union. In general, if the IOU value exceeds 0.5, it is judged as the correct
answer [40].

Figure 13. Intersection over union (IOU).

Finally, the mAP is an index used as an evaluation criterion in PASCAL VOC, and it
represents the performance of the object detection algorithm as an index, i.e., as an average
value of average precision (AP) for each classification class [41]. Precision and recall are
commonly used to evaluate the performance of detection models. Precision shows the
ratio of detection of the true value to the total detection of data as in Equation (1), and
recall refers to the ratio of detection of the true value to the cases of correct detection as in
Equation (2). Since the two indicators are correlated with each other, AP, which is the area
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under the graph, is used in the precision–recall graph. The closer the AP value is to 1, the
higher the performance of the object detection algorithm.

Precision =
True positive

True positive + False positive
(1)

Recall =
True positive

True positive + false negative
(2)

4.2.4. UWPI Data Deep Learning Result

Prior to conducting this study, a transfer learning technique using a pretrained model
used in object detection was applied to compensate for the lack of training data. Through
the learning process, it was possible to know whether the used model was learning the
image data well, by looking at the predicted values and the actual values. Learning was
carried out in three stages as shown in Table 2. The same hardware specifications as well
as the same batch size were applied for accurate comparison. For the batch size, step, and
epoch values applied to training, Equation (3), which is widely used in the field of object
detection, was used.

Batch Size × Step = Epoch × No. of samples (3)

Table 2. Pipe damage detection CNN training configuration information.

Batch Size Steps Epochs No. of Samples

8 10,000 80 1000

8 30,000 240 1000

8 50,000 400 1000

Figure 14 shows the learning results after 10,000, 30,000 and 50,000 steps. The sum
of damage detection loss and bounding box regression loss for learning according to each
step is summarized as total loss. From the results of a total of three learning stages, it
was confirmed that the total loss was less than 0.2. Comparing results after 10,000 steps
and 50,000 steps, the loss decreases as repeated learning progresses to 0.188 and 0.1441,
respectively. In addition, the learning progresses normally.

Figure 14. Comparison of deep learning results according to steps (Total loss, mAP, mAP at 0.5 IOU).
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As a result of performance evaluation for the trained model, the average mAP values
of the pipe damage data learning were calculated as 0.3944, 0.3535, and 0.3375, (as shown
in Figure 13) and the average mAP values at 0.5 IOU were calculated as 0.91, 0.8747, and
0.8388, after 10,000, 30,000, and 50,000 steps, respectively. Observing that the average mAP
value of the COCO 2017 pretrained CNN (EfficientDet-d0) algorithm used in this study
was 0.336 [35], it can be deduced that the learning proceeded normally. The evaluation
was conducted using a preclassified test image data set before the learning. As a result of
evaluating a total of 80 test images as evaluation data, the results shown in Table 3 below
were obtained.

Table 3. Damage detection rate of test images for each step.

Test Image Step 10,000 Step 30,000 Step 50,000

1 79% 89% 97%

2 79% 88% 96%

3 79% 90% 97%

4 78% 91% 96%

5 77% 91% 98%

6 72% 90% 98%

7 73% 90% 94%

8 77% 89% 94%

9 77% 89% 94%

10 77% 90% 92%

11 78% 87% 84%

12 77% 87% 92%

13 82% 83% 86%

14 85% 88% 90%

15 86% 85% 89%

16 85% 81% 89%

17 85% 80% 91%

18 82% 75% 88%

19 76% 76% 90%

20 66% 76% 94%

21 67% 81% 91%

22 66% 83% 90%

23 62% 78% 95%

24 59% 78% 93%

25 58% 73% 89%

26 67% 77% 88%

27 68% 72% 85%

28 68% 70% 81%

29 58% 72% 87%

30 67% 74% 83%

31 71% 80% 75%

32 73% 83% 68%

33 77% 90% 85%
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Table 3. Cont.

Test Image Step 10,000 Step 30,000 Step 50,000

34 80% 92% 94%

35 82% 92% 94%

36 82% 92% 94%

37 83% 91% 94%

38 84% 93% 94%

39 86% 93% 96%

40 87% 94% 99%

41 87% 94% 98%

42 87% 92% 98%

43 88% 93% 97%

44 88% 95% 98%

45 88% 94% 98%

46 88% 94% 97%

47 88% 95% 98%

48 89% 96% 98%

49 86% 95% 95%

50 85% 95% 96%

51 82% 93% 96%

52 85% 93% 96%

53 87% 93% 96%

54 88% 93% 98%

55 89% 93% 98%

56 88% 94% 97%

57 85% 92% 96%

58 82% 93% 94%

59 83% 93% 94%

60 84% 90% 92%

61 84% 92% 96%

62 83% 91% 96%

63 83% 94% 93%

64 83% 92% 92%

65 80% 92% 94%

66 82% 92% 94%

67 82% 89% 96%

68 81% 87% 94%

69 77% 89% 97%

70 77% 90% 97%

71 77% 87% 92%

72 63% 68% 64%

73 51% 57% 0%
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Table 3. Cont.

Test Image Step 10,000 Step 30,000 Step 50,000

74 0% 66% 52%

75 58% 69% 0%

76 50% 70% 53%

77 0% 53% 0%

78 0% 56% 58%

79 67% 76% 50%

80 87% 93% 98%

Average
detection rate 75% 86% 88%

Following the evaluation at the 10,000, 30,000, and 50,000 step, average detection rates
of 75%, 86%, and 88%, respectively, were confirmed. When evaluating the performance
of the learning model, the average mAP was lower at steps 30,000 and 50,000 compared
to step 10,000. However, because of the direct evaluation, the damage detection rate was
higher at step 50,000. At step 10,000, the detection rate ranged from 50% to 89%, resulting
in an average detection rate of 75%. At step 30,000 it ranged from 53% to 96%, and at step
50,000 it ranged from 50% to 99%. To see the overall aspect of learning, the undetected data
are excluded and are shown in a graph in Figure 15. Taking a close look at the graph, it can
be seen that the most accurate result was obtained after 50,000 steps.

Figure 15. Comparative analysis of detection rate by step using test images.

Figure 16 shows the test result with the highest detection rate compared to the original
image data and it can be seen that an average detection rate of 89% or more was achieved
compared to the original image data. Observing the overall test, no erroneous detection
occurred. However, at steps 10,000 and 50,000, three non-detections occurred as shown
in Figure 17.
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Figure 16. Test result of damage detection with excellent accuracy.

 

Figure 17. Test result of damage not detected and low accuracy.

In general, the main cause of non-detection in learning results is that there is no
difference in color or contrast between an object and the background. This problem is due
to a shape that appears depending on the background and physical environment such as
color or lighting of the object [42].

From the results of the test, no erroneous detection was found in this study, and
three cases of non-detection occurred at steps 10,000 and 50,000. This is thought to be for
the following reasons. First, regarding the undetected results, the problem is that there
is no difference in contrast between the background color of the image and the color of
the damaged part, which is believed to have affected the learning results. Second, it is
presumed that some non-detection occurred because there was no experience in learning
the UWPI image of this study with the COCO 2017dataset. Therefore, it can be deduced
that it will be improved if many pipe UWPI images are acquired and used with deep
learning in order to improve detection.

5. Conclusions

In this study, we proposed an automatic damage detection system for pipe bends
using a CNN object detection algorithm with laser scanning data to efficiently extend
the safety management of pipes used in the construction industry and many industries.
Using a Q-switched Nd:YAG pulse laser and an acoustic emission (AE) sensor, UWPI
image data were produced for the detection of damage introduced artificially to the pipe
bend. A damage detection system was constructed using a total of 1280 training images
obtained through post-processing of the UWPI data. Since 1280 images are insufficient to
proceed with deep learning, a transfer learning technique using the pretrained COCO 2017
EfficientDet-d0 algorithm was applied.

Examining the learning model using the pipe damage data, it was confirmed that the
detection performance index, mAP, was higher than the value of 0.336 from the COCO 2107
Effi-cientDetd-0 model. This indicates that the model training was successful, and it was
confirmed that there was no performance difference when comparing the existing methods
of learning that use a lot of data with the one implemented through transfer learning with
1280 pieces of data. From the result of the CNN learning using pipe damage data, three
cases were not detected after 10,000 steps and 50,000 steps. It was deduced that a small
amount of non-detection occurred due to an insufficient quality and quantity of images.
Therefore, to supplement the undetected problem, we intend to proceed with the following
additional research.
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• Through additional experiments and research, we intend to secure UWPI data accord-
ing to the damage size using laser scanning techniques for the components (curved
part, curved pipe part, bolted joint part, welding, etc.) of pipes.

• This study confirmed the possibility of detecting damage to pipes based on laser
scanning through the transfer learning technique, and based on this, we intend to
propose a better detection technique using new algorithms and large amounts of data.

• To acquire ultrasonic signals in the laser scanning system, this study used the AE
sensor installed directly on the pipe. Therefore, we intend to develop a noncontact
nondestructive system for efficient pipe damage detection by using laser diameter
vibration (LDV) instead of an AE sensor.

In this study, using the UWPI system and CNN, an automatic pipe bend damage
detection system was proposed. Therefore, it is expected that efficient maintenance will be
possible for piping used in construction and many industries.
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Abstract: Panoramic videos are shot by an omnidirectional camera or a collection of cameras, and
can display a view in every direction. They can provide viewers with an immersive feeling. The
study of super-resolution of panoramic videos has attracted much attention, and many methods have
been proposed, especially deep learning-based methods. However, due to complex architectures of
all the methods, they always result in a large number of hyperparameters. To address this issue, we
propose the first lightweight super-resolution method with self-calibrated convolution for panoramic
videos. A new deformable convolution module is designed first, with self-calibration convolution,
which can learn more accurate offset and enhance feature alignment. Moreover, we present a new
residual dense block for feature reconstruction, which can significantly reduce the parameters while
maintaining performance. The performance of the proposed method is compared to those of the
state-of-the-art methods, and is verified on the MiG panoramic video dataset.

Keywords: panoramic videos; super-resolution; lightweight network; deformable convolution; self-
calibration convolution

1. Introduction

Video super-resolution (VSR) is a classic problem in computer vision, and aims to
recover high-resolution videos from low-resolution ones. VSR technology has been widely
used in various areas for high-definition displays, such as network videos, digital TV, and
surveillance drones. The panoramic video is one class of videos that are real 360-degree
omnidirectional sequences, and its pixels are usually arranged in a spherical shape that
can provide an immersive experience for users. The panoramic video is the product of a
combination of multiple video technologies. Such a video allows the audience to see a wider
field of view and a more realistic field of view experience. Because of its 3D stereoscopic
characteristics compared with ordinary videos, it is widely used in entertainment, news,
the military, and other fields.

In recent years, due to the emergence of deep learning, various methods for video
super-resolution based on deep learning have been proposed. For instance, in SOFVSR [1],
an optical flow reconstruction network is presented to infer high-resolution (HR) optical
flow from coarse to fine, and the motion-compensated low resolution (LR) is input to a
super-resolution network to generate the final super-resolved frames. TDAN [2] proposes
a temporal deformable network, which utilizes the features of the reference frame and
neighboring frames to dynamically predict the offset of the sampling convolutional kernel,
and aligns it adaptively at the feature level. EDVR [3] proposes a pyramid, cascade, and
deformable convolution (PCD) module. Unlike TDAN, this module performs alignment in
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a coarse-to-fine manner and can handle videos with large and complex motions. Moreover,
EDVR presents the temporal and spatial attention fusion module, which utilizes temporal
attention to concentrate on neighboring frames that are more similar to the reference frame,
and uses spatial attention to assign weights to each position in each channel to more
effective use of cross-channel and spatial information.

Although the methods mentioned above can achieve good performance for general
videos, they may degrade for panoramic videos. Because panoramic videos usually have
ultrahigh spatial resolution, they can provide viewers with a strong sense of immersion
in the virtual environment. Moreover, the higher the resolution of the camera, the more
realistic effect of the panoramic video is. The high resolution requires great hardware
performance from camera equipment, and the cost will be largely increased. For this
problem, Liu et al. [4] first explored deep learning for super-resolving panoramic videos.
Although this method has gained a higher PSNR for panoramic videos, the number of
parameters is still high. This issue considerably limits their real-world applications.

In order to balance the performance and the computational cost, we propose a novel
lightweight super-resolution framework for panoramic videos. As is known, the alignment
between video frames is significant for super-resolution. If more interframe information
can be exploited for alignment, it is beneficial to the subsequent reconstruction. Thus,
we present a new pooled, self-calibrated convolution (PSCC) for frame alignment, which
significantly reduces the complexity of the deformable convolution and achieves accurate
alignment in a gradual manner. Moreover, in the reconstruction operation, we design a
new lightweight residual dense block to further reduce the complexity of the model. Our
method achieves a balance between algorithm performance and complexity.

The main contributions of this work are listed as follows.

• We propose the first lightweight panoramic video super-resolution (LWPVSR) method
for panoramic video super-resolution, which can achieve a good balance between
performance and complexity. To the best of our knowledge, this is the first proposition
of a lightweight panoramic VSR framework.

• Moreover, we present a new pooled, self-calibrated convolution for frame alignment.
The self-calibrated convolution is introduced to make the learned offset more accurate
in a progressive manner and reduce the complexity of the proposed network.

• Finally, we design a new significantly lighter residual dense block (LWRDB) for feature
reconstruction, which achieves the purpose of reducing the complexity of the model
while maintaining the performance of our method. Many experimental results verify
the advantage of the proposed LWPVSR method against state-of-the-art methods.

The rest of this paper is organized as follows. Some related works on super-resolution
of panoramic videos are introduced in Section 2. Section 3 describes the proposed lightweight
super-resolution method in detail. In Section 4, we demonstrate the experimental results of
our method. Finally, we show the conclusions and future work in Section 5.

2. Related Work

2.1. Super-Resolution Methods for Ordinary Videos

Most of video super-resolution methods (e.g., VESPCN [5], TDAN [2], SOFVSR20 [6],
and EDVR [3]) have been proposed to address ordinary videos. They have improved the
performance of restored high-resolution videos. For example, Yi et al. [7] proposed a
general omniscient framework to leverage the LR framework and estimated hidden states
from the past, present, and future frames. Benefiting from the global information feature of
OVSR [7], the OVSR method refreshes the metrics on the Vid4 test set.

2.2. Super-Resolution Methods for Panoramic Videos

There are many image super-resolution methods such as [8–13]. For instance, ref. [11]
can utilize the plenoptic geometry of the scene to perform alignment between consecutive
frames in a video sequence and employ all visual information to generate high-resolution
panoramic images. In [10], the spherical Fourier transform (SFT) was calculated based
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on the nonuniform sampling data on the sphere, which can transform low-resolution
panoramic images with arbitrary rotation to reconstruct a high-resolution panoramic
image. The joint alignment and super-resolution problem is converted into a least square
minimization problem in the SFT domain. In [14], the authors introduced SRCNN [15],
which is the earlier work to use deep learning for super-resolution of panoramic images.
It fine tuned the SRCNN by optimizing input size and using the panoramic training set
to adapt the fine-tuned method to the features of the high-resolution panoramic images.
Based on the existing viewport-based panoramic image transmission system, ref. [16]
proposed a framework that used the high-resolution content of the viewport to improve
the quality of the surrounding low-resolution areas. The adaptive initial viewport of each
image was predicted in view of contextual similarity of the sphere, so as to provide more
useful information for low-resolution regions.

Only a few works involve the super-resolution of panoramic videos. As we have
mentioned in Section 1, Liu et al. [4] designed a single frame and multiframe joint network
for the super-resolution of panoramic videos, which explored both the spatial information
and the temporal information. In addition, deformable convolutions are employed to
eliminate the motion difference between feature maps of the target frame and its neigh-
boring frames. Although it achieves sound results, the network contains a large number
of parameters, resulting in low computational efficiency, which is not unfavorable for the
promotion of practical applications. Therefore, this paper will propose the first lightweight
video super-resolution method for panoramic videos.

3. The Proposed Lightweight Architecture for Panoramic Video Super-Resolution

In this section, we propose the first lightweight panoramic video super-resolution
(LWPVSR) method. The proposed LWPVSR method mainly consists of the four main
modules: the feature extraction module, the feature alignment module, the reconstruction
module, and the dual network module, as shown below.

3.1. Our Network Architecture

As shown in Figure 1, the network structure of our method mainly consists of three
main parts, which are the feature extraction module, the feature alignment module, and
the reconstruction module. The backbone network learns the residual images of the video
frames, then sums them with the direct upsampling results of the target frames to obtain the
final super-resolution results. In addition, super-resolution is an ill-posed problem—that
is, mapping a low-resolution video to high-resolution is a one-to-many problem. In order
to reduce the solution space of the super-resolution, we introduce a dual mechanism to
the backbone network, and it learns a dual regression mapping, which can increase the
constraints on LR videos—that is, the duality mechanism acts as a subsupervised network
to enhance the performance of SR. The whole super-resolution process of the proposed
method is expressed as follows,

Ĩt = HLWPVSR( Ît−N:t+N), (1)

where HLWPVSR(·) denotes the proposed algorithm network, N is the temporal radius
(e.g., N = 3), and Ĩt and Ît are the super-resolution result of the target frame and the low
resolution of the target frame, respectively.

3.2. The Feature Extraction Module

The feature extraction module is responsible for extracting the features of the input
video frames to prepare for subsequent feature alignment. In the proposed method, the
feature extraction module is composed of several residual blocks, which mainly consist of
two convolutional layers. The residual block is more conducive to training. Therefore, the
number of parameters is very small, and it maintains network performance in combina-
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tion with other modules. The process of the proposed feature extraction module can be
formulated as follows:

F = HFE( Ît−N:t+N). (2)

Note that HFE(·) denotes the feature extraction operation, and F denotes the extr-
acted features.

Figure 1. The network architecture of the proposed LWPVSR method. Our LWPVSR method mainly
consists of the four modules: the feature extraction module, the feature alignment module, the
reconstruction module, and the dual network module.

3.3. The Proposed Feature Alignment Module

In this subsection, we propose a new module for feature alignment between frames
based on deformable convolution. As is known, the effectiveness of deformable convolution
in video super-resolution has been witnessed and confirmed in EDVR [3]. In EDVR,
the deformable convolution was integrated into a pyramid, cascading, and deformable
convolution (PCD) module in EDVR, as shown in Figure 2. In fact, PCD has a pyramid-like
structure. The top layer is a lower-resolution feature map, and the bottom layer is for the
reference frame and neighboring frames. Different layers represent the feature information
of different frequencies. PCD first aligns the reference feature map with the smallest
resolution to form a rough alignment, and then transfers the offset and aligned feature map
to a layer with a larger resolution, so that the offset and continuously aligned feature map
are passed to the bottom layer every time. Thus, an implicit motion compensation from
coarse to fine is formed from top to bottom. However, PCD introduced a large number of
parameters and computational cost. In order to reduce the parameters, here we design a
new pooled, self-calibrated convolution (PSCC) to replace the pyramid cascading structure
and maintain the multi-scale learning capability, as shown in Figure 3.

Inspired by the self-calibrated convolution in [17], our PSCC module employs a
pooling for downsampling to expand the receptive field, so as to learn more contextual
information without increasing the network complexity. Specifically, after the target features
and the neighboring features are merged, a convolution operation is performed, and then
through channel splitting, the channel is divided into two, one channel only performs a
simple convolution. In the other channel, we utilize a new upsample operation to make
the learned features match with the scale. The learned features via the Sigmoid activation
are again multiplied with the features through channel splitting. Finally, the features
from the two channels are concatenated for output. Our PSCC module is embedded in
the deformable convolution to learn the information about the neighbors of the reference
frame, rather than the global information, so as to avoid the pollution information of other
irrelevant frames and achieve more accurate frame alignment. From the perspective of
the structures of PCD and PSCC, PCD uses multiple deformable convolutional networks
(DCNs) and convolutional networks to cascade and form a pyramid structure, and each
DCN is based on a feature map of different levels. Although our PSCC only adopts one
deformable convolutional network, and combines it with self-correcting convolution, which
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not only reduces the number of parameters, but also learns more accurate offsets to achieve
better alignment. This will be verified by the subsequent experimental results. Compared
with the PCD module with 1.38 M parameters in EDVR, the number of the parameters of
our PSCC module is only 0.04 M.

The process of the feature alignment in our LWPVSR method is expressed as follows,

Fa
t±i = HAlignment(Ft, Ft±i), (3)

where HAlignment(·) denotes our alignment operation and Ft and Ft±i denote the features of
the target frame and the nearest neighboring frame, respectively. Fa

t±i denotes the aligned
features of each frame. Here, we use Fa to represent the result of all the aligned frames.

Figure 2. The structure of the PCD module in EDVR [3].

Figure 3. Our proposed pooled self-calibrated convolution (PSCC) module for feature alignment.

3.4. Our Reconstruction Module

In the proposed reconstruction module, inspired by the residual dense blocks (RDB)
in [18], as shown in Figure 4a, a lightweight residual dense block (LWRDB) is designed for
feature transformation and restoration. Its detailed structure is shown in Figure 4b.

First, the input features Fin through a layer of convolution output the corresponding
feature maps. The channel is then shuffled by a channel shuffle operation, followed by a
channel split operation which divides the number of channels into two proportionally. One
part is fed into the convolution, and the other is connected to the output of the convolution
in a jump connection. The channel shuffle and channel split operations are executed again,
and so on. Finally, the number of channels is reduced through a 1 × 1 convolution, and
the output is added to the initial input of the module to obtain the final result Fout of the
module. The process is given by

Fout = HLWRDB(Fin), (4)

where HLWRDB(·) denotes the operation of the LWRDB module. It is noted that in our
design, the introduction of the channel shuffle [19] and the channel split [20] is important
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compared with that of Figure 4a. The purpose of the channel shuffle operation is to break
up the output of the previous layer of convolution in channel dimension, and the purpose
of the channel split operation is to split the channel into two according to a presetting ratio,
as shown in Figure 4b. The purpose of combining these two operations is to reduce the
number of parameters while still making full use of all levels of features like residual dense
blocks, so that the number of parameters can be reduced. Meanwhile, it maintains high
performance. It should be noted that we have verified in our experiment that the number
of parameters of the RDB module is 1.08 M, while that of ours is only 0.81 M. Obviously,
the number of parameters of our proposed LWRDB is smaller. In fact, our lightweight
residual block in the reconstruction module introduces both channel shuffle and channel
split operations. The channel shuffle can strengthen the exchange of information between
channels, and channel split can reduce the number of parameters. Compared with the
reconstruction module in Figure 4a, our method has fewer parameters and can maintain
the performance of the network.

(a)

(b)

Figure 4. Comparison of the structures of the residual dense block (RDB) used in [19,20] and our
lightweight RDB. (a) Existing RDB [19,20]. (b) Our lightweight RDB.

3.5. Our Dual Network Module and Loss Function

In our proposed method, the final super-resolution result is obtained by adding the
output of the reconstruction module to the result of the upsampled target frame. It is
expressed as follows,

Ĩt = Hreconst(Fa) + Ît ↑, (5)

where Hreconst(·) denotes the mapping function of reconstruction module. Here ↑ denotes
upsampling, and Ĩt denotes the super-resolution result of the target frame.

In order to show the important content in the equatorial region in the panorama video,
we introduce a weighted mean square error (WMSE) loss, which is defined as follows,

1

∑M−1
i=0 ∑N−1

j=0 ω(i, j)

M−1

∑
i=0

N−1

∑
j=0

ω(i, j) · ( Ĩt(i, j)− It(i, j))2, (6)

where M and N denote the width and height of one frame, respectively, (i, j) represents the
coordinate position of each pixel in a frame, and ω(i, j) is the weight at the corresponding
pixel position, which is allocated according to the pixel position and is given by

ω(i, j) = cos
(j + 0.5 − N

2 )π

N
, (7)
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where i = i0, i0 + 1, · · · , i0 +wd− 1 and j = j0, j0 + 1, · · · , j0 + h− 1. Here, (i0, j0) represents
the upper left corner of the patch, wd is the width of the patch, and h is the height of
the patch.

In order to explain the weight change in each frame more intuitively, we show it
visually in Figure 5. The black and white color represent the distribution of weights. The
lighter the color, the greater the weight is, and the darker the color, the smaller the weight
is. That is, the weights gradually decrease from the equator to the two polar regions. The
weights are assigned on the whole frame during data processing.

Figure 5. The weight diagram of the loss function.

The loss function in our architecture is composed of two parts. One is from the main
branch—Lprimary (i.e., input, feature extraction, alignment, reconstruction, and output)—and
the other is from the dual subnetwork: Ldual . The overall loss function of the proposed
method is formulated as follows,

Ltotal = Lprimary + λLdual , (8)

where Lprimary and Ldual are both calculated by Equation (6). The parameter λ is a balance
factor between Lprimary and Ldual .

It is noted that compared with ordinary videos, the information of panoramic video
is distributed on a sphere instead of a plane. The panoramic video, which is essentially a
spherical video, cannot directly use the storage structure and encoding algorithm designed
for ordinary videos. The current mainstream solution is to use the mapping relationship
to project the spherical video onto the plane and compress the obtained plane video, and
the equirectangular projection (ERP) is widely used. In this case, the important content is
usually displayed in the equatorial region, and the less content is at the poles. Moreover,
because the information of the panoramic video is distributed in a spherical shape, the
features in the same dimensionality are more uneven, and the video is more prone to be
distorted. Addressing the particularity that more content distributed at the equator and less
content at the poles, we used the weighted loss function, as shown in Equation (6). It aims
to increase the weight of the equatorial region and reduce the weight of the polar region.
Addressing the features distributed on the same dimension are more uneven or the offset is
too large, we think that using deformable convolution is not sufficient to solve this issue.
Therefore, we propose to adopt self-correcting convolution combined with deformable
convolution—that is, our PSCC module to learn these offset features. It is more conducive
to achieving better alignment results.

4. Experimental Results

In this section, we compare the proposed LWPVSR method with eight state-of-the-art
super-resolution algorithms for panoramic video super-resolution tasks.
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4.1. Datasets

The MiG dataset [4] is utilized for evaluating the performance of super-resolution of
the proposed LWPVSR method. The data set has 200 videos for training and eight videos
for test. We adopt the bicubic interpolation algorithm to 2× downsample each video frame
as the ground truth (GT). Then, we further perform 4× downsampling on GT to obtain
the corresponding LR video. Moreover, in order to demonstrate the superiority of the
proposed LWPVSR method, we also collected another video sequence from the Internet,
named Clip_009, and adopted it for performance evaluation.

The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are usually
used as indicators to measure the performance of all the video super-resolution algorithms.
In order to make a fair comparison, similar to other works, all indices are calculated on
the Y channel for all the algorithms. Different from ordinary videos, we also use the two
video quality metrics (i.e., WS-PSNR and WS-SSIM) in [4] to measure the performance of
all the methods.

4.2. Training Setting

We implemented all the models in the PyTorch framework and used two NVIDIA
Titan XP GPUs for training. The training schemes and parameters of other methods are
listed below.

(1) SR360 [8]: The batch size is set to 16. The weights of all the layers were initialized
randomly and the network was trained from the scratch. The network used the Adam
solver with a learning rate, 1 × 10−4.

(2) VSRnet [21]: The batch size is 240, a learning rate of is 1 × 10−4 used for the first two
layers, 1 × 10−5 for the last layer and a weight decay rate of 0.0005 are set as in [21].

(3) FRVSR [22]: The Adam is an optimizer. The learning rate is fixed at 1 × 10−4. Each
sample in the batch is a set of 10 consecutive video frames, i.e., 40 video frames are
passed through the networks in each iteration.

(4) VESPVN [5]: The initial batch size is 1. Every 10 epochs the batch size is doubled
until it reaches a maximum size of 128. The optimizer is Adam with a learning rate,
1 × 10−4.

(5) TDAN [2]: The batch size is set to 64. The Adam is the optimizer. The learning rate is
initialized to 1 × 10−4 for all layers and decreases half for every 100 epochs.

(6) SOFVSR [6]: The batch size is 32. The optimizer is Adam. The initial learning rate is
1 × 10−3 and divided by 10 after every 80 K iterations.

(7) EDVR [3]: The batch size is set to 32. The learning rate is initialized to 4 × 10−4, and
initializes deeper networks by parameters from shallower ones for faster convergence.

(8) OVSR [7]: The batch size is 16. The optimizer is Adam. The initial learning rate
is 1 × 10−3 and decays linearly to 1 × 10−4 after 120 K iterations, which keeps the
same until 200 K iterations. Then the learning rate is further decayed to 5 × 10−5 and
1 × 10−5 until convergence.

In our method, the feature extraction module is composed of three residual blocks,
each residual block consists of two layers of convolution, and the number of channels is set
to 64. The reconstruction module includes five LWRDB blocks, each block is composed of
six convolutional layers, and the number of channels is 64. In our experiment, we convert
the video frames from the RGB space to the YCbCr space and then use the Y channel as the
input to our network. Unless stated otherwise, the network takes three consecutive video
frames as inputs. The input patch size is 64 × 64, and the batch size is set to 32. Moreover,
we also employ data enhancement techniques as in other methods, including reflection,
random cropping, and rotation. Furthermore, we defined the ratio for channel split by
experience. If the ratio is larger than 0.5, it means that more features do not participate in
the subsequent calculations but are directly cascaded to the subsequent feature maps. Then
the following convolutional layers will be meaningless. If the ratio is smaller than 0.5, the
model parameters will increase and it results in a higher computational cost. Therefore,
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the ratio equaling to 0.5 is a balanced choice. During training, we optimize the network
by using the Adam optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is
set to 2 × 10−4, and then is reduced by half after every 20 epochs. In our loss function,
through experiments and experiences, the value of the parameter λ is set to 0.1. And the
performance of each method has been optimized with its hyperparameter tuning to show
their best results in our experiments.

4.3. Quantitative Comparison

We also implemented nine other state-of-the-art VSR algorithms for performance
comparison. They include bicubic, SR360 [8], VSRnet [21], VESPCN [5], FRVSR [22],
TDAN [2], SOFVSR20 [6], EDVR [3], and OVSR [7]. The quantitative results including
PSNR/WS-PSNR, SSIM/WS-SSIM, inference time, and floating point operations per second
(FLOPs) of all the methods on representative video clips are shown in Tables 1 and 2,
respectively.

Table 1. Comparison of all the methods in terms of PSNR (top) and SSIM (bottom).

Bicubic SR360 [8] VSRnet [21] FRVSR [22] VESPCN [5] TDAN [2] SOFVSR20 [6] EDVR [3] OVSR [7] LWPVSR

Clip_005 26.38 26.58 26.59 25.36 26.71 26.73 26.72 26.73 26.69 26.81
0.6868 0.7101 0.7075 0.7095 0.7203 0.7213 0.7203 0.7217 0.7207 0.7251

Clip_006 30.09 30.69 30.39 29.70 31.04 31.11 31.16 31.48 29.72 31.58
0.8494 0.8580 0.8573 0.8700 0.8723 0.8740 0.8775 0.8685 0.8902 0.8902

Clip_007 27.65 29.29 28.10 28.90 29.50 29.61 29.54 30.18 29.31 30.99
0.8119 0.8406 0.8245 0.8458 0.8490 0.8534 0.8527 0.8630 0.8622 0.8700

Clip_008 31.88 32.22 32.15 31.83 32.63 32.74 32.70 32.91 32.81 33.02
0.9005 0.9001 0.9069 0.9162 0.9134 0.9150 0.9147 0.9186 0.9183 0.9183

Average 29.00 29.69 29.30 28.95 29.97 30.05 30.03 30.32 29.97 30.60
0.8121 0.8272 0.8241 0.8353 0.8388 0.8409 0.8413 0.8479 0.8457 0.8507

Params. (M) - 0.58 0.16 5.05 0.86 1.96 1.05 20.60 3.48 2.30

Time (ms) - 64.30 2.52 71.57 122.59 16.11 76.86 670.80 69.55 92.31

FLOPs (T) - 0.457 0.018 0.348 0.007 0.558 0.135 0.954 0.201 0.204

Table 2. Comparison of all the methods in terms of WS-PSNR (top) and WS-SSIM (bottom).

Bicubic SR360 [8] VSRnet [21] FRVSR [22] VESPCN [5] TDAN [2] SOFVSR20 [6] EDVR [3] OVSR [7] LWPVSR

Clip_005 26.39 26.62 26.60 25.37 26.75 26.78 26.77 26.80 26.73 26.84
0.6888 0.7131 0.7118 0.7257 0.7263 0.7267 0.7257 0.7293 0.7260 0.7298

Clip_006 28.64 29.37 28.94 28.27 29.63 29.71 29.74 30.04 29.72 30.15
0.8274 0.8422 0.8386 0.8574 0.8569 0.8594 0.8622 0.8744 0.8685 0.8759

Clip_007 29.75 30.76 30.15 30.23 31.24 31.42 31.29 31.57 31.55 31.86
0.8009 0.8214 0.8165 0.8374 0.8379 0.8406 0.8392 0.8464 0.8465 0.8482

Clip_008 30.46 30.85 30.72 30.34 31.19 31.28 31.24 31.43 31.34 31.52
0.8685 0.8726 0.8779 0.8869 0.8854 0.8885 0.8880 0.8929 0.8924 0.8938

Average 28.81 29.40 29.10 28.55 29.70 29.80 29.76 29.96 29.84 30.09
0.7964 0.8123 0.8112 0.8268 0.8266 0.8288 0.8288 0.8358 0.8333 0.8369

Params. (M) - 0.58 0.16 5.05 0.86 1.96 1.05 20.60 3.48 2.30

Time (ms) - 64.30 2.52 71.57 122.59 16.11 76.86 670.80 69.55 92.31

FLOPs (T) - 0.457 0.018 0.348 0.007 0.558 0.135 0.954 0.201 0.204

It can be seen that our LWPVSR method obtains the highest PSNR and SSIM results,
and the amount of its parameters is relatively small. Our LWPVSR method performs much
better than EDVR in terms of PSNR/WS-PSNR and SSIM/WS-SSIM, and the the former has
significantly fewer parameters than the latter (i.e., 2.30 M vs. 20.60 M). That is, LWPVSR is
nearly 1/10 size of EDVR. It is because the proposed PSCC module in our LWPVSR plays an
important role, and decreases the PCD module in EDVR by man parameters but maintains
the performance. In addition, compared with FRVSR, our model parameters are 2.7 M
smaller, and the PSNR of model is 1.65 dB higher than FRVSR. SR360, VSRnet, VESPCN,
TDAN, and SOFVSR20 are relatively lightweight video super-resolution architectures, with

150



Sensors 2023, 23, 392

model parameters below 2.0 M. However, the performance of all of them is significantly
lower than that of the proposed method. Moreover, the PSNR and WS-PSNR results of all
the methods on other video clips are shown in Tables 3 and 4. We can see that the results of
our LWPVSR method are much better than those of the state-of-the-art methods. All the
experimental results show that our LWPVSR method can achieve a good balance between
the model complexity and performance.

Table 3. Comparison of all the methods in terms of PSNR (top) and SSIM (bottom) on other video clips.

Bicubic SR360 [8] VSRnet [21] FRVSR [22] VESPCN [5] TDAN [2] SOFVSR20 [6] EDVR [3] OVSR [7] LWPVSR

Clip_001 27.57 29.06 27.75 28.80 28.56 29.20 29.08 29.44 29.25 29.68
0.8659 0.8833 0.8742 0.8920 0.8909 0.8965 0.9004 0.9108 0.9122 0.9176

Clip_002 26.06 27.26 26.54 27.42 27.20 27.43 27.39 27.58 27.87 27.75
0.7426 0.7866 0.7650 0.8045 0.7976 0.8052 0.8073 0.8138 0.8378 0.8231

Clip_003 25.68 26.45 25.95 26.39 26.52 26.63 26.55 26.66 26.57 26.82
0.8240 0.8495 0.8359 0.8551 0.8568 0.8623 0.8607 0.8663 0.8737 0.8700

Clip_004 30.61 31.46 31.08 32.25 32.17 32.44 32.46 33.03 32.72 33.66
0.8889 0.8931 0.8983 0.9220 0.9196 0.9257 0.9280 0.9379 0.9404 0.9412

Clip_009 26.03 27.23 26.50 27.40 27.16 27.40 27.36 27.56 27.79 29.41
0.7515 0.7957 0.7717 0.8123 0.8044 0.8131 0.8136 0.8224 0.8637 0.8801

Average 27.19 28.29 27.56 28.45 28.32 28.62 28.57 28.85 28.84 29.46
0.8146 0.8416 0.8290 0.8572 0.8539 0.8606 0.8620 0.8702 0.8856 0.8864

Params. (M) - 0.58 0.16 5.05 0.86 1.96 1.05 20.60 3.48 2.30

Time (ms) - 64.30 2.52 71.57 122.59 16.11 76.86 670.80 69.55 92.31

FLOPs (T) - 0.457 0.018 0.348 0.007 0.558 0.135 0.954 0.201 0.204

Table 4. Comparison of all the methods in terms of WS-PSNR and WS-SSIM on other video clips.

Bicubic SR360 [8] VSRnet [21] FRVSR [22] VESPCN [5] TDAN [2] SOFVSR20 [6] EDVR [3] OVSR [7] LWPVSR

Clip_001 29.84 30.86 30.19 30.95 31.12 31.35 31.35 31.89 31.67 32.04
0.9630 0.8771 0.8731 0.8909 0.8901 0.8948 0.8969 0.9082 0.9053 0.9071

Clip_002 25.81 27.02 26.27 27.12 26.89 27.12 27.03 27.32 27.59 27.45
0.7416 0.7792 0.7626 0.7975 0.7916 0.7978 0.8003 0.8082 0.8226 0.8112

Clip_003 24.49 25.17 24.75 25.12 25.23 25.33 25.26 25.37 25.26 25.48
0.7807 0.8134 0.7972 0.8197 0.8212 0.8275 0.8252 0.8339 0.8308 0.8312

Clip_004 29.88 30.87 30.39 31.66 31.59 31.91 31.90 32.45 32.18 32.89
0.8666 0.8802 0.8796 0.9077 0.9053 0.9122 0.9143 0.9249 0.9242 0.9263

Clip_009 25.78 26.99 26.24 27.09 26.87 27.09 27.03 27.29 27.98 28.11
0.7448 0.7815 0.7617 0.7971 0.7907 0.7972 0.7993 0.8076 0.8312 0.8387

Average 27.16 28.18 27.57 28.39 28.34 28.56 28.51 28.86 28.94 29.20
0.7993 0.8263 0.8148 0.8426 0.8398 0.8459 0.8472 0.8566 0.8628 0.8629

Params. (M) - 0.58 0.16 5.05 0.86 1.96 1.05 20.60 3.48 2.30

Time (ms) - 64.30 2.52 71.57 122.59 16.11 76.86 670.80 69.55 92.31

FLOPs (T) - 0.457 0.018 0.348 0.007 0.558 0.135 0.954 0.201 0.204

In order to demonstrate the relation between performance and parameters more clearly,
the visualized diagram is also shown in Figure 6. It can be seen that our method attains a
higher performance at the cost of lower numbers of parameters.

4.4. Qualitative Comparison

In this subsection, we qualitatively compare our method with the other methods on
video sequences Clip_001, Clip_003, Clip_004 and Clip_009, as shown in Figures 7–10,
respectively.

It can be seen that our LWPVSR method has achieved much better performance than
other methods, including EDVR with 20.60 M parameters, and they have superior visual
results in all these figures. For example, in Figure 7, the image recovered by our LWPVSR
method seems more real, which is closer to the original high-resolution image. However,
the images recovered by other methods, such as TDAN, FRVSR, and SOFVSR20, are blurry.

151



Sensors 2023, 23, 392

Similar results can also be observed from Figures 8–10. In general, compared with other
methods, our LWPVSR method achieves a better balance between the model complexity
and algorithm performance, resulting in less distortion and more reliable results in the
panoramic video super-resolution task.

Figure 6. Comparison of all the methods in terms of performance and number of parameters. Note
that the y-axis represents different performance metrics (including PSNR, SSIM, WS-PSNR, and
WS-SSIM), and the x-axis corresponds to the number of parameters in different methods.

Figure 7. The results of all the algorithms performing 4× super-resolution on Clip_001 of the MiG
test set.
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Figure 8. The results of all the algorithms performing 4× super-resolution on Clip_003 of the MiG
test set.

Figure 9. The results of all the algorithms performing 4× super-resolution on Clip_004 of the MiG
test set.
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Figure 10. The results of all the algorithms performing 4× super-resolution on Clip_009 of the MiG
test set.

4.5. Ablation Studies

In this subsection, we analyze the contribution of each module in our network, mainly
including PSCC and LWRDB, as shown in Table 5. The baseline is our architecture, as
shown in Figure 1. The PSNR and SSIM results are 30.60 dB and 0.8507, respectively. When
the architecture is without the PSCC module, the PSNR drops by 0.30 dB, and the number
of parameters decreases 0.04 M. The performance drops by 0.92 dB when the baseline
is without the LWRDB module. Moreover, without PSCC and LWRDB, the PSNR result
decreases by 0.96 dB. All the results also verify the importance of the proposed modules,
including PSCC and LWRDB for the proposed method.

Table 5. Ablation studies for each module in the proposed LWRDB network.

PSNR SSIM Parameters (M)

Ours 30.60 0.8507 2.30
Ours w/o PSCC 30.30 0.8471 2.26

Ours w/o LWRDB 29.68 0.8290 1.49
Ours w/o PSCC and LWRDB 29.64 0.8285 1.44

5. Conclusions and Future Work

In this paper, a lightweight and efficient panoramic video super-resolution method was
designed from the perspective of lightweight networks. This method adopts deformable
convolution to align the nearest neighbor features with the target feature, in order to further
enhance the alignment effect step. In particular, we introduced self-calibrated convolution
to gradually implement the alignment operation in a recursive manner. Moreover, we also
proposed a lighter and more efficient LWRDB module based on the RDB module. Various
experimental results verified the effectiveness of the proposed method. Compared with
mainstream video super-resolution algorithms, our proposed method achieves a better
balance between performance and algorithm complexity.

In the future, we will design more effective strategies, such as the attention strategy [23]
for the lightweight architecture to further enhance the performance while maintaining
its cost.
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Abstract: In this paper, we propose a detection method for salient objects whose eyes are focused on
gaze tracking; this method does not require a device in a single image. A network was constructed
using Neg-Region Attention (NRA), which predicts objects with a concentrated line of sight using
deep learning techniques. The existing deep learning-based method has an autoencoder structure,
which causes feature loss during the encoding process of compressing and extracting features from
the image and the decoding process of expanding and restoring. As a result, a feature loss occurs
in the area of the object from the detection results, or another area is detected as an object. The
proposed method, that is, NRA, can be used for reducing feature loss and emphasizing object areas
with encoders. After separating positive and negative regions using the exponential linear unit
activation function, converted attention was performed for each region. The attention method
provided without using the backbone network emphasized the object area and suppressed the
background area. In the experimental results, the proposed method showed higher detection results
than the conventional methods.

Keywords: autoencoder; convolutional neural network; deep learning; gaze tracking; image process-
ing; salient object detection

1. Introduction

Video processing technology using deep learning has been studied in various fields,
such as monochrome image colorization, object detection and recognition, super-resolution
technology, character detection and object recognition. Particularly, in the field of object
detection and recognition, the underlying method is salient object detection (SOD). The
purpose of this method is to detect objects that are of interest to a person, detect objects that
cause the line of sight when a person first sees a video or a single image, and track the line
of sight based on the results. SOD predicts where the gaze is focused when gaze tracking
without equipment. Dramatic scene changes when predicting gaze can cause tracking
to fail. SOD can supplement gaze tracking information by learning the area where the
gaze is concentrated and predicting the input image. SOD’s training dataset generates an
area where the eyes of 20 to 30 people are focused through gaze tracking when displaying
images on the screen instantly. This method recognizes objects and is used in various areas,
such as scene classification, tracking and detection. Other typical object detection methods
include the contour-based, division-based, and deep learning-based methods.

SOD is the creation of a saliency map by detecting objects that are of interest to people
or objects that are considered to be the most important in a video or image. The correct
saliency map of the SOD input image is called the ground truth. Typical split-based SOD
methods include superpixel, contour-based, and deep learning-based methods.
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The deep learning-based detection method does not require complicated pretreatments
and posttreatment processes and shows a high detection rate. Most of the existing SOD
methods have autoencoder structures, and the use of some methods results in a significant
deformation of the model structure and loss function. The model structure can be improved
to reduce losses during the feature extraction process due to the shallow structure and to
maximize the error of the loss function during the learning process. Research is underway
to improve the detection rate of salient objects based on deep learning-based methods.
However, the detection rate drops due to the high degree of similarity between the object
and the background or the existence of several objects.

The existing deep learning-based method typically includes a fully convolutional
network (FCN) [1], which uses skip connection to minimize losses during the feature
extraction process. However, various values are extracted at the feature extraction stage,
and feature values can be expressed as negative in this process. Traditional methods
focus on positive region values that do not utilize negative region values, which causes
feature loss. Also, since deep learning research is being conducted based on the backbone
network, a backbone network is always required. A backbone network is a feature extractor
that has learned a lot of data in advance. Although it has the advantage of being able to
select various features, the type of backbone is limited and shows poor performance when
extracting features that have not been learned.

In this study, the negative region that was not used in the existing method is utilized.
A new attention module is created by using the spatial attention technique in the negative
region. This module minimizes loss of functionality during feature extraction. We also
propose a deep learning model called the Neg-Region Attention (NRA), which aims to
minimize the feature loss of salient objects due to complex environmental problems.The
proposed method did not use a backbone network to extract desired features and does not
require additional pre-trained weights. It aims to construct a relatively light model without
a backbone network. In addition, it aims to improve the performance of feature extraction
by providing a new module using the negative region.

2. Related Works

Deep learning is a machine learning algorithm that summarizes the core contents and
features of complex data, with nonlinear transformation methods composed of multiple
layers. In the existing machine learning algorithm, a person directly analyzes and evaluates
by extracting the kind of features present in the data to be learned. However, in deep
learning, necessary features are extracted and learned from the data that the machine
automatically learns. In these studies, deep learning was developed as a convolutional
neural network-based method with high data recognition and detection performance.
In addition, deep learning technology has been established, and excellent performance
methods have been developed in the field of SOD, where FCN is a typical example.

2.1. Hand Crafted-Based Detection Method

Superpixel-based split methods [2,3] split the salient object and background with the
internal information of the image, such as brightness, color, contrast and texture. Because
salient objects have movements in the video, the method considers the position of the object
according to the time using a superpixel partition. Contour-based detection methods [4]
include detecting salient objects using a fast Fourier transform and a Gaussian filter. Such
a method maintains the contour of the object and shows a high detection rate, but it
requires a large amount of calculation due to pre-processing and post-processing process
requirements. In addition, the detection rate of salient objects decreases due to problems
such as complicated backgrounds, high similarity between backgrounds and objects, or the
existence of several objects.
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2.2. Deep Learning-Based Detection Method

The deep learning-based SOD method shows high accuracy in trained images with-
out requiring complicated pre-processing and post-processing processes. In the present
research, this method is performed with an autoencoder structure, and it can be further clas-
sified to methods transforming the network structure and transforming the loss function.
When the network structure is deformed, the loss and shallow structure in the process of
extracting the features are improved, which consequently improves the results. When the
loss function is transformed, the loss function is improved, which consequently minimizes
the error in the learning process. Both methods show improved performance, and even
when transforming the loss function, it is necessary to improve the network structure in
the process of minimizing the error [5–9].

Recently, many deep learning-based detection methods have been studied to improve
the performance of SOD. However, the detection rate drops due to problems, such as high
similarity between the background and object and complicated background. In addition,
feature loss occurs during feature extraction through several convolution layers.

2.3. Autoencoder

An autoencoder [10] is a type of artificial neural network used to compress and restore
image data. It is a learning model with a structure similar to that of feed-forward neural
networks (FNNs) [11]. Different from FNNs, the sizes of the input and output layers of an
autoencoder are always the same.

An autoencoder is largely composed of an encoder and a decoder. The encoder is
likely a network that extracts features from the input data or compresses it into an internal
representation. The decoder is a generation network that converts extracted features and
compressed internal representations into the output. An autoencoder is a deep learning
network structure that is often used in the field of SOD and partitioning. The autoencoder
copies the input to the output only on the same side as the input layer with the same
number of nodes in the hidden layer. Therefore, the number of nodes in the hidden layer is
smaller than that in the input layer and the data are compressed, as shown in Figure 1. In
this method, control is used to represent data efficiently. The upsampling of the decoding
process causes feature loss as it is simply used in the process of increasing the size of the
feature map.

Figure 1. Autoencoder architecture example.

3. Proposed Method

The proposed method, that is, NRA, has an autoencoder structure and research has
been conducted to reduce losses that occur in the process of compressing and decompress-
ing features and losses that occur in the process of expanding extracted features. Existing
methods use the rectified linear unit (ReLU) [12] as an activation function in the encoder
process of extracting features. ReLU treats negative regions as 0, so feature loss occurs, but
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the learning speed is fast. Instead of using ReLU, the conventional method uses a model in
the backbone network where a large dataset is trained to prevent feature loss. The backbone
network requires pre-trained weights, and there is a limit to model transformation. Most
of the input images are also fixed and the model becomes heavier.

The proposed method aims to improve the heaviness of the model, change the size of
the input image according to the user’s computer performance, and minimize the feature
loss at the encoder stage. ELU is used as an activation function to avoid the feature loss
problem that occurs in ReLU. The exponential linear unit (ELU) activation function is
used in the encoding process to compress and extract features and utilize them in the
negative region. The NRA provided for the extracted features can be used to suppress
non-object areas in the negative areas and emphasize the contour and texture information
of the objects in the positive areas. The decoding process, which enlarges the extracted
features to the size of the input image, utilizes the features in the encoding stage through
concatenation. Through this process, an improved saliency map is generated. The detection
flowchart using NRA proposed in this paper is shown in Figure 2.

Figure 2. The overall flowchart of our Salient Object detection method. (Neg-Region Attention Network).

3.1. Feature Extraction Using the Proposed Attention

In a deep learning-based method, the convolution operation results involve negative
and positive regions. The conventional method uses ReLU activation function to determine
which node to pass to the next layer. The ReLU activation function treats the negative region
as 0 and causes feature loss in the feature extraction process. Accordingly, the proposed
method utilizes the negative region and uses the Exponential Linear Unit (ELU) [13]
activation function to prevent feature loss. The positive region of the ELU activation
function is processed similarly as the ReLU activation function, and the negative region has
a convergence form of (1) and (2). Equations (1) and (2) are the equations of the ReLU and
ELU activation functions, respectively, where the exp() function was used in the negative
region in ELU. The graphs of the activation functions are presented in Figure 3.

ReLU(x) = max(0, x) (1)

ELU(x) =

{
x, if x ≥ 0
a(ex − 1), if x < 0.

(2)
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(a) (b)

Figure 3. The rectified linear unit (ReLU) activation function graph before (a) and after (b) is an
Exponential Linear Unit (ELU) activation function graph.

As shown in Figure 3, the graph of the ELU activation function directly outputs the
input in the positive region, but in the negative region, it is normalized so that it is not
outputted immediately and converges to −a. By setting the values of a, the influence of
the negative region can be limited. The proposed method uses all the characteristics of the
positive and negative regions by setting a to 1, but the negative region has little effect.

When the value of a is set large, the effect of the negative region becomes large
in the complete data representation, and the texture information around the boundary
information in which the amount of data change is large is expressed in various ways.
The proposed method uses integrated texture information rather than various texture
information in the negative area and sets the value of a to 1 to suppress non-object areas.

We propose NRA to suppress the non-object area of the positive region and emphasize
the object area using the negative region of the ELU. The proposed method was separately
emphasized in the negative and positive regions after applying the ELU activation function.
Figure 4 shows the proposed NRA structure.

Figure 4. Neg-Region Attention module architecture.

The proposed NRA method is configured as follows after applying ELU, the process
of separating the negative and positive areas results in an ELU feature map and an element-
wise product spatial attention course using a 1 × 1 convolution in the separated area
and an element of the emphasized feature map, which consists of a joint process using
an element-wise sum. In Figure 4, neg_ELU represents the negative region of the ELU
activation function and pos_ELU represents the positive region.

Equation (2) is the process of separating into a negative region (neg_ELU) and a
positive region (pos_ELU), which are respectively shown in (3) and (4), respectively.
Figure 5 is a graph showing the separation in the ELU.
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ELUn(x) =

{
0, if x ≥ 0
a(ex − 1), if x < 0

, a = 1 (3)

ELUp(x) =

{
x, if x ≥ 0
0, if x < 0.

(4)

(a) (b)

Figure 5. The separated ELU activation function graph. (a) is the negative region and (b) is the
positive region.

Using the ELU activation function, the feature map was separated into a negative area
and a positive area. In Equation (3), ELUn(x) is the negative region of the ELU when the
input is x, and the positive region is treated as 0. Because a is set to 1 and converges to
−1, it can be confirmed that the texture information with a small amount of data change is
unified and displayed. In Equation (4), ELUp(x) is a positive region of the ELU when the
input is x and is processed in the same way as the ReLU function. The proposed method
separates the positive and negative regions to take advantage of the properties of the ELU.

Figure 6 shows the module of Figure 4, which has a feature map separated into
positive and negative regions, as shown in Figure 5. Figure 6c is a feature map showing
the separation in the ELU. This map is different from that when the ReLU activation
function is applied in the separation of the ELU feature map (b) into a positive region,
so the normalization range is different and ReLU shows different results. In the positive
region, various textures and boundary information are extracted according to the amount
of data change in the image. These features are affected by color and brightness. The
texture information of the salient object of lighting is extracted from the features of the
non-object area, and the shadow features of the non-object area are extracted in the same
way as the salient object. Figure 6d shows the results of dividing the saliency map into
negative and positive regions, where a converges to −1.

(a) (b) (c) (d)

Figure 6. The ELU activation function and separated results. (a) is the input image and (b) is the ELU activation function
results, (c) is the positive region, (d) is the negative region.
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3.1.1. Extraction of Attention Region from Each Region

Because the SOD needs to detect the area of the salient object, not only the boundary
information but also the texture information of the object to be detected is important. Vari-
ous texture information can be obtained by outputting features through an ELU function
with a wide range of feature expressions. However, environmental conditions, such as
light reflection, affect color and brightness, and texture information is extracted based on
such conditions, resulting in a loss area. Although the loss can be minimized by unifying
the various texture information through an emphasis technique, a region with texture
information similar to that of a salient object is emphasized, resulting in false detection.
Therefore, the proposed method does not use the ELU function as it is and proceeds with
the enhancement technique by separating the saliency map into a positive region represent-
ing various texture information and a negative region containing mainly unified texture
information and boundary information with a large amount of change.

Areas of objects and backgrounds in the image are separated based on the boundary
information. Spatial attention can be used for positive areas that have various textures,
and boundary information can be used to unify the information of various textures and
emphasize the salient object area. The feature separated into the negative region is different
from that in the positive region, such that the feature converges to −1 and outputs unified
texture information and boundary information with a large amount of data change. If these
features are utilized without emphasis, then the area of the salient object can be suppressed
as a non-object area. Spatial attention can be used to emphasize only the salient object
area based on the boundary information to suppress the non-object area emphasized in the
positive area.

The proposed method performs spatial attention in the positive and negative regions
using Equations (5) and (6), respectively, and is a transformation of spatial attention. In the
case of using the average and maximum pooling, a representative value is outputted in
the separate positive region, resulting in a loss of various texture information. Because the
sigmoid is normalized to a value between 0 and 1, the amount of data change is altered,
so the boundary information is lost. Therefore, in the proposed method, spatial attention
through a convolution and element-wise product is used without pooling and sigmoid.

Ap(x) = f 1×1
conv(ELUp( f 3×3

conv(x)))
⊗

ELU( f 3×3
conv(x)) (5)

An(x) = f 1×1
conv(ELUn( f 3×3

conv(x)))
⊗

ELU( f 3×3
conv(x)). (6)

In Equations (5) and (6), Ap(x) and An(x) represent the positive and negative regions
of the input x; f 1×1

conv and f 3×3
conv are the 1 × 1 and 3 × 3 convolutions, respectively; the

⊗
is

an element-wise product; ELUp and ELUn are the positive and negative regions separated
from the ELU in Equations (3) and (4), respectively; and a was set to 1 in the ELU. The
results of such a modified spatial attention equation are shown in Figure 7.

(a) (b) (c) (d)

Figure 7. Results of applying attention in each area. (a) is the positive region and (b) is the positive attention results, (c) is
the negative region, (d) is the negative attention results.

Figure 7 shows a feature map of each region separated from the ELU and a feature
map emphasizing the positive and negative regions. Spatial attention was performed on
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the salient object to emphasize the detailed information from Figure 7a. Negative areas also
emphasized the contour and texture information via spatial attention. Unlike the result
of applying the ELU activation function, the area of the salient object was emphasized.
The emphasis of the positive area emphasizes the texture information of the entire image,
and the negative area suppresses the non-object area and emphasizes the contour and
texture information.

3.1.2. Combination of Attention Positive and Negative Region

The texture information of the salient object was emphasized based on the boundary
information between the salient object and the background, and the positive area where
the shadow area was emphasized and the negative area where the non-object area was
suppressed were combined with the element-wise sum. As a result of emphasizing the
negative region through the combination, the shadow region, which is a non-object region,
is suppressed, and the feature that the region of the salient object is emphasized through
the emphasis on the positive and negative regions is obtained. Equation (7) shows the
combination of the emphasized feature maps.

Aelement(x) = Ap(x) + An(x). (7)

The combination of the feature maps emphasized for input x is represented by
Aelement(x). Ap represents a feature map with emphasized positive areas, and An rep-
resents a feature map with emphasized negative areas.

Figure 8 shows the result of a combination of feature maps and shows an emphasis
on each area. Bases on the spatial attention results of the positive region, which contains
various detailed information, we have element-wise-summed the positive and negative
feature maps emphasized to suppress the shadow features that are non-object regions.
By combining the results of emphasizing the unified texture information in (c) and the
result of emphasizing various texture information in (b), the non-object area is suppressed,
as shown in Figure 8d. The boundary and texture information of the salient objects is
also emphasized.

(a) (b) (c) (d)

Figure 8. Sum of the elements of the attention result for each region. (a) is hte input image and (b) is the positive attention
result, (c) is the negative attention result, (d) is the element-wise sum result.

In the deep learning process, when the distance between the input and output in-
creases as shown above, the slope value is saturated with a large or small value in the
backpropagation process in which the weight is transmitted between layers when learning
the network, resulting in an ineffective learning, a slope that slows learning, and loss
problem. To prevent these problems, a structure that learns the difference between the
input value and output value was constructed by applying skip connection after combining
the highlighted feature maps.

Figure 9 compares the results of the highlighted feature map combination with the
results of applying skip connection to the combined feature map. The problems of weights
being propagated directly from the output to the input and the slope disappearing in deep
structures when learning the network through a structure that applies skip connection
are avoided. The final NRA result is shown in Figure 9c, in which the non-object area is
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suppressed and the detailed information of the object is emphasized. Equation (8) is the
formula for NRA.

ANA(x) = Aelement(x) + x. (8)

(a) (b) (c)

Figure 9. The skip-connection after element-wise sum. (a) is the input image and (b) is the element-wise sum result, (c) is
the skip-connection result.

The result of NRA is represented by ANA(x) on the input x, and Aelement(x) and the
input are element-wise-summed to utilize skip connection. Aelement(x) is a combination of
the positive and negative feature maps emphasized in Equation (7).

Figure 10 is a comparison of the feature map to which the ELU activation function is
applied when performing the convolution operation on the input image and the result of
applying the proposed NRA to the result emphasized by these feature maps. When spatial
attention is applied to the feature map extracted using the ELU activation function, the
texture information of the salient object is extracted in the non-object area by lighting, as
shown in Figure 10c. The proposed NRA method is separated into positive and negative
regions by the ELU activation function, and then spatial attention is applied to each region
to suppress non-object regions and emphasize the detailed information of salient objects.

(a) (b) (c) (d)

Figure 10. The Neg-Region Attention module results. (a) is the input image and (b) is the ELU activation function result,
(c) is the attention result using the ELU activation function, (d) is the Neg-Region Attention module result.

3.2. Decoder for Extending Extracted Features

Because the decoding process is a stage where feature extraction and compressed
features are expanded to the size of the input image and restored at the encoder stage,
feature loss occurs during the expansion process. In this process, information on the
correlation of surrounding pixels is lost. The proposed method uses concatenation to
utilize the features of each stage extracted from the encoder at each stage of the decoder to
prevent feature loss.

Unlike skip connection, which adds a feature map, concatenation simply follows.
The number of feature maps is increasing, following the feature maps of the same size.
Equation (9) is the formula for concatenation:

Concat(w, h) = [ANA(x)w×h; D(y)w×h]. (9)
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ANA(x) is the result of performing NRA on the input x, and w × h indicates the size
of the resulting feature map. D(y) is the result of the inverse convolution of the input y
with the decoder, and w × h indicates the size of the result feature map. Concat(w, h) is the
result of the concatenation of a feature map of the same size as w × h.

3.3. Residual Block in the Process of Concatenation Operation

When the NRA result of the encoder step is directly concatenated to the decoder,
only the salient region is expressed because the highlighted feature is not refined. A
residual block was used to generate a saliency map close to the ground truth through the
feature refinement process of this highlighted region. Figure 11 shows the results of the
concatenation of the NRA without feature refinement.

(a) (b) (c)

Figure 11. Prediction result of the model using only the attention module. (a) is the input image and (b) is using only the
attention module, (c) is groundtruth.

The results show only the emphasized regions where the features have not been
purified. The features in the residual block were reconstructed to improve the quality of
the saliency maps and generate them closer to the ground truth.

The existing residual block consists of two (3 × 3) convolutions and two ReLU activa-
tion functions. Such a structure does not take advantage of the negative region features
using the ReLU activation function. Because the proposed method also utilizes features in
the negative region, we used the ELU activation function to prevent the loss of features
highlighted by the residual block. The information transmitted by skip connection in the
proposed method emphasizes the salient area. When the ELU activation function was
applied after receiving the emphasized feature information, the features in the emphasized
negative region were normalized and feature loss occurred. Therefore, unlike the conven-
tional method, the result was outputted without using the activation function after skip
connection. Equation (10) is an equation of the residual block by the proposed method.

fres(x) = f 3×3
conv(ELU( f 3×3

conv(x))) + x. (10)

fres(x) is the result of the residual block in the proposed way of the input x, and f 3×3
conv is the

3 × 3 convolution. After extracting the features in the 3 × 3 convolution as the input, the
features were enabled as an ELU function and the features were extracted again via a 3 × 3
convolution. Then, the input was added to the element-wise sum, and the skip-connection
structure was used. Figure 12 shows the structure of the residual block.
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(a) (b)

Figure 12. Composition of residual blocks. (a) is existing residual block and (b) is residual block.

The features of the structure of these proposed residual blocks were purified. This
method also avoids the problem of slope disappearance in the skip connection, reduces
loss, and generates a saliency map close to the ground truth. Figure 13 shows the final
SOD results.

(a) (b) (c) (d)

Figure 13. Results of using the proposed residual block. (a) is the input image and (b) is using only the attention module,
(c) is using the proposed residual block. (d) is ground truth.

4. Experimental Environment

4.1. Environment and Dataset

In this paper, MSRA10K (10,000) Salient Object Database was used as the training
dataset, and ECSSD (1000) was used as the validation dataset. The MSRA10K dataset
was trained with a total of 80,000 images using rotation (0◦, 90◦, 180◦, 270◦) and flipping.
During the learning process, the verification dataset was used to compare the degree of
convergence between the other datasets and to confirm the overfitting phenomenon in
which the accuracy of only the training dataset increases. Experimental datasets were
compared and analyzed using ECSSD, HKU-IS (4447), and DUT-OMRON (5182). Adaptive
Moment Estimation (Adam) optimizer [14] was used as the optimization function. The
initial learning rate was set to 0.0001, the batch size was set to 48, and the epoch was set
to 80. GPU was trained and experimented using NVIDIA GeForce RTX 3090 24 GB. The
learning rate was set through a number of experiments, and if the initial learning rate
exceeds 0.0001, the learning convergence speed is fast and learning is not performed. It was
adjusted through the learning rate scheduler according to the learning convergence speed.
The size of the input image was set to 224 × 224, which is the most used for comparison
with existing methods.

4.2. Loss Function

The proposed method uses the L2 loss function. It is used when there is only one
type of object to be detected, such as SOD, or when only correct and incorrect answers are
identified. When there are various types of objects to be detected, such as object recognition,
loss is calculated for each type of object using cross-entropy. The L2 loss function calculates
the error by comparing the saliency map predicted with the mean squared error (MSE)
and the squared error of the ground truth. When calculating the error, there are outliers in
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which the value rapidly changes. MSE is greatly affected by these outliers, and the weights
are adjusted accordingly. Equation (11) is the equation of the L2 loss function.

fLoss(x) =
n

∑
i=1

(yi − ŷi)
2. (11)

y represents the ground truth, and ŷ represents the saliency map predicted by the pro-
posed method. The result of summing the difference between the ground truth and the
predicted saliency map is fLoss, and reducing this value entails the weight adjustment of
the learning process.

4.3. Evaluation Index

To compare and analyze the experimental results, the mean absolute error (MAE) [15],
precision, recall, and F-measure [16] were used as evaluation indicators. Equation (12) is
an expression of the evaluation index MAE.

MAE =
1

W × H

W

∑
x=1

H

∑
y=1

|S(x, y)− G(x, y)|. (12)

S(x, y) represents the predicted saliency map, and G(x, y) represents the ground truth.
W × H represents the size of the image. MAE is an error rate that represents the absolute
error value between the ground truth and the predicted result, so the lower the value, the
better the performance. Equation (13) is the expression of the precision and recall, and
Equation (14) is the F-measure.

precision =
TP

TP + FP
, recall =

TP
TP + FN

(13)

Fβ = (1 + β2)
precision × recall

(β2 × precision) + recall
, β2 = 0.3. (14)

The precision, recall and F-measure are values that indicate accuracy, and a value
higher than 0 indicates better performance. Precision and recall are calculated based on
whether the ground truth and the pixel value at the same location in the saliency map are
the same.

S-measure (Structure-measure) [17] simultaneously evaluates object-aware structural
similarity and region-aware between a predicted saliency map and a ground truth. S-
measure is Equation (15).

S = α × So + (1 − α)× Sr, (15)

where So is the object-aware structural similarity measure and Sr is the region-aware
structural similarity measure. S-measure is a combination of two evaluations, and α = 0.5
was used.

E-measure(Enhanced-alignment measure) [18] combines the image-level mean value
and local pixel values into one. Jointly capture local pixel matching information and image
level statistics. E-measure is defined by Equation (16).

QFM =
1

W × H

W

∑
x=1

H

∑
y=1

φFM(x, y), (16)

where h and w are height and width of the map.

5. Experimental Results

5.1. Learning Convergence Experiment

Figure 14 is a comparative analysis graph of the loss convergence and precision
convergence in the learning process of the conventional FCN method using the ReLU
activation function and the FCN method using the ELU activation function. The loss
converged faster in the learning process of the FCN (ELU) method using the ELU activation
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function than the conventional FCN (ReLU). The findings confirmed that using ELU instead
of ReLU resulted in a faster convergence.

Figure 14. Loss convergence graph for each activation function in the FCN model. Red used the
ReLU function, and blue used the ELU function.

5.2. Training MSRA10K Dataset

Figure 15 is a comparison image of the proposed method and other existing methods
and experimental results. The experimental results were compared with ECSSD (4 im-
ages), HKU-IS (4 images), and DUT-OMRON (4 images) as examples, and the comparison
methods were ELD (Encoded Low level Distance map) [19], DS (Deep Saliency) [20], DCL
(Deep Contrast Learning) [21], Amulet [22], DGRL (Detect Globally Refine Locally) [23]
and AFNet [24], which are all deep learning-based methods. All of these methods use a
backbone network, whereas the proposed method was trained without a backbone net-
work. Other detectors use the backbone network for the encoding process, which is the
feature extraction step, so various features can be easily extracted. However, the proposed
method improves the performance of the feature extraction step by applying the NRA
without a backbone to the encoding step and minimizes the loss of texture and contour
information. ELD and DS were greatly affected by color and brightness, and detected the
surroundings of the target object. DCL mainly detected a single object and detects other
objects together. It was vulnerable to multi-object detection and showed a result that is
sensitive to contour information. The Amulet detects the area of the target object, but if the
input image is complex, the surroundings are also detected. In some of the result images,
a background area other than the surrounding area was also detected. DGRL showed a
clear detection results, but loss occurred in the detailed part and the surrounding area was
detected together. AFNet showed the best performance compared to the previous methods
and the area and contour of the object were preserved. If there were multiple small objects,
some detection fails, and if the background was complex, the surroundings were detected
together. The proposed method showed excellent detection performance for small objects
and detected large and multiple objects well. As with the existing methods, when the
background is complex, the surroundings were detected together, but false detection was
reduced. When compared to existing methods by learning without a backbone network, it
showed excellent performance, and the performance of the attention module using ELU
was also proven.

Tables 1 and 2 are comparison tables for the evaluation of the proposed method and
other deep learning-based algorithms. The number of parameters of the proposed method
is less than the average and shows excellent performance without using the backbone
network. The MAE, mean F-measure (β2 = 0.3), S-measure and E-measure were measured
for the datasets ECSSD, HKU-IS, and DUT-OMRON. The best performance numbers are
expressed in red, the second is blue, and the third is green. The proposed method showed
superior performance in the MAE, mean F-measure, S-measure and E-measure compared
to the conventional methods using the backbone network.
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Figure 15. Comparison of experimental results of the proposed method and other deep learning methods. (a) Input image,
(b) ELD, (c) DS, (d) DCL, (e) Amulet, (f) DGRL, (g) AFNet, (h) NRA-Net (proposed method), (i) Groundtruth.

Figures 16 and 17 are the comparison diagrams of the precision and recall curves and F-
measure curves of the proposed method and other deep learning algorithms. The proposed
method shows excellent performance in both indicators. In this curve, the minimum recall
value can be used as an indicator of robustness, where the higher the precision value of the
minimum recall value, the more accurate the salient object prediction, which means that
the background and foreground are well separated.
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Table 1. The experimental results of the ECSSD dataset.

Method Number of Parameters
ECSSD Dataset

MAE F-Measure S-Measure E-Measure

ELD 28.37 M 0.0796 0.8102 0.838 0.881

DS 134.27 M 0.1216 0.8255 0.820 0.874

DCL 66.25 M 0.1495 0.8293 0.863 0.885

Amulet 33.16 M 0.0588 0.8684 0.893 0.901

DGRL 126.35 M 0.0419 0.9063 0.903 0.917

AFNet 21.08 M 0.0422 0.9085 0.913 0.918

NRA-Net 56.42 M 0.0489 0.9126 0.898 0.907

Table 2. The experimental results of HKU-IS and DUT-OMRON datasets.

Method
HKU-IS Dataset DUT-OMRON Dataset

MAE F-Measure S-Measure E-Measure MAE F-Measure S-Measure E-Measure

ELD 0.0741 0.7694 0.820 0.880 0.0923 0.6110 0.750 0.775

DS 0.0780 0.7851 0.852 0.889 0.1204 0.6031 0.750 0.761

DCL 0.1359 0.8533 0.860 0.913 0.0971 0.6837 0.764 0.801

Amulet 0.0521 0.8542 0.883 0.910 0.0977 0.6474 0.780 0.778

DGRL 0.0363 0.8882 0.894 0.943 0.0618 0.7332 0.806 0.848

AFNet 0.0364 0.8904 0.905 0.942 0.0574 0.7382 0.826 0.853

NRA-Net 0.0428 0.8924 0.894 0.919 0.0706 0.7449 0.811 0.836

Figure 16. Comparison with other methods of precision and recall curve in each dataset. (a) PR curve of ECSSD dataset and
(b) HKU-IS dataset, (c) DUT-OMRON dataset.

171



Sensors 2021, 21, 1753

Figure 17. Comparison with other methods of F-measure curve in each dataset. (a) F-measure curve of ECSSD dataset and
(b) HKU-IS dataset, (c) DUT-OMRON dataset.

Figure 18 shows the result of detection of protruding objects for the motocross-jump
video dataset. When performing gaze tracking, gaze detection may fail if a dramatic scene
change occurs as in the video above. When a dramatic scene change occurs, there are
factors such as the position of the object or the rotation of the camera. The detection of
salient objects compensates for this problem and predicts objects in which human gaze is
concentrated even with scene changes. This prediction result can supplement information
on which object is mainly focused on gaze detection.

Figure 18. Salient object detection results for motocross-jump video of MIT300 dataset. (top) Input video frame and (bottom)
results of saliency map.

6. Conclusions

In this paper, we propose a deep learning-based method to detect salient objects in
images in various environments. Existing deep learning-based methods proceed with an
autoencoder structure, and feature loss occurs in the encoding process for extracting and
compressing features and the decoding process for expanding and restoring the extracted
features. Due to this feature loss, a background other than an object is detected, or an object
with complex internal information fails to be detected. Most of the existing methods require
a backbone network, and improve the network based on the backbone. However, feature
extraction is limited, and it is difficult to extract specialized features for any object. The
efficiency of the proposed method to reduce the feature loss in the autoencoder structure
was studied. After separating the positive and negative regions through the NRA proposed
in the encoding process of the autoencoder structure, the enhancement technique was
performed. Positive numbers represent various textures and boundary information, and
negative numbers mainly represent boundary information with a large amount of change
in data. To utilize this characteristic information, spatial attention technique was performed
in each domain. The proposed method prevents feature loss and creates a final saliency
map by reconstructing features with a modified residual block. Existing deep learning
methods extract features using a backbone network, but the proposed method achieves
an excellent performance by extracting features using the attention technique without a
backbone network.
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Abstract: In terms of small objects in traffic scenes, general object detection algorithms have low
detection accuracy, high model complexity, and slow detection speed. To solve the above problems,
an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection
over Union (CIoU) is utilized to improve loss function for promoting the positioning accuracy of the
small object. In order to reduce the complexity of the model, we present a lightweight yet powerful
backbone network (named SA-MobileNeXt) that incorporates channel and spatial attention. Our
approach can extract expressive features more effectively by applying the Shuffle Channel and Spatial
Attention (SCSA) module into the SandGlass Block (SGBlock) module while increasing the parameters
by a small number. In addition, the data enhancement method combining Mosaic and Mixup is
employed to improve the robustness of the training model. The Multi-scale Feature Enhancement
Fusion (MFEF) network is proposed to fuse the extracted features better. In addition, the SiLU
activation function is utilized to optimize the Convolution-Batchnorm-Leaky ReLU (CBL) module
and the SGBlock module to accelerate the convergence of the model. The ablation experiments on
the KITTI dataset show that each improved method is effective. The improved algorithm reduces the
complexity and detection speed of the model while improving the object detection accuracy. The
comparative experiments on the KITTY dataset and CCTSDB dataset with other algorithms show
that our algorithm also has certain advantages.

Keywords: deep learning; computer vision; intelligence transportation; YOLOv3; lightweight

1. Introduction

Object detection is an essential field of computer vision, and its task is to locate and
classify objects with the variable number in an image. Object detection in traffic scenes is
an essential part of driverless technology, which adopts image processing or deep learning
to detect and identify vehicles, pedestrians, and traffic signs in traffic scenes to lay a
good foundation for developing intelligent transportation. Object detection algorithms
based on convolutional neural networks are mainly divided into two categories: one is
the two-stage algorithms represented by RCNN series [1–3], and the other is the one-
stage algorithms represented by SSD series [4,5] and YOLO series [6–8]. Object detection
algorithms based on anchor-free [9–12] are developing rapidly in the one-stage algorithms.
Two-stage algorithms depend on the proposals, and their detection speed is generally
slow, in other words, their real-time performance cannot meet the demand of traffic
scenes, even though its detection accuracy is constantly improving. The speed of one-
stage algorithms based on regression is fast enough to satisfy the requirements of most
tasks. However, there is still room for improvement in detection accuracy. At present,
many scholars have applied general object detection algorithms to the traffic field. Que
Luying et al. [13] proposed a lightweight pedestrian detection engine with a two-stage
low-complexity detection network and adaptive region focusing technique, which not only
reduced the computational complexity but also maintained sufficient detection accuracy.
Yang Xiaoting et al. [14] proposed a novel scale-sensitive feature reassembly network
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(SSNet) for pedestrian detection in road scenes. Ma Li et al. [15] studied and solved the
problem that YOLOv3-tiny has a high missed detection rate for small-scale objects such
as pedestrians in real-time detection; however, the accuracy of their algorithm cannot
satisfy the requirements in actual scenes. Guo Fan et al. [16] proposed the traffic sign
detection network (YOLOv3-A) based on an attention mechanism to solve the misdetection
and omission of small objects. Liu Changyuan et al. [17] proposed the vehicle target
detection network (YOLOV3-M2), which promoted the detection efficiency and enhanced
the detection ability of small targets; however, it only detected a single class of targets.

In object detection, when the size of an object is small enough relative to the size of
the original image, we usually consider the object as a small object. For small objects, some
datasets have a clear definition. For example, CityPerson, the pedestrian dataset, defines
objects less than 75 px high as small objects in the raw image with the size of 1024 × 2048.
In the MS COCO dataset, small objects are the objects with pixels less than 32 × 32. In the
traffic sign dataset, Zhu et al. [18] defined the objects whose width accounted for less than
20% of the whole image as small objects. The current general object detection algorithms
have achieved a good detection effect for large and medium objects. However, because of
the smaller coverage area, lower resolution, weaker feature expression ability, and little
feature information of small objects, the above general object algorithms are not good at
detecting small objects. Recently, many researchers have focused their attention on small
object detection. Wang Hongfeng et al. [19] proposed a generative adversarial network
(GAN) capable of image super-resolution and two-stage small object detection, which
exhibited a better detection performance than mainstream methods. Bosquet Brais et al. [20]
introduced STDnet-ST, an end-to-end spatiotemporal convolutional neural network for
small object detection in video, which achieved state-of-the-art results for small objects.
Lian Jing et al. [21] proposed a small object detection method in traffic scenes based on
attention feature fusion, which improved the detection accuracy of small objects in traffic
scenes. Zhang Can et al. [22] proposed a neural network for detecting small objects based
on original Cascade RCNN, which performed better not only in small object detection but
also in industrial applications.

In general, there are multiple objects, small objects, and occluded objects in complex
traffic scenes [23], and it is difficult for traditional object detection methods to obtain better
detection results. Therefore, it is necessary to study more algorithms of small object detec-
tion in traffic scenes. In recent years, the continuous improvement of network performance
has led to the increase of model size and computation. With the popularity of mobile
embedded devices, the deep neural network can be better applied to mobile devices only
when the precision, parameter size, and inference speed are well balanced. Deploying
well-performing algorithms on mobile devices is a trend. For example, Chen Rung-Ching
et al. [24] developed a real-time monitoring system for home pets using raspberry pie.
In our paper, to reduce the amount of calculation and the number of parameters while
maintaining a better detection accuracy and speed, YOLO-MXANet is proposed by using
the YOLOv3 algorithm for reference. CIoU [25] is adopted to improve the loss function,
which makes the bounding box regress better. Although the lightweight network Mo-
bileNeXt [26] dramatically reduces the number of parameters and computational effort
by using depthwise separable convolution, it has weaker feature extraction capability. To
improve the feature extraction capability of MobileNeXt, the Shuffle Channel and Spa-
tial Attention (SCSA) module is embedded into the SGBlock module, which can model
long-distance dependency well to highlight the features of small objects. For the dataset,
Mosaic [27] and Mixup [28] are used to enhance the robustness of the model. In the process
of feature fusion, the Multi-scale Feature Enhancement Fusion (MFEF) network is proposed,
in which an additional Down-top path is added, and the four-fold subsampled feature
maps are fused to extract the features of small objects effectively. Meanwhile, the idea
of CSPNet [29] is utilized to combine the convolution operation to reduce the number of
network parameters and amount of calculation. In our work, the SiLU activation function is
adopted into the Convolution-Batchnorm-SiLU (CBS) and A-SGBlock module to accelerate
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the convergence of the model. The experimental results on KITTI and CCTSDB datasets
show that YOLO-MXANet in this paper has lower computational complexity and smaller
number of parameters while improving the detection accuracy and speed. Compared with
the original YOLOv3, the detection performance of the model is greatly enhanced while
the speed is promoted, and the complexity of the model is lower. Compared with the latest
algorithms, YOLO-MXANet also has certain advantages in detection accuracy and model
complexity.

2. Baseline and YOLO-MXANet Algorithm

In this section, firstly, YOLOv3 baseline algorithm will be introduced in Section 2.1.
Then, in Section 2.2, our proposed algorithm will be organized through five sub-sections.
In Section 2.2.1, the backbone network SA-MobileNeXt will be presented and explained.
In Section 2.2.2, Multi-scale Feature Enhancement Fusion Network will be elaborated. In
Section 2.2.3, SiLU activation Function will be described in detail. In Section 2.2.4, the data
enhancement approach utilized will be explained. In Section 2.2.5, the loss function used
will be presented.

2.1. YOLOv3 Baseline Algorithm

YOLOv3 uses the Darknet-53 backbone network to extract features, which integrates
the residual idea of ResNet [30]. The advantage of residual structure in the Darknet-53
(named Res_Unit) is that the accuracy can be improved by increasing the depth of network.
The Res_Unit block uses the shortcut, which can alleviate the gradient diffusion problem
caused by increasing the depth of the network. In addition, YOLOv3 utilizes three different
feature layers extracted from the Darknet-53 backbone network to fuse and form three
prediction layers for prediction. In the YOLOv3, the feature fusion idea of FPN [31] is
adopted. That is, the semantic information and location information of three feature
maps with different scales are combined by up-sampling and fusion to obtain feature
maps containing rich information for detection. Therefore, YOLOv3 can effectively detect
small objects. Specifically, the image with the size of 640 × 640 is sent into the network,
and three feature maps with different scales (e.g., 80 × 80, 40 × 40, 20 × 20) are obtained.
The 32-fold downsampled feature maps from the backbone network pass through five
convolution layers. On the one hand, the feature maps generated are directly predicted
after passing through one convolution layer. On the other hand, after a convolution layer
and an upsampling operation, they are concatenated with the 16-fold downsampled feature
maps from the backbone network to obtain the fusion feature maps. The operations of the
16-fold downsampled feature maps from the backbone network are similar to those of the
32-fold downsampled feature maps.

YOLOv3 employs the K-means algorithm to determine the size of the prior box.
Although too many prior boxes can guarantee the effect, it greatly affects the detection
speed of the model, so it gets nine prior boxes by clustering on the COCO dataset. The
feature maps with a single scale utilize three prior boxes, and the corresponding relationship
between prior boxes and feature maps with different scales is as follows. In detail, the
32-fold downsampled feature maps use the following three prior boxes: [(116,90); (159,198);
(373,326)]; the 16-fold downsampled feature maps apply the following three prior boxes:
[(30,61); (62,45); (59,119)]; the 8-fold downsampled feature maps employ the following
three prior boxes: [(10,13); (16,30); (33,23)]. Large feature maps with small receptive fields
are very sensitive to small-scale objects, so small prior boxes are selected. On the contrary,
small feature maps with large receptive fields are suitable for detecting large objects, so
large prior boxes are selected.
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2.2. YOLO-MXANet Algorithm
2.2.1. SA-MobileNeXt

Although numerous residual modules can extract sufficient feature information, the
Darknet-53 has numerous parameters and demands a large amount of computation. The
deployment of convolutional neural networks on embedded devices is challenging due
to the limited memory and computing resources. In order to balance the complexity, the
detection speed, and the detection accuracy of the model, in this paper, we propose the
lightweight feature enhancement backbone network called SA-MobileNeXt.

To reduce the number of parameters and computation amount of the network, we
chose the lightweight backbone network called MobileNeXt as the basic model for im-
provement to simplify the network model. In recent years, artificially designed lightweight
backbone networks have become popular, such as MobileNet Series (e.g., MobileNetv1 [32],
MobileNetv2 [33], and MobileNetv3 [34]), ShuffleNet Families (e.g., ShuffleNetv1 [35] and
ShuffleNetv2 [36]), and SqueezeNet [37]. The above manually designed backbone networks
are built by stacking basic modules. In our work, firstly, the newly proposed lightweight
backbone network-MobileNeXt [26] is utilized, which is made up of stacked SandGlass
blocks (SGBlock), and its structure is shown on the left of Figure 1. Many studies have
proved that the SGBlock is better than the Inverted Residual (IR) blocks in MobileNetv2
to preserve adequate feature information and promote gradient propagation. The specific
structure of SGBlock is shown in the light blue box of Figure 2 (t represents the reduction
rate of dimension, and s represents the stride). In detail, two depthwise convolutions are
placed at the end of the block, and two pointwise convolutions are placed in the middle
of the block. The point convolution can be used to encode the information of internal
channels but cannot capture spatial information, and the depthwise convolution can learn
more expressive spatial context information. It is worth noting that the first depthwise
convolution and the last point convolution utilize the ReLU6 activation function; the first
point convolution and the second depthwise convolution directly perform linear output
to reduce information loss, and there is no identity mapping in the SGBlock when the
input and output channels are different. Mathematically, let F ∈ �Df ×Df ×M be the input
tensor, and G ∈ �Df ×Df ×M be the output tensor of the SGBlock, and the SGBlock can be
formulated as follows: ∧

G = T1,pT1,d(F),

G = T2,dT2,p(
∧
G) + F

(1)

where Ti,p and Ti,d are the i-th pointwise convolution and depthwise convolution, respec-
tively. The depthwise separable convolution is used in the SGBlock. Compared with
the standard convolution, the depthwise separable convolution includes the depthwise
convolution and the point convolution. Assume that the size of the input feature maps is
Df × Df × M, the size of the output feature maps is Df × Df × N, and the size of standard
convolution kernel is Dk × Dk × M. The computational cost of the standard convolution is
Dk · Dk · M · N · Df · Df , and the computational cost of depthwise separable convolution
is Dk · Dk · M · Df · Df + M · N · Df · Df . From the above formulas, we can see that the
calculation amount of depthwise separable convolution is much less than the calculation
amount of standard convolution [32]. In order to enable the MobileNeXt to be used as
the backbone network of YOLOv3, the original MobileNeXt is improved by removing the
7 × 7 average pooling layer and the fully connected layer to form the backbone network
MobileNeXt used in this paper.
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Figure 1. The structure of MobileNeXt and SA-MobileNeXt.

Figure 2. The structure of SGBlock and A-SGBlock. The light blue box represents the specific structure of SGBlock. Based
on the SGBlock, A-SGBlock incorporates the SCSA module. SCSA represents the Shuffle Channel and Spatial Attention
module. Coordinate Attention includes channel and spatial attention.
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Although the lightweight backbone network called MobileNeXt can reduce the
amount of computation and the number of parameters in the network, its feature ex-
traction capability is insufficient. The attention module is embedded into the convolutional
neural network, which enables the lightweight convolutional neural network to calcu-
late the correlation coefficient of the internal feature points, thus enhancing the internal
correlation of the feature maps. Recent studies have found that channel attention (e.g.,
Squeeze-and-Excitation Attention [38]) is a significant factor in improving the performance
of the model. However, they usually ignore the position information. In order to encode
more useful position information, the Coordinate Attention (CA) [39] embeds position
information into channel attention so that the model could locate the object area more
accurately. Although the Coordinate Attention can effectively encode channel and spatial
features of small objects, its number of parameters is more than most attention mechanism
modules. Therefore, in this paper, the number of parameters of the Coordinate Attention
is reduced by grouping features, and the Shuffle Channel and Spatial Attention (SCSA)
module is presented, which has fewer parameters than that of the Coordinate Attention
module. The embedded position and structure of the SCSA module are shown in Figure 2,
and an SGBlock embedded with an SCSA module is called an A-SGBlock, and it can be
formulated as follows: ∧

G′ = T1,pSCSA(T1,d(F)),

G′ = T2,dT2,p(
∧
G′) + F

(2)

where SCSA is the attention module, and whose specific operations are described as follows.
Firstly, the input feature maps X ∈ RDf ×Df ×M are divided into G groups along the channel

dimension, i.e., X = [X1, . . . , XG], Xk ∈ �Df ×Df × M
G . Secondly, the Coordinate Attention

(that is, channel and spatial attention) is performed for each group Xk, in which the
Coordinate Attention decomposes the channel attention into two one-dimensional feature
coding processes that aggregates features along with different directions. The advantage of
this process is to capture long-range dependencies along one spatial direction and retain
accurate position information along the other spatial direction. Thirdly, each group of
feature maps that pass through the Coordinate Attention module are fused. Fourthly, the
Shuffle Channel [36] promotes information communication between different groups of
features.

Precisely, the Coordinate Attention module consists of two steps: coordinate informa-
tion embedding and coordinate attention generation. Firstly, each channel is encoded along
with the horizontal and vertical coordinates by using pooling kernels with sizes (H, 1) and
(1, W), respectively. Mathematically, the output of the m-th channel at height h and the
output of the m-th channel at width w can be respectively formulated as follows:

Zh
m(h) =

1
W ∑

0≤i<W
xm(h, i)

Zw
m(w) = 1

H ∑
0≤i<H

xm(j, w)
(3)

A pair of direction-aware and position-sensitive feature maps are obtained. Then gen-
erated feature maps are fused in spatial dimensions and fed into a shared 1× 1 convolution
transformation function T, and this process can be formulated as follows:

f = δ(T1(zh, zw)) (4)

where [.,.] represents the concatenation operation along the spatial dimension, δ is a non-
linear activation function, f ∈ �M/Gr×(H+W) is the intermediate feature map, and r is the
reduction rate to control the module size. Next, the feature maps f obtained in the previous
step are divided into two separate tensors f h ∈ �M/Gr×H and f w ∈ �M/Gr×W along the
spatial dimension. In the next step, two convolution transformation functions Th and Tw
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are used to transform the channel number of feature maps to make it consistent with the
channel number of the input feature maps, and this process can be formulated as follows:

gh = σ(Th( f h)),
gw = σ(Tw( f w))

(5)

where σ is the sigmoid activation function. Finally, the input feature maps are multiplied
with a pair of feature maps obtained through the steps of coordinate information embed-
ding and coordinate attention generation, and then, attention feature maps are generated
to enhance the representation of the region of interest, and this process can be formulated
as follows:

ym(i, j) = xm(i, j)× gh
m(i)× gw

m(j) (6)

Therefore, in order to enhance the ability of lightweight backbone network, in this
paper, we present the feature enhancement backbone network called SA-MobileNeXt,
which is based on attention and is shown on the right of Figure 1. “SGBlockn/A-SGBlockn”
represents “n SGBlock/A-SGBlock modules are used”; if “/2”, it represents “the stride of
SGBlock/A-SGBlock is 2”, otherwise it represents “the stride of SGBlock/A-SGBlock is 1”.
The SA-MobileNeXt uses the A-SGBlock module in the front part of the backbone network,
which embeds the Shuffle Channel and Spatial Attention (SCSA) module proposed in this
paper into the SGBlock. In this work, nine A-SGBlock modules are employed for two
reasons. On the one hand, using lots of A-SGBlock modules (especially the A-SGBlock
modules with numerous channels located at the back of the backbone network) can increase
the number of parameters and computation amount, resulting in a decrease in speed
while not improving the accuracy. On the other hand, using A-SGBlock modules in the
shallow layer of the backbone network can encode more accurate location information,
which is conducive to detecting small objects. In addition, in our SA-MobileNeXt, the
ReLU6 activation function used in the original SGBlock modules is replaced with the SiLU
activation function, making the model converge faster. The SiLU activation function is
described in Section 2.2.3.

2.2.2. Multi-Scale Feature Enhancement Fusion Network

In the process of feature fusion, to better integrate the features extracted from the
backbone network, the Multi-scale Feature Enhancement Fusion Network is proposed,
which further promotes the performance of small object detection. Its main structure is
shown in Figure 3 and is explained as follows.

In the original YOLOv3, the feature fusion method of FPN only integrates 8-fold
downsampled feature maps, 16-fold downsampled feature maps, and 32-fold downsam-
pled feature maps. However, the shallow features extracted by the backbone are essential
for detecting small objects. As a result, the 4-fold downsampled feature maps from the
backbone network are integrated to promote small object detection, and the specific opera-
tions of fusion are as follows. Firstly, the 8-fold downsampled fusion feature maps with
low-resolution pass through a BottleneckCSP and a CBS module and then are processed by
an upsampling operation. Finally, the resulting feature maps are fused with feature maps
with the size of 160 × 160 × 144 from the backbone network.

Meanwhile, the feature fusion method in PANet [40] can better preserve the shallow
feature information, a Down-top path (Figure 3b) is added by referring to the method in
PANet. We take the fusion process of 8-fold downsampled feature maps in the Down-top
path as an example, and its operations are detailed as follows. The 4-fold downsampled
fusion feature maps pass through a BottleneckCSP module and then are upsampled by a
CBS module with stride 2 to become 8-fold downsampled feature maps, and the resulting
feature maps are fused with feature maps with the same resolution from the Top-down
path. In order to save the number of parameters and make the model converge faster, we
still utilize the last three detection for detection.
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Figure 3. The structure diagram of Multi-scale Feature Enhancement Fusion network. CBS represents
the convolution module with stride 1. CBS s2 represents the convolution module with stride 2.
BottleneckCSP (BC) represents the combination of convolution module.

The introduction of the 4-fold downsampled feature maps in the backbone network
and an additional Down-top path can improve the accuracy of object detection but increase
the number of parameters to a certain extent. Therefore, the previous convolution blocks
are combined into the BottleneckCSP module by using the idea of CSPNet to further reduce
the number of parameters and computation amount in the network without affecting the
detection accuracy. The structure of the BottleneckCSP module is shown in the bottom
right of Figure 3, and it contains two branches. Firstly, in the first branch, there are
three convolution layers. In the second branch, there is a 1 × 1 convolution layer. Then,
the feature maps of the two branches are fused, and finally, the number of channels is
transformed by a 1 × 1 convolution layer. In addition, the CBL modules in the feature
fusion network are replaced with the CBS modules, whose structures are shown in the
bottom left of Figure 3. As we can see, the optimized CBS modules in this paper use the
SiLU (Sigmoid Weighted Linear Unit) to replace the Leaky ReLU.

2.2.3. SiLU Activation Function

In this paper, the optimized SGBlock modules use the SiLU [41] (Sigmoid Weighted
Linear Unit) to replace the ReLU6. Meanwhile, the CBS modules utilize the SiLU to replace
the Leaky ReLU. The calculation formulas of SiLU and its first derivative are as shown in
Equation (7) and Figure 4.

SiLU = x · sigmoid(x)
sigmoid(z) = 1

1+e−z

SiLU′ = SiLU + sigmoid(1 − SiLU)

(7)

If the input value is greater than 0, the SiLU is approximately the same as the ReLU;
and if the input value is less than 0, the value of SiLU approaches 0. Compared with the
Sigmoid and Tanh, the SiLU activation function does not increase monotonously and has a
global minimum value of about −0.28. In general, deep convolutional neural networks
often encounter the phenomenon of gradient explosion. However, an attractive feature of
SiLU is self-stability: when the derivative is zero, the global minimum can play the role
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of “soft bottom”, which can inhibit the update of large weights from avoiding gradient
explosion.

Figure 4. The activation function and derivative curves of SiLU.

2.2.4. Data Enhancement

In deep learning, it is crucial to keep the number of samples be sufficient. Numer-
ous samples will make the trained model have a better effect and generalization ability.
However, for the KITTI and CCTSDB datasets used in this paper, their sample quan-
tity and quality are not good enough, which will lead to overfitting. Recently, Dewi,
Christine et al. [42] combined synthetic images with original images to enhance datasets
and verify the effectiveness of synthetic datasets. Therefore, data enhancement is an
effective solution to improve the quality of datasets, which can reduce the overfitting
phenomenon of the network. A network with better generalization ability can be obtained
by transforming the training images, which can better adapt to the application scenarios.
Therefore, two methods of data enhancement, Mosaic and Mixup, are adopted in this paper
to improve the quality of the dataset so that the proposed improved algorithm is more
suitable for training on a single GPU.

The two types of data enhancement are described in detail below. The Mixup merges
the positive and the negative samples into a new group of samples, which doubles the
size of the sample. Meanwhile, the objects in each batch after Mixup will be more than the
objects in the original batch. The Mosaic combines four training images into one in a certain
proportion, enabling the model to learn to recognize smaller objects, which can enrich the
background of detecting objects and calculate four kinds of images in Batch Normalization,
and the batch size does not need to be large so that a GPU can achieve better results.

In this paper, due to the limitation of GPU and model size, and in order to make a
fair comparison between different models, the training batch size is uniformly set as 4. We
adopted such a data enhancement strategy that uses only the Mosaic data enhancement
strategy in the three batches and uses a combination of the Mosaic and Mixup data en-
hancement strategy in the one batch. Through the experiments, the model trained by our
data enhancement strategy is better than the model trained by the Mosaic only in the four
batches.

2.2.5. Loss Function

The total loss function used by the YOLO-MXANet algorithm is shown in Equation (8).
CIoU regression loss is employed to improve MSE regression loss [43], and the improved
loss function is more suitable for detecting small objects in traffic scenes. CIoU inherits
the advantages of Generalized Intersection Over Union (GIoU) [44] and Distance-IoU
(DIoU) [45], which not only considers the distance and overlap ratio but also considers the
scale and the aspect ratio between the prediction box and the ground truth box so that it
can carry out the bounding box regression better [43]. It consists of three parts: the first
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is lossCIoU, which represents regression loss; The second part is lossobj, which represents
confidence loss. The third part lossclass represents classification loss.

LOSS = lossCIoU + lossobj + lossclass

lossCIoU = 1 − CIoU, CIoU = IoU − ρ2(b,bgt)
c2 − αν

lossobj = −K×K
∑

i=0

M
∑

j=0
Iobj
ij

[ ∧
Ci log(Ci) + (1 −

∧
Ci) log(1 − Ci)

]
−λnoobj

K×K
∑

i=0

M
∑

j=0
Inoobj
ij

[ ∧
Ci log(Ci) + (1 −

∧
Ci) log(1 − Ci)

]
lossclass = −K×K

∑
i=0

Iobj
ij ∑

c∈classes

[ ∧
pi(c) log(pi(c)) + (1 − ∧

pi(c)) log(1 − pi(c))
]

(8)

3. Experimental Results and Analysis

In order to verify the performance of YOLO-MXANet, comparative experiments on
the KITTI dataset and CCTSDB dataset are conducted. In this paper, the experimental
platforms are Intel® Core™ i7-9700 CPU @ 3.00 GHz processor and NVIDIA GeForce RTX
2080Ti GPU. The algorithms in this paper are programmed in Python 3.8 and implemented
in PyCharm Community 2020.2.3 software. To ensure the fairness of test, all models are
trained from scratch and trained 200 epochs. To make the training process more stable,
the Adam optimizer is used for training. In the training process, the warm-up strategy is
adopted in the first three epochs, and the cosine annealing strategy is adopted for training
from the fourth epoch to the 200th epoch, which reduces the learning rate from 0.01 to 0.002.
The value of Momentum is set to 0.937, and the value of Weight_decay is set to 0.0005.

The following evaluation indexes are used to evaluate the performance of algorithms.
The accuracy of detection algorithms is measured by using the Precision, Recall, and F1
score (the harmonic mean value of Precision and Recall). The Average Precision (AP) is
used to measure the detection accuracy of each type of object. The mean Average Precision
(mAP) is used to measure the average detection accuracy of multi-class objects. The higher
the mAP value is, the higher the comprehensive performance of the model in all categories
will be. The speed of each image on the GPU is used to measure the detection speed of
object detector. The number of parameters and computation amount are used to measure
the complexity of the model.

3.1. Ablation Learning on the KITTI Dataset

In order to prove the effectiveness of each improvement method, we conduct ablation
experiments on the KITTI dataset, and the results are shown in Table 1. The KITTI dataset
is randomly and automatically divided into train set, validation set and test set, and
the 8:1:1 ratio is adopted in this study. At the same time, eight classes of objects in the
dataset are fused into three types of objects, namely Pedestrian, Car, and Cyclist. In our
experiment, we use images with the size of 640 × 640 × 3 for training and testing. We
employ original YOLOv3 as our Scheme A. We first established a more robust YOLOv3
baseline, which has a good performance in terms of speed. Meanwhile, YOLOv3 also has
a higher detection accuracy, but the number of parameters and computation amount are
large. Based on Scheme A, Scheme B adopts CIoU loss function, which can improve the
positioning ability of small objects. Based on Scheme B, Scheme C uses MobileNeXt, which
causes a slight reduction in detection performance but simplifies the model by reducing
the number of network parameters from 61,508,200 to 22,927,784. At the same time, the
detection speed of each image is improved from 3.5 ms to 2.4 ms. Based on Scheme C,
Scheme D utilizes Mosaic and Mixup to promote the quality of dataset, which makes
up for the performance loss caused by the lightweight network while keeping the speed
unchanged and improving the detection ability of small object and the generalization of
the network, increasing F1 from 0.812 to 0.842 and mAP 0.5 from 0.865 to 0.897. Based on
Scheme D, Scheme E introduces the feature fusion method of PANet and integrates the
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four-fold subsampled feature maps containing small object information to improve the
detection ability of small objects. At the same time, the idea of CSPNet is used to combine
convolution blocks, which reduces the number of parameters. From the experimental
results, Scheme E improves the detection performance of small objects, which reduces the
number of parameters from 22,927,784 to 13,870,888 and increases F1 from 0.842 to 0.861
and mAP 0.5 from 0.897 to 0.905. Based on Scheme E, we introduce the SiLU activation
function to make the model converge faster and improve the stability of the model, which
replaces original activation function of CBL and SGBlock module with SiLU and makes
it become our Scheme F, which increases F1 from 0.861 to 0.877, mAP 0.5 from 0.905 to
0.916. Based on Scheme F, Scheme G introduces the Coordinate Attention mechanism to
obtain the valuable features of small objects, which increases mAP 0.5 from 0.916 to 0.922.
Based on Scheme G, Scheme H proposes the Shuffle Channel and Spatial Attention (SCSA)
module to improve the detection accuracy while further simplifying the model, which not
only increases F1 from 0.876 to 0.885 and mAP 0.5 from 0.922 to 0.924 but also decreases
the number of parameters from 13,987,271 to 13,874,564. In conclusion, compared with
YOLOv3 baseline, our final scheme reduces the number of parameters from 61,508,200 to
13,874,564, and the GFLOPS from 154.9 to 37.0, increasing the speed by 0.6 ms. Meanwhile,
the detection performance is improved, which increases F1 by 4.8 percentage points and
mAP 0.5 by 3.6 percentage points.

Table 1. The ablation experiments on the KITTI dataset.

Scheme Method P R F1
mAP

0.5
SpeedGPU/ms Params GFLOPS

A YOLOv3 0.923 0.765 0.837 0.888 3.5 61,508,200 154.9
B A + CIoU 0.930 0.799 0.860 0.911 3.5 61,508,200 154.9
C B + MobileNeXt 0.857 0.772 0.812 0.865 2.4 22,927,784 43.4
D C + DA 0.882 0.806 0.842 0.897 2.4 22,927,784 43.4
E D + PAN + 4s + BC 0.876 0.846 0.861 0.905 2.5 13,870,888 37.0
F E + SiLU 0.941 0.822 0.877 0.916 2.5 13,870,888 37.0
G F + A-MobileNeXt 0.943 0.818 0.876 0.922 2.9 13,987,271 37.1
H G + SA-MobileNeXt 0.930 0.844 0.885 0.924 2.9 13,874,564 37.0

In order to further prove the excellent effect of improved algorithm, we show the
PR curve diagram of YOLOv3 and YOLO-MXANet, as well as the AP value of each
category and the mAP value of all categories, which are shown in Figure 5. Compared with
YOLOv3, the mAP value of YOLO-MXANet increases by 3.6 percentage points, and the
AP value of each category of YOLO-MXANet has increased. Specifically, the AP value of
category “Pedestrian” increases by 4.6 percentage points, the AP value of category “Car”
increases by 1.1 percentage points, and the AP value of category “Cyclist” increases by
5 percentage points.

 
(a)  (b)  

Figure 5. The PR curve diagram of YOLOv3 and YOLO-MXANet on the KITTI dataset. (a) YOLOv3. (b) YOLO-MXANet.
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3.2. Comparison Experiments with Other Algorithms on the KITTI Dataset

In order to further verify the performance of improved algorithm, comparative experi-
ments are conducted between YOLO-MXANet and other algorithms on the KITTI dataset,
and the comparison results are shown in Table 2. The experimental results show that YOLO-
MXANet has higher detection accuracy compared with YOLOv5s, and YOLO-MXANet has
less parameters than YOLOv5m while keeping slightly better accuracy. Compared with
YOLOv3 and YOLOv3-SPP, YOLO-MXANet has fewer parameters and more significant
advantages in detection accuracy. Compared with the lightweight algorithm YOLOv3-tiny,
although the number of parameters of YOLO-MXANet is a little more than that of YOLOv3-
tiny, the mAP 0.5 value of YOLO-MXANet is 23.2 percentage points higher than that of
YOLOv3-tiny, while the F1 value of YOLO-MXANet is 21.5 percentage points higher than
that of YOLOv3-tiny. Compared with the latest lightweight algorithm YOLOv4-tiny, the
mAP 0.5 value of YOLO-MXANet is 16.2 percentage points higher than that of YOLOv4-
tiny, while the F1 value of YOLO-MXANet is 22.2 percentage points higher than that of
YOLOv4-tiny.

Table 2. The comparison results of the algorithms on the KITTI dataset.

Algorithm

Indicator
P R F1 mAP 0.5 Params (M)

YOLOv3 0.923 0.765 0.837 0.888 61.5
YOLOv3-SPP 0.923 0.783 0.847 0.894 62.6

YOLOv5s 0.922 0.781 0.846 0.889 7
YOLOv5m 0.899 0.862 0.880 0.923 21.1

YOLOv3-tiny 0.763 0.598 0.670 0.692 8.7
YOLOv4-tiny 0.589 0.761 0.663 0.762 5.9

YOLO-MXANet 0.930 0.844 0.885 0.924 13.8

The actual detection results of YOLO-MXANet and YOLOv3 (baseline) on the KITTI
dataset are compared in Figure 6. As can be seen from the comparison figures, YOLO-
MXANet can detect complex objects that YOLOv3 cannot detect, such as small objects
and occluded objects. Specifically, it can be seen from the first group of images that both
YOLOv3 and YOLO-MXANet can detect three objects, but the confidence of bounding box
of YOLO-MXANet is higher. As can be seen from the second group of images, YOLOv3
detects three objects “Car”, and YOLO-MXANet can detect four objects “Car”, in other
words, YOLO-MXANet detects one smaller object with low light than YOLOv3, and the
other three object’s bounding boxes detected by YOLO-MXANet have higher confidence.
Similarly, it can be seen from the third group and the fourth group that YOLO-MXANet can
also detect smaller objects and each bounding box detected by YOLO-MXANet has a higher
confidence. This is because YOLO-MXANet can effectively enhance the characteristic
information of object and suppress environmental interference.

3.3. Comparison Experiments with Other Algorithms on the CCTSDB Dataset

In order to further verify the performance of YOLO-MXANet, the comparative ex-
periments with other advanced algorithms are conducted on the CCTSDB dataset. In the
experiment, we select 3105 images from the CCTSDB dataset and use the dataset partition
algorithm to randomly divide the CCTSDB dataset into train set and validation set and test
set, and the 8:1:1 ratio is also adopted in this study. CCTSDB dataset is classified into three
types of objects, namely, warning, prohibitory, and mandatory. The comparison results
between YOLO-MXANet and the latest object detection algorithm on the CCTSDB dataset
are shown in Table 3. Compared with YOLOv5m, YOLO-MXANet has fewer parameters
and has more tremendous advantages in terms of detection accuracy. Compared with
the lightweight algorithm YOLOv3-tiny, although the number of parameters of YOLO-
MXANet is a little more than that of YOLOv3-tiny, the mAP 0.5 value of YOLO-MXANet
is 6.8 percentage points higher than that of YOLOv3-tiny, and the F1 value of improved
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algorithm is 5.6 percentage points higher than that of YOLOv3-tiny. Compared with the
lightweight algorithm YOLOv4-tiny, the mAP 0.5 value of YOLO-MXANet is 2.2 percent-
age points higher than that of YOLOv4-tiny, and the F1 value of improved algorithm is
7.7 percentage points higher than that of YOLOv4-tiny. Therefore, YOLO-MXANet is more
suitable for object detection in traffic scenes.

Figure 6. The detection results of YOLOv3 and YOLO-MXANet on the KITTI dataset. (a) YOLOv3. (b) YOLO-MXANet.

Table 3. The comparison results of the algorithms on the CCTSDB dataset.

Algorithm

Indicator
P R F1 mAP 0.5

YOLOv3 0.910 0.894 0.902 0.928
YOLOv3-SPP 0.929 0.877 0.902 0.937

YOLOv5m 0.968 0.939 0.953 0.966
YOLOv3-tiny 0.911 0.873 0.892 0.905
YOLOv4-tiny 0.795 0.964 0.871 0.951
YOLO-MXAet 0.930 0.967 0.948 0.973

The comparisons of actual detection results between YOLO-MXANet and YOLOv3
(baseline) on the CCTSDB dataset are shown in Figure 7. In the first set of images, YOLO-
MXANet can detect small and dim objects. As can be seen from the second group, YOLO-
MXANet can detect the “warning” objects that YOLOv3 cannot detect, and the bounding
box detected by YOLO-MXANet has a higher confidence. As we can see from the third
pictures, YOLOv3 misses two objects, while YOLO-MXANet detects all of them. As can
be seen from the fourth group of pictures, although YOLOv3 can detect large objects with
dim light, the confidence of bounding box detected by YOLOv3 is not as high as that
detected by YOLO-MXANet, and the detection ability of YOLOv3 is not as good as that of
YOLO-MXANet in terms of small objects.
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Figure 7. The detection results of YOLOv3 and YOLO-MXANet on the CCTSDB dataset. (a) YOLOv3. (b) YOLO-MXANet.

4. Conclusions

Based on general one-stage object detection algorithms, we propose a small object
detection algorithm in traffic scenes (named YOLO-MXANet), which not only solves
the problem that original algorithm is not high in detecting small-scale objects but also
reduces the number of parameters from 61.5 M to 13.8 M and improves the detection
speed. Therefore, YOLO-MXANet balances the detection accuracy, inference speed, and
model complexity. We utilize CIoU to improve the loss function of YOLOv3 and improve
the positioning accuracy of small objects. A lightweight backbone network (named Mo-
bileNeXt) is used to reduce the number of parameters and amount of computation, which
can improve the detection speed of the model. However, the light weight will reduce
the accuracy of the model to a certain extent. To further enhance the feature extraction
capability of MobileNeXt, we present SA-MobileNeXt based on the Shuffle Channel and
Spatial Attention module as the backbone network. In order to make up for the loss of
precision caused by light weight, we use Mosaic and Mixup to train the model, which
can enhance the ability of small object detection and thus improve the robustness of the
model. To further enhance the characteristics of the small object, we add a Down-top
path and fuse the four-fold subsampled feature maps from the backbone network. At the
same time, to reduce the number of parameters without weakening the feature extraction
ability of the network, we utilize the idea of CSPNet to combine convolution blocks. We
perform ablation experiments on the KITTI dataset to demonstrate the effectiveness of each
improved method. In addition, we conduct comparative experiments with other advanced
algorithms on the KITTI and CCTSDB datasets, and the experimental results show that
our algorithm has certain advantages in terms of detection accuracy, detection speed, and
model complexity. Although our algorithm has achieved some improvements in accuracy
and model complexity, there is still a long way to go before it can be deployed on mobile
devices. Therefore, the next step is to further balance the detection accuracy, speed, and
model complexity to provide excellent theoretical basis and practical value for intelligent
transportation and unmanned driving.
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Abstract: Crowded event entrances could threaten the comfort and safety of pedestrians, especially
when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying
and understanding pushing dynamics leads to designing and building more comfortable and safe
entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to
manually identify when and where pushing behavior occurs. Despite the accuracy of the manual
method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some
scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to
assist researchers in automatically identifying pushing behavior in videos. The proposed framework
comprises two main components: (i) Deep optical flow and wheel visualization; to generate motion
information maps. (ii) A combination of an EfficientNet-B0-based classifier and a false reduction
algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we
present a new patch-based approach to enlarge the data and alleviate the class imbalance problem
in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of
pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate.
Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms
of accuracy.

Keywords: deep learning; convolutional neural network; EfficientNet-B0-based classifier; image
classification; crowd behavior analysis; pushing behavior detection; motion information maps; deep
optical flow

1. Introduction

In entrances of large-scale events, pedestrians either follow the social norm of queuing
or force some pushing behavior to gain faster access to the events [1]. Pushing behavior
in this context is an unfair strategy that some pedestrians use to move quickly and enter
an event faster. This behavior involves pushing others and moving forward quickly by
using one’s arms, shoulders, elbows, or upper body, as well as using gaps among crowds
to overtake and gain faster access [2,3]. Pushing behavior, as opposed to queuing be-
havior, can increase the density of crowds [4]. Consequently, such behavior may lead to
threatening the comfort and safety of pedestrians, resulting in dangerous situations [5].
Thus, understanding pushing behavior, what causes it, and the consequences are crucial,
especially when designing and constructing comfortable and safe entrances [1,6]. Conven-
tionally, researchers have attempted to study pushing behavior manually by observing and
identifying pushing cases among video recordings of crowded events. For instance, Lüger-
ing et al. [3] proposed a rating system on forward motions in crowds to understand when,
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where, and why pushing behavior appears. The system relies on two trained observers to
classify the behaviors of pedestrians over time in a video (the behavior is classified into
either pushing or non-pushing categories). In this context, each category includes two gra-
dations: mild and strong for pushing, and falling behind and just walking for non-pushing.
For more details on this system, we refer the reader to [3]. To carry out their tasks, the
observers analyzed top-view video recordings using pedestrian trajectory data and PeTrack
software [7]. However, this manual rating procedure is time-consuming, tedious, and re-
quires a lot of effort by observers, making it hard to identify pushing behavior, specifically
when the number of videos and pedestrians in each video increase [3]. Consequently, there
is a pressing demand to develop an automatic and reliable framework to identify when
and where pushing behavior appears in videos. This article’s main motivation is to help
social psychologists and event managers identify pushing behavior in videos. However,
automatic pushing behavior detection is highly challenging due to several factors, includ-
ing diversity in pushing behavior, the high similarity and overlap between pushing and
non-pushing behaviors, and the high density of crowds at event entrances.

According to a computer vision perspective, automatic pushing behavior detection
belongs to the video-based abnormal human behavior detection field [8]. Several human
behaviors have been addressed, including walking in the wrong direction [9], running
away [10], sudden people grouping or dispersing [11], human falls [12], suspicious behavior,
violent acts [13], abnormal crowds [14], hitting, pushing, and kicking [15]. It is worth
highlighting that pushing as defined in [15] is different from the “pushing behavior” term
in this article. In [15], pushing is a strategy used for fighting, and the scene contains only
up to four persons. To the best of our knowledge, no previous studies have automatically
identified pushing behavior for faster access from videos.

With the rapid development in deep learning, CNN has achieved remarkable perfor-
mance in animal [16,17] and human [13,18] behavior detection. The main advantage of
CNN is that it directly learns the useful features and classification from data without any
human effort [19]. However, CNN requires a large training dataset to build an accurate clas-
sifier [20,21]. Unfortunately, this requirement is unavailable in most human behaviors. To
alleviate this limitation, several studies have used a combination of CNN and handcrafted
feature descriptors [22,23]. The hybrid-based approaches use descriptors to extract valu-
able information. Then, CNN automatically models abnormal behavior from the extracted
information [24,25]. Since labeled data for pushing behavior are scarce, the hybrid-based
approaches could be more suitable for automatic pushing behavior detection. Unfortu-
nately, the existing approaches are inefficient for pushing behavior detection [22]. Their
main limitations are: (1) their descriptors do not work well to extract accurate information
from dense crowds due to occlusions, or they cannot extract the needed information for
pushing behavior representation [22,26]; (2) Some used CNN architectures are not efficient
enough to deal with the high similarity between pushing and non-pushing behaviors (high
inter-class similarity) and the increased diversity in pushing behavior (intra-class variance),
leading to misclassification [25,26].

To address the above limitations, we propose a hybrid deep learning and visualization
framework for automatically detecting pushing behavior at the patch level in videos.
The proposed framework exploits video recordings of crowded entrances captured by
a top-view static camera, and comprises two main components: (1) motion information
extraction aims to generate motion information maps (MIMs) from the input video. A
MIM is an image that contains useful information for pushing behavior representation.
This component divides each MIM into several MIM patches, making it easier to see
where pedestrians are pushing. For this purpose, recurrent all-pairs field transforms
(RAFT) [27] (one of the newest and most promising deep optical flow methods) and the
wheel visualization method [28,29] are combined; (2) The pushing patch annotation adapts
the EfficientNet-B0-based CNN architecture (the EfficientNet-B0-based CNN [30] is an
effective and simple architecture in the EfficientNet family proposed by Google in 2019,
achieving the highest accuracy in the ImageNet dataset [31]) to build a robust classifier,
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which aims to select the relevant features from the MIM patches and label them into
pushing and non-pushing categories. We utilized a false reduction algorithm to enhance
the classifier’s predictions. Finally, the component outputs pushing the annotated video
showed when and where the pushing behaviors appeared.

We summarize the main contributions of this article as follows:

1. To the best of our knowledge, we proposed the first framework dedicated to automat-
ically detecting when and where pushing occurs in videos.

2. An integrated EfficientNet-B0-based CNN, RAFT, and wheel visualization within a
unique framework for pushing behavior detection.

3. A new patch-based approach to enlarge the data and alleviate the class imbalance
problem in the used video recording datasets.

4. To the best of our knowledge, we created the first publicly available dataset to serve
this field of research.

5. A false reduction algorithm to improve the accuracy of the proposed framework.

The rest of this paper is organized as follows: Section 2 reviews the related work of
video-based abnormal human behavior detection. In Section 3, we introduce the proposed
framework. A detailed description of dataset preparation is given in Section 4. Section 5
discusses experimental results and comparisons. Finally, the conclusion and future work
are summarized in Section 6.

2. Related Works

Existing video-based abnormal human behavior detection methods can be generally
classified into object-based and holistic-based approaches [25,26]. Object-based methods
consider the crowd as an aggregation of several pedestrians and rely on detecting and track-
ing each pedestrian to define abnormal behavior [32]. Due to occlusions, these approaches
face difficulties in dense crowds [33,34]. Alternatively, holistic-based approaches deal with
crowds as single entities. Thus, they analyze the crowd itself to extract useful information
and detect abnormal behaviors [24,25,34]. In this section, we briefly review some holistic-
based approaches related to the context of this research. Specifically, the approaches are
based on CNN or a hybrid of CNN and handcrafted feature descriptors.

Tay et al. [35] presented a CNN-based approach to detect abnormal actions from
videos. The authors trained the CNN on normal and abnormal behaviors to learn the
features and classification. As mentioned before, this type of approach requires a large
dataset with normal and abnormal behaviors. To address the lack of large datasets with
normal and abnormal behaviors, some researchers applied a one-class classifier using
datasets of normal behaviors. Obtaining or preparing a dataset with only normal behaviors
is easier than a dataset with normal and abnormal behaviors [34,36]. The main idea of the
one-class classifier is to learn from the normal behaviors only; to define a class boundary
between the normal and not defined (abnormal) classes. Sabokrou et al. [36] utilized a
new pre-trained CNN to extract the motion and appearance information from crowded
scenes. Then, they used a one-class Gaussian distribution to build the classifier from
datasets with normal behaviors. In the same way, the authors of [34,37] used datasets of
normal behaviors to develop their one-class classifiers. Xu et al. used a convolutional
variational autoencoder to extract features in [34]. Then, multiple Gaussian models were
employed to predict abnormal behavior. Ref. [37] adopted a pre-trained CNN model for
feature extraction and a one-class support vector machines to predict abnormal behavior.
In another work, Ilyas et al. [24] used pre-trained CNN along with a gradient sum of the
frame difference to extract relevant features. Afterward, three support vector machines
were trained on normal behavior to detect abnormal behavior. In general, the one-class
classifier is popular when the abnormal behavior or target behavior class is rare or not
well-defined [38]. In contrast, the pushing behavior is well-defined and not rare, especially
in high-density and competitive scenarios. Moreover, this type of classifier considers the
new normal behavior as abnormal.
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In order to overcome the drawback of CNN-based approaches and one-class classifier
approaches, several studies used a hybrid-based approach with a multi-class classifier.
Duman et al. [22] employed the classical Farnebäck optical flow method [23] and CNN to
identify abnormal behavior. The authors used Farnebäck and CNN to extract the direction
and speed information. Then, they applied a convolutional long short-term memory
network for building the classifier. In [39], the authors used a histogram of gradient and
CNN to extract the relevant features, while a least-square support vector was employed
for classification. In a similar line of the hybrid approaches, Direkoglu [25] combined the
Lucas–Kanade optical flow method and CNN to extract the relevant features and detect
“escape and panic behaviors”. Almazroey et al. [26] employed mainly a Lucas–Kanade
optical flow, pre-trained CNN, and feature selection (neighborhood component analysis)
methods to select the relevant features. The authors then applied a support vector machine
to generate a trained classifier. Zhou et al. [40] presented a CNN method for detecting and
localizing anomalous activities. The study integrated optical flow with a CNN for feature
extraction and it used a CNN for the classification task.

In summary, hybrid-based approaches have shown better accuracy than CNN-based
approaches on small datasets [41]. Unfortunately, the reviewed hybrid-based approaches
are inefficient for dense crowds and pushing behavior detection due to (1) their feature
extraction parts being inefficient for dense crowds; (2) The reviewed approaches cannot
extract all of the required information for pushing behavior representation; (3) Their
classifiers are not efficient enough toward pushing behavior detection. Hence, the proposed
framework combines the power of supervised EfficientNet-B0-based CNN, RAFT, and
wheel visualization methods to solve the above limitations. The RAFT method works
well for estimating optical flow vectors from dense crowds. Moreover, the integration of
RAFT and wheel visualization helps to simultaneously extract the needed information
for pushing behavior representation. Finally, the adapted EfficientNet-B0-based binary
classifier detects distinct features from the extracted information and identifies pushing
behavior at the patch level.

3. The Proposed Framework

This section describes the proposed framework for automatic pushing behavior detec-
tion at the video patch level. As shown in Figure 1, there are two main components: motion
information extraction and pushing patches annotation. The first component extracts
motion information from input video recordings, which is further exploited by the pushing
patch annotation component to detect and localize pushing behavior, producing pushing
annotated video. The following subsections discuss both components in more detail.
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Figure 1. The architecture of the proposed automatic deep learning framework. n and m are two rows
and three columns, respectively, for patching. Clip size s is 12 frames. MIM: motion information
map. P: patch sequence. L: a matrix of all patches labels. L′: an updated L by false reduction
algorithm. V: the input video. ROI: region of interest (entrance area). angle: the rotation angle of the
input video.

3.1. Motion Information Extraction

This component employs RAFT and wheel visualization to estimate and visualize the
crowd motion from the input video at the patch level. The component has two modules,
a deep optical flow estimator and a MIM patch generator.

The deep optical flow estimator relies on RAFT to calculate the optical flow vectors for
all pixels between two frames. RAFT was introduced in 2020; it is a promising approach
for dense crowds because it reduces the effect of occlusions on optical flow estimation [27].
RAFT is based on a composition of CNN and recurrent neural network architectures.
Moreover, RAFT has strong cross-dataset generalization and its pre-trained weights are
publicly available. For additional information about RAFT, we refer the reader to [27].
This module is based on the RAFT architecture with its pre-trained weights along with
three inputs, which are a video of crowded event entrances, the rotation angle of the input
video, and the region of interest (ROI) coordinates. To apply RAFT, firstly, we determine
the bounding box of the entrance area (ROI) in the input video V. This process is based
on user-defined left–top and bottom–right coordinates of the ROI in the pixel unit. Then,
we extract the frame sequence F = { ft | t = 1, 2, 3, . . . , T} with ROI only from V, where
ft ∈ R

w×h×3, w and h are the ft width and height, respectively, 3 is the number of channels,
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t is the order of the frame f in V, and T is the total number of frames in V. After that, we
rotate the frames (based on the user-defined angle) in F to meet the baseline direction of
the crowd flow that is used in the classifier, which is from left to right. The rotation process
is essential to improve the classifier accuracy because the classifier will be built by training
the adapted EfficientNet-B0 on the crowd flow from left to right. Next, we construct from F
the sequence of clips C = {ci | i = 1, 2, 3, . . . } and ci is defined as

ci = { f(i−1)×(s−1)+1, f(i−1)×(s−1)+2, . . . , f(i−1)×(s−1)+s}, (1)

where s is the clip size. Finally, RAFT is applied on ci, to calculate the dense displacement
field di between f(i−1)×(s−1)+1 and f(i−1)×(s−1)+s. The output of RAFT of each pixel location
〈x, y〉 in ci is a vector, as shown in.

〈u〈x,y〉, v〈x,y〉〉ci = RAFT(〈x, y〉ci ), (2)

where u and v are horizontal and vertical displacements of a pixel at the 〈x, y〉 location in ci,
respectively. This means di is a matrix of the vector values for the entire ci, as described in

di =

{
〈u〈x,y〉, v〈x,y〉〉ci

}(w,h)

(x,y)=(1,1)
(3)

In summary, di is the output of this module and will act as the input of the MIM patch
generator module.

The second module, the MIM patch generator, employs the wheel visualization to infer
the motion information from each di. Firstly, the wheel visualization calculates the magni-
tude and the direction of each motion vector at each pixel 〈x, y〉 in di. Equations (4) and (5)
are used to calculate the motion direction and magnitude, respectively. Then, from the
calculated information, the wheel visualization generates MIMi, where MIMi ∈ R

w×h×3.
In MIM, the color refers to the motion direction and the intensity of the color represents the
motion magnitude or speed. Figure 2 shows the color wheel scheme (b) and an example of
MIM (MIM37) (c) that is generated from c37, whose first and last frames are f397 and f408,
respectively (a). c37 is taken from the experiment 270 [42].

θ(〈x, y〉)ci = π−1 arctan(
v〈x,y〉
u〈x,y〉

) (4)

mag(〈x, y〉)ci =
√

u2
〈x,y〉 + v2

〈x,y〉 (5)

b. Color wheel scheme.a. First (f397) and last (f408) frames for clip c37

c. MIM37 d. MIM-patches  e. Annotated frame (f397)

p1,37

p4,37 p5,37 p6,37

p2,37 p2,37

Figure 2. An illustration of two frames (experiment 270 [42]), color wheel scheme [29], MIM, MIM
patches, and annotated frame. In sub-figure (e), red boxes refer to pushing patches, while green boxes
represent non-pushing patches.
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To detect pushing behavior at the patch level, the MIM patch generator divides each
MIMi into several patches. A user-defined row (n) and column (m) are used to split MIMi
into patches {pk,i ∈ R

(w/m)× (h/n)× 3 | k = 1, 2, . . . , n × m }, where k is the order of the
patch in MIMi. Afterward, each pk,i is resized to a dimension of 224 × 224 × 3, which is the
input size of the second component of the framework. For example, MIM37 in Figure 2c
represents an entrance with dimensions 5 × 3.4 m on the ground, and it is divided into
2 × 3 patches {pk,37 | k ≤ 6} as given in Figure 2d. These patches are equal in pixels,
whereas the area that is covered by them is not necessarily equal. The far patches from the
camera cover a larger viewing area compared to close patches; because the far-away object
has fewer pixels per m than a close object [43]. In Figure 2d, the average width and height
of the pk,37 are approximately 1.67 × 1.7 m.

In summary, the output of the motion information extraction component can be
described as P = {pk,i ∈ R

224× 224× 3 | k ≤ n × m & i ≤ |C|}, and will serve as input for
the second component of the framework.

3.2. Pushing Patches Annotation

This component localizes the pushing patches in ci ∈ C, annotates the patches
in the first frame ( f(i−1)×(s−1)+1) of each ci, and stacks the annotated frame sequence
F′ = { f ′i | i = 1, 2, . . . , |C|} as a video. The Adapted EfficientNet-B0-based classifier and
false reduction algorithm are the main modules of this component. In the following, we
provide a detailed description.

The main purpose of the first module is to classify each pk,i ∈ P as pushing or non-
pushing. The module is based on EfficientNet-B0 and real-world ground truth of pushing
behavior videos. Unfortunately, the existing effective and simple EfficientNet-B0 is un-
suitable for detecting pushing behavior because its classification is not binary. However,
binary classification is required in our scenario. Therefore, we modify the classification
part in EfficientNet-B0 to support a binary classification. The module in Figure 1 shows
the architecture of the adapted EfficientNet-B0. Firstly, it executes a 3 × 3 convolution
operation on the input image with dimensions of 224 × 224 × 3. Afterwards, the next
16 mobile inverted bottleneck convolutions are used to extract the feature maps. The final
stacked feature maps ∈ R

7×7× 1280, where 7 and 7 are the dimensions of each feature map,
and 1280 is the number of feature maps. The following global average pooling2D (GAP)
layer reduces the dimensions of the stacked feature maps into 1 × 1 × 1280. For the binary
classification, we employed a fully connected (FC) layer with a ReLU activation function
and a dropout rate of 0.5 [44] before the final FC. The final layer operates as output with a
sigmoid activation function to find the probability δ of the class of each pk,i ∈ P.

In order to generate the trained classifier, we trained the adapted EfficientNet-B0
with pushing and non-pushing MIM patches. The labeled MIM patches were extracted
from a real-world ground truth of pushing behavior videos, where the ground truth
was manually created. In Sections 4 and 5.1, we show how to prepare the labeled MIM
patches and train the classifier, respectively. Overall, after several empirical experiments
(Section 5.2), the trained classifier on MIM patches of 12 frames produces the best accuracy
results. Therefore, our framework uses 12 frames for the clip size (s). Moreover, the classifier
uses the threshold for determining the label lk,i of the input pk,i as:

lk,i =

{
1 (pushing class) if δ ≥ 0.5
0 (non-pushing class) if δ < 0.5

(6)

Finally, the output of this module can be described as L = {lk,i ∈ 0, 1 | k ≤ n × m &
i ≤ |C|} and will perform as the input of the next module.

In the second module, the false reduction algorithm aims to reduce the number of false
predictions in L, which improves the overall accuracy of the proposed framework. Compar-
ing the predictions (L) with the ground truth pushing, we notice that the time interval of
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the same behavior of each patch region could help improve the accuracy of the framework.
We assume a threshold value of 34

25 second. This value is based on visual inspection.
The example in Figure 3 visualizes the {lk,i | k ≤ 3 & i ≤ 4} on the first frame of

c1, c2, c3, and c4 in the video. Each ci represents 12
25 second. c1 (Figure 3a) contains one

false non-pushing, p2,1, while the same region of the patch in {c2, c3, c4} is true pushing
(Figure 3b–d). This means, we have two time intervals for {p2,i | i ≤ 4}. The first has
one clip (c1) (Figure 3a) with a duration of 12

25 second, which is lesser than the defined
threshold. The second time interval contains three clips ({c2, c3, c4}), with durations equal
to the threshold. Then the algorithm changes the prediction of p2,1 to “pushing”, while
it confirms the predictions of p2,2, p2,3, and p2,4. Algorithm 1 presents the pseudocode of
the false reduction algorithm. Lines 2–8 show how to reduce the false predictions of the
patches in {ci | i ≤ |c| − 2} Then, lines 9–16 recheck the first two clips (c1, c2) to discover
the false predictions that are not discovered by lines 2–8. After that, lines 17–32 focus on the
last two clips {c|C|−1, c|C|}. Finally, the updated L is stored in L′, which can be described as
L′ = {l′k,i ∈ 0, 1 | k ≤ n × m & i ≤ |C|}.

FNP

a. c1 b. c2 c. c3 d. c4

p2,1 TPp2,2 TPp2,3 TPp2,4

Figure 3. Examples of the visualized classifier predictions with ground truth pushing. The images
represent the first frames { f1, f12, f23, f34} of {c1, c2, c3, c4} in a video, respectively; the video is for
experiment 110 [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. Blue circles:
ground truth pushing. FNP: false non-pushing. TP: true pushing.

After applying the false reduction algorithm, the pushing patch annotation component
based on L′ identifies the regions of pushing patches on the first frame for each ci to generate
the annotated frame sequence F′. Finally, all annotated frames are stacked as a video, which
is the final output of the proposed framework.
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Algorithm 1 False Reduction.
Input:

matrix[N, M] ← L
Output:

L′

1: for i ← 0, 1, . . . , N do
2: for j ← 0, 1, . . . , M − 2 do

� Excepting the last two clips
3: if matrix[i, j] �= matrix[i, j + 1] then
4: if count(matrix[i, j] in matrix[i, j + 2 to j + 4]) > 1 then
5: matrix[i, j + 1]← not matrix[i, j + 1]
6: end if
7: end if
8: end for

� Recheck the first two clips
9: if matrix[i, 0 to 2] is not identical then

10: if matrix[i, 1] is not in matrix[i, 2 to 4] then
11: matrix[i, 1]← not matrix[i, 1]
12: end if
13: if matrix[i, 0] not in matrix[i, 1 to 3] then
14: matrix[i, 0]← not matrix[i, 0]
15: end if
16: end if

� For the last two clips
17: if matrix[i, M − 1] �= matrix[i, M − 2] then
18: if matrix[i, M − 1] �= matrix[i, M − 3] then
19: matrix[i, M − 1]← not matrix[i, M − 1]
20: end if
21: end if
22: if matrix[i, M − 1] �= matrix[i, M − 2] then
23: if matrix[i, M − 1] = matrix[i, M − 3] then
24: matrix[i, M − 2]← not matrix[i, M − 2]
25: end if
26: end if
27: if matrix[i, M − 1] = matrix[i, M − 2] then
28: if matrix[i, M − 1] not in matrix[i, M − 5 to M − 3] then
29: matrix[i, M − 1]← not matrix[i, M − 1]
30: matrix[i, M − 2]← not matrix[i, M − 2]
31: end if
32: end if
33: end for
34: L′ ← matrix

4. Datasets Preparation

This section prepares the required datasets for training and evaluating our classifier.
In the following, firstly, four MIM-based datasets are prepared. Then, we present a new
patch-based approach for enlarging the data and alleviating the class imbalance problem in
the MIM-based datasets. Finally, the patch-based approach is applied to the datasets.

4.1. MIM-Based Datasets Preparation

In this section, we prepare four MIM-based datasets using two clip sizes, Farnebäck
and RAFT optical flow methods. Two clip sizes (12 and 25 frames) are used to study the
impact of the period of motion on the classifier accuracy. Selecting a small clip size (s) for the
MIM sequence (MIMQs ) leads to redundant and irrelevant information, while a large size
leads to a few samples. Consequently, we chose 12 and 25 frames as the two clip sizes. The
four datasets can be described as RAFT-MIMQ12 , RAFT-MIMQ25 , Farnebäck-MIMQ12 , and
Farnebäck-MIMQ25 . For more clarity, the “RAFT-MIMQ12 ” term means that a combination
of RAFT and wheel visualization is used to generate the MIMQ12 . As mentioned before,
the EfficientNet-B0 learns from MIM sequences generated based on RAFT. Therefore, RAFT-
MIMQ12 -based and RAFT-MIMQ25 -based datasets play the primary role in training and
evaluating the proposed classifier. Moreover, we create Farnebäck-MIMQ12 -based and
Farnebäck-MIMQ25 -based datasets to evaluate the impact of RAFT on the classifier accuracy.
The pipeline for preparing the datasets (Figure 4) is illustrated below.
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Figure 4. The pipeline of MIM-based dataset preparation.

4.1.1. Data Collection and Manual Rating

In this section, we discuss the data source and the manual rating methodology
for the datasets. Five experiments were selected from the data archive hosted by the
Forschungszentrum Jülich under CC Attribution 4.0 International license [42]. The experi-
ments mimicked the crowded event entrances. The videos were recorded by a top-view
static camera with a frame rate of 25 frames per second and 1920 × 1440 pixels resolution. In
addition to the videos, parameters for video undistortion and trajectory data are available.
In Figure 5, the left part sketches the experimental setup and Table 1 shows the different
characteristics of the selected experiments.

W

L

Figure 5. ROI in the entrance. (Left) experimental setup with the red dot indicating the coordinate
origin [42], (right) overhead view of an exemplary experiment. The original frame in the right image
is from [42]. The entrance gate width is 0.5 m. The rectangle indicates the entrance area (ROI).
L: length of ROI in m. According to the experiment, the width of the ROI (w) varies from 1.2 to 5.6 m.
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Table 1. Characteristics of the selected experiments.

Experiment * Width (m) Pedestrians Direction Frames **

110 1.2 63 Left to right 1285
150 5.6 57 Left to right 1408
170 1.2 25 Left to right 552
270 3.4 67 Right to left 1430
280 3.4 67 Right to left 1640

* The same names as reported in [42]; ** The number of frames that contain pedestrians in the ROI.

Experts performing the manual rating are social psychologists who developed the
corresponding rating system [3]. PeTrack [7] was used to track each pedestrian one-by-
one, over every frame in the video experiments. Pedestrian ratings are annotated for
the first frame when the respective participant becomes visible in the video. The first
rating can be extended to the whole video and every frame if that pedestrian does not
change his/her behavior. If there is a behavioral change during the experiment, then the
rating is also changed. Likewise, it can be extended to the rest of the frames if there is
no additional change in the behavior. The rating process is finished after every frame is
filled with ratings for every pedestrian. The behaviors of pedestrians are labeled with
numbers ∈ {0, 1, 2}; 0 indicates that a corresponding pedestrian does not appear in the clip,
while 1 and 2 represent non-pushing and pushing behaviors, respectively. Two ground
truth files (MIMQ12 and MIMQ25 ) for each experiment were produced for this paper. Further
information about the manual rating can be found in [3].

4.1.2. MIM Labeling and Dataset Creation

Three steps are required to create the labeled MIM-based datasets. In the first step,
we generated the samples from the videos; the samples were: RAFT-MIMQ12 , RAFT-
MIMQ25 , Farnebäck-MIMQ12 , and Farnebäck-MIMQ25 sequences. The MIM represents the
crowd motion in the ROI, which is presented by the rectangle in Figure 5. It is worth
mentioning that the directions of the crowd flows in the videos are not similar. This
difference could influence building an efficient classifier because changing the direction
is one candidate feature for pushing behavior representation. To address this problem,
we unified the direction in all videos from left to right before extracting the samples.
Additionally, to improve the efficiency of the datasets, we discarded roughly the first
seconds from each video to guarantee that all pedestrians started to move forward.

Based on the ground truth files, the second step labels MIMs in the four MIM sequences
into pushing and non-pushing. Each MIM that contains at least one pushing pedestrian is
classified as pushing; otherwise, it is labeled as non-pushing.

Finally, we randomly split each dataset into three distinct sets: 70% for training, 15%
for validation, and 15% for testing. The 70%-15%-15% split ratio is one of the most common
ratios in the deep learning field [45]. The information about the number of pushing and
non-pushing samples in the training, validation and test sets for the four MIM-based
datasets is given in Table 2. As can be seen from Table 2, our MIM-based datasets suffer
from two main limitations: lack of data and a class imbalance problem, since less than 20%
of samples are non-pushing.
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Table 2. Number of labeled samples in training, validation, and test sets for each MIM-based dataset.

Dataset

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

RAFT-MIMQ12

Training 66 16 76 14 28 5 61 29 86 11 317 75 392
Validation 13 3 15 3 5 1 13 6 18 2 64 15 79
Test 13 3 15 3 5 1 13 6 18 2 64 15 79
Total 92 22 106 20 38 7 87 41 122 15 445 105 550

RAFT-MIMQ25

Training 30 6 35 6 13 1 29 13 40 4 147 30 177
Validation 6 2 7 1 3 1 6 2 8 1 30 7 37
Test 6 2 7 1 3 1 6 2 8 1 30 7 37
Total 42 10 49 8 19 3 41 17 56 6 207 44 251

Farnebäck-MIMQ12 It has the same samples as the RAFTQ12 sets while they are generated using Farnebäck.
Farnebäck-MIMQ25 It has the same samples as the RAFTQ25 sets while they are generated using Farnebäck.

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

4.2. The Proposed Patch-Based Approach

In this section, we propose a new patch-based approach to alleviate the limitations
of the MIM-based datasets. The general idea behind our approach is to enlarge the small
pushing behavior dataset by dividing each MIM into several patches. After that, we label
each patch into “pushing” or “non-pushing” to create a patch-based MIM dataset. The
patch should cover a region that can contain a group of pedestrians, where the motion
information of the group is essential for pushing behavior representation. Section 5.2
investigates the impact of the patch area on the classifier accuracy. To further clarify the
idea of the proposed approach, we take an example of a dataset with one pushing MIM and
one non-pushing MIM, as depicted in Figure 6. After applying our idea with 2 × 3 patches
on the dataset, we obtain a patch-based MIM dataset with four pushing, six non-pushing,
and two empty MIM patches. The empty patches are discarded. In conclusion, the dataset
is enlarged from two images into ten images. The methodology of our approach, as shown
in Figure 7 and Algorithm 2, consists of four main phases: automatic patches labeling,
visualization, manual revision, and patch-based MIM dataset creation. The following
paragraphs discuss the inputs and the workflow of the approach.

a. Pushing MIM b. Non-pushing MIM

c. Pushing MIM-patches d. Non-pushing MIM-patches

Patches

M
IM

-b
as

ed
 d

at
as

et
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tc
h-
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d 
M

IM
 d
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et

Figure 6. A simple example of the patch-based approach idea. Circles: ground truth pushing.
Red boxes: pushing patches. Green boxes: non-pushing patches.
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Figure 7. The flow diagram of the proposed patch-based approach. n and m: the numbers of rows
and columns, respectively, that are used to divide ROI into n × m regions.

Our approach relies on four inputs (Algorithm 2 and Figure 7, inputs part): (1) MIM-
based dataset, which contains a collection of MIMs with the first frame of each MIM; the
frames are used in the visualization phase; (2) ROI, n and m, parameters that aim to identify
the regions for patches; (3) Pedestrian trajectory data to find the pedestrians in each patch;
(4) Manual rating information (ground truth file) helps to label the patches.

The first phase, automatic patch labeling, identifies and labels the patches in each
MIM (Algorithm 2, lines 1–33 and Figure 7, first phase). The phase contains two steps:
(1) Finding the regions of the patches. For this purpose, we find the coordinates of the
regions that are generated from dividing the ROI area into n × m parts. The extracted
regions can be described as {ak| k = 1, 2, . . . , n × m}, where ak represents a patch sequence
{pk,i ∈ R

(w/m)× (h/n)× 3 | i = 1, 2, . . . , |MIMQ|}, w and h are the ROI width and height,
respectively, see Algorithm 2, lines 1–15. We should point out that identifying the regions
is performed on at least two levels; to avoid losing any useful information. For example,
in Figure 8, we first split ROI by 3 × 3 regions (Algorithm 2, lines 2–8), while in the second
level, we reduce the number of regions (2 × 2) to obtain larger patches (Algorithm 2,
lines 9–15) containing the missing pushing behaviors (pushing behaviors are divided
between the patches) in the first level; (2) Labeling the patches is executed according to the
pedestrians’ behavior in each patch pk,i. Firstly, we find all pedestrians who appear in MIMi
(Algorithm 2, lines 18 and 19). Then, we label each pk,i as pushing if it contains at least
one pushing behavior; otherwise, it is labeled as non-pushing (Algorithm 2, lines 20–28).
Finally, we store k, i, and the label of pk,i in a CSV-file (Algorithm 2, lines 29 and 30).
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Algorithm 2 Patch-Based Approach.
Inputs:
dataset ← collection of MIMs with the first frame of each MIM
ROI ← matrix[le f t_top : [x_coordinate, y_coordinate], right_bottom : [x_coordinate, y_coordinate]]
n, m ← the numbers of rows and columns that are used to divide ROI into n × m regions.
trajectory ← CSV file, each row represents 〈order o f f rame( ft), pedestrian no., pixel x − coordinate, pixel y − coordinate〉
ground_truth ← CSV file, each row represents 〈ordero f ci or MIM, behavior o f pedestrian 1, behavior o f pedestrian 2, . . . , behavior
o f last pedestrian〉

Outputs:
pushing_folder, non-pushing_folder
1: region ← matrix[[]] � Automatic patches labeling
2: patch_width ← (ROI[1, 0]− ROI[0, 0])/m
3: patch_height ← (ROI[1, 1]− ROI[0, 1])/n
4: for i ← 0, 1, . . . , n − 1 do
5: for j ← 0, 1, . . . , m − 1 do
6: region.append([ROI[0, 0] + j× patch_width, ROI[0, 1] + i × patch_height, ROI[0, 0] + (j+ 1)× patch_width, ROI[0, 1] +

(i + 1)× patch_height])
7: end for
8: end for
9: patch_width ← (ROI[1, 0]− ROI[0, 0])/(m − 1)

10: patch_height ← (ROI[1, 1]− ROI[0, 1])/(n − 1)
11: for i ← 0, 1, . . . , n − 2 do
12: for j ← 0, 1, . . . , m − 2 do
13: region.append([ROI[0, 0] + j× patch_width, ROI[0, 1] + i× patch_height, ROI[0, 0] + (j+ 1)× patch_width, ROI[0, 1] +

(i + 1)× patch_height])
14: end for
15: end for
16: f ile ← CSV f ile
17: for each MIM ∈ dataset do
18: f rame_order ← MIM name
19: ped ← Filter(trajectory. f rame_order)[1]
20: patch_no ← 1
21: for each patch_region ∈ region do
22: behavior ← 1 //non-pushing
23: for each ped ∈ patch_region do
24: if Filter(ground_truth. f rame_order & ped) == 2 then
25: behavior ← 2 //pushing
26: break
27: end if
28: end for
29: record ← [patch_no, f rame_order, behavior]
30: f ile.write(record)
31: patch_no ← patch_no + 1
32: end for
33: end for

� Visualization
34: for each f rame ∈ dataset do
35: f rame_order ← f rame name
36: ped ← Filter(trajectory. f rame_order)[1]
37: for each person ∈ ped do
38: behavior ← Filter(ground_truth. f rame_order & person)
39: if behavior ==2 then
40: draw a circle around the position 〈person[2], person[3]]〉 of pedestrian person[1] over f rame
41: end if
42: end for
43: for patch_no ← 1, 2, . . . , len(region) do
44: if Filter( f ile. f rame_order & patch_no)[2] == 2 then
45: draw a red rectangle around region[patch_no − 1] over f rame
46: else
47: draw a green rectangle around region[patch_no − 1] over f rame
48: end if
49: end for
50: end for

� Manual revision
51: for each f rame ∈ dataset do
52: for each patch_region ∈ region do
53: manual revision of patch_region in f rame
54: if patch_region contains only a part o f one pushing behavior and its label is 2 then
55: manually updating the label of the patch_region in f ile to 6, where 6 means unknown patch
56: end if
57: end for
58: end for

� Patch-based MIM dataset creation
59: for each MIM ∈ dataset do
60: MIM_order ← MIM name
61: for patch_no ← 1, 2, . . . , len(region) do
62: patch ← MIM[region[patch_no − 1, 1] : region[patch_no − 1, 3], [region[patch_no − 1, 0] : region[patch_no − 1, 2]]
63: if Filter( f ile.MIM_order & patch_no)[2] == 2 then
64: save patch to pushing_folder under name “MIM_order − patch_no"
65: else if Filter( f ile.MIM_order & patch_no)[2] == 1 then
66: save patch to non-pushing_folder under name “MIM_order − patch_no"
67: end if
68: end for
69: end for
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a. First-level (3 x 3) b. Second-level (2 x 2)
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Figure 8. An example of identifying patches and the visualization process. The original frames are
from [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. White circles: ground
truth pushing.

Despite the availability of the pedestrian trajectories, the automatic patch labeling
phase is not 100% accurate, affecting the quality of the dataset. The automatic way fails
to label some of the patches that only contain a part of one pushing behavior. Therefore,
manual revision is required to improve the dataset quality. To ease this process and make
it more accurate, the visualization phase (Algorithm 2, lines 34–50 and Figure 7, second
phase) visualizes the ground truth pushing (Algorithm 2, lines 36–42), and the label of each
pk,i (Algorithm 2, lines 43–49) on the first frame of MIMi. Figure 8 is an example of the
visualization process.

The manual revision phase ensures that each pk,i takes the correct label by manually
revising the visualization data (Algorithm 2, lines 51–58 and Figure 7, third phase). The
criteria used in the revision are as follows: if pk,i only has a part of one pushing behavior,
we change the labels to unknown labels in the CSV-file generated by the first phase;
otherwise, the label of pk,i is not changed. The unknown patches do not offer complete
information about pushing behavior or non-pushing behavior. Therefore, the final phase
in our approach will discard them. A good example of an unknown patch is patch 7,
Figure 8a. This patch contains a part of one pushing behavior, as highlighted by the arrow.
On the other hand, patch 12 in the aforementioned example (b) contains the whole pushing
behavior that we lose in discarding patch 7.

In the final phase (Algorithm 2, lines 59–69 and Figure 7, fourth phase), the patch-
based MIM dataset creation is responsible for creating the labeled patch-based MIM dataset,
containing two groups of MIM patches, pushing and non-pushing. Firstly, we crop pk,i from
MIMi (Algorithm 2, line 62). Next, and according to the labels of the patches, the pushing
patches are stored in the first group (Algorithm 2, lines 63 and 64), while the second group
archives the non-pushing patches (Algorithm 2, lines 65 and 66).

4.3. Patch-Based MIM Dataset Creation

In this section, we aimed to create several patch-based MIM datasets using the pro-
posed patch-based approach and the MIM-based datasets. The main purposes of the
created datasets are: (1) to build and evaluate our classifier; (2) examine the influence of the
patch area and clip size on classifier accuracy.

In order to study the impact of the patch area on classifier accuracy, we used two dif-
ferent areas. As we mentioned before, the regions covered by the patches should be enough
to house a group of pedestrians. Therefore, according to the ROIs of the experiments, we
selected the two patch areas as follows: 1 m × (1 to 1.2) m and 1.67 m × (1.2 to 1.86) m.
The dimensions of each area refer to the length x width of patches. Due to the width
difference between the experiment setups, there is a variation in the width between the
experiments. Table 1 shows the width of each experiment’s setup, while the length of the
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ROI area in all experiment setups was 5 m (Figure 5, left part). For the sake of discussion,
we name the 1 m × (1 to 1.2) m patch area as the small patch, and 1.67 m × (1.2 to 1.86) m
as the medium patch. Moreover, the small and medium patching with the used levels are
illustrated in Figure 9.
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Figure 9. The visualization of patching for the experiments. Numbers represent the patch order in
each experiment and level.

The patch-based approach is performed on the RAFT-MIM-based training sets to
generate patch-based RAFT-MIM training sets, while it creates patch-based RAFT-MIM
validation sets from the RAFT-MIM-based validation sets. The created patch-based RAFT-
MIM datasets with their numbers of labeled samples are presented in Table 3. The table
and Figure 10 demonstrate that the proposed approach enlarges the RAFT-MIM-based
training and validation sets in both small and medium patching. The approach roughly
duplicates the MIM-based training and validation sets 13 times in small patching. While
in medium patching, each MIM-based training and validation set is duplicated 8 times.
Moreover, our approach decreases the class imbalance issue significantly.

Table 3. Number of labeled MIM patches in training and validation sets for each patch-based
MIM dataset.

Dataset

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

Patch-based small RAFT-MIMQ12
Training 350 279 523 932 121 97 528 784 634 806 2156 2898 5054
Validation 67 53 89 161 20 21 91 169 108 162 375 566 941
Total 417 332 612 1093 141 118 619 953 742 968 2531 3464 5995

Patch-based small RAFT-MIMQ25
Training 156 124 249 419 53 42 236 379 324 354 1018 1318 2336
Validation 33 26 35 82 9 12 56 53 67 89 200 262 462
Total 189 150 284 501 62 54 292 432 391 443 1218 1580 2798

Patch-based medium RAFT-MIMQ12
Training 237 131 298 354 95 38 540 439 698 326 1868 1288 3156
Validation 45 26 55 64 16 8 98 105 126 81 340 284 624
Total 282 157 353 418 111 46 638 544 824 407 2208 1572 3780

Patch-based medium RAFT-MIMQ25
Training 107 58 142 151 42 14 242 219 338 146 871 585 1459
Validation 22 14 20 37 8 6 56 27 68 32 174 116 290
Total 129 72 162 188 50 20 298 246 406 178 1045 704 1749

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

The approach reduces the difference percentage between the pushing and non-pushing
classes in the patch-based MIM training and validation sets as follows: patch-based small
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RAFT-MIMQ12 , from 62% to 16%. Patch-based medium RAFT-MIMQ12 , from 62% to 17%.
Patch-based small RAFT-MIMQ25 , from 65% to 13%. Patch-based medium RAFT-MIMQ25 ,
from 65% to 20%.

Figure 10. The visualization of the number of pushing and non-pushing samples for the training and
validation sets.

Despite these promising results, we can only assess the efficiency of our approach when
the CNN-based classifier is trained and tested on our patch-based RAFT-MIM datasets.
For this important process, we generate four patch-based RAFT-MIM test sets. The patch-
based approach applies the first level of patching on RAFT-MIM-based test sets (Table 2)
to generate the patch-based RAFT-MIM test sets. We apply the first level in the small
and medium patching (because we need to evaluate our classifier for detecting pushing
behavior at the small and medium patches). Table 4 shows the number of labeled MIM
patches in the patch-based RAFT-MIM test sets and their experiments. In Section 5.3, we
discuss the impact of the patch-based approach on the accuracy of CNN-based classifiers.

Table 4. Number of labeled MIM patches in patch-based test sets.

Test Set

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

Patch-based small RAFT-MIMQ12 test 40 28 47 99 9 13 59 112 61 108 216 360 576
Patch-based small RAFT-MIMQ25 test 18 15 19 44 7 8 28 54 25 36 97 157 254
Patch-based medium RAFT-MIMQ12 test 26 16 25 47 8 6 47 41 50 40 156 150 306
Patch-based medium RAFT-MIMQ25 test 13 8 8 26 5 5 22 19 20 18 68 76 144

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

5. Experimental Results

This section presents the parameter setup and performance metrics used in the eval-
uation. Then, it trains and evaluates our classifier and studies the impact of the patch
area and clip size on the classifier performance. After that, we investigate the influence of
the patch-based approach on the classifier performance. Next, the effect of RAFT on the
classifier is discussed. Finally, we evaluate the performance of the proposed framework on
the distorted videos.
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5.1. Parameter Setup and Performance Metrics

For the training process, the RMSProp optimizer with a binary cross-entropy loss
function was used. The batch size and epochs were set to 128 and 100, respectively.
Moreover, when the validation accuracy did not increase for 20 epochs, the training pro-
cess was automatically terminated. In the RAFT and Farnebäck methods, we used the
default parameters.

The implementations in this paper were performed on a personal computer running
the Ubuntu operating system with an Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz
(8 CPUs) 2.3 GHz and 32 GB RAM. The implementation was written in Python using
PyTorch, Keras, TensorFlow, and OpenCV libraries.

In order to evaluate the performance of the proposed framework and our classifier,
we used accuracy and F1 score metrics. This combination was necessary since we had
imbalanced datasets. Further information on the evaluation metrics can be found in [46].

5.2. Our Classifier Training and Evaluation, the Impact of Patch Area and Clip Size

In this section, we have two objectives: (1) training and evaluating the adapted
EfficientNet-B0-based classifier. (2) Investigating the impact of the clip size and patch area
on the performance of the classifier.

We compare the adapted EfficientNet-B0-based classifier with three well-known CNN-
based classifiers (MobileNet [47], InceptionV3 [48], and ResNet50 [49]) to achieve the above
objectives. The classification part in the well-known CNN architectures is modified to be
binary. The four classifiers train from scratch on the patch-based RAFT-MIM training and
validation sets. Then we evaluate the trained classifiers on patch-based RAFT-MIM test
sets to explore their performance.

From the results in Table 5 and Figure 11, it is seen that our trained classifier on the
patch-based medium RAFT-MIMQ12 dataset achieves better accuracy and F1 scores than
other classifiers. More specifically, the EfficientNet-B0-based classifier has 88% accuracy
and F1 scores. Furthermore, the medium patches help all classifiers to obtain better
performances than small patches. At the same time, MIMQ12 is better than MIMQ25 for
training the four classifiers in terms of accuracy and F1 score.

Table 5. Comparison with well-known CNN-based classifiers on patch-based MIM datasets.

CNN-Based Classifier

Patch-Based MIM Dataset

Medium RAFT-MIMQ12 Small RAFT-MIMQ12 Medium RAFT-MIMQ25 Small RAFT-MIMQ25

Accuracy% F1 Score% Accuracy% F1 Score% Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 79 78 85 85 77 74
EfficientNet-B0 88 88 81 80 87 87 78 78
InceptionV3 85 85 76 75 80 80 76 74
ResNet50 80 80 70 70 74 73 71 69

Bold: best results in each dataset. Gray highlight: Best results among all datasets.

The patch area influences the classifier performance significantly. For example,
medium patches improve the EfficientNet-B0-based classifier accuracy and F1 scores by 7%
and 8%, respectively, compared to the small patches. On the other hand, the effect of the
MIM sequence (clip size) on the classifier performance is lesser than the influence of the
patch area. Compared to medium MIMQ25 , medium MIMQ12 enhances the accuracy and F1
score by 1% in the EfficientNet-B0-based classifier.

In summary, the trained adapted EfficientNet-B0-based classifier on the patch-based
medium RAFT-MIMQ12 dataset achieves the best performance.

5.3. The Impact of the Patch-Based Approach

We evaluated the impact of the proposed patch-based approach on the performance
of the trained classifiers on patch-based medium RAFT-MIMQ12 training and validation
sets. To achieve that, we trained the four classifiers on RAFT-MIMQ12 -based training
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and validation sets (Table 2). Then the trained classifiers were evaluated on patch-based
medium RAFT-MIMQ12 test sets (Table 4).

Figure 11. Comparisons of four classifiers over all patch-based RAFT-MIM sets.

Table 6 represents the performance of MIM-based classifiers. The comparison between
patch-based classifiers and MIM-based classifiers is visualized in Figure 12. We can see that
the EfficientNet-B0-based classifier (MIM-based classifier) achieves the best performance,
which is a 78% accuracy and F1 score. In comparison, the corresponding patch-based
classifier achieves an 88% accuracy and F1 score. This means that the patch-based approach
improves the accuracy and F1 score of the EfficientNet-B0-based classifier by 10%. Similarly,
in other classifiers, the patch-based approach increases the accuracy and F1 score by at least
15% for each.

Table 6. MIM -based classifier evaluation.

Patch-Based Classifier MIM-Based Classifier

CNN-Based Classifier Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 71 69
EfficientNet-B0 88 88 78 78
InceptionV3 85 85 51 34
ResNet50 80 80 51 34

Figure 12. Comparison between MIM-based classifiers and patch-based classifiers.
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5.4. The Impact of RAFT

In order to study the impact of RAFT on our classifier, we trained it using the patch-
based medium Farnebäck-MIMQ12 dataset. Farnebäck is one of the most popular optical
flow methods used in human action detection. Firstly, we created patch-based medium
training and validation and test sets from the Farnebäck-MIMQ12 -based dataset (Table 2).
The training and validation sets were used to train the EfficientNet-B0-based classifier
(Farnebäck-based classifier), while the test set was used to evaluate the classifier. Finally,
we compared the performance of the classifier based on RAFT with the classifier based on
Farnebäck. As shown in Table 7 and Figure 13, we find that RAFT improves the classifier
performance in all classifiers compared to Farnebäck. In particular, RAFT enhances the
EfficientNet-B0-based classifier performance by 8%.

Table 7. Comparison between RAFT-based classifiers and Farnebäck-based classifiers.

RAFT-Based Classifier Farnebäck-Based Classifier

Classifier Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 81 81
EfficientNet-B0 88 88 80 80

InceptionV3 85 85 79 79
ResNet50 80 80 74 73

Figure 13. Comparison between the RAFT-based classifier and the Farnebäck-based classifier.

5.5. Comparison between the Proposed Classifier and the Customized CNN-Based Classifiers in
Related Works

In this section, we evaluate our classifier by comparing it with two of the most recent
customized CNN architectures (CNN-1 [25] and CNN-2 [35]) in the video-based abnormal
human behavior detection field. Customized CNNs have simple architectures; CNN-1
used 75 × 75 pixels as an input image, three convolutional layers followed by batch
normalization and max pooling operations. Finally, a fully connected layer with a softmax
activation function was employed for classification. On the other hand, CNN-2 resized the
input images into 28 × 28 pixels, then employed three convolutional layers with three max
pooling layers (each max pooling layer with strides of 2 pixels). Moreover, it used two fully
connected layers for predictions; the first layer was based on a ReLU activation function,
while the second layer used a softmax activation function. For more details on CNN-1 and
CNN-2, we refer the reader to [25,35], respectively.

The three classifiers were trained and evaluated based on the patch-based medium
RAFT-MIMQ12 dataset. As shown in Table 8 and Figure 14, CNN-1 and CNN-2 obtained
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low accuracy and F1 scores (less than 61%), while our classifier achieved an 88% accuracy
and F1 score.

Table 8. Comparisons to the customized CNN-based classifiers in the related works.

Classifier Accuracy% F1 Score%

EfficientNet-B0 (our classifier) 88 88
CNN-1 [25] 60 54
CNN-2 [35] 54 35

In summary, and according to Figure 15, the reviewed customized CNN architectures
are simple and not enough to detect pushing behaviors because the differences between
pushing and non-pushing behaviors are not clear in many cases. To address this challenge,
we need an efficient classifier (such as the proposed classifier).

Figure 14. Comparison between our classifier, CNN-1 [25] and CNN-2 [35] based on the patch-based
medium RAFT-MIMQ12 dataset.

a b c

Figure 15. Confusion matrices for our classifier (a), CNN-1 [25] (b) and CNN-2 [35] (c) based on the
patch-based medium RAFT-MIMQ12 dataset.

5.6. Framework Performance Evaluation

Optical imaging systems often suffer from distortion artifacts [50]. According to [51],
distortion is “a deviation from the ideal projection considered in a pinhole camera model,
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it is a form of optical aberration in which straight lines in the scene do not remain straight
in an image”. The distortion leads to inaccurate trajectory data [52]. Therefore, PeTrack
corrects the distorted videos before extracting the accurate trajectory data, whereas the
required information for the correction is not often available. Unfortunately, training our
classifier on undistorted videos could decrease the framework performance on distorted
videos. Therefore, in this section, we evaluated the proposed framework performance
on the distorted videos and studied the impact of the false reduction algorithm on the
framework performance. To achieve both goals, firstly, we evaluated the framework’s
performance without the algorithm on the distorted videos. Then, the framework with the
algorithm was evaluated. Finally, we compared both performances.

A qualitative methodology was used in both evaluations; the methodology consisted
of four steps: (1) we applied the framework to annotate distorted clips corresponding to
MIMs in the RAFT-MIMQ12 -based test set (Figure 16); the bottom image is an example of
an annotated distorted clip; (2) Unfortunately, we could not visualize the ground truth
pushing on the distorted frames because the trajectory data were inaccurate. Therefore, we
visualized ground truth pushing on the first frame of the corresponding undistorted clips to
the distorted clips, Figure 16, top image. Then, we manually identified pushing behaviors
on the distorted clips based on the corresponding annotated undistorted clips; This process
is highlighted by arrows in Figure 16. (3) We manually calculated the number of true
pushing, false pushing, true non-pushing, and false non-pushing. Note that the empty
patches were discarded. Non-empty patches containing more than half of the pushing
behaviors are labeled as pushing; otherwise, they are labeled as non-pushing. Half of the
pushing behavior means that more than half of the visible pedestrian body contributes to
pushing; (4) Finally, we measured the accuracy and F1 score metrics.

FP TPTNP

Figure 16. An example of the used qualitative methodology. (Top) the first frame of an undistorted
clip; (Bottom) the first frame of a distorted clip. White arrows: connecting the pushing locations in
both undistorted and distorted clips. TP: true pushing. FP: false pushing. TNP: true non-pushing.
White circles: ground truth pushing. Red boxes: predicted pushing patches. Green boxes: predicted
non-pushing patches.

From Table 9, we can see that our framework with the false reduction algorithm can
achieve an 86% accuracy and F1 score on the distorted videos. Moreover, the false reduction
improves the performance by 2%.

Table 9. The performance of the framework with and without false reduction on distorted videos.

Framework Accuracy% F1 Score%

Without false reduction 84 84
With false reduction 86 86

212



Sensors 2022, 22, 4040

6. Conclusions, Limitations, and Future Work

This paper proposed a hybrid deep learning and visualization framework for au-
tomatic pushing behavior detection at the patch level, particularly from top-view video
recordings of crowded event entrances. The framework mainly relied on the power of
EfficientNet-B0-based CNN, RAFT, and wheel visualization methods to overcome the high
complexity of pushing behavior detection. RAFT and wheel visualization are combined to
extract crowd motion information and generate MIM patches. After that, the combination
of the EfficientNet-B0-based classifier and false reduction algorithm detects the pushing
MIM patches and produces the pushing annotated video. In addition to the proposed
framework, we introduced an efficient patch-based approach to increase the number of
samples and alleviate the class imbalance issue in pushing datasets. The approach aims
to improve the accuracy of the classifier and the proposed framework. Furthermore, we
created new datasets using a real-world ground truth of pushing behavior videos and the
proposed patch-based approach for evaluation. The experimental results show that: (1) the
patch-based medium RAFT-MIMQ12 dataset is the best compared to the other generated
datasets for training the CNN-based classifiers; (2) Our classifier outperformed the baseline
well-known CNN architectures in image classification as well as customized CNN architec-
tures in the related works; (3) Compared to Farnebäck, RAFT improved the accuracy of
the proposed classifier by 8%; (4) The proposed patch-based approach helped to enhance
our classifier accuracy from 78% to 88%; (5) Overall, the proposed adapted EfficientNet-B0-
based classifier obtained 88% accuracy on the patch-based medium RAFT-MIMQ12 dataset;
(6) The above results were based on undistorted videos, while the proposed framework
obtained 86% accuracy on the distorted videos; (7) The developed false reduction algorithm
improved the framework accuracy on distorted videos from 84% to 86%. The main reason
behind decreasing the framework accuracy on distorted videos was training the classifier
based on undistorted videos.

The main limitations of the proposed framework cannot be applied in real time.
Additionally, it does not work well with recorded videos from a moving camera. Moreover,
the framework was evaluated only on specific scenarios of crowded event entrances.

In future work, we plan to evaluate our framework in more scenarios of crowded
event entrances. Additionally, we plan to optimize the proposed framework to allow
real-time detection.
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Abstract: Recently, artificial intelligence has been successfully used in fields, such as computer vision,
voice, and big data analysis. However, various problems, such as security, privacy, and ethics, also
occur owing to the development of artificial intelligence. One such problem are deepfakes. Deepfake
is a compound word for deep learning and fake. It refers to a fake video created using artificial
intelligence technology or the production process itself. Deepfakes can be exploited for political
abuse, pornography, and fake information. This paper proposes a method to determine integrity by
analyzing the computer vision features of digital content. The proposed method extracts the rate
of change in the computer vision features of adjacent frames and then checks whether the video
is manipulated. The test demonstrated the highest detection rate of 97% compared to the existing
method or machine learning method. It also maintained the highest detection rate of 96%, even
for the test that manipulates the matrix of the image to avoid the convolutional neural network
detection method.

Keywords: deepfake; computer vision; the rate of change

1. Introduction

Deepfake is a technology that uses artificial intelligence to synthesize another person’s
face with the face of a person appearing in a video and manipulate the target person’s
doing or saying things [1]. Deepfake technology has gradually developed and created
videos that human eyes cannot distinguish (see Figure 1).

 
Figure 1. Deepfake image and original image [2].

The development of deepfake technology poses a significant threat to digital content
explosion owing to the development of smartphones and social networks. Particularly,
problems include creating confusion in the stock market owing to false news, producing
malicious effects on election campaigns, and generating regional political tensions between
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countries. Facial manipulation has been developed from modifying the lip motion of a
person to synthesizing non-existent faces or manipulating the real face of one person [1].
Nowadays, Autoencoder and generative adversarial network (GAN) artificial intelligence
have appeared. As a result, deepfake videos can be made easily for identity swapping.

Accordingly, various methods for detecting deepfakes have been proposed. Afchar et al. [3]
proposed detection with a deep neural network using tiny noises in an image using
convolutional neural network (CNN). Güera et al. [4] proposed detection using long short
term memory (LSTM) by extracting features of the frame image of a video using a CNN.
Li et al. [5] proposed extracting eye blinks using CNNs and detecting them using LSTM.
Li et al. [6] proposed detection using the disparity of a distorted face using ResNet50
and the VGG16 model based on CNN. Yang et al. [7] proposed a method for extracting
68 landmarks from face images and detecting them using SVMs. Agarwal et al. [8] proposed
detection using the dynamics of the mouth shape using a CNN. In most proposed methods,
deepfakes are detected by extracting features from video frames using a CNN. However,
CNNs are vulnerable to changes in metrics, such as blur, brightness, contrast, noise, and
angle. Because a CNN has a convolutional filter of a specific size to extract features
while moving around the image, if factors, such as blur, brightness, contrast, noise, and
angle, change, differences from previously learned features occur. Test data with these
changed factors have a lower detection rate in the learned CNN [9]. Therefore, in this
study, computer vision features were extracted from the frames of videos without using a
CNN, and then the rate of change of features between frames was calculated. We propose
a method to detect deepfakes using the distribution of the data. The proposed method
can detect manipulated digital content irrespective of changes in factors, such as blur,
brightness, contrast, noise, and angle. In addition, a CNN must learn additional learning
data by creating images with changed angles or contrasts to increase the detection rate.
However, the proposed method can minimize these costs. Conversely, a CNN can detect
manipulated digital content by extracting features from a single image, but the proposed
method requires more than a certain number of frames to determine.

The contribution of this work is summarized as follows: First, we propose a method
detecting deepfake video without a convolutional neural network. Usually, CNN learns a
representation by embedding a vector in a hypersphere from an image. Then, it is used as
the classifier’s input. In contrast, we extracted computer vision features first and used just
a fully connected layer for classification. Second, we focus on detecting deepfake videos.
Autoencoder and GAN make deepfake videos by manipulating frame by frame. We used
unnatural differences between frames that can be made during manipulating. Thus, we
calculated the rate of change between frames and used this for detecting deepfake videos.
Third, we have many benefits because we do not use CNN. We can have comparable
performance without data augmentation. Moreover, training time is saved because of the
smaller parameter of the network and smaller datasets. Most importantly, our method is
robust in regards to adversarial attacks or CNN’s weakness.

The remainder of this paper is organized as follows. Section 2 introduces the deepfake
technology and existing deepfake detection methods. Section 3 describes the proposed
deepfake detection method. Section 4 shows the feasibility of the proposed method by
evaluating its performance and comparing it with other mechanisms.

2. Related Works

2.1. Deepfake Creation

Deepfake is a technology that synthesizes the face of a character in a video into the face
of a specific target using artificial intelligence technology. The artificial intelligence tech-
nologies used are primarily autoencoders [10] and the generative adversarial network [11].
Figure 2 illustrates the deepfake creation process using an autoencoder. An autoencoder
comprises an encoder and a decoder. The goal of the encoder is to extract features from
the image through dimensional reduction, and the goal of the decoder is to restore the
original image as much as possible using the extracted features. Two autoencoders are
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used for learning to create a deepfake. The encoders, shown in Figure 2a,b, are trained
using the same encoder. Therefore, the encoder learns common features that appear in face
A (Figure 2a) and face B (Figure 2b). Examples of features include the position of the eyes,
nose, and mouth. The decoders, depicted in Figure 2a,b, are trained separately. Figure 2c
illustrates the deepfake creation process. After extracting the features of face A using an
encoder, an image is generated using what the decoder learned, as shown in Figure 2b.
FaceApp [2] is an example of deepfake production using an autoencoder.

Figure 2. Deepfake creation process using an autoencoder [2]. (a) Autoencoder trained by face A;
(b) Autoencoder trained by face B; (c) Deepfake creation process.

Figure 3 illustrates the deepfake creation process using a GAN. A GAN comprises
a discriminator and a generator. The generator, as depicted in Figure 3a, receives the
source and target images to be synthesized as the input data. The generator creates a new
image using the input data. The discriminator, as shown in Figure 3b, learns to distinguish
between the real and generated fake images. As depicted in Figure 3c, this process repeats
until the discriminator cannot distinguish between the generated fake image and the
original image. StarGAN is an example of creating a deepfake using a GAN [12].

Figure 3. Deepfake creation process using a GAN. (a) Training the generator; (b) Training the
discriminator; (c) Repeat.

2.2. Deepfake Detections

Table 1 summarizes the methods proposed for deepfake detection in the past three
years. Each proposed method can be classified as a key feature and architecture.
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Table 1. Deepfake detection method proposed in the past three years.

Methods Key Features Architecture Published

Microscopic analyses [3] Mesoscopic properties of images MesoNet
(based on CNN) 2018

Temporal inconsistencies [4] Frame level temporal features CNN + LSTM 2018

Eye blinking [5] Temporal patterns of eye blinking CNN + LSTM 2018

Face warping [6] Inconsistencies in warped face and
surrounding area

VGG16, ResNet50
(based on CNN) 2019

Discrepancy [7] Temporal discrepancies across frames CNN + RNN 2019

Spoken phoneme
mismatches [8]

Mismatches between the dynamics of
the mouth shape CNN 2020

Afchar et al. [3] extracted features by analyzing mesoscopic noise from a single image
using a CNN and then detected deepfakes using this feature. Microscopic analyses based
on image noise cannot be applied in a compressed video context in which the image noise
is strongly degraded.

Güera et al. [4] used a CNN and LSTM. The CNN extracts a feature vector of 2048 di-
mensions in units of frames. The LSTM receives the feature vector and detects the deepfake
by searching for features with temporal significance between multiple frames.

Li et al. [5] used a CNN and LSTM. The CNN extracts the blinking patterns of the
eyes. Using these extracted features, LSTM detects deepfakes by determining features
with temporal significance between frames. The synthesized fake videos did not efficiently
exhibit a physiological signal.

Li et al. [6] used VGG16 and ResNet50 models. These two neural networks are
CNN-based neural networks. The CNN extracts the landmarks of the face to compute the
transform matrices to align the faces to a standard configuration. The deepfake is detected
by comparing the inconsistencies in the generated face areas and their surrounding regions.
When creating a deepfake, matrix transformation occurs because limited images are used.

Yang et al. [7] used a CNN and an RNN. The CNN extracts features from each
frame. The RNN detects the inconsistencies between frames from the extracted features.
When creating a deepfake, inconsistencies may occur between frames because images are
synthesized in units of frames.

Agarwal et al. [8] used a CNN. The CNN focuses on the visemes associated with words
having the sound M, B, and P, in which the mouth must completely close to pronounce
these phonemes. Deepfakes are detected using the inconsistencies between what is actually
said and the shape of the mouth. Manipulated videos are occasionally inconsistent with
spoken phonemes.

The deepfake detection methods proposed for the past three years detect deep fakes
using a CNN. A CNN is a model that exhibits high performance, particularly related to
image recognition, among artificial intelligence technologies [9]. Figure 4 illustrates a
convolutional filter process that moves around the image by one space to create a feature
map of the image. The convolutional filter is the core of CNN. This process results in the
locality of pixel dependencies. It efficiently determines the small features of the image [13].

However, the performance is highly dependent on several factors in the image. When
metrics, such as blur, brightness, contrast, noise, and angle, change, the detection rate of
CNN drops significantly [9]. Malicious users can use this problem. Usually, an artificial
network is trained by a dataset that has general representations. Malicious users could
put just one filter to control with uncommon conditions in video. The eye can not feel
the difference in people, but the pretrained network model cannot work properly in this
image. In contrast, our method extracts computer vision features. Extracted features
will change obviously. Nevertheless, our method focuses on the rate of change between
frames. Each frame has the same condition change. Therefore, it is not critical for our
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method. These benefits make our method more robust in regards to CNN problems and
adversarial attacks. Moreover, our model can be trained faster in a DFDC dataset that
considers different acquisition scenarios, light conditions, distance from the camera, and
pose variation.

Figure 4. Feature map extraction process using a convolutional filter. (a) First step for feature
extraction; (b) Next step (stride 1); (c) Next step (stride 1).

Figure 5 demonstrates an example in which the deepfake detection model using a
CNN cannot detect. Figure 5a shows an image that can be detected as the frame of a general
manipulated video. However, the remaining samples were not detected. Figure 5b shows
the application of Gaussian noise in the manipulated frame. Figure 5c depicts changes
in the brightness in the manipulated frame. Figure 5d shows the application of salt and
pepper noise in the manipulated frame. Figure 5e depicts changes in the angle in the
manipulated frame. The disadvantage of being undetectable owing to such a change in
metrics can be used to avoid the CNN-based detection method [9,14].

Figure 5. Example of undetectable image [15]. (a) Detectable deepfake image; (b) Undetectable
deepfake image owing to Gaussian noise; (c) Undetectable deepfake image owing to brightness
change; (d) Undetectable deepfake image owing to salt and pepper noise; (e) Undetectable deepfake
image owing to angle change.
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3. Proposed System

Figure 6 demonstrates the proposed system structure. The method is divided into
preprocessing and classification processes. The preprocessing process extracts a face image
from a frame image, extracts computer vision features, and then extracts the difference
between the frames. The classification process detects a deepfake using a DNN by obtaining
the variance of a certain number of frames from the preprocessed data.

Figure 6. Proposed system structure [15]. (a) Extracting frames from video; (b) Face detection
using MTCNN from each frames; (c) Crop detected faces; (d) Feature extraction from cropped faces;
(e) Collecting extracted features; (f) Calculate variance from data; (g) Using neural network with
data; (h) Classification from neural network.

3.1. Preprocessing

First, the video was divided into frames, as shown in Figure 6a. Then, the face part
was detected and cut using MTCNN [16] in each frame, as depicted in Figure 6b. MTCNN
is a Python module that improves the accuracy of face detection by 95% accuracy compared
to a CNN. By only extracting the face and measuring the amount of change, it can focus
more on the transformation of the face in computer vision. The extracted face image frames
were arranged, as demonstrated in Figure 6c. Subsequently, various computer vision
features were extracted from the face image, as illustrated in Figure 6d. A feature vector
was generated by extracting computer vision features from the aligned face images using
computation, clustering, and filtering.

The extracted features are presented in Table 2. The mean squared error (mse) mea-
sures the similarity of an image using the difference in the intensity of pixels between
two images. The peak signal-to-noise ratio (psnr) evaluates the loss information for the
image quality. psnr focuses on numerical differences rather than human visual differ-
ences. Because psnr is calculated using mse, when mse is 0, psnr is also set to 0. The
structural similarity index measure (ssim) evaluates the temporal difference felt by humans
in terms of luminance, contrast, and structural aspects. Red, green, blue (rgb), and the
hue, saturation, and value (hsv) represent the color space of an image. The histogram
represents the distribution of hues in the images. The luminance represents the average
total brightness of the image. The variance represents the variance of the image brightness
values. edge_density is the ratio of the edge components of all the pixels. The discrete
cosine transform (dct) refers to the sharpness of an image. Because the deepfake production
method synthesizes the target image for each frame, it may cause unnatural changes to
various computer vision features. In addition, when creating a deepfake, the target image
is obtained with limited resolution, and the size is changed as transformation matrices
to fit the source image. Therefore, the sharpness is often inferior. In addition, distortion
and blurring occur. The selected features greatly influence the deepfake creation process.
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Figure 7 demonstrates frames with a significant change rate value for each computer vision
feature among data obtained by preprocessing from a single deepfake video. Figure 6e
takes the absolute value after calculating the difference between the extracted computer vi-
sion features of the i-th frame from the i + 1-th frame. The degree of change in the computer
vision features was different for each video. Therefore, the rate of change was calculated
by dividing the change by the average value of the change between all video frames.

Table 2. Extracted computer vision features.

Attribute Explanation

mse The average squared difference between the estimated values and
the actual value

psnr The ratio between the maximum possible power of a signal and
the power of corrupting noise

ssim The perceived quality of digital television and cinematic pictures

rgb The percentage of each red, green, and blue color of the image

hsv The percentage of each hue, saturation, and value of the image

histogram The histogram plots the number of pixels in the image with a
particular brightness or tonal value

luminance The mean of the total brightness of the image

variance Image variance of the image

edge_density The ratio of edge pixels to the total pixels of in the image

dct DCT bias of the image

Figure 7. Computer vision feature extraction process [15].

Each feature is calculated using Equation (1). fi denotes the feature value of the i-th
frame. fi+1 denotes the feature value of the i + 1-th frame. mean(f ) denotes the average of
the feature values of all frames obtained from one video.

fi =
abs( fi+1 − fi)

mean( f )
, (1)

Figure 8 shows the extraction of the frame with the most significant change in each
feature from one deepfake video.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

 
(i) (j) 

Figure 8. Frames showing a significant rate of change [15]. (a) mse; (b) psnr; (c) ssim; (d) rgb; (e) hsv;
(f) histogram; (g) luminance; (h) variance; (i) edge density; (j) dct.

3.2. Classification

The variance for each feature was calculated by grouping the rate of change between
certain extracted frame numbers in Figure 6f. The calculated variance of each feature
was used as the data for DNN learning. A dependent variable indicating whether the
data is a deepfake video was attached. Finally, these data were learned by the DNN
and used to detect deepfakes. The final data were calculated using Equation (2). Datai
denotes one feature value of the i-th a data sample used for DNN learning. di denotes
the i-th data obtained by preprocessing. d denotes the average value of n data obtained
by preprocessing.

Datai =
1
n

n

∑
i∗n

(
di − d

)2
(2)

3.3. Modeling

Table 3 presents the accuracy by calculating the variance of the extracted adjacent
frame change rate by a certain number. The highest accuracy of 95.22% was obtained when
the DNN was trained by calculating the variance with 20 pieces of data.

Table 4 presents the accuracy by changing the optimizer function and the number
of hidden layers to determine the appropriate hyperparameter. The Keras module was
used for the learning. Image feature extraction was performed using OpenCV [17]. Binary
cross-entropy was used as the loss function of the DNN. The highest accuracy of 97.39%
was obtained when the DNN used the Adam optimizer function and five hidden layers.
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Table 3. Accuracy by the number of distributed data.

Count Accuracy

5 90.78%

10 92.33%

20 95.22%

30 86.67%

50 76.67%

Table 4. Hyperparameters—model performance.

Optimizer # Hidden Layers Loss Accuracy

SGD

3 0.5560 67.83

5 0.4146 78.26

8 0.3439 81.74%

AdaGrad

3 0.6577 60.43%

5 0.6672 55.22%

8 0.6494 62.83

Adam

3 0.1608 94.35%

5 0.0722 97.39%

8 0.1120 94.78%

When comparing our method and MesoNet using CNN, our model has 3–8 layers and
has about 15,202 total parameters. On the other hand, MesoNet has 6–18 layers and has
about 27,977 total parameters. Thus, our model has almost 50% fewer hyperparameters.
Moreover, the training time is faster than Mesonet, by more than 30%, because it skips the
data augmentation process.

4. Performance Evaluation

4.1. Dataset

A total of three datasets were used. The Face2Face and FaceSwap datasets are provided
by FaceForensics++ [18]. This dataset contains more than 1000 videos. Kaggle provides
the Deepfake Detection Challenge (DFDC) dataset [15]. This dataset is over 470 GB. The
characters appearing in all datasets are composed of various races, genders, and various
shooting environments. This study used 206 videos of Face2Face, 210 videos of FaceSwap,
and 176 videos of DFDC for the experiment. Three hundred frames were extracted from
one video, and the face size extracted using MTCNN was set to 160 × 160 pixels. Python 3
and the image processing library OpenCV were used to extract the computer vision features
from each frame. To confirm the result was owing to the change in the metric in the frame,
15% of the frame images in the DFDC test dataset indicated a 10% metric change.

4.2. Evaluation

Each model was implemented in Python 3, and Keras was used for the machine learn-
ing model training. Table 5 lists the system specifications for the experiments. According to
the dataset, the proposed methods, the Mesonet method using CNN, and the SVM method,
were compared. Table 6 presents a comparison of the detection accuracy.

The Mesonet method using the Face2Face and FaceSwap datasets exhibited a higher
than 90% detection accuracy. However, an experiment using the DFDC dataset with a
changed metric showed a 77.71% detection accuracy. It could be inferred that the metric
of the frame image was changed in the test data of the DFDC dataset, and the detection
accuracy of the CNN was degraded.
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Table 5. System specification for the experiment.

CPU AMD Ryzen 7 3800X 8-Core Processor

RAM 32 GB DDR4

GPU Nvidia GeForce GTX 1660 Ti

VRAM 6 GB GDDR6

Table 6. Deepfake detection performance comparison.

Face2face FaceSwap DFDC

Proposed model 97.39% 95.65% 96.55%

Mesonet 93.21% 95.32% 77.71%

SVM 54.24% 53.46% 52.91%

The SVM [19] method for all datasets exhibited a detection accuracy of less than 60%.
It could be inferred that detecting a deepfake video using only the rate of change between
frames is difficult unless a major defect occurs when manipulating the image.

The proposed method using the Face2Face and FaceSwap datasets exhibited a detec-
tion accuracy of more than 95%. In addition, an experiment using the DFDC dataset with a
changed metric exhibited 96.55% detection accuracy. Mesonet learned by creating a new
image by changing metrics, such as the angle and contrast, of the training data. However,
the proposed method exhibited a similar detection accuracy without additional learning.
We used a similar amount of the dataset to other deepfake papers. However, the quality of
the academic dataset is poor and not diverse. Therefore, if we use this method in a really
good quality dataset, it will not be effective. Future studies will address these issues.

5. Conclusions

In this paper, to detect deepfake videos, we propose a method of extracting the rate
of change of computer vision features between frames and using a DNN based on the
variance of a certain number of frames. Unlike existing deepfake detection methods, the
problem of avoiding detection methods owing to changes in various metrics was solved
because a CNN was not used. In addition, the amount of training data was less than that
of the existing CNN. The proposed method exhibited detection accuracies of 97.39% and
95.65% for the Face2face and FaceSwap datasets, respectively, and 96.55% for the DFDC
dataset with the metric changed dataset.
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Abstract: The booming haptic data significantly improve the users’ immersion during multimedia
interaction. As a result, the study of a Haptic-based Interaction System has attracted the attention of
the multimedia community. To construct such a system, a challenging task is the synchronization of
multiple sensorial signals that is critical to the user experience. Despite audio-visual synchronization
efforts, there is still a lack of a haptic-aware multimedia synchronization model. In this work, we
propose a timestamp-independent synchronization for haptic–visual signal transmission. First, we
exploit the sequential correlations during delivery and playback of a haptic–visual communication
system. Second, we develop a key sample extraction of haptic signals based on the force feedback
characteristics and a key frame extraction of visual signals based on deep-object detection. Third,
we combine the key samples and frames to synchronize the corresponding haptic–visual signals.
Without timestamps in the signal flow, the proposed method is still effective and more robust in
complicated network conditions. Subjective evaluation also shows a significant improvement of user
experience with the proposed method.

Keywords: haptic-based interaction system; multimedia environment; human-centric multimedia;
haptic–visual synchronization

1. Introduction

Recent developments in multimedia technology also require multimedia content that
is more immersive. As an emerging multimedia signal, haptics provide newfangled and
authentic user experiences beyond current audio-visual signals. Thus, a Haptic-based
Interaction System (HIS) has garnered the attention of researchers [1–5].

An HIS has been used in a variety of applications. For example, Ilaria et al. [6]
designed an immersive haptic VR system for rehabilitation training of children with motor
neurological disorders which significantly improved the effect of rehabilitation training.
Zhou et al. [7] proposed an approach with visual and haptic signals which helps physicians
perform surgeries accurately and effectively and furthermore reduces their physical and
cognitive burden during surgery. Chen et al. [8] designed a remote training system with
force feedback for power grid operation training. It avoided the collision between the
manipulator and steel bars, which helps guide operators reduce operational errors and
complete tasks efficiently. Varun et al. [9] also introduced haptics into a VR-based training
system to enhance training immersion, effectiveness and efficiency. The use ofan HIfor
online shopping [10,11] can improve the realism of the shopping experience and help
visually impaired patients enjoy the convenience of online shopping. An HIS can also
be used in outdoor search and rescue scenarios to avoid collisions by providing tactile
guidance [12]. In industry, an HIis usually used to enhance the operational ability of robots.
For example, the work in [13] equipped a robot with bionic haptic manipulators to help it
have more stable grasping ability in tele-operation tasks. In [14], the operator controls the
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robot to perform the tele-operation in real time by means of a pneumatic haptic feedback
glove. Apparently, the HIS is widely used and worthy of further investigation.

In an HIS, similar to conventional audio-visual signals, the haptic signal can also
be affected during network fluctuations or congestion. In a multimedia case, the haptic
signal may lose synchronization with other signals, e.g., images and videos. Compared
to video, audio or image, the transmission of haptics is more tolerant of data loss and
bandwidth but has higher requirements for the latency between signals. To ensure more
natural interactive operations, haptic-based multimedia signal transmission requires better
inter-signal synchronization. As reported, the haptic–visual asynchronization greatly
influences the user experience. Qi et al. [15] implemented several experiments to explore
the impact of the delay between video and haptic signals on the quality of users’ experience.
The results showed that all the Mean Opinion Score (MOS) values decreased with the
inter-flow synchronization error. The works from Aung et al. [16] also confirmed the
above conclusion.

To address this issue, haptic–visual synchronization is needed. The system examines
the synchronization status of signals in real time and adjusts the corresponding signals
immediately when an asynchronization is found. However, to the best of our knowledge,
current research on the synchronization of visual–haptic signals is mainly focused on
studying the impact of visual–haptic asynchronization on user experience, while little
research has been conducted on synchronization detection and adjustment of visual–haptic
signals, and there is still room for improvement in this area.

The research on synchronization algorithms for audio-visual signals can be used
as good references for the research on visual–haptic signals. In the state-of-the-art HIS
systems, synchronization is achieved by the timestamp method [17,18] that was designed
for generic signals. The timestamp-dependent method embeds the timestamps in the signal
stream to avoid synchronization drift. The receiving-end detects the signal synchronization
status based on the timestamps and the system clock. However, the timestamp-dependent
method has its drawbacks. First, in the sending end, the timestamps are usually added
after frame synchronization, format conversion or pre-processing, where the delay derived
from these operations are not compensated [18]. Thus, this signal asynchronization in the
sending end will take to and always exist in the receiving end. Second, as the sending
and receiving ends have different system clocks (the same frequency), the initial delay and
frequency offset caused by dynamic environments also lead to signal asynchronization.
To solve these shortcomings, researchers have proposed some improvement algorithms.
For example, the works in [19,20] utilized the correlation between audio-visual signals for
synchronization detection. They extract lip pictures in video frames and then compare them
with the features of an audio signal through a deep-learning-based model to determine
the synchronization status of audio-visual signals. The limitation of this method is that
the video frame must contain the lip region. Yang et al. [21] proposed a watermark-based
method to keep the synchronization of the audio-visual signal. However, this method has
a disadvantage in that the “watermark” is not well adapted to the video or audio signal
when applying conversion, aspect ratio conversion or audio downmixing [18].

From the above analysis, we can make conclusions that:

i. Haptic–visual synchronization plays an important role in HIS. It is worthy of further
investigation.

ii. The traditional timestamp-dependent method used in an HIS has some shortcomings.
As a result, there is still room for research on the haptic–visual synchronization method.

Thus, In this paper, we propose a first-of-its-kind timestamp-independent synchro-
nization method for haptic–visual signals. Our contributions are summarized as follows.

The sequential correlation between haptic–visual signals. We build a multimedia
communication platform with both haptic and visual signals. Based on this platform, we
observe a strong correlation between the two signals during haptic-aware interaction. This
intrinsic correlation is further utilized to design our synchronization model.
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The key sample/frame extraction during haptic–visual interaction. We exploit the
statistical features of haptic–visual signals and then develop learning-based methods to
extract key samples and key frames in haptic and visual signals, respectively.

The asynchronization detection and removal strategy. Combining the correlation
and key samples/frames, we are able to detect and eliminate asynchronization when
the registration delay is larger than a threshold. Experimental results with subjective
evaluations validate the effectiveness of our method.

2. Motivation

In our opinion, there exists a strong sequential correlation between haptic–visual
signals, which can help the judgment of the signal synchronization state without crystal
oscillators or timestamps. Inspired by this, we propose a timestamp-independent haptic–
visual synchronization model to detect and eliminate asynchronization phenomena in an
HIS. In this section, we establish a haptic–visual simulation platform and subsequently
confirm the correlation between haptic–visual signals via the platform.

As shown in Figure 1, we use a virtual interaction module to design a haptic–visual
interaction scenario where a human user manipulates a virtual ball to push a virtual box.
A Geomagic Touch is deployed to connect the real and virtual world: on one hand, it
sends the human instructions to the virtual ball; on the other hand, it collects the force
feedback of the virtual ball and sends the corresponding signals back to the human user.
This haptic interaction is achieved with the kinesthetic signal, which is a major component
of haptic information.

Figure 1. Our simulation platform for haptic–visual signal delivery.

In addition to the haptic signals captured by Geomagic Touch, the sending-end also
records the visual contents of the virtual space, resulting in a high-definition video at a
resolution of 1920 × 1080. Then the video is compressed by High Efficiency Video Coding
(HEVC) and subsequently delivered with haptic signal by the network via User Datagram
Protocol (UDP). Finally, the receiving-end combines both haptic and visual signals for a
more immersive tele-presence, where another user can watch the scene in real time and
also feel the haptic sensing via a haptic device.

The haptic and visual signals should be fully synchronized under normal conditions.
Based on this simulation platform, we can observe the sequential correlation between haptic
and visual signals. As shown in Figure 2, strong haptic signal fluctuations exist when the
virtual hand (i.e., the ball) is on a collision course with another object. When the virtual
hand visually touches the box, the force amplitude of the haptic changes simultaneously.
As the two objects move closer, the force amplitude is also higher and vice versa. The force
amplitude recovers to a constant when all objects are detached. These changes are also
intuitive to the human users when operating a haptic-aware handle.
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Figure 2. An example of haptic–visual correlations.

This intrinsic correlation inspires us to design a synchronization strategy. A sharp
increase of force amplitude indicates a collision between the virtual hand and another
object, while a sharp decrease implies a detachment between objects. If these deductions are
inconsistent with the machine vision, we can conclude that there exists an asynchronization
between haptic and visual signals and thus change the signal flows.

3. Proposed Method

Based on the above analysis, we propose the timestamp-independent synchronization
method as shown in Figure 3. First, we extract the key samples in the haptic signal where
the amplitude is intensively increased from near zero. Second, we extract the key frames in
the visual signal where the visual collision happens. Third, we compare the time intervals
of these key samples/frames to detect asynchronization phenomena. If a pair of time
intervals (namely Th and Tv) have a large difference, the haptic–visual asynchronization
is found and further fixed. Note that here the object collision frequencies are low in
the real world; therefore, we can easily identify different pairs of time intervals. In the
following subsections, the key sample detection, key frame detection, threshold selection,
asynchronization removal and the overall method are elaborated, respectively.

Figure 3. The flowchart of our proposed method.
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3.1. Key Sample Detection in the Haptic Signal

For the haptic signal, the key samples are easily obtained for it consists of three one-
dimensional signals (in x-axis, y-axis and z-axis). A sharp increase of force amplitude
is found when its difference in any dimension is larger than a threshold (namely Fth).
Through observations on a large number of samples, we found that the fluctuations of force
amplitudes during non-collision are always below 0.01, and the force amplitudes of key
samples are always above 0.07. Therefore, the Fth is empirically set as 0.05 in our work.

An example of this step is shown in Figure 4. An operation with force signals in
three dimensions is presented, where all sharp increases are successfully detected and
labeled as key samples. Correspondingly, their time intervals (i.e., Th) are recorded for
further comparison.

Figure 4. An example of key sample detection.

3.2. Key Frame Detection in the Visual Signal

The objective of key frame detection is to find the time intervals when the virtual
hand touches the box. Essentially, it consists of two modules: object detection and collision
detection. The first module identifies all objects, while the second module determines
whether object collision occurs. Both modules are achieved by computer vision methods.

3.2.1. Object Detection

The commonly-used object detection algorithms are R-CNN [22], SPPNet [23], Fast
R-CNN [24], Faster R-CNN [25], SSD [26] and YOLO [27,28]. Considering the efficiency,
R-CNN, SPPNet and Fast R-CNN are not suitable for our scenario. Moreover, in our work,
small object recognition, in which the performances of the Faster RCNN and SSD are
not good enough, is needed. With a deep network, the YOLO network extracts the deep
features of different objects and scenarios, thereby achieving object recognition with high
accuracy. Consequently, we employ the V3 of YOLO network in our method [28].

We established our image database for training the YOLO V3 network. We acquired
1000 images from visual signals with an image size of 1600 × 900 pixels. Then the images
were labeled via a label-making tool (the application software of labelImg). We used a
rectangle to bound the balls in the images and labeled them as “ball” and accordingly,
bound the boxes and labeled them as “box”. All the labels were saved with xml files for
using during training. The 800 images in this database are employed as the training set
and the other 200 images are the test set.
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The loss function plays an important role in the YOLO network. In this work, the posi-
tion information of the ball and box is the target of the network. Therefore, the target’s error
of center coordinate in the form of squared difference is first taken into account in the loss
function; then, to obtain the accurate bounding rectangle, the wide and high coordinate
error in the form of cross-entropy is utilized; finally, as the detection of multiple categories
of targets (ball and box) are involved, the category error in the form of cross-entropy must
be considered. Hence, the loss function used in this work is:

Loss = λcoord

S2

∑
i=0

B

∑
j =0

Iobj
ij [(xi − x̂i)

2 + (yi − ŷi)
2]+

λcoord
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ij [(

√
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√
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2
+ (
√
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2]−
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B
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j =0

Iobj
ij [Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)]−

λnoobj

S2

∑
i=0

B

∑
j =0

Inoobj
ij [Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)]−

S2

∑
i=0

Iobj
ij ∑

c∈classes
[P̂ilog(Pi) + (1 − P̂i)log(1 − Pi)]

(1)

where the first row indicates the error of the center coordinates, S represents the grid size, B
represents the bounding rectangle. Iobj

ij denotes whether targets are in the rectangle, and its
value is one if there is a target in the bounding rectangle at grid (i, j), and zero vice versa.
Here, xi and yi represent the true center coordinates; x̂i and ŷi represent the predicted
center coordinates.

The second row represents the error of the width and height of the predicted rectangle
in which wi and hi represent the true width and height and ŵi and ĥi represent the predicted
width and height. The third and fourth rows indicate the error of the confidence level,
where Ci denotes the true confidence level, and Ĉi denotes the predicted confidence level.

The fifth row denotes the error of classification, where Pi and P̂i denote the true and the
predicted categories, respectively; λcoord and λnoobj are the weights which will be trained as
hyperparameters of the network.

The main hyperparameters used in training are set as shown in Table 1. Among them,
the learning rate is set as cosine decay as follows:

lr =

{
1
2
× [1 + cos(Ntrained × π

Nepoch
)]× 0.95 + 0.05

}
× 10−2, (2)

where Ntrained denotes the number of epochs already trained, and Nepoch denotes the total
number of training epochs.

Table 1. The hyperparameter settings in model training.

Epoch Batchsize λcoord λnoobj Learning Rate

300 16 0.5 0.5 cosine decay

With this method, the training module has a larger learning rate at the beginning
to accelerate the training speed, and then the learning rate decreases with the increasing
number of training epochs to more easily find the optimal solution.
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After training, an example of a recognition result is shown in Figure 5 in which
the virtual hand (i.e., the ball) and the box are detected, with their borders labeled by
rectangular frames.

Figure 5. An example of object detection.

3.2.2. Collision Detection

We determine whether a collision happens based on the aforementioned rectangular
frames. Let (X1, Y1) and (X2, Y2) denote the top-left locations of the virtual hand (i.e., the
ball) and any object as the target in the 2D space, and (H1, W1) and (H2, W2) denote the
sizes of the corresponding rectangular frames, the condition of no collision is:

(Y1 + H1 > Y2)||(X1 + W1 < X2)||(Y1 < Y2 + H2)||(X1 > X2 + W2). (3)

Otherwise, the collision of objects is found. At the time of collision found, we extract
the corresponding video frame as the key frame of the visual signal and record the time
interval as Tv, which is further utilized for asynchronization detection.

3.3. The Synchronization Threshold

During haptic–visual delivery and playback, we can easily identify each key sam-
ple/frame pair considering the corresponding time intervals are usually very close to
each other. For a pair of time intervals Th and Tv, their difference is set as a criterion of
haptic–visual asynchronization. A synchronization of signals is guaranteed if:

Dα < (Tv − Th) < Dβ, (4)

where Dα and Dβ refer to the lower and upper bound of the perception threshold.
As results from a subjective test can be more consistent with users’ perception expe-

rience, we designed a subjective test to determine Dα and Dβ. Our test strictly follows
the subjective test manual ITU-R BT.500 [29] with the following steps. First, we recruited
21 subjects without prior knowledge of haptic coding or delivery. Then, we used the
two-alternative force choice method to perform the test. Each session of the test consisted
of two randomly presented haptic–visual segments: with and without delay. The delay
can be negative or positive with a range from −100 ms to 100 ms with an interval of 20ms.
Each subject was asked to choose one segment where he/she could not feel delay between
the two. Finally, for each session, the probability of correct choices, which is obtained by
Equation (5), is recorded.

pi =
ni
N

, (5)

where ni denotes the number of subjects who have made a correct choice in the i-th delay,
and N denotes the total number of subjects.
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As shown in Figure 6, the probability of correct choices is around 0.5 when the delay
of visual signals ranges from −60 ms to 80 ms. In other words, the human users cannot
perceive the difference between delayed and non-delayed signals in this range. Therefore,
we set the threshold of synchronization as Dα = −60 ms, Dβ = 80 ms.β

Figure 6. Subjective result of synchronization threshold.

3.4. Asynchronization Removal

To adjust the signal stream and remove asynchronization phenomena, a general
method is to select a main stream and set the remaining as auxiliary streams. When asyn-
chronization occurs, all auxiliary streams are adjusted to be synchronized with the main
stream. As reported in [30], the human perception of haptic signals is very sensitive in that
only haptic signals above 1 kHz provide smooth experience to users. This frequency is sig-
nificantly higher than visual signals. Based on this fact, we utilize the haptic signal and the
visual signal as the main stream and the auxiliary stream, respectively. For synchronization,
the visual signal is moved to be consistent with the haptic signal.

In a multimedia communication system, the receiving-end usually sets a buffer zone
to cache all multimedia data for a smooth display of them. Therefore, if the visual signal
is delayed more than Dα, we will retrieve the correct video frame from the buffer zone.
otherwise, if the visual signal is ahead by Dβ, we will repeat the current frame until haptic–
visual synchronization. Through this method, we are able to remove all asynchronization
phenomena during haptic–visual delivery and playback.

3.5. The Overall Method

By summarizing Sections 3.1–3.4, the detailed steps of our method are presented
as follows.

Step 1. Initialization. Set a buffer zone at the receiving end to cache haptic–visual data.
Start the haptic–visual data delivery and playback. Go to Step 2.

Step 2. Key sample detection. Keep to detect the key samples of the haptic signals with the
method in Section 3.1. If a key sample is found, set the time interval as Th and go to Step 3.

Step 3. Key frame detection. Use the method in Section 3.2 to detect the corresponding
key frames in the buffer and subsequent video of 1 s. If a key frame is found, set the time
interval as Tv and go to Step 4; otherwise, the synchronization detection fails, go to Step 2.

Step 4. Asynchronization examination. If Equation (4) of Section 3.3 is true, go to
Step 2 to check the following signals; otherwise go to Step 5.

Step 5. Asynchronization removal. Adjust the haptic–visual streams with the method
shown in Section 3.4. Go to Step 2 to check the following signals.
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4. Experimental Results

To examine the effectiveness of the proposed method, we implement it on the simula-
tion platform shown in Section 2 and conduct both objective and subjective experiments.
The frequencies of haptic and visual signals are set as 1000 Hz and 30 Hz, respectively. Due
to the lack of a haptic–visual synchronization method, we compare our model with the
original case only.

4.1. Estimation Accuracy of Synchronization Delay

The proposed method utilizes the synchronization delay Tv − Th to determine whether
asynchronization happens. Therefore, the estimation accuracy of synchronization delay is
critical in our method. We design the following experiment to examine the accuracy.

Based on the simulation platform, we randomly captured 100 haptic–visual clips,
with the length of each clip as 30 s. In other words, there exist 30,000 haptic samples and
900 video frames in each clip; in total, 3 million haptic samples and 90,000 video frames
exist). For each haptic–visual clip, we add a random delay on the visual signals. The delay
is in the range of (−330 ms, 330 ms) where the positive/negative values indicate the visual
signal is ahead/behind the haptic signal. At the receiving-end, we employ our model to
calculate the synchronization delay (namely d̂) and compare it with the “actual” delay
(namely d).

The Mean Absolute Error (MAE) and Maximum Absolute Error (MaxAE) are utilized
to be assessment metrics. They are calculated by:

MAE =
1
M

M

∑
i=1

∣∣∣d̂i − di

∣∣∣, (6)

MaxAE = max
i∈{1,2,3,..M}

∣∣∣d̂i − di

∣∣∣, (7)

where M is the total number of samples.
The results are shown in Table 2. From the table, the MAE and MaxAE values are 7.3 ms

and 15 ms, respectively. It is noted that the haptic–visual synchronization is unperceivable
in (−60 ms, 80 ms), where the ratio of MAE and MaxAE are only 5.2% and 10.7%, respec-
tively. On the other hand, the frame length of each video frame is 1

30 Hz = 33.3 ms, which is
also significantly larger than the MAE/MaxAE values. Therefore, the estimation accuracy
could fulfill the requirement in the practical applications of the haptic–visual system.

Table 2. The estimation accuracy of Tv − Th.

Metrics MAE (ms) MaxAE (ms)

Results 7.3 15

4.2. Effectiveness of the Haptic–Visual Synchronization

To evaluate the effectiveness of our synchronization detection and removal method,
we examine it on the same dataset presented in Section 4.

At the sending end, after sending random video frames (in the range of (0, 100)), we
add a random delay (in the range of (−330 ms, 330 ms) and denoted as tn) on it. We repeat
the above process until all the frames in each clip (totally 100 clips) are sent. Considering
that the proposed asynchronization removal method adjusts the visual signal frame-by-
frame, the interval of the above random delay is set the same as the frame interval of the
visual signal (i.e., 33 ms). Therefore, the delay range of (−330 ms, 330 ms) is equivalent to a
delay random number (denoted as dn) of video frames in the range of (−10, 10). Taking a
clip (900 frames) as example, the random numbers generated in the experiment are shown
in Table 3. In the table, the values in the first column indicate that the visual signal is
ahead of the haptic signal 7 × 33 = 231 ms, and the delay status lasts for 19 × 33 = 627 ms.
The above random delay in the experiment is also intuitively shown in Figure 7 in which
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the vertical axis indicates the delay between visual and haptic signals and the horizontal
axis indicates the order of the visual signal. From the figure, the delays are random and
representative to evaluate our method.

Table 3. An example of random delay in the experiment.

dn 7 −7 8 −8 8 9 −1 0 5 −8 −8 2 0 1 −1 −7

tn 19 18 95 17 56 65 82 46 69 96 47 86 36 99 14 55

Figure 7. An example of random delay in the experiment.

At the receiving end, we compare the probabilities of successful synchronization with
and without our method. The results are presented in Table 4. By using our model, the av-
erage probability of synchronization increases from 25.3% to 89.2%. It should be pointed
out that our synchronization method is executed frame-by-frame. If the haptic–visual
delay is larger than one frame, the signal is kept asynchronized during the synchronization
process. That is the reason why there are still 10.8% signals asynchronized in Table 4.
Even at this scenario with severe fluctuations, our method still achieves a high probability
of 89.2%, which reveals the effectiveness and robustness of our method in haptic–visual
synchronization. The utilization of our model guarantees the signal synchronization in
most cases, thereby greatly improving the system performance of haptic–visual interaction.

Table 4. Probabilities of synchronization with and without our method.

Without Our Method With Our Method

Probabilities 25.3% 89.2%

4.3. Subjective Test on User Experience

In addition to objective evaluation, we also conducted a subjective test to evaluate the
improvement of the user experience with our model. As mentioned in Section 1, the sig-
nal asynchronization is a critical factor to influence the user experience in haptic–visual
interaction. Therefore, the improvement of user experience can be taken as circumstantial
evidence of the effectiveness of our model.

We recruited 23 subjects to participate in this test, where all haptic–visual sequences are
also the same to those in Section 4.1. The subjects’ ages ranged from 17 to 26, and they have
no exposure to the haptic-based system. To calculate the correlations, we introduce the
delays that are evenly distributed from −10 to 10 frames (that is, ranged from −333 ms to
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333 ms with the interval of 33.3 ms) and occasionally utilize the proposed synchronization
method at the receiving end. However, whether or not we are using the synchronization
is unknown for all subjects. As a result, a subject scores his/her experience based on
real feelings and experiences. All scores are between 0 and 10 and their averaged value,
the Mean Opinion Score (MOS), represents the average perceptions of human users.

The collected subjective test results were pre-processed to remove outliers based on the
ITU subjective test regulations. We calculated the correlations, including the Pearson Linear
Correlation Coefficient (PLCC) and the Spearman Rank-Order Correlation Coefficient
(SROCC) [31], between each subject’s score and the MOS. The results are shown in Figure 8.
According to ITU-R BT.500 [29], a subject’s score is considered as an outlier if the correlation
between his/her score and the MOS is less than 0.7. Therefore, from Figure 8, the 12th and
18th subjects are considered as outliers and subsequently excluded in the final results.

Figure 8. The correlations between each subject and the MOS.

The scores of the remaining 21 subjects were further examined by data saturation
validation [32]. Due to the randomness of user scores, insufficient subjects would lead to
inaccurate MOS values. To check whether the subjects are enough, data saturation valida-
tion was proposed. For a subjective test with K subjects, it randomly selects k = 1, 2, . . . , K
subjects to calculate the correlation between their averaged score and the MOS. If the
correlation value converges to one as k increases, the subjects are considered sufficient.
In our test, this correlation value is very close to 1 with k = 13 subjects, as shown in Figure 9.
Therefore, the remaining 21 subjects are sufficient to represent the averaged opinion of
human users.
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Figure 9. The data saturation validation in our test.

Figure 10 shows the MOS values under different delay settings. Two settings are
compared: receiving end with and without our method. In the central part of curves
(i.e., −33~66 ms), the delays are unperceivable to human users; thus the two settings
achieve very similar MOS values. As the absolute value of delay gets larger, the difference
between the two settings becomes more significant. In extreme cases (i.e., ±330 ms), our
synchronization method improves the MOS values by around four, which shows the high
capability of anti-interference under severe network conditions. On average, the MOS value
is increased by 1.6169, with MOS variation decreased by 3.1315. This fact demonstrates the
significant improvement of our synchronization method that is agreed by the majority of
human users. In conclusion, the proposed method can guarantee the user experience in
case of haptic–visual asynchronization.

Figure 10. The subjective improvements with our method.
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5. Conclusions

In this paper, we explore the haptic–visual correlations in a haptic-aware interaction
system. Based on the observations, we propose a timestamp-independent synchronization
method for haptic–visual signals, which consists of haptic signal analysis, learning-based
vision analysis, perception-based thresholding and an overall method for asynchronization
detection and removal. It should be pointed out that the example of virtual hand (i.e., the
ball) and target (i.e., the box) can be extended to more types of objects with retrained models.
Therefore, our model is still applicable in more general scenarios. To our best knowledge,
this is the very first attempt to design a haptic-aware multimedia synchronization model
by considering the special characteristics of haptic interaction. It can also be utilized as
a reference to design new synchronization models for emerging sensorial media such as
olfactory signals. We envision a more widespread use of multiple sensorial media that
benefits the immersive user experience in the foreseeable future.
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