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Preface

In an era where sustainability and innovation drive scientific progress, materials science plays a

crucial role in shaping our future. With growing environmental concerns and the need for resource

optimization, research in sustainable materials, cement, and waste reuse is more vital than ever.

This reprint offers a platform for the latest findings in these areas. It covers key topics such

as the formulation of eco-friendly materials, advanced techniques and characterization methods

for understanding material properties, and innovations in alternative binders like geopolymers.

Additionally, it explores waste reuse through materials like recycled aggregates and fibers in

construction. By bringing together leading research, this reprint aims to be an essential resource

for those committed to advancing sustainable materials in construction.

Mouhamadou Amar and Nor Edine Abriak

Editors
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1. Introduction

The construction industry ranks among the most polluting sectors globally. Efforts
are underway, guided by international forums and conference resolutions, to reduce CO2
emissions. Since the onset of the industrial revolution, the growing impact of human
activity has become increasingly pronounced, exacerbated by one key indicator: carbon
footprint. This footprint is considered a major factor in climate change and is a phenomenon
that continues to intensify. According to the Intergovernmental Panel on Climate Change
(IPCC), post-2030 temperature increases are projected to range between +1.1 ◦C and +6.4 ◦C.
In its latest 2023 report, the IPCC proposed mitigation measures such as emission reduction
or resource consumption proportioning to limit global warming to +1.5 ◦C by 2050 [1–3].
Thus, at the beginning of the 21st century, humanity faces an unprecedented challenge: How
can we ensure sustainability by protecting nature and biodiversity for future generations
while simultaneously meeting the current growing demands for energy, materials, and
resources? More recently, between 2020 and 2022, the EU launched its new climate action
plan, unveiling ambitious initiatives throughout the entire lifecycle of products. This
plan includes product design, promotes circular economy processes, and encourages
sustainable consumption. Known as the “climate package”, this approach aims to minimize
waste proliferation and conserve resources for as long as possible [4]. Resource efficiency
and environmental protection have become major concerns in addressing climate issues.
Global economic growth and the rapid development of cities, which are responsible for
approximately 80% of global CO2 emissions [5], significantly increase the demand for
materials, natural resources, and energy. The need for resources such as water, land, energy,
and minerals has never been higher. There is an urgent need to enhance resource efficiency
and increasingly reuse building materials [6–8] by adopting a circular economy approach.
The UN sustainable cities program, aligned with the Paris Agreement (COP 21, 2015),
proposes an action plan that emphasizes integrating environmental concerns into urban
planning and management: “Mainstreaming environmental concerns in urban planning
and management” [1,9,10]. Finding solutions for wastes, i.e., secondary materials generated
from industries, infrastructure, and construction activities, has become imperative.

Concrete, predominantly made from ordinary Portland cement (OPC), is the most
widely used building material. Each constituent in OPC production impacts the environ-
ment, leading to sustainability concerns. The manufacture and use of cement and concrete
significantly affect the environment, driven by infrastructure development, building opera-
tions, and CO2 emissions, which constitute 7–8% of global emissions [11]. Consequently,
the construction industry faces pressure to develop eco-friendly alternatives. As the envi-
ronmental issues associated with OPC have become evident, numerous studies are seeking
new binding materials that can match the cost and performance of currently used con-
struction materials. Also, currently, alternative binders based on sustainable materials,
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e.g., geopolymers, seem to be preferred to conventional cementitious materials. Scientific
studies have highlighted several key reasons why geopolymers are considered promising
alternatives to traditional construction materials [12]. The concrete production process
is notably energy-intensive, with studies by Muhamad et al. [13] and Shirkani et al. [14]
highlighting the cement sector’s significant contribution to global carbon dioxide emissions
and climate change.

Hence, the utilization of binders made from byproducts and alternative materials,
like metakaolin, fly ash, sludge ash, blast furnace slag, silica fume, fiber glass, and waste
rubber, is strongly encouraged, as their effectiveness is well documented [15–18]. This
approach addresses the previously mentioned environmental concerns and enhances the
durability of structures exposed to harsh conditions [16]. For this purpose, several solutions
have been envisaged in the construction sector involving the use of greener and more
innovative materials, for example, using alternative fuels for material combustion in
cement kilns and enhancing decarbonization through replacing some raw materials (such
as calcium carbonate) with other products that are already decarbonated and confer the
same chemical properties.

2. An Overview of Published Articles

Recent advancements in the field of cementitious materials have focused on enhancing
mechanical properties, sustainability, and durability through innovative approaches, such
as incorporating waste materials, innovative additives, and recycled aggregates. One
notable approach involves using waste rubber in cement-bound aggregates (CBAs) to
reduce their traditionally high stiffness. By developing prediction models for compressive
strength and the modulus of elasticity based on non-destructive ultrasonic pulse velocity
(UPV) tests, it was found that incorporating rubber not only reduces stiffness but also
simplifies the prediction of mechanical properties, especially compressive strength, which
does not significantly depend on the curing period [19].

Additionally, the incorporation of solid–solid phase change materials (SS-PCMs) into
cementitious composites was studied due to their heat storage capabilities. While increas-
ing porosity and reducing mechanical strength, SS-PCMs enhanced thermal insulation
and shrinkage resistance, demonstrating superior stability over multiple thermal cycles
despite their fast carbonation kinetics due to their high porosity. Research on concrete with
crystalline hydrophilic additives (CAs) has focused on enhancing resistance to freeze–thaw
cycles. Standard air-entraining agents have been found to be effective, but CAs, especially
at a 1% dosage, can improve internal damage resistance.

Another innovative study investigated the role of moisture in CO2 diffusion and
particle cementation in carbonated steel slag. Optimal moisture content was crucial for
balancing CO2 diffusion and particle cementation, enhancing the compressive strength
and carbon sequestration capacity of the slag, and thus contributing to the development of
effective carbon sequestration materials. These researchers also analyzed the mechanical
performance of eco-concrete using recycled concrete aggregates. They found minimal
strength decreases and increased permeability with higher concentrations of recycled
content, demonstrating the viability of incorporating recycled aggregates into eco-concretes.
In examining low-carbon cementitious materials, the effects of external sulfate attack (ESA)
were assessed. It was found that a mix of CEM I, slag, and metakaolin exhibited the
highest resistance to sulfate attack, while a 100% CEM I mix deteriorated significantly.
This highlights the importance of using supplementary cementitious materials to increase
durability in sulfate-rich environments [20].

The use of flaxseed mucilage (FM) as a bio-admixture in ordinary Portland cement
was explored. FM delayed the time taken for the cement to set but did not hinder its
hydration properties. It increased the cement’s porosity and carbonation while reducing its
bulk density and thermal conductivity. FM’s hygroscopic properties and controlled water
release improved the mechanical properties of the cement over time, suggesting that it
may confer potential self-healing capabilities. In another study, vegetal fabric-reinforced
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cementitious matrix (FRCM) sandwich panels were investigated for their sustainable
advantages. When using vegetal fabrics like hemp and sisal in combination with extruded
polystyrene cores, these panels showed competitive strength compared to synthetic fibers,
with steel connectors providing enhanced stiffness and shear strength [21].

The recycling of 3D-printed concrete waste as aggregate in new concrete mixtures
was also explored. It was found that replacing conventional aggregates with recycled ones
from 3D-printed waste at a ratio of up to 67% did not significantly reduce the compressive
strength of the concrete and sometimes even improved it, particularly in higher-strength
classes like C40/50.

These studies collectively highlight significant advancements in the field of cementi-
tious materials, with the goal of enhancing mechanical properties, sustainability, and durability.

3. Conclusions

By exploring the incorporation of waste materials, innovative additives, and recycled
aggregates into construction materials, these research efforts contribute to the development
of more resilient and environmentally friendly construction materials. The sustainable
alternatives considered include waste rubber, vegetal fabrics, and recycled aggregates,
which could all be used to enhance materials. Innovations like solid–solid phase change
materials, crystalline hydrophilic additives, and low-carbon cementitious materials improve
the durability and performance of construction materials. Overall, these advancements aim
to facilitate the creation of eco-friendly construction materials.

Author Contributions: M.A.: writing—original draft preparation; N.-E.A.: writing—review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: The presented article studies a metakaolin-based geopolymer matrix for which two types
of non-recyclable automotive glass waste (AGW) have been used as an alternative aggregate. Their
composition and character, as well as their influence on the properties and structure of geopoly-
mer composites (AGW-Gs), have been investigated by means of X-ray fluorescence and X-ray
diffraction analyses, scanning electron microscopy, Fourier transform infrared spectrometry and gas
chromatography/mass spectrometry. Infrared analysis has proven that the use of AGW does not
affect the formation of geopolymer bonds. GC/MS analysis has revealed the presence of triethylene
glycol bis(2-ethylhexanoate) in AGW and geopolymers, whose concentration varied according to the
size of the fractions used. Preliminary compressive-strength tests have shown the promising potential
of AGW-Gs. From the presented results, based on the study of two types of automotive glass waste,
it is possible to assume that automotive glass will generally behave in the same or a similar manner
in metakaolin-based geopolymer matrices and can be considered as potential alternative aggregates.
The result is promising for the current search for new sources of raw materials, for ensuring resource
security, for the promotion of sustainability and innovation and for meeting the needs of the growing
world population while reducing dependence on limited resources.

Keywords: geopolymer; automotive glass waste; alternative aggregate; characterization

1. Introduction

In the European Union (EU), more than 250,000 tons of glass waste (GW) per month
were produced in 2021 [1]. Non-recyclable or hardly recyclable glass, such as automotive,
TV-screen, monitor, mirror and solar-panel (photovoltaic) glass, is a type of waste material
related to developments in a wide range of industries. Currently, the EU environmental
policy is focused on waste recycling, although the process of waste recovery is sometimes
complicated in some cases. The main objectives are to reduce landfill waste and increase
recycling [1–3]. The inseparable additives that impede common glass recycling include resin
protective films or tint foils (automotive glass), luminescence substances (TV-screen and
monitor glass) and metal coatings (mirror, TV-screen, monitor and solar-panel glass) [4,5].
For example, automotive glass (usually windshield) could contain tint or acoustic foils or
safety films (polyester—PE, polycarbonate—PC, polyvinyl butyral—PVB); in some cases, it
also has heating elements incorporated (copper (Cu), silver (Ag) and contains conductive
foils from metal oxides such as BaSnO3, TiO2, SnO2, ZnO and ZrO2) [4–6].

The eco-friendly solution concerning the reduction, reuse and recycling of non-
recyclable or hardly recyclable GW is the use of geopolymer materials [7–12]. Geopolymers
have received significant attention for their potential environmental benefits, including the
possibility of using industrial by-products, their lower carbon-dioxide emissions during
production and their increased resistance to certain types of degradation (e.g., chemical
attack, thermal stress, freeze–thaw cycles) [13–18].

Geopolymers are typically formed through the chemical reaction of aluminosili-
cate materials with an alkaline activator (a solution of sodium, potassium or calcium

Appl. Sci. 2024, 14, 3439. https://doi.org/10.3390/app14083439 https://www.mdpi.com/journal/applsci5
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silicates) [10,19]. A prerequisite is the presence of tetra- or penta-coordinated aluminum in
the aluminosilicate precursor [7,19]. The most extensively utilized and well-examined alu-
minosilicate precursors are metakaolin [20,21], fly ash [22], different types of slag [23,24] and
various secondary or waste materials [10,11,25]. The precursor used significantly impacts
the resulting microstructure, and obtaining the typical microstructure of the geopolymer is
also associated with a precursor with a low calcium content [26–28].

The properties of geopolymers, including mechanical properties, durability, porosity,
thermal insulation and others, can easily be modified by judicious selection of the matrix
and/or aggregate used [11,29–31]. In addition, geopolymers are capable of stabilizing many
hazardous substances, including heavy metals or organics, in their structure [25,32,33]. On
the other hand, the addition of organic additives to hybrid geopolymer-organic composites
can help to improve their flexibility, tensile strength and overall durability [34].

Glass waste, a byproduct of various industries and municipal recycling programs, can
be incorporated into geopolymer formulations as a partial or complete replacement for
traditional precursors or aggregates [35,36]. Moreover, GW can be used in the preparation
of alkaline activators [36,37].

The finely ground glass particles contribute supplementary sources of silica and alu-
mina, enhancing the geopolymerization process. It has been demonstrated that GW serves
as a feasible alternative to the commercial sodium silicate hydrates (commonly known as
water glass) typically utilized in the activation of aluminosilicate materials like fly ash for
geopolymer preparation [38]. The study by Tchakouté et al. has proven that sodium water
glass derived from glass waste and rice husk ash can serve as viable alternative alkaline
solutions in the production of metakaolin-based geopolymer binders [39]. Puertas and
Torres-Carrasco have reached similar conclusions regarding alkali-activated slag (AAS) [40].
They found that solutions obtained by processing GW lead to the formation of compounds
and microstructures similar to those observed for AAS prepared using water glass [40].

In the preparation of geopolymers based only on waste glass, it has been found
that waste glass is suitable as a precursor because it produces geopolymer materials
with suitable mechanical strength, but whose development is dependent on the curing
conditions, namely relative humidity [38]. In the case of metakaolin-based geopolymer,
El-Naggar and El-Dessouky have determined that substituting 3% of metakaolin with GW
(finer than 38 µm) resulted in a 2% enhancement in the 28-day compressive strength of the
reference sample, reaching 82.36 MPa [41]. However, additional incorporation of GW had
a negative impact on strength [41].

Fine glass waste was confirmed by Hajimohammadi et al. as a suitable alternative to
fine sand for use in fly ash/slag-based geopolymer concrete because fine glass particles
increase the alkalinity of the matrix, which promotes a greater range of dissolution and
reaction in the vicinity of aggregates [42]. However, it was found by Tahwia et al. that
when GW was used as a partial replacement for fine sand aggregate, on the one hand,
the flowability of the mixture improved with the glass content, but on the other hand,
when 22.5% natural sand was replaced by waste glass, a slight decrease in strength from
126 MPa to 121 MPa was observed [43]. The research revealed that AGW can serve as
a replacement for fine aggregate in the production of fly ash-based geopolymer mortar,
offering outstanding thermal insulation and fire protection characteristics [44].

The utilization of waste glass as a coarse aggregate has been explored in research such
as that conducted by Kuri et al., who investigated its impact on the properties of both
portland cement (PC) concrete and geopolymer concrete [45]. It was observed that the 28-day
compressive and tensile strengths of both PC concrete and geopolymer concrete decrease
with an increase in the percentage of recycled glass coarse aggregate [45]. In contrast, a study
by Srivastava et al. has demonstrated that GW can be effectively used as a replacement for
coarse aggregate in concrete (up to 50%) without a significant change in strength [46].

Although it seems that the use of glass waste for the preparation of geopolymer materials
has already been investigated, studies have mainly focused on the use of GW in the powdered
state. Automotive glass waste is non- or hardly recyclable and, in contrast to ordinary broken
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glass, contains safety films and, in some cases, heating elements [47]. AGW materials have
only been tentatively tested as a resource for silica in the production of ferrosilicon [48,49],
silicon carbide [50] or ceramic [51]. However, there has been almost no study of automotive
glass waste in the context of geopolymer materials. The present paper deals with the
innovative use of automotive glass waste (AGW) as an aggregate in a metakaolin-based
geopolymer matrix, and the characterization of leachable organic substances from AGW, and
their behavior concerning the particle size applied. Two different AGW materials have been
characterized, and the influence of alkaline solutions on pure glass waste has been examined.
The effect of AGW in different granulometric fractions on the properties and microstructure
of geopolymer composites (AGW-Gs) has been systematically investigated. The quality of the
aluminosilicate network in geopolymer solids has been verified by Fourier-transform infrared
spectrometry (FTIR). The release of organics from AGW and subsequently from AGW-G
has been monitored by gas chromatography/mass spectrometry (GC/MS). The study has
been complemented by scanning electron microscopy (SEM) images identifying the AGW, its
microstructure affected by alkaline solutions and the AGW-G structure. Additionally, the
indicative compressive strength has been measured.

2. Materials and Methods
2.1. Materials

The clay-based geopolymer matrix was prepared from the clay material, industrially
supplied by ČLUZ a.s. (Nové Strašecí, Czech Republic) under the trade name L05, an aque-
ous solution of potassium silicate (Vodní sklo, a.s., Prague, Czech Republic) and potassium
hydroxide (Penta, Prague, Czech Republic). The clay material L05 was calcined at 750 ◦C
for four hours before being used to obtain metakaolin. Based on X-ray diffraction (XRD)
analysis (not presented), the clay material L05 is primarily composed of amorphous phases,
with quartz (SiO2) and anatase (TiO2) present in notable quantities, alongside minor amounts
of muscovite (KAl2(AlSi3O10)(OH)2) and hematite (Fe2O3). The chemical composition de-
termined by X-ray fluorescence (XRF) analysis, including a loss on ignition (LOI), and the
particle size distribution of the clay material are listed in Tables 1 and 2, respectively.

Table 1. The chemical composition of the clay material used.

Oxides SiO2 Al2O3 MgO CaO K2O Fe2O3 LOI Residues

L05 50.28 41.99 <0.02 0.14 0.9 1.03 3.65 2.01

Table 2. The particle size distribution of the clay material used (% of total).

Particle Size
2 5 8 10 15 25 d10 d50 d90

[µm] [µm]

L05 27.03 57.98 77.70 88.49 99.14 100.00 1.00 3.94 10.43

Automotive glass waste from two different car windshields was used as an aggre-
gate. The first glass (AGW1), contained only a safety film, and the second one (AGW2)
additionally contained heating elements (Figure S1 of the Supplementary Files). The col-
lected car windshields were cut into smaller pieces with a chopping saw (Figure S2 of the
Supplementary Files), which were further fragmented into finer particles using a jaw
crusher. A representative sample of crushed AGW (<0.2 mm) was taken from the obtained
glass fragments by quartering for subsequent analyses. The residue was separated by
sieving into different fractions, which were evaluated in terms of particle-size distribution.

2.2. Geopolymer Sample Preparation

The geopolymer matrix was prepared by mixing the calcined L05 (100 g) with an alkaline
solution (100 g; molar rates: SiO2/Al2O3 = 2.62, K2O/SiO2 = 0.19 and H2O/K2O = 12.43) for
20 min using a shaft mixer. The resulting material was transferred to a planetary mixer,
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where, after the addition of a defined fraction of crushed AGW, the mixture was mixed
for another five minutes. The amount of AGW materials incorporated was 40 g per 100 g
of the geopolymer matrix. The geopolymer mixture was poured into molds, vibrated on
a vibrating table to remove air bubbles and covered until the next day to prevent water
evaporation. After demolding, the geopolymer samples were stored in a plastic bag for
28 days and then left uncovered under laboratory conditions.

In order to be able to compare the influence of the different AGW fractions on the
behavior of leachable organic substances in geopolymer solids, the ratio of AGW to the
geopolymer matrix was kept at 40:100 (35 wt.% of AGW per dry L05) for all the samples
prepared (AGW-G), even though the filling was not exactly ideal. In the case of larger
fractions, the mixture was fluid, and there was partial sedimentation of the glass waste.
Concerning smaller fractions, the consistency of the mixture was thicker to slightly pasty.

2.3. Methods

Chemical analyses of pure metakaolin, AGWs and AGW-G composites were per-
formed using a Spectro IQ X-ray fluorescence (XRF) analyzer (SPECTRO Analytical Instru-
ments GmbH., Kleve, Germany), which allows the analysis of major and trace elements
of solid, powder and liquid materials. This instrument has a target made of palladium;
the target angle was 90◦ from the central beam, and the focal size was 1 mm × 1 mm. The
measurements were carried out in an inert helium atmosphere. The data obtained were
evaluated using the computer program XLabPro, which enables automatic recalculation of
the elemental content in the sample to the oxide form. The tested specimens were produced
by the pressed-pellet method: 4.0 g of the material (particle size: 15–20 µm) were mixed
for 10 min with 0.9 g of the binder (HWC Hoechst wax, FLUXANA® GmbH & Co., KG,
Bedburg-Hau, Germany). The compaction pressure was 80 kN.

The samples were analyzed by X-ray diffraction (XRD) on a Bruker D8 Advance
powder X-ray diffractometer in a Bragg–Brentano geometry using a Lynx Eye XE detector
and CuKα radiation (Bruker AXS, Karlsruhe, Germany). The powder sample was mounted
on a planar substrate (diffraction-free silicon). Diffraction was recorded in the angular
range of 4–80◦ 2Θ with a step of 0.015◦ and a readout time of 0.8 s per step. The acquired
X-ray diffraction patterns were qualitatively evaluated in the Diffrac.Eva 4.1. software
(Bruker AXS, Karlsruhe, Germany, 2015) using the ICDD PDF-2 database (ICDD 2018).

The organic substances in the AGW and subsequently in the AGW-G composites
were determined on gas chromatography/mass spectrometry (GC/MS) equipment,
consisting of a Trace 1310 gas chromatograph coupled with an ISQ single quadrupole
system (ThermoScientific, Waltham, MA, USA) equipped with a CP5 capillary column
(30 m × 0.25 mm × 25 µm). Data were acquired and integrated using the Chromeleon
system (ThermoScientific, Waltham, MA, USA). Dichloromethane and methanol (HPLC
grade) were purchased from Sigma-Aldrich (St. Luis, MO, USA), and ethylene glycol from
Penta (Prague, Czech Republic).

The ground samples (<0.2 mm) were extracted with a mixture of dichloromethane and
methanol (93:7, v/v) using an accelerated solvent extractor (ASE 150, Dionex, Sunnyvale,
CA, USA). The extracts were filtered through a glass-fiber filter and concentrated using
a Christ RVC 2–18 rotator evaporator. The total extracts were re-dissolved in 1.0 mL of
dichloromethane/methanol (97:3) and analyzed.

GC/MS analysis was performed using helium as the carrier gas with a constant flow
rate of 1.5 mL/min. The extract solution (1 µL) was injected into the GC system in splitless
mode for each analysis. The injection port and detector temperatures were set at 250 ◦C;
the oven temperature program started at 40 ◦C and was maintained for 1 min, after which
it increased to 120 ◦C at 15 ◦C/min, then to 250 ◦C at 6 ◦C/min and finally to 300 ◦C at
12 ◦C/min, being maintained for 5 min. The analyte detected was identified by comparing the
spectrum with the NIST mass spectral library and data from the literature. Each sample was
analyzed three times, and the mean and the relative standard deviation (RSD) were calculated.
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The compound identified was quantified using ethylene glycol as a standard after its
derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA) in pyridine. Ethylene–glycol
stock solutions were prepared in dichloromethane to achieve the five concentration levels of
the calibrators: 1, 5, 10, 25 and 100 µg/mL. The derivatization reagent (BSTFA, 25 µL) and the
catalytic reagent (pyridine, 25 µL) were added to an aliquot (200 µL) of the ethylene–glycol
solutions in a vial, and the mixture was placed in a laboratory dryer at 40 ◦C for 20 min.
After cooling to room temperature and the evaporation of excessive BSTFA, the resulting
trimethylsilyl derivatives were diluted in dichloromethane (50 µL) and analyzed by GC/MS.

The effect of the alkaline activator on the waste glass was determined only for selected
fractions of both types of AGW (0.16–0.25 mm, 0.4–0.63 mm, 1.25–2 mm and 2–5 mm),
which were exposed to the alkaline solution in a ratio of 1:10 (glass:alkaline activator). The
samples were stirred on a shaker once a day for 1 h. After 28 days, the waste glass was
filtered, washed with demi-water and dried to a constant weight at 80 ◦C.

Infrared (FTIR) spectra were measured by an iS50 spectrometer (Thermo Nicolet
Instruments Co., Madison, WI, USA) using the reflection method in the attenuated total
reflection (ATR) mode (diamond crystal) in the spectral range of 400–4000 cm−1 with a
resolution of 4 cm−1, averaging 32 scans. All samples were scanned directly as observed
(in powder form with variable grain size). The resulting spectra were processed using
OMNIC 9 software.

The thermal stability of the AGW samples was determined by thermogravimetric
(TG) analysis using a SETARAM-Setsys Evolution 18 thermal analyzer (SETARAM Instru-
mentation, Caluire-et-Cuire, France) with an Omnistar GSD 320 O3 mass spectrometer
(Pfeiffer Vacuum Austria GmbH, Wien, Austria) for gas analysis (1–300 amu).

The microstructure of AGW and AGW-G composites was studied on a STEM Apreo S
LoVac scanning electron microscope (ThermoFisher Scientific, Waltham, MA, USA) equipped
with an ETD detector (Everhart-Thornley SED) in the high-vacuum mode. AGW fragments
were adjusted to an aluminum stab using a carbon target, plastic conductive-carbon cement
and platinum coated in Ar atmosphere on a Leica EM ACE600 sputter coater (Specion s.r.o.,
Prague, Czech Republic). The coating thickness was 16.01 nm. Geopolymer composite
samples were polished using standard materialographic methods prior to mounting and
coating, with the coating thickness being 10.85 nm. The SE (secondary-electron) mode with
an acceleration voltage of 5.00 kV at magnifications of 200×–10,000× was used to observe
detailed surface information in Standard and OptiPlan use.

Compressive strength was determined on a test press (Matest, Arcore, Italy) according
to the EN-196-1:2016 standard [52] on 4 × 4 × 4 cm specimens. The resulting values are the
average of three measurements.

3. Results and Discussion
3.1. The Characterization of Automotive Glass Waste
3.1.1. Sieve Analysis

The sieve analysis (Table 3) has shown the predominance of the 2–5 mm fraction for
both types of automotive glass (31.15 wt.% for AGW1 and 34.87 wt.% for AGW2), followed
by the 1.25–2.0 mm fraction. The initial assumption that the glass shard would contain a
high proportion of fine particles has not been confirmed for either glass examined, as the
particle contents below 0.063 mm are only 3.97 wt.% for AGW1 and 2.28 wt.% for AGW2.
The photographs of AGW1 and AGW2 glass fractions are presented as Figures S3 and S4 in
the Supplementary Files, respectively.

To assess the impact of individual fractions, specific fractions were singled out for
analysis. Priority was given to fractions with the predominant content, namely those in the
range of 2–5 mm and 1.25–2 mm. Subsequently, the 0.4–0.63 mm fraction, ranking third in
content for AGW1, was included. Finally, the 0.16–0.25 mm fraction was selected to explore
the effect of smaller particles despite its lower content. Fractions below 0.16 mm were not
used for further experiments due to the workability of the geopolymer mixture.
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Table 3. The sieve analyses of the crushed AGW1 and AGW2.

Fraction (mm) AGW1 (wt.%) AGW2 (wt.%)

>5 1.85 4.37
2–5 31.15 34.87

1.25–2 18.76 16.20
0.8–1.25 8.56 9.82
0.63–0.8 6.19 5.97
0.4–0.63 9.21 8.52
0.25–0.4 7.48 8.27

0.16–0.25 5.37 4.27
0.063–0.16 7.45 5.41

<0.063 3.97 2.28
Sum 99.99 99.98

3.1.2. X-ray Fluorescence Analysis

The results of the chemical (XRF) analyses of AGW samples (Table 4) are almost
identical in the main glass-forming oxides (Na2O, SiO2, MgO, CaO, K2O, etc.). The contents
of Na2O, MgO, CaO, K2O, etc. are only marginally higher in AGW2 than in AGW1. In
contrast, the content of SiO2 is slightly higher in AGW1 than in AGW2. The samples differ
in Fe2O3 content, which is higher in AGW1 than in AGW2. Another difference is evident
for Cr2O3, whose value for AGW2 is almost twice as high as for AGW1. In the case of Bi,
AGW2 contains much more of it than AGW1.

Table 4. The chemical analysis of AGW samples (the main oxides in wt.%).

Oxides Na2O MgO Al2O3 SiO2 SO3 K2O CaO Cr2O3 Fe2O3 Bi LOI Residues

AGW1 10.21 3.14 0.30 71.28 0.32 0.12 13.15 0.06 1.24 0.0008 0.02 0.19
AGW2 10.74 4.12 0.50 69.57 0.26 0.47 13.52 0.15 0.18 0.22 0.14 0.13

3.1.3. X-ray Diffraction Analysis

The results of the XRD analyses of AGW1 and AGW2 (Figure 1) have confirmed the
expected amorphous character of the glass with only a minor content of crystalline quartz
(Q; PDF00-001-0649). The curves of both samples are very similar, with no visible phases
coming from the safety film or the heating elements.
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Figure 1. The XRD analyses of AGW1 and AGW2.

3.1.4. Thermogravimetric Analysis

AGW samples were further characterized by thermogravimetric analysis (Figure 2).
Glass samples of 21–24 mg were heated in an inert helium atmosphere (at a flow rate of
20 mL·min−1) to prevent oxidation of the samples and to avoid affecting their quality. The
change in weight loss was monitored by heating the samples at a constant heating rate of
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10 ◦C min−1 from 25 ◦C to 1000 ◦C, which is sufficient to determine the volatile con-
tent of the finely crushed glasses. The glass contains a safety layer, which is typically
polyvinyl butyral (PVB), whose main degradation starts at temperatures in the range of
260–330 ◦C [47,49,53]. This decrease can be divided into two phases [54]. In the first phase
(up to 200 ◦C), moisture evaporation occurs, and in the second phase (200–900 ◦C), organic
decomposition occurs, which is consistent with our results. These mass losses are seen from
the TG curves in Figure 2, where moisture evaporation occurs with the first temperature
increase up to 150 ◦C and amounts to 0.16 wt.% (AGW1) and 0.21 wt.% (AGW2). The
subsequent decrease in signal in the temperature range of 150–650 ◦C is related to the
gradual release of organic matter (e.g., polycarbonate, polyethylene terephthalate, etc.).
This resulted in the release of gaseous molecules CO, CO2, CH4 and H2O from the hydroxyl
groups bound to silica. The loss of organics was monitored up to a temperature of 1000 ◦C,
which was sufficient to confirm that no undesirable substances were released.
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Sample AGW1 commenced melting at 680 ◦C, whereas sample AGW2 initiated melting
at 650 ◦C. The minor decrease in the AWG2 curve above 650 ◦C suggests that the final
temperature of 1000 ◦C was inadequate to fully decompose this glass, unlike the AGW1
sample, where there was no decrease in the curve, indicating adequacy. This contrast was
evident in the overall weight loss of 0.5% for AGW1 and 0.8% for AGW2. All the resulting
melts exhibited coloring.

3.1.5. Gas Chromatography/Mass Spectrometry Analysis

GC/MS was applied for the identification of organic substances in both types of AGW
and selected fractions (0.16–0.25 mm, 0.4–0.63 mm, 1.25–2 mm and 2–5 mm). The extraction
yields were low (0.01–0.04 wt.%), corresponding to the inorganic nature of the samples.
The extracts exhibited discoloration of the solutions, which varied according to the type of
AGW (Figure S5 of the Supplementary Files). In all AGW1 and AGW2 samples, triethylene
glycol bis(2-ethylhexanoate) was identified (formula: C22H42O6, MW: 402).

This compound serves as a plasticizer for various industrial materials, including
polyvinyl butyral (PVB), which is widely used in glass lamination, especially in auto-
motive applications [53]. In the case of windshields, the plasticizer triethylene glycol
bis(2-ethylhexanoate) gives the film formability and flexibility and makes it possible to
balance mechanical strength and elasticity, almost without affecting adhesion. The com-
pound is insoluble, resistant to low temperatures and to ultraviolet radiation, has antistatic
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properties and is not listed as toxic or environmentally dangerous [55]. However, even if
the substance is not labeled as hazardous, its release should be monitored and possibly
restricted. This precaution is warranted due to documented instances of this substance
being identified as a contact allergen [56]. Therefore, the influences of the AGW particle
size on the release of triethylene glycol bis(2-ethylhexanoate) were investigated.

The concentrations of triethylene glycol bis(2-ethylhexanoate) in the AGW samples
were quantitatively determined, ranging from 0.2 to 24.6 ng·kg−1 (Table 5).

Table 5. The results of the quantitative analysis of triethylene glycol bis(2-ethylhexanoate) in the
fractions of AGW samples.

Fraction AGW1 (ng·kg−1) AGW2 (ng·kg−1)

0.16–0.25 mm 12.7 ± 0.2 24.6 ± 1.2
0.4–0.63 mm 8.5 ± 0.5 3.6 ± 0.3
1.25–2 mm 11.3 ± 0.8 13.7 ± 0.5
2–5 mm 13.3 ± 0.8 0.2 ± 0.1

The results show that for AGW1, the particle size has no significant effect on the presence
of triethylene glycol bis(2-ethylhexanoate) in the samples. The measured values are very
similar except for the 0.4–0.63 mm fraction, which is noticeably lower. These values range
from 8.5 ng·kg−1 for the 0.4–0.63 mm fraction to 13.3 ng·kg−1 for the 2–5 mm fraction.

In contrast, a difference between the fractions has been found for AGW2. The contents
of triethylene glycol bis(2-ethylhexanoate) in individual particle-size fractions varied. The
highest concentration was found in the finest fraction, and the lowest concentration was
determined in the coarsest fraction.

Surprisingly, the 0.4–0.63 mm fraction of both types of AGW showed the presence of a
small amount of triethylene glycol bis(2-ethylhexanoate).

3.1.6. Scanning Electron Microscope Structure Study

Scanning electron microscopy (SEM) micrographs have been used to display the surfaces
of AGW1 and AGW2 samples. Figure 3 shows the state of the ground glass before its exposure
to the alkaline solution. Individual images are at the same magnification. It is evident from
the pictures that the glass grit is sharp-edged after being crushed. In the larger fractions, it
is possible to see traces of crushing as well as crushed-glass dust particles, especially in the
case of the AGW2 1.25–2 mm fraction. These crushing residues (traces and dust particles) are
more evident at 10,000× magnification (Figure S6 of the Supplementary Files).
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3.2. The Effect of the Alkaline Activator on AGW Materials

The effect of the alkaline activator on the waste glass has been determined for selected
fractions of both AGW types (0.16–0.25 mm, 0.4–0.63 mm, 1.25–2 mm and 2–5 mm). The
glass waste after exposure to the alkaline solution has been investigated by SEM analysis.

Figure 4 shows the AGW1 particles of different fractions after exposure to the alkaline
solution at the same magnification (10,000×). The image reveals surface degradation in
the form of oval, almost parallel grooves. The larger the original particles, the greater the
degradation. Similar degradation traces have also been found in AGW2 (Figure 5). In
comparison with AGW1, the incisions are almost parallel, but wherever they cross, the local
damage is deeper. A comparison of the two images shows that AGW2 has more surface
deterioration than AGW1, in both the extent and depth of damage.
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The SEM study has confirmed the effect of the alkaline solution, with partial degra-
dation occurring in the areas that were probably disrupted during crushing. However, it 
cannot be assumed that the same effect will be observed when the glass is embedded in 
the geopolymer matrix because no free-alkali activator will act on the glass after 

Figure 4. AGW1 particles after exposure to the alkaline solution (10,000× magnification).

The SEM study has confirmed the effect of the alkaline solution, with partial degra-
dation occurring in the areas that were probably disrupted during crushing. However,
it cannot be assumed that the same effect will be observed when the glass is embedded
in the geopolymer matrix because no free-alkali activator will act on the glass after solid-
ification (6–12 h). To confirm this hypothesis, geopolymer samples were prepared and
subsequently analyzed.

3.3. The Characterization of Geopolymer Composites

Geopolymer composites (AGW-Gs) were prepared using the same fractions (0.16–0.25 mm,
0.4–0.63 mm, 1.25–2 mm and 2–5 mm) as those used to monitor the effect of the alkaline
solution on AGW particles.

The geopolymer solids prepared (Figures S7 and S8 of the Supplementary Files) were
studied mainly in terms of the geopolymer composition, bonds formed (FTIR spectroscopy),
the microstructure, the effect of the geopolymer reaction on the glass-waste particles (SEM),
and the effect of solidification on the release of organics (GC/MS) as a function of the
fraction used. In addition, indicative compressive strength was determined.
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3.3.1. X-ray Fluorescence Analysis

The chemical composition of geopolymer samples (Table 6) is very similar and corre-
sponds to the composition of the raw materials from which the geopolymer was prepared
(Tables 1 and 4). AGW1-G and AGW2-G samples contain a high percentage of SiO2
(51.53 wt.% and 50.83 wt.%) and Al2O3 (19.88 wt.% and 20.68 wt.%), respectively. The
increased concentration of Bi in AGW2-G correlates with the higher content identified
in AGW2.

Table 6. The chemical analysis of AGW-G samples (the main oxides in wt.%).

Oxides Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 Bi LOI Residues

AGW1-G 2.04 0.53 19.88 51.53 11.73 3.71 0.96 0.02 8.37 1.23
AGW2-G 1.84 0.65 20.68 50.83 12.28 3.47 0.76 0.04 8.17 1.28

3.3.2. FTIR Analysis

The FTIR spectra of the geopolymer material with variable grain size and a comparison
with the clay material and glass waste are provided in Figure 6 for the AGW1-G series and
in Figure 7 for the AGW2-G series.

The FTIR spectra of both types of glass waste (AGW1 and AGW2) are identical and
contain a broad, intense band in the spectral region of 1240–840 cm−1, corresponding to
the Si-O in asymmetric stretching vibrations (ν3) in the SiO4 tetrahedra. Another band, at
450–470 cm−1, is ascribed to the O-Si-O bending vibrations (ν4) in the SiO4 tetrahedra [57].
The weak band in the region of 720–840 cm−1 is attributed to the Si–O–Si symmetric
stretching vibrations of the bridging oxygens between the SiO4 tetrahedra [58].

The metakaolin-based clay material contains bands attributed to the asymmetric
stretching and bending vibrations of Si–O and the asymmetric stretching of Si–O–Al
groups, visible at 1087 cm−1 and ~780 cm−1. The band with more distinctive features at
799 and 777 cm−1 and another at 467 cm−1 may be attributed to quartz [57], which is
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present in L05 as a minor impurity. The spectral shoulder at ~560 cm−1 is attributable to
silicates and/or aluminosilicates with a long-range structural order [59].
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size) and a comparison with the L05 and AGW2.

The reaction of L05 with an alkaline activator leads to an increase in the substitution
of the tetrahedral Al in the silicate network in the geopolymer matrix. This process is mani-
fested by a spectral shift of the principal band, located at 1087 cm−1 in the L05 spectrum, to
lower wave numbers (~1000 cm−1) in the spectra of the geopolymer materials [60]—see
Figures 6 and 7. Slight changes in wavenumber positions in the individual spectra of
geopolymer materials (999–1001 cm−1) are within the resolution limit of the method (up to
4 cm−1). New weak bands positioned at around 866–867 cm−1 and 695–696 cm−1 can be
ascribed to the bending vibration mode of Si-OH [61] and to the stretching and bending
vibrations of Si-O-Al, respectively, providing another fingerprint for the formation of the
geopolymer structure [62].
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The spectra of L05 and geopolymer materials also contain a large peak at 3440 and
3420 cm−1 and a peak centered at 1640 cm−1, which are associated with the stretching and
bending modes of OH groups in water molecules due to the residual water and moisture
content in the materials [62].

Spectroscopically, all final geopolymer materials (of both the AGW1-G and AGW2-G
series) are identical. FTIR analysis has proven that the grain size of waste glass does not
affect its final structural properties or phase changes.

3.3.3. Scanning Electron Microscope Structure Study

The SEM images of the geopolymer composites containing different fractions of AGW1
and AGW2 (AGW1-Gs and AGW2-Gs, respectively) are presented in Figure 8 and Figure 9,
respectively. The glass waste is more compact and homogeneous than the geopolymer matrix.
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Figure 8. The SEM images of the geopolymer composite with AGW1 particles (AGW1-G): The left
side shows the images at lower magnification (2000×), while the right side contains details of the
images on the left at higher magnification (10,000×). The images depict the geopolymer matrix (GP)
and particles of automotive glass waste (AGW).
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The extraction yields of both AGW-G geopolymer composites were low for all frac-

tions (0.01–0.04 wt.%) and comparable with AGW extraction yields. The GC/MS analysis 
of the AGW-G extracts confirmed the presence of triethylene glycol bis(2-ethylhexanoate), 
with the determined concentrations ranging from 0.0 to 6.4 ng·kg−1. 

The results (Table 7) demonstrate the presence of triethylene glycol bis(2-ethylhexa-
noate) in both types of geopolymer composites. Like in the case of AGW1, the effect of 
particle size is not evident for the AGW1-G composite either, with concentration values 
ranging from 0.7 ng·kg−1 for the 0.4–0.63 mm fraction to 4.1 ng·kg−1 for the 2–5 mm fraction. 

Figure 9. The SEM images of the geopolymer composite with AGW2 particles (AGW2-G): The left
side shows the images at lower magnification (1000×), while the right side contains details of the
images on the left at higher magnification (10,000×). The images depict the geopolymer matrix (GP)
and particles of automotive glass waste (AGW).

In general, the geopolymer composites are very similar according to SEM investiga-
tions. No degradation of the glass is evident, as was the case of the glass after exposure to
the alkaline solution (Figures 4 and 5). The composites are stable without significant signs
of degradation. Only in the case of 0.40–0.63 mm AGW2, a slight surface distortion in the
geopolymer is visible.

In most cases, the geopolymer/AGW interface shows good adhesion of the geopoly-
mer to the AGW. In certain images within Figure 8 (0.40–0.63 mm and 2–5 mm AGW1-
G), it is evident that microcracks have developed, likely either during the geopolymer
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maturation process or during the preparation of the polished blocks. The crack runs
through the AGW particles, indicating a relatively strong bond between the geopolymer
and the glass waste. A similar phenomenon also occurs in the second type of glass waste
(Figure 9, 2–5 mm AGW2-G). Microcracks are further visible in the geopolymer matrix even
in areas with the predominance of AGW particles, where the geopolymer is almost closed
between them, for example 0.40–0.63 mm and 1.25–2 mm AGW1-G. In some composites,
there is a visible interlayer, particularly noticeable in the larger particles of both AGWs
(1.25–2 mm and 2–5 mm), implying potential ion transfer between the materials. Interlayer
formation has also been observed at interfaces between geopolymers and glass particles or
other materials [36,63,64].

3.3.4. Gas Chromatography/Mass Spectrometry Analysis

The extraction yields of both AGW-G geopolymer composites were low for all fractions
(0.01–0.04 wt.%) and comparable with AGW extraction yields. The GC/MS analysis of the
AGW-G extracts confirmed the presence of triethylene glycol bis(2-ethylhexanoate), with
the determined concentrations ranging from 0.0 to 6.4 ng·kg−1.

The results (Table 7) demonstrate the presence of triethylene glycol bis(2-ethylhexanoate)
in both types of geopolymer composites. Like in the case of AGW1, the effect of particle
size is not evident for the AGW1-G composite either, with concentration values ranging
from 0.7 ng·kg−1 for the 0.4–0.63 mm fraction to 4.1 ng·kg−1 for the 2–5 mm fraction. In
AGW2-G composites, on the other hand, the effect of particle size is visible (with the values
ranging from 0.0 ng·kg−1 for the 2–5 mm fraction to 6.4 ng·kg−1 for the 0.16–0.25 mm
fraction), which is consistent with the trend of AGW2 results.

Table 7. The results of the quantitative analysis of triethylene glycol bis(2-ethylhexanoate) in the
fractions of AGW-G samples.

Fraction AGW1-G (ng·kg−1) AGW2-G (ng·kg−1)

0.16–0.25 mm 3.1 ± 0.1 6.4 ± 0.2
0.4–0.63 mm 0.7 ± 0.1 0.6 ± 0.2
1.25–2 mm 1.9 ± 0.1 2.5 ± 0.4
2–5 mm 4.1 ± 0.2 0.0 ± 0.1

Nevertheless, it should be considered that the geopolymer composite contains only
35% of AGW. If we take only 35% of the values shown in Table 4 (AGW1—4.4 ng·kg−1,
3.0 ng·kg−1, 4.0 ng·kg−1 and 4.7 ng·kg−1 and AGW2—8.6 ng·kg−1, 1.3 ng·kg−1, 4.8 ng·kg−1

and 0.1 ng·kg−1 for the fractions of 0.16–0.25 mm, 0.4–0.63 mm, 1.25–2 mm and 2–5 mm,
respectively), we obtain values comparable with the results in Table 7.

The evaluation shows that the incorporation of AGW particles into the geopolymer
matrix reduces the release of triethylene glycol bis(2-ethylhexanoate) from both types of
geopolymer composites, especially in the case of 0.4–0.63 mm particles.

3.3.5. Compressive Strength

For the estimation of mechanical properties, the compressive strength was determined
only tentatively at 28 days for a ratio of 100 g of the geopolymer matrix and 40 g of
the waste-glass fraction (see Sample Preparation). The results are shown in the graph
(Figure 10). The pure geopolymer matrix serves as a blank sample (without aggregates).

The results show that geopolymer composites with the addition of AGW have suffi-
cient mechanical properties. The 28-day compressive-strength values reach up to
81.3 MPa and 82.8 MPa for the finest fractions (0.16–0.25 mm) of AGW1 and AGW2,
respectively. There is a noticeable trend for both types of glass waste where the compressive
strength decreases with the increasing particle size of the glass waste. A similar decrease
in compressive strengths has been observed by several authors, but in their case, AGW
particles were applied as a partial replacement for sand aggregate in geopolymer [43,45].
It can be assumed that the filling for other fractions was not optimal, especially for the
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larger fractions, where sedimentation of the particles occurred. On the other hand, for the
fraction of 0.16 to 0.25 mm whose content in the geopolymer matrix is almost optimal, the
compressive strengths slightly exceed the strength of the geopolymer matrix (80.6 MPa),
which is in agreement with the work of Srivastava et al. and Hajimohammadi et al. [42,46].
By optimizing the AGW content or by using a combination of several AGW fractions,
possibly in combination with another type of filler, it would probably be possible to achieve
higher values of mechanical properties.
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Figure 10. An overview of 28-day compressive-strength values for both AGW types and
geopolymer matrix.

The main aim of this paper was to verify the possibility of using AGW as an alternative
aggregate in a geopolymer matrix. Due to the composition of AGW, which includes organic
safety films and heating elements, it was first necessary to characterize the AGW materials
(AGW1 and AGW2) and determine the effect of an alkaline environment. Furthermore, the
influence of the fractions used, both of the AGW itself and of the AGW incorporated in the
geopolymer matrix, was also investigated.

Direct exposure to an alkaline solution partially degrades AGW particles. However,
because of the setting time of the geopolymer matrix (from 2 to 12 h) [65], there is no long-
term exposure of AGW particles to alkaline environments. Therefore, the deterioration of
these particles is minor. It is possible to assume that this phenomenon is part of the glass
particle dissolution process described by several authors [38–40,42] but due to the larger
particle size, only partial degradation occurred.

AGW materials have been found to comprise mainly triethylene glycol bis(2-ethylhexanoate),
originating from the contained safety films, which may be further released into the environ-
ment. GC/MS analysis has confirmed that the addition of AGW to the geopolymer matrix
has lowered the release of triethylene glycol bis(2-ethylhexanoate).

The decline in the concentration of triethylene glycol bis(2-ethylhexanoate) in geopoly-
mer composites may stem from the incorporation of this organic substance into the structure
of the geopolymer because geopolymers are able to form hybrid bonds with organic sub-
stances (hybrid organic–geopolymer materials), as described by Reeb et al. [66]. Another
possibility is the degradation within the alkaline environment of the geopolymer matrix [67].
Nevertheless, no byproducts of this degradation have been identified.

The effect of particle size is more evident in AGW2, where the concentration of
triethylene glycol bis(2-ethylhexanoate) decreases with increasing particle size in both
AGW2 and AGW2-G. The exception is the 0.4–0.63 mm fraction, where the concentrations
are lower than would be expected for both types of glass waste.
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The determination of the AGW1-G and AGW2-G mechanical properties showed rela-
tively high 28-day compressive-strength values despite the non-optimal ratio of the geopoly-
mer matrix to the aggregates for some fractions. In the case of larger particles, sedimentation
occurred, which was evident in the geopolymer solids. It can also be assumed that finely
ground AGW could be actively involved in the geopolymer reaction [42,68].

In view of the above, AGW materials can be considered potential alternative aggregates in
metakaolin-based geopolymers, leading to a more efficient use of this non-recyclable material.

4. Conclusions

This paper has studied the possibility of using automotive glass waste as an alternative
aggregate for geopolymer materials. The results have led to the following conclusions:

The effective utilization of AGW as an alternative aggregate in the production of
geopolymer composites has resulted in solid, resilient materials that are insoluble in water.

FTIR analysis has demonstrated that the use of AGW materials does not affect the
formation of geopolymer bonds.

It has been confirmed by GC/MS analysis that in the case of AGW1, the particle
size used does not affect the release of triethylene glycol bis(2-ethylhexanoate) except
for the 0.4–0.63 mm fraction, where its concentration was significantly lower than in the
other fractions.

In the case of AGW2, which contains a heating element in addition to the safety
film, the release of triethylene glycol bis(2-ethylhexanoate) has been found to be partially
dependent on the size of the fractions used, both of the AGW itself and of the AGW
incorporated in the geopolymer matrix.

The results have shown that the incorporation of AGW into the geopolymer matrix
slightly reduces the release of triethylene glycol bis(2-ethylhexanoate).

Preliminary mechanical-property tests have demonstrated the potential of AGW-G
composites. However, further research will be required to optimize the content ratios and
fractions of the AGW materials used.

It can thus be assumed that AGW materials can be utilized as alternative aggregates.
The use of this waste material (AGW) in geopolymer materials saves primary raw mate-
rials, thereby reducing the amount of landfill waste, which is in accordance with the EU
environmental strategy.
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(A—general view, B—detailed view); Figure S3: The photographs of AGW1 glass fractions;
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Abstract: This study analysed the effect of substituting different percentages of natural aggregate
with recycled aggregate from concrete crushing, using a coarse fraction as well as a fine fraction.
Natural and recycled materials were classified in order to analyse the mechanical performance and
impermeability of these eco-concretes in the fresh state as well as in the hardened state. A statistical
analysis also determined whether the performance loss was significant from a statistical point of
view, finding strength decreases of less than 13% in compressive strength and losses of less than 20%
in flexural strength. An increasing trend was found in permeability as the percentage of recycled
aggregate in the mix increased.

Keywords: mechanical performance; coarse and fine recycled aggregates; permeability; fresh-state
concrete properties

1. Introduction

The construction sector has a high demand for natural resources and is one of the
activities that generates the largest amount of waste during all phases of the construction
process (construction, maintenance and demolition). Throughout the EU specifically, the
amount of waste generated in the construction sector has been increasing in recent years.
According to Eurostat [1], a total of 6.81 Gt of waste was generated in the period from
2004–2020 in the construction sector in the EU-27 as a whole, increasing its magnitude year
by year, rising from 29.66% of total waste in 2004 to 37.11% in 2020.

The construction sector also has high CO2 emissions in the extraction, raw material
manufacturing and transport processes and high energy consumption. It is estimated that
the construction sector is globally responsible for 33% of annual CO2 emissions [2] and 40%
of global energy consumption [3]. The high energy consumption and emissions are due to
manufacturing concrete components, especially cement, which accounts for 73% of total
emissions in the sector [4], and transporting these components.

In this context, the use of recycled materials can be a great advantage in logistical
terms, since the distance of transporting raw materials is reduced by having construction
and demolition waste territory that can be converted into recycled aggregates available
throughout the [5], especially in areas where natural aggregate is scarce and/or impossible
to extract [6]. The impact on the environment is also significantly reduced by reducing the
exploitation of natural resources in quarries as well as waste deposits in landfills [7]. As a
whole, the use of coarse recycled aggregate can reduce greenhouse gas emissions by up
to 65% [8], a percentage that could increase even further if fine aggregate is added, which
would be advantageous, since sand consumption worldwide is increasing year by year,
with an estimate of 47.5 billion tonnes by 2023 [9] and up to 60 billion tonnes by 2030 [10].

However, the main problem in the use of recycled aggregates for manufacturing
concrete is limitations at the regulatory level, which restrict the use of recycled aggregates,
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in most cases enabling substitution percentages of less than 60% for the coarse fraction of
recycled aggregate from concrete crushing. Table 1 shows the amount of recycled concrete
aggregate permitted within the different international regulations, indicating the permitted
granulometric fraction (coarse or fine), maximum substitution percentage and maximum
strength class.

Table 1. Regulatory framework for the use of recycled aggregates in concrete manufacture.

Country Aggregate
Type Fraction

Max.
Substitution

(%)
Concrete Type Strength Class

Australia
AS 1141.62/HB 155:2002 [11] RCA (Class 1A) Coarse 30 Structural C40/50

China
GB/T-25177 [12]

RCA—Type I

Coarse

100 Structural No limit

RCA—Type II 30 Structural C40/50

RCA—Type III 30 Structural C25/30

RCA—Type I

Fine

100 Structural C40/50

RCA—Type II 30 Structural C25/30

RCA—Type III 30 Non structural -

Korea
KS-F-2573 [13] RCA

Coarse 30 Structural 27 MPa

Coarse + Fine 30 Non structural 21 MPa

Hong Kong
CS-3:2013/HKBD 2009/WBTC-No.

12 [14]
RCA Coarse

20 Structural C25/30–
C35/45

100 Non structural

Japan
JIS-5021 [15]/JIS-5022 [16]/

JIS-5023 [17]

RCA—HQ
Coarse 100

Structural C45/55
Fine 100

RCA—MQ
Coarse 100

Structural C35/45
Fine 100

RCA—LQ
Coarse

No limit Non structural -
Fine

Belgium
PTV 406-2003 [18]/NBN B 15-001 [19] RCA—Type A Coarse 50, 30, 20 Structural C30/37

Germany
DIN 4226-101, DAfStb [20] RCA—Type A Coarse 45, 35, 25 Structural C30/37

Italy
NTC-2008 [21]

RCA 1
Coarse

30

Structural

C30/37

60 C25/30

RCA 2 15 C45/55

Denmark
DS 2426/DCA No. 34 [22]

RCA 1 Coarse 100
Structural C40/50

RCA 2 Coarse and fine 100

Netherlands
NEN-5905 [23] RCA Coarse 20 Structural C55/67

Portugal
LNEC-E471 [24] RCA 1 Coarse 25 Structural C40/50

Switzerland
MB-2030 [25]

RCA 1
Coarse

100
Structural No limit

RCA 2 100

25
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Table 1. Cont.

Country Aggregate
Type Fraction

Max.
Substitution

(%)
Concrete Type Strength Class

United Kingdom
BS 8500-2 [26] RCA Coarse/Fine 20 Structural C40/50

France
NF P 18-545 [27]

RCA 1
Coarse

60, 30, 20
Structural No limit

RCA 2 40, 15

Spain
Structural Code [28] RCA Coarse

20 Structural C40/50

100 Non structural -

EN 206 [29] RCA Coarse 50, 30 Structural No limit

RILEM RCA Coarse 100 Structural C50/60

Brazil
NBR 15116 [30] RCA Coarse/Fine 100 Non structural -

There are numerous works that have studied the use of recycled aggregates from
concrete crushing in structural concrete manufacture. Jayasuriya [31] statistically analysed
a large database with experimental results of concretes that included a coarse fraction of re-
cycled concrete aggregates, reaching the following conclusions: (i) the optimal substitution
percentage is below 20%, where the best properties in concrete are obtained; (ii) although
strength losses occur as the substitution percentage and the use of homogeneous aggregates
increases (as in the case of total substitution), it provides better results as the entire fraction
has the same properties; (iii) the strength of concrete with recycled aggregates is affected by
an increase in the effective water/cement ratio; and (iv) fracture behaviour is unpredictable
due to the notable differences in rigidity within the concrete matrix, on which point further
study is required.

Several authors also conclude that recycled concrete aggregates can also be used
regardless of the fraction and substitution percentage if optimal quality of the new concrete
is achieved. Etxeberría [32] maintains that recycled coarse aggregate can be used for
concrete in medium–low-strength concrete (20–45 MPa) even if strength variations of up to
25% are recorded for total substitution of natural coarse aggregate by concrete aggregate.
Limiting strength makes it possible to avoid an increase in the amount of cement, which
would be counter-productive from an economic and environmental point of view. Along
the same lines, McNeil [33] maintains that although there are differences in behaviour, the
requirements specified in structural standards are met in real structures, which means that
recycled aggregates can be used in structural concrete even if the quality is slightly lower.
If the fine fraction is also substituted with recycled concrete sand, the strength reduction is
often greater, since the fine fraction has greater influence on strength than the coarse fraction.
Tang [34] analysed the properties of concrete with 100% recycled aggregates, observing
losses of up to 28.6% for total substitution of both fractions. Regarding other properties, the
elastic modulus and tensile strength have similar behaviour, with losses of between 20%
and 33% depending on the amount of recycled aggregate and the fraction chosen. Along
the same lines, Kenai [35] observed decreases in all the mechanical properties of concrete
using recycled aggregates until reaching total substitution. The decrease in compressive
strength, of approximately 50% in concrete completely composed of recycled aggregates,
presents a considerably greater water demand, mainly because the recycled aggregate has
greater absorption. This behaviour can be explained by analysing the micro-structure of
the concrete. Several authors [36,37] maintain that the performance loss of concrete with
recycled aggregate is due to lower-strength ITZ between the mortar layer adhering to the
recycled aggregate and the mortar that is formed while mixing the concrete. The cracks
and pores present in this layer of old mortar make it the weakest point of the new concrete,

26



Appl. Sci. 2024, 14, 3995

which also has a greater demand for water due to the increased absorption of this layer of
mortar [38].

The variability of results mentioned above lies in the difference in the quality of the
recycled aggregates depending on the concrete of origin. Kumar [39] observed that the use
of aggregates from medium–low-strength (30 MPa) but high-quality concrete did not affect
the strength for substitution percentages of up to 20%. On the contrary, substituting the
coarse and fine fractions, separately as well as together, obtained slightly higher strengths
with small adjustments in the dosage, obtaining a high-performance concrete (HPC). Other
authors have also observed recycled concrete that is more resistant than the reference mixes
in the long term, using a coarse fraction to completely substitute the natural aggregate [40]
as well as both fractions, substituting the fine fraction in lower percentages [41], defining
the optimal percentage below 60% [42].

This work attempts to deepen the study of the physical/mechanical behaviour of
concrete that simultaneously includes coarse and fine aggregate from concrete crushing.
Specifically, this work analyses the effect of partially (25, 50 and 75%) or totally (100%)
substituting the coarse fraction of the natural aggregate with recycled aggregate and at
the same time partially substituting (10, 20 and 50%) the fine fraction of the aggregate in
the design of class C30/37 structural concretes (characteristic strength of 30 N/mm2). The
properties in the fresh state (density, consistency and entrained air) and hardened state
(compressive and flexural strength and water penetration under pressure) of the concrete
have thus been studied. These results have been analysed from a statistical point of view
using two techniques: in the case of density, a linear regression model was studied based
on the total percentage of substituted aggregate and in the rest of the properties, an analysis
of the variance (ANOVA) with two factors and interaction, which analyses the relative
effects and interferences of substituting the coarse and fine fractions separately as well as
simultaneously, indicating which changes in the properties studied are significant from a
statistical point of view.

2. Materials and Methods
2.1. Materials

The natural aggregate used to manufacture the concrete comes from crushing greywacke
(Figure 1). It has an irregular shape and marked edges and is supplied in three granulometric
fractions: 0/6 mm (finely crushed stone, CS-F), 6/12 mm (medially crushed stone, CS-M)
and 12/20 mm (coarsely crushed stone, NG-C). Regarding its chemical composition, it is a
siliceous aggregate with around 60% SiO2, as well as other oxides in a smaller proportion
(Al2O3, Fe2O3, MgO and Na2O). From the mineralogical point of view it is characterised by
having quartz, feldspars and phyllosilicates.
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Figure 1. (a) Finely crushed stone (CS-F); (b) medially crushed stone (CS-M); (c) coarsely crushed
stone (CS-C).

Also, the recycled aggregate comes exclusively from crushing concrete (Figure 2). As
with natural aggregates, it is supplied in three granulometric fractions: 0/6 mm (recycled
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concrete sand, RCF), 6/12 mm (recycled crushed gravel, RCG) and 12/20 mm (recycled
crushed concrete, RCC).
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Figure 2. (a) Recycled Concrete Sand (RCS); (b) Recycled Concrete Gravel (RCG) and (c) Recycled
Crushed Croncrete (RCC).

All aggregates were supplied by ARAPLASA, an aggregate recycling plant located in
Plasencia, north of the province of Cáceres (Spain).

The Portland cement used was a CEM I 42.5 R supplied by the Lafarge Holcim plant
located in Villaluenga de la Sagra, in the Spanish province of Toledo. This cement meets all
the requirements of the EN-197 standard [43].

Finally, the super-plasticising additive FUCHS BRYTEN NF supplied by FUCHS
Lubricantes S.A.U. (Bacerlona, Spain) was used, which consists of a modified water-based
polycarboxylate. This brown additive is free from chlorides and has a density of 1.1 g/cm3,
pH = 8.0 and 20% solids content.

2.2. Aggregate Characterisation

Figure 3 shows the composition of gravel and fine gravel recycled from concrete,
respectively. It shows that regardless of the recycled coarse fraction, the content of concrete
or mortar (Rc) and unbound aggregates (Ru) is ≥95% by weight. Based on this result
and according to the classification proposed by the Structural Code (CodE), they can be
classified as aggregates from concrete crushing (Rc+Ru ≥ 95%).

Appl. Sci. 2024, 14, x FOR PEER REVIEW  5  of  20 
 

 

Figure 2. (a) Recycled Concrete Sand (RCS); (b) Recycled Concrete Gravel (RCG) and (c) Recycled 

Crushed Croncrete (RCC). 

All aggregates were supplied by ARAPLASA, an aggregate recycling plant located 

in Plasencia, north of the province of Cáceres (Spain). 

The Portland cement used was a CEM I 42.5 R supplied by the Lafarge Holcim plant 

located in Villaluenga de la Sagra, in the Spanish province of Toledo. This cement meets 

all the requirements of the EN-197 standard [43]. 

Finally,  the  super-plasticising  additive FUCHS BRYTEN NF  supplied  by  FUCHS 

Lubricantes S.A.U. (Bacerlona, Spain) was used, which consists of a modified water-based 

polycarboxylate. This brown additive is free from chlorides and has a density of 1.1 g/cm3, 

pH = 8.0 and 20% solids content. 

2.2. Aggregate Characterisation 

Figure 3 shows the composition of gravel and fine gravel recycled from concrete, re-

spectively. It shows that regardless of the recycled coarse fraction, the content of concrete 

or mortar (Rc) and unbound aggregates (Ru) is ≥95% by weight. Based on this result and 

according to the classification proposed by the Structural Code (CodE), they can be clas-

sified as aggregates from concrete crushing (Rc+Ru ≥ 95%). 

 

Figure 3. Classification for the constituents of coarse recycled aggregate. (a) RCG, (b) RCC (EN 933-

11) [44]. 

Table 2 shows  the physical, chemical and mechanical properties of  the aggregates 

used in the formulation of concrete, as well as the EN 12620 standard requirements [45]. 

Table 2. Physical, chemical and mechanical properties of the aggregates. 

Property [Standard]  CS-F  RCF  CS-M  CS-C  RCG  RCC  EN 12620 

Density (Mg/m3) [46]  2.82  2.79  2.78  2.77  2.72  2.73  - 

Sorptivity (wt%) [46]  1.18  4.42  0.88  0.78  5.40  3.63  <5 

Fine equivalent (wt%) [47]  73  61  -  -  -  -  >70 * 

Figure 3. Classification for the constituents of coarse recycled aggregate. (a) RCG, (b) RCC (EN
933-11) [44].

Table 2 shows the physical, chemical and mechanical properties of the aggregates used
in the formulation of concrete, as well as the EN 12620 standard requirements [45].
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Table 2. Physical, chemical and mechanical properties of the aggregates.

Property [Standard] CS-F RCF CS-M CS-C RCG RCC EN 12620

Density (Mg/m3) [46] 2.82 2.79 2.78 2.77 2.72 2.73 -
Sorptivity (wt%) [46] 1.18 4.42 0.88 0.78 5.40 3.63 <5
Fine equivalent (wt%) [47] 73 61 - - - - >70 *
LA coefficient (wt%) [48] - - 16 18 27 27 ≤40
Flakiness index (wt%) [49] - - 20.36 24.79 16.08 20.85 <35
Water-soluble chlorides (wt%) [50] <0.01 <0.05
Acid soluble sulphates (wt%) [50] <0.002 <0.80
Total sulphates (wt%) [50] <0.001 <1

* Aggregates intended for concrete elements exposed to exposure class X0 or XC. Note: CS-F: natural sand, RCF:
recycled sand, CS-M: natural gravel—medium, CS-C: natural gravel—coarse, RCG: recycled gravel—medium,
RCC: recycled gravel—coarse.

In terms of density, the values of the recycled aggregates are lower than those of
natural aggregates, with a decrease of 1.44%, 2.16% and 1.06% for the coarse aggregate
(RCC), the medium (RCG) and the fine (RCF), respectively. This decrease is mainly due
to the adhered mortar layer present in this type of recycled aggregate, which is less dense
and more porous than natural aggregate. The values obtained are similar to those observed
by Andreu [51] and Gao [52], who observed values of 5.21% and 4.50%, respectively, for
recycled concrete aggregates.

Water absorption of recycled aggregates is between 3.5 and 6 times greater than that of
natural aggregates depending on the fraction, coarse or fine, analysed. In all cases however,
the provisions of the Structural Code are complied with, which limits the absorption
value to 7% for recycled aggregates and 4.5% for natural aggregates. Additionally, the
granular skeleton has a water absorption of less than 5% by weight, the maximum limit
imposed by the EN 12620 standard. The values obtained are similar to those reported by
other authors [51,53,54], who observed values of 3.74% and 5.91%, respectively, for all the
recycled concrete aggregate fractions studied.

Regarding the values obtained from the Los Angeles (LA) coefficient, the recycled
coarse fractions have a value slightly higher proportion (27% by weight) than that corre-
sponding to the natural fraction (16–18%) due especially to the lower resistance to fragmen-
tation of the adhered mortar, which is more friable than natural aggregates. However, the
recorded values are below the 40% by weight (LA40) and 50% by weight (LA50) required
for recycled concrete crushing aggregates by the CodE and recycled concrete aggregates
type A and B pursuant to the EN 206 standard, respectively. The values obtained are also
similar [53], although Andreu [51] observed very low values (10–16%) analysing recycled
aggregates from high-strength concrete.

Regarding chemical properties, it should be noted that all aggregates comply with the
Structural Code limitations regarding the content of organic matter, water-soluble chlorides
and sulphates, including total as well as acid-soluble.

Regarding geometric properties, the flakiness index of recycled aggregates is lower
than that of natural aggregates, due to its more rounded shape and less sharp edges (see
Figure 2) associated with the construction and demolition waste crushing process and the
presence once again of adhered mortar. These values are below the 35% required in the
CodE and are similar to those found by other authors [51,53]. Additionally, regarding the
quality of the fines, the sand equivalent of the recycled aggregate (RCF) is lower than the
minimum required by the CodE for the 0/4 fraction used in concrete elements exposed to
exposure classes X0 and XC.

Figure 4 shows the granulometric distribution of the aggregates used, as well as the
upper, lower and fine limit content (<0.063 mm) established in the CodE for the fine fraction,
observing that all granulometric fractions 0/6, 6/12 and 12/22, regardless of their nature
(natural or recycled), have a similar granulometric distribution.
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Finally, the fine content (<0.063 mm) of the natural aggregate (CS-F) is 11.59%, slightly
over the limit established for concrete with non-limestone aggregates subject to general
exposure classes X0 or XC and not subject to any specific XA, XF or XM exposure class. In
the case of recycled sand (RCF), the fine content is 7.78%.

2.3. Mix Design

Table 3 shows the composition of the 20 formulated mixes: (i) 1 reference mix (HP) with
100% natural aggregate; (ii) 4 mixes with recycled coarse aggregate in different percentages
(25%, 50%, 75% and 100%) and 0% recycled sand (HR-25, HR-50, HR-75 and HR-100);
(iii) 5 mixes with recycled coarse aggregate in different percentages (0%, 25%, 50%, 75% and
100%) and 10% recycled sand (HR-0+10, HR-25+10, HR-50+10, HR-75+10 and HR-100+10);
(iv) 5 mixes with recycled coarse aggregate in different percentages (0%, 25%, 50%, 75% and
100%) and 20% recycled sand (HR-0+20, HR-25+20, HR-50+20, HR-75+20 and HR-100+20);
and (v) 5 mixes with recycled coarse aggregate in different percentages (0%, 25%, 50%,
75% and 100%) and 50% recycled sand (HR-0+50, HR-25+50, HR-50+50, HR-75+50 and
HR-100+50).

The starting data required to design the mixes according to the DOE British Method [55]
were: (i) characteristic design strength (fck) of 30 MPa (C30/37); (ii) effective water-to-cement
ratio (w/c) of 0.45; and (iii) 20 mm maximum size of the coarse aggregate. It is also consid-
ered that the aggregates are dry, and 70% of the water absorption of the recycled aggregates
has been added to the theoretical water content resulting from the dosing process, thus
guaranteeing that all mixes have the same amount of water available for cement hydration
regardless of the aggregate mix. For manufacturing all the mixes, a super-plasticising
additive (6.20 kg/m3) was also added with an amount of 1.55% by weight of cement.

Finally, all mixes meet the minimum dosage requirements (maximum water/cement
ratio and minimum cement content) specified in article 43.2.1 of the CodE for use as structural
concrete for exposure classes XC1/XC2 and XC3/XC4 with maximum water/cement ratio of
0.60 and 0.55, respectively. Regarding the minimum cement content, a value of 275 kg/m3

and 300 kg/m3 of cement is established for classes XC1/XC2 and XC3/XC4, respectively.
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Table 3. Mix batching.

Mix
Components (kg/m3)

NS RS NG-M NG-C RG-M RG-C Cement Water

HP 732.36 0.00 382.96 766.69 0.00 0.00 400.00 193.03
HR-0+10 655.65 70.59 380.95 762.65 0.00 0.00 400.00 195.20
HR-0+20 581.26 140.81 379.94 760.63 0.00 0.00 400.00 197.40
HR-0+50 360.4 349.21 376.92 754.58 0.00 0.00 400.00 203.93

HR-25 724.65 0.00 284.20 568.96 92.01 186.72 400.00 197.37
HR-25+10 648.72 109.24 282.69 565.94 91.52 185.72 400.00 202.36
HR-25+20 576.64 218.48 282.69 565.94 91.52 185.72 400.00 206.34
HR-25+50 358.47 347.35 281.18 562.91 184.73 281.18 400.00 209.38

HR-50 716.94 0.00 187.45 375.27 182.06 369.46 400.00 203.86
HR-50+10 643.51 108.37 186.95 374.26 181.57 368.47 400.00 207.72
HR-50+20 572.01 216.73 186.95 374.26 181.57 368.47 400.00 211.67
HR-50+50 354.62 343.61 185.43 371.24 180.10 365.49 400.00 214.55

HR-75 711.16 0.00 92.97 186.12 270.88 549.72 400.00 209.18
HR-75+10 638.31 68.72 92.72 185.62 270.15 548.23 400.00 211.29
HR-75+20 567.38 137.44 92.72 185.62 270.15 548.23 400.00 213.49
HR-75+50 349.80 338.94 91.46 183.10 266.48 540.79 400.00 219.48

HR-100 701.52 0.00 0.00 0.00 356.29 723.03 400.00 214.20
HR-100+10 627.90 67.60 0.00 0.00 356.29 723.03 400.00 216.15
HR-100+20 556.59 134.83 0.00 0.00 353.35 717.07 400.00 218.19
HR-100+50 345.94 335.21 0.00 0.00 351.39 713.10 400.00 224.40

2.4. Experimental

Prior to the design of the different mixes, the physical, mechanical and chemical
properties (see point 2.2) of the aggregates used in this research were analysed. Next, the
concrete mixes previously described were theoretically formulated (see Section 2.3) and
adjusted on a laboratory scale. The properties of the manufactured concrete (see Table 4)
were then studied in their fresh state (density, entrained air and consistency) and in their
hardened state (density, compressive and flexural strength and water penetration under
pressure) (see Table 4).

Table 4. Concrete properties studied.

Property Standard Sample Size
(cm) NS/M Testing Age

(Days)

Fresh state

Density EN 12350-6 [56]

Evaluated during the manufacturing processEntrained air EN 12350-7 [57]

Consistency EN 12350-2 [58]

Hardened state

Density EN 12390-7 [59] 15 × 15 × 15 3 28

Compressive strength EN 12390-3 [60] 15 × 15 × 15 9 7, 28, 90

Flexural strength EN 12390-5 [61] 10 × 10 × 40 3 28

Water penetration
under pressure EN 12390-8 [62] Ø15 × 30 3 28

Note: NS/M: number of samples/mix.

Figure 5 shows the procedure followed for mixing the designed mixes, manufacturing
and subsequent curing of the samples. The first phase of the mixing process consists of
loading and homogenising the materials. To do so, the granular skeleton consisting of
the aggregates was first placed into the mixer and then mixed for 30 s. The cement was
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then added, mixing for another 60 s. The second phase consists of the mixing itself, which
begins by diluting the additive in 10% of the mixing water. This mix is added to the mixer
for 45 s, after which 70% of the mixing water is added. Finally, the remaining 20% is added,
and everything is mixed for 240 s. Finally, the third phase consists of filling the moulds and
compacting them by chopping with a bar as established by the EN 12390-1 standard [63].
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Figure 5. Mixing process.

2.5. Statistical Analysis

To evaluate the influence of replacing natural aggregate with recycled aggregate on
concrete properties, two different techniques were used, depending on the property studied.
First, to study the mechanical properties of the concrete, an analysis of variance (ANOVA)
was carried out for each property and age studied, carrying out a total of four analyses.
The statistical software “R”, version 4.0.5, was used to make the calculations.

The proposed model (Equation (1)) to carry out the analyses corresponds has two
factors (% substitution of coarse aggregate and % substitution of fine aggregate) and
interactions.

Yijk = µ11 + αi + βj + αβij + εijk, i = 1, . . ., 4; j = 2; k = 1, . . ., 3 (1)

This model obtains a value for the response variable Yijk (strength studied in each
case) by adding different values: (i) µ11 is the average value corresponding to the reference
mix (HP) in each case; (ii) αi quantifies the relative effect corresponding to the first factor
(% coarse aggregate substitution); (iii) βj quantifies the relative effect corresponding to
the second factor (% fine aggregate substitution); (iv) αβij is the relative effect due to
the interaction that occurs when simultaneously substituting both fractions; and (v) εijk
indicates the perturbation of the model.

To check whether the analyses carried out are valid, the homoscedasticity and normal-
ity assumptions must first be checked using the Bartlett and Shapiro–Wilk tests, respectively.
Table 5 shows the p-values of both tests. As can be seen, both assumptions are met in all
analyses, so the analyses are therefore considered valid.
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Table 5. Homoscedasticity and normality tests.

Contrast Type
Compressive

Flexural
Water under

Pressure7 Days 28 Days 90 Days

Bartlett 0.456 0.803 0.381 0.605 0.075
Shapiro–Wilk 0.237 0.627 0.556 0.231 0.532

Once the initial assumptions were tested, the model calculates the model coefficients,
indicating whether or not these values are significant. In other words, for what percent-
ages of substitution is strength variation relevant or not from a statistical point of view
(p-value < 0.05).

In the density study (apparent as well as fresh-state), expressions were also observed
that relate the total percentage of substituted aggregate (%) with the density (D) studied in
each case. In both cases, the model proposed for the optimal adjustment was obtained using
linear regression (Equation (2)), in both cases obtaining very good correlation coefficients
(R2 > 0.8):

D = a% + b (2)

This model returns a density value through an affine function with parameters in-
cluding the y-intercept (b), which corresponds to the reference value for the mix without
recycled aggregate (RC) and the gradient (a) that adjusts the line to the data obtained
through a least-squares fitting.

3. Results
3.1. Fresh-State Properties

Figure 6 shows the fresh-state density as a function of the percentage of total substi-
tution of natural aggregate by recycled aggregate, observing that the density decreases
as the recycled aggregate content increases, recording losses of less than 5% in all cases.
This decrease is mainly due to the lower density of the recycled aggregates, as well as the
greater amount of entrained air (see Table 6) in the mixes with a greater amount of recy-
cled aggregate. This trend was observed by other authors [64,65] incorporating recycled
concrete aggregates in all fractions, with decreases of around 3% for total substitution of
coarse aggregate.
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Table 6. Settlement and entrained air.

Mix Slump (mm) Entrained Air (Vol. %)

HP 82.8 1.63

HR-0+10 65.0 1.58

HR-0+20 75.0 1.60

HR-0+50 80.0 1.68

HR-25 78.0 1.66

HR-25+10 77.5 1.78

HR-25+20 77.1 1.74

HR-25+50 87.0 1.80

HR-50 89.0 1.66

HR-50+10 82.0 1.66

HR-50+20 60.0 1.82

HR-50+50 77.5 1.74

HR-75 66.3 1.73

HR-75+10 90.0 1.60

HR-75+20 75.0 1.73

HR-75+50 92.5 1.68

HR-100 72.0 1.82

HR-100F10 90.0 1.90

HR-100F20 90.0 1.90

HR-100F50 80.0 1.90

From a statistical point of view, the proposed expression shows a clear linear relation-
ship (R2 > 0.8) between the substitution percentage and the density, enabling the density to
be calculated based on the amount of aggregate substituted.

Table 6 shows the slump and entrained air values observed for the different mixes,
first showing that all the mixes have a soft consistency (50–90 mm) pursuant to article
33.5 of the CodE, which corresponds to a type S2 settlement according to EN 206. These
results confirm that all samples have the same workability regardless of the amount of
aggregate substituted, because the amount of super-plasticiser additive as well as the
effective water/cement ratio are maintained.

Finally, the entrained air content varies slightly for the different mixes, obtaining
values between 1.58% and 1.90%. In this case, the lower density and greater porosity of
the recycled aggregates result in a slight increase in air content [66]. Simsek [65] observed
a similar behaviour, with slight variations but an increasing trend as the substitution
percentage increases, for the coarse fraction as well as for the fine fraction.

3.2. Hardened-State Properties
3.2.1. Bulk Density

Figure 7 shows the bulk density data as a function of the amount of recycled aggregate
of the different mixes, as well as the adjustment made and the proposed mathematical
expression. In this case, the proposed expression also shows the linear relationship (R2 > 0.8)
between the density and the percentage of recycled aggregate.
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The density behaviour is very similar to that previously described for the fresh-state
density, although with slightly lower values. The range of density loss (0.16–3.25%) is lower
than that obtained in the fresh state, although the data trend is very similar. Tuyan [67]
maintains that this decrease in apparent density is directly related to the presence of
macropores in the mortar adhered to recycled concrete aggregates, with a direct relationship
between the amount of aggregate substituted and the decrease in density.

3.2.2. Compressive Strength

Figure 8 shows the results of compressive strength at age 7, 28 and 90 days in a
150 × 150 × 150 mm cubic sample, observing that all the mixes exceed the corresponding
design strength with a C30/37 concrete (fck = 30 N/mm2), which indicates that all mixes,
regardless of the content and recycled fraction used, could be used from a point of view of
this property in manufacturing structural concrete.

Appl. Sci. 2024, 14, x FOR PEER REVIEW  12  of  20 
 

 

Figure 7. Apparent density. 

3.2.2. Compressive Strength 

Figure 8 shows the results of compressive strength at age 7, 28 and 90 days in a 150 × 

150 × 150 mm cubic sample, observing that all the mixes exceed the corresponding design 

strength with a C30/37 concrete (fck = 30 N/mm2), which indicates that all mixes, regardless 

of the content and recycled fraction used, could be used from a point of view of this prop-

erty in manufacturing structural concrete.   

 

Figure 8. Simple compressive strength. 

In the case of mixes that include only the coarse fraction of the aggregate, there are 

small strength losses, which increase slightly as the age increases. At 7 days, the HR-25 

mix even presents a higher strength than the reference mix (+2.22%). However, strength 

decreases in the rest of the mixes between 1.42% and 2.5%. At 28 and 90 days, the losses 

are very similar in all mixes, with decreases between 5.20% and 7.04% at 28 days and be-

tween 2.39% and 8.45% at 90 days. This behaviour is similar to that found by Chang [68], 

who observed a 7-day strength increase of 1.35% for a 25% substitution of coarse concrete 

aggregate. At 28 days, losses of 3.86% and 7% were observed for substitution percentages 

of 25% and 75%, respectively. Pedro [69] observed losses of between 3.2% and 7.6% for 

concrete with a target fck of 45 MPa, substituting 25% to 100% of the coarse fraction with 

recycled concrete aggregates. 

Figure 8. Simple compressive strength.

In the case of mixes that include only the coarse fraction of the aggregate, there are
small strength losses, which increase slightly as the age increases. At 7 days, the HR-
25 mix even presents a higher strength than the reference mix (+2.22%). However, strength
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decreases in the rest of the mixes between 1.42% and 2.5%. At 28 and 90 days, the losses
are very similar in all mixes, with decreases between 5.20% and 7.04% at 28 days and
between 2.39% and 8.45% at 90 days. This behaviour is similar to that found by Chang [68],
who observed a 7-day strength increase of 1.35% for a 25% substitution of coarse concrete
aggregate. At 28 days, losses of 3.86% and 7% were observed for substitution percentages
of 25% and 75%, respectively. Pedro [69] observed losses of between 3.2% and 7.6% for
concrete with a target fck of 45 MPa, substituting 25% to 100% of the coarse fraction with
recycled concrete aggregates.

Regarding the fine fraction, the strength loss is similar to that resulting from sub-
stituting the coarse fraction for percentages up to 20%. At 7 days, the behaviour is very
similar to that described above, even recording a slight increase (2.61%) for the HR-0+10
mix. At 28 and 90 days, the losses range between 1.67% and 5.83%. In the case of the
HR-0+50 mix, the strength losses are significantly higher, with losses between 5.83% and
11.46%. This behaviour agrees with the results observed by other authors. Mohammed [70]
recorded a decrease in strength of approximately 14% for a 50% substitution of the fine
fraction with concrete aggregate, associating these losses with the significant increase in
the absorption of the recycled aggregate. For lower substitution percentages, the results
observed by Zega [71] are very similar to those found in this work, with losses around
2% substituting 20% of the fine fraction with concrete sand. At 90 days, the difference
with respect to the reference concrete is reduced to approximately 1.6%. In this case, a
reduction in the effective water/cement ratio leads to an improvement in the interface
(ITZ), which results in behaviour very similar to the reference concrete, even improving
other durable properties.

Finally, the simultaneous addition of both fractions mitigates the effect of strength
loss, obtaining concretes with strength very similar to the previous ones but with a higher
recycled aggregate content. The effect of simultaneous addition can be observed with the
data from the statistical analysis, whose parameters are shown in Table 7.

From a statistical point of view, the effect of adding coarse aggregate is generally
negative, as reflected in the data shown in Figure 9. However, the behaviour at 7 days has
non-significant factors that reveal that the trend is not as clear as in the other ages. In the
case of fine aggregate, the factors follow the same trend, which corroborates the idea that
the addition of any fraction of the aggregate results in a decrease in strength.
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Additionally, the interaction factors reveal positive values for 28 and 90 days in all
cases, which indicates that the strength loss is mitigated when both fractions are added
simultaneously, which also contributes to obtaining concretes with similar strength to those
that have only one fraction type (coarse or fine), although increasing the percentage of
recycled aggregate in the mixes.
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Table 7. Estimation of the parameters of the different models.

Parameter
Compressive

Flexural Water under
Pressure7 Days 28 Days 90 Days

µ11 45.27 55.20 60.53 7.12 4.45

α2 1.00 −2.87 NS NS NS

α3 NS −3.84 −5.12 −0.42 5.98

α4 −1.13 −3.89 −1.97 −0.49 3.38

α5 NS −3.49 −3.28 −0.66 NS

β2 1.18 NS −2.12 NS −2.51

β3 NS −1.56 −2.28 NS NS

β4 −2.64 −6.33 −5.39 −0.25 NS

αβ22 −3.60 3.53 3.62

No
interaction

3.54

αβ32 −2.72 3.57 4.44 −3.28

αβ42 −1.44 4.24 2.78 NS

αβ52 NS NS NS NS

αβ32 1.51 2.47 NS NS

αβ33 −2.71 2.36 4.32 NS

αβ43 3.96 NS NS NS

αβ53 NS NS NS NS

αβ23 −2.80 6.81 NS NS

αβ33 5.34 6.30 7.55 −4.83

αβ43 NS 5.64 NS NS

αβ53 NS 2.79 2.72 NS
Note: NS: not significant.

Regarding the evolution of strength over time, Figure 9 shows the relative strength
values of the mixes with respect to the reference value at 28 days, as well as the relative
strength estimated in the Eurocode-2 (EC-2) at 7 and 90 days. It shows that all the mixes
present a similar evolution in strength gain, in most cases reaching greater strength than
expected at 7 and at 90 days. This result shows that the addition of the recycled coarse
and/or fine concrete fraction does not influence the cement hydration process. It also
indicates that the behaviour recorded at 7 days, in which greater strength is observed than
expected by the EC, is concordant with the results of Surendar [72], which evaluated the
behaviour of mixes with between 10% and 75% substitution of the coarse fraction with
concrete washed aggregate.

Finally, it indicates that all the mixes present the same failure mode regardless of
the age studied. This failure mode is classified in the EN 12390-3 standard as satisfactory
(Figure 10).
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3.2.3. Flexural Strength

Figure 11 shows the flexural strength at 28 days of the formulated concrete, as well as
the estimated strength according to the expression included (fct,m,fl = 1.6 − h/1000)fct,m)
in point 3.1.8 of the CodE. Additionally, the flexural strength has been estimated from the
compressive strength, using the expression included in article A19.3.1.8, combined with
the expression for average tensile strength and taking 90% of the compressive strength
obtained in the cubic samples as fck. The resulting expression is shown in the Equation (3)

fct,m,fl = 0.405·fcm2/3 (3)
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Figure 11. Flexural strength.

In the mixes that only substitute the coarse fraction of the aggregate, lower strengths
were observed, with losses of between 7.41% and 10.73%, with very similar values regard-
less of the substitution percentage. In the case of fine aggregate, the decrease in strength is
greater as the amount of recycled aggregate increases, with losses of between 4.37% and
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9.01%. In the mixes that incorporate both fractions, the values are similar except for mixes
with 50% fine aggregate, which generally present a higher strength loss, although all values
remain below 20%. These values are similar to those recorded by other authors. Saini [73]
and Yaba [74] found losses of 4.1% and 10% for 50% and 100% substitution of the coarse
fraction, respectively. Regarding the fine fraction, Mohammed [70] observed a loss of 14%
by substituting 50% of the fine aggregate with recycled aggregate.

Mohammed [70] and Xiao [75] state that the reduction in strength occurs due to
the presence of micro-cracks in the adhered mortar in the recycled fractions, as well as
the intrinsic properties (thickness and micro elastic) of the ITZs old mortar/new mor-
tar and old aggregate/old mortar, whose values are worse than those shown by new
aggregate/new mortar.

It should also be noted that in all mixes, regardless of their granular skeleton, the
failure mechanism consisted of a single large crack that was initiated in the flexural span
and with a normal orientation to the tensile stresses generated due to flexure [76].

From a statistical point of view (Table 7), the effect of adding the coarse aggregate
is negative, with a non-significant value for the HR-25 mix. Regarding the mixes that
incorporate only the fine fraction, there is only one significant factor for the HR-0+50 mix,
so there is no clear trend. Likewise, there is no interaction, so the combination of the coarse
and fine fractions has no significant effect on the model studied.

3.2.4. Water Penetration under Pressure

Table 8 shows the average and maximum depth of water penetration under pressure,
showing that all the mixes, regardless of the percentage and recycled fraction added, have
average and maximum depth values below the limits established in the article. 43.3.2 of the
CodE (Pmed ≤ 20 mm and Pmax ≤ 30 mm) for exposure classes (XS3 and XA3). Therefore, all
formulated concretes have a sufficiently impermeable structure against water penetration.

Table 8. Average and maximum depths of water penetration under pressure.

Mix Average Depth (mm) Maximum Depth (mm)

HP 4.45 14.54

HR-0+50 5.35 9.96

HR-25 5.25 9.09

HR-25+10 6.28 16.06

HR-25+20 5.50 12.58

HR-25+50 5.81 11.43

HR-50 9.51 14.64

HR-50+10 4.64 9.48

HR-50+20 8.27 17.94

HR-50+50 6.49 11.44

HR-75 7.83 15.02

HR-75+10 5.32 10.17

HR-75+20 7.53 14.78

HR-75+50 6.91 12.50

HR-100 6.21 12.97

HR-100+50 6.80 13.87

It firstly indicates that for the mixes that incorporate only the coarse fraction of the
recycled aggregate, the average penetration values are higher, presenting high variability
in the data obtained, with increases from 17.99% to 113.63%. However, the maximum
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penetration values are very similar or even lower in some cases. The fine fraction only has
the HR-0+50 mix, which has an average depth 20.15% greater than the reference mix.

In general terms, the variability of the measurements does not allow a clear trend to be
established from a statistical point of view, although a slight upward trend can be observed
as the recycled aggregate content increases. Analysing the model parameters (Table 7), the
substitution of the coarse fraction produces a positive relative effect (increase in the average
depth) regardless of the substitution percentage. However, the effect is the opposite for
low substitution percentages of the fine fraction (10%). Regarding interferences, there is no
clear trend from a statistical point of view, with few significant values.

In general terms, the literature reveals that the depth values increase as the amount
of recycled aggregate increases, both coarse and fine [77], although some authors do not
consider it significant [78]. Zega [71] observed that the penetration values are slightly
higher if the fine fraction of recycled aggregates is used, although the behaviour is very
similar for substitution percentages less than 30%. Kapoor [79] recorded depth increases of
30% for total substitution of the coarse fraction with concrete aggregate, as well as increases
of 18% when both fractions were combined (100% of the coarse fraction and 50% of the fine).
Velardo [80] also observed similar values for average penetration (~8 mm) and somewhat
higher values in the case of maximum penetration (~18 mm) using mixed aggregates.

4. Conclusions

The conclusions obtained in this work are presented below:

- Recycled aggregates have greater absorption, as well as lower LA coefficient, density
and flakiness index than natural aggregates.

- The coarse recycled fractions (gravel and gravel) and fine (sand) comply with the
mechanical, physical and chemical requirements set forth in the current regulations
on aggregates for concrete.

- The workability of the concrete is not affected by the addition of the recycled fractions
(coarse and/or fine), all of which show a soft consistency.

- The density of the concrete with recycled aggregate is lower than that of the reference
concrete in all cases, in the fresh state as well as in the hardened state. The density
decreases as the proportion of recycled aggregate in the mix increases, registering
density variations of less than 5% in all cases.

- The entrained air content increases slightly as the amount of recycled aggregate
increases, although remaining within the usual values for conventional reinforced
concrete, not exceeding 1.9% in the mixes with the highest recycled aggregate content.

- The compressive strength of concrete with recycled aggregate is lower than that of the
reference mix, with losses of less than 13% in all cases. The greatest losses are recorded
in mixes that include a higher percentage (50%) of fine recycled aggregate.

- The flexural behaviour is similar to that recorded in compressive, slightly increasing
the maximum loss percentage to 19%. Losses are generally greater in mixes that
include a high percentage of recycled aggregate, coarse as well as fine.

- All mixes are therefore suitable for use in class C30/37 structural concrete.
- The expression included in the structural code for estimating the flexural strength is

correct, showing values with differences of less than 10% compared to the experimental
values for all mixes.

- The penetration depths of water under pressure present great variability, with in-
creases of up to 100%. However, the provisions of the regulations are complied with
in all cases.

The conclusions indicate that eco-concretes can be used to manufacture structural
concrete analyzing mechanical performance. However, it is necessary to complement the
tests carried out by analysing the durability of all mixes, as well as on full-scale structural
pieces. Furthermore, in order to properly study the environmental benefit, a Life Cycle
Analysis (LCA) would be necessary to estimate the environmental benefit taking into
account the variables concerning waste treatment or transportation.
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Abstract: As the use of 3D-printed concrete becomes more prevalent, the need for effective recycling
methods becomes paramount. This study addresses this concern by exploring the repurposing of 3D-
printed concrete waste as an aggregate in normal-strength concrete for C30/37 and C40/50 classes,
covering both fine and coarse aggregates in its particle size distribution. The extent of recycled
aggregate (RA) replacement was determined through sieve analysis. A two-stage investigation
assessed the compressive strength performance of the concrete specimens. The initial stage produced
reference specimens with no replacement, representing conventional concrete. In the second stage,
variable specimens incorporated 50% and 67% recycled aggregate (RA) from 3D-printed concrete
waste. Results revealed that in C40/50, both the 50% and 67% replacements consistently exhibited a
higher strength than 0%. In C30/37, the 50% replacement displayed decreased strength compared to
the 0% and 67%, while the 67% replacement consistently showed superior strength. Adjusting the
water content impacted strength; at 67%, slight variations occurred, while at 50%, extra water led to a
significant decrease. An overarching discovery is that the efficacy of the 67% replacement level holds
regardless of the concrete strength class.

Keywords: recycled 3D-printed concrete aggregate; particle size distribution; mix design;
compressive strength; normal strength concrete; interfacial transition zone

1. Introduction

In recent years, the construction industry has witnessed a transformative shift, with
the advent of 3D printing technology revolutionizing traditional building methods. One of
the most groundbreaking developments in this domain is 3D-printed concrete, a cutting-
edge construction technique that has the potential to reshape the way we build structures.
3D-printed concrete, also known as the 3D printing of concrete or concrete 3D printing, is
an innovative construction technology that uses computer-controlled robotic systems or
large-scale 3D printers to deposit layers of concrete material in a precise and predetermined
manner [1,2]. 3D-printed concrete (3DPC) finds applications across residential, commercial,
and infrastructure projects, ranging from walls and buildings to bridges and smaller
structures, all while continuing to evolve and shape the future of construction.

However, as the adoption of 3DPC grows, the need for sustainable and environmentally-
responsible practices becomes increasingly critical. This environmental consideration is
expected to gain further prominence in the future, particularly as 3D-printed concrete is ap-
plied in the construction of temporary buildings. The swift production pace inherent to this
technology necessitates the prompt encounter and management of demolition waste in such
projects. This dual emphasis on sustainability and efficiency positions 3D-printed concrete
as a promising solution not only for current construction needs but also for the evolving
demands of future structures. The construction industry’s increasing inclination towards
environmentally-conscious and resource-efficient solutions underscores the transformative
potential of 3D-printed concrete in shaping the future of construction methodologies [3,4].
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The incorporation of recycled coarse aggregate (RCA) into concrete mixes presents a
promising avenue for sustainable construction practices. Various studies have delved into
the impact of RCA replacement ratios on both the mechanical properties and durability of
concrete structures. Research indicates that up to 30% RCA replacement has no significant
impact on mechanical properties [5]. At 50% RCA replacement, there is typically a 10–15%
reduction, and at 100% replacement, it can reduce mechanical properties by 30–40% [6–9].
Over a 2-year period, Abed et al. [10] investigated the compressive strength of concrete,
incorporating 0%, 25%, and 50% of RCA alongside supplementary cementitious materi-
als, revealing increased strength in recycled aggregate (RA) mixes over natural aggregate
(NA) mixes and suggesting enhanced long-term performance attributed to the continuous
hydration of attached mortar on the RCA, even during freeze-thaw cycles. Gonzalez and
Moriconi [11] recommend that in regions prone to severe seismic activity, it is sufficient
to replace up to 30% of conventional NA with RA to maintain acceptable structural per-
formance. Kou and Poon [12] assessed the mechanical properties of RA produced from
parent concrete (PC) with 28-day compressive strengths ranging from 30 to 100 MPa. After
28 days, concrete derived from PC with 80 and 100 MPa compressive strengths exhibited
strengths exceeding 65 MPa, slightly surpassing those of natural aggregate concrete. Over
a 90-day period, both mixtures achieved compressive strengths of 75 MPa. The highest
compressive strength reported by Tu et al. [13] was 42 MPa after 91 days at a water-cement
(w/c) ratio of 0.32.

In addressing the potential adverse effects on strength and durability in structural
applications due to RCA, various guidelines have been established to provide specific
recommendations. One such guideline, HB155-2002 [14], proposes measures to control the
use of RCA in different concrete grades. For instance, it suggests limiting the replacement
of conventional coarse aggregate with Class 1A RCA to 30% in Grade 1 structural concrete.
In contrast, Grade 2 non-structural concrete is permitted to have a 100% replacement
with RCA. Adding to this, BV-MI 01: 2005(H) [15] introduces recommendations that
involve varying levels of RCA replacement, ranging from 30% to 100%, based on class
strength and the geometrical properties of aggregates. However, it advises not to use
RCA replacement for C50/60 and above class strength. It is noteworthy that different
countries have adopted varying approaches to regulate the percentage of RCA replacement.
For example, Brazil, China, Spain, and the UK have set a lower limit, restricting RCA
replacement to 20% for structural concrete [16]. The diversification in these guidelines
reflects regional considerations, experiences, and research findings, emphasizing the need
for a nuanced approach in addressing the challenges associated with incorporating recycled
materials in concrete production.

In conventional concrete, the use of aggregates with a diverse range of particle sizes is
a common practice aimed at enhancing packing density and overall strength. However, in
the realm of 3D-printed concrete, a departure from this conventional approach is observed.
Instead, a more deliberate emphasis is placed on achieving a controlled and uniform
particle size distribution of the fine aggregate [17]. This strategic adjustment is designed
to facilitate a consistent flow through the printer nozzle, thereby ensuring the smooth
extrusion of the material during the 3D printing process.

Hence, it is essential to determine the optimal replacement level for the recycled
aggregate (RA) sourced from 3D-printed concrete waste to uphold the mechanical proper-
ties of the concrete. Additionally, a mechanism needs to be developed for incorporating
the fine particle size RA into the mix. The decision to include fine recycled aggregate is
influenced by the fact that the parental material (i.e., 3D-printed concrete) consists solely of
fine aggregate, introducing an additional aspect for investigation.

This study aims to investigate the feasibility of recycling 3D-printed concrete waste
as an aggregate in normal strength concrete, focusing on compressive strengths for the
C30/37 and C40/50 MPa classes, covering both fine and coarse aggregates in particle
size distribution.
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Despite the increasing interest in 3D-printed concrete, there is a notable gap in com-
prehensive research on utilizing recycled aggregate (RA) from this material in conventional
concrete production. This study seeks to bridge the divide between cutting-edge construc-
tion techniques and sustainable resource management. By repurposing waste materials
from 3D-printed concrete processes, the objective is to showcase the potential for establish-
ing a closed-loop system within the construction industry.

2. Materials and Methods
2.1. Materials

The material employed in the fabrication of 3D-printed concrete is the premixed white
powder known as Sikacrete®-752 3D, combined solely with water. Sikacrete®-752 3D
incorporates a fine aggregate with a maximum size of 2 mm, along with Portland cement
and additives [18]. The specific type and proportions of these constituents are proprietary
to the Sika company (Biatorbágy, Hungary). When mixing this powder with water, the
company prescribes a water-to-powder ratio (w/p) ranging from 14% to 16%, based on the
weight of the powder [18].

The 3D-printed concrete waste, obtained after Kovács [19] conducted a comprehensive
investigation into the material properties of Sikacrete®-752 using both conventional and 3D
printing casting methods for her MSc thesis work, is outlined in Table 1. The table includes
relevant information on casting types, the material’s water-to-powder ratio (w/p), and
printing directions, with the symbol N/A indicating ‘Not Applicable’. Following this study,
the 3D-printed concrete waste was processed by crushing it into fine and coarse aggregates
using a jaw crusher in one step.

Table 1. Physical and mechanical properties of waste concrete.

Type of
Casting

w/p (%) Direction
of

Printing

Density
(kg/m3)

Tensile Strength
(MPa)

Compressive
Strength

(MPa)Flexural Splitting

Conventional
14.0 N/A 2084 9.4 3.9 63.8
14.5 N/A 2084 8.8 3.2 63.1
15.0 N/A 2066 8.7 4.2 61.1

3D
Printing

14.0 horizontal 2116 6.9 3.3 53.8

14.5
horizontal 2140 5.4 2.8 53.4

vertical 2140 2.5 3.2 44.2

15.0
horizontal 2119 3.6 3.5 53.0

vertical 2119 2.4 3.1 48.1

In the recycling approach, all crushed particle sizes, including both fine and coarse
particles, were used as recycled aggregates. This approach towards recycled aggregate
usage emphasizes a comprehensive and sustainable recycling strategy. By incorporating the
full spectrum of particle sizes, the aim is to optimize the potential for reusing 3D-printed
concrete waste in a manner that enhances the overall material sustainability and minimizes
environmental impact.

In this experimental study, a two-stage investigation was conducted to evaluate the
performance of concrete specimens in terms of compressive strength using a 150 mm cube
mold [20]. The initial stage concentrated on producing reference specimens, representing
conventional concrete with no replacement. The materials used in this phase included
CEM II/AS 42.5 N [21], river sand, and quartz gravel, aiming to establish a baseline for
standard or reference mixes. These reference specimens, following conventional practices,
serve as a reference point for subsequent comparisons. Having completed the first stage,
the transition to the second phase emphasized the incorporation of recycled aggregate
(RA) sourced from 3D-printed concrete. Visual representations of both quartz gravel and
recycled aggregates from the 3D printed concrete are presented in Figure 1.
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Figure 1. Aggregates: (a) Quartz gravel; (b) RA of 3D-printed concrete waste.

The specimens in this stage, still utilizing a 150 mm cube mold, showcase the potential
of recycled materials in concrete production.

2.2. Particle Size Distribution

The meticulous attention to adhering to established particle distribution grading
curves underscores the importance of maintaining compatibility with industry standards,
particularly in the pursuit of sustainable and performance-enhancing concrete formulations.
To determine the extent of recycled aggregate (RA) replacement, a precise sieve analysis was
performed on the RA sourced from 3D-printed concrete and the river sand in accordance
with the specifications outlined in EN 933-1:2012 [22]. This standardized procedure ensures
the accurate assessment and comparison of particle size distribution for both types of
aggregates. The resulting grading curves for each aggregate are visually represented in
Figures 2 and 3, providing a clear depiction of the size distribution characteristics.
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Figure 2. Grading curve of river sand.

Notably, river sand predominantly functions as a fine aggregate; however, a more
detailed examination, illustrated in Figure 2, reveals the presence of 7% coarse aggregate
with a particle size of 4mm by mass. This observation requires careful consideration
during the mix design phase when proportioning the various ingredients for the overall
construction material. By addressing these intricacies in the mix design, the goal is to
achieve a composition that aligns with the specified requirements and ensures the desired
performance characteristics of the resulting construction material.
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Figure 3. Grading curve of crushed 3D-printed concrete.

In Figure 3, the data reveals that 68% of the recycled aggregate, based on mass,
constitutes a coarse aggregate. Especially, its grading curve deviates from the specified
boundaries of curves A and C, contravening the stipulations outlined in MSZ 4798-1 [23]
regarding grading distribution.

To rectify this discrepancy, a crucial step involves blending the recycled aggregate
with sand in carefully determined proportions. The key objective is to establish a specific
grading for the combined fine and coarse aggregates, ensuring an optimal distribution
that maximizes the aggregate content while minimizing void spaces. This approach serves
to reduce reliance on paste (water and cementitious material) in concrete formulations,
consequently enhancing dimensional stability and overall durability.

Adhering to this guiding principle, the integration of recycled aggregates with sand
has been executed with a specific approach, taking into account both the maximum level of
replacement required to achieve a Class I and Class II aggregate size distribution [15,23].
Illustrated in Figures 4 and 5 are the replacement levels that successfully meet these criteria,
represented by recycled aggregate to sand mass ratios of 2:1 (67% replacement) and 1:1 (50%
replacement). This visual representation serves as a clear demonstration of the effectiveness
of these specific ratios in achieving the desired aggregate classifications.

Appl. Sci. 2024, 14, x FOR PEER REVIEW  5  of  14 
 

 

Figure 3. Grading curve of crushed 3D-printed concrete. 

In Figure 3, the data reveals that 68% of the recycled aggregate, based on mass, con-

stitutes  a  coarse  aggregate.  Especially,  its  grading  curve  deviates  from  the  specified 

boundaries of curves A and C, contravening the stipulations outlined in MSZ 4798-1 [23] 

regarding grading distribution. 

To rectify this discrepancy, a crucial step involves blending the recycled aggregate 

with sand in carefully determined proportions. The key objective is to establish a specific 

grading  for  the combined fine and coarse aggregates, ensuring an optimal distribution 

that maximizes the aggregate content while minimizing void spaces. This approach serves 

to reduce reliance on paste (water and cementitious material)  in concrete formulations, 

consequently enhancing dimensional stability and overall durability. 

Adhering to this guiding principle, the integration of recycled aggregates with sand 

has been executed with a specific approach, taking into account both the maximum level 

of  replacement  required  to  achieve  a Class  I  and Class  II  aggregate  size  distribution 

[15,23].  Illustrated  in Figures 4 and 5 are  the replacement  levels  that successfully meet 

these criteria, represented by recycled aggregate to sand mass ratios of 2:1 (67% replacement) 

and 1:1 (50% replacement). This visual representation serves as a clear demonstration of the 

effectiveness of these specific ratios in achieving the desired aggregate classifications. 

 

Figure 4. Grading curve for 67% replacement ratio (2:1). 

100
91

52

32
23

16
11

6
200

10

20

30

40

50

60

70

80

90

100

31.51684210.50.250.1250.063

C
u
m
u
la
ti
v
e 
p
as
se
d
, m

as
s%

Sieve size, mm (log scale)

Curve A
Curve B
Curve C
RA of 3D

100
94

68

52

39
30

20

6200
10
20
30
40
50
60
70
80
90
100

31.51684210.50.250.1250.063

C
u
m
u
la
ti
v
e 
p
a
ss
ed

, m
as
s%

Sieve size, mm (log scale)

Curve A
Curve B
Curve C
67% replacement

Figure 4. Grading curve for 67% replacement ratio (2:1).
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Figure 5. Grading curve for 50% replacement ratio (1:1).

By strategically incorporating these replacement levels, the aim is to strike a balance
between sustainable practices and meeting the specified standards for aggregate distribu-
tion. The selection of these replacement levels is informed by careful consideration of the
desired concrete properties and the need to optimize the use of recycled materials.

The concrete selected for this study belongs to the strength classes of C30/37 and
C40/50, both of which fall within the category of normal strength concrete, as they are
under the C50/60 threshold [24]. In summary, Figure 6 illustrates the grading curve of the
aggregate, representing the combined fine and coarse aggregate particle size distribution,
for both strength classes of concrete when there is 0% (i.e., no replacement level), 50% and
67% replacements.
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However, when we examine the scenarios with 50% and 67% replacement levels, irre-
spective of the concrete’s strength class, a notable observation emerges. In these instances,
the grading curve of the aggregate remains identical, as depicted in Figure 6. This indicates
a consistent pattern in particle size distribution when a substantial portion of the aggregate
is replaced, emphasizing a crucial aspect of the study’s findings.

2.3. Mix Design

Table 2 provides a comprehensive breakdown of mix designations and the respective
percentages of different materials incorporated into the mix. In parallel, Table 3 offers a
detailed presentation of the mix proportions measured in kg/m3, accompanied by the fresh
concrete density for various mixtures. The focal points of this study encompass three main
parameters: (i) the type of aggregate (natural or recycled), with varying proportions, (ii) the
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variation of water amount with constant cement content, and (iii) the strength class of the
concrete, represented by C30/37 and C40/50.

Table 2. Mix designations and proportions of different ingredients.

Mix
Mix

Designation w/c
Superplasticizer
(1% of Binder)

Aggregate (%)
NA RA

Mix 1 C40-RA0 0.41 - 100 -
Mix 2 C40-RA50 0.41 1 50 50
Mix 3 C40-RA50w+ 0.51 - 50 50
Mix 4 C40-RA67 0.41 1 33 67
Mix 5 C40-RA67w− 0.38 1 33 67
Mix 6 C30-RA0 0.51 - 100 -
Mix 7 C30-RA50 0.51 1 50 50
Mix 8 C30-RA50w+ 0.70 - 50 50
Mix 9 C30-RA67 0.51 1 33 67

Mix 10 C30-RA67w− 0.41 1 33 67

Table 3. Mix proportions and fresh density in kg/m3.

Mix
Designation Cement River Sand River Gravel RA 1 Water Superplasticizer

(1% of Binder)
Fresh

Density

C40-RA0 459 542 1206 - 188 - 2388
C40-RA50 459 874 - 874 188 4.59 2236

C40-RA50w+ 459 874 - 874 234 - 2191
C40-RA67 459 583 - 1165 188 4.59 2207

C40-RA67w− 459 583 - 1165 174 4.59 2196
C30-RA0 343 621 1261 - 175 - 2382
C30-RA50 343 941 - 941 175 3.43 2178

C30-RA50w+ 343 941 - 941 240 - 2156
C30-RA67 343 627 - 1255 175 3.43 2184

C30-RA67w− 343 627 - 1255 141 3.43 2147
1 All crushed particle sizes, encompassing both fine and coarse particles.

To systematically explore the impact of these parameters, ten concrete mixtures, each
comprising four specimens, were carefully prepared. These mixtures encompass different
aggregate replacement percentages and water amounts, tailored for the selected concrete
strength classes. The mix designations outlined in Tables 2 and 3 utilize specific labels: ‘C’
for concrete, ‘NA’ for natural aggregates, and ‘RA’ for recycled aggregates. The numerical
values following ‘C’ and ‘RA’ denote the cylindrical characteristic compressive strength
in MPa at the age of 28 days and the percentage of recycled aggregate by weight in the
total aggregate, respectively. The symbols ‘w+’ and ‘w−’ represent the utilization of
additional water without superplasticizer and the use of superplasticizer with a reduced
water amount compared to the reference mix to achieve the desired workability in the
recycled concrete mix. This systematic nomenclature provides a clear and organized
framework for understanding the composition and characteristics of each concrete mixture
in the study.

The primary source of natural coarse aggregate (NCA) is quartz gravel, with a minor
fraction sourced from sand—this accounts for a maximum of 3%. River sand is employed
as the natural fine aggregate. Recycled coarse and fine aggregates (RCA and RFA) are
derived from crushed 3D-printed concrete waste.

The water-cement (w/c) ratio is a pivotal factor with a direct impact on the properties
and workability of concrete mixes. In light of this, we introduce different water-cement
ratios (w/c) beyond those of the reference mixes. In the absence of a superplasticizer,
determining the highest permissible w/c ratio becomes crucial, aligning with the natural
workability of recycled concrete. Conversely, the introduction of a superplasticizer into
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the mix presents another dimension. Superplasticizers, as chemical admixtures, enhance
the workability of concrete without significantly altering the w/c ratio. In this scenario,
selecting the lowest possible w/c ratio becomes imperative to maintain the desired worka-
bility with the assistance of the plasticizer. This allows for greater control over the mix’s
consistency and flow, even at a lower w/c ratio, offering advantages in achieving the
desired properties in the final concrete while conserving water.

In both scenarios, the main emphasis is on adjusting the water content, while keep-
ing the other mixing ingredients constant. This is done to evaluate the necessity of pre-
saturation of the recycled aggregates (RA) with water before concrete mixing, given that
3D-printed concrete waste has a water absorption capability of 4.5% in its saturated state
and a particle density of 2116 kg/m3. This precautionary measure aims to prevent water
absorption by the RA during the mixing process, aligning with recommendations from
various researchers and guidelines [14,15]. This exploration also contributes to an en-
hanced understanding of how moisture conditions influence the performance of recycled
aggregates in concrete mixes.

Four specimens of 150 mm cube size were cast using steel molds for each concrete mix.
Subsequently, these cubes underwent a carefully devised mixed curing process. During the
initial seven days, the cubes were immersed in water, providing a controlled environment
for the crucial early stages of hydration. Following this submerged period, the specimens
were exposed to the open air for the subsequent 21 days. This mixed curing approach is
strategically designed to optimize the concrete’s development of strength and durability.
The initial submersion in water serves to create favorable conditions for the hydration
process, crucial for the formation of a robust concrete structure. The subsequent exposure
to open air replicates real-world atmospheric conditions, contributing to the concrete’s
long-term curing and enhancing its overall performance.

2.4. Testing Methods

The testing method employed is the standard compression test, conducted in accor-
dance with EN 12390-3:2001 [20], to determine the compressive strength of cubic speci-
mens. The results of the test are then checked for adherence to the criteria specified in
EN 206:2013 [25]. The compressive strength testing utilizes a standardized compression
testing machine, specifically the FORMTEST ALPHA 3-3000. Within this controlled testing
environment, the specimens undergo a carefully regulated testing process, exposed to a
consistent rate of loading set at 11.5 kN/s. As per EN 1992-1-1:2004 [26] standard, the
cylindrical mean compressive strength value (fcm,cyl) in MPa is determined by adding 8
to its cylindrical characteristic compressive strength value (fck,cyl). It is important to note
that this relationship specifically applies to cylindrical samples measuring 150 mm in
diameter, 300 mm in height, aged for 28 days, and cured underwater throughout the entire
duration (wet cured) [27]. In practical concrete technology, the conformity of compressive
strength is commonly assessed using 150 mm-sized cubes, tested at the age of 28 days,
and subjected to mixed curing. For such scenarios, the required minimum mean cubic
compressive strength values (fcm,cube,H) for concrete classes up to C45/55 are provided in
the BV-MI 01:2005 (H) [15], specifically for specimens aged 28 days and subjected to mixed
curing as per MSZ 4798-1:2004 [23]. To meet the conformity criteria of EN 206:2013 [23]
for compressive strength, this value should be less than or equal to the measured average
value of its compressive strength (fcm,cube,test,H) in accordance with BV-MI 01:2005 (H) [15].

In concrete, the interfacial transition zones (ITZs) serve as a bridge between the mortar
matrix and the coarse aggregate particles. Even when the individual components are of
high stiffness, the stiffness of the concrete may be low because of breaks in these bridges
(i.e., voids and micro-cracks in the interfacial transition zone), which do not permit stress
transfer [28]. In recycled aggregate concrete, there are more interfacial transition zones
than normal aggregate concrete [29]. Therefore, the interfacial transition zone should
be considered when the strength of the concrete is evaluated. Taking this into account,
scanning electron microscopy (SEM) testing is conducted to assess the microstructure
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of the concrete at ITZ. The significance of the interfacial bond between the aggregate
and the cementitious matrix has been underscored by various researchers [29–31]. The
ITZ is commonly regarded as the weakest region in concrete, impacting both mechanical
properties and durability. Understanding the stress deformation behavior of concrete is
crucial, particularly in this zone, as it differs from that of its individual components; namely,
hydrated cement paste and aggregate. This test examines the SEM images of the specimens
at the interfacial transition zone (ITZ) to assess how the aggregate types influence the
nature of aggregate-cement paste interfacial bonding.

3. Results and Discussion
3.1. Compressive Strength
3.1.1. Influence of Replacement Level

Following the testing of specimens at 28 days to determine both their individual and
mean compressive strength, the equations specified in EN 206:2013 [25] are applied. These
calculations lead to the determination of the measured average compressive strength value
of the specimens (fcm,cube,test,H), a crucial parameter used for classifying the concrete strength
class according to BV-MI 01:2005 (H) [15]. The specific classifications are detailed in Table 4,
providing a clear reference for the concrete’s strength characteristics based on industry
standards. This systematic approach ensures that the concrete production process is aligned
with the established guidelines and results in accurate strength class classifications. These
mixes are utilized to investigate the impact of replacement levels on compressive strength.

Table 4. Concrete strength with variable RA replacement.

Mix Designation Density
(kg/m3)

fcm,cube,test,H
(MPa) Strength Class [15]

C40-RA0 2377 69 C40/50
C40-RA50 2220 75 C45/55
C40-RA67 2174 75 C45/55
C30-RA0 2363 57 C30/37

C30-RA50 2155 49 C30/37
C30-RA67 2165 58 C30/37

A comparison is made between the measured average compressive strength value of
specimens (fcm,cube,test,H) and the corresponding minimum required compressive strength
value (fcm,cube,H) for both C40/50 and C30/37 at the age of 28 days, which are specified
as 67 MPa and 49 MPa respectively [15]. The results clearly indicate that the measured
compressive strength average value for each concrete mix surpasses the mean compressive
strength requirement value stipulated for the concrete strength class. This observation
holds true for instances of mixed curing.

In other words, the measured mean compressive strength values consistently meet or
exceed the specified requirement values for the respective concrete strength classes. This
alignment underscores the robustness of the concrete mixes, confirming their adherence to
the established standards [20–27] and emphasizing the reliability of the mean compressive
strength results under the conditions of the study.

Figures 7 and 8 provide a comprehensive depiction of the variations in compressive
strength and density with respect to the replacement levels for the mix series, respectively.
The inclusion of error bars, based on standard deviation, enhances the precision and
insightfulness of the presented data.
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Figure 7. Measured compressive strength of C40 and C30 series.
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Figure 8. Air dry density of C40 and C30 series.

Focusing on the C40 series, Figure 7 reveals a noteworthy observation: the compressive
strength at both 50% and 67% replacement levels is identical, and notably higher than that
at the no replacement level (0%). Simultaneously, Figure 8 illustrates a consistent trend of
decreasing density with an increasing replacement level.

In the context of the C30 series, Figures 7 and 8 show a significant trend where
the 50% replacement level exhibits lower compressive strength and density compared
to both the 0% (no replacement) and 67% replacement levels. This indicates that a 50%
replacement negatively impacts the compressive strength and density of the concrete
mix. One potential explanation for this is the high percentage of fine aggregate and poor
compaction during casting.

The significant finding is that the 67% replacement level emerges as particularly ef-
fective. Remarkably, it not only aligns with the 0% (no replacement) scenario but even
surpasses the compressive strength exhibited by the reference specimens. The primary rea-
sons for low strength of the reference specimens are attributed to the smooth surface of the
quartz gravel and the poor grading of the natural aggregate, as depicted in Figures 1 and 6,
respectively.

Following the assessment of the conformity criteria for compressive strength and the
analysis of the impact of replacement levels, the focus shifts to comparing the compressive
ratio between the variable and reference specimens. In the majority of cases, the variable
specimens with 50% and 60% replacement levels exhibit compressive strengths that are at
least on par with, if not superior to, the reference specimens. A particularly noteworthy
observation emerges: at a 67% replacement level, regardless of the concrete strength class,
there is a consistent improvement in compressive strength. This implies that the 67%
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replacement level is optimal for enhancing compressive strength, irrespective of the initial
concrete strength class, highlighting a potentially advantageous mix design strategy.

3.1.2. Influence of Water Content

To demonstrate the impact of water content variation in the mixing process, we opted
for the mix specified in Table 5. This particular mix features diverse water content levels
while maintaining the same recycled aggregate (RA), replacement level, and concrete
strength class. For the purpose of this comparison, C40-RA50, C40-RA67, C30-RA50, and
C30-RA67 have been selected as reference mixes. These reference mixes share a similar
water-cement ratio (w/c), with the mixes having 0% replacement of RA within their
respective strength class [see, Table 2].

Table 5. Influence of water amount in the C40 and C30 mix series.

Mix Designation Density
(kg/m3)

fcm,cube,test,H
(MPa) Strength Class [15]

C40-RA50 2220 75 C45/55
C40-RA50w+ 2174 60 C35/45

C40-RA67 2174 75 C45/55
C40-RA67w− 2196 74 C40/50

C30-RA50 2155 49 C30/37
C30-RA50w+ 2128 37 C20/25

C30-RA67 2165 58 C30/37
C30-RA67w− 2147 59 C30/37

Initially, we compared the measured mean compressive strength against the required
minimum mean compressive strength for the respect strength class concrete, as illustrated
in Figure 9.
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Figure 9. Influence of water content on compressive strength.

A prominent observation from Figure 9 indicates that the utilization of higher amounts
of water, particularly for the 50% replacement level, fails to meet the required minimum
compressive strength for the targeted strength class. Consequently, this leads to a down-
grade in the strength class, as detailed in Table 5. Conversely, in the case of a lower amount
of water used for the 67% replacement, although it satisfies the conformity of the mean
compressive strength, the slight difference in the measured compressive strength results in
a change in the concrete strength class, as indicated in Table 5.
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Therefore, altering the water content in the mix results in a decrease in compressive
strength compared to the reference mix. Additionally, the pre-saturation of the recycled
aggregate in 3D-printed concrete waste is deemed unnecessary before mixing.

3.2. Aggregate-Cement Paste Interfacial Bonding (Interfacial Transition Zone)

After conducting the compressive test on both normal concrete and recycled concrete
specimens, the shape of the developed cracks in the failed specimens was examined using
SEM, as depicted in Figure 10. In the case of normal concrete, the specimens failed with the
development of cracks in the interfacial transition zone (ITZ) between the natural coarse
aggregate (quartz gravel) and the cement mortar. Furthermore, after the compressive test
on normal concrete, the quartz gravel easily separated from the mortar due to the failure
in the interfacial transition zone between the quartz gravel and mortar. Despite the bond
cracks in the interfacial transition zone being less wide than those in recycled concrete,
the smooth surface of the quartz gravel led to a lack of mechanical interlock between the
quartz gravel and mortar. On the other hand, the specimens of recycled concrete failed with
the development of cracks in the interfacial transition zone between the recycled coarse
aggregate and the cement mortar, as well as the failure of the aggregate itself.
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4. Conclusions

In conclusion, empirical testing of the mean compressive strength confirms the ro-
bustness of the concrete mixes, aligning with BV-MI 01: 2005(H) standards for respective
strength classes. In C40/50 concrete, both the 50% and 67% replacement levels consistently
exhibit higher compressive strength than the 0% replacement level. Transitioning to C30/37,
a notable trend emerges: the 50% replacement level shows decreased strength compared
to both the 0% and 67% replacement levels, while the 67% replacement level consistently
displays superior compressive strength. In this range of replacement, the use of crushed
concrete waste from 3D-printed concrete (3D RCA) is more similar to that of the RCAs
from normal concrete. Additionally, adjusting the water content impacts the compressive
strength in concrete mixes. At a 67% replacement, slight variations occur, while at 50%,
additional water leads to a significant strength decrease.

SEM analysis of normal and recycled concrete specimens post-compressive test re-
vealed distinctive cracking patterns. Normal concrete showed cracks in the interfacial
transition zone (ITZ) between the natural coarse aggregate and the cement mortar, resulting
in easy separation. Recycled concrete exhibited cracks in the ITZ between the recycled
coarse aggregate and the cement mortar, along with aggregate failure. These findings
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highlight divergent failure mechanisms and underscore the importance of crack analysis
for concrete performance enhancement.

An overarching discovery is that the efficacy of the 67% replacement level holds regard-
less of the concrete strength class. Remarkably, it not only outperforms the no-replacement
scenario but even exceeds the compressive strength of reference specimens. This un-
derscores the strategic advantage of a 67% replacement level in optimizing compressive
strength across diverse concrete classes.
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Abstract: The high stiffness of cement-bound aggregate (CBA) is recognized as its main drawback.
The stiffness is described by the modulus of elasticity, which is difficult to determine precisely in
CBA. Incorporating rubber in these mixtures reduces their stiffness, but mathematical models of the
influence of rubber on the mechanical characteristics have not previously been defined. The scope of
this research was to define a prediction model for the compressive strength (fc), dynamic modulus
of elasticity (Edyn) and static modulus of elasticity (Est) based on the measured ultrasonic pulse
velocity as a non-destructive test method. The difference between these two modules is based on the
measurement method. Within this research, the cement and waste rubber content were varied, and
the mechanical properties were determined for three curing periods. The Edyn was measured using
the ultrasonic pulse velocity (UPV), while the Est was determined using three-dimensional digital
image correlation (3D DIC). The influence of the amount of cement and rubber and the curing period
on the UPV was determined. The development of prediction models for estimating the fc and Est of
CBA modified with waste rubber based on the non-destructive test results is highlighted as the most
significant contribution of this work. The curing period was statistically significant for the prediction
of the Est, which points to the development of CBA elastic properties through different stages during
the cement-hydration process. By contrast, the curing period was not statistically significant when
estimating the fc, resulting in a simplified, practical and usable prediction model.

Keywords: prediction models; cement-bound aggregate; waste rubber; compressive strength;
modulus of elasticity; ultrasonic pulse velocity; non-destructive testing

1. Introduction

In semi-flexible pavements, cement-bound aggregate (CBA) is used as a bearing layer.
This layer provides improved bearing capacity and freeze—thaw resistance while present-
ing an even surface for installing asphalt layers. Despite all the benefits, these materials are
prone to cracking due to cement hydration and the expansion of these cracks under the
influence of repeated traffic loads [1]. Recently, waste rubber has been used in this material
to release internal stresses and reduce the occurrence of cracks. The quality of this material
is primarily described by its compressive strength. The compressive strength of CBA is usu-
ally tested after 7 and 28 days [2], but it is often measured after 90, 180 and 360 curing days
for CBA modified with materials possessing postponed pozzolanic activity. The strength is
significantly lower than that of conventional concrete, and satisfactory 7-day compressive
strength ranges from 2.1 to 2.8 MPa [3,4]. Determining the compressive strength implies
measuring the breaking force of a sample exposed to a uniaxial compressive load. The
destruction of a sample is an acceptable way of testing laboratory-prepared samples when
a sufficient number of samples can be produced. However, when evaluating the material
incorporated in a pavement, there is a limited number of cored specimens. Preserving the
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sample for many test procedures is very useful in this case. Additionally, conducting a field
evaluation of the inbuilt bearing layer using non-destructive testing is preferable.

The other important characteristic of cement-bound aggregate is its elasticity modulus
(E). The dynamic (Edyn) and static (Est) moduli of elasticity can be measured within cement-
based materials [5]. The Est is determined from the linear relationship of the stresses and
strains during the compression strength test. An obstacle in determining the static modulus
of elasticity is the rough surface of this material [6], because the procedure entails the precise
measurement of microscopic vertical displacements of points on the sample derivatives
during the change in compression force. In addition to the difficulty of ensuring precise
measurements, this is also a destructive method. At the same time, the static modulus of
elasticity is significantly lower than the dynamic modulus [6].

On the other hand, the dynamic modulus of elasticity is usually measured using
the ultrasonic pulse velocity. This is a non-destructive method, usually used in concrete
testing, after which the sample is ready for further testing, and it can be applied to various
materials. Ultrasonic pulses are pulses with frequencies over 20 Hz. There are several
conventional ultrasonic testing methods, such as the pulse-echo ultrasonic, pitch-catch
ultrasonic, immersion-based ultrasonic, air-coupled ultrasonic, oblique incidence, phase
array ultrasonic and laser-ultrasonics and non-contact laser-ultrasonic techniques [7]. The
choice of method depends on the tested material, the size of the specimen and external
conditions. As mentioned above, cement hydration is a time-dependent process, so the
passage of time significantly affects the development of the material stiffness. Guotang
et al. [8] explain three typical stages of UPV development during the first 55 h of cement-
stabilized aggregate microstructure formation. In the first stage, the UPV is stable at
low values, followed by the second stage, where, due to cement hydration, the UPV
rapidly increases. In the third stage, the UPV gradually becomes stable due to a rigid and
stable matrix.

These methods apply to all materials used in road construction, starting from the
stabilized soil through bearing layers to asphalt materials. Raavi and Tripura [9] developed
prediction models for compressive and indirect tensile strength estimation of unstabilized
and stabilized rammed earth based on UPV measurement. The authors also encourage
using UPV measurement as an effective strength-estimation method. Furthermore, in [10],
the authors emphasize that to develop prediction models, it is necessary to increase the
number of UPV measurements in each direction (x, y, z) to four to increase the precision
of the results. In addition, the importance of not carrying out measurements at the same
point on the sample is emphasized. A prediction model for shear modulus estimation was
developed in [11] by applying this method to cement-stabilized clays. The UPV proved
helpful in multifunctional analysis, which predicts the compressive strength and rebound
value [11]. Furthermore, this non-destructive method achieved reliable results in evaluating
cement-bound aggregate. Barišić et al. [12] observed a strong relationship between the
UPV and the compressive- and indirect-tensile-strength values and emphasized polyno-
mial and exponential laws as the most appropriate to describe the relationship between
strength and UPV. They also defined a range of UPVs in which CBA achieves satisfactory
characteristics, which is helpful when making decisions during an examination. This paper
develops models for steel-slag-stabilized mixtures for three different curing ages: 7, 28
and 90 days. Liu et al. observed a difference between compression and tension modulus
and developed a power function decay model for these two parameters [13]. According
to Mandal et al. [14], the UPV can be used to estimate the mechanical properties of most
cement-stabilized materials, except cement-stabilized clay, which behaves differently from
other stabilized materials. This paper presents strong correlations in the developed models
between the flexural strength and the constrained modulus and the flexural modulus and
the constrained modulus based on 7-day-old specimens. These parameters are commonly
tested for the evaluation of soil behavior. In addition to CBA, roller-compacted concrete
(RCC) is also used in pavement construction. Regarding its mechanical properties, this
material occupies a place between CBA and concrete. Prediction models have also been
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developed for such materials, which predict the compressive strength based on the re-
bound number and the UPV [15]. The relationship between the rebound number and
the compressive strength is established by the power law, while the relationship between
the UPV and compressive strength is established by the exponential law. Additionally,
the authors developed a logarithmic relationship between the dynamic modulus of the
elasticity and the compressive strength. Furthermore, Rao et al. [16] developed an equation
for estimating the Edyn of the RCC based on the fly ash content, UPV and curing period,
which agrees with experimental tests. The RCC in these research works is combined with
crumb rubber, nano-silica and fly ash, making UPV a universal tool for model development
in different materials. The UPV mainly served as a compressive-strength-prediction tool in
the research on stabilized granular materials and no research deals with the issue of the
static modulus of elasticity. Furthermore, all the models of CBA developed are nonlinear.
There is a consensus on the utility of using the UPV technique when evaluating the me-
chanical characteristics of coherent [9–11,17] and incoherent materials [18]. The reliability
of all the developed models is based on the coefficient of determination, which is not a
reliable parameter for evaluating nonlinear models in the sphere of statistical inference.
Therefore, the need for a more detailed statistical data analysis in this area is emphasized.

The non-destructive nature of UPV measurement also applies to asphalt mixtures.
Norambuena-Contreras et al. [19] state that the dynamic modulus measured by the UPV
can replace the low-frequency standard dynamic test. They also emphasize this method
as cheaper, faster and easier to implement. In determining the Edyn of asphalt mixtures
by UPV, Majhi et al. [20] concluded that more reliable modulus values are obtained by
considering the bulk density rather than the geometric density of asphalt specimens. The
testing of the moisture sensitivity of asphalt mixtures using the UPV in [21] resulted in
a linear equation between the seismic modulus and the UPV with a good coefficient of
determination. Using this model, the moisture susceptibility of asphalt specimens can
be predicted.

In addition to the desire for non-destructive testing methods, the trend of the circular
economy has also been expressed in recent times. There are increasing numbers of appli-
cations of different waste materials in composite materials used in construction. Some
of these are used as aggregates, while those with pronounced pozzolanic properties are
used as binders. For example, Jackowski et al. [22] investigated the possibility of using
different additives to cement and different fibers in the production of concrete bricks, while
Ramadani et al. [23] investigated the possibility of using glass powder in combination with
waste rubber in concrete. Rubber has also showed potential in increasing the resistance of
concrete structures to the impact of earthquakes [24]. Guided by the desire to preserve the
environment, rubber was used as a waste material in this work, since, due to its pronounced
elastic properties, it can affect the reduction in the high stiffness of cement-stabilized aggre-
gates and, as a waste material, it is very easily available on the market, considering the large
consumption of tires. In addition, in most countries in Europe, the collection and processing
of tires is very well organized [25]. Furthermore, the possibilities of using waste rubber in
road construction is highlighted [24,26]. However, prior to waste rubber’s incorporation
in pavement materials, it has to pass through a certain separation process, in which steel
fibers are separated from the rubber. These steel fibers are applied as reinforcements in
concrete [27].

The aim of this research is to develop reliable prediction models for fc and Est esti-
mation based on the measured UPV of CBA modified with waste rubber. Such a model
would ensure a simple, fast, non-destructive approach to characterizing CBA by adding
waste rubber. Furthermore, based on the literature review, it is concluded that none of the
prediction models developed to date consider both the UPV and the length of the curing
regimes of specimens for the prediction of mechanical properties, which would greatly
facilitate the application of such models. Furthermore, a complete lack of prediction models
for estimating the static modulus of elasticity was observed. Considering the difficulty
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of precisely determining this parameter, such a model would contribute significantly to
this field.

2. Materials and Methods

Within this research, 15 cement-stabilized mixtures were tested. The materials used
were natural river sand and gravel, waste granulated rubber, Portland cement of grade
32.5R (CEM II B/M (P-S) 32.5R) as a binder and the optimal amount of water determined
according to standard [28]. The density of used materials is presented in Table 1, while the
physical and mechanical properties of used binder are presented in Table 2.

Table 1. Densities of used material.

Aggregate Sand Gravel Rubber Cement

Size 0–2 mm 0–4 mm 4–8 mm 8–16 mm 0–0.5 mm
Density (g/cm3) 2.86 2.96 2.63 2.70 1.12 2.92

Table 2. Physical and chemical properties of cement.

Physical Properties Chemical Properties

Start of binding (min) 200 SO3 (%) 3.2
Volume stability acc. to Le Chatelier (mm) 0.4 Cl (%) 0.009
Pressure strength after 2 days (MPa) 16
Pressure strength after 28 days (MPa) 42

The granulometric composition of the aggregates was determined using the European
standard EN 933-1 [29] and is presented in Figure 1. The composition of the mixture shown
in Figure 1 is tailored to the inclusion of rubber as per the flexibility allowed in the fifth
category of the EN 14227-1 [30]. Cement was used as a binder in proportions of 3%, 5%
and 7% of the aggregate mass. Due to their similar granulometric curves, fine-granulated
rubber (0–0.5 mm) derived from end-of-life (ELT) car and truck tires was used as a volume
replacement for sand in amounts of 10%, 20%, 30% and 40%. The detailed composition of
the tested CBA mixtures is presented in Table 3. The rubber content is defined according to
previous results, indicating 60% replacement, causing extremely high strength loss [31,32].
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Table 3. CBA mixture composition.

Mixture Cement (%) Sand (%) Rubber (%)

C3R0

3

100 0
C3R10 90 10
C3R20 80 20
C3R30 70 30
C3R40 60 40
C5R0

5

100 0
C5R10 90 10
C5R20 80 20
C5R30 70 30
C5R40 60 40
C7R0

7

100 0
C7R10 90 10
C7R20 80 20
C7R30 70 30
C7R40 60 40

Rubber replacing the fine fraction complies with several other research papers [33–38].
Each rubber proportion was added to each cement amount, resulting in 12 rubberized
mixtures. Three standard cylindrical specimens measuring Ø100 mm and with heights of
120 mm of each mixture were compacted by a vibrating hammer according to the procedure
prescribed in EN 13286-51 [39].

The specimens were produced in order to test their compressive strength and deter-
mine their static (Est) and dynamic (Edyn) moduli of elasticity. The modulus of elasticity
is the slope of a material’s stress—strain curve with its elastic region. Before destructive
testing, the non-destructive method for determining Edyn was employed according to stan-
dard EN 12504-4 [40]. This method is carried out on specimens of known dimensions and
density, with two transducers applied to opposite bases of cylindrical specimens, emitting
ultrasonic waves and measuring the duration of their passage, which is used to calculate
the Edyn. Poisson’s coefficient is needed for the calculation, for which the value 0.25 was
adopted in this research as a typical value for CBA. Poisson’s ratio usually ranges from
0.15 to 0.30 for cement-stabilized materials; the value of 0.25 was adopted in previous
papers [41,42]. In addition, to neutralize the imperfect contact between the transducer
and the rough specimen surface, a gel was applied. The procedure for determining the
dimensions and mass of the specimen and the apparatus required for the UPV test are
shown in Figure 2.

The measurement of Est was carried out during the compressive strength test. The
test was carried out according to EN 13286-43 [43] from the stress-and-strain relationship.
Due to the inaccuracies in using LVDT for strain measurement, caused by the setting of the
sample and the breakage of aggregates during the test, such results may be unreliable [6].
Therefore, in this research, a 3D DIC method was used to monitor the displacement of the
characteristic points of the specimens. This is an optical non-contact method for monitoring
the changes on the observed surface, in this case, vertical displacements. More details on
the 3D DIC method used in this research and its applicability are presented in [44]. The
procedure for Est testing is shown in Figure 3. Testing of the compressive strength was
carried out according to EN 13286-41 [45], exposing the specimen to a compressive load
with the input force such that the fracture of the specimen occurred between the 30th and
120th second from the commencement of the load; specific experience is needed to conduct
this test. The compressive strength was calculated from the peak force, i.e., the force at
which the fracture occurred in the area on which the load was applied.
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3. Results

The results obtained for the dynamic modulus of elasticity (Edyn), compressive strength
(fc) and static modulus of elasticity (Est) measurements are shown in Table 4. The presented
results were calculated as the average value of the three tested specimens for each mixture
and curing period. Values that deviated by over 20% from each other were discarded
according to the standard EN 14227-1 [30]. The table contains the results of the mechanical
characteristics for the curing periods, 7, 28 and 90 days, and express the standard deviation
(St.dev.). The mixtures were divided into groups (columns) according to the amount of
rubber and, additionally, the results were divided according to the proportion of cement
in the mixture. For example, the third, fourth and fifth columns in the table show the
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results of mixtures with 0% rubber and 3%, 5% and 7% cement, respectively. From the
plotted results (Table 4), it can be concluded that an increase in strength occurs with an
increase in cement and in the duration of the curing period. The highest strength values
were reached for the 90-day curing period and with 7% cement for each rubber content.
On the other hand, increasing the amount of rubber in the mixture causes a decrease in
the compressive strength. An increase in the Edyn and Est accompanies the increase in
strength. The decrease in Edin and UPV with a decrease in fc due to rubber incorporation
complies with the findings in [16]. The authors of that paper state that a decrease in UPV
is correlated with a decrease in compressive strength due to the incorporation of fly ash
instead of cement, which has less early-age pozzolanic activity. In this case, the rubber is
the reason for the compressive strength decrease. Observing the modulus values, one can
conclude that there is no rapid modulus-growth phase, as stated in [8], because of the use
of rapid hardening cement. The rapid growth in the strength and modulus occurred in the
first seven days of the specimen curing. The same can be concluded from Figure 4, which
shows the development of the UPV over time for the mixture with the highest cement
content. These mixtures are shown because they are expected to have the most significant
influence on the development of cement stiffness. It can be seen in Figure 4 that the
difference between the UPV for 7 and 28 days increases with the amount of rubber because
the hydration slows down due to the reaction of the Zn from the rubber with C3S [46].
However, for mixtures with up to 20% rubber, the UPV increases almost linearly until the
90th day of curing. It is impossible to determine the phase of the UPV’s rapid growth as it
is detected in rubberized mortars, i.e., the rapid growth phase occurs in the first 7 days. At
the same time, the amount of 20% rubber was shown to reduce the initial development of
the stiffness of the mixture. In general, the use of 20% rubber as a sand replacement reduces
the rate of stiffness development and linearizes the stiffness development over time. This
means that there is no sudden development of strength and stiffness and, consequently, no
sudden development of internal stresses. Furthermore, by observing the static modulus
of elasticity, it can be concluded that for reference mixtures, the Est values stagnate for
longer curing periods, and that this is more pronounced with higher cement contents.
On the other hand, with the incorporation of rubber, the Est develops with age and it is
more pronounced with mixtures with higher cement contents. Greater changes in mixtures
with higher proportions of cement and rubber directly indicate the interaction of rubber
and cement.

Table 4. Results of fc (MPa), Edyn (GPa) and Est (GPa) for three curing periods (7, 28 and 90 days)
and corresponding standard deviations for fc, Edyn and Est.

R0 R10 R20 R30 R40

C3 C5 C7 C3 C5 C7 C3 C5 C7 C3 C5 C7 C3 C5 C7

7
da

ys

fc 1.73 4.11 6.82 1.31 3.54 6.04 0.94 2.20 3.69 0.60 1.56 2.84 0.51 1.32 1.66
St. dev. (fc) 0.07 0.37 0.16 0.07 0.22 0.30 0.07 0.07 0.13 0.02 0.07 0.03 0.01 0.04 0.02

Edyn 11.39 20.04 27.14 9.35 17.79 23.22 3.23 10.93 14.76 1.76 5.66 9.05 0.62 4.18 4.19
St. dev. (Edyn) 0.07 0.94 0.80 0.27 0.57 0.66 0.28 0.89 0.74 0.05 0.26 0.60 0.01 0.17 0.12

Est 2.27 4.61 10.76 2.11 5.46 7.25 1.63 3.79 4.94 0.73 2.03 3.78 0.59 1.53 1.80
St. dev. (Est) 0.03 0.37 0.50 0.16 0.38 0.17 0.03 0.22 0.26 0.06 0.13 0.00 0.03 0.08 0.10

28
da

ys

fc 2.69 6.45 8.89 2.07 3.99 7.81 1.15 3.01 4.36 0.85 1.94 3.32 0.59 1.51 1.09
St. dev (fc) 0.31 0.07 0.27 0.09 0.09 0.22 0.02 0.03 0.29 0.02 0.11 0.03 0.01 0.04 0.03

Edyn 15.64 27.05 31.33 11.90 20.43 28.10 6.72 13.88 18.67 4.58 8.59 12.31 1.80 6.43 4.24
St. dev. (Edyn) 1.00 1.00 0.27 0.54 0.41 1.26 0.12 0.34 1.42 0.16 0.14 0.53 0.07 0.35 0.40

Est 3.46 10.03 11.96 3.27 6.18 8.61 2.51 4.31 5.51 1.76 3.24 3.59 0.91 2.55 2.73
St. dev. (Est) 0.026 0.53 0.12 0.04 0.41 0.17 0.17 0.01 0.46 0.03 0.05 0.20 0.05 0.13 0.08

90
da

ys

fc 3.32 7.55 11.57 3.88 7.67 12.95 2.24 4.85 7.85 1.13 2.78 4.30 0.84 2.13 2.34
St. dev. (fc) 0.11 0.53 0.38 0.05 0.00 0.46 0.06 0.12 0.20 0.05 0.13 0.20 0.01 0.00 0.03

Edyn 18.77 25.70 31.59 24.23 27.60 31.29 15.50 18.89 26.14 7.19 12.94 15.95 2.26 8.01 6.70
St. dev. (Edyn) 1.11 0.98 0.45 1.30 0.74 1.04 0.99 1.72 0.66 0.42 0.26 0.45 0.03 0.39 0.19

Est 4.66 9.54 12.69 5.26 11.42 13.42 5.80 8.48 12.92 3.06 4.72 5.96 0.92 3.07 3.27
St. dev. (Est) 0.35 0.57 0.79 0.23 0.39 0.40 0.15 0.09 0.61 0.10 0.11 0.42 0.02 0.10 0.19
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Figure 4. UPV development over time.

Furthermore, there is a strong linear correlation between these two moduli of the
examined mixtures, with a coefficient of determination of R2 = 0.88, as presented in Figure 5.
There was inevitably a connection between these two material properties, which was
expected, since these two parameters describe the same material property, its stiffness. The
results are more homogeneous for lower elasticity modulus values, i.e., mixtures of lower
strength and with a higher proportion of rubber. This is due to the more elastic behavior of
these mixtures, the more uniform development of deformations during loading and, thus,
the possibility of a more precise Est determination. Considering that different methods are
used to measure these two values and describe the same material characteristic, stiffness,
their linear relationship is proof of the applicability of these two methods.
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Figure 5. Edyn and Est relationship.

In this paper, we try to understand the relationship between the measured UPV and
the mechanical characteristics to establish prediction models. Firstly, the impact of the
amount of cement and rubber and the curing period on the UPV is analyzed. The UPV
values for each mixture are presented in Figure 6a for 7 days, Figure 6b for 28 days and
Figure 6c for 90 days. As shown in Figure 6, the ultrasonic pulse travels faster through
mixtures with higher proportions of cement, resulting in a very rigid matrix, which is more
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pronounced for shorter curing periods. That is, mixtures with higher proportions of cement
have more cement paste, which has a significantly higher stiffness than other mixture
constituents. In Figure 6c, one can see the decrease in the UPV for the C7R40 mixture,
which is attributed to the large amount of fine particles of rubber and cement, resulting in
the filling of all the pores and the grouping of the rubber in clusters that form an obstacle
to the passage of ultrasonic pulses [35]. The obtained results comply with [12,14], whose
authors state that increased cement contents and curing times result in higher UPV and
elasticity moduli. With higher amounts of rubber, a decrease in the UPV is also apparent.
As expected, the ultrasonic pulse passes through the rubber particles more slowly due
to their lower density. The rubber particles have a lower specific density and a porous
structure filled with air [47,48], which slows down the ultrasonic pulse.
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Figure 6. Impact of cement and rubber on UPV for curing periods of (a) 7 days, (b) 28 days and
(c) 90 days.

4. Prediction Models

In order to make the results of the research conducted usable in practice, two prediction
models were created by regression analysis. One was designed to predict the compressive
strength (fc) and the other was designed for the modulus of elasticity (Est) prediction. In
both models, the UPV was used as a predictor. This analysis was carried out based on raw
pairs of data (three pairs for every mixture and curing period) of the UPV–fc and UPV–Est
results. The R programming language was used to build the model. To build acceptable
models, the predictors UPV and curing period were used in a linear relationship with the
logarithm of the response variable.

The curing period was statistically insignificant in the model for fc prediction based
on the measured UPV values. Hence, the developed model takes only the ultrasonic pulse
velocity as an input parameter. This means that the same model can be used for all three
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curing periods, simplifying the prediction of fc. The plotted data and the regression line
obtained are presented in Figure 7.
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The model is homoscedastic (non-constant variance score test p-value = 0.84747), and
errors are normally distributed (Shapiro–Wilk test p-value = 0.2124). The 95% confidence
intervals for the intercept and UPV coefficient are (−1.3783653, −1.1341046) and (0.8035473,
0.8915409), respectively.

Given that this is a linear log(fc) model, it must be transformed to obtain an expression
for the prediction of fc. The model for fc is therefore:

fc (UPV) = e(−1.25623 + 0.84754 × UPV + ε) = eε × e(−1.25623 + 0.84754 × UPV) (1)

An adjusted coefficient of determination for this model equals 0.9154, which charac-
terizes a very strong relationship. The ε is the zero mean model error, with an estimated
standard deviation of 0.2414. As the hypothesis of normality was accepted, the mean
prediction and prediction intervals were calculated based on the lognormal distribution,
with the parameters µ = 0 and ơ2 = 0.24142 = 0.05828. For instance, the mean prediction can
be calculated by the formula:

mean(fc (UPV)) = 1.0296 × e(−1.25623 + 0.84754 × UPV) (2)

The mean prediction line is with the 95%-prediction-interval boundaries presented in
Figure 8.

The situation is more complicated in the case of Est prediction based on the measured
UPV values. The UPV and curing period were statistically significant, so a model with two
predictors was developed. This means that the prediction of log(Est) depends, apart from
the UPV, on the duration of the curing period.

The model for log(Est) is also homoscedastic (non-constant variance score test
p-value = 0.38964), but the errors are not normally distributed (Shapiro–Wilk test
p-value = 0.002291). The estimated model coefficients, intercept, UPV and days are −0.7216,
0.7585 and 0.0019, respectively, with p-values of 2 × 10−16, 2 × 10−16 and 2.59 × 10−3,
respectively. Based on the asymptotic regression theory of 95% confidence intervals for
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the intercept, the UPV and days coefficients are (−0.8406, −0.6025), (0.7132, 0.8038) and
(0.0007, 0.0031), respectively.
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The established model is as follows:
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Est(UPV, days) = e−0.7216 + 0.7585 × UPV + 0.0019 × days + ε = eε × e−0.7216 + 0.7585 × UPV + 0.0019 × days (3)

An adjusted coefficient of determination for this model equals 0.9077, which charac-
terizes a very strong relationship. The ε is the zero mean model error, with an estimated
standard deviation of 0.2345. Extensive simulations based on the empirical error distri-
bution showed that the eε part in the model is negligible for practical purposes, so the
resulting formula can be used to discuss the behavior of the mean Est, depending on UPV
and days. For a complete understanding of this model, we provide the following example:
for the same UPV value, a change in the curing period from 0 days to 7 days would affect
an increase in Est of 1.013 (GPa), a change in curing period from 0 days to 28 days would
affect an increase in Est of 1.055 (GPa), while changing the curing period for the same
UPV from 0 to 90 days would increase Est of 1.186 (GPa). The mean prediction line and
95%-prediction-interval boundaries obtained by these simulations are shown in Figure 10.
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The development of such models is significant in material testing and greatly facilitates
the testing process, enabling the determination of more mechanical characteristics on the
same specimen. The developed models enable reliable results, as shown by the distribution
of the residuals. It was shown that the prediction of the compressive strength does not
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depend significantly on the length of the curing period. In contrast, the curing period is
statistically significant for predicting the static modulus of elasticity. This is in accordance
with [8]. It can be concluded that, during strength development, the stiffness passes through
certain phases, which cannot be determined based on the results obtained. This represents
the motivation for further research and the description of the development of stiffness in
cement-bound mixtures with the addition of waste rubber.

5. Conclusions

This research includes the testing of the compressive strength (fc) and dynamic (Edyn)
and static (Est) moduli of elasticity of cement-bound aggregate modified with waste rubber
to determine the inter-relationships of these characteristics and their time dependence.
Reliable results were obtained through laboratory research, enabling the development of
the prediction model. These are the main contributions of this research. Furthermore, a
detailed statistical analysis of nonlinear relationships, which was not found in the available
research for these materials, also contributes significantly to the non-destructive testing
of pavement materials. Two models were developed: one for the estimation of the fc and
the other for estimating the Est based on the measured UPV and the duration of specimen
curing. From the results obtained, the following conclusions can be drawn:

• Increases in the amount of cement and in the curing period positively affect the fc,
Edyn and Est. The addition of rubber decreases these mechanical characteristics.

• The reliability of the modulus of elasticity results obtained by the two methods is
supported with a strong linear correlation (R2 = 0.88).

• A detailed statistical analysis of the obtained data resulted in two simple linear pre-
diction models. One of these models serves for the estimation of the fc based on UPV,
while the other serves for the Est estimation based on the UPV and curing period.

• An inter-relationship between rubber and cement was observed, especially in the
mixtures with higher proportions of cement. The recommendation for further research
is to analyze this influence through more mechanical properties and on a chemical
and micro level.

• The increase in the UPV in the first 7 days and its linearization for a longer period
of time indicates that the CBA stiffness passes through certain phases that cannot be
precisely determined from the obtained results. To determine the stage of development
of the stiffness, it is recommended to carry out tests in short time intervals between
the first and seventh day of care.

The presented prediction models were developed on limited data and are valid only
for the tested materials. As a recommendation for further research, the verification the
developed models on a more significant number of specimens and other materials is
indicated to prove their general applicability. It is recommended to limit the application of
these models to gravel materials, considering the shape of the grains and the manner of
their entrapment.
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Featured Application: Fiber concrete, mortar and other cementitious composites reinforced with
polypropylene macrofibers.

Abstract: The presented research’s main objective was to evaluate the possibility of improving the ad-
hesion between polypropylene fibers and mineral matrices in cementitious composites by modifying
the fibers’ surface with tannic acid (TA). This modifier was previously used for polyethylene fibers
only. Cement mortar containing modified polypropylene fibers and mortar containing unmodified
fibers were tested. The physical and mechanical properties (apparent density, compressive strength,
flexural strength and modulus of elasticity) were determined, and the fibers’ morphology after the
specimens’ destruction was observed. No adverse effect of the modification was found. The elastic
modulus was 6% lower after 28 days, enabling the formation of a less stiff composite material. The
integrity of the specimens after mechanical damage was improved, confirming the increased adhesion
between the polypropylene fibers and the hardened cement paste. The results of the introductory
tests are promising; however, further research is needed in the field.

Keywords: adhesion; cementitious composite; fiber-reinforced concrete; modification; polypropylene
fibers; tannic acid

1. Introduction and Scope

Fiber concrete (or fiber-reinforced concrete) is a type of concrete that contains fibers to
enhance its mechanical strength and resistance to cracks and, generally, its durability [1].
The fibers are made mainly of two materials, steel and synthetic polymers (e.g., polypropy-
lene, polyethylene or polyamide); however, other types of fibers are also used, like cellulose,
glass, carbon or basalt. The effectiveness of fibers in concrete depends on their strength,
shape and dimensions, but also their content, dispersion and adhesion to the cementitious
matrix. The last issue is crucial in the context of using polymer fibers, the adhesion of
which to mineral matrices is much lower than those made of steel due to their smooth
surfaces [2–4]. Therefore, to fully exploit the potential of polymer fibers, it is necessary to
improve their adhesion and compatibility with cement matrices.

1.1. Polymer Microfibers and Macrofibers Used in Concrete and Other Cementitious Materials

Generally, there are two basic types of polymer fibers used in ordinary concretes and
other concrete-like materials with cementitious matrices: micro- and macrofibers.

Microfibers are fibers with very small cross-sections (diameters of several to a dozen
micrometers) and lengths usually not exceeding 12 mm (see Figure 1). The dosing of such
fibers is 0.2–2.0 kg per 1 m3 of the composite, depending on the intended use. Microfibers
are intended mainly for non-structural applications and can be considered for microrein-
forcement, which reduces plastic shrinkage and prevents the appearance of microcracks in
cement matrices in the early stage. It is advisable to use them in various composites (con-
cretes; thin-layer screeds, including ones for underfloor heating and plastering; masonry
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mortars; repair mortars; adhesives; insulating coatings; etc.), especially if they contain
high-class Portland cements with high early strength, i.e., with an increased tendency to
shrinkage and crack development, or, in general, in advanced cementitious matrices that
are characterized by a refined microstructure and low porosity (e.g., a water/binder ratio
lower than about 0.3). Due to their small size, microfibers can easily be evenly distributed
in cement paste and create a spatial mesh that can additionally reduce water absorption
and increase the water tightness and frost resistance of modified composites. The authors
confirmed in previous research investigations [5] that it was possible to obtain a seamless
polymer–cement insulating coating with polyacrylonitrile microfibers that showed excel-
lent elasticity and water resistance and at the same time remained water-vapor permeable.
Also, when mortars with PP microfibers (presented in Figure 1b) were tested, no negative
impact on the mixes’ consistency was observed, while hardened composites were char-
acterized by assumed compressive strength and flexural strength. Therefore, it was not
necessary to analyze or to improve the adhesion between the used microfibers and the
composite matrices.
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Figure 1. Commercial polypropylene microfibers of similar geometry (both with a length of 12 mm
and a diameter of 18 µm) from different manufacturers: (a) fibers without an additional coating;
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The second type of polymer fibers used for concrete, i.e., macrofibers or structural
fibers (sometimes referred to as “traditional fibers”), have much larger cross sections
(diameters of 0.1 mm and more) and greater lengths. Bentur and Mindess [1] distinguished
a third type of fiber, i.e., mesofibers, which have cross-sectional dimensions in the range of
0.1 to 0.3 mm; however, in most studies in the scientific and industrial literature and most
technical data reports (including most of the mentioned references), fibers with such cross
sections are classified as fine macrofibers. Unlike the situation with polymer micro-fibers, in
the case of macrofibers made of polymers, the issue of adhesion is much more problematic.
Polymer macrofibers are added to cementitious mortars and concretes (structural and
non-structural) for several reasons:

• To reduce plastic shrinkage and the formation of microcracks in cement matrices;
• To increase the mechanical strength of composites (including flexural and tensile

strength, as well as the level of fracture energy absorption and impact strength);
• To reduce the possibility of crushing and spalling at the edges of composite elements.

The positive effects of the presence of polymer macrofibers mentioned above are
basically the same as the effects of steel fibers, but they cannot be treated as a direct
replacement for steel fibers of the same geometry, mainly due to their much lower adhesion
to cement binders.
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The authors have reviewed the range of polymer macrofibers currently available on
the Polish market and used in concrete production. The main commercially available
polymer macrofibers are polypropylene, polyethylene and polyolefin copolymer fibers
with lengths between 24 and 54 mm. Some fibers are crimped (Figure 2a) and others are
twisted (Figure 2b) to provide better anchoring in cement matrices. However, despite these
geometric adjustments, the adhesion of all polymer fibers to cement paste is much lower
compared to steel fibers, and if the reinforced element is damaged, the polymer fibers can
easily be pulled out from the matrix. The additional lengthening of fibers and increase in
their cross-sections (and thus extension of the anchoring zones and the contact surfaces) do
not significantly improve the integrity of the composites at failure [6]. A better solution
seems to be the modification of polymer fibers in order to roughen their initially very
smooth surface and to expand the contact zones with hardened cement paste. This can
be achieved either by mechanical modification (the surface of the fibers is mechanically
modified to create a rough texture by subjecting the fibers to abrasion or friction, e.g., by
sanding) or chemical modification, including coating (i.e., applying chemical agents or
rough materials onto the surface of the polymer fibers [6,7]) and chemical surface treatments
(e.g., with acids [8,9]). Selected examples of chemical surface treatments for polymer fibers
are given in the next section.
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Figure 2. Examples of macrofibers with various geometries that are commercially available in Poland:
(a) crimped polypropylene macrofibers (length of 25 mm); (b) polyolefin copolymer fibers twisted in
bundles (length of 24 mm).

1.2. Chemical Surface Modification of Polymer Fibers—Selected Methods

The scientific and technical literature contains descriptions of numerous attempts to
improve polymer fiber quality and durability by chemical modification. For instance, the
authors themselves successfully performed the surface modification of fibers made from
recycled PET with ethylene-vinyl acetate copolymer (EVA) [6] to prevent hydrolysis of
ester linkages of poly(ethylene terephthalate) in the highly alkaline environment of fresh
cement paste (for detailed information on PET degradation in alkaline environments, see
also: Silva et al. [10], Pelisser [11] and Won et al. in [12]).

In the case of polypropylene fibers, Wiliński et al. [8] modified the fibers using chrome
acid to roughen their surface, and they concluded that non-polar polymer surface oxidation
could be an efficient way to improve the fiber-reinforced concrete mechanical properties.
In the case of polyethylene fibers, Bashiri Rezaie et al. [7] applied the approach used earlier,
among others, by Shanmugam et al. [4], Changani et al. [13] or Xi et al. [14], for other
non-polar polymers to test the possibility of improving the adhesion between polyethylene
fibers and cementitious matrix by modifying the surface of the fiber with polydopamine.
Using dopamine through oxidative self-polymerization reactions applied by a simple water-
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borne deposition process, which forms a thin reactive polymeric layer comprising hydroxyl
and amino groups on diverse inorganic and organic substances [13,15], enabled imparting
a hydrophilic nature of the modified polymer, thus increasing its surface polarity and
hydrophilicity [16]. They concluded that by dopamine surface modification, it was possible
to increase the tensile strength of polyethylene fibers, pull-out strength and interfacial shear
strength, thus enhancing the bonds between the initially hydrophobic polymer fibers and
cementitious matrix.

Recently, Bashiri Rezaie et al. [9] researched the possibility of improving the adhesion
between PE fibers and cementitious matrix using tannic acid. They obtained promising
results, showing that this method allowed them to chemically roughen the fiber surface
(Figure 3) and significantly increase the energy required to pull the modified fibers out of
the matrix compared to unmodified fibers. They experimentally scaled the modification
method, using different sequences of adding chemical reagents to the modifying solu-
tion and using different exposure times of the fibers to the modifying medium (compare
Figure 3b–d), to finally indicate the most effective procedure for modifying polyethylene
fibers assuming 3-h immersion of fibers in tannic acid supplemented with selected addi-
tional modifiers.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 12 
 

polyethylene fibers and cementitious matrix by modifying the surface of the fiber with 
polydopamine. Using dopamine through oxidative self-polymerization reactions applied 
by a simple water-borne deposition process, which forms a thin reactive polymeric layer 
comprising hydroxyl and amino groups on diverse inorganic and organic substances 
[13,15], enabled imparting a hydrophilic nature of the modified polymer, thus increasing 
its surface polarity and hydrophilicity [16]. They concluded that by dopamine surface 
modification, it was possible to increase the tensile strength of polyethylene fibers, pull-
out strength and interfacial shear strength, thus enhancing the bonds between the initially 
hydrophobic polymer fibers and cementitious matrix. 

Recently, Bashiri Rezaie et al. [9] researched the possibility of improving the adhe-
sion between PE fibers and cementitious matrix using tannic acid. They obtained promis-
ing results, showing that this method allowed them to chemically roughen the fiber sur-
face (Figure 3) and significantly increase the energy required to pull the modified fibers 
out of the matrix compared to unmodified fibers. They experimentally scaled the modifi-
cation method, using different sequences of adding chemical reagents to the modifying 
solution and using different exposure times of the fibers to the modifying medium (com-
pare Figure 3b–d), to finally indicate the most effective procedure for modifying polyeth-
ylene fibers assuming 3-h immersion of fibers in tannic acid supplemented with selected 
additional modifiers. 

  
(a) (b) 

  
(c) (d) 

Figure 3. ESEM images of pristine PE fibers and various tannic acid-modified PE fibers: (a) pristine 
fibers; (b) fibers treated with tannic acid for 30 min; (c) fibers treated with tannic acid for 1 h; (d) 
fibers treated with tannic acid for 3 h (based on [9]). 

The research by Bashiri Rezaie et al. [9] included only tests of individual fibers placed 
straight in a pure cement paste of high water/cement mass ratio of 2.0, i.e., a value several 
times higher than the ratio of actual scale composites used in construction. However, the 

Figure 3. ESEM images of pristine PE fibers and various tannic acid-modified PE fibers: (a) pristine
fibers; (b) fibers treated with tannic acid for 30 min; (c) fibers treated with tannic acid for 1 h;
(d) fibers treated with tannic acid for 3 h (based on [9]).

The research by Bashiri Rezaie et al. [9] included only tests of individual fibers placed
straight in a pure cement paste of high water/cement mass ratio of 2.0, i.e., a value several
times higher than the ratio of actual scale composites used in construction. However,
the authors decided to use the same chemical roughening mechanism in the context of
polypropylene fibers available on the local market and check whether the method of rapid
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modification with tannic acid would also improve the adhesion of PP fibers to the cement
matrix with a water/cement mass ratio of 0.50 (recommended by EN 206 standard [17]
for concretes working in the aggressive environments described by selected exposure
classes—including the risk of carbonation, chloride aggression, freezing/thawing or me-
chanical friction), and whether it would affect (positively or negatively) the mechanical
properties of mortars with such fibers.

While fibers of vegetable origins, like raffia, coconut or similar ones, can be successfully
treated with alkaline products (e.g., sodium or potassium hydroxide), such modification is
not recommended for polypropylene fibers. Synthetic polymers have weak alkali resistance;
instead, they are acid-resistant [1]. As mentioned above, tannic acid was employed to mod-
ify polyethylene fibers [9]. The authors intended to assess whether this treatment method
could also improve the performance of polypropylene fiber-reinforced cement composite.

2. Materials and Methods
2.1. Qualitative and Qualitative Composition of Tested Composites

The experiment involved comparing the behavior of surface-modified and unmodi-
fied polypropylene fibers applied to a composite with a cement matrix, which was then
subjected to destructive mechanical tests. To eliminate the influence of other components
on the test results, the composite selected as the base one, i.e., reinforced with dispersed
reinforcement in the form of fibers, was the so-called comparative mortar, i.e., standard
mortar made of high-early strength Portland cement class 42.5, i.e., CEMI 42.5 R (CEMEX,
Chełm, Poland). The applied cement fulfilled the requirements of European Standards EN
197-1 [18] and EN 196-1 [19] in terms of the composition (at least 95% Portland clinker) and
properties. The aggregate used in the mortars was standard sand (meeting requirements
of EN 196-1). It was natural quartz sand with rounded grains, SiO2 content of at least
98%, and grain size up to 2 mm. The size distribution of sand grains recommended by the
EN 196-1 standard is presented in Table 1. The mixing water was tap water (meeting the
requirements of EN 1008 [20]).

Table 1. Size distribution of standard sand grains according to EN 196-1.

Square Mesh Size, mm 2.00 1.60 1.00 0.50 0.16 0.08

Total residue on the sieve, % 0 7 ± 5 33 ± 5 57 ± 5 87 ± 5 99 ± 1

The applied fibers (presented in Figure 2a) were pure polypropylene macrofibers of
a length of 25 mm (DIIF, Dnepr, Ukraine) designated to be used in structural concrete
and mortars. Table 2 contains the basic physical properties of the fibers listed by the
manufacturer [21]. The fibers were also characterized by high acid, alkali, and salt resistance
and low thermal and electrical conductivity.

Table 2. Properties of macrofibers used in tested composites (manufacturer’s data [21]).

Type of Polymer
Specific Gravity,

kg/m3
Melting Point,

◦C
Ignition Point,

◦C

Polypropylene (PP) 910 162 593

Standard EN 196-1 includes the composition of the standard mortar, which assumes
a water/cement mass ratio of 0.50 and a cement/aggregate mass ratio of 1:3. For the exper-
iment, both a standard mortar (without fibers) and mortars with an identical composition
of essential components, but supplemented with chemically modified/unmodified fibers,
were prepared. The amount of added fibers was based on the manufacturer’s recommen-
dations [21]. The manufacturer recommended dosing fibers in various amounts depending
on the potential use of composites, i.e., 2–4 kg per 1 m3 of the concrete mix in the case of
the production of industrial floors, screeds or sprayed concrete, and 2–6 kg per 1 m3 of
the concrete mix in the case of concrete structural elements of residential and industrial
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buildings. For the experiment, it was assumed that the fiber content would be close to
the upper limit of the range recommended for structural concrete, i.e., 4.5 kg per 1 m3 of
the mortar mix. The compositions of the tested mortars (calculated per mix following the
standard procedure, assuming a specific gravity of 2650 kg/m3 for standard sand and of
3100 kg/m3 for the cement) are listed in Table 3.

Table 3. Composition of tested composites (by mass and volume).

No/Code
Cement Water Aggregate Non-Modified

Fibers
Modified

Fibers

g cm3 g cm3 g cm3 g cm3 g cm3

1/SM
450 145 225 225 1350 509

0 0 0 0

2/NM 5 5.5 0 0

3/M 0 0 5 5.5

2.2. Procedure of Fiber Surface Modification with Tannic Acid

The surface modification procedure for polypropylene fibers used in the tested com-
posites was adopted from the experiment described in [9] (among the methods described
here, the variant that gave the best roughening effect was selected). The modification
involved immersing clean fibers in a solution with the predominance of tannic acid, TA
(CAS-Number: 1401-55-4), and the addition of sodium periodate, SP (NaIO4, CAS-Number:
7790-28-5) and ethanolamine, EA (CAS Number: 141-43-5) for 3 h, and then washing and
drying the fibers in ambient temperature for later use. All chemicals were delivered by
Linegal Chemicals, Blizne, Poland. The modifying solution was prepared using 1 dm3 of
distilled water, 4 g of tannic acid, 20 cm3 of ethanolamine, and 8 g of sodium periodate.
The whole was mixed using a magnetic stirrer for about 15 min. The fiber modification
procedure was as follows:

1. Inserting the fibers in the aqueous solution (TA + EA + SP) so that all of the fibers are
immersed in the solution.

2. Keeping the fibers in the solution (covered container) for 3 h at ambient temperature.
3. Removing the fibers from the solution and rinsing several times in distilled water.
4. Drying the fibers at room temperature.

It is important to emphasize that the tannic acid was used only during the stage of the
modification of the fibers (i.e., before the preparation of the concrete mix). The tannic acid
had no contact with the concrete matrix and had no possibility of causing any chemical
corrosion of the concrete.

2.3. Testing Methods

For all composites, the set of technical properties was determined as apparent density,
flexural strength, flexural elastic modulus and compressive strength. The properties of
mortars with fibers were determined after 7 and 28 days of curing. The standard mortar
was tested after 28 days of curing (all specimens were demolded after 24 h after cast-
ing and then kept in the water in laboratory conditions). Flexural strength and flexural
modulus were tested on a set of three standard specimens in the shape of beams of size
40 mm × 40 mm × 160 mm in the three-point bending test (using Instron 5567 electrome-
chanical testing machine, Canton, OH, USA, Figure 4). The compressive strength was
tested on the halves of the prisms remaining after the bending test (using Controls MC66
hydraulic press, Milan, Italy). According to EN 197-1, the applied method excludes the
influence of the bending test on the compression test result—although the second test is
performed on halves of the bent and broken prism specimen. The compressive force is
applied to the specimen far enough away from the broken edge so that the intact part of the
prism half is compressed. Apparent density was determined on the same specimens (mass
of the specimens divided by their measured volume) just before the destructive tests, while
the fractures of the specimens and fibers were visually observed using optical microscopes
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(Biolux AL and Carl Zeiss Jena Neophot 32, Jena, Germany, with the Nikon D300 digital
recording system, Tokyo, Japan) on the specimens after the tests.
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Figure 4. Flexural strength and modulus test performed on specimens in the shape of beams of size
40 mm × 40 mm × 160 mm in the three-point bending test acc. to EN 1015-11 [22]: (a) scheme of the
test (specimen on two supports—one stationary, the other movable, so that the system is statically
determinate, the force concentrated in the middle of the span); (b) specimen during the test in Instron
5567 electromechanical testing machine.

3. Results and Discussion
3.1. Physical and Mechanical Properties

The results for apparent density (average and basic statistic parameters: standard
deviation, SD and coefficient of variation, CV) of mortars with non-modified and modified
fibers after 7 and 28 days and the density of the standard mortar after 28 days are given in
Table 4. As expected, mortars with fibers made of polypropylene (with a specific gravity
of 910 kg/m3—compare Table 2) were characterized by slightly lower (differences of up
to 3%) apparent density compared to pure-mineral standard mortar. However, it is worth
noting that the mortar containing non-modified fibers was characterized by a density with
a 1.5 times higher coefficient of variation, while the mortar with fibers modified with tannic
acid showed four times lower variability compared to standard mortar apparent density.

Table 4. Density of tested mortars: standard mortar (SM), mortar with non-modified polypropylene
fibers (NM) and mortar with tannic acid-modified polypropylene fibers (M) determined after 7
and/or 28 days (SD—standard deviation, CV—coefficient of variation).

Composite Type

Density after 7 Days Density after 28 Days

Mean,
kg/m3

SD,
kg/m3 CV, % Mean,

kg/m3
SD,

kg/m3
CV,
%

Relative
Change to

SM, %

Standard mortar (SM) x x x 2261 37 1.6 -

Non-modified-fiber
mortar (NM) 2186 25 1.1 2240 58 2.4 −0.9

Modified-fiber mortar (M) 2198 5 0.2 2198 8 0.4 −2.8

The results of the mechanical tests of mortars with fibers after 7 and 28 days are given
in Figure 5. In the case of standard mortar, the results obtained after 28 days were as
follows: flexural strength—7.46 MPa (on average) and compressive strength—45.16 MPa
(on average), which stands in line with the expectation of standard EN 196-1 for such
mortars with CEM I 42.5R binder (i.e., fcm ≥ 42.5 MPa). Both mortars with fibers had
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lower strength after 28 days, and none exceeded 42.5 MPa in compressive strength. The
difference compared to the standard mortar was 5.2–5.6 MPa (11.5–12.3% reduction). In the
case of 28-day flexural strength, the difference compared to the standard mortar was more
significant—reduction by approx. 35% was observed. However, such weakening of the
cementitious mortar after adding polypropylene fibers is unsurprising, as the connection
between the mineral matrix and the polypropylene fiber is weakened. Moreover, a slight
correlation was observed between the decrease in mortar density and mechanical strength.
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Figure 5. Mechanical properties of mortars with fibers after 7 days and 28 days of curing
(SD—standard deviation, CV—coefficient of variation).

An interesting observation was that in each case—both in tests carried out after 7 days
and after 28 days—higher flexural strength and compressive strength values were noted
when using fibers modified with tannic acid. The differences were insignificant—they
amounted to a maximum of 3%. However, authors expect that the effect of fiber modifica-
tion on mechanical strength might be more remarkable in the case of composites of lower
water/cement ratio and when adding plasticizing admixture that might provide a better
coating of the fibers with a fluidized cement paste [23,24].

The crucial mechanical property when assessing the effect of introducing polymer
fibers into the brittle mineral composite is the elastic modulus. When comparing the modu-
lus of mortars with non-modified fibers and modified fibers, the latter was characterized
by a significantly lower flexural elastic modulus. After 7 days of curing, the modulus of
the mortar was lower by 700 MPa (18%), and after 28 days of curing, it was 240 MPa (6%).
Thus, modification of fibers enabled obtaining less stiff composite material that can deform
more easily under stress, making it more flexible.

3.2. Visual Inspection of Composite Fractures and Fibers

The polymer fiber modification was not expected to drastically improve the mechanical
properties of the mortars, as such an effect would require changes in the composition of the

81



Appl. Sci. 2024, 14, 2677

target composite. The main aim of the performed investigation was to determine whether
the modified fibers were better anchored in the cement matrix, as that would be a sign that
the tannic acid modification was effective in roughening the surface of the polypropylene
fibers and improving their adhesion to the mineral matrix. Here, the visual inspection of the
damaged specimens was helpful—visual inspection of the surfaces of scratched specimens
(after bending), as well as the fractures of the broken specimens and the conditions of
fibers themselves.

In Figure 6, one can see the comparison of the specimen’s outer surfaces with
both fiber variants after the flexural strength test. The test procedure did not assume
loading the bending elements until the specimen wholly disintegrated, but until the stress
dropped, which meant damage to the brittle material structure. In the case of standard
mortar testing, as a result of exceeding the maximum stresses, the brittle cracking occurred
in the area of the cementitious matrix and the aggregate–matrix interface, and the visible
crack appeared, leading to the separation of the halves of the bent prism. However, in
the testing of mortars with polymer fibers, the polymer fibers ensured the stability of the
specimen even after the failure of the brittle matrix. Despite the destruction and significant
decrease in the load capacity, the specimens retained their integrity. However, the nature
of the destruction differed in the case of mortars with unmodified and modified fibers.
The specimens with unmodified fibers were cracked across the entire thickness of the bent
element (Figure 5, upper specimen). However, the specimens with modified fibers were
only scratched (up to a maximum of 2/3 of the element thickness), and the crack width did
not exceed 0.3 mm (thus fulfilling requirements of Eurocode EN 1992-1-1 [25] in terms of
carbonation, chlorides other than from seawater and most of the chlorides from seawater
exposure classes). Specimens with modified fibers clearly showed significantly improved
integrity after failure.
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Figure 6. The outer surface and the mechanical damage (the length of the crack corresponds to the
entire thickness of the specimen, i.e., 40 mm—see upper arrow) of the mortars with non-modified
PP fibers (upper specimen) and PP fibers modified with tannic acid (lower specimen; crack range is
24.9 mm—see lower arrow) after flexural strength test (three-point bending test).
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In order to measure compressive strength, which was the next phase of the experiment,
the prisms had to be fully broken, which required additional loading of the specimens.
After separating the prisms’ halves, the fibers’ fractures and condition were inspected. It
was observed that the unmodified fibers were not broken but pulled out, often almost
entirely, from the cementitious matrix (Figure 7a). Meanwhile, the tannic acid- modified
fibers remained anchored in the matrix, and their breaks occurred close to the specimen
fracture surface. Also, their ends were frayed, confirming breaking when their tensile
strength was exceeded (Figure 7b). The above observation proves they better adhered to
the matrix, which the authors attribute to the roughened surface of the fibers. The last
conclusion was also supported by microscopic observations that showed that the surface of
unmodified polypropylene fibers was smooth before their implementation into the mortar
mix and after their pull-out from the broken specimen. The fibers subjected to the tannic
acid modification showed a rough, more developed surface, i.e., predisposed to better
adhesion to the cement paste, and a much more damaged surface after the destruction of
the bent element (Figure 7c,d).
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Figure 7. Fractures of PP fiber mortar specimens after flexural strength test and the image of
the fibers after their pull-out from the cementitious matrix: (a) mortars with non-modified fibers;
(b) mortars with TA-modified fibers (macro-observation and micro-observation under magnification:
50×).; (c) non-modified (upper) and modified (lower) fibers (magnification: 50.4×); (d) non-modified
(upper) and modified (lower) fibers (magnification: 120×).

4. Conclusions

The presented research is a preliminary phase of work on improving the properties of
polymer fibers for concrete available on the Polish market. Only one level of fiber dosing
was used, and the modified composite was a standard mortar (the so-called comparative
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mortar) with Portland cement (although there is a tendency to reduce consumption of
high-emission binders). Nevertheless, the results obtained in the presented research are
promising. Firstly, after adding polypropylene fibers to mortars in a significant amount,
recommended by the manufacturer as reinforcement for concrete for structural applications,
there was no significant deterioration in compressive strength (only 11.5–12.3% reduction).
Secondly, the modification with tannic acid did not lead in any case (neither after 7 days nor
after 28 days) to a deterioration in compressive strength or flexural strength (even a slight
improvement was noted). It significantly improved the flexural modulus of the tested fiber
mortars. Thirdly, it was confirmed that the surface modification with tannic acid, which
was earlier used in the case of different polymers, positively affected the polypropylene
fibers, improving their adhesion and anchoring in the cementitious matrix.

The study aimed to evaluate the possibility of improving the performance of the
polypropylene fibers in the cement composite with the method previously employed for
the polyethylene fibers. The results show that the surface modification method with tannic
acid can effectively improve the bonding between a cementitious matrix and the various
polymer fibers.

In the subsequent investigation phase, the authors intend to extend the research to
include composites with lower water/cement ratio values and fluidizing admixtures. They
also intend to shift the scale of the experiment from mortars to concretes with coarse
aggregate and to determine properties such as those assessed with the wedge splitting test
(WST), which is considered a good measure of adhesion [26–28]. Moreover, they want to
investigate the effectiveness of tannic acid modification on other polymer fibers for concrete
available on the Polish market, such as copolymer polyolefin fibers.
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Abstract: France is Europe’s leading producer of flaxseed. This seed is rich in omega-3, energy, and
protein for animals, but it also contains anti-nutritional factors such as mucilage. Thus, mucilage must
be removed and could be used as a bio-admixture in cementitious materials development, reducing
the environmental impact of cementitious materials. This study aims to valorize the usage of flaxseed
mucilage (FM) in ordinary Portland cement. FM caused macroscopic and microscopic changes in the
materials studied. The higher the concentration, the greater the changes were. The admixed samples
showed an exponentially concentration-dependent delay in setting. FM degradation products
induced by the cementitious conditions accentuated the delay. However, this delay in setting did
not affect the hydrates’ growth in the material. In fact, FM showed a “delay accelerator” behavior,
meaning that once hydration began, it was accelerated as compared to a reference. Macroscopically,
FM induced significant flocculation, increasing material porosity and carbonation. Consequently,
bulk density and thermal conductivity were reduced. At the highest amount of FM admixture (0.75%
w/w), FM allowed bridge formation between Ca(OH)2 crystals, which can improve the mechanical
properties of mortars. Because FM is highly hygroscopic, it has the capability to absorb water and
subsequently release it gradually and under controlled conditions into the cement matrix. Therefore,
regulation of water diffusion from the mucilage may induce the self-healing properties responsible
for mechanical properties similar to that of the reference in the medium to long term.

Keywords: flaxseed mucilage; OPC; hydration; mechanical strength; FTIR; calorimetric analysis;
SEM; alkaline degradation

1. Introduction

A sustainable agricultural and food approach aims at improving the nutritional quality
of human food by balancing animal feed with forages and seeds naturally rich in omega-
3s. Flaxseed is high in omega-3, energy, and protein, but it also contains anti-nutritional
factors such as mucilage, which reduces nutrient digestibility and impacts broiler chicken
growth [1]. France is Europe’s leading producer of flaxseed, so its animal feed manufac-
turers want to improve the nutritional quality of the flaxseed by removing mucilage [2].
Therefore, it is necessary to find ways of adding value to mucilage, which is a by-product
of the seed-dehulling process. One possibility would be to use it as a bio-admixture in
cementitious materials.

Flaxseed mucilage (FM) is present in anhydrous form in flaxseed before hydration
by contact with water. FM is a compound rich in polysaccharides (50–80%) but also in
proteins (4–20%) and minerals (3–9%). FM is composed of two fractions of water-soluble
heteropolysaccharides: the acidic rhamnogalacturonans type I (RG-I) fraction (17%) and
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the neutral arabinoxylans (AX) fraction (83%) [3]. The bone composition of the mucilage
varies according to the extraction conditions [4].

Rhamnogalacturonans are pectic acidic polysaccharides that can impact cement hydra-
tion and cementitious properties. Shanmugavel et al. [5] observed a consistency decrease
and longer setting times with the increase in pectin percentage. They stated that during
the hydration of cement paste, the galacturonic acid can form strong intermolecular as-
sociation among the galacturonan chains by forming calcium bridges, with the effect of
enhanced viscosity. According to Thomas and Birchall [6], natural polymers have the inher-
ent characteristic of surface absorbency of organic molecules and subsequent development
of protective polymeric film on the cement particles and hydration products. This film
would restrict further hydration of cement particles. Hazarika et al. [7] also observed the
viscosity-enhancing property of the addition of acidic heteropolysaccharides but a setting
time reduction. As pectin incorporates some amount of calcium ions in its structure during
the hydration of cement, the Ca2+ concentration in pore fluid would decrease. To balance
the Ca2+ concentration, the rates of the hydration of cement minerals would increase, and
greater amounts of hydration products would be formed, resulting in a decrease in setting
times. Pan et al. [8] used carrot extract, whose main polysaccharide is rhamnogalacturonan.
They observed a delay in setting and an enhanced compressive strength of the mortars.
The positive effect on the compressive strength would be due to greater development of
Portlandite and C-S-H in the cementitious system.

Concerning the arabinoxylans, a neutral fraction of polysaccharides, Girones et al. [9]
observed a retardation of cement hydration with 2% (w/w) of AX. The AX polymers
might slow down not only the formation but also the growth of the C-S-H nuclei. The
impact of rhamnogalacturonans and arabinoxylans on cement seem to be dependent on
the polysaccharide concentration and other compounds present in the extracts.

One of the plants used in its extract form as a replacement for mixing water is Opuntia
ficus indica (OFI)—its availability, low operating cost, and presence in arid areas where
water is most needed make it an important element in cement admixture. OFI cladodes
are waterlogged and contain a huge amount of polysaccharides and some proteins that
probably can interact with the complex hydration mechanism of Portland cements [10,11].
But this extract used for water mixing in cement contains a percentage of mucilage and
proteins but also some other natural compounds (cellulose, fats, hemicellulose, starch,
ashes, etc.) [5,12]. Chandra et al. [11] indicated that the incorporation of OFI extract
increases the plasticity of the cement paste with a consequent decrease in water absorption
by the mortar and an improvement in the freeze–thaw resistance of the mortar. The
author also showed a possible interaction between the polysaccharides and the Portlandite
formed. The formation of complexes influences the crystallization process, interfering
with the size of the Portlandite crystals and making them more amorphous. The ability
of OFI polysaccharides to interfere with the growth of mineral species and the crystal
microstructure was confirmed using several polysaccharides [13]. Finally, the addition
of polysaccharides within a cementitious matrix reduces the carbonation phenomenon
of the material by acting as a barrier property to gases and water, a property conferred
by the viscous extract of OFI [10,11]. Not all polysaccharides have the same resistance to
the highly alkaline cementitious environment. Polysaccharides added to the cementitious
matrix degrade more or less easily into hydroxycarboxylic acids or smaller entities.

The objective of the present study was to investigate the impact of the admixture of
FM at different concentrations in a cement matrix. An evaluation of the FM degradation
in an alkaline environment is herein discussed. A fresh state study of Portland cement
provided some understanding of the hydration properties of cement in the presence of FM
polysaccharides. The mechanism and products of hydration were investigated in the fresh
state and in the hardened state after different curing times. The impact of the admixture
rate on the macroscopic and microscopic structure was also explored in this study to obtain
a more comprehensive knowledge of the impact of the addition of mucilage on the growth

87



Appl. Sci. 2024, 14, 3862

of hydration products. To this end, mortars were manufactured, and their mechanical
strengths and thermal conductivities were evaluated.

2. Materials and Methods
2.1. Materials

The cement used in this study was an Ordinary Portland Cement (OPC), CEM I
52.5 N CE PM-CP2 NF, commercialized by Calcia, Courbevoire, France. The clinker is the
main component (≥95% w/w) of this cement, and no fillers were applied in this study, so
result dispersion was avoided. Its composition in weight % is 74.8, 3.7, 8.2, and 8.3 for
C3S, C2S, C3A, and C4AF, respectively. The Bogue approximation gives 66.48, 20.97, 4.84,
2.73, 3.4, and 0.21% (w/w) for CaO, SiO2, Al2O3, Fe2O3, SO3, and Na2O, respectively. It
exhibits a Blaine fineness of 4360 cm2·g−1. The different mortars were elaborated with
a 0/4 mm sand, according to the NF EN 12620 standard. With respect to the French
standard NF EN 1008, the mixing water used in this study was tap water at a temperature
of 20 ◦C ± 2 ◦C. Flaxseed mucilage (FM) used as admixture originated from a gold flaxseed
cultivar (Eurodor) and is available in a lyophilized form after the extraction procedure
described by Brevet et al. [14].

2.2. Flaxseed Mucilage Characterization
2.2.1. Determination of FM Proximate Composition

The protein content of FM was quantified according to the Kjeldahl method described
by AOAC 954.01 [15] on the determination of total nitrogen content in the samples. A
conversion factor of 6.25 was used to calculate the crude protein content from the nitro-
gen content.

The AOAC Official Method 942.05 was used to determine the ash content of FM. An
approximate 2 g of raw materials was weighed in porcelain crucibles and then calcined at
600 ◦C for 2 h in a pre-heated muffle furnace. The cooling step of the calcined samples was
different from the AOAC method. The calcined materials were cooled in an oven at 70 ◦C
for 2 h to avoid any moisture regain before being weighed.

High-performance anion-exchange chromatography with pulsed amperometric de-
tection (HPAEC-PAD) was used to determine the FM monosaccharides composition and
content. Results are expressed in grams of carbohydrates/100 g of FM. The analysis was
performed as described by Roulard et al. [16].

2.2.2. Alkaline Solubilization of FM

The solubilization of FM in alkaline solutions allows the evaluation of the impact of
the pH and the presence of Ca2+ cations on the availability of the characteristic groups of
polysaccharide chain length after solubilization. The mucilage was dissolved (2, 5, 10, 15,
20, 25, and 30 g/L) into two different solutions of pH = 12.6: NaOH 0.04 M and Ca(OH)2
0.02 M. Solubilization was carried out at a rotation speed of 140 rpm in a beaker with a
paddle stirrer until complete mucilage solubilization occurred to simulate the slow speed
of mixing in an alkaline environment of the standard EN 196-1 [17] relative to mortar
development. Then, alkaline mucilage solutions were dried in an oven at 50 ◦C to avoid
any degradation due to temperature. Fourier transform infrared spectroscopy (FTIR) and
viscosity measurements were carried out to evaluate the alkaline environment impact
on FM.

2.2.3. Apparent Viscosity of FM

The viscosity range of mucilaginous solutions was established using a rheometer
(DVNext, Brookfield, Toronto, ON, Canada) with appropriate HA/HB spindles ranges.
Mucilaginous solutions were prepared to obtain seven solutions at different concentrations
(2, 5, 10, 15, 20, 25, and 30 g/L) by solubilizing FM into tap water, NaOH 0.04 M, and
Ca(OH)2 0.02 M at 400 rpm until all the FM was solubilized. The viscosity values were
obtained at different spindle rotational speeds from 20 to 200 rpm. The designated viscosity
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value corresponds to a constant rotational speed of 60 rpm, corresponding to the most
adequate torque generated for all solutions. At 60 rpm, the torque value during the
experiment was optimal (between 40 to 60% of the maximum torque tolerated by the
instrument). At higher speeds, the torque was in the low range of the apparatus, while
torque values that were too high were obtained at speeds lower than 60 rpm.

2.2.4. FT-IR Characterization

Fourier transform infrared spectroscopy was used to characterize the changes in FM
following alkaline solubilization. Dried FM materials were analyzed. The FTIR spectra
of FM were determined by FTIR spectrophotometer (IR-Prestige 21, Shimadzu, Noisiel,
France). Approximately 1% (w/w) of FM was weighed and crushed on a KBr matrix
pellet (200 mg). The FTIR spectra were obtained with 200 scans in a transmittance mode
and a resolution of 2.0, where an Happ–Genzel apodization was applied in a range of
400–4000 cm−1.

2.3. Mortars Preparation

The preparations are carried out in a standardized mortar mixer (EN 196-1) (Proviteq,
Lisses, France). FM was incorporated by solubilizing within the mixing water to fully study
the interaction between the polysaccharides and the cement. Mortars were elaborated with
a W/C ratio of 0.5 according to EN 196-1. The mortar compositions are given in Table 1. The
samples were molded without the use of an impact table. The objective was to study the
macroscopic structural effect of mucilage on a cementitious mortar. The molds used have
dimensions of 4 × 4 × 16 cm for the study of the mechanical strength and 10 × 10 × 2 cm3

for the further thermal conductivity study of mucilage-admixed materials. Each sample
for strength tests was then cured for 28, 60, and 90 days (Table 1) in a chamber with
saturated humidity and at room temperature. The samples for the thermal conductivity
measurements were cured for only 28 days. Before characterization, samples were dried in
an oven at 50 ◦C until a constant mass was obtained.

Table 1. Polysaccharidic mortars compositions.

Sample Water (g) Solubilized
Mucilage (g)

Admixture
(% Cement)

Cement
(g) Sand (g) Curing

Time (Days)

OPC 225 0 0 450 1350 28, 60, 90
EURO2G 225 0.45 0.1 450 1350 28, 60, 90
EURO5G 225 1.125 0.25 450 1350 28, 60, 90
EURO15G 225 3.375 0.75 450 1350 28, 60, 90

2.4. Characterization of FM Admixtured Mortars
2.4.1. Setting Times Determination

The evaluation of the hydration heat release is an effective technique for monitoring
the hydration process and determining the initial and final setting times of pastes containing
different amounts of FM. The experiments were conducted on a Calvet calorimeter C80,
Setaram. Pastes were prepared by mixing 100 g of cement with 50 g of the mixing tap water
at different mucilage solution concentrations (0, 2, 5, 15, and 30 g/L). The cement and water
mixture were homogenized with an electric whisk during a 30 s time minimum depending
on how difficult it was to homogenize the mix. Then, an approximate 3000 mg of each
paste was introduced into a stainless-steel capsule. The heat flow ran for a minimum time
of 48 h in a 25 ± 0.5 ◦C regulated chamber.

2.4.2. Slump Test

The slump test was performed on a mini-Abrahams cone called MBE (“Mortier Béton
Equivalent” translated as “Concrete Equivalent Mortar”), which has dimensions of 150 mm
height and an upper and lower diameter of 50 and 100 mm, respectively. The test was
carried out following the procedure described by Schwartzentruber et al. [18].

89



Appl. Sci. 2024, 14, 3862

2.4.3. Hydration Degree

When the major cement compounds, i.e., tricalcium silicates (C3S Equation (1)) and
dicalcium silicates (C2S Equation (2)), are in contact with water, there is formation in the
first few hours of calcium silicate hydrate (also called C-S-H), ettringite, and Portlandite
(Ca(OH)2). Over time, it is possible to form calcium carbonate (CaCO3 Equation (3)) in var-
ious forms—calcite, vaterite, and aragonite. These different compounds are dependent on
the hydration of the cement grains. To quantify good cement hydration, Bhatty developed
a method based on thermogravimetric analysis [19]. The thermogravimetry allows the
degradation of the hydration products by dissociation reactions—dehydration for C-S-H
(Equation (4)), dehydroxylation for Portlandite (Equation (5)), and finally, decarbonation
for calcium carbonates (Equation (6)).

The hydration reaction of tricalcium silicates and dicalcium silicates is as follows:

Ca3SiO5 + 6H2O→ CSH + 3Ca(OH)2 (1)

Ca2SiO4 + 4H2O→ CSH + Ca(OH)2 (2)

That for Portlandite carbonation with ambient carbon dioxide is as follows:

Ca(OH)2 + CO2 → CaCO3 + H2O (3)

The first reaction of CSH dehydration is given below [20]:

(CaO)a·SiO2·(H2O)b
∆↔ (CaO)a·SiO2·(H2O)b-c+c·H2O (4)

The second reaction of dehydration or dehydroxylation of Portlandite is as follows:

Ca(OH)2
∆↔ CaO+H2O (5)

The decarbonation reaction of the calcium carbonate phases occurring at higher tem-
perature is given below:

CaCO3
∆↔ CaO+CO2 (6)

The method developed by Bhatty [19] allows determining the degree of hydration
(DH) of mortars and cement pastes, taking into account the different dissociation reactions.
The Equation (7) is used to determine the DH, according to the author.

DH(%) =
Wb
0.24
× 100 (7)

where Wb corresponds to the chemically bound water, and 0.24 corresponds to the part
of chemically bound water that is combined with each part of cement. Wb (Equation (8))
quantifies the weight loss during the dehydration (Ldh), the dehydroxylation (Ldx), and
the decarbonation (Ldc). The correction coefficient 0.41 is based on the assumption that
carbonate is formed only by the reaction of CO2 with Ca(OH)2 [21].

Wb = (Ldh + Ldx)+0.41(Ldc) (8)

A differential scanning calorimetry coupled with thermogravimetric analysis (DSC-
TGA) (Themys LV, Setaram, Caluire-et-Cuire, France) was carried out on cement mortars
and pastes to determine their degree of hydration and thus to evaluate the FM action
on the evolution of the hydration products. The mortars were powdered using a mixer
mill (MM400, Retsch, Eragny, France). About 130 mg of this powder was introduced into
porcelain crucibles. The analysis started at 25 ◦C and went up to 1100 ◦C at a rate of
5 ◦C/min under a helium atmosphere.
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2.4.4. Mechanical Characterization of Mortars

The strengths of the mortars were determined in compression at different curing times
(28, 60, and 90 days) on a machine from Proviteq, France, with a load cell threshold of
100 kN. The strengths were obtained at a load rate of 2400 N·s−1 on twelve replicates
according to the EN 196-1 standard.

2.4.5. Microstructure Visualization

The morphology of the samples was studied using scanning electron microscopy
(namely SEM). This analysis allowed visualizing the macro and microporosities of the
different mortars. The micrographs were obtained using a PHILIPS FEG XL 30 microscope.
To facilitate observation, the samples were first dried and then coated with a thin layer
of spray-on gold to enhance their electric conductivities. SEM observations were coupled
with an energy dispersive X-ray spectroscopy (EDS) analysis allowing the surface samples’
elements identification.

2.4.6. Thermal Conductivities Determination of Mortars

The samples (10 × 10 × 2 cm3) were cured for 28 days and then analyzed by transient
plane source (TPS) 2500, HotDisk, to determine their thermal conductivities. Before mea-
surements, the samples were dried in an oven at 50 ◦C for at least a week until a constant
mass was obtained. Measurements were repeated three times.

3. Results and Discussion
3.1. FM Characterization
3.1.1. Proximate Composition of FMs

The proportion of protein is 10.3%, and the quantity of carbohydrates is 45.1% mass of
mucilage. The extracted product is relatively clean since the ash content (3.8%) is relatively
low compared with values found in the literature [3,4,16,22,23]. All these values are highly
affected by the process parameters [4,24] and the flaxseed cultivar [3].

The polysaccharide composition is categorized into two distinct fractions. The neu-
tral fraction consists of xylose and arabinose, forming arabinoxylans (AX). This fraction
accounts for 72% of the total polysaccharides. The second fraction, constituting 28% of
the polysaccharide content, is an acidic fraction primarily composed of rhamnose and
galacturonic acid, resulting in type I rhamnogalacturonans (RG-I). Warrand [25] initially
elucidated this mucilage separation into these two fractions. He noted that the neutral
and acidic fractions make up approximately 75 and 25% of the polysaccharide content in
mucilage, respectively.

Finally, it is interesting to look at one of the mucilages that was referenced as a bio-
admixture and whose admixture effects on the characteristics of cementitious matrices
are widely praised and positive. The Table 2 shows an interesting parallel between the
monosaccharide composition of the FM and OFI cladode mucilage. It is clearly visible that
the monosaccharide profiles are completely different, with a large presence of galacturonic
and glucuronic acid for OFI. The large presence of a pectic fraction greatly differentiates it
from FM, where 73% of the content is a neutral fraction. It is therefore possible that FM
does not have the same effects on cement materials as OFI mucilage.

Table 2. Monosaccharides content (g sugar/100 g) of FM and OFI cladodes.

Monosaccharide HPAEC-PAD FM (Raw) 1 FM 3 OFI 4

Galacturonic acid 3.686 ± 0.708 8.17 23.2
Arabinose 8.580 ± 0.373 19.02 18.8
Galactose 5.857 ± 0.165 12.98 31.8
Glucose 1.910 ± 0.106 4.23 25.1
Fucose 1.673 ± 0.038 3.71

Rhamnose 7.751 ± 0.169 17.18
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Table 2. Cont.

Monosaccharide HPAEC-PAD FM (Raw) 1 FM 3 OFI 4

Xylose 15.640 ± 0.984 34.67 1.1
Glucuronic acid 0.009 ± 0.003 0.020 23.2

TOTAL 45.105 ± 1.793 2 100 100
1 Raw data obtained from the HPAEC-PAD. 2 The sum of compounds does not reach 100% due to carbohydrates
losses during the HPAEC-PAD hydrolysis [26]. 3 First column monosaccharides content on 100% basis to compare
with OFI. 4 Values from Lefsih et al. [27].

3.1.2. Impact of Alkaline Conditions on FM

Apparent viscosity: When the mucilage is dissolved in the mixing water, the pectic and
neutral fractions interact and structure themselves to form a more or less viscous network,
depending on the concentration. This viscosity was therefore determined at different
mucilage concentrations and is used as a reference for determining the quantity added
to the cementitious matrix. It is also possible to simulate the effect of the cementitious
matrix on the composition and/or degradation of polysaccharides using viscometry. The
viscosimetric behavior of polysaccharides dissolved in different alkaline solutions (NaOH
and Ca(OH)2) with a deliberately high pH, such as the cementitious medium, can be seen
in Figure 1.
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Firstly, Figure 1 shows that the viscosity of the FM increases significantly as a function
of the FM concentration. This increase is accelerated at around 15 g/L. This concentration
was identified as a gelling point or a sol–gel transition [25]. Warrand [25] conducted a study
on the viscous properties of FM and found that FM exhibits shear-thinning behavior. This
means that the viscosity increases with increasing polysaccharide concentration, primarily
due to interactions between the two distinct fractions present in FM. The pectic fraction
that is anionic has minimal or no impact on determining the solution’s physicochemical
properties. Instead, it is mainly the neutral fraction, primarily composed of AX, that is
responsible for the exceptionally high viscosity of the mucilage solution. The gel-forming
characteristics of the AX solution arise from intermolecular hydrogen bonds and a relatively
larger molecular weight compared to the acidic fraction. Several studies have reported
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a critical transition point in the apparent viscosity of the mucilage solution [4,25]. Like
many plant extracts [28,29], this sol–gel transition point corresponds to the concentration
or condition at which the solution ceases to be considered a true solution and instead
behaves as a gel. This transition occurs due to the increasing entanglement of polymeric
chain networks, which restricts the mobility of the polysaccharide chains and leads to a
significant increase in viscosity [25].

FM does not exhibit the same behavior when added in alkaline conditions, as shown
by the Figure 1. The viscosity curves part ways with the aqueous medium from a 5 g/L
concentration. The apparent viscosity increases with the concentration but much less for the
alkaline solutions than in water. There are two possible explanations for these observations.

First, the intermolecular network formed by hydrogen bond is reduced due to the
action of NaOH and Ca(OH)2 solutions. Chen et al. [30] worked on the gelation prop-
erties of flaxseed gum and confirmed the results shown in Figure 1. Flaxseed gum is
characterized by its anionic polysaccharide nature, resulting from the presence of ionized
carboxyl groups that generate a negative charge. The electrostatic forces between like-
charged molecules cause the molecular chains to fully extend and intertwine, facilitating
the formation of intermolecular cross-links that induce gelation at pH between 6 and 9.
The authors explained that increasing the pH above 9 diminishes the gel strength and thus
the apparent viscosity. Furthermore, they also mentioned that the Na+ action on the zeta
potential leads to a decrease in the intramolecular charge repulsions. The same mecha-
nism of electrostatic repulsion exists with a large amount of divalent cations like Ca2+,
which inhibits the formation of a three-dimensional network [30]. The presence of divalent
cations in a lower concentration can, however, induce a cross-linking or flocculation of
the polysaccharides, as we observe a sedimentation because of agglomerates’ formation.
These phenomena are visible in Figure 1, as the NaOH and Ca(OH)2 solution curves flatten
compared to that for water. A higher flattening on the Ca(OH)2 curve can be evidence of
a divalent cation intermolecular cross-linking, shown by a flocculation visible during the
material preparation.

The second hypothesis that can lead to the apparent lowering of viscosity concerns the
possibility of polysaccharide degradation. In our conditions, molecular weight determina-
tion by SEC-MALS analysis does not demonstrate backbone hydrolysis (Figures S1 and S2).
This hypothesis is not consistent with our results.

Thus, in NaOH and Ca(OH)2 solutions, the decline in gel strength is linked to fewer
junction zones due to high pH levels (pH > 9) and the presence of monovalent and divalent
cations, as reported by several authors [31–33].

Compositional modifications—FTIR: The FM solubilized under different conditions
were analyzed in FTIR to determine possible compositional modifications. The FTIR
spectra are visible in Figure 2. First, there is an appearance of a doublet at 897 and 866 cm−1

when alkaline conditions are applied to the FM. These bands are characteristic of the
co-existence of β- and α-glycosidic bonds [34], respectively. This new co-existence is
possible evidence of an alkaline hydrolysis, as alkaline catalysts are often used to liberate
carbohydrate chains from glycoconjugates [35]. The liberation of glycoconjugates such
as proteins is visible on the NaOH solution spectrum with the disappearance of the N-H
bond at 1541 cm−1. Also, the C-H “hairy zone” and -CH2 branched at 1413 cm−1 look
different. The increase in the band and the apparition of a triplet at 1444, 1413, and
1382 cm−1 seem to confirm the hydrolysis of the side-branched conjugates. In the Ca(OH)2
FM solution, this N-H bond seems to still be present, as the divalent cation can bind
different polysaccharidic/protein compounds and then limit the impact of alkaline solution
as characteristic groups are protected.
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The complexification and increase in organic species present in the cementitious
medium after the FM degradation make it more complicated to conduct studies and to
identify the mechanisms intrinsic to the initial polysaccharides. For example, Kang et al. [36]
related that xylose, which is the main saccharide of the FM, degrades mainly to formic
acid and furfural. Whistler and BeMiller [37] described the alkaline degradation process of
polysaccharides as a peeling process in which the reducing end-group is liberated from a
chain by elimination of the rest of the chain as a glycoxy anion.

3.2. Characterization of Cement Composites
3.2.1. Fresh State Characterization

Slump test: The elaboration of mortars requires characterization in the fresh state to
determine the workability and viscosity of the hydraulic material. This measurement is all
the more relevant when an admixture is incorporated. Figure 3a,b show the consistency
of a EURO5G admixed mortar and the values obtained from the slump test, respectively.
Figure 3a clearly shows the appearance given by the mucilage to the material. The addition
of FM to a cementitious composite tends to form flocks whose size and shape depend
on the mucilage concentration. The size decreases as the concentration increases, and
the sphericity of these aggregates becomes more regular as the mucilage concentration
increases. This particular granular structure suggests a coating of the cement grains/sand
by the polysaccharide and not an increase in workability, as may be the case with OFI
mucilage [11,38]. This important granular aspect makes the cement particularly dry (in
conditions of W/C = 0.5) and difficult to work. During samples molding and demolding,
this granular aspect, bordering on sandy, makes the material quite friable. As mucilage is a
very hygroscopic material, the water available for hydration during mixing may be reduced
initially. Dissolving the mucilage also allows the polysaccharide chains to unwind and
ionize. This ionization makes the anionic groups available to bind with the metallic cations
present in the cement, as shown previously with the FM solubilization in alkaline solutions
and FTIR conclusions. This interaction at the surface of the cement grains has been shown
to be an absorption or adsorption of the polysaccharide groups onto the cement grains,
resulting in a flocculation process [39]. This phenomenon can be seen in Figure 4. Moreover,
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the kinetics of cement hydration makes this phenomenon even more plausible. Indeed, due
to the substantial water absorption by the mucilage and the cement’s affinity for water, the
hydration kinetics of the cement enable the formation of this bond. Figure 4 shows that the
greater the amount of mucilage, the greater the flocculation.
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Setting times determination: The polysaccharide has the ability to bind with cement
cations and absorb an amount of mixing water necessary to the cement for hydration
and hardening. The Figure 5 illustrates the isothermal calorimetry of the polysaccharide
admixed cement pastes. Zhang et al. [40] worked on the retarding effect of saccharides on
cement pastes and concluded that the initial and final setting times increased exponentially
as a function of the sugar concentration. To confirm these results, an additional cement
paste, with 30 g/L mucilage mixing water (1.5% w/w cement), was used. The results are
shown in Figure 5a–c.

The Figure 5a clearly shows the impact of the polysaccharides on the cement hydration.
The setting times, both initial and final, are increased as a function of rising polysaccharides
concentration. The polysaccharides also influence the heat generated during the hydration
and extend the induction period. The Figure 5c confirms the conclusions of Zhang et al. [40]
that the setting is exponentially influenced by the polysaccharides concentration. Figure 5b
shows a crossing point of the admixed cement pastes curves with the reference one around
32 h, indicating a higher hydration rate above that crossing point for the admixed cement
pastes. Zhang et al. [40] mentioned this point. Moreover, after 48 h of hydration, excepted
for EURO15G and EURO30G, the cumulated heat is at least similar or higher than that of
the reference.
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Another evidence of the polysaccharide impact is on the mineral activity. The first
part of the hydration process is characterized by a linear curve (Figure 5b). Before the
deceleration of the hydration process, the slopes of the integrated curves are 2.49, 2.37, 2.19,
0.84, and 0.68 h·g·J−1 for the standard, EURO2G, EURO5G, EURO15G, and EURO30G,
respectively (upper and lower bounds are: X = [7.3; 16.7]; [9; 18.9]; [12.9; 24.4]; [67.2; 98];
[296.3; 329.4] for the standard, EURO2G, EURO5G, EURO15G, and EURO30G, respectively).
All the evidence of the crossing point, the higher ending heat generated, and the lower
slope during the induction period highlight the acceleration of the hydration process at the
end of the 48 h, which was confirmed by the work of Zhang et al. [40]. For these authors,
this behavior (called “delayed acceleration”) is consistent with the fact that the induction
period is controlled by slow formation or poisoning of the CSH nuclei [40] induced by
the FM.
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For EURO15G and EURO30G, the mineral activity is very low as the induction period
is increased. FM is composed by AX, which is a neutral fraction, and by RG, which is
the anionic one. In the neutral fraction, especially at the anomeric carbon (C1) of the
end reducing units, the HO-C-C1=O groups of the arabinose and xylose [41] but also the
α-hydroxylated acid as galacturonic acid units in the RG fraction [42] have the ability of
binding with the cement dissolved ions, thus limiting the CSH nucleation at the surface of
the cement grain. The increasing setting times and induction period as the polysaccharide
concentration rises is the result of a co-action of chemisorption of the metallic ions from the
cement and the increasing viscosity of the paste at higher polysaccharide concentrations.
This high viscosity, provoked by an increasing amount of unwound polysaccharides,
generates more cement grains ions absorption and an important reduction in mobility of
those ions caused by a steric hindrance. It has the effect of lowering the rate of the CSH
nucleation and Ca(OH)2 precipitation (Figure 6). This point is confirmed by combining
viscosity measurements of FM solutions and setting time measurements of the admixed
cement pastes.
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3.2.2. Evaluation of the Hydrates Formed in Cement Mortars 
Figure 7a shows the compressive strength and bulk density of mortars aged from 28 

to 90 days, with their respective degrees of hydration shown in Figure 7b. It can be seen 
from this figure that the compressive strength evolves constantly over time and in the 
same way as the bulk density, which is not the case for the degree of hydration. The 
EURO2G and EURO5G mortars yield a strength that is identical or close to the reference, 
but the maximum strength seems to be reached after 60 days and then no longer evolves. 
Lastly, EURO15G shows weaknesses in compressive strength despite a significant change 
in strength over time compared to the other samples. For the same curing time, the higher 
the addition of FM, the lower the bulk density. The degree of hydration is at least identical 
to that of the reference but higher. This indicates good hydration of the hydraulic binder 
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Figure 6. Schematic representation of the retardant barrier formation mechanism and the increase in
steric hindrance. (A) Anhydrous cement grain, (B) formation of cationic sites on the surface of the
cement grain, and (C) bonding of retarder and formation of a semi-permeable barrier around the
cement grains.

3.2.2. Evaluation of the Hydrates Formed in Cement Mortars

Figure 7a shows the compressive strength and bulk density of mortars aged from
28 to 90 days, with their respective degrees of hydration shown in Figure 7b. It can be
seen from this figure that the compressive strength evolves constantly over time and in
the same way as the bulk density, which is not the case for the degree of hydration. The
EURO2G and EURO5G mortars yield a strength that is identical or close to the reference,
but the maximum strength seems to be reached after 60 days and then no longer evolves.
Lastly, EURO15G shows weaknesses in compressive strength despite a significant change
in strength over time compared to the other samples. For the same curing time, the
higher the addition of FM, the lower the bulk density. The degree of hydration is at
least identical to that of the reference but higher. This indicates good hydration of
the hydraulic binder over time. These elements highlight the macroscopic granular,
sandy shape of the mortar (Figure 4) caused by flocculation, which is responsible for the
weakness of the material.
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For EURO2G and EURO5G, Figure 7b shows the quantity of hydrates developed at
different curing times. The evolution of the quantity of Portlandite and CaCO3 over time are
the opposite, indicating a dissolution of the carbonates by prolonged hydration over time.
This trend is not observed with the reference, in which the evolution of Portlandite and
carbonates are linked. These results suggest that mucilage promotes carbonation at young
ages and, further, the presence of Portlandite by prolonged hydration. This phenomenon
has been described for certain polysaccharides in the case of self-healing concretes [43,44].
The increase in the carbonation of cement at young ages is favored by various factors, either
jointly or independently:

• The degradation of mucilage into alcoholic saccharides, which promote the formation
of calcium carbonate;

• The presence of -COO− carboxyl groups within the mucilage and the accumulation of
Ca2+ on the surface of the cement grains increase the conditions for the bond between
CO3

2− and Ca2+ ions. These conditions favor the precipitation and crystallization of
CaCO3 [45];

• The increase in mucilage concentration leads to an increase in grain flocculation and a
decrease in the compactness of the cementitious matrix. The porosity created by the
macro-structure of the composite can lead to a deeper access of ambient CO2 into the
material and thus to carbonation at an early age. This argument is validated by the
work of Wang et al. [46];

• The viscosity confers a bubble trap characteristic to the mucilage. The higher the
viscosity, the stronger this characteristic. During the mucilage solubilization and
mixing phase, the air bubbles contained in the mucilage entrap a significant quantity
of O2 and CO2 from the ambient air in particular. These gases find their way into the
cementitious matrix at early ages, encouraging the formation of CaCO3 [47,48].

When FM is added in the matrix, the high amount of calcium carbonates formed in
the first ages is followed by a decrease. FM is able to capture water in the ambient air as
a high hygroscopic material. The captured water will diffuse slowly and in a controlled
manner over time into the cement matrix, which may lead to a long-term hydration. This
long-term hydration induced by the FM corresponds to the rise in the amount of Portlandite
in Figure 7b.

3.2.3. Microstructure Visualization—SEM

Figure 8 shows SEM images of the mortars at 28 days and 90 days. The matrices and
the matrix/sand interfaces enable the evaluation of the evolution of the material over time
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as well as the adhesion of the matrix to the sand grain. According to these images, the
adhesion of the matrix to the sand grain evolves negatively from the reference to EURO15G,
with interfacial transition zones of 0 µm, 0.2–0.3 µm, 0.3 µm, and 0.5–1.4 µm on average for
the reference, EURO2G, EURO5G, and EURO15G, respectively. These values are the second
argument that the compressive strength of mortars decreases as the mucilage concentration
increases after the flocculation by polysaccharides, as shown in Figure 4.
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Figure 8. SEM observations of 28- and 90-day mortars matrices and sand/matrix interface. Stars
on the micrographs correspond to EDS targets and arrows point to characteristic mineral species
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The reference sample (A1 to B2) shows a densification of the matrix with the presence
of microporosities at 28 days and their disappearance at 90 days. In images A1 and B1,
there is a good distribution of Portlandite and CSH. In the vicinity of the sand grain,
weakly polymerized CSH and Portlandite evolve at 90 days into an adhesive interface of
CSH gel with Ca/Si between 1.2 and 2.2. The presence of mucilage in small quantities in
the EURO2G images perfectly illustrates the impact of the polysaccharide on the cement
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matrix. Image C1 shows a spherical geometric shape of CSH (Ca/Si of 2.6) surrounded
by Portlandite that is particularly well ordered towards this sphere. This Portlandite
organization is particularly visible and amplified on H1. This micrograph corresponds
to a higher FM concentration, confirming the polysaccharides’ influence on Portlandite
structure. Knapen et al. [49] already observed this aligned arrangement of Portlandite
because of polysaccharides. Image D1, despite the relatively long curing time, shows CSH
and Portlandite forming, predominantly. The structure of the matrix remains particularly
disordered and less dense than the reference. As far as the matrix around the sand grain is
concerned, it consists mainly of Portlandite in the 28-day cure (C2), whereas in the 90-day
cure, there is Portlandite and CSH at the same time (D2).

The increase in mucilage concentration (Figure 8) induces more and more morphologi-
cal changes, confirming the arguments presented earlier. Image E1 shows that mucilage
appears to influence CSH morphology since all the points analyzed in this image have
Ca/Si values ranging from 2.2 to 2.9. At 90 days (F1), the evolution is notable, with Port-
landite and CSH present. The matrix remains less dense than the reference matrix (B1) at
the same age. The matrix/sand interface consists of Portlandite, as in mortar with less FM
(C2). Indeed, image E2 shows Portlandite in two forms: one with a Ca/Si of 8.8 (close to
the sand grain) and a Portlandite probably in the process of forming CSH, with a drop
in Ca/Si = 5.2 (at distance of 6 µm from the sand grain). Finally, EURO15G shows signif-
icant carbonation (G1) not seen in the other samples. The matrix is filled with CaCO3 at
28 days (G1), whereas in the 90-day cure, the matrix consists mainly of Ca(OH)2, as the FM
proportion is high. The observation of Ca(OH)2 in the matrix of the 90-day cure, when at
28 days CaCO3 was in the majority, has never been reported in the literature regarding low
temperatures, but it is corroborated by Figure 7b showing that CaCO3 disappears in favor
of Ca(OH)2.

The shape of the Portlandite is particularly ordered (H1) and has a veiled appearance
(H2). The veiled appearance is the result of the visualization of mucilage, as reported by
Knapen et al. [49]. These authors clearly showed the interaction of polysaccharides with
Portlandite in particular. Some organic additives have the ability to structure and make
Portlandite durable. Usually, Portlandite is not able to resist the stresses of early cement
hydration, but the very visible bonds between Portlandite and polysaccharides create a
layer-like development of the Portlandite platelets. According to Knapen et al. [49], the
presence of polymer bridges between the Ca(OH)2 crystals acts as an additional bond
between the crystal layers and strengthens the crystal structure.

3.2.4. Thermal Conductivities of Cement Mortars

The thermal conductivities (Figure 9) decrease as the mucilage amount increases. It is
also obvious that thermal conductivities are largely related to the bulk density of mortars.
This decrease in the bulk density is related to an increase in microstructural flocculation
and internal porosity, as observed by SEM. Finally, the increase in the bulk density of
EURO15G is related to the elaboration of the mortar. It is necessary to apply a different
compaction on the fresh material in order to obtain a non-friable hardened mortar. This
compaction leads to an increase in the bulk density and thermal conductivity of the material.
This manual compaction during the elaboration of the EURO15G mortars is observed by
a significant increase in the standard deviation of the bulk density of EURO15G, as the
process is hardly reproducible.
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Figure 9. Thermal conductivities and bulk densities of 28-day cured mortars.

4. Conclusions

The paper discusses the influence of the concentration of a co-product from a local
waste: flaxseed mucilage. The study shows that the mucilage of flaxseed seems to show
signs of degradation in a simulated cementitious environment, with a decrease in the
apparent viscosity. This may be due to the elimination of hydrogen bonds governing the
viscosity of the solution and a degradation of the conjugated products of the polysaccharide
main chain.

The presented mucilage-admixed cement pastes study reveals that increasing the
mucilage concentration delays drastically, even exponentially, the beginning and ending
of cement setting. This delay is probably due to two main phenomena: (i) an increase
in steric hindrance caused by a mucilaginous solution that is all the more viscous as it is
concentrated and (ii) an increase, proportional to the amount of mucilage, in the absorption
and chelation of cement Ca2+ ions by FM. The simultaneous effects lead to the decrease
in the transport of the metal ions of the cement responsible for the nucleation of the CSH
and the precipitation of the Portlandite. This delay lasts throughout the induction period.
Later, a higher hydration acceleration is observed compared to the reference. The hydration
degrees of the mortars are equivalent, whatever the formulation, proving the non-inhibition
but delaying effect of the FM.

FM leads to cement flocculation, and the higher the FM concentration, the higher the
flocculation. This flocculation induces an increase in porosity and a greater carbonation as
well as a decrease in the compressive strength and thermal conductivity of the material.
As demonstrated by other work from our group, this disorder can be eliminated by the
use of a W/C ratio > 0.5 at high admixture concentration (0.75% cement). Thus, not only
the admixture rate but also the influence of the FM addition method (anhydrous and
in-solution forms, a current work in progress) and the W/C ratio must be improved to
better understand the potential of flaxseed mucilage in cementitious composites to target
future applications.

As a highly hygroscopic material, FM can capture water and then release it gradually
and under controlled conditions into the cement matrix over time. It would be interesting
to verify that the regulation of water diffusion from the mucilage can induce self-healing
properties. Effectively, by acting on cement grains not yet hydrated, this progressive release
of water could produce new hydrates, thus reinforcing the mortar properties in the medium
to long term. Another opportunity for valorizing mucilage would be to use a cement with a
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lower Blaine fineness, which has a lower water requirement and slows down the evolution
of the heat of hydration. A design of experiments combining admixture rate, W/C ratio,
and cement type will enable more defined recommendations for the formulation of this
type of mortar.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14093862/s1, Figure S1: SEC-MALS analysis of flaxseed
mucilage (1 g·L−1) in NaOH solution (0.04 M) at different analysis times. (a) SEC-MALS profile
(0 h: blue, 48 h: green and 72 h: red). Light curves are the molecular weight distribution, dark
curves are the Refractive Index signal (RI). (b) SEC-MALS results (Mn: number average molecular
weight, Mw: weight-average molecular weight, and polydispersity values (Mw/Mn)); Figure S2:
SEC-MALS analysis of flaxseed mucilage (1 g·L−1) in Ca(OH)2 solution (0.02 M) at different analysis
times. (a) SEC-MALS profile (0 h: blue, 48 h: green and 72 h: red). Light curves are the molecular
weight distribution, dark curves are the Refractive Index signal (RI). (b) SEC-MALS results (Mn:
number average molecular weight, Mw: weight-average molecular weight, and polydispersity values
(Mw/Mn).
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Abstract: This paper investigates the properties and durability of cementitious composites incorpo-
rating solid-solid phase change materials (SS-PCM), an innovative heat storage material. Mortars
with varying SS-PCM contents (0%, 5%, 10%, 15%) were formulated and characterized for rheological,
structural, mechanical, and thermal properties. Durability assessment focused on volume stability
(shrinkage), chemical stability (carbonation), and mechanical stability (over thermal cycles). Mortars
with SS-PCM exhibited significant porosity and decreased mechanical strength with higher SS-PCM
content. However, thermal insulation capacity increased proportionally. Notably, the material’s
shrinkage resistance rose with SS-PCM content, mitigating cracking issues. Despite faster carbonation
kinetics in SS-PCM mortars, attributed to high porosity, carbonation appeared to enhance long-term
mechanical performance by increasing compressive strength. Additionally, SS-PCM composites
demonstrated superior stability over thermal cycles compared to reference mortars.

Keywords: cementitious materials; phase change materials; properties; durability; shrinkage; carbonation

1. Introduction

Energy consumption is a real challenge nowadays, particularly in the building sector,
representing a significant part of it [1]. That is why many studies have been interested in and
are still interested in finding ways and solutions to save energy and reduce greenhouse gas
emissions. In fact, solar energy is one of these solutions, but the problem of intermittency
is imposed.

In this regard, storing and using renewable energy become an urgent need in order
to reduce energy consumption and then to improve indoor thermal comfort [1–3]. The
heat storage is the key technology to streamline energy consumption and improve energy
efficiency by reducing the gap between energy available and demand in buildings. There are
different types of heat storage as sensitive, latent, thermochemical or chemical [1]. Therefore,
phase change materials (PCM) have been advanced as one of the potential solutions to meet
some of these expectations. Indeed, cementitious materials incorporating PCM, improve
the thermal comfort of building, by increasing its inertia, thus avoiding sudden changes in
the indoor temperature [4–10]. In the current market, there is a range of commercialized
encapsulated phase change materials (solid-liquid) developed by leading companies such
as BASF, Climator, Cristopia, Dupont de Nemours, Rubitherm, and Winco Technologies.
All these technologies use encapsulated paraffin (micronal) as solid liquid phase change
materials (SL-PCM). However, three significant drawbacks arise when utilizing SL-PCM.
Firstly, the flammability of paraffin must be noticed. The associated risk is particularly
unconvinient with fire safety requirements within buildings [11]. Secondly, because of a
transition to a liquid state, such PCM require encapsulation to prevent against the leakage
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risk within the building material. The technologies for containment involve encapsulations,
which can be intricate, costly, and energy-intensive. Thirdly, the presence of PCM in the
cement matrix can cause sustainability problems such as the drop in their mechanical
performance [2,4–16] and the appearance of cracking [1,3,14,17]. When PCM is added to
the mix, it influences the mechanical and even thermal properties such as the thermal
conductivity of concrete [16]. The decrease of compressive strength seems to be more
pronounced than that of tensile strength [18]. The volume instability of these SL-PCM
generated durability problems (cracking, etc.) constraining their use in the building sector
despite their energy efficiency. To address these challenges, solid solid phase change
material (SS-PCM) with crystalline to amorphous conversion while remaining at a solid
state, have been developed [19–23]. Among these researchers, Harlé et al. [23] has been
developing several SS-PCM including the innovative PUX1520 used in this work. This
SS-MCP exhibits interesting and relevant physical and thermal properties (89 J.g−1 at 22 ◦C).
for applications in the building sector. The solid liquid phase change of SL-PCM consists
in endothermic melting during the heat charging phase and exothermic crystallization
during the heat discharging phase. Solid solid phase change of SS-PCM undergoes a
microstructural phase change from crystalline to amorphous while remaining at a solid state.
This is referred to as the charging process. Conversely, when the temperature decreases, the
SS-PCM releases heat as it crystallizes again, undergoing the discharging process (reversible
conversion). The SS-PCM, more stable than SL-PCM, should be more suitable for building
applications (masonry coating, bricks, roof coating, covering panels, etc.).

The innovative poly (ether urethane) based SS-PCM PUX1520 has interesting physical
and thermal properties that are relevant for building applications [23,24]. Its integration in
plaster has been the subject of preliminary studies [23], which have highlighted the interest
and advantages of this technology SS-PCM compared with SL-MCP. They showed the high
thermal inertia of Plaster/SS-PCM composites. The rheological properties in mortars are
studied [24].

However, there is not study about the volume stability (shrinkage) and chemical
stability (carbonation) of mortars incorporating this SS-MCP. Research on the durability
of cementitious materials incorporating SS-PCM is very limited, which hinders their use
in the building sector despite their energy efficiency. To use it as a construction material
capable of storing heat, it is necessary to first study its properties and stability. The
objective of this paper is to characterize and investigate the durability of cementitious
materials incorporated the innovative SS-PCM to improve the thermal inertia of buildings.
Furthermore, the effect of SS-PCM addition on the properties of cementitious materials
(rheological, structural, thermal and mechanical properties) was studied on the one hand.
On the other hand, since durability is a significant criterion for the use of building materials,
the evaluation of their volume stability (drying shrinkage), chemical stability (accelerated
carbonation) and finally mechanical stability (accelerated aging test over thermal cycles)
was measured.

2. Materials and Methods
2.1. Materials

The SS-PCM composite mortars were prepared from white Portland CEM I 52.5 N
cement containing 95%. The cement characterized by a Blaine specific surface 4200 cm2.g−1

is chemically composed by 74% C3S, 12% C2S, 11% C3A and 2.7% SO3. The detail of the
chemical composition is provided in the Table 1.

Table 1. Chemical composition of white cement.

Oxide SiO2 Al2O3 CaO MgO SO3 K2O Na2O Fe2O3

% 21.53 3.59 65.47 0.70 3.49 0.26 0.6 0.22
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The SS-PCM PUX1520 is an innovative poly (ether urethane) based SS-PCM developed
by Harlé et al. [23,24]. Such home made SS-PCM is characterized by a high heat storage
capacity of 89 J.g−1 with a low phase change temperature of 22.3 ◦C. Thanks to its high
hardness (30 shore D), the SS-PCM seems to be suitable for cementitious materials applica-
tions. Nevertheless, the tested formula is water soluble. The thermal conductivity at room
temperature is 0.231 W.m−1. K−1 suggesting a good thermal insulation capacity [23]. The
synthesized SS-PCM was crushed and sieved in white powder form with a grain size range
between 300 µm and 600 µm (Figure 1). The SS-PCM has a molar mass of 1500 g.mol−1, a
bulk density of 1200 kg.m−3 and a true density of 450 kg.m−3.
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Figure 1. SS-PCM grains morphology: (a) macrostructure and (b) microstructure.

The SS-PCM composite mortars studied in the present work, are formulated as it
reported in Table 2. The mortars were prepared according to the protocol described in
Section 2.2. The cement-water ratio (W/C) has been fixed to 0.5 for all mix-designs. The
mortar M0 is the reference sample without SS-PCM. The SS-PCM mortar composites M5,
M10 and M15 contained addition of 5%, 10% and 15% of SS-PCM (SS-PCM in %wt mass
of cement replaced in sand), respectively. The comparison between SS-PCM composite
mortars and the reference mortar allows showing the SS-PCM addition effects.

Table 2. Composition of mortars.

Mortars SS-PCM
(%wt Cement) Water/Cement Cement

(kg.m−3)
Water

(kg.m−3)
Sand

(kg.m−3)
SS-PCM
(kg.m−3)

M0 0 0.5 512 256 1535 0
M5 5 0.5 503 251 1483 25

M10 10 0.5 494 247 1433 49
M15 15 0.5 486 243 1385 73

2.2. Methods
2.2.1. Sample Preparation

The mixture of the mortars was ensured by the standard mixer NF EN 196-1 [25]. The
cement and SS-PCM were mixed at a slow speed during 60 s to obtain a homogenous
mixture (the cement only was mixed for M0). Then, sand was added and mixed at a slow
speed during 30 s. Water is then added according to the fixed cement-water ratio of 0.5.
After mixing during 30 s (slow speed), a stop time of 60 s is taken to scrape the bottom of
the mixer bowl and left to be mixed for the next 60 s at high speed. The prepared mortars
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were cast in prism molds (4 × 4 × 16 cm3), and placed on a vibrating table. The vibration
during 2 min allowed to ensure uniform thickness and to remove the air entrapped in the
samples. This same mixing process was used for all formulations. The samples were stored
in sealed bags at 20 ◦C and 100% relative humidity for 28 days. Finally, the mechanical and
microstructure properties were determined after 28 days of moist curing.

2.2.2. Analytical Techniques

The mortar workability was studied using a mini-slump test [26]. It was carried out
using a metal mold in the form of a truncated steel cone with a height of 60 mm, a base
diameter of 100 mm, and a top diameter of 70 mm. The mold was placed on a smooth, level
surface, then filled with mortar in 3 layers. Each layer was tamped with stokes throughout
its depth. The steel mold was removed from the mortar immediately by raising it slowly
and carefully in a vertical direction. This allows the mortar to spread over the level surface.
Then, the slump and the spread diameter were measured.

The flexural and compressive strength were measured with a 3R Quantech device
at 28 days using 3 samples (4 × 4 × 16 cm3) for each mix-design mortar. The tests were
performed in accordance with standard NF EN 196-1 [25], with loading speeds of 50
and 2400 N.s−1 for flexural and compressive strength tests, respectively. The resulting
flexural and compressive strength values were the means of three and six individual
values, respectively.

The microstructure of mortars was observed using a Gemini 300 (ZEISS) Scanning
Electron Microscope (SEM) under high vacuum, with a working distance of 9 mm and a
low voltage (2 kV) to avoid sample coating.

Mercury intrusion porosimetry (MIP) has been widely used to investigate the pore
structure of cement-based materials. The pore distribution of composite samples (prism of
1 × 1 × 1 cm3) was tested with the AutoPore IV 9500 device. Before testing, the samples
were dried to remove air and water at 45 ◦C in a vacuum oven until a constant weight. The
mercury pressure increasing allowed progressive access to the low porosity. The measured
pore diameters were in the range of 0.003 µm to 358 µm.

The thermal conductivity and the thermal diffusivity have been identified with the use
of a Hot-Disk device at 20 ◦C. The thermal properties was measured by the Transient Plane
Source (TPS) methodology using prism samples (4 × 4 × 16 cm3). The Hot-Disk probe
was placed between two prepared surfaces of the prism samples. Finally, the specific heat
was calculated from the measured thermal conductivity, thermal diffusivity and density.
Before testing, the 28-day aged samples were oven-dried at 45 ◦C to remove the free
water. Then, each sample was placed in a sealed bag and the cooling period was started at
20 ◦C. The free water has a significant influence on the measurements as water has its own
thermal properties.

2.2.3. Durability

The drying shrinkage of the prepared mortar samples (same preparation as in Section 2.2.1
but with different storage conditions) is estimated by weighting the samples and measuring
their length. The different mortars were cast in metallic molds of 4 × 4 × 16 cm3 previously
equipped with two screws (i.e., incorporated in the mortar sample). After 24 h of hydration
under autogenous conditions (into sealed bags), the specimens were removed from the
mold. The mass loss of each sample was followed during water evaporation. A comparator
(precision ± 0.002 mm) is used to manually measure the sample length of the sample over
time. The initial measurement corresponded to 24 h after the mortar casting.

The accelerated carbonation testing was performed in a chamber at 3% CO2, 20 ◦C
and 65% RH according to PERFDUB protocol [27]. A prior drying process of samples has
been done before the accelerated carbonation. Indeed, the 28 days aged mortar samples
(4 × 4 × 16 cm3) were dried in 45 ◦C oven during 14 days. Then a cooling period allows to
prepare the specimens at 20 ◦C and 65% RH during 7 days [27]. After this drying process,
the samples were placed into the accelerated carbonation chamber. The samples were
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removed from the enclosure and weighed at 0, 14, 28, 48 and 360 days of carbonation.
After that, the depth of carbonation was measured using a colored pH indicator (phenolph-
thalein). The phenolphthalein indicator was sprayed on the cutted surface (4 × 4 cm2) to
determine the carbonation depth.

The thermal stability of PCM mortars was followed by measuring their mechanical
behavior after cycles thermally loading. The experimental protocol in terms of cycle
time was previously set according to the thermal proprieties range of mortars in order to
ensure the full spread of heat into the prism sample during a single considered cycle. The
hygrometry was kept constant during the test. A monitored climate chamber is used to
carry out the tests through 100 cycles. Each cycle of 5 h consisted of a heating step to 40 ◦C
and a cooling step to 15 ◦C (Figure 2):

- Heating phase (heat charging): temperature increasing from 15 ◦C to 40 ◦C through a
heating rate of 1 ◦C/min (for 25 min). After such heating period, the temperature is
kept constant at 40 ◦C during 125 min.

- Cooling phase (heat discharging): temperature decreasing from 40 ◦C to 15 ◦C through
a cooling rate of 1 ◦C/min (for 25 min). Finally after this cooling period, the tempera-
ture is kept constant at 15 ◦C during 125 min.
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The mass variation of prism samples over time was followed by weighing specimens
during cycles. The sample stability in terms of mechanical properties was evaluated by the
measurement of their compressive strength over cycles.

3. Results
3.1. Mortar Proprieties

The mortars M0, M5, M10 and M15 were characterized by the measurement of rheolog-
ical, structural, mechanical and thermal properties using experimental protocols described
in Section 2.2.

3.1.1. Rheological Properties

In this study, the mini-slump test was used to evaluate the workability of cementitious
materials incorporating SS-PCM and to get an idea of the influence of the different SS-PCM
content on the rheological behavior of mortars (Figure 3). The reference mortar without
SS-PCM shows lower workability with an average value of 3.3 cm for slump and about
13.3 cm for spread diameter. The slump and spread diameter increased with the added
SS-PCM from 0% to 15%. That is to say, the SS-PCM added to the fresh mortar increased
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its workability by fluidifying the mixture. The results obtained in the present work are in
good agreement of those of Plancher et al. [24]. The noticed fluidification is induced both
by the solubility of SS-PCM and by the non-cohesive granular effect which contributes to
reduce the energy needed to shear the fresh suspensions. This visco-plastic behaviour is
well described by the Herschel–Bulkley model [24]. Finally, such results indicate an ability
of the SS-PCM to be used as a fluidifying agent in cementitious materials.
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Figure 3. Slump and spread diameter of SS-PCM composite mortars.

3.1.2. Microstructure Properties

The effect of the SS-PCM incorporation on the hardened mortar microstructure was
analyzed by scanning electron microscopic (SEM) observations (Figure 4). The morphology
of 28 days aged mortars (M0, M5, M10 and M15) was observed for 2 scales: large field (a),
and low field (b).

The observation of the large field images (a) shows clearly the macroporosity increasing
with the SS-PCM incorporation. As a consequence, the SS-PCM addition should generate
the modification of the pore size distribution. This should be confirmed by the mercury
intrusion porosimetry test. The high macroporosity visible in M15 matrix (a) should have
an effect on mechanical and thermal performance.

There is difference in morphology between M5, M10 and M15 noted in the low
field images (b). Furthermore, Plancher et al. [24] observed the partial dissolution of
SS-PCM in the cement paste during the mixing phase. This should generate chemical
interactions between cement grains and soluble part of SS-PCM, which influences the
cement hydration, hence the morphology. The centrifugation extraction of the interstitial
fluid of the fresh mortar without (M0) and with SS-PCM (M5, M10 and M15), then ICP-
OES analysis (Inductively Coupled Plasma Optical Emission spectroscopy) of extracted
solutions would allow to quantity the dissolved part of SS-PCM in each fresh mortar.

The microstructure of M10 (low field), with needles sharped hydrates looking like
ettringite, is very different to others mortars. There also seems to be C-S-H and ettringites
phases visible in the M15 matrix. It is easier to distinguish hydrates in an aerated matrix,
such as M15 matrix (less dense, less volume congestion). The hydrates in the other matrices
(M0, M5, M10) are less visible because of their high density (volume congestion). Additional
EDS on metallized samples are necessary to confirm the hydrate identification.
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3.1.3. Structural Properties

The porous structure network of mortars was investigated using Mercury Intrusion
Porosimetry (MIP). It is by far the most widely used method to evaluate the size distri-
butions of pores in cementitious materials, this is partially due to its wide range of pore
size identification [28]. The Figure 5 shows the pore size structure of SS -PCM composite
mortars with microporosity (≤0.01 µm), mesoporosity (0.01–1 µm) and macroporosity
(≥1 µm). The mesoporosity of the reference mortar (1–100 µm) is represented by a single
peak located at 10 µm. By considering the SS-PCM composite mortars, the access volume
for the main mode (10 µm) is first reduced with the increasing incorporation of SS-PCM
and a new pore size is created at around 60 µm. This new mode becomes more and more
important via accessibility increasing induced by increasing the incorporation SS-PCM.
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Figure 5. Pore size structure of SS-PCM composite mortars after 28 days.

The Figure 6 provides the pore size distribution of mortar porosity according to the
mercury intrusion method. The total porosity of the mortars increased with the SS-PCM
incorporation, because of the increase in macroporosity and mesoporosity, even if the
microporosity decreased. The increase of macropores could be linked to the fact that the
addition of SS-PCM leads to the decrease of the reactants content (cement and water),
hence the drop of hydrates content into the mortar matrix leading to less dense matrix,
and to more air content. As a consequence, for an equal amount of mortar, the cement
paste content decreased with the SS-PCM addition. In addition, the sand grains were
less bonded to each other (more pore voids between sand grains) because of the presence
of SS-PCM grains without binding properties in the cement paste matrix. The decrease
in microporosity should be related to the decrease of hydrate content with the SS-PCM
addition (less cement and water content), knowing that the microporosity is related to the
hydrate porosity. These results confirm the SEM observations in Section 3.1.2.
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Figure 6. Pore size distribution of SS-PCM composite mortars after 28 days.
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As expected, and in the opposite of porosity, the relative mass of SS-PCM increasing
in the composites induced a functional decrease of the mortar density (Figure 7). This
would induce modification of the construction material properties, such as mechanical or
thermal performance.
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3.1.4. Mechanical Properties

The flexural and compressive strengths were determined after 28 days of hydration
to analyze the effects of SS-PCM incorporation on the mechanical properties of mortars.
Figure 8 shows the results.
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Figure 8. Mechanical strength of 28 days mortars as a function of SS-PCM content.

The flexural and compressive strengths of mortars incorporating SS-PCM were lower
than those obtained for the reference mortar, and this reduction increased with the content
of SS-PCM. There was a compressive strength drop of about 50% for the mortars M5 and
M10, and 70% for M15%. These results are in agreement with the increase in mortar porosity
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previously observed (Figures 5 and 6). It should be noted that the compressive strength of
the M5 mortar was similar to that of the M10 mortar. As well as the total porosity, the M5
compressive strength (26 MPa) is very close to that of M10 (27 MPa). The Figure 8 shows
a reduction in flexural strength of 50% between the reference mortar (M0) and SS-PCM
composite mortars (M5, M10 and M15), and a similar compressive strength (around 5 MPa)
between SS-PCM composite mortars (M5, M10 and M15).

The mechanical strength drop is a disadvantage for construction materials. However,
the mechanical performance of SS-PCM composite mortars remains sufficient for most
building applications (26 MPa for M5, 27 MPa for M10 and 18 MPa for M15). For building
applications, in which higher mechanical is not needed (bricks, masonry wall, coating
wall, roof panels) [2], the SS-PCM could be added to cementitious materials to improve the
thermal performance of the building.

Thanks to review articles [2,29–31], the mechanical resistance of lightweight cemen-
titious material and PCM cementitious material according to its density was provided in
the Figure 9. The results of the present work were added to the figure as red squares. All
results in the literature show a trend for the compressive strength to increase with the
material density. However, for a given density, the mechanical strength differs according to
the binder composition, foaming method and the hydration cure. This explains the wide
dispersal of compressive strength according to the studies of lightweight materials. Our
results (red squares) remain in the range of compressive strengths for PCM materials. The
mechanical strength of PCM composites was lower than that of lightweight material for a
given density. This is due to the presence of PCM molecules without binding properties in
the PCM composite matrix. The advantage of PCM over lightweight aggregates is its latent
enthalpy (heat storage capacity) providing high thermal inertia of building.
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3.1.5. Thermal Properties

The addition of 5% SS-PCM in the mortar led to a significant drop (26%) in terms of
thermal conductivity. However, there was a slight variation in thermal conductivity among
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the SS-PCM composite mortars (Figure 10a). The Figure 10b shows the rise of thermal
conductivity with the porosity of mortars. Indeed, the thermal conductivity of cementitious
materials depends on their air content. In addition, it should be noted that the low thermal
conductivity of the added SS-PCM (0.231 W.m−1.K−1) promotes the high insulation capacity
of mortar composites. The SS-PCM conductivity was about 7 times lower than that of
the reference mortar. Unlike the mechanical strength decreased, the thermal conductivity
drop is an advantage for building applications. The SS-PCM composite mortars have
better thermal insulating capability compared to reference mortar, and seem suitable for
low-energy buildings.
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Figure 10. Thermal conductivity of mortars related to (a) SS-PCM content and to (b) porosity
of mortars.

Unlike the compressive strength, the thermal conductivity of PCM composites was
slightly lower than that of lightweight materials for a given density (Figure 11). This is due
to the low thermal conductivity of the added PCM in the matrix. Our results (red squares)
remain in the range of thermal conductivity for PCM materials. SS-PCM and lightweight
materials are similar in terms of insulating capacity (similar thermal conductivity), but
not in terms of thermal inertia. The advantage of SS-PCM over lightweight materials is its
latent enthalpy, i.e., its high solar energy storage capacity providing high thermal inertia
of building (unlike, the thermal inertia of lightweight material is low). In addition, the
SS-PCM provides better durability and rheological properties. However, it should be noted
that the lightweight materials are cheaper than PCM composites.

Unlike thermal conductivity, specific heat was higher when SS-PCM was added to
mortar (Figure 12). In fact, the specific heat only depends on solid and phases of the mortar
(i.e., cement paste, sand and SS-PCM), while the thermal conductivity takes into account
all phases of the material (i.e., including the gas phase (porosity)). However, the specific
heat of SS-PCM mortars was not a linear function of the SS-PCM amount.

The mechanical and thermal performances of SS-PCM composite mortars remain
sufficient for most building applications. Moreover, its high thermal insulating capability
and heat storage [23] are also relevant benefits for low-energy consumption buildings. This
allows to improve the thermal inertia of the building, thus avoiding sudden changes in the
indoor temperature, all while maintaining the supporting structure capacity. However, its
higher porosity could lead to durability problems.
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Figure 12. Specific heat of SS-PCM composite mortars.

3.2. Durability of Cementitious Composites Incorporating SS-PCM

As durability is an essential criterion for building materials, the SS-PCM composite
mortars stability was investigated. This aims to evaluate volume stability (shrinkage), chem-
ical stability (carbonation) and mechanical stability over thermal cycles of SS-PCM mortars.

3.2.1. Volume Stability: Drying Shrinkage

The drying shrinkage of cement-based materials can lead to structural cracking. In
the literature, drying shrinkage is considered to be a consequence of changes in disjoining
pressure, capillary pressure, and surface free energy or combinations thereof, accompanying
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a decrease of saturation and internal relative humidity [32–35]. The capillary pressure in
the pore network is the mechanism that is usually employed to describe the hydric strains
in porous materials [35]. It is related to the formation of water-air menisci in the partially
empty pores, which induce isotropic compressive stress within the rigid solid skeleton
that leads to bulk shrinkage. The essential cause of drying shrinkage is, of course, the
evaporation of the capillary water from the material surface exposed to the ambient air.
Evaporation occurs as soon as the relative humidity of the ambient air is lower than that
prevailing in the capillary network. The tension forces developed inside the concrete lead to
its contraction. The SS-PCM effect on drying shrinkage of SS-PCM mortars is investigated.

The specimens of 24 h (4 × 4 × 16 cm3) are removed from the molds, and placed in
a climate chamber (20 ◦C and 50% RH). The mass evolution of each sample is followed
during the water evaporation. Figure 13 shows the mass loss over time for each mix-design
mortar. The water desorption kinetics was rapid in the short term, then the kinetics slowed
down for all mortar samples (M0, M5, M10 and M15) after 20 days. The mass loss of water
into the mortars increased with the SS-PCM content. This was related to the pore diameter
and porosity which increased with SS-PCM content.
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Moreover, the capillary pressure, is related to the internal relative humidity according
to the Kelvin–Laplace law [32]. So, the drying shrinkage amplitude should increase with
the water loss [36]. However, it is noted that the SS-PCM addition generated more water
loss (Figure 13), but less drying shrinkage (Figure 14). The incorporation of 5%, 10% and
15% of SS-PCM into the mortar allowed reducing the drying shrinkage amplitude by 7%,
42% and 53%, respectively. This should be related to the higher compressibility of the
SS-PCM compared to cementitious materials able to amortize the drying shrinkage [19].
Therefore, the SS-PCM (grains size 300–600 µm) into the mortar matrix would amortize
local stress due to the capillary pressure (generated by water loss) into the porous network,
leading to less measurable bulk deformation of the skeleton. Hence, the addition of SS-PCM
has the advantage of reducing macroscopic deformation linked to drying shrinkage.

Furthermore, it should be noted that shrinkage is probably the most common cause
of structural cracking [37,38]. If not controlled, the deformation due to shrinkage can
lead to durability problems and even shear stress [39,40]. The SS-PCM could be used as a
mitigation agent to reduce the drying shrinkage of cementitious materials.
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Figure 14. Drying shrinkage as a function of time.

3.2.2. Chemical Stability: Carbonation

Carbonation of concrete is a natural phenomenon that occurs in the long term in the
ambient air. However, it is a slow process in atmospheric conditions taking a few years to
reach high carbonation depth in the ambient air. The accelerated carbonation in a chamber
at 3% CO2 (20 ◦C and 65%RH) allows to speed up the process while maintaining stable
environmental conditions according to the PERFDUB test method [27]. Figure 15 shows
the evolution of the mass loss of mortar samples (4 × 4 × 16 cm3) during the drying period
at 45 ◦C before the carbonation test. The water loss is greater for mortars incorporating SS-
PCM compared to the reference mortar. As seen before (Figure 13), the mass loss increases
with SS-PCM content. This should be related to the high porosity of SS-PCM composites.
After 14 days in 45 ◦C oven, the mortar samples were stabilized at 20 ◦C and 65% RH
during 7 days (prior drying stage) [27]. They were then introduced into an accelerated
carbonation chamber (3% CO2, 20 ◦C and 65% RH).
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The Figure 16 shows images of mortar samples after 14, 28, 48 and 360 days of
accelerated carbonation. The phenolphthalein indicator was sprayed on the cutted surface
to determine the carbonation depth. Phenolphthalein turns to purple coloration in area
of pH higher than 9, so the purple coloration was observed in non-carbonated areas. The
colorless outer area (carbonated area) thickened over time, i.e., the carbonation depth
increased over time for all the tested mortars. At 360 days, the mortars with SS-PCM are
fully colorless (i.e., complete carbonated).
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Figure 17 shows the measurement of carbonation depth at 14, 28, 48 and 360 days
for each mix-design mortar (M0, M5, M10 and M15). As seen in Figure 16, there was no
carbonation at the beginning of accelerated carbonation (t = 0 day). Then, the carbonation
depth at 14 days was observed and could be measured for all samples. The carbonation
depth of all mix-design mortar increased over time. However, the carbonation kinetics of
the reference mortar was slower compared to SS-PCM composite mortars. The carbonation
kinetic increased with SS-PCM content. After 1 year of accelerated carbonation, the carbon-
ation of mortars incorporating SS-PCM (M5, M10 and M15) was complete (≥20 mm), while
that of reference mortar reached 6.8 mm. The high kinetic of SS-PCM composite mortars
in relation to the reference mortar was due to its higher and coarser porosity, promoting a
high diffusion of CO2 into the porous network.
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Figure 17. Carbonation depth of SS-PCM composite mortars over time.

It should be noted that the high carbonation depth of mortars incorporating SS-PCM is
partially due to the severe carbonation conditions in the accelerated chamber (3%CO2). In
the real condition of use (building application), the carbonation kinetics in the atmospheric
air was slower compared to the accelerated chamber. In fact, the Figure 18 shows the image
of mortars carbonated for 360 days at atmospheric air chamber and accelerated carbonation
chamber (3% CO2). The SS-PCM composite mortars are fully carbonated in chamber at
3% CO2 (≥20 mm), unlike those in the air atmospheric chamber.

In the atmospheric carbonation, the SS-PCM composite mortars show similar carbon-
ation depth between 5 and 6 mm, while the reference mortar achieved only 1.7 mm in
carbonation depth (Figure 19).

This high carbonation rate of SS-PCM composite mortar could be an advantage in
term of mechanical performance. Figure 20 shows an increase in mechanical strength with
the carbonation rate. Such a behavior can be related to effects induced by the carbonation
that leads to the calcium carbonate precipitation into the porous network reducing the
porosity, and improving the compressive strength. However, the low pH of carbonated
mortars could promote the corrosion of steels for reinforced concrete [41]. The SS-PCM
mortar should be suitable for non-reinforced concrete: masonry coating, masonry bricks,
roof coating, covering panels, etc.
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Figure 18. Images of carbonated mortars for one year in atmospheric air and in 3% CO2 chamber.
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3.2.3. Mechanical Stability: Reversibility over Thermal Cycles

It is relevant to check the stability of mortars incorporating SS-PCM over thermal
cycles, or in other words its ability in terms of mechanical strength to withstand the SS-PCM
phase transitions (heat storage) during the building lifespan. The heating at 40 ◦C and
cooling at 15 ◦C led to charge and discharge heat into SS-PCM, respectively. The Figure 21
shows the results of the aging test in terms of compressive strength as a function of the
number of phase transition cycles (0, 24, 48 and 100 cycles).
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Figure 21. Compressive strength of mortars as a function of thermal aging cycles.

A significant increase in compressive strength of all mortar samples is noticed after
24 cycles, a slight decrease occurred between 48 and 100 cycles. This mechanical perfor-
mance improvement after 24 cycles should be related to the thermal activation of hydration
reactions, increasing the hydration kinetics of mortars. For mortars incorporating SS-PCM,
there is a convergence towards the similar value of around 30 MPa after 100 cycles. Overall,
the Figure 21 shows the mechanical stability of SS-PCM composite mortars over the heat
storage cycles (until 100 cycles). This mechanical stability should be explained by the
volume stability of SS-PCM during phase change. Indeed, unlike classic solid-liquid PCM
(SL-PCM) as paraffin with solid-liquid transition phase (volume instability), the SS-PCM
have the advantage of a stable solid-solid transition phase (volume stability). Hence, the
volume stability of SS-PCM during the storage-distorage cycle allowed to avoid stress and
cracking into the mortar skeleton. Furthermore, it should be noted that this study should
be conducted over a larger number of cycles (200 cycles) to be more representative. For
supporting structure applications in building, it is important to keep mechanical stability
over heat storage cycles.

4. Conclusions

The influence of SS-PCM incorporations on properties and durability of mortars was
examined. The rheological, structural, mechanical and thermal properties of SS-PCM
mortars were measured and analyzed. Then, the durability study allowed assessing the
volume (drying shrinkage), chemical (carbonation) and mechanical stabilities (over thermal
storage cycles). The results showed that:

- The increase of SS-PCM content in the fresh mortar induces a better workability
and increases the total porosity, hence a drop in mechanical strength and thermal
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conductivity. However, the mechanical performance of SS-PCM composite mortars
remains sufficient (27–18 MPa) for most building applications.

- The drying shrinkage amplitude decreases with its SS-PCM content. This result should
be related to the compressibility of the SS-PCM amortizing the local capillary pressure,
leading to less measurable bulk deformation.

- An increase in mechanical strength with the carbonation rate was noted. The mechan-
ical stability of SS-PCM composite mortars over the heat storage cycles is confirmed.
This should be explained by the volume stability of SS-PCM during phase change
unlike classic SL-PCM.

The advantage of this innovative SS-PCM compared to the existing SL-PCM is its
ability to store high thermal energy with a better durability thanks to its volume stability
during solid-solid phase change. So, this storage material could be a solution for the
durability problems inhibiting the use of phase change materials in building sector. The
SS-PCM mortar was suitable for masonry coating, masonry bricks, roof coating, covering
panels, etc. This allow to improve the thermal inertia of the building, thus avoiding sudden
changes in the indoor temperature, all while maintaining the supporting structure capacity.
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Abstract: The study explores the hypothesis that crystalline hydrophilic additives (CA) can enhance
concrete’s resistance to freeze/thaw cycles, crucial for assessing building durability. Employing EU
standards, the research evaluates concrete resistance through standardized European freeze/thaw
procedures. Monitoring concrete slabs exposed to freezing in the presence of deionized water and
in the presence of 3% sodium chloride solution, the study measures surface damage and relative
dynamic modulus of elasticity. Additionally, it assesses internal damage through monitoring of
relative dynamic modulus of elasticity on cubes and prisms submerged in water and exposed to
freezing/thawing. The pore spacing factor measured here aids in predicting concrete behavior
in freeze/thaw conditions. Results suggest that the standard air-entraining agent offers effective
protection against surface and internal damage due to freeze/thaw cycles. However, the CA displays
potential in enhancing resistance to freeze/thaw cycles, primarily in reducing internal damage
at a 1% cement weight dosage. Notably, a 3% replacement of cement with CA adversely affects
concrete resistance, leading to increased surface and internal damage. The findings contribute to
understanding materials that can bolster concrete durability against freeze–thaw cycles, crucial for
ensuring the longevity of buildings and infrastructure.

Keywords: concrete; durability; crystalline hydrophilic additives; freeze–thaw cycles; surface dam-
age; internal damage; pore spacing factor

1. Introduction

The durability of buildings is mostly influenced by the durability of the materials
used in their construction. A primary factor that undermines this durability is the freeze–
thaw cycle [1]. When temperatures dip below zero, water within the material freezes and
expands, exerting stress on the material’s walls [2]. Through repeated freeze–thaw cycles,
this stress leads to material damage, consequently diminishing its durability. In cement
composites, such damage manifests as surface scaling or internal cracking [3].

A common approach to enhancing concrete’s durability against freeze/thaw cycles
involves incorporating air-entraining agents into the concrete mixture [4]. These agents
introduce air bubbles during mixing, which disrupt the capillaries through which water
could penetrate the concrete. By minimizing water content in the concrete, issues related
to freeze–thaw cycles are mitigated. However, it is important to exercise caution with
these agents, as they may adversely affect the compressive strength of the concrete [5]. The
literature also suggests that concrete durability can be improved by incorporating mineral
additives like slag [6], fly ash [7], and silica fume [8]. Furthermore, concrete durability
can be enhanced by partially replacing aggregate with rubber [9–12], employing polymer
binders [13,14], modifying [15–17] or impregnating concrete with polymers [18,19], using
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polycarbonate superplasticizers [20,21], employing biomimetic polymer additives [22], and
utilizing polymer fibers and biofibers [23,24].

Crystalline admixtures (CA) are primarily commercially available products offered by
various manufacturers (such as Xypex, Richmond, BC, Canada; Kryton, Vancouver, BC,
Canada; Penetron, East Setauket, NY, USA; Harbin, China). They serve a dual function:
reducing concrete permeability and repairing cracks [25]. The recommended dosage of
CA in concrete typically ranges from 0.3% to 5% by the weight of the cement [26,27].
Several authors have studied the impact of CA on the durability properties of concrete by
monitoring crack healing, with most concluding its effectiveness in this regard [28–32]. It
was noted that the highest rate of healing was observed when samples containing CA were
consistently immersed in water [28–30]. According to [29,33], calcium carbonate in the
form of aragonite is formed in concrete cracks treated with CA, effectively sealing them.

Considering the confirmed effectiveness of CA in the concrete crack healing process
and the fact that cracks occur in concrete during freeze–thaw cycles, it would be intrigu-
ing to precisely determine the effectiveness of CA in enhancing concrete resistance to
freeze–thaw cycles. European legislation mandates testing the resistance of concrete to
freeze–thaw cycles through procedures outlined in standards CEN/TS 12390-9 [34] and
CEN/TR 15177 [35]. In the method outlined in CEN/TS 12390-9 [34], concrete samples
saturated with deionized water or a 3% sodium chloride solution undergo freeze/thaw
cycles (56 cycles), during which surface scaling and mass loss of concrete are measured.
The procedure described in CEN/TR 15177 [35] can be employed to monitor damage to
the internal structure. Additionally, EN 480-11 [36] is used to predict concrete behavior
under freeze–thaw conditions, involving microscopic observation of hardened concrete
samples, measurement of pore spacing, and calculation of the pore spacing factor which
is defined as distance of any point in cement paste to the edge of the nearest air void.
Cement-based materials are considered resistant to freeze–thaw cycles if the spacing factor
is less than 0.2 mm.

Since the authors in [37] have already confirmed reduced water absorption by using
CA in concrete as an indicator of concrete resistance to freeze–thaw cycles, and the authors
in [32] have confirmed reduced water penetration in concrete with CA, the hypothesis arises
that the application of CA could potentially improve concrete resistance to freeze–thaw
cycles. Therefore, this study aims to examine the resistance of concrete to freeze–thaw
cycles according to standardized procedures prescribed by EU standards.

2. Experimental Part

In the experimental part of the paper, four concrete mixtures were prepared; a reference
mixture (M1), a mixture with an air entraining agent (M2), and mixtures with a crystalline
hydrophilic admixture in two different amounts per cement weight (M3, M4).

2.1. Properties of Aggregates, Binders, and Additives to Concrete

In this research, dolomite was used as an aggregate in fractions 0–4 mm, 4–8 mm,
8–16 mm, and 16–31.5 mm, as well as a dolomite-type filler. The density of dolomite
aggregate and filler determined according to EN 1097-6 standard [38] was 2780 kg/m3. The
specific surface area for filler determined using the BET method according to the standard
ISO 9277 [39] was 2.32 m2/g. Sieve curves for dolomite fractions are shown together with
target and actual cumulative aggregate curve in Figure 1, where it should be noted that 5%
of the 0–4 mm fraction was replaced with filler.

The cement used for making concrete mixtures was CEM I 52.5 N. In all mixtures, the
superplasticiser ViscoCrete 5380, Sika Croatia, Zagreb, Croatia was used in the amount of
1% of the mass of binder. In mixture M2, the air-entraining agent LPS A 94 from Sika was
used in the amount of 0.2% of the mass of cement. The crystalline hydrophilic admixture
Penetron Admix from Penetra, Sesvete, Croatia was used in the amount of 1% of binder in
mixtures M3 and 3% of the mass of binder in mixtures M4. The density of binders (cement
and crystalline hydrophilic admixture) was determined according to the standard EN
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1096-6 [40], and the specific surface area was determined using the BET method according
to ISO 9277 [39]. The densities of the superplasticizer and air entraining agent are adopted
from the additive producer. The densities of binders, superplasticizer, and air-entraining
agent, as well as the specific surface areas of binders, are shown in Table 1.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 3 of 13 
 

 
Figure 1. Fraction sieve curves, target, and cumulative sieving curves of aggregate. 

The cement used for making concrete mixtures was CEM I 52.5 N. In all mixtures, the 
superplasticiser ViscoCrete 5380, Sika Croatia, Zagreb, Croatia was used in the amount of 
1% of the mass of binder. In mixture M2, the air-entraining agent LPS A 94 from Sika was 
used in the amount of 0.2% of the mass of cement. The crystalline hydrophilic admixture 
Penetron Admix from Penetra, Sesvete, Croatia was used in the amount of 1% of binder 
in mixtures M3 and 3% of the mass of binder in mixtures M4. The density of binders (ce-
ment and crystalline hydrophilic admixture) was determined according to the standard 
EN 1096-6 [40], and the specific surface area was determined using the BET method ac-
cording to ISO 9277 [39]. The densities of the superplasticizer and air entraining agent are 
adopted from the additive producer. The densities of binders, superplasticizer, and air-
entraining agent, as well as the specific surface areas of binders, are shown in Table 1. 

Table 1. Densities of binders, superplasticizer, and air-entraining agent, and specific surface area of 
binders. 

Components Density, kg/m3 Specific Surface 
Area, m2/g 

Cement, CEM I 52.5 N 2960 3.76 
Superplasticiser, ViscoCrete 5380 1080 - 

Air entraining agent, LPS A 94 1000 - 
Crystalline hydrophilic admixture (CA), Penetron 2910 2.70 

2.2. Composition of Concrete Mixtures 
The composition of concrete mixtures is shown in Table 2. All mixtures have the same 

water/cement ratio of 0.35, the same amount of aggregate, and the same amount of binder 
(400 kg). In mixtures M1 and M2 it is cement, while in mixtures M3 and M4 it is the total 
amount of cement and crystalline hydrophilic additive. 

  

Figure 1. Fraction sieve curves, target, and cumulative sieving curves of aggregate.

Table 1. Densities of binders, superplasticizer, and air-entraining agent, and specific surface area of
binders.

Components Density, kg/m3 Specific Surface
Area, m2/g

Cement, CEM I 52.5 N 2960 3.76
Superplasticiser, ViscoCrete 5380 1080 -
Air entraining agent, LPS A 94 1000 -

Crystalline hydrophilic admixture (CA), Penetron 2910 2.70

2.2. Composition of Concrete Mixtures

The composition of concrete mixtures is shown in Table 2. All mixtures have the same
water/cement ratio of 0.35, the same amount of aggregate, and the same amount of binder
(400 kg). In mixtures M1 and M2 it is cement, while in mixtures M3 and M4 it is the total
amount of cement and crystalline hydrophilic additive.

Table 2. Composition of concrete mixtures for 1 m3 of concrete.

Mixture/Components M1 M2 M3 M4

Cement (kg) 400 400 396 388
Water (kg) 140 140 140 140

Superplasticizer (kg) 4 4 4 4
Air entraining agent (kg) - 0.8 - -

Crystalline hydrophilic admixture (kg) - - 4 12

A
gg

re
ga

te

Dolomite 0–4 mm (kg) 576.6 576.6 576.6 576.6
Dolomite 4–8 mm (kg) 195.6 195.6 195.6 195.6
Dolomite 8–16 mm (kg) 469.8 469.8 469.8 469.8
Dolomite 16–31.5 mm (kg) 685 685 685 685

Filler (kg) 30.2 30.2 30.2 30.2
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The aggregates used for preparing concrete were first saturated and then surface-dried.
This was achieved in an artificial way by dipping the aggregates into a water tank for 24 h,
taking them out, and then wiping excess water from their surface. First, coarse and fine
aggregate was mixed for 1 min, then binder was added and the mixing was continued for
an additional 2 min. In the end, water was added and the mixing was continued for an
additional 2 min. Mixing the concrete in a pan mixer (DZ 100VS, Diemwerke, Hörbranz,
Austria) took a total of 5 min.

2.3. Properties of Fresh and Hardened Concrete

The consistency of the concrete was determined according to EN 12350-2 [41], the
density of fresh concrete according to EN 12350-6 [42], and the air content according to the
standard EN 12350-7, with the pressure gauge method [43]. The obtained results are shown
in Table 3.

Table 3. Properties of concrete mixtures in their fresh state.

Mixture M1 M2 M3 M4

Consistency–slump (cm) 12 14 11 11
Density (kg/m3) 2504 2439 2520 2489
Air content (%) 1.5 5 1.5 1.6

According to Table 3, all mixtures belong to consistency class S3 (10–15 cm) according
to EN 206 [44]. The addition of crystalline hydrophilic admixture had no impact on
workability, which is in accordance with [45]. In terms of density, all mixtures can be
considered normal weight concrete. As expected, mixture M2 has the highest air content
in fresh concrete, for which the air-entraining agent in the mixture is directly responsible.
Crystalline hydrophilic admixture did not affect the air content in fresh concrete for both
tested doses, but Shetiya et al. [46] tested mixtures with different concentrations of Penetron
crystalline admixture (1% and 2.5% of the cement mass) and found that the mixture with
1% crystalline admixture had the highest air content of all tested concretes.

From each mixture, 14 cubes of dimensions 15 cm × 15 cm × 15 cm and 3 prisms of
dimensions 10 cm × 10 cm × 40 cm were prepared. After casting, the concrete specimens
were stored under cover for 24 h under laboratory conditions until demolding to prevent
water evaporation. After demolding, the specimens were in the mist room at 20 ± 2 ◦C
and RH ≥ 95% until the age of testing. On 3 out of 14 cubes, the compressive strength of
28-day-old specimens is determined according to EN 12390-3 [47], and the results and their
corresponding standard deviations are shown in Figure 2.
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From Figure 2, it is evident that CA present in concrete mixtures M3 and M4 did
not significantly affect the compressive strength of the concrete, which is in line with the
conclusions presented in [32,48,49]. The presence of air entraining agent in mixture M2
significantly reduced the compressive strength of the concrete which is consistent with the
well-known fact that air entraining agent negatively affects concrete strength [5].

Furthermore, from each of the eight cubes, one slab of dimensions 15 cm × 15 cm × 5 cm
(total of eight slabs) was sawn out to monitor scaling due to freeze/thaw cycles according
to CEN/TS 12390-9 [34], and the relative dynamic modulus of elasticity due to freeze/thaw
cycles according to Clause 8 of CEN/TR 15177 standard [35] using an ultrasonic pulse
transmission time device, and one slab of dimensions 10 cm × 15 cm × 4 cm to measure the
spacing factor according to EN 480-11 standard [36]. Half of the slabs intended for scaling
and relative dynamic modulus of elasticity monitoring were subjected to freeze/thaw
attack in the presence of a 3 mm deep layer of deionized water, and the other half were
subjected to freeze/thaw attack in the presence of a 3% sodium chloride solution. Figure 3
shows all the slab samples in the freezing and thawing chamber (producer: Schleibinger,
Buchbach, Germany), and Figure 4 shows the monitoring of the amount of scaled material
and dynamic modulus of elasticity during exposure to freeze/thaw cycles.
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Figure 5 shows the slab prepared for measuring the spacing factor and the measuring
device for the measuring. The remaining 3 out of a total of 14 cubes and 3 prisms of
each mixture were subjected to freeze/thaw cycles in the presence of water in the Mis
600 chamber, LT, Slovenia at 28 days of their age and the relative dynamic modulus of
elasticity was monitored during freeze/thaw cycles according to Clause 7 of CEN/TR
15177 standard [35]. Figure 6 shows specimens in the chamber immersed in water and
measuring of the pulse transmission time on the cube and prism specimens.
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Figure 5. Spacing factor measuring: (a) concrete slab prepared for spacing factor measuring; (b) 
spacing factor measuring device. 

   
(a) (b) (c) 

Figure 6. Measuring during exposure of cubes and prisms to freeze/thaw cycles in the presence of
water: (a) Cubes and prisms immersed in water; (b) measuring of the pulse transmission time on the
cubes; (c) measuring of the pulse transmission time on the prisms.

3. Test Results

The results of scaling tests due to freeze/thaw cycles according to CEN/TS 12390-9 [34]
with corresponding standard deviations are shown in Figure 7, and the results of testing the
relative dynamic modulus of elasticity due to freeze/thaw cycles according to Clause 8 of
CEN/TR 15177 standard [35] are shown in Figure 8. Each point on the curves presented in
Figure 7 represents the mean value of four measurements. While the standard deviation of
results is expressed for absolute values (Figure 7), this was not possible for relative values
(Figure 8). However, it should be noted that the relative values were calculated from the
mean absolute values of four absolute measured values, with the exclusion of all values
that deviated from the mean absolute value by more than 10%.

132



Appl. Sci. 2024, 14, 2303

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 13 
 

Figure 6. Measuring during exposure of cubes and prisms to freeze/thaw cycles in the presence of 
water: (a) Cubes and prisms immersed in water; (b) measuring of the pulse transmission time on 
the cubes; (c) measuring of the pulse transmission time on the prisms. 

3. Test Results 
The results of scaling tests due to freeze/thaw cycles according to CEN/TS 12390-9 

[34] with corresponding standard deviations are shown in Figure 7, and the results of 
testing the relative dynamic modulus of elasticity due to freeze/thaw cycles according to 
Clause 8 of CEN/TR 15177 standard [35] are shown in Figure 8. Each point on the curves 
presented in Figure 7 represents the mean value of four measurements. While the stand-
ard deviation of results is expressed for absolute values (Figure 7), this was not possible 
for relative values (Figure 8). However, it should be noted that the relative values were 
calculated from the mean absolute values of four absolute measured values, with the ex-
clusion of all values that deviated from the mean absolute value by more than 10%. 

  

(a) (b) 

  
(c) (d) 

Figure 7. Scaling of concrete slabs: (a) scaled material mass due to freeze/thaw cycles in the presence 
of deionized water; (b) scaled material mass related to test surface due to freeze/thaw cycles in the 
presence of deionized water; (c) scaled material mass due to freeze/thaw cycles in the presence of 
3% sodium chloride solution; (d) scaled material mass related to test surface due to freeze/thaw 
cycles in the presence of 3% sodium chloride solution. 

Figure 7. Scaling of concrete slabs: (a) scaled material mass due to freeze/thaw cycles in the presence
of deionized water; (b) scaled material mass related to test surface due to freeze/thaw cycles in the
presence of deionized water; (c) scaled material mass due to freeze/thaw cycles in the presence of 3%
sodium chloride solution; (d) scaled material mass related to test surface due to freeze/thaw cycles in
the presence of 3% sodium chloride solution.
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Figure 8. Relative dynamic modulus of elasticity–measured on concrete slabs: (a) in the presence of
deionized water; (b) in the presence of 3% sodium chloride solution.
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The results of spacing factor measurements according to EN 480-11 [36] are shown in
Figure 9.
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Figure 9. Spacing factor.

The results of testing the relative dynamic modulus of elasticity due to freeze–thaw
cycles according to Clause7 of CEN/TR 15177 standard [35] are presented in Figure 10.
The relative values were calculated from the mean absolute values of six measurements on
cubes and three measurements on prisms, with the exclusion of all values that deviated
from the mean absolute value by more than 10%.
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Figure 10. Relative dynamic modulus of elasticity: (a) measured on concrete cubes; (b) measured on
concrete prisms.

4. Discussion

From Figure 7a,b, it is evident that in mixture M2 containing an air-entraining agent,
there is a significant reduction in mass loss due to scaling after 56 freeze/thaw cycles
compared to mixture M1, while the crystalline hydrophilic additive in mixtures M3 and
M4 acted contrary to expectations, increasing the mass loss due to scaling, i.e., increasing
the mass loss due to exposure of samples to deionized water. The mixture with a lower
proportion of crystalline hydrophilic additive (M3) records a lower mass of scaled material
compared to the mixture with a higher proportion of crystalline hydrophilic additive (M4).
This is contrary to the observations in [50] where the mass loss ratio due to freeze/thaw
cycles is significantly lower in mixtures with the addition of CA compared to the reference
mixture. The mixture with the least amounts of scaled material, and therefore the best
resistance to freeze/thaw cycles according to this method, and under conditions of exposure
to deionized water, is mixture M2, followed by mixtures M1, M3, and M4 in sequence.
From Figure 7c,d, it is noticeable that in mixture M2 containing an air-entraining agent,
there is a drastic reduction in mass loss due to scaling after 56 freeze/thaw cycles compared
to mixture M1, while the crystalline hydrophilic additive in mixtures M3 and M4 acted
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contrary to expectations, increasing the mass loss due to scaling, i.e., increasing the mass
loss due to exposure of samples to a 3% sodium chloride solution. The mixture with a
lower proportion of crystalline hydrophilic additive (M3) records significantly lower scaled
material mass compared to the mixture with a higher proportion of crystalline hydrophilic
additive (M4). The lowest scaled material mass, and thus the best resistance to freeze/thaw
cycles according to this method and under conditions of exposure to a 3% sodium chloride
solution, is recorded by mixture M2, followed by mixtures M1, M3, and M4 in sequence.
When it comes to surface damage due to freeze/thaw cycles, the air-entraining agent
is evidently the most effective additive for preventing damage, almost equally effective
regardless of whether freezing/thawing occurs with or without salt presence, while the
negative effect of the crystalline hydrophilic additive is significantly more pronounced
during freezing/thawing in the presence of salt. Such research findings on the impact
of the crystalline hydrophilic additive are even worse than the results presented in [51].
Specifically, Manhanga et al. [51] concluded in part of their study addressing the scaling of
concrete exposed to a 3% sodium chloride solution that the crystalline hydrophilic additive
(in amount of 0.8% per cement weight) does not affect this type of damage caused by
freeze–thaw cycles.

From Figure 8a, it can be concluded that the drop in the dynamic modulus of elasticity
as a measure of internal damage during exposure to freezing/thawing in the presence of
deionized water is most pronounced in mixture M1. Mixture M4 has a smaller drop in
the dynamic modulus of elasticity than mixture M1, while mixtures M3 and M2 recorded
an increase in the dynamic modulus of elasticity. The increase in the dynamic modulus
of elasticity during the freeze/thaw cycles is consistent with the increase in mass during
freezing/thawing reported in [52]. The authors in [52] explain that freeze/thaw cycles
promote the mobility of pore solution through osmosis. As a result, portlandite dissolved
in pore water migrates, facilitating the reactions involved in the self-healing procedure.
Additional ice formation in pores likely contributed to the reported mass increase, thus
supporting the evolution of the self-healing process.

During exposure to freezing/thawing in the presence of a 3% sodium chloride solution
(Figure 8b), the highest drop in the dynamic modulus of elasticity was recorded by mixture
M4, while mixtures M1 and M3 recorded a somewhat smaller drop in the dynamic modulus
of elasticity, and mixture M2 recorded an increase in the dynamic modulus of elasticity.
In terms of internal damage, the air-entraining agent has shown the highest effectiveness
in protecting concrete from damages caused by freeze/thaw cycles, but the crystalline
hydrophilic additive at a 1% dosage (M3) has shown potential to improve concrete’s
resistance to freeze/thaw. This is in accordance with [53] where a positive effect on crack
self-healing (monitored through the recovery of compressive strength of samples cured in
water) of lower CA content has also been recorded, while a negative effect of higher CA
content in the total binder quantity was noted.

Figure 9 shows that mixture M2 has the smallest pore-spacing factor, followed by
mixtures M3 and M4, while mixture M1 has the largest pore-spacing factor. Considering
that this testing method requires a pore spacing factor smaller than 0.2 mm for concrete to
be considered resistant to freeze/thaw cycles, according to this method, only mixture M2
could be considered resistant to freeze/thaw cycles. The obtained value of the pore spacing
factor of 0.076 mm for the M2 is in accordance with range from 0.07 mm to 0.16 mm for
air-entrained concrete [54]. Compared with the mixture M1, the crystalline hydrophilic
additive reduced the spacing factor more than 60%, but the obtained values of 0.392 mm
(M3) and 0.326 mm (M4) are significantly higher than 0.2 mm requested for concrete to be
considered resistant to freeze/thaw cycles. Figure 10a,b confirm the conclusions regarding
Figure 8a,b, namely that regarding internal damage, the air-entraining agent has shown the
highest effectiveness in protecting concrete from damages caused by freeze/thaw cycles, but
the crystalline hydrophilic additive at a 1% dosage (M3) has shown potential to improve
concrete’s resistance to freeze/thaw cycles. Furthermore, regarding internal damages,
the crystalline hydrophilic additive used in this study achieved better performance in
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enhancing the concrete’s resistance to freeze/thaw cycles compared to the crystalline
hydrophilic additive used in [51]. Specifically, Manhanga et al. [51] concluded, in part
of their research focusing on the impact of the crystalline hydrophilic additive on the
strength of cubic specimens exposed to freeze/thaw cycles in the presence of water, that the
crystalline hydrophilic additive does not affect this type of damage caused by freeze–thaw
cycles. On the other hand, Ferrara et al. [55] have indeed confirmed that the velocity of
the ultrasonic wave passage is higher in concrete with a crystalline hydrophilic additive
compared to reference concrete during the self-healing process of cracks in concrete, leading
to the conclusion that the crystalline hydrophilic additive promotes crack healing. The
results presented in this paper are in line with the results shown in Ferrara et al. [55]
because cracks that occur as internal damage during freeze/thaw cycles are likely to be
healed faster when concrete contains a 1% crystalline hydrophilic additive compared to
reference concrete.

5. Conclusions

The paper investigates the effectiveness of the crystalline hydrophilic additive on
concrete resistance to freeze/thaw cycles according to standardized EU methods. Scal-
ing resulting from freeze/thaw cycles was observed on concrete slabs exposed to freez-
ing/thawing under two conditions: in the presence of deionized water, and in the presence
of a 3% sodium chloride solution. This served as a measure of surface damage. Addition-
ally, the relative dynamic modulus of elasticity was assessed on concrete slabs subjected
to freezing/thawing under the same conditions mentioned above. This measurement
provided insight into internal damage. Furthermore, the relative dynamic modulus of
elasticity was examined on concrete cubes and prisms submerged in water and exposed to
freezing/thawing. This served as a measure of internal damage. Lastly, the paper explored
the pore spacing factor. This factor is utilized more for predicting concrete behavior in
freeze/thaw conditions rather than monitoring actual concrete behavior in such conditions.
Based on the obtained results, it was concluded that the most effective protection against
surface and internal damage to concrete is provided by the standardly used air-entraining
agent, while the crystalline hydrophilic additive has the potential to improve concrete
resistance to freeze/thaw cycles in the context of reducing internal damage only if used
at a 1% cement weight dosage. A 3% replacement of cement with crystalline hydrophilic
additive has shown a negative effect on concrete resistance to freeze/thaw cycles in terms
of increased surface and internal damage.
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Abstract: Placed in a sulfate-rich environment, concrete reacts with sulfate ions, influencing the long-
term durability of reinforced concrete (RC) structures. This external sulfate attack (ESA) degrades the
cement paste through complex and coupled physicochemical mechanisms that can lead to severe
mechanical damage. In common practice, RC structures are generally exposed to sulfate at an
early age. This early exposition can affect ESA mechanisms that are generally studied on pre-cured
specimens. Moreover, current efforts for sustainable concrete construction focus on replacing clinker
with supplementary cementitious materials, requiring a 90-day curing period, which contradicts
real-life scenarios. Considering all these factors, the objective of this study is to explore ESA effects
at an early age on cement-blended paste samples using various low-carbon formulations. The
characterization techniques used demonstrated that the reference mix (100% CEM I) exhibits the
weakest resistance to sulfate, leading to complete deterioration after 90 weeks of exposure. This is
evident through the highest mass gain, expansion, cracking, formation of ettringite and gypsum, and
sulfate consumption from the attacking solution. Conversely, the ternary mix, consisting of CEM I,
slag, and metakaolin, demonstrates the highest resistance throughout the entire 120 weeks of exposure.
All the blended pastes performed well in the sulfate environment despite being exposed at an early
age. It can be recommended to substitute clinker with a limited quantity of metakaolin, along with
blast furnace slag, as it is the most effective substitute for clinker, outperforming other combinations.

Keywords: external sulfate attack; early age; supplementary cementitious materials; physicochemical
behavior; long term durability; low carbon cement

1. Introduction

In general, two types of sulfate attacks are distinguished. The first is known as
internal sulfate attack (ISA, or ISR for internal sulfate reaction, or DEF for delayed ettringite
formation), where sulfate originates from raw materials [1,2]. The second is external
sulfate attack (ESA), and the source of sulfate, in this case, is the surrounding environment
(groundwater, soil, seawater, etc.) [3,4]. When it comes to external sources, sulfate, a
pervasive agent contributing to the deterioration of concrete structures, is inevitable due
to its presence in various external sources where constructing RC structures is a necessity.
Upon contact with RC structures, sulfate ions penetrate the cementitious matrix through
the porous network, initiating chemical reactions with hydrated cementitious materials to
produce ettringite and/or gypsum [5–9]. This process induces internal stresses, leading to
expansion and cracking in the structure. Consequently, the structural integrity weakens,
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permeability increases, and a feedback loop ensues, facilitating further migration of sulfate
ions. This phenomenon involves complex interactions among physical, chemical, and
mechanical factors [10–14]. Despite ESA having historical roots dating back to 1818 [15],
it remains a complex issue, influenced by many factors, such as cation type (calcium,
sodium, or magnesium sulfate), concentration, pH of the surrounding environment, the
type of cement used, and many other [16]. A study by Wu et al. [17] compared the
degradation effects of blended cement under sodium sulfate and magnesium sulfate attack.
Their findings revealed distinct mechanisms of attack, with magnesium sulfate causing
significantly more damage compared to sodium sulfate.

Over the years, considerable efforts have been invested in developing methods for
testing ESA resistance of all types of binder and concrete. However, each method comes
with its strengths and limits, and many are criticized for their dissimilarity with respect to
real-world field exposure conditions. Notably, various testing standards, such as ASTM C
1012, the Asian method, the Swiss method, and CSA A 3004-C8, employ high concentra-
tions of sodium sulfate (greater than 30 g/L) [18] to generate an infinite source of sulfate
and accelerate the test. A study conducted by Biczok [19] revealed that the preferential
formation of ettringite occurs when a low concentration of sulfate is selected, while higher
sulfate concentrations lead to an increased production of gypsum. These elevated con-
centrations, coupled with other testing conditions like extreme temperatures and harsh
dry and wet cycles, are intended to accelerate the attack for concrete durability testing
against sulfate. However, it is crucial to acknowledge that such conditions may alter the
characteristics of the ESA, raising questions about the representativeness of these methods.

In addition, if not prefabricated, on-site cast concrete is directly exposed to the sur-
rounding environment from an early age [20,21]. A recent investigation compared the
resistance of prefabricated and cast-in-site concrete against ESA, revealing that prefab-
ricated concrete demonstrates greater resistance to ESA [22]. Curing is recognized for
enhancing the properties of structural concrete, including microstructure, mechanical
strength, and durability, by promoting the hydration of cementitious materials, reducing
creep and shrinkage, and providing protection against environmental aggressions [23].
However, real practices consist of exposing concrete to sulfate ions in certain environments
at an early age. Most studies and standards focus on cured samples, typically after 28 or
90 days of curing before attacking the samples, leaving unanswered questions about the
impact of ESA on RC structures during their early stages. A recent study [20] investigated
the degradation mechanisms induced by ESA on both cured and uncured cement pastes.
Surprisingly, pre-cured cement pastes exhibited rapid degradation, although sulfate ion
ingress did not show significant differences when comparing pre-cured samples to the
uncured ones. In contrast, Li et al. [24] conducted a study suggesting a minimum initial
curing period of 14 days for cement-based materials exposed to sulfate. Their findings
indicated that a longer initial curing period correlated with improved resistance to sulfate
in the cement-based material.

Speaking of common practices while moving to the current trend to resolve environ-
mental issues, one of the most effective and widely employed strategies today to jointly mit-
igate the substantial CO2 emissions from the cement industry and to improve cementitious
materials’ durability is the partial substitution of clinker with supplementary cementitious
materials (SCM) [25]. Due to their pozzolanic effects, these materials not only facilitate the
formation of additional C-S-H and reduce the porosity size but also serve as a source of
alumina, promoting the development of aluminum-containing phases [26]. The changes
in cementitious materials composition significantly influence the mechanisms of ESA. In
this context, research indicates that the incorporation of SCM enhances the durability of
specimens under sulfate attack by reducing the C3A content [27]. Additionally, numerous
studies have demonstrated that the utilization of slag, metakaolin, silica fume, and fly ash
improves durability when it comes to ESA [28–33]. In a recent investigation conducted by
Miah et al. [34], specimens incorporating fly ash and slag exhibited enhanced mechanical
properties after 90 days. Interestingly, these specimens demonstrated similar properties at
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28 days compared to those made with ordinary Portland cement (OPC). Furthermore, these
findings corresponded with observations of porosity and capillary water absorption. This
suggests that the incorporation of SCM necessitates a 90-day curing period to exhibit their
benefits. However, this leaves a gap regarding the mechanisms of ESA on materials cured
in sulfate (exposed to sulfate at an early age) since previous studies focus on pre-cured
samples when it comes to ESA.

Considering all the factors mentioned above, there is a gap in understanding the
impact of ESA on samples exposed to sulfate ions at an early age over an extended period,
utilizing an adjusted concentration of sulfate. Additionally, there is a need to investigate
how ESA affects the resistance of low-carbon cementitious matrices, aligning with the de-
veloped low-carbon cement types. For this, this study aims to address two main objectives.
Firstly, this study seeks to gain a comprehensive understanding of the long-term effects of
ESA on cement paste samples exposed to sulfate ions at an early age. The second objective
is to evaluate the resistance of SCM, namely fly ash, blast furnace slag, and metakaolin,
under such attack conditions using low-carbon formulations. To achieve this, OPC pastes,
binary, ternary, and quaternary blended cement pastes were utilized to address the objec-
tives of the study. The samples underwent exposure to a sodium sulfate solution with a
concentration of 15 g/L from an early age, for a duration of three years. This concentration
was selected to both create an infinite source of sulfate and to shorten the duration of
the test as much as possible while using a relatively low concentration of sulfate. Mass
loss, expansion, and physicochemical changes were periodically monitored throughout
the experiment, supplemented by visual inspections. The characterization techniques
included thermogravimetric analysis, Fourier transform infrared spectroscopy, and the
water-accessible porosity test. Furthermore, Raman spectroscopy was employed to monitor
the sulfate content in the solutions in which cementitious material samples were immersed.

2. Materials and Methods
2.1. Materials and Mixes Design

For this study, six cementitious mixes were formulated, as detailed in Table 1. The
selection of these formulations closely adhered to the specifications outlined in standards
NF EN 197-1 and NF EN 197-5 [35,36], with a particular emphasis on chemical criteria. A
water-to-binder (W/B) ratio of 0.55 was adopted across all mixes. This relatively high ratio
was chosen to increase the porosity and, as a consequence, to accelerate the sulfate attack
while mitigating potential segregation issues.

Table 1. Cementitious materials blend design.

CEM I
(%)

Fly Ash
(%)

Blast Furnace Slag
(%)

Metakaolin
(%)

P1 100 - - -
S1 55 45 - -
S2 55 - 45 -
T1 55 15 30 -
T2 55 - 35 10
Q1 55 15 20 10

The primary materials employed in these mixes were CEM I 52.5 N CE CP2 NF,
manufactured by EQIOM, with clinker phases (calculated using the Bogue formula [37])
including C3S at 56.5%, C2S at 15.8%, C3A at 5.0%, and C4AF at 11.6%. Additionally, fly ash
and blast furnace slag were incorporated, and their chemical compositions, as provided
by the manufacturer, are detailed in Table 2, along with the chemical composition of the
used CEM I. Furthermore, metakaolin from BASF MetaMax, described by the manufacturer
as 100% calcined kaolin, was also included in the formulations. Those supplementary
cementitious materials are the most used substitutes for clinker.
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Table 2. Chemical composition of the used materials as given by the manufacturers.

Components CEM I
(w%) 1

Fly Ash
(w%) 1

Blast Furnace Slag
(w%) 1

SiO2 20.38 70.83 35.71
Al2O3 4.30 24.36 10.65
Fe2O3 3.80 2.24 0.45
TiO2 0.24 1.48 0.73
MnO 0.08 0.05 0.23
CaO 62.79 0.06 43.32
MgO 1.25 0.23 3.97
SO3 3.46 - 3.06
K2O 0.73 0.64 0.45

Na2O 0.35 0.1 0.16
P2O5 - 0.05 0.02
S2− Traces - -
Cl− 0.05 - -

Loss of ignition 2.54 - -
Free lime 1.39 - -

1 Weight percent.

2.2. Mixing, Casting, and Exposure Procedures

The study was carried out on 40 × 40 × 160 mm3 prismatic specimens. The preparation
protocol of specimens closely adheres to the NF EN 196-1 standard [38] and unfolds as
follows: initially, water and cementitious materials are mixed at a low speed of 100 rpm
for a duration of 60 s. Subsequently, the speed is increased to 300 rpm for an additional
30 s. Following this, the mixture is allowed to sit undisturbed for 90 s, with the edges of the
mixer bowl scraped during the initial 20 s of this interval. The subsequent step involves
a second round of high-speed (300 rpm) mixing lasting for 60 s. Various adjustments in
mixing speed were used to guarantee the homogenization of the cementitious materials.
Employing different mixing speeds helps minimize losses and promotes an even dispersion
of components, thereby preventing uneven distribution. Such adjustments are crucial for
maintaining the properties of the resulting paste. The resulting paste is poured in one
layer into the molds without vibration, but rather, is subjected to four external shocks
using a hammer. After a curing period of 24 h, demolding occurs, and the specimens
are immediately immersed in sodium sulfate solutions with a concentration of 15 g/L
(corresponding to approximately 10.14 g/L of sulfate ions). The water-to-solid volume
ratio is maintained at 8 to simulate exposure to an almost infinite sulfate source. To
ensure uniform exposure, the specimens are positioned on plastic supports in the attacking
solution. The entire setup is preserved at a constant temperature of 20 ◦C and carefully
monitored (expansion and mass gain for the samples and Raman spectroscopy to check
the variation of sulfate concentration in the attacking solutions, refer to Section 2.3) and
characterized throughout the study. The sodium sulfate solution is renewed weekly for the
initial three months, bi-weekly for the subsequent six months, and then monthly, thereafter,
to ensure exposure conditions equivalent to an infinite sulfate source, especially since the
used concentration of sulfate is relatively low.

2.3. Characterizations Methods

In conjunction with the chemical and microstructural analyses detailed below, this
study included mass and expansion monitoring, supplemented by visual observations, all
performed at two-week intervals (for the mass and expansion variations) throughout the
120-week experimental phase. The expansion measurement assesses the axial expansion of
the prismatic sample, with two axial bolts (or pins) fixed at the two extremities of the sample
during casting. The measurements are recorded using an extensometer. The timing of the
chemical and microstructural analyses (except for Raman spectroscopy) was determined
based on the evolution of patterns of mass and expansion. Thermogravimetric analysis
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(TGA) and Fourier transform infrared spectroscopy (FTIR) were conducted on powders
extracted from the specimens at depths of 1 (surface), 2, 5, and 15 mm after drying them at
a controlled temperature of 55 ± 5 ◦C for a period of 48 h. The extracted dry material was
carried out utilizing the Accutom-100 microtome and a FRITSCH Pulverisette 6 planetary
ball mill operating at a speed of 350 rpm for a duration of 2 min.

2.3.1. Thermogravimetric Analysis

TGA was employed as a chemical characterization technique, utilizing the NETZSCH
STA 449 F1 apparatus (NETZSCH, Selb, Germany). The analysis spanned a temperature
range of 25 to 1250 ◦C, with a heating rate of 10 ◦C per minute, all conducted under an
inert nitrogen atmosphere. The derivative of the thermogravimetric analysis curve (DTG)
was obtained to easily identify crucial mass losses occurring during the heating process.

2.3.2. Fourier Transform Infrared Spectroscopy

FTIR was employed as a chemical characterization technique to identify potential
formations of ettringite and gypsum while making comparisons with the original chemical
compounds present in the specimens. The Thermo Fisher Scientific Nicolet iS50 spectrome-
ter (Waltham, MA, USA) was utilized for FTIR analysis, covering a spectral range between
400 and 4000 cm−1. The tests were conducted using the integrated diamond ATR.

2.3.3. Raman Spectroscopy

Raman spectroscopy serves as a non-destructive chemical characterization method,
including for civil engineering materials. In this study, it was employed to track sulfate
consumption in the attacking solutions as an indicator of the extent of the ESA on each
mix. Analyses were performed every 30 days (with every solution’s renewal). The utilized
equipment was an iRaman from BWTek (Newark, DE, USA), operating with a 50 mW laser
at 532 nm, featuring a spectral range of 150–4000 cm−1 and a spectral resolution of 4 cm−1,
using a BAC101 immersion probe.

2.3.4. Water Porosity

The water porosity test, a microstructural assessment, was conducted in accordance
with NF P18-459 standard [39]. Samples measuring 40 × 40 × 40 mm3 were cut from the
original 40 × 40 × 160 mm3 prisms. These samples underwent oven drying at 105 ◦C until
achieving a stable mass. Subsequently, they were placed into a desiccator and subjected
to a vacuum for 4 h. The next step involved immersing the samples in water under a
pressure of 25 mbar for 48 h. Throughout this process, mass measurements were recorded
at various stages: the first being the mass of the dried samples, the second for the mass
of the water-saturated samples, and the third capturing the mass of the water-saturated
samples submerged in water. A precision scale, with an accuracy of 0.01 g, was employed,
and the tests were also conducted at room temperature (20 ◦C ± 1 ◦C).

3. Results
3.1. Expansion

Expansion measurements were periodically recorded over the full 120-week duration
of the study. The expansion evolution of the samples over time is presented in Figure 1.
The provided values are derived from three measurements conducted on distinct samples.

Figure 1 clearly shows that the expansion behavior of the reference mix P1 differs
significantly from that of the binary, ternary, and quaternary blended pastes, particularly
after week 54. The expansion rate of P1 can be divided into five phases. These phases closely
resemble those documented in the current literature [6]. In the initial phase, spanning the
first 4 weeks, there is a substantial expansion, reaching 0.08%. The second phase involves a
slower but continuous expansion, reaching 0.12% after 54 weeks of sulfate exposure. The
third phase extends from week 54 to 72, characterized by a rapid and pronounced expansion,
peaking at 0.29%. The fourth phase, between weeks 72 and 84, is characterized by stability,
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remaining around 0.3%. The fifth phase occurs after that period, reaching an expansion of
0.95% by week 90, at which point the samples were completely degraded. The behavior of
the blended pastes (S1, S2, T1, T2, and Q1) exhibited two major phases globally (with three
fluctuations in general). The first phase, similar to the reference mix P1, occurred during the
initial 4 weeks, where the expansion was around 0.05%. Subsequently, insignificant changes
were recorded until week 120, when the expansion reached 0.145%. Throughout this phase,
three minor fluctuations were observed. The first fluctuation extended from week 4 to week
54, during which the expansion increased slowly. The second phase persisted until week
70, remaining almost stable before experiencing a subsequent increase at a higher rate.
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Figure 1. Longitudinal expansion of the six mixes over time during the ESA: (a) Results of the
measurements over the total duration of the test; (b) Zoom of the results over the first 64 weeks;
(c) Zoom of the results from week 70 to week 120.

Based on the description of the expansion rates provided earlier, a common pattern
emerged between the expansion rates of the reference mix and the blended ones. After each
increase in the expansion rates, a period of stability is observed, followed by a subsequent
increase. This pattern is likely attributed to the formation of ettringite and/or gypsum in
the pores, leading to internal stresses and causing cracking [20,40] (resulting in an increase
in expansion). Subsequently, these products begin to fill the formed cracks (resulting in
the stability of the expansion) until they recreate internal stresses and induce new cracks
(leading to an increase in expansion). This phenomenon gains further confirmation when
examining the continuous mass gain of the samples (refer to Section 3.2).
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When comparing the mixes among themselves, the reference mix exhibits the least
favorable behavior in terms of expansion and overall durability against ESA. While the
other mixes maintained satisfactory expansion rates for 120 weeks, the reference mix
P1 expanded by 0.95% after only 90 weeks and deteriorated thereafter. Regarding the
blended pastes, as depicted in Figure 1 and considering the scale and low expansion rates,
it is evident that they exhibit almost similar behavior. Upon closer examination, mix
T2 (composed of CEM I, blast furnace slag, and metakaolin) stood out with the lowest
expansion rates. These findings could suggest that the combination of blast furnace slag
and a low quantity of metakaolin contributes to the enhanced durability of the overall
mix (as previously shown in a study considering 10 to 15% of metakaolin replacement of
cement [29]). This is particularly evident when comparing the behavior of other blended
mixes that lack this specific combination of slag and metakaolin.

3.2. Mass Changes and Visual Inspection

The mass of all samples was regularly measured over 120 weeks. The mass evolution
over time is illustrated in Figure 2 for the six different mixes. Each reported value is the
average of three measurements from three different samples.
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Figure 2 indicates that all samples experienced a mass increase throughout the entire
attack period. This phenomenon is expected, as ESA leads to a mass gain, as shown by
previous studies [41–43]. However, the rate of mass gain varied among the mixes. Binary
(S1 and S2), ternary (T1 and T2), and quaternary (Q1) blended pastes exhibited similar
rates of mass gain, distinct from the reference mix (P1) composed of 100% clinker. Blended
pastes demonstrated a significant mass gain in the initial 35 weeks, stabilizing thereafter
with a slight increase up to week 120. In contrast, the mass gain kinetics of the reference
mix (P1) were different from the other formulations, showing a rather regular mass gain
during the 62 weeks and a beginning of stabilization afterward. Mass measurements for P1
were terminated at week 82 due to the samples’ full deterioration caused by ESA.

The initial 12 weeks witnessed substantial mass gain for all mixes, attributable to
various factors. The samples, immersed in sulfate at an early age (24 h after casting),
experienced both the hydration of cementitious pastes, leading to the formation of hydrated
products, and water absorption [42,44]. Additionally, this gain can be associated with the
chemical reaction between hydrated cementitious materials and sulfate, resulting in the
formation of ettringite and gypsum within micro-pores and cracks, contributing to the
observed mass gain [16,40,45]. Following this period, marking the completion of the
hydration of cementitious materials (lasting 90 days, notably longer for blended pastes
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compared to 28 days for P1, as discussed by Miah et al. [34]), the blended mixes continued to
experience mass gain but at reduced rates before almost stabilizing (having however minor
gain), as discussed earlier. At this stage, with hydration nearly complete and the samples
saturated, the observed mass gain could be attributed to the formation of gypsum and
ettringite resulting from the chemical reaction between the hydrated products and sulfate.
It is important to note that 90 days after the fabrication (upon completion of hydration),
a significant reduction in porosity and capillary water absorption in the blended pastes
is observed, according to previous studies [34]. This decrease in porosity contributes to
stabilizing the mass gain. The above-explained results highlight that the reference mix
(P1) exhibited the least favorable behavior in terms of mass gain and overall durability,
as evidenced by its degradation after 90 weeks of exposure. In contrast, the other mixes,
which incorporate SCM to partially substitute the clinker, demonstrated a more robust
performance, maintaining their structural integrity even after 120 weeks of sulfate exposure.

Upon comparing the mass gains of the blended pastes, it becomes evident that the
ternary mix (T2), composed of CEM I, blast furnace slag, and metakaolin, exhibited the
lowest mass gain from the initiation of the sulfate attack. In contrast, the mix containing
CEM I and fly ash (S1) displayed the highest mass gain among the blended mixes. This,
coupled with the mass gain rates of the other blended mixes, could imply that the inclusion
of blast furnace slag and metakaolin, within specified replacement percentages, enhanced
the overall performance of the mixes.

In terms of visual inspection, the reference mix P1 exhibited the highest visual aging
rate, as depicted in Figure 3. After 60 weeks of exposure, P1 underwent a significant
color change compared to the minor changes observed in the other mixes, which exhibited
similar behavior in terms of color alteration and crack development. Furthermore, after
95 weeks of exposure, mix P1 experienced complete degradation, while the rest of the
mixes only displayed some cracking on the edges of the specimens. Additionally, even
after 120 weeks, the blended mixes did not exhibit more than insignificant cracking, as
illustrated with the mix Q1.
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In general, the expansion rates and the steps of increase aligned with the mass gain
rates and visual observations. During the initial weeks, as the specimens underwent the
curing process in a sulfate-enriched solution (initiated 24 h after casting), there was ongoing
hydration, water absorption, and the formation of ettringite and gypsum due to sulfate
(contributing to mass gain, internal stresses leading to expansion, and observable visual
changes) [42]. Following this initial period (4 weeks for the reference mix P1 and approxi-
mately 12 weeks for the blended pastes), subsequent changes are primarily attributed to
the reaction between sulfate and the hydrated products, leading the consequences of the
ESA [46,47].

Based on those results, including expansion, mass variation, and visual observations,
analyses such as TGA, FTIR, and water porosity were conducted at three key time points:
24 h after casting (Ti0), 8 weeks into the initiation of ESA (Ti1), and at 80 weeks (Ti2).

3.3. Thermogravimetric Analysis

TGA was conducted on the six mixes at two different time points: 8 (Ti1) and 80 (Ti2)
weeks of immersion in the sulfate solution. The analysis included measurements on
materials extracted at various depths within the 40 × 40 × 160 cm3 specimens, specifically
at 1 (surface), 2, 5, and 15 mm.

According to some previous research [48,49], when examining the DTG curve, the
initial peak, observed between 30 ◦C and 200 ◦C, signifies the decomposition of ettringite,
C-S-H, and free water. Furthermore, the presence of monosulfoaluminates (AFm) was
indicated by a peak at around 190 ◦C. The dihydroxylation process of portlandite (Ca(OH)2)
manifests as the third peak between 450 ◦C and 550 ◦C, while the decarbonation of calcite
(CaCO3) was responsible for the peak observed between 650 ◦C and 820 ◦C.

When investigating ESA, a careful analysis of portlandite consumption is imperative,
as it provides valuable insights into the progression of this attack [16]. Additionally, AFm
serves as a source of alumina during the sulfate attack, contributing to the formation of
ettringite [50]. The results related to portlandite content are presented in Figure 4.
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Figure 4. Portlandite content (%) of the six mix samples at 1 mm and 2 mm depths after being
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Upon a general examination of portlandite content, carried out using the TGA test,
it can be shown that the progression of the attack at 80 weeks overtakes that observed at
8 weeks, aligning with expectations. A more detailed analysis comparing depths at 1 mm
and 2 mm reveals a heightened aggression of the attack at the initial 1 mm, in direct contact
with sulfate. This is notably reflected in the portlandite content at these respective depths.
Furthermore, the reference mix P1 exhibits a significantly higher overall portlandite content
compared to the blended mixes. This is attributed to the absence of the pozzolanic effect of
SCM, which typically favors the formation of C-S-H [34,51].
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From the data presented in Figure 4, it becomes evident that the reference mix P1
exhibits weaker durability against sulfate attack. This conclusion is drawn from the higher
portlandite loss observed in this mix, not only at different depths (1 and 2 mm) but also
at different time points (Ti1 and Ti2). In the initial 8-week step, the portlandite content
increased from 2.5% to 3.3% at depths of 1 and 2 mm, respectively. Subsequently, at Ti2, the
portlandite content further increased from 0.85% at 1 mm to 2.2% at 2 mm. This consistent
increase in portlandite content indicates a more pronounced degradation of the reference
mix under sulfate attack conditions. However, when examining the blended mixes, their
behavior in terms of portlandite loss appears to be quite similar. Considering the ternary
mix T2, characterized by the best resistance based on the previously discussed results, its
portlandite content, for instance, increased marginally from 0.63% at 1 mm depth to 0.8% at
2 mm depth at time Ti2, representing a minimal loss of 0.17%. This indicates a more robust
performance of the blended mixes, particularly exemplified by mix T2, against sulfate
attack conditions compared to the reference mix.

Analyzing the first peak of the DTG curve (refer to Figure 5), it is evident that the
content of ettringite, C-S-H, and free water at all depths of the reference mix P1 is greater
than in other mixes. Considering that all mixes underwent the same conditions and drying
procedures and acknowledging that the C-S-H content is higher in the blended pastes [51],
it can be concluded that the ettringite content in the reference mix is elevated, extending
even to a depth of 15 mm. This indicates not only the poor resistance of P1 when it comes to
ESA but also suggests that the attack has reached the core of the reference mix. In contrast,
the attack remains superficial in the blended mixes even after 120 weeks. This conclusion is
further supported by examining the AFm content (peak around 190 ◦C on the DTG curve),
which does not exist in the reference mix, even at 15 mm, but is present in the other mixes
at 5 and 15 mm depths. To validate these findings, an FTIR test is conducted and discussed
in the following section.
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Figure 5. TG and DTG curves of the reference mix (P1) and of Q1 at 1 mm and 15 mm depths after
80 weeks of immersion in sulfate solution.

3.4. Fourier Transform Infrared Spectroscopy

FTIR analysis was conducted on the whole six mixes after 8 (Ti1) and 80 (Ti2) weeks of
immersion in the sulfate solution at 1, 2, 5, and 15 mm depths.

In accordance with findings from previous studies [52–54], various chemical com-
pounds and phases within the cementitious samples can be identified through FTIR. Port-
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landite, characterized by O-H stretching, is identified with a peak at 3642 cm−1. The
compounds AFm, ettringite, and gypsum, exhibiting S-O vibration, manifest by the peak
of 1102 cm−1. The presence of water is indicated by a broad band at the peak of 3373 cm−1

attributed to the stretch mode of the O-H bond. Ettringite, distinguished by S-O vibration,
can be detected at the peak of 619 cm−1, while gypsum shows up at the band of 1685 cm−1.
These distinctive peaks and bands provide valuable insights into the chemical composi-
tion and phases present in the cementitious samples, contributing to a comprehensive
understanding of their behavior under ESA.

The analysis of the FTIR spectra presented in Figure 6a, which depicts the chemical
composition of the reference mix P1 at 1, 2, and 5 mm after 80 weeks of exposure to sulfate,
reveals a significant attack at 1 mm and a diminishing impact with increasing depth. This
observation is distinguished by examining the intensity of peaks corresponding to gypsum
(at 1685 cm−1), ettringite, gypsum, and AFm (AFm’s presence is questionable based on
TGA results discussed in Section 3.3) at 1102 cm−1, as well as ettringite at 619 cm−1.
Figure 6c, representing the same mix at 1 mm depth but comparing 8 weeks of exposure
to 80 weeks, demonstrates that the attack has progressed and become more pronounced
after 80 weeks of exposure. To assess the impact of SCM on enhancing durability against
ESA, Figure 6d illustrates P1 and the quaternary mix Q1 at 1 mm depth after 80 weeks of
exposure, highlighting a significant difference. Notably, the formation of ettringite and
gypsum in the reference mix is substantial, showcasing the effectiveness of substituting
clinker with SCM at specific percentages. This aligns with the overarching findings of the
study. Further insights can be gained by examining Figure 6b, which compares the degree
of formation of expansive products at different depths of the ternary mix T1 and the mix P1
shown in Figure 6a.
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3.5. Raman Spectroscopy

Raman spectroscopy was employed to analyze the solutions before each renewal
(every 30 days), allowing for the monitoring of sulfate consumption.

According to previous studies [55,56], the presence of sulfate is identified by a peak
found between 980 and 1160 cm−1. Moreover, water is identified by the large peak found
around 3400 cm−1 due to the vibration stretching mode of the O-H bond.

The results of the Raman spectroscopy, illustrated in Figure 7 and conducted at each
renewal of the solutions, reveal the persistent presence of sulfate, indicated by its peak,
which is never fully consumed by the samples. Interestingly, the intensity of the peak
varies among the solutions and depends on the mix used to prepare the samples in contact
with those solutions. The attacking solution in contact with the reference mix shows the
lowest sulfate concentration after 30 days, suggesting that the reference mix consumes
more available sulfate than the other mixes, up to the point that the sulfate consumption of
the solution, considered as an infinite source of sulfate, become detectable. Moreover, the
solution in contact with the ternary mix T2 exhibits the highest sulfate concentration after
exposure, indicating that this mix has the highest resistance to sulfate. This aligns with
the findings of the previous characterization tests discussed earlier. It also implies that the
detection of ESA can be conducted by spectral monitoring of the sulfate solution without
having to go through as many sample characterizations.

Appl. Sci. 2024, 14, 2831 13 of 18 
 

that the detection of ESA can be conducted by spectral monitoring of the sulfate solution 
without having to go through as many sample characterizations. 

 
Figure 7. Raman specters of the sulfate solutions that are in contact with all the mixes after 80 weeks. 

3.6. Water Porosity 
A water porosity test was performed on all the mixes after 8 (Ti1) and 80 (Ti2) weeks 

of immersion in the sulfate solution in addition to 24 h after casting (Ti0). 
As illustrated in Figure 8, the initial porosity of the samples was notably high, ap-

proximately around 51% at time Ti0, consistent with select a W/B ratio of 0.55. A previous 
study conducted by Nehdi et al. [57] demonstrated that increasing the W/B ratio leads to 
an increase in total porosity. The porosity then decreased by approximately 8% when 
cured in water (refer to Ti2 Ref) due to the ongoing hydration process. The significant 
initial porosity can be attributed to the fact that the samples were poured into the molds 
without vibration, as mentioned in Section 2.2. Additionally, it is evident that the porosity 
varies among the samples, and its evolution differs. This variability is attributed to differ-
ences in workability resulting from the substitution of clinker in the various mixes [58]. 

Comparing water porosity results at 8 weeks between mixes exposed to sulfate (Ti1) 
and mixes cured in water (Ti1 Ref) reveals interesting trends. Notably, the reference mix, 
P1, showed slightly higher porosity in the water-cured environment (~49%) compared to 
its sulfate-exposed counterpart (~48%). A similar pattern was observed in other mixes, 
including S1, S2, T1, T2, and Q1, where slightly higher porosity values were seen under-
water curing than with sulfate exposure. This is attributed to the formation of ettringite 
and gypsum due to sulfate exposure. The most significant increase in porosity occurred 
in S1, where the sulfate-exposed mix (~50%) surpassed the water-cured mix (~51%) by 1.2 
percentage points. This aligns with the expansion rates and mass gain of mix S1, which 
exhibited the highest values among all mixes in the early stages of the attack. Similar find-
ings have been documented by other studies, which have compared the porosity of mixes 
containing 100% CEMI with those incorporating supplementary cementitious materials 
[57]. 

Figure 7. Raman specters of the sulfate solutions that are in contact with all the mixes after 80 weeks.

3.6. Water Porosity

A water porosity test was performed on all the mixes after 8 (Ti1) and 80 (Ti2) weeks
of immersion in the sulfate solution in addition to 24 h after casting (Ti0).

As illustrated in Figure 8, the initial porosity of the samples was notably high, approx-
imately around 51% at time Ti0, consistent with select a W/B ratio of 0.55. A previous
study conducted by Nehdi et al. [57] demonstrated that increasing the W/B ratio leads to
an increase in total porosity. The porosity then decreased by approximately 8% when cured
in water (refer to Ti2 Ref) due to the ongoing hydration process. The significant initial
porosity can be attributed to the fact that the samples were poured into the molds without
vibration, as mentioned in Section 2.2. Additionally, it is evident that the porosity varies
among the samples, and its evolution differs. This variability is attributed to differences in
workability resulting from the substitution of clinker in the various mixes [58].
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Comparing water porosity results at 8 weeks between mixes exposed to sulfate (Ti1)
and mixes cured in water (Ti1 Ref) reveals interesting trends. Notably, the reference mix,
P1, showed slightly higher porosity in the water-cured environment (~49%) compared to
its sulfate-exposed counterpart (~48%). A similar pattern was observed in other mixes, in-
cluding S1, S2, T1, T2, and Q1, where slightly higher porosity values were seen underwater
curing than with sulfate exposure. This is attributed to the formation of ettringite and gyp-
sum due to sulfate exposure. The most significant increase in porosity occurred in S1, where
the sulfate-exposed mix (~50%) surpassed the water-cured mix (~51%) by 1.2 percentage
points. This aligns with the expansion rates and mass gain of mix S1, which exhibited the
highest values among all mixes in the early stages of the attack. Similar findings have been
documented by other studies, which have compared the porosity of mixes containing 100%
CEMI with those incorporating supplementary cementitious materials [57].

However, examining water porosity results after 80 weeks of sulfate exposure (Ti2)
and comparing them with mixes cured in water for the same duration (Ti2 Ref) reveals
different trends when compared to Ti1 and Ti1 Ref. The reference mix (P1) demonstrated
higher porosity in the sulfate-exposed environment (49.5%) compared to its water-exposed
counterpart (~41%). This unexpected trend extended to other mixes, including S1, S2,
T1, T2, and Q1, where sulfate-exposed mixes exhibited higher porosity values than their
water-exposed counterparts. The most important increase in porosity was observed in
P1, with the sulfate-exposed mix exceeding the water-cured mix by 8.2 percentage points.
This is likely due to the formation of cracks due to ESA. These results are in accordance
with all the previous findings of this study, including extensive mass and expansion gain,
high formation of ettringite and gypsum, as well as visual deterioration of the reference
mix. Moreover, the blended mixes exhibited similar behavior in the long-term exposure
to sulfate, as previously demonstrated, with good values regarding porosity at this stage,
with mix S2 leading. However, the difference between the blended mixes during the water
porosity test is minor.

The water porosity results are valuable for comparing two time-points. However,
this parameter cannot be considered a major durability indicator concerning ESA. This
is because there can be significant fluctuations in the porosity. These fluctuations may
be attributed to various phenomena, including the pore-filling effect by the formation
of ettringite and/or gypsum, cracks opening due to the crystallization pressure of the
expensive products coming from ESA, subsequent sealing of these cracks, the creation of
new cracks, and so forth.
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3.7. Results Overview Illustration

From the findings of this study, a visual representation was generated to describe the
obtained results. The illustration provides a concise overview of the key outcomes and
insights derived from the comprehensive analyses conducted in this study. It is presented
in Figure 9.
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4. Conclusions

In this investigation, OPC pastes, as well as binary, ternary, and quaternary blended
cement pastes, underwent long-term exposure to 15 g/L of sodium sulfate at an early age.
Following comprehensive characterizations and continuous monitoring of the attacked
samples, the study resulted in the following conclusions:

• CEM I exhibits the lowest resistance to ESA when compared to blended mixes. It
shows the highest mass gain, expansion, formation of ettringite and gypsum, sulfate
consumption from the solution, and microstructure alteration. Additionally, during
the course of this experiment, it deteriorated only after 90 weeks, whereas the blended
cements maintained their structural integrity even after 120 weeks;

• blended specimens demonstrated good durability, retaining structural integrity after
120 weeks of sulfate exposure from an early age;

• incorporating a low quantity (10%) of metakaolin along with blast furnace slag
emerged as the most effective substitute for clinker, outperforming other combinations
based on the observed behavior of various blended mixes in sulfate exposure;
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• non-invasive Raman spectroscopy emerged as a reliable method for monitoring the
ESA effect by quantifying the sulfate ions left in the attacking solutions.

Further investigations at the mortar and/or concrete scale would provide additional
insights into the physical transport properties, in addition to the chemical aspects of ESA.
This is particularly relevant as the current study focuses on cement paste materials that are
highly porous. Moreover, further investigations are needed to explore the effects of adding
metakaolin to slag as a substitute for clinker, aiming to develop highly resistant materials
against ESA.
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Abstract: The study of the mechanisms affecting the preparation parameters of carbonated steel slag
is of great significance for the development of carbon sequestration materials. In order to elucidate the
mechanism of the influence of moisture on CO2 diffusion and particle cementation in steel slag, the
effects of different water–solid ratios and water contents on the mechanical properties, carbonation
products, and pore structure of steel slag after carbonation were investigated. The results show
that increasing the water–solid ratio of steel slag can control the larger initial porosity and improve
the carbon sequestration capacity of steel slag, but it will reduce the mechanical properties. The
carbonation process relies on pores for CO2 diffusion and also requires a certain level of moisture
for Ca2+ dissolution and diffusion. Increasing the water content enhances particle cementation
and carbonation capacity in steel slag specimens; however, excessive water hinders CO2 diffusion.
Reducing the water content can increase the carbonation depth but may compromise gelling and
carbon sequestration ability. Therefore, achieving a balance is crucial in controlling the water content.
The compressive strength of the steel slag with suitable moisture and initial porosity can reach
118.7 MPa, and 217.2 kg CO2 eq./t steel slag can be sequestered.

Keywords: steel slag; carbon sequestration; water content; carbonation diffusion; pore

1. Introduction

Steel slag is a prominent by-product generated during the smelting process in the iron
and steel industry, constituting approximately 8–15% of the total crude steel production [1–3].
In 2021, global crude steel production reached around 1.952 billion tons, resulting in an
annual emission of steel slag exceeding 250 million tons [4]. Among these figures, China’s
crude steel production accounted for about 1.03 billion tons with a corresponding output
of over 120 million tons of steel slag [5]. However, steel slag possesses drawbacks such as
high free CaO content and low hydration activity [6], leading to its combined utilization
rate remaining below 30% [7]. Consequently, it is primarily stockpiled or landfilled, posing
significant environmental pollution concerns. Therefore, there is an urgent need to develop an
efficient and environmentally friendly approach to the disposal of steel slag.

Meanwhile, the steel production process is accompanied by a substantial amount
of carbon emissions. The carbon emissions of China’s iron and steel sector account for
approximately 15% of the national total [8]. Carbon Capture, Utilization and Storage
(CCUS) is widely regarded as an optimal approach to achieve significant carbon emission
reduction in the iron and steel industry [9,10]. By harnessing CO2, it becomes possible to
convert the high calcium content present in steel slag into highly stable CaCO3, thereby
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facilitating long-term carbon sequestration [11]. The CO2 carbonation of steel slag has been
acknowledged as the most favorable method for disposing of this by-product.

Steel slag can be classified into basic oxygen furnace slag (BOFS), electrical arc furnace
slag (EAFS), argon oxygen decarburization slag (AODS), and ladle-refining slag (LFS)
based on the production process [4,10]. Among these, LFS is a by-product generated during
secondary or alkaline steelmaking [12], and it exhibits the highest calcium content among all
types of slags [13]. The cooling process of the LFS results in the generation of a substantial
quantity of the self-powdered γ-Ca2SiO4 (γ-C2S) material phase, thereby conferring a
powdery nature upon the LFS. The γ-C2S enables a rapid reaction with CO2 to form
calcium carbonates (CaCO3) and calcium silicate hydrates (C-S-H) [14,15]. Consequently,
LFS holds great potential for application in CCUS technology.

The carbonation process of steel slag building materials typically involves mixing
water with steel slag powder to form cubic blocks, which are then subjected to a direct
gas–solid reaction by passing CO2 gas through a closed stainless steel reactor [16,17]. Some
researchers have also utilized liquid–solid reactions [18]. During the reaction between CO2
and steel slag, CO3

2− formed from dissolved CO2 reacts with Ca2+ precipitated from the
slag to produce stable CaCO3 that provides high mechanical strength and permanently
fixes CO2 in the material [6]. Although the theoretical carbon fixation rate of steel slag
ranges between 25% and 50%, various factors during carbonation limit its actual rate to
about 15% [19]. Each ton of cement produced will emit 0.94 tons of CO2 [20], so when
carbonation of steel slag is applied in cementitious materials or aggregates to replace
cement, the reduction in cement production and the amount of CO2 absorbed by the steel
slag makes it possible to achieve a carbon reduction of approximately 1.09 t of CO2 for
each ton of steel slag. This would be expected to achieve the carbon-negative production of
building materials.

Gas–solid carbonation is mainly restricted by reaction kinetics and CO2 diffusion [4];
hence, researchers strive to study different conditions in this process for improved efficiency.
Currently, there is a substantial body of mature research on the carbonation reaction of steel
slag, which has revealed the effects of various conditions such as particle size, temperature,
CO2 pressure, and carbonation time on the carbonation results [21–25]. For instance,
Ukwattage et al. improved the carbonation efficiency of steel slag by optimizing the
three parameters of CO2 pressure, temperature, and water–solid ratio [26]. Zhang et al.
increased the carbon sequestration efficiency of steel slag to 16.65% by increasing the CO2
pressure [27]. The study conducted by Tian et al. [28] concluded that temperature is the
primary determinant influencing the direct gas–solid carbonation reaction of steel slag.
However, it appears that the researchers overlooked the significance of moisture control
in specimen preparation prior to carbonation. Steel slag not only needs water for Ca2+

dissolution and particle cementation during carbonation, but the carbonation reaction
process also consumes a certain amount of water.

Furthermore, numerous unresolved issues persist in the investigation of the carbon-
ation reaction mechanism of steel slag. For instance, there is a lack of synergistic studies
on the water content and pore structure of specimens prior to carbonation. The alter-
ation in pore structure during carbonation significantly impacts the compressive strength
of specimens [14,29]. Secondly, existing research primarily focuses on pressed steel slag
and lacks investigation into pouring molding commonly employed in cement-molding
processes. Pouring molding can yield higher initial porosity compared to pressing mold-
ing, which theoretically results in higher carbon sequestration. The initial porosity of
cast-molded specimens can be significantly controlled by manipulating the water–solid
ratio, while the pore structure and porosity play a pivotal role in facilitating CO2 diffusion.
Thirdly, some researchers have observed that the center of the specimen has lower levels of
carbonation than the surface part [30,31], but the mechanism underlying the microscopic
effect remains elusive.

Considering the aforementioned issues, this study aims to utilize small poured cu-
bic blocks of steel slag and manipulate different water–solid ratios to control their initial
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porosity. The water content is simultaneously regulated through air-drying of the steel
slag. Initially, the impact of various water–solid ratios and water contents on the proper-
ties of steel slag is investigated, while microscopic analysis is employed to examine the
carbonation products and pore structure of these. Consequently, a mechanism involving
CO2 diffusion and particle cementation is proposed by integrating the analytical findings
with previous research studies. Notably, this research introduces a novel approach by
employing three-dimensional pore structure analysis to explore the relationship between
CO2 diffusion and pore structure.

2. Materials and Methods

The ladle-refining slag (LFS) utilized in this study was obtained from a steel mill
located in Guangxi, China. It underwent ball milling and sieving through a 100-mesh sieve
to obtain a powder with an average particle size of 1.34 µm, as depicted in Figure 1. Particle
size analysis was performed using a Mastersizer 3000 laser particle sizer from Malvern
Panalytical, EA Almelo, The Netherlands. LFS exhibits a significant composition of CaO
(~71.23%) and SiO2 (~21.31%) as presented in Table 1. The mineral composition of LFS is
illustrated in Figure 2, where the primary mineral phases include calcio-olivine, akermanite,
and fluorite, among others.
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The steel slag specimens were prepared by mixing water and LFS powder at different
water–solid ratios of 0.25, 0.3, and 0.35. Subsequently, the resulting slurry was poured into
a 20 × 20 × 20 mm2 steel film mold and allowed to cure through natural air-drying for
a duration of 24 h at room temperature. Afterward, the cured steel slag specimens were
divided into two groups, and uniform quality was ensured across all specimens. The first
group of steel slag specimens underwent oven-drying until they reached a constant weight
in order to determine their dry basis weight (M0). Meanwhile, the second group of steel
slag specimens was subjected to oven-drying at a temperature of 40 ◦C for t time to obtain
their wet basis weight (Mt). The water content of each specimen was calculated using
Equation (1). Throughout the weighing process and water content control procedures,
efforts were made to maintain an error margin within ±0.1%. The control of water content
can be facilitated by deriving an empirical formula through the analysis of the water content
change curve in relation to drying time.

w% = (Mt −M0)/M0 × 100% (1)

After controlling the water content of the steel slag specimens, the sample was
promptly introduced into the reaction vessel as depicted in Figure 3. This carbonation reac-
tor is a single-layer stainless steel reactor with a volume of 20 L in a constant-temperature
(25 ◦C) environment. The CO2 pressure of the carbonation reactor can be controlled by
adjusting the valve of the CO2 gas tank. The reaction vessel was evacuated to −0.08 MPa
and then carbonated at room temperature (25 ◦C) and a CO2 pressure of 0.4 MPa for a
duration of 24 h. The purity of CO2 employed for this carbonation process was determined
to be 99%. A schematic diagram for the preparation step is illustrated in Figure 4.
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The compressive strength analysis was performed using a UTM5105 microcomputer
control electronic universal material testing machine from Suns Technology Stock Co.,
Ltd., Shenzhen, China; the testing process was carried out in accordance with the Chinese
standard GB/T 17671-2021 [32]. Thermogravimetric analysis was performed using the
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STA 449 F5 thermal analyzer from NETZSCH, CO., Germany. The carbon sequestration
rate of the specimens was calculated from the thermogravimetric analysis results using
Equations (2) and (3) [15]. X-ray diffraction (XRD) analysis was performed using the X’Pert
PRO X-ray diffractometer from Malvern Panalytical Ltd., The Netherlands. SEM analysis
was performed using the S-4800 scanning electron microscope from Carl Zeiss AG, Germany.
Three-Dimensional Computerized Tomography (3D CT) analysis was performed using
a Xradia 510 Versa high-resolution 3D X-ray microscope from Carl Zeiss AG, Germany,
equipped with a voltage of 100 kV, a pixel size of 3 µm, and an exposure time of 2 s.

CO2(wt.%) =
∆mCO2

m105◦C
× 100 (2)

CO2uptake(wt.%) =
CO2carbonated (wt.%)−CO2initial (wt.%)

100−CO2carbonated (wt.%)
× 100 (3)

where CO2(wt.%) represents the rate of carbon dioxide loss; ∆mCO2 denotes the rate of
mass loss resulting from calcium carbonate decomposition in the specimen at elevated
temperatures; m105◦C indicates the weight of the dried specimen; CO2uptake(wt.%) signifies
the rate of carbon sequestration; CO2carbonated(wt.%) refers to the rate of carbon dioxide
loss in the specimen after carbonation; CO2initial(wt.%) represents the rate of carbon dioxide
loss in the uncarbonated specimen.

3. Results
3.1. Regulation of Water Content Regulation

The variation rule of water content in specimens under different water–solid ratios
at a 40 ◦C drying temperature was initially investigated, and the corresponding results
are presented in Figure 5. Moisture loss from the specimen is evaporative moisture loss
driven by the external environment, which is related to the relative humidity of the envi-
ronment [33]. The higher the water–solid ratio, the greater the initial water content of the
specimen observed. Additionally, a higher water–solid ratio leads to an accelerated overall
drying rate due to decreased specimen density and increased porosity, facilitating easier
drying. Initially, the drying rate was faster but gradually slowed down over time, possibly
attributed to the difficulty in drying deeper internal water compared to surface and pore
water. By adjusting different drying times, it was possible to control the water content of
specimens according to fitted curves.
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3.2. Compressive Strength

The steel slag specimens were prepared with varying water–solid ratios ranging
from 0.25 to 0.35 and water contents ranging from 4% to 9%. These specimens were
then carbonated using the aforementioned method for controlling water content. The
resulting compressive strengths for each specimen are depicted in Figure 6. Notably, the
compressive strength of the specimens exhibited a decreasing trend as the water–solid
ratio increased. This was attributed to the fact that specimens with lower water–solid
ratios tend to be denser and less porous, leading to an optimal compressive strength
of 118.7 MPa observed at a water–solid ratio of 0.25 and a water content of 6%. The
strength obtained by this specimen in 1 d exceeded the 28 d compressive strength value
of the researcher’s specimen [17]. However, a higher water–solid ratio offers improved
pourability and moldability.
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Figure 6. The effects of different water–solid ratios and water content on the compressive strength of
the samples.

The initial compressive strength of the specimens demonstrated an increase, followed
by a decline as water content increased. This phenomenon is attributed to the fact that
γ-C2S requires a certain amount of water to dissolve Ca2+ during the carbonation reaction
(see Equation (4)) [34]. An increase in water content provides more water for the carbona-
tion reaction, which makes γ-C2S and the other reactive constituents more susceptible to
carbonation, thus increasing the strength. Excess water may obstruct the pores of the steel
slag specimens, resulting in the hindered diffusion of carbon dioxide [35].

Ca2SiO4 + 4H2O→ 2Ca2+ + H4SiO4 + 4OH− (4)

The higher the water–cement ratio, the greater the optimal water content required for
achieving maximum compressive strength in the specimen. This is attributed to the fact
that specimens with higher water–cement ratios possess a more porous structure, thereby
rendering it more challenging for water to hinder the carbonation process compared to
specimens with lower water–cement ratios. This was consistent with the discussion in
Wang et al.’s study [36].

3.3. Carbon Sequestration

The thermogravimetry (TG) and DTG results of carbonated LFS with varying water–
solid ratios and water contents are presented in Figure 7. The DTG results reveal that the
mass loss peak between 400 and 800 ◦C represents the decomposition peak of CaCO3. By
employing Equations (2) and (3), the rate of mass loss over the temperature range can be
used to calculate the carbon sequestration rate, as demonstrated in Figure 7a. It is observed
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that the peak carbon sequestration rate of carbonated LFS increases with the water–solid
ratio, in contrast to the result of compressive strength presented in Figure 7b. Although a
higher water–solid ratio results in increased porosity, leading to lower densification and
strength, these pores facilitate greater penetration of CO2 during the curing process. The
carbon sequestration rate of LFS samples, characterized by a 0.35 water–solid ratio and 8%
water content, amounts to 21.72%, indicating that each ton of LFS can effectively absorb
and fix approximately 217.2 kg of CO2. This is much higher than the average carbon
sequestration rate value of 15% proposed by researchers [19]. From the TG plot, it can
be inferred that the carbonated LFS with a higher water–solid ratio is less influenced by
the water content, suggesting that an increase in pore space mitigates the adverse effects
of water on CO2 diffusion. The carbonated LFS exhibits an increasing then decreasing
trend of the carbon sequestration rate with respect to water content, which is consistent
with the compressive strength results presented in Figure 6. The current findings imply
that maintaining an adequate water supply is crucial to ensure proper dissolution and
solidification of CO2, yet an excessive increase in water content beyond a certain threshold
potentially leads to adverse effects on CO2.
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In order to observe the distribution of water in samples with different water contents,
the center of samples with a water–solid ratio of 0.3 and different water contents was cut to
obtain a profile, and phenolphthalein powder was evenly sprayed on the profile. The LFS,
a highly alkaline substance, would show color in the presence of water, as shown in the
upper part of Figure 8. The sample with 0% water content did not show color due to the
absence of water, which proved the feasibility of the test method. The increase in water
content was observed to be accompanied by a progressively more pronounced coloration
of the specimen’s cut surface.
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Figure 8. Sample center profiles of LFS before and after carbonation.

After carbonation, the sample was uniformly covered with standard phenolphthalein
solution on the central profile to indicate the carbonation depth, as shown in the bottom
part of Figure 8. The sample with 16% water content has a darker color before carbonation
and almost covers the whole sample. After carbonation, it was found that the sample
also showed a darker color in the phenolphthalein solution, indicating that the degree of
carbonation of the sample was small. This was because the excessive water content led to
the hindered diffusion of CO2 during the carbonation process. With the decrease in water
content, the color of the sample before carbonation became lighter and lighter. This proves
that the moisture inside and outside the sample was reduced, and the resistance of CO2
diffusion was reduced. So when the water content was lower, the depth of carbonation
would increase. Samples with 0% to 7% water content were fully carbonated to the inside.
When the water content was 7%, the obstruction effect of water on CO2 diffusion became
very small, and there was enough water to dissolve Ca2+ and CO2. After carbonation,
phenolphthalein drops in the sample did not show color, the carbonation degree was high,
and tightly packed cementation products could be clearly observed.

3.4. Mineralogical Compositions

The X-ray diffraction patterns and semi-quantitative mineral-phase analyses of sam-
ples with 6–8% water content and varying water–solid ratios are presented in Figure 9. The
semi-quantitative analytical procedure exclusively considers calcium oxides and represents
a corrected outcome. The predominant constituents in the LFS feedstock were calcio-olivine
and akermanite, denoted by the chemical formulas γ-C2S and Ca2Mg(Si2O7), respectively.
Ca2Mg(Si2O7) is a mineral-phase variant of 3CaO·2SiO2(C3S2), primarily formed due to
the incorporation of Mg2+ ions into the C3S2 lattice, replacing some of the Ca2+ ions during
the high-temperature melting process of LFS. It shares similar properties to C3S2. Previous
studies have demonstrated the significant carbonation activity of γ-C2S and C3S2 [37].
Therefore, the primary sources of carbonation activity in the LFS were calcium silicate and
akermanite. In contrast, fluorite does not react with CO2 and was included in the analysis
solely for comparative purposes with other phases. Additionally, the presence of other
trace substances in the LFS was not analyzed; thus, the results of this semi-quantitative
analysis should be considered as a reference only. The primary product of the reaction
between steel slag and CO2 is CaCO3 [38], and the three primary crystalline forms of
laboratory-generated CaCO3 are calcite, aragonite, and vaterite [39]. γ-C2S carbonated at
low temperatures produces CaCO3, primarily in the form of calcite [33]. Moreover, it can
be discerned from Figure 9a that a prominent calcite diffraction peak appeared subsequent
to carbonation, while no diffraction peaks of aragonite or vaterite were detected.
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Figure 9. LFS with different water–solid ratios and water contents: (a) X-ray diffraction pattern;
(b) semi-quantitative mineral-phase analysis.

From Figure 9b, it can be discerned that an increase in the water–solid ratio results
in a corresponding elevation of calcite generation following carbonation. The generation
of calcite demonstrates an initial rise followed by a decline as water content increases, in
line with the findings of carbon sequestration and thermogravimetry presented in Figure 7.
Upon carbonation, the contents of calcium silicate and akermanite decrease as the degree
of carbonation intensifies, thereby indicating that γ-C2S and Ca2Mg(Si2O7) serve as the
primary active agents in the carbonation of LFS, which are transformed into stable calcite
upon carbonation, concurrently fixing CO2 within the calcite. However, calcium silicate and
akermanite do not experience complete carbonation, likely due to the challenges associated
with CO2 penetration within the particles of LFS.

3.5. Morphology

The microscopic morphology of LFS after carbonation with a water–solid ratio of
0.3 and a water content of 6–8% is shown in Figure 10, magnified by 20,000 times. It
can be observed that as the water content increases, the size of carbonation products
initially increases and then decreases. Additionally, specimens with higher degrees of
carbonation exhibit larger and denser calcium carbonate crystals. The formation of calcite
crystals on the particle surface can be observed in specimens with a water content of 6%.
These fine particles, approximately 0.3 µm in size, are cemented to the larger matrix as
depicted in Figure 10a. At a water content of 7%, calcite exhibits enhanced crystallinity
and grows in rock-like layers, while some small clusters of calcium carbonate crystals
fill pores and increase compactness (Figure 10b). This may explain why specimens with
a water content of 7% possess higher strength compared to others. Figure 10c reveals
that small calcium carbonate crystals measuring around 0.2 µm are cemented together to
form larger particles measuring approximately 1.2 µm; however, these cemented particles
fail to continue growing due to certain limitations, resulting in low crystallinity levels.
This phenomenon could be attributed to an abundance of surface moisture hindering CO2
diffusion on high-water-content specimen particles. Pores associated with high-water-
content samples are smaller than those found in low-water-content samples but occur at a
greater frequency.
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Figure 10. SEM images of carbonated LFS with (a) 6% water content; (b) 7% water content; (c) 8%
water content.

Figure 11 shows the 5000×-magnification electron image, and the EDS surface scan
results are shown in Figure 10b. The dense structure of the 7%-water-content specimen can
be observed in the electron image. A large number of overlapping regions of Ca, Mg, C,
and O elements can be found, which further proves that the carbonation products of the
LFS are calcium/magnesium carbonates and predominantly CaCO3, which is consistent
with the results in Figure 9. The areas exhibited smaller crystalline structures and high
brightness corresponding to CaCO3 products, whereas the larger particles with darker
regions represent uncarbonated calcium silicate. This distinction arose from the fact that
calcium carbonate could solely precipitate on the surface of calcium silicate particles,
leading to a higher number of small calcium carbonate crystals formed on larger calcium
silicate particles. Carbonation was more challenging for larger calcium silicate particles
compared to their smaller counterparts.
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Figure 11. EDS result of carbonated LFS with 7% water content.

3.6. Pore Structure

In order to investigate the distribution of pore structures within carbonated LFS
samples with a water–solid ratio of 0.3 and varying water contents, a high-resolution three-
dimensional X-ray microscope was employed to analyze the central region of the samples.
Pore identification is achieved through grayscale threshold segmentation, wherein the lower
density of water compared to solids enables direct pore recognition during analysis. The
porosity can be determined by reconstructing the test results in three dimensions. Figure 12
illustrates the porosity distribution along the Z-axis direction for two-dimensional cross-
sections of samples with different water contents. It is evident that most curves exhibit
overall flatness, with only a few positions displaying significant fluctuations attributed to
large pore size defects present in the original samples. However, these defects remain within
acceptable limits and do not undermine the value of our findings. Furthermore, it was
observed that all samples exhibited reduced porosity after carbonation compared to their
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pre-carbonation state. This reduction in porosity correlates with changes in compressive
strength, carbon sequestration rate, and physical phase content as discussed elsewhere in
this paper. Notably, as the water content approaches 7%, higher degrees of carbonation
lead to increased generation of calcium carbonate, which fills up pores and contributes to
enhanced strength.
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The test results were reconstructed in three dimensions, classifying holes based on con-
nectivity into open and closed categories. The rendered results are presented in Figure 13.
The upper section of the figure illustrates cut sections of the samples with varying wa-
ter contents, while the lower section showcases the three-dimensional rendering. In the
lower half of the 3D rendering, only the original shape is displayed, whereas in the upper
half, both open and closed pores are visible with a priority given to displaying closed
pores. It can be observed that micropores are distributed throughout the specimen, while
closed pores are predominantly concentrated in its central region. Following carbonation
treatment, there was a significant increase in closed pores within the specimen. This phe-
nomenon may be attributed to calcium carbonate production blocking connecting pores
and leading to an increased formation of closed pores.
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The results of total porosity, open porosity, and closed porosity obtained through
calculation are presented in Table 2. In total, 98.71% of the pores in the uncarbonated
specimen are classified as open pores (Figure 13a), which facilitates favorable conditions for
CO2 diffusion during the carbonation process. The variation in water content shows a simi-
lar trend between open porosity and total porosity, indicating that carbonation generates
calcium carbonate that fills most of the open pores, enhancing overall compactness but re-
ducing pore connectivity. Closed pores consistently increase with increasing water content.
Notably, specimens with 8% water content exhibit higher levels of closed pores compared
to those with 7% water content; however, they show lower levels of carbonation. This
observation suggests that higher-water-content specimens possess more bridging water
between particles and result in calcium carbonate deposition within particle gaps, leading
to increased formation of closed pores. Consequently, this impedes CO2 diffusion path-
ways and affects later-stage carbonation progress. At a water content of 7%, although more
closed pores are formed, there are still interconnected pores within the specimen allowing
CO2 penetration (Figure 13c). Beyond a water content threshold above 7%, closed pores
occupy almost all internal spaces within the specimen (Figure 13d), resulting in incomplete
carbonation and subsequent reductions in strength and carbon sequestration rate.

Table 2. Porosity of carbonated LFS with different water contents (%).

Samples Water Content Total Porosity Open Porosity Closed Porosity

a uncarbonated 20.44% 20.18% 0.26%
b 6% 17.69% 16.90% 0.79%
c 7% 10.60% 7.14% 3.46%
d 8% 13.61% 8.52% 5.09%

4. Discussion

Previous studies have demonstrated that γ-C2S undergoes low-temperature carbona-
tion to produce calcite and silica, with the silica encapsulating uncarbonated γ-C2S particles
and the calcite filling the pores [40,41]. Similar structural characteristics are observed in
steel slag carbonation as well [42]. Figure 14 illustrates the cementation mechanism of LFS,
primarily composed of γ-C2S, under a carbonation environment based on the findings pre-
sented in this paper. Distinguishing itself from previous studies, this mechanism provides
a comprehensive understanding of the carbonation reaction behavior by focusing on pore
and particle cementation, particularly in relation to both open and closed pores. For clarity
purposes, γ-C2S particles are used instead of LFS particles.

This study describes the differentiation between <7% and >7% water content during
carbonation behavior. At <7% water content, γ-C2S particles exhibit reduced formation of
bridging water, facilitating easy diffusion of CO2 between and within the particles through
interconnected pores (see Figure 14a). The enhanced contact area between CO2 and the
particles enables a greater carbonation extent for γ-C2S particles. This leads to easier
interior carbonation of specimens with lower water content, as demonstrated in Figure 8.
However, complete carbonation of steel slag due to inherent particle size constraints leads
to the presence of a porous carbonate layer in its products [43].

At >7% water content, there is sufficient bridging water to cement the particles; how-
ever, the presence of this bridging water hinders CO2 diffusion into the interior. Calcium
ions are released into the bridging water and react with CO2, resulting in precipitation
of calcium carbonate. This process leads to the solidification of the bridging water and
closure of gaps between particles, transforming original open pores into closed ones after
carbonation (see Figure 14b). Consequently, this impedes subsequent particle gaps and
internal carbonation.
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In summary, at <7% water content, the specimens were susceptible to interior carbona-
tion due to the prolonged presence of open pores. At >7% water content, the specimens
formed closed pores as a result of bridging water hardening, thereby hindering the car-
bonation process. At the optimum water content, although closed pores were also formed
alongside open holes in the carbonated specimen, they did not impede carbonation from
reaching the interior. Furthermore, Figure 14b illustrates a significantly more cemented
structure with an appropriate amount of enhancing strength.

5. Limitations and Future Directions

This paper specifically addresses the significant impact of moisture on the carbonation
reaction, without establishing correlations with other influencing factors. Future investiga-
tions should aim to comprehensively explore the carbonation mechanism of steel slag by
concurrently studying moisture, temperature, CO2 pressure, and other relevant variables.
The objective of this paper is to emphasize the importance of moisture in the carbonation
mechanism through controlled manipulation of its content; however, implementing such
control measures in practical engineering scenarios may prove challenging based on the
methods employed herein. Therefore, it is imperative for researchers to develop a suitable
approach for regulating water content.

6. Conclusions

1. A method was developed to control the water content of steel slag specimens, and the
significant influence of moisture and pore space on the carbonation reaction of steel
slag specimens was innovatively identified. The carbonation process relies on pores
for CO2 diffusion and also requires a certain level of moisture for Ca2+ dissolution and
diffusion. Increasing the water content enhances particle cementation and carbonation
capacity in steel slag specimens; however, excessive water hinders CO2 diffusion.
Reducing the water content can increase the carbonation depth but may compromise
gelling and carbon sequestration ability. Therefore, achieving a balance is crucial in
controlling the water content;

2. The pour-molding process was employed to enhance the porosity of steel slag spec-
imens. The increase in pores reduces the density of the steel slag specimens but
enhances their CO2 diffusion capacity. This is different from the common compression-
molding process, achieving the absorption and fixation of approximately 217.2 kg of
CO2 for each ton of LFS at a 0.35 water–solid ratio and optimum water content. This
carbon sequestration capacity is at an industry-leading level;

168



Appl. Sci. 2024, 14, 3631

3. An innovative three-dimensional pore structure analysis method was used to analyze
the connected and closed holes, and it was found that steel slag particles with low
water content have a minimal impact on pore connectivity during cementation, al-
lowing most of the pores to remain open. Conversely, steel slag particles with higher
water content result in the formation of more closed pores that hinder CO2 diffusion
into the interior of the steel slag specimens, leading to a lower degree of carbonation
compared to their surfaces. This study reveals the key mechanisms by which pore
space and moisture affect carbonation reactions.
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Featured Application: The design and manufacturing of sandwich solutions using FRCM vegetal
fabric skins improve sustainability because they provide solutions with a lower global carbon footprint.

Abstract: The utilization of the vegetal fabric-reinforced cementitious matrix (FRCM) represents an
innovative approach to composite materials, offering distinct sustainable advantages when compared
to traditional steel-reinforced concrete and conventional FRCM composites employing synthetic
fibers. This article introduces a design for sandwich solutions based on a core of extruded polystyrene
and composite skins combining mortar as a matrix and diverse vegetal fabrics as fabrics such as
hemp and sisal. The structural behavior of the resulting sandwich panel is predominantly driven by
the interaction between materials (mortar and polyurethane) and the influence of shear connectors
penetrating the insulation layer. This study encompasses an experimental campaign involving
double-shear tests, accompanied by heuristic bond-slip models for the potential design of sandwich
solutions. The analysis extends to the examination of various connector types, including hemp,
sisal, and steel, and their impact on the shear performance of the sandwich specimens. The results
obtained emphasize the competitiveness of vegetal fabrics in achieving an effective composite strength
comparable to other synthetic fabrics like glass fiber. Nevertheless, this study reveals that the stiffness
of steel connectors outperforms vegetal connectors, contributing to an enhanced improvement in
both stiffness and shear strength of the sandwich solutions.

Keywords: sandwich panels; FRCM; cementitious matrix; vegetal fibers; shear test

1. Introduction

Sandwich panels crafted with concrete skins and insulating cores are a competitive
solution for building structural components with energy-efficient added value (see a re-
view in Oliveira et al.) [1]. The concern about climate change and sustainable solutions
drives research towards greener and more bio-based engineering sandwich technologies
according to Oliveira et al. [2]. In the present work, a solution based on the vegetal FRCM
and polystyrene core serves as a lightweight construction solution with noteworthy in-
sulating properties for building enclosures. The mechanical properties of these panels
depend significantly on the composite action between materials. An adequate material
connection is crucial, as insufficient bonding may result in a problematic stress distribu-
tion within the panel, potentially causing detachment failure or a substantial decrease in
mechanical strength.

In this order, different authors like Cox et al. [3] developed a composite shear connector
system of a glass-fiber-reinforced polymer (GFRP) used to transfer interface shear forces in a
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precast concrete sandwich panel. This study developed push-off, pullout, and flexural tests
to evaluate the structural performance of the shear connectors, and the effect of the bond
between concrete and insulation was evaluated with push-off tests. The results showed
satisfactory performance with a lower bound of 90% of composite action for specimens
with a 100 mm thick insulation wythe and full composite action for most panels with
50 mm thick insulation. Pantano et al. [4] studied a numerical model by evaluating zig-
zag functions by enforcing the continuity of transverse shear stresses at layer interfaces,
being able to predict accurately the distribution of stresses and displacements in laminated
plates and sandwich panels. Another study by Portal et al. [5] presented experimental
and numerical methods to analyze the structural behavior related to a sandwich panel
with a glass-fiber-reinforced polymer (GFRP) plate connection system, where double-shear
tests were conducted on sandwich specimens to characterize the available shear capacity
provided by the connectors and panel configuration. The authors conclude that for well-
balanced composite action, it is necessary to use the least amount of material in the plate
connectors and an increased amount of bending capacity of the outer panel to avoid a
significant drop in the load after the peak load. At the same line, Hulin et al. [6] presents
an experimental campaign at elevated temperatures for panels stiffened by structural ribs,
insulation layers, and steel shear connectors. The results highlighted insulation shear
failure from differential thermal expansion at the interface with concrete, where the shear
connectors induced stress concentrations, leading to local failure. A study presented
by Tomlinson et al. [7] carried out push-through tests on a precast-concrete-insulated
sandwich panel using combined angled and horizontal connectors, where basalt-fiber-
reinforced polymer and steel connectors were used. This study evaluated various connector
inclination angles and diameters, diagonal connector orientations relative to the loading,
and panels with or without an active foam-to-concrete bond. The results show that steel
connectors failed by yielding in tension and inelastic buckling in compression. In the
case of larger-diameter basalt-FRP connectors, they pulled out under tension and crushed
in compression, and smaller-diameter basalt-FRP connectors ruptured in tension and
buckled in compression. Also, it is demonstrated that the strength and stiffness improved
with the connector angle and diameter. Lou et al. [8] performed 24 double-shear tests on
precast-concrete-insulated sandwich panels using stainless-steel plate connectors. The
authors analyzed parameters like connector directions, insulation effects, cavity widths,
and connector heights. The authors developed a consistent campaign with in-plane and
out-of-plane shear tests and concluded that the cavity size and the presence of insulation
significantly contributed to shear transfer. Choi et al. [9] analyzed some precast concrete
sandwich panels used for exterior cladding. Specimens were experimentally tested with
a push-out test, with and without corrugated shear connectors. The investigation of the
in-plane shear performance showed a relevant impact of the core material in the structural
response. And later, Choi et al. [10] extended the study of the shear flow to the type
of connectors. There are other relevant contributions about the shear performance of
sandwich insulation panels using other types of tests like Sylaj et al. [11], Hou at al [12],
Meng et al. [13], or Wang et al. [14].

To advance towards the utilization of more sustainable materials compared to synthetic
fibers and steel, the present study concentrates on the creation of sandwich panels compris-
ing a vegetal FRCM and expanded polystyrene as insulation. Authors have previously pre-
sented other complementary studies about FRCM vegetal fibers (see Mercedes et al. [15,16])
and some bending tests for sandwich FRCM solutions (see Mercedes et al. [16]). For the
present work, the innovation lies in the use of vegetal FRCM skins and the introduc-
tion of flexible connectors made from vegetal fibers. The connection between layers is a
must to have the necessary mechanical properties to develop composite materials that
are competent with those commonly used in the construction industry. In this study,
sandwich specimens were created using different fabrics (hemp, sisal, and glass) and
connectors (hemp, sisal, and steel). These specimens underwent a double-shear test to
examine how these fabrics and connectors influence the panel’s strength against shear.
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Additionally, a simplified connector slip-load model was developed and compared to the
experimental results.

2. Materials and Methods

The experimental campaign included the manufacturing of specimens of FRCM
bonded to an extruded polystyrene core and shear tests. These specimens were produced
using the following specific procedures and materials.

2.1. Mortar

To manufacture the FRCM component, a thixotropic commercial mortar was used. This
mortar is a single-component mixture comprising cement, synthetic resins, and polyamide
fibers, with the addition of silica fume. The choice of this mortar was based on its proven
effectiveness in previous studies such as Mercedes et al. [15]. The average results of
the compression and flexion tests using norm EN1015-11:2000 [17] have been previously
presented in the cited work with values of 39.25 MPa and 6.56 MPa, respectively.

2.2. Fabrics

Two types of vegetal fabrics and another type of synthetic fiber were used to manufac-
ture the FRCM part: hemp, sisal, and glass (contrast material).

Vegetal fabrics were crafted using hemp and sisal yarns (both with a diameter of
2.5 mm). This arbitrary choice was justified by the notable tension levels achieved by hemp
and sisal FRCM specimens in a prior study by Mercedes et al. [18]. In that study, the fabrics
and yarns were coated with epoxy resin. This was performed to prevent fiber degradation
produced by the environment of cementitious matrix composites (high alkalinity and
humidity cycles) (see Ardanuy et al.) [19].

The size of the free cells in the grids of vegetal fabrics was determined by referencing
the geometry of a commercial glass fabric (see Figure 1). In the case of vegetal fabrics, it was
necessary to craft meshes with a greater volume of material to achieve the load capacity of
glass fabrics, producing thicker meshes than synthetic ones. Two yarns were utilized for
each tuft, underscoring the fact that the tensile strength and effectiveness were comparable
to synthetic fiber meshes just by simply increasing the volume of vegetal fibers.
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Weft yarns of hemp and sisal fabric were made of hemp yarns of 0.5 mm in order to
reduce the thickness of the weft and wrap crossing point, and because the load capacity in
the weft direction was not relevant for the shear test setup used in this study.

The fabrics were woven (Figure 2) with the same procedures used in Donnini et al. [20]
and D’Antino et al. [21]. After one day of curing, the meshes were cut into pieces with
dimensions of 45 mm × 35 mm.
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Figure 2. Vegetal fabric preparation: (a) hemp fabric and (b) sisal fabric.

The mechanical properties of the tuft (two yarns in the vegetal fabrics case) are shown
in Table 1. The coated tuft data were obtained experimentally in this study using the tensile
test procedure using norm EN ISO 13934-1/2 [22].

Table 1. Tuft properties ((%) = coefficient of variation, Af = fiber area Ffu = maximum load mean,
σfu = tensile strength mean, Ef = Young’s modulus mean, εfpick = deformation peak mean).

Fibres Number
of Test

Af
(mm2) Ffu (N) σfu (MPa) Ef (GPa) εfpick (%)

Hemp 5 9.81 1701.00 173.35 (3%) 8.59 (11%) 1.45 (16%)

Sisal 5 9.81 1467.00 137.25 (16%) 4.87 (36%) 2.31 (14%)

Glass 5 1.05 708.00 668.50 (8%) 61.25 (2%) 1.32 (6%)

2.3. Connectors

To assess the impact of connectors on the shear behavior of FRCM bonded to an
extruded polystyrene core, connectors of hemp, sisal, and steel were used. Hemp and sisal
were selected as they are the vegetal fibers used in this study for crafting vegetal fabrics,
while steel was chosen as it is the most commonly commercial material used for connectors
in such types of sandwich solution.

Vegetal fiber connectors were crafted hook-shaped and impregnated with epoxy resin,
featuring an equivalent area of 29.43 mm2 (6 yarns). Steel connectors were in the shape of
a pin or bolt with a cross-sectional area of 0.79 mm2, accompanied by a nut at one end to
enhance the anchoring effect with the mortar (see Figure 3).
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2.4. Extruded Polystyrene

Rigid extruded polystyrene foam boards with a thickness of 40 mm were used as the
insulating core in the sandwich sample configuration.

2.5. Specimens

The experimental program included 40 specimens. The specimens consisted of a
sandwich panel combining FRCM and extruded polystyrene, following the geometry in
Figure 4.
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Figure 4. Specimen geometry in mm.

The dimensions of the FRCM were 50 × 400 mm with a thickness of 20 mm. These
40 samples included 3 different connectors (steel, hemp, and sisal) and 3 different reinforce-
ment fabrics (hemp, sisal, and glass).

The mold to manufacture the FRCM specimens was prepared with a grid of wooden
strips with 50 mm × 400 mm gaps (see Figure 4). These strips had a height of 20 mm. The
manufacturing procedure was as follows:

• Prepare the mold base with a demolding agent (Figure 5a).
• Mix the mortar and pour it to a depth of approximately 15 mm.
• Place the fabric so that it slightly penetrates the first mortar layer (Figure 5b).
• Cover the fabric with a second layer of mortar to reach a thickness of 20 mm for the

bottom FRCM layers.
• Place the extruded polystyrene boards. In the case of specimens with connectors, it

has a hole in the middle.
• Place the mold of the other wooden strips (without a base) in the same location as the

first mold.
• Add a third layer of mortar to reach the final thickness.
• Place the second fabric so that it slightly penetrates the first layer of mortar.
• For panels with connectors, place the connectors so that the top is above the fabric.
• Cover the second fabric (and connectors) with a fourth layer of mortar to reach a

thickness of 20 mm for the top FRCM layers.
• Demold and leave samples to cure in laboratory conditions for 28 days. After this

period, the specimens are ready for testing (Figure 5c).

The nomenclature used to identify the specimens is provided in Table 2.

Table 2. Nomenclature of sandwich panels.

Specimen Fibres Connectors Numbers of Samples

SH-N Hemp Without 5
SH-H Hemp Hemp 5
SH-S Hemp Sisal 5
SH-St Hemp Steel 5

SS-N Sisal Without 5
SS-S Sisal Sisal 5

SG-N Glass Without 5
SG-St Glass Steel 5
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with the clevis system according to AC434-0213-R1 [23]. In this configuration, auxiliary 
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3. Experimental Campaigns
3.1. Test Setup and Instrumentation

The specimens were subjected to a double-shear test (see Figure 6). In this test, metal
plates (similar to those used in tension tests) were bonded to one end of the FRCM on each
side of the sandwich specimen. This shear test is an adaptation inspired by the tension test
with the clevis system according to AC434-0213-R1 [23]. In this configuration, auxiliary
plates of aluminum were attached externally on opposite sides of the load application,
simply to prevent the turning of the specimens during the test. An electromechanical press
(MTS Insight 10 kN range) was used to perform the tests with a test rate of 2 mm/min.
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3.2. Type of Failures

In general, all the specimens had peeling failure because polystyrene is a low-strength
material. Nevertheless, in the case of the samples with connectors, there was also a slippage
of the connectors accompanied by the detachment of the mortar in the connector area,
in some cases. Consequently, specimens with connectors displayed more cracking and
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ductile failure compared to the sudden and brittle failure observed in specimens without
connectors (Figure 7).
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3.3. Experimental Results

Table 3 shows the experimental results of the maximum load and shear stress (Fmax
and τmax, respectively), the elastic stiffness (Ke), and the shear modulus (Ge) obtained
from the linear stage in the load–displacement diagrams. Also, the following table presents
the displacement (δmax) and angular distortion (δmax/te) at the maximum load, where
te is the distance (60 mm) between the fabric embedded in the FRCM skins. To calculate
the shear stress and shear modulus, the shear value from the dethatched FRCM skin
(50 × 250 mm) was used.

Table 3. Experimental results.

Specimen Fmax (N) τmax (MPa) C.V Ke (N/mm) Ge (MPa) C.V δmax (mm) δmax/te (%) C.V

SH-N 1409.20 0.11 (12%) 467.94 1.87 (10%) 4.85 9.70 (23%)

SH-H 1694.60 0.14 (6%) 601.05 2.40 (19%) 5.49 10.98 (21%)

SH-S 1684.40 0.13 (14%) 537.22 2.15 (15%) 4.50 9.01 (31%)

SH-St 2151.20 0.17 (8%) 653.73 2.61 (13%) 7.04 14.08 (22%)

SS-N 1369.75 0.11 (9%) 432.29 1.73 (7%) 4.89 9.79 (19%)

SS-S 1543.40 0.12 (9%) 479.70 1.92 (12%) 7.21 14.41 (24%)

SG-N 1340.40 0.11 (10%) 487.95 1.95 (7%) 5.60 11.19 (47%)

SG-St 1333.25 0.11 (12%) 608.29 2.43 (18%) 4.41 8.81 (40%)

The results in Table 3 show coefficients of variation ranging between 2 and 14% for
maximum load and shear strength, respectively, indicating the good repeatability of the
experiments, following Donnini and Corinaldesi [20]. It is noteworthy that specimens
without connectors presented a similar shear strength. However, for stiffness and displace-
ments, the variation was higher, ranging between 7 and 47%. This variability represents the
expected scattering of data for elements composed of cementitious materials with a high
non-linear behavior. The results presented in Table 3 are better appreciated in Figures 8–11.
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Figures 8 and 9 show the impact of the fabric on the maximum load and elastic stiffness
of the specimens. The performance of different fabric types remains consistent for both
maximum load and stiffness values, regardless of the presence of connectors. Concerning
maximum load, the inclusion of connectors significantly enhances the capacity for vegetal
specimens, ranging from 13% to 53%. However, there is no notable change for glass fabric.
This suggests that the FRCM skin may not reach the cracking strength required to activate
the glass fabric, unlike what occurs with vegetal fabrics. Nevertheless, connectors play a
beneficial role in maintaining cohesion between materials, activating vegetal fabrics at the
achieved level of strain until significantly producing a higher ultimate load.

In terms of elastic stiffness, the response of the FRCM sandwich is directly tied to the
Young’s modulus of the fabric—a stiffer fabric correlates with higher specimen stiffness.
Despite glass fabric being seven times stiffer than hemp fabric, this stiffness difference
is not prominently reflected in the specimens. This is due to the initiation of non-linear
behavior in the core deformation for low values of FRCM strain, minimizing the activation
of fabric capacity in the composite and resulting in negligible stiffness differences.

Connectors prove efficient in ensuring strain compatibility among components, lead-
ing to an increase in stiffness values ranging from 11% to 40%. Although the influence of
connectors during the elastic phase is minimal compared to the effect over the ultimate
load, they play a crucial role in maintaining overall specimen compatibility.

Figures 10 and 11 illustrate the impact of the type of connector on the maximum
load and on elastic stiffness for the hemp fabric specimens. The presence of connectors,
independently of their material, increases both the maximum load and the elastic stiffness.
The steel connector reaches the highest load and the highest stiffness. Therefore, the
presence of stiff connectors maintains the strain field and the compatibility between layers
in a more efficient manner than flexible vegetal connectors. The difference in stiffness
between the fabric and the steel connector seems to not be a disadvantage, even though
some local damage takes place in the mortar because of the concentration effects of the
steel bolt.

Figures 12–16 show the load–displacement plots of the tested panels. It can be seen
that specimens without connectors exhibit a quasi-brittle failure with a limited range of
deformation (dashed lines) compared to specimens with connectors (continuous line). The
presence of connectors enhances the activation of vegetal fabrics, effectively tightening the
interfaces between materials and contributing to an increased strength of the sandwich
structure. In the case of glass, the levels of strain are low in the FRCM and the fabric is not
activated; therefore, there is no large difference in the load–displacement plots.
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4. Connectors’ Interlock-Slip Simplified Model

According to the experimental results, it is worth building a simple model to easily
generate pre-dimension solutions for FRCM sandwich panels. Therefore, it is necessary to
estimate the contribution of the connectors to the response of the structure. The problem
is very complex, involving the nonlinear behavior of FRCM skins, interface interactions
among materials, and debonding and slipping failure. A real model is far from the scope
of the contribution. Nevertheless, a rough approach might take advantage of the compar-
ison between the response of specimens without connectors and those with connectors.
Therefore, in a simple manner:

Fmax = Fmax_none_connector + Fmax_connector

From Table 3 and the plots of Figures 12–14, it is feasible to estimate the contribution
of the interface of the FRCM and polystyrene. To study the effect of the connector, only
hemp FRCM specimens (SH) were used because they contain all type of samples.

The connectors interact, exhibiting a bi-linear behavior. Each one interacts, increas-
ing its contribution until the maximum load is reached, while after, they are capable of
maintaining it without a significant reduction, due to its stiffness.

As stated in Figure 11, steel connectors showed the highest stiffness, followed by hemp
and finally sisal connectors. This property explains the reason why steel connectors are
those that contribute more significantly to the shear strength of the specimen, providing
a contribution 165% more than the vegetal connectors. Hemp and sisal show a similar
contribution, due to their similar mechanical properties seen in Table 1.

Therefore, Figure 17 estimates the connector contribution.
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5. Conclusions

In this work, an experimental and analytical study was conducted to investigate
the shear performance of a sandwich specimen with a vegetal-FRCM and polystyrene.
According to the achieved results:

• All specimens experienced a peeling failure. However, specimens with connectors
exhibited additional slippage of the connectors, resulting in more cracking and ductile
failure compared to the fragile failure observed in specimens without connectors.

• The results showed that there was no significant influence of the kind of fabric in the
maximum load of the specimen without the connector. This took place because the
FRCM skin did not reach the cracking level required for the fabric to be activated and
effectively contribute to the strength.

• In the case of the specimens with connectors, the levels of maximum loads and elastic
stiffness were both increased. Vegetal fabrics were effectively activated by the cracking
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while glass was very little activated. Therefore, the comparative performance produced
a more ductile response in vegetal fabrics, due to their elongation capacity.

• All the types of connectors increased the maximum load and elastic stiffness of the
sandwich specimens. The steel connector reached the highest maximum load and elas-
tic stiffness. Hence, stiff connectors produced a tightening effect between the layers of
materials, and the higher the stiffness in connectors, the higher the sandwich response.

• An interlock-slip model based on experimental evidence showed the potential to
design FRCM solutions for sandwich applications with connectors. It showed that the
connector contributes significantly.

The key findings indicate that FRCM vegetal fibers demonstrated mechanical competi-
tiveness when compared to glass fiber. Sandwich solutions require connectors to enhance
the mechanical capacity and, in this specific instance, steel connectors exhibit a more effi-
cient performance than vegetal connectors. Therefore, future improvements could focus
on designing vegetal connectors with increased stiffness and conduct additional tests to
develop a more suitable interlock-slip model.
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Abstract: To reduce the environmental impact of concrete, recycled aggregates are of significant
interest. Recycled concrete aggregate (RCA) presents a significant resource opportunity, although
its performance as an aggregate in concrete is variable. This study presents a meta-analysis of the
published literature to refine the understanding of how the moisture content of RCA, as well as
other parameters, affects the compressive strength of concrete. Seven machine learning models
were used to predict the compressive strength of concrete with RCA, including linear regression,
support vector regression (SVR), and k-nearest neighbors (KNN) as single models, and decision tree,
random forest, XGBoost, and LightGBM as ensemble models. The results of this study demonstrate
that ensemble models, particularly the LightGBM model, exhibited superior prediction accuracy
compared to single models. The LightGBM model yielded the highest prediction accuracy with
R2 = 0.94, RMSE = 4.16 MPa, MAE = 3.03 MPa, and Delta RMSE = 1.4 MPa, making it the selected
final model. The study, employing feature importance with LightGBM as the final model, identified
age, water/cement ratio, and fine RCA aggregate content as key factors influencing compressive
strength in concrete with RCA. In an interaction plot analysis using the final model, lowering the
water–cement ratio consistently improved compressive strength, especially between 0.3 and 0.4,
while increasing the fine RCA ratio decreased compressive strength, particularly in the range of 0.4
to 0.6. Additionally, it was found that maintaining moisture conditions of RCA typically between
0.0 and 0.8 was crucial for maximizing strength, whereas extreme moisture conditions, like fully
saturated surface dry (SSD) state, negatively impacted strength.

Keywords: machine learning; recycled concrete aggregate; moisture content

1. Introduction

Concrete recycling can be implemented as a strategy to reduce carbon emissions and
promote sustainable development [1–3]. Concrete with recycled aggregates is recognized as
one of the most prominent eco-friendly concretes [4–6]. Another concern for using recycled
aggregates is that the supply of quality natural aggregates is diminishing in certain regions
of the world (e.g., [7]). Of particular concern is increasing amounts of construction and
demolition waste [1,8,9], from which recycled concrete aggregates (RCA) are derived.

Consequently, concrete recycling and sustainable development are considered highly
important in the construction industry [1,10,11]. Recycled concrete can be utilized by
crushing discarded concrete debris and using it as RCA to partially or fully replace natural
aggregates in new concrete [1]. Recycled aggregates can be classified depending on the
particle size or the type of waste material [12]. Among them, coarse recycled aggregates
produced from crushed concrete are the most used in concrete production, and they are
referred to as recycled concrete aggregate or RCA [12–18].

The surface of RCA can consist of natural aggregate and adhered mortar, which results
in RCA having different physicochemical properties compared to natural aggregates [19–24].
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The adhered mortar is porous, resulting in higher water absorption capacity in RCA com-
pared to natural aggregates [19,25]. Additionally, the roughness of the adhered mortar
increases the surface area of recycled aggregate particles, requiring more water for achieving
consistent workability compared to concrete made with the same natural aggregates [19].
As a result, the mechanical properties of concrete with RCA can be inferior to those of
concrete using natural aggregate particles [19–24]. Therefore, a number of researchers have
explored methodologies to limit the detrimental effect of RCA, such as through benefi-
ciation methodologies (e.g., [26,27]), mix design approaches (e.g., [28,29]), or alternative
mixing approaches (e.g., [13,30–32]).

A significant number of researchers have noted that the moisture content of the
RCA at the time of concrete batching can have a significant impact on the properties
and performance of the concrete (e.g., [32,33]) in addition to affecting the microstructure
development [33–35]. Poon et al. [36] discussed concrete compressive strengths with three
different RCA moisture conditions—air dry (AD), oven dry (OD), and saturated surface
dry (SSD)—and argued that SSD aggregate would release water, resulting in a weakened
interfacial transition zone (ITZ) and a higher water-to-cement ratio [12]. These AD, OD,
and SSD moisture states represent different moisture levels in RCA and play a crucial
role in concrete performance. AD refers to aggregates dried naturally under atmospheric
conditions, while OD indicates aggregates dried in an oven to remove all moisture. SSD
signifies aggregates with their surfaces saturated with moisture but not immersed in
water. Brand et al. [32,33] found that partially saturated RCA has the potential to have
an equivalent concrete strength compared to natural aggregate concrete, and Etxeberria
et al. [23] recommended to use partial SSD rather than SSD to secure the compressive
strength of concrete with RCA. Mefteh et al. [37] argued that recycled aggregates within
an SSD condition have the most negative impact on concrete strength, while AD recycled
aggregates optimize concrete strength [37].

The objective of this study is to explore the relationship between the compressive
strength of concrete and the moisture content of recycled concrete aggregates (RCA) through
the application of machine learning, since there are conflicting conclusions in the literature.
Various factors, including the volume fraction of aggregates, aggregate type, aggregate gra-
dation, coarse-to-fine aggregate ratio, aggregate shape and texture, water-to-cement ratio,
cement content, type and content of any supplementary cementitious materials, and type
and dosage of chemical admixtures [38–42], influence the compressive strength of concrete.
Due to the complex and nonlinear interrelationship between these factors and compressive
strength, general linear equations are often ineffective [43–45]. In recent years, machine
learning algorithms have been increasingly used to predict the performance of concrete
with both natural aggregates [46,47] and with recycled aggregates [4]. Studies have focused
on predicting various properties of concrete with recycled aggregates, such as strength [43],
elastic modulus [19], chloride resistance [1], and durability [48], using machine learning
models. However, there remains insufficient established predictive information regarding
the relationship between the compressive strength of concrete and the moisture content of
RCA. Therefore, this study aims to address this gap by conducting a literature review to
investigate the relationship between compressive strength and moisture content in RCA. To
achieve this, a database was constructed consisting of 752 entries, considering parameters
such as the moisture content, water-to-cement ratio, replacement ratio of recycled aggre-
gates, composition ratio of natural aggregates, curing age, etc. Seven machine learning
methods, including linear regression, support vector regression (SVR), k-nearest neighbors
(KNN), decision tree, random forest, LightGBM, and XGBoost, were employed to develop
a predictive model for the compressive strength of RCA. The models were compared using
evaluation metrics, and the final model was selected. Furthermore, feature importance
and interaction plots were utilized to analyze the relationship between moisture content
and compressive strength. This study contributes to the field by addressing the lack of
consideration of RCA moisture content in predicting concrete performance metrics, making
it a novel endeavor in the realm of machine learning studies in concrete technology.
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2. Experimental Methodology
2.1. Data Collection

In this study, a database was collected to predict the compressive strength of concrete
with RCA when considering the moisture condition of the RCA. The database was obtained
from published literature (Table 1). The database consists of 752 entries, focusing on
studies that explicitly reported the moisture condition of RCA. The output variable is
compressive strength (MPa), and there are a total of 13 input variables considered. The
input variables represent the mixture materials used in RCA and are expressed as ratios
after unifying them in kg/m3. The coarse RCA ratio represents the ratio of coarse RCA
to the total coarse aggregate, and the fine RCA ratio represents the ratio of fine RCA to
the total fine aggregate. These ratios are included to understand the influence of RCA
proportions on compressive strength. The input variables related to the materials used
in RCA are normalized by dividing them by the total material. The reason for dividing
each material by the total material is to standardize all input variables on the same scale,
allowing the model to consider the influence of each variable equally. This ensures that
the model operates consistently even when the quantities or proportions of each material
vary, making the results easier to interpret. Also, it can ease replication during future
experiments, as following proportions makes it easier to replicate under standardized
conditions. These input variables include cement, fly ash, water, superplasticizer, natural
coarse aggregate, natural fine aggregate, fine RCA, and coarse RCA. The moisture condition
is included as an input variable to investigate its influence on compressive strength. The
range for the moisture condition was 0 to 1, where 0 was OD, 1 was SSD, and 0.5 was AD.
Additionally, the other input variables are age and water-to-cement ratio.

Table 1. Database source.

No. Reference Number of Data No. Reference Number of Data

1 [32] 12 12 [49] 36

2 [50] 10 13 [51] 15

3 [52] 8 14 [53] 10

4 [29] 27 15 [54] 6

5 [55] 50 16 [22] 3

6 [56] 24 17 [57] 14

7 [36] 36 18 [58] 4

8 [59] 54 19 [60] 18

9 [34] 5 20 [61] 20

10 [62] 42 21 [63] 300

11 [64] 12 22 [65] 46

Total Data: 752

2.2. Data Analysis

The database containing the input and output data was uploaded to the software as an
Excel file, and the database was analyzed using Python code. Table 2 presents the statistical
analysis of the database, including the mean, standard deviation, minimum, first quartile to
third quartile, and maximum values. From Table 2, it is observed that there are variations
among the input variables. Examining the mean values, the curing age is 23.06 days, and
the average values for Coarse Aggregate/Total Material and Fine Aggregate/Total Material
are 0.21 and 0.26, respectively. The average value for Superplasticizer/Total Material is
0.01, while for Fly Ash/Total Material it is 0.001, indicating significant variations. These
variations can affect the performance of the model, hence preprocessing of the database is
necessary [66].
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Table 2. Database analysis.

Parameters Unit Mean Standard Deviation Min 25 Percentile 50 Percentile 75 Percentile Max

Coarse RCA Ratio - 0.46 0.41 0 0 0.49 1 1

Fine RCA Ratio - 0.12 0.30 0 0 0 0 1

Cement/Total
Material - 0.18 0.03 0.1 0.16 0.18 0.19 0.28

Fly Ash/Total
Material - 0.001 0.006 0 0 0 0 0.04

Water/Total
Material - 0.09 0.02 0.04 0.08 0.09 0.1 0.18

Superplasticizer/
Total Material - 0.01 0.04 0 0 0 0 0.17

Coarse
Aggregate/Total

Material
- 0.21 0.17 0 0 0.22 0.37 0.5

Fine
Aggregate/Total

Material
- 0.26 0.09 0 0.26 0.28 0.3 0.43

Fine RCA/Total
Material - 0.05 0.13 0 0 0 0 0.73

Coarse RCA/Total
Material - 0.2 0.17 0 0 0.19 0.39 0.47

Moisture
Condition - 0.88 0.3 0 1 1 1 1

Age Day 23.06 25.89 1 7 14 28 90

Water/Cement - 0.46 0.12 0.27 0.42 0.5 0.55 1.11

Compressive
Strength MPa 36.82 16.20 4.8 24.63 35.4 47.33 85.2

2.3. Data Preprocessing

Scaling is a commonly used data preprocessing technique in machine learning. It is
applied to address the issue of significant differences in units or ranges among variables.
When variables have different units or ranges, it can make the interpretation of the model
difficult. If one variable has a much larger range compared to others, it may have a large
impact on the model’s predictions. To mitigate this problem, it is necessary to adjust the
variables to a consistent scale [67,68].

In this study, before applying the scale, the dataset was divided into training and test
sets. The dataset consisting of 752 samples was split into a training set, which accounts
for 70% of the data, and a test set, which accounts for the remaining 30%, following the
methodology employed in previous studies [19,69,70]. After splitting the data, standard
scaling was applied to the input variables. This approach standardizes the variables by
adjusting their means to 0 and standard deviations to 1, aligning them with a standard
normal distribution [67].

2.4. Cross-Validation and Hyperparameter

Cross-validation (CV) is a technique used in machine learning to evaluate the perfor-
mance of a model and estimate its generalization ability. It involves dividing the available
data into multiple subsets or k-folds [71]. K is a user-specified value, commonly set to 5
or 10 but can be chosen as any other value as well [72,73]. In each iteration, the model is
trained on a training set and then evaluated on the validation set. This process is repeated
several times, with different subsets of the data serving as the validation set each time. The
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performance metrics obtained from each iteration are then averaged to provide an overall
estimate of the model’s performance. CV helps address the issue of overfitting.

Hyperparameters are parameters that are set by the user before training the model.
To optimize model performance, hyperparameter tuning is performed by systematically
searching for the best combination of hyperparameter values [73]. This is often done in
conjunction with CV, where different hyperparameter values are evaluated on different
subsets of the data. This helps generalize well across different data subsets, resulting in a
more robust and reliable model [74]. In this study, grid search was used to find the optimal
CV value and hyperparameter values.

3. Results
3.1. Optimizing the Model

The study employed the grid search method to simultaneously find the optimal CV
values and hyperparameter combinations for each model [75,76]. The range of CV fold
values was set between a minimum of 2 and a maximum of 10, and various predefined
hyperparameter values for each model were explored to find the best combination. The
best CV fold values and hyperparameters for each model were selected based on evaluation
metrics such as coefficient of determination (R2), root-mean-square deviation (RMSE), mean
absolute error (MAE), and Delta RMSE. Furthermore, to ensure the reproducibility and
consistency of the results, the random state parameter was set to ‘5’.

3.1.1. Linear Regression

Linear regression does not require additional hyperparameter tuning because it does
not have many hyperparameters to tune. In linear regression, the focus of model training
is to adjust the weights and biases of the input variables to find the best-fitting linear
relationship. As a result, for the test dataset, the R2 is 0.66, RMSE is 9.72 MPa, and MAE is
7.67 MPa. The values for RMSE and MAE are relatively higher than the other six models.
The Delta RMSE is 0.31 MPa.

3.1.2. Support Vector Regression (SVR)

The process of optimizing the SVR model involves adjusting the hyperparameters,
cost, epsilon, gamma, and kernel values. The cost parameter determines the degree of
error tolerance, while epsilon represents the acceptable range of error between predicted
and actual values. In this case, the range for the cost parameter was set as 1, 10, and 100,
and epsilon was set to 0.01 and 0.1. These values were commonly used and selected as
initial choices for the parameters [77,78]. Additionally, gamma plays a role in adjusting
the curvature of the decision boundary, and gamma values were set to 0.01 and 0.1. The
kernel was considered with options including linear, polynomial, and Gaussian radial basis
function (RBF) kernels.

During the evaluation process with varying CV values from 2 to 10, consistent results
were observed for the test sets in terms of evaluation metrics, as is visually represented in
Figure 1. Figure 1 shows the evaluation metrics for each CV value. The R2 value for the test
set was found to be 0.79, with an RMSE of 7.67 MPa and an MAE of 5.25 MPa. Furthermore,
the Delta RMSE was 1.6 MPa. Based on these results, the optimal SVR model was obtained
with a CV value of 2 and the following hyperparameter combination: cost value of 100,
epsilon value of 0.1, gamma value of 0.1, and the Gaussian kernel. The decision to choose
a smaller CV value, such as 2, was that a smaller CV value leads to a simpler model and
reduced model complexity, which helps avoid overfitting [79]. Table 3 shows the optimal
hyperparameter values and CV fold for each model.
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Table 3. Optimal hyperparameter values and CV fold.

Model Best Hyperparameter CV

SVR

Cost: 100
Epsilon: 0.1
Gamma: 0.1

Kernel: Gaussian

2

KNN

Number of neighbors: 5
Weights: distance
Algorithm: auto

Power parameter: Euclidean distance

2
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Table 3. Cont.

Model Best Hyperparameter CV

Decision tree

Maximum depth: 7
Minimum number of sample split: 5

Maximum number of features: square root
Criterion: mean squared error

3

Random forest

Number of estimators: 200
Maximum depth: None

Minimum number of samples split: 2
Number of minimum samples leaf: 1

3

XGBoost

Number of estimators: 200
Learning rate: 0.1

Maximum depth: 5
Number of subsamples: 0.5

10

LightGBM

Number of estimators: 200
Learning rate: 0.1

Maximum depth: 7
Number of subsamples: 0.5

3

3.1.3. K-Nearest Neighbors (KNN)

To optimize the k-nearest neighbors (KNN) model, the values of the number of
neighbors, weights, algorithm, and power parameter are adjusted. Number of neighbors
is a parameter that specifies the number of nearest neighbors and is usually chosen as an
odd value for applying majority voting rule. In this study, the number of neighbors is set to
three and five. Weights are a parameter that determines the weight of neighbors, and two
options, uniform and distance, are chosen. Uniform assigns equal weight to all neighbors,
while distance assigns weights inversely proportional to the distance. Algorithm is used for
neighbor search, and auto is used in this study as it automatically selects the most suitable
algorithm. Power parameters are methods of distance measurement, where in this study,
Manhattan distance and Euclidean distance are used.

The results show that for CV values ranging from 2 to 10, for the test set, the R2, MAE,
and RMSE values are consistent for CV values 2 to 7 and 10, which yielded the highest
R2 and the lowest RMSE, Delta RMSE, and MAE. Therefore, the optimal KNN model is
selected with a CV value of 2, 5 neighbors, weights as distance, algorithm is set to auto, and
Euclidean distance for power parameter, as summarized in Table 3. CV value as 2 shows an
R2 of 0.74, an RMSE of 8.48 MPa, an MAE of 5.91 MPa with the Delta RMSE as 6.91 MPa.

3.1.4. Decision Tree

The hyperparameters of the decision tree model include maximum depth, minimum
number of samples split, maximum number of features, and criterion [25]. Maximum
depth represents the maximum depth of the decision tree, and in this study, it was set to
5, 6, and 7. By controlling how deep the tree branches can extend, it helps mitigate the
risk of overfitting. The minimum number of samples split refers to the minimum number
of samples required to split a node. Nodes with fewer samples than this value will not
be split. The default value in this research was set to 3, 4, and 5. The maximum number
of features limits the number of features available for splitting and can help control the
complexity and overfitting of the model. In this study, a square root of the total number of
features and logarithm base 2 of the total number of features was chosen. Criterion is the
function used to evaluate the quality of a node’s split and mean squared error, Friedman
mean squared error, and Poisson loss were applied in this research.

The lowest RMSE and MAE values were achieved when CV values were 3 and 8. For
CV = 3, the test set had an R2 of 0.82, an RMSE of 7.03 MPa, an MAE of 5.46 MPa, and Delta
RMSE was 0.98 MPa. For CV = 8, the test set had an R2 of 0.82, an RMSE of 7.06 MPa, and
an MAE of 5.49 MPa with delta RMAE as 1.01 MPa. Since the performance metrics for CV
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values for 3 and 8 came out very similar, CV value 3 was chosen as the optimal model for
the decision tree. The optimal hyperparameters for CV = 3 are as follows: the maximum
depth is 7, the minimum number of samples split was set as 5, the maximum number of
features as a square root of the total number of features, and the criterion is mean squared
error, as summarized in Table 3.

The advantage of the tree model is the ability to visualize the model [80]. Figure 2
represents the optimal decision tree model for CV as 3. Interpreting the figure, the first
splitting criterion is ‘AGE’. It uses the ‘AGE’ feature to perform the first split. If the ‘AGE’
value is less than or equal to 21.0, it branches to the left; otherwise, it branches to the right.
‘Squared error’ indicates the mean squared error in the split, representing the average
squared difference between the predicted and actual values in the split. In the first split, the
mean squared error is 254.458. ‘Samples’ represents the number of data points included in
the split, which is 541 in this case. The value of 541 is obtained by multiplying the training
set ratio (0.7) by the total number of data points (752). Finally, ‘value’ denotes the average
value of the target variable predicted within the split, which is 36.753 for the first split,
representing the average of the target variable values for the data points belonging to the
first split.
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Figure 2. Optimal model of decision tree.

3.1.5. Random Forest

The hyperparameters of the random forest model that were specified in the study
are the number of estimators, maximum depth, minimum number of samples split, and
minimum number of samples leaf. The number of estimators represents the number of trees
to be generated in the random forest. Increasing the number of trees can potentially improve
prediction performance, but it can also slow down the model’s training and prediction
speed [81]. The maximum depth limits the maximum depth of each tree in the random
forest [81]. Setting a maximum depth helps control the risk of overfitting, as deeper trees
can capture more specific patterns in the training data but may struggle to generalize well
to new data. The minimum number of samples split is the minimum number of samples
required to split an internal node, while the minimum number samples leaf is the minimum
number of samples required to be at a leaf node [81]. These parameters also contribute
to controlling the model’s complexity and generalization ability. The hyperparameter
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ranges specified in the study are as follows. The number of estimators is set to 100 and 200;
maximum depth as 0, 5, and 10; minimum number of samples split as 2, 5, and 10; and
minimum number samples leaf set to 1, 2, and 4.

The analysis of each CV value for the optimal hyperparameter values in terms of R2,
RMSE, MAE, and the Delta RMSE revealed similar results between CV values of 3 and
10. However, there was a noticeable difference when the CV was set to 2. For CV as 2,
the test set had an R2 of 0.88, an RMSE of 5.69 MPa, and an MAE of 4.16 MPa, with a
Delta RMSE as 2.35 MPa. On the other hand, for CV values between 3 and 10, similar
performance metrics were obtained. Especially for CV values as 3, the R2 was 0.89, RMSE
was 5.59 MPa, and MAE was 3.98 MPa, and Delta RMSE was 2.97 MPa. Comparing the
two CV values, 2 and 3, it can be observed that the model performs better when the CV is
set to 3. Although the Delta RMSE value was higher for CV = 3 compared to CV = 2, the
higher R2 and lower RMSE and MAE values indicate better overall performance when the
CV is set to 3. Therefore, the optimal model for the random forest is obtained when the CV
is set to 3, with 200 estimators, no maximum depth, a minimum samples split of 2, and 1
minimum samples leaf, as summarized in Table 3.

3.1.6. XGBoost

The selected hyperparameters for XGBoost in this study are number of estimators as
100 and 200; learning rate as 0.01 and 0.1; maximum depth as 3, 5, and 7; and number of
subsamples as 0.5, 0.7, and 0.9 [82,83]. The number of estimators specifies the number of
decision trees to be generated. Learning rate determines the contribution of each tree to
the final prediction; smaller values result in less contribution from each tree, while larger
values increase their contribution. Maximum depth limits the maximum depth of each tree,
as deeper trees can lead to overfitting. Subsample specifies the proportion of samples used
to train each tree.

When the CV value is 10, the highest R2 and lowest RMSE and MAE were observed.
For CV as 10, the test set achieved an R2 of 0.93, RMSE of 4.52 MPa, and MAE of 3.15 MPa.
The Delta RMSE was the highest at 2.24 MPa, suggesting that the model may be slightly
overfitting to the training data. Despite this, the model still demonstrates superior per-
formance in terms of R2, RMSE, and MAE. The CV as 10 yielded the best results. Thus,
based on the higher R2, lower RMSE, and MAE, the model with the CV as 10 was chosen
as the optimal model, even though the delta RMSE is higher compared to other CV values.
Therefore, the optimal model is achieved with a CV of 10, and the corresponding optimal
hyperparameters are 200 number estimators, a learning rate of 0.1, a maximum depth of 5,
and subsamples of 0.5, as summarized in Table 3.

3.1.7. Light GBM

The hyperparameters for LightGBM were set with the same conditions as XGBoost [84].
Among the different CV values, the CV as 2 resulted in the lowest Delta RMSE of 0.74
MPa. However, when considering other evaluation metrics, CV values ranging from 3
to 10 showed better performance. Specifically, CV values between 3 and 10 achieved the
highest R2 value of 0.94, along with the lowest RMSE of 4.16 MPa and MAE of 3.03 MPa.
Furthermore, the Delta RMSE was the second lowest at 1.4 MPa. Taking all these factors into
account, the optimal LightGBM model was selected with a CV value of 3. Consequently,
the optimal hyperparameters for the LightGBM model are 200 estimators, a learning rate of
0.1, a maximum depth of 7, and a subsample of 0.5, as summarized in Table 3.

3.2. Final Model Selection

Figure 3 compares the performance of the seven models and visualizes the reliability
of their predictions. By examining the scatter plots of the optimal models on the test
set, both the model’s performance and the reliability of its predictions can be evaluated.
The distribution of the actual values and predicted values is displayed visually, and the
regression line and error range of ±10% show how well the predicted values fall within
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the acceptable range. The data points of XGBoost and LightGBM models are concentrated
within the error range of 10%, indicating a better fit compared to the linear regression,
SVR, KNN, decision tree, and random forest models. This suggests that the predictions of
the XGBoost and LightGBM models can be considered more reliable compared to other
models. Previous studies have also demonstrated similar findings. For instance, Cakiroglu
et al. [85] used machine learning to study fiber-reinforced concrete and found that both
model data samples remained within the±10% deviation lines, while a study by Abdulalim
Alabdullah et al. [71] on high-strength concrete prediction using LightGBM and XGBoost
found a strong correlation between experimental and predicted results for both models.
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Figure 4 compares the actual values and predicted values from the test dataset of
seven optimal models. The horizontal axis represents the index of the test data, and the
vertical axis represents the compressive strength. The data points connected by the red line
represent the predicted values, while the data points connected by the blue line represent
the actual values. A larger distance between the two data points on the y-axis indicates a
lower accuracy of the model’s predictions. From the analysis, it can be observed that both
the XGBoost and LightGBM models fit the original data very well. Both models show high
prediction accuracy between the data indices 50 and 100. Following that, the random forest
and decision tree models also exhibit good alignment with similar results. The model with
the highest error rate is the linear regression model, with errors evenly distributed across
the entire data index. Based on these results, XGBoost and LightGBM models demonstrate
high reliability, while the linear regression model shows the least reliable predictions.

In Table 4, the values comparing the performance of the seven optimal models are
presented, and Figure 5 illustrates the performance of the models based on Table 4. Through
the comparison, the final model was selected based on performance metrics. Firstly,
considering the R2 values, the linear regression model had the lowest R2 of 0.66 on the
test set. In contrast, XGBoost and LightGBM models demonstrated strong predictive
performance, achieving test set R2 values of 0.93 and 0.94, respectively. This aligns with
the findings of [85], who reported R2 values of 0.93 for XGBoost and 0.94 for LightGBM.
Secondly, looking at the RMSE and MAE values on the test set, the linear regression model
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had the highest values, while LightGBM had the lowest values of 4.16 MPa and 3.03 MPa,
respectively, among the seven models. The RMSE and MAE values for the XGBoost
and LightGBM models were also similarly low. Lastly, considering the Delta RMSE, the
XGBoost model had a relatively low RMSE difference of 2.24 MPa, while the LightGBM
model showed an even lower difference of 1.4 MPa. This indicates better generalization
performance on the model. LightGBM exhibits high R2 values on the test set along with
low RMSE, MAE, and Delta RMSE values. Based on the provided information, LightGBM
exhibits better performance than XGBoost in terms of training time, with LightGBM taking
2.92 s compared to XGBoost 37.26 s. The results from Wang [86] support the superior
prediction accuracy of the LightGBM model compared to other models. Similarly, Amin [74]
observed that LightGBM exhibited the highest reliability among the XGBoost and random
forest models, as indicated by R2, RMSE, and MAE values of 0.865, 3.56 MPa, and 1.3 MPa,
respectively. Considering these findings and the evaluation of performance metrics, the
LightGBM model was chosen as the optimized and final model for this study.
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Figure 4. Actual and predicted values for the test data using the optimal models of (a) linear
regression; (b) SVR; (c) KNN; (d) decision tree; (e) random forest; (f) XGBoost; and (g) LightGBM.

Table 4. Comparing the performance indicators of optimal models.

Database Indicators

Models

Linear
Regression SVR KNN Decision

Tree
Random

Forest XGBoost LightGBM

Training set

R2 0.65 0.86 0.99 0.86 0.97 0.98 0.97

RMSE (MPa) 9.41 6.07 1.57 6.05 2.62 2.28 2.76

MAE (MPa) 7.41 3.75 0.38 4.52 1.8 1.54 1.98

Test set

R2 0.66 0.79 0.74 0.82 0.89 0.93 0.94

RMSE (MPa) 9.72 7.67 8.48 7.03 5.59 4.52 4.16

MAE (MPa) 7.67 5.25 5.91 5.46 3.98 3.15 3.03

Delta RMSE (MPa) 0.31 1.6 6.91 0.98 2.97 2.24 1.4

Training time (seconds) 0.03 5.01 0.07 0.37 43.37 37.26 2.92
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4. Discussion
4.1. Feature Importance Analysis

Figure 6 shows the feature importance and represents the relative importance of
each feature in the final model. Feature importance is a metric used in machine learning
models to evaluate the importance of each feature in predicting the outcome. It helps to
understand which features have the most significant influence on the model’s predictions.
In general, a higher feature importance value indicates a greater impact of that feature
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on the model’s predictions [87]. The statement regarding the importance of the “Fine
Aggregate/Total Material” feature and its influence on compressive strength is consistent
with previous studies (e.g., [88]). Similarly, the “Water/Cement” feature is identified as
the second most important, aligning with the general understanding that reducing the
water–cement ratio can improve the compressive strength of concrete [1,43,75,89]. The
third-largest impact is attributed to the “Age” feature, suggesting that curing time or the age
of the concrete influences compressive strength, which of course is well known. However,
the “Fly Ash/Total Material” feature is reported to have a value of ‘0‘, indicating no impact
on compressive strength, which is attributed to limited data availability given that only
12 data in the 752 total dataset included fly ash.
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Figure 6. Feature importance of the final model.

As the main motivator for this study, it can be seen that the moisture condition does
not rank very high on the feature importance plot. Moisture condition of the RCA is the
8th ranked feature, indicating that other features, including water-to-cement ratio, total
cement content, and coarse RCA content, have a greater impact on the compressive strength
of concrete.

4.2. Interaction Plot Analysis

To gain a detailed understanding of the relationships between variables, an interaction
plot was utilized to explore the interaction effects among variables. The interaction plot aids
in visually comprehending the interplay between variables and comparing their effects at
different levels. In this study, based on feature importance, water/cement ratio was chosen
as the variable with a significant influence on compressive strength, and an interaction plot
was generated. Figure 7 presents the interaction relationship between water/cement ratio,
fine aggregate/total material, and compressive strength. The analysis reveals that from
a water/cement ratio of 0.6 onwards, there is a sharp decrease in compressive strength;
however, when water/cement is fixed at 0.3 and 0.4, the average compressive strength is
55.87 MPa and 50.73 MPa, respectively.
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tion, and compressive Strength; and (d) relationship between coarse RCA, moisture condition, and
compressive strength.

Figure 7 represents an interaction plot among coarse aggregate/total material, wa-
ter/cement ratio, and compressive strength (MPa). It shows that when the water/cement
ratio increases from 0.4 to 0.6, the compressive strength decreases rapidly by at least 17 MPa.
Additionally, within the coarse aggregate/total material range of 0 to 0.5, at a water/cement
ratio value of 0.3, the average compressive strength is 56.47 MPa, and at a water/cement
ratio value of 0.4, the average compressive strength is 48.66 MPa. In conclusion, the research
shows that reducing the water–cement ratio in cement mortar leads to higher compressive
strength, particularly within the range of 0.3 to 0.4 water–cement ratio. These results are
in line with findings from other studies [90]. Similarly, Zhou et al. [91] observed that the
dynamic compressive strength of cement mortar increases as water content decreases.

Figure 7 shows the interaction between fine RCA ratio, moisture condition, and com-
pressive strength (MPa). Increasing the fine RCA ratio leads to a decrease in compressive
strength, especially in the range of 0.4 to 0.6. This aligns with Kou and Poon [92], who
also found reduced strength with higher fine RCA content. They suggested using 25%
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to 50% fine RCA for maximum compressive and tensile strength. Checking the moisture
condition ranging from 0 to 1.0, it was observed that as the moisture condition increased,
the compressive strength also increased. A moisture condition at 0.8 exhibited the highest
compressive strength within the entire fine RCA ratio range. However, when the moisture
condition reaches the fully saturated surface dry (SSD) state, the compressive strength
decreases slightly. This indicates that extreme moisture conditions can have a negative
impact on the compressive strength of the material. In summary, the research suggests
that an ideal fine RCA ratio could be around 0.4 to achieve higher compressive strength in
concrete mixtures containing fine recycled aggregates. It is also recommended to maintain
a moisture condition in the range of 0.0 to 0.8 to optimize compressive strength properties.

Based on the observations from Figure 7, it is evident that the interaction between
coarse RCA ratio, moisture condition, and compressive strength follows certain trends. The
highest compressive strength is achieved when the moisture condition is 0.8, and as the
moisture condition increases, the compressive strength tends to increase, except when the
moisture condition reaches 1.0, where there is a slight decrease in compressive strength.
This was observed by Mefteh et al. [37] as well. The use of SSD recycled aggregates
had the most significant adverse effect on concrete strength. Also, in the study by Poon
et al. [36], the compressive strength decreased when recycled fine and coarse aggregates
were in the SSD moisture condition. This decrease in strength can be attributed to the
“bleeding” phenomenon, where water from the concrete mixture migrates to the surface of
the aggregate particles, and then evaporates from the surface of the concrete mixture. As a
result, the water–cement ratio increases during construction, leading to a reduction in the
compressive strength of the concrete. Therefore, caution should be exercised when using
recycled aggregates in the SSD state to avoid compromising the strength of the concrete.

In summary, the study reveals that for the coarse RCA ratio, values within the range
of 0.0 to 0.2 lead to an increase in compressive strength, with the highest strength ob-
served at a coarse RCA ratio of 0.2, irrespective of the moisture condition. However, for
coarse aggregate/total material values exceeding 0.4 to 1.0, compressive strength decreases,
especially when the coarse RCA ratio falls within the range of 0.4 to 0.6. Additionally,
Etxeberria et al. [23] found that incorporating 25% recycled coarse aggregates can achieve
mechanical properties equivalent to conventional concrete using the same cement quantity
and water-to-cement ratio. Andal et al. [93] also recommended that incorporating 30%
recycled coarse aggregates of preserved quality results in concrete of comparable quality to
that made with natural aggregates. Based on these findings, the ideal moisture condition
would be to avoid reaching SSD for coarse RCA, and the optimum coarse RCA ratio for
achieving the highest compressive strength in the concrete mixture is around 0.2.

5. Conclusions and Future Recommendations

This study investigated the relationship between the compressive strength of concrete
and the moisture content of RCA using machine learning techniques. Furthermore, various
machine learning models were employed to comprehensively understand the impact of
RCA moisture content on predicting concrete performance metrics. A literature review
was conducted to explore the relationship between RCA moisture content and concrete
compressive strength, based on which a database consisting of 752 items was constructed.
Subsequently, a predictive model for RCA compressive strength was developed using seven
machine learning models, and evaluation metrics were used to assess its performance.

Through the comprehensive construction of the database and the application of seven
machine learning models, including XGBoost and LightGBM, the study developed a
predictive model for RCA compressive strength. Evaluation results demonstrated that the
LightGBM model outperformed other models in terms of R2 values, RMSE, MAE, and
generalization performance, thereby proving to be the optimal choice for this study.

Feature importance and interaction plot analyses were conducted to investigate how
moisture content affects compressive strength. The analysis revealed that “Age”, “Wa-
ter/Cement “ and “Fine RCA Ratio” were the most influential features, in line with prior
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research. Surprisingly, the moisture condition of the RCA ranked relatively low in impor-
tance, indicating that factors like water-to-cement ratio and aggregate content had a greater
influence. Interaction plot analysis highlighted the significance of water-to-cement ratio,
aggregate ratios, and moisture conditions on compressive strength. Notably, reducing
the water-to-cement ratio consistently led to higher compressive strength. Maintaining
optimal aggregate ratios, both fine and coarse, proved crucial for enhancing compressive
strength. Additionally, controlling moisture within specific ranges, particularly avoiding
extremes like fully saturated surface dry (SSD) states, was crucial for maximizing compres-
sive strength. These findings support established research, emphasizing the importance of
these factors in concrete mixture design for achieving desired mechanical properties.

Overall, this study fills the gap in predicting concrete performance metrics considering
RCA moisture content and provides valuable insights for optimizing concrete mixtures
containing recycled aggregates. These findings underscore the importance of comprehen-
sive parameter consideration and the use of machine learning techniques in enhancing
predictive models for concrete technology.

From a recommendation perspective, further research is needed to understand the
impact of various recycled materials on concrete performance and to develop optimal mix-
tures. Among these, slag, generated during the steel manufacturing process, stands out as
a valuable recycled material for concrete production. Properly processed, slag can enhance
concrete quality and provide environmental benefits. Leveraging innovative technologies
like machine learning to optimize the utilization of recycled materials holds significant
promise in promoting sustainable construction and material production. These efforts are
expected to contribute to achieving sustainable architecture and material production by
enhancing environmental protection and resource efficiency.
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