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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
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Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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2 School of Mathematical Sciences and Statistics, Hunan Normal University, Changsha 410081, China;
zqx22@126.com

* Correspondence: arne.johannssen@uni-hamburg.de

Probability distributions are a fundamental topic of Statistics and Data Science that is
highly relevant in both theory and practical applications. There are numerous probability
distributions that come in many shapes and with different properties. In order to identify an
appropriate distribution for modeling the statistical properties of a population of interest,
one should consider the shape of the distribution as a crucial factor. In particular, the
symmetry or asymmetry of the distribution plays a decisive role.

The objective of this Special Issue, entitled “Symmetrical and Asymmetrical Distri-
butions in Statistics and Data Science”, is to highlight the importance of symmetrical and
asymmetrical distributions in its thematic breadth and with applications in many fields.
We welcomed submissions related to the latest developments in the area of symmetrical
and asymmetrical distributions in Statistics and Data Science. The response from the
scientific community was remarkable: 39 papers were submitted for consideration, and
13 papers were finally accepted after a rigorous peer-review process. The remainder of this
editorial contains a summary of the contributions to this Special Issue, ordered by date
of publication.

Hu et al. [1] study the performance of the modified one-sided Exponentially Weighted
Moving Average (EWMA) X̄ control chart for monitoring normally distributed processes
that are characterized by a perfectly symmetrical shape. Using Monte Carlo simulations
and a real data application in semiconductor manufacturing, the authors demonstrate the
properties and features of the proposed chart. They also show that the performance of the
chart can be further increased by adding the Variable Sampling Interval (VSI) feature to the
monitoring procedure.

Shih et al. [2] are concerned with copulas that can be either symmetric (e.g., Gaus-
sian copula) or asymmetric (e.g., Clayton copula). As there are only a few studies on
copula-based bivariate meta-analysis, the authors develop the corresponding methodology
and theory, specifically to estimate the common mean vector, in this paper. For direct
implementation, the authors also provide the R package CommonMean.Copula. To illustrate
the practical applicability of the proposed methods, the authors conduct two applications
with real data in the educational and medical sectors.

Alyami et al. [3] present a new class of statistical distributions in their paper, the so
called type II half-Logistic odd Fréchet-G class. This class contains various distributions of
symmetrical or asymmetrical shapes. The authors discuss four of these specific distributions
in the paper, derive their statistical properties, and conduct real-life applications using
biomedical, engineering, environmental, and manufacturing data sets.

Hu et al. [4] propose a modified EWMA control chart to monitor the ratio of two
normally distributed random variables. As in [1], the authors consider their chart with and
without the VSI feature. Based on a simulation study and a real data application in the
food industry, the authors illustrate the properties and features of the control chart. They
conclude that the proposed chart (1) with VSI is superior and (2) the VSI-based chart also
leads to better results than previous approaches in the literature.

Symmetry 2023, 15, 2140. https://doi.org/10.3390/sym15122140 https://www.mdpi.com/journal/symmetry1
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Haj Ahmad and Almetwally [5] discuss three discretization methods to formulate
discrete analogues of the continuous generalized Pareto distribution. The authors use
Bayesian inference techniques to estimate the discrete models with different symmetric
(squared error) and asymmetric (linear exponential and general entropy) loss functions.
They perform a comparative analysis and find that the discretized generalized Pareto
distribution is a promising alternative. The practical applications are conducted using
medical data (COVID-19 daily deaths in the United States and in Italy).

Harke et al. [6] present a data-driven method to estimate the spatial autoregressive
dependence on irregular lattices. As the structure of the spatial weights matrix W is
difficult to obtain in practical applications, they introduce a method to obtain W, whether
it is symmetric or asymmetric. The authors verify their method using simulation and
comparative studies. They also discuss a practical application on the evolution of sales
prices for building land in Brandenburg, Germany, and conclude that this evolution and its
spatial dependence are mainly driven by the orientation towards Berlin.

Khan and Paramasivam [7] explore how feedback, balking, retaining reneged clients,
and the quality control technique affect the encouraged arrival queuing model. The encour-
aged arrival is valuable for many different businesses in terms of managing operations,
deliberating, outlining, implementation, and service development. The authors derive
performance measures for the expected number of units in the system, the average number
of occupied services and the expected waiting time in the system as well as in the queue.

Haj Ahmad et al. [8] provide a statistical analysis of the alpha power inverse Weibull
distribution under a hybrid type II censoring scheme. Their study is motivated by applica-
tions in the medical field, namely ball bearings and the resistance of guinea pigs. In these
applications, type II censored schemes are recommended to minimize the experimental
time and cost where the components are following the alpha power inverse Weibull dis-
tribution. The authors conclude that this distribution under a hybrid type II censoring
scheme is suitable to model real biomedical data.

Alotaibi et al. [9] investigate parameter estimation, reliability, and hazard rate func-
tions of the Fréchet distribution based on generalized type II progressive hybrid censored
data. The Bayesian estimators are computed with independent gamma conjugate priors
using the symmetrical squared error loss function. The authors perform comprehensive
Monte Carlo simulations and discuss practical applications in physics (precipitation in
Minneapolis–Saint Paul) and engineering (vehicle fatalities in South Carolina).

Arslan et al. [10] introduce a control chart for monitoring the process mean based on
two supplementary variables. These variables are correlated with the study variable in the
form of a regression estimator that is an efficient and unbiased estimator for the process
mean. The authors state that the proposed charting scheme performs effectively when both
supplementary variables are uncorrelated. The applicability of the proposed chart is shown
within a real-data example based on carbon fiber manufacturing data.

Rehman et al. [11] deal with parametric regression analysis of survival data using
the additive hazards model with competing risks in the presence of independent right
censoring. The baseline hazard function is parameterized using a modified Weibull distri-
bution as a lifetime model. The parameters are estimated using maximum likelihood and
Bayesian methods, and the asymptotic confidence interval and the Bayes credible interval
of the parameters are derived. The finite sample behavior of the estimators is investigated
through simulations, and the model is applied to liver transplant data.

Haj Ahmad et al. [12] analyze a multi-component stress–strength system that provides
a useful framework to evaluate the reliability of dams and their ability to cope with
external influences such as water pressure, earthquake activity, and erosion. The authors
suggest the Gumbel type II distribution as a suitable model for fitting related data. Both
classical and Bayesian approaches are used to estimate the reliability function, and Monte
Carlo simulations are employed for parameter estimation. As a real case study, the paper
considers data from the Shasta reservoir in the United States.
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Alotaibi et al. [13] investigate the difficulties associated with estimating the model
parameters and reliability time functions of the Kavya Manoharan Kumaraswamy distri-
bution based on generalized type II progressive hybrid censoring. Using the symmetrical
squared error loss function, independent gamma conjugate priors are employed to compute
the Bayesian estimators. As the Bayesian estimators cannot be derived analytically, the au-
thors implement Markov Chain Monte Carlo (MCMC) techniques. A practical application
is provided using a data set on the tensile strength of polyester fibers.

Finally, we would like to congratulate all the above authors on the acceptance of their
paper(s) to this Special Issue. We hope that this Special Issue will inspire further researchers
to make important discoveries and contributions in the field of “Symmetrical and Asym-
metrical Distributions in Statistics and Data Science”. To provide the best possible platform
for further significant contributions, Volume II of this Special Issue in Symmetry is already
established (https://www.mdpi.com/journal/symmetry/special_issues/A28X1PLF7Y).

We would therefore like to invite researchers to submit their contributions to Volume
II of this Special Issue. A potential topic of interest could be the remarkable revival of the
hypergeometric and the negative hypergeometric distribution in various areas such as
healthcare [14], manufacturing [15], risk management [16], statistical inference [17], and
beyond. We look forward to many high-quality papers and a successful second edition of
this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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7491 Trondheim, Norway
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Much research has been conducted on two-sided Exponentially Weighted Moving Average
(EWMA) control charts, while less work has been devoted to the one-sided EWMA charts. Traditional
one-sided EWMA charts involve resetting the EWMA statistic to the target whenever it falls below
or above the target, or truncating the observations above or below the target and further applying
the EWMA statistic to the truncated samples. In order to further improve the performance of
traditional one-sided EWMA mean (X̄) charts, this paper studies the performance of the Modified
One-sided EWMA (MOEWMA) X̄ charts to monitor a normally distributed process. The Monte-Carlo
simulation method is used to obtain the zero- and steady-state Run Length (RL) properties of the
proposed control charts. Through extensive simulations and comparisons with other charts, it is
shown that the proposed MOEWMA X̄ charts compare favorably with some existing competing
charts. Moreover, by attaching the variable sampling intervals (VSI) feature to the MOEWMA X̄
charts, it is shown that the VSI MOEWMA charts outperform the corresponding charts without the
VSI feature. Finally, a real data example from manufacturing process shows the implementation of
the proposed one-sided charts.

Keywords: one-sided EWMA X̄ charts; variable sampling interval; monte-carlo simulation; run
length; zero-state; steady-state

1. Introduction

A main objective for a process is to continuously improve its quality, which can be
statistically expressed as variation reduction. Chance and assignable causes exist and lead
to variation in a process. The variation caused by change is unavoidable and always exists
in a process, even if the operation is carried out using standardized raw material and
methods. It is not practical to eliminate the chance cause technically and economically,
while variation caused by assignable causes indicates that there exist some unwanted
factors to be detected.

Statistical Process Monitoring (SPM) provides a large set of tools to help practition-
ers in monitoring manufacturing or service processes to quickly detect assignable causes.
Among these, control charts are widely used online and can be implemented with a chart-
ing statistic related to the process mean or/and dispersion. The aim of a control chart
is to detect abnormal changes in the process as soon as possible. Many univariate mean
(X̄) charts, such as the Shewhart X̄ chart, Cumulative Sum (CUSUM) X̄ chart, and Expo-
nentially Weighted Moving Average (EWMA) X̄ chart were investigated by researchers;
see Brook and Evans [1], Nelson [2], Lucas and Saccucci [3], and Hawkins and Olwell [4].
More recent works on control charts can refer to Li et al. [5], Mukherjee and Rakitzis [6],
Zwetsloot et al. [7], and Perry [8], to name a few. The Shewhart charts are known to be
effective when the shift size in the process is large. For the detection of small to moderate
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shifts, both CUSUM and EWMA charts using the current and former samples information
perform much better than Shewhart type charts, see Montgomery [9].

Since the primary works of Crowder [10], Lucas and Saccucci [3], and Domangue and
Patch [11], EWMA type charts have received much attention. For example, for non-normal
and autocorrelated processes, the properties of EWMA X̄ charts were first investigated by
Borror et al. [12] and Lu and Jr. [13], respectively. The performance of the EWMA X̄ chart
was investigated by Jones et al. [14] when the process parameters are estimated. Recently,
Celano et al. [15], Calzada and Scariano [16], and Haq et al. [17] studied the run length
performance of the EWMA t charts. To summarise, only a two-sided EWMA chart was
used in the above researches. In practice, the direction of the out-of-control shift is usually
known in advance, which implies that it is possible to tune the upward and downward
parts of EWMA charts separately [18]. Then two separate one-sided EWMA charts were
studied by some researchers. For instance, Tran et al. [19] and Tran and Knoth [20] studied
the properties of two one-sided EWMA charts to monitor the ratio of two variables. Zhang
et al. [21] and Muhammad et al. [22] investigated the performance of two one-sided EWMA
charts for monitoring the coefficient of variation (CV).

In this paper, the work in Zhang et al. [21] is highlighted for the new resetting model
of the Modified One-sided EWMA (MOEWMA) charting statistic. In the EWMA charting
statistic, information of former and current samples are both used and the charting statistic
is reset to the target if it is smaller than the target. While their work studied the EWMA
chart for monitoring the CV, as far as we know, there is no research on the proposed
scheme for monitoring the mean of a normally distributed process. In fact, a normally
distributed quality characteristic usually exists in some industrial processes. To fill this
gap, we investigate the properties of the MOEWMA X̄ charts. In addition, it is known that
control charts with the variable sampling interval (VSI) features are more efficient than the
corresponding fixed sampling interval (FSI) charts in the detection of shifts. In the past
decades, much research has been conducted on VSI control charts. For instance, Nguyen
et al. [23] suggested a VSI CUSUM chart to monitor the ratio of two normal variables and
showed that the proposed chart had some advantages over the corresponding FSI CUSUM
chart. Using extensive Monte-Carlo simulations, Haq [24] studied the performance of the
weighted adaptive multivariate CUSUM chart with VSI feature. It was shown that the
proposed charts perform uniformly better than the corresponding FSI charts in terms of the
ATS (Average Time to Signal) and AATS (Average Adjusted Time to Signal) performances.
Coelho et al. [25] proposed a VSI nonparametric Shewhart type control chart, which was
shown to be better than the existing FSI chart. For more research works, we direct readers
to the works [26–31] and the references cited therein. To further increase the sensitivity of
the MOEWMA X̄ charts and gain motivation from the above works on the VSI charts, the
VSI MOEWMA X̄ charts are proposed, and it is expected that the VSI MOEWMA charts
perform better than the corresponding FSI one-sided charts.

The remainder of this paper is organized as follows: Section 2 reviews several types of
one-sided EWMA X̄ charts and presents the MOEWMA X̄ chart. The zero-state (ZS) and
steady-state (SS) Average Run Length (ARL) performances of the proposed MOEWMA X̄
charts are presented in Section 3 and are compared with other competing charts. Section 4
presents the detailed construction of the MOEWMA X̄ charts with the VSI feature and,
moreover, both the ZS and SS performances of the proposed VSI MOEWMA X̄ charts are
investigated. A real data example is used to illustrate the implementation of the MOEWMA
X̄ charts in Section 5. Finally, some conclusions and recommendations are made in the
last section.

2. One-Sided EWMA Type Charts

Assume that {Xt,1, . . . , Xt,n}, t = 1, 2, . . . is a sample of size n ≥ 1 from an independent
normal distribution, i.e., Xt ∼ N(µ0 + δσ0, σ0), where µ0 and σ0 are the in-control mean
and standard deviation, respectively, and δ is the magnitude of the mean shift. When δ = 0,
the process is considered to be in-control. Otherwise, the process is out-of-control. At each
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sample point t = 1, 2, . . ., the sample mean X̄t =
1
n ∑n

j=1 Xt,j is computed for the process
monitoring, where X̄t ∼ N(µ0 + δσ0, σ0√

n ). Without loss of generality, we assume µ0 = 0
and σ0 = 1 in this paper.

2.1. Traditional One-Sided EWMA Charts

The traditional two-sided EWMA X̄ chart construct the monitoring statistic
Zt = λX̄t + (1− λ)Zt−1, t = 1, 2, 3, . . . , with a fixed smoothing constant λ ∈ (0, 1] and
the initial value Z0 = µ0. The upper (UCL) and lower (LCL) control limits of the EWMA
X̄ chart are generally selected based on the constraint of the desired in-control ARL. If
Zt ∈ [LCL, UCL], the process is considered to be in-control. Otherwise, if Zt /∈ [LCL, UCL],
the process is deemed to be out-of-control. Instead of using a single two-sided EWMA X̄
chart, when the direction of the shift is known, three types of one-sided EWMA X̄ charts
were suggested by some researchers. These charts are summarized as follows:

(1) A simple use of the one-sided EWMA X̄ chart is to set only an upper control limit
(UCL) or a lower control limit (LCL) with the traditional charting statistic
Zt = λX̄t + (1 − λ)Zt−1 and the initial value Z0 = µ0. This chart is denoted as
SEWMA X̄ chart. That is to say, the upper-sided SEWMA X̄ chart declares an alarm
when Zt > UCL and the lower-sided SEWMA X̄ chart declares an alarm when
Zt < LCL. More details of the SEWMA X̄ chart can be seen in Robinson and Ho [32].

(2) A second use of the one-sided EWMA X̄ chart is to reset the traditional EWMA
statistic to the target whenever it is smaller than the target (for the upper-sided chart)
or whenever it is larger than the target (for the lower-sided chart). This chart is denoted
as REWMA X̄ chart. The charting statistics Z+

t and Z−t of the upper- and lower-sided
REWMA X̄ charts are given as follows,

Z+
t = max(µ0, λX̄t + (1− λ)Z+

t−1), (1)

and

Z−t = min(µ0, λX̄t + (1− λ)Z−t−1). (2)

with the initial value Z0 = µ0. An out-of-control signal is triggered as soon as
Z+

t > UCL (for the upper-sided REWMA X̄ chart) or Z−t < LCL (for the lower-sided
REWMA X̄ chart), respectively. More details of REWMA type charts can be seen in
Hamilton and Crowder [33] and Gan [34].

(3) A third use of the one-sided EWMA X̄ chart is first truncate the sample mean X̄t below
the target to the target value (for the upper-sided chart) or above the target to the
target value (for the lower-sided chart), and then apply the EWMA recursion to these
truncated values. This chart is denoted as IEWMA X̄ chart. The charting statistic Zt of
the IEWMA chart is given as follows:

Zt = λWt + (1− λ)Zt−1, (3)

where Wt=
W ′t−(µ0+1/

√
2πσ0)/

√
n

σ0
√

0.5−0.5/π/
√

n
is the standardized value of W ′t = max(µ0, X̄t) (for

the upper-sided chart), and Wt=
W ′t−(µ0−1/

√
2πσ0)/

√
n

σ0
√

0.5−0.5/π/
√

n
is the standardized value of

W ′t =min(µ0,X̄t) (for the lower-sided chart). The initial value Z0 is set as 0. An out-of-
control signal is given when Zt > UCL in the upper-sided chart or Zt < LCL in the
lower-sided chart. More details of this chart can be seen in Shu and Jiang [35] and Shu
et al. [36].
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2.2. The Proposed MOEWMA X̄ Charts

In this section, the MOEWMA X̄ charts with a new resetting model are investigated.
As it will be shown in Section 3, the proposed charts outperform the traditional one-sided
EWMA X̄ charts presented in Section 2.1.

It can be seen from Equation (1) that, when λX̄t + (1− λ)Z+
t−1 is smaller than µ0, then

Z+
t = µ0 and Z+

t+1 = max(µ0, λX̄t+1 + (1− λ)µ0). All the samples information collected
before time t+ 1 are lost. As the main advantage of EWMA type charts is to use both current
and former samples information, the charting statistic of the upper-sided MOEWMA X̄
chart is constructed as,

Z+
t = max(µ0, λX̄t + (1− λ)Zt−1), (4)

where Zt−1 = λX̄t−1 + (1− λ)Zt−2 and the initial value Z0 = µ0. It can be noted that the
charting statistic Z+

t in Equation (4) uses all samples information collected before. The
chart triggers an out-of-control signal if Z+

t is larger than the UCL. Similarly, a lower-sided
MOEWMA X̄ is suggested with the following charting statistic,

Z−t = min(µ0, λX̄t + (1− λ)Zt−1), (5)

where the initial value Z0 = µ0. An out-of-control signal is triggered if Z−t is smaller than
the LCL.

3. Numerical Results and Comparisons

In this section, some RL measures, including the ARL and the Standard Deviation of
Run Length (SDRL) are used to investigate the performance of the one-sided EWMA charts
in Section 2. The ARL is defined as the expected number of samples on the chart until a
signal occurs. A control chart is desirable when the in-control ARL is large and at the same
time, the out-of-control ARL is as small as possible. In addition, the SDRL determines
the variability of the RL distribution. The smaller the SDRL value, the better the ARL
performance of a control chart, see Haq [37]. In addition, the subscripts 0 and 1 are used
with ARL and SDRL to denote the in-control and out-of-control properties, respectively.
To obtain these RL properties of the proposed chart, the Monte-Carlo method is adopted in
this paper. Under each simulation run, 105 iterations of RL values are used to calculate the
values of ARL and SDRL.

3.1. Comparisons with Some Competing Charts

In this section, to provide some direct insight into the performance of the proposed
charts, the (ARL, SDRL) of the MOEWMA X̄ charts are compared with the ones of the
SEWMA, REWMA, and IEWMA X̄ charts. The properties of the SEWMA, REWMA, and
IEWMA X̄ charts can be obtained using the Markov chain approach. For the EWMA type
charts, values of 0.05 ≤ λ ≤ 0.25 were recommended by Montgomery [9]. Moreover, a
relatively small smoothing parameter λ is usually suggested for monitoring small shifts
while larger values of λ are suggested for larger shifts. In this paper, λ ∈ {0.05, 0.1, 0.2, 0.25}
are selected for illustration and the corresponding control limits of EWMA type charts
can be obtained with the constraint on the desired ARL0. For simplicity, the ARL0 is set
to be 200. For the proposed one-sided MOEWMA X̄ chart, a bisection algorithm similar
to Dickinson et al. [38] is used to find the control limit. The algorithm stops when the
in-control ARL falls within the interval [ARL0 − 1, ARL0 + 1].

Table 1 presents the (ARL1, SDRL1) values of these EWMA control charts for different
shifts δ varying from 0.1 to 3 when n ∈ {3, 5}. It can be noted from this table that, for the
upper-sided MOEWMA X̄ chart, a small value of λ is relatively effective for small shifts δ
and vice verse. For instance, when n = 3 and δ = 0.1, the (ARL1, SDRL1) = (54.06, 45.94)
of the upper-sided MOEWMA X̄ chart when λ = 0.05 is smaller than the (ARL1, SDRL1) =
(75.26, 71.98) of the chart when λ = 0.25. Compared with the competing EWMA (SEWMA,
REWMA, and IEWMA) charts, some conclusions are made as follows:
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• Irrespective of the values of δ and n, the ARL1 and SDRL1 values of the upper-
sided MOEWMA X̄ chart are generally smaller than the ones of the upper-sided
REWMA X̄ chart, especially for small shifts. This fact clearly demonstrates the ad-
vantage of the proposed chart. For instance, when n = 3, λ = 0.1, and δ = 0.1, the
(ARL1, SDRL1) = (60.12, 54.07) of the upper-sided MOEWMA X̄ chart are smaller
than the (ARL1, SDRL1) = (70.17, 62.84) of the upper-sided REWMA X̄ chart.

• The proposed chart always has a little smaller ARL1 value than the one of the upper-
sided SEWMA X̄ chart. For example, for the same values of n, λ and δ presented
above, the (ARL1, SDRL1) = (61.11, 54.11) of the upper-sided SEWMA X̄ chart are
close to the ones of the upper-sided MOEWMA X̄ chart.

• Compared with the upper-sided IEWMA X̄ chart, the proposed chart performs better
for small shifts and worse for moderate to large shifts. For instance, when n = 3
and λ = 0.1, the upper-sided MOEWMA X̄ chart with (ARL1, SDRL1) = (60.12, 54.07)
is better than the upper-sided IEWMA X̄ chart with (ARL1, SDRL1) = (68.17, 63.64)
for the detection of δ = 0.1. However, for the detection of δ = 1, the upper-sided
MOEWMA chart with (ARL1, SDRL1) = (3.81, 1.29) is worse than the upper-sided
IEWMA chart with (ARL1, SDRL1) = (3.38, 1.43).

• For a large shift, for instance when δ = 3 or larger than 3, all the charts perform simi-
larly, as the ARL1 is close to 1 and the SDRL1 value converges to 0 with δ increasing.

Table 1. The profiles (ARL1, SDRL1) of EWMA type charts when ARL0 = 200.

δ

n λ Chart UCL 0.1 0.3 0.5 1.0 1.5 2.0 2.5 3.0

3 0.05 SEWMA 0.1665 (54.38 45.62) (16.09 9.28) (8.99 3.96) (4.34 1.29) (2.95 0.72) (2.28 0.48) (1.98 0.30) (1.78 0.42)
IEWMA 0.3149 (60.67 54.46) (16.89 11.53) (8.63 4.77) (3.61 1.41) (2.33 0.71) (1.78 0.52) (1.41 0.50) (1.13 0.34)
REWMA 0.1979 (64.42 53.32) (18.96 10.69) (10.45 4.40) (4.97 1.40) (3.34 0.76) (2.56 0.56) (2.12 0.34) (1.96 0.24)

MOEWMA 0.1669 (54.06 45.94) (15.76 9.21) (8.79 3.93) (4.24 1.28) (2.88 0.72) (2.23 0.46) (1.95 0.31) (1.72 0.45)
0.10 SEWMA 0.2793 (61.11 54.11) (16.71 10.94) (8.75 4.37) (3.98 1.31) (2.66 0.70) (2.09 0.43) (1.80 0.42) (1.48 0.50)

IEWMA 0.5567 (68.17 63.64) (17.95 13.64) (8.59 5.29) (3.38 1.43) (2.14 0.71) (1.60 0.54) (1.25 0.44) (1.06 0.24)
REWMA 0.3133 (70.17 62.84) (18.93 12.79) (9.60 4.86) (4.25 1.39) (2.81 0.74) (2.18 0.45) (1.88 0.38) (1.59 0.49)

MOEWMA 0.2797 (60.12 54.07) (16.26 11.02) (8.44 4.32) (3.81 1.29) (2.55 0.68) (2.02 0.43) (1.70 0.47) (1.36 0.48)
0.15 SEWMA 0.3710 (66.01 61.12) (17.15 12.62) (8.41 4.80) (3.59 1.33) (2.38 0.67) (1.87 0.48) (1.51 0.50) (1.20 0.40)

IEWMA 0.7668 (74.14 70.61) (19.30 15.70) (8.77 5.87) (3.26 1.48) (2.02 0.73) (1.49 0.54) (1.17 0.38) (1.04 0.18)
REWMA 0.4059 (75.41 69.90) (19.83 14.89) (9.42 5.42) (3.90 1.42) (2.54 0.71) (1.99 0.46) (1.65 0.49) (1.31 0.46)

MOEWMA 0.3710 (65.90 61.20) (17.06 12.65) (8.34 4.77) (3.56 1.32) (2.36 0.67) (1.85 0.49) (1.48 0.50) (1.18 0.39)
0.20 SEWMA 0.4511 (70.98 67.01) (18.23 14.36) (8.52 5.32) (3.44 1.37) (2.24 0.68) (1.72 0.52) (1.35 0.48) (1.11 0.31)

IEWMA 0.9584 (79.07 76.29) (20.72 17.70) (9.05 6.48) (3.18 1.53) (1.93 0.75) (1.41 0.52) (1.13 0.34) (1.02 0.15)
REWMA 0.4867 (80.05 75.64) (21.08 16.96) (9.53 6.05) (3.70 1.47) (2.38 0.71) (1.83 0.51) (1.46 0.50) (1.16 0.37)

MOEWMA 0.4511 (70.90 67.21) (18.26 14.54) (8.48 5.36) (3.40 1.36) (2.22 0.68) (1.71 0.53) (1.34 0.48) (1.10 0.30)
0.25 SEWMA 0.5241 (75.48 72.10) (19.52 16.12) (8.79 5.88) (3.36 1.43) (2.15 0.70) (1.62 0.54) (1.26 0.44) (1.07 0.25)

IEWMA 1.1425 (83.50 81.21) (22.29 19.70) (9.46 7.15) (3.14 1.61) (1.87 0.76) (1.36 0.51) (1.10 0.30) (1.02 0.13)
REWMA 0.5602 (84.19 80.54) (22.51 18.98) (9.80 6.73) (3.58 1.53) (2.25 0.73) (1.70 0.54) (1.33 0.47) (1.09 0.29)

MOEWMA 0.5241 (75.26 71.98) (19.38 16.13) (8.69 5.85) (3.31 1.42) (2.12 0.70) (1.59 0.54) (1.24 0.43) (1.06 0.23)

5 0.05 SEWMA 0.1290 (42.01 33.31) (11.99 6.07) (6.81 2.60) (3.39 0.88) (2.34 0.51) (1.95 0.30) (1.64 0.48) (1.23 0.42)
IEWMA 0.3149 (46.96 40.53) (12.08 7.45) (6.20 3.04) (2.71 0.91) (1.84 0.53) (1.35 0.48) (1.07 0.25) (1.00 0.07)
REWMA 0.1533 (50.18 39.42) (14.02 6.85) (7.88 2.85) (3.86 0.95) (2.64 0.58) (2.08 0.30) (1.90 0.31) (1.56 0.50)

MOEWMA 0.1293 (41.82 33.56) (11.74 6.05) (6.65 2.57) (3.31 0.88) (2.29 0.50) (1.92 0.32) (1.58 0.49) (1.18 0.38)
0.10 SEWMA 0.2164 (47.09 40.12) (12.03 6.94) (6.45 2.77) (3.08 0.88) (2.14 0.46) (1.76 0.44) (1.33 0.47) (1.06 0.24)

IEWMA 0.5567 (52.93 48.23) (12.41 8.56) (6.00 3.25) (2.51 0.91) (1.66 0.55) (1.21 0.41) (1.03 0.16) (1.00 0.03)
REWMA 0.2427 (54.60 47.37) (13.40 7.91) (7.00 3.01) (3.26 0.92) (2.23 0.49) (1.84 0.39) (1.44 0.50) (1.10 0.30)

MOEWMA 0.2169 (46.69 40.38) (11.61 6.86) (6.19 2.73) (2.94 0.86) (2.06 0.45) (1.65 0.48) (1.23 0.42) (1.03 0.18)
0.15 SEWMA 0.2873 (50.97 46.00) (11.95 7.84) (6.03 2.95) (2.75 0.86) (1.92 0.49) (1.45 0.50) (1.11 0.31) (1.01 0.09)

IEWMA 0.7668 (58.05 54.38) (13.03 9.72) (5.97 3.50) (2.39 0.93) (1.54 0.56) (1.14 0.35) (1.01 0.12) (1.00 0.02)
REWMA 0.3144 (59.09 53.60) (13.61 9.08) (6.66 3.25) (2.96 0.92) (2.04 0.48) (1.59 0.50) (1.18 0.39) (1.02 0.15)

MOEWMA 0.2874 (50.92 46.12) (11.87 7.89) (5.99 2.95) (2.72 0.86) (1.90 0.49) (1.42 0.50) (1.10 0.30) (1.01 0.09)
0.20 SEWMA 0.3494 (55.21 51.15) (12.43 8.85) (5.96 3.18) (2.60 0.87) (1.78 0.53) (1.30 0.46) (1.05 0.22) (1.00 0.05)

IEWMA 0.9584 (62.47 59.55) (13.75 10.90) (6.02 3.79) (2.30 0.95) (1.46 0.55) (1.10 0.30) (1.01 0.09) (1.00 0.01)
REWMA 0.3770 (63.26 58.85) (14.15 10.30) (6.55 3.53) (2.77 0.92) (1.88 0.52) (1.40 0.49) (1.08 0.28) (1.01 0.08)

MOEWMA 0.3494 (55.20 51.00) (12.34 8.80) (5.92 3.19) (2.57 0.86) (1.76 0.53) (1.28 0.45) (1.05 0.21) (1.00 0.05)
0.25 SEWMA 0.4060 (59.20 55.74) (13.10 9.90) (6.00 3.45) (2.51 0.89) (1.68 0.55) (1.22 0.42) (1.03 0.17) (1.00 0.04)

IEWMA 1.1425 (66.56 64.16) (14.63 12.13) (6.15 4.11) (2.24 0.98) (1.41 0.53) (1.08 0.27) (1.01 0.08) (1.00 0.01)
REWMA 0.4339 (67.12 63.46) (14.90 11.55) (6.57 3.85) (2.64 0.94) (1.76 0.55) (1.28 0.45) (1.04 0.20) (1.00 0.05)

MOEWMA 0.4058 (58.98 55.43) (12.95 9.80) (5.95 3.46) (2.47 0.89) (1.65 0.55) (1.20 0.40) (1.03 0.16) (1.00 0.03)
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As the symmetry of the normal distribution, similar conclusions are drawn for the
lower-sided MOEWMA X̄ chart. For simplicity, these results are not presented here.

3.2. Optimal Performance of the Proposed MOEWMA X̄ Charts

The results in Section 3.1 show the advantage of the proposed chart over the SEWMA,
REWMA, and IEWMA X̄ charts. All of the simulations above are for a fixed value of λ,
which is not optimal for the specified shift size δopt. To provide a fare comparison, the
optimal performances of different charts for the intended shift size are compared in this
section. The optimal design of the upper-sided MOEWMA X̄ chart involves determining
the chart parameters (λ, UCL) to minimize the ARL1 at a specified mean shift δopt, at the
same time, satisfying the constraint on the desired ARL0. The procedure can be concluded
as a constrained nonlinear minimization problem:

(λ∗, UCL∗) = argmin
(λ,UCL)

ARL1(n, λ, UCL, δopt),

subject to
ARL(n, λ, UCL, δ = 0) = ARL0.

By using this model, extensive computation works are then performed to numerically
find the nearly optimal parameters (λ∗, UCL∗) of the upper-sided MOEWMA X̄ chart.
Table 2 presents the optimal chart parameters (λ∗, UCL∗) of the proposed chart for δopt and
the (ARL1, SDRL1) values of the chart at shift δ varying from 0.1 to 3. As a comparison, the
nearly optimal parameters and performances of the REWMA, SEWMA, and IEWMA X̄
charts are also presented. All charts are designed to maintain ARL0 = 200. For example, if
the specified shift size δopt = 0.3, the UCLs of the upper-sided MOEWMA X̄ chart are first
determined for λ ∈ {0.05, 0.06, ..., 0.99, 1} to obtain ARL0 = 200. The ARL1 values are then
computed for all the combinations of (λ, UCL). The parameters (λ∗, UCL∗) = (0.05, 0.17)
leading to the smallest ARL1 = 15.79 are considered to be the nearly optimal parameters of
the control chart.

It can be concluded from Table 2 that:

• If the specified shift is small (δopt ≤ 0.5), the optimal upper-sided MOEWMA X̄ chart
performs better than the optimal REWMA, SEWMA, and IEWMA X̄ charts. For in-
stance, if δopt = 0.3, the optimal parameters (λ∗, UCL∗) of the upper-sided MOEWMA
X̄ chart is (0.05, 0.17) and the corresponding (ARL1, SDRL1) = (15.79, 9.27) is the
smallest one among these charts.

• The upper-sided MOEWMA X̄ chart provides a good sensitivity against shifts smaller
than the specified δopt and the upper-sided IEWMA X̄ chart performs better than other
charts for shifts larger than the specified δopt. For instance, if δopt = 0.3, while the
actual shift size in the process is not the specified one and is δ = 0.1 (smaller than
δopt = 0.3), the upper-sided MOEWMA X̄ chart with (ARL1, SDRL1) = (53.80, 45.49)
is better than other charts. If the actual shift size is δ = 1 (larger than δopt = 0.3), the
upper-sided IEWMA X̄ chart with (ARL1, SDRL1) = (3.61, 1.41) performs better than
other charts.

• If the specified shift is moderate (1 < δopt ≤ 2), the upper-sided IEWMA X̄ chart has
better sensitivity than the REWMA, SEWMA, and MOEWMA X̄ charts for all the shift
sizes. For example, when δopt = 1.5, the optimal (ARL1, SDRL1) = (1.74, 0.87) of the
upper-sided IEWMA X̄ chart is smaller than the ones of these charts, and if the actual
shift sizes is smaller or larger than 1.5, the upper-sided IEWMA X̄ chart still performs
better than these charts.

• If the actual shift size is large (δopt ≥ 2.5), the upper-sided MOEWMA X̄ chart has
the best performance among all the charts. For instance, when δopt = 3, the optimal
(ARL1, SDRL1) = (1.00, 0.07) is the same for all the charts. If the actual shift size is
smaller than δopt = 3, it can be seen that the upper-sided MOEWMA X̄ chart has the
smallest (ARL1, SDRL1) value among these EWMA type charts.
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The above results also indicate that both the upper-sided IEWMA and MOEWMA X̄
charts have a practical property of good performance over a wide range of shifts rather
than a scheme to optimize the control charts at a specified shift δopt. This property was
considered to be important, as in applications, the value of shift size is seldom known,
and therefore a robust monitoring procedure that efficiently signals a range of shifts is
useful [39].

Table 2. The profiles (ARL1, SDRL1) of several optimal EWMA type charts when ARL0 = 200 and
n = 3.

δopt = 0.1 δopt = 0.3

SEWMA REWMA IEWMA MOEWMA SEWMA REWMA IEWMA MOEWMA

λ∗ 0.05 0.05 0.05 0.05 0.06 0.07 0.05 0.05
δ UCL∗ 0.17 0.20 0.31 0.17 0.19 0.25 0.31 0.17

0.1 (54.38 45.62) (64.42 53.32) (60.67 54.46) (54.00 45.92) (55.72 47.56) (66.74 57.56) (60.67 54.46) (53.80 45.49)
0.3 (16.09 9.28) (18.96 10.69) (16.89 11.53) (15.80 9.25) (16.09 9.61) (18.76 11.52) (16.89 11.53) (15.79 9.27)
0.5 (8.99 3.96) (10.45 4.40) (8.63 4.77) (8.80 3.94) (8.85 4.03) (9.97 4.56) (8.63 4.77) (8.80 3.93)
1.0 (4.34 1.29) (4.97 1.40) (3.61 1.41) (4.24 1.28) (4.21 1.29) (4.61 1.39) (3.61 1.41) (4.24 1.28)
1.5 (2.95 0.72) (3.34 0.76) (2.33 0.71) (2.88 0.72) (2.85 0.72) (3.08 0.76) (2.33 0.71) (2.88 0.71)
2.0 (2.28 0.48) (2.56 0.56) (1.78 0.52) (2.24 0.46) (2.22 0.46) (2.36 0.52) (1.78 0.52) (2.24 0.46)
2.5 (1.98 0.30) (2.12 0.34) (1.41 0.50) (1.95 0.31) (1.94 0.33) (2.02 0.30) (1.41 0.50) (1.95 0.31)
3.0 (1.78 0.42) (1.96 0.24) (1.13 0.34) (1.72 0.45) (1.69 0.46) (1.83 0.38) (1.13 0.34) (1.72 0.45)

δopt = 0.5 δopt = 1

SEWMA REWMA IEWMA MOEWMA SEWMA REWMA IEWMA MOEWMA

λ∗ 0.15 0.15 0.08 0.15 0.42 0.40 0.28 0.37
δ UCL∗ 0.37 0.41 0.47 0.37 0.75 0.76 1.25 0.68

0.1 (66.01 61.12) (75.41 69.90) (65.39 60.37) (65.75 61.01) (88.41 86.39) (94.75 92.41) (85.91 83.85) (84.41 82.17)
0.3 (17.15 12.62) (19.83 14.89) (17.45 12.81) (17.08 12.63) (24.59 22.38) (27.40 25.02) (23.26 20.88) (22.80 20.46)
0.5 (8.41 4.80) (9.42 5.42) (8.54 5.07) (8.32 4.78) (10.24 8.16) (11.25 9.02) (9.73 7.57) (9.65 7.43)
1.0 (3.59 1.33) (3.90 1.42) (3.44 1.42) (3.56 1.32) (3.24 1.72) (3.45 1.81) (3.13 1.65) (3.21 1.61)
1.5 (2.38 0.67) (2.54 0.71) (2.20 0.71) (2.35 0.66) (1.91 0.78) (2.02 0.80) (1.84 0.77) (1.94 0.76)
2.0 (1.87 0.48) (1.99 0.46) (1.66 0.54) (1.85 0.49) (1.38 0.52) (1.45 0.54) (1.33 0.50) (1.41 0.53)
2.5 (1.51 0.50) (1.65 0.49) (1.29 0.46) (1.48 0.50) (1.11 0.32) (1.15 0.36) (1.09 0.29) (1.13 0.34)
3.0 (1.20 0.40) (1.31 0.46) (1.08 0.27) (1.18 0.39) (1.02 0.13) (1.03 0.16) (1.01 0.12) (1.02 0.15)

δopt = 1.5 δopt = 2

SEWMA REWMA IEWMA MOEWMA SEWMA REWMA IEWMA MOEWMA

λ∗ 0.72 0.71 0.55 0.73 0.89 1.00 0.79 0.88
δ UCL∗ 1.11 1.13 2.15 1.12 1.33 1.49 2.97 1.32

0.1 (107.18 106.17) (111.94 110.88) (103.46 102.47) (107.06 106.43) (116.78 116.17) (122.87 122.36) (115.37 114.75) (115.66 115.35)
0.3 (36.16 35.03) (39.33 38.19) (32.89 31.66) (36.35 35.20) (44.27 43.59) (50.30 49.80) (42.45 41.72) (43.71 42.85)
0.5 (15.06 13.90) (16.42 15.25) (13.32 12.03) (15.17 14.13) (19.31 18.58) (22.91 22.40) (18.06 17.26) (18.98 18.23)
1.0 (3.68 2.64) (3.86 2.82) (3.37 2.27) (3.65 2.67) (4.31 3.58) (5.02 4.49) (4.02 3.22) (4.24 3.52)
1.5 (1.81 0.96) (1.86 1.00) (1.74 0.87) (1.78 0.96) (1.86 1.16) (1.97 1.38) (1.80 1.07) (1.84 1.15)
2.0 (1.25 0.48) (1.26 0.50) (1.23 0.46) (1.23 0.47) (1.22 0.49) (1.23 0.53) (1.22 0.47) (1.22 0.49)
2.5 (1.05 0.23) (1.06 0.24) (1.05 0.22) (1.05 0.21) (1.04 0.21) (1.04 0.21) (1.04 0.20) (1.04 0.20)
3.0 (1.01 0.08) (1.01 0.09) (1.01 0.08) (1.01 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07)

δopt = 2.5 δopt = 3

SEWMA REWMA IEWMA MOEWMA SEWMA REWMA IEWMA MOEWMA

λ∗ 0.99 1.00 0.90 0.90 1.00 1.00 0.96 0.90
δ UCL∗ 1.47 1.49 3.40 1.34 1.49 1.49 3.58 1.34

0.1 (122.32 121.81) (122.87 122.36) (120.03 119.50) (117.74 116.67) (122.87 122.36) (122.87 122.36) (121.68 121.17) (117.27 116.27)
0.3 (49.72 49.21) (50.30 49.80) (47.11 46.54) (44.98 44.08) (50.30 49.80) (50.30 49.80) (48.93 48.40) (44.47 43.61)
0.5 (22.55 22.03) (22.91 22.40) (20.82 20.21) (19.57 18.87) (22.91 22.40) (22.91 22.40) (21.98 21.44) (19.64 18.93)
1.0 (4.94 4.39) (5.02 4.49) (4.54 3.89) (4.35 3.64) (5.02 4.49) (5.02 4.49) (4.79 4.21) (4.35 3.65)
1.5 (1.95 1.35) (1.97 1.38) (1.88 1.22) (1.86 1.18) (1.97 1.38) (1.97 1.38) (1.92 1.30) (1.86 1.17)
2.0 (1.23 0.53) (1.23 0.53) (1.22 0.50) (1.22 0.49) (1.23 0.53) (1.23 0.53) (1.23 0.52) (1.22 0.49)
2.5 (1.04 0.21) (1.04 0.21) (1.04 0.20) (1.04 0.21) (1.04 0.21) (1.04 0.21) (1.04 0.21) (1.04 0.20)
3.0 (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07) (1.00 0.07)

3.3. The Steady-State Performance of the Proposed Chart

The results presented in the previous section are for the case in which the shift occurs
from the beginning of the process or the charting statistic is at its initial starting value
when the shift occurs. The computed ARL in this way is referred as the zero-state ARL.
The steady-state ARL is based on the assumption that the process remains in-control for
a long time and a shift occurs later in the process. The steady-state ARL of control chart
is considered to be more realistic than the zero-state ARL, see Zwetsloot et al. [7]. For the
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steady-state case, 105 Monte-Carlo simulations are used to estimate the steady-state ARL
values of control charts and the shift is assumed to happen in the process after 50 in-control
samples, see Dickinson et al. [38], Xu and Jeske [40], and Haq [24].

The out-of-control steady-state ARL1 and SDRL1 of the proposed chart together with
the ones of the REWMA, SEWMA, and IEWMA X̄ charts are presented in Table 3 for
different combinations of n, λ, and δ. The in-control ARL0 is set to be 200. It can be
noted from Table 3 that the steady-state performance of the upper-sided MOEWMA X̄
chart is almost the same as the upper-sided SEWMA X̄ chart. Moreover, for a small shift
(δ ≤ 0.3), both the upper-sided MOEWMA X̄ chart and the upper-sided SEWMA X̄ chart
generally perform better than the upper-sided IEWMA and REWMA X̄ charts. For instance,
when n = 3, λ = 0.1, and δ = 0.1, the steady-state (ARL1, SDRL1) = (58.66, 54.58) and
(ARL1, SDRL1) = (58.63, 54.38) of the upper-sided SEWMA and MOEWMA X̄ charts are
smaller than the steady-state (ARL1, SDRL1) = (67.22, 63.92) and (ARL1, SDRL1) = (65.35,
62.84) of the upper-sided IEWMA and REWMA X̄ charts. Moreover, for the shifts larger
than 0.5, we can note that the upper-sided IEWMA X̄ chart generally performs best among
these charts. The upper-sided REWMA X̄ chart is preferred only when δ = 0.5.

Table 3. The steady-state profiles (ARL1, SDRL1) of EWMA type charts when ARL0 = 200.

δ

n λ Chart UCL 0.1 0.3 0.5 1.0 1.5 2.0 2.5 3.0

3 0.05 SEWMA 0.1665 (52.08 46.35) (15.67 10.34) (8.83 4.95) (4.33 2.04) (2.96 1.28) (2.31 0.94) (1.93 0.75) (1.69 0.64)
IEWMA 0.3149 (59.80 55.06) (16.97 12.25) (8.78 5.42) (3.71 1.82) (2.39 1.01) (1.83 0.70) (1.52 0.56) (1.32 0.47)
REWMA 0.1979 (57.16 53.11) (15.43 10.90) (8.17 4.61) (3.80 1.62) (2.57 0.95) (2.00 0.68) (1.69 0.54) (1.49 0.50)

MOEWMA 0.1669 (52.49 46.75) (15.69 10.34) (8.86 4.95) (4.33 2.04) (2.96 1.28) (2.31 0.94) (1.93 0.75) (1.69 0.63)
0.10 SEWMA 0.2793 (58.66 54.58) (15.85 11.30) (8.32 4.84) (3.81 1.72) (2.57 1.03) (2.00 0.75) (1.68 0.61) (1.46 0.53)

IEWMA 0.5567 (67.22 63.92) (17.68 13.89) (8.56 5.53) (3.41 1.65) (2.17 0.88) (1.65 0.61) (1.36 0.49) (1.17 0.37)
REWMA 0.3133 (65.35 62.84) (16.52 12.86) (8.02 4.98) (3.44 1.51) (2.28 0.84) (1.78 0.59) (1.50 0.51) (1.27 0.44)

MOEWMA 0.2797 (58.63 54.38) (15.90 11.38) (8.29 4.83) (3.80 1.72) (2.57 1.03) (2.00 0.75) (1.67 0.61) (1.47 0.53)
0.15 SEWMA 0.3710 (64.65 61.24) (16.69 12.79) (8.20 5.07) (3.53 1.61) (2.34 0.92) (1.82 0.67) (1.53 0.55) (1.32 0.47)

IEWMA 0.7668 (73.10 70.67) (19.06 15.80) (8.68 6.02) (3.27 1.63) (2.04 0.82) (1.54 0.57) (1.26 0.44) (1.09 0.29)
REWMA 0.4059 (71.85 69.83) (17.93 14.92) (8.21 5.50) (3.26 1.49) (2.12 0.79) (1.65 0.57) (1.35 0.48) (1.14 0.35)

MOEWMA 0.3710 (64.57 61.00) (16.67 12.83) (8.17 5.06) (3.53 1.60) (2.35 0.93) (1.82 0.67) (1.52 0.55) (1.32 0.47)
0.20 SEWMA 0.4511 (69.62 67.06) (17.75 14.59) (8.28 5.46) (3.37 1.57) (2.20 0.87) (1.70 0.62) (1.42 0.51) (1.22 0.42)

IEWMA 0.9584 (77.87 76.16) (20.49 17.75) (8.96 6.55) (3.18 1.63) (1.95 0.81) (1.46 0.55) (1.19 0.39) (1.05 0.22)
REWMA 0.4867 (77.02 75.44) (19.47 17.00) (8.49 6.06) (3.17 1.53) (2.02 0.77) (1.54 0.56) (1.25 0.44) (1.08 0.27)

MOEWMA 0.4511 (69.70 67.05) (17.77 14.52) (8.30 5.46) (3.37 1.57) (2.20 0.87) (1.70 0.62) (1.42 0.51) (1.22 0.42)
0.25 SEWMA 0.5241 (74.30 72.09) (19.03 16.30) (8.52 5.94) (3.26 1.57) (2.09 0.84) (1.61 0.59) (1.33 0.48) (1.15 0.36)

IEWMA 1.1425 (82.89 81.77) (22.13 19.77) (9.42 7.24) (3.13 1.66) (1.89 0.80) (1.40 0.53) (1.15 0.36) (1.03 0.18)
REWMA 0.5602 (82.05 80.61) (21.21 19.07) (8.92 6.71) (3.13 1.57) (1.94 0.77) (1.47 0.55) (1.19 0.39) (1.05 0.21)

MOEWMA 0.5241 (74.37 72.49) (19.02 16.10) (8.55 5.99) (3.27 1.58) (2.09 0.83) (1.61 0.59) (1.33 0.48) (1.15 0.36)

5 0.05 SEWMA 0.1290 (40.36 33.99) (11.76 7.13) (6.72 3.51) (3.39 1.51) (2.37 0.97) (1.88 0.73) (1.60 0.60) (1.41 0.52)
IEWMA 0.3149 (46.55 41.45) (12.27 8.21) (6.36 3.60) (2.80 1.25) (1.88 0.73) (1.48 0.54) (1.25 0.43) (1.10 0.30)
REWMA 0.1533 (43.64 39.46) (11.16 7.04) (6.07 3.08) (2.95 1.15) (2.06 0.71) (1.65 0.53) (1.41 0.49) (1.18 0.39)

MOEWMA 0.1293 (40.53 34.19) (11.75 7.11) (6.75 3.53) (3.39 1.51) (2.38 0.97) (1.89 0.73) (1.60 0.60) (1.41 0.51)
0.10 SEWMA 0.2164 (45.12 40.43) (11.41 7.33) (6.13 3.20) (2.94 1.23) (2.05 0.78) (1.64 0.59) (1.39 0.50) (1.21 0.41)

IEWMA 0.5567 (51.61 48.00) (12.33 8.85) (6.01 3.52) (2.54 1.09) (1.70 0.63) (1.32 0.47) (1.11 0.31) (1.02 0.14)
REWMA 0.2427 (50.46 47.19) (11.40 7.94) (5.76 3.10) (2.64 1.03) (1.82 0.61) (1.46 0.51) (1.18 0.38) (1.03 0.18)

MOEWMA 0.2169 (45.27 40.64) (11.43 7.34) (6.14 3.22) (2.95 1.24) (2.06 0.77) (1.63 0.59) (1.39 0.50) (1.21 0.41)
0.15 SEWMA 0.2873 (49.61 46.09) (11.61 8.12) (5.89 3.21) (2.71 1.12) (1.87 0.69) (1.49 0.54) (1.25 0.43) (1.10 0.30)

IEWMA 0.7668 (57.42 54.58) (12.90 9.88) (5.95 3.67) (2.40 1.05) (1.59 0.59) (1.22 0.42) (1.05 0.21) (1.01 0.07)
REWMA 0.3144 (55.97 53.56) (12.11 9.16) (5.68 3.30) (2.46 0.99) (1.69 0.59) (1.31 0.47) (1.08 0.27) (1.01 0.09)

MOEWMA 0.2874 (49.90 46.16) (11.58 8.08) (5.88 3.21) (2.71 1.12) (1.87 0.69) (1.49 0.54) (1.25 0.44) (1.10 0.30)
0.20 SEWMA 0.3494 (54.33 51.41) (12.07 8.98) (5.81 3.37) (2.55 1.07) (1.75 0.64) (1.38 0.50) (1.16 0.36) (1.05 0.21)

IEWMA 0.9584 (61.58 59.19) (13.59 10.98) (5.97 3.88) (2.31 1.03) (1.51 0.57) (1.16 0.37) (1.03 0.16) (1.00 0.04)
REWMA 0.3770 (60.84 58.42) (12.90 10.35) (5.74 3.56) (2.36 0.98) (1.59 0.57) (1.22 0.41) (1.04 0.19) (1.00 0.05)

MOEWMA 0.3494 (53.88 51.17) (12.12 9.00) (5.80 3.36) (2.56 1.07) (1.75 0.65) (1.38 0.50) (1.16 0.37) (1.05 0.21)
0.25 SEWMA 0.4060 (58.34 56.16) (12.75 10.05) (5.83 3.58) (2.44 1.04) (1.65 0.61) (1.29 0.46) (1.10 0.30) (1.02 0.14)

IEWMA 1.1425 (66.01 64.36) (14.51 12.23) (6.12 4.19) (2.25 1.03) (1.45 0.56) (1.12 0.33) (1.02 0.12) (1.00 0.02)
REWMA 0.4339 (65.24 63.38) (13.79 11.56) (5.85 3.85) (2.29 0.99) (1.51 0.56) (1.16 0.36) (1.02 0.14) (1.00 0.03)

MOEWMA 0.4058 (57.74 55.66) (12.70 9.99) (5.81 3.55) (2.44 1.04) (1.66 0.62) (1.29 0.46) (1.10 0.30) (1.02 0.15)
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4. MOEWMA X̄ Charts with Variable Sampling Intervals
4.1. Construction of the VSI MOEWMA X̄ Charts

The MOEWMA X̄ charts studied above are FSI type charts, which fixes the time
intervals between samples. As suggested by Reynolds et al. [41], X̄ chart with VSI features
performed better than the corresponding FSI chart. The VSI feature allows a chart to vary
the time intervals between samples depending on the value of the charting statistic. For
the one-sided type charts, by adding an upper warning limit (UWL) of the upper-sided
chart (or a lower warning limit (LWL) of the lower-sided chart), the in-control region of
one-sided control charts are divided into a warning region and a central region. If the value
of the charting statistic falls in the warning region, it is suspected that the process is at
risk and the next sample should be taken after a short sampling interval hS. If the value
of the charting statistic falls in the central region, the process is deemed to be safe and the
next sample could be taken after a long sampling interval hL. Otherwise, the process is
considered to be out-of-control when the value of the charting statistic falls outside the
UCL the upper-sided chart (or the LCL of the lower-sided chart).

Let UWL and LWL be the warning limits of the upper-sided and lower-sided VSI
MOEWMA X̄ chart, respectively, and ht ∈ {hS, hL} be the sampling interval between the tth
and (t + 1)th samples. The central regions of the upper-sided and lower-sided MOEWMA
X̄ charts are [0, UWL] and [LWL, 0], respectively. The warning regions of the upper-sided
and lower-sided MOEWMA X̄ charts are (UWL, UCL] and [LCL, LWL), respectively. For
the upper-sided VSI MOEWMA X̄ chart, ht switches as follows:

ht =

{
hS, Z+

t ∈ [0, UWL],
hL, Z+

t ∈ (UWL, UCL].
(6)

where Z+
t is defined in Equation (4). Similarly, the ht of the lower-sided VSI MOEWMA X̄

chart depends on the value of the Z−t defined in Equation (5). Thus, for the VSI MOEWMA
X̄ chart, the sampling intervals ht varies as a function of the charting statistic Z+

t (for the
upper-sided chart) or Z−t (for the lower-sided chart).

When the process monitoring starts at time 0, no sample information is available to
select the value of h0. It might be practical to use the short sampling interval h0 = hS to
protect against problems in the start-up period [41]. As suggested by Reynolds et al. [42],
when the process is in-control, the values of sampling intervals hS and hL are obtained by
satisfying the following constraints,

{
ρ1hS + ρ2hL = 1,
ρ1 + ρ2 = 1,

(7)

where ρ1 and ρ2 are the long run proportions of sampling intervals that are hS and hL,
respectively. In addition, it is noted that the charting statistics in Equation (4) is reset to 0 if
it is smaller than 0. This causes the fact that nearly half values of the in-control charting
statistics are always 0 and are in the safe region and the sampling interval corresponding
to these values is hL. By doing many simulations, it is then found that the value of ρ1 and
ρ2 are always smaller and larger than 0.5, respectively. For illustration, ρ1 = 0.4, ρ2 = 0.6,
and (hS, hL) = (0.1, 1.6) are selected in this paper. It is noted that the value of hS may be
practically determined by the minimum time required to take a sample and hL should not
exceed the maximum time to allow the process to run without sampling. In addition, the
values of ρ1, ρ2 and (hS, hL) should satisfy the constraint in Equation (7). For simplicity, the
VSI MOEWMA X̄ chart’s performance for other combination of ρ1, ρ2, and (hS, hL) are not
presented in this manuscript.

4.2. Comparison with the FSI MOEWMA X̄ Charts

It is well known that the ATS, instead of ARL, was usually suggested to evaluate a
VSI chart’s performance. For an FSI chart, the ATS is a constant multiple of the ARL, while

13
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for a VSI chart, the ATS is no longer a constant multiple of the ARL due to the varying of
sampling intervals. In this case, the ATS is defined as the expected time from the start of
the process to an out-of-control signal. Similarly, if the process has been running for a long
time so the EWMA statistic is in a steady-state before the shift happens, the adjusted ATS
(AATS) is usually used to evaluate the properties of a VSI chart, see Reynolds et al. [42].
In this paper, both ATS and AATS are used together to compare the performances of the
FSI and VSI MOEWMA X̄ charts. The Monte-Carlo method is also used to obtain the ATS
and AATS of the VSI MOEWMA X̄ chart. The simulation settings of the VSI MOEWMA X̄
chart is similar to those of the FSI MOEWMA charts in Section 3.3.

Tables 4 and 5 present the out-of-control ATS and AATS of the FSI and VSI MOEWMA
X̄ charts for different values of λ and δ when n ∈ {3, 5}. In addition, the subscripts 0 and 1
are used with ATS and AATS to denote the in-control and out-of-control properties of the
VSI chart, respectively. For fair comparisons, the desired in-control ATS0 of both charts are
matched as 200.

Table 4. The out-of-control profiles ATS1 of the VSI and FSI upper-sided MOEWMA X̄ charts when
ATS0 = 200.

δ

n λ Chart UW L UCL 0.1 0.3 0.5 1.0 1.5 2.0 2.5 3.0

3 0.05 FSI - 0.1669 54.06 15.76 8.79 4.24 2.88 2.23 1.95 1.72
VSI 0.0078 0.1669 32.52 4.83 1.90 0.56 0.30 0.22 0.20 0.17

0.1 FSI - 0.2797 60.12 16.26 8.44 3.81 2.55 2.02 1.70 1.36
VSI 0.0218 0.2797 40.62 5.60 2.06 0.54 0.28 0.20 0.17 0.14

0.15 FSI - 0.3710 65.90 17.06 8.34 3.56 2.36 1.85 1.48 1.18
VSI 0.0290 0.3710 45.89 6.15 2.06 0.50 0.25 0.19 0.15 0.12

0.2 FSI - 0.4511 70.90 18.26 8.48 3.40 2.22 1.71 1.34 1.10
VSI 0.0388 0.4511 51.86 7.02 2.17 0.49 0.24 0.17 0.13 0.11

0.25 FSI - 0.5241 75.26 19.38 8.69 3.31 2.12 1.59 1.24 1.06
VSI 0.0491 0.5241 57.46 8.11 2.31 0.49 0.23 0.16 0.12 0.11

5 0.05 FSI - 0.1293 41.82 11.74 6.65 3.31 2.29 1.92 1.58 1.18
VSI 0.0061 0.1293 21.99 3.01 1.21 0.37 0.23 0.19 0.16 0.12

0.1 FSI - 0.2169 46.69 11.61 6.19 2.94 2.06 1.65 1.23 1.03
VSI 0.0169 0.2169 27.96 3.37 1.25 0.34 0.21 0.16 0.12 0.10

0.15 FSI - 0.2874 50.92 11.87 5.99 2.72 1.90 1.42 1.10 1.01
VSI 0.0225 0.2874 32.03 3.52 1.22 0.32 0.19 0.14 0.11 0.10

0.2 FSI - 0.3494 55.20 12.34 5.92 2.57 1.76 1.28 1.05 1.00
VSI 0.0300 0.3494 36.85 3.87 1.23 0.30 0.18 0.13 0.10 0.10

0.25 FSI - 0.4058 58.98 12.95 5.95 2.47 1.65 1.20 1.03 1.00
VSI 0.0380 0.4058 41.20 4.39 1.28 0.29 0.17 0.12 0.10 0.10

From these tables, it can be concluded that whether in the zero-state or steady-state, for
fixed values of n, λ and δ, the VSI MOEWMA X̄ chart has smaller ATS1 or AATS1 values
than the those of the corresponding FSI chart. This fact indicates that the VSI MOEWMA X̄
chart is substantially better than the FSI MOEWMA X̄ chart. For example, for the zero-state
case in Table 4, when n = 3 and λ = 0.1, the ATS1 = 40.62 of the VSI MOEWMA X̄ chart
is smaller than the ATS1 = 60.12 of the FSI MOEWMA X̄ chart for δ = 0.1. In addition,
the VSI MOEWMA X̄ chart with a small λ performs better than the chart with a large λ to
detect small shifts in the process and viceversa. For example, if the specified shift δ = 0.1,
the ATS1 = 32.52 of the VSI MOEWMA X̄ chart with λ = 0.05 performs better than the
ATS1 = 57.46 of the chart with λ = 0.25. Furthermore, if the specified shift δ = 2.0, the
ATS1 = 0.22 of the VSI MOEWMA X̄ chart with λ = 0.05 is worse than the ATS1 = 0.16 of
the chart with λ = 0.25. As the ATS1 or AATS1 values are close to 0 for large shifts, the VSI
MOEWMA X̄ chart with a smaller λ is generally recommended in practice. Moreover, for
fixed values of n, λ, and δ, the AATS1 value of the VSI MOEWMA X̄ chart is larger than
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the ATS1 of the chart. For example, when n = 3, λ = 0.1, and δ = 0.1, the AATS1 = 47.35
(see Table 5) of the chart is larger than the ATS1 = 40.62 (see Table 4).

Table 5. The out-of-control profiles AATS1 of the VSI and FSI upper-sided MOEWMA X̄ charts when
ATS0 = 200.

δ

n λ Chart UW L UCL 0.1 0.3 0.5 1.0 1.5 2.0 2.5 3.0

3 0.05 FSI - 0.1669 52.49 15.69 8.86 4.33 2.96 2.31 1.93 1.69
VSI 0.0078 0.1669 39.59 7.63 3.81 1.56 0.88 0.57 0.40 0.28

0.1 FSI - 0.2797 58.63 15.90 8.29 3.80 2.57 2.00 1.67 1.47
VSI 0.0218 0.2797 47.35 7.29 3.20 1.15 0.62 0.37 0.25 0.18

0.15 FSI - 0.3710 64.57 16.67 8.17 3.53 2.35 1.82 1.52 1.32
VSI 0.0290 0.3710 53.09 7.51 2.88 0.93 0.47 0.28 0.18 0.14

0.2 FSI - 0.4511 69.70 17.77 8.30 3.37 2.20 1.70 1.42 1.22
VSI 0.0388 0.4511 60.13 8.33 2.83 0.81 0.39 0.23 0.16 0.13

0.25 FSI - 0.5241 74.37 19.02 8.55 3.27 2.09 1.61 1.33 1.15
VSI 0.0491 0.5241 66.74 9.48 2.90 0.74 0.34 0.20 0.14 0.12

5 0.05 FSI - 0.1293 52.49 15.69 8.86 4.33 2.96 2.31 1.93 1.69
VSI 0.0061 0.1293 27.28 5.39 2.76 1.10 0.60 0.37 0.25 0.18

0.1 FSI - 0.2169 58.63 15.90 8.29 3.80 2.57 2.00 1.67 1.47
VSI 0.0169 0.2169 32.34 4.75 2.19 0.78 0.39 0.23 0.16 0.13

0.15 FSI - 0.2874 64.57 16.67 8.17 3.53 2.35 1.82 1.52 1.32
VSI 0.0225 0.2874 36.99 4.57 1.89 0.61 0.29 0.18 0.13 0.11

0.2 FSI - 0.3494 69.70 17.77 8.30 3.37 2.20 1.70 1.42 1.22
VSI 0.0300 0.3494 42.44 4.75 1.74 0.51 0.24 0.15 0.12 0.10

0.25 FSI - 0.4058 74.37 19.02 8.55 3.27 2.09 1.61 1.33 1.15
VSI 0.0380 0.4058 47.82 5.16 1.70 0.45 0.21 0.13 0.11 0.10

5. A Real Data Application

To show the application of the REWMA, SEWMA, IEWMA, and the proposed MOEWMA
X̄ charts, in what follows, a real dataset of semiconductor manufacturing in Montgomery [9]
is used to illustrate the charts’ implementation. The photolithography process is important
in semiconductor manufacturing. It transfers a geometric pattern from a mask to the surface
of a silicon wafer using light-sensitive photoresist materials. This process is complex as it
involves many engineering steps, for instance, chemical cleaning of the wafers, formation
of barrier layer using silicon dioxide, and hard-baking process to increase photoresist
adherence to the wafer surface. During the hard-baking process, the flow width of the
photoresist is an important quality characteristic that needs to be monitored, as a minor
variation (10 nm) in the thickness of photoresist will change the interference color and
discolor the photoresist film.

Suppose that flow width can be controlled at a mean µ0 = 1.5 microns and the standard
deviation σ0 = 0.15 microns of a normally distributed process and the quality practitioner
anticipates an upward shift size δ = 0.3 in the process when the process is out-of-control.
Then the upper-sided MOEWMA X̄ chart is implemented for the process monitoring at
each sampling point. For the FSI (VSI) chart, the desired ARL0 (ATS0) is maintained as 200,
and (hS, hL) = (0.1, 1.6) are selected.

In Table 6, 20 samples, each with size n = 5, are generated from an out-of-control normal
distribution of the flow width with the mean µ1 = µ0 + δ× σ0 = 1.5 + 0.3× 0.15 = 1.545
and the standard deviation σ0. All sample mean values {X̄1, X̄2, . . . , X̄20} and the corre-
sponding values of the different EWMA charting statistics are listed in the table. As a
comparison, the upper-sided SEWMA, REWMA, and IEWMA X̄ charts together with the
MOEWMA X̄ chart are plotted in Figure 1. It can be noted from Figure 1 that all control
charts give an out-of-control signal at the 8th sample point, except for the upper-sided
REWMA X̄ chart, where the chart gives an out-of-control signal at the 9th sample point (see
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the bolded values in Table 6). This example shows that these FSI EWMA charts take about
8 or 9 time units to detect the assignable cause while, on average, we can note from Table 1
that the MOEWMA chart detect the shift δ = 0.3 more quick than the SEWMA, REWMA,
and IEWMA X̄ charts.

Moreover, for the VSI-MOEWMA chart, the charting statistics Z+
2 and Z+

3 fall in the
central region [0, UWL], which leads to a large sampling interval hL = 1.6 to find the sub-
sequent samples. For the charting statistic at other sampling time point, the corresponding
sampling interval is hS = 0.1. This leads to a ATS1 = 3.8 time unit of the VSI-MOEWMA X̄
chart to detect the assignable cause. Thus, it is better to adopt the VSI-MOEWMA X̄ chart
to monitor the process.

Table 6. Dataset from the hard-baking process and the corresponding values of the charting statistics.

SEWMA IEWMA REWMA MOEWMA
No. Xt,1 Xt,2 Xt,3 Xt,4 Xt,5 X̄t

X̄t−µ0
σ0

Zt Z+
t Z+

t Z+
t

1 1.4843 1.5121 1.4521 1.6615 1.5718 1.5364 0.2424 0.0121 0.0123 0.0121 0.0121
2 1.6242 1.4130 1.4370 1.2060 1.6841 1.4729 −0.1809 0.0025 −0.0225 0.0025 0.0025
3 1.3940 1.4969 1.5511 1.4603 1.5285 1.4862 −0.0923 −0.0023 −0.0556 0.0000 0.0000
4 1.7084 1.4273 1.4462 1.6802 1.7809 1.6086 0.7239 0.0340 0.0517 0.0362 0.0340
5 1.8127 1.4903 1.4504 1.6042 1.6291 1.5973 0.6489 0.0648 0.1392 0.0668 0.0648
6 1.4994 1.5626 1.6364 1.5457 1.4819 1.5452 0.3015 0.0766 0.1558 0.0786 0.0766
7 1.5437 1.5712 1.6624 1.6105 1.5219 1.5819 0.5462 0.1001 0.2185 0.1019 0.1001
8 1.6210 1.5127 1.9105 1.7145 1.5037 1.6525 1.0165 0.1459 0.3680 0.1477 0.1459
9 1.7255 1.5221 1.5904 1.5681 1.5812 1.5974 0.6496 0.1711 0.4399 0.1728 0.1711
10 1.6233 1.5501 1.5537 1.4312 1.6582 1.5633 0.4220 0.1836 0.4645 0.1852 0.1836
11 1.6046 1.6137 1.4589 1.5180 1.5012 1.5393 0.2618 0.1876 0.4573 0.1891 0.1876
12 1.4726 1.7372 1.5157 1.5138 1.6138 1.5706 0.4709 0.2017 0.4904 0.2032 0.2017
13 1.5103 1.6380 1.5374 1.6795 1.8083 1.6347 0.8980 0.2365 0.6037 0.2379 0.2365
14 1.6370 1.5020 1.2816 1.6068 1.6847 1.5424 0.2829 0.2389 0.5935 0.2401 0.2389
15 1.7974 1.6347 1.5064 1.6271 1.6688 1.6469 0.9793 0.2759 0.7172 0.2771 0.2759
16 1.6303 1.5082 1.6574 1.5672 1.4228 1.5572 0.3811 0.2811 0.7202 0.2823 0.2811
17 1.3641 1.2779 1.4594 1.4907 1.4649 1.4114 −0.5908 0.2375 0.6500 0.2386 0.2375
18 1.6100 1.1929 1.6191 1.5542 1.5814 1.5115 0.0767 0.2295 0.5980 0.2306 0.2295
19 1.5312 1.2880 1.6937 1.5775 1.5299 1.5241 0.1604 0.2260 0.5647 0.2270 0.2260
20 1.5084 1.5094 1.7066 1.3353 1.3012 1.4722 −0.1854 0.2055 0.5023 0.2064 0.2055
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Figure 1. One-sided EWMA type charts applied to the dataset in Table 6. (a) SEWMA Chart
(b) IEWMA Chart (c) REWMA Chart (d) MOEWMA Chart (e) VSI-MOEWMA Chart.
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6. Conclusions and Recommendations

In this paper, we study the performance of one-sided MOEWMA X̄ chart without-
and with VSI features. Both the zero-state and steady-state performances of the FSI and VSI
MOEWMA X̄ chart are investigated by using extensive Monte-Carlo simulations. Through
a comprehensive comparison with the SEWMA, REWMA, and IEWMA X̄ charts, it is
found that the MOEWMA X̄ chart is shown to perform better than the REWMA X̄ chart,
especially for small shifts and it performs better than the IEWMA X̄ chart for small shifts
and worse for moderate to large shifts. Moreover, the MOEWMA X̄ chart is always a little
better than the SEWMA X̄ chart. In addition, by investigating the optimal performance
of the MOEWMA X̄ chart, it can be concluded that the optimal MOEWMA X̄ chart has a
good performance over a wide range of shifts rather than a scheme to optimize the control
charts at a specified shift. Finally, by adding the VSI feature to the MOEWMA X̄ chart, it is
shown that the VSI MOEWMA X̄ chart is uniformly better than its counterpart with FSI,
especially for small shifts.

As the current research works are based on the assumption of known process parame-
ters, the manner in which the control chart performs with estimated process parameters
remains an issue. Future works could be extended to this aspect. Moreover, this research is
focused on the monitoring of the process mean. The methodology can also be extended to
monitor the process variance, the ratio of two distributions, and so on.
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Abbreviations
The following abbreviations are used in this manuscript:

EWMA Exponentially Weighted Moving Average
CUSUM Cumulative Sum
MOEWMA Modified One-sided EWMA
SEWMA The simple one-sided EWMA chart
REWMA EWMA chart with resetting the charting statistic to the target
IEWMA EWMA chart with truncating the sample mean to the target
RL Run Length
ARL Average Run Length
ARL0 In-control ARL
ARL1 Out-of-control ARL
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SDRL Standard Deviation of Run Length
SDRL0 In-control SDRL
SDRL1 Out-of-control SDRL
ATS Average Time to Signal
ATS0 In-control ATS
ATS1 Out-of-control ATS
AATS Average Adjusted Time to Signal
AATS0 In-control AATS
AATS1 Out-of-control AATS
VSI Variable Sampling Interval
FSI Fixed Sampling Interval
UCL Upper Control Limit
LCL Lower Control Limit
UWL Upper Warning Limit
LWL Lower Warning Limit
ZS Zero-State
SS Steady-State
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.

Processes 2022, 10, 1769. https://doi.org/10.3390/pr10091769 https://www.mdpi.com/journal/processes

Citation: Shih, J.-H.; Konno, Y.;

Chang, Y.-T.; Emura, T. Copula-

Based Estimation Methods for a

Common Mean Vector for Bivariate

Meta-Analyses. Symmetry 2022, 14,

186. https://doi.org/10.3390/

sym14020186

Academic Editors: Arne Johannssen,

Nataliya Chukhrova, Quanxin Zhu,

Jinyu Li and Sergei D. Odintsov

Received: 16 November 2021

Accepted: 10 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Copula-Based Estimation Methods for a Common Mean Vector
for Bivariate Meta-Analyses
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Abstract: Traditional bivariate meta-analyses adopt the bivariate normal model. As the bivariate
normal distribution produces symmetric dependence, it is not flexible enough to describe the true
dependence structure of real meta-analyses. As an alternative to the bivariate normal model, recent
papers have adopted “copula” models for bivariate meta-analyses. Copulas consist of both symmetric
copulas (e.g., the normal copula) and asymmetric copulas (e.g., the Clayton copula). While copula
models are promising, there are only a few studies on copula-based bivariate meta-analysis. Therefore,
the goal of this article is to fully develop the methodologies and theories of the copula-based bivariate
meta-analysis, specifically for estimating the common mean vector. This work is regarded as a
generalization of our previous methodological/theoretical studies under the FGM copula to a broad
class of copulas. In addition, we develop a new R package, “CommonMean.Copula”, to implement the
proposed methods. Simulations are performed to check the proposed methods. Two real dataset are
analyzed for illustration, demonstrating the insufficiency of the bivariate normal model.

Keywords: bivariate distribution; copula; correlation; FGM copula; maximum likelihood estimator;
meta-analysis; normal distribution

1. Introduction

Bivariate outcomes often arise in meta-analyses on scientific studies, such as educa-
tion and medicine. Educational researchers may analyze bivariate exam scores on verbal
and mathematics [1,2], or on mathematics and statistics [3]. Medical experts may ana-
lyze bivariate risk scores on myocardial infection and cardiovascular death for diabetes
patients [4,5]. Bivariate meta-analyses are statistical methods designed for these meta-
analytical studies [6]. Dependence between two outcomes should be considered while
performing bivariate meta-analyses. If one simply considers univariate (marginal) analysis
for each outcome separately, any possible dependence between the outcomes is ignored.
Riley [2] and Copas et al. [7] showed that ignoring the dependence between two outcomes
increases the error for estimating parameters due to the loss of information. In medical
research, dependence itself can be of clinical importance, e.g., dependence between two
survival outcomes in meta-analysis [8–11].

In the traditional bivariate meta-analyses, the parameters of interest are the means
of a bivariate normal model [6]. However, the bivariate normal model is not flexible
enough to describe the true dependence structure of real meta-analyses. It will be shown
that the bivariate normal mode fits poorly to the dependence structure of real bivariate
meta-analyses (Section 8). This has motivated researchers to consider alternative models.

As an alternative to the bivariate normal model, recent papers have adopted “copula”
models for bivariate meta-analyses [3,5,12–15]. Copula models are flexible as they allow a
variety of dependence structures. Copulas consist of both symmetric copulas (e.g., the normal
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copula) and asymmetric copulas (e.g., the Clayton copula). Copula models have become
very popular in all areas of science by replacing the traditional multivariate normal models.
In astronomy, Takeuchi [16] constructed the bivariate luminosity density functions using
the FGM copula; see reference [17] for the application of the FGM copula to engineering.
In ecology, Ghosh et al. [18] applied copulas to model the dependence structure in environ-
mental and biological variables. In environmental science, Alidoost et al. [19] used bivariate
copulas in the analysis of temperature. See the survey of [20] for applications to energy,
forestry, and environmental sciences. The books of [21,22] are devoted to the applications of
copulas in survival analysis; see also references [11,23–25].

While bivariate copula models for meta-analyses are promising, there are only a few
methodologically and theoretically solid studies on copula-based bivariate meta-analysis.
For instance, the detailed theoretical studies of [3] are limited to the FGM copula.
Other copula-based meta-analyses published in biostatistical journals, such as [5,12–15],
are proposed without theoretical details. Furthermore, copula-based bivariate meta-analyses
have not been implemented in a free software environment.

Therefore, the goal of this article is to fully develop the methodologies and theo-
ries of the copula-based bivariate meta-analysis for estimating the common mean vector.
This work is regarded as a large generalization of our previous methodological/theoretical
studies under the FGM copula model [3] to a broad class of copula models. In this ar-
ticle, we obtain theoretical results, including the formula of the information matrix and
large sample theories. Our theoretical results guarantee the applications of many copulas,
such as the Clayton, Gumbel, Frank, and normal copulas, in addition to the FGM copula.
In addition, we developed a new R package, “CommonMean.Copula” [26], to implement
the proposed methods under the five copulas. Therefore, the aim of the article is to make
a solid development of the methodologies, theories, and practical implementations of
copula-based bivariate meta-analysis for the common mean, which are not yet available in
the literature.

The article is organized as follows. Section 2 reviews the background of this research.
Section 3 introduces the proposed model and estimator. Section 4 provides the asymptotic
theory and Section 5 gives confidence sets. Section 6 introduces our new R package.
Section 7 conducts simulations to check the accuracy of the proposed methods. Section 8
analyzes two real datasets for illustration. Section 9 extends the proposed methods to
non-normal data. Finally, Section 10 concludes with a discussion.

2. Background

This section reviews the literature on bivariate meta-analyses and the concept of copulas.

2.1. Bivariate Meta-Analysis

We review the bivariate meta-analysis method for bivariate continuous outcomes [6,27].
For each study i, let the bivariate outcomes, Yi1 and Yi2, follow a bivariate normal distribution

Yi =

[
Yi1
Yi2

]
∼ N

(
µ =

[
µ1
µ2

]
, Ωi =

[
σ2

i1 ρiσi1σi2
ρiσi1σi2 σ2

i2

])
, i = 1, 2, . . . , n, (1)

where ρi ∈ (−1, 1) is the within-study correlation for each i. In Equation (1), all the
responses (Yis) share the common mean vector (µ). The covariance matrix Ωi is assumed
to be known (from the i-th study) in usual bivariate meta-analyses. We do not consider a
setting where the covariance is unknown [28,29].

Then, the MLE of the common mean vector is quite easily computed as

µ̂Normal
n =

[
µ̂Normal

n,1
µ̂Normal

n,2

]
=

(
n

∑
i=1

Ω−1
i

)−1 n

∑
i=1

Ω−1
i Yi.

One could use the R package mvmeta [30], although the above computation is easy.
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The bivariate normal model (1) does not allow for a different dependence structure
between the two outcomes. In practice, the bivariate normal model (1) can be too restrictive,
as there are various dependence patterns between two outcomes. For example, to model
the luminosity function of galaxies, Takeuchi [16] pointed out that the FGM copula model
offers a more ideal shape than the normal copula model from a physical point of view.
Such a limitation motivates us to construct a general copula model that can describe various
dependence structures.

2.2. Copulas

This subsection prepares the basic terms on copulas that will subsequently be used.
A copula is a bivariate distribution function whose margins are uniformly distributed

on the unit interval [31,32]. Copulas are indispensable tools when modelling a depen-
dence structure between two random variables. We specifically consider the following
parametric copulas.

The normal copula: The copula function is

CNormal
ρ (u, v) = Φρ

{
Φ−1(u), Φ−1(v)

}
, −1 < ρ < 1, 0 < u, v < 1,

where Φρ(·, ·) is the cumulative distribution function (CDF) of the bivariate standard nor-
mal distribution with correlation ρ and Φ−1 is the inverse of the standard normal CDF Φ.
While this copula is easy to understand, it has a complex form involving two implicit functions
Φρ and Φ−1. The following two copulas provide simpler forms than the normal copula.

The Farlie–Gumbel–Morgenstern (FGM) copula [33]: The copula function is

CFGM
θ (u, v) = uv{1 + θ(1− u)(1− v)}, −1 ≤ θ ≤ 1, 0 < u, v < 1.

The FGM copula has a very simple form, and is a fundamental copula, which has been
extended to a variety of copulas, called the generalized FGM copulas [34–38].

The Clayton copula [39]: The copula function is

CClayton
α (u, v) = (u−α + v−α − 1)−1/α, α > 0, 0 < u, v < 1.

The Clayton copula is one of the simplest and most frequently used copulas in ap-
plications. The Clayton copula is derived from the gamma frailty model, leading to its
remarkable popularity in survival data analysis [22,40]. It has a lower tail dependence [31],
but is not tractable for modeling negative dependence.

The Gumbel copula [41]: The copula function is

CGumbel
β (u, v) = exp[−

{
(− log u)β + (− log v)β

}1/β
], β ≥ 1, 0 < u, v < 1.

The Gumbel copula is a popular copula with upper tail dependence [31]. The Gumbel
copula does not offer a negative dependence, as in the Clayton copula.

The Frank copula [42]: The copula function is

CFrank
γ (u, v) = − 1

γ
log
{

1 +
(e−γu − 1)(e−γv − 1)

e−γ − 1

}
, γ 6= 0, 0 < u, v < 1.

The Frank copula does not have tail dependence [31]. Unlike the Clayton and Gumbel
copulas, it can model both positive and negative dependences as the normal copula.

Under the null parameter (e.g., θ = 0), all the above copulas reduce to the indepen-
dence copula Π(u, v) = uv. As the parameter departs from the null, the dependence
gets stronger.

22



Symmetry 2022, 14, 186

We define the notations for partial derivatives (if they exist) as

C[j,k](u, v) =
∂j+k

∂uj∂vk C(u, v); j, k ∈ {0, 1, 2, . . .}.

For instance,

C[1,0](u, v) =
∂

∂u
C(u, v), C[0,1](u, v) =

∂

∂v
C(u, v), C[1,1](u, v) =

∂2

∂u∂v
C(u, v),

where C[1,1] is called the copula density.
The copula is symmetric if C[1,1](u, v) = C[1,1](1− u, 1− v). This means that the normal

and FGM copulas are symmetric while the Clayton and Gumbel copulas are asymmetric.
This symmetry should not be confused with the exchangeability C(u, v) = C(v, u). All the
aforementioned parametric copulas are exchangeable.

3. Proposed Methods

This section proposes a general copula-based approach for estimating a bivariate common
mean vector. We first define the bivariate copula model and provide sufficient conditions for the
copula parameter to be identifiable. We then develop a maximum likelihood estimator (MLE)
for the common mean vector. In addition, we derive the expression for the information matrix.

3.1. General Copula Model for the Common Mean

This subsection proposes a new model for estimating the common mean in bivariate
meta-analyses.

For i = 1, 2, . . . , n, let Yi = (Yi1, Yi2) be a random vector satisfying

Yi1 ∼ N
(

µ1, σ2
i1

)
, Yi2 ∼ N

(
µ2, σ2

i2

)
, µ ≡ E(Yi) =

[
E(Yi1)
E(Yi2)

]
=

[
µ1
µ2

]
,

Ωi ≡ Cov(Yi) =

[
Var(Yi1) Cov(Yi1, Yi2)

Cov(Yi1, Yi2) Var(Yi2)

]
=

[
σ2

i1 ρiσi1σi2
ρiσi1σi2 σ2

i2

]
.

Here, we call µ = (µ1, µ2) the ‘common mean vector’ since it is common across
i = 1, 2, . . . , n. Our target is the estimation of µ when Ωi, i = 1, 2, . . . , n are known. In
general, Ωi 6= Ωj for some i 6= j, and, therefore, the random vectors Yi, i = 1, 2, . . . , n are
independent but not identically distributed (i.n.i.d.). While the marginal normality is speci-
fied, the bivariate normality is unspecified. We only specify the equation Corr(Yi1, Yi2) = ρi,
where ρi is known.

We now specify a bivariate distribution for Yi. According to Sklar’s Theorem [43],
for copulas Cθi , i = 1, 2, . . . , n, we define the bivariate CDFs

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Cθi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
, i = 1, 2, . . . , n.

However, since ρi is known, the copula can be restricted. To see the problem clearly,
we define the correlation function ρC : Θ 7→ RC as

ρC(θ) = E
{(

Yi1 − µ1

σi1

)(
Yi2 − µ2

σi2

)}
=
∫ ∞

−∞

∫ ∞

−∞
z1z2dCθ{Φ(z1), Φ(z2)},

where RC ≡ {ρC(θ) : θ ∈ Θ} denotes the range of ρC that depends on the choice of Cθ.
The correlation function ρC does not depend on µ. For the copula to be useful in real
meta-analyses, θi has to be identifiable from ρi. This means that one has to be able to solve
the equation ρC(θ) = ρ. Now, we define our general copula model for a bivariate common
mean vector.
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Definition 1. (Copula-based common mean model): The copula-based common mean model is

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Cθi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
, i = 1, 2, . . . , n, (2)

where the copula parameter θi is identified by ρC(θi) = ρi for i = 1, 2, . . . , n.

To explain the flexibility and generality of our model, we give examples for Cθi .

Example 1. (the normal copula): Under the normal copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = CNormal
ρi

{
Φ

(
y1 − µ1

σi1

)
, Φ

(
y2 − µ2

σi2

)}
= Φρi

(
y1 − µ1

σi1
,

y2 − µ2

σi2

)
.

Under this model, the correlation function is the identity function ρCNormal(ρ) = ρ. In addition, one
has the copula parameter space ΘCNormal = (−1, 1) , and the range of correlations RCNormal = (−1, 1).
Without doubt, for any ρi ∈ (−1, 1) , the copula parameter can be identified.

Example 2. (the FGM copula): Under the FGM copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Φ
(

y1 − µ1

σi1

)
Φ
(

y2 − µ2

σi2

)[
1 + θi

{
1−Φ

(
y1 − µ1

σi1

)}{
1−Φ

(
y2 − µ2

σi2

)}]
.

Under this model, the correlation function is ρCFGM(θ) = θ/π for −1 ≤ θ ≤ 1 [44]. Thus,
the copula parameter is identified by θi = πρi, as long as ρi ∈ [−1/π, 1/π] ≈ [− 0.32, 0.32]. If
ρi /∈ [−1/π, 1/π], we suggest θi = −1 or θi = 1, using θi ≡ πρ∗i , where ρ∗i = min[−1/π,
max{ρi, 1/π}]. Hence, θi can still be identified by ρi. This boundary enforcement is illustrated in
Figure 1.
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in Figure 1. 

Figure 1. The boundary correction for the correlation coefficient under the bivariate FGM and Clay-
ton models. The first step forces the correlation 𝜌 to fall in a range that can be modeled by the 
chosen copula. The second step transforms the corrected correlation 𝜌∗ to the corresponding cop-
ula parameter. 

Example 3. (The Clayton copula): Under the Clayton copula, the model in Equation (2) becomes 

𝑃𝑟( 𝑌ଵ ≤ 𝑦ଵ, 𝑌ଶ ≤ 𝑦ଶ) = ൜𝛷 ൬𝑦ଵ − 𝜇ଵ𝜎ଵ ൰ିఈ + 𝛷 ൬𝑦ଶ − 𝜇ଶ𝜎ଶ ൰ିఈ − 1ൠିଵ/ఈ. 
for 𝛼 > 0. The correlation function does not have a closed-form, and is written as 𝜌Clayton(𝛼) = (𝛼 + 1) න න 𝑧ଵ𝑧ଶ𝜑(𝑧ଵ)𝜑(𝑧ଶ)𝛷(𝑧ଵ)ఈାଵ𝛷(𝑧ଶ)ఈାଵ{𝛷(𝑧ଵ)ିఈ + 𝛷(𝑧ଶ)ିఈ − 1 }ଵ/ఈାଶ 𝑑𝑧ଵ𝑑𝑧ଶஶ
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Figure 1. The boundary correction for the correlation coefficient under the bivariate FGM and
Clayton models. The first step forces the correlation ρi to fall in a range that can be modeled by
the chosen copula. The second step transforms the corrected correlation ρ∗i to the corresponding
copula parameter.

Example 3. (The Clayton copula): Under the Clayton copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) =

{
Φ

(
y1 − µ1

σi1

)−αi

+ Φ

(
y2 − µ2

σi2

)−αi

− 1

}−1/αi

.

for αi > 0. The correlation function does not have a closed-form, and is written as
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ρCClayton(α) = (α + 1)
∫ ∞

−∞

∫ ∞

−∞

z1z2 ϕ(z1)ϕ(z2)

Φ(z1)
α+1Φ(z2)

α+1
{

Φ(z1)
−α + Φ(z2)

−α − 1
}1/α+2 dz1dz2.

It is known that limα→0ρCClayton(α) = 0 and limα→∞ρCClayton(α) = 1. In addition, if α2 ≥ α1 then

CClayton
α2 (u, v) ≥ CClayton

α1 (u, v) for all u, v ∈ (0, 1) [45]. Then, we conclude that the range of the
correlation is RCClayton = (0, 1). Thus, one can identify by solving ρCClayton(αi) = ρi numerically if
ρi > 0. If ρi ≤ 0 , we suggest the independence model (Figure 1)

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = Φ

(
y1 − µ1

σi1

)
Φ

(
y2 − µ2

σi2

)
.

Example 4. (The Gumbel copula): Under the Gumbel copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = exp


−

[{
− log Φ

(
y1 − µ1

σi1

)}βi

+

{
− log Φ

(
y2 − µ2

σi2

)}βi
]1/βi




for βi ≥ 1. Similar to the Clayton copula, the correlation function does not have a closed-form, and is
not displayed here. It is known that ρCGumbel(1) = 0 and limβ→∞ρCGumbel(β) = 1. If ρi < 0 , we
suggest the independence model as in the Clayton copula.

Example 5. (The Frank copula): Under the Frank copula, the model in Equation (2) becomes

Pr(Yi1 ≤ y1, Yi2 ≤ y2) = −
1
γi

log


1 +

[
exp

{
−γiΦ

(
y1−µ1

σi1

)}
− 1
][

exp
{
−γiΦ

(
y2−µ2

σi2

)}
− 1
]

e−γi − 1




for γi 6= 0. Again, the correlation function does not have a closed-form, and is not displayed here.
It is known that limγ→−∞ρCFrank(γ) = −1 and limγ→∞ρCFrank(γ) = 1. Thus, the Frank copula
parameter does not require boundary correction.

3.2. Statistical Inference Methods

This subsection develops statistical inference methods under the proposed model.
We propose the MLE for µ under the general copula model (Definition 1) in Equation (2).

Suppose that the copula density C[1,1]
θ exists. Then, the joint density of Yi is

fi,µ(y) =
∂2

∂y1∂y2
Pr(Yi1 ≤ y1, Yi2 ≤ y2) =

1
σi1σi2

ϕ

(
y1 − µ1

σi1

)
ϕ

(
y2 − µ2

σi2

)
C[1,1]

θi

{
Φ

(
Y1 − µ1

σi1

)
, Φ

(
Y2 − µ2

σi2

)}
.

where y = (y1, y2) and ϕ(·) is the density of N(0, 1). Given the samples, the log-likelihood
function is

`n(µ) = constant +
n

∑
i=1

log
[

C[1,1]
θi

{
Φ

(
Yi1 − µ1

σi1

)
, Φ

(
Yi2 − µ2

σi2

)}]
− 1

2

2

∑
j=1

n

∑
i=1

(
Yij − µj

σij

)2

.

The MLE of the common mean vector is defined as

µ̂n =

[
µ̂n,1
µ̂n,2

]
= argmax

µ∈R2
`n(µ),

where R = (−∞, ∞) is a real line. The MLE does not have a closed-form expression except
for the normal copula. Thus, the MLE can also be obtained by the Newton–Raphson
algorithm or some software functions (e.g., the R functions optim or nlm). One may also
apply our R package CommonMean.Copula [26], which will be explained in Section 6.
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3.3. Information Matrix

For the MLE to be well-behaved, it is necessary to show that the (Fisher) information
matrix exists and is non-singular. In other words, the MLE, without verifying these conditions,
may have some problems, e.g., the non-existence, inconsistency, or inefficiency of the MLE.
Furthermore, the information matrix describes how a copula influences the MLE.

We define the 2× 2 information matrix Ii(µ) for i = 1, 2, . . . , n as

Ii,jk(µ) = E

{
∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}
, j, k = 1, 2.

The following theorem gives the formula of the information matrix.

Lemma 1. If C[3,1]
θ , C[1,3]

θ , and C[2,2]
θ exist in (0, 1)2, for each i, the following equalities hold

E

{
∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}
= E

{
−∂2 log fi,µ(Yi)

∂µj∂µk

}
; j, k = 1, 2.

The proof of Lemma 1 is given in Appendix A.1.
Many copulas have C[3,1]

θ , C[1,3]
θ , and C[2,2]

θ in (0, 1)2, such as the normal, FGM, and Clayton
copulas (Appendix A.2.). The following theorem gives the formula of the information matrix.

Theorem 1. Under the copula-based model (Definition 1), the information matrix does not depend
on µ. Furthermore, if C[3,1]

θ , C[1,3]
θ , and C[2,2]

θ exist in (0, 1)2, it can be decomposed into the sum of
the information matrix for the independent model and the additional information by the copula,

Ii =




1
σ2

i1
0

0 1
σ2

i2


+




1
σ2

i1
E11

C (θi)
1

σi1σi2

{
E12

C (θi)− ρC(θi)
}

1
σi1σi2

{
E12

C (θi)− ρC(θi)
} 1

σ2
i2

E22
C (θi)


, (3)

where

E11
C (θi) = E





ϕ(Zi1)C
[2,1]
θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}





2

,

E22
C (θi) = E





ϕ(Zi2)C
[1,2]
θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}





2

,

E12
C (θi) = E


 ϕ(Zi1)ϕ(Zi2)C

[2,1]
θi
{Φ(Zi1), Φ(Zi2)}C[1,2]

θi
{Φ(Zi1), Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1), Φ(Zi2)}2


.

Theorem 1 can be proved by straightforward calculations as Lemma 1 (Appendix A.1.).
Theorem 1 helps us interpret the role of the copula Cθi on the information matrix.

Theorem 2. The determinant of Ii can be expressed as

det(Ii) =
1

σ2
i1σ2

i2

{
E11

C (θi)E22
C (θi)− E12

C (θi)
2
}

+ 1
σ2

i1σ2
i2

{
E11

C (θi) + E22
C (θi) + 2ρC(θi)E12

C (θi)}+ 1
σ2

i1σ2
i2

{
1− ρC(θi)

2
}

.

In addition, det(Ii) > 0 and Ii is positive definite.
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Proof of Theorem 2. The expression of det(Ii) is obtained by straightforward calculations.
Clearly, we have |ρC(θi)| < 1. Then, by the Cauchy-Schwarz inequality,

E11
C (θi)E22

C (θi) ≥ E12
C (θi)

2.

Furthermore, by the arithmetic-geometric mean inequality, we have

E11
C (θi) + E22

C (θi) ≥ 2
{

E11
C (θi)E22

C (θi)
}1/2

≥ 2
∣∣∣E12

C (θi)
∣∣∣ > 2

∣∣∣ρC(θi)E12
C (θi)

∣∣∣.

Then we obtain det(Ii) > 0. Since E11
C (θi)/σ2

i1 + 1/σ2
i1 > 0, both the upper left 1× 1

and 2× 2 determinants of Ii are positive. Thus, Ii is positive definite. �
Based on Theorem 1, one can derive the information matrix Ii(µ) for parametric

copulas. Below, we show examples of the normal, FGM, and Clayton copulas.

Example 6. (The normal copula): Under the normal copula

E11
CNormal(ρi) = E22

CNormal(ρi) =
ρ2

i
1− ρ2

i
, E12

CNormal(ρi) = −
ρ3

i
1− ρ2

i
.

Then, by Theorem 1, the information matrix in Equation (3) becomes

Ii =




1
σ2

i1
0

0 1
σ2

i2


+




1
σ2

i1

ρ2
i

1−ρ2
i

1
σi1σi2

(
− ρ3

i
1−ρ2

i
− ρi

)

1
σi1σi2

(
− ρ3

i
1−ρ2

i
− ρi

)
1

σ2
i2

ρ2
i

1−ρ2
i




= 1
1−ρ2

i




1
σ2

i1
− ρi

σi1σi2

− ρi
σi1σi2

1
σ2

i2


 = Ω−1

i .

and its determinant is det(INormal
i ) = 1/

(
σ2

i1σ2
i2
)
. Clearly, INormal

i is positive definite.

Example 7. (The FGM copula): Under the FGM copula

E11
CFGM(θi) = E22

CFGM(θi) = 4θ2
i

∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
3{1− 2Φ(z2)}2 ϕ(z2)

1 + θi{1− 2Φ(z1)}{1− 2Φ(z2)}
dz1dz2,

E12
CFGM(θi) = 4θ2

i

∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
2{1− 2Φ(z1)}ϕ(z2)

2{1− 2Φ(z2)}
1 + θi{1− 2Φ(z1)}{1− 2Φ(z2)}

dz1dz2, ρCFGM(θ) =
θ

π
.

Then, by Theorem 1, the information matrix in Equation (3) becomes

IFGM
i =




1
σ2

i1
0

0 1
σ2

i2


+




1
σ2

i1
E11

CFGM(θi)
1

σi1σi2
E12

CFGM(θi)− θi
πσi1σi2

1
σi1σi2

E12
CFGM(θi)− θi

πσi1σi2
1

σ2
i2

E22
CFGM(θi)


.

By Theorem 2, its determinant is

det(Ii) =
1

σ2
i1σ2

i2

{
E11

CFGM(θi)
2 − E12

CFGM(θi)
2
}

+ 2
σ2

i1σ2
i2

{
E11

CFGM(θi) +
θi
π E12

CFGM(θi)
}
+ 1

σ2
i1σ2

i2

(
1− θ2

i
π2

)
.

This result agrees with [3] who considered the FGM model.

Example 8. (The Clayton copula): Under the Clayton copula
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E11
CClayton(αi) = E22

CClayton(αi) = (αi + 1)
∫ ∞

−∞

∫ ∞

−∞

ϕ(z1)
3 ϕ(z2)

{
αiΦ(z1)

−αi − (αi + 1)Φ(z2)
−αi + (αi + 1)

}2

Φ(z1)
αi+3Φ(z2)

αi+1
{

Φ(z1)
−αi + Φ(z2)

−αi − 1
}1/αi+4 dz1dz2,

E12
CClayton(αi) =

∫ ∞
−∞

∫ ∞
−∞

ϕ(z1)
2{αiΦ(z1)

−αi−(αi+1)Φ(z2)
−αi+(αi+1)}

Φ(z1)
αi+2{Φ(z1)

−αi+Φ(z2)
−αi−1}1/2αi+2

× ϕ(z2)
2{αiΦ(z2)

−αi−(αi+1)Φ(z1)
−αi+(αi+1)}

Φ(z2)
αi+2{Φ(z1)

−αi+Φ(z2)
−αi−1 }1/2αi+2 dz1dz2,

ρCClayton(αi) = (αi + 1)
∫ ∞

−∞

∫ ∞

−∞

z1z2 ϕ(z1)ϕ(z2)

Φ(z1)
αi+1Φ(z2)

αi+1
{

Φ(z1)
−αi + Φ(z2)

−αi − 1
}1/αi+2 dz1dz2.

Then, by Theorems 1 and 2, we obtain IClayton
i anddet(IClayton

i ) accordingly.

4. Asymptotic Theory

To assess the sampling variability of µ̂n, its asymptotic distribution is presented in this
section.

A technical burden comes from the fact that our samples Yi, i = 1, 2, . . . , n are in-
dependent and non-identically distributed (i.n.i.d.) owing to heterogeneous variances
(Ωi 6= Ωj, i 6= j). The existence of the asymptotic distribution requires the stabilization of
the information matrix [3,46,47] in large samples. For the asymptotic variance of µ̂n, to be
defined, we assume the existence of a 2× 2 positive definite matrix I ≡ limn→∞ ∑n

i=1 Ii/n.

We further assume that the copula’s derivatives C[4,1]
θ , C[3,2]

θ , C[2,3]
θ , and C[1,4]

θ exist in (0, 1)2.
With these conditions and many other technical conditions given in [48], we establish the
consistency and asymptotic normality of µ̂n:

Theorem 3. Under the copula model (Definition 1), if some regularity conditions hold, then

(a) Existence and consistency: With probability tending to one, there exists the MLE
µ̂n = (µ̂n,1, µ̂n,2) such that µ̂n → pµ , as n→ ∞ ;

(b) Asymptotic normality: n1/2(µ̂n − µ)→ dN
(
0, I−1) , as n→ ∞ .

The proof of Theorem 3 and the required regularity conditions are given in the Ph.D
dissertation of [48]. The proof approximates n1/2(µ̂n − µ) by the sum of independent
random variables, and then applies the weak law of large numbers for i.n.i.d. random
variables from Theorem 1.14 in [49] and the Lindeberg–Feller multivariate central limit
theorem from Proposition 2.27 in [50]. The proof is fairly technical, but similar to those of
Theorem 6.5.1 in [51], Theorem 1 in [47], and Theorem 5.1 in [3].

5. SE and Confidence Sets

As Section 4 has established the asymptotic theory to evaluate the variability of the
proposed MLE, we can derive the SE, confidence interval (CI), and confidence ellipse (CE).

Let g : R2 7→ R be a differentiable function, and g(µ) be the parameter of interest. For
instance, g(µ) = µ1 and g(µ) = µ2 − µ1 can be considered. The SE of g(µ̂n) is

SE{g(µ̂n)} =


{

∂g(µ)
∂µ

}T{
−∂2`n(µ)

∂µ∂µT

}−1{
∂g(µ)

∂µ

}∣∣∣∣∣
µ=µ̂n




1/2

.
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This formula is based on the delta method and the large sample approximation

I ≈ 1
n

n

∑
i=1

Ii ≈ −
1
n

∂2`n(µ)

∂µ∂µT

∣∣∣∣
µ=µ̂n

.

The 95% CI for g(µ) is g(µ̂n)± 1.96× SE{g(µ̂n)}.
Moreover, based on Theorem 3, we construct a 95% CE for µ:

CE =

{
µ : (µ̂n − µ)T

(
−∂2`n(µ)

∂µ∂µT

∣∣∣∣
µ=µ̂n

)
(µ̂n − µ) ≤ χ2

df=2,0.95

}
,

where χ2
df=2,0.95 is be the 95% point of the χ2-distribution with two degrees of freedom.

6. R Package

We implement the proposed methods in an R package CommonMean.Copula [26].
R users can easily compute the MLE with its SE and 95% CI under the FGM, Clayton,
Gumbel, Frank, and normal copulas. In this package, the log-likelihood is maximized by
the R optim function, where the initial values are set as the univariate estimators

µ
(0)
j =

(
n

∑
i=1

1
σ2

ij

)−1 n

∑
i=1

Yij

σ2
ij

, j = 1, 2.

For illustration, we fitted the Clayton copula by the following R codes:
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Here, $CommonMean1 shows µ̂
Clayton
n,1 = 33.95, SE(µ̂Clayton

n,1 ) = 0.439, and the 95% CI

(33.089, 34.812); $CommonMean2 is similar. $V shows the covariance matrix Cov(µ̂Clayton
n ).

$‘Log-likelihood values’ shows `Clayton
n (µ̂

Clayton
n ) = −285.65. One can fit other copulas

by changing “Clayton” to “FGM”, “Gumbel”, “Frank”, or “normal”.

7. Simulation Studies

We conducted Monte Carlo simulations to examine the accuracy of the proposed
methods. We report the results for the Clayton copula; more results are available from [48].

We generated Yi, i = 1, 2, . . . , n, under the Clayton copula with αi ∼ Gamma(64, 1/8),
Gamma(4, 1/2), or Gamma(1, 1), leading to E[αi] = 8, E[αi] = 2, or E[αi] = 1, respectively.
In all three cases, we have Var[αi] = 1. Without loss of generality, we set µ = (0, 0).
To set σ2

i1 and σ2
i2, we followed the simulation setting of [52]. That is, σ2

i1, σ2
i2 ∼ χ2

d f=1/4,

restricted in the interval [0.009, 0.6]. This setting leads to E
[
σ2

i1]= E[σ2
i2
]
= 0.173. Based

on the generated data, we computed µ̂
Clayton
n,1 , µ̂

Clayton
n,2 − µ̂

Clayton
n,1 , and µ̂

Clayton
n , and their

SEs and 95% CIs (CEs) by using the R function CommonMean.Copula (Section 6). We then
evaluated the coverage probability (CP) of the 95% CI (CE) to see how the confidence set
can cover the true value. We consider a small sample size n ∈ {5, 10, 15} and a large sample
size n ∈ {50, 100, 300}. Our simulations are based on 1000 repetitions.

Table 1 summarizes the results. For µ̂
Clayton
n,1 and µ̂

Clayton
n,2 − µ̂

Clayton
n,1 , the SDs of the

estimates decrease when n increases from n = 5 to n = 300. We report the boxplots
summarizing the 1000 repetitions for µ̂

Clayton
n,1 in Figure 2. This clearly visualizes how the

variability of the estimates vanishes as the sample sizes increase. Table 1 also shows that
the SDs are close to the average SEs, except for n = 5 (due to the very small samples).
Consequently, the CPs are close enough to the nominal level of 0.95, especially when sample
sizes are large, which is consistent with our asymptotic theories. For µ̂

Clayton
n , the CPs of

the 95% CEs are also reasonably close to the nominal level. In summary, the proposed
estimators and the asymptotic theory work fairly well in finite samples.

Table 1. Simulation results based on 1000 repetitions.

^
µ

Clayton

n,1
^
µ

Clayton

n,2 −^
µ

Clayton

n,1
^
µ

Clayton

n

Parameters n SD SE CP SD SE CP CP

E[αi] = 8 5 0.064 0.046 0.888 0.042 0.033 0.885 0.859
10 0.033 0.026 0.913 0.023 0.019 0.931 0.894
15 0.021 0.019 0.933 0.015 0.014 0.936 0.919
50 0.010 0.009 0.952 0.007 0.007 0.954 0.950
100 0.007 0.006 0.955 0.005 0.005 0.943 0.944
300 0.004 0.004 0.948 0.003 0.003 0.942 0.948

E[αi] = 2 5 0.105 0.092 0.938 0.100 0.086 0.920 0.909
10 0.061 0.057 0.937 0.060 0.055 0.929 0.919
15 0.049 0.045 0.938 0.045 0.042 0.943 0.930
50 0.023 0.023 0.959 0.022 0.021 0.944 0.943
100 0.016 0.016 0.942 0.015 0.015 0.957 0.950
300 0.009 0.009 0.946 0.008 0.008 0.946 0.949

E[αi] = 1 5 0.115 0.105 0.932 0.128 0.120 0.935 0.922
10 0.069 0.068 0.950 0.079 0.075 0.937 0.937
15 0.058 0.053 0.941 0.062 0.058 0.947 0.937
50 0.028 0.027 0.942 0.029 0.030 0.955 0.943
100 0.019 0.019 0.942 0.021 0.020 0.936 0.945
300 0.010 0.011 0.958 0.011 0.012 0.960 0.959

SD = standard deviation, SE = standard error, CP = coverage probability of the 95% CI (CE).
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Figure 2. The boxplots summarizing the 1000 repetitions for µ̂
Clayton
n,1 with true parameter µ1 = 0

under the copula parameters E[αi] = 8, E[αi] = 2, or E[αi] = 1. The sample size varies from n = 5
to n = 300.

8. Data Analysis

We analyze two real datasets to illustrate the usefulness of the proposed methods.

8.1. The Entrance Exam Data

The first dataset we analyzed was the entrance exam scores on mathematics and
statistics, which was introduced by [3]. The data come from undergrad students who
took written exams from 2013 to 2017 to enter the Graduate Institute of Statistics, National
Central University, Taiwan. The possible score range is from 0 to 100 for both subjects. Let
i = 1, 2, . . . , 5 be indices for years 2013, 2014, . . . , 2017. Table 2 provides the data, including
the values of mathematics (Yi1 = mean math score) and statistics (Yi2 = mean stat score),
and their covariance matrix (Ωi).

Table 2. The entrance exam data from [3].

i Year
Mean Math Score

(Yi1)
Mean Stat Score

(Yi2)
Covariance Matrix

(Ωi)
Copula Parameter

ρi θi αi βi γi

1 2013 35.17 30.41
[

1.77 0.89
0.89 2.99

]
0.38 1.00 0.67 1.34 2.68

2 2014 23.43 31.63
[

1.89 1.76
1.76 3.61

]
0.67 1.00 1.92 1.90 6.00

3 2015 30.74 48.11
[

2.15 2.12
2.12 6.13

]
0.58 1.00 1.37 1.65 4.67

4 2016 50.91 65.22
[

3.87 2.91
2.91 5.02

]
0.66 1.00 1.82 1.85 5.76

5 2017 61.62 40.22
[

3.17 2.10
2.10 3.29

]
0.65 1.00 1.75 1.83 5.60

ρi = the Pearson correlation; θi = the FGM copula parameter; αi = the Clayton copula parameter; βi = the Gumbel
copula parameter; γi = the Frank copula parameter.

We fitted the data to the proposed model using the R function CommonMean.Copula(.)
in our R package (Section 6). Table 3 summarizes the fitted results for the FGM, Clay-
ton, Gumbel, Frank, and normal copulas. According to the values of the log-likelihood,
the Gumbel copula produces the best fit, the Frank copula the second best, and the bivariate
normal model the worst fit. The FGM copula failed to capture the dependence and fitted at
the boundary θi = 1 for all i (Table 2).
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Table 3. Estimation results for the entrance exam data.

Copula Math: Estimate (95% CI) Stat: Estimate (95% CI) Log-likelihood CV

FGM 37.16 (35.85, 38.47) 41.17 (39.65, 42.70) −291.80 2723.91
Clayton 32.56 (31.71, 33.40) 43.80 (42.55, 45.05) −322.84 2644.03
Gumbel 37.67 (36.30, 39.03) 42.56 (40.79, 44.33) −279.28 2860.21
Frank 37.23 (35.97, 38.49) 39.76 (38.13, 41.40) −287.63 2738.09

Normal 35.83 (34.51, 37.16) 38.64 (36.94, 40.34) −342.65 2773.41

Since the number of unknown parameters across different copulas is the same, model
selection by the Akaike information criterion (AIC) is equivalent to model selection by the
log-likelihood value. An alternative way of selecting a copula is based on a leave-one-out
cross validation (CV), defined as

CV =
n

∑
i=1
{
(

Yi1 − µ̂
(−i)
n,1

)2
+
(

Yi2 − µ̂
(−i)
n,2

)2
},

where µ̂
(−i)
n,1 and µ̂

(−i)
n,2 are the MLE obtained without the ith sample. Here, CV measures

how a sample is predicted by the others under a copula model. A smaller CV corresponds
to a better performance of the model.

Table 3 reports the values of CV for each copula. It shows that the Clayton copula
has the best performance while the Gumbel copula has the worst. The normal copula has
the second worst performance. Overall, our analysis clearly shows the insufficiency of the
bivariate normal model.

Figure 3 shows the 95% CEs for the mean vector µ. This visualizes how the resultant
estimates vary from the choice of copulas. Interestingly, the CE under the Clayton copula
is far away from the other four, although it has a larger log-likelihood value than the
normal copula. The normal and Clayton copulas produce the rotated oval shape of the CEs,
representing a positive dependence between math and stat scores. The FGM and Gumbel
copulas produce similar shapes for their CE. We adopt the 95% CE given by the Gumbel
copula because it has the largest log-likelihood value.

Figure 4 gives the 3D plot of the log-likelihood surface under the Gumbel copula
model. The plot shows that the estimate of the common mean µ̂Gumbel

n = (37.67, 42.56)
attains the global maximum of the log-likelihood function.
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8.2. The Blood Pressure Data

The second dataset we used contains 10 studies that examined the effectiveness of
hypertension treatment for lowering blood pressure. Each study provides complete data
on two treatment effects, the difference in systolic blood pressure (SBP) and diastolic blood
pressure (DBP) between the treatment and the control groups, where these differences
are adjusted for the participants’ baseline blood pressures. The within-study correlations
of the two outcomes range from ρi = 0.45 to ρi = 0.78, exhibiting positive dependence.
This dataset is available in R package mvmeta [30] and was previously analyzed by [53].

We fitted the data to the proposed copula models using the R function Common-
Mean.Copula(.) in our R package (Section 6). Table 4 summarizes the fitted results for all
the copulas. Based on the log-likelihood values, the Frank copula produces the best fit, the
Gumbel copula the second best, and the Clayton copula produces the worst fit. The FGM
copula failed to capture the dependence and fitted at the boundary θi = 1 for all i. Again,
our analysis reveals the insufficiency of the bivariate normal model; the Frank copula best
captured the correlations in the blood pressure data. We also compared CV across all
the copulas (Table 4). The results show that the Clayton copula has the best performance
while the normal copula has the worst. Again, our analysis shows the insufficiency of the
normal model.

Table 4. Estimation results for the blood pressure data.

Copula SBP: Estimate (95% CI) DBP: Estimate (95% CI) Log-likelihood CV

FGM −9.18 (−9.32, −9.04) −3.94 (−4.00, −3.89) −530.29 177.23
Clayton −9.53 (−9.70, −9.36) −4.34 (−4.38, −4.29) −787.02 163.04
Gumbel −8.99 (−9.16, −8.83) −3.94 (−4.00, −3.89) −514.67 184.67
Frank −9.20 (−9.40, −9.00) −3.94 (−3.99, −3.88) −513.34 179.81

Normal −8.43 (−8.60, −8.25) −3.95 (−4.01, −3.90) −771.82 206.49

SBP = the difference in systolic blood pressure; DBP = the difference in diastolic blood pressure.

Figure 5 shows the 95% CEs for the mean vector µ. The CE under the Clayton and
normal copula are far away from the other three. The CE under the FGM copula was almost
fully covered by the CE under the Frank copula. We adopt the 95% CE given by the Frank
copula, since it has the largest log-likelihood value (Table 4).
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Figure 6 depicts the 3D plot of the log-likelihood surface under the Frank copula
model. The plot shows that the estimate of the common mean µ̂Frank

n = (−9.20,−3.94)
attains the global maximum of the log-likelihood function.
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⎡ 1𝜆ଵଶ 00 1𝜆ଶଶ⎦⎥⎥⎥

⎤ + ⎣⎢⎢⎢
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⎤, (5)

where 𝜙(𝛼) = 13𝛼 + 1 + 12(3𝛼 + 1)(2𝛼 + 1) ൜𝛹 ൬ 12𝛼൰ − 𝛹 ൬𝛼 + 12𝛼 ൰ൠ ,   𝛹(𝛼) = 𝑑ଶ log 𝛤 (𝛼)𝑑𝛼ଶ . 
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Figure 6. The 3D plot of the log-likelihood value under the Frank copula based on the blood pressure
data. The maximum occurs at µ̂Frank

n = (−9.20,−3.94).

9. Extension to Non-Normal Models

So far, we have considered a common mean model under the marginal normality.
This section explains how the proposed methods can be extended to non-normal models.
For this reason, we specifically consider a common mean model under the marginal
exponential distributions.

_
Fj(y) ≡ Pr(Yij > y) = exp(−λjy), y > 0, λj > 0, j = 1, 2.

Thus, the common mean vector is µ = (1/λ1, 1/λ2).
We consider the Clayton copula to specify the bivariate distribution because it has

simple derivatives with respect to the copula parameter [54]. Therefore, we propose a
bivariate common mean Clayton copula model with exponential margins as follows:

Pr(Yi1 > y1, Yi2 > y2) = CClayton
αi

{ _
F1(y1),

_
F2(y2)

}
= {exp(αiλ1y1) + exp(αiλ2y2)− 1}−1/αi , (4)

where αi is known for i = 1, 2, . . . , n. Note that copula CClayton
αi is a survival copula for

(Yi1, Yi2) as the usual way to model a survival function [22]. Using similar arguments to [55],
the information matrix with respect to λ = (λ1, λ2) can be decomposed as

Ii(λ) =




1
λ2

1
0

0 1
λ2

2


+




2α2
i (αi+1)

λ2
1(3αi+1)

− αi(2αi+1)
λ1λ2

φ(αi)

− αi(2αi+1)
λ1λ2

φ(αi)
2α2

i (αi+1)
λ2

2(3αi+1)


, (5)

where

φ(α) =
1

3α + 1
+

1
2(3α + 1)(2α + 1)

{
Ψ

(
1

2α

)
−Ψ

(
α + 1

2α

)}
, Ψ(α) =

d2 log Γ(α)

dα2 .

See Appendix A.3. for detailed derivations. The expression of Ii(λ) is an extension of
Theorem 3 to the exponential model. With the information matrix, the properties of the
MLE and the asymptotic theory are similar to the normal models.
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We conducted Monte Carlo simulations to examine the correctness of Equation (5) by
comparing it with their empirical version. We set λ1 = λ2 = 1 and αi = 1 for all i. We
generated data (Yi1, Yi2), i = 1, . . . , n from the model in Equation (4) and computed the
empirical versions of Ii,11(λ) and Ii,12(λ) as

1
n

n

∑
i=1

∂2 log f Clayton
i,λ (Yi1, Yi2)

∂λ2
1

,
1
n

n

∑
i=1

∂2 log f Clayton
i,λ (Yi1, Yi2)

∂λ1∂λ2
.

The formulas for the derivatives of the log-density are found in Equations (A1) and (A2) in
Appendix A.3. Our simulations were based on 1000 repetitions with n ∈ {100, 200, 300, 400, 500}.

Figure 7 depicts the simulation results based on 1000 repetitions. It clearly shows
that the empirical versions are scattered around the theoretical values of Ii,11(λ) = 2
and Ii,12(λ) = −1.16. The variability of the empirical versions vanishes as n increases.
The simulation results assert the correctness of Equation (5).
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Figure 7. The boxplots summarizing the 1000 repetitions for the empirical versions of Ii,11(λ) = 2 and
Ii,12(λ) = −1.16 (dashed lines) under the Clayton copula model in Equation (4) with parameter = 1.
The sample size varies from n = 100 to n = 300.

10. Conclusions

At present, copula models are very popular in all areas of science. Bivariate meta-
analyses are among those research areas that require sophisticated copula-based methods
and theories. Nonetheless, there are only a few studies on copula-based bivariate meta-
analysis from a methodological/theoretical perspective. This article fully develops the
methodologies and theories of the copula-based bivariate meta-analysis, specifically for
estimating the common mean vector. These developments will provide solid methodologi-
cal/theoretical bases that are not available to date.

In this article, we emphasize the flexibility of the proposed copula models that allow
for a variety of dependence structures. In the two real data examples, we employed
the log-likelihood value as a criterion for model selection (Section 8). Even if the best
copula is selected, it still raises the issue of goodness-of-fit, which is difficult to assess
under the meta-analysis setting. The classical methods, such as Kolmogorov–Smirnov
or Cramér–von Mises type statistics, cannot be directly applied to the non-identically
distributed samples for which the empirical distribution function is difficult to interpret.
Therefore, the development of goodness-of-fit tests is a possible research direction.

The fundamental assumption made in the proposed model is the common mean
model, with known within-study correlations. The common mean assumption, although
convenient for summarizing the data for a small number of studies [56], may not always
hold in real meta-analyses [6]. Therefore, the extension of the proposed estimator to random
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means (random-effects models) or ordered means [57,58] is an important direction for future
research. To model the random effects, we need another bivariate copula. The estimation
problem for these hierarchical copula-based models is beyond the scope of the paper.
Nonetheless, the results presented in this paper serve as fundamental knowledge before
the exploration of more advanced models.
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Appendix A

Appendix A.1. Proof of Lemma 1

We first prepare a lemma:

Lemma A1. Under the general copula model (Definition 1), if C[2,2]
θ exists in (0, 1)2, the correlation

function has alternative expressions

ρC(θi) = E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

= E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

= E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
,

where Zi1 and Zi2 have the joint density

fi(z1, z2) = ϕ(z1)ϕ(z2)C
[1,1]
θi
{Φ(z1), Φ(z2)}.

Proof of Lemma A1. We only prove the first identity for illustration. If C[2,2]
θ exists, then

ρC(θi) =
∫ ∞
−∞ z2 ϕ(z2)

∫ ∞
−∞ z1 ϕ(z1)C

[1,1]
θi
{Φ(z1), Φ(z2)}dz1dz2

=
∫ ∞
−∞ z2 ϕ(z2)

∫ ∞
−∞ ϕ(z1)

2C[2,1]
θi
{Φ(z1), Φ(z2)}dz1dz2,
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where the last equality follows from Stein’s identity. Thus, we obtain

ρC(θi) =
∫ ∞
−∞

∫ ∞
−∞ z2 ϕ(z2)ϕ(z1)

2C[2,1]
θi
{Φ(z1), Φ(z2)}dz1dz2

=
∫ ∞
−∞

∫ ∞
−∞ z2 ϕ(z1)

C[2,1]
θi
{Φ(z1),Φ(z2)}

C[1,1]
θi
{Φ(z1),Φ(z2)}

fi(z1, z2)dz1dz2

= E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
.

The proof completes. �

Lemma A1 is a generalization of Lemma 3.2 in [3].
Now, we prove Lemma 1 for j = 1 and k = 2. If C[2,2]

θ exists, by straightforward
calculations,

E
{

∂ log fi,µ(Yi)

∂µj

∂ log fi,µ(Yi)

∂µk

}

= 1
σi1σi2

(
E(Zi1Zi2)− E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

−E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

+E

[
ϕ(Zi1)ϕ(Zi2)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}C[1,2]

θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}2

])
.

On the other hand,

E
{
− ∂2 log fi,µ(Yi)

∂µj∂µk

}

= 1
σi1σi2

(
E

[
ϕ(Zi1)ϕ(Zi2)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}C[1,2]

θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}2

]

−E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

])
.

Based on the above results, it suffices to show

E(Zi1Zi2)− E

[
Zi2 ϕ(Zi1)C

[2,1]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

−E

[
Zi1 ϕ(Zi2)C

[1,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]

+E

[
ϕ(Zi1)ϕ(Zi2)C

[2,2]
θi
{Φ(Zi1),Φ(Zi2)}

C[1,1]
θi
{Φ(Zi1),Φ(Zi2)}

]
= 0

which is asserted by Lemma A1. Hence, the proof is completed. �

Appendix A.2. Derivatives for Copulas

The normal copula:

CNormal [1,1]
ρ (u, v) =

1√
1− ρ2

exp

{
−ρ2Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}
,
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CNormal [2,1]
ρ (u, v) =

√
2π√

1− ρ2
exp

{(
1− 2ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
{

ρΦ−1(v)
1− ρ2 −

ρ2Φ−1(u)
1− ρ2

}
,

CNormal [2,2]
ρ (u, v) =

2π√
1− ρ2

exp

{(
1− 2ρ2)Φ−1(u)2

2(1− ρ2)
−
(
1− 2ρ2)Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{

ρΦ−1(u)
1− ρ2 −

ρ2Φ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
+

ρ

1− ρ2

]
,

CNormal [3,1]
ρ (u, v) =

2π√
1− ρ2

exp

{(
2− 3ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

]
,

CNormal [3,2]
ρ (u, v) =

(2π)3/2
√

1− ρ2
exp

{(
2− 3ρ2)Φ−1(u)2

2(1− ρ2)
−
(
1− 2ρ2)Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

+
ρ

1− ρ2

{
ρΦ−1(v)

1− ρ2 +
ρ2Φ−1(u)

1− ρ2

}
+

ρ

1− ρ2

{(
1− 2ρ2)Φ−1(u)

1− ρ2 +
ρΦ−1(v)

1− ρ2

}]
,

CNormal [4,1]
ρ (u, v) =

(2π)3/2
√

1− ρ2
exp

{(
3− 4ρ2)Φ−1(u)2

2(1− ρ2)
− ρ2Φ−1(v)2

2(1− ρ2)
+

ρΦ−1(u)Φ−1(v)
1− ρ2

}

×
[{(

1− 2ρ2)Φ−1(u)
1− ρ2 +

ρΦ−1(v)
1− ρ2

}{
ρΦ−1(v)

1− ρ2 −
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

+
1− 2ρ2

1− ρ2

{
ρΦ−1(v)

1− ρ2 +
ρ2Φ−1(u)

1− ρ2

}
− ρ2

1− ρ2

{(
1− 2ρ2)Φ−1(u)

1− ρ2 +
ρΦ−1(v)

1− ρ2

}]
.

The FGM copula:

CFGM [1,1]
θ (u, v) = 1 + θ(1− 2u)(1− 2v), CFGM [2,1]

θ (u, v) = −2θ(1− 2v),

CFGM [2,2]
θ (u, v) = 4θ, CFGM [3,1]

θ (u, v) = CFGM [3,2]
θ (u, v) = CFGM [4,1]

θ (u, v) = 0.

The Clayton copula:

CClayton [j,k]
α (u, v) = (α + 1)u−α−jv−α−k(u−α + v−α − 1)−1/α−(j+k)

ωj,k(u, v),

where (j, k) ∈ {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1)},

ω1,1(u, v) = 1, ω2,1(u, v) = αu−α + (α + 1)
(
1− v−α

)
,

ω2,2(u, v) = −α(α + 1)u−2α − (α + 1)u−α +
(

4α2 + 3α + 1
)

u−αv−α − α(α + 1)v−2α − (α + 1)v−α + (α + 1)2.

ω3,1(u, v) = α(α− 1)u−2α + (4α− 1)(α + 1)
(
1− v−α

)
u−α + (α + 1)(α + 2)(1− v−α)

2,
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ω3,2(u, v) = −α(α− 1)(α + 1)u−3α − (α + 1)
(

3α2 + 4α− 1
)

u−2α + 3(α− 1)(α + 1)2u−α

+ α(α + 1)(α + 2)v−3α − (α− 1)(α + 1)(α + 2)v−2α − (α + 1)(α + 2)2v−α

+
(

11α3 + 7α2 + α− 1
)

u−2αv−α − (α + 1)
(

11α2 + 5α + 2
)

u−αv−2α

+ (α + 1)
(

8α2 + 5α + 5
)

u−αv−α + (α + 1)2(α + 2).

ω4,1(u, v) = α(α− 1)(α− 2)u−3α + (α− 1)(α + 1)(11α− 2)
(
1− v−α

)
u−2α

+ (α + 1)
(

11α2 + 14α− 7
)(

1− v−α
)2u−α + (α + 1)(α + 2)(α + 3)

(
1− v−α

)3.

Appendix A.3. The Information Matrix under the Clayton Copula with Exponential Margins

The Clayton copula model with exponential margins is given as

Pr(Yi1 > y1, Yi2 > y2) = CClayton
αi

{ _
F1(y1),

_
F2(y2)

}
= {exp(αiλ1y1) + exp(αiλ2y2)− 1 }−1/αi .

Then, the joint density is

f Clayton
i,λ (y1, y2) =

∂2

∂y1∂y2
Pr(Yi1 > y1, Yi2 > y2) =

(αi + 1)λ1λ2eαiλ1y1+αiλ2y2

(eαiλ1y1 + eαiλ2y2 − 1)1/αi+2 ,

where λ = (λ1, λ2). The log-density is

log f Clayton
i,λ (y1, y2) = log(αi + 1) + log λ1 + log λ2 + αiλ1y1 + αiλ2y2 −

(
1
αi

+ 2
)

log
(

eαiλ1y1 + eαiλ2y2 − 1
)

.

The first-order partial derivative of log f Clayton
i,λ (y1, y2) with respect to λj is

∂ log f Clayton
i,λ (y1, y2)

∂λj
=

1
λj

+ αiyj − (2αi + 1)
yje

αiλjyj

eαiλ1y1 + eαiλ2y2 − 1
, j = 1, 2.

The second-order partial derivatives of log f Clayton
αi (y1, y2) are

∂2 log f Clayton
i,λ (y1, y2)

∂λ2
j

= − 1
λ2

j
− αi(2αi + 1)





y2
j eαiλjyj

eαiλ1y1 + eαiλ2y2 − 1
−

y2
j e2αiλjyj

(eαiλ1y1 + eαiλ2y2 − 1)2



, j = 1, 2, (A1)

∂2 log f Clayton
i,λ (y1, y2)

∂λ1∂λ2
= αi(2αi + 1)

y1y2eαiλ1y1+αiλ2y2

(eαiλ1y1 + eαiλ2y2 − 1)2 . (A2)

Then, the Fisher information matrix is

IClayton
i,jk (λ) = E



−

∂2 log f Clayton
i,λ (Yi)

∂λj∂λk



, j, k = 1, 2.

For j = k = 1, we have

IClayton
i,11 (λ) = E



−

∂2 log f Clayton
i,λ (Yi)

∂λ2
1
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=
1

λ2
1
+

αi(2αi + 1)
λ2

1

[
E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
− E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}]
.

To compute the first expectation, we consider the change in variable λjyj = xj, j = 1, 2.
Then,

E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ3
1y2

1λ2e2αiλ1y1+αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+3 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x2
1e2αix1+αix2

(eαix1 + eαix2 − 1)1/αi+3 dx1dx2

= (αi + 1)
∫ ∞

0
x2

1e2αix1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx1dx2.

For the inner integral,

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2 = − 1
2αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣

∞

0

}
=

1
2αi + 1

e−(2αi+1)x1 .

It follows that
∫ ∞

0
x2

1e2αix1

{
1

2αi + 1
e−(2αi+1)x1

}
dx1 =

1
2αi + 1

∫ ∞

0
x2

1e−x1 dx1 =
2

2αi + 1
.

Thus, we obtain

E

(
λ2

1Y2
i1eαiλ1Yi1

eαiλ1Yi1 + eαiλ2Yi2 − 1

)
=

2(αi + 1)
2αi + 1

.

The second expectation is computed as

E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ3
1y2

1λ2e3αiλ1y1+αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+4 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x2
1e3αix1+αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2

= (αi + 1)
∫ ∞

0
x2

1e3αix1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2.

For the inner integral,

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+4 dx2 = − 1
3αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi+3

∣∣∣∣∣

∞

0

}
=

1
3αi + 1

e−(3αi+1)x1 .

It follows that
∫ ∞

0
x2

1e3αix1

{
1

3αi + 1
e−(3αi+1)x1

}
dx1 =

1
3αi + 1

∫ ∞

0
x2

1e−x1 dx1 =
2

3αi + 1
.

Thus, we obtain

E

{
λ2

1Y2
i1e2αiλ1Yi1

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
=

2(αi + 1)
3αi + 1

.
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Combining the above results, we have

IClayton
i,11 (λ) =

1
λ2

1
+

1
λ2

1

2α2
i (αi + 1)
3αi + 1

.

In a similar fashion, for j = k = 2, we also have

IClayton
i,22 (λ) =

1
λ2

2
+

1
λ2

2

2α2
i (αi + 1)
3αi + 1

.

For j = 1, k = 2, we have

IClayton
i,12 (λ) = E



−

∂2 log f Clayton
i,λ (Yi)

∂λ1∂λ2



 = −

(
1
αi

+ 2
)

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

= −αi(2αi + 1)
λ1λ2

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
.

We consider

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
= (αi + 1)

∫ ∞

0

∫ ∞

0

λ2
1λ2

2y1y2e2αiλ1y1+2αiλ2y2

(eαiy1 + eαiy2 − 1)1/αi+4 dy1dy2

= (αi + 1)
∫ ∞

0

∫ ∞

0

x1x2e2αix1+2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2

= (αi + 1)
∫ ∞

0
x1e2αix1

∫ ∞

0

x2e2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1dx2.

For the inner integral,

∫ ∞

0

x2e2αix2

(eαix1 + eαix2 − 1)1/αi+4 dx1

= − 1
3αi + 1

∫ ∞

0
x2eαix2 d

{
1

(eαix1 + eαix2 − 1)1/αi+3

}

= − 1
3αi + 1

{
x2eαix2

(eαix1 + eαix2 − 1)1/αi+3

∣∣∣∣∣

∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+3 d(x2eαix2)

}

=
1

3αi + 1

∫ ∞

0

eαix2 + αix2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

=
1

3αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2 +
αi

3αi + 1

∫ ∞

0

x2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2,

where the second equality follows from integration by parts. For the first integral,

1
3αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

= − 1
(3αi + 1)(2αi + 1)

(
1

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣

∞

0

)

=
1

(3αi + 1)(2αi + 1)
e−2(αi+1)x1 .
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The second integral is

αi
3αi + 1

∫ ∞

0

x2eαix2

(eαix1 + eαix2 − 1)1/αi+3 dx2

= − αi
(3αi + 1)(2αi + 1)

∫ ∞

0
x2d

(
1

(eαix1 + eαix2 − 1)1/αi+2

)

= − αi
(3αi + 1)(2αi + 1)

{
x2

(eαix1 + eαix2 − 1)1/αi+2

∣∣∣∣∣

∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+2 dx2

}

=
αi

(3αi + 1)(2αi + 1)

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+2 dx2,

where the second equality follows from integration by parts. Now, the expectation becomes

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

=
αi + 1

(3αi + 1)(2αi + 1)

∫ ∞

0
x1e−x1 dx1 +

αi(αi + 1)
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1dx2,

=
αi + 1

(3αi + 1)(2αi + 1)
+

αi(αi + 1)
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1dx2.

For the integral in the above expression, we consider its inner integral,

∫ ∞

0

x1e2αix2

(eαix1 + eαix2 − 1)1/αi+2 dx1

= − 1
αi + 1

∫ ∞

0
x1eαix1 d

{
1

(eαix1 + eαix2 − 1)1/αi+1

}

= − 1
αi + 1

{
x1eαix1

(eαix1 + eαix2 − 1)1/αi+1

∣∣∣∣∣

∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi+1 d(x1eαix1)

}

=
1

αi + 1

∫ ∞

0

eαix2 + αix1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1

=
1

αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+1 dx1 +
αi

αi + 1

∫ ∞

0

x1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1,

where the second last equality follows from integration by parts. We compute the above
two integrals separately. We have

1
αi + 1

∫ ∞

0

eαix2

(eαix1 + eαix2 − 1)1/αi+1 dx1 = − 1
αi + 1

{
1

(eαix1 + eαix2 − 1)1/αi

∣∣∣∣∣

∞

0

}
=

1
αi + 1

e−x2 .

On the other hand, we have

αi
αi + 1

∫ ∞

0

x1eαix1

(eαix1 + eαix2 − 1)1/αi+1 dx1

= − αi
αi + 1

∫ ∞

0
x1d

{
1

(eαix1 + eαix2 − 1)1/αi

}

43



Symmetry 2022, 14, 186

= − αi
αi + 1

{
x1

(eαix1 + eαix2 − 1)1/αi

∣∣∣∣∣

∞

0

−
∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1

}

=
αi

αi + 1

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1.

Then,

∫ ∞

0

{
1

αi + 1
e−x2 +

αi
αi + 1

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1

}
dx2 =

1
αi + 1

+
αi

αi + 1

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2.

Combine all the results, one has

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}

=
αi + 1

(3αi + 1)(2αi + 1)
+

αi
(3αi + 1)(2αi + 1)

+
α2

i
(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2

=
1

3αi + 1
+

α2
i

(3αi + 1)(2αi + 1)

∫ ∞

0

∫ ∞

0

1

(eαix1 + eαix2 − 1)1/αi
dx1dx2.

Let αix1 = s and αix2 = t, according to [52], we have

∫ ∞

0

∫ ∞

0

α2
i

(eαix1 + eαix2 − 1)1/αi
dx1dx2 =

∫ ∞

0

∫ ∞

0

1

(es + et − 1)1/αi
dsdt =

1
2

{
Ψ

(
1

2αi

)
−Ψ

(
αi + 1

2αi

)}
.

Hence, we obtain

E

{
λ1λ2Yi1Yi2eαiλ1Yi1+αiλ2Yi2

(eαiλ1Yi1 + eαiλ2Yi2 − 1)2

}
=

1
3αi + 1

+
1

2(3αi + 1)(2αi + 1)

{
Ψ

(
1

2αi

)
−Ψ

(
αi + 1

2αi

)}
.

Finally, combining the above results, we have

IClayton
i,12 (λ) = −αi(2αi + 1)

λ1λ2
φ(αi),

where

φ(α) =
1

3αi + 1
+

1
2(3α + 1)(2α + 1)

{
Ψ

(
1

2α

)
−Ψ

(
α + 1

2α

)}
.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.
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1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: A new class of statistical distributions called the Type II half-Logistic odd Fréchet-G class
is proposed. The new class is a continuation of the unusual Fréchet class. This class is analytically
feasible and could be used to evaluate real-world data effectively. The new suggested class of
distributions has many new symmetrical and asymmetrical sub-models. We propose new four
sub-models from the new class of distributions which are called Type II half-Logistic odd Fréchet
exponential distribution, Type II half-Logistic odd Fréchet Rayleigh distribution, Type II half-Logistic
odd Fréchet Weibull distribution, and Type II half-Logistic odd Fréchet Lindley distribution. Some
statistical features of Type II half-Logistic odd Fréchet-G class such as ordinary moments (ORMs),
incomplete moments (INMs), moment generating function (MGEF), residual life (REL), and reversed
residual life (RREL) functions, and Rényi entropy (RéE) are derived. Six methods of estimation
such as maximum likelihood, least-square, a maximum product of spacing, weighted least square,
Cramér-von Mises, and Anderson–Darling are produced to estimate the parameters. To test the six
estimation methods’ performance, a simulation study is conducted. Four real-world data sets are
utilized to highlight the importance and applicability of the proposed method.

Keywords: half-logistic class; odd Fréchet class; entropy; simulation; estimation method

1. Introduction

Today, there is a need for mathematical models required to retrieve all of the informa-
tion from data and the ability to engage with it and make it usable in engineering, biological
study, economics, and environmental sciences, to name a few examples. A lot of generations
of academics have so far concentrated their efforts to build larger classes of distributions.
The classic strategy consists of adding (parameters) to a scale or shape to the baseline
model, also through the use of special functions (beta, gamma, excessive geometry, etc.),
which makes the resulting distribution more adaptable, which is useful for understanding
the behavior of density shapes and hazard rate shapes, for checking the goodness of fit of
proposed distributions, or the flexibility on some important modeling aspects such as mean
E(X), variance V(X), distribution tails, skewness (SK), kurtosis (KU), etc. Consequently, new
different classes of continuous distributions have been offered, including those produced in
the statistical literature listed below. Some well-known classes are the Fréchet class defined
in [1], Marshall–Olkin class given in [2], beta-class given in [3], the generalized log-logistic
class given in [4], the odd exponentiated half logistic (HL) class given in [5], the generalized
odd log-logistic class given in [6], the Type I HL class given in [7], the logistic-X class
given in [8], generalized odd log-logistic class given in [9], Kumaraswamy Type I HL class
given in [10], the transmuted odd Fréchet (OF)-class given in [11], extended OF-G class
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given in [12], transmuted geometric-G [13], odd Perks-G class [14], odd Lindley-G in [15],
truncated Cauchy power Weibull-G [16], generalized transmuted-G [17], truncated Cauchy
power-G in [18], Burr X-G (BX-G) class [19], odd inverse power generalized Weibull-G [20],
Type II exponentiated half-Logistic-G in [21], Topp Leone -G in [22], exponentiated M-G
by [23], odd Nadarajah–Haghighi-G in [24], exponentiated truncated inverse Weibull-G
in [25], T-X generator proposed in [26], among others.

Several Fréchet classes have been judged successful in a variety of statistical appli-
cations in the last years as [27] proposed a four-parameter model named the exponential
transmuted Fréchet distribution, which extends the Fréchet distribution. Ref [1] proposed
the OF−G class of distributions with distribution function (cdf) and density function (pdf),
respectively, are follows, for x > 0

GOFr
(x; θ) = e−

(
G(x,ϕ)
G(x,ϕ)

)θ

, (1)

and

gOFr
(x; θ) =

θg(x, ϕ)(1− G(x, ϕ))θ−1

G(x, ϕ)θ+1 e−
(

G(x,ϕ)
G(x,ϕ)

)θ

, (2)

where θ > 0 is a shape parameter, G(x, ϕ) and g(x, ϕ) are the pdf and cdf of a baseline
continuous distribution with ϕ as parameter vector, respectively.

The OF− G class was successfully considered in various statistical applications over
the last few years. This reputation can be explained by its simple and versatile exponential-
odd form, with the use of just one additional parameter, very different from the other
current families. Ref [28] represented a new class of continuous distributions with an extra
scale parameter α > 0 called the Type II HL-G (TIIHL− G) class. The cdf and pdf of the
TIIHL− G class of distributions, respectively, are provided by

F(x) =
2[G(x)]α

1 + [G(x)]α
, (3)

and
f (x) = 2αg(x)[G(x)]α−1[1 + [G(x)]α

]−2. (4)

The failure (hazard) rate function (hrf) is defined by

τ(x) =
2αg(x)[G(x)]α−1

1− [G(x)]2α
. (5)

In this paper, we discuss a new extension of the odd Fréchet-G class for a given
baseline distribution with cdf G(x, ϕ) using the Type II HL generator and this class is called
the Type II HL odd Fréchet-G (TIIHLOF− G) class of distributions. This new suggested
class of distributions is very flexible and has many new symmetrical and asymmetrical
sub-models. The cdf of (TIIHLOF − G) class is obtained by inserting Equation (1) in
Equation (3), we get

F(x, α, θ, ϕ) =
2e−α

(
G(x,ϕ)
G(x,ϕ)

)θ

1 + e−α
(

G(x,ϕ)
G(x,ϕ)

)θ
, x > 0. (6)

For each baseline G, the TIIHLOF−G cdf is given by Equation (6). The corresponding
pdf is

f (x; α, θ, ϕ) =
2αθg(x, ϕ)G(x, ϕ)θ−1

G(x, ϕ)θ+1 e−α
(

G(x,ϕ)
G(x,ϕ)

)θ
[

1 + e−α
(

G(x,ϕ)
G(x,ϕ)

)θ
]−2

. (7)
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The hrf of TIIHLOF− G class is provided by

χ(x) =
2αθg(x, ϕ)G(x, ϕ)θ−1e−α

(
G(x,ϕ)
G(x,ϕ)

)θ

G(x, ϕ)θ+1

[
1− e−2α

(
G(x,ϕ)
G(x,ϕ)

)θ
] .

The TIIHLOF− G quantile function (qf) is given below

F−1(u) = QG(u) = G−1




1

1 +
{
−1
α log( u

2−u )
} 1

θ


. (8)

The fundamental goal of the article under consideration is to introduce a new class of
statistical distributions called the Type II half-Logistic odd Fréchet-G class (TIIHLOF-G for
short) as well as to investigate its statistical characteristics. The following points provide
sufficient incentive to study the proposed class of distributions. We specify it as follows:
(i) the new class of distributions are very flexible and have many new symmetrical and
asymmetrical sub-models; (ii) it is remarkable to observe the flexibility of the proposed
family with the diverse graphical shapes of probability density functions (pdf) and hazard
rate functions (hrf). So, the form analysis of the corresponding pdf and hrf has shown
new characteristics, revealing the unseen fitting potential of the TIIHLOF-G; (iii) the new
suggested class has a closed form of the quantile function; (iv) six methods of estimation are
proposed to assess the behavior of the parameters; (v) the TIIHLOF-G is very flexible and
applicable. This ability of the new class is explored using four real-life data sets proving
the practical utility of the model being featured.

The substance of the article is arranged as follows: Section 2 presents a linear rep-
resentation of the TIIHLOF − G class density. Four new sub-models are provided in
Section 3. Section 4 contains a number of statistical features such as ORMs, INMs, MGEF,
REL, and RREL functions, and RéE. In Section 5, different estimation methods of the model
parameters are determined. Section 6 shows simulation results. Section 7 investigates
three real-world data sets to demonstrate the flexibility and potential of the TIIHLOF− G
class using the TIIHLOFExp and TIIHLOFW distributions. Finally, in Section 8, the
conclusions are offered.

2. Useful Expansion

Assuming | z |< 1 and b > 0 be a real non-integer, then the next binomial expan-
sions occur.

(1 + z)−b =
∞

∑
k=0

(−1)k Γ(b + k)
k!Γ(b)

zk. (9)

Applying Equation (9) to the last term in Equation (7), then

fTIIHLOF−G(x) =
2αθg(x, ϕ)G(x, ϕ)θ−1

G(x, ϕ)θ+1

∞

∑
i=0

(i + 1)e−α(i+1)
(

G(x,ϕ)
G(x,ϕ)

)θ

. (10)

The exponential function’s power series now yields

e−α(i+1)
(

G(x,ϕ)
G(x,ϕ)

)θ

=
∞

∑
j=0

(−1)jαj(i + 1)j

j!
G(x, ϕ)θ j

G(x, ϕ)θ j . (11)
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Inserting Equation (11) in Equation (10), then

fTIIHLOF−G(x) = g(x, ϕ)
∞

∑
i,j=0

2θ(−1)jαj+1(i + 1)j+1

j!
G(x, ϕ)θ(j+1)−1

G(x, ϕ)θ(j+1)+1
, (12)

using the generalized binomial expansion to (1− G(x; ϕ))−[θ(j+1)+1],

(1− G(x; ϕ))−[θ(j+1)+1] =
∞

∑
k=0

Γ(θ(j + 1) + k + 1)
k!Γ(θ(j + 1) + 1)

G(x; ϕ)k, (13)

and

(1− G(x; ϕ))[θ(j+1)+k+1] =
∞

∑
d=0

(−1)d(θ(j+1)+k+1
d )G(x; ϕ)d. (14)

The TIIHLOF pdf is an endless combination of exp-G pdfs

fTIIHLOF−G(x) =
∞

∑
d=0

vdh(d+1)(x), (15)

where

vd =
∞

∑
i,j,k=0

2θ(−1)j+dαj+1(i + 1)j+1Γ(θ(j + 1) + k + 1)
j!k!Γ(θ(j + 1) + 1)(d + 1)

(θ(j+1)+k+1
d ),

and h(d+1)(x) = (d + 1)g(x)Gd(x).

3. Submodels of the TIIHLOF-G Class

We exhibit four sub-models of the TIIHLOF− G distribution class.

3.1. Type II Half-Logistic Odd Fréchet Exponential (TIIHLOFExp) Distribution

Let G(x) and g(x) in Equations (6) and (7) be the cdf and pdf of Exp distribution
where G(x; ϕ) = 1− e−λx and g(x; ϕ) = λe−λx.The cdf and pdf of Type II half-Logistic odd
Fréchet Exp (TIIHLOFExp) are given below

F(x) =
2e−α

(
e−λx

1−e−λx

)θ

1 + e−α
(

e−λx
1−e−λx

)θ
, x > 0,

and

f (x) =
2αθλe−λx(e−λx)θ−1

(1− e−λx)θ+1 e−α
(

e−λx

1−e−λx

)θ
[

1 + e−α
(

e−λx

1−e−λx

)θ
]−2

.

Figure 1 describes the different forms of the pdf of TIIHLOFExp distribution.

3.2. Type II Half-Logistic Odd Fréchet Rayleigh (TIIHLOFR) Distribution

Here we take G(x) = 1− e−
λ
2 x2

and g(x; ϕ) = λxe−
λ
2 x2

be the Rayleigh distribution.
The cdf and pdf of TIIHLOFR model, are given below

F(x) =
2e
−α

(
e−

λ
2 x2

1−e−
λ
2 x2

)θ

1 + e
−α

(
e−

λ
2 x2

1−e−
λ
2 x2

)θ
, x > 0,

and
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f (x) =
2αθλxe−

λ
2 x2

(e−
λ
2 x2

)θ−1

(1− e−
λ
2 x2

)θ+1
e
−α

(
e−

λ
2 x2

1−e−
λ
2 x2

)θ

1 + e

−α

(
e−

λ
2 x2

1−e−
λ
2 x2

)θ



−2

.

Figure 2 describes the different forms of the pdf of TIIHLOFR distribution.
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Figure 1. Shapes of the pdf of TIIHLOFExp (α, λ, θ) for various values of parameter.
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Figure 2. Shapes of the pdf of TIIHLOFR (α, β, θ) for various values of parameter.
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3.3. Type II Half-Logistic Odd Fréchet Weibull (TIIHLOFW) Distribution

Let G(x) and g(x) in Equations (6) and (7) be the cdf and pdf of Weibull distribu-
tion, where G(x; ϕ) = 1 − e−(λx)µ

and g(x; ϕ) = µλµxµ−1 e−(λx)µ
. The cdf and pdf of

(TIIHLOFW) distribution are given below

F(x) =
2e
−α

(
e−(λx)µ

1−e−(λx)µ

)θ

1 + e
−α

(
e−(λx)µ

1−e−(λx)µ

)θ
, x > 0,

and

f (x) =
2αθµλµxµ−1e−θ(λx)µ

(1− e−(λx)µ
)θ+1

e
−α

(
e−(λx)µ

1−e−(λx)µ

)θ

1 + e

−α

(
e−(λx)µ

1−e−(λx)µ

)θ


−2

.

Figure 3 describes the different forms of the pdf of TIIHLOFW distribution.
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Figure 3. Shapes of the pdf of TIIHLOFW (α, λ, µ, θ) for various values of parameter.

3.4. Type II Half-Logistic Odd Fréchet Lindely (TIIHLOFL) Distribution

Let Lindely be the baseline distribution having cdf and pdf G(x; ϕ) = 1 − (1 +
λ

λ+1 x)e−λx and g(x; ϕ) = λ2

λ+1 (x + 1)e−λx. The cdf and pdf of TIIHLOFL model are pro-
vided below

F(x) =
2e
−α

(
(1+ λ

λ+1 x)e−λx

1−(1+ λ
λ+1 x)e−λx

)θ

1 + e
−α

(
(1+ λ

λ+1 x)e−λx

1−(1+ λ
λ+1 x)e−λx

)θ
, x > 0,

and
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f (x) =
2αθλ2(x + 1)e−λx((1 + λ

λ+1 x)e−λx)θ−1e
−α

(
(1+ λ

λ+1 x)e−λx

1−(1+ λ
λ+1 x)e−λx

)θ

(λ + 1)(1− (1 + λ
λ+1 x)e−λx)θ+1


1 + e

−α

(
(1+ λ

λ+1 x)e−λx

1−(1+ λ
λ+1 x)e−λx

)θ



2 .

Figure 4 describes the different forms of the pdf of TIIHLOFL distribution.
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Figure 4. Shapes of the pdf of TIIHLOFL (α, λ, θ) for various values of parameter.

4. Statistical Properties

In this section, we derive some statistical features for the TIIHLOF−G class including
ORMs, INMs, MGEF, REL, and RREL functions, and RéE.

4.1. Different Types of Moments

The rth ORM of the TIIHLOF− G is

µ
/

r = E(Xr) =
∞

∑
d=0

vdE(Zr
(d+1)). (16)

Tables 1–3 show the numerical values of E(X), E(X2), E(X3), E(X4), Var(X), SK, KU,
and coefficient of variation (CV) of the TIIHLOFExp and TIIHLOFR distributions.

The sth INMs of the TIIHLOF− G noted by ζs(t) for any real s > 0, is

ζs(t) =
∫ t

−∞
xs f (x)dx =

∞

∑
d=0

vd

∫ t

−∞
xsh(d+1)(x)dx. (17)

The MGEF of the TIIHLOF− G is

MX(t) = E(etX) =
∞

∑
d=0

vd M(d+1)(t),
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where M(d+1)(t) is the MGEF of Z(d+1).

Table 1. Numerical values of E(X), E(X2), E(X3), E(X4), Var(X), SK, KU, and CV of the
TIIHLOFExp distribution.

α λ θ E(X) E(X2) E(X3) E(X4) Var(X) SK KU CV

0.5

0.5

0.5 1.386 8.647 98.110 1546.203 6.726 3.868 3.868 1.871

0.9 1.183 3.394 18.738 154.587 1.994 3.552 3.552 1.193

1.5 1.177 2.068 5.795 24.788 0.684 3.099 3.099 0.703

0.9

0.5 0.770 2.669 16.823 147.291 2.076 3.868 3.868 1.871

0.9 0.657 1.048 3.213 14.726 0.616 3.552 3.552 1.193

1.5 0.654 0.638 0.994 2.361 0.211 3.099 3.099 0.703

1.5

0.5 0.462 0.961 3.634 19.089 0.747 3.868 3.868 1.871

0.9 0.394 0.377 0.694 1.908 0.222 3.552 3.552 1.193

1.5 0.392 0.230 0.215 0.306 0.076 3.100 3.100 0.703

0.9

0.5

0.5 2.286 15.368 176.118 2781.125 10.144 2.929 2.929 1.393

0.9 1.736 5.827 33.439 277.737 2.813 2.872 2.872 0.966

1.5 1.531 3.239 9.975 44.119 0.894 2.693 2.693 0.617

0.9

0.5 1.270 4.743 30.199 264.930 3.131 2.929 2.929 1.393

0.9 0.964 1.798 5.730 26.457 0.868 2.868 2.868 0.966

1.5 0.851 1.000 1.710 4.203 0.276 2.693 2.693 0.617

1.5

0.5 0.762 1.708 6.523 34.335 1.127 2.929 2.929 1.393

0.9 0.579 0.647 1.238 3.429 0.313 2.868 2.868 0.966

1.5 0.510 0.360 0.369 0.545 0.099 2.693 2.693 0.617

1.5

0.5

0.5 3.395 24.984 291.692 4626.890 13.460 2.339 2.339 1.081

0.9 2.351 9.119 54.810 461.069 3.590 2.424 2.424 0.806

1.5 1.895 4.683 15.753 72.331 1.091 2.408 2.408 0.551

0.9

0.5 1.886 7.711 50.016 440.757 4.154 2.339 2.339 1.081

0.9 1.306 2.814 9.398 43.921 1.108 2.424 2.424 0.806

1.5 1.053 1.445 2.701 6.890 0.337 2.408 2.408 0.551

1.5

0.5 1.132 2.776 10.803 57.122 1.496 2.339 2.339 1.081

0.9 0.784 1.013 2.030 5.692 0.399 2.424 2.424 0.806

1.5 0.632 0.520 0.583 0.893 0.121 2.408 2.408 0.551

The rth-order moment of the REL of the TIIHLOF− G is

ψr(t) =
1

F(t)

∫ ∞

t
(x− t)r f (x)dx, r ≥ 1

=
1

F(t)

∞

∑
d=0

v∗d

∫ ∞

t
xr h(d+1)(x)dx, (18)

where v∗d =
∞
∑

d=0
vd ∑r

m=0 (
r
m)(−t)r−m. The rth-order moment of the RREL of the TIIHLOF−

G is
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mr(t) =
1

F(t)

∫ t

0
(t− x)r f (x)dx, r ≥ 1

=
1

F(t)

∞

∑
d=0

v∗d

∫ t

0
xrh(d+1)(x)dx, (19)

Table 2. Numerical values of E(X), E(X2), E(X3), E(X4), Var(X), SK, KU, and CV of the
TIIHLOFR distribution.

α λ θ E(X) E(X2) E(X3) E(X4) Var(X) SK KU CV

0.5

0.5

0.5 1.260 2.772 8.786 34.588 1.184 1.793 1.793 0.863

0.9 1.374 2.367 5.122 13.578 0.478 1.684 1.684 0.503

1.5 1.469 2.353 4.170 8.274 0.195 1.629 1.629 0.300

0.9

0.5 0.939 1.540 3.638 10.675 0.658 1.793 1.793 0.863

0.9 1.024 1.315 2.121 4.191 0.266 1.684 1.684 0.503

1.5 1.095 1.307 1.727 2.554 0.108 1.629 1.629 0.300

1.5

0.5 0.728 0.924 1.691 3.843 0.395 1.793 1.793 0.863

0.9 0.793 0.789 0.986 1.509 0.159 1.684 1.684 0.503

1.5 0.848 0.784 0.803 0.919 0.065 1.629 1.629 0.300

0.9

0.5

0.5 1.777 4.571 15.319 61.470 1.412 1.295 1.295 0.669

0.9 1.714 3.472 8.322 23.309 0.534 1.384 1.384 0.426

1.5 1.689 3.063 6.023 12.957 0.210 1.463 1.463 0.271

0.9

0.5 1.325 2.540 6.343 18.972 0.785 1.295 1.295 0.669

0.9 1.278 1.929 3.446 7.194 0.297 1.384 1.384 0.426

1.5 1.259 1.702 2.494 3.999 0.117 1.463 1.463 0.271

1.5

0.5 1.026 1.524 2.948 6.830 0.471 1.295 1.295 0.669

0.9 0.990 1.157 1.602 2.590 0.178 1.384 1.384 0.426

1.5 0.975 1.021 1.159 1.440 0.070 1.463 1.463 0.271

1.5

0.5

0.5 2.304 6.789 24.223 99.935 1.483 0.970 0.970 0.529

0.9 2.036 4.702 12.327 36.474 0.555 1.180 1.180 0.366

1.5 1.890 3.790 8.124 18.731 0.218 1.343 1.343 0.247

0.9

0.5 1.717 3.772 10.030 30.844 0.824 0.970 0.970 0.529

0.9 1.518 2.612 5.104 11.257 0.309 1.180 1.180 0.366

1.5 1.409 2.106 3.364 5.781 0.121 1.343 1.343 0.247

1.5

0.5 1.330 2.263 4.662 11.104 0.494 0.970 0.970 0.529

0.9 1.176 1.567 2.372 4.053 0.185 1.180 1.180 0.366

1.5 1.091 1.263 1.563 2.081 0.073 1.343 1.343 0.247

4.2. Rényi Entropy

The RéE of the TIIHLOF− G is given below

IR(ρ) =
1

1− ρ
log
[∫ ∞

−∞
f ρ(x)dx

]
, ρ > 0, ρ 6= 1. (20)

Employing Equation (9) and the same manner of the beneficial expansion of Equation (15),
we obtain, after a little simplification,
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f ρ(x) =
∞

∑
d=0

ηdg(x)ρG(x)d,

where

ηd =
∞

∑
i,k,m=0

(−1)k+m+d(αi + ρ)k

k!
(−2ρ

i )(−θ(ρ+k)−ρ
m )(θ(ρ+k)+m−ρ

d ).

Table 3. Numerical values of E(X), E(X2), E(X3), E(X4), Var(X), SK, KU, and CV of the
TIIHLOFL distribution.

α λ θ E(X) E(X2) E(X3) E(X4) Var(X) SK KU CV

0.5

0.5

0.5 2.260 16.846 217.906 3836.068 11.740 3.152 3.152 1.516

0.9 2.167 8.636 57.738 554.210 3.940 2.806 2.806 0.916

1.5 2.256 6.553 25.753 138.065 1.463 2.469 2.469 0.536

0.9

0.5 1.146 4.735 33.986 331.428 3.422 3.273 3.273 1.614

0.9 1.068 2.276 8.404 44.729 1.135 2.935 2.935 0.997

1.5 1.102 1.634 3.424 10.065 0.419 2.579 2.579 0.587

1.5

0.5 0.633 1.550 6.632 38.591 1.150 3.405 3.405 1.695

0.9 0.574 0.703 1.536 4.867 0.373 3.086 3.086 1.065

1.5 0.586 0.479 0.576 0.997 0.136 2.719 2.719 0.630

0.9

0.5

0.5 3.595 29.612 390.003 6893.547 16.687 2.399 2.399 1.136

0.9 3.022 14.300 101.607 991.829 5.165 2.314 2.314 0.752

1.5 2.810 9.681 42.469 240.672 1.785 2.195 2.195 0.475

0.9

0.5 1.849 8.356 60.885 595.744 4.938 2.476 2.476 1.202

0.9 1.518 3.820 14.865 80.168 1.514 2.397 2.397 0.810

1.5 1.395 2.466 5.738 17.692 0.519 2.272 2.272 0.516

1.5

0.5 1.030 2.742 11.889 69.381 1.682 2.568 2.568 1.260

0.9 0.826 1.190 2.726 8.731 0.507 2.502 2.502 0.862

1.5 0.750 0.734 0.976 1.761 0.172 2.373 2.373 0.552

1.5

0.5

0.5 5.147 47.337 642.109 11444.724 20.848 1.932 1.932 0.887

0.9 3.920 21.553 163.639 1635.462 6.187 1.991 1.991 0.635

1.5 3.353 13.303 64.309 385.166 2.058 2.000 2.000 0.428

0.9

0.5 2.680 13.430 100.417 989.623 6.248 1.981 1.981 0.933

0.9 1.998 5.830 24.091 132.505 1.837 2.047 2.047 0.678

1.5 1.685 3.446 8.815 28.564 0.605 2.057 2.057 0.462

1.5

0.5 1.506 4.425 19.635 115.307 2.156 2.045 2.045 0.975

0.9 1.100 1.834 4.438 14.455 0.624 2.123 2.123 0.718

1.5 0.915 1.040 1.516 2.862 0.203 2.135 2.135 0.492

Thus the RéE of TIIHLOF− G class is given below

IR(ρ) =
1

1− ρ
log

{
∞

∑
d=0

ηd

∫ ∞

−∞
g(x)ρG(x)ddx

}
. (21)
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5. Estimation Methods

To evaluate the estimation problem of the TIIHLOF− G family parameters, this part
uses six estimate methods: maximum likelihood, least-square, a maximum product of
spacing, weighted least square, Cramér-von Mises, and Anderson–Darling. For more
examples see [29–33].

5.1. Method of Maximum Likelihood Estimation

Suppose x1, . . . , xn represent a random sample of size n from the TIIHLOF− G class
having parameters α, θ and ϕ. Consider Ψ = (α, θ, ϕ)T be a p× 1 parameter vector. The
log-likelihood (LL) function is defined as follows:

Ln = n log(2α) + n log(θ) +
n

∑
i=1

log g(xi; ϕ) + (θ − 1)
n

∑
i=1

log G(xi; ϕ)

−(θ + 1)
n

∑
i=1

log(G(xi; ϕ))− α
n

∑
i=1

dθ
i (22)

−2
n

∑
i=1

log
{

1 + e−αdθ
i

}
,

where di =
G(xi ;ϕ)
G(xi ;ϕ)

. The components of score vector Un(Ψ) = ∂Ln
∂Ψ =

(
∂Ln
∂α , ∂Ln

∂θ , ∂Ln
∂ϕk

)
are

given below

Uα =
∂Ln

∂α
=

n
α
−

n

∑
i=1

dθ
i + 2

n

∑
i=1

dθ
i e−αdθ

i

1 + e−αdθ
i

, (23)

Uθ = ∂Ln
∂θ = n

θ + ∑n
i=1 log G(xi; ϕ)−∑n

i=1 log(G(xi; ϕ))

−α ∑n
i=1 dθ

i log(di) + 2 ∑n
i=1

αdθ
i log(di)e

−αdθ
i

1+e−αdtheta
i

,
(24)

and

Uϕk = ∂Ln
∂ϕk

= ∑n
i=1

g′(xi ;ϕ)
g(xi ;ϕ)

+ (θ − 1)∑n
i=1

G′(xi ;ϕ)
G(xi ;ϕ)

− (θ + 1)∑n
i=1

G′(xi ;ϕ)
G(xi ;ϕ)

−αθ ∑n
i=1 dθ−1

i ∂di∂ϕk − 2 ∑n
i=1

αθdθ−1
i e−αdθ

i

1+e−αdθ
i

∂di∂ϕk,

(25)

where g′(xi; ϕ) = ∂g(xi ;ϕ)
∂ϕk

, G′(xi; ϕ) = ∂G(xi ;ϕ)
∂ϕk

, G′(xi; ϕ) = ∂G(xi ;ϕ)
∂ϕk

.

5.2. Ordinary Least Squares and Weighted Least Squares Methods

The methods of ordinary least squares (OLS) and weighted least squares (WLS) are
used to estimate the parameters of diverse distributions. Let x(1) < · · · < x(n) be a
random sample with the Ψ = (α, θ, ϕ)T parameters from the TIIHLOF− G class having
parameters. OLS estimators (OLSE) and WLS estimators (WLSE) of the Ψ = (α, θ, ϕ)T

distribution parameters of TIIHLOF− G can be obtained by minimizing the following:

V(Ψ) =
n

∑
i=1

υi




2e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ

1 + e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ




2

(26)

υi = 1 for OLSE and υi =
(n+1)2(n+2)
[i(n−I+1)] for WLSE with respect to α, θ, and ϕ. Furthermore,

by resolving the nonlinear equations, the OLSE and WLSE with respect to α, θ, and ϕ.
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5.3. Maximum Product of Spacings Method

If x(1) < · · · < x(n) is a random sample of the size n, you can describe the uniform
spacing of the TIIHLOF− G family as:

Di(Ψ) = F(x(i), Ψ)− F(x(i−1), Ψ); i = 1, . . . , n + 1 (27)

where Di(Ψ) denotes to the uniform spacings, F(x(0), Ψ) = 0, F(x(n+1), Ψ) = 1 and

∑n+1
i=1 Di(Ψ) = 1. The maximum product of spacing (MPS) estimators (MPSE) of the

TIIHLOF− G family parameters can be obtained by maximizing

G(Ψ) =
1

n + 1

n+1

∑
i=1

ln








2e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ

1 + e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ




2

−




2e
−α

(
G(x(i−1) ,ϕ)

G(x(i−1) ,ϕ)

)θ

1 + e
−α

(
G(x(i−1) ,ϕ)

G(x(i−1) ,ϕ)

)θ




2


(28)

with respect to α, θ, and ϕ. Further, the MPSE of the TIIHLOF − G family can also be
obtained by solving nonlinear equation of derivatives of G(Ψ) with respect to α, θ, and ϕ.

5.4. Cramér-von-Mises Method

In Cramér–von-Mises (CVM), we obtain the TIIHLOF − G family by minimizing
the following function with respect to α, θ, and ϕ; the CVM estimators (CVME) of the
TIIHLOF− G family parameters α, θ, and ϕ are obtained.

C(Ψ) =
1

12
+

n

∑
i=1







2e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ

1 + e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ




2

− 2i− 1
2n




2

(29)

In addition, we resolve the nonlinear equations of derivatives of C(Ψ) with respect to
α, θ, and ϕ.

5.5. Anderson-Darling Method

In Anderson–Darling (AD), other forms of minimum distance estimators are the AD
estimators (ADE). The ADE of the parameters of the TIIHLOF − G family is acquired
by minimizing

A(Ψ) = −n− 1
n

n

∑
i=1

(2i− 1)


ln







2e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ

1 + e
−α

(
G(x(i) ,ϕ)

G(x(i) ,ϕ)

)θ




2
− ln


1−




2e
−α

(
G(x(n+1−i) ,ϕ)

G(x(n+1−i) ,ϕ)

)θ

1 + e
−α

(
G(x(n+1−i) ,ϕ)

G(x(n+1−i) ,ϕ)

)θ




2





2

(30)

for α, θ, and ϕ, respectively. It is also possible to obtain the ADE by resolving the nonlinear
equations of derivatives of A(Ψ) with respect to α, θ, and ϕ.

6. Numerical Outcomes

In this section, Monte Carlo simulations are run to evaluate the correctness and consis-
tency of the new class’s six estimation methods. For the sake of example, the simulations
are run with the estimators of the TIIHLOFW distribution’s parameters. The simulation
replication is taken as N = 1000 and samples of sizes n = 50, 100 and 150 are generated by
using the inverse transformation,

xi =
1
λ

[
− log

(
1− 1

1 + [− 1
α log( U

2−U )]
1
θ

)] 1
µ

, i = 1, 2, . . . , n, (31)
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where U is a uniform distribution on (0, 1). The numerical outcomes are evaluated depend-
ing on the estimated relative biases (RB) and mean square errors (MSE). Table 4, shows
the estimated RB and the MSE for the estimators of the parameters. Set four arbitrarily
true values of (α, θ, λ and µ) such as Case I: (α = 0.5; θ = 0.5; λ = 0.5; µ = 0.5), Case II:
(α = 1.5; θ = 1.5; λ = 0.5; µ = 2), Case III: (α = 3; θ = 1.5; λ = 3; µ = 2), and Case IV:
(α = 3; θ = 1.5; λ = 3; µ = 0.5).

Extensive computations were carried out using the R statistical programming language
software, with the most useful statistical package being the “stats” package, which used
the conjugate-gradient maximization algorithm.

From Table 4, we are able to make the following observations. The performances of
the proposed estimates of α, θ, λ, and µ in terms of their RB and MSE become better as
n increases, as expected, where the results revealed that as the sample size increases, RB
and MSE decrease. These findings clearly demonstrate the estimation methods estimators’
accuracy and consistency. As a result, the six estimation methods approach performs well
in estimating the parameters of the TIIHLOFW distribution. By the results of Table 4
and Figure 5, we show the OLS method and CVM method of estimation are better than
other methods.
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Figure 5. MSE with different sample sizes.
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Table 4. The MLE, OLS, WLS, MPS, CVM, and AD estimated RB and MSE of the
TIIHLOFW distribution.

MLE OLS WLS MPS CVM AD
Case n RB MSE RB MSE RB MSE RB MSE RB MSE RB MSE

I

50

α 0.0900 0.0274 0.0289 0.0154 0.0296 0.0150 0.0897 0.0335 0.0039 0.0153 0.0280 0.0167
θ 0.0823 0.0296 0.0120 0.0142 0.0355 0.0188 0.0826 0.0494 −0.0043 0.0142 0.0364 0.0201
λ 0.1366 0.1331 0.0488 0.0395 0.0545 0.0615 0.1357 0.1484 0.0801 0.0418 0.0875 0.0574
µ 0.0280 0.0870 0.0247 0.0115 0.0209 0.0169 0.0278 0.0480 0.0777 0.0139 0.0279 0.0155

100

α 0.0686 0.0241 0.0104 0.0074 0.0062 0.0076 0.0687 0.0211 −0.0024 0.0078 0.0118 0.0078
θ 0.0648 0.0183 0.0077 0.0066 0.0263 0.0105 0.0651 0.0262 0.0015 0.0066 0.0301 0.0115
λ 0.1086 0.1325 0.0091 0.0151 0.0038 0.0224 0.1084 0.0913 0.0240 0.0177 0.0340 0.0260
µ −0.0169 0.0395 0.0067 0.0046 0.0065 0.0091 −0.0171 0.0247 0.0302 0.0051 0.0066 0.0090

150

α 0.0496 0.0164 0.0059 0.0053 −0.0007 0.0051 0.0620 0.0210 0.0002 0.0054 0.0047 0.0056
θ 0.0425 0.0126 0.0058 0.0057 0.0174 0.0099 0.0429 0.0165 −0.0014 0.0056 0.0218 0.0088
λ 0.0915 0.0855 0.0091 0.0149 0.0037 0.0221 0.0915 0.0705 0.0237 0.0169 0.0138 0.0162
µ −0.0153 0.0225 0.0060 0.0039 0.0052 0.0081 −0.0163 0.0165 0.0301 0.0045 0.0062 0.0063

II

50

α 0.0030 0.0293 0.0028 0.0037 0.0025 0.0021 0.0029 0.0153 0.0075 0.0045 0.0078 0.0072
θ −0.0122 0.0660 −0.0082 0.0194 −0.0011 0.0158 −0.0123 0.0452 0.0075 0.0199 0.0009 0.0212
λ −0.0066 0.0008 −0.0022 0.0003 −0.0021 0.0003 −0.0067 0.0006 −0.0004 0.0003 −0.0008 0.0003
µ −0.0178 0.1174 0.0009 0.0168 0.0027 0.0129 −0.0180 0.0614 0.0143 0.0191 0.0078 0.0214

100

α −0.0024 0.0065 −0.0014 0.0007 0.0004 0.0010 −0.0025 0.0113 0.0014 0.0008 0.0015 0.0023
θ 0.0041 0.0277 −0.0062 0.0083 −0.0011 0.0071 0.0041 0.0307 0.0004 0.0077 −0.0008 0.0099
λ −0.0055 0.0003 −0.0002 0.0002 0.0005 0.0002 −0.0055 0.0004 0.0009 0.0002 0.0005 0.0002
µ −0.0172 0.0301 −0.0004 0.0057 −0.0001 0.0057 −0.0172 0.0439 0.0032 0.0056 0.0006 0.0100

150

α −0.0024 0.0064 −0.0012 0.0006 −0.0004 0.0009 −0.0024 0.0068 0.0004 0.0007 −0.0004 0.0006
θ 0.0040 0.0217 −0.0003 0.0062 0.0011 0.0070 0.0040 0.0241 0.0003 0.0057 0.0007 0.0049
λ −0.0053 0.0002 −0.0001 0.0001 −0.0003 0.0001 −0.0054 0.0003 0.0007 0.0001 0.0002 0.0001
µ −0.0129 0.0211 −0.0004 0.0051 −0.0001 0.0057 −0.0149 0.0314 0.0013 0.0046 −0.0006 0.0040

III

50

α 0.0201 0.1430 0.0056 0.0055 0.0078 0.0095 0.0200 0.0401 0.0082 0.0059 0.0087 0.0077
θ 0.1100 0.4787 −0.0042 0.1231 0.0105 0.1636 0.1107 0.5244 −0.0011 0.1252 0.0167 0.1633
λ −0.0090 0.0519 0.0037 0.0217 0.0014 0.0260 −0.0092 0.0692 0.0028 0.0205 −0.0002 0.0234
µ −0.0111 0.7129 0.0298 0.1515 0.0330 0.2199 −0.0119 0.4888 0.0568 0.1518 0.0356 0.1916

100

α 0.0148 0.1057 0.0012 0.0021 0.0037 0.0049 0.0147 0.0253 0.0019 0.0022 0.0039 0.0048
θ 0.0977 0.3444 −0.0042 0.0452 0.0041 0.1036 0.0978 0.3428 0.0010 0.0485 0.0137 0.1142
λ −0.0081 0.0397 0.0033 0.0076 0.0013 0.0157 −0.0081 0.0433 0.0017 0.0077 0.0002 0.0153
µ −0.0103 0.3699 0.0070 0.0559 0.0205 0.1377 −0.0113 0.2907 0.0159 0.0610 0.0175 0.1306

150

α 0.0107 0.0562 0.0002 0.0015 0.0033 0.0045 0.0108 0.0142 0.0010 0.0017 0.0014 0.0022
θ 0.0848 0.2128 0.0031 0.0400 0.0040 0.0902 0.0862 0.2343 0.0010 0.0428 0.0120 0.0615
λ −0.0080 0.0240 0.0001 0.0057 −0.0009 0.0113 −0.0081 0.0269 −0.0005 0.0063 −0.0002 0.0083
µ −0.0106 0.2019 −0.0014 0.0433 0.0038 0.1024 −0.0106 0.1858 0.0072 0.0486 0.0012 0.0668

IV

50

α 0.0062 0.1951 −0.0112 0.0759 −0.0106 0.0852 0.0064 0.1080 −0.0140 0.0745 −0.0064 0.0797
θ 0.0272 0.3304 −0.0230 0.2467 −0.0230 0.2735 0.0274 0.3084 −0.0362 0.2605 −0.0200 0.2659
λ −0.0129 0.2002 0.0064 0.1492 0.0059 0.1692 −0.0131 0.2047 0.0091 0.1519 0.0050 0.1579
µ 0.0509 0.0720 0.1289 0.0521 0.1382 0.0543 0.0502 0.0384 0.1805 0.0601 0.1350 0.0447

100

α 0.0062 0.0898 −0.0044 0.0327 −0.0073 0.0439 0.0057 0.0688 −0.0077 0.0334 −0.0059 0.0510
θ 0.0261 0.1960 0.0069 0.1027 −0.0064 0.1301 0.0237 0.1994 −0.0118 0.1083 −0.0132 0.1535
λ −0.0101 0.1254 0.0018 0.0608 0.0035 0.0824 −0.0102 0.1395 0.0057 0.0639 0.0047 0.0952
µ 0.0080 0.0266 0.0330 0.0159 0.0558 0.0202 0.0077 0.0199 0.0635 0.0191 0.0735 0.0223

150

α 0.0060 0.0501 −0.0027 0.0296 −0.0020 0.0373 0.0046 0.0471 −0.0032 0.0313 0.0007 0.0374
θ 0.0251 0.1355 0.0058 0.1032 0.0059 0.1154 0.0161 0.1409 0.0059 0.0911 0.0127 0.1197
λ −0.0093 0.0882 −0.0006 0.0607 −0.0017 0.0748 −0.0101 0.0928 −0.0006 0.0625 −0.0045 0.0752
µ −0.0073 0.0126 0.0309 0.0138 0.0350 0.0136 −0.0069 0.0107 0.0440 0.0139 0.0300 0.0130

7. Applications

Here, we provide three applications to demonstrate the adaptability of the new recom-
mended family. Some measures of goodness of fit are used to illustrate the flexibility of
the TIIHLOF-G: the values of negative LL function (−LL), KAINC (Akaike Information
Criterion (INC) ), KCAINC (Akaike INC with correction), KBINC (Bayesian INC), and
KHQINC (Hannon–Quinn INC) are computed for all competitive models in order to verify
which distribution fits the data more closely. The best distribution has the lowest numerical
values of −LL, KAINC, KCAINC, KBINC, and KHQINC.

7.1. The Biomedical Data Set

The set of data just on relief times of 20 patients who received an analgesic (Gross and
Clark, 1975) is 1.50, 1.20, 2.30, 1.80, 2.20, 1.70, 1.10, 4.10, 1.80, 1.60, 1.40, 1.40, 3.00, 1.70, 1.30,
1.60, 1.70, 1.90, 2.70, 2.00.
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Throughout this subsection, we apply the TIIHLOFExp model to a real-world data
set to assess its adaptability. To compare the TIIHLOFExp model to the other ten fitted
distributions, one, two, three, four, and five parameters are employed. We compare the
TIIHLOFExp distribution with the beta transmuted Weibull (BTW), Type I half-Logistic
inverse power Ailamujia (TIHLIPA), McDonald log-logistic (McLL), Marshall–Olkin expo-
nential (M-OExp), McDonald Weibull (McW), Burr X-Ex (BrXExp), transmuted exponenti-
ated Chen (TEC), Kumaraswamy Ex (KwExp), generalized Marshall–Olkin Ex (GM-OExp),
transmuted complementary Weibull-geometric (TCWG), beta Ex (BExp), Kumaraswamy
Marshall–Olkin Ex (KwM-OExp), transmuted Chen (TC), Ailamujia (A), inverse Ailamujia
(IA), Exp, beta Lomax (BL), gamma-Chen (GaC), Chen (C), Weibull Lomax (WL), Ku-
maraswamy Chen (KwC), odd log-logistic Weibull (OLL-W), beta Weibull (BW), beta-Chen
(BC), Weibull (W), and Marshall–Olkin Chen (M-OC) models. All of these competitive
models are mentioned in Al-Moisheer and Alotaibi (2022).

The parameter estimates and the numerical value of negative LL are presented in
Table 5. Additionally, the numerical values of KAINC, KCAINC, KBINC, and KHQINC
statistics for the biomedical data are presented in Table 6.

Table 5. The parameter estimates and the numerical values of −LL of the biomedical data.

Model ML Estimates −LL

TIIHLOFExp α̂ = 0.052, λ̂ = 0.179, θ̂ = 2.973 15.392

BTW α̂ = 5.619, β̂ = 0.531, â = 53.344, b̂ = 3.568, λ̂ = −0.772 16.831

TIHLIPA α̂ = 0.246, β̂ = 4.713, γ̂ = −6.781 16.095

McLL α̂ = 0.881, β̂ = 2.070, â = 19.225, b̂ = 32.033, ĉ = 1.926 16.526

M-OExp α̂ = 54.474, β̂ = 2.316 19.755

McW α̂ = 2.774, β̂ = 0.380, â = 79.108, b̂ = 17.898, ĉ = 3.006 16.927

BrXExp α̂ = 1.164, β̂ = 0.321 22.050

TEC α̂ = 300.010, β̂ = 0.500, â = 2.430, b̂ = 0.340 15.780

KwExp â = 83.756, b̂ = 0.568, β̂ = 3.333 17.890

GM-OExp λ̂ = 0.519, α̂ = 89.462, β̂ = 3.169 18.375

TCWG α̂ = 43.663, β̂ = 5.127, γ̂ = 0.282, λ̂ = −0.271 16.587

BExp â = 81.633, b̂ = 0.542, β̂ = 3.514 18.740

KwM-OExp α̂ = 8.868, β̂ = 4.899, â = 34.826, b̂ = 0.299 17.400

TC α̂ = 0.750, â = 0.070, b̂ = 1.020 23.815

A β̂ = 0.950 26.160

IA β̂ = 3.449 25.827

Exp β̂ = 0.526 32.835

BL â = 41.070, b̂ = 1.929, θ̂ = 5.774, λ̂ = 0.429 16.110

GaC α̂ = 7.590, β̂ = 1.990, â = 5.000, b̂ = 0.530 23.175

C â = 0.140, b̂ = 0.950 24.570

WL â = 14.739, b̂ = 5.585, θ̂ = 0.263, λ̂ = 0.219 19.631

KwC α̂ = 160.070, β̂ = 0.490, â = 2.210, b̂ = 0.520 16.010

OLL-W α̂ = 31.414, λ̂ = 0.134, θ̂ = 26.771 16.551

BW α̂ = 0.831, β̂ = 0.613, â = 29.947, b̂ = 11.632 16.804

BC α̂ = 85.870, β̂ = 0.480, â = 2.010, b̂ = 0.55 16.255

W λ̂ = 0.002, θ̂ = 1.435 20.586

M-OC α̂ = 400.010, â = 2.320, b̂ = 0.430 19.440
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From Tables 5 and 6, the values of −LL, KAINC, KCAINC, KBINC, and KHQINC
are minimum for the TIIHLOFExp distribution. Thus the TIIHLOFExp distribution is a
better model for the biomedical data as compared with the other twenty-six models.

Table 6. The numerical values of KAINC, KCAINC, KBINC, and KHQINC statistics for the biomedi-
cal data.

Models KAINC KCAINC KBINC KHQINC

TIIHLOFExp 36.784 38.284 34.688 37.368

BTW 43.662 50.124 39.468 44.828

TIHLIPA 38.189 39.112 36.092 38.772

McLL 43.051 47.337 39.556 44.023

M-OExp 43.51 45.51 44.22 43.9

McW 43.854 48.14 40.359 44.826

BrXExp 48.1 50.1 48.8 48.5

TEC 39.56 42.227 36.764 40.338

KwExp 41.78 44.75 43.28 42.32

GM-OExp 42.75 45.74 44.25 43.34

TCWG 51.173 55.459 47.678 52.145

BExp 43.48 46.45 44.98 44.02

KwM-OExp 42.8 46.84 45.55 43.6

TC 53.63 55.13 51.533 54.213

A 54.32 55.31 54.54 54.5

IA 53.653 53.888 52.954 53.847

Exp 67.67 68.67 67.89 67.87

BL 40.219 42.886 37.423 40.997

GaC 46.35 49.017 43.554 47.128

C 53.14 53.846 51.742 53.529

WL 47.261 49.928 44.465 48.039

KwC 40.02 42.687 37.224 40.798

OLL-W 39.101 40.601 37.004 39.684

BW 41.607 44.274 38.811 42.385

BC 40.51 43.177 37.714 41.288

W 45.1728 45.8786 45.5615 47.1642

M-OC 44.88 46.38 42.783 45.463

7.2. Engineering Data Set

The second data have been obtained from [34], it is for the time between failures
(thousands of hours) of secondary reactor pumps. The data are as follows:

1.9210, 4.0820, 0.1990, 2.1600, 0.7460, 6.5600, 4.9920, 0.3470, 0.1500, 0.3580, 0.1010,
1.3590, 3.4650, 1.0600, 0.6140, 0.6050, 0.4020, 0.9540, 0.4910, 0.2730, 0.0700, 0.0620, 5.320.

We compare the fit of the TIIHLOFW distribution with the following continuous
lifetime distributions:
(i) Extended OF Weibull (EOFW) distribution of [12] has pdf given by

f (x; λ, α, µ, θ) =
αθµλµxµ−1e−(λx)µ

[1− (1− e−(λx)µ
)α]θ−1

[1− e−(λx)µ
]αθ+1

, x > 0.
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(ii) Type II HL Weibull (TIIHLW) distribution of [28] has pdf given by

f (x; λ, α, µ, θ) =
2θµλµxµ−1e−(λx)µ

(1− e−(λx)µ
)θ−1

[1 + (1− e−(λx)µ
)θ ]2

, x > 0.

(iii) OF Weibull (OFW) distribution of [1] has pdf given by

f (x; λ, µ, θ) =
θµλµxµ−1e−(λx)µ

(e−(λx)µ
)θ−1e

−( e
−
(

λx)µ

1−e−(λx)µ

)θ

(1− e−(λx)µ
)θ+1

, x > 0.

The parameter estimates and the numerical value of negative LL are presented in
Table 7. Additionally, the numerical values of KAINC, KCAINC, KBINC, and KHQINC
statistics for the engineering data are presented in Table 8.

Table 7. The parameter estimates and the numerical values of −LL of the engineering data.

Model ML Estimates −LL

TIIHLOFW λ̂ = 0.3901, α̂ = 0.5884, µ̂ = 1.4299, θ̂ = 0.3758 30.759
EOFW λ̂ = 0.5436, α̂ = 0.9057, µ̂ = 0.3694, θ̂ = 0.1980 45.418

TIIHLW λ̂ = 0.3474, µ̂ = 0.8837, θ̂ = 0.9501 32.574
OFW λ̂ = 0.0464, µ̂ = 0.0575, θ̂ = 0.7175 60.544

Table 8. The numerical values of KAINC, KCAINC, KBINC, and KHQINC statistics for the engineer-
ing data.

Models KAINC KCAINC KBINC KHQINC

TIIHLOFW 69.519 71.741 74.061 70.661
EOFW 98.836 101.058 103.378 99.978

TIIHLW 71.147 72.410 74.554 72.004
OFW 127.087 128.350 130.494 127.944

From Tables 7 and 8, the values of −LL, KAINC, KCAINC, KBINC, and KHQINC are
minimum for the TIIHLOFW distribution. Thus the TIIHLOFW distribution is a better
model for the engineering data as compared with the other three models. Figure 6 displays
the fitted pdf plots of the engineering data set.

Figure 6. Fitted pdf for the engineering data set.
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7.3. Environmental Data Set

The third data set is obtained from [35], it consists of thirty successive values of March
precipitation (in inches) in Minneapolis/St Paul. The data are as follows:

1.180, 1.350, 4.750, 0.770, 1.950, 1.200, 0.470, 1.430, 3.370, 2.200, 3.000, 3.090, 1.510, 2.100,
0.520, 1.620, 1.310, 0.320, 0.590, 0.810, 2.810, 1.870, 2.480, 0.960, 1.890, 0.900, 1.740, 0.810,
1.200, 2.050.

We compare the fit of the TIIHLOFW distribution with the following continuous
lifetime distributions: EOFW, TIIHLW, and OFW models.

The parameter estimates and the numerical value of negative LL are presented in
Table 9. Additionally, the numerical values of KAINC, KCAINC, KBINC, and KHQINC
statistics for the environmental data are presented in Table 10.

From Tables 9 and 10, the values of −LL, KAINC, KCAINC, KBINC, and KHQINC are
minimum for the TIIHLOFW distribution. Thus the TIIHLOFW distribution is a better
model for the environmental data as compared with the other three models. Figure 7
displays the fitted pdf plots of the environmental data set.

Table 9. The parameter estimates and the numerical values of −LL of the environmental data.

Model ML Estimates −LL

TIIHLOFW λ̂ = 0.5477, α̂ = 0.9205, µ̂ = 1.8387, θ̂ = 0.6241 38.944
EOFW λ̂ = 0.2927, α̂ = 0.8943, µ̂ = 0.2182, θ̂ = 1.0587 55.876

TIIHLW λ̂ = 0.2675, µ̂ = 0.9643, θ̂ = 0.9297 50.921
OFW λ̂ = 0.9615, µ̂ = 1.5339, θ̂ = 1.5469 50.501

Table 10. The numerical values of KAINC, KCAINC, KBINC, and KHQINC statistics for the environ-
mental data.

Models KAINC KCAINC KBINC KHQINC

TIIHLOFW 85.887 87.487 91.492 87.680
EOFW 119.752 121.352 125.357 121.545

TIIHLW 107.842 108.765 112.046 109.187
OFW 107.002 107.925 111.205 108.346

Figure 7. Fitted pdf for the environmental data.

7.4. Strength Data

The fourth data set is obtained from Ahmadini et al. [36], it consists of 56 values of
strength data measured in GPA, the single carbon fibers, and 1000 impregnated carbon
fiber tows. The data are as follows:
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2.247, 2.64, 2.908, 3.099, 3.126, 3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681, 3.726, 3.727,
3.728, 3.783, 3.785, 3.786, 3.896, 3.912, 3.964, 4.05, 4.063, 4.082, 4.111, 4.118, 4.141, 4.246, 4.251,
4.262, 4.326, 4.402, 4.457, 4.466, 4.519, 4.542, 4.555, 4.614, 4.632, 4.634, 4.636, 4.678, 4.698,
4.738, 4.832, 4.924, 5.043, 5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06

We compare the fit of the TIIHLOFW distribution with the following continuous
lifetime distributions: Kumaraswamy Weibull (KW) by Cordeiro et al. [37], Marshall–Olkin
alpha power Weibull (MOAPW) by Almetwally [38], Marshall–Olkin alpha power inverse
Weibull (MOAPIW) by Basheer et al. [32], odd Perks Weibull (OPW) by Elbatal et al. [14],
Marshall–Olkin alpha power Lomax (MOAPL) by Almongy et al. [33], and Odds exponential-
Pareto IV (OWPIV) by Baharith et al. [39].

The parameter estimates and the numerical value of negative LL are presented in
Table 11. Additionally, the numerical values of KAINC, KCAINC, KBINC, and KHQINC
statistics for the environmental data are presented in Table 12.

From Tables 11 and 12, the values of −LL, KAINC, KCAINC, KBINC, and KHQINC
are minimum for the TIIHLOFW distribution. Thus the TIIHLOFW distribution is a
better model for the environmental data as compared with the other three models. Figure 8
displays the fitted pdf plots of the strength data set.
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Figure 8. Fitted pdf for the strength data.

Table 11. The parameter estimates and the numerical values of −LL of the strength data.

Model ML Estimates −LL

TIIHLOFW α = 5.2701, 0.3450 θ = 0.373, µ = 3.2985, 67.7818
MOAPL α = 281.8156, β = 270.1004, θ = 550.4996, λ = 140.7209, 69.1317
MOAPW α = 44.4414, β = 7.5156, θ = 0.0101, λ = 5.7759, 67.9200

OPW β = 0.0101, θ = 0.1355, λ = 0.3678, δ = 0.5165, 70.2290
KW α = 0.008, β = 4.1936, a = 2.8883, b = 0.2909, 67.9350

MOAPIW α = 10.5695, β = 7.9752, θ = 353.0412, λ = 100.1504, 69.3700
OEPIV α = 40.7601, β = 0.1777, θ = 54.1619, λ = 18.1516, 69.0468
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Table 12. The numerical values of KAINC, KCAINC, KBINC, and KHQINC statistics for the
strength data.

Model KAINC KCAINC KBINC KHQINC

TIIHLOFW 143.5636 144.3479 151.6650 146.7045
MOAPL 146.2634 147.0477 154.3648 149.4043
MOAPW 143.8401 144.6244 151.9415 146.9810

OPW 148.4581 149.2424 156.5595 151.5990
KW 143.8700 144.6543 151.9714 147.0109

MOAPIW 146.7408 147.5251 154.8422 149.8817
OEPIV 146.0936 146.8779 154.1950 149.2345

8. Conclusions and Summary

We presented a new class of continuous distributions entitled the Type II half-Logistic
odd Fréchet-G class in this work. The identifiability of the proposed model was proved and
also studied its relationship with other families of distributions. Some statistical properties
such as ORMs, INMs, MGEF, REL, RREL, and entropy are derived. The estimates of the
parameters of the new model are estimated using the ML method. A simulation outcome
was conducted to check the performance of the MLE method. Using four real-life data
sets we illustrated the flexibility of the TIIHLOFExp and TIIHLOFW models. In our
future works, the new suggested class of distributions will be used to generate more new
statistical models, the statistical features of which will be explored. We also intend to study
the statistical inferences of new models generated using the TIIHLOF-G class.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: In statistical process control (SPC), the ratio of two normal random variables (RZ) is a
valuable statistical indicator to be taken as the charting statistic. In this work, we propose a triple
exponentially weighted moving average (TEWMA) chart for monitoring the RZ. Additionally, the
variable sampling interval (VSI) strategy has been adopted to different control charts by researchers.
With the application of this strategy, the VSI-TEWMA-RZ chart is then developed to further improve
the performance of the proposed TEWMA-RZ chart. The run length (RL) properties of the proposed
TEWMA-RZ and VSI-TEWMA-RZ charts are obtained by the widely used Monte-Carlo (MC) sim-
ulations. Through the comparisons with the VSI-EWMA-RZ and the VSI-DEWMA-RZ charts, the
VSI-TEWMA-RZ chart is statistically more sensitive than the VSI-EWMA-RZ and the VSI-DEWMA-
RZ charts in detecting small and moderate shifts. Moreover, it turned out that the VSI-TEWMA-RZ
chart has better performance than the TEWMA-RZ chart on the whole. Furthermore, this paper
illustrates the implementation of the proposed charts with an example from the food industry.

Keywords: SPC; RZ; EWMA chart; TEWMA chart; VSI-TEWMA chart

1. Introduction

The quality of products has become one of the most important factors in the company’s
market competition. For improving products’ quality, Statistical Process Control (SPC)
offers a lot of tools to supervise and control a process. Control chart, as one of the most
critical tools in SPC, is often used to monitor the common or assignable causes. In the
SPC literatures, control charts for monitoring the ratio of two normal random variables
(RZ) have already been studied extensively. They have been used in various fields—for
instance, the baking industry, the pharmaceutical industry, and the industrial production
of materials, as seen in [1].

The research on the RZ control charts is mainly divided into three branches: the
Shewhart type charts, the cumulative sum (CUSUM) charts and the exponentially weighted
moving average (EWMA) charts. Among these three type control charts, the Shewhart
control chart for monitoring the RZ was first discussed by Ref. [2], who investigated a
quality control procedure for the insurance against unemployment. Ref. [3] pointed out
that the distribution of the ratio was extremely complex and the statistical properties of the
control chart can only be obtained by simulations. Ref. [4] put forward several guidelines
to implement the Shewhart chart for supervising and controlling the ratio of glass oxide
composition to its density in the glass industry. Ref. [1] discussed the Shewhart chart
based on individual measurements, named as the Shewhart-RZ control chart. Following
this work, Ref. [5] studied the RZ chart on the basis that subgroups consist of n > 1
units. Then, Ref. [6] stated that the synthetic control chart for supervising and controlling
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the RZ is statistically more sensitive than the Shewhart-RZ chart. As it is known to all,
the Shewhart charts are ineffective in detecting small to moderate process shifts. Some
researchers have suggested supplementing run rules for improving the Shewhart charts’
statistical properties, see Refs. [7–9] and so on. To further improve the Shewhart-RZ chart’s
performance, Ref. [10] and Ref. [11] adopted the run rules to the Shewhart-RZ control
charts, denoted as RR-RZ control charts for the purpose of increasing its sensitivity to
small shifts.

To further overcome the shortcomings of the Shewhart-type charts in detecting a
relatively small shift, some researchers have successively proposed EWMA and CUSUM
charts. Both types of charts take full advantage use of the previous samples information,
making charts faster in detecting relatively small shifts. For example, Refs. [12,13] proposed
two one-sided EWMA-RZ charts, and it turned out that the EWMA-RZ chart is statistically
more sensitive than the Shewhart -RZ chart on the whole. Additionality, Ref. [14] proposed
and studied the statistical properties of two Phase II one-sided CUSUM-RZ control charts
and the numerical results showed that the proposed CUSUM chart is more sensitive to
small shifts than the Shewhart-RZ chart.

To further improve control charts’ ability to adjust to small shifts, different methods for
improving EWMA schemes have been shown in the SPC literature. These charts are consid-
ered an extension of EWMA charts. For example, Refs. [15,16] performed the exponential
smoothing twice on the weighted coefficients of the EWMA charts, which was named a
double exponential weighted moving average (DEWMA) chart. For more works on the
DEWMA control charts, the reader may see Refs. [17,18]. Recently, Ref. [19] constructed the
one-sided DEWMA chart for time between events (DEWMA-TBE) which has time-varying
control limits based on the gamma distribution. It shows that the DEWMA-TBE chart
is statistically more sensitive than competitors in detecting downward shifts. Moreover,
Ref. [20] have improved the performance of the DEWMA-type control chart with additional
run-rule schemes. Since then, Ref. [21] studied the nonparametric DEWMA chart on the
basis of the Wilcoxon rank-sum test. Ref. [22] performed the exponential smoothing three
times and proposed the triple exponentially weighted moving average (TEWMA) chart
for monitoring a normally distributed process. Moreover, a TEWMA chart for monitoring
time between events (TBE) was suggested by Ref. [23]. Recently, Ref. [24] proposed a
new TEWMA chart for supervising and controlling the process dispersion, moreover the
advantage of the chart is shown by comparing with some competitors in detecting small
shifts. Later on, a new distribution-free TEWM chart on the basis of the Wilcoxon rank-sum
statistic was proposed by Ref. [25]. The studies on the TEWMA chart have demonstrated
its outstanding performance in the detection of small shifts.

In the related works of control charts, researchers have found that introducing the vari-
able sampling interval (VSI) strategy to control charts can further improve the performance
of traditional charts with a fixed sampling interval (FSI). The VSI strategy is the one that
adjusts the next sampling interval based on the position of the current charting statistic on
the control chart. For example, Ref. [26] proposed an EWMA-RZ chart by introducing the
VSI strategy, denoted as the VSI-EWMA-RZ chart. As a result, the statistical performance
of the VSI-EWMA-RZ chart is superior to the traditional EWMA-RZ charts. In addition,
Ref. [27] further integrated the VSI into the CUSUM-RZ scheme, called the VSI-CUSUM-RZ
chart, to enhance the CUSUM-RZ chart’s performance.

Based on the above studies, it is found that the TEWMA chart has demonstrated
its outstanding performance in the detection of small shifts in a normally distributed
process. Motivated by this fact, this paper proposes a TEWMA chart for monitoring the
RZ. Moreover, since the integration of the VSI strategy can improve the performance of the
EWMA-RZ or CUSUM-RZ charts for small to moderate shifts, a VSI-TEWMA-RZ control
chart is then proposed to further improve the performance of the proposed TEWMA-
RZ chart.

The other parts of this paper are organized as follows: In Section 2, the distribution
of the ratio Z between two normal random variables is briefly introduced. Then, the
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TEWMA-RZ and VSI-TEWMA-RZ charts are introduced in next Section. Section 4 shows
the design procedure of the proposed charts. The control limits and the ARL or the average
time to signal (ATS) of the proposed charts are also shown in this section by using the
widely used Monte-Carlo (MC) simulations. In Section 5, for different chart parameters,
the performance of the VSI-TEWMA-RZ chart is compared with the TEWMA-RZ, the
VSI-EWMA-RZ, and the VSI-DEWMA-RZ charts. Section 6 takes the food industry as an
example and implement the proposed control chart in practice. At last, Section 7 gives
several remarkable conclusions and proposals for future research works.

2. A Brief Review of the Distribution of the Ratio Z

In this section, the background of the distribution of the ratio Z is briefly outlined
by considering two normally distributed random variables, X and Y—for example
W = (X, Y)T ∼ N(µW , ΣW). Here, W is a bivariate normally distributed random vector
with a mean vector and variance–covariance matrix, respectively, as below:

µW =

(
µX
µY

)
(1)

ΣW =

(
σ2

X ρσXσY
ρσXσY σ2

Y

)
(2)

where ρ is the coefficient of correlation between X and Y. According to the definition, the
coefficients of variation of the two random variables X and Y are defined as γX = σX

µX

and γY = σY
µY

, respectively, so the standard-deviation ratio is ω = σX
σY

. Moreover, details

of the interested ratio Z = X
Y can refer to Refs. [28–30]. Although there is no closed-

form expression for the distribution of the ratio Z, it can be approximated by applying a
analogical method suggested by Refs. [5,31]. Thus, the approximated expression of the
c.d.f. (cumulative distribution function) FZ(z | γX , γY, ω, ρ) of Z proposed by Ref. [5] can
be obtained as follows:

FZ(z | γX , γY, ω, ρ) ' Φ
(

A
B

)
, (3)

where Φ(·) is the c.d.f. of the standard normal distribution and A = z
γY
− ω

γX
and

B =
√

ω2 − 2ρωz + z2 are functions of z, γX, γY, ω, and ρ. In addition, the p.d.f. (probabil-
ity density function) fZ(z | γX , γY, ω, ρ) of Z can be given as follows:

fZ(z | γX , γY, ω, ρ) '
(

1
BγY

− (z− ρω)A
B3

)
× φ

(
A
B

)
, (4)

where φ (·) is the p.d.f. of the standard normal distribution. The i.d.f. (inverse distribution
function) F−1

Z (p | γX , γY, ω, ρ) of Z is,

F−1
Z (p | γX , γY, ω, ρ) =





−C2−
√

C2
2−4C1C3

2C1
if p ∈ (0, 0.5],

−C2+
√

C2
2−4C1C3

2C1
if p ∈ [0.5, 1).

(5)

Here, C1 = 1
γ2

Y
−
(

Φ−1(p)
)2

, C2 = 2ω

(
ρ
(

Φ−1(p)
)2
− 1

γXγY

)
and C3 =

ω2
(

1
γ2

X
−
(

Φ−1(p)
)2
)

are functions of γX, γY, p, ω, and ρ. Moreover, Φ−1(·) is the i.d.f.

of the standard normal distribution.

3. Construction of the TEWMA-RZ Control Charts

To implement the control chart for monitoring the ratio Z = X
Y , at each sampling

point i = 1,2, . . . , we collect independent couples {Wi,1, Wi,2, . . . , Wi,n} and each
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Wi,j =
(
Xi,j, Yi,j

)T ∼ N
(
µw,i, Σw,i

)
, j = 1, . . . , n, is a bivariate normal random vector with a

mean vector and variance-covariance matrix, respectively, as follows:

µw,i =

(
µX,i
µY,i

)
, (6)

Σw,i =

(
σ2

X,i ρ0σX,iσY,i
ρ0σX,iσY,i σ2

Y,i

)
. (7)

where ρ0 is the defined in-control correlation coefficient between two random variables X
and Y. Following Ref. [5], several assumptions are made in this paper. First, the sample
units are allowed to change among subgroups, which means µw,i 6= µw,k and Σw,i 6= Σw,k
for i 6= k. Second, for variables X and Y, there is a linear relationship, σX,i = γX × µX,i
and σY,i = γY × µY,i, where γX and γY are the supposed known and constant coefficients
of the variation of X and Y, respectively. Third, the known in-control value of the ratio is
z0 =

µX,i
µY,i

, i = 1, 2, . . . for the in-control process.

3.1. A Brief Review of the VSI-EWMA-RZ Control Chart

To improve the performance of a Shewhart-RZ chart, Ref. [26] proposed a VSI-EWMA-
RZ chart for monitoring the statistic Ẑi,

Ẑi =
µ̂X,i

µ̂Y,i
=

Xi

Yi
=

∑n
j=1 Xi,j

∑n
j=1 Yi,j

, i = 1, 2, . . . (8)

As it has been shown in Ref. [5], the c.d.f. Fẑi (z | n, γX , γY, z0, ρ) and the i.d.f
F−1

Ẑi
(p | n, γX , γY, z0, ρ0) of Ẑi are equal to:

Fẑi (z | n, γX , γY, z0, ρ) = FZ

(
z
∣∣∣∣

γX√
n

,
γY√

n
,

z0γX
γY

, ρ

)
, (9)

F−1
Ẑi

(p | n, γX , γY, z0, ρ0) = F−1
Z

(
p
∣∣∣∣

γX√
n

,
γY√

n
,

z0γX
γY

, ρ0

)
, (10)

where FZ

(
z | γX√

n , γY√
n , z0γX

γY
, ρ
)

is the c.d.f. of Z in Equation (3) and F−1
Z

(
p | γX√

n , γY√
n , z0γX

γY
, ρ0

)

is the i.d.f. of Z in Equation (5).
For detecting the upward shifts, the statistic Y+

i of the upper-sided VSI-EWMA-RZ
(denoted as VSI-EWMA-RZ+) chart is defined as:

Y+
i = max

(
z0,
(
1− λ+

)
Y+

i−1 + λ+Ẑi

)
, Y+

0 = z0, (11)

With an upper control limit UCL+ = K+ × z0, where λ+ ∈ (0, 1] is the smoothing
parameter and K+ > 1 is chart parameter of the VSI-EWMA-RZ+ chart. In addition, an
upper warning limit UWL+ = W+ × z0 between [z0, UCL+] is added to the chart, where
W+ < K+ is the upper warning limit coefficient. A process is deemed to be out-of-control
if the statistic Y+

i > UCL+. Otherwise, the process is thought to be in-control if the statistic
Y+

i falls within the warning region (UWL+, UCL+], and a shorter sampling interval hs
is used to collect the next sampling point. The process is deemed to be in-control if the
plotted statistic Y+

i falls within the safe region [z0, UWL+], and a longer sampling interval
hL is used.

Similarly, for the detection of downward shifts, the statistic Y−i of the lower-sided
VSI-EWMA-RZ (denoted as VSI-EWMA-RZ−) chart is defined as:

Y−i = min
(

z0,
(
1− λ−

)
Y−i−1 + λ−Ẑi

)
, Y−0 = z0, (12)
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With a lower control limit LCL− = K− × z0, where λ− ∈ (0, 1] is the smoothing
parameter and K− < 1 is the chart parameter of the VSI-EWMA-RZ− chart, respectively.
In addition, a lower warning limit LWL− = W− × z0 between [LCL−, z0] is added to the
chart, where W− > K− is the lower warning limit coefficient. A process is claimed to
be out-of-control if the plotted statistic Y−i < LCL−. Otherwise, the process is deemed
to be in-control if the plotted statistic Y−i falls within the warning region [LCL−LWL−)
and a shorter sampling interval hs is used. The process is deemed to be in-control if the
plotted statistic Y−i falls within the safe region [LWL−, z0] and a longer sampling interval
hL is used.

3.2. A Brief Review of the VSI-DEWMA-RZ Chart

According to Ref. [32], the one-sided VSI-DEWMA-RZ charts are constructed by
making the smoothing twice and are defined as follows:

An upward VSI-DEWMA-RZ (denoted as VSI-DEWMA-RZ+) chart is used to detect
an increase in the process and the monitoring statistic U−i is:

Y+
i = λ+Ẑi +

(
1− λ+

)
Y+

i−1, Y+
0 = z0, (13)

U+
i = λ+Y+

i +
(
1− λ+

)
U+

i−1, U+
0 = z0, (14)

where λ+ ∈ (0, 1] is the smoothing parameter and K+ > 1 is the chart parameter of the VSI-
DEWMA-RZ+ chart, respectively. The single control limit of the chart is UCL+ = K+ × z0.
Also, an upper warning limit UWL+ = W+ × z0 between [z0, UCL+] is added, where
W+ < K+ is the upper warning limit coefficient. If the plotted statistic U+

i > UCL+, the
process is considered to be out-of-control. Otherwise, the process is claimed to be in-control
if UWL+ < U+

i ≤ UCL+ and a shorter sampling interval hs is used to collect the next
sampling point. The process is considered to be in-control if z0 ≤ U+

i ≤ UWL+ and a
longer sampling interval hL. is used. The sampling interval hi can be expressed as follows:

hi =

{
hs, UWL+ < U+

i ≤ UCL+

hL, U+
i ≤ UWL+ (15)

A downward VSI-DEWMA-RZ (denoted as VSI-DEWMA-RZ−) chart is used to detect
a decrease in the process and the statistic U−i can be similarly defined as:

Y−i = λ−Ẑi +
(
1− λ−

)
Y−i−1, Y−0 = z0, (16)

U−i = λ−Y−i +
(
1− λ−

)
U−i−1, U−0 = z0, (17)

where λ− ∈ (0, 1] and K− < 1 are the smoothing and chart parameters of the FSI-DEWMA-
RZ-chart, respectively. The single control limit of the chart is LCL− = K− × z0. A lower
warning limit LWL− = W−× z0 between [LCL−, z0] is added, where W− > K− is the lower
warning limit coefficient. If the plotted statistic U−i < LCL−, the process is considered to be
out-of-control. Otherwise, the process is claimed to be in-control if LCL− ≤ U−i < LWL−

and a shorter sampling interval hs is used. The process is considered to be in-control if
LWL− ≤ U−i ≤ z0 and a longer sampling interval hL is used. The sampling interval hi can
be expressed in a form similar to Equation (15).

3.3. The Proposed TEWMA-RZ Charts

To further enhance the advantage of the FSI- or VSI-EWMA-RZ charts, this paper
performs the exponential smoothing three times on the weighted coefficients of the EWMA
charts. As the distribution of Z is non-symmetric, two separate one-sided TEWMA-RZ
charts are proposed for detecting increasing and decreasing shifts, respectively. Moreover,
the VSI-TEWMA-RZ chart is further proposed to increase the sensitivity of the FSI-TEWMA-
RZ chart.
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3.3.1. The FSI-TEWMA-RZ Chart

An upward FSI-TEWMA-RZ (denoted as FSI-TEWMA-RZ+) chart is used to detect an
increase in the process, and the monitoring statistic V+

i is:

Y+
i = λ+Ẑi +

(
1− λ+

)
Y+

i−1, Y+
0 = z0, (18)

U+
i = λ+Y+

i +
(
1− λ+

)
U+

i−1, U+
0 = z0, (19)

V+
i = λ+U+

i +
(
1− λ+

)
V+

i−1, V+
0 = z0, (20)

where λ+ ∈ (0, 1] is the smoothing parameter and K+ > 1 is the chart parameter of the FSI-
TEWMA-RZ+ chart, respectively. The single control limit of the chart is UCL+ = K+ × z0.
A process is deemed to be out-of-control if the statistic V+

i falls above the UCL+. Otherwise,
the process is declared to be in-control.

A downward FSI-TEWMA-RZ (denoted as FSI-TEWMA-RZ−) chart is used to detect
downward process sifts and the statistic V−i can be similarly defined as:

Y−i = λ−Ẑi +
(
1− λ−

)
Y−i−1, Y−0 = z0, (21)

U−i = λ−Y−i +
(
1− λ−

)
U−i−1, U−0 = z0, (22)

V−i = λ−U−i +
(
1− λ−

)
V−i−1, V−0 = z0, (23)

where λ− ∈ (0, 1] is the smoothing parameter and K− < 1 is the chart parameter of the
TEWMA-RZ− chart, respectively. The single control limit of the chart is LCL− = K− × z0.
A process is deemed to be out-of-control if the charting statistic V−i falls below the LCL−.
Otherwise, the process is declared to be in-control.

3.3.2. The VSI-TEWMA-RZ Chart

For further enhancing the sensitivity of the FSI-TEWMA-RZ chart for small or moder-
ate shifts in the process, this paper introduces the VSI strategy into the FSI-TEWMA-RZ
control chart in Section 3.3.1.

With respect to the proposed VSI-TEWMA-RZ chart, the control limit UCL+(LCL−)
is consistent with the FSI-TEWMA-RZ chart. For the upward VSI-TEWMA-RZ (denoted
as VSI-TEWMA-RZ+) control chart, an upper warning limit UWL+ = W+ × z0 between
[z0, UCL+] is added, where W+ < K+ is the upper warning limit coefficient. If the plotted
statistic V+

i > UCL+, the process is considered to be out-of-control. Otherwise, the process
is claimed to be in-control if UWL+ < V+

i ≤ UCL+ and a shorter sampling interval hs
is used to collect the next sampling point. The process is considered to be in-control if
z0 ≤ V+

i ≤ UWL+ and a longer sampling interval hL is used. The sampling interval hi can
be expressed as follows:

hi =

{
hs, UWL+ < V+

i ≤ UCL+

hL, V+
i ≤ UWL+ (24)

In terms of the downward VSI-TEWMA-RZ (denoted as VSI-TEWMA-RZ−) control chart,
a lower warning limit LWL− = W− × z0 between [LCL−, z0] is added, where W− > K−

is the lower warning limit coefficient. If the plotted statistic V−i < LCL−, the process
is considered to be out-of-control. Otherwise, the process is claimed to be in-control if
LCL− ≤ V−i < LWL− and a shorter sampling interval hs is used. The process is considered
to be in-control if LWL− ≤ V−i ≤ z0 and a longer sampling interval hL is used. The
sampling interval hi can be expressed in a form similar to Equation (24).

4. Design of the Proposed TEWMA-RZ Charts
4.1. Design of the Proposed FSI-TEWMA-RZ Chart

Because of the complexity of the charting statistic of the FSI-TEWMA-RZ chart, the
run length (RL) properties of the control chart are obtained by the MC simulation in this
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paper. Furthermore, to evaluate the performance of the FSI-TEWMA-RZ chart, the ARL
measure, which indicates the average number of samples collected before going into out-
of-control state, is selected. When the process is under control, the ARL is recorded as
ARL0. Otherwise, when the process gets out of control, the ARL is recorded as ARL1. For
illustration, the detailed procedure of the MC simulation of the FSI-TEWMA-RZ+ chart is
summarized as follows:

Step 1 Select the values of the sample size n, the in-control ratio z0, the smoothing
parameter λ+, and the chart coefficient K+. Compute the corresponding control limit
UCL+ = K+ × z0.

Step 2 Generate a random sample from a multivariate normal distribution and compute
the value of the charting statistic V+

i as in Equation (20).
Step 3 If the charting statistic V+

i falls below the UCL+, the process is deemed to be
in-control and returns to Step 2. Otherwise, the process is deemed to be out-of-control and
then record the RL values.

Step 4 Repeat Steps 2 and 3 for . times, calculate the ARL values from the recorded RL
values. The approximated expressions of the ARL can be written as:

ARL =
∑N

t=1 RLt

N
, t = 1, . . . , N (25)

Without loss of generality, this paper assumes ARL0 = 200 and further studies the
ARL1 performance of the proposed chart under different shifts. The performance of the
FSI-TEWMA-RZ chart can be expressed as:

ARL1 = ARL1(n, λ, K, γX , γY, z0, ρ, τ), (26)

Subject to the constraint:

ARL(n, λ, K, γX , γY, z0, ρ, τ = 1) = ARL0. (27)

When τ = 1, the process is under control. Otherwise, when τ 6= 1, the process
is returns to be out-of-control. For the above model, considering different parameter
combinations, this paper uses a bisection search algorithm to computer the value of K that
satisfies the constraint of ARL0 = 200, and then it is used to compute the ARL1 values of
the proposed chart.

4.2. Design of the Proposed VSI-TEWMA Charts

Since the sampling interval between the consecutive samples varies, it is not reasonable
to assess the performance of the VSI-TEWMA-RZ chart by the ARL measure. Thus, the ATS
is used to evaluate the performance of the VSI-TEWMA-RZ chart. The ATS represents the
anticipant time before a control chart triggers an out-of-control signal. When the process is
under control, it is recorded as ATS0. Otherwise, when the process gets out-of-control, it is
recorded as ATS1.

For the FSI-TEWMA-RZ chart, the sampling interval h is fixed, which indicates that the
ATSFSI = h× ARLFSI . In general, the sampling interval of the FSI control chart is usually
equal to one, that is, h = 1. Since the sampling interval hi depends on the position of the
currently monitoring statistic on the control chart, then the ATSVSI = E(hi)× ARLVSI ,
where E(hi) stands for the average sampling interval (ASI) of the VSI type chart. The
detailed procedure of the MC simulation of the VSI-TEWMA-RZ+ chart is summarized
as below:

Step 1 Select the values of the sample size n, the in-control ratio z0, the smoothing
parameter λ+, and the warning limit coefficient W+ and K+. Compute the corresponding
warning limit UWL+ = W+ × z0 and the control limit UCL+ = K+ × z0.

Step 2 Generate a random sample from a multivariate normal distribution and compute
the value of the charting statistic V+

i as in Equation (20).
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Step 3 If UWL+ < V+
i ≤ UCL+, a shorter sampling interval hs is used to collect

the next sampling point, and if V+
i ≤ UWL+, a longer sampling interval hL is used to

collect the next sampling point. Then, the process is declared to be in-control and returns
to Step 2. The times tS and tL of the sampling intervals hs and hL are recorded, respectively.
Otherwise, if the V+

i falls above the UCL+, the process is declared to be out-of-control.
Step 4 Repeat Steps 2 and 3 for N = 105 times, calculate the ATS values from the

recorded times of the sampling intervals hs and hL. The approximated expressions of the
ATS can be written as:

ATS = hS + hS × ∑N
t=1 tS
N

+ hL × ∑N
t=1 tL

N
, t = 1, . . . , N (28)

Similarly, this paper assumes ATS0 = 200 and further studies the ATS1 performance
of the proposed control charts under different process shifts.

The expressions of ATSFSI and ATSVSI are given as follows:

{
ATSVSI = ATSVSI(n, hS, hL, λ, K, W, γ0, γ1, z0, ρ, τ)
ATSFSI = h× ARLFSI

1 (n, λ, K, γ0, γ1, z0, ρ, τ)
, (29)

For the purpose of comparing the performance of the FSI-TEWMA-RZ and the VSI-
TEWMA-RZ control charts, it is necessary to make sure that the control charts have the
same controlled performance. The out-of-control performance of the VSI-TEWMA-RZ
chart can be expressed as below:

ATSVSI
1 = ATSVSI

1 (n, hS, hL, λ, K, W, γ0, γ1, z0, ρ, τ)

Subject to the constraint:
ATSVSI

0 = ATSFSI
0 (30)

ASI0 = h = 1, (31)

where ASI0. is the controlled ASI of the VSI-TEWMA-RZ chart. Following the research
work of Ref. [33], a general formula to determine the value of hS and hL are as follows:

ρShS + ρLhL = h = 1 and ρS + ρL = 1 (32)

where ρS and ρL are the probabilities that the statistic Vi falls into the warning area and the
safe area when the process is controlled, respectively. According to the research work of
Ref. [34], this paper selects (hS, hL) = (0.1, 1.9) and ρS = ρL = 0.5 for illustration.

In addition, a bisection search algorithm is used to calculate the control limit coefficient
K and warning limit coefficient W by satisfying the constraint of ATS0 = 200 and ASI0 = 1.
Then, these parameters are used to calculate the out-of-control ATS1 values for the different
process shift τ. According to the research of Ref. [26], we assume z0 = 1 and select
λ ∈ {0.2, 0.5} and n ∈ {1, 5} to discuss the performance of the VSI-TEWMA-RZ chart.
For the selected combinations of (n, λ), Table 1 shows the values of K+ and W+ of the
VSI-TEWMA-RZ control chart. Considering the space limitation, this article only gives the
values of K+ and W+ under the condition that γX = γY. It is noted that the value of K+

of the VSI-TEWMA-RZ chart presented in Table 1, which is the same as the one from the
corresponding FSI-TEWMA-RZ chart.

75



Symmetry 2022, 14, 1236

Table 1. K+ and W+ values of the VSI-TEWMA-RZ chart when ATS0 = 200.

λ

(γx = 0.01,γY = 0.01) (γx = 0.2,γY = 0.2)

n = 1 n = 5 n = 1 n = 5

K W K W K W K W

ρ0 = ρ1 = −0.8

0.2 1.0067 0.9998 1.0030 0.9999 1.2480 1.0601 1.0762 1.0083
0.5 1.0161 1.0000 1.0071 0.9999 1.5315 1.0581 1.1699 1.0106

ρ0 = ρ1 = −0.4

0.2 1.0059 0.9998 1.0026 0.9999 1.2061 1.0467 1.0653 1.0061
0.5 1.0141 0.9999 1.0063 1.0000 1.4454 1.0452 1.1466 1.0069

ρ0 = ρ1 = 0

0.2 1.0050 0.9998 1.0022 0.9999 1.1618 1.0316 1.0534 1.0042
0.5 1.0119 0.9999 1.0053 1.0000 1.3544 1.0305 1.1210 1.0047

ρ0 = ρ1 = 0.4

0.2 1.0038 0.9998 1.0017 0.9999 1.1146 1.0179 1.0397 1.0019
0.5 1.0092 0.9999 1.0041 1.0000 1.2543 1.0179 1.0912 1.0028

ρ0 = ρ1 = 0.8

0.2 1.0022 0.9999 1.0010 1.0000 1.0574 1.0045 1.0216 1.0002
0.5 1.0053 1.0000 1.0024 1.0000 1.1316 1.0051 1.0504 1.0008

5. Numerical Results and Analysis

This section first compares the performance of the proposed VSI-TEWMA-RZ
chart and the corresponding FSI-TEWMA-RZ control chart, and then compares the
VSI-TEWMA-RZ chart’s performance with the VSI-DEWMA-RZ chart in Ref. [32]
and the VSI-EWMA-RZ chart proposed by Ref. [26]. Similar to the scenarios of
Ref. [26], the parameter settings of the simulations are λ ∈ {0.2, 0.5}, n ∈ {1, 5}, γX ∈
{0.01, 0.2}, γY ∈ {0.01, 0.2} and ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, under different conditions
{(γX = γY , ρ0 = ρ1), (γX 6= γY , ρ0 = ρ1), (ρ0 6= ρ1, γX = γY), (ρ0 6= ρ1, γX 6= γY)}.
Since the proposed VSI-TEWMA-RZ control chart is mainly used to advance the sen-
sitivity of the RZ chart for monitoring small shifts in a process and let us take the upward
control chart for instance, we give priority to the performance of the RZ charts for the
upward shifts τ ∈ {1.001, 1.005, 1.01, 1.02, 1.05}.

5.1. Comparisons between the VSI-TEWMA-RZ and the FSI-TEWMA-RZ Charts

According to the above parameter settings and the values of K+ and W+ presented
in Table 1, Figures 1–4 compare the performance of the upper-sided FSI-TEWMA-RZ and
VSI-TEWMA-RZ charts when monitoring the upward shifts. The ARL1 and ATS1 represent
the performances of the corresponding FSI and VSI control charts, respectively. It is pointed
out that since the sampling interval of the FSI chart is h = 1, the FSI chart’s ARL is equal to
its ATS value. Then, the ARL1 performance of the FSI chart can be directly compared with
the ATS1 performance of the VSI chart.
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-) charts for γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2},
γX = γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 = ρ1, τ ∈ {1.001, 1.005, 1.01, 1.02, 1.05} and n ∈ {1, 5}.

Figures 1 and 2 show the out-of-control ARL1 values of the FSI-TEWMA-RZ and the ATS1
values of the proposed VSI-TEWMA-RZ chart under the conditions that (γX = γY, ρ0 = ρ1)
and (γX 6= γY, ρ0 = ρ1), respectively. In Figures 1 and 2, when the process is in an
out-of-control state, there is no shift in the correlation between X and Y, that is ρ = ρ0 = ρ1.
From the results presented in Figures 1 and 2, some conclusions can be drawn as follows:

Generally, the proposed VSI-TEWMA-RZ chart reacts faster than the proposed FSI-
TEWMA-RZ chart for detecting the process shifts. For instance, when (γX , γY) = (0.01, 0.01),
n = 1, λ = 0.2, τ = 1.001, and ρ0 = ρ1 = −0.8, we obtain ATS1 = 111.5 for the VSI-
TEWMA-RZ chart, which is much smaller than the ARL1 = 130.7 for the FSI-TEWMA-RZ
chart in Figure 1.
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-) charts for γX ∈ {0.01, 0.2}, γY ∈ {0.01, 0.2},
γX 6= γY , ρ0 ∈ {−0.8,−0.4, 0, 0.4, 0.8}, ρ0 = ρ1, τ ∈ {1.001, 1.005, 1.01, 1.02, 1.05} and n ∈ {1, 5}.

The performances of the proposed FSI- and VSI-TEWMA-RZ charts are greatly af-
fected by (γX , γY). When γX = γY, the smaller the coefficients of variation (γX , γY),
the better the performances of the proposed FSI- and VSI-TEWMA-RZ charts. For ex-
ample, when ρ0 = ρ1 = 0.4, n = 1, λ = 0.2, and τ = 1.01 in Figure 1, we have
ATS1 = 10.2 for the FSI-TEWMA-RZ chart and ATS1 = 1.3 for the VSI-TEWMA-RZ chart
when (γX , γY) = (0.01, 0.01). As a contrast, we have ATS1 = 146.0 for the FSI-TEWMA-
RZ chart and ATS1 = 130.6 for the VSI-TEWMA-RZ chart when (γX , γY) increases up
to (0.2, 0.2).

The performances of the proposed FSI- and VSI-TEWMA-RZ charts depend on ρ0 and
ρ1. The performances of the proposed FSI- and VSI-TEWMA-RZ charts improve when
ρ0 increases. For example, when (γX , γY) = (0.01, 0.01), n = 1, λ = 0.5, τ = 1.001, and
ρ0 = ρ1 = −0.8, we have ATS1 = 144.9 for the FSI-TEWMA-RZ chart and ATS1 = 132.3
for the VSI-TEWMA-RZ chart in Figure 1. As a contrast, we obtain ATS1 = 82.1 for the
FSI-TEWMA-RZ chart and ATS1 = 60.2 when ρ0 and ρ1 increase up to (0.8,0.8). The perfor-
mances of the proposed FSI- and VSI-TEWMA-RZ charts are influenced by λ. The FSI- and
VSI-TEWMA-RZ charts have a better performance in detecting small shifts when λ is gener-
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ally small. As λ increases, their ability to detect small shifts gradually deteriorates. Instead,
these charts are more sensitive to large shifts. For instance, when (γX , γY) = (0.2, 0.2),
ρ0 = ρ1 = 0.8, n = 5, and τ = 1.001, we obtain ATS1 = 174.6 for the FSI-TEWMA-RZ
chart and ATS1 = 164.4 for the VSI-TEWMA-RZ chart when λ = 0.2 in Figure 1. If λ in-
creases up to 0.5, we obtain ATS1 = 179.8 for the FSI-TEWMA-RZ chart and ATS1 = 175.9
for the VSI-TEWMA-RZ chart, which are larger than the ones of the λ = 0.2 case, respec-
tively. Moreover, for a larger shift τ = 1.05, we obtain ATS1 = 11 for the FSI-TEWMA-RZ
chart and ATS1 = 2.5 for the VSI-TEWMA-RZ chart when λ = 0.2 in Figure 1. If λ increases
up to 0.5, we obtain ATS1 = 9.1 for the FSI-TEWMA-RZ chart and ATS1 = 2.0 for the
VSI-TEWMA-RZ chart, which are smaller than the ones of the λ = 0.2 case, respectively.

Figures 3 and 4 show the ARL1 values of the FSI-TEWMA-RZ chart and the ATS1
values of the proposed VSI-TEWMA-RZ chart under the conditions that (γX = γY, ρ0 6= ρ1)
and (γX 6= γY, ρ0 6= ρ1), respectively. It is worth noting that the correlation coefficient
between X and Y changes, that is ρ0 6= ρ1. In order to facilitate the comparison and to
be consistent with the research of Ref. [26], this paper chooses the in-control correlation
coefficient ρ0 = ±0.4 and the values of the studied shift in the correlation are 0.5 and 2,
that is ρ1 = 0.5× ρ0 and ρ1 = 2× ρ0. From Figures 3 and 4, some conclusions can be
summarized as follows:

With the increase in the level of the negative correlation coefficient, that is ρ0, ρ1 < 0,
|ρ1| >|ρ0|, the performances of the proposed FSI- and VSI-TEWMA-RZ charts gener-
ally improve. For instance, when (γX , γY) = (0.2, 0.2), ρ0 = −0.4, ρ1 = 2 × ρ0 = −0.8,
n = 1. , λ = 0.2, and τ = 1.005, we have ATS1 = 104 for the FSI-TEWMA-RZ chart
and ATS1 = 98.3 for the VSI-TEWMA-RZ chart. While if ρ1 = ρ0 = −0.4, we obtain
ATS1 = 181.6 for the FSI-TEWMA-RZ chart and ATS1 = 176.3. for the VSI-TEWMA-RZ
chart. On the contrary, when the level of the negative correlation coefficient decreases,
that is |ρ1| < |ρ0 | the performances of the proposed FSI- and VSI-TEWMA-RZ charts
deteriorate. For example, when ρ1 = 0.5× ρ0 = −0.2, we obtain ATS1 = 273.6 for the
FSI-TEWMA-RZ chart and ATS1 = 272.2 for the FSI-TEWMA-RZ chart. These ATS1 values
are all smaller than the ones of the ρ1 = ρ0 = −0.4 case, respectively.
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With the increase in the level of the positive correlation coefficient, that is when
ρ1 > ρ0 > 0, the performances of the proposed FSI- and VSI-TEWMA-RZ charts gener-
ally deteriorate. For instance, when (γX , γY) = (0.01, 0.01), ρ1 = 2× ρ0 = 0.8, n = 1,
λ = 0.2, τ = 1.001, we have ATS1 = 531.9 for the FSI-TEWMA-RZ chart and ATS1 = 237.6
for the VSI-TEWMA-RZ chart. While if ρ1 = ρ0 = 0.4, we obtain ATS1 = 99.6 for the
FSI-TEWMA-RZ chart and ATS1 = 73.9 for the VSI-TEWMA-RZ chart. On the contrary,
with the decrease in the level of the positive correlation coefficient, that is when ρ0 > ρ1 > 0,
the performances of the proposed FSI- and VSI-TEWMA-RZ charts improve. For instance,
when ρ1 = 0.5 × ρ0 = 0.2, we have ATS1 = 77.9 for the FSI-TEWMA-RZ chart and
ATS1 = 63.5 for the VSI-TEWMA-RZ chart. These ATS1 values are all smaller than the
ones of the ρ1 = ρ0 = 0.4 case, respectively.

5.2. Comparisons between the VSI-TEWMA-RZ Chart and the VSI-EWMA-RZ Chart

Similarly, based on the above parameter settings and the values of K+ and W+ pre-
sented in Table 1, Figures 1–4 also compare the performances of the VSI-TEWMA-RZ and
VSI-EWMA-RZ control charts when monitoring the upward shifts. Figures 1 and 2 present
the out-of-control ATS1 values of the VSI-EWMA-RZ chart for the condition ρ0 = ρ1.
While for the condition ρ0 6= ρ1, the ATS1 values of the VSI-EWMA-RZ chart are shown in
Figures 3 and 4. Some conclusions can be drawn from Figures 1–4.

The proposed VSI-TEWMA-RZ control chart outperforms the VSI-EWMA-RZ control
chart in the detection of the upward shifts for most cases, especially for small shifts. For
instance, when ρ0 = ρ1 and (γX , γY) = (0.01, 0.01) in Figure 1, the VSI-TEWMA-RZ
control chart has a better performance than the VSI-EWMA-RZ control chart for the shift
τ ∈ [1.001, 1.005]. On the contrary, the VSI-EWMA-RZ chart performs better than the
VSI-TEWMA-RZ chart for the detection of a relatively large shift. For instance, when n = 5,
λ = 0.2, ρ0 = −0.8, (γX , γY) = (0.01, 0.01) and τ = 1.05, we have ATS1 = 0.1 for the
VSI-EWMA-RZ chart, which is smaller than the ATS1 = 0.4 for the VSI-TEWMA-RZ chart.

When the coefficient of variation γX or γY increases, the advantage of the VSI-TEWMA-
RZ chart over the VSI-EWMA-RZ chart increases. For example, when (γX , γY) = (0.01, 0.01),
the VSI-TEWMA-RZ chart outperforms the VSI-EWMA-RZ chart only for the shift range
τ ∈ [1.001, 1.005] in Figure 1. While if (γX , γY) increase up to (0.2, 0.2), the VSI-TEWMA-
RZ chart outperforms the VSI-EWMA-RZ chart for all the upward shifts.
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5.3. Comparisons between the VSI-TEWMA-RZ Chart and the VSI-DEWMA-RZ Chart

Furthermore, the proposed VSI-TEWMA-RZ is compared with the VSI-DEWMA-
RZ chart when monitoring the upward shifts. It can be seen from Figures 1–4 that the
proposed VSI-TEWMA-RZ chart is statistically more sensitive than the VSI-DEWMA-RZ
chart for detecting the process shifts, especially for small shifts. For example, when ρ0 = ρ1
and (γX , γY) = (0.01, 0.01) in Figure 1, the VSI-TEWMA-RZ control chart has a better
performance than the VSI-DEWMA-RZ chart for the shift τ ∈ [1.001, 1.005]. On the contrary,
the VSI-DEWMA-RZ chart is statistically more sensitive than the VSI-TEWMA-RZ chart
for the detection of a relatively large shift. For instance, when n = 5, λ = 0.2, ρ0 = −0.4,
(γX , γY) = (0.01, 0.2), and τ = 1.1 in Figure 2, we have ATS1 = 6.8 for the VSI-DEWMA-
RZ chart, which is smaller than the ATS1 = 10 for the VSI-TEWMA-RZ chart.

It can be observed that when λ increases from 0.2 to 0.5, the advantage of the VSI-
TEWMA-RZ chart over the VSI-DEWMA-RZ chart increases. For instance, when n = 5,
λ = 0.5, ρ0 = ρ1 = −0.4, and (γX , γY) = (0.01, 0.2), the VSI-TEWMA-RZ chart is statisti-
cally more sensitive than the VSI-DEWMA-RZ chart for all the upward shifts in Figure 2.
However, the VSI-TEWMA-RZ chart has a better performance than the VSI-DEWMA-RZ
chart for the shift τ ∈ [1.001, 1.01] when λ = 0.2. In addition, when the coefficient of varia-
tion γX or γY increases, the advantage of the VSI-TEWMA-RZ chart over the VSI-EWMA-
RZ chart increases. For instance, when n = 5 and (γX , γY) = (0.01, 0.01), the VSI-TEWMA-
RZ chart outperforms the VSI-DEWMA-RZ chart for the shift range τ ∈ [1.001, 1.005] in
Figure 1. While if (γX , γY) increase up to (0.2, 0.2), the shift range that the VSI-TEWMA-RZ
chart outperforms the VSI-DEWMA-RZ chart extends to τ ∈ [1.001, 1.02].

6. An Illustrative Example

This section discusses the implementation of the proposed FSI- and VSI-TEWMA-RZ
control charts by adopting the dataset of a muesli brand recipe discussed in Ref. [6]. This
recipe was composed of several ingredients, including sunflower oil, wildflower honey,
seeds (pumpkin, flaxseeds, sesame, poppy), coconut milk powder, and rolled oats. To meet
the nutritional requirements recommended by the brand and preserve the flavor of the
mixture, the recipe has a requirement that the weights of ‘pumpkin seeds’ and ‘flaxseeds’
be equal. Their nominal proportions to the total weight of the box content are both fixed
at pp = p f = 0.1. Moreover, the brand boxes produced by the company can be packaged
in 250g or 500g. To check the deviation of the controlled ratio z0 =

µp,i
µ f ,i

= 1, where µp,i

and µ f ,i are the mean weights for ‘pumpkin seeds’ and ‘flaxseeds’, respectively, at time
i = 1, 2, . . ., the quality practitioners wanted to perform on-line SPC monitoring and collect
a sample of n = 5 boxes at each sampling time. Since the box size varies from one sample
to another, we can obtain µp,i 6= µp,k and µ f ,i 6= µ f ,k, ∀i 6= k.

In the quality control program, the ‘pumpkin seeds’ and ‘flaxseeds’ are first sepa-
rated from the muesli mixture and the sample average weights Wp,i =

1
n ∑n

j=1 Wp,i,j and

W f ,i =
1
n ∑n

j=1 W f ,i,j are recorded. At last, the ratio Ẑi =
Wp,i

W f ,i
is calculated and plotted in

the FSI- and VSI-TEWMA-RZ charts. As it has been shown in Ref. [6], for i = 1, 2, 3 . . . and
j = 1, 2, 3, . . . , Wp,i,j and W f ,i,j can be well approximated as normal variables with constant
coefficients of variation γp = 0.02 and γ f = 0.01, which means Wp,i,j ∼ N

(
µp,i, 0.02× µp,i

)

and W f ,i,j ∼ N
(

µ f ,i, 0.01× µ f ,i

)
. In addition, ρ0 = 0.8 is considered as the in-control

correlation coefficient between these two variables.
From an engineer’s experience, a shift of 0.5% (τ = 1.005) in the ratio should be

interpreted as an assignable cause in the process monitoring. For this reason, we set
the specified shift τ = 1.005. Moreover, we chose the smoothing parameter λ+ = 0.5
of the charts for the process monitoring. Given n = 5, λ+ = 0.5, ρ0 = ρ1 = 0.8,
and (γX , γY) = (0.02, 0.01), we obtained the control limit parameters K+ = 1.00497
and W+ = 0.999899 of the FSI-TEWMA-RZ+ and VSI-TEWMA-RZ+K+ = 1.009089 and
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W+ = 1.000779 of the VSI-EWMA-RZ+ chart and K+ = 1.006163 and W+ = 0.999942 of
the VSI-EWMA-RZ+ chart and z0 is set to be 1, then UCL+ = K+ and UWL+ = W+.

Table 2 presents the set of simulated sample data collected from the process. The
process is deemed to be in-control up to sample #10 and from then on, an assignable cause
occurs and shifts Z0 = 1 to Z1 = 1.005. When (hS, hL) = (0.1, 1.9), Figure 5 presents the
VSI-EWMA-RZ+ chart, the VSI-DEWMA-RZ+ chart, and the FSI- and VSI-TEWMA-RZ+

control charts for the dataset in Table 2, where the index t in the axis is the cumulative time
of the process monitoring. It can be seen from Figure 5 that the FSI- and VSI-TEWMA-RZ+

chart triggers an out-of-control signal at sample #15 (in bold in Table 2), while the VSI-
DEWMA-RZ+ and VSI-EWMA-RZ+ charts signal an out-of-control condition at sample #16
and #18 (in bold in Table 2), respectively. This example shows that the TEWMA-RZ charts
outperform the VSI-DEWMA-RZ and the VSI-EWMA-RZ charts from the perspective of
the number of samples.

Table 2. The food industry example data.

Sample
Number

Box
Size

Wp,i,j[gr]
Wf,i,j[gr]

¯
Wp,i[gr]
¯
Wf,i[gr]

^
Zi =

¯
Wp,i
¯
Wf,i

VSI-EWMA VSI-
DEWMA VSI-TEWMA

Y+
i ti U+

i ti V+
i ti

1 250 gr 25.479 25.355 24.027 25.792 24.960 25.122
1.003 1.00150 0.1 1.00075 0.1 1.00038 0.125.218 25.171 24.684 25.052 25.107 25.046

2 250 gr 25.359 25.172 24.508 25.292 24.449 24.956
1.000 1.00075 0.2 1.00075 0.2 1.00056 0.225.211 25.115 24.679 24.933 24.831 24.954

3 250 gr 24.574 24.864 25.865 25.107 24.811 25.044
1.005 1.00288 2.1 1.00181 0.3 1.00119 0.324.784 24.868 25.377 24.879 24.734 24.929

4 250 gr 25.313 24.483 24.088 25.184 25.681 24.950
0.999 1.00094 2.2 1.00138 0.4 1.00128 0.425.338 24.859 24.305 25.115 25.251 24.974

5 250 gr 25.557 24.959 25.023 24.482 25.531 25.111
0.998 1.00000 2.3 1.00042 0.5 1.00085 0.525.277 25.402 25.012 24.937 25.148 25.163

6 250 gr 24.882 24.473 24.814 25.418 24.732 24.864
0.997 1.00000 4.2 0.99933 0.6 1.00009 0.624.962 24.644 24.817 25.419 24.818 24.932

7 500 gr 49.848 48.685 49.994 49.910 49.374 49.562
0.999 1.00000 6.1 0.99897 2.5 0.99953 0.749.993 49.128 49.830 49.566 49.422 49.588

8 500 gr 49.668 50.338 49.149 47.807 49.064 49.205
0.990 1.00000 8 0.99664 4.4 0.99809 2.649.695 50.681 49.640 48.969 49.612 49.720

9 500 gr 51.273 48.303 48.510 50.594 48.591 49.454
0.993 1.00000 9.9 0.99515 6.3 0.99662 4.550.366 49.210 49.844 49.890 49.595 49.781

10 500 gr 48.720 51.566 49.677 50.651 50.344 50.192
1.002 1.00100 11.8 0.99649 8.2 0.99655 6.449.721 50.215 50.178 50.324 50.071 50.102

11 500 gr 53.173 51.079 51.636 49.187 49.779 50.971
1.015 1.00800 11.9 1.00145 10.1 0.99900 8.351.081 50.660 50.468 49.787 49.197 50.239

12 500 gr 51.255 48.578 49.657 49.971 50.675 50.027
1.004 1.00600 12 1.00333 10.2 1.00116 10.249.899 49.476 49.400 49.909 50.365 49.810

13 500 gr 48.760 50.206 51.216 51.997 49.818 50.399
1.010 1.00800 12.1 1.00547 10.3 1.00332 10.348.919 50.032 50.497 50.627 49.483 49.912

14 500 gr 51.599 49.257 52.077 49.874 48.791 50.319
1.004 1.00600 12.2 1.00563 10.4 1.00447 10.450.351 49.885 51.044 49.898 49.506 50.137

15 500gr 49.178 51.188 50.602 50.221 50.433 50.325
1.006 1.00600 12.3 1.00577 10.5 1.00512 10.549.104 50.348 50.621 50.018 50.085 50.035

16 500gr 50.667 50.600 50.601 49.517 50.578 50.393
1.010 1.00800 12.4 1.00686 10.6 1.00599 10.650.011 49.870 49.779 50.020 49.877 49.911

17 500gr 50.925 49.036 50.971 51.888 50.741 50.712
1.009 1.00850 12.5 1.00767 10.7 1.00683 10.750.579 49.735 50.196 50.740 49.959 50.242

18 500gr 50.673 50.653 50.346 50.749 51.338 50.752
1.010 1.00925 12.6 1.00845 10.8 1.00764 10.850.459 49.990 50.281 50.251 50.281 50.252

19 250gr 25.390 25.554 25.799 23.869 25.041 25.131
1.006 1.00763 12.7 1.00804 10.9 1.00784 10.925.158 25.278 25.073 24.349 25.085 24.989

20 250gr 24.343 26.087 25.431 24.799 26.440 25.420
1.002 1.00481 12.8 1.00642 11.0 1.00713 11.024.771 25.427 25.005 24.711 25.258 25.035

In the VSI-TEWMA-RZ+ chart, it is noted that the first six samples are in the warning
region and a shorter sampling interval hs = 0.1 is used to collect the next sampling point.
The plotted sample point V+

7 falls within the safe region [z0, UWL+] and a longer sampling
interval hL is used. The VSI-TEWMA-RZ+ chart needs 10.5-times the units to detect the
assignable cause. As a comparison, the VSI-DEWMA-RZ+ chart needs 10.6-times the units
to trigger an out-of-control signal, while the VSI-EWMA-RZ+ chart needs 12.6-times the
units to trigger an out-of-control signal. This shows the advantage of the VSI-TEWMA-RZ+

chart over the VSI-EWMA-RZ+ chart and VSI-DEWMA-RZ+ chart. Moreover, since the
sampling interval of the FSI-TEWMA-RZ+ control chart is 1, then it needs 15-times the units

86



Symmetry 2022, 14, 1236

to trigger an out-of-control signal. If a control chart indicates an out-of-control signal, then
the quality engineering should take corrective actions to search the potential assignable
causes and make the process as controlled as possible.
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Figure 5. Different charts monitoring the food industry example. (a) The VSI-EWMA-RZ+ chart,
(b) the VSI-DEWMA-RZ+ chart, (c) the proposed FSI-TEWMA-RZ+ chart, and (d) the proposed
VSI-TEWMA-RZ+ charts.

7. Conclusions

In this paper, the major purpose is to propose the FSI- and VSI-TEWMA-RZ control
charts by smoothing the coefficient of the EWMA-RZ chart three times. The RL properties
of the proposed TEWMA-RZ charts are simulated using the MC method. Under different
conditions, the performances of the VSI-TEWMA-RZ charts are presented and are compared
with the FSI-TEWMA-RZ and the existing VSI-EWMA-RZ and the VSI-DEWMA-RZ charts
in several figures. The results show that the performances of the proposed FSI- and VSI-
TEWMA-RZ charts are greatly affected by (γX , γY), ρ0, and λ. Moreover, the comparison
results show that the proposed VSI-TEWMA-RZ chart reacts faster than the FSI-TEWMA-
RZ chart for all shifts, and the VSI-TEWMA-RZ chart also performs reacts faster than the
VSI-EWMA-RZ and VSI-DEWMA-RZ charts in the detection of relatively small shifts.
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Since this work is done on the assumption that both the two random variables X and
Y are normally distributed, prospective research works can focus on other distributions
of the two random variables to study the performance of charts for monitoring the RZ.
Moreover, since some researchers have proposed distribution-free charts with the Wilcoxon
rank-sum statistic, for instance Refs. [21,25,35] and so on, it would be possible to apply
these distribution-free charts to monitor the RZ and study the distribution-free charts’
robustness to the RZ distribution.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: This paper studies three discretization methods to formulate discrete analogues of the
well-known continuous generalized Pareto distribution. The generalized Pareto distribution provides
a wide variety of probability spaces, which support threshold exceedances, and hence, it is suitable
for modeling many failure time issues. Bayesian inference is applied to estimate the discrete models
with different symmetric and asymmetric loss functions. The symmetric loss function being used is
the squared error loss function, while the two asymmetric loss functions are the linear exponential
and general entropy loss functions. A detailed simulation analysis was performed to compare
the performance of the Bayesian estimation using the proposed loss functions. In addition, the
applicability of the optimal discrete generalized Pareto distribution was compared with other discrete
distributions. The comparison was based on different goodness-of-fit criteria. The results of the study
reveal that the discretized generalized Pareto distribution is quite an attractive alternative to other
discrete competitive distributions.

Keywords: discretization methods; Bayesian estimation; symmetric and asymmetric loss functions;
prior distribution; simulation analysis; Monte Carlo Markov chain; goodness-of-fit measures
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1. Introduction

The amount of data available in nature has become larger, demanding new statistical
distributions to modify the description of each phenomenon or experiment under study.
Most lifetime data are continuous, while they are discrete in observation, which leads to a
need for appropriate methods to discretize the continuous distribution to better fit these
data. Almost always, the observed values are in fact discrete because they are restrained to
only a finite number of decimal places and cannot really create all points in a continuum. In
some other cases, because of the accuracy of the measuring apparatus or the need to save
space, continuous variables are measured by the frequencies of separate class intervals,
whose union creates the whole range of random variables, and multinomial law is used to
model this situation. Therefore, considering them as discrete values is more appropriate.
Even for a continuous life experiment, records in an interval of time result in a discrete
model, which seems more suitable than a continuous model.

Recently, many discrete distributions have been identified, particularly in reliability
and survival analyses. For a special description and the role of discrete distributions, one
may refer to [1–8], among others. Hence, many authors have conducted much work to
originate and develop discrete reliability theory from various points of view.

The characterization of continuous random variables can be performed either by
their probability density function (pdf), cumulative distribution function (CDF), moments,
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hazard rate functions, or others. Usually, creating a discrete analogue from a continuous
distribution is based on the principle of preserving one or more characteristic properties of
the continuous one. Consequently, different ways to discretize a continuous distribution
appear in the literature, depending on the property the researcher aims to preserve (see, for
example, [9,10]). In [11], the author provided an extensive survey of different discretization
methods that preserve different functions.

There are many useful tips for creating discrete random variables from continuous
ones: through discretization, data can actually be summarized and simplified; in addition,
they can also become easier to understand, use, and explain for researchers (see [12]). Other
tests appearing in the literature are suitable for both discrete and continuous distributions
(see, for example, [13,14]).

Therefore, it is desirable to study a suitable discrete distribution created from the
underlying continuous models.

In the present paper, we discretize the continuous generalized Pareto distribution
(GPD) using three different discretization methods. Almost all authors have used one
discretization method, which depends on the survival function. In [6,7], discrete normal
and discrete Rayleigh distributions were introduced, respectively, and the author used
the survival discretization approach. Using the same approach, discrete Burr type II was
studied in [15]. Additionally, [16] introduced the discrete additive Weibull distribution (see
also [17–23]). However, there remains a need to improve discrete models and generate new
ones for the sake of describing and fitting the huge amount of data that appear and spread
evenly throughout humans’ daily lives. Further, [24] discussed the discrete odd Perks-G
class of distributions. Reference [25] introduced a new novel discrete distribution with
an application to COVID-19, and [26] obtained a discrete Weibull Marshall–Olkin family
of distributions.

We aim to discretize the GPD since it has extensive applications and can model
many real-life distributions. Recently, many authors have studied the continuous GPD;
for example, one may refer to [27], in which the authors discussed baseline methods for
parameter estimation. The authors of [28] performed statistical inference of the dynamic
conditional GPD with weather and air quality factors, and [29] discussed outlier-robust
truncated maximum likelihood parameter estimators of the GPD. Reference [30] introduced
risk analysis using the GPD.

The originality of this work stems from the fact that no earlier research has been
conducted in this area using the suggested discretization method and compared it with
other methods from a Bayesian point of view. Symmetric and asymmetric loss functions
are performed in the Bayesian estimation method using different parameter values. There-
fore, the main objective of this paper is to illustrate the efficiency and performance of
discrete generalized Pareto distributions (DGPDs) for modeling different COVID-19 daily
death cases.

The rest of this paper is organized as follows: Section 2 contains the model descrip-
tion and the discretization methods. Section 3 presents Bayesian inference for unknown
parameters, and both point and interval estimations are performed for the three DGPDs. In
Section 4, the simulation study is described. Real data examples are provided in Section 5.
Finally, conclusions are provided in Section 6.

2. Model Description and Discretization Methods

The generalized Pareto distribution is a continuous distribution with two parameters.
However, its continuous distributional form is limited in characterizing data of discrete
forms. Discretizing the GPD, therefore, produces a consequent distribution that accommo-
dates count data while preserving the vital tail-modeling feature of the GPD. In this paper,
we perform three discrete versions of the two-parameter GPD and use these counterparts
to model real-life data.
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The probability density function (pdf) of the continuous GPD is given as

f (x; θ, λ) =





1
λ

(
1 + θ

λ x
)−(1+ 1

θ )
θ 6= 0

1
λ e−x/λ θ = 0

, (1)

and the cumulative distribution function (CDF) is given by

F(x; θ, λ) =





1−
(

1 + θ
λ x
)− 1

θ
θ 6= 0

1− e−x/λ θ = 0
, (2)

where λ > 0 is the scale parameter, and θ is the shape parameter, −∞ < θ < ∞. The domain
of the random variable x depends on the value of θ, particularly whether it is positive or
negative; hence, we have two cases: first, when θ > 0, x > 0, and when θ < 0, the support
of x will be bounded, i.e., 0 < x < − λ

θ . For θ > 0, the GPD is the well-known Pareto
distribution. When θ → 0 , the GPD reduces to the exponential distribution, as shown in
Equation (1).

The GPD has a mean of (λ/(1 − θ)) and a variance λ2

(1−θ)2(1−2θ)
, provided θ < 0.5.

The survival function S(x; θ, λ) and the hazard rate function HR are given, respectively,
as follows:

S(x; θ, λ) =

(
1 +

θx
λ

)− 1
θ

, (3)

and

h(x; θ, λ) =
1
λ

(
1 +

θ

λ
x
)−1

. (4)

The three discretization methods are presented in the next subsections. The first
method aims to preserve the survival function, while the second method preserves the pdf,
and the third method preserves the hazard rate.

2.1. Survival Discretization Method

The probability mass function (pmf ) of a discrete distribution is defined by [6,7]
as follows:

P(X = k) = S(k)− S(k + 1), k = 0, 1, 2, . . . (5)

where S(x) is the survival function given by Equation (3). Hence, the pmf of the first
discrete generalized Pareto distribution (DGPD1) is

P(X = k) =
(

1 +
θk
λ

)− 1
θ

−
(

1 +
θ(k + 1)

λ

)− 1
θ

(6)

The CDF of the DGPD1 distribution in the survival discretization method can be
written as:

P(X < k) = F(k + 1) = 1−
(

1 +
θ(k + 1)

λ

)− 1
θ

(7)

2.2. Methodology II

In this method, the pmf of the discrete random variable is derived as an analogue of
the continuous random variable with pdf f (x) as

P(X = k) =
f (k)

∑∞
j=0 f (j)

, k = 0, 1, 2, . . . (8)
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For more details and examples of this method, one can refer to [11]. When applying
this method to the continuous GPD, we perceive a second discrete distribution, namely,
DGPD2. Accordingly, the pmf can be written as:

P(X = k) =

(
1 + θk

λ

)−( 1
θ +1)

(
θ
λ

)−( 1
θ +1)

ξ
(

1 + 1
θ , λ

θ

) , k = 0, 1, 2, . . . . (9)

The corresponding CDF is derived as

P(X < k) =
1

(
θ
λ

)−( 1
θ +1)

ξ
(

1 + 1
θ , λ

θ

) ∑k
x=0

(
1 +

θx
λ

)−( 1
θ +1)

, (10)

where ξ(s, a) = ∑∞
ι=0(ι + a)−s represents the Hurwitz zeta function.

2.3. Methodology III (Hazard Rate)

This methodology preserves the hazard rate function. It is performed as a two-stage
method. In the first stage, the continuous random variable X with CDF F(x) defined
on [0, +∞) is used to construct a new continuous random variable X1 with the hazard
rate function hX1(x) = e−F(x), (x ≥ 0). For more details about this methodology, a good
reference is [11]. The survival function of the discrete analogue Y is given by

P(Y ≥ k) =
(
1− hX1(1)

)(
1− hX1(2)

)
. . .
(
1− hX1(k− 1)

)
, k = 1, 2, . . . , m. (11)

The corresponding pmf is then given by

P(Y = k) =





hX1(0), k = 0,(
1− hX1(1)

)(
1− hX1(2)

)
. . .
(
1− hX1(k− 1)

)
hX1(k), k = 1, 2, . . . , m

0, otherwise
(12)

Note that the range of Y is the value of m (m need not be finite) and is determined so
that it satisfies the condition 0 ≤ h (y) ≤ 1.

For the GPD model, the hazard rate function of X1 will be hX1(y) = e−1+(1+ θy
λ )
− 1

θ
;

hence, the above condition holds. The survival function in Equation (11) for the third
version of the discrete GP distribution (DGPD3) is

P(Y ≥ k) = ∏k−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
),

Therefore, the CDF is

P(Y < k) = 1−∏k−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
).

The corresponding pmf is then given by

P(Y = k) =





1, k = 0

e−1+(1+ θk
λ )
− 1

θ
k−1
∏
i=1

(1− e−1+(1+ θ∗i
λ )
− 1

θ
), k = 1, 2, . . . , m

(13)

In Figures 1–3, the pmfs of DGPD1, DGPD2, and DGPD3 are plotted, respectively,
for different parameter values. They possess a decreasing trend with different selected
parameter values.
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3. Parameter Estimation

In this section, we estimate the unknown parameters of the three versions of the DGPD
distribution using the Bayesian estimation method. Numerical techniques are utilized for
Bayesian calculations, such as the Monte Carlo Markov Chain (MCMC) technique.

In the Bayesian method, the parameters of the model are assumed to be random vari-
ables with a certain distribution called the prior distribution. Usually, the prior information
is not available; hence, we need to specify a suitable choice of the prior. In this work, we
decided to use a natural joint conjugate prior distribution for the parameters λ and θ, which
is known as the modified Lwin Prior; it is defined by assuming a gamma distribution for λ
and the Pareto (I) distribution for θ. Hence,

λ ∼ Gamma(a1, b1),

and
θ|λ ∼ Pareto(I)(λa2, b2),

where a1, a2, b1 and b2 are nonnegative hyperparameters of the assumed distributions. The
authors of [31] mentioned that it is more meaningful to express θ conditional on λ rather
than vice versa. Moreover, they strongly believed that it is more appropriate to consider
that the prior distributions for λ and θ are independent of each other.

Therefore, the prior distributions for λ and θ can be written as

π1(λ) =
b1

a1

Γ(a1)
λa1−1e−b1λ,

π2(θ|λ) =
λa2

b2

(
θ

b2

)−a2λ

.

Hence, the joint prior for λ and θ is

π(λ, θ) ∝λa1 e−b1λ

(
θ

b2

)−a2λ

. (14)

The joint posterior of λ and θ given the data is defined as

p(λ, θ/x) =
1
K

L(x/λ,θ)π(λ, θ),

where L(x/λ, θ) is the likelihood function of the DGPD, π(λ, θ) is the joint prior given by
Equation (14), and K =

s
L(x/λ, θ)π(λ, θ)dλdθ.

The estimation for the parameters of the DGPD can be performed using different
loss functions, such as (i) squared error (SE), (ii) LINEX, and (iii) general entropy (GE)
loss functions. The performance of the estimators using the said loss functions was in-
vestigated using a simulation study. The bias, the mean square error (MSE), and the
length of the credible interval were used as criteria for determining the superiority of the
respective estimates.

3.1. Loss Functions

The following loss functions are used for posterior estimation.

3.1.1. Squared Error (SE) Loss Function

Assuming the SE loss function, Bayesian estimation for the parameters λ and θ is
defined as the mean or expected value with respect to the joint posterior:

λ̂SE =
1
k

x
λL(x/λ, θ)π(λ, θ)dλdθ, (15)
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and
θ̂SE =

1
k

x
θL(x/λ, θ)π(λ, θ)dλdθ. (16)

3.1.2. LINEX Loss Function

With the LINEX loss function, Bayesian estimation for the parameters λ and θ are
formulated as

λ̂LIN = − 1
h ln[ 1

K
s

e−hλL(x/λ, θ)π(λ, θ)dλdθ]
θ̂LIN = − 1

h ln[ 1
K
s

e−hθ L(x/λ, θ)π(λ, θ)dλdθ] .
(17)

3.1.3. General Entropy (GE) Loss Functions

Using the GE loss function, Bayesian estimation for the parameters λ and θ is given by

λ̂GE =
(

1
k
s

λ−qL(x/λ, θ)π(λ, θ)dλdθ
)−1/q

,

θ̂GE =
(

1
k
s

θ−qL(x/λ, θ)π(λ, θ)dλdθ
)−1/q

.
(18)

3.2. Bayesian Estimation

For evaluating the above-expected values and double integration, numerical methods
are essential. We opted to use the Markov Chain Monte Carlo (MCMC) technique by using
the Gibbs sampling method and by formulating the suitable R code. For more details,
one may refer to [32]. Many authors have used Bayesian estimation for different lifetime
models with many real data applications (see, for example, [33–35]).

Since we implement three different discretization methods on the GP distribution, we
have to deal with three cases of Bayesian inference based on the different pmfs of DGPDs
that are written in Equations (6), (9), and (13).

3.2.1. Case 1

When applying the survival discretization method, we obtain DGPD1 with the pmf
given by Equation 6. The joint posterior density is

p1(λ, θ/x) =
1
K ∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−b1λ

(
θ

b2

)−a2λ

(19)

= Gλ(a1 + 1, b1)Q(λ, θ),

where Q(λ, θ) = 1
K ∏n

i=1

[(
1 + θxi

λ

)− 1
θ −

(
1 + θxi+1

λ

)− 1
θ

](
θ
b2

)−a2λ
, and G (.,.) represents

the gamma distribution.
Bayesian estimation for the parameters λ and θ using the SE loss function is performed

using Equations (15) and (16) with the posterior density Equation (19), respectively:

λ̂SE =
1
k

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1+1e−b1λ

(
θ

b2

)−a2λ

dλdθ,

θ̂SE =
1
k

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
θ−a2λ+1λa1 e−b1λ(b2)

a2λdλdθ.

For the LINEX loss function, Bayesian estimation is obtained by using Equation (17)
and the posterior density Equation (18):

λ̂LIN = −1
h

ln[
1
K

x
∏n

i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−(b1+h)λ

(
θ

b2

)−a2λ

dλdθ

]
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θ̂LIN = −1
h

ln[
1
K

x n

∏
i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1 e−b1λ−hθ

(
θ

b2

)−a2λ

dλdθ]

Bayesian estimation for the parameters λ and λ using the GE loss function is obtained
using Equations (18) and (19) and is given by

λ̂GE =

(
1
k

x n

∏
i=1

[(
1 +

θxi
λ

)− 1
θ

−
(

1 +
θxi + 1

λ

)− 1
θ

]
λa1−qe−b1λ

(
θ

b2

)−a2λ

dλdθ

)−1/q

3.2.2. Case 2

For the second form of discrete GPD, namely, DGPD2, with the pmf given by Equation (9),
the joint posterior density is given by

p2(λ, θ/x) =
1
K ∏n

i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


λa1−( 1

θ +1)e−b1λ (20)

= Gλ

(
a1 −

1
θ

, b1

)
R(λ, θ),

where R(λ, θ)= 1
K ∏n

i=1



(

1+ θxi
λ

)−( 1
θ
+1)

θ
−a2λ+( 1

θ
+1)

b−a2λ
2 ξ(1+ 1

θ , λ
θ )


.

Bayesian estimation for the parameters λ and θ using the SE loss function is given as

λ̂SE =
1
k

x
∏n

i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1− 1

θ e−b1λdλdθ,

θ̂SE =
1
k

x
∏n

i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +2)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1−( 1

θ +1)e−b1λdλdθ.

For the LINEX loss function, Bayesian estimation is found by the following integrations:

λ̂LIN = −1
h

ln[
1
K

x
∏n

i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1−( 1

θ +1)e−(b1+h)λdλdθ


,

θ̂LIN = −1
h

ln[
1
K

x n

∏
i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1−( 1

θ +1)e−b1λ−hθdλdθ]

For the GE loss function, Bayesian estimation for parameters λ and θ is given by

λ̂GE =




1
k

x n

∏
i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1−( 1

θ +1)−qe−b1λdλdθ




−1/q
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θ̂GE =




1
k

x n

∏
i=1




(
1 + θxi

λ

)−( 1
θ +1)

θ−a2λ+( 1
θ +1)−q

b−a2λ
2 ξ

(
1 + 1

θ , λ
θ

)


 λa1−( 1

θ +1)e−b1λdλdθ




−1/q

3.2.3. Case 3

The third discretization method of GP yields DGPD3 with the pmf described by
Equation (13), and the joint posterior density is

p3(λ, θ/x) =
1
k ∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−b1λ

(
θ

b2

)−a2λ

=
1
k

Gλ(a1 + 1, b1)S(λ, θ),

where S(λ, θ) =
n
∏
j=1

e−1+(1+
θxj
λ )
− 1

θ
[

∏
xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

](
θ
b2

)−a2λ
.

Bayesian estimation for the parameters λ and θ using the SE loss function is given as

λ̂SE =
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1+1e−b1λ

(
θ

b2

)−a2λ

dλdθ, (21)

θ̂SE =
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
b2λa1 e−b1λ

(
θ

b2

)−a2λ+1
dλdθ.

For the LINEX loss function, Bayesian estimation is found by the following integrations:

λ̂LIN = −1
h

ln[
1
K

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−(b1+h)λ

(
θ

b2

)−a2λ

dλdθ],

θ̂LIN = −1
h

ln[
1
K

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1 e−b1λ−hθ

(
θ

b2

)−a2λ

dλdθ].

For the GE loss function, Bayesian estimation for parameters λ and θ is given by

λ̂GE =

(
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
λa1−qe−b1λ

(
θ

b2

)−a2λ

dλdθ

)−1/q

,

θ̂GE =

(
1
k

x
∏n

j=1 e−1+(1+
θxj
λ )
− 1

θ
[
∏

xj−1
i=1 (1− e−1+(1+ θ∗i

λ )
− 1

θ
)

]
b2
−qλa1 e−b1λ

(
θ

b2

)−a2λ−q
dλdθ

)−1/q

.

4. Simulation Analysis

To evaluate the performance of the three discrete versions of the continuous GPD, we
aim to compare the point estimation of the unknown parameters with respect to bias and
MSE. Additionally, a comparison is conducted using the different loss functions described
in Section 3. Some interesting conclusions and results are reported at the end of this section.

Random samples were generated with 10,000 iterations using the suitable R code; the
different selected values of the parameters λ and θ were {0.5, 3}, and different sample sizes
n = {20,50,100} were considered.

The simulation results of point and interval estimations for the three discrete versions
of the GPD are reported in Tables 1–3. Figures 4–6 illustrate the MSE for the simulation
results in Tables 1–3. The x-axis represents sample sizes, which take values of {20,50,100}.
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For a fixed sample size, six different parameter values are presented. Therefore, lambda
increases from 0.5 to 3 (the first six points) when theta is 0.5, and lambda increases from
0.5 to 3 (the last six points) when theta is 3.

Table 1. Bayesian inference for DGPD1 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ 0.0247 0.0887 0.5335 0.0601 0.0194 0.4371 −0.0066 0.0167 0.4630 0.0450 0.0820 0.6443 −0.0870 0.0245 0.4930

λ 0.2946 0.1284 0.7412 0.3597 0.1870 0.8541 0.2368 0.0866 0.6692 0.3190 0.1458 0.7567 0.1631 0.0586 0.6918

50
θ −0.0130 0.0155 0.4394 0.0034 0.0167 0.4526 −0.0289 0.0150 0.4294 −0.0020 0.0155 0.4396 −0.0750 0.0215 0.4590

λ 0.2666 0.0952 0.6031 0.2901 0.1120 0.6405 0.2429 0.0796 0.5616 0.2764 0.1014 0.6067 0.2132 0.0465 0.5528

100
θ −0.0084 0.0112 0.4062 −0.0025 0.0112 0.4070 −0.0144 0.0113 0.4062 −0.0041 0.0110 0.4023 −0.0316 0.0136 0.4360

λ 0.1827 0.0424 0.3745 0.1923 0.0470 0.3914 0.1729 0.0381 0.3569 0.1872 0.0444 0.3781 0.1586 0.0326 0.3407

3

20
θ 0.0353 0.0150 0.4610 0.0680 0.0162 0.4588 0.0064 0.0178 0.4533 0.0537 0.0126 0.4755 −0.0642 0.0159 0.4910

λ 0.0704 0.0555 0.8743 0.1615 0.0852 0.9396 −0.0176 0.0469 0.8464 0.0803 0.0574 0.8773 0.0206 0.0500 0.8675

50
θ 0.0009 0.0116 0.4267 0.0080 0.0120 0.4324 −0.0062 0.0114 0.4220 0.0057 0.0116 0.4274 −0.0248 0.0131 0.4528

λ 0.0192 0.0276 0.6226 0.0301 0.0287 0.6274 0.0084 0.0269 0.6189 0.0204 0.0277 0.6217 0.0132 0.0274 0.6259

100
θ −0.0080 0.0079 0.3509 −0.0042 0.0079 0.3511 −0.0117 0.0079 0.3508 −0.0054 0.0078 0.3480 −0.0214 0.0087 0.3554

λ 0.0230 0.0143 0.4554 0.0285 0.0148 0.4601 0.0175 0.0139 0.4513 0.0236 0.0143 0.4552 0.0200 0.0141 0.4526

3

0.5

20
θ 0.0121 0.0751 0.3389 0.0512 0.0107 0.3506 −0.0595 0.0779 0.3306 0.0164 0.0766 0.3387 −0.0935 0.0674 0.3351

λ 0.2173 0.1645 0.8449 0.4302 0.1759 1.0064 0.2412 0.0961 0.7222 0.2527 0.1297 0.8780 0.2331 0.0514 0.7289

50
θ −0.0037 0.0098 0.3079 0.0348 0.0098 0.3335 −0.0405 0.0087 0.2944 0.0005 0.0076 0.3612 −0.0245 0.0080 0.2998

λ 0.2719 0.1411 0.5948 0.3410 0.1623 0.6569 0.2115 0.0745 0.5119 0.2499 0.1272 0.6932 0.1251 0.0499 0.5576

100
θ −0.0321 0.0097 0.3052 0.0018 0.0092 0.3060 −0.0655 0.0061 0.2343 −0.0284 0.0069 0.3509 −0.0151 0.0061 0.2534

λ 0.1317 0.1330 0.5668 0.3723 0.1380 0.6074 0.2068 0.0598 0.5096 0.2338 0.0148 0.6809 0.1021 0.0371 0.4620

3

20
θ 0.0039 0.0705 0.3629 0.0430 0.0096 0.4776 −0.0339 0.0090 0.3625 0.0082 0.0071 0.3986 −0.0175 0.0724 0.4327

λ 0.0440 0.0524 0.8789 0.1402 0.0791 0.9525 −0.0487 0.0489 0.8914 0.0545 0.0538 0.8868 −0.0091 0.0496 0.8982

50
θ 0.0038 0.0575 0.3339 0.0421 0.0075 0.3526 −0.0333 0.0083 0.3348 0.0080 0.0070 0.3368 −0.0172 0.0167 0.3383

λ 0.0443 0.0522 0.8095 0.1370 0.0773 0.8957 −0.0451 0.0409 0.8679 0.0544 0.0535 0.7960 −0.0069 0.0497 0.8517

100
θ −0.0152 0.0170 0.3049 −0.0080 0.0069 0.3489 −0.0224 0.0073 0.4917 −0.0144 0.0069 0.3049 −0.0192 0.0072 0.2491

λ 0.0112 0.0233 0.5707 0.0197 0.0240 0.5772 0.0028 0.0228 0.5787 0.0122 0.0234 0.5702 0.0065 0.0231 0.5744

Table 2. Bayesian inference for DGPD2 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ −0.1145 0.0668 0.7749 −0.1110 0.0652 0.7740 −0.1177 0.0681 0.7734 −0.1086 0.0630 0.7578 −0.1349 0.0793 0.7870

λ −0.4889 0.2491 0.0185 −0.4856 0.2459 0.0247 −0.4911 0.2412 0.0142 −0.4684 0.2296 0.0421 −0.4993 0.2493 0.0039

50
θ −0.0972 0.0525 0.7273 −0.0951 0.0518 0.7252 −0.0991 0.0531 0.7284 −0.0945 0.0511 0.7180 −0.1075 0.0574 0.7516

λ −0.4901 0.2402 0.0177 −0.4878 0.2380 0.0204 −0.4916 0.2417 0.0157 −0.4732 0.2240 0.0291 −0.4980 0.2480 0.0092

100
θ −0.0522 0.0186 0.4950 −0.0515 0.0184 0.4941 −0.0529 0.0187 0.4963 −0.0516 0.0184 0.4927 −0.0550 0.0192 0.4994

λ −0.4747 0.2254 0.0255 −0.4696 0.2206 0.0293 −0.4782 0.2288 0.0243 −0.4505 0.2031 0.0335 −0.4919 0.2420 0.0193

3

20
θ 0.1424 0.0378 0.4501 0.1906 0.0604 0.5041 0.1000 0.0234 0.4023 0.1647 0.0459 0.4579 0.0206 0.0143 0.4190

λ −0.0366 0.0591 0.8932 0.0534 0.0699 0.9843 −0.1246 0.0681 0.8693 −0.0265 0.0588 0.9016 −0.0881 0.0641 0.8811

50
θ 0.0248 0.0145 0.4295 0.0328 0.0154 0.4373 0.0167 0.0138 0.4241 0.0300 0.0147 0.4286 −0.0031 0.0137 0.4048

λ −0.0371 0.0312 0.6886 −0.0256 0.0300 0.6766 −0.0487 0.0327 0.6941 −0.0358 0.0310 0.6877 −0.0437 0.0323 0.6971

100
θ 0.0068 0.0077 0.3405 0.0104 0.0078 0.3384 0.0032 0.0075 0.3367 0.0092 0.0077 0.3346 −0.0056 0.0079 0.3475

λ −0.0257 0.0113 0.4118 −0.0213 0.0109 0.4001 −0.0302 0.0117 0.4212 −0.0252 0.0113 0.4104 −0.0283 0.0116 0.4019
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Table 2. Cont.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

3

0.5

20
θ 0.0315 0.0547 0.9001 0.0348 0.0549 0.9038 0.0282 0.0543 0.8926 0.0318 0.0547 0.9004 0.0297 0.0546 0.8976

λ −0.4798 0.2309 0.0569 −0.4715 0.2240 0.0845 −0.4850 0.2355 0.0409 −0.4503 0.2046 0.1119 −0.4998 0.2498 0.0006

50
θ 0.0211 0.0169 0.4877 0.0234 0.0171 0.4883 0.0187 0.0166 0.4842 0.0214 0.0169 0.4879 0.0198 0.0168 0.4854

λ −0.3902 0.1568 0.2287 −0.3676 0.1406 0.2581 −0.4090 0.1710 0.1935 −0.3388 0.1195 0.2469 −0.4981 0.2490 0.0003

100
θ 0.0183 0.0085 0.3602 0.0199 0.0086 0.3628 0.0166 0.0083 0.3570 0.0184 0.0085 0.3605 0.0173 0.0084 0.3587

λ −0.3494 0.1252 0.1901 −0.3246 0.1087 0.2058 −0.3715 0.1407 0.1709 −0.3002 0.0929 0.1893 −0.4992 0.2049 0.0002

3

20
θ 0.0932 0.0255 0.6319 0.1333 0.0251 0.3280 0.0544 0.0195 0.5306 0.0975 0.0263 0.5319 0.0719 0.0219 0.5632

λ 0.0225 0.0618 0.9381 0.1175 0.0857 1.0463 −0.0703 0.0608 0.8915 0.0330 0.0629 0.9506 −0.0309 0.0606 0.8925

50
θ 0.0546 0.0203 0.5208 0.0640 0.0219 0.5218 0.0453 0.0189 0.5090 0.0556 0.0204 0.5209 0.0495 0.0196 0.5177

λ −0.0173 0.0281 0.6513 −0.0059 0.0272 0.6505 −0.0287 0.0293 0.6510 −0.0160 0.0279 0.6504 −0.0238 0.0290 0.6459

100
θ 0.0451 0.0115 0.3816 0.0495 0.0123 0.3872 0.0406 0.0107 0.3728 0.0455 0.0116 0.3835 0.0426 0.0111 0.3791

λ −0.0042 0.0115 0.4137 0.0000 0.0115 0.4164 −0.0083 0.0117 0.4146 −0.0037 0.0115 0.4138 −0.0065 0.0116 0.4162

Table 3. Bayesian inference for DGPD3 (bias, MSE, and length of CI) for different values of parameters.

SE LINEX (−1.5) LINEX (1.5) GE (−1.5) GE (1.5)

θ λ n Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI Bias MSE L.CCI

0.5

0.5

20
θ 0.0231 0.0552 0.9405 0.0248 0.0552 0.9396 0.0214 0.0550 0.9399 0.0236 0.0552 0.9397 0.0208 0.0552 0.9422

λ −0.4908 0.2409 0.0134 −0.4879 0.2381 0.0189 −0.4927 0.2428 0.0097 −0.4710 0.2219 0.0349 −0.4998 0.2498 0.0005

50
θ 0.0067 0.0134 0.4749 0.0075 0.0135 0.4757 0.0058 0.0133 0.4719 0.0069 0.0134 0.4750 0.0055 0.0133 0.4718

λ −0.4505 0.2032 0.0495 −0.4374 0.1916 0.0645 −0.4603 0.2120 0.0397 −0.4064 0.1655 0.0713 −0.4999 0.2499 0.0002

100
θ 0.0291 0.0124 0.4307 0.0303 0.0134 0.4333 0.0028 0.0131 0.4255 0.0295 0.0130 0.4312 0.0274 0.0131 0.4246

λ −0.4204 0.1771 0.0642 −0.4030 0.1628 0.0796 −0.4342 0.1887 0.0521 −0.3742 0.1405 0.0841 −0.4946 0.2446 0.0097

3

20
θ 0.0783 0.1698 1.3450 0.1181 0.2003 1.3980 0.0418 0.1425 1.2318 0.0989 0.1747 1.3478 −0.0302 0.1534 1.2360

λ −0.5967 0.4528 1.0853 −0.4890 0.3254 0.9966 −0.6941 0.5849 1.1111 −0.5818 0.4329 1.0580 −0.6704 0.5575 1.1327

50
θ −0.0389 0.0829 0.9246 −0.0219 0.0866 0.9413 −0.0558 0.0793 0.8868 −0.0247 0.0803 0.9205 −0.1120 0.1012 0.9059

λ −0.2242 0.0906 0.7755 −0.1974 0.0726 0.6992 −0.2507 0.1108 0.8376 −0.2207 0.0881 0.7653 −0.2414 0.1040 0.8219

100
θ −0.0457 0.0799 0.8656 −0.0290 0.0828 0.9041 −0.0622 0.0770 0.8300 −0.0314 0.0769 0.8707 −0.1192 0.0999 0.8511

λ −0.2203 0.0876 0.7755 −0.1938 0.0700 0.6992 −0.2466 0.1073 0.8376 −0.2169 0.0851 0.7653 −0.2373 0.1007 0.8219

3

0.5

20
θ −0.0119 0.0524 0.8664 −0.0101 0.0523 0.8657 −0.0137 0.0524 0.8661 −0.0117 0.0524 0.8664 −0.0129 0.0525 0.8665

λ −0.4911 0.2411 0.0129 −0.4884 0.2385 0.0180 −0.4929 0.2429 0.0099 −0.4717 0.2226 0.0330 −0.4998 0.2498 0.0005

50
θ 0.0029 0.0112 0.4081 0.0036 0.0112 0.4077 0.0022 0.0111 0.4081 0.0030 0.0112 0.4080 0.0025 0.0112 0.4082

λ −0.4495 0.2023 0.0525 −0.4360 0.1905 0.0672 −0.4596 0.2113 0.0404 −0.4048 0.1643 0.0736 −0.4999 0.2499 0.0002

100
θ 0.0034 0.0049 0.2857 0.0040 0.0049 0.2853 0.0029 0.0049 0.2860 0.0035 0.0049 0.2857 0.0031 0.0049 0.2859

λ −0.4238 0.1799 0.0538 −0.4064 0.1654 0.0653 −0.4375 0.1916 0.0439 −0.3757 0.1415 0.0652 −0.4986 0.2486 0.0026

3

20
θ −0.0261 0.0370 0.6937 0.0126 0.0297 0.6419 −0.0640 0.0320 0.6453 −0.0218 0.0317 0.5972 −0.0478 0.0386 0.6255

λ −0.6123 0.4187 0.7591 −0.5002 0.3003 0.8630 −0.7168 0.5547 0.7219 −0.5969 0.4002 0.7670 −0.6900 0.5200 0.7443

50
θ −0.0277 0.0274 0.5896 −0.0182 0.0268 0.5730 −0.0372 0.0282 0.6052 −0.0267 0.0273 0.5874 −0.0331 0.0280 0.6017

λ −0.2226 0.0826 0.7089 −0.2005 0.0687 0.6596 −0.2449 0.0978 0.7456 −0.2198 0.0807 0.7030 −0.2368 0.0925 0.7363

100
θ −0.0252 0.0270 0.5209 −0.0159 0.0264 0.5730 −0.0345 0.0277 0.6052 −0.0242 0.0269 0.5874 −0.0305 0.0276 0.6017

λ −0.2207 0.0816 0.6709 −0.1990 0.0680 0.6596 −0.2423 0.0965 0.7456 −0.2179 0.0798 0.7030 −0.2344 0.0913 0.7363

100
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Figure 4. MSE of Bayesian inference for DGPD1.
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Figure 5. MSE of Bayesian inference for DGPD2.
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Figure 6. MSE of Bayesian inference for DGPD3.

The main simulation analysis points are as follows:

• It can be observed that the estimated values of the model parameters converge to their
true values when increasing the sample size. This can be observed since the MSE and
biases decrease as the sample size increases, which shows that the proposed estimators
are consistent in nature.

• For a small sample size, the LINEX loss function provides the lowest values of MSE
and bias when estimating θ, while the GE loss function provides the lowest values of
MSE and bias when estimating λ.

• For a large sample size, the LINEX loss function provides the lowest values of MSE
and bias when estimating both parameters λ and θ.
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• In almost all cases, the LINEX and GE loss functions produce minimum bias and
MSE values, and this is true for different sample sizes. Hence, LINEX and GE are
recommended over SE in this study.

• For the credible CI, it is noted that the shortest interval length is obtained when using
the LINEX loss function.

• The SE loss function has some advantages over other loss functions under some
conditions; for example, when λ = θ = 3 and for a small sample size (n = 20), the bias
and MSE attain their minimum values when estimating θ.

• For a fixed value of λ, the bias decreases when the shape parameter θ increases.
Similarly, for a fixed value of θ, the bias decreases when λ increases.

• The length of the credible interval decreases when the sample size increases, and this
is true for all loss functions under study.

When comparing the performance of the three DGPD analogues, we observe the following:

• For almost all small-size cases, the first discrete analogue DGPD1 has the least bias
and lowest MSE for different parameter values.

• For a large sample size, it is observed that the MSE attains its minimum values when
using the second analogue, DGPD2.

• The advantage of using the third analogue, DGPD3, appears when finding the credible
interval for the parameter θ using the GE loss function, where the interval length
reaches its minimum value.

5. Real Data Examples

In this section, some real data are utilized for the purpose of proving the efficiency of
the discrete analogues of the GP distribution.

Some goodness-of-fit measures are used, such as the chi-square test, Kolmogorov–
Smirnov (KS), Akaike information criterion (AIC), Bayesian information criterion (BIC),
corrected Akaike information criterion (CAIC), and Hannan–Quinn information criterion
(HQIC). As a model selection criterion, the researcher should choose the model with the
minimum value from the above-mentioned measures of fit.

Data set 1: The first set of data represents a 42-day COVID-19 data set from the
United States Virgin Islands, recorded between 19 April 2021 and 30 May 2021. These data
comprise daily new deaths. The data are as follows: 11, 2, 3, 10, 10, 4, 12, 0, 10, 3, 5, 12, 6, 9,
13, 4, 10, 26, 0, 32, 0, 0, 13, 10, 3, 20, 5, 6, 0, 3, 18, 2, 18, 14, 24, 7, 0, 30, 16, 26, 17, 23. The data
are available on the Worldometer website at [36].

Table 4 summarizes the values of goodness-of-fit measures when comparing the DGPD
with nine different discrete models, including those with one, two, and three parameters.
The competitive models are discrete Marshal Olkin inverted Topp–Leone (DMOITL), which
is introduced in [37], Discrete Burr (DB), which is introduced in [38], discrete Weibull
(DW), which is introduced in [39], discrete inverse Weibull (DIW), which is obtained in [40],
negative binomial NB in [41], Poisson, discrete generalized exponential (DGE), which
is introduced in [42], discrete alpha power inverse Lomax (DAPIL) in [19], and discrete
Lindley (DL) in [43].

Table 4 reveals the efficiency and suitability of DGPD1 for modeling COVID-19 cases
with respect to other discrete candidate models, while Figure 7 shows PMF and CDF for the
fitted DGPD1 of data set 1. The distribution that has smaller values of key statistics, such as
AIC, BIC, CAIC, HQIC, KS-test statistics, and Chi2-test statistics, is generally the one that
fits the data the best. These statistics show that among all fitted models, the DGPD1 has the
lowest KS-statistical, Chi2-statistical, AIC, BIC, CAIC, and HQIC values. The P-value of
KS-test statistics and Chi2-test statistics are compared at the 5% level of significance. For
data set 1, Table 5 elucidates the performance of Bayesian estimation, which is marginally
better than the well-known classical maximum likelihood estimation (MLE) with respect to
minimizing SE.
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Table 4. MLE estimates with goodness-of-fit test and different measures for different alternative models.

Estimates KS-Test Chi2-Test AIC CAIC BIC HQIC

DGP
θ −0.4052 0.1429 35.2645

284.7945 285.1021 288.2698 286.0683
λ 15.6070 0.3581 0.3164

DMOITL
θ 16.5627 0.1429 49.3821

297.3120 297.6197 300.7873 298.5859
λ 1.8434 0.3581 0.0255

DB
α 1.6460 0.3209 94.9821

325.9139 326.2216 329.3892 327.1877
θ 0.7401 0.0004 0.0000

DW
λ 0.9297 0.1429 38.7117

288.3261 288.6338 291.8014 289.6000
β 1.0837 0.3581 0.1925

DIW
λ 0.0642 0.2034 64.6983

315.3363 315.6439 318.8116 316.6101
β 0.7797 0.0618 0.0005

NB P 0.8015
0.3072 28307.5450

431.9343 432.0343 433.6720 432.5712
0.0007 0.0000

Poisson λ 10.4048
0.3277 677700.3282

482.2590 482.3590 483.9967 482.8960
0.0002 0.0000

DGE
α 0.9124 0.1595 38.3097

288.6633 288.9710 292.1386 289.9371
θ 0.9986 0.2359 0.2049

DAPL

α 48.5629 0.1804 44.5099

305.8090 306.4406 311.0221 307.7198θ 3.1137 0.1301 0.0697

λ 0.5752

DL θ 0.8437
0.1231 51.3964

289.7677 289.8677 291.5054 290.4046
0.5479 0.0163
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Table 5. MLE and Bayesian estimates with SE for data set 1.

MLE Bayesian

Estimates SE Estimates SE

θ −0.4052 0.1651 −0.2337 0.1209

λ 15.6070 3.3902 15.5417 0.8679

103



Symmetry 2022, 14, 1457

To confirm this conclusion, we should check the convergence of the MCMC results.
Figure 7 shows the trace and convergence plots of MCMC for parameter estimates of
DGPD1. Figure 8 depicts the MCMC convergence of λ and θ. We confirm the results of
MCMC that the parameters of DGPD1 have convergence by the MH algorithm. Figure 9
shows the posterior density plots of MCMC for parameter estimates of DGPD1 for data set
1, which has a normal curve, as per the proposed distribution of the MH algorithm.
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Data set 2: The second set of data represents a 53-day COVID-19 data set from Italy,
recorded between 13 June 2021 and 4 August 2021. These data comprise daily new deaths.
The data are as follows: 52, 26, 36, 63, 52, 37, 35, 28, 17, 21, 31, 30, 10, 56, 40, 14, 28, 42, 24, 21,
28, 22, 12, 31, 24, 14, 13, 25, 12, 7, 13, 20, 23, 9, 11, 13, 3, 7, 10, 21, 15, 17, 5, 7, 22, 24, 15, 19, 18,
16,5, 20, 27. The data are available on the Worldometer website at [36].

Figure 10 shows PMF and CDF for the fitted DGP of data set 2. The SE values of the
parameters of DGP are shown in Table 6 to compare between MLE and Bayesian estimation
methods for data set 2. From the results of SE in Table 6, we note that Bayesian estimation
is a superior estimation method for data set 2 compared to MLE. Figure 11 shows that the
posterior density plots of MCMC for parameter estimates of DGPD1 for data set 2 have
a normal curve, as per the proposed distribution of the MH algorithm. To confirm this
conclusion, we should check the convergence of the MCMC results. Figure 12 shows the
trace and convergence plots of MCMC for parameter estimates of DGPD1 for data set 2.
In Figure 12, we confirm that the results of MCMC for the parameters of DGPD1 have
convergence by the MH algorithm.
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Table 6. MLE and Bayesian estimates with SE for data set 2.

MLE Bayesian

Estimates SE Estimates SE

θ −0.491911 0.103421 −0.41147 0.093889

λ 33.312755 5.266817 33.34727 0.886706
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6. Conclusions

In this study, we propose and study new discrete distributions that have a decreasing
probability mass function for all choices of their parameters. The new distribution is called
the discrete generalized Pareto distribution (DGPD). We used different discretization meth-
ods that introduced three discrete analogues of the DGPD. Point and interval estimations
through the Bayesian method were obtained, and a simulation analysis was performed
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using R code to assess the efficiency of the three discrete models. Some loss functions were
employed in this study, such as SE, LINEX, and GE loss functions. The tables presented in
the simulation section show some good properties for each analogue. To check the validity
of the DGPD, two real data examples were considered, which comprised COVID-19 death
cases in two different regions. Our proposed DGPD1 was compared with other discrete
candidates, and via goodness-of-fit tests, it was proved that DGPD1 fit the data very well.
The tables and figures illustrate the efficiency of the new model as well. For further study,
we suggest using other discretization methods and testing their performance and suitability
using real-life data.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: In spatial econometrics, we usually assume that the spatial dependence structure is known
and that all information about it is contained in a spatial weights matrix W. However, in practice, the
structure of W is unknown a priori and difficult to obtain, especially for asymmetric dependence. In
this paper, we propose a data-driven method to obtain W, whether it is symmetric or asymmetric.
This is achieved by calculating the area overlap of the adjacent regions/districts with a given shape
(a pizza-like shape, in our case). With W determined in this way, we estimate the potentially
asymmetric spatial autoregressive dependence on irregular lattices. We verify our method using
Monte Carlo simulations for finite samples and compare it with classical approaches such as Queen’s
contiguity matrices and inverse-distance weighting matrices. Finally, our method is applied to model
the evolution of sales prices for building land in Brandenburg, Germany. We show that the price
evolution and its spatial dependence are mainly driven by the orientation towards Berlin.

Keywords: spatial autoregressive model (SAR); weights matrix; model selection; Akaike information
criterion (AIC); maximum likelihood estimation

1. Introduction

Geospatial analysis is based on Tobler’s first law of geography, which points out that
everything is connected to everything else, but that nearby objects dominate (Tobler [1]).
Not every process can be described by applying this rule, and there is no precise and unique
definition of “nearby”. Therefore, it is often assumed that the dependence structure is
known through underlying physical systems (e.g., river flows) or geographical information
or network structures (e.g., public transport connections), or assumptions such as symmetry
are made. Generally, to model spatial data, one needs to know the n(n − 1) potential
interactions among the system’s n objects. A major challenge is to obtain these interactions
from the n data points in the sample.

There are various attempts to model such spatial dependence. For instance, the spatial
covariance could directly be described by a parametric covariance function that has fewer
parameters than all possible links. This approach is commonly known as the geostatistical
approach (see, e.g., Cressie and Wikle [2]). Alternatively, spatial dependence could be
modeled by explicitly including spatially lagged variables. These models are often referred
to as spatial econometrics models. Processes in which the objects/regions influence each
other can be modeled with spatial autoregressive (SAR) models (LeSage [3], LeSage and
Pace [4]). SAR models describe processes in which the observed value of one region
influences the observed value in other regions and vice versa. An exemplary question
that such models attempt to answer is whether the average salary in one region influences
the average salary in adjacent regions, and if so, to what extent. Such interplay among n
regions is described by an n× n spatial weights matrix W.
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These autoregressive-type approaches involving the specification of a weights matrix
have been widely used in different areas. For instance, in environmental statistics, the
effects of weather conditions on fertilizer application were modelled (Billé and Rogna [5])
and environmental expenditure interactions among OECD countries were investigated. In
addition, the impact of COVID on financial returns was investigated (Billé and Caporin
[6]), and studies of the labour market have employed spatial weight matrices (Billé [7]).
Furthermore, in health economics, Donegan et al. [8] used spatial econometrics approaches
for modelling community health.

There are different methods for obtaining a suitable W. One is to assume that all
regions sharing a common border influence each other. This method is also called the
Queen’s contiguity matrix, alluding to the chessboard (LeSage and Pace [4]). If region A and
region B share a common border, the Queen’s contiguity matrix is then constructed with
WAB = WBA = 1. Other methods involve geographical distances such as those used
in Lin Lawell [9] to model air pollution. They assume that the first-neighbour regions
are the regions within 500 km of each other. Another method for constructing W is to
assume that the regions’ influences on each other declines as the distance between them
increases. The so-called ‘inverse-distance W’ was used by Boly et al. [10] to model real-
estate valuation and by Zhao et al. [11] to describe air pollution in China. The inverse-
distance matrix is constructed with WAB = WBA = 1/distance(A, B). An advanced method
also takes geographical or economical connections into account when constructing W.
Krisztin et al. [12] described the worldwide spread of the coronavirus by assuming that
countries with a common border influence each other, as well as countries connected by
an airline. Other suggested methods for constructing W include the parametric or semi-
parametric estimation method proposed by Pinkse et al. [13], the method of Stakhovych and
Bijmolt [14], where W was selected from a set of possible candidates with a goodness-of-fit
criterion, requiring that the true W is in the set of candidates, and that of Bhattacharjee and
Jensen-Butler [15], where W was selected from an estimated spatial autocovariance matrix
under the conditions of symmetry and a finite sample size of n.

Ahrens and Bhattacharjee [16] proposed to estimate W in two steps with a least
absolute shrinkage and selection operator (lasso) approach. An alternative penalized
estimation approach was proposed by Lam and Souza [17]. They selected W from a linear
combination of different weights matrices by setting irrelevant components to zero. This
linear combination could involve higher-order spatial lags (see, e.g., Cohen and Paul [18]).
A method for selecting the best weights matrix from a set of candidates was also proposed
by Debarsy and LeSage [19] or by Debarsy and Ertur [20]. Zhang and Yu [21] showed that
the true weights matrix can consistently be selected from the set of candidates (if included)
using Mallow’s Cp criterion. If the true matrix is not in the set of candidates, the selection
is still optimal, and they proposed a model averaging technique over different candidates.
In addition, the method was illustrated by an analysis of historical rice prices in China.

Most of the studies have in common the fact that they apply symmetric weighting
schemes (if A influences B, then B influences A, but with a potentially different magni-
tude). To the best of our knowledge, there are only a few references that deal with the
construction of weights matrices accounting for asymmetry. Exceptions include, for in-
stance, Zhou et al. [22], who constructed their asymmetric weights matrix by element-wise
multiplication of a nearest-neighbour weights matrix (mostly symmetric) with a matrix
that indicated whether the influence flowed from A to B or vice versa. The direction of the
influence must be known in advance. A similar method for constructing an asymmetric
weights matrix was proposed by Merk and Otto [23], to model PM2.5 concentrations. In
their approach, the directional component depended on the wind direction and wind speed,
which strongly influenced the spatial dependence structure.

However, in practice, we often do not have prior knowledge about the asymmetrical
or directional influences. Therefore, in this paper, we develop a data-driven method to
estimate the interactions directly from the sample data and explicitly allow asymmetric
dependence for irregular lattice data. We assume that the interactions are not dependent on
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the location of the region but are equal over the entire sample area. With this approach for
irregular lattice data, we extend the work of Merk and Otto [24], who proposed a similar
approach for obtaining the interactions for regular lattice data based on a lasso procedure.
The proposed method respects the interactions from close neighbours, like the Queen’s
contiguity matrix or the inverse-distance matrix, but allows asymmetric interactions (if
A influences B, B does not necessarily influence A). It is worth noting that the proposed
method provides a method of obtaining a flexible weights matrix. This weights matrix
can be an additional candidate for the selection of the weights matrix described above, for
which good candidates must be available.

This paper is structured as follows. Section 2 describes the theoretical model. Section 3
covers a Monte Carlo simulation study. In Section 4, we apply our method to real-world
data and analyse the evolution of land sale prices in Brandenburg, Germany, to show that
the short-distance directional influences are coming from Berlin. We conclude by discussing
new research directions in Section 5.

2. Theoretical Model

Let {Y(s) ∈ R : s ∈ B} be a univariate process in the spatial domain B. We explicitly
consider B to be an irregular lattice, as would be the case for spatial polygon data. Shapes
like this can be found in countries, states, and districts. An artificial example can be seen in
Figure 1.
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35

Figure 1. Example of simulated values for an n = 200 Voronoi map. The simulation is based on
8-setting-4 (see Figure 3).

Furthermore, suppose that the process is observed for a finite set of locations
B = {s1, . . . , sn} and Y = (Y(s1), . . . , Y(sn))t. We consider that the process follows a
spatial autoregressive model, i.e.,

Y = WY + Xβ + ε, (1)

where W is an unknown spatial weights matrix and β is a vector of p exogenous influences.
Furthermore, X is a (p + 1)× n matrix and ε is a random error vector, which is assumed
to have zero mean with a diagonal, homoscedastic covariance matrix σ2

ε I. The identity
matrix is denoted by I. Since W consists of n(n− 1) unknown parameters, which must
be estimated, and only n values of the response are observed, W is typically replaced
by a multiple of a pre-specified matrix W̃, i.e., W = φW̃, where φ is an unknown scalar
parameter to be estimated (Anselin [25]).

In the following, we aim to estimate the full spatial dependence structure W. To obtain
a meaningful and easy-to-interpret representation, suppose that the spatial dependence
can be separated into k directions and d distances (see Figure 2a). Furthermore, suppose
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that there is a unique weighting for each segment of the sectors such that W can be
decomposed as

Figure 2. Left: schematic representation of dividing a spatial dependence structure into k directions
and d distances. Right: evaluation of an arbitrary segment (φij) of the spatial dependence structure
referring to district S1. Area 1 is not considered, since it is part of the region that is evaluated. The
relative sizes of the overlaps 2 and 3 give the positive weights and are row-normalized to one. Here,
we obtain approximations to the weights: wij,S1S2 = 0.6 and wij,S1S3 = 0.4.

W =
k

∑
i=1

d

∑
j=1

φijW̃ij, (2)

where each matrix W̃ij has positive weights for the (ij)th segment only (see Figure 2b). The
weights are chosen to be proportional to the overlapping areas. That is,

W̃ij =




0 wij,12 · · · wij,1n
wij,21 0 · · · wij,2n

...
...

. . .
...

wij,n1 wij,n2 · · · 0


 = (wij,ιη)ι,η=1,...,n (3)

where wij,ιη is the relative area of the ηth location lying in the (ij)th segment with respect
to region ι. For example, (see Figure 2b), one wij,ιη is the normalized area of 2. Due to
normalization, each W̃ij is bounded by 1 in the row sums. Each of these matrices contains
the relative overlapping areas of one segment with the n regions. Since a segment usually
overlaps with a small fraction of the regions only, all W̃ij are sparse.

Figure 2b depicts an artificial map of ten regions. An exemplary segment (φij) deter-
mines the spatial dependence of the region S1 towards the north by the relative sizes of its
overlap with the neighbouring regions S2 and S3. As we exclude self-influences, the overlap
with region S1 is ignored, and the weights for the spatial dependence are normalized with
respect to the two remaining intersections. Here, the weights are given by wij,12 = 0.6
and wij,13 = 0.4 for S2 and S3, respectively. With this construction, the matrix (wij,ιη) is
row-normalized, as wij,12 and wij,13 are the only non-zero entries in row ι = 1.

This leads to the classical autoregressive model with higher-order spatial lags, given by

Y =
k

∑
i=1

d

∑
j=1

φijW̃ijY + Xβ + ε. (4)

In the reduced form, we obtain with

S{φij : i = 1, . . . , k; j = 1, . . . , d} = I−
k

∑
i=1

d

∑
j=1

φijW̃ij (5)
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that

Y =

(
I−

k

∑
i=1

d

∑
j=1

φijW̃ij

)−1

(Xβ + ε) = S{φij}−1(Xβ + ε). (6)

In this paper, we consider that d and k are chosen to be large enough to obtain a flexible
model reflecting the true underlying spatial dependence precisely, generally leading to a
rich, parameterized description.

The inverse S−1 exists if the column-sum norm ‖ W ‖1< a or the row-sum norm
‖ W ‖∞< a is bounded by a finite number a. With the W̃ij row sums bounded by 1, this
can be ensured under the assumption that

k

∑
i=1

d

∑
j=1
|φij| < 1 . (7)

A more general condition is discussed by Elhorst et al. [26]. Since we only want to
describe the direction from which we see a stronger or weaker influence, we constrain
ourselves to the first condition.

Implementing the model demands a proper choice of the parameters k and d, which
determine the division of the direction and distance of the spatial dependence, respectively.
Moreover, the actual length of each distance step can be optimally chosen. We perform a
spatial partitioning analysis to obtain a robust choice of all three parameters.

Let lq be the distance between the qth and (q + 1)th distance steps. We suggest
selecting k ∈ K ⊂ N, d ∈ D ⊂ N, and lq ∈ L ⊂ R>0 using Akaike information criterion
(AIC) selection (Akaike [27]). Therefore, we calculate all W̃ij(k, d, lq) for different sets of
D× K× L. Then, we estimate the unknown parameters β, φij with maximum-likelihood
methods and select the best-performing model based on its AIC. Having obtained the
best-fitting (k̂, d̂, l̂q), we estimate the final model in the next step.

We estimate the parameters {β, φij} using the maximum-likelihood approach com-
bined with parameter selection using minimal AIC. For both symmetric and asymmetric
dependence, a large share of the φij values can be expected to be zero, because k and d are
large. For this reason, we repeat the estimation d× k times and, at every step, we drop the
least significant φij parameter (i.e., we set this particular φij to zero). Finally, from these
d× k estimations we choose the one with the lowest AIC.

In general, the unknown parameters {β, φij} can be estimated. For that reason, the
joint probability function, the log-likelihood function fY (Y), is maximized with respect to
parameters φij and β. Assuming that ε ∼ N(0, σ2

ε I), the log-likelihood is given by

L(Y |β, φij) =
n
2

log(2πσ2
ε )−

1
2σ2

ε
ε̃tε̃ + log det(S) (8)

with

ε̃ =

(
I−

k

∑
i=1

d

∑
j=1

φijW̃ij

)
Y − Xβ = SY − Xβ. (9)

The estimator is obtained by maximizing Equation (8) with respect to all parameters. For
the consistency of the resulting estimators, we refer to Lee [28] and Gupta and Robinson [29].

3. Monte Carlo Simulations

For the simulation study, we simulate the irregular spatial lattice as Voronoi cells
(Longley et al. [30], Sen [31]), where n ∈ {200, 500, 900} centroids are sampled from a
two-dimensional uniform distribution on the interval [0,

√
n]2 (see Figure 1). Eventually, Y

can be simulated as in Equation (6), with ε being uncorrelated realizations of a standard
normal distribution. We choose β = (3, 1, 2, 0, 5)t and X has only ones in the first column.
The remaining elements are standard normally distributed random values.
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We consider four different specifications of the spatial dependence with k = 8 and
k = 16, as shown in Figures 3 and 4. First, an isotropic process is considered where only the
first lag has an influence, as in classical contiguity settings. Second, a directional process is
considered with a clear north-to-south dependence. Third, we consider a nearest-neighbour
dependence in the northwest direction only. Finally, the fourth setting is extended by adding
another level of dependence strength, while retaining the mainly northwest directional
dependence. Blue sections represent zero influence, orange sections represent the maximum
influence, and purple sections represent 50% of the maximum influence. The maximum
influence is obtained by setting ∑k

i=1 ∑d
j=1 |φij| = 0.95.

Figure 3. Four different spatial dependence structures implied by the parameters φij. In the following,
they will be denoted 8-setting-1 for the very left setting, to 8-setting-4 on the right. Blue: φij = 0,
orange: φij = max, and purple: φij =

max
2 . The value max comes from ∑k

i=1 ∑d
j=1 |φij| = 0.95.

Figure 4. Four different spatial dependence structures implied by the parameters φij. In the following,
they will be denoted 16-setting-1 for the very left setting, to 16-setting-4 on the right. Blue: φij = 0,
orange: φij = max, and purple: φij =

max
2 . The value max comes from ∑k

i=1 ∑d
j=1 |φij| = 0.95.

We carried out two types of simulation. In the first type, we used d = 2, k = 8
and l = 375, employing the spatial dependence structures depicted in Figure 3. We first
performed the spatial partitioning (results in Table 1 and Figure 5) to gain the best k̃ and
l̃ for the estimation of φ̂ij (we use k̃ to denote the optimal parameter and k̂ to denote an
estimator). The procedure to determine k̃ and l̃ is described below, and was repeated
103 times. Then, using the optimal (k̃, l̃) from each of the 1000 estimations, we estimated
φ̂ij and compared it to alternative estimations with the Queen’s contiguity matrix, the
inverse-distance neighbour matrix by AIC, and the sum of squared residuals (ε2). The
comparison can be found in Table 2, showing that our method works best.

In the second type of simulation, we show that we can re-estimate even higher-
dimensional specifications of the spatial dependence, as depicted in Figure 4. We simulated
Y with d = 2, k = 16 and l1 = l2 = 375 using this high-resolution spatial dependence
and estimated φ̂ij, conditionally upon selecting the true d, k and l as the best parameters.
The results are summarized in Table 3. One can see that we can re-estimate these higher-
dimensional settings with a true positive rate of at least 76%. The simulations were carried
out in R using the packages spdep and rgdal (Bivand et al. [32], Bivand et al. [33]).
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Table 1. Means and standard deviations of the best k̃ and l̃ for 103 estimations. For each setting, the
best values are printed in bold. The greater the value of n, the closer we approach to the true values
of k = 8 and l = 375.

8-Setting-1 8-Setting-2 8-Setting-3 8-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

mean(k̃) 5.34 6.17 6.29 6.8 6.43 7.51 7.99 8 8 6.26 6.59 7.36
sd(k̃) 1.31 1.39 1.35 1.37 1.44 1.07 0.16 0 0 1.31 1.47 1.22

mean(l̃) 325 336 347 382 393 376 377 375 374 379 389 375
sd(l̃) 86 65 66 58 37 30 18 7.1 4.5 69 36 37

The spatial partitioning algorithm to determine the optimal parameters (k̃, l̃) was
implemented as follows. Initially, we select the distance d = 2 and split the spatial
dependence into different lengths lq = l ∈ {225, 250, . . . , 525} and various numbers of
directions k ∈ {4, 5, 6, 7, 8, 9, 10}. For each spatial dependence structure, all d× k spatial
weights matrices Ŵij are calculated. We calculate 3× 1000 sets of Y with k = 8 and l = 375
(Yk=8,l=375) that differ by a random white noise element ε. Finally, we re-estimate Ŷkl for
all combinations of k and l and calculate their AIC values to select the best set of (k̃, l̃) for
each of the 1000 Yk=8,l=375. The results can be seen in Table 1 and Figure 5.

Figure 5 shows that for 8-setting-1, the symmetric setting, it is more difficult to estimate
the correct k, because the models are observationally equivalent. The directional influence
for this radially symmetric setting looks almost identical for k = 4 and k = 8. Since settings
with fewer variables benefit from AIC selection, observation of this pattern is to be expected.
The length of the slices (l; here the y-axis) can be identified.

However, 8-setting-2 is axially symmetric about the y-axis. Only the northern half of
the sections can provide spatial influence. In this case, the spatial partitioning algorithm is
less robust in determining the length parameter l̃. One plausible reason is the ambiguity
between the length and the number of distance steps, which occurs particularly for this spa-
tial dependence setting. For 8-setting-3, the true values of k and l are selected consistently.
For 8-setting-4, estimation is more difficult, but the results show reasonable consistency for
larger values of n. In general, k̃ was rarely selected to be too large, but the selection of l̃ was
more difficult.

For each of the previous 103 estimations, we obtained the best values for k̃ and l̃.
Now, using these k̃ and l̃ values, we estimate, 103 times, the values for the segments
φ̂ij, as described in Section 2. Finally, we compare the mean AIC values and the sum of
squared residuals (ε2) of those estimates to the commonly used Queen’s contiguity matrices
(Lin Lawell [9]) and inverse-distance weighting matrices (Boly et al. [10]).

The average AIC value and the sum of squared residuals are reported in Table 2. For
all settings and all n, our method outperforms the common procedure, i.e., smaller values
for AIC and ε2 are obtained.

For the final estimation, the spatial dependence is split into k = 16 directions and
d = 2 distances (see Figure 4), leading to d × k = 32 spatial weight matrices W̃ij with
dimension n× n. We assume knowledge of the true parameters of (k̃, d̃, l̃p), and we re-
estimate the parameters of φ̂ij. Table 3 shows the results of the simulation study for the
different dependence structures (see Figure 4), with 500 estimations for each n and for
each setting. Since we know the true values, we compare the BIAS and the RMSE of the
estimations. For the BIAS and RMSE results, we distinguish two cases. Either the true

values should be chosen to be zero ( !
= 0), or the true values should be chosen to be greater

than zero (
!
> 0).

The true positive values represent the rate at which φ̂ij was correctly identified as
positive. The false non-zero value represents the rate of falsely identifying zero values
as positive. From Table 3, we can see that the results improve when a larger n is chosen.
The minimal true positive rate was 76%, but, in most cases, the true positive rate exceeds
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90%. Furthermore, we chose up to only 7% of the values as falsely non-zero. From the true
positive and false non-zero values, one can see that, for a very simple dependence structure
such as 16-setting-3, the sections φ̂ij are identified almost perfectly.

Figure 5. Results for spatial partitioning to choose the best k̃ and l̃ using the four spatial depen-
dence structures from Figure 3. The 12 heatmaps show the best values for each estimation after
1000 realizations. Each heatmap depicts values of k ∈ {4, 5, 6, 7, 8, 9, 10} on the x-axis and values of
l ∈ {225, 250, . . . , 525} on the y-axis. The maximum of the colour scale is chosen for for each heatmap
individually to achieve optimal visualization. Especially in 8-setting-3, the selections of k̃ and l̃ are
very sharp. Therefore, every plot has its own scale, and we named the maximum value max. The blue
crosses indicate the true parameters k = 8 and l = 375.
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Table 2. One thousand estimations of ŷ using this method. The results are compared, using the
average AIC and ε2, to estimations with Queen’s contiguity matrices and inverse-distance weighting
matrices. The values of k̃ and l̃ are chosen from spatial partitioning.

8-Setting-1 8-Setting-2 8-Setting-3 8-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

AIC
Our Method 570 1431 2573 568 1426 2562 573 1439 2592 568 1425 2563
Queen 671 1541 2846 654 1569 2965 785 2015 3438 644 1612 2901
Inv. Dist. 652 1539 2859 652 1552 2868 775 2031 3445 636 1597 2815

ε2
Our Method 0.954 0.987 1.000 0.947 0.984 0.995 1.016 1.035 1.040 0.957 0.986 0.996
Queen 1.343 1.245 1.341 1.299 1.370 1.497 2.561 2.942 2.507 1.314 1.370 1.381
Inv. Dist. 1.201 1.225 1.337 1.256 1.293 1.321 2.377 3.111 2.515 1.229 1.314 1.268

Table 3. Mean of 500 estimates for each of the 4 different settings with 3 different values of n. We
compare the BIAS, RMSE, true positive selections, and false negative selections. The values for BIAS
and RMSE are to the power of 10−3 and are separated between values that should be estimated as

zero ( !
= 0) and values that should be estimated as greater than zero (

!
> 0).

16-Setting-1 16-Setting-2 16-Setting-3 16-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

BIAS !
= 0 1.835 0.892 0.595 1.920 1.103 0.729 0.668 0.323 0.243 2.113 1.107 0.757

(in 10−3)
!
> 0 −4.721 −3.934 −3.677 −4.961 −4.194 −3.824 −32.80 −28.74 −28.06 −5.091 −4.171 −3.855

RMSE !
= 0 1.861 0.910 0.609 2.636 1.445 0.940 0.888 0.407 0.331 2.571 1.430 0.967

(in 10−3)
!
> 0 5.125 4.102 3.815 6.721 5.062 4.151 32.80 28.75 28.06 7.490 5.101 4.363

True positive 0.86 0.97 0.99 0.78 0.95 0.99 1.0 1.0 1.0 0.76 0.92 0.98
False non-zero 0.07 0.06 0.05 0.06 0.05 0.04 0.03 0.02 0.02 0.06 0.05 0.05

4. Real-World Application

In this section, we apply our approach to the evolution of land prices in Brandenburg,
Germany. In general, spatial autoregressive or spatial lag models are widely applied to model
housing prices or the evolution of house prices (e.g., Fingleton [34], Osland [35], Baltagi
et al. [36,37], Jin and Lee [38]). Furthermore, Taşpınar et al. [39] showed that there are
spatial interactions in the volatility of house-price returns. Below, we focus on the spatial
dependence structure due to the specifics of the studied area. The state of Brandenburg,
with 2370 districts, completely surrounds Berlin. Berlin does not belong to Brandenburg
and is therefore not included in the dataset. It is to be expected that the distance to Berlin
has a strong influence on the evolution of Brandenburg’s sales prices. It is also to be
expected that the influences the districts have on each other is stronger in the vicinity
of Berlin.

We consider the sales prices of land that was sold as building land for the first time.
The dataset contains the sales prices from 2005 to 2014 for the 2370 districts of Brandenburg.
To model the evolution of the sales prices, we take the average prices per square metre for
all regions between 2005 and 2009 and compute the difference from the average price for
the regions from 2010 to 2014. For regions that do not have sufficient data, we replace the
difference in selling price with zero, that is, we assume no price changes between these
periods. The resulting map is plotted in Figure 6, on the right.

We wish to investigate whether the districts in the dataset exert a short-distance
influence on each other, whether this influence is directional, and in which direction the
influence flows. Therefore, we choose the setting such that our weights φij are oriented
towards Berlin (similarly to a compass pointing north, hence in Figure 6 the green pieces
are pointing to Berlin). Furthermore, we include the following regressors: (1) the distance
to Berlin for each district, (2) the squared distance to Berlin, (3) the inverse distance to
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Berlin, and (4) an intercept of 1. To find the optimal number of directions k and the best
length l, we calculate the K× L W̃ij for a subset of n0 = 58 of the n = 2370 districts to lower
the required computational effort (see Figure 6, left).

Figure 6. Brandenburg with its n = 2370 districts. Green cross: Berlin centre. Triangles: two example
settings of the φij with two different d and l. They are always chosen to be biased towards Berlin
centre. The inset shows the sub-region of Brandenburg with n0 = 58 districts which is used to
determine the parameters {d̃, k̃, l̃} by spatial partitioning.

The results of the spatial partitioning are plotted in Figure 7 for distances d = 1 and
d = 2. In both cases, the best number of directions is k̃ = 3. In the case where d = 1, the
optimal length of the pieces is l̃ = 7000 m, and in the case where d = 2, it is l̃ = 5250 m.
The global best choice, according to the AIC, is the latter setting. For the selection of the
optimal length we use step sizes of δl = 250 m.

Figure 7. Heatmap of AIC values for different k, l, d. Lighter colours represent a smaller AIC value.

With the optimal settings, we estimated the parameters for β̂ and φ̂ij as described in
Section 2. We estimated the model d× k + p times and, after each step, removed the least
significant parameter. Finally, we selected the best estimation according to the AIC. In
both cases, the estimation with only one parameter was selected via the AIC. In both cases,
the remaining parameter is the one pointing towards Berlin (see Figure 8). Furthermore,
β̂ = 0 is selected by our method, which shows that the evolution of the sales prices is not
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dependent on the distance to Berlin. The result from the real-world study shows that the
evolution of the sales prices can be described by a directional influence within the districts
of Brandenburg, coming mainly from Berlin.

Figure 8. Results of the estimation for Brandenburg. The values represent the estimated values. There
is only directional influence from Berlin. This plot visualizes the estimated directional influence
between the districts in Brandenburg.

5. Discussion

Spatial weights matrices for SAR models are of interest in many areas, e.g., for the
description of environmental processes such as air pollution or the description of the
evolution of housing prices. Numerous methods have therefore been introduced to estimate
the spatial weights matrix. However, methods applicable in asymmetric scenarios are
lacking.

In this paper, we presented a method for calculating the n× n spatial weights matrix W
for directional processes which can be symmetric as well as anti-symmetric. The directional
influence is assumed to be the same in all regions of a map and is described by the value of
the segments φij. The proposed method can be used to estimate the directional influence in
certain use-cases, such as in the modelling of PM2.5 in a windy area (see Zhou et al. [22]). In
other areas of application, spatial models are created in different environmental areas such
as regions of ocean currents (mostly from the same direction). To date, the models have
only allowed a symmetric influence or it was necessary to bias the directional influence by
knowingly setting certain directions of influence to zero.

In Section 3, we presented Monte Carlo simulations to show that we can re-estimate
the φ̂ij consistently. Additionally, we showed that weight matrices calculated with our
method outperformed a Queen’s contiguity matrix and an inverse-distance weighting
matrix in the selection of four directional settings.

In Section 4, we applied our method to real-world data and showed that there is a
short-distance influence in the evolution of land sales prices in Brandenburg, Germany.
This directional influence flows from Berlin, at the centre of Brandenburg.

One limitation of the proposed method is that the effort required to calculate the
overlapping areas of all pizza-like shapes for all regions is computationally demanding. For
larger numbers of regions or larger d and k, the proposed method needs to be improved.

In future work, we intend to decrease the computational effort required to calculate the
weights matrices Wij, to allow a larger number of distances d for the segment shapes. With
this in hand, one could investigate whether another means of selecting parameters—other
than the AIC—could boost the results, since selection using the AIC always promotes fewer
parameters. This could be achieved by predicting which area of which region overlap
needs to be calculated. Another suggestion is to try different segment shapes. In this paper,
we considered only a pizza-like slicing. It could also be worth investigating whether the
estimation itself could be enhanced by using a lasso technique.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: In this research, we look at the work associated with the encouraged arrival line with
feedback, balking and maintaining reneged clients. We analyse the quality control policy for the
Markovian model using an iterative method to the nth customer in the system. We derive performance
measures for the expected number of units in the system, as well as in the queue and the average
number of occupied services and the expected waiting time in the system, as well as in the queue.
To show the effectiveness, we provide numerical examples for the average default rate and average
retention rate. The developed formula also satisfies Little’s formula.

Keywords: encouraged arrival; quality control feedback; balking; maintaining; retention

1. Introduction

A queue in operations research signifies a certain number of clients waiting for service.
In most cases, the consumer being served is not regarded as being in line. The queue’s
characteristics are described by queueing theory. In everyday life, everyone has to wait
in a line or queue, whether it is at a food court, a clinic, or a bank cashier. It can be
fascinating at times, but it is often frustrating for both the consumer and the service
provider. Understanding queues or lines is one of the most critical aspects of operation
research management.

Queuing theory as an area of research was introduced by A.K. Erlang. The customer
enters a queue. Balking and reneging have been discussed [1,2], respectively. The mingled
impact of the finite capacity queue of balking and reneging has been derived by [3,4].

An M/M/1/N queuing model with quality control policy and optimal policies are
discussed [5]. Ref. [6] discussed an M/M/1/N with reneging and general balking distri-
bution. Ref. [7] studied in quality control and an M/G/1 queue-like production system
was discussed. Ref. [8] derived an optimal admission Markov queue under the quality of
service constraints.

An M/M/1/N queuing system and Markovian feedback queue discussion about
retention and reneged customers is found in [9]; a discussion around M/M/1/N queuing
system and balking with the retention of reneged customers queuing model is found in [10],
and a feedback queue with the retention of reneged customers has been discussed in [11].
An M/M/1/N queuing system and reverse balking is discussed in [12]; an M/M/1/N
queuing system with encouraged arrival has been studied in [13]. An M/M/1/N quality
control feedback with balking and retention of reneged customers has been discussed
in [14]. Basic definitions of queuing theory be found in [15]. Impact of prioritization
on the outpatient queuing system in the emergency department with limited medical
resources has been studied [16]. A comparison between bivariate statistical models has
been studied [17]. An MMAP/(PH.PH)/1 Queue with priority loss through feedback has
been studied [18]
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The goal of this study is to optimize various parameters in the quality control of
a single server, including the encouraged arrivals in balking, retention, and reneging
customers through a steady-state condition. This paper is arranged as follows: Notation
and Mathematical model formulation is delivered in Section 2. A deal with performance
measure and special cases in Section 3. We discuss about model Elaboration relation
and solution of this model in Section 4. Section 5 deals with Main result and discussion,
limitations. Conclusion is provided in Section 6.

2. Mathematical Model Formulation
The Following Were Assumed to Describe the Mathematical Model

1. Customers arrive one by one to a Poisson discipline process with rate λ(1 + η), where
η represents past or observed data calculated by the customer. If a past organisation
offered discounts and percentages, the number of customers observed values rise to
η = 0.5 and η = 1.2, respectively.

2. Service time is exponential and identically distributed.
3. Customers follows the first in first out discipline.
4. After the completion of service, customers join at the end of the original queue as

feedback with probability (1 − q).
5. The probability that a processing job is defective in the system with probability q.
6. For the feedback situation, gn, could be a random event such that gn = 1 reflects the

event that there are N jobs in the system and gn = 0 otherwise for 0 ≤ n ≤ N. After
joining a queue, for service to begin the probability is (1 − p).

7. If the service has not begun, the customer will leave the queue without getting service,
as an impatient customer with probability (n − 1) pa for 2 ≤ n ≤ N for n = 1, the value
is zero.

8. An encouraged arrival will join the queue with probability β and will not join the
queue with probability: 1 − b , when n units are ahead 0 ≤ n ≤ 1. An encouraged ar-
rival will join the queue with probability b and will not join the queue with probability:
1 − b , for 1 ≤ n ≤ N − 1 and b = 1 otherwise.

We derive the following differential-difference equations:
d
dt

p0(t) = −λ(1 + η) p0(t)+ µqg1 p1(t), n = 0 (1)

d
dt

p1(t)= −(bλ(1 + η) + µqg1)p1(t) + λ(1 + η)p0(t) + (µqg2 + ap)p2, n = 1 (2)

d
dt

pn(t)= −(bλ(1 + η) + µqgn + (n − 1)ap)pn(t) + bλ(1 + η)pn−1(t) + (µqgn+1 + nap)pn+1, 1 ≤ n < N (3)

d
dt

pN(t) =−(µqgN + (N − 1)ap)pN(t)+bλ(1 + η)pN−1(t), n = N (4)

Steady-State Solution:

− λ(1 + η)p0 + µqg1 p1 = 0, n = 0 (5)

− (bλ(1 + η) + µqg1)p1 + λ(1 + η)p0 + (µqg2 + ap)p2 = 0, n = 1 (6)

− ((bλ(1 + η) + µqgn + (n − 1)ap)pn + bλ(1 + η)pn−1 + (µqgn+1 + nap)pn+1 = 0 , 1 < n < N (7)

− (µqgN + (N − 1)ap)pN + bλ(1 + η)pN−1 = 0, n = N (8)

Solving the differential–difference Equations from (1) to (8) iteratively, we obtain,

(µqgn+1 + nap)pn+1 − bλ(1 + η)pn = (µqgn + (n − 1)ap)pn − bλ(1 + η) =
. . . (µqp2 + ap)p2 − bλ(1 + η)p1 = . . . (µqg1 p1 − λ(1 + η)p0 = 0.

Now, the value of pn is obtained as:

pn =
bλ(1 + η)

µqgn + (n − 1)ap
pn−1 (9)
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By using the recurrence formula given by Equation (9), the general formula is obtained as:

pn =
λ(1 + η)(bλ(1 + η))n

[µqgn + (n − 1)ap] ∗ [µqgn−1 + (n − 2)ap] ∗ [µqg2 + ap] ∗ [µqg1]
p0

Now, the probability of ‘n’ units in the system is given by

pn =

{
p0 n = 0

δn

b ∏n−1
i=0 (γgi+1+i)

1 ≤ n ≤ N

where δ = bλ(1+η)
ap and γ = µq

ap .
Now to find the probability that there is no unit in the service, which is denoted by p0,

we use the boundary condition 1 = ∑N
n=0 pn.

That is, 1 = p0 + ∑N
n=1

δn

b ∏n−1
i=0 (γgi+1+i)

,

p−1
0 = 1 +

1
b ∑N

n=1
δn

∏n−1
i=0 (γgi+1 + i)

(10)

3. Performance Measures

Now we obtain the formula for various measures as given below:
The expected number of units in the system is given by:

L =
p0

b ∑N
n=1

nδn

∏n−1
i=0 (γgi+1 + i)

(11)

The expected number of units in the queue is given by:

Lq = L − (1 − p0) (12)

The average number of occupied services is given by:

Ls = L − Lq (13)

The expected waiting time in the system is given by:

W =
L

λ(1 + η)
(14)

and
The expected waiting time in the queue is given by:

wq =
Lq

λ(1 + η)
(15)

The Equations (14) and (15) are called Little’s formula.
The expected service time is given by:

Ws =W − Wq =
L − Lq

λ(1 + η)
(16)

The average reneging rate is given by:

RE = ∑N
n=1(n − 1)appn (17)

The average maintaining rate is given by:

Re = ∑N
n=1(n − 1)appn (18)

Particular Cases

Case 1: when we put a = 0, b = 1, p = 1, q = 1, gn = 1, this is the quality control queue:
M/M/1/N with feedback, balking and retention of reneged customers.

Case 2: when we put q = 1, gn = 1, and a = 0, we get the model M/M/1/N, which
is the same as Gross and Harris [15].
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4. Model Elaboration

The values of the parameters of this M/M/1/N queuing model are given.

λ η λ (1+η) N P q q gi

4 0.5 6 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 1–4 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 1. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.995225 3.996138 3.998365
0.06 3.996334 3.816372 3.999065
0.07 3.991855 3.978771 3.988408
0.08 3.898826 3.998237 3.988041
0.09 3.992406 3.969705 3.998728
0.10 3.972794 3.996458 3.997931
0.11 3.991761 3.994401 3.979199
0.12 3.990751 3.995094 3.921691
0.13 3.989561 3.989560 3.981316
0.14 3.988700 3.999407 3.977291
0.15 3.988784 3.994852 3.975339

Table 2. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.06 3.967179 3.816372

Table 3. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.08 3.985963 3.988041
0.11 3.980742 3.979199
0.12 3.979004 3.921691

Solution of the system is determined by scheming L against “a” for some values of b,
as given in Figure 1.

Remark 1. From the Figure 1, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.06, 0.08, 0.12 comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given.

λ η λ (1+η) N P q q gi

4 0.6 6.4 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 5–8 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.
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Table 4. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.995225 0.66587083 5.999998498 6
2 0.5 0.05 3.996334 0.66605567 5.999996997 6
3 1 0.05 3.998365 0.66639417 6.000001501 6
4 0.25 0.06 3.996334 0.66605567 5.999996997 6
5 0.5 0.06 3.816372 0.63606200 6 6
6 1 0.06 3.999065 0.66651083 5.9999985 6
7 0.25 0.07 3.991855 0.66531417 5.999956412 6
8 0.5 0.07 3.978771 0.66312850 5.999995476 6
9 1 0.07 3.988408 0.66473467 5.999996991 6

10 0.25 0.08 3.898826 0.64980433 6.000003078 6
11 0.5 0.08 3.998237 0.66637283 5.999998499 6
12 1 0.08 3.988041 0.66467350 5.999995487 6
13 0.25 0.09 3.992406 0.6654010 6 6
14 0.5 0.09 3.969705 0.6616175 5.999995466 6
15 1 0.09 3.998728 0.6664546 5.999996999 6
16 0.25 0.1 3.972794 0.6621323 6.000003021 6
17 0.5 0.1 3.996458 0.6660763 6.000003003 6
18 1 0.1 3.997931 0.6663218 5.999998499 6
19 0.25 0.11 3.991761 0.6652935 5.999995491 6
20 0.5 0.11 3.994401 0.6657335 5.999995494 6
21 1 0.11 3.979199 0.6631998 5.999998492 6
22 0.25 0.12 3.990751 0.6651251 6.000001503 6
23 0.5 0.12 3.995094 0.6658490 6 6
24 1 0.12 3.921691 0.6536151 6.00000153 6
25 0.25 0.13 3.989561 0.6649268 5.999998496 6
26 0.5 0.13 3.989560 0.6649266 5.999996992 6
27 1 0.13 3.981316 0.6635526 5.999996986 6
28 0.25 0.14 3.988700 0.6647833 6.000003009 6
29 0.5 0.14 3.999407 0.6665678 5.9999985 6
30 1 0.14 3.977291 0.6628818 5.999998491 6
31 0.25 0.15 3.988784 0.6647973 6.000030085 6
32 0.5 0.15 3.994852 0.6658086 5.999996996 6
33 1 0.15 3.975339 0.6625560 5.999995472 6
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6  1  0.06  3.999065  0.66651083  5.9999985  6 

7  0.25  0.07  3.991855  0.66531417  5.999956412  6 

8  0.5  0.07  3.978771  0.66312850  5.999995476  6 

9  1  0.07  3.988408  0.66473467  5.999996991  6 

10  0.25  0.08  3.898826  0.64980433  6.000003078  6 

11  0.5  0.08  3.998237  0.66637283  5.999998499  6 

12  1  0.08  3.988041  0.66467350  5.999995487  6 

13  0.25  0.09  3.992406  0.6654010  6  6 

14  0.5  0.09  3.969705  0.6616175  5.999995466  6 

15  1  0.09  3.998728  0.6664546  5.999996999  6 

16  0.25  0.1  3.972794  0.6621323  6.000003021  6 

17  0.5  0.1  3.996458  0.6660763  6.000003003  6 

18  1  0.1  3.997931  0.6663218  5.999998499  6 

19  0.25  0.11  3.991761  0.6652935  5.999995491  6 

20  0.5  0.11  3.994401  0.6657335  5.999995494  6 

21  1  0.11  3.979199  0.6631998  5.999998492  6 

22  0.25  0.12  3.990751  0.6651251  6.000001503  6 

23  0.5  0.12  3.995094  0.6658490  6  6 

24  1  0.12  3.921691  0.6536151  6.00000153  6 

25  0.25  0.13  3.989561  0.6649268  5.999998496  6 

26  0.5  0.13  3.989560  0.6649266  5.999996992  6 

27  1  0.13  3.981316  0.6635526  5.999996986  6 

28  0.25  0.14  3.988700  0.6647833  6.000003009  6 

29  0.5  0.14  3.999407  0.6665678  5.9999985  6 

30  1  0.14  3.977291  0.6628818  5.999998491  6 

31  0.25  0.15  3.988784  0.6647973  6.000030085  6 

32  0.5  0.15  3.994852  0.6658086  5.999996996  6 

33  1  0.15  3.975339  0.6625560  5.999995472  6 

Solution of the system is determined by scheming L against “a” for some values of b, 

as given in Figure 1. 

 

Figure 1. The relationship between L and “a” when “b” = 0.25, 0.50. 

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

"b
" 
va
lu
e

"a" value

L at beta=0.25 L at beta=0.50 L at beta=1

Figure 1. The relationship between L and “a” when “b” = 0.25, 0.50.
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Table 5. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.984371 3.994342 3.670805
0.06 3.989045 3.994022 3.991227
0.07 3.994445 3.978169 3.990492
0.08 3.991879 3.997466 3.816650
0.09 3.991760 3.997145 3.993229
0.10 3.992748 3.995779 3.964409
0.11 3.990344 3.972103 3.998272
0.12 3.992591 3.995301 3.997578
0.13 3.992015 3.991104 3.962625
0.14 3.968499 3.906548 3.901016
0.15 3.988080 3.992987 3.985997

Table 6. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.14 3.924853 3.906548

Table 7. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.05 3.991214 3.670805
0.08 3.985968 3.816650
0.10 3.982482 3.964409
0.13 3.977268 3.962625
0.14 3.975535 3.901016

Solution of the system is determined by scheming L against “a” for some values of b,
as given in Figure 2.

Remark 2. From the Figure 2, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.05, 0.08, 0.14 comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given.

λ η λ (1+η) N P q q gi

4 0.7 6.8 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 9–12 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 8. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.984371 0.62255797 6.399999679 6.4
2 0.5 0.05 3.994342 0.62411594 6.399999359 6.4
3 1 0.05 3.670805 0.57356328 6.400003138 6.4
4 0.25 0.06 3.989045 0.62328828 6.400002888 6.4
5 0.5 0.06 3.994022 0.62406594 6.399999359 6.4
6 1 0.06 3.990492 0.62351438 6.400003849 6.4
7 0.25 0.07 3.994445 0.62413203 6.400008332 6.4
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Table 8. Cont.

S.No b a L W L/W λ

8 0.5 0.07 3.978169 0.62158891 6.399999035 6.4
9 1 0.07 3.990492 0.62351438 6.400003849 6.4

10 0.25 0.08 3.991879 0.62373109 6.400000962 6.4
11 0.5 0.08 3.997466 0.62460406 6.40000064 6.4
12 1 0.08 3.816650 0.59635156 6.399995305 6.4
13 0.25 0.09 3.991760 0.62371250 6.399994869 6.4
14 0.5 0.09 3.997145 0.62455391 6.399999039 6.4
15 1 0.09 3.993229 0.62394203 6.400000321 6.4
16 0.25 0.1 3.992748 0.62386688 6.399998718 6.4
17 0.5 0.1 3.995779 0.62434047 6.400004805 6.4
18 1 0.1 3.964409 0.61943891 6.399999031 6.4
19 0.25 0.11 3.990344 0.62349125 6.400002566 6.4
20 0.5 0.11 3.972103 0.62064109 6.400000967 6.4
21 1 0.11 3.998272 0.62473000 6.4 6.4
22 0.25 0.12 3.992591 0.62384234 6.400003527 6.4
23 0.5 0.12 3.995301 0.62426578 6.399997757 6.4
24 1 0.12 3.997578 0.62466844 6.399524227 6.4
25 0.25 0.13 3.992015 0.62375234 6.400003527 6.4
26 0.5 0.13 3.991104 0.62361000 6.4 6.4
27 1 0.13 3.962625 0.61916016 6.400001615 6.4
28 0.25 0.14 3.968499 0.62007797 6.399999677 6.4
29 0.5 0.14 3.906548 0.61039813 6.400001311 6.4
30 1 0.14 3.901016 0.60953375 6.399997375 6.4
31 0.25 0.15 3.988080 0.6231375 6.399994865 6.4
32 0.5 0.15 3.992987 0.62390422 6.400002244 6.4
33 1 0.15 3.985997 0.62281203 6.400000321 6.4
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8  0.5  0.07  3.978169  0.62158891  6.399999035  6.4 

9  1  0.07  3.990492  0.62351438  6.400003849  6.4 

10  0.25  0.08  3.991879  0.62373109  6.400000962  6.4 

11  0.5  0.08  3.997466  0.62460406  6.40000064  6.4 

12  1  0.08  3.816650  0.59635156  6.399995305  6.4 

13  0.25  0.09  3.991760  0.62371250  6.399994869  6.4 

14  0.5  0.09  3.997145  0.62455391  6.399999039  6.4 

15  1  0.09  3.993229  0.62394203  6.400000321  6.4 

16  0.25  0.1  3.992748  0.62386688  6.399998718  6.4 

17  0.5  0.1  3.995779  0.62434047  6.400004805  6.4 

18  1  0.1  3.964409  0.61943891  6.399999031  6.4 

19  0.25  0.11  3.990344  0.62349125  6.400002566  6.4 

20  0.5  0.11  3.972103  0.62064109  6.400000967  6.4 

21  1  0.11  3.998272  0.62473000  6.4  6.4 

22  0.25  0.12  3.992591  0.62384234  6.400003527  6.4 

23  0.5  0.12  3.995301  0.62426578  6.399997757  6.4 

24  1  0.12  3.997578  0.62466844  6.399524227  6.4 

25  0.25  0.13  3.992015  0.62375234  6.400003527  6.4 

26  0.5  0.13  3.991104  0.62361000  6.4  6.4 

27  1  0.13  3.962625  0.61916016  6.400001615  6.4 

28  0.25  0.14  3.968499  0.62007797  6.399999677  6.4 

29  0.5  0.14  3.906548  0.61039813  6.400001311  6.4 

30  1  0.14  3.901016  0.60953375  6.399997375  6.4 

31  0.25  0.15  3.988080  0.6231375  6.399994865  6.4 

32  0.5  0.15  3.992987  0.62390422  6.400002244  6.4 

33  1  0.15  3.985997  0.62281203  6.400000321  6.4 

Solution of the system is determined by scheming L against “a” for some values of b, 

as given in Figure 2. 

 

Figure 2. The relationship between L and “a” when “b” = 0.25, 0.50, 1. 

Remark 2. From the Figure 2, it is evident that, the value of L‐Expected number of units in the 

system is less at a = 0.05, 0.08, 0.14 comparing the poisson arrival. 
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Figure 2. The relationship between L and “a” when “b” = 0.25, 0.50, 1.

Table 9. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.691028 3.998519 3.999239
0.06 3.996364 3.998222 3.999115
0.07 3.995741 3.997918 3.998966
0.08 3.995176 3.997620 3.998820
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Table 9. Cont.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.09 3.994538 3.997342 3.998671
0.10 3.993821 3.997006 3.998423
0.11 3.993171 3.996615 3.998422
0.12 3.992940 3.873728 3.998231
0.13 3.991847 3.996127 3.998082
0.14 3.991183 3.995767 3.997902
0.15 3.990506 3.995525 3.997780

Table 10. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.05 3.908215 3.691028

Table 11. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.12 3.935285 3.873728

Solution of the system is determined by scheming L against “a” for some values of b,
as given in Figure 3.

Remark 3. From the Figure 3, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.05, 0.12 comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given.

λ η λ (1+η) N P q q gi

4 0.8 7.2 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 13–16 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 12. Verification of Little’s law.

S.No B a L W L/W λ

1 0.25 0.05 3.691028 0.54279824 6.800002948 6.8
2 0.5 0.05 3.998519 0.58801750 6.799994218 6.8
3 1 0.05 3.999239 0.58812338 6.800004421 6.8
4 0.25 0.06 3.996364 0.58770059 6.799995236 6.8
5 0.5 0.06 3.998222 0.58797382 6.799997959 6.8
6 1 0.06 3.999115 0.58810515 6.8000017 6.8
7 0.25 0.07 3.995741 0.58760897 6.79999966 6.8
8 0.5 0.07 3.997918 0.58792912 6.800001361 6.8
9 1 0.07 3.998966 0.58808324 6.800002721 6.8

10 0.25 0.08 3.995176 0.58752588 6.799998638 6.8
11 0.5 0.08 3.997620 0.58788529 6.800003402 6.8
12 1 0.08 3.998820 0.58806176 6.799997279 6.8
13 0.25 0.09 3.994538 0.58743206 6.800000681 6.8
14 0.5 0.09 3.997342 0.58784441 6.800004763 6.8
15 1 0.09 3.998671 0.58803985 6.799998299 6.8
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Table 12. Cont.

S.No B a L W L/W λ

16 0.25 0.1 3.993821 0.58732662 6.799995573 6.8
17 0.5 0.1 3.997006 0.58779500 6.8 6.8
18 1 0.1 3.998423 0.58800338 6.800004422 6.8
19 0.25 0.11 3.993171 0.58723103 6.800000341 6.8
20 0.5 0.11 3.996615 0.58773750 6.799994215 6.8
21 1 0.11 3.998422 0.58800324 6.800002721 6.8
22 0.25 0.12 3.992940 0.58719706 6.800000681 6.8
23 0.5 0.12 3.873728 0.56966588 6.799998596 6.8
24 1 0.12 3.998231 0.58797515 6.800001701 6.8
25 0.25 0.13 3.991847 0.58703632 6.800003748 6.8
26 0.5 0.13 3.996127 0.58766574 6.799996937 6.8
27 1 0.13 3.998082 0.58795324 6.800002721 6.8
28 0.25 0.14 3.991183 0.58693868 6.799996252 6.8
29 0.5 0.14 3.995767 0.58761279 6.799997617 6.8
30 1 0.14 3.997902 0.58792676 6.799997279 6.8
31 0.25 0.15 3.990506 0.58683912 6.800001363 6.8
32 0.5 0.15 3.995525 0.58757721 6.800002383 6.8
33 1 0.15 3.997780 0.58790882 6.799997959 6.8
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15  1  0.09  3.998671  0.58803985  6.799998299  6.8 

16  0.25  0.1  3.993821  0.58732662  6.799995573  6.8 

17  0.5  0.1  3.997006  0.58779500  6.8  6.8 

18  1  0.1  3.998423  0.58800338  6.800004422  6.8 

19  0.25  0.11  3.993171  0.58723103  6.800000341  6.8 

20  0.5  0.11  3.996615  0.58773750  6.799994215  6.8 

21  1  0.11  3.998422  0.58800324  6.800002721  6.8 

22  0.25  0.12  3.992940  0.58719706  6.800000681  6.8 

23  0.5  0.12  3.873728  0.56966588  6.799998596  6.8 

24  1  0.12  3.998231  0.58797515  6.800001701  6.8 

25  0.25  0.13  3.991847  0.58703632  6.800003748  6.8 

26  0.5  0.13  3.996127  0.58766574  6.799996937  6.8 

27  1  0.13  3.998082  0.58795324  6.800002721  6.8 

28  0.25  0.14  3.991183  0.58693868  6.799996252  6.8 

29  0.5  0.14  3.995767  0.58761279  6.799997617  6.8 

30  1  0.14  3.997902  0.58792676  6.799997279  6.8 

31  0.25  0.15  3.990506  0.58683912  6.800001363  6.8 

32  0.5  0.15  3.995525  0.58757721  6.800002383  6.8 

33  1  0.15  3.997780  0.58790882  6.799997959  6.8 

Solution of the system is determined by scheming L against “a” for some values of b, 

as given in Figure 3. 
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Figure 3. The relationship between L and “a” when “b” = 0.25, 0.50, 1.

Table 13. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.984716 3.995301 3.998185
0.06 3.994041 3.991779 3.944412
0.07 3.964199 3.997761 3.994704
0.08 3.949832 3.967141 3.973384
0.09 3.970734 3.963279 3.982187
0.10 3.992297 3.972509 3.956158
0.11 3.984562 3.988086 3.993573
0.12 3.992639 3.985290 3.997242
0.13 3.959906 3.989724 3.980712
0.14 3.989582 3.909560 3.997553
0.15 3.996673 3.982409 3.981590
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Table 14. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.14 3.924853 3.909560

Table 15. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.06 3.989463 3.944412
0.08 3.985968 3.973384
0.09 3.984224 3.982187
0.10 3.982482 3.956158

The solution of the system is determined by scheming L against “a” for some values of b,
as given in Figure 4.

Remark 4. From the Figure 4, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.06, 0.08, 0.09, 0.10, 0.12, 0.13, 0.14 comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given.

λ η λ (1+η) N P q q gi

4 0.9 7.6 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 17–21 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 16. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.984716 0.55343278 7.199997109 7.2
2 0.5 0.05 3.995301 0.55490292 7.199998919 7.2
3 1 0.05 3.998185 0.55530347 7.200006123 7.2
4 0.25 0.06 3.994041 0.55472792 7.199998918 7.2
5 0.5 0.06 3.991779 0.55441375 7.199996753 7.2
6 1 0.06 3.944412 0.54783500 7.2 7.2
7 0.25 0.07 3.964199 0.55058319 7.200002543 7.2
8 0.5 0.07 3.997761 0.55524458 7.199994597 7.2
9 1 0.07 3.994704 0.55482000 7.2 7.2

10 0.25 0.08 3.949832 0.54858778 7.199997083 7.2
11 0.5 0.08 3.967141 0.55099181 7.199997459 7.2
12 1 0.08 3.973384 0.55185889 7.19999855 7.2
13 0.25 0.09 3.970734 0.55149083 7.199997824 7.2
14 0.5 0.09 3.963279 0.55045542 7.20000545 7.2
15 1 0.09 3.982187 0.55308153 7.199993853 7.2
16 0.25 0.1 3.992297 0.55448569 7.199996032 7.2
17 0.5 0.1 3.972509 0.55173736 7.200004712 7.2
18 1 0.1 3.956158 0.54946639 7.200005096 7.2
19 0.25 0.11 3.984562 0.55341139 7.20000506 7.2
20 0.5 0.11 3.988086 0.55390083 7.199997834 7.2
21 1 0.11 3.993573 0.55466292 7.199998918 7.2
22 0.25 0.12 3.992639 0.55453319 7.200002525 7.2
23 0.5 0.12 3.985290 0.55351250 7.199993496 7.2
24 1 0.12 3.997242 0.55517250 7.199993516 7.2
25 0.25 0.13 3.959906 0.54998694 7.199999273 7.2
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Table 16. Cont.

S.No b a L W L/W λ

26 0.5 0.13 3.989724 0.55412833 7.200004331 7.2
27 1 0.13 3.980712 0.55287667 7.199995659 7.2
28 0.25 0.14 3.989582 0.55410861 7.199994947 7.2
29 0.5 0.14 3.909560 0.54299444 7.200005893 7.2
30 1 0.14 3.997553 0.55521569 7.199996038 7.2
31 0.25 0.15 3.996673 0.55509347 7.200006125 7.2
32 0.5 0.15 3.982409 0.55311236 7.200004701 7.2
33 1 0.15 3.981590 0.55299861 7.199994937 7.2
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20  0.5  0.11  3.988086  0.55390083  7.199997834  7.2 

21  1  0.11  3.993573  0.55466292  7.199998918  7.2 

22  0.25  0.12  3.992639  0.55453319  7.200002525  7.2 

23  0.5  0.12  3.985290  0.55351250  7.199993496  7.2 

24  1  0.12  3.997242  0.55517250  7.199993516  7.2 

25  0.25  0.13  3.959906  0.54998694  7.199999273  7.2 
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31  0.25  0.15  3.996673  0.55509347  7.200006125  7.2 

32  0.5  0.15  3.982409  0.55311236  7.200004701  7.2 

33  1  0.15  3.981590  0.55299861  7.199994937  7.2 

The solution of the system is determined by scheming L against “a” for some values 

of b, as given in Figure 4. 
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Figure 4. The relationship between L and “a” when “b” = 0.25, 0.50, 1.

Table 17. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.80713 3.95550 3.89270
0.06 3.96457 3.80124 3.37690
0.07 3.88220 3.87680 3.71920
0.08 3.71410 3.97520 3.98390
0.09 3.98960 3.93560 3.96960
0.10 3.80066 3.94490 3.63780
0.11 3.83620 3.75970 3.95590
0.12 3.98890 3.94710 3.99470
0.13 3.98770 3.99320 3.97470
0.14 3.98853 3.97796 3.98021
0.15 3.96290 3.69889 3.97548

Table 18. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.25

Encouraged Arrival
L at b = 0.25

0.05 3.908215 3.80713
0.08 3.856900 3.71410
0.10 3.824116 3.80066
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Table 19. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.05 3.972583 3.95550
0.06 3.967179 3.80124
0.07 3.961800 3.87680
0.09 3.951119 3.93560
0.10 3.945816 3.94490
0.11 3.940538 3.75970
0.15 3.919673 3.69889

Table 20. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.05 3.9912 3.8927
0.06 3.9894 3.3769
0.07 3.9877 3.7192
0.08 3.9859 3.9839
0.09 3.9842 3.9696
0.10 3.9824 3.6378
0.11 3.9807 3.9559
0.13 3.9772 3.9747

Table 21. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.80713 0.50093816 7.600002396 7.6
2 0.5 0.05 3.95550 0.52046053 7.599993083 7.6
3 1 0.05 3.89270 0.51219737 7.600109334 7.6
4 0.25 0.06 3.96457 0.52165395 7.599999233 7.6
5 0.5 0.06 3.80124 0.50016316 7.600002399 7.6
6 1 0.06 3.37690 0.44432895 7.599999100 7.6
7 0.25 0.07 3.88220 0.51081579 7.599996868 7.6
8 0.5 0.07 3.87680 0.51010526 7.600003921 7.6
9 1 0.07 3.71920 0.48936842 7.600006539 7.6

10 0.25 0.08 3.71410 0.48869737 7.600005730 7.6
11 0.5 0.08 3.97520 0.52305263 7.599994647 7.6
12 1 0.08 3.98390 0.52419737 7.600005342 7.6
13 0.25 0.09 3.98960 0.52494737 7.600005334 7.6
14 0.5 0.09 3.93560 0.51784211 7.600001545 7.6
15 1 0.09 3.96960 0.52231579 7.599996937 7.6
16 0.25 0.1 3.80066 0.50008684 7.599997600 7.6
17 0.5 0.1 3.94490 0.51906579 7.599996918 7.6
18 1 0.1 3.63780 0.47865789 7.599998329 7.6
19 0.25 0.11 3.83620 0.50476316 7.600002377 7.6
20 0.5 0.11 3.75970 0.49469737 7.60000566 7.6
21 1 0.11 3.95590 0.52051316 7.600002305 7.6
22 0.25 0.12 3.98890 0.52485526 7.600003811 7.6
23 0.5 0.12 3.94710 0.51935526 7.600003851 7.6
24 1 0.12 3.99470 0.52561842 7.600006088 7.6
25 0.25 0.13 3.98770 0.52469737 7.600005336 7.6
26 0.5 0.13 3.99320 0.52542105 7.600000761 7.6
27 1 0.13 3.97470 0.52298684 7.599997705 7.6
28 0.25 0.14 3.98853 0.52480658 7.599993903 7.6
29 0.5 0.14 3.97796 0.52341579 7.599996943 7.6
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Table 21. Cont.

S.No b a L W L/W λ

30 1 0.14 3.98021 0.52371184 7.599997709 7.6
31 0.25 0.15 3.96290 0.52143526 7.600003836 7.6
32 0.5 0.15 3.69889 0.48669605 7.600000822 7.6
33 1 0.15 3.97548 0.52308947 7.600006882 7.6

The solution of the system is determined by scheming L against a for some values of b,
as given in Figure 5.
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6  1  0.06  3.37690  0.44432895  7.599999100  7.6 

7  0.25  0.07  3.88220  0.51081579  7.599996868  7.6 

8  0.5  0.07  3.87680  0.51010526  7.600003921  7.6 

9  1  0.07  3.71920  0.48936842  7.600006539  7.6 

10  0.25  0.08  3.71410  0.48869737  7.600005730  7.6 

11  0.5  0.08  3.97520  0.52305263  7.599994647  7.6 

12  1  0.08  3.98390  0.52419737  7.600005342  7.6 

13  0.25  0.09  3.98960  0.52494737  7.600005334  7.6 

14  0.5  0.09  3.93560  0.51784211  7.600001545  7.6 

15  1  0.09  3.96960  0.52231579  7.599996937  7.6 

16  0.25  0.1  3.80066  0.50008684  7.599997600  7.6 

17  0.5  0.1  3.94490  0.51906579  7.599996918  7.6 

18  1  0.1  3.63780  0.47865789  7.599998329  7.6 

19  0.25  0.11  3.83620  0.50476316  7.600002377  7.6 

20  0.5  0.11  3.75970  0.49469737  7.60000566  7.6 

21  1  0.11  3.95590  0.52051316  7.600002305  7.6 

22  0.25  0.12  3.98890  0.52485526  7.600003811  7.6 

23  0.5  0.12  3.94710  0.51935526  7.600003851  7.6 

24  1  0.12  3.99470  0.52561842  7.600006088  7.6 

25  0.25  0.13  3.98770  0.52469737  7.600005336  7.6 

26  0.5  0.13  3.99320  0.52542105  7.600000761  7.6 

27  1  0.13  3.97470  0.52298684  7.599997705  7.6 

28  0.25  0.14  3.98853  0.52480658  7.599993903  7.6 

29  0.5  0.14  3.97796  0.52341579  7.599996943  7.6 

30  1  0.14  3.98021  0.52371184  7.599997709  7.6 

31  0.25  0.15  3.96290  0.52143526  7.600003836  7.6 

32  0.5  0.15  3.69889  0.48669605  7.600000822  7.6 

33  1  0.15  3.97548  0.52308947  7.600006882  7.6 

The solution of the system is determined by scheming L against a for some values of 

b, as given in Figure 5. 

 

Figure 5. The relationship between L and “a” when “b” = 0.25, 0.50, 1. 
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system is less at a = 0.06, 0.08, 0.09, 0.10, 0.11, 0.12, 0.14, 0.15 comparing the poisson arrival. 

The value of the parameters of this M/M/1/N queuing models are given below. 
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Figure 5. The relationship between L and “a” when “b” = 0.25, 0.50, 1.

Remark 5. From the Figure 5, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.06, 0.08, 0.09, 0.10, 0.11, 0.12, 0.14, 0.15 comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given below.

λ η λ (1+η) N P q q gi

4 0.11 4.44 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 22–26 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 22. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.995100 3.546800 3.998800
0.06 3.854856 3.939360 3.994395
0.07 3.996000 3.621280 3.993300
0.08 3.991044 3.999263 3.980034
0.09 3.990490 3.934637 3.927608
0.10 3.884795 3.982260 3.957856
0.11 3.987600 3.655474 3.969599
0.12 3.941250 3.991380 3.922006
0.13 3.983723 3.995832 3.757424
0.14 3.983723 3.987378 3.996665
0.15 3.983001 3.992066 3.978019
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Table 23. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.25

Encouraged Arrival
L at b = 0.25

0.06 3.890814 3.854856

Table 24. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 0.50

Encouraged Arrival
L at b = 0.50

0.05 3.97258 3.54680
0.06 3.96717 3.93936
0.07 3.96180 3.62128
0.09 3.95111 3.93463
0.11 3.94053 3.65547

Table 25. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.08 3.98596 3.980034
0.09 3.98422 3.927608
0.10 3.98248 3.957856
0.11 3.98074 3.969599
0.13 3.97726 3.757424

Table 26. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.9951 0.8997973 4.440001467 4.44
2 0.5 0.05 3.5468 0.79882883 4.439999049 4.44
3 1 0.05 3.9988 0.90063063 4.439998179 4.44
4 0.25 0.06 3.854856 0.86821081 4.439999032 4.44
5 0.5 0.06 3.93936 0.88724324 4.440001217 4.44
6 1 0.06 3.9943953 0.89963858 4.439997933 4.44
7 0.25 0.07 3.996 0.9 4.44 4.44
8 0.5 0.07 3.62128 0.8156036 4.439997842 4.44
9 1 0.07 3.9933 0.89939189 4.439999466 4.44

10 0.25 0.08 3.991044 0.89888378 4.439998932 4.44
11 0.5 0.08 3.999263 0.90073491 4.439999556 4.44
12 1 0.08 3.980034 0.89640405 4.440000268 4.44
13 0.25 0.09 3.99049 0.89875901 4.440000045 4.44
14 0.5 0.09 3.934637 0.8861795 4.439997517 4.44
15 1 0.09 3.927608 0.8845964 4.44000199 4.44
16 0.25 0.1 3.884795 0.87495383 4.439999131 4.44
17 0.5 0.1 3.98226 0.89690541 4.440002007 4.44
18 1 0.1 3.957856 0.89140901 4.440000045 4.44
19 0.25 0.11 3.9876 0.89810811 4.440000534 4.44
20 0.5 0.11 3.655474 0.82330495 4.439999757 4.44
21 1 0.11 3.969599 0.89405383 4.43999915 4.44
22 0.25 0.12 3.94125 0.88766892 4.439999594 4.44
23 0.5 0.12 3.99138 0.89895946 4.440002269 4.44
24 1 0.12 3.922006 0.88333468 4.439998415 4.44
25 0.25 0.13 3.983723 0.89723491 4.439999554 4.44
26 0.5 0.13 3.995832 0.89996216 4.4400008 4.44
27 1 0.13 3.757424 0.84626667 4.439998251 4.44
28 0.25 0.14 3.983723 0.89723491 4.439999554 4.44
29 0.5 0.14 3.987378 0.89805811 4.440000534 4.44
30 1 0.14 3.996665 0.90014977 4.439998889 4.44

134



Symmetry 2022, 14, 1743

Table 26. Cont.

S.No b a L W L/W λ

31 0.25 0.15 3.9830014 0.89707239 4.440001917 4.44
32 0.5 0.15 3.992066 0.89911396 4.439999822 4.44
33 1 0.15 3.978019 0.89595023 4.440001116 4.44

The solution of the system is determined by scheming L against a for some values of b,
as given in Figure 6.
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Figure 6. The relationship between L and “a” when “b” = 0.25, 0.50, 1.

Remark 6. From the Figure 6, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.05, 0.06, 0.07, 0.11, 0.13, comparing the poisson arrival.

The value of the parameters of this M/M/1/N queuing models are given.

λ η λ (1+η) N P q q gi

4 0.12 4.48 4 0.1 0.9 0.25, 0.50, 1 0 or 1

The following Tables 27–29 of values is obtained for L-expected number of units in the
system by using the relation [11] for b = 0.25, 0.50, 1.

Table 27. The values of L for different values of b = 0.25, 0.50, 1.

a L at b = 0.25 L at b = 0.50 L at b = 1

0.05 3.995172 3.997721 3.998884
0.06 3.994119 3.997247 3.998651
0.07 3.993030 3.996783 3.995359
0.08 3.991918 3.996305 3.998160
0.09 3.990777 3.995824 3.997972
0.10 3.980430 3.990005 3.955846
0.11 3.988407 3.978139 3.993533
0.12 3.987155 3.977938 3.973857
0.13 3.985937 3.984462 3.981141
0.14 3.984280 3.993300 3.990031
0.15 3.981860 3.991190 3.993370

135



Symmetry 2022, 14, 1743

Table 28. Comparison of L-Expected number of units in the system between poisson and encouraged arrival.

a Poisson Arrival
L at b = 1

Encouraged Arrival
L at b = 1

0.10 3.98248 3.955846

Table 29. Verification of Little’s law.

S.No b a L W L/W λ

1 0.25 0.05 3.995172 0.89177946 4.480002332 4.48
2 0.5 0.05 3.997721 0.89234844 4.480002196 4.48
3 1 0.05 3.998884 0.89260804 4.480000179 4.48
4 0.25 0.06 3.994119 0.89154442 4.480002109 4.48
5 0.5 0.06 3.997247 0.89224263 4.479998162 4.48
6 1 0.06 3.998651 0.89255603 4.480000134 4.48
7 0.25 0.07 3.99303 0.89130134 4.480001705 4.48
8 0.5 0.07 3.996783 0.89213906 4.480000314 4.48
9 1 0.07 3.995359 0.89182121 4.480001032 4.48

10 0.25 0.08 3.991918 0.89105313 4.480000628 4.48
11 0.5 0.08 3.996305 0.89203237 4.480001838 4.48
12 1 0.08 3.99816 0.89244643 4.480002151 4.48
13 0.25 0.09 3.990777 0.89079844 4.4800022 4.48
14 0.5 0.09 3.995824 0.8919317 4.47996484 4.48
15 1 0.09 3.997972 0.89240446 4.480002331 4.48
16 0.25 0.1 3.98043 0.88848884 4.47999919 4.48
17 0.5 0.1 3.990005 0.89062612 4.480000584 4.48
18 1 0.1 3.955846 0.88300134 4.480001721 4.48
19 0.25 0.11 3.988407 0.89026942 4.480002112 4.48
20 0.5 0.11 3.978139 0.88797746 4.480002297 4.48
21 1 0.11 3.993533 0.89141362 4.47999807 4.48
22 0.25 0.12 3.987155 0.88998996 4.479999775 4.48
23 0.5 0.12 3.977938 0.88793259 4.479997928 4.48
24 1 0.12 3.973857 0.88702165 4.479998241 4.48
25 0.25 0.13 3.985937 0.88971808 4.480000405 4.48
26 0.5 0.13 3.9844625 0.88938895 4.479999753 4.48
27 1 0.13 3.981141 0.88864754 4.479997704 4.48
28 0.25 0.14 3.98428 0.88934821 4.480001079 4.48
29 0.5 0.14 3.9933 0.89136161 4.479998025 4.48
30 1 0.14 3.990031 0.89063192 4.479999596 4.48
31 0.25 0.15 3.98186 0.88880804 4.48000018 4.48
32 0.5 0.15 3.99119 0.89089063 4.479998114 4.48
33 1 0.15 3.99337 0.89137723 4.480001167 4.48

The solution of the system is determined by scheming L against “a” for some values of b,
as given in Figure 7.

Remark 7. From the Figure 5, it is evident that, the value of L-Expected number of units in the
system is less at a = 0.10, 0.11, 0.12 comparing the poisson arrival.
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5. Main Result and Discussion

When compared to Poisson arrival, encouraged arrival is more effective in handling
service without delays. The (Tables 1–16 and 22–29) shows that L-Expected number of units
in the system is lower for the model prescribed here on comparing with the Poisson arrival
model. It is also found that the Tables 17–20 shows that adopting encouraged arrivals as
well as increasing discounts in place of the model with Poisson arrival, greatly reduces
W—the expected waiting time in the system.

Limitations

• This concept only suitable for M/M/1/N and M/M/1/K Queuing model;
• This concept will reduce the waiting time of customers for M/M/1/N Queuing model;
• This concept is valid for all real life applications with single service mechanism;
• The real life applications are always with finite capacity.

6. Conclusions

The encouraged arrival is quite valuable for many different businesses in terms of
managing operations, deliberating, outlining, implementation, service development, and
so on for consumers. In this study, we explored feedback, balking, retaining reneged clients
and the quality control technique impact the encouraged arrival queuing model. The steady
state scenario and iterative technique approach were utilized to create an analytical solution
for the feedback M/M/1/N model’s quality control. From to (Tables 1–16 and 22–29),
the system’s waiting time is much decreased by adopting the encouraged arrivals and
increasing discounts supplied instead of Poisson arrivals. Tables 17–20 also shows that the
waiting time is minimized to the greatest degree possible.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Applications in medical technology have a massive contribution to the treatment of patients.
One of the attractive tools is ball bearings. These balls support the load of the application as well as
minimize friction between the surfaces. If a heavy load is applied to a ball bearing, there is the risk
that the balls may be damaged and cause the bearing to fail earlier. Hence, we aim to study the model
of the failure times of ball bearings. A hybrid Type-II censoring scheme is recommended to minimize
the experimental time and cost where the components are following alpha power inverse Weibull
distribution. A ball bearing is one example; the other is the resistance of guinea pigs exposed to
dosages of virulent tubercle bacilli. We use different estimation methods to obtain point and interval
estimates of the unknown parameters of the distribution; consequently, estimating statistical functions
such as the hazard rate and the survival functions are observed. The maximum likelihood method
and the maximum product spacing methods are used, in addition to the Bayesian estimation method,
in which symmetric and asymmetric loss functions are utilized. Interval estimators are obtained
for the unknown parameters using three different criteria: approximate, credible, and bootstrap
confidence intervals. The performance of the parameters’ estimation is accomplished via simulation
analysis and numerical methods such as Newton–Raphson and Monte Carlo Markov chains. Finally,
results and conclusions support the suitability of alpha power inverse Weibull distribution under a
hybrid Type-II censoring scheme for modeling real biomedical data.

Keywords: alpha power inverse Weibull distribution; hybrid Type-II censoring; ball bearing; maximum
likelihood estimator; Bayes estimator; symmetric and asymmetric loss functions; Monte Carlo Markov
chain; maximum product spacing

1. Introduction

Many bearing types and styles provide an extensive range of solutions that are useful
for applications across various industries, including mechanical, medical, global aerospace,
and others. In biomaterials, ball bearing technology is used for “Hip Joint Replacement”,
where it is necessary for a patient’s life suffering from arthritis; for more details, refer to [1].
When ball bearings are operating, they can be inclined to spoil for different reasons; it
can be due to lack of lubrication, changeable load, vibration, or pollutants. All can cause
a fast failure time of the bearings. Accordingly, modeling components’ lifetimes have
considerable attention in many applied sciences.
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Another important application in the biomedical area is studying the resistance of
living organs to a certain kind of bacteria. Tuberculosis is still considered one of the main
health problems, taking millions of lives annually. The World Health Organization reported
that 30% of the world’s population had been infected with the tubercle bacillus, and the
risk of infection is still increasing; see [2]. We considered a sample of guinea pigs that were
exposed to dosages of virulent tubercle bacilli (VTB), and their resistance was recorded with
respect to their living times. Modeling the lifetimes of guinea pigs is our second purpose in
this work.

Dealing with samples in real-life experiments may confront obstacles such as missing
or eliminating components during the experiment and/or lack of money and time; therefore,
statisticians are spending considerable effort in investigating components’ breakdown times
(failures) as the main structure of the performing systems in industry and mechanics. The
researchers usually analyze the observation of operating unit failure, the recorded lifetimes
of those units, and their application of statistical analysis methods from data obtained
to data collected for the whole system. However, certain experimental units are costly
and highly efficient, requiring to decrease in the number of tested components and their
lifetimes. A measurement system that can save time and resources for all outputs is the
main requirement. It will subsequently be taken into consideration because the composite
data show the exact times of failure of such damaged components. Failure data should
be fitted to an appropriate parametric statistical distribution to estimate its unknown
parameters and furthermore to estimate its reliability and hazard functions. Estimating
the reliability and hazard functions helps statisticians predict and make the right decision
about the survival factor or hazard factor of these models in probabilistic meaning with a
high level of confidence that may reach 95%.

In this paper, some statistical inference approaches are handled, such as the maximum
likelihood, the maximum product spacing, and the Bayesian methods.

A system of censoring schemes that can balance (i) the total experimental time spent,
(ii) the number of test components, and (iii) the efficiency of the experimental statistical
inference is of great concern and is highly evaluated. A hybrid censoring scheme (HCS) is
a consolidation between the two types of censoring schemes (Type-I and Type-II), which
may be explained by using similar elements. The analysis is decided with the failure of r
units, or reaching a specified time T in the experiment. If the i-th ordered failure time is
symbolized by Xi:n, the test may be ended at T1 = min{Xr:n, T} or at T2 = max{Xr:n, T}.
Time T1 means the end of the experiment for hybrid Type-I censoring (HT1CS ) test units.
T2 is the end time for hybrid Type-II censored (HT2CS) test units. Epstein [3] suggested the
HT1CS and studied a lifetime experiment that assumes the life cycle of every component
to be exponentially distributed.

Many researchers have worked on HT1CS , such as Ebrahimi [4]. One of the disad-
vantages of HT1CS is that a small number of failures may occur until after a fixed period T
under HT1CS . Childs et al. [5] developed HT2CS, which assures a minimum of r failures.
If r failures actually occurred before T, the experiment would remain until the r-th failure
occurred, and we would see r failures of the data exactly at this point. The applications of
the HT2CS have been discussed by several authors, and the reader can refer to Mansour
and Ramadan [6], Salah et al. [7], Yousef et al. [8], Yadav et al. [9], Mahmoud et al. [10],
Aldahlan et al. [11], Mohamed et al. [12], Ramadan et al. [13] and Nassr et al. [14].

In this article, alpha power inverse Weibull (APIW) distribution is used to model the
ball-bearing lifetimes and the resistance of VTB. APIW distribution was first proposed
by [15]. Let X be a random variable with an APIW distribution; then, the cumulative
distribution function (CDF) and the probability density function (pd f ) are determined as

FAPIW(x; α, β, λ) = αe−λx−β
−1

α−1 ; α 6= 1, x, α, λ, β > 0 (1)
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and

fAPIW(x; α, β, λ) = log α
α−1 λ β x−(β+1)e−λx−β

αe−λx−β

; α 6= 1, x, α, λ, β > 0, (2)

respectively. The survival and the hazard functions of APIW distribution are

S(x) =
α− αe−λx−β

α− 1
; α 6= 1, x, α, λ, β > 0 (3)

and

h(x) =
log(α) λ β x−(β+1) e−λx−β

αe−λx−β

α− αe−λx−β
; α 6= 1, x, α, λ, β > 0, (4)

respectively. The APIW statistical characteristics were discussed recently by [15]. It was
shown that the pd f of APIW is unimodal; it can be either symmetric or skewed to the
right depending on the parameter values. In addition, the hazard rate function can be
an increasing or decreasing curve. Hence, this model is a good candidate for describing
several real data which can be symmetric or asymmetric (positively skewed).

Point and interval estimation of the unknown parameters were explored on the basis
of a complete sample. Not much work handled the hybrid Type-II censoring for the alpha
power family of distribution and used it for modeling biological issues; hence, we aim to
study the APIW lifetimes under HT2CS using classical estimation methods in addition to
the Bayesian method based on informative priors with symmetric and asymmetric loss
functions. A simulation analysis using R software is performed to compare the different
methods of estimation and test the quality of the new model under HT2CS sampling
when fitting it to some real-life data. The Newton–Raphson method of maximization is
used in the “maxLik” software to compute the MLE and MPS. Additionally, the ‘CODA’
package, which analyzes Markov chain Monte Carlo (MCMC) outputs and diagnoses lack
of convergence, is used to compute the Bayesian estimation.

The rest of this article is prepared accordingly: In Section 2, the maximum likelihood
estimators are obtained for the APIW parameters, and hence, estimations of the hazard
rate and reliability functions are obtained. In Section 3, estimates are observed using the
MPS method. Bayesian estimation is derived in Section 4 under various loss functions,
including the squared error loss function (SEL) and the linear exponential loss function
(LINEX). Confidence intervals are evaluated in Section 5. In Section 6, the actual data set is
tested and analyzed. Simulation analysis is observed in Section 7 to study and evaluate the
quality of the various estimators studied in this research. Conclusions and related results
are reported in Section 8.

2. The Maximum Likelihood Estimator

The classical well-known maximum likelihood estimation (MLE) method is used in
this section. Point estimations of the parameters are performed assuming the censoring
HT2CS. Hence, let n be identical components that are placed in an experiment and assume
their lifetimes follow the APIW distribution with pd f as in Equation (2). The experiment is
stopped at the pre-fixed time (T) and at a pre-specified number of failures (r ≤ n) whichever
comes later; therefore, the experiment is stopped at the max(xr:n,T ), in which xr:n denotes
the r-th failure. Under HT2CS, the random failures are achieved according to the cases:

Case 1: {x1:n < . . . < xr:n} if T < xr:n;
Case 2: {x1:n < . . . < xr+1:n < . . . < xm:n < T} if T > xr:n;
m: The number of units that fail before time T and r ≤ m ≤ n.
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The likelihood function for case 1 is

L1(α , β , λ |data) =
n!

(n− r)!


 (log α)r λrβr

(α− 1)r

r

∏
i=1

x−(β+1)
i:n e

−λ
r
∑

i=1
x−β

i:n
α

r
∑

i=1
e−λx−β

i:n





 (α− 1)− α−1+e−λ x −β

r:n

α− 1




n−r

.

For case 2, the likelihood function is

L2(α, β, λ|data) =
n!

(n−m)!


 (log α)m λmβm

(α− 1)N

m

∏
i=1

x−(β+1)
i:n e

−λ
m
∑

i=1
x−β

i:n
α

m
∑

i=1
e−λx−β

i:n





α− 1− α−1+e−

−λx−β
m:n

α− 1




n−m

.

The combined likelihood function can be represented as

L(α, β, λ|data) = C


 (log α)H λH βH

(α− 1)H

H

∏
i=1

x−(β+1)
i:n e

−λ
H
∑

i=1
x−β

i:n
α

H
∑

i=1
e−λx−β

i:n





α− 1− α−1+e

−λu−β

α− 1




n−H

, (5)

where C = n!
(n−H)! , H indicates the number of failures, u = xr:n if H = r and u = xm:n if

H = m.
By taking the logarithm of Equation (5), we obtain Equation (6)

log L(α , β , λ|data) = log(C) + H log(log(α)) + H log(λ) + H log(β)− (n− H) log(α− 1)

−(β + 1)
H

∑
i=1

log(xi:n)− λ
H

∑
i=1

x−β
i:n + log(α)

H

∑
i=1

e−λx−β
i:n (6)

+(n− H) log(α− 1− α−1+e−λu−β

).

The MLEs of the parameters denoted by α̂, β̂ and λ̂ can be attained by solving the
simultaneous nonlinear log-likelihood equations as follows, respectively:

H
α log(α)

− n− H
α− 1

+ α−1
H

∑
i=1

e−λx−β
i:n +

(n− H)

[
1− α−2+e−λu−β

(−1 + e−λu−β
)

]

(
α− 1− α−1+e−λu−β

) = 0, (7)

H
β −

H
∑

i=1
log(xi:n) + λ

H
∑

i=1
x−β

i:n log(xi:n) + λ log(α)
[

∑H
i=1 x−β

i log(xi:n)e−λx−β
i:n

]

− (n−H)λ u−β log(u) log(α) e−λu−β
α−1+e−λu−β

(
α−1−α−1+e−λu−β

) = 0
(8)

and
H
λ
−

H

∑
i=1

x−β
i:n − log(α)

[
H

∑
i=1

x−β
i:n e−λx−β

i:n

]
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+
(n− H) u−β log(α) e−λu−β

α−1+e−λu−β

(
α− 1− α−1+e−λu−β

) = 0. (9)

An implicit solution is not an easy task for solving the above system. Hence, some
numerical techniques will be helpful to find a numerical approximate solution. The Newton–
Raphson technique is used to find a numerical solution. The Newton–Raphson algorithm
is described in detail in EL-Sagheer [16].

Furthermore, using the invariant property of the MLEs, we can find the MLEs of S(x)
and h(x), after replacing α, β and λ by α̂, β̂ and λ̂ in Equations (3) and (4); hence, we obtain

Ŝ(x) =
α̂− α̂e−λ̂x−β̂

α̂− 1
; α 6= 1, x , α, λ, β > 0 (10)

and

ĥ(x) =
log(α̂) λ̂ β̂ x−(β̂+1)e−λ̂x−β̂

α̂e−λ̂x−β̂

α̂− α̂e−λ̂x−β̂
; α 6= 1, x, α, λ, β > 0. (11)

3. Maximum Product Spacing

The maximum product spacing method (MPS) is an alternative efficient estimation
method that demonstrates improvements compared with other point estimation methods;
one may refer to Cheng and Amin [17] for more details. The MPS is performed to estimate
the unknown parameters of APIW distribution. Once again, it is necessary to deal with a
system of nonlinear equations; these equations are emanated from the partial derivatives
of the logarithm of the product spacing function Φ(α, λ, β), which is written as:

Φ(α, λ, β) =

(
n+1

∏
i=1

Di

) 1
n+1

, (12)

where Φ is the geometric mean of the product spacing function Di that is defined as

D1 = F(x1)
Di = F(xi)− F(xi−1); i = 2, . . . , n

Dn+1 = 1− F(xn).
(13)

The MPS function under HT2CS is written as:

Φ(xi; α, λ, β) = CF(x1)(1− F(u))n−H
H

∏
i=2

(F(xi)− F(xi−1)) (14)

where u is defined similarly as in Section 2. Using the CDF in Equation (1) and substituting
in Equation (14), we obtain the MPS function as:

Φ(xi; α, λ, β) = C
1

(α− 1)n (α
e−λx−β

1 − 1)(α− αe−λu−β

)n−H
H

∏
i=2

[
αe−λx−β

i − αe−λx−β
i−1

]
(15)

consequently,

log Φ(xi; α, λ, β) = log c− n log(α− 1) + log(αe−λx−β
1 − 1)+

(n− H) log(α− αe−λu−β

) +
H

∑
i=2

log[αe−λx−β
i − αe−λx−β

i−1
]

(16)
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The estimators under the MPS method are attained by taking the partial derivatives of
Equation (16) and then solving the system of nonlinear equations numerically; this can be
executed by using the Newton–Raphson method. The numerical results are later exposed
in Section 7.

4. Bayes Estimation

A Bayesian approach, which is highly effective in reliability analysis, is created by the
capacity to combine prior information within the test, as the restricted availability of data is
a significant difficulty in relation with reliability analysis. The unknown α, β, and λ param-
eters versus the functions of loss for SEL and LINEX are estimates of Bayesian. Suppose
that the unknown parameters α, β and λ have Gamma prior distributions independently.

π1(α) ∝ αa1−1e−b1α, α > 0, a1 > 0, b1 > 0,

π2(β) ∝ βa2−1e−b2β, β > 0, a2 > 0, b2 > 0, (17)

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3 > 0, b3 > 0.

where the hyper-parameters ai and bi, i = 1, 2, 3 are the hyper-parameters that contain the
prior information. Many authors, such as Kundu and Howlader [18], Dey and Dey [19],
Dey et al. [20] and Dey et al. [21] developed Bayesian estimation for their parameter models
using informative gamma priors. The posterior distribution of α, β and λ is defined by
π∗(α, β, λ| data) and can be procured by combining the likelihood function Equation (5)
with the prior Equation (17) and can be written as

π∗(α, β, λ | data) =
L(α, β, λ | data) π1(α) π2(β) π3(λ)

∞∫
0

∞∫
0

∞∫
0

L(α, β, λ | data) π1(α) π2(β) π3(λ) dα dβ dλ

. (18)

A square error loss (SEL) function, which is a commonly used function, is a symmetric
loss function, which is defined as

L(φ, φ̂) = (φ̂− φ), (19)

here, φ̂ is an estimate of φ.
The Bayes estimate of any function of α, β and λ, say g(α, β, λ) under the SEL function

can be determined as
ĝBS(α, β, λ|x) = Eα,β,λ|x(g(α, β, λ)), (20)

where

Eα,β,λ|data(g(α, β, λ)) =

∞∫
0

∞∫
0

∞∫
0

g(α, β, λ) π1(α) π2(β) π3(λ) L(α, β, λ | data) dα dβ dλ

∞∫
0

∞∫
0

∞∫
0

π1(α) π2(β) π3(λ) L(α, β, λ | data) dα dβ dλ

. (21)

The LINEX function is the most universally used asymmetric loss function. The asym-
metric loss function is considered more comprehensive in many respects; see Varian [22].
It is

L(4) =
(

eε4 − ε4− 1
)

, ε 6= 0, 4 = φ̂− φ, (22)

where ε is a loss function scale parameter. The LINEX loss function is nearly the same as
the SEL function for the option of positive or negative values of ε (close to zero).

The Bayes estimate of any function of α, β and λ, say g(α, β, λ) under the LINEX
function can be determined as

ĝBL(α, β, λ | data) = −1
ε

log
[

E
(

e−εg(α,β,λ) | data
)]

, ε 6= 0, (23)
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E
(

e−εg(α,β,λ) | data
)
=

∞∫
0

∞∫
0

∞∫
0

e−εg(α,β,λ) π1(α) π2(β) π3(λ) L(α, β, λ | data)dαdβdλ

∞∫
0

∞∫
0

∞∫
0

π1(α) π2(β) π3(λ) L(α, β, λ | data) dαdβdλ

. (24)

It is noticed that the ratio of multiple integrals in Equations (21) and (24) cannot be
obtained in an explicit form.

MCMC is developed to create samples of the joint posterior function in Equation (18).
The MCMC mechanism is primarily concerned with calculating an estimated integral value.
We consider the Gibbs in the Metropolis–Hasting sampler approach in order to implement
the MCMC technique. From Equations (5) and (17), the joint posterior distribution can be
written as

π∗(α, β, λ |x) ∝ αa1−1βH+a2−1λH+a3−1e−αb1−βb2−λb3
n!

(n− H)!
(log α)H

(α− 1)H



H

∏
i=1

x−(β+1)
i:n

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n





 (α− 1)− α−1+e−

−λu−β

α− 1




n−H

. (25)

We rewrite conditionals for α, β and λ as follows:

π∗1 (α| β, λ, x) ∝
n!

(n− H)!
αa1−1(log α)H

(α− 1)H e−αb1 α

H
∑

i=1
e
−λx−β

i:n

 (α− 1)− α−1+e−

−λu−β

α− 1




n−H

, (26)

π∗2 (β| α, λ, x) ∝
n!

(n− H)!
βa2−H−1e−βb2

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n
(

H

∏
i=1

x−(β+1)
i:n

)


 (α− 1)− α−1+e−

−λu−β

α− 1




n−H

(27)

and

π∗3 (λ| α, β, x) ∝
n!

(n− H)!
λa3−H−1e−λb3

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n


 (α− 1)− α−1+e−

−λu−β

α− 1




n−H

. (28)

The conditional posteriors of α, β and λ in Equations (26)–(28) thus do not have normal
forms. As a result, the MCMC method will be used to compute the Bayesian estimates of
α, β and λ in addition to the Bayesian estimates of the survival function and hazard function
as well as the related credible intervals. See Robert [23,24] for a detailed description of the
MCMC method.

5. Confidence Intervals

In this section, we study three types of confidence intervals. A numerical analysis is
performed to compare the efficacy of these intervals with respect to interval length and
coverage probability.

145



Symmetry 2023, 15, 161

5.1. Approximate Confidence Intervals

This subsection will present the observed Fisher’s information matrix, which is fre-
quently used to construct asymptotic confidence intervals (ACIs). The principle of missing
information is as follows:

Observed information = Complete information −Missing information.
The MLEs (α̂, β̂, λ̂) are approximately bivariate normal with a mean (α̂, β̂, λ̂) and

variance matrix I−1(α̂, β̂, λ̂). Here, Î(α, β, λ) is the observed Fisher information matrix, and
it is defined as

Î(α, β, λ) =




− ∂2`
∂α2 − ∂2`

∂α∂β − ∂2`
∂α∂λ

− ∂2`
∂β∂α − ∂2`

∂β2 − ∂2`
∂β∂λ

− ∂2`
∂λ∂α − ∂2`

∂λ∂β − ∂2`
∂λ2




(α,β,λ)=(α̂,β̂,λ̂)

, (29)

where

∂2`

∂α2 =
−H

(α log(α))2 +
n− H

(α− 1)2 + α−2
H

∑
i=1

e−λx−β
i:n

+(n− H)

(
α− 1− α−1+e−λu−β

)−2

×




(
1− α−2+e−λu−β

(−1 + e−λu−β
)

)2
−

(
α− 1− α−1+e−λu−β

)(
−2 + e−λu−β

)
(−1 + e−λu−β

)α−3+e−λu−β


,

∂2`

∂α∂β
=

λ

α

H

∑
i=1

x−β
i:n log(xi:n) e−λx−β

i:n

+(n− H)λu−βe−2λu−β
log(u)α−1+e−λu−β

(
α− α2 + αe−λu−β

)−2

×
[

e−λu−β
(

α− α2 + αe−λu−β
)
+ α log(α)(1− α + (2α− 1)e−λu−β

)

]
,

∂2`

∂α∂λ
=
−1
α

H

∑
i=1

x−β
i:n e−λx−β

i:n + (n− H)u−βe−2λu−β
α−1+e−λu−β

(
α− α2 + αe−λu−β

)−2

×
[
−eλu−β

(
α− α2 + αe−λu−β

)
− α log(α)(1− α + eλu−β

)

]
,

∂2`

∂β2 =
−H
β2 − λ

H

∑
i=1

x−β
i:n (log(xi:n))

2

+λ log(α)
H

∑
i=1

(x−β
i:n log(xi:n))

2 e−λx−β
i:n [λ− 1]

−(n− H)λ u−2β(log(u))2 log(α) e−2λu−β
αe−λu−β

(
α− α2 + αe−λu−β

)−2

×
[
(λ− uβ)eλu−β

(
α− α2 + αe−λu−β

)
− (α− 1)αλ log(α)

]
,
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∂2`

∂β∂λ
=

H

∑
i=1

x−β
i:n log(xi:n)− log(α)

H

∑
i=1

x−β
i log(xi:n) e−λx−β

i:n

[
1− λx−β

i:n

]

+(n− H) u−2β log(u) log(α) e−2λu−β
αe−λu−β

(
α− α2 + αe−λu−β

)−2

×
[
(uβ − λ)eλu−β

(
α− α2 + αe−λu−β

)
+ (α− 1)αλ log(α)

]

and

∂2`

∂λ2 =
−H
λ2 −

H

∑
i=1

x−β
i:n − log(α)

H

∑
i=1

(
x−β

i:n

)2
e−λx−β

i:n

+(n− H) u−2β log(α) e−2λu−β
αe−λu−β

(
α− α2 + αe−λu−β

)−2

×
[

eλu−β
(

α− α2 + αe−λu−β
)
+ (α− 1)α log(α)

]
.

As a result, the approximate (or observed) asymptotic variance-covariance matrix
[
V̂
]
,

for MLEs is derived by inverting the observed information matrix Î(α, β, λ) or equivalent

[
V̂
]
= Î−1(α, β, λ) =




V̂ar(α̂) cov(α̂, β̂) cov(α̂, λ̂)

cov(α̂, β̂) V̂ar
(

β̂
)

cov(β̂, λ̂)

cov(α̂, λ̂) cov(β̂, λ̂) V̂ar
(
λ̂
)


. (30)

It is well known that
(
α̂, β̂, λ̂

)
is approximately distributed as multivariate normal

with mean (α, β, λ) and covariance matrix I−1(α, β, λ) under some regularity conditions,
see Lawless [25]. The 100(1− γ)% two-sided confidence intervals can be given by

α̂± Z γ
2

√
V̂ar(α̂), β̂± Z γ

2

√
V̂ar

(
β̂
)

and λ̂± Z γ
2

√
V̂ar

(
λ̂
)
. (31)

where Z γ
2

is the percentile of the standard normal distribution with right-tail probability γ
2 .

The delta method is used to obtain approximate estimates of the variances of Ŝ(t) and
ĥ(t). Greene [26] explained a general approach to computing CIs for functions of MLEs.
The variance of Ŝ(t) and ĥ(t) can be estimated using this method, respectively.

σ̂2
Ŝ(t) =

[
∇Ŝ(t)

]T[V̂
][
∇Ŝ(t)

]
and σ̂2

ĥ(t) =
[
∇ĥ(t)

]T[
V̂
][
∇ĥ(t)

]
,

where ∇Ŝ(t) and ∇ĥ(t) are, respectively, the gradient of Ŝ(t) and ĥ(t) with respect
to α, β and λ as follows:

∇Ŝ(t) =




∂S(t)
∂α

∂S(t)
∂β

∂S(t)
∂λ




and

∇ĥ(t) =




∂h(t)
∂α

∂h(t)
∂β

∂h(t)
∂λ
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where

∂S(t)
∂α

=

e−λt−β

(
(1− α)αe−λt−β

+ αeλt−β

(
−1 + αe−λt−β

))

α(α− 1)2 ,

∂S(t)
∂β

=
−λt−βe−λt−β

αe−λt−β

log(α) log(t)
α− 1

,

∂S(t)
∂λ

=
t−βe−λt−β

αe−λt−β

log(α)
α− 1

,

∂h(t)
∂α

=
− λ β t−(β+1)e−2λt−β

αe−λt−β−1

(α− αe−λt−β
)2

[
eλt−β

(−α + αe−λt−β

) + α log(α)(eλt−β − 1)
]

,

∂h(t)
∂β

=
λ log(α) t−(2β+1)e−2λt−β

αe−λt−β

(α− αe−λt−β
)2




tβeλt−β
(α− αe−λt−β

)

+β log(t)
(

eλt−β
(tβ − λ)(−α + αe−λt−β

) + αλ log(α)
)



and

∂h(t)
∂λ

=
− β log(α) t−(2β+1)e−2λt−β

αe−λt−β

(α− αe−λt−β
)2

[
eλt−β

(tβ − λ)(−α + αe−λt−β

) + αλ log(α)
]

.

Then, the 100(1− γ)% two-sided confidence intervals of S(t) and h(t) can be given,
respectively, by

Ŝ(t)± Z γ
2

√
σ̂2

Ŝ(t)
and ĥ(t)± Z γ

2

√
σ̂2

ĥ(t)
. (32)

A disadvantage of an approximate 100(1− γ)% confidence interval is that it can
produce a negative lower bound even if the parameter only accepts positive values. The
negative value is modified by zero in this case. Optionally, Meeker and Escobar [27] pro-
posed using a log transformation to obtain approximate confidence intervals for parameters
with positive values. Thus, the approximate two-sided 100(1− γ)% confidence interval
derived in this manner for ϕ = (α, β, λ, S(t), h(t)) is provided by



ϕ̂ exp


−

Z γ
2

V̂ar(ϕ̂)

ϕ


, ϕ̂ exp


Z γ

2
V̂ar(ϕ̂)

ϕ





, (33)

where ϕ̂ =
(

α̂, β̂, λ̂, Ŝ(t), ĥ(t)
)

.

5.2. Credible CI

The credible confidence interval (CCI) is obtained by using the algorithm of Metropolis-
Hastings within the Gibbs sampling technique. We summarized these algorithm steps
as follows:

(1) Start with initial guess
(

α(0), β(0), λ(0)
)

.

(2) Set j = 1.

(3) From the normal proposal distributions N
(

α(j−1), var(α)
)

, N
(

β(j−1), var(β)
)

and

N
(

λ(j−1), var(λ)
)

, generate α(j), β(j) and λ(j) from π∗1
(

α(j−1)| β(j−1), λ(j−1), data
)

,

π∗2
(

β(j−1)| α(j), λ(j−1), data
)

and π∗3
(

λ(j−1)| α(j), β(j), data
)

and from the main cross-
ways in inverse Fisher information matrix can be obtained var(α), var(β) and var(λ).
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(4) From N
(

α(j−1), var(α)
)

, N
(

β(j−1), var(β)
)

and N
(

λ(j−1), var(λ)
)

, generate pro-
posals α∗, β∗ and λ∗.

(i) Evaluate the acceptance probabilities

ηα = min
[

1,
π∗1(α∗ | β(j−1),λ(j−1),data)

π∗1(α(j−1) | β(j−1),λ(j−1),data)

]
,

ηβ = min
[

1,
π∗2(β∗ | α(j),λ(j−1),data)

π∗2(β(j−1) | α(j),λ(j−1),data)

]
,

ηλ = min
[

1,
π∗3(λ∗ | α(j),β(j),data)

π∗3(λ(j−1) | α(j),β(j),data)

]
.

(ii) From a uniform (0, 1) distribution, generate u1, u2 and u3 .
(iii) If u1 < ηα, accept and set α(j) = α∗; else, set α(j) = α(j−1).
(iv) If u2 < ηβ, accept and set β(j) = β∗; else, set β(j) = β(j−1).
(v) If u3 < ηλ, accept and set λ(j) = λ∗; else, set λ(j) = λ(j−1).

(5) Set j = j + 1.
(6) Repeat Steps (3)–(5) N times and obtain α(i), β(i) and λ(i), i = 1, 2, . . . N.

(7) To compute the CRs of ψ
(i)
k , k = 1, 2, 3, (ψ1, ψ2, ψ3) = (α, β, λ)

as ψ
(1)
k < ψ

(2)
k . . . < ψ

(N)
k ; then, the 100(1− γ)% CRIs of ψk is

(
ψk(Nγ/2), ψk(N (1−γ/2))

)
.

The first simulated M variations will be eliminated in order to promote convergence
and devote attention to the selection of initial values. The samples have chosen ψ

(j)
k ,

j = M + 1, . . . N, an approximate posterior sample generated for sufficiently large N, which
may be required to develop the inferences of Bayes.

The approximate Bayes estimates of ψk based on the SEL function are obtained by

ψ̂k =
1

N −M

N

∑
j=M+1

ψ
(j)
k , (34)

The approximate Bayes estimates for ψk based on the LINEX loss function are ob-
tained by

ψ̂k =
−1
c

ln

[
1

N −M

N

∑
j=M+1

e−c ψ
(j)
k

]
, k = 1, 2, 3. (35)

5.3. Bootstrap CI

When the sample size is small, the percentile bootstrap (Boot-p) and the bootstrap-t
(Boot-t) confidence interval presented by [28–31] allows for the computation of the con-
fidence interval for the parameters of interest. Two parametric bootstrap algorithms are
offered to calculate the bootstrap confidence intervals of α, β, λ, S(t) and h(t). Bootstrap-t
was created using a studentized ‘pivot’ and requires an estimator of the variance of the
MLE of α, β, λ, S(t) and h(t).

5.3.1. Parametric Boot-p

(1) Based on x = x1:m:n, x2:m:n, . . . , xm:m:n, obtain α̂, β̂ and λ̂ by maximizing Equations (7)–(9).
(2) Generate x∗ = x∗1:m:n, x∗2:m:n, . . . , x∗m:m:n from the APIW distribution with parameters

α̂, β̂ and λ̂ based on hybrid Type-II censoring, using the algorithm described in [32].
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(3) Obtain the bootstrap estimate ψ̂∗i =
(

α̂∗i , β̂∗i , λ̂∗i , Ŝ∗i (t), ĥ∗i (t)
)

, i = 1, 2, 3, . . . , N boot by
the MLEs under the bootstrap sample.

(4) Repeat Steps (2) and (3) N boot times, and obtain ψ̂∗1 , ψ̂∗2 , . . . , ψ̂∗N boot, where

ψ̂∗i =
(

α̂∗i , β̂∗i , λ̂∗i , Ŝ∗i (t), ĥ∗i (t)
)

, i = 1, 2, 3, . . . , N boot.

(5) Obtain ψ̂∗(1), ψ̂∗(2), . . . , ψ̂∗(N boot) by arrange ψ̂∗i , i = 1, 2, 3, . . . , N boot in ascending orders.

Define ψ̂boot−p = G−1
1 (z) for given z, where G1(z) = P(ψ̂∗ ≤ z) is the cumulative

distribution function of ψ̂∗. The approximate bootstrap-p 100(1− γ)% CI of ψ̂ is given by
[
ψ̂boot−p

(γ

2

)
, ψ̂boot−p

(
1− γ

2

)]
. (36)

5.3.2. Parametric Boot-t

(1) Repeat the steps of the parametric Boot-p from (1) to (3).

(2) The variance–covariance matrix I−1∗
(

∂`
∂α , ∂`

∂β , ∂`
∂λ

)
and the approximate estimates of

the variance S(t) and h(t) based on the asymptotic variance–covariance matrix and
delta method are computed.

(3) The T∗ψ statistic is defined as

T∗ψ =

(
ψ̂∗ − ψ̂

)
√

̂var
(
ψ̂∗
)

(4) Obtain T∗ψ1 , T∗ψ2 , . . . , T∗ψN boot from repeating steps 2–5, NBoot times
(5) Obtain the ordered sequences T∗ψ

(1), T∗ψ
(2), . . . , T∗ψ

(N boot) by arranging ψ̂∗i , i = 1, 2, 3, . . . , N

boot in T∗ψ1 , T∗ψ2 , . . . , T∗ψN boot in ascending order.

Define ψ̂boot−t = ψ̂ + G−1
2 (z)

√
̂var
(
ψ̂∗
)
, where G2(z) = P(T∗ ≤ z) is the cumulative

distribution function of T∗ for a given z.
Then, the approximate bootstrap-t 100(1− γ)% CI of ψ̂ is obtained by

[
ψ̂boot−t

(γ

2

)
, ψ̂boot−t

(
1− γ

2

)]
. (37)

6. Application to Real-Life Data

Two real data examples are discussed in this section. We aim to model the failure times
of a sample of ball bearings using APIW distribution, and the resistances in a sample of
guinea pigs are modeled using APIW distribution. A goodness of fit measure is utilized for
that purpose. Point and interval estimations are performed via numerical methods using
suitable R-codes.

6.1. Data Set I

Leiblein et al. [33] employ the suggested approaches in this section to determine how
many millions of spins a large sample of 23 ball bearings can withstand before failing. The
data are shown in Table 1. The difference between the empirical Kolmogorov–Smirnov
(KSD) distribution and the CDF for the APIW distribution is 0.0937, and the p-value (PVKS)
is 0.9876, which indicates the goodness of fit using the APIW model. Therefore, the APIW
distribution is consistent with the information supplied.

Table 1. Failure times for a group of 23 ball bearings in a life endurance test.

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40
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Table 2 details the MLE, the MPS, and the Bayesian estimates of the parameters with
the standard errors (SE) and describes the Kolmogorov–Smirnov goodness of fit test for
data set I. While analyzing data set I, it was discovered that the Bayesian estimates have
lower SE values for estimating α, while the MPS has less SE when estimating β and λ. The
best goodness of fit with respect to KSD is attained for its minimum value, and this is
achieved under Bayesian estimation; similarly, the highest PVKS is obtained under Bayesian
estimation. Therefore, according to Bayesian estimations, the APIW distribution offers a
better fit. Figure 1 illustrates the APIW distribution’s theoretical and empirical pd f , CDF, and
P-P plot using data set I, and it can be seen that the APIW is fitting data set I very well.

Table 2. MLE, MPS, and Bayesian estimates with SE values and KS test.

Estimates SE KSD PVKS

MLE

α 64.1705 154.1028

0.0937 0.9876β 2.3255 0.3061

λ 2556.7180 3050.7065

MPS

α 74.6228 49.1516

0.1136 0.9281β 2.0332 0.0634

λ 745.7198 16.0139

Bayesian

α 64.1103 15.4170

0.0924 0.9894β 2.3246 0.3057

λ 2558.2005 305.4596
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Figure 1. Estimated CDF, pdf, and pp-plot: data set I.

To check the performance of the MLE, we plot the profile likelihood function, where
the x-label is one parameter with different values and the y-label is the log-likelihood value
keeping the other parameters to be fixed. The profile likelihood of data set I is sketched in
Figure 2, where the blue line is a log-likelihood values with different value of parameter
and dot is the MLE estimator of parameter with max log-likelihood value, and it confirms
that the MLE estimates have maximum values for data set I, which is consistent with the
values of MLE observed in Table 2, and it is also clear that data set I behave very well as
the three roots of the parameter are global maxima.
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Figure 2. The Profile likelihood curve with maximum point for data set I.

The plots of the MCMC trace, the auto-correlation (ACF) tests, the posterior sample
histogram, and the convergence of MCMC are all performed to diagnose the issues related
to MCMC samples. An essential tool for evaluating a chain’s mixing is a trace plot. The auto-
correlation plot, also known as the ACF plot, shows the serial correlation in time-varying
data. Therefore, we plot MCMC trace, ACF plot, and a histogram of posterior density of
MCMC results, and the convergence of the MCMC results for data set I are presented in
Figures 3–6, respectively.
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Figure 3. MCMC trace: data set I.
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Figure 4. Auto-correlation test: data set I.
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Figure 5. Histogram of posterior density: data set I.
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Figure 6. Convergence of MCMC results: data set I.

Figures 3, 5, and 6 confirm that the MCMC trace has normal results and convergence
measures for data set I. Furthermore, this shows the histograms for the marginal posterior
density estimates of the parameters based on 5000 chain values and the Gaussian kernel.
The estimation in Figure 5 clearly indicates that all generated posteriors are symmetric with
respect to the theoretical posterior density function. Figure 4 explores the auto-correlation
test which revealed that the auto-correlation test for the MCMC is the correlation between
an iteration series with a decreased version of itself. The auto-correlation function started
to slow down at zero, which represents the correlation of the iteration series with itself, and
then, it resulted in a correlation of one.

Table 3 provides the MLE, the MPS, and the Bayesian estimates for parameters of
APIW distribution based on hybrid censored samples for data set I. Table 4 presents the
survival and hazard of APIW distribution based on hybrid censored samples with data
set I.

It is observed from the numerical results in Table 3 that the Bayesian estimators act
better than alternative methods for estimating the parameter α, while the MPS is the best
choice for estimating the parameters β and λ. Table 4 demonstrates the efficiency of the
MPS estimation method since the survival estimation is maximized and the hazard rate
estimation is minimized under the MPS estimation method.
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Table 3. MLE, MPS, and Bayesian estimates based on hybrid censored samples: data set I.

T r
MLE MPS Bayesian

Estimates SE Estimates SE Estimates SE

68

12

α 46.3400 163.7701 83.8863 351.3109 46.3076 3.9134

β 1.9705 0.4337 1.6145 0.4176 1.9692 0.4331

λ 747.1634 1407.1232 156.5471 329.6032 747.8127 156.7151

16

α 46.0169 162.8815 74.4494 322.0154 45.9893 3.2896

β 1.9650 0.4308 2.0330 0.2510 1.9637 0.4302

λ 733.8110 1375.322 745.4669 10.3476 734.6510 131.6786

110

16

α 55.8774 166.4168 79.4264 16.2216 55.8488 3.2118

β 2.1265 0.3848 1.8119 0.0638 2.1254 0.3742

λ 1246.7484 2026.3962 320.7453 8.6051 1247.550 169.1073

20

α 60.7348 157.5242 75.2723 10.3590 60.7075 3.0404

β 2.2491 0.3624 1.9606 0.0645 2.2480 0.3319

λ 1935.9909 1875.5629 565.5794 10.3615 1937.155 139.9357

Table 4. Survival and hazard based on hybrid censored samples: data set I.

T r MLE MPS Bayesian

68

12
survival 0.4857 0.5113 0.4877

hazard 0.0188 0.0150 0.0188

16
survival 0.4850 0.5107 0.4869

hazard 0.0188 0.0150 0.0187

110

16
survival 0.3253 0.3563 0.3268

hazard 0.0197 0.0163 0.0197

20
survival 0.1978 0.2277 0.1988

hazard 0.0185 0.0158 0.0185

6.2. Data Set II

A real data set II from Okash et al. [34] is considered. To demonstrate the reliability of
the APIW distribution to fit these data, 72 observations of resistance in guinea pigs were
exposed to various dosages of virulent tubercle bacilli. The observed data set II has been
shown in Table 5.

Table 5. Survival times (in days) of resistance in guinea pigs exposed to various dosages of virulent
tubercle bacilli.

12
38
55
60
70
85
121
211

15
38
56
61
72
87

127
233

22
43
57
62
73
91

129
258

24
44
58
63
75
95
131
258

24
48
58
65
76
96
143
263

32
52
59
65
76
98

146
297

32
53
60
67
81
99

146
341

33
54
60
68
83
109
175
341

Table 6 details MLE, MPS, and Bayesian estimates with SE and DKS goodness of fit
test for data set II. While analyzing data set II, it is realized that the MPS estimates have
lower SE values for the estimated APIW parameters. For modeling purposes, the Bayesian
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estimation has the minimum KSD (0.1091) and highest PVKS (0.3581); hence, the APIW
distribution offers a better fit under Bayesian estimation. Figure 7 illustrates the APIW
distribution’s theoretical and empirical pd f , CDF, and P-P plot using data set II, and it can
be seen that the APIW is suitable and reliable for fitting data set II.

Table 6. MLE, MPS, and Bayesian estimates with SE values and KS test: data set II.

Estimates SE Lower Upper KSD PVKS

MLE

α 99.0793 46.2628 8.4043 189.7544

0.1096 0.3524β 1.7889 0.1558 1.4835 2.0944

λ 344.2289 143.1508 63.6533 624.8045

MPS

α 122.7002 4.7472 113.3957 132.0046

0.1186 0.2637β 1.6840 0.0358 1.6139 1.7542

λ 210.6960 2.5855 205.6284 215.7635

Bayesian

α 98.9326 15.7863 68.4324 129.4730

0.1091 0.3581β 1.7885 0.1556 1.4991 2.1047

λ 344.2667 24.3636 295.4979 392.3949

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

) Emprical CDF
Estimated CDF

x

f(
x
)

0 100 200 300 400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Data
Estimated PDF

P−P plot

probability(x)

F
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 7. Estimated CDF, pdf and pp-plot: data set II.

Figure 8 confirms that the MLE estimates have the maximum likelihood values for
data set II for the estimated parameter values that coincide with the MLE estimates in
Table 6. Figure 9, describing the trace of the MCMC and its convergence. Figure 10 states
that there is no auto-correlation for the MCMC series; the values started with zero and end
up with one. In Figure 11, it is emphasized that the MCMC results have a normal curve
with symmetric histograms of the posterior density, while Figure 12 shows that the MCMC
trace has convergence results. Table 7 summarizes the MLE, the MPS, and the Bayesian
estimates for parameters of APIW distribution based on hybrid censored samples for data
set II with different values of T and r. The Bayesian estimators are better for estimating
the parameter α, while the MPS is the best choice for estimating the parameters β and λ.
Table 8 shows the estimated values of the survival and the hazard of APIW distribution
based on the hybrid censored samples with data set II with different values of T and r. It is
clear that the maximum survival is attained under MPS estimation and also the minimum
hazard rate is obtained under MPS estimation, which supports the selection of the MPS
method for efficient failure data analysis.
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Figure 8. The Profile likelihood curve with the maximum point for data set II .
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Figure 9. MCMC trace: data set II.
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Figure 12. Convergence of MCMC results: data set II.

Table 7. MLE, MPS, and Bayesian estimates based on hybrid censored samples: data set II.

T r
MLE MPS Bayesian

Estimates SE Estimates SE Estimates SE

100

50

α 101.0733 164.6184 125.1150 67.7176 101.0304 3.9380

β 1.7786 0.1811 1.6609 0.0656 1.7781 0.1809

λ 327.2383 259.4398 191.2807 22.0057 327.2877 28.8832

60

α 103.0959 164.5881 126.4073 9.2812 103.0530 3.9373

β 1.7976 0.1786 1.6819 0.0363 1.7970 0.1783

λ 349.4182 271.6575 206.2780 5.2838 349.4698 30.2434

110

50

α 101.0733 164.6184 125.1150 67.7176 101.0304 3.9380

β 1.7786 0.1811 1.6609 0.0656 1.7781 0.1809

λ 327.2383 259.4398 191.2807 22.0057 327.2877 28.8832

60

α 101.2719 164.0169 125.7735 16.0496 101.2291 3.9237

β 1.7814 0.1748 1.6686 0.0365 1.7808 0.1745

λ 330.4588 255.2788 196.5964 4.9556 330.5050 28.4200

Table 8. Survival and hazard based on hybrid censored samples: data set II.

T r MLE MPS Bayesian

100

50
survival 0.3523 0.3647 0.3530

hazard 0.0141 0.0130 0.0141

60
survival 0.3286 0.3412 0.3293

hazard 0.0140 0.0130 0.0140

110

50
survival 0.3523 0.3647 0.3530

hazard 0.0141 0.0130 0.0141

60
survival 0.2906 0.3040 0.2912

hazard 0.0131 0.0121 0.0131

7. A Simulation Study

A simulation analysis was carried out using 5000 iterations for hybrid Type-II censored
samples. For the generated simulated sample from APIW distribution, descriptive statistics
are computed to evaluate the consistency of this simulated data, Table 9 summarizes some
measures in addition to skewness and kurtosis measures. Each simulation compares the
APIW distribution parameter estimators by likelihood, product spacing, and Bayesian.
Censored APIW samples are with the initial values:

In Table 10: α = 0.6, β = 0.6, λ = 0.7 and α = 1.3, β = 0.6, λ = 0.7.
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In Table 11: α = 0.6, β = 0.6, λ = 2 and α = 2, β = 0.6, λ = 2.
In Table 12: α = 0.8, β = 2, λ = 2 and α = 2, β = 2, λ = 2.

For the development of a hybrid censored sample, we selected different sample sizes
as n = 50 and 100 and different censored sample sizes as r = 30, 40, and 50 for n = 50, r = 70,
90, and 100 for n = 100.

The relative bias (RB), mean square error (MSE), length of asymptotic confidence
intervals (LACI), length of bootstrap-p (LBP), and length of bootstrap-t (LBT) are calcu-
lated, and a comparison was considered between the different approaches of the resulting
estimators with respect to the RB of α, β, and λ. In addition, the MSE was utilized for the

same purpose such that MSE(ψk) =
1
M ∑M

i=1

(
ψ̂
(i)
k − ψk

)2
, where M = 5000 is the number

of simulated samples, and (ψ1 = α, ψ2 = β, ψ3 = λ) . Overall, 95% of the CIs are obtained
from asymptotic distributions from MLEs and CRIs and are also compared with a further
criterion. The comparison is between the average confidence interval length (ACL). In
order to assess the type of prior, estimates of the parameters in the Bayes technique are
computed from informative priors. The hyperparameters in the case of informative priors
are chosen by elective hyperparameters using MLE information to show the results of
estimated parameters.

Table 9. Summary of simulated data from APIW distribution.

α β λ Minimum Q1 Q2 Mean Q3 Maximum SD SK KT

0.6

0.6

0.2 0.0019 0.0375 0.0968 9.3625 0.3837 2525.81 117.8092 17.2574 320.5176

0.7 0.0341 0.2744 0.781 28.6615 3.2646 3533.482 188.5746 12.4815 188.0099

1.2 0.0504 0.564 1.6943 554.9259 6.8621 373,379.5 12,016.08 30.0298 929.0447

1.7 0.1445 1.1408 3.2773 112.0147 12.4232 25308.46 988.7543 18.8949 440.0531

2.2 0.1183 1.7701 4.6629 758.7959 18.144 254,110.1 9603.757 21.2078 516.2217

2.7 0.136 2.4891 7.0995 12,403.68 29.2255 621,3521 244,427.2 22.5586 527.7023

1.5

0.2 0.0817 0.2689 0.3929 0.7271 0.6817 22.9594 1.492 9.6082 119.4912

0.7 0.2587 0.5961 0.9059 1.6512 1.6052 26.2592 2.4575 4.8751 34.0851

1.2 0.3026 0.7953 1.2348 2.449 2.1606 169.3792 7.1983 15.4838 314.6141

1.7 0.4613 1.0541 1.6077 2.8005 2.7396 57.7173 4.1289 6.1401 56.8222

2.2 0.4258 1.2566 1.8512 3.8492 3.1878 145.2141 8.8066 9.0808 110.2727

2.7 0.4502 1.4402 2.1902 5.3273 3.8574 521.597 24.5777 16.9134 322.1059

3

0.2 0.2859 0.5186 0.6269 0.7411 0.8256 4.7916 0.4218 4.1298 29.9656

0.7 0.5087 0.7721 0.9518 1.1322 1.267 5.1244 0.608 2.6053 11.9396

1.2 0.5501 0.8918 1.1112 1.3201 1.4699 13.0146 0.8409 5.8075 58.3727

1.7 0.6792 1.0267 1.268 1.4908 1.6552 7.5972 0.7606 2.7864 14.7529

2.2 0.6526 1.121 1.3606 1.662 1.7854 12.0505 1.0431 4.2566 29.2693

2.7 0.671 1.2001 1.4799 1.8111 1.964 22.8385 1.4315 8.0332 97.9213
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Table 9. Cont.

α β λ Minimum Q1 Q2 Mean Q3 Maximum SD SK KT

1.5

0.6

0.2 0.0021 0.0576 0.1675 20.1354 0.7441 5453.285 254.3222 17.2608 320.6308

0.7 0.0395 0.4161 1.3517 61.1988 6.3512 7620.369 406.3593 12.502 188.5294

1.2 0.0561 0.8339 2.8926 1196.982 13.2257 806,474.1 25,953.44 30.0314 929.1182

1.7 0.167 1.7169 5.6449 239.0572 23.9633 54,604.49 2132.057 18.9211 441.0744

2.2 0.1306 2.6675 7.9627 1633.918 34.8865 548,731.3 20,735.8 21.2142 516.483

2.7 0.1484 3.7507 12.2307 26,786.65 56.6635 13,422,188 527,997 22.5588 527.7134

1.5

0.2 0.0989 0.343 0.5117 0.9127 0.8951 25.1911 1.6971 8.8703 105.0283

0.7 0.2976 0.7198 1.1197 1.9816 2.0002 28.5589 2.7859 4.5374 30.0123

1.2 0.3396 0.9341 1.4893 2.8184 2.6335 164.0482 7.2539 14.1928 271.0224

1.7 0.5111 1.2247 1.9137 3.2503 3.291 59.7669 4.4974 5.6013 48.348

2.2 0.4661 1.4447 2.1772 4.3322 3.7888 141.9907 8.9929 8.4079 96.0569

2.7 0.4889 1.6417 2.5574 5.7369 4.5445 470.9055 22.6724 16.1496 299.0034

3

0.2 0.2912 0.5651 0.6995 0.8348 0.9426 5.589 0.502 4.0018 28.582

0.7 0.5239 0.8392 1.0621 1.2755 1.4473 5.9758 0.7261 2.5326 11.4722

1.2 0.5622 0.9643 1.2367 1.4842 1.676 15.1816 0.9981 5.6295 55.6979

1.7 0.6991 1.1142 1.4136 1.6778 1.8876 8.8602 0.9095 2.6968 14.0562

2.2 0.6655 1.2168 1.5143 1.8717 2.0348 14.0563 1.2387 4.1458 28.1226

2.7 0.6828 1.3026 1.65 2.0412 2.2421 26.6419 1.6898 7.8521 94.6963

3

0.6

0.2 0.0023 0.0837 0.2587 33.3614 1.1989 9044.133 421.7753 17.2616 320.6565

0.7 0.0453 0.5991 2.0877 101.2154 10.2436 12,634.96 673.6439 12.5066 188.6474

1.2 0.062 1.1807 4.4402 1984.686 21.2686 1,337,645 43,047.07 30.0318 929.1349

1.7 0.191 2.4597 8.6994 395.314 38.5459 90,546.07 3534.951 18.9271 441.3064

2.2 0.1428 3.825 12.2242 2708.01 56.0588 910,095.2 34,390.2 21.2156 516.5424

2.7 0.1605 5.3781 18.8508 44,427.34 91.2935 22,263,025 875,773 22.5589 527.7159

1.5

0.2 0.102 0.3945 0.6023 1.0877 1.0704 30.4535 2.0548 8.8479 104.636

0.7 0.3133 0.8252 1.3179 2.3613 2.3929 34.5215 3.3769 4.5215 29.8511

1.2 0.3524 1.0643 1.7489 3.3579 3.147 198.3252 8.7774 14.1699 270.3686

1.7 0.5375 1.4015 2.2507 3.869 3.9332 72.248 5.4519 5.5778 48.0366

2.2 0.4819 1.6538 2.5569 5.1663 4.5263 171.6554 10.8861 8.3911 95.7611

2.7 0.5035 1.8793 3.0078 6.855 5.4345 569.3038 27.4201 16.1402 298.7514

3

0.2 0.296 0.6089 0.7631 0.9119 1.037 6.1841 0.5605 3.9338 27.9076

0.7 0.5385 0.9026 1.1586 1.3933 1.5925 6.6117 0.8119 2.4899 11.2289

1.2 0.5734 1.0338 1.3473 1.6196 1.8431 16.7984 1.1133 5.5364 54.3872

1.7 0.7182 1.1972 1.5413 1.8319 2.0758 9.8033 1.0177 2.6452 13.7014

2.2 0.6775 1.3078 1.6498 2.0443 2.2373 15.5531 1.3815 4.0881 27.5711

2.7 0.6935 1.4 1.7991 2.2299 2.4665 29.4793 1.8797 7.7641 93.1916
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From the simulation analysis, we point out the following results:

1. The RB and the MSE decrease for estimated parameters of MLE and MPS as the
sample size increases and the Bayes estimates for α,β and λ attain the minimum MSE.
See Tables 10–12.

2. In almost all cases, the Bayes estimates perform better than the MLEs with respect to
RB, MSE, LACI, LBP, and LBT.

3. In most cases, the MPS estimates are better than the MLE with respect to MSE.
4. The performance increases when the censored sample size r increases, such that the

sample size n and the time of the hybrid censored sample are kept fixed.
5. The performance increases when the time of a hybrid censored sample increases when

keeping sample size n and censored sample size r as fixed values.
6. When the number of failures r is fixed and sample size n increases, the MSEs and width

of the LACI, LBP, and LBT of the MLEs, MPS, and Bayes estimations are decreased.
However, the MPS process performs well in terms of estimating the parameters of
APIW. See Tables 10–12.

7. The MSEs and the widths of the confidence intervals of the ACI, BP, and BT of the
MLEs, MPS, and Bayes estimations decrease as the number of failures r increases for
a fixed sample size n.

8. As the sample size n increases, the average length of all intervals decreases. On
average, the credible CI estimates are better than the ACI.

9. As the sample size n increases, the bootstrap CI estimates are better than the tradi-
tional CI.

8. Conclusions

Modeling some biomedical data was performed in this study, the new APIW continu-
ous distribution was utilized and the hybrid Type-II censoring scheme was recommended.
Three estimation methods were performed to estimate the unknown parameters of the
APIW distribution and hence estimate the survival and hazard functions. In real data
analysis, the classical alternative (MPS) for the well-known MLE method confirmed the
power fullness of the MPS over the MLE for estimating parameters, survival, and hazard
function. In simulation analysis, the Bayesian approach for the inference of APIW parame-
ters was relatively acting much better compared to the classical methods. A comparison
was conducted with respect to the mean squared error and relative bias, and all results
were summarized in tables and plotted in figures. The MCMC approach was employed
as estimates from Bayesian are not directly obtainable. The model was applied to two
real-life data sets, including failure statistical data for certain ball-bearing components and
the resistance in guinea pigs exposed to various dosages of virulent tubercle bacilli.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Applications in Physics and Engineering
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Abstract: Generalized progressive hybrid censored procedures are created to reduce test time and
expenses. This paper investigates the issue of estimating the model parameters, reliability, and hazard
rate functions of the Fréchet (Fr) distribution under generalized Type-II progressive hybrid censoring
by making use of the Bayesian estimation and maximum likelihood methods. The appropriate esti-
mated confidence intervals of unknown quantities are likewise built using the frequentist estimators’
normal approximations. The Bayesian estimators are created using independent gamma conjugate
priors under the symmetrical squared-error loss. The Bayesian estimators and the associated greatest
posterior density intervals cannot be computed analytically since the joint likelihood function is
obtained in complex form, but they may be assessed using Monte Carlo Markov chain (MCMC)
techniques. Via extensive Monte Carlo simulations, the actual behavior of the proposed estimation
methodologies is evaluated. Four optimality criteria are used to choose the best censoring scheme out
of all the options. To demonstrate how the suggested approaches may be utilized in real scenarios,
two real applications reflecting the thirty successive values of precipitation in Minneapolis–Saint Paul
for the month of March as well as the number of vehicle fatalities for thirty-nine counties in South
Carolina during 2012 are examined.

Keywords: Fréchet model; symmetric Bayes inference; MCMC techniques; maximum likelihood;
reliability analysis; generalized Type-II progressive hybrid censoring

1. Introduction

Reliability technology, as a measure of a system’s capacity to properly perform its
intended function under predetermined conditions for a specific period of time, is currently
increasingly significant. In this regard, many research studies have been conducted, see for
example, Chen et al. [1] and Luo et al. [2]. In the literature, progressive Type-II censoring
(PC-T2) has received a lot of attention because it allows surviving subjects to be removed
during an experiment at various stages other than the termination point, see Balakrishnan
and Cramer [3]. To conduct this censoring, a researcher must first put n independent units
into a test at time zero and determine the number of failures m and the progressive censoring
R = (R1, R2, . . . , Rm), where n = ∑m

i=1 Ri + m. At the moment of the first recorded failure
(say X1:m:n), the surviving units R1 out of n− 1 units are randomly chosen and removed
from the test. Similarly, R2 of n− R1 − 2 are selected at random and removed from the test
at the time of the second failure (say X2:m:n) observed, and so on. All remaining survival
units, Rm = n − m − ∑m−1

j=1 Rj, are withdrawn from the test at the moment of the mth
failure (say Xm:m:n) observed, see Panahi [4]. The main disadvantage of this censoring
is that it may take a longer time to complete the test when the experimental units are
extremely trustworthy. To overcome this problem, the progressive Type-I hybrid censoring

Symmetry 2023, 15, 348. https://doi.org/10.3390/sym15020348 https://www.mdpi.com/journal/symmetry168
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(PHC-T1), which combines PC-T2 and traditional Type-I censoring, was presented by
Kundu and Joarder [5]. However, PHC-T1 had the disadvantage that there are relatively
few failures that may occur before time T, meaning that maximum likelihood estimators
(MLEs) could not always be derived. To address this issue, Childs et al. [6] proposed
the progressive Type-II hybrid censoring (PHC-T2) in which the experiment terminates
at T∗ = max{Xm:m:n, T}, for details see Panahi [7]. On the other hand, to improve the
efficiency of statistical inference, Ng et al. [8] proposed the adaptive progressively Type-II
hybrid censoring, for further details see Panahi and Moradi [9].

Although the PHS-T2 guarantees an efficient number of observable failures, it may
take a long time to collect the desired failures. Therefore, the generalized progressive
Type-II hybrid censoring (GPHC-T2) was introduced by Lee et al. [10]. Assume that the
two thresholds Ti, i = 1, 2 and the number m are preassigned such that 1 < m ≤ n and
0 < T1 < T2. The total number of failures up to periods T1 and T2 are shown as d1 and
d2, respectively. Next, R1 of n− 1 are arbitrarily removed from the test at X1:m:n; R2 of
n − R1 − 2 are then removed at X2:m:n, and so on. At T∗ = max{T1, min{Xm:m:n, T2}},
the experiment is terminated and all remaining units are removed. If Xm:n < T1, we
continue to observe failures without any additional withdrawals up to time T1 (Case-I); if
T1 < Xm:m:n < T2, we end the test at Xm:m:n (Case-II); otherwise, we end the test at time T2
(Case-III). It is important to remember that the GPHC-T2 alters the PHC-T2 by ensuring
that the test is finished at the designated time T2. Thus, T2 shows the maximum amount
of time that the researcher is prepared to permit the experiment to run. As a result, the
experimenter will see one of the following three data formats:

{X, R} =





{(X1:m:n, R1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, 0), . . . , (Xd1 :n, 0)}; Case-I,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, Rm)}; Case-II,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2−1:n, Rd2−1), (Xd2 :n, Rd2)}; Case-III.

Assume that the variables X, R stand for the respective lives in a distribution with
cumulative distribution function (CDF) F(·) and probability density function (PDF) f (·).
This leads to the following expression for the GPHC-T2 likelihood function as follows:

Lρ(θ|X) = CρRρ(Tτ ; θ)
Dρ

∏
j=1

f (xj:m:n; θ)
[
1− F(xj:m:n; θ)

]Rj , (1)

where Case-I, Case-II, and Case-III denoted by ρ = 1, 2, 3, correspondingly, τ = 1, 2, and
Rρ(·) is a composite form of reliability functions. From (1), the GPHC-T2 notations are
listed in Table 1. Moreover, from (1), different censoring plans can be obtained as special
cases, namely:

• PHC-T1 if T1 → 0.
• PHC-T2 if T2 → ∞.
• Hybrid-T1 if T1 → 0, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Hybrid-T2 if T2 → ∞, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Type-I censoring if T1 = 0, m = 1, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.
• Type-II censoring if T1 = 0, T2 → ∞, Rj = 0, j = 1, 2, . . . , m− 1, Rm = n−m.

Table 1. The GPHC-T2 notations.

ρ Cρ Dρ Rρ(Tτ ; θ) R∗dτ+1

1 Πd1
j=1 ∑m

i=j (Ri + 1) d1 [1− F(T1)]
R∗d1+1 n− d1 −∑m−1

i=1 Ri

2 Πm
j=1 ∑m

i=j (Ri + 1) m 1 0

3 Πd2
j=1 ∑m

i=j (Ri + 1) d2 [1− F(T2)]
R∗d2+1 n− d2 −∑d2

i=1 Ri
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On the basis of GPHC-T2, other research has also been carried out. For instance, the
maximum likelihood and Bayes estimators of the Weibull parameters were produced by
Ashour and Elshahhat [11]. The prediction problem of failure times from the Burr-XII
distribution was studied by Ateya and Mohammed [12]. Seo [13] developed an objective
Bayesian analysis with limited information about the Weibull distribution. The competing
risks from exponential data were addressed by Cho and Lee [14], and more recently,
Nagy et al. [15] looked at both the point and interval estimates of the Burr-XII parameters,
and Wang et al. [16] addressed the estimation problem of the Kumaraswamy parameters
using classical and Bayesian procedures.

The inverse Weibull (or Gumbel Type-II) distribution, commonly known as the two-
parameter Fréchet (Fr) distribution, is well suited for data modeling with decreasing and
upside-down bathtub hazard rates. To illustrate many environmental phenomena, includ-
ing earthquakes, floods, wind speeds, rainfall, breakdown of insulating fluid, sea waves,
etc., it has been widely employed. This model was originally proposed by Fréchet [17], and
Kotz and Nadarajah [18] later discussed it. Suppose that X is a lifetime random variable
that follows the Fr distribution, which is represented by the notation Fr(δ, θ), where δ > 0
is the scale parameter and θ > 0 is the shape parameter. Its PDF, CDF, and hazard rate
function (HRF), denoted by f (·), F(·), and h(·), are provided by

f (x; δ, θ) = δθx−(θ+1)e−δx−θ
, x > 0; (2)

F(x; δ, θ) = e−δx−θ
, x > 0; (3)

and

h(t; δ, θ) =
δθt−(θ+1)

eδt−θ − 1
, t > 0, (4)

respectively, and its reliability function (RF), R(·), is given by R(·) = 1− F(·).
To our knowledge, no work has been done that estimates the Fr model parameters or

survival characteristics in the presence of data from the generalized Type-II progressive
hybrid censoring. Our goals in this study were the following in order to close this gap. The
likelihood inference for the unknown Fr parameters and/or any function of them, such as
R(t), or h(t), was first derived. The second goal was to create Bayes estimates for the same
unknown parameters using independent gamma priors from the squared-error loss (SEL).
Additionally, using the suggested estimating techniques, for all unknown parameters,
the asymptotic confidence intervals (ACIs) and highest posterior density (HPD) interval
estimators were obtained. The R programming language’s “maxLik” and “coda” packages
were used to calculate the acquired estimates because the theoretical results of δ and θ
obtained by the proposed estimation methods cannot be expressed in closed form. These
packages were proposed by Henningsen and Toomet [19] and Plummer et al. [20]. The
final goal was to come up with the most effective progressive censoring scheme using
four optimality criteria. A Monte Carlo simulation was used to examine the efficacy of the
different estimators using various combinations of the total sample size, effective sample
size, threshold times, and progressive censoring. All acquired estimators were compared
using their simulated root-mean-square errors, mean relative absolute biases, average
confidence lengths, and coverage percentages. To determine how well the suggested
approaches worked in practice and choose the best censoring strategy, two different data
sets the from physical and engineering domains were analyzed. The rest of the study is
structured as follows: In Sections 2 and 3, the maximum likelihoods and Bayes inferences
of the unknown parameters and reliability characteristics are obtained, respectively. In
Section 4, the asymptotic and credible intervals are derived. The outcomes of the Monte
Carlo simulation are detailed in Section 5. Section 6 investigates the methodology for
determining the best progressive censoring strategy. In Section 7, two real applications are
examined. Finally, in Section 8, some concluding remarks of the study are provided.
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2. Likelihood Inference

Suppose X = {(X1:m:n, R1), .., (Xd1 :n, Rd1), .., (Xd2 :n, Rd2)} is a GPHC-T2 sample of size
d2 obtained from Fr(δ, θ). Thus, by inserting (2) and (3) into (1), where xj is used in place of
xj:m:n, the likelihood function of GPHC-T2 may be expressed as

Lρ( δ, θ|x) ∝
Dρ

∏
j=1

δθx−(θ+1)
j e−δx−θ

j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ), (5)

whereR2(Tτ ; δ, θ) = 1

R1(T1; δ, θ) =
(

1− e−δT−θ
1

)R∗d1+1 andR3(T2; δ, θ) =
(

1− e−δT−θ
2

)R∗d2+1 .
The log-likelihood function `ρ ∝ Lρ of (5) becomes

`ρ( δ, θ|x) ∝ Dρln(δθ)− (θ + 1)
Dρ

∑
j=1

ln
(

xj

)
− δ

Dρ

∑
j=1

x−θ
j +

Dρ

∑
j=1

Rjln
(

1− e−δx−θ
j
)
+ Υρ(Tτ ; δ, θ), (6)

where Υ2(Tτ ; δ, θ) = 0
Υ1(T1; δ, θ) = R∗d1+1ln

(
1− e−δT−θ

1

)
, and Υ3(T2; δ, θ) = R∗d2+1ln

(
1− e−δT−θ

2

)
.

The following two results are obtained by partly differentiating (6) with regard to δ
and θ. To produce the MLEs δ̂ and θ̂, the following likelihood equations must be solved
concurrently after being equated to zero as

∂`ρ

∂δ
=

Dρ

δ
−

Dρ

∑
j−1

x−θ
j +

Dρ

∑
j=1

Rjx−θ
j e−δx−θ

j

(
1− e−δx−θ

j

) +
∂Υρ(Tτ ; δ, θ)

∂δ
, (7)

and

∂`ρ

∂θ
=

Dρ

θ
−

Dρ

∑
j=1

ln
(
xj
)
+ δ

Dρ

∑
j−1

x−θ
j ln

(
xj
)
−

Dρ

∑
j=1

Rjδx−θ
j ln

(
xj
)
e−δx−θ

j

(
1− e−δx−θ

j

) − ∂Υρ(Tτ ; δ, θ)

∂θ
, (8)

where for ρ = 1, 3 and τ = 1, 2, we have
∂Υρ(Tτ ;δ,θ)

∂δ =
R∗dτ+1T−θ

τ e−δT−θ
τ

(
1−e−δT−θ

τ

) , ∂Υρ(Tτ ;δ,θ)
∂θ =

R∗dτ+1δT−θ
τ ln(Tτ)e−δT−θ

τ
(

1−e−δT−θ
τ

) .

As shown in (7) and (8), the MLEs of δ and θ must be obtained by solving a system
of two nonlinear equations. Therefore, there is no closed-form analytical solution for δ̂
or θ̂. As a result, it may be calculated for every given GPHC-T2 data set using numerical
methods such the Newton–Raphson iterative approach. The MLEs R̂(t) and ĥ(t) can also
be obtained by replacing δ and θ with δ̂ and θ̂, respectively.

3. Bayes Inference

The Bayes estimators of δ, θ, R(t) and h(t) and their corresponding HPD intervals are
created in this section based on the SEL function. In order to do this, the Fr parameters
δ and θ are taken to have independent gamma (G(·)) priors with the form G(ν1, ϑ1) and
G(ν2, ϑ2), respectively. Gamma priors should be taken into account for a number of reasons,
including the fact that they (i) offer different shapes depending on parameter values, (ii) are
adaptable, and (iii) are quite simple, brief, and might not produce a result with a difficult
estimate problem. The joint prior density of δ and θ becomes

π(δ, θ) ∝ δν1−1θν2−1e−(δϑ1+θϑ2), (9)
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where νi > 0 and ϑi > 0 for i = 1, 2, are known. From (5) and (9), the joint posterior PDF of
δ and θ is

πρ( δ, θ|x) ∝ δDρ+ν1−1θDρ+ν2−1e−(δϑ1+θϑ2)
Dρ

∏
j=1

e−δx−θ
j x−θ

j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ). (10)

There are many reasons to consider the SEL in a Bayesian analysis: (i) it is the com-
monly used symmetric loss; (ii) it is simple, clear, concise, and fairly easy; (iii) it assumes
that the overestimation and underestimation are treated equally; and (iv) it develops the
Bayes estimator directly by taking the posterior mean. However, under the SEL function,
the posterior expectation of (10) yields the Bayes estimate of δ and θ (say ϕ̃(·)) as

ϕ̃(δ, θ) =
∫ ∞

0

∫ ∞

0
ϕ(δ, θ)πρ( δ, θ|x)dδdθ.

It is obvious from (10), that the explicit expression of the marginal PDFs of δ and θ is
not possible. Thus, to compute the acquired Bayes estimates and create their HPD intervals,
we suggest generating samples from (10) using Bayesian MCMC techniques. Therefore,
from (10), the conditional PDFs of δ and θ are provided, respectively, as

πδ
ρ( δ|θ, x) ∝ δDρ+ν1−1e−δϑ1

Dρ

∏
j=1

e−δx−θ
j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ), (11)

and

πθ
ρ( θ|δ, x) ∝ θDρ+ν2−1e−θ

(
ϑ2+∑

Dρ
j=1 ln(xj)

) Dρ

∏
j=1

e−δx−θ
j

(
1− e−δx−θ

j

)Rj

Rρ(Tτ ; δ, θ). (12)

It is clear, from (11) and (12), that there is no analytical way to reduce the posterior
PDFs of δ and θ, respectively, to any known distribution. Thus, the Metropolis–Hastings
(M-H) method is seen to be the best option for solving this issue; for detail see Gelman
et al. [21] and Lynch [22]. The M-H algorithm’s sampling procedure based on the normal
proposal distribution is carried out as follows:

Step-1: Set the starting values δ(0) = δ̂ and θ(0) = θ̂.

Step-2: Set s = 1.

Step-3: Create δ∗ and θ∗ from N(δ̂, σ̂2
δ̂
) and N(θ̂, σ̂2

θ̂
), respectively.

Step-4: Find ξδ = min
{

1,
πδ

ρ( δ∗ |θ(s−1);x)
πδ

ρ( δ(s−1)|θ(s−1);x)

}
and ξθ = min

{
1,

πθ
ρ( θ∗ |δ(s);x)

πθ
ρ( θ(s−1)|δ(s);x)

}
.

Step-5: Create samples u1 and u2 using the uniform U(0, 1) distribution.

Step-6: If both u1 and u2 are less than ξδ and ξθ , respectively, then set δ(s) = δ∗ and
θ(s) = θ∗, respectively. Otherwise, set δ(s) = δ(s−1) and θ(s) = θ(s−1), respectively.

Step-7: Set s = s + 1.

Step-8: Redo steps 3–7H times to get δ(s) and θ(s) for s = 1, 2, . . . ,H.

Step-9: Use δ(s) and θ(s), for t > 0, to compute the reliability R(t) and hazard rate h(t)
parameters, respectively, as

R(s)(t) = 1− e−δ(s)t−θ(s)
and h(s)(t) =

δ(s)θ(s)t−θ(s)−1

eδ(s)t−θ(s) − 1
.

In order to ensure the MCMC sampler’s convergence and to eliminate the impact of
initial guesses δ(0) and θ(0), the first simulated samples (sayH0) are eliminated as burn-in.
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The Bayesian estimates using the SEL function are therefore calculated using the remaining
H̄ = H−H0 samples of δ, θ, R(t), and h(t), (say ϕ̃(·)) as

ϕ̃(δ, θ) =
1
H̄

H
∑

s=H0+1
ϕ(s)(δ, θ).

Since the choice of symmetric (or asymmetric) loss is one of the main issues in the
Bayes analysis, one may incorporated any other type of loss function instead of the SEL
easily.

4. Interval Inference

In this section, the ACIs (based on observed Fisher information) and HPD intervals
(based on MCMC simulated variates) of δ, θ, R(t), and h(t) are created.

4.1. Asymptotic Intervals

The asymptotic variance–covariance (AVC) matrix, which is created by inverting the
Fisher information matrix, must first be computed in order to create the ACIs for δ and
θ. The MLEs (δ̂, θ̂) under some regularity criteria are normally distributed with mean
(δ, θ) and variance I−1(δ, θ). Following Lawless [23], we estimate I−1(δ, θ) by I−1(δ̂, θ̂) by
substituting δ̂ and θ̂ in place of δ and θ as

I−1(δ̂, θ̂) ∼=
[ −L11 −L12
−L21 −L22

]−1

(δ̂,θ̂)
=

[
σ̂2

δ̂
σ̂δ̂θ̂

σ̂θ̂δ̂ σ̂2
θ̂

]
, (13)

where Lij for i, j = 1, 2 are

L11 = −Dρ

δ2 −
Dρ

∑
j=1

Rjx−2θ
j e−δx−θ

j

(
1− e−δx−θ

j

)2 +
∂2Υρ(Tτ ; δ, θ)

∂δ2 ,

L22 = −Dρ

θ2 − δ

Dρ

∑
j−1

x−θ
j ln2(xj

)
− δ

Dρ

∑
j=1

Rjx−θ
j ln2(xj

)
e−δx−θ

j

(
e−δx−θ

j + δx−θ
j − 1

)

(
1− e−δx−θ

j

)2 − ∂2Υρ(Tτ ; δ, θ)

∂θ2 ,

and

L12 =
Dρ

∑
j−1

x−θ
j ln

(
xj
)
−

Dρ

∑
j=1

Rjx−θ
j ln

(
xj
)
e−δx−θ

j

(
1− 2e−δx−θ

j

)

(
1− e−δx−θ

j

)2 − ∂2Υρ(Tτ ; δ, θ)

∂θ∂δ
,

∂2Υρ(Tτ ; δ, θ)

∂δ2 = −
R∗dτ+1T−2θ

τ e−δT−θ
τ

(
1− e−δT−θ

τ

)2 ,

∂2Υρ(Tτ ; δ, θ)

∂θ2 =
R∗dτ+1δln2(Tτ)T−θ

τ e−δT−θ
τ

(
e−δT−θ

τ + δT−θ
τ − 1

)

(
1− e−δT−θ

τ

)2 ,

and

∂2Υρ(Tτ ; δ, θ)

∂θ∂δ
=

R∗dτ+1T−θ
τ ln(Tτ)e−δT−θ

τ

(
1− δT−θ

τ − e−δT−θ
τ

)

(
1− e−δT−θ

τ

)2 .
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Thus, for δ and θ, respectively, the two-sided 100(1− γ)% ACIs are provided by

δ̂± Z γ
2

√
σ̂2

δ̂
and θ̂ ± Z γ

2

√
σ̂2

θ̂
,

where Z γ
2

denotes the top γ
2 percentage points of the standard normal distribution.

Additionally, we use the delta approach to first determine the estimated variance of
R̂(t) and ĥ(t) (see Greene [24]) before building the ACIs of R(t) and h(t) as

σ̂2
R̂(t) = ∇

T
R̂ I−1(δ̂, θ̂

)
∇R̂ and σ̂2

ĥ(t) = ∇
T
ĥ I−1(δ̂, θ̂

)
∇ĥ,

where ∇T
R̂
=
[

∂R(t)
∂δ

∂R(t)
∂θ

]
(δ̂,θ̂)

and ∇T
ĥ
=
[

∂h(t)
∂δ

∂h(t)
∂θ

]
(δ̂,θ̂)

.

Following that, the two-sided 100(1− γ)% ACIs of R(t) and h(t) are provided, respec-
tively, by

R̂(t)± Z γ
2

√
σ̂2

R̂(t)
and ĥ(t)± Z γ

2

√
σ̂2

ĥ(t)
.

4.2. HPD Intervals

Using the approach proposed by Chen and Shao [25], the 100(1− γ)% HPD interval
estimations of δ, θ, R(t), or h(t) are constructed. First, we rank the MCMC samples of
ϕ(s) for s = H0 + 1,H0 + 2, . . . ,H as ϕ(H0+1), ϕ(H0+2), . . . , ϕ(H). Hence, the 100(1− γ)%
two-sided HPD interval of ϕ is provided by

ϕ(j∗), ϕ(j∗+(1−γ)H̄),

where j∗ = H0 + 1,H0 + 2, . . . ,H is selected so that

ϕ(j∗+[(1−γ)(H̄)]) − ϕ(j∗) = min
16j6γH̄

[
ϕ(j+[(1−γ)H̄]) − ϕ(j)

]
.

5. Monte Carlo Simulation

To evaluate the true performance of the acquired point/interval estimators of δ, θ,
R(t), and h(t), Monte Carlo simulations were conducted based on various combinations of
Ti, i = 1, 2 (threshold points), n (size of experimental items), m (size of effective sample),
and R (removal pattern). To establish this goal, for Fr(0.5, 1.5), we replicated the GPHC-T2
mechanism 1000 times. At t = 0.3, the true values of R(t) and h(t) were 0.9523 and 0.7620,
respectively. Taking (T1, T2) = (0.4, 0.8) and (0.8, 1.2), two different choices of n and m
were used as n(=40, 80) and the choices of m were taken as failure percentages (FPs) of each
n such as m

n (=50, 80)%. Additionally, for each (n, m), three progressive censoring plans R
were used, namely,

Scheme-1 : R = (n−m, 0∗(m− 1)),

Scheme-2 : R =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
,

Scheme-3 : R = (0∗(m− 1), n−m),

where R = (3, 0, 0, 4) was used as R = (3, 0∗2, 4)
Once 1000 GPHC-T2 samples had been collected, via R 4.2.2 programming software

by installing the “maxLik” package (by Henningsen and Toomet [19]), the MLEs and 95%
ACI estimates of δ, θ, R(t), and h(t) were evaluated. Via the “coda” package (by Plummer
et al. [20]) in R 4.2.2 programming software, to obtain the Bayes point estimates along
with their HPD interval estimates of the same unknown parameters, we simulated 12,000
MCMC samples and ignored the first 2000 iterations as burn-in. According to the prior
mean and prior variance criteria, two sets called Prior-I and -II of the hyperparameters
(a1, a2, b1, b2) were considered as (2.5, 7.5, 5, 5) and (5, 15, 10, 10), respectively.
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Specifically, the average point estimates (APEs) of δ, θ, R(t), or h(t) (say Ω) were
given by

Ω̌τ =
1
B
B
∑
i=1

Ω̌(i)
τ , τ = 1, 2, 3, 4,

where B is the number of replications, Ω̌(i) is the estimate of Ω at the ith sample, Ω1 = δ,
Ω2 = θ, Ω3 = R(t), and Ω4 = h(t).

A comparison between point estimates of Ω was made based on their root-mean-
square errors (RMSEs) and mean relative absolute biases (MRABs), respectively, as

RMSE(Ω̌τ) =

√√√√ 1
B
B
∑
i=1

(
Ω̌(i)

τ −Ωτ

)2
, τ = 1, 2, 3, 4,

and

MRAB(Ω̌τ) =
1
B
B
∑
i=1

1
Ωτ

∣∣∣Ω̌(i)
τ −Ωτ

∣∣∣, τ = 1, 2, 3, 4.

On the other hand, the comparison between the interval estimates of Ω was made
based on their average confidence lengths (ACLs) and coverage percentages (CPs) as

ACL(1−γ)%(Ωτ) =
1
B
B
∑
i=1

(
U

Ω̌(i)
τ
−L

Ω̌(i)
τ

)
, τ = 1, 2, 3, 4,

and

CP(1−γ)%(Ωτ) =
1
B
B
∑
i=1

1(
L

Ω̌(i)
τ

;U
Ω̌(i)

τ

)(Ωτ), τ = 1, 2, 3, 4,

respectively, where 1(·) is the indicator function, (L(·), U (·)) denote the (lower, upper)
bounds of (1− γ)% ACI (or HPD) interval of Ωτ .

Via a heatmap data visualization in R version 4.2.2 programming software (available
in https://cran.r-project.org/bin/windows/base (accessed on 23 January 2023), the sim-
ulated RMSEs, MRABs, ACLs, and CPs of δ, θ, R(t), or h(t) are shown in Figures 1–4,
respectively, while their numerical tables are available as Supplementary Materials. For
specialization, some notations of the proposed methods have been defined on the “x-axis”
line in Figures 1–3 such that (for Prior-I (say P1) as an example) the Bayes estimates is
referred to as “BE-P1” and the HPD interval estimates is denoted as “HPD-P1”.

From Figures 1–4, in terms of the lowest RMSE, MRAB, and ACL values as well as the
highest CP values, useful observations were found and can be easily reported as:

• The main general point is that the proposed estimates of δ, θ, R(t), or h(t) provided
good performance.

• As n(or m) increased, all estimates of µ, R(t), and h(t) performed satisfactory. A
similar result was obtained when ∑m

i=1 Ri decreased.
• As (T1, T2) increased, in most situations, the RMSEs, MRABs, and ACLs of all un-

known parameters decreased while their CPs increased.
• The Bayes estimates of δ, θ, R(t), or h(t), due to the gamma information, behaved

better compared to the other estimates as expected. A similar comment could also be
made in the case of HPD credible intervals.

• Since the variance of Prior-II was smaller than the variance of Prior-I, the MCMC
calculations under Prior-II provided more accurate estimates than others for all un-
known parameters.

• Comparing the proposed schemes 1, 2, and 3, in most cases, it was noted that the
proposed estimates of δ, θ, R(t), and h(t) behaved better using scheme 3 than the
others.
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• As a result, the Bayes M-H algorithm sampler is recommended to estimate the Fr
parameters or its reliability characteristics in the presence of data obtained from
generalized Type-II progressive hybrid censoring.
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Figure 1. Heatmap plots for the simulation outputs of δ.
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Figure 2. Heatmap plots for the simulation outputs of θ.
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Figure 3. Heatmap plots for the simulation outputs of R(t).
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Figure 4. Heatmap plots for the simulation outputs of h(t).

6. Optimal PC-T2 Designs

The experimenter may want to choose the “best” censoring scheme from a collection of
all accessible censoring schemes in order to offer the most information about the unknown
parameters under research, especially in the context of dependability. First, Balakrishnan
and Aggarwala [26] looked at the issue of selecting the best censoring approach in various
situations. However, several optimality criteria have been put forth, and many conclusions
on the best censoring schemes have been examined. The ideal censoring design R =
(R1, R2, . . . , Rm) such that n − m = ∑m

i=1 Ri can be proposed, and the precise values of
n (size of test units), m (effective sample), and Ti, i = 1, 2 (ideal test thresholds) are
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chosen beforehand based on the availability of the units, experimental facilities, and cost
considerations; for details, see Ng et al. [27].

The issue of contrasting two (or more) alternative censoring strategies has been ad-
dressed in a number of publications in the literature (for examples, see Sen et al. [28],
Elshahhat and Abu El Azm [29], Elshahhat et al. [30], among others). In our situation,
Table 2 provides a selection of frequently used metrics to assist us in selecting the ideal
censoring approach, Ci.

Table 2. Useful criteria for the best PC-T2 plan.

Criterion Target

C1 Maximize trace(I (δ̂, θ̂))
C2 Minimize trace(I−1(δ̂, θ̂))
C3 Minimize det(I−1(δ̂, θ̂))
C4 Minimize v̂ar(log(T̂$))

It is recommended to maximize the observed Fisher information, the I−1(·) values
for C1. In addition, for criteria C2 and C3, we want to minimize the determinant and trace
of I−1(·). For multiparameter distributions, the ideal censoring approach may be chosen
using scale-invariant criteria. While comparing the two Fisher information matrices is
more difficult when dealing with unknown multiparameter distributions, scale-invariant
criteria can be utilized to compare numerous criteria when dealing with single-parameter
distributions C4. Criterion C4 tends to minimize the variance of the logarithmic MLE of the
$th quantile, T$. Thus, from (3), the logarithmic of the Fr distribution T$ is given by

log(T̂$) =

[
− log($)

δ

]− 1
θ

(δ̂,θ̂)
, 0 < $ < 1. (14)

Applying the delta approach to (14), the approximation of the variance for the Fr
distribution’s log(T̂$) is obtained as

v̂ar(log(T̂$)) = ΣT
log(T̂$)

I−1(δ̂, θ̂) Σlog(T̂$)
,

where

ΣT
log(T̂$)

=

[
∂

∂δ
log(T̂$),

∂

∂θ
log(T̂$)

]

(δ̂,θ̂)
.

The highest value of the criteria C1 and the minimum value of the criterion Ci for
i = 2, 3, 4 correspond to the optimum censoring. Contrarily, the highest value of the
criterion C1 and the lowest value of other criteria correspond to the optimal censoring.

7. Real-Life Applications

To highlight the utility of the proposed estimation procedures and the applicability
of the study objectives to actual situations, this section presents two different applications
by analyzing two sets of useful real data taken from the physical and engineering fields.
These applications show that the proposed inferential approaches work satisfactorily under
real-life data using the proposed censoring plan.

7.1. March Precipitation

In this application, we considered a data set representing thirty successive values (in
inches) of precipitation in Minneapolis–Saint Paul for the month of March, see Table 3. This
data set was provided by Hinckley [31] and recently reanalyzed by Elshahhat et al. [32]. To
examine whether March precipitation data fit the Fr distribution or not, the Kolmogorov–
Smirnov (KS) statistic and its p-value were calculated. To establish this goal, from Table 3,
the MLEs (with their standard errors (SEs)) of δ and θ were 1.0252 (0.1978) and 1.5496
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(0.2027), respectively, meanwhile the KS (p-value) was 0.1524 (0.489). It means that the Fr
lifetime model fit the March precipitation data well. Using a graphic visualization, based
on the complete March precipitation data, Figure 5 displays (i) the estimated and empirical
RFs and (ii) the contour of the log-likelihood function with respect to various choices of δ
and θ. It supported the same findings as the KS test and showed that the MLEs δ̂ ∼= 1.025
and θ̂ ∼= 1.550 existed and were unique.

Table 3. Successive values of March precipitation.

0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20
3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05
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Figure 5. Empirical/fitted RFs (left); contour (right) plots from March precipitation data.

For the explanation of the proposed estimation methodologies, from the complete
March precipitation data, three GPHC-T2 samples with m = 10 and various thresholds
Ti, i = 1, 2 were generated and are reported in Table 4. Moreover, in Table 4, different
censoring plans R were utilized, namely, S1 : (2∗10), S2 : (5∗2, 0∗6, 5∗2), S3 : (6∗3, 0∗6, 2),
and S4 : (2, 0∗6, 6∗3). From Table 4, the maximum likelihood estimates (along with their
SEs) as well as the ACI estimates (along with their widths) of δ, θ, R(t), and h(t) (at t = 1)
were computed and are listed in Table 5. Since there was no prior information about
the unknown Fr parameters δ and θ from the given data set, by repeating the MCMC
sampler 50,000 times and ignoring the first 10,000 times as burn-in, the Bayes estimates
(with their SEs) as well as the HPD interval estimates (with their widths) were evaluated
using improper gamma priors and are provided in Table 5 as well. For the computational
logic, the unknown hyperparameters were set to 0.001. It is clear, from Table 5, that the
MCMC estimates of δ, θ, R(t), and h(t) behaved better than the others in terms of the
smallest standard error and interval width values.

Table 4. GPHC-T2 samples from March precipitation data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T∗

S1

1 3.40(11) 5.00(11) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48, 3.09, 3.37 1 3.40
2 2.00(7) 3.25(10) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48, 3.09 0 3.09
3 2.00(7) 2.50(9) 0.32, 0.59, 0.81, 1.18, 1.31, 1.51, 1.87, 2.05, 2.48 3 2.50

S2

1 2.95(11) 3.05(11) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 2.48, 2.81 4 2.95
2 2.25(9) 2.50(10) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 2.48 0 2.48
3 1.50(5) 2.00(9) 0.32, 0.81, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87 6 2.00

S3

1 3.50(11) 4.80(11) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00, 3.09, 3.37 1 3.50
2 2.75(7) 3.25(10) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00, 3.09 0 3.09
3 2.25(6) 3.05(9) 0.32, 0.90, 1.43, 2.05, 2.10, 2.20, 2.48, 2.81, 3.00 3 3.05

S4

1 2.60(11) 4.80(11) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62, 2.20, 2.48 5 2.60
2 1.10(7) 2.50(10) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62, 2.20 0 2.20
3 1.50(8) 2.10(9) 0.32, 0.59, 0.77, 0.81, 0.81, 0.90, 0.96, 1.18, 1.62 7 2.10
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Table 5. Point and 95% interval estimates of δ, θ, R(t), and h(t) from March precipitation data.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S1

1

δ 1.8514 0.3703 1.6588 0.2364 1.1256 2.5772 1.4517 1.3969 1.9224 0.5255
θ 0.9547 0.1974 0.8078 0.1878 0.5677 1.3417 0.7739 0.5750 1.0277 0.4527

R(1) 0.8430 0.0581 0.8079 0.0439 0.7290 0.9570 0.2279 0.7526 0.8538 0.1011
h(1) 0.3292 0.1084 0.3162 0.0557 0.1168 0.5416 0.4248 0.2183 0.4275 0.2093

2

δ 1.8803 0.3765 1.6879 0.2337 1.1424 2.6182 1.4758 1.4424 1.9576 0.5152
θ 0.9039 0.1991 0.7523 0.1922 0.5136 1.2941 0.7804 0.5353 0.9912 0.4559

R(1) 0.8475 0.0574 0.8135 0.0421 0.7349 0.9600 0.2251 0.7637 0.8588 0.0952
h(1) 0.3059 0.1046 0.2889 0.0545 0.1010 0.5108 0.4098 0.1962 0.3969 0.2007

3

δ 1.9040 0.3823 1.7049 0.2416 1.1547 2.6534 1.4988 1.4514 1.9965 0.5451
θ 0.8633 0.2033 0.7049 0.1974 0.4648 1.2618 0.7970 0.4664 0.9247 0.4583

R(1) 0.8510 0.0570 0.8165 0.0428 0.7394 0.9627 0.2233 0.7685 0.8662 0.0977
h(1) 0.2877 0.1028 0.2679 0.0545 0.0862 0.4892 0.4030 0.1634 0.3608 0.1974

S2

1

δ 2.3307 0.4210 2.1201 0.2523 1.5056 3.1559 1.6503 1.8228 2.3704 0.5476
θ 0.8229 0.1722 0.6788 0.1806 0.4853 1.1605 0.6752 0.4675 0.8874 0.4199

R(1) 0.9028 0.0409 0.8788 0.0294 0.8226 0.9830 0.1604 0.8466 0.9129 0.0662
h(1) 0.2066 0.0680 0.1969 0.0374 0.0733 0.3398 0.2666 0.1295 0.2686 0.1391

2

δ 1.8799 0.3918 1.6843 0.2392 1.1120 2.6479 1.5359 1.4255 1.9528 0.5273
θ 1.0014 0.2118 0.8466 0.1956 0.5863 1.4164 0.8301 0.6217 1.0810 0.4594

R(1) 0.8474 0.0598 0.8127 0.0432 0.7302 0.9646 0.2344 0.7596 0.8581 0.0985
h(1) 0.3390 0.1155 0.3261 0.0565 0.1126 0.5654 0.4528 0.2244 0.4378 0.2134

3

δ 1.8845 0.3952 1.6894 0.2366 1.1099 2.6591 1.5493 1.4467 1.9610 0.5144
θ 0.9891 0.2206 0.8256 0.2046 0.5568 1.4214 0.8647 0.6076 1.0796 0.4720

R(1) 0.8481 0.0600 0.8137 0.0425 0.7304 0.9658 0.2353 0.7646 0.8593 0.0946
h(1) 0.3339 0.1184 0.3168 0.0570 0.1018 0.5660 0.4642 0.2180 0.4256 0.2075

S3

1

δ 2.3735 0.4667 2.1580 0.2556 1.4589 3.2882 1.8294 1.8927 2.4194 0.5267
θ 0.8882 0.1730 0.7458 0.1808 0.5490 1.2273 0.6783 0.5500 0.9770 0.4269

R(1) 0.9069 0.0435 0.8834 0.0284 0.8216 0.9921 0.1704 0.8529 0.9141 0.0611
h(1) 0.2165 0.0766 0.2109 0.0366 0.0664 0.3667 0.3002 0.1397 0.2787 0.1389

2

δ 2.0295 0.4390 1.8276 0.2421 1.1691 2.8898 1.7207 1.5706 2.0924 0.5218
θ 1.0130 0.2028 0.8574 0.1962 0.6155 1.4105 0.7950 0.6199 1.0857 0.4658

R(1) 0.8686 0.0577 0.8378 0.0376 0.7555 0.9816 0.2261 0.7953 0.8787 0.0834
h(1) 0.3110 0.1121 0.3012 0.0508 0.0914 0.5307 0.4393 0.2087 0.4009 0.1921

3

δ 2.0708 0.4490 1.8624 0.2513 1.1908 2.9508 1.7600 1.5918 2.1203 0.5286
θ 0.9542 0.2040 0.7971 0.1973 0.5545 1.3540 0.7996 0.5466 1.0094 0.4627

R(1) 0.8739 0.0566 0.8432 0.0378 0.7630 0.9849 0.2219 0.7990 0.8817 0.0827
h(1) 0.2851 0.1065 0.2737 0.0485 0.0764 0.4938 0.4173 0.1826 0.3615 0.1788

S4

1

δ 1.7138 0.3237 1.5320 0.2232 1.0794 2.3482 1.2688 1.2781 1.7873 0.5092
θ 0.8887 0.2006 0.7435 0.1850 0.4955 1.2820 0.7865 0.5247 0.9780 0.4532

R(1) 0.8198 0.0583 0.7821 0.0471 0.7055 0.9341 0.2286 0.7277 0.8376 0.1099
h(1) 0.3347 0.1087 0.3149 0.0590 0.1216 0.5478 0.4262 0.2034 0.4170 0.2136

2

δ 1.6400 0.3231 1.4614 0.2202 1.0067 2.2733 1.2666 1.2305 1.7284 0.4979
θ 0.9122 0.2171 0.7602 0.1941 0.4867 1.3377 0.8510 0.5090 0.9807 0.4717

R(1) 0.8060 0.0627 0.7662 0.0500 0.6832 0.9289 0.2457 0.7115 0.8248 0.1133
h(1) 0.3600 0.1228 0.3365 0.0655 0.1193 0.6007 0.4814 0.2122 0.4520 0.2398

3

δ 1.6816 0.3330 1.4968 0.2297 1.0289 2.3343 1.3055 1.2307 1.7600 0.5293
θ 0.8508 0.2181 0.6970 0.1939 0.4232 1.2783 0.8551 0.4756 0.9421 0.4665

R(1) 0.8139 0.0620 0.7740 0.0506 0.6925 0.9354 0.2429 0.7130 0.8319 0.1189
h(1) 0.3271 0.1185 0.3020 0.0639 0.0948 0.5594 0.4646 0.1882 0.4165 0.2283

Various properties, namely, the mean, mode, median, first/third quartiles, standard
deviation (St.D), and skewness (Skew.) from 40,000 MCMC variates of δ, θ, R(t), and
h(t) were obtained and are presented in Table 6. To highlight the convergence of the
MCMC iterations, from each generated sample by S1 (for example), Figure 6 displays both
the density and trace plots of δ, θ, R(t), and h(t). For discrimination, the solid (—) line
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represents the Bayes estimate while the dashed (- - -) lines represent the HPD interval
bounds. It is clear, from Figure 6, that the MCMC technique converged favorably, and
the suggested size of the burn-in sample was sufficient to eliminate the influence of the
suggested initial values. Moreover, for each sample, Figure 6 shows that the calculated
estimates of δ, θ, and h(t) were fairly symmetrical while those associated with R(t) were
negatively skewed.

Table 6. Summary of MCMC draws of δ, θ, R(t), and h(t) from March precipitation data.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S1

1

δ 1.65884 1.44240 1.56456 1.66014 1.75286 0.13707 0.06177
θ 0.80782 0.78396 0.72868 0.80569 0.88953 0.11712 0.03572

R(1) 0.80785 0.76364 0.79082 0.80988 0.82672 0.02632 −0.30505
h(1) 0.31615 0.34999 0.27967 0.31448 0.35220 0.05417 0.21963

2

δ 1.68791 1.33249 1.59475 1.68677 1.77693 0.13267 0.04592
θ 0.75233 0.75994 0.67512 0.74995 0.83252 0.11832 0.03766

R(1) 0.81346 0.73618 0.79704 0.81488 0.83084 0.02478 −0.35833
h(1) 0.28894 0.36288 0.25335 0.28748 0.32189 0.05183 0.24360

3

δ 1.70488 1.39610 1.61328 1.70442 1.79652 0.13674 −0.00785
θ 0.70490 0.56174 0.62146 0.70547 0.78358 0.11780 0.06035

R(1) 0.81649 0.75244 0.80076 0.81812 0.83412 0.02523 −0.44389
h(1) 0.26785 0.25802 0.23289 0.26549 0.30269 0.05073 0.26045

S2

1

δ 2.12012 1.71551 2.02876 2.11993 2.21242 0.13895 −0.03581
θ 0.67875 0.71366 0.60156 0.67956 0.75084 0.10878 0.07255

R(1) 0.87881 0.82013 0.86851 0.87996 0.89056 0.01698 −0.48792
h(1) 0.19689 0.26852 0.17194 0.19544 0.22075 0.03612 0.27805

2

δ 1.68425 1.47094 1.58825 1.68506 1.77899 0.13749 0.07098
θ 0.84661 0.83066 0.76259 0.84304 0.93005 0.11962 0.04259

R(1) 0.81266 0.77029 0.79572 0.81457 0.83119 0.02572 −0.29661
h(1) 0.32609 0.36437 0.28879 0.32443 0.36352 0.05503 0.21025

3

δ 1.68935 1.47765 1.59572 1.68609 1.77855 0.13377 0.07314
θ 0.82559 0.63312 0.74114 0.82271 0.90966 0.12298 0.07918

R(1) 0.81371 0.77183 0.79724 0.81476 0.83112 0.02491 −0.32491
h(1) 0.31675 0.27657 0.27736 0.31461 0.35079 0.05436 0.28526

S3

1

δ 2.15798 1.86332 2.06271 2.15792 2.25137 0.13729 0.14454
θ 0.74578 0.79158 0.67012 0.74546 0.82224 0.11142 0.11278

R(1) 0.88336 0.84484 0.87289 0.88444 0.89475 0.01591 −0.22485
h(1) 0.21087 0.27088 0.18488 0.20956 0.23429 0.03621 0.32873

2

δ 1.82763 1.69518 1.73442 1.82638 1.91578 0.13367 0.12385
θ 0.85736 0.76249 0.77643 0.85412 0.93867 0.11953 0.05221

R(1) 0.83777 0.81643 0.82349 0.83901 0.85277 0.02159 −0.26012
h(1) 0.30121 0.29062 0.26634 0.29833 0.33361 0.04988 0.29036

3

δ 1.86243 1.63762 1.76459 1.86529 1.95677 0.14061 0.12317
θ 0.79707 0.61631 0.72013 0.80131 0.87467 0.11919 0.03519

R(1) 0.84317 0.80556 0.82874 0.84515 0.85869 0.02193 −0.23488
h(1) 0.27368 0.24361 0.24158 0.27169 0.30419 0.04713 0.25244

δ 1.53202 1.32668 1.44701 1.53007 1.61764 0.12947 0.04637

S4

1

θ 0.74345 0.60097 0.66593 0.74052 0.82041 0.11459 0.07596
R(1) 0.78209 0.73464 0.76473 0.78348 0.80163 0.02825 −0.34439
h(1) 0.31494 0.28799 0.27636 0.31184 0.35151 0.05561 0.25228

δ 1.46145 1.28186 1.37635 1.45918 1.54745 0.12887 0.04011

2

θ 0.76024 0.68648 0.68097 0.75701 0.84119 0.12069 0.05982
R(1) 0.76617 0.72248 0.74751 0.76757 0.78721 0.03021 −0.37683
h(1) 0.33652 0.33802 0.29477 0.33514 0.37521 0.06116 0.26036

δ 1.49676 1.11375 1.40627 1.49904 1.58976 0.13635 −0.05557

3
θ 0.69695 0.63129 0.61659 0.69281 0.77564 0.11814 0.15571

R(1) 0.77405 0.67168 0.75494 0.77666 0.79603 0.03108 −0.47954
h(1) 0.30203 0.34369 0.26199 0.29914 0.34097 0.05874 0.29132
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According to the optimum criteria Ci, i = 1, 2, 3, 4 presented in Section 6, utilizing
the generated samples in Table 4, the best PC-T2 plan was also proposed; see Table 7. It is
evident that

• Via criterion C1, the schemes S2 (in sample 1) and S1 (in samples 2 and 3) were the
optimum plans.

• Via criteria Ci, i = 2, 3, 4, the scheme S4 (in samples 1, 2, and 3) was the optimum plan.
• The ideal PC-T2 plans suggested here confirmed the findings listed in Section 5.

Figure 6. Density (left) and trace (right) plots of δ, θ, R(t), and h(t) from March precipitation data.

Table 7. Optimum PC-T2 plans from March precipitation data.

Sample
Scheme C1 C2 C3

C4

$→ 0.3 0.6 0.9

1

S1 33.1788 0.17613 0.00531 0.13763 2.38870 311.913
S2 40.1670 0.20691 0.00515 0.32813 6.92420 1148.77
S3 38.4794 0.24774 0.00644 0.29390 4.63153 535.519
S4 34.9765 0.14503 0.00415 0.12876 1.95256 182.945

2

S1 32.4967 0.18138 0.00558 0.17374 2.88478 333.724
S2 28.9297 0.19837 0.00686 0.13316 2.11421 253.737
S3 29.5870 0.23382 0.00790 0.16429 1.92208 137.821
S4 31.9176 0.15153 0.00475 0.11751 1.70550 135.791

3

S1 31.2816 0.18753 0.00599 0.21677 4.17175 580.510
S2 27.1783 0.20486 0.00754 0.16105 3.54841 556.485
S3 29.0505 0.24319 0.00837 0.21440 2.93514 262.146
S4 31.2035 0.15850 0.00508 0.14613 2.00214 168.034
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7.2. Vehicle Fatalities

For this application, we analyzed a real data set representing the number of vehicle
fatalities for thirty-nine counties in South Carolina during 2012. These data were obtained
from the National Highway Traffic Safety Administration (www-fars.nhtsa.dot.gov/States)
and reported first by Mann [33]; see Table 8. First, to check the fit status, the KS statistics
(with its p-value) and MLEs (with their SEs) based on all of vehicle fatalities data were
computed. From Table 8, the MLEs (SEs) of δ and θ were 7.8474 (1.8243) and 0.9719
(0.1068), respectively, meanwhile the KS (p-value) was 0.1648 (0.240). It showed that the Fr
distribution was a suitable life model for the vehicle fatalities data. Additionally, Figure 7
corroborated the same goodness-of-fit results and suggested taking the estimates δ̂ ∼= 7.8474
and θ̂ ∼= 0.9719 (that is, θ̂ existed and was unique) as initial guesses to run any proposed
numerical evaluations.

Table 8. Motor vehicle deaths in South Carolina for 2012.

22 26 17 4 48 9 9 31 27 20
12 6 5 14 9 16 3 33 9 20
68 13 51 13 2 4 17 16 6 52
50 48 23 12 13 10 15 8 1
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Figure 7. Empirical/fitted RFs (left); contour (right) plots from vehicle fatalities data.

To evaluate our acquired estimators, different artificial GPHC-T2 samples (when
m = 20) based on different choices of R and Ti, i = 1, 2 were obtained from the vehicle
fatalities data and are presented in Table 9. The censoring mechanisms used here were
designed as S1 : (1∗19, 0), S2 : (3∗3, 0∗13, 1, 3∗3), S3 : (6∗3, 0∗16, 1), and S4 : (1, 0∗16, 6∗3).

From Table 9, the point and interval estimates obtained via the maximum likelihood
and Bayes estimation approaches of δ, θ, R(t), and h(t) (at t = 5) were determined and
are provided in Table 10. The Bayesian results were carried out under the noninformative
priors. As a result, from Table 10, the point estimates of the unknown parameters had
the same behavior, as they appeared to be near each other. A similar behavior was also
observed in the case of interval estimates. This was an expected result due to the lack of
additional historical information that could be used, which in turn made no significant
difference between the proposed frequentist and Bayesian estimates.
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Table 9. GPHC-T2 samples from vehicle fatalities data.

Scheme Sample T1(d1) T2(d2) Generated Data R∗ T∗

S1

1 70(21) 75(21) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48, 50, 52, 68 0 70
2 35(17) 60(20) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48, 50, 52 0 52
3 25(15) 49(18) 1, 2, 4, 5, 6, 9, 9, 10, 12, 13, 14, 16, 17, 20, 22, 26, 31, 48 4 49

S2

1 55(22) 70(22) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31, 50, 51, 52 1 55
2 18(16) 60(20) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31, 50 0 50
3 21(17) 40(19) 1, 4, 8, 9, 10, 12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 20, 22, 31 4 40

S3

1 70(21) 75(21) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48, 50, 51, 52, 68 0 70
2 40(15) 70(20) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48, 50, 51, 52 0 52
3 19(7) 49(17) 1, 6, 12, 16, 16, 17, 17, 20, 20, 22, 23, 26, 27, 31, 33, 48, 48 4 49

S4

1 49(22) 70(22) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20, 33, 48, 48 4 49
2 30(19) 50(20) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20, 33 0 33
3 19(18) 32(19) 1, 3, 4, 4, 5, 6, 6, 8, 9, 9, 9, 9, 10, 12, 12, 13, 13, 13, 20 6 30

Table 10. Point and 95% interval estimates of δ, θ, R(t), and h(t) from vehicle fatalities data.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

∞2

1

δ 6.4352 1.6264 6.2790 0.1963 3.2476 9.6229 6.3753 6.0529 6.5206 0.4677
θ 0.6926 0.1043 0.6494 0.0729 0.4881 0.8971 0.4090 0.5393 0.7655 0.2262

R(5) 0.8789 0.0430 0.8887 0.0252 0.7945 0.9632 0.1687 0.8425 0.9308 0.0883
h(5) 0.0403 0.0106 0.0359 0.0093 0.0195 0.0611 0.0415 0.0215 0.0527 0.0313

2

δ 6.2622 1.5457 6.0989 0.2048 3.2327 9.2917 6.0590 5.8370 6.3190 0.4820
θ 0.6751 0.1031 0.6313 0.0734 0.4729 0.8772 0.4043 0.5138 0.7441 0.2303

R(5) 0.8791 0.0424 0.8887 0.0252 0.7961 0.9621 0.1660 0.8417 0.9307 0.0889
h(5) 0.0392 0.0104 0.0349 0.0092 0.0189 0.0596 0.0407 0.0201 0.0511 0.0310

3

δ 5.8676 1.4876 5.6906 0.2217 2.9520 8.7833 5.8313 5.3873 5.9128 0.5255
θ 0.6320 0.1048 0.5869 0.0731 0.4265 0.8375 0.4109 0.4742 0.6977 0.2236

R(5) 0.8802 0.0426 0.8893 0.0243 0.7966 0.9638 0.1672 0.8429 0.9296 0.0866
h(5) 0.0365 0.0099 0.0324 0.0086 0.0172 0.0558 0.0386 0.0188 0.0477 0.0288

S2

1

δ 7.5035 2.0715 7.2561 0.2921 3.4434 11.564 8.1202 6.9272 7.5138 0.5866
θ 0.6528 0.0995 0.6161 0.0627 0.4577 0.8479 0.3902 0.5127 0.7128 0.2001

R(5) 0.9275 0.0326 0.9312 0.0155 0.8636 0.9914 0.1278 0.9007 0.9579 0.0572
h(5) 0.0268 0.0078 0.0245 0.0062 0.0115 0.0421 0.0305 0.0141 0.0359 0.0218

2

δ 7.7362 2.0966 7.4992 0.2785 3.6270 11.846 8.2186 7.2111 7.7641 0.5530
θ 0.7523 0.1103 0.7077 0.0744 0.5362 0.9684 0.4323 0.5860 0.8211 0.2352

R(5) 0.9003 0.0401 0.9079 0.0225 0.8216 0.9789 0.1573 0.8667 0.9483 0.0816
h(5) 0.0384 0.0109 0.0344 0.0092 0.0170 0.0598 0.0428 0.0188 0.0507 0.0318

3

δ 7.6067 2.0985 7.3867 0.2595 3.4937 11.720 8.2262 7.1073 7.6411 0.5337
θ 0.7420 0.1124 0.6938 0.0783 0.5217 0.9623 0.4406 0.5712 0.8133 0.2421

R(5) 0.9002 0.0404 0.9094 0.0236 0.8210 0.9794 0.1584 0.8676 0.9493 0.0817
h(5) 0.0379 0.0108 0.0334 0.0095 0.0167 0.0592 0.0425 0.0178 0.0495 0.0317

S3

1

δ 9.2039 2.7553 8.9694 0.2811 3.8036 14.604 10.801 8.6897 9.2987 0.6090
θ 0.7815 0.1100 0.7387 0.0745 0.5658 0.9971 0.4313 0.6238 0.8582 0.2344

R(5) 0.9270 0.0378 0.9333 0.0191 0.8529 0.9978 0.1449 0.8984 0.9652 0.0668
h(5) 0.0322 0.0112 0.0287 0.0085 0.0102 0.0543 0.0441 0.0149 0.0440 0.0291

2

δ 8.9795 2.6017 8.7588 0.2627 3.8802 14.079 10.199 8.5049 9.0478 0.5430
θ 0.7661 0.1083 0.7230 0.0748 0.5539 0.9784 0.4246 0.5989 0.8415 0.2425

R(5) 0.9270 0.0368 0.9336 0.0190 0.8548 0.9991 0.1444 0.8984 0.9662 0.0678
h(5) 0.0316 0.0109 0.0280 0.0084 0.0102 0.0530 0.0427 0.0138 0.0428 0.0291

3

δ 8.1794 2.3471 7.9443 0.2780 3.5792 12.780 9.2004 7.6748 8.2128 0.5381
θ 0.7061 0.1083 0.6605 0.0774 0.4938 0.9184 0.4246 0.5440 0.7805 0.2366

R(5) 0.9276 0.0361 0.9341 0.0194 0.8569 0.9983 0.1414 0.8988 0.9659 0.0671
h(5) 0.0289 0.0100 0.0255 0.0081 0.0094 0.0485 0.0391 0.0124 0.0395 0.0271
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Table 10. Cont.

Scheme Sample Par.
MLE MCMC ACI HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S4

1

δ 6.2440 1.5894 6.0212 0.2627 3.1289 9.3591 6.2302 5.7671 6.2754 0.5083
θ 0.7337 0.1116 0.6827 0.0818 0.5149 0.9524 0.4375 0.5578 0.8022 0.2444

R(5) 0.8530 0.0461 0.8641 0.0299 0.7625 0.9434 0.1809 0.8112 0.9156 0.1044
h(5) 0.0485 0.0118 0.0431 0.0111 0.0254 0.0715 0.0461 0.0251 0.0616 0.0365

2

δ 6.0989 1.6122 5.8599 0.2795 2.9389 9.2588 6.3199 5.6177 6.1841 0.5664
θ 0.7190 0.1167 0.6667 0.0816 0.4902 0.9479 0.4577 0.5402 0.7844 0.2443

R(5) 0.8530 0.0466 0.8637 0.0296 0.7615 0.9444 0.1829 0.8109 0.9164 0.1055
h(5) 0.0475 0.0118 0.0422 0.0109 0.0245 0.0706 0.0461 0.0242 0.0600 0.0359

3

δ 6.0137 1.5585 5.7737 0.2813 2.9591 9.0684 6.1093 5.4699 6.0277 0.5578
θ 0.7203 0.1177 0.6635 0.0880 0.4896 0.9510 0.4614 0.5395 0.8025 0.2631

R(5) 0.8484 0.0471 0.8609 0.0321 0.7561 0.9408 0.1847 0.7997 0.9141 0.1143
h(5) 0.0486 0.0122 0.0426 0.0118 0.0247 0.0724 0.0478 0.0243 0.0630 0.0387

The vital statistics of δ, θ, R(t), and h(t), obtained based on 40,000 MCMC variates,
namely, the mean, mode, median, first/third quartiles, St.D, and skewness were calculated
and are listed in Table 11. Moreover, using the data sets generated by S1 as an example, the
density and trace plots of δ, θ, R(t), and h(t) were plotted and are displayed in Figure 8.
They demonstrated that the MCMC method converged effectively. It is also clear that the
MCMC iterations of δ and θ were fairly symmetrical while those associated with R(t) and
h(t) were negatively and positively skewed, respectively.

Table 11. MCMC properties of δ, θ, R(t), and h(t) from vehicle fatalities data.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S1

1

δ 6.27902 6.07238 6.19440 6.27871 6.35796 0.11885 0.12109
θ 0.64937 0.60836 0.60836 0.64920 0.68829 0.05868 0.10751

R(5) 0.88874 0.89782 0.87410 0.89025 0.90534 0.02314 −0.45401
h(5) 0.03592 0.03158 0.02987 0.03539 0.04103 0.00819 0.47887

2

δ 6.09886 5.83703 6.01562 6.10033 6.17950 0.12355 −0.00218
θ 0.63130 0.59457 0.59062 0.63021 0.66983 0.05894 0.16323

R(5) 0.88871 0.89373 0.87396 0.89032 0.90551 0.02330 −0.50969
h(5) 0.03494 0.03169 0.02915 0.03425 0.03991 0.00811 0.54586

3

δ 6.09886 5.83703 6.01562 6.10033 6.17950 0.12355 −0.00218
θ 0.63130 0.59457 0.59062 0.63021 0.66983 0.05894 0.16323

R(5) 0.88871 0.89373 0.87396 0.89032 0.90551 0.02330 −0.50969
h(5) 0.03494 0.03169 0.02915 0.03425 0.03991 0.00811 0.54586

S2

1

δ 7.25614 6.92722 7.14857 7.26059 7.36376 0.15535 −0.05403
θ 0.61609 0.58145 0.58145 0.61666 0.65115 0.05087 0.09922

R(5) 0.93118 0.93395 0.92209 0.93217 0.94205 0.01510 −0.47310
h(5) 0.02451 0.02235 0.02046 0.02411 0.02811 0.00574 0.50290

2

δ 7.49919 7.29232 7.39787 7.49533 7.59669 0.14611 0.14063
θ 0.70769 0.71028 0.66841 0.70805 0.74481 0.05960 0.06435

R(5) 0.90789 0.90220 0.89555 0.90828 0.92348 0.02120 −0.45521
h(5) 0.03443 0.03580 0.02853 0.03409 0.03933 0.00825 0.47964

3

δ 7.38668 7.10877 7.28818 7.38192 7.47749 0.13747 0.20688
θ 0.69382 0.73684 0.65019 0.69430 0.73573 0.06176 0.08418

R(5) 0.90938 0.88600 0.89566 0.91127 0.92470 0.02170 −0.53495
h(5) 0.03341 0.04118 0.02753 0.03274 0.03856 0.00838 0.53320
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Table 11. Cont.

Scheme Sample Par. Mean Mode 1st Quart. Median 3rd Quart. St.D Skew.

S3

1

δ 8.96935 8.58414 8.87126 8.97489 9.07186 0.15489 −0.11977
θ 0.73871 0.79551 0.69502 0.73939 0.78131 0.06101 0.07219

R(5) 0.93335 0.90800 0.92240 0.93476 0.94659 0.01795 −0.57091
h(5) 0.02873 0.03846 0.02306 0.02822 0.03361 0.00776 0.54583

2

δ 8.75879 8.52297 8.65921 8.75582 8.85316 0.14244 0.13097
θ 0.72303 0.66433 0.68138 0.72298 0.76373 0.06108 0.10960

R(5) 0.93364 0.94638 0.92273 0.93515 0.94626 0.01782 −0.63479
h(5) 0.02805 0.02203 0.02266 0.02752 0.03260 0.00762 0.61696

3

δ 7.94430 7.67479 7.83967 7.94385 8.04518 0.14838 0.20050
θ 0.66047 0.71265 0.61505 0.65708 0.70477 0.06251 0.13608

R(5) 0.93411 0.91262 0.92193 0.93677 0.94782 0.01824 −0.63194
h(5) 0.02554 0.03326 0.01996 0.02442 0.03041 0.00734 0.62253

δ 6.02117 5.85999 5.91772 6.01872 6.11777 0.13903 0.23533

S4

1

θ 0.68273 0.61467 0.63882 0.68367 0.72573 0.06396 0.05950
R(5) 0.86408 0.88685 0.84640 0.86541 0.88432 0.02776 −0.37107
h(5) 0.04313 0.03418 0.03578 0.04260 0.04920 0.00973 0.39941

δ 5.85988 5.53493 5.76293 5.85735 5.95667 0.14492 0.07564

2

θ 0.66665 0.68793 0.62290 0.66654 0.70781 0.06254 0.07949
R(5) 0.86374 0.83947 0.84488 0.86631 0.88260 0.02761 −0.37640
h(5) 0.04218 0.04813 0.03531 0.04143 0.04813 0.00947 0.41417

δ 5.77368 5.47975 5.67229 5.76992 5.87478 0.14664 0.09816

3

θ 0.66351 0.63075 0.61691 0.66383 0.70766 0.06721 0.06895
R(5) 0.86094 0.86270 0.84218 0.86270 0.88203 0.02955 −0.42338
h(5) 0.04258 0.03986 0.03520 0.04198 0.04890 0.01013 0.45365

Figure 8. Density (left) and trace (right) plots of δ, θ, R(t), and h(t) from vehicle fatalities data.

Again, from Table 9, the problem of selecting an optimum PC-T2 plan is also illustrated
based on vehicle fatalities data; see Table 12. It shows that:
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• Via criterion C1, the schemes S2 (in samples 1 and 2) and S3 (in sample 3) were the
optimum plans.

• Via criteria Ci, i = 2, 3, the scheme S1 (in samples 1, 2, and 3) was the optimum plan.
• Via criterion C4; the scheme S4 (in samples 1, 2, and 3) was the optimum plan.
• The ideal PC-T2 plans provided here supported our findings from Section 5 as well.

Finally, based on both physical and engineering scenarios, we can draw the conclusion
that the investigated approaches provided an adequate interpretation of the Fréchet lifetime
model when a sample was generated from the generalized Type-II progressive hybrid
censoring mechanism.

Table 12. Optimum PC-T2 plans from vehicle fatalities data.

Sample
Scheme C1 C2 C3

C4

$→ 0.3 0.6 0.9

1

S1 224.0199 2.395783 0.010695 9.631151 256.7524 92,617.13
S2 308.4324 4.30110 0.013945 17.72368 517.4279 227,824.3
S3 205.2758 7.603747 0.037042 11.68548 179.4937 29,616.80
S4 196.9198 2.538555 0.012891 4.878394 104.0239 26,231.06

2

S1 200.1599 2.492961 0.012455 8.04740 196.9935 60,769.58
S2 206.0574 4.407945 0.021392 8.279247 157.4971 35,747.67
S3 205.3611 6.780726 0.033019 12.5469 208.1168 37,439.37
S4 190.6955 2.612971 0.01370 5.328222 125.0294 33,173.61

3

S1 201.6662 2.360953 0.011707 10.68031 328.4031 145,470.3
S2 203.6842 4.416535 0.021683 8.808981 176.8395 40,252.86
S3 207.2369 5.52049 0.026639 17.9720 393.9506 106,057.5
S4 180.4068 2.442885 0.013541 5.187278 123.4222 34,735.87

8. Concluding Remarks

This work considered the generalized Type-II progressive hybrid censoring-based
Fréchet model’s reliability analysis of the unknown parameters, reliability and hazard rate
functions. The Newton–Raphson iterative approach was used to calculate the frequentist
estimates with their asymptotic confidence intervals for the unknown parameters and any
function of them using the R programming language’s “maxLik” package. The posterior
density function was derived in nonlinear form since the likelihood function was generated
in complex form. Therefore, using the Metropolis–Hastings method and taking into account
the squared-error loss, the Bayesian estimates and the corresponding HPD intervals were
constructed. Numerous simulation experiments based on various selections of total test
units, observed failure data, threshold times, and progressive censoring plans were carried
out to compare the behavior of the acquired estimates, and they demonstrated that the
Bayes MCMC approach outperformed the frequentist approach quite satisfactorily. It
is advised to use the Bayesian MCMC paradigm to estimate the Fréchet distribution’s
parameters, reliability, and hazard functions under generalized Type-II progressive hybrid
censoring. To show how the suggested methods could be applied in practical situations, two
applications representing the successive values (in inches) of precipitation in Minneapolis–
Saint Paul and the number of vehicle fatalities in South Carolina were examined. We
anticipate reliability practitioners will find the findings and methodology presented here
useful and that they will be applied to further filtering strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15020348/s1, Table S1: The APEs (1st column), RMSEs (2nd
column) and MRABs (3rd column) of δ; Table S2: The APEs (1st column), RMSEs (2nd column) and
MRABs (3rd column) of θ; Table S3: The APEs (1st column), RMSEs (2nd column) and MRABs (3rd
column) of R(t); Table S4: The APEs (1st column), RMSEs (2nd column) and MRABs (3rd column) of
h(t); Table S5: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of
δ; Table S6: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of θ;
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Table S7: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of R(t);
Table S8: The ACLs (1st column) and CPs (2nd column) of 95% ACI/HPD credible intervals of h(t).
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7491 Trondheim, Norway
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: A control chart is the most well-known statistical monitoring tecnique to address un-
favourable process parameter (s) changes. Quality practitioners always desire a charting device
that promptly identifies the undesired changes in the process. This study intends to design a sensi-
tive homogeneously weighted moving average chart using two supplementary variables (hereafter,
TAHWMA). The two supplementary variables are correlated with the study variable in the form
of a regression estimator, which is an efficient and unbiased estimator for the process mean. The
suggested TAHWMA charting structure is checked out and compared in terms of appearance and
non-appearance of multicollinearity amidst the two additional variables. Average run length-related
measures are taken as performance measures. It is observed that the proposed TAHWMA scheme
performs effectively when the two supplementary variables have no collinearity. A comprehensive
comparison between the proposed TAHWMA and existing charts is also carried out, showing the
proposed’s supremacy over existing counterparts. For execution purposes, two illustrative examples,
one belonging to carbon fibre manufacturing-related data and the other using a simulated dataset
and where our simulated dataset belongs to symmetrical distribution, are also presented for the
application of the recommended TAHWMA chart.

Keywords: average run length; control chart; multicollinearity; regression estimator; supplementary
variable

1. Introduction

Quality control is an essential aspect of production management. Many management
and engineering techniques are widely used to maintain the quality of goods and services
that fulfil increasing customer demand. Companies can monitor their processes with
the application of control charts for producing high-quality products. In an ongoing
process, change/variation is an inevitable output factor. Statistical process control (SPC) is
handy for controlling the variation of methods. Variations are divided into two significant
categories: natural and unnatural variations, respectively. Suppose natural changes occur
in any running process. In that case, the process is assumed to be statistically in-control
(IC), while unusual changes lead the running process to an out-of-control (OOC) state
(Montgomery [1]).

Control charts are customarily utilized when unnatural variations exist in the process.
The charting mechanism based on the Shewhart [2] structure is a type of memoryless
chart because it accepts only recent sample information. The cumulative sum (CUSUM)
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charting scheme is an example of a memory-type charting mechanism that was originated
by Page [3]. Another memory-type control chart, namely the exponentially weighted
moving average (EWMA), was initiated by Roberts [4], and the homogenously weighted
moving average proposed by Abbas [5] is also a memory-type chart. The above memory-
type charts utilize the previous information along with recent sample information. In
any manufacturing industry, SPC quality inspectors have adopted several supplementary
techniques to improve the output of any continuing process.

To spot a shift in the process parameter (s) efficiently and enhance the control chart’s
sensitivity in SPC literature, utilising the supplementary information and different sampling
schemes is considered the best option. Recently, the concept of supplementary information
has been tested for enhancing the performance of the existing charting schemes by many
researchers. The charting situation when the study characteristic is observed correlated
with another supplementary feature; such a structure is called an AIB-based charting design
(cf. Haq and Khoo [6]). The extraneous information at the estimation phase or information
other than the sample is called supplementary or supplementary information.

The regression-based control charts were designed by Mandel [7] and Zhang [8] to
screen the process. The utilization of supplementary information in the control chart
was initiated by Riaz [9,10] for supervising the process dispersion and location param-
eters, respectively. Riaz et al. [11] suggested a new AIB-Shewhart control chart un-
der normal and non-normal scenarios for monitoring the process. Furthermore, the
(AIB-GWMCV) chart was proposed by Nuriman et al. [12]. Haq and Khoo [13] de-
veloped an AIB-synthetic charting scheme to improve the efficiency of the synthetic
mean model. Recently, the monitoring of the coefficient of variation using supplemen-
tary information has been initiated by Abbasi [14]. In addition, Nuriman et al. [12] pro-
posed a supplementary information-based control chart for efficiently monitoring the
process CV. Muhammad Arslan et al. [15] studied a mixed EWMA Dual Crosier CUSUM
chart with and without supplementary information. The interested readers are referred
to Abbas et al. [16], Chen, J. H., & Lu, S. L. [17], Rasheed et al. [18], Aslam et al. [19],
Anwar et al. [20], Rasheed et al. [21], and Zhang et al. [22] for more recent work on HWMA
structure and supplementary information-based charting schemes.

Recently, Zichuan et al. [23] designed two AIB EWMA (name hereafter; TAEWMA)
control charts to monitor small shifts in the process mean promptly. Taking inspiration
from Zichuan et al. [23], this study proposes a new HWMA charting scheme based on
two supplementary variables (TAHWMA) to monitor small changes in the process mean
quickly. The proposed TAHWMA chart is also investigated under the appearance and
non-appearance of the multicollinearity behaviour among the two supplementary vari-
ables. The performance of the proposed design has been evaluated using run-length (RL)
characteristics, where run length is defined as the number of samples before a chart signal.
The expected value of the run lengths is recognized as average run length (ARL). ARL0
and ARL1 known as IC ARL and OOC ARL values, respectively.

The rest of the article is organized as follows: The design structures of the existing
control charts are briefly described in Section 2. The designed structure of the proposed
TAHWMA chart and RL evaluation is presented in Section 3. The comparison of the
proposed TAHWMA chart against the existing charts is presented in Section 4. Illustrative
examples are conferred in Section 5, and the conclusions of this article are provided in
Section 6.

2. Design Structures of Some Existing Control Charts

In this section of the article, existing counterparts are briefly described. The classical
HWMA, AHWMA, classical EWMA, and AEWMA control charts are the competitors of
the proposed TAHWMA control chart.
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2.1. Design Structure of the HWMA Control Chart

Assume the quality characteristic Yij ∼ N(µ, σ2) to be monitored; when the process is
IC, it is assumed that both process parameters µ and σ are known, i.e., µ = µ0 and σ = σy,
respectively. To monitor the process mean, the classical HWMA chart was recently designed
by Abbas [5]. The plotting statistic of the HWMA chart is given as:

Hi = λYi + (1− λ)Yi−1, (1)

where λ is known as smoothing parameter that is parameter of the HWMA charting
scheme; its value lies between 0 and 1. The HWMA chart is more efficient at small choices
of the smoothing parameter λ. Abbas [5] showed that the Shewhart control chart becomes

the particular case of the HWMA chart at λ = 1. Where Yi−1 =

i−1
∑

k=1
Yk

i−1 is the mean of the

remaining (i− 1) sample means, and The Yi is the sample average of ith the sample. Control
limits of the HWMA are given as:

LCL =





µ0 − L
√

λ2σ2
y

n , if i = 1

µ0 − L
√

λ2σ2
y

n + (1− λ)2 σ2
y

n(i−1) , if i > 1

CL = µ0,

UCL =





µ0 + L
√

λ2σ2
y

n , if i = 1

µ0 + L
√

λ2σ2
y

n + (1− λ)2 σ2
y

n(i−1) , if i > 1

(2)

where the width of the control chart is known as L. The HWMA chart produces an OOC
signal if the Hi statistic presented in Equation (1) goes beyond the control limits described
in Equation (2).

2.2. Design Structure of the AHWMA Control Chart

For monitoring the process location, the supplementary-based HWAM (AHWMA)
chart was proposed by Adegoke et al. [20]. According to Adegoke et al. [24], the study
variable Yij is correlated with the supplementary variable Xij (Cochran [25]). The regression
can be expressed as:

Ri = Yi + bYX(µX − Xi) (3)

where bYX = ρYX

(
σY
σX

)
is expressed as the regression coefficient. The mean and the variance

of the regression estimator are µR = µY and σ2
R =

σ2
Y
n (1− ρ2

YX), respectively. The AHWMA
charting scheme is given below,

Di = λRi + (1− λ)Ri−1. (4)

In Equation (4) Ri is the regression estimate of the process variable while Ri−1 is the
average of all previous samples. The control limits of the AHWMA chart are expressed as:

LCL =





µ0 − LσY

√
λ2

n (1− ρ2
yx), if i = 1

µ0 − LσY

√
( λ2

n + (1−λ)2

n(i−1) )(1− ρ2
yx), if i > 1

CL = µ0,

UCL =





µ0 + LσY

√
λ2

n (1− ρ2
yx), if i = 1

µ0 + LσY

√
( λ2

n + (1−λ)2

n(i−1) )(1− ρ2
yx), if i > 1

(5)
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where L is the width of control limits of the AHWMA control chart and λ is chosen to
achieve a desired IC ARL for the chart. The AHWMA chart produces an OOC signal if the
Di statistic presented in Equation (4) goes outside the control limits given in Equation (5).

2.3. Design Structure of the Classical EWMA Control Chart

The classical EWMA charting scheme to examine the process location was suggested
by Roberts [4]. The classical EWMA charting statistic is given below:

Si = λYi + (1− λ)Si−1, (6)

where Si−1 is the information at (i − 1)th time E(Si) = µ0, and Var(Si) = σ2
Y
( λ

2−λ (1−
(1− λ)2i)) are the mean and variance for the IC process. The control limits for the classical
EWMA charts are:

LCL =

{
µ0 − LσY

√
λ

2−λ (1− (1− λ)2i),

CL = µ0,

UCL =

{
µ0 + LσY

√
λ

2−λ (1− (1− λ)2i).

(7)

It is interesting to note that the Shewhart chart is a special case of EWMA at λ = 1.
The classical EWMA chart detects an OOC state if any plotting statistic Si falls beyond the
control limits described in Equation (7).

2.4. Design Structure of the AEWMA Control Chart

The supplementary variable-based EWMA chart for monitoring the process location
was suggested by Abbas et al. [12]. Let us assume Xi known as a supplementary variable
and is associated with the variable of interest Yi. The term ρYX is known as the correlation
between the two variables. The bivariate symmetrical distribution can be expressed as
(Y, X) ∼ N2(µY,µX, σ2

Y, σ2
X, ρYX). For monitoring the population mean µ0, the regression

estimator based on supplementary information is given as (Cochran [25]):

CY = Y + bYX(µX − X), (8)

where bYX = ρYX

(
σY
σX

)
is presenting change the measures Y due to a one-unit change in X,

and in Equation (9) mean and variance of the regression estimator is given below

E(CY) = µ0,Var(CY) = σ2
Y =

σ2
Y
n
(1− ρ2

YX) =
σ2

Y − b2
YXσ2

X
n

, (9)

CY is an unbiased estimator of µ0 and Var(CY) < Var(Y) for ρ2
YX > 0. The AEWMA

statistic based on the regression estimator is defined as

Ei = λCY + (1− λ)Ei−1 (10)

The value of EWMA statistics Ei−1 presents past information and is taken from the
initial to (i − 1) sample group. The value E0 is commonly accepted as equal to the target

mean µ0. The variance Var(CY) = σ2
Y =

σ2
Y
n (1− ρ2

YX) =
σ2

Y−b2
YXσ2

X
n and its means are the

target value of the process. The control limits of the AHWMA control chart are given as;

LCL =

{
µ0 − LσY

√
(1− ρ2

YX)(
λ

2−λ (1− (1− λ)2i)),

CL = µ0,

ULC =

{
µ0 + LσY

√
(1− ρ2

YX)(
λ

2−λ (1− (1− λ)2i)).

(11)

The AEWMA charting scheme detects OOC if any plotting statistic falls beyond the
control limits.
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3. Proposed TAHWMA Control Chart

The design structure of the proposed TAHWMA control chart and performance metrics
are discussed in this section. The proposed TAHWMA structure is designed under the
presence and absence of multicollinearity.

3.1. Design Structure of the Proposed TAHWMA Control Chart

This section of the article provides the detailed design structure of the proposed
TAHWMA charting scheme. Here three variables are selected from a trivariate symmetrical
distribution such as Y, X, and Z. X and Z are the supplementary variables, and Y presents
the study variable. The matrix form of the variables is organized below :




Y
X
Z


 ∼ N3






µY
µX
µZ


,




σyy σyx σyz
σxy σxx σxz
σzy σzx σzz






The regression-based estimator initiated by Kadilar and Cingi [26] is given as,

Gi = y + byx(µx − x) + byz(µz − z), (12)

where
(

byx =
syx
sxx

)
and

(
byz =

syz
szz

)
are the regression coefficient, syx and syz are sample

covariances of Y, X and Y, Z. While sxx and szz are the sample variances of X and Z,
respectively. The mean and variance of Equation (12) are E(G) = µG = µ0 Var(G) = σ2

G =

(1− ρ2
yx − ρ2

yz + 2ρyxρyzρxz)
σ2

Y
n , respectively (cf. Kadilar and Cingi [27]). The proposed

TAHWMA charting scheme based on the regression estimator (in Equation (12)) is given as,

Hi = λGi + (1− λ)Gi−1 (13)

LCL =





µ0 − L
√

λ2σ2
G

n , if i = 1

µ0 − L
√

λ2σ2
G

n + (1− λ)2 σ2
G

n(i−1) , if i > 1

CL =µ0,

UCL =





µ0 + L
√

λ2σ2
G

n . if i = 1

µ0 + L
√

λ2σ2
G

n + (1− λ)2 σ2
G

n(i−1) . if i > 1

(14)

Control limits of the proposed TAHWMA control chart are presented in Equation (14),
where L represents the width of the control limits. Simulation codes are established in
R software for the performance evaluation of the proposed chart. The amount of shift
in the process mean can be mathematically expressed as δ = |µ1−µ0|

σy/
√

n , where µ1 denotes

the shifted mean of the study variable and n = 1, has taken without loss generality. We
use 50,000 iterations in simulation to find the desired average run length. The proposed
TAHWMA control chart has two designed parameters λ, and L. λ is identified as the
smoothing parameter, and the various values of the λ is λ ∈ {0.03, 0.05, 0.1, 0.25} are
considered in this study.

3.2. Performance Metrics

In this section, a detailed discussion of the run length properties of the proposed TAH-
WMA control chart is carried out using run-length (RL) characteristics. The run length (RL)
is defined as the number of sample observations before a chart alarm describes as run-length
(RL). Extra quadratic loss (EQL) is also taken as the performance measure of run-length
properties, describing the charting schemes’ overall effectiveness. EQL is mathematically

defined as EQL = 1
δmax−δmin

δmax∫
δmin

σ2 ARL(δ)dδ. Another performance measure is the relative
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mean index (RMI). Mathematically it is defined as RMI = 1
N

N
∑

i=1

ARL(δ)−ARL∗(δ)
ARL∗(δ) . Where N

represents the number of shifts to be considered. For the specific shift δ, ARL(δ) is the ARL1
value of a control chart, while ARL∗(δ) represents the smallest value of the ARL1. The
percentage decrease in ARL is ARLd, where ARLd =

(
ARL0−ARL1

ARL0

)
× 100%. ARL0 shows

the ARL when the process is working in stable conditions and ARL1 presents ARL values
when the process is in an OOC situation. For each value of λ, the ARL0 is fixed at 500 using
the Monte Carlo simulation method. A comprehensive discussion on the RL distribution of
the newly suggested TAHWMA charting scheme is examined under the appearance and
non-appearance of the multicollinearity among the two supplementary characteristics.

3.2.1. Performance of the Proposed TAHWMA Control Chart under the Non-Appearance
of Multicollinearity

In this section, we examined the performance of the suggested TAHWMA charting
scheme under the appearance and non-appearance of multicollinearity among the two
supplementary variables. If there is no relationship between the supplementary variable
such as ρxz = 0, both supplementary variables have a partial effect on the study variable.
Under the appearance of multicollinearity, the ARL values of the suggested TAHWMA
charting scheme at several choices of the parameters are given in Table 1. For tracing the
small shift in the process mean, it is obvious that small choices of smoothing parameter,
high values of the ρYX and ρYZ , and the suggested TAHWMA charting scheme becomes
more sensitive. The suggested TAHWMA charting scheme with designed parameters
λ = 0.03, L = 2.272, ρYX = 0.25 and ρYZ = 0.50, provides ARL1 = 330.14 and ARLd = 33.97%
at δ = 0.05. At λ = 0.03, L = 2.272, ρYX = 0.75 and ρYZ = 0.50, at 3% increase in the process
mean the suggested TAHWMA charting scheme yields ARLd = 65.05% (see Table 1). The
effect of the ρYX and ρYZ on the performance of the proposed TAHWMA model can be
seen in Figures 1 and 2. From Figures 1 and 2, it can be observed that the values of ρYX
and ρYZ increase, and the performance of the suggested TAHWMA charting scheme also
becomes highly sensitive.
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3.2.2. Performance of the Proposed TAHWMA Control Chart under the Appearance
of Multicollinearity

If some linear relationship occurs between the two supplementary variables, this
term is expressed as multicollinearity (cf. Hocking and Pendleton [26]). Unfortunately,
multicollinearity happens due to mistakes or a lack of understanding of the model. It is
vital to know about the effect of multicollinearity between two supplementary variables
on the performance of the suggested TAHWMA charting scheme. The performance of
the suggested TAHWMA charting scheme is reported at various choices of correlation
between two supplementary characteristics, i.e., ρxz ∈ 0.05, 0.15, and 0.25 (cf. Table 2). In
Table 2, it can be noticed that as the value ρxz increases, the performance of the suggested
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TAEWMA charting structure decreases. For example, at λ = 0.05, L = 2.633 and ρxz = 0.05
at δ = 0.05, the proposed scheme provides ARL1 = 349.49 and at ρxz = 0.25, λ = 0.05 it gives
ARL1 = 354.30 respectively (cf. Table 2).

Table 1. ARL values of the proposed TAHWMA chart in absence of multicollinearity at various
choices of design parameters.

δ

Small Shifts Moderate Shifts Large Shifts

λ = 0.03, L = 2.272 λ = 0.05, L = 2.608 λ = 0.10, L = 2.938 λ = 0.25, L = 3.075
ρyx = 0.25 ρyx = 0.5 ρyx = 0.75 ρyx = 0.25 ρyx = 0.5 ρyx = 0.75 ρyx = 0.25 ρyx = 0.5 ρyx = 0.75 ρyx = 0.25 ρyx = 0.5 ρyx = 0.75

ρyz = 0.50, ρxz = 0 ρyz = 0.50, ρxz = 0 ρyz = 0.50, ρxz = 0 ρyz = 0.50, ρxz = 0

0 499.92 500.59 500.50 500.87 500.48 500.00 499.70 499.68 500.22 500.96 499.81 500.92

0.03 422.12 393.17 291.19 432.70 408.11 315.37 439.43 421.68 335.05 466.80 455.76 398.38

0.05 330.14 288.40 174.72 345.68 310.76 194.21 362.74 330.82 218.70 419.96 392.24 290.20

0.075 226.50 193.27 104.73 254.06 217.28 120.66 272.73 237.35 136.16 346.73 310.04 189.49

0.1 165.07 136.69 69.23 186.99 157.06 81.87 208.11 173.65 91.86 274.62 239.11 127.87

0.125 125.40 100.83 48.69 144.15 118.10 59.37 160.82 132.53 66.29 223.38 184.65 89.11

0.175 79.36 62.04 28.51 92.93 74.41 35.17 103.92 83.45 39.74 145.17 114.72 50.07

0.2 64.22 50.32 22.92 76.32 60.70 28.69 85.96 68.58 32.40 117.87 92.28 39.13

0.25 45.82 35.69 15.80 55.40 43.76 19.81 62.29 48.84 22.81 82.98 63.02 26.01

0.5 14.74 11.35 5.34 18.53 14.13 6.48 21.19 16.43 7.44 24.20 18.19 7.52

0.75 7.69 6.09 3.08 9.40 7.33 3.61 11.02 8.57 4.08 11.53 8.76 3.95

1 5.01 4.02 2.11 6.00 4.75 2.46 6.88 5.44 2.71 7.09 5.44 2.61

1.5 2.89 2.36 1.21 3.40 2.76 1.35 3.81 3.08 1.50 3.68 2.93 1.45

2 1.97 1.58 1.02 2.31 1.84 1.03 2.58 2.07 1.06 2.44 1.95 1.06

Table 2. ARL values of proposed TAHWMA control chart under the presence of multicollinearity
when ρyx = 0.25 and ρyz = 0.50.

δ
ρxz = 0.05 ρxz = 0.15 ρxz = 0.25

λ = 0.05, L = 2.633 λ = 0.05, L = 2.679 λ = 0.05, L = 2.719
ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

0 501.18 372.02 438 499.75 372.26 437 495.53 368.77 436
0.03 434.94 329.12 376 434.31 331.05 373 429.45 329.72 367
0.05 349.49 274.23 291 353.02 278.69 295 354.30 279.99 294
0.075 253.89 200.40 210 261.87 204.59 216 262.13 205.74 218
0.1 190.50 147.65 160 192.57 150.72 161 196.71 154.48 164

0.125 145.68 110.16 123 150.41 114.68 127 151.95 116.03 127
0.175 94.24 69.61 81 96.52 71.67 82 98.10 73.09 83
0.2 78.06 56.57 67 79.25 57.85 68 81.47 59.95 69
0.25 56.42 40.24 49 57.62 41.41 50 58.68 41.95 51
0.5 18.59 12.44 16 19.24 12.93 17 19.58 13.27 17
0.75 9.53 5.95 8 9.87 6.20 9 10.08 6.33 9

1 6.17 3.49 6 6.23 3.51 6 6.41 3.67 6
1.5 3.44 1.74 3 3.52 1.77 3 3.60 1.85 3
2 2.34 1.26 3 2.40 1.28 3 2.44 1.31 3
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4. Comparative Study

In this section, a comparison of the proposed TAHWMA chart is provided against
some existing control charts. The ARL is a comparative index for classical EWMA, AEWMA,
HWMA, AHWMA, and proposed TAHWMA charts.

4.1. Proposed Versus EWMA and AEWMA Control Charts

The classical EWMA charting scheme is famous for examining the small shifts in the
process; the classical EWMA chart was initiated by Roberts [4]. Abbas et al. [12] suggested a
new charting scheme, AEWMA, for the efficient monitoring of the process mean. In Table 3,
ARL values of both existing charting schemes such as classical EWMA and AEWMA are
described. At λ = 0.05 and δ = 0.075 classical EWMA yields ARL1 = 338.65 and for AEWMA
at λ = 0.05 and δ = 0.075 ρyx = 0.25, ARL1 = 328.86 respectively. The proposed TAHWMA
chart at λ = 0.05, δ = 0.075, ρyx = 0.25 and ρyz = 0.50 produces ARL1 = 254.06, respectively
(cf. Table 1). From Tables 1 and 3, we noticed that the suggested TAHWMA charting
scheme performs more efficiently than AEWMA and classical EWMA charting schemes to
detect small and moderate shifts in the process mean level.

Table 3. The ARL values of the EWMA and AEWMA control charts.

δ
EWMA AEWMA (ρyx = 0.25)

λ = 0.03
L = 2.483

λ = 0.05
L = 2.639

λ = 0.1
L = 2.824

λ = 0.25
L = 3.001

λ = 0.03
L = 2.483

λ = 0.05
L = 2.639

λ = 0.1
L = 2.824

λ = 0.25
L = 3.001

0 500.64 499.68 500.94 499.79 500.33 500.36 500.39 500.78
0.03 456.41 462.91 480.81 488.19 453.72 466.58 475.58 484.32
0.05 388.18 412.31 438.70 466.30 382.72 408.43 438.29 462.55

0.075 304.78 338.65 376.08 435.67 301.97 328.86 372.44 427.63
0.1 232.24 266.78 318.91 390.56 229.75 262.54 314.47 384.82

0.125 181.85 211.65 264.66 346.91 177.55 202.55 251.93 336.03
0.175 113.49 135.20 177.02 262.29 110.97 130.36 168.29 254.75

0.2 93.56 111.53 148.70 224.77 90.34 106.50 139.50 219.07
0.25 67.29 76.75 102.97 169.33 63.26 73.58 97.39 161.22
0.5 21.19 23.74 29.12 47.85 20.25 22.26 26.81 44.31
0.75 10.77 11.93 13.58 19.27 10.14 11.18 12.78 18.02

1 6.60 7.40 8.25 10.38 6.34 6.92 7.71 9.76
1.5 3.42 3.77 4.17 4.79 3.29 3.59 3.98 4.49
2 2.25 2.41 2.65 2.93 2.15 2.31 2.52 2.80

4.2. Proposed Versus HWMA and AHWMA Control Charts

The HWMA scheme was recently developed by Abbas [5] to address small changes
in the process mean. To increase the sensitivity of the HWMA model, Adegoke et al. [24]
designed the AHWMA chart using a regression estimator that is based on the single
supplementary variable. The values of ARL for both classical HWMA and AHWMA
control charts are given in Table 4 at various combinations of designed parameters. For
example, At λ = 0.03 the classical HWMA scheme yields ARL1 = 205.43 at δ = 0.1. For the
AHWMA chart, at ρyx = 0.25, λ = 0.3 and δ = 0.1, the value of ARL1 = 199.38 (cf. Table 4).
The suggested TAHWMA charting scheme at λ = 0.03, δ = 0.1 and ρyx = 0.25 and ρyz = 0.50
yields ARL1 = 165.07 (cf. Table 1). The supremacy of the suggested TAHWMA charting
scheme is obvious over the classical HWMA and AHWMA schemes (cf. Tables 1 and 4).

In Table 5, the relative mean index (RMI) and extra quadratic loss (EQL) are also consid-
ered performance measures. For the proposed TAHWMA control chart λ ∈ (0.03, 0.05, 0.1, 0.25)
is used when ρyx = 0.75, ρyz = 0.50, and ρxz = 0. Other existing charting schemes such
as HWMA, EWMA, AEWMA, and AHWMA are also considered when λ = 0.03. For the
proposed TAHWMA chart, when λ = 0.03, RMI has a minimum value of zero and the
proposed TAHWMA chart also has the minimum value of the EQL, which is 2.12. The
minimum values of the RMI and EQL show the supremacy of the suggested TAHWMA
charting scheme against its existing charting structure.
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Table 4. The ARL values of the HWMA and AHWMA control charts.

δ

HWMA AHWMA ( ρyx = 0.25)
λ = 0.03

L = 2.272
λ = 0.05

L = 2.608
λ = 0.1

L = 2.938
λ = 0.25

L = 3.075
λ = 0.03

L = 2.272
λ = 0.05

L = 2.608
λ = 0.1

L = 2.938
λ = 0.25

L = 3.075

0 500.70 499.35 499.48 499.69 499.98 500.18 500.96 500.34
0.03 440.12 449.24 456.35 473.57 442.47 448.12 453.61 473.88
0.05 359.03 382.47 397.11 441.31 359.39 380.54 393.94 445.27
0.075 274.16 298.00 313.35 382.72 266.64 286.42 310.21 377.80

0.1 205.43 229.66 250.83 329.77 199.38 222.00 242.77 317.69
0.125 158.89 179.95 201.22 270.99 151.54 174.35 191.82 265.10
0.175 101.43 119.55 133.63 187.62 97.86 115.19 127.79 179.99

0.2 84.52 99.66 111.81 158.76 80.32 96.17 106.49 148.73
0.25 61.19 73.06 81.59 113.01 58.59 69.15 78.16 106.86
0.5 20.08 25.26 28.57 33.96 19.09 23.76 27.27 31.84

0.75 10.36 12.80 14.89 16.12 9.82 12.25 14.07 15.24
1 6.64 7.99 9.37 9.74 6.28 7.63 8.81 9.14

1.5 3.72 4.41 4.97 4.92 3.56 4.22 4.75 4.66
2 2.55 3.00 3.33 3.18 2.44 2.85 3.18 3.05

Table 5. ARL comparisons of the proposed TAHWMA and the existing control chart.

TAHWMA EWMA AEWMA HWMA AHWMA

Shift λ = 0.03 λ = 0.05 λ = 0.1 λ = 0.25 λ = 0.03 λ = 0.03 λ = 0.03 λ = 0.03

0 500.5 500 500.22 500.92 500.64 500.33 500.7 499.98

0.03 291.19 315.37 335.05 398.38 456.41 453.72 440.12 442.47

0.05 174.72 194.21 218.7 290.2 388.18 382.72 359.03 359.39

0.075 104.73 120.66 136.16 189.49 304.78 301.97 274.16 266.64

0.1 69.23 81.87 91.86 127.87 232.24 229.75 205.43 199.38

0.125 48.69 59.37 66.29 89.11 181.85 177.55 158.89 151.54

0.175 28.51 35.17 39.74 50.07 113.49 110.97 101.43 97.86

0.2 22.92 28.69 32.4 39.13 93.56 90.34 84.52 80.32

0.25 15.8 19.81 22.81 26.01 67.29 63.26 61.19 58.59

0.5 5.34 6.48 7.44 7.52 21.19 20.25 20.08 19.09

0.75 3.08 3.61 4.08 3.95 10.77 10.14 10.36 9.82

1 2.11 2.46 2.71 2.61 6.6 6.34 6.64 6.28

1.5 1.21 1.35 1.5 1.45 3.42 3.29 3.72 3.56

2 1.02 1.03 1.06 1.06 2.25 2.15 2.55 2.44

EQL 2.12 2.37 2.61 2.60 6.28 6.01 6.48 6.18

RMI 0.00 0.17 0.30 0.52 2.21 2.10 2.03 1.91

In Figure 3, the supremacy of the proposed TAHWMA charting structure (in terms
of smallest ARL1) is evident compared to all the competitors at small, moderate and large
shifts in the process mean. The performance of the AHWMA scheme is the second best.
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5. Illustrative Example

Along with exploring the several properties of the suggested TAHWMA charting
scheme hypothetically, it is necessary to offer an illustrative example of the developed
design. Two examples are presented in this section to show the supremacy of the proposed
TAHWMA chart; one consists of the real dataset and the second is based on simulated data.
The first real dataset belongs to the carbon fibre tube (manufacturing data), and the second
dataset is taken from the trivariate normal distribution.

5.1. Real-Life Application

In this section, a real dataset example related to manufacturing carbon fibre (graphite
fibre) tubes is used to show the application of the proposed TAWHMA chart and its
competitors. This carbon dataset is used from the R statistical package “MSQC” and is
also used by Abbasi and Adegoke [28]. Carbon fibre tubes are frequently comprised of
carbon atoms. It has numerous assets for illustration, high tensile strength, low weight,
etc. (cf. Zhang et al. [29]). It is a polymer that is solid but lightweight. It is used to
manufacture aircraft, cars, and many other machinery parts. Carbon fibre is produced from
polyacrylonitrile (PAN) and a small quantity of petroleum pitch. Carbon fibre is much
stronger than steel; it is a fibre having many characteristics, and the size of the fibre is
nearly equal to 5 to 10 micrometres. It is low-density material but has high-temperature
tolerance, high chemical resistance, high stiffness, and high tensile strength.

In this analysis, Y represents the inner diameter, X represents thickness, and Z repre-
sents length. These are the first and second supplementary variables, respectively. These
variables belong to the manufacturing process of the fiber tubes. A dataset has 30 samples,
where 10 samples are taken with 0.05 amount of shift in the process mean, and 20 samples
are taken as the IC process. For the execution of the proposed TAHWMA plotting scheme
and prevailing schemes, planned parameters are set at the desired value of ARL = 500 for
all the charts included in this example. Some descriptive statistics of the carbon fibre data of
the first 20 samples are; X is 1.022, and Z is 50.1005 and Y is 0.993. where s2

y = 0.001706316,
s2

x = 0.01139579, s2
z = 0.05572079, ρyx = 0.2778609, ρyz = 0.617334, ρxz = 0.1219354. Figures 4

and 5 show that the HWMA and AHWMA charts are not detecting a 0.05 amount of shift
at any sample, whereas the proposed TAHWMA charting structure drops this change at
the 25th to 30th sample observations (cf. Figure 6).
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In detecting the small changes in the process mean compared to its counterparts, the
real-life application indicates that the suggested TAHWMA charting structure is the most
powerful tool.

5.2. Simulation Study

This section describes the application using the hypothetical dataset to implement the
planned design. In this simulated part of the study, the dataset consists of 50 samples. These
50 samples belong to trivariate symmetrical distribution; for the IC process, 25 samples are
considered, and 25 samples are incorporated with a shift of 0.5 in the process mean for the
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OOC process. The execution of the recommended charting structure is executed considering
the appearance and non-appearance of multicollinearity among the two supplementary
variables. Further details on the selection of designed parameters for the proposed and
existing counterparts are given in Figures 7–10. From Figures 7–10, it can be observed that
all the charts remain in the IC situation for the first 25 samples. In Figure 7, the application
of the proposed TAHWMA chart is provided when there is no multicollinearity between
the supplementary variables, and it traces a shift at the 39th samples. In Figure 8, the
presentation of the proposed TAHWMA control chart is delivered when multicollinearity
exists between the supplementary variables. The proposed TAHWMA chart traces the
shift at the 41st samples in this case. In Figure 9, the existing chart, namely the HWMA
chart, outlines the shift at the 49th samples. In Figure 10, the existing chart, namely the
AHWMA chart, detects the shift at 49th samples. Based on the discussion, it is observed
that the proposed TAHWMA charting scheme has performed efficiently against existing
charting schemes, particularly in the non-appearance of multicollinearity among the two
supplementary variables.
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6. Summary, Conclusions and Recommendations

The single supplementary information-based (AIB) homogeneously weighted moving
(HWMA) chart is an innovative version of the HWMA charting scheme to monitor the
process mean shift. This study aims to enhance the HWMA and AIB HWMA charts
and propose an HWMA chart based on two supplementary variables, indicated as the
TAHWMA charting scheme, to improve the process mean shift monitoring. The run-length
characteristic of the proposed TAHWMA charting scheme has been discussed in the absence
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and presence of multicollinearity between the two supplementary variables. It has been
observed that the proposed structure performs better for various correlation coefficient
choices, particularly when both supplementary variables consume a fractional effect on the
study variable.

To evaluate the performance of the proposed TAHWMA chart against other control
existing charts, an algorithm is developed in R software using the Monte Carlo simulation
technique to obtain numerical results. Based on numerical results, performance evaluation
measures such as ARL, EQL, and RMI are calculated. The analysis based on performance
evaluation measures and visual presentation reveals that the proposed charting scheme
outperformed existing counterparts. Furthermore, two illustrative examples, one related to
the hypothetical dataset and another with regard to a Carbon fibre tube (manufacturing
process), are also provided to show the practical implementation of the proposed charting
scheme. The proposed charting scheme can be extended for multivariate structures to
monitor the process location, dispersion, or both parameters.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: The additive hazard regression model plays an important role when the excess risk is the
quantity of interest compared to the relative risks, where the proportional hazard model is better.
This paper discusses parametric regression analysis of survival data using the additive hazards
model with competing risks in the presence of independent right censoring. In this paper, the
baseline hazard function is parameterized using a modified Weibull distribution as a lifetime model.
The model parameters are estimated using maximum likelihood and Bayesian estimation methods.
We also derive the asymptotic confidence interval and the Bayes credible interval of the unknown
parameters. The finite sample behaviour of the proposed estimators is investigated through a Monte
Carlo simulation study. The proposed model is applied to liver transplant data.

Keywords: cause-specific hazard; regression model; additive hazard; modified Weibull distribution;
Bayes estimate; MCMC

1. Introduction

In time-to-event analysis, the survival time, T > 0, represents the duration until
the occurrence of an event and is the variable of interest. The hazard function, h(t), has
received great attention among practitioners to model the risk of occurrence of an event
in the particular interval [t, t + ∆t). Regression models are often used in survival analysis
to investigate the causal relationship between survival outcome and covariates. In the
statistical literature, the well-known proportional hazards (PH) approach [1] has gained
popularity in modelling covariate effects on the survival of the individual. In the PH model,
the effect of the covariates acts multiplicatively on some unknown baseline hazard rate
function. However, there are occasions where a measure of the additive effect of covariates
is preferred over a multiplicative effect [2,3]. Aalen [4] introduced an important alternative
to the PH model that is the additive hazards (AH) regression model which was later studied
by Lin and Ying [5,6]. In the AH model, the hazard with the associated covariates is defined
as the sum of the baseline hazard rate and regression function of the covariates. In a two
sample set-up, the PH model concerns the risks ratio, whereas the AH model addresses the
risks difference.

In survival studies, it is often possible that an individual has a lifetime with p ≥ 2
mutually exclusive types of events or competing risks [7,8]. In the competing risks setting,
the occurrence of one type of event alters the chance of the occurrence of other types of
events. For example, primary biliary cirrhosis (PBC) is a chronic liver disease in which
an individual may receive a transplant and experience death in the waiting queue. In
breast cancer clinical trials, investigators may be interested in observing events such as
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local relapse, auxiliary relapse, remote relapse, second malignancy of any kind, and death.
Frequently used competing risks modelling methods depend on the observed value of
the bivariate random vector (T, C), where T denotes the lifetime (possibly censored) and
C = j, j ∈ 1, 2, . . . , p is the set of possible causes of failure. In this framework, the basic
identifiable quantities are the cause-specific hazard (CSH) function and the cumulative inci-
dence function (CIF). For a comprehensive review and recent developments in competing
risks, one may refer to [7,9–13].

In the literature, there is a considerable amount of work on the parametric modelling
of competing risks data in the presence of covariates. Jeong and Fine [14] considered
the parametric regression analysis for competing risks using the Gompertz distribution
as a baseline model. Anjana and Sankaran [15] proposed the reverse cause-specific PH
model by assuming an inverse Weibull distribution under left censoring. Lee [16] provided
the parametric quantile inference for the CSH function with adjustment of covariates.
Lipowski et al. [17] suggested three parametric distributions for competing risks data.
Rehman and Chandra [18] presented a survival analysis with competing risks using the
parametric PH model under the middle censoring scheme.

Parametric regression modelling of competing risks survival data in the above-mentioned
literature is mainly based on Cox’s PH model [1]. However, researchers have commonly
considered non-parametric and semi-parametric analysis of the AH model in the presence
of competing risks. Shen and Cheng [19] proposed the confidence bands for CIF under the
AH model. Sun et al. [20] considered the AH model for competing risks analysis of the
case-cohort design. Zhang et al. [21] proposed a regression analysis of competing risks data
via a semi-parametric AH model. Li et al. [22] analysed an additive sub-distribution hazard
model for competing risks data.

Semi-parametric and non-parametric methods are distribution-free approaches, and
they are useful in a situation where the distribution function of survival time T is unknown.
If the model is adequately specified, however, parametric methods are more efficient
than semi-parametric methods [9]. Parametric approaches have two major advantages:
predicting future behaviour and the availability of straightforward estimation and infer-
ence methods based on the likelihood theory. In this article, we focus on the parametric
approach for survival analysis based on the AH model instead of semi-parametric and
non-parametric approaches. A parametric AH regression model may be developed by
assuming some known distributional form for the baseline hazard function [23]. To the
best of our knowledge, survival analysis with competing risks based on a parametric AH
regression model has not received much attention, and this is the motivation behind the
development of this article. Therefore, the main objective is to employ a parametric AH
regression model for competing risks survival data. In this article, we study the modified
Weibull distribution (MWD) with one scale and two shape parameters, which is capable
of capturing various shapes of the hazard rate, such as bathtub failure rate, and it also
accommodates many properties of exponential and Weibull distributions [24].

Another aim of this article is to consider both classical and Bayesian methods of
estimation. In traditional statistical inference approaches, parameters are estimated based
on the available data in which the maximum likelihood estimator (MLE) usually provides
the solution. While dealing with lifetime data, it is obvious that some past information may
be available in terms of the past record of the individuals. For example, in medical sciences,
before examining a patient, the investigator may be interested in knowing the history of
the disease. The MLE does not have the flexibility to incorporate prior information in data
analysis. In this context, the Bayesian method of reasoning is well known for incorporating
prior information. Furthermore, Bayesian methods provide more accurate estimation
results than MLE when the sample size is small. In practice, researchers often consider
the gamma prior as an informative prior even if it is not a conjugate prior [25]. However,
other researchers consider Weibull, inverted gamma, and log-normal prior as an alternative
choice of the gamma prior [26,27]. Therefore, in this article, we choose a class of baseline
informative types of prior, namely gamma, Weibull, and log-normal priors for comparison
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purposes. For regression parameters, we assume uniform priors. The Bayes estimates
are obtained based on two different loss functions, viz., squared error (symmetric) and
LINEX (asymmetric) loss functions. Interval estimation is also obtained. Asymptotic and
Bayes credible intervals of unknown parameters are derived in this setting with respect to
classical and Bayesian approaches.

The rest of the paper is organised as follows: we propose a parametric cause-specific
AH regression model in Section 2. In Section 3, we estimate the model parameters by using
the MLE. In Section 4, the Bayesian estimation is considered under non-informative priors
with two loss functions. In Section 5, interval estimation is considered. A Monte Carlo
simulation study is carried out to examine the finite sample behaviour of the estimators in
Section 6. In Section 7, the applicability of the proposed model is demonstrated with real
data. Finally, the concluding remarks are given in Section 8.

2. The Proposed Model

In this study, to develop a regression model for competing risks survival data, we
consider the AH regression model given in [5]. In this model, the effect of the covariates
vector x = (x1, x2, . . . , xm)> on the baseline hazard function is additive in nature. This
model for the CSH rate turns out to be the following form:

hj(t|x) = h0j(t) + β>j x, j = 1, 2, . . . , p, (1)

where hj(t|x) represents the CSH rate for given covariates x, h0j(t) denotes the baseline
CSH rate, and β j = (β j1, β j2, . . . , β jm)

> is the m × 1 vector of cause-specific regression
parameters. In the present work, we study the MWD with one scale parameter, a, and two
shape parameters, α and λ, for lifetime variate T with the cumulative distribution function
and the hazard function given as:

F(t) = 1− exp(−atαeλt), t ≥ 0, a > 0, α ≥ 0, λ > 0, (2)

h(t) = a(α + λt)tα−1eλt, t ≥ 0, a > 0, α ≥ 0, λ > 0. (3)

Lai et al. [24] developed the MWD and discussed some of its theoretical properties, for
example, the bathtub behaviour of the hazard rate. Ng [28] estimated the parameters of the
MWD for progressive type-II censored samples. Furthermore, some Bayesian estimations
of MWD parameters were considered in [29,30]. The MWD is assumed here as a baseline
model of the cause-specific AH analysis in (1), due to its flexibility to accommodate various
shapes of the hazard function.

Accordingly, the CSH function, cumulative CSH function, and overall survival func-
tion are obtained as:

hj(t; Θj, x) = aj(αj + λjt)t
αj−1eλjt + β>j x, (4)

Hj(t; Θj, x) = ajt
αj eλjt + β>j xt, (5)

and

S(t; Θ, x) = exp

{
−
(

p

∑
j=1

ajt
αj eλjt + β>j xt

)}
, (6)

where Θ = (Θ1, Θ2, . . . , Θp) and Θj = (aj, αj, λj, β j) are the vectors of cause-specific
parameters. The main aim of this article is to develop estimation methods for the unknown
parameters and cumulative CSH function as the quantity of interest.
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3. Maximum Likelihood Estimation

Following the competing risks framework, let T be the observed lifetime which is
defined by T = min(T∗, D), where T∗ is the failure time and D is the censoring time. For
the given covariate x, T∗ and D are assumed to be independent. Furthermore, we assume
that for each observed failure time, the associated cause of failure was also observed.
Therefore, the censoring indicator is defined as δij = I(Ti = T∗i , Ci = j).

Let (ti, δij, xi), i = 1, 2, . . . , n be the n ∈ N independently and identically distributed
samples of (T, δ, x). Now, we can write the likelihood function for the observed data as:

L(Θ) =
n

∏
i=1

(
p

∏
j=1

hj(ti; Θj, xi)
δij S(ti; Θ, xi)

)
. (7)

The fully parameterized likelihood function based on (4) and (6) is given by:

L(Θ) =
n

∏
i=1

[
p

∏
j=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)δij

× exp

{
−
(

p

∑
j=1

ajt
αj
i eλjti + β>j xiti

)}]
.

(8)

The log likelihood function `(Θ) = log L(Θ) is given as:

`(Θ) =
p

∑
j=1

nj

∑
i=1

log
(

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

)

−
n

∑
i=1

(
p

∑
j=1

ajt
αj
i eλjti + β>j xiti

)
.

(9)

In Equation (9), nj denotes the number of failures of type j. To obtain the estimates
of the unknown parameters aj, αj, λj, and β j, we maximize (9) by equating the partial
derivatives of each parameter to zero. The score equations are obtained as:

∂`(Θ)

∂aj
=

nj

∑
i=1

(αj + λjti)t
αj−1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

t
αj
i eλjti = 0, (10)

∂`(Θ)

∂αj
=

nj

∑
i=1

ajt
αj−1
i eλjti + ajαjt

αj−1
i log tie

λjti + ajλjt
αj
i log tie

λjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

ajt
αj
i log tie

λjti = 0,

(11)

∂`(Θ)

∂λj
=

nj

∑
i=1

ajαjt
αj
i eλjti + ajt

αj
i eλjti + ajλjt

αj+1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

ajt
αj+1
i eλjti = 0,

(12)

∂`(Θ)

∂β j
=

nj

∑
i=1

xi

aj(αj + λjti)t
αj−1
i eλjti + β>j xi

−
n

∑
i=1

xiti = 0. (13)
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The score equations (10)–(13) are not in explicit form and cannot be solved analytically.
Therefore, we use numerical methods to estimate the parameters.

Several methodologies are available for estimating parameters in the literature by
solving score equations or directly maximizing the log-likelihood function. The Newton–
Raphson method is the most frequently used approach for estimation because the deriva-
tives of the scoring equations are simple to calculate. The initial values are critical in
the numerical iterative procedure because of the logarithm function. We use the simplex
method [31] to estimate the parameters through the optim function in R software. The
simplex method is a straightforward method for estimating parameters by maximizing
the likelihood function without having to optimize the function’s derivatives. Once the
parameter estimates are obtained, the function of the parameter estimates can be obtained
using the invariance property of the MLE. Therefore, the MLE of the cumulative CSH
Hj(t; Θj, x) is given by:

Ĥj(t; Θ̂j, x) = âjt
α̂j eλ̂jt + β̂>j xt.

4. Bayesian Estimation

In frequentist statistical techniques, prior information is not considered when analysing
data. Bayesian inference is intriguing because it incorporates prior or previous information
with observed data. As a result, this article explores the Bayesian analysis of a paramet-
ric cause-specific AH regression model. Prior assumptions are made based on previous
experiences, mathematical convenience, and expert judgments, which can be informative,
non-informative, or weakly informative. If the previous dataset is large enough, infor-
mative priors can be employed. A non-informative prior can be used when only limited
or vague knowledge (a priori) about the parameters is available. This article considers
informative types of priors for baseline parameters, such as the gamma, Weibull, and
log-normal distributions. A uniform, non-informative prior is assumed for the regression
parameters. Furthermore, it is assumed that all the chosen priors are independent.

4.1. Gamma Prior

We assume that the baseline model parameters aj, αj, and λj of the modified Weibull
cause-specific AH model (4) are independent random variables with gamma informative
types of priors. Furthermore, the regression parameters have the prior distributions as
uniform distribution. Their respective marginal prior density functions are given as:

π1j(aj) ∝ a
q1j−1
j e−r1jaj , aj > 0, q1j > 0, r1j > 0,

π1j(αj) ∝ α
q2j−1
j e−r2jαj , αj > 0, q2j > 0, r2j > 0,

π1j(λj) ∝ λ
q3j−1
j e−r3jλj , λj > 0, q3j > 0, r3j > 0,

π1j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(14)

where r1j, r2j, r3j and q1j, q2j, q3j are the rate and shape hyper-parameters of the baseline
gamma priors of aj, αj, and λj, respectively. The joint prior density function based on the
priors defined in (14) is given by:

π1(Θ) ∝
p

∏
j=1

a
q1j−1
j α

q2j−1
j λ

q3j−1
j

∏m
l=1(djl − cjl)

exp
{
−
(
r1jaj + r2jαj + r3jλj

)}
. (15)

The hyper-parameters are assumed to be known and chosen in such a way as to reflect
the prior belief about the unknown parameters.
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4.2. Weibull Prior

We assume that the baseline parameters aj, αj, and λj of the model (4) are independent
random variables with the prior distributions as Weibull distributions. We also assume that
the regression parameters have the prior distributions as uniform distributions. Thus, their
respective prior density functions are given as:

π2j(aj) ∝ a
k1j−1
j e−(θ1jaj)

k1j
, aj > 0, k1j > 0, θ1j > 0,

π2j(αj) ∝ α
k2j−1
j e−(θ2jαj)

k2j
, αj > 0, k2j > 0, θ2j > 0,

π2j(λj) ∝ λ
k3j−1
j e−(θ3jλj)

k3j
, λj > 0, k3j > 0, θ3j > 0,

π2j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(16)

where k1j, k2j, and k3j are the shape hyper-parameters and θ1j, θ2j, and θ3j are the rate
hyper-parameters of the Weibull baseline priors. Therefore, the joint prior distribution of
aj, αj, λj, and β j, j = 1, 2, . . . , p, based on their prior densities defined in (16), is given by:

π2(Θ) ∝
a

k1j−1
j α

k2j−1
j λ

k3j−1
j

∏m
l=1(djl − cjl)

exp
{
−
(
(θ1jaj)

k1j + (θ2jαj)
k2j + (θ3jλj)

k3j
)}

. (17)

4.3. Log-Normal Prior

In this subsection, we assume the priors for the baseline parameters as the log-normal
distributions. Regression parameters independently follow the uniform distributions. Their
corresponding prior densities functions are given as:

π3j(aj) ∝
1
aj

e
− 1

2

(
log aj−µ1j

σ1j

)2

, aj > 0, σ1j > 0,−∞ < µ1j < ∞

π3j(αj) ∝
1
αj

e
− 1

2

(
log αj−µ2j

σ2j

)2

, αj > 0, σ2j > 0,−∞ < µ2j < ∞

π3j(λj) ∝
1
λj

e
− 1

2

(
log λj−µ3j

σ3j

)2

, λj > 0, σ3j > 0,−∞ < µ3j < ∞

π3j(β j) ∝
m

∏
l=1

1
(djl − cjl)

, −∞ < cjl < β jl < djl < ∞,

(18)

where µ1j, µ2j, µ3j and σ1j, σ2j, σ3j are the hyper-parameters. The joint prior distribution of
aj, αj, λj, and β j, j = 1, 2, . . . , p is the product of their marginal prior densities, given by:

π3(Θ) ∝
1

ajαjλj ∏m
l=1(djl − cjl)

exp

{
− 1

2

((
log aj − µ1j

σ1j

)2

+

(
log αj − µ2j

σ2j

)2

+

(
log λj − µ3j

σ3j

)2)}
.

(19)

4.4. Posterior Analysis

The posterior probability distribution is obtained by combining past information with
the observed sample using likelihood and prior distribution. Therefore, the joint posterior

211



Symmetry 2023, 15, 485

density of the random variables aj, αj, λj, and β j, j = 1, 2, . . . , p, given the data, can be
written as:

p(Θ|data) =
L(data|Θ)π(Θ)∫ ∫
· · ·
∫

L(data|Θ)π(Θ)dΘ
, (20)

where p(Θ|data) is the joint posterior density, L(data|Θ) is the likelihood function for
the given observed data as in (8), and π(Θ) is the joint prior density which can be taken
from (15), (17) and (19). Under the joint priors, the joint posterior densities are obtained as:

π1(Θ|data) = K1

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)

× a
q1j−1
j α

q2j−1
j λ

q3j−1
j exp

{
−
(
r1jaj + r2jαj + r3jλj

)}
]

× exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
,

(21)

π2(Θ|data) = K2

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)
a

k1j−1
j α

k2j−1
j

× λ
k3j−1
j exp

{
−
(
(θ1jaj)

k1j + (θ2jαj)
k2j + (θ3jλj)

k3j
)}]

× exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
.

(22)

π3(Θ|data) = K3

p

∏
j=1

[ nj

∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β>j xi

)

× 1
ajαjλj

exp

{
− 1

2

((
log aj − µ1j

σ1j

)2

+

(
log αj − µ2j

σ2j

)2

+

(
log λj − µ3j

σ3j

)2)}]
exp

{
−

n

∑
i=1

p

∑
j=1

(
ajt

αj
i eλjti + β>j xiti

)}
.

(23)

where K1, K2, and K3 are the normalizing constants or they are the denominator part in the
right-hand side of Equation (20) according to each joint posterior distribution.

It is not possible to compute the integral in the denominator of (20) analytically un-
der each considered prior due to the complex form of the likelihood function. Therefore,
we cannot obtain the posterior density in closed form. Hence, in such a situation, the
Markov Chain Monte Carlo (MCMC) method [32] can be used to approximate the inte-
grals. Popularly used MCMC algorithms are the Gibbs sampling algorithm [33] and the
Metropolis–Hastings (M–H) algorithm [34]. For the implementation of the Gibbs sampling
algorithm, the full conditional distribution of each parameter is required. Therefore, in this
situation, the M–H algorithm is preferable.

4.5. Loss Function

The selection of the loss function is vital in Bayesian analysis. We consider two different
types of loss functions; namely, the squared error (symmetric) and LINEX (asymmetric)
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loss functions for a comprehensive comparison of Bayes estimates. The squared error loss
function (SELF) for a parameter Θj is defined as:

L1(Θj, Θ̂j) = (Θj − Θ̂j)
2.

Then, the Bayes estimate for parameter Θj under SELF can be obtained as the posterior
means and calculated by:

Θ̂
sel f
j =

1
N −M

N

∑
l=M+1

[
Θj
]

Θj=Θ
(l)
j

,

where Θ
(l)
j , l = 1, 2, . . . , N are the MCMC random samples generated from the posterior

distribution of Θj and M is the number of iterations used in the burn-in period.
However, we also consider the LINEX loss function (LLF) as an asymmetric loss

function, which is given by:

L2(Θj, Θ̂j) = eρ(Θ̂j−Θj) − ρ(Θ̂j −Θj)− 1, ρ 6= 0.

Under LLF, the Bayes estimates of parameter Θj can be obtained as follows:

Θ̂
ll f
j = −1

ρ
log

(
1

N −M

N

∑
l=M+1

e
−ρ[Θj]

Θj=Θ
(l)
j

)
,

where ρ is the hyper parameter of the LLF and the magnitude of ρ reflects the degree of
asymmetry. For ρ > 0, the LLF is quite asymmetric about 0 with overestimation being
more serious than underestimation. The vice versa is true for ρ < 0. If ρ is close to zero,
then the estimates under LLF are approximately equal to the estimates obtained under
SELF. Hence, LLF is more applicable in lifetime modelling, for instance, an over-estimation
of the survival function and failure rate function is usually much more serious than an
under-estimation [35].

5. Interval Estimation
5.1. Asymptotic Confidence Interval

On the basis of the asymptotic property of MLE, we obtained the interval estimates
of the unknown parameters in this subsection. The exact distribution of MLEs cannot
be obtained because the MLEs of the unknown parameters are not in closed form. The
sampling distribution of Θ̂ can be approximated by a (2p + (p × m)) variate normal
distribution with a mean, Θ, and a variance-covariance matrix, Σ(Θ), which is nothing but
the inverse of the Fisher information matrix, I(Θ), given by:

I(Θ) = E
[
− ∂2`(Θ)

∂Θ∂Θ>

]

Θ=Θ̂

.

The exact mathematical expressions for the above expectations are difficult to obtain;
therefore, the observed Fisher information matrix IO(Θ) can be used to approximate the
Fisher information matrix, I(Θ), which is obtained by dropping the expectation operator,
E, in I(Θ). The variance of MLEs of the unknown parameters, i.e., var(Θ̂), is the diagonal
elements of the asymptotic variance-covariance matrix, Σ(Θ̂). Thus, for a given confi-
dence level γ, a two-sided 100(1− γ)% asymptotic confidence interval (ACI) for Θ̂ can be
constructed as follows:

[
Θ̂− zγ/2

√
var(Θ̂), Θ̂ + zγ/2

√
var(Θ̂)

]
,
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where zγ/2 is the upper γ/2 quantile of the standard normal distribution. Furthermore,
we also computed the two-sided 100(1− γ)% confidence interval for the estimates of the
cumulative CSH Ĥj(t; Θ̂j, x), which is given by:

[
Ĥj(t; Θ̂j, x)− zγ/2

√
var(Ĥj(t; Θ̂j, x)), Ĥj(t; Θ̂j, x) + zγ/2

√
var(Ĥj(t; Θ̂j, x))

]
,

where the variance of the cumulative CSH var(Ĥj(t; Θ̂j, x)) is obtained by using the delta
method as follows:

var(Ĥj(t; Θ̂j, x)) = g(Θj)Σ(Θ̂)g(Θj)
>,

and g(Θj) =
∂Hj(t; Θj, x)

∂Θ

∣∣∣∣
Θ=Θ̂

.

5.2. Bayes Credible Interval

In the Bayesian approach, for a γ level of significance, the (1− γ) interval estimate of
a parameter Θ is a credible interval based on given data, which covers the parameter with
(1− γ) level of confidence. The 100(1− γ)% Bayes credible interval (BCI) [ΘL, ΘU ] for Θ is
obtained by setting ΘL equal to the γ/2% quantile and ΘU equal to the (1−γ/2)% quantile
of Θl , l = 1, 2, . . . , N −M. Similarly, the same procedure is also adopted for obtaining the
Bayes credible interval for Hj(t; Θj, x).

6. Simulation Study

We conducted a Monte Carlo simulation study to observe the finite sample behaviour
of the proposed estimators of the unknown parameters and cumulative CSH functions. In
this simulation study, the datasets were generated for various sample sizes such as n = 100,
200, and 400. For each sample size, we have calculated the average estimate (AVE) and the
mean square error (MSE) for point estimates, and the average length (AVL) and coverage
probability (CP) for ACI and BCI of aj, αj, β j, and Hj(t|x) over 500 replications.

For simplicity, we assumed two causes of failure, i.e., j = 1, 2, and one covariate, say x.
The covariate x is generated using a Bernoulli random number for each sample with an
equal probability of success and failure. Without loss of generality, we have arbitrarily taken
the true value of the parameters as a1 = 0.5, α1 = 0.6, λ1 = 0.2, β11 = 0.6, a2 = 0.7, α2 =
0.5, λ2 = 0.2, and β21 = 0.8. We assume that λj is known for mathematical simplicity. The
censored time D is generated from U(0, d), where d is chosen in such a way that on average
20% observations are right censored. The survival time T is generated through an inverse
transformation following the steps given in [36], Chapter 3. For each simulated survival
time, the causes of failure are generated from a Binomial distribution with a probability of
success of h1(t|x)

h1(t|x)+h2(t|x) for cause 1 and the failure outcome is considered as cause 2. The
estimates of Hj(t|x) for j = 1, 2 are obtained at t = 0.8 with covariates value x = 0.6.

The MLEs âj, α̂j, and β̂ j of unknown parameters of the proposed model (4) do not
have a closed-form solution. The score equations (10)–(13) are a system of multiple non-
linear equations, which can be difficult to solve analytically. Therefore, the MLEs of the
unknown parameters aj, αj, and β j are obtained based on the log-likelihood function given
in Equation (9) through the optim function in R software. In the optim function, to get
the MLE of aj, αj, and β j, we need to supply some initial values, say, a(0)j , α

(0)
j , and β

(0)
j .

Since we do not have any theoretical method to define the initial values in the literature,
we arbitrarily tried multiple sets of initial values from the parametric space in order to
eliminate the impact of initial values [37,38]. We considered the initial values that offered
the maximum likelihood function value and showed the convergence code “0”, indicating
the successful completion of the optimization. The MLE Ĥj(t|x) of the cumulative CSH
function Hj(t|x) was obtained by the invariance property of the MLE. As we mentioned in
Section 4.4, the joint posterior densities based on each considered prior have a complicated
form and it is also difficult to obtain the conditional posterior densities of the unknown
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parameters. Therefore, we employed the MCMC procedure for generating random sam-
ples from joint posterior densities. For this purpose, we used the BUGS software via the
R2OpenBUGS package in R software [39]. The inbuilt BUGS system determines which of
the available MCMC algorithms could be applied to a particular problem. To implement
MCMC algorithms, BUGS only requires the log-likelihood function and the prior distri-
bution of the parameters. On the basis of the properties of posterior densities, the BUGS
system chose the appropriate MCMC algorithms [39].

Furthermore, for computing the hyper-parameters for baseline informative priors, we
utilized the empirical Bayes method by using the MLE. First, we generated 1000 random
samples of size 100. Now, corresponding to each sample, we obtained the average MLE and
the empirical variance of aj and αj and then compared them with the mean and variance of
gamma, Weibull, and log-normal priors of the aj and αj. Calculated hyper-parameters of
gamma, Weibull, and log-normal priors are given in Table 1. The hyper-parameter of LLF
is fixed as ρ = ±1.5 and known as LLF1 and LLF2, respectively. The hyper-parameters cjl
and djl of the regression parameters are assumed to be 0 and 2, respectively.

Table 1. Hyper-parameters of the gamma, Weibull, and log-normal priors for baseline parameters of
the modified Weibull CSAH model.

Priors Hyper-Parameters

Gamma q11 = 11.48, r11 = 21.69, q21 = 25.60, r21 = 39.75, q12 = 2.06, r12 = 3.44,
q22 = 16.69, r22 = 22.09

Weibull k11 = 3.78, θ11 = 1.71, k21 = 5.87, θ21 = 1.44, k12 = 1.46θ12 = 1.51,
k22 = 4.65, θ22 = 1.21

Log-normal µ11 = −0.68, σ11 = 0.08, µ21 = −0.46, σ21 = 0.04, µ12 = −0.71σ12 = 0.39,
µ22 = −0.31, σ22 = 0.06

We generated N =10,000 Markov chains for each parameter, and the first M = 4000
samples were used in the burn-in period for reducing the effect of initial values. Fur-
thermore, for minimizing the effect of the autocorrelation, every second equally spaced
outcome was considered, i.e., thin = 2. By the visualization of the convergence diagnostics
plots, it was observed that the chains converged nicely. Therefore, the last 6000 MCMC
samples were used to obtain Bayes estimates of the unknown parameters and cumulative
CSH functions under both loss functions. The numerical results are presented in Table 2.
The Bayes estimates given in this table are denoted as B-self, B-llf1, and B-llf2, where B
denotes the first letter of the priors considered in Section 4. For example, for gamma, B = G;
for Weibull, B = W; and for log-normal, B = LN. Based on the findings given in these tables,
the following observations were made.

From Table 2, it is very clear that the Bayes estimates are significantly better compared
to the MLE. It is also observed that as the sample size increases, the MSEs decrease for
MLE and Bayes estimates, which verifies the consistency property of all the estimators.
Furthermore, we noticed that the AVLs for ACI and BCIs decreased and CPs maintain
the nominal level (95%). It was also noted that the performance of the log-normal prior
is relatively good when compared to the gamma and Weibull priors. However, in some
cases, the gamma prior also performs well. The performance of MLE gets better as the
sample size increases. Besides that, for large samples, for example, n = 400, in most of
the cases the Bayes estimates dominated. It was also noted that the performance of the
LINEX loss function at ρ = 1.5 was relatively good compared to SELF and LINEX ρ = −1.5
corresponding to each prior.
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Table 2. Simulation results for parameter estimation of the modified Weibull cause-specific AH model
under MLE and Bayes estimates.

Cause 1 Cause 2

n Method a1 α1 β11 H1 a2 α2 β21 H2

True value 0.5 0.6 0.6 0.8012 0.7 0.5 0.8 1.1187

100 MLE AVE 0.5350 0.6494 0.6175 0.8388 0.7567 0.5450 0.7582 1.1492
MSE 0.0234 0.0231 0.1642 0.0315 0.0373 0.0075 0.2376 0.0492

ACI AVL 0.5672 0.4880 1.5375 0.7412 0.6583 0.3303 1.7849 1.0228
CP 0.9520 0.9500 0.9480 0.9560 0.9340 0.9760 0.9300 0.9620

G-self AVE 0.5180 0.6381 0.7453 0.8847 0.7464 0.5848 0.8935 1.1967
MSE 0.0050 0.0053 0.1063 0.0281 0.0231 0.0108 0.1135 0.0404

G-llf1 AVE 0.5107 0.6326 0.6621 0.8650 0.7304 0.5804 0.7883 1.1711
MSE 0.0047 0.0048 0.0758 0.0239 0.0206 0.0100 0.0934 0.0354

G-llf2 AVE 0.5256 0.6438 0.8381 0.9055 0.7633 0.5892 1.0044 1.2233
MSE 0.0056 0.0059 0.1532 0.0333 0.0264 0.0117 0.1515 0.0469

G-BCI AVL 0.3864 0.3366 1.2934 0.6311 0.5713 0.2978 1.4296 0.7206
CP 0.9980 0.9880 0.9660 0.9580 0.9360 0.8800 0.9680 0.9360

W-self AVE 0.5281 0.6465 0.7368 0.8899 0.7495 0.5824 0.8896 1.1982
MSE 0.0057 0.0057 0.1038 0.0291 0.0237 0.0115 0.1114 0.0404

W-llf1 AVE 0.5206 0.6412 0.6534 0.8703 0.7332 0.5775 0.7843 1.1727
MSE 0.0053 0.0052 0.0745 0.0247 0.0212 0.0106 0.0921 0.0354

W-llf2 AVE 0.5357 0.6518 0.8304 0.9107 0.7667 0.5875 1.0008 1.2248
MSE 0.0063 0.0063 0.1499 0.0346 0.0271 0.0125 0.1488 0.0470

W-BCI AVL 0.3901 0.3277 1.2960 0.6309 0.5757 0.3174 1.4310 0.7211
CP 0.9900 0.9840 0.9640 0.9520 0.9380 0.8900 0.9780 0.9380

LN-self AVE 0.5137 0.6360 0.7476 0.8817 0.7346 0.5841 0.9036 1.1896
MSE 0.0044 0.0053 0.1064 0.0274 0.0218 0.0103 0.1150 0.0389

LN-llf1 AVE 0.5068 0.6303 0.6650 0.8622 0.7189 0.5800 0.7981 1.1643
MSE 0.0043 0.0047 0.0760 0.0234 0.0197 0.0095 0.0932 0.0343

LN-llf2 AVE 0.5210 0.6418 0.8397 0.9023 0.7513 0.5883 1.0141 1.2160
MSE 0.0049 0.0060 0.1532 0.0324 0.0247 0.0111 0.1547 0.0450

LN-BCI AVL 0.3764 0.3384 1.2921 0.6272 0.5664 0.2888 1.4281 0.7169
CP 0.9940 0.9920 0.9640 0.9580 0.9480 0.8800 0.9700 0.9400

200 MLE AVE 0.5198 0.6268 0.5800 0.8084 0.7327 0.5363 0.7980 1.1454
MSE 0.0112 0.0070 0.0922 0.0166 0.0151 0.0042 0.1146 0.0238

ACI AVL 0.3883 0.3256 1.0495 0.4873 0.4477 0.2291 1.2418 0.6946
CP 0.9400 0.9740 0.9160 0.9260 0.9460 0.9520 0.9240 0.9680

G-self AVE 0.5131 0.6300 0.6498 0.8348 0.7317 0.5595 0.8780 1.1786
MSE 0.0049 0.0036 0.0659 0.0150 0.0120 0.0058 0.0937 0.0240

G-llf1 AVE 0.5084 0.6265 0.6034 0.8246 0.7231 0.5571 0.8110 1.1646
MSE 0.0046 0.0033 0.0576 0.0139 0.0112 0.0055 0.0820 0.0218

G-llf2 AVE 0.5180 0.6337 0.7002 0.8454 0.7406 0.5618 0.9481 1.1931
MSE 0.0051 0.0039 0.0796 0.0164 0.0130 0.0061 0.1136 0.0266

G-BCI AVL 0.3106 0.2690 0.9754 0.4557 0.4197 0.2172 1.1653 0.5353
CP 0.9760 0.9820 0.9520 0.9420 0.9440 0.8580 0.9440 0.9180

W-self AVE 0.5231 0.6394 0.6409 0.8396 0.7325 0.5566 0.8763 1.1790
MSE 0.0056 0.0043 0.0651 0.0153 0.0123 0.0059 0.0939 0.0241

W-llf1 AVE 0.5182 0.6358 0.5943 0.8293 0.7239 0.5540 0.8091 1.1649
MSE 0.0053 0.0040 0.0575 0.0141 0.0114 0.0056 0.0824 0.0219

W-llf2 AVE 0.5281 0.6429 0.6917 0.8502 0.7415 0.5591 0.9466 1.1935
MSE 0.0059 0.0046 0.0780 0.0168 0.0133 0.0062 0.1137 0.0268

W-BCI AVL 0.3163 0.2687 0.9771 0.4566 0.4214 0.2266 1.1667 0.5357
CP 0.9640 0.9660 0.9500 0.9340 0.9400 0.8720 0.9420 0.9220

LN-self AVE 0.5093 0.6271 0.6535 0.8330 0.7249 0.5595 0.8857 1.1753
MSE 0.0044 0.0034 0.0657 0.0150 0.0115 0.0056 0.0949 0.0235

LN-llf1 AVE 0.5047 0.6236 0.6072 0.8228 0.7164 0.5572 0.8187 1.1612
MSE 0.0042 0.0032 0.0571 0.0139 0.0108 0.0053 0.0823 0.0214
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Table 2. Cont.

Cause 1 Cause 2

n Method a1 α1 β11 H1 a2 α2 β21 H2

LN-llf2 AVE 0.5140 0.6307 0.7039 0.8437 0.7336 0.5617 0.9558 1.1897
MSE 0.0046 0.0037 0.0796 0.0164 0.0124 0.0059 0.1158 0.0260

LN-BCI AVL 0.3048 0.2682 0.9753 0.4568 0.4164 0.2130 1.1664 0.5352
CP 0.9800 0.9840 0.9520 0.9420 0.9520 0.8600 0.9380 0.9220

400 MLE AVE 0.5179 0.6215 0.5873 0.8106 0.7327 0.5364 0.7751 1.1346
MSE 0.0071 0.0036 0.0436 0.0074 0.0090 0.0028 0.0705 0.0126

ACI AVL 0.2738 0.2262 0.7423 0.3420 0.3166 0.1615 0.8729 0.4866
CP 0.9180 0.9640 0.9260 0.9480 0.9320 0.8880 0.8920 0.9640

G-self AVE 0.5146 0.6243 0.6265 0.8258 0.7300 0.5470 0.8309 1.1567
MSE 0.0037 0.0025 0.0329 0.0071 0.0072 0.0034 0.0589 0.0123

G-llf1 AVE 0.5117 0.6222 0.6009 0.8205 0.7254 0.5458 0.7942 1.1493
MSE 0.0035 0.0024 0.0309 0.0067 0.0068 0.0032 0.0556 0.0115

G-llf2 AVE 0.5176 0.6263 0.6532 0.8312 0.7347 0.5482 0.8689 1.1641
MSE 0.0038 0.0026 0.0365 0.0075 0.0076 0.0035 0.0651 0.0132

G-BCI AVL 0.2434 0.2044 0.7277 0.3286 0.3057 0.1568 0.8685 0.3875
CP 0.9620 0.9760 0.9520 0.9540 0.9340 0.8280 0.9180 0.9400

W-self AVE 0.5229 0.6322 0.6184 0.8294 0.7305 0.5452 0.8291 1.1565
MSE 0.0041 0.0030 0.0328 0.0073 0.0074 0.0033 0.0587 0.0122

W-llf1 AVE 0.5199 0.6301 0.5925 0.8241 0.7259 0.5440 0.7921 1.1491
MSE 0.0040 0.0029 0.0311 0.0069 0.0070 0.0032 0.0556 0.0115

W-llf2 AVE 0.5260 0.6343 0.6454 0.8349 0.7352 0.5465 0.8673 1.1640
MSE 0.0043 0.0032 0.0361 0.0078 0.0078 0.0034 0.0648 0.0131

W-BCI AVL 0.2471 0.2068 0.7316 0.3304 0.3069 0.1603 0.8729 0.3884
CP 0.9500 0.9600 0.9580 0.9580 0.9300 0.8380 0.9260 0.9380

LN-self AVE 0.5116 0.6223 0.6296 0.8244 0.7264 0.5471 0.8354 1.1551
MSE 0.0034 0.0024 0.0327 0.0070 0.0070 0.0033 0.0591 0.0122

LN-llf1 AVE 0.5087 0.6203 0.6040 0.8191 0.7219 0.5459 0.7984 1.1477
MSE 0.0033 0.0023 0.0305 0.0066 0.0066 0.0032 0.0553 0.0115

LN-llf2 AVE 0.5145 0.6244 0.6562 0.8298 0.7310 0.5483 0.8736 1.1626
MSE 0.0036 0.0025 0.0364 0.0074 0.0074 0.0034 0.0657 0.0131

LN-BCI AVL 0.2407 0.2038 0.7275 0.3293 0.3045 0.1549 0.8732 0.3876
CP 0.9700 0.9780 0.9560 0.9560 0.9340 0.8340 0.9280 0.9420

7. Illustrative Application

In this section, we used real data from a Mayo Clinic trial of primary biliary cirrhosis
(PBC) of the liver conducted between 1974 and 1984 to demonstrate the applicability of the
proposed model. This dataset is available in the survival package of R software. During
these ten years, 312 patients were randomly assigned to receive D-penicillamine or placebo
treatment from a total of 424 patients. Furthermore, the remaining 112 patients did not
participate in the clinical trial but agreed to have their basic measurements taken and
observed for survival. Six of those patients were not followed-up shortly after diagnosis,
so these patients were removed from the study, resulting in n = 418 patients.

Among the n = 418 patients, 161 patients died, another 25 patients received a liver
transplant, and 232 patients were not followed-up. Therefore, the competing risks model
becomes reasonable for two competing outcome variables: liver transplant and death. The
survival time is measured in days for all individuals. However, there are several covariates
in the original data, such as treatment, sex, age, etc. For the analysis purpose, treatment is
considered as a covariate. The baseline fitting summary of the data for death is reported
in Table 3 and Figure 1. For more information on PBC data, one could refer to Therneau
and Grambsch [40] and the application of competing risks on PBC data is available in the
analysis of competing risks [41].
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Table 3. Baseline parameter estimate and goodness of fit statistics for death.

Model MLE Log-Likelihood AIC BIC

MWD a = 0.0639, α = 0.9986, λ = 0.0197 −580.870 1167.74 1179.85
Weibull Shape = 1.24, Scale = 12.67, −584.0561 1172.11 1180.18
Log-normal Meanlog = 2.341, Sdlog = 1.546 −585.9771 1175.95 1184.03
Burr XII a = 28.53 α = 1.135, λ = 2.814 −581.64 1169.28 1181.39
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Figure 1. Fitted and empirical CDF plots of death for PBC data.

To transform survival time in terms of years, we divided it by 365, which yielded a
median survival time 4.74 years. We also assumed that 106 patients who did not participate
in the trial received the D-penicillamine treatment. Furthermore, we applied the proposed
estimation methods to obtain the estimates of the unknown parameters and cumulative
CSH functions. To choose unknown parameters for priors, we first tried several parameters
and then chose the best one in terms of the convergence performance and computing
time. Based on the results of this preliminary analysis, we decided to use the following
parameters: q1j = q2j = q3j = 1.5, r1j = r2j = r3j = 2.2 (gamma prior); k1j = k2j = k3j =
2, θ1j = θ2j = θ3j = 0.71 (Weibull prior); µ1j = µ2j = µ3j = 0.1, σ1j = σ2j = σ3j = 1
(log-normal prior); and c1j = 0, d1j = 1 (uniform prior). The results of the estimates of the
unknown parameters are presented in Table 4. We estimated the cumulative CSH functions
using (5) based on the proposed estimators which are presented in Figures 2 and 3.

These plots indicate that the cumulative CSH rate for transplant patients is small
compared to the same for the patients who experienced death. Figure 2 shows that the
value of the cumulative CSH function due to transplant is small for the patients who
received the placebo treatment. Similarly, the same is observed for the cumulative CSH
rate due to death, see Figure 3. Moreover, the likelihood ratio test procedure was also
used to test the significance of the treatment effect on transplant and death separately. The
hypotheses of interest are H0 : β11 = 0 against H1 : β11 6= 0 and H0 : β21 = 0 against
H1 : β21 6= 0. We calculated the likelihood ratio test statistics and corresponding p-values
to be 5.44× 10−06 and 1.02× 10−03. Hence, both the null hypothesis are rejected. This
indicates that treatment had a significant effect on transplant and death.
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Table 4. ML and Bayes parameter estimates of the modified Weibull CSAH model for transplant and
death for the PBC data.

Transplant Death

Method a1 α1 λ1 β11 a2 α2 λ2 β21

MLE 0.0117 0.3038 0.1394 0.0026 0.0407 0.2946 0.2174 0.0286
MLE.SE 0.0054 0.9331 0.1965 0.0077 0.0101 0.0947 0.0353 0.0096
G-self 0.0062 0.9640 0.0852 0.0042 0.0600 0.8965 0.0443 0.0118
G-llf1 0.0062 0.8806 0.0827 0.0042 0.0599 0.8867 0.0439 0.0117
G-llf2 0.0062 1.0445 0.0878 0.0042 0.0601 0.9061 0.0447 0.0118
G.SE 0.0031 0.3312 0.0581 0.0030 0.0109 0.1136 0.0234 0.0079

W-self 0.0062 0.9681 0.0878 0.0040 0.0597 0.8828 0.0485 0.0118
W-llf1 0.0062 0.9057 0.0859 0.0040 0.0597 0.8737 0.0481 0.0117
W-llf2 0.0062 1.0295 0.0898 0.0040 0.0598 0.8919 0.0488 0.0118
W.SE 0.0030 0.2876 0.0510 0.0029 0.0109 0.1100 0.0219 0.0080

LN-self 0.0110 0.6324 0.1081 0.0036 0.0617 0.8262 0.0597 0.0118
LN-llf1 0.0110 0.5906 0.1066 0.0036 0.0616 0.8184 0.0594 0.0117
LN-llf2 0.0110 0.6756 0.1096 0.0036 0.0618 0.8339 0.0600 0.0118
LN.SE 0.0041 0.2384 0.0449 0.0027 0.0108 0.1018 0.0205 0.0080

SE: Standard error.
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Figure 2. Estimated cumulative CSH for transplant based on the Bayes estimates for informative
priors and MLE based on the PBC data.

To test the overall goodness of fit of the model (1) to the PBC data in competing risks
framework, we used the Cox–Snell residual plot [42]. The Cox–Snell residual is defined as:

ri = Ĥ(ti|xi), i = 1, 2, . . . , n, (24)

where Ĥ(t|x) is the estimator of cumulative CSH rate H(t|x) = ∑2
j=1 Hj(t|x) and j = 1, 2

based on MLE for transplant and death, respectively. If the model holds, then these residuals
should be a sample from a unit exponential distribution. Therefore, the hazard plot of
residuals versus the Nelson–Aalen estimator of the cumulative hazard of the residuals will
be a straight line with a slope equal to one. The residual plot of Figure 4 demonstrates a
reasonable fit of the model (1). Readers are referred to Figures 12.6–12.9 of the book [42] for
a reasonable fit.
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Figure 3. Estimated cumulative CSH for death based on the Bayes estimates for informative priors
and MLE based on the PBC data.
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Figure 4. Plot of the Cox–Snell residual versus its estimates of cumulative hazard rate.

8. Conclusions

In this article, we propose a parametric cause-specific AH regression analysis, where
the baseline CSH functions follow the MWD. The proposed AH model is a good alternative
to the Cox PH model, and it is useful when excess risk is of concern. The estimation of
the unknown parameters and cumulative CSH function is dealt with by ML and Bayes
estimates. In addition to Bayes estimation, we propose three types of informative priors
for baseline parameters, and uniform priors are considered for regression parameters. The
simulation results show that the Bayes estimates based on each considered priors under
the SELF and LLF dominate over MLE for a small sample size. Furthermore, across the
priors, the choice of baseline log-normal priors gives better results with a smaller MSE and
AVL. Moreover, selecting different priors and loss functions shows their applicability in the
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simulation study. We demonstrate the model utility with the PBC data. These data fit well
with the model, and the covariate significantly affects transplant and death.

The proposed work can be extended for different censoring schemes such as interval,
current status, and middle censoring schemes [7,9,18,42]. Furthermore, the situation of
masking in competing risks analysis is widespread [43,44]. Therefore, the analysis of
masked competing risks data using the proposed model seems to be an interesting attempt.

Determining the appropriate form of the prior is often difficult, historically affecting
the widespread use of the Bayesian paradigm. According to [45], there is no hard and fast
rule for selecting the best possible prior distribution to formulate the Bayes estimator. In
this study, we considered an informative prior for the unknown parameters. However, a
noninformative prior can be used when only limited or vague knowledge (a priori) about
the parameters is available. The rationale for using noninformative prior distributions
is often said to be to let the data speak for themselves so that inferences are unaffected by
external information to the current data. Hence, all resulting inferences were completely
objective rather than subjective. A commonly used noninformative prior in Bayesian
analysis is Jeffrey’s prior [46]. However, the half-t [47] distribution as a noninformative
prior is also gaining attention of researchers. The proposed study can be extended for the
noninformative priors which would be reported elsewhere.
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Desilication of Sodium Aluminate Solutions from the Alkaline
Leaching of Calcium-Aluminate Slags
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Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway
* Correspondence: james.mwase@ntnu.no

Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Dams are essential infrastructure for managing water resources and providing entry
to clean water for human needs. However, the construction and maintenance of dams require
careful consideration of their reliability and safety, specifically in the event of extreme weather
conditions such as heavy rainfall or flooding. In this study, the stress-strength model provides a
useful framework for evaluating the reliability of dams and their ability to cope with external stresses
such as water pressure, earthquake activity, and erosion. The Shasta reservoir in the United States is
a prime example of a dam that requires regular assessment of its reliability to guarantee the safety of
communities and infrastructure. The Gumbel Type II distribution has been suggested as a suitable
model for fitting the collected data on the stress and strength of the reservoir behind the Shasta dam.
Both classical and Bayesian approaches have been used to estimate the reliability function under
the multi-component stress-strength model, and Monte Carlo simulation has been employed for
parameter estimation. In addition, some measures of goodness-of-fit are employed to examine the
suitability of the suggested model.

Keywords: Gumbel Type II distribution; multi-component stress-strength model; maximum likeli-
hood estimation; Bayesian estimation; Monte Carlo simulation; reliability analysis

1. Introduction

In reliability analysis, the study of the failure time of a component or a system is of
great concern. Decision-makers in industry or governments encourage continuity in the
enhancement of systems reliability since it measures the functioning of systems and predicts
their outcomes in a better way. One of the main problems is estimating the parameters
of the stress-strength function R = P(Y < X), where Y is the stress and X is the strength,
and both are considered random variables. Components or systems are subject to failure if
their strength is less than the stress applied to them at any time.

Statistical inference of the stress-strength function has been studied by many authors.
Several lifetime distributions were considered to fit the model under consideration, such as
Birnbaum [1], Hanagal [2], Kotz et al. [3], Raqab et al. [4], Kundu and Raqab [5], Lio and
Tsai [6], Nadar et al. [7], Rao and Kantam [8], Rao [9], Rao [10], Rao et al. [11], Kizilaslan
and Nadar [12], Nadar and Kizilaslan [13], Dey et al. [14], and Wu [15]. For more recent
works one may refer to [16–21].

A multi-component system, with k-independent and identically distributed (iid)
strength components and one common stress, is in a functional state if at least s com-
ponents are surviving at the same time, where 1 ≤ s ≤ k, and this is known as an s-out-of-k:
G system. Two examples of multi-component systems are: first, the suspension bridge
is suspended by a k-vertical cable pair, this bridge will survive if at least s-vertical cable
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pairs are functioning, i.e., not damaged. Second, the engine with six cylinders will work
properly if at least four out of six cylinders are functioning.

Estimating the reliability of a system with the multi-component stress-strength model
is of great importance and has many applications, see for example Ahmad et al. [22], who
used the Power Lomax distribution under a progressive censoring scheme. Johari et al. [23]
studied the reliability analysis of ground soil layers using the cross-correlation method.
More reliability inference studies are presented in [24,25].

In this work, we consider the stress-strength model applied to reservoirs or artificial
lakes behind dams. Dams are very important for providing water for different purposes
during droughts such as drinking, cooking, washing, and irrigation, as well as producing
hydroelectric power. They help in storing water in reservoirs during excess water flow and
release it during times of low flow. Besides irrigation and other consumption purposes,
water stored in these reservoirs is subject to other loss factors such as evaporation. We
consider a model that is related to excessive drought times, and it is also claimed that in a
specific region, if the stored water in a reservoir in August of the previous year is less than
the water amount in the reservoir for at least two of the next four years, then no excessive
drought will occur. In this model, X represents the strength and Y represents the stress.

In this study, we aim to estimate the stress-strength function’s parameters Rs,k which
follow the Gumbel Type II model. This model was invented in 1958 by the German
mathematician Emil Gumbel (1891–1911) and was useful for predicting the likelihood of
climatic events such as annual flood flows (which is the case of this study), earthquakes,
and other natural disasters. According to Abbas et al. [26], it has also been demonstrated
to be sufficient for describing the component’s life expectancy. In their book, Kotz and
Nadarajah [27] investigated the Gumbel distribution with the aim of applying it to the
analysis of datasets ranging from wind speed to flood data.

Several authors focused on the Gumbel Type II distribution in their research for its
wide range of applications. For example, Nadarajah and Kotz [28] studied the Gumbel
distribution’s main properties. Feroze and Muhammad [29] performed Bayesian inference
for the Gumbel Type II distribution under twice censored samples with different loss
functions. Mansour and Aboshady [30] discussed different estimation methods using the
Gumbel Type II distribution under the hybrid Type II censored scheme, they applied this
model to study the performance of the insulating fluids for the breakdown voltages.

One of the basic motivations for using the Gumbel Type II distribution for modelling
real data is its ability to keep the properties of a wide range of distributions, including the
Weibull, Fréchet, and Gumbel distributions. This makes the Gumbel Type II distribution
a flexible alternative for modelling data that are not compatible with some distributional
forms. Another motivation for using the Gumbel Type II distribution is its ability to model
both heavy-tailed and light-tailed distributions, as well as distributions that obtain positive
or negative skewness. Moreover, the Gumbel Type II distribution is often used to model
extreme events such as floods, hurricanes, and earthquakes, where accurate modelling
of the distribution is essential for risk assessment and management. The Gumbel Type II
distribution has been found to support a good fit for many extreme events, making it a
preferable choice for modelling such events.

Even though several types of research have been performed on the statistical inference
of the Gumbel Type II distribution, there is still a persistent need for more work in the field
of multi-component stress-strength systems with Gumbel Type II distribution. In this study,
we work on two goals: first, to find classical and Bayesian estimators of multi-component
stress-strength functions and assess the estimators by providing a simulation study and
applying suitable numerical techniques. Second, apply the new model to fit real data
collected from reservoirs behind the Shasta dam.

The procedure for organizing the process of this work is schematically shown in the
flowchart in Figure 1.
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Figure 1. A flowchart indicating the research process.

2. Reliability Function

In this section, a closed form is obtained for the reliability function for a stress-strength
model. Assuming the probability density function (PDF) and the CDF for the Gumbel Type
II distribution, with a random variable X defined as,

f (x) = αβx−(α+1)e−βx−α
, x > 0, α, β > 0. (1)

and
F(x) = e−βx−α

, x > 0, α, β > 0, (2)

and given the reliability function for a stress-strength model, that was defined by Bhat-
tacharyya and Johnson [31], as

Rs,k = P[at least s of (X1, X2, . . . , Xk) exceed Y] =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1− F(X)]i[F(X)]k−idG(Y), (3)

where X1, X2, . . . , Xk are iid random variables that follow the Gumbel Type II distribution
with parameters α1 and β1 with cumulative distribution function (CDF) F(X), and are
affected by random stresses Y that follow the Gumbel Type II distribution with parameters
α2 and β2 having CDF G(Y). Substituting by the CDF in Equation (2) into Rs,k defined in
Equation (3), we obtain

Rs,k = α2β2

k

∑
i=s

(
k
i

) ∫ ∞

0
[1− e−β1x−α1 ]i[e−β1x−α1 ]k−ix−(α2+1)e−β2x−α2 dx. (4)

Let u = x−α2 and substitute it into Equation (4) to obtain Equation (5)

Rs,k = β2

k

∑
i=s

(
k
i

) ∫ ∞

0
[1− e−β1u

α1
α2 ]i[e−β1u

α1
α2 ]k−ie−β2udu. (5)
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By using the binomial expansion for [1− e−β1u
α1
α2 ], we obtain

Rs,k = β2

k

∑
i=s

i

∑
l=0

(
k
i

)(
i
l

)
(−1)l

∫ ∞

0
[e−β1u

α1
α2 ]k−le−β2udu. (6)

Since the Maclaurin expansion for [e−β1u
α1
α2 ]k−l = ∑∞

r=0
(l−k)r βr

1u
rα1
α2

r! , then Equation (6)
is rewritten as

Rs,k = β2

k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)rβr

1
r!

∫ ∞

0
u

rα1
α2 e−β2udu. (7)

Assuming z = β2u, Equation (7) is reduced to

Rs,k =
k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)rβr

1
r!

β
− rα1

α2
2 Γ

( rα1

α2
+ 1
)

. (8)

3. Maximum-Likelihood Estimation

This section is devoted to deriving the maximum likelihood estimators (MLEs) for the
reliability function’s Rs,k parameters. The basis for finding the estimators of the parameters
is the log-likelihood functions, given the data. The MLEs have been used by many authors
to derive the estimators of the parameters due to several advantages such as simplicity,
unbiased for larger samples, and acquiring smaller variance. Furthermore, it can be
developed for a large variety of other estimation methods. For more information on the
likelihood theory, see Azzalini [32].

To find the MLEs of Rs,k, we start by obtaining the MLEs for the parameters α1, α2, β1
and β2. In this model, samples can be constructed as




X11 X12 . . . X1k
X21 X22 . . . X2k

...
...

. . .
...

Xn1 Xn2 . . . Xnk


 and




Y1
Y2
...

Yn




Observed strength variables Observed stress variables

Hence, the likelihood function for the observations can be written as

L(α1, α2, β1, β2) =
n

∏
i=1

[ k

∏
j=1

f (xi,j)
]

g(yi), (9)

where

f (xij) = α1β1x−(α1+1)
ij e−β1x

−α1
ij ,

g(yi) = α2β2y−(α2+1)
i e−β2y−α2

i .

Equation (9) can then be written as

L(α1, α2, β1, β2) = αnk
1 αn

2 βnk
1 βn

2

[
n

∏
i=1

k

∏
j=1

x−α1−1
i,j

][
n

∏
i=1

y−α2−1
i

][
e−β1 ∑n

i=1 ∑k
j=1 x

−α1
i,j

][
e−β2 ∑n

i=1 y−α2
i

]
. (10)

From Equation (10), the log-likelihood function can be derived as follows
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`(α1, α2, β1, β2) = nk[log(α1) + log(β1)] + n[log(α2) + log(β2)]− (α1 + 1)

[
n

∑
i=1

k

∑
j=1

log(xi,j)

]
(11)

×(α2 + 1)

[
n

∑
i=1

log(yi)

]
− β1

[
n

∑
i=1

k

∑
j=1

x−α1
i,j

]
− β2

[
n

∑
i=1

y−α2
i

]
.

Computing the first partial derivatives for ` with respect to α1, α2, β1 and β2 and
equating with zero will give the four equations below

nk
α1
−
[

n

∑
i=1

k

∑
j=1

log(xi,j)

]
+ β1

[
n

∑
i=1

k

∑
j=1

x−α1
i,j log(xi,j)

]
= 0, (12)

n
α2
−
[

n

∑
i=1

log(yi)

]
+ β2

[
n

∑
i=1

y−α2
i log(yi)

]
= 0, (13)

nk
β1
−
[

n

∑
i=1

k

∑
j=1

x−α1
i,j

]
= 0, (14)

n
β2
−
[

n

∑
i=1

y−α2
i

]
= 0, (15)

Straightforward from Equations (14) and (15), the estimators for β1 and β2 can be
given as

β̂1 =
nk

∑n
i=1 ∑k

j=1 x−α̂1
i,j

and β̂2 =
n

∑n
i=1 y−α̂2

i

(16)

Dragging the two estimates in Equation (16) into Equations (12) and (13), respectively,
and solving will give estimates for α1 and α2, α̂1 and α̂2, respectively, and substituting by
α̂1, α̂2, β̂1 and β̂2 in Equation (8), we obtain the MLE R̂s,k as follows

R̂s,k =
k

∑
i=s

i

∑
l=0

∞

∑
r=0

(
k
i

)(
i
l

)
(−1)l (l − k)r β̂r

1
r!

β̂
− rα̂1

α̂2
2 Γ

( rα̂1

α̂2
+ 1
)

. (17)

Fisher Information Matrix

In this sub-section, the asymptotic confidence interval (ACI) for the reliability function
will be derived using the Fisher information (FI) matrix. The concept of the FI matrix is
based on the missing value principle which was introduced by Louis [33] and is defined as
follows:

Observed information = Complete information −Missing information.

The asymptotic variance–covariance of the MLEs α̂1, α̂2, β̂1 and β̂2 are derived from
the entries of the inverse matrix of the FI matrix Iij = E{−[∂2`(Φ)/∂φi∂φj]}, where
i, j = 1, 2 and Φ = (φ1, φ2, φ3, φ4) = (α1, α2, β1, β2). Unfortunately, obtaining an exact
closed form for the previous expectations is very complicated. Hence, the observed FI
matrix Îij =

{
−
[
∂2`(Φ)/∂φi ∂φj

]}
Φ=Φ̂. This is obtained by dropping the expectation op-

erator E and using it to construct the confidence intervals for the unknown parameters.
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The entries of the observed FI matrix are the second partial derivatives of the log-likelihood
function, which is easily obtained. Therefore, the observed FI matrix is given by

Î
(
α̂1, α̂2, β̂1, β̂2

)
=




− ∂2`
∂α2

1
− ∂2`

∂α1∂α2
− ∂2`

∂α1∂β1
− ∂2`

∂α1∂β2

− ∂2`
∂α2∂α1

− ∂2`
∂α2

2
− ∂2`

∂α2∂β1
− ∂2`

∂α2∂β2

− ∂2`
∂β1∂α1

− ∂2`
∂β1∂α2

− ∂2`
∂β2

1
− ∂2`

∂β1∂β2

− ∂2`
∂β2∂α1

− ∂2`
∂β2∂α2

− ∂2`
∂β2∂β1

− ∂2`
∂β2

2




(α1,α2,β1,β2)=(α̂1,α̂2,β̂1,β̂2)

, (18)

By inverting the information matrix Î(α1, α2, β1, β2), the approximate asymptotic
variance–covariance matrix [V̂] for the MLEs can be obtained as:

[
V̂
]
= Î−1(α̂1, α̂2, β̂1, β̂2

)
=




Var(α̂1) cov(α̂1, α̂2) cov(α̂1, β̂1) cov(α̂1, β̂2)
cov(α̂2, α̂1) Var(α̂2) cov(α̂2, β̂1) cov(α̂2, β̂2)
cov(β̂1, α̂1) cov(β̂1, α̂2) Var

(
β̂1
)

cov(β̂1, β̂2)
cov(β̂2, α̂1) cov(β̂2, α̂2) cov(β̂2, β̂1) Var

(
β̂2
)


. (19)

Assuming some regularity conditions, (α̂1, α̂2, β̂1, β̂2) will be approximately distributed
as a multivariate normal distribution with mean (α1, α2, β1, β2) and covariance matrix
I−1(α1, α2, β1, β2), see Lawless [34]. Then, the 100(1− γ)% two-sided confidence intervals
of α1, α2, β1 and β2 can be given by

α̂i ± Z γ
2

√
Var(α̂i) and β̂i ± Z γ

2

√
Var

(
β̂i

)
(20)

where Z γ
2

is the percentile of the standard normal distribution with a right-tail probability
γ
2 .

To construct the ACIs of the reliability function, Rs,k, it is necessary to compute its vari-
ance. The MLE of the Rs,k is asymptotically normal with mean ˆRs,k and its corresponding
asymptotic variance is given as

σ̂2
Rs,k

=
4

∑
i=1

4

∑
j=1

∂Rs,k

∂θi

∂Rs,k

∂θj
I−1
ij (21)

=
∂Rs,k

∂α1

∂Rs,k

∂α1
I−1
11 + 2

∂Rs,k

∂α1

∂Rs,k

∂β1
I−1
13 +

∂Rs,k

∂α2

∂Rs,k

∂α2
I−1
22

+ 2
∂Rs,k

∂α2

∂Rs,k

∂β2
I−1
24 +

∂Rs,k

∂β1

∂Rs,k

∂β1
I−1
33 +

∂Rs,k

∂β2

∂Rs,k

∂β2
I−1
44 .

Then, the 100(1− ϑ)% two-sided confidence intervals of Rs,k can be given by

R̂s,k ± Z ϑ
2

√
σ̂2

Rs,k
(22)

4. Bayesian Estimation

Another method for obtaining the estimates for the distribution parameters and the
reliability function is discussed in this section and is known as the Bayesian estimation.
Before collecting and organizing the data, the joint prior distribution should be assumed,
and what distinguishes this method is that the prior knowledge is merged in the solution
steps. The Bayesian estimates for the four parameters α1, α2, β1 and β2 in addition to
the reliability function Rs,k is obtained under the squared error loss (SEL) function. First,
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the prior knowledge of the parameters α1, α2, β1 and β2 is assumed to follow gamma
distribution as follows

π1(α1) = αa1−1
1 e−b1α1 , α1 > 0,

π2(α2) = αa2−1
2 e−b2α2 , α2 > 0,

π3(β1) = βa3−1
1 e−b3β1 , β1 > 0,

π4(β2) = βa4−1
2 e−b4β2 , β2 > 0,

(23)

assuming that all the hyper-parameters ai and bi, i = 1, 2, 3, 4 are known and non-negative.
It can be noted that one reason for choosing this prior density is that Gamma prior is
flexible in its nature with a non-informative domain, especially if the values of the hyper-
parameters are assumed to be zero, for more details on selecting priors one may refer to
Kundu and Howlader [35], Dey and Dey [36], and Dey [14].

Using the likelihood function in Equation (10) and the prior distribution for the
parameters α1, α2, β1 and β2 assumed in the previous equations, the posterior distribution,
denoted by π∗(α1, α2, β1, β2 | x

¯
, y

¯
), for these parameters can be derived as follows

π∗
(

α1, α2, β1, β2 | x
¯
, y

¯

)
=

π1(α1) π2(α2) π3(β1) π4(β2) L(α1, α2, β1, β2 | x
¯
, y

¯
)

∞∫
0

∞∫
0

∞∫
0

∞∫
0

π1(α1) π2(α2) π3(β1) π4(β2) L(α1, α2, β1, β2 | x
¯
, y

¯
) dα1dα2 dβ1dβ2

. (24)

Given a parameter φ which is estimated by φ̂, the symmetric loss function SEL function
assigns equal losses for both over- and under-estimations, which can be defined as

L
(
φ, φ̂

)
=
(
φ̂− φ

)2.

As a result, the Bayes estimate g(α1, α2, β1, β2) under the SEL function can be writ-
ten as

ĝBS

(
α1, α2, β1, β2 | x

¯
, y

¯

)
= Eα1,α2,β1,β2|x¯,y (g(α1, α2, β1, β2)),

where

Eα1,α2,β1,β2|x¯, y
¯
(g(α1, α2, β1, β2)) =

∞∫
0

∞∫
0

∞∫
0

∞∫
0

g(α1,α2,β1,β2)π1(α1)π2(α2)π3(β1)π4(β2)L(α1,α2,β1,β2|x¯, y
¯
)dα1dα2dβ1dβ2

∞∫
0

∞∫
0

∞∫
0

∞∫
0

π1(α1)π2(α2)π3(β1)π4(β2)L(α1,α2,β1,β2|x¯, y
¯
)dα1dα2dβ1dβ2

. (25)

The joint posterior density function of α1, α2, β1 and β2 can be obtained as follows

π∗(α1, α2, β1, β2 | x
¯
,y
¯
) ∝ αnk+a1−1

1 αn+a2−1
2 βnk+a3−1

1 βn+a4−1
2 e−b1α1−b2α2−b3β1−b4β2

×∏n
i=1 ∏k

j=1 x−α1−1
ij ∏n

i=1 y−α2−1
i e−β1 ∑n

i=1 ∑k
j=1 x

−α1
ij e−β2 ∑n

i=1 y−α2
i .

(26)

The Bayesian estimate of Rs,k, under the SEL function, is the mean of the posterior
function in Equation (25) and can be written as

R̃s,k =

∞∫

0

∞∫

0

∞∫

0

∞∫

0

Rs,kπ∗
(

α1, α2, β1, β2 | x
¯
, y

¯

)
dα1dα2 dβ1dβ2. (27)

It is clear that the integral in Equation (27) is difficult to be calculated analytically.
Therefore, the Gibbs sampling method is used to obtain the Bayesian estimator for the
reliability function Rs,k.

Gibbs Sampling

The Gibbs sampling method is a special case of the Monte Carlo Markov Chain
(MCMC) and can be used to perform the Bayes estimate of Rs,k numerically, in addition
to the its related credible interval (CRI). The key idea in Gibbs sampling is to generate
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samples for the required parameters from the posterior conditional density function, given
in Equation (26). Then, the posterior conditional density functions of α1, α2, β1 and β2 are
given as

π∗1
(

α1 | α2, β1, β2, x
¯
, y

¯

)
∝ αnk+a1−1

1 e−b1α1
n

∏
i=1

k

∏
j=1

x−α1−1
ij e−β1 ∑n

i=1 ∑k
j=1 x

−α1
ij , (28)

π∗2 (α2 | α1, β1, β2, x
¯
,y
¯
) ∝ αn+a2−1

2 e−b2α2
n

∏
i=1

y−α2−1
i e−β2 ∑n

i=1 y−α2
i , (29)

π∗3 (β1 | α1, α2, β2, x
¯
, y

¯
) ∝ βnk+a3−1

1 e−b3β1 e−β1 ∑n
i=1 ∑k

j=1 x
−α1
ij , (30)

and
π∗4 (β2 | α1, α2, β1, x

¯
, y

¯
) ∝ βn+a4−1

2 e−b4β2 e−β2 ∑n
i=1 y−α2

i , (31)

respectively. It is difficult to obtain the conditional density function of α1, α2, β1 and β2.
Therefore, the Metropolis–Hasting (M–H) algorithm, proposed by Metropolis et al. [37],
is applied using the normal proposal distribution for generating random samples from
the posterior density of α1, α2, β1 and β2. The steps of Gibbs sampling are described as
follows:

1. Start with initial guess
(

α
(0)
1 , α

(0)
2 , β

(0)
1 , β

(0)
2

)
.

2. Set l = 1.

3. Using the following M–H algorithm, generate α
(l)
1 , α

(l)
2 , β

(l)
1 and β

(l)
2 from

π∗1
(

α
(l)
1 | α

(l−1)
2 , β

(l−1)
1 , β

(l−1)
2 , x

¯
, y

¯

)
, π∗2

(
α
(l)
2 | α

(l)
1 , β

(l−1)
1 , β

(l−1)
2 , x

¯
, y

¯

)

, π∗3
(

β
(l)
1 | α

(l)
1 , α

(l)
2 , β

(l−1)
2 , x

¯
, y

¯

)
and π∗4

(
β
(l)
2 | α

(l)
1 , α

(l)
2 , β

(l)
1 , x

¯
, y

¯

)
with the normal pro-

posal distributions

N
(

α
(l−1)
1 , Var(α1)

)
, N
(

α
(l−1)
2 , Var(α2)

)
, N
(

β
(l−1)
1 , Var(β1)

)
and N

(
β
(l−1)
2 , Var(β2)

)
,

where Var(α1), Var(α2), Var(β1) and Var(β2) can be obtained from the main diago-
nal in the inverse Fisher information matrix.

4. Generate a proposal α∗1 from N
(

α
(l−1)
1 , Var(α1)

)
, α∗2 from N

(
α
(l−1)
2 , Var(α2)

)
, β∗1 from

N
(

β
(l−1)
1 , Var(β1)

)
and β∗2 from N

(
β
(l−1)
2 , Var(β2)

)
.

(i) Evaluate the acceptance probabilities

ηα1 = min

[
1,

π∗1
(

α∗1 |α
(l−1)
2 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)

π∗1
(

α
(l)
1 |α

(l−1)
2 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)

]
,

ηα2 = min

[
1,

π∗2
(

α∗2 |α
(l)
1 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)

π∗2
(

α
(l)
2 |α

(l)
1 ,β(l−1)

1 ,β(l−1)
2 ,x

¯
, y

¯

)

]

ηβ1 = min

[
1,

π∗3
(

β∗1 |α
(l)
1 ,α(l)2 ,β(l−1)

2 ,x
¯
, y

¯

)

π∗3
(

β
(l)
1 |α

(l)
1 ,α(l)2 ,β(l−1)

2 ,x
¯
, y

¯

)

]
,

ηβ2 = min

[
1,

π∗4
(

β∗2 |α
(l)
1 ,α(l)2 ,β(l)1 ,x

¯
, y

¯

)

π∗4
(

β
(l)
2 |α

(l)
1 ,α(l)2 ,β(l)1 ,x

¯
, y

¯

)

]
.





(ii) Generate a u1, u2, u3 and u4 from a uniform (0, 1) distribution.

(iii) If u1 < ηα1 , accept the proposal and set α
(l)
1 = α∗1 , else set α

(l)
1 = α

(l−1)
1 .

(iv) If u2 < ηα2 , accept the proposal and set α
(l)
2 = α∗2 , else set α

(l)
2 = α

(l−1)
2 .

(v) If u3 < ηβ1 , accept the proposal and set β
(l)
1 = β∗1, else set β

(l)
1 = β

(l−1)
1 .
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(vi) If u4 < ηβ2 ,accept the proposal and set β
(l)
2 = β∗2, else set β

(l)
2 = β

(l−1)
2 .

5. Compute R(l)
s,k at (α(l)1 , α

(l)
2 , β

(l)
1 , β

(l)
2 ).

6. Set l = l + 1.

7. Repeat Steps (3)− (6), N times and obtain α
(l)
1 , α

(l)
2 , β

(l)
1 , β

(l)
2 and R(l)

s,k , l = 1, 2, . . . , N.

8. To compute the CRIs of α1, α2, β1, β2 and Rs,k, ψ
(l)
k , k = 1, 2, 3, 4, 5, (ψ1, ψ2, ψ3, ψ4, ψ5) =

(α1, α2, β1, β2, Rs,k) as ψ
(1)
k < ψ

(2)
k . . . < ψ

(N)
k , then the 100(1− γ)% CRIs of ψk is

(
ψk(N γ/2), ψk(N (1−γ/2))

)
.

The first M simulated variants are discarded in order to ensure convergence and
remove the affection of initial value selection. Then the selected samples are ψ

(i)
k , j =

M + 1, . . . , N, for sufficiently large N.
Based on the SEL function, the approximate Bayes estimates of ψk is given by

ψ̂k =
1

N −M

N

∑
j=M+1

ψ(j), k = 1, 2, 3, 4, 5.

5. Real Data Analysis

In this section, the reliability function is estimated using the MLE and Bayesian
estimation methods, where the data under consideration are obtained for the water capacity
in the Shasta reservoir in the United States. The view of Shasta Lake during the season of
floods in addition to a general view of the Shasta dam are shown in Figure 2.

Figure 2. View of Shasta Lake during the season of floods and a plan view for the dam.

To consider the scenario of the excessive drought, we will focus on the total amount
of water in the period from 1980 until 2019. Our claim is that an excessive drought occurs
if the total amount of water in August in two years of the next four years is less than the
amount of water filling the reservoir in December of the preceding years, otherwise, no
excessive drought will occur. This problem was previously studied in different contexts,
i.e., see Fatma [19] and Akram [16]. The source of the data is available in [38].

For computational simplicity, the water amount in the reservoir for any given month
is divided by the total capacity of the reservoir and the data will then be as follows:

X =




0.5597 0.8112 0.8296 0.7262
0.7152 0.4637 0.3634 0.4637
0.2912 0.4141 0.7540 0.5381
0.7226 0.5612 0.8140 0.7552
0.5249 0.6060 0.7159 0.5295
0.7420 0.4688 0.3451 0.4253
0.7951 0.6139 0.4616 0.2948
0.6881 0.7967 0.5913 0.8037




and Y =




0.7009
0.5321
0.3572
0.7179
0.6395
0.8279
0.7665
0.3135
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The first row of the observations in matrix X represents the storage amount of water
(divided by the total capacity storage of the lake) in August 1980–1983, respectively, while
the second row represents this in August 1985–1988, respectively, and so on, with a sample
size of 32 observations. Whereas the amount of water in December 1984, 1989, up to 2019 is
represented by matrix Y, with a size of 8 observations. It was found that both X and Y values
are well-fitted to the Gumbel Type II distribution. The Gumbel Type II distribution was
chosen primarily because of its suitability for predicting the possibility of climatic events
such as annual flood flows (which is the case of this study), earthquakes, and other natural
disasters. However, fitting outcomes for certain classical models, such as the log-normal
distribution, are poor, with p-values of 1.57936× 10−11 and 0.00194213 for the X and Y
datasets, respectively. While for the Gumbel Type II distribution, the Kolmogorov–Smirnov
(KS) distance for X with the estimated parameters is 0.178521 and the corresponding p-
value is 0.230418. Furthermore, for Y, the KS distance with the estimated parameters is
0.263293 and the corresponding p-value is 0.550885. A comparison between the empirical
distribution of the dataset and the survival function of the Gumbel Type II distribution is
presented in Figure 3.

Figure 3. Empirical and fitted survival functions for the two datasets X and Y.

For the complete dataset, the MLEs for the parameters, α1, α2, β1, and β2, and the
reliability function, in addition to the Bayesian estimation with respect to SEL function are
displayed in Table 1.

Table 1. The point estimates for α1, β1, α2, β2 and R.

α1 β1 α2 β2 R2,4

MLE 0.303858 0.402204 0.00569851 238.391 0.00789931
Bayes 0.469386 0.393857 0.00850074 237.782 0.00824543

From Table 1, the estimated values are relatively close to each other, which indicates
the good performance of the estimators. In addition, the two estimators for the reliability
function R2,4 seem to be very close and approximately equal to zero, indicating no excessive
droughts in these periods. The convergence for the estimated parameters using the MCMC
method with 1000 iterations is shown in Figure 4.
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Figure 4. Convergence for the estimated parameters α1, β1, α1, β2 and R.

6. Simulation Study

A Monte Carlo simulation analysis is carried out in this section comparing the per-
formance of the MLE and Bayesian estimates of the distribution’s parameters α1, β1, α2,
and β2 under various scenarios. The comparisons are made using the mean-squares-error
(MSE) criterion. All computations are carried out in Mathematica 12, and all the results
are obtained using 1000 Monte Carlo samples. We use various sample sizes (n) and (s, k)
values in the simulation setup. Various parameter values are selected with different sample
sizes (n) such as n = 30, 40, 50, 100, and 150 and α1, β1, α2, and β2 are assumed to be (0.2,
0.5, 0.05, and 200) and (0.3, 0.4, 0.05, and 200), respectively.

Tables 2 and 3 show that in most cases, the Bayesian estimators of the parameters have
a large bias compared with the MLEs for small sample sizes. However, when the sample
sizes grow larger, all of the estimators exhibit small biases. In terms of the MSE criterion, it is
clear that as the sample size increases, the MSEs for the estimates of α1, β1, and α2 decrease,
as expected. However, it was noticed that the MSE for β2 does not decrease as the sample
size increases; hence, sometimes some values of MSE violate this pattern due to some causes
such as the numerical solution of a certain number of non-linear simultaneous equations. It
should be noted that informative priors improve the performance of Bayesian estimates in
a reasonable way. As sample sizes grow larger, the MSE values for all estimators become
nearly identical. To emphasize the performance of the proposed methods, another criterion
is applied which is the coverage probability. The coverage probability indicates how many
times a confidence interval contains the initial value of the estimated parameters through
the number of simulated samples. In addition, the average interval lengths for both the
ACIs and CRIs are calculated and tabulated in Tables 4 and 5. It is noted that for various
values of α1, β1, α2, and β2, for n, s, and k, the CRIs perform better than the ACIs through
the coverage probability and the average lengths of intervals.
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Table 2. The MLE and Bayesian estimates for the parameters (α1, β1, α2, β2) = (0.2, 0.5, 0.05, 200)
with the associated MSE between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.2, 0.5,
0.05, 200) (3, 5) 30 0.20146 0.50203 0.04999 199.837 0.1808 0.45054 0.04486 198.838

(0.00017) (0.00296) (0.000) (32.8054) (0.0002) (0.0034) (0.000) (33.0127)
40 0.2014 0.50013 0.05001 199.969 0.18074 0.44884 0.04488 198.969

(0.00013) (0.00225) (0.000) (31.3774) (0.00014) (0.00271) (0.000) (33.9823)
50 0.2011 0.50103 0.04998 199.897 0.18047 0.44964 0.04485 198.898

(0.0001) (0.00176) (0.000) (32.0521) (0.00012) (0.002) (0.000) (37.8047)
100 0.20071 0.49831 0.04993 199.688 0.18012 0.4472 0.04481 198.689

(0.00005) (0.0009) (0.000) (31.9973) (0.00005) (0.00116) (0.000) (39.0693)
150 0.20037 0.5002 0.04999 200.017 0.17982 0.4489 0.04486 199.017

(0.00003) (0.00059) (0.000) (33.7554) (0.00004) (0.00059) (0.000) (40.6417)
(5, 5) 30 0.20222 0.49926 0.04997 199.657 0.18148 0.44805 0.04484 198.659

(0.00017) (0.00292) (0.000) (33.13) (0.0002) (0.00331) (0.000) (35.7178)
40 0.20177 0.50036 0.04999 199.715 0.18107 0.44904 0.04486 198.716

(0.00012) (0.00205) (0.000) (32.5364) (0.00013) (0.00232) (0.000) (38.4116)
50 0.20087 0.50181 0.04995 199.765 0.18027 0.45035 0.04483 198.767

(0.0001) (0.00176) (0.000) (34.8049) (0.00012) (0.00227) (0.000) (35.433)
100 0.20051 0.5015 0.04999 199.824 0.17994 0.45006 0.04486 198.824

(0.00005) (0.00088) (0.000) (31.978) (0.00005) (0.00114) (0.000) (36.2068)
150 0.20041 0.50021 0.05002 199.727 0.17986 0.44891 0.04489 198.728

(0.00003) (0.00058) (0.000) (32.943) (0.00004) (0.00058) (0.000) (34.9308)
(5, 6) 30 0.20152 0.50146 0.05001 199.8 0.18085 0.45003 0.04488 198.801

(0.00014) (0.0022) (0.000) (32.295) (0.00015) (0.00232) (0.000) (33.4603)
40 0.20155 0.50179 0.05005 199.89 0.18088 0.45032 0.04492 198.891

(0.00011) (0.0018) (0.000) (34.2618) (0.00013) (0.00204) (0.000) (34.2076)
50 0.20141 0.49875 0.05 199.765 0.18075 0.44759 0.04487 198.766

(0.00009) (0.00149) (0.000) (30.8775) (0.0001) (0.00175) (0.000) (32.8875)
100 0.20038 0.5005 0.04995 200.074 0.17983 0.44916 0.04483 199.074

(0.00004) (0.00067) (0.000) (31.4818) (0.00005) (0.00075) (0.000) (32.6242)
150 0.20014 0.50009 0.04999 200.067 0.17962 0.4488 0.04486 199.067

(0.00003) (0.00052) (0.000) (33.1109) (0.00004) (0.00064) (0.000) (36.4121)

Table 3. The MLE and Bayesian estimates for the parameters (α1, β1, α2, β2) = (0.3, 0.4, 0.05, 200)
with the associated MSE between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.3, 0.4,
0.05, 200) (3, 5) 30 0.3025 0.39763 0.05 199.822 0.27147 0.35685 0.04487 198.822

(0.00036) (0.00226) (0.000) (33.8999) (0.00038) (0.00234) (0.000) (40.3491)
40 0.30229 0.39954 0.04984 199.835 0.27129 0.35856 0.04473 198.836

(0.00026) (0.0016) (0.000) (34.5172) (0.00026) (0.00166) (0.000) (35.5571)
50 0.30102 0.40185 0.05003 199.753 0.27014 0.36064 0.0449 198.754

(0.00021) (0.00123) (0.000) (34.6565) (0.00025) (0.00138) (0.000) (42.4399)
100 0.30021 0.40196 0.05007 200.059 0.26942 0.36074 0.04493 199.059

(0.00012) (0.0007) (0.000) (32.4818) (0.00013) (0.0007) (0.000) (32.5149)
150 0.30078 0.39987 0.04999 199.555 0.26993 0.35886 0.04486 198.558

(0.00007) (0.00043) (0.000) (33.0983) (0.00009) (0.00052) (0.000) (38.4439)
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Table 3. Cont.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(5, 5) 30 0.30285 0.4029 0.04994 199.654 0.27179 0.36157 0.04482 198.656
(0.00038) (0.00225) (0.000) (33.433) (0.00049) (0.00238) (0.000) (40.4265)

40 0.30167 0.40134 0.04994 200.091 0.27073 0.36017 0.04482 199.09
(0.00026) (0.00166) (0.000) (34.0351) (0.00032) (0.00196) (0.000) (33.7554)

50 0.30159 0.40057 0.04993 200.15 0.27065 0.35949 0.04481 199.149
(0.00022) (0.00129) (0.000) (34.2804) (0.00026) (0.00164) (0.000) (43.0006)

100 0.30051 0.40013 0.04995 199.983 0.26969 0.35909 0.04483 198.983
(0.00011) (0.00068) (0.000) (32.9482) (0.00011) (0.00069) (0.000) (33.3591)

150 0.30005 0.40084 0.04996 199.626 0.26928 0.35973 0.04484 198.628
(0.00007) (0.00044) (0.000) (33.8825) (0.00008) (0.00051) (0.000) (35.5814)

(5, 6) 30 0.30217 0.40028 0.04992 200.064 0.27118 0.35923 0.0448 199.063
(0.00031) (0.00158) (0.000) (33.822) (0.0004) (0.00236) (0.000) (36.4273)

40 0.30233 0.39868 0.05001 199.671 0.27132 0.35779 0.04488 198.672
(0.00025) (0.00129) (0.000) (32.1462) (0.0003) (0.00168) (0.000) (37.4052)

50 0.30195 0.39879 0.05 200.079 0.27098 0.35789 0.04487 199.079
(0.0002) (0.00109) (0.000) (33.8499) (0.00021) (0.00116) (0.000) (40.087)

100 0.30038 0.40072 0.05001 199.938 0.26957 0.35962 0.04489 198.938
(0.00009) (0.00055) (0.000) (32.5754) (0.00011) (0.00064) (0.000) (36.7374)

150 0.30054 0.40001 0.04998 200.075 0.26971 0.35899 0.04486 199.075
(0.00006) (0.00036) (0.000) (33.7145) (0.00006) (0.0004) (0.000) (38.2541)

Table 4. ACIs and CRIs for (α1, β1, α2, β2) = (0.2, 0.5, 0.05, 200) with their corresponding coverage
probabilities between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.2, 0.5, 0.05,
200) (3, 5) 30 0.0507 0.2109 0.0281 567.508 0.0304 0.1265 0.0169 29.5104

(0.95) (0.951) (1.000) (1.000) (0.9949) (0.9951) (0.995) (0.995)
40 0.0436 0.1833 0.0244 491.674 0.0261 0.11 0.0146 25.567

(0.944) (0.944) (1.000) (1.000) (0.995) (0.995) (0.995) (0.9949)
50 0.0389 0.1643 0.0218 438.494 0.0233 0.0986 0.0131 22.8017

(0.951) (0.948) (1.000) (1.000) (0.9951) (0.9951) (0.9951) (0.9949)
100 0.0275 0.1159 0.0153 308.949 0.0165 0.0695 0.0092 16.0653

(0.954) (0.935) (1.000) (1.000) (0.9949) (0.995) (0.9949) (0.995)
150 0.0224 0.0948 0.0125 252.359 0.0134 0.0569 0.0075 13.1227

(0.962) (0.948) (1.000) (1.000) (0.9949) (0.9951) (0.9949) (0.995)
(5, 5) 30 0.0506 0.2115 0.0283 570.071 0.0303 0.1269 0.017 29.6437

(0.951) (0.933) (1.000) (1.000) (0.9949) (0.995) (0.9952) (0.9949)
40 0.0435 0.1839 0.0245 492.382 0.0261 0.1103 0.0147 25.6038

(0.949) (0.945) (1.000) (1.000) (0.9949) (0.9949) (0.995) (0.995)
50 0.039 0.164 0.0218 439.355 0.0234 0.0984 0.0131 22.8464

(0.964) (0.956) (1.000) (1.000) (0.995) (0.9951) (0.9949) (0.9951)
100 0.0274 0.1165 0.0154 309.768 0.0164 0.0699 0.0092 16.1079

(0.954) (0.941) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.995)
150 0.0224 0.0949 0.0125 252.428 0.0134 0.057 0.0075 13.1262

(0.953) (0.952) (1.000) (1.000) (0.9951) (0.9951) (0.9951) (0.995)
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Table 4. Cont.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(5, 6) 30 0.046 0.1931 0.0282 567.143 0.0276 0.1159 0.0169 29.4914
(0.946) (0.951) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.995)

40 0.0397 0.168 0.0245 493.172 0.0238 0.1008 0.0147 25.6449
(0.945) (0.951) (1.000) (1.000) (0.9949) (0.9952) (0.995) (0.995)

50 0.0356 0.1499 0.0218 439.107 0.0213 0.09 0.0131 22.8335
(0.938) (0.941) (1.000) (1.000) (0.9949) (0.995) (0.9951) (0.9948)

100 0.025 0.106 0.0153 308.724 0.015 0.0636 0.0092 16.0537
(0.957) (0.958) (1.000) (1.000) (0.9951) (0.9951) (0.9949) (0.9949)

150 0.0204 0.0866 0.0125 251.642 0.0123 0.052 0.0075 13.0854
(0.955) (0.941) (1.000) (1.000) (0.9949) (0.9951) (0.995) (0.995)

Table 5. ACIs and CRIs for (α1, β1, α2, β2) = (0.3, 0.4, 0.05, 200) with their corresponding coverage
probabilities between parenthesis.

MLE Bayesian

(α1, β1, α2, β2) (s, k) n α̂1 β̂1 α̂2 β̂2 α̂1 β̂1 α̂2 β̂2

(0.3, 0.4, 0.05,
200) (3, 5) 30 0.0759 0.1848 0.0283 571.737 0.0455 0.1109 0.017 29.7303

(0.952) (0.938) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.995)
40 0.0656 0.1594 0.0244 492.21 0.0394 0.0957 0.0147 25.5949

(0.959) (0.949) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.9949)
50 0.0582 0.1438 0.0217 437.88 0.0349 0.0863 0.013 22.7697

(0.954) (0.953) (1.000) (1.000) (0.9948) (0.9948) (0.9951) (0.995)
100 0.0412 0.1013 0.0154 309.34 0.0247 0.0608 0.0092 16.0857

(0.96) (0.95) (1.000) (1.000) (0.995) (0.9951) (0.9949) (0.995)
150 0.0335 0.0827 0.0125 251.705 0.0201 0.0496 0.0075 13.0887

(0.946) (0.946) (1.000) (1.000) (0.995) (0.995) (0.995) (0.9949)
(5, 5) 30 0.0759 0.1844 0.0282 568.27 0.0456 0.1106 0.0169 29.55

(0.94) (0.95) (1.000) (1.000) (0.995) (0.995) (0.9951) (0.9952)
40 0.0655 0.1599 0.0245 493.459 0.0393 0.0959 0.0147 25.6599

(0.95) (0.942) (1.000) (1.000) (0.9951) (0.9948) (0.995) (0.995)
50 0.0584 0.1429 0.0218 438.597 0.035 0.0857 0.0131 22.807

(0.947) (0.94) (1.000) (1.000) (0.9951) (0.9951) (0.9949) (0.9949)
100 0.0411 0.1015 0.0153 309.374 0.0247 0.0609 0.0092 16.0874

(0.954) (0.95) (1.000) (1.000) (0.995) (0.9951) (0.9951) (0.995)
150 0.0336 0.0827 0.0125 252.025 0.0201 0.0496 0.0075 13.1053

(0.953) (0.964) (1.000) (1.000) (0.9952) (0.9951) (0.995) (0.9949)
(5, 6) 30 0.0689 0.1689 0.0283 570.784 0.0413 0.1014 0.017 29.6808

(0.956) (0.945) (1.000) (1.000) (0.995) (0.9951) (0.995) (0.9951)
40 0.0597 0.1463 0.0245 494.035 0.0358 0.0878 0.0147 25.6898

(0.953) (0.948) (1.000) (1.000) (0.995) (0.9951) (0.995) (0.995)
50 0.0533 0.1305 0.0217 437.669 0.032 0.0783 0.013 22.7588

(0.944) (0.945) (1.000) (1.000) (0.9951) (0.995) (0.995) (0.9953)
100 0.0376 0.0925 0.0153 308.903 0.0225 0.0555 0.0092 16.063

(0.949) (0.954) (1.000) (1.000) (0.9951) (0.9951) (0.995) (0.9949)
150 0.0306 0.0756 0.0125 252.177 0.0184 0.0453 0.0075 13.1132

(0.957) (0.952) (1.000) (1.000) (0.9951) (0.9947) (0.995) (0.995)

7. Conclusions

In this study, the stress–strength model describing the amount of water held in a certain
reservoir over time is modeled parametrically using the Gumbel Type II distribution. It
introduces a mathematical procedure for obtaining a closed form for R. In addition to the
Bayesian technique, the maximum likelihood estimation for the parameter R is carried out.
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A simulation study is conducted to compare the effectiveness of the various approaches.
The analysis revealed that the water in storage is sufficiently durable. In other words, since
the value of R is constantly close to zero, droughts are unlikely to occur even when this
amount of water is subjected to evaporation and consumption.
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Abstract: The desilication of sodium aluminate solutions prior to precipitation of aluminum tri-
hydroxides is an essential step in the production of high purity alumina for aluminum production.
This study evaluates the desilication of sodium aluminate solutions derived from the leaching of
calcium-aluminate slags with sodium carbonate, using CaO, Ca(OH)2, and MgO fine particles. The
influence of the amount of CaO used, temperature, and comparisons with Ca(OH)2 and MgO were
explored. Laboratory scale test work showed that the optimal conditions for this process were using
6 g/L of CaO at 90 ◦C for 90 min. This resulted in 92% of the Si being removed with as little as 7% co-
precipitation of Al. The other desilicating agents, namely Ca(OH)2 and MgO, also proved effective in
removing Si but at slower rates and higher amounts of Al co-precipitated. The characteristics of solid
residue obtained after the process indicated that the desilication is via the formation of hydrogarnet,
Grossular, and hydrotalcite dominant phases for CaO, Ca(OH)2 and MgO agents, respectively.

Keywords: desilication; silica; pedersen process; CaO

1. Introduction

Desilication of sodium aluminate solutions is an essential step in the production of
alumina through the Bayer process. In this process, bauxite ores containing silicon are
leached in an alkaline media, with the primary purpose of extracting aluminum. However,
silicon is often co-extracted due to a reaction with sodium hydroxide (Equation (1)), which
can contaminate the final alumina product. To prevent this, a desilication process to reduce
the amount of silicon in solution is conducted prior to precipitating hydrated alumina. In
the Bayer process, bauxite ores are pressure leached at a high temperature (100–250 ◦C)
using sodium hydroxide solution. The leachate solution is then cooled and seeded to
precipitate alumina hydrates. Desilication of this leachate prior to precipitation is achieved
through the addition of CaO solid particles in the leaching phase. This also aids in the
regulation of carbonates and phosphates, which in high concentrations are detrimental to
the precipitation process. Further, the presence of CaO accelerates the leaching of aluminum
when it is in the mineral phase diaspore, which is the most difficult alumina mineral to
leach. The chemistry of Si during the desilication has been described by a few studies [1–3]
as follows.

SiO2(s) + 2NaOH = Na2SiO3(aq) + H2O (1)

The soluble products formed in leaching, namely NaAlO2 and Na2SiO3, react to form
non-soluble aluminosilicate precipitates with zeolite structures and are termed desilication
products (DSP) of Na2O.Al2O3.2SiO2 or Na8Al6Si6O24(OH)2. These DSPs further react with
sodium hydroxide and carbonates in the solution to form sodalite (Na8Al6Si6O24(CO3).2H2O).
The whole process can be considered a ‘self-desilication’. The addition of CaO results in the
rest of the Si reacting to form cancrinite (Na6Ca2Al6Si6O24(CO3)2.2H2O), which is a slightly
more soluble phase.
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Abstract: Generalized progressive hybrid censoring approaches have been developed to reduce test
time and cost. This paper investigates the difficulties associated with estimating the unobserved
model parameters and the reliability time functions of the Kavya Manoharan Kumaraswamy (KMKu)
distribution based on generalized type-II progressive hybrid censoring using classical and Bayesian
estimation techniques. The frequentist estimators’ normal approximations are also used to construct
the appropriate estimated confidence intervals for the unknown parameter model. Under symmet-
rical squared error loss, independent gamma conjugate priors are used to produce the Bayesian
estimators. The Bayesian estimators and associated highest posterior density intervals cannot be
derived analytically since the joint likelihood function is provided in a complicated form. However,
they may be evaluated using Monte Carlo Markov chain (MCMC) techniques. Out of all the censoring
choices, the best one is selected using four optimality criteria.

Keywords: Kavya Manoharan Kumaraswamy distribution; progressive hybrid generalized type-II
censoring; Bayesian and classical estimators; Metropolis–Hastings algorithm; MCMC techniques;
optimal plan for progressive censoring

1. Introduction

The progressive type-II censoring (PCS-T2) method is the most popular scheme in
reliability and survival analysis. Compared with the traditional type-II censoring method,
it is better. Progressive censoring is advantageous in a variety of real-world applications,
including business, medical research, and therapeutic settings. Up until the test’s conclu-
sion, it permits the removal of any remaining experimental units. Assume that n units are
used in a life test and that it is not desirable to record every failure because of financial and
time constraints. Consequently, only a portion of unit failures are seen. A sample like this
is known as a censored sample. Assume that one of the units was accidentally damaged
after the test started but before they all burned out. This unit needs to be taken out of the
life test if the experiment is still going on. In this situation, a framework for analyzing this
kind of data is provided by the progressive censoring scheme. A few examples of primary
references are [1,2].

PCS-T2 has drawn a lot of attention in the literature as a very flexible censoring system
(see [3] for further details). When testing n independent units at a time T = 0, the failure
number to be noticed s and the progressive censored samples, R = (R1, R2, . . . , Rs ), where
n = ∑s

i=1 Ri + s, are specified. When the initial failure is seen (suppose that Y1:s:n), the other
surviving units n− 1 are chosen at random, and R1 of those units is disqualified from the
test. Similarly, at the moment of the second failure (suppose that Y2:s:n), R2 of n− R1 − 2
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are selected at random and deleted from the test, and so on. At the time of the s− th failure
(suppose that Ys:s:n), every survivor unit still present Rs = n− s−∑s−1

j=1 Rj is removed from
the experiment.

Whenever the test units are particularly reliable, the major drawback of this censoring
is that it could take longer to finish the progressively type-II hybrid censored samples
(PHCS-T2). The authors of [4] proposed a progressive type-I hybrid censored strategy
(PHCS-T1) as a remedy for this issue. This method combines PCS-T2 with conventional
type-I censoring. Under PHCS-T1, the trial period is stopped at T, maximum likelihood
estimators (MLEs) were not always available due to the fact that relatively a few failures
might occur before time T in PHCS-T1. To resolve this issue, [5] presented the PHCS-T2
scheme. At T∗ = max(Ys:s:n, T), the experiment comes to an end under PHCS-T2. It can
take some time until such s− th failures are really observed, despite the fact that PHCS-T2
promises a fixed number of failures.

It could take a while to gather the needed failures, even though the PHCS-T2 ensures
an effective number of observable failures. Thus, [6] devised the generalized progressive
type-II hybrid censoring (GPHC-T2). Assume that the thresholds Ti, i = 1, and 2, as well as
the integer s, are preassigned in such a way that 0 < T1 < T2 < ∞ and 1 < s < n. c1 and
c2 represent the overall number of failures up to periods T1 and T2, respectively. Then, at
Y1:s:n, R1 of n− 1 are arbitrarily excluded from the test, followed by R2 of n− R1 − 2, and
so on.

The experiment is over, and all remaining units are deleted at T∗ = max(T1, min(Ys:s:n, T2)).
If Ys:n < T1, failures are observed without any further withdrawals up until time T1 (Case-
I); if T1 < Ys:s:n < T2, the test is terminated at time Ys:s:n (Case-II); or, if not, the test is
terminated at time T2 (Case-III). Keep in mind that the GPHCS-T2 modifies the PHCS-T2
by guaranteeing that the test is completed at the scheduled time T2. T2 demonstrates the
longest period of time the researcher is willing to let the experiment continue. As a result,
one of the following three data types will be visible to the experimenter:

(
Y
_
,R

_

)
=





Case I;{[Y1:n,R1],. . .,[Ys−1:s:n,Rs−1],[Ys:s:n,0],. . .,[Yc1:n,0]}
Case II;{[Y1:s:n,R1],. . .,[Yc1:n,Rc1 ],[Ys−1:s:n,Rs−1],. . .,[Ys:s:n,Rs]}

Case III;{[Y1:s:n,R1],. . .,[Yc1:n,Rc1 ],[Yc2−1:n,Rc2−1],. . .,[Yc2:n,Rc2 ]}.
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Figure 1. Generalized type-II progressive hybrid cases.
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Assume that in a distribution with a cumulative distribution function (cdf) F(.), and
probability density function (pdf) f (.), the variables Y and R represent the respective
lifetimes. As a result, the GPHCS-T2 likelihood function is expressed as follows:

Lϕ

(
θ, β|y

)
= Cϕ∏Dϕ

j=1 f
(
Yj:s:n; θ, β

)[
1− F

(
Yj:s:n; θ, β

)]Rj ψϕ(Tτ ; θ, β), (1)

where τ = 1, 2, ϕ = 1, 2, 3, stand in for Case-I, Case-II, and Case-III, respectively, and ψϕ(.)
is a combination form of dependability functions. Table 1 displays the GPHCS-T2 notations
from Equation (1). Many censoring techniques can also be inferred as particular examples
from Equation (1), including

Table 1. The notations of the GPHCS-T2.

ϕ Cϕ Dϕ ψϕ(Tτ ; β) R*
cτ+1

1
c1

∏
j=1

s
∑
i=j

(Ri + 1) c1 [1− F(T1)]
R∗c1+1 n− c1 −

s−1
∑

i=1
Ri

2
s

∏
j=1

s
∑
i=j

(Ri + 1) s 1 0

3
c2

∏
j=1

s
∑
i=j

(Ri + 1) c2 [1− F(T2)]
R∗c2+1 n− c2 −

c2

∑
i=1

Ri

1. With T1 setting to 0, use PHCS-T1.
2. T2 → ∞ . by setting PHCS-T2.
3. You may do hybrid type-I censoring by setting T1 → 0, Rj = 0, j = 1, 2, . . . , s− 1,

Rs = n− s .
4. T2 → ∞, Rj = 0, j = 1, 2, . . . , s− 1 , Rs = n − s can be used to do hybrid type-II

censoring.
5. To do type-I censoring, set T1 = 0, s = 1, Rj = 0, j = 1, 2, . . . , s− 1, Rs = n− s.
6. A type-II censored sample is produced by setting T1 = 0, T2 → ∞, s = 1,

Rj = 0, j = 1, 2, . . . , s− 1, Rs = n− s.

On the basis of GPHCS-T2, more studies have been conducted. For instance, Ref. [7]
investigated the prediction issue of forthcoming Burr-XII distribution failure rates. The
authors of [8] created the Weibull distribution with little data with an objective Bayesian
analysis. The authors of [9] addressed the competing risks from exponential data, and [10]
more recently examined both the point and interval estimations of the Burr-XII parameters.
Last but not least, [11] addressed the Fréchet distribution’s optimality under generalized
censoring schemes. In this paper, the KMKu model under generalized censoring samples is
studied. Where the KMKu model was initially proposed by [11]. Also, they found that the
Kumaraswamy model’s and KMKu shape forms in the pdf for different parameter values
are comparable. It may be asymmetric, unimodal, increasing, or decreasing. In addition,
the bathtub, U-shape, J-shape, or increasing shapes of the hazard rate function (hrf) for
the KMKu model are all possible. But suppose that Y is the lifespan random variable of a
test item adheres to the KMKu distribution, denoted by the notation KMKu(θ, β), where
θ > 0, β > 0 are the shape parameters. Therefore, it is supplied by its pdf, cdf, reliability
function (RF), R(.), and hrf, all represented by the letters f (.), F(.), and h(.) accordingly:

f (y; θ, β) =
θβyθ−1

e− 1

(
1− yθ

)β−1
e(1−yθ)

β

, 0 < y < 1; θβ > 0, (2)

F(y; θ, β) =
e

e− 1

(
1− e−1e(1−yθ)

β
)

, (3)

R(y; θ, β) = 1− e
e− 1

(
1− e−1e(1−yθ)

β
)

, (4)
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and

h(y; θ, β) =

θβyθ−1

e−1
(
1− yθ

)β−1

1− e(1−yθ)
β

. (5)

Although the KMKu model has a lot of flexibility because of its different shapes of hrf
and pdf, to our knowledge, no studies have yet been done under censorship. Particularly,
the generalized type-II progressively hybrid censoring scheme has not produced any data
for the new KMKu lifetime model’s survival traits and model parameters. To fill this gap,
the following are the objectives of this study: Firstly, the probability inference for any
function of the unknown KMKu parameters, such as R(t) or h(t), is derived. The second
objective is to derive independent gamma priors from the squared error (SE) loss and
produce Bayes estimates for the same unknown parameters, employing the provided esti-
mation procedures, such as classical and Bayesian approaches. The unknown parameters
of the KMKu distribution are discovered using the approximation confidence intervals
(ACIs) and highest posterior density (HPD) interval estimators. The acquired estimates are
computed using the R programming language’s “maxLik” and “coda” packages because
the theoretical findings of θ and β obtained by the suggested estimation techniques cannot
be represented in closed form. [12,13] offered these packages. Using four optimality criteria,
the ultimate aim is to develop the most efficient progressively censored sample technique.
The effectiveness of the different estimators is investigated using a Monte Carlo simulation
with the entire sample size, which can be combined in a variety of ways, effective sample
size, threshold timings, and progressively censored samples. We compare the average con-
fidence lengths (ACLs), mean relative absolute biases (MRABs), and simulated root mean
squared errors (RMSEs) of the derived estimators. The optimal censoring tactic should
be chosen after evaluating how effectively the given techniques will function in practice.
The remaining portions of this study are structured as follows: The maximum likelihood,
Bayes inferences, and reliability functions of the unknown parameters are presented in
Sections 2 and 3, respectively. The credible and asymptotic intervals are built into Section 4.
Section 5 goes into depth about the results of the Monte Carlo simulation. The optimal
methods for progressive censoring are discussed in Section 6. Two actual data sets are
indicated in Section 7. Finally, the conclusion and discussion are given in Section 8.

2. Likelihood Estimation

Assume that the representation of a GPHCS-T2 sample of size c2 taken from KMKu(θ, β)
is Y = ((Y1:s:n, R1), . . . , (Yc1:n, Rc1), . . . , (Yc2:n, Rc2)). The probability function of GPHCS-
T2 may be represented by substituting yj for yj:s:n in Equation (1) and adding
Equations (2) and (3); for more information, see [14].

Lϕ( θ, β|Y) ∝
Dϕ

∏
j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β), (6)

where

ψ1(T1; θ, β) =

(
1− e

e−1

(
1− e−1e(1−Tθ

1 )
β
))R∗c1+1

, ψ2(Tτ ; θ, β) = 1 and ψ3(T2; θ, β) =

(
1− e

e−1

(
1− e−1e(1−Tθ

2 )
β
))R∗c2+1

.

The proper log-likelihood function for Equation (6) is `ϕ(.) ∝ ln Lϕ(.) as follows:

`ϕ( θ, β|Y) ∝ Dϕln(θβ) + (θ − 1)∑
Dϕ

j=1 ln
(
yj
)
− Dϕln(e− 1) + (β− 1)∑

Dϕ

j=1 ln
(

1− yθ
j

)
+ β∑

Dϕ

j=1 (1−

yθ
j ) + Ri∑

Dϕ

j=1 ln
[

1− e
e−1 + e−1e(1−yθ

j )
β
]
+ γϕ(Tτ ; θ, β),

(7)

where
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γϕ(T1; θ, β) =
(

R∗c1+1

)
ln
[

1− e
e−1

(
1− e−1e(1−Tθ

1 )
β
)]

, γ2(Tτ ; θ, β) = 1, and

γ3(T2; θ, β) =
(

R∗c2+1

)
ln
[

1− e
e−1

(
1− e−1e(1−Tθ

2 )
β
)]

.

By partially differentiating Equation (7) with reference to θ̂ and β̂, the subsequent two
findings are produced. After being equal to zero, likelihood equations must be simultane-
ously solved in order to create the MLEs.

∂`ϕ

∂θ
=

Dϕ

θ
+ ∑Dϕ

j=1 ln
(
yj
)
− (β− 1)∑Dϕ

j=1

yθ
j ln
(
yj
)

(
1− yθ

j

) − β∑Dϕ

j=1 yθ
j ln
(
yj
)
− Ri∑Dϕ

j=1

e(1−yθ
j )

β

yθ
j β
(

1− yθ
j

)β−1
ln
(
yj
)

e
(

1− e
e−1 + e−1e(1−yθ

j )
β
) +

∂γϕ(Tτ ; θ, β)

∂θ
, (8)

and

∂`ϕ

∂β
=

Dϕ

β
+ 2∑Dϕ

j=1 ln
(

1− yθ
j

)
+ Ri∑Dϕ

j=1

e(1−yθ
j )

β(
1− yθ

j

)β
ln
(

1− yθ
j

)

e
(

1− e
e−1 + e−1e(1−yθ

j )
β
) +

∂γϕ(Tτ ; θ, β)

∂β
, (9)

where ϕ = 1, 3 and τ = 1, 2, respectively, we have

∂γϕ(Tτ ;θ,β)
∂θ = −

(
R∗cτ+1

)
e(1−Tθ

τ )
β

βTθ
τ ln(Tτ)[

1− e
e−1 +e−1e(1−Tθ

τ )
β
] , ∂γϕ(Tτ ;θ,β)

∂β = −
(

R∗cτ+1

) e(1−Tθ
τ )

β
βln(1−Tθ

τ )

e
[

1− e
e−1 +e−1e(1−Tθ

τ )
β
] .

According to Equations (8) and (9), it is necessary to simultaneously satisfy a system of two
nonlinear equations in order to derive the MLEs of θ and β in the KMKu model. As a result, for θ and
β, there is not, and cannot be computed, an analytical closed-form solution. Thus, it may be estimated
for each specific GPHCS-T2 data set using numerical techniques like the Newton-Raphson iterative
method. When the estimates of θ and β are derived by replacing them with θ̂ and β̂, the MLEs R̂(t)
and ĥ(t), respectively, may be easily computed.

3. Bayes Estimator
The HPD intervals for the Bayes estimators of θ , β, R(t), and h(t) are developed using the SE loss

function. To do this, it is assumed that the KMKu parameters θ and β, respectively, have independent
gamma priors of the forms ω(ν1, ν2) and ω(ν3, ν4).

The normal distribution can be a standard choice for data if the domain of that distribution
is from −∞ to ∞, and the beta distribution can be a standard choice for data if the domain of that
distribution is from 0 to 1. Similarly, the gamma distribution can be a standard choice for non-negative
continuous data if the domain of the gamma distribution is from 0 to ∞. This is one of the most
important reasons, but there are other reasons as follows:

• We believe the main motivation for the gamma prior is usually to constrain the random variables
to positive values.

• The gamma distribution is considered one of the most important and well-known statistical
distributions because it is compatible with many engineering, mathematical, statistical, and
medical applications.

• The gamma distribution is one of the most famous distributions that is used in mathematical
solutions (integrations), especially when the data are from 0 to ∞.

• In previous studies, the gamma distribution was the most popular prior distribution and was
associated with the best statistical results.

Gamma priors should be considered for a variety of reasons, including the fact that they are
(1) adjustable, (2) offer diverse shapes based on parameter values, and (3) fairly basic and brief and
might not generate a solution to a challenging estimation problem. Then, the combined previous
density of θ and β is determined; for more details on this topic, see [15,16].

π(θ, β) ∝ θν1−1βν3−1e−(θν2+βν4) (10)

If it is anticipated that for i = 1, 2, 3, 4, νi > 0 are known. The joint posterior pdf of θ and β,
Equations (6) and (10), when combined, results.
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πϕ

(
θ, β|y

)
∝ θDϕ+ν1−1βDϕ+ν3−1e−(θν2+βν4)∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β) (11)

The Bayes estimate,
∼
η(θ, β), of θ and β respectively, under SE loss, η(θ, β) is what is meant by

the posterior expectation of Equation (11), which is given.

∼
η(θ, β) =

∫ ∞

0

∫ ∞

0
η(θ, β)πϕ

(
θ, β|y

)
dθdβ.

It is clear from Equation (11), that it is impossible to explicitly express the marginal pdfs of
θ and β. In order to accomplish this, we recommend creating samples from Equation (11) utilizing
Bayes MCMC methods to calculate the joint Bayes estimates and supplying their HPD intervals.
The complete conditional pdfs of θ and β are provided for the MCMC sampler from Equation (11)
to be performed as intended.

πθ
ϕ

(
θ|β, y

)
∝ θDϕ+ν1−1e−θν2 ∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β), (12)

and

π
β
ϕ

(
β|θ, y

)
∝ βDϕ+ν3−1e−βν4 ∏Dϕ

j=1

θβyθ−1
j

e− 1

(
1− yθ

j

)β−1
e(1−yθ

j )
β
[

1− e
e− 1

+ e−1e(1−yθ)
β
]Ri

ψϕ(Tτ ; θ, β). (13)

The Metropolis-Hastings (M-H) approach is considered to be the best solution to this problem
because no analytical method exists to reduce the posterior pdfs of θ and β in Equations (12) and (13),
respectively, to any known distribution (for further information, see [17,18]. The sampling method of
the M-H algorithm is implemented according to:

First, establish the starting points, θ(0) = θ̂ and β(0) = β̂.
Set S = 1 after that.
Thirdly, from N(µ̂1, σ̂1) and N(µ̂2, σ̂2), respectively, create θ∗ and β∗.

The fourth step: Obtaining $θ = min
{

1,
πθ

ϕ( θ∗ |β(s−1) ;y)
πθ

ϕ( θ(s−1)|β(s−1) ;y)

}
and

$β = min
{

1,
π

β
ϕ( β∗ |θ(s) ;y)

π
β
ϕ( β(s−1)|θ(s) ;y)

}
.

Fifth, use the uniform U(0, 1) distribution to generate the samples u1 and u2.
Sixth: Set θ(S) = θ∗ and β(S) = β∗, respectively, if u1 and u2 are both smaller than $θ and $β,

respectively. Set θ(S) = θ(S−1) and β(S) = β(S−1), correspondingly, if not.
Seventh: Establish that S equals S + 1.
Eighth: Repeating steps three through seven a number of times B will give you the values for

θ(S) and β(S) for S = 1, 2, . . . , B.
Ninth: To calculate the RF in Equation (4) and hrf in Equation (5), use θ(S) and β(S) for

S = 1, 2, . . . , B, respectively, for a given mission period t > 0.

R(S)(t) = 1− e
e− 1

(
1− e−1e(1−yθ(S) )

β(S)
)

, y > 0,

and

h(S)(t) =

θ(S)β(S)yθ(S)−1

e−1

(
1− yθ(S)

)β(S)−1

1− e(1−yθ(S) )
θ(S)

, y > 0.

The convergence of the MCMC sampler must be ensured, and starting, θ(0) and β(0) values
must be eliminated. The first simulated variants, let us say B0, are removed as burn-ins. Therefore,
using the remaining B− B0 samples of θ, β, R(t), or h(t), (let us suppose η), the Bayesian estimates
are computed. On the basis of the SE loss function, the Bayes MCMC estimates of η are shown.

∼
η =

1
B− B0

B

∑
S=B0+1

η(S)
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4. Interval Estimators
The HPD interval estimators in this section are based on acquired MCMC-simulated variations,

as opposed to the approximative confidence estimators of θ, β, R(t), or h(t) that are based on observed
Fisher information.

4.1. Asymptotic Intervals
To compute the ACIs for θ and β, the Fisher information matrix must first be inverted to produce

the asymptotic variance-covariance (AVC) matrix. According to certain regularity criteria,
(
θ̂, β̂
)

is nearly normal with a mean (θ, β) and variance I −1 (θ, β). In agreement with [19], we estimate
I −1 (θ, β) by I −1 (θ̂, β̂

)
, replacing θ̂ and β̂ for θ and β.

I −1 (θ̂, β̂
)
= −

[
a11 a12
a21 a22

]−1

(14)

where

a11 =
∂2`ϕ

∂θ2 = −Dρ

θ2 − (β− 1)∑
Dϕ

j=1
yθ

j ln(yj)
(

1+ln(yj)
(

1−yθ
j

))

(
1−yθ

j

)2 − β∑
Dϕ

j=1 yθ
j

[
ln
(

yj

)]2
+

Ri∑
Dϕ

j=1

βyθ
j (ln(yj))

2
e
(1−yθ

j )
β(

1−yθ
j

)β−1


1+βyθ

j

(
1−yθ

j

)β
+

yθ
j (β−1)
(

1−yθ
j

)




e

(
1− e

e−1 +e−1e
(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ;θ,β)
∂θ2

(15)

a12 = a21 =
∂2`ϕ

∂θ∂β = −∑
Dϕ

j=1
yθ

j ln(yj)(
1−yθ

j

) −∑
Dϕ

j=1 yθ
j ln
(

yj

)
−

Ri∑
Dϕ

j=1

yθ
j ln(yj)e

(1−yθ
j )

β(
1−yθ

j

)β−1


1+β

(
1−yθ

j

)β(
ln
(

1−yθ
j

))
+

βln
(

1−yθ
j

)

(
1−yθ

j

)




e

(
1− e

e−1 +e−1e
(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ;θ,β)
∂θ∂β ,

(16)

a22 =
∂2`ϕ

∂β2 = −Dϕ

β2 + Ri ∑Dϕ

j=1

(
ln
(

1− yθ
j

))2
e(1−yθ

j )
β
((

1− yθ
j

)β
+
(

1− yθ
j

)2β
)

e
(

1− e
e−1 + e−1e(1−yθ

j )
β
)2 +

∂2γϕ(Tτ ; θ, β)

∂β2 , (17)

where

∂2γϕ(Tτ ; θ, β)

∂θ2 = −
(

R∗cτ+1
) βln(Tτ)Tθ

τ e(1−Tθ
τ )

β
([

1− e
e−1 + e−1e(1−Tθ

τ )
β
](

1− Tθ
τ

(
1− Tθ

τ

)β−1
)
+ T2θ

τ e−1β
(

1− Tθ
τ

)β−1
)

[
1− e

e−1 + e−1e(1−Tθ
τ )

β
]2 ,

∂2γϕ(Tτ ; θ, β)

∂θ∂β
=

(
R∗c1+1

)
e−1e(1−Tθ

1 )
β
(

1− Tθ
τ

)β
ln
(

1− Tθ
τ

)

[
1− e

e−1

(
1− e−1e(1−Tθ

τ )
β
)] ,

and

∂2γϕ(Tτ ;θ,β)
∂β2 =

−(R∗cτ+1)ln(1−Tθ
τ )e(1−Tθ

τ )
β

e
[

1− e
e−1 +e−1e(1−Tθ

τ )
β
]2

(
[
1− e

e−1 + e−1e(1−Tθ
τ )

β
](

1 + β
(

1− Tθ
τ

)β
ln
(

1− Tθ
τ

))
− βe−1

(
1− Tθ

τ

)β
ln
(

1− Tθ
τ

)
e(1−Tθ

τ )
β

).

The two-sided 100(1− γ)% ACIs are therefore given by
θ̂ ± Z γ

2

√
σ̂1

2 and β̂± Z γ
2

√
σ̂22, for θ and β, respectively, where Z γ

2
stands for the top γ

2 percent-

age points of the standard normal distribution, σ̂1
2 and σ̂2

2 are the primary diagonal elements of
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Equation (14). Furthermore, we employ the delta method to first establish the estimated variance of
R̂(t) and ĥ(t) (see [20]) before developing the ACIs of R(t) and h(t) as

σ̂2
R̂(t) = εT

R̂ I−1(ε̂)εR̂ and σ̂2
ĥ(t) = εT

ĥ I−1(ε̂)εĥ,

where εT
R̂
=
[

∂R(t)
∂θ

∂R(t)
∂β

]
(θ̂, β̂)

, and εT
ĥ
=
[

∂h(t)
∂θ

∂h(t)
∂β

]
(θ̂, β̂)

Then, R(t) and h(t) both have two-sided 100(1− γ)% ACIs that are supplied by R̂(t)± Z γ
2

√
σ̂R̂(t)

2

and ĥ(t)± Z γ
2

√
σ̂ĥ(t)

2, respectively.

Adding bootstrapping techniques to improve estimators or create confidence intervals for θ,
β, R(t), or h(t) is easy.

4.2. HPD Intervals
The method put forward by [21] is used to create 100(1− γ)% HPD interval estimates

of θ, β, R(t), or h(t). First, we assign numerical values to the MCMC samples of ε(j) for
j = B0 + 1, B0 + 2, . . . , B as ε(B0+1), ε(B0+2), . . . , ε(B) correspondingly. The discovery is that
the 100(1− γ)% two-sided HPD interval of ε is supplied by ε(j∗), ε(j∗+(1−ε)(B−B0)) , where

j∗ = B0 + 1, B0 + 2, . . . , B is selected so that ε(j∗+(1−ε)(B−B0)) − ε(j∗) =
min

1 ≤ j ≤ γ ≤ (B− B0){
ε(j+(1−γ)(B−B0)) − ε(j)

}
ε(j∗), ε(j∗+(1−γ)(B−B0)).

5. Optimal PCS-T2 Designs
The experimenter may want to pick the “best” censoring scheme out of a collection of all

accessible censoring schemes in order to provide the most details about the unknown parameters
under investigation, especially in the context of dependability. First, [1] examined the problem of
deciding which censoring strategy is most appropriate under various circumstances. However, a
number of optimality criteria, R = (R1, R2, . . . , Rs), where ∑s

i=1 Ri have been proposed, and several
assessments of the top censoring strategies have been made. The precise values of n (total test units),
s (effective sample), and Ti, i = 1, 2 (ideal test thresholds) are picked in advance according to the
accessibility of the units, the accessibility of the experimental settings, and cost factors (see [22]). A
number of articles in the literature have addressed the topic of contrasting two (or more) different
censoring techniques. For examples, see [23,24]. To help us choose the best censoring strategy, Oi,
Table 2 offers a variety of widely used measures.

Table 2. Illustrations of numerous helpful censoring methods and best practices.

Criterion Method

O1 Maximize trace [I2×2(.)]

O2 Minimize trace [I2×2(.)]
−1

O3 Minimize det [I2×2(.)]
−1

O4 Minimize Var
[
log
(
t̂p
)]

, 0 < p < 1

It is advised that the observed Fisher information, [I2×2(.)] values for O1, be maximized. For
criterion O2 and O3, we also wish to reduce the determinant and trace of [I2×2(.)]

−1. The best
censoring strategy for multi-parameter distributions may be selected using scale-invariant criteria.
While dealing with unknown multi-parameter distributions makes it more challenging to compare
the two Fisher information matrices, dealing with single-parameter distributions allows for the use of
scale-invariant criteria to compare a variety of criteria O4. The logarithmic MLE of the p− th quantile,
log
(
t̂p
)
, tends to have a variance that is minimized by the p-dependent criterion O4. As a result, the

logarithm of the KMKu distribution for time t̂p may be calculated using

log
(
t̂p
)
=

{
1−

[
ln
(

e
(

1− p
(

e− 1
e

)))] 1
β

} 1
θ

, 0 < p < 1,
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By using the delta technique to solve for Equation (4), the estimate of the variance for the
log
(
t̂p
)

of the KMKu distribution is given as

Var
(
log
(
t̂p
))

=
[
∇log

(
t̂p
)]T I−1

2×2
(
θ̂, β̂

)[
∇log

(
t̂p
)]

,

where [
∇log

(
t̂p
)]T

=

[
∂

∂θ
log
(
t̂p
)
,

∂

∂β
log
(
t̂p
)]

(θ=θ̂,β=β̂)

P(R1 = K1) =

(
n− s
K1

)
rK1 (1− r)n−s−K1 .

while i = 2, 3, . . . , s− 1. The maximum value of the O1 criterion and the lowest value of Oi, i = 2, 3, 4,
correspond to the best censoring. On the other hand, the greatest value of the O1 criterion and the
lowest value of the Oi, i = 2, 3, 4 criterion correspond to the best censoring.

6. Simulation
Using different combinations of Ti; i = 1, 2 (threshold points), n (sample size), s (size of censored

sample), and R (censored removal), Monte-Carlo (MC) simulations were carried out to assess the
true performance of the acquired point and interval estimators of θ, β, R(T), and h(T). To establish
this goal, for KMKu(1.4, 1.5), KMKu(1.4, 0.5), and KMKu(0.4, 0.5), we replicated the GPHCS-T2
mechanism 1000 times. Taking (T1, T2) = (0.6, 0.85), two different choices of n and s were used
as (n = 30, 50, 100), and the choices of s were used as (s = 20, 25) at n = 30, (s = 35, 45) at n = 50,
and (s = 70, 90) at n = 100. At T1 = 0.6, the true values of R(T1) and h(T1) were 0.4278 and 1.4899,
respectively. At T2 = 0.85, the true values of R(T2) and h(T2) were 0.2526 and 3.3106, respectively.

Additionally, by utilizing the binomial elimination distribution and taking into account different
censoring schemes for each combination of s and n, the following is conducted: according to the
following probability mass function, the number of units removed at each failure time is expected to
follow a binomial distribution.

P(Ri = Ki|Ri−1 = Ki−1, . . . , R1 = K1 ) =

(
n− s−∑i−1

j=1 Kj

Ki

)
rKi (1− r)n−s−∑i

j=1 Kj .

Additionally, assume that for any i, Ri is independent of Xi. In light of this, the likelihood
function can be written as follows:

L(xi, β, θ, r) = L1(xi, β, θ|R = K)P(R = K) ,

where

P(R = K) = P(R1 = K1, R2 = K2, . . . , Rs−1 = Ks−1) = P(Rs−1 = Ks−1|Rs−2 = Ks−2, . . . , R1 = K1 )×
P(Rs−2 = Ks−2|Rs−3 = Ks−3, . . . , R1 = K1 ) . . . P(R2 = K2|R1 = K1)P(R1 = K1 ).

That is,

P(R = K) =
(n− s)!

(n− s−∑s−1
i=1 Ki)! ∏s−1

i=1 Ki
r∑s−1

i=1 Ki (1− r)(s−1)(n−s)−∑s−1
i=1 (s−i)Ki ,

where the GPHCS-T2-based KMKu distribution’s parameters do not affect the binomial parameter r
(Independent). We chose the binomial parameter r with varied values of 0.3 and 0.8.

The MLEs and 95% ACI estimates of θ, β, R(t), and h(t) were assessed after 1000 GPHCS-T2
samples had been gathered using R 4.2.2 programming software and the “maxLik” library. We
simulated 12,000 MCMC samples and omitted the first 2000 iterations as burn-in to obtain the
Bayes point estimates along with their HPD interval estimates of the same unknown parameters
using the “coda” library in the R 4.2.2 programming language. The estimates and their variances
were equated with the Fisher information matrix of θ and β to produce the ML estimator, which it
denoted as elective hyper-parameters, and this was contributed by [25]. This process allowed for
the extraction of the hyper-parameters of the informative priors.

Some observations from Tables 3–5 include
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Table 3. Bias, MSE, WCI, and CP for parameters and reliability measures: β = 1.4, θ = 1.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.3647 0.96096 3.5687 95.8% O1 0.862132 0.0495 0.03658 0.9815

θ 0.3083 0.30741 1.8074 95.3% O2 0.050431 0.0652 0.0178 0.6268

R(0.6) −1.0730 0.01021 3.5687 95.8% O3 24.39956 −1.0929 0.00159 0.9815

H(0.6) 2.6011 2.15503 1.8074 95.3% O4 0.397259 2.2794 0.15897 0.6268

R(0.85) −1.3190 0.00311 3.5687 95.8% −1.3269 0.00026 0.9815

H(0.85) 9.8905 28.98923 1.8074 95.3% 8.2579 1.30669 0.6268

25

β 0.3133 0.68518 3.0049 96.0% O1 0.603238 0.0348 0.01182 0.6606

θ 0.1931 0.20528 1.6075 95.7% O2 0.028622 0.0196 0.00163 0.4069

R(0.6) −1.0962 0.00644 3.0049 96.0% O3 29.16632 −1.1016 0.00050 0.6606

H(0.6) 2.6177 1.64301 1.6075 95.7% O4 0.637278 2.2792 0.05406 0.4069

R(0.85) −1.3278 0.00190 3.0049 96.0% −1.3295 0.00009 0.6606

H(0.85) 9.6683 20.97684 1.6075 95.7% 8.1852 0.42306 0.4069

0.8

20

β 0.4478 1.11270 3.7458 95.6% O1 0.897504 0.0686 0.04368 1.0098

θ 0.2881 0.29977 1.8260 95.3% O2 0.054545 0.0541 0.00853 0.6131

R(0.6) −1.0925 0.00827 3.7458 95.6% O3 23.77178 −1.0994 0.00147 1.0098

H(0.6) 2.7704 2.38574 1.8260 95.3% O4 0.410967 2.3269 0.17886 0.6131

R(0.85) −1.3285 0.00217 3.7458 95.6% −1.3295 0.00025 1.0098

H(0.85) 10.3764 33.31616 1.8260 95.3% 8.3746 1.53529 0.6131

25

β 0.3005 0.65995 2.9601 96.2% O1 0.588428 0.0312 0.00897 0.6494

θ 0.1892 0.20103 1.5942 95.3% O2 0.02822 0.0199 0.00162 0.4063

R(0.6) −1.0954 0.00634 2.9601 96.2% O3 28.83162 −1.1009 0.00041 0.6494

H(0.6) 2.5961 1.54340 1.5942 95.3% O4 0.290327 2.2713 0.04112 0.4063

R(0.85) −1.3273 0.00191 2.9601 96.2% −1.3293 0.00008 0.6494

H(0.85) 9.5939 20.02147 1.5942 95.3% 8.1634 0.31889 0.4063

50

0.3

35

β 0.2321 0.33855 2.0926 95.2% O1 0.3524 0.0219 0.00682 0.2936

θ 0.2206 0.16385 1.3310 94.8% O2 0.0109 0.0389 0.00404 0.1817

R(0.6) 0.0150 0.00491 0.2684 94.9% O3 40.4391 0.0044 0.00056 0.0984

H(0.6) 0.2660 0.86775 3.5013 95.4% O4 0.4010 0.0230 0.03428 0.7479

R(0.85) 0.0019 0.00151 0.1522 95.8% 0.0005 0.00010 0.0418

H(0.85) 1.2233 10.31472 11.6464 95.4% 0.1173 0.24180 1.8061

45

β 0.1009 0.17989 1.6157 95.3% O1 0.2308 0.0127 0.00185 0.1390

θ 0.0688 0.07292 1.0241 95.5% O2 0.0051 0.0080 0.00043 0.0697

R(0.6) 0.0038 0.00306 0.2163 95.2% O3 52.6779 −0.0009 0.00013 0.0468

H(0.6) 0.1237 0.55947 2.8931 95.4% O4 0.3850 0.0228 0.00944 0.3526

R(0.85) 0.0023 0.00099 0.1228 95.9% −0.0008 0.00002 0.0202

H(0.85) 0.5401 5.79962 9.2044 95.3% 0.0729 0.06640 0.8489

0.8

35

β 0.2292 0.33120 2.0704 95.7% O1 0.3413 0.0302 0.00762 0.2866

θ 0.1710 0.13353 1.2666 94.8% O2 0.0103 0.0289 0.00277 0.1549

R(0.6) 0.0043 0.00413 0.2516 94.5% O3 40.8715 0.0003 0.00049 0.0905

H(0.6) 0.2984 0.88222 3.4929 95.3% O4 0.5510 0.0472 0.03668 0.6994

R(0.85) −0.0013 0.00132 0.1424 95.8% −0.0010 0.00009 0.0382

H(0.85) 1.2328 10.27127 11.6023 95.7% 0.1697 0.26968 1.7342

45

β 0.1024 0.17088 1.6527 95.8% O1 0.2313 0.0132 0.00183 0.1361

θ 0.0614 0.07091 1.0767 95.4% O2 0.0052 0.0077 0.00047 0.0735

R(0.6) 0.0020 0.00301 0.2196 95.0% O3 52.8830 −0.0011 0.00013 0.0450

H(0.6) 0.1288 0.55691 2.9153 95.4% O4 0.3953 0.0242 0.00934 0.3352

R(0.85) 0.0018 0.00100 0.1240 95.6% −0.0009 0.00002 0.0195

H(0.85) 0.5493 5.70139 9.3735 95.9% 0.0762 0.06541 0.8280
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Table 3. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

100

0.3

70

β 0.1428 0.13884 1.3498 95.3% O1 0.1469 0.0129 0.00257 0.1755

θ 0.1269 0.06502 0.8674 95.3% O2 0.0020 0.0189 0.00121 0.1107

R(0.6) 0.0045 0.00218 0.1823 94.6% O3 80.6294 0.0016 0.00021 0.0575

H(0.6) 0.1901 0.40464 2.3807 95.0% O4 0.6115 0.0162 0.01332 0.4378

R(0.85) −0.0017 0.00065 0.0999 96.1% −0.0001 0.00004 0.0249

H(0.85) 0.7729 4.38212 7.6300 95.3% 0.0702 0.09184 1.0646

90

β 0.0668 0.07946 1.0740 95.7% O1 0.1065 0.0062 0.00054 0.0852

θ 0.0497 0.03711 0.7299 95.5% O2 0.0011 0.0045 0.00020 0.0495

R(0.6) 0.0013 0.00162 0.1577 95.0% O3 102.5854 −0.0003 0.00005 0.0275

H(0.6) 0.0898 0.25612 1.9533 94.7% O4 0.8814 0.0107 0.00299 0.2093

R(0.85) 0.0000 0.00050 0.0880 95.0% −0.0004 0.00001 0.0120

H(0.85) 0.3625 2.56087 6.1131 95.6% 0.0351 0.01967 0.5192

0.8

70

β 0.1309 0.13318 1.3361 95.4% O1 0.1442 0.0146 0.00261 0.1649

θ 0.1046 0.06010 0.8696 94.9% O2 0.0020 0.0157 0.00107 0.1047

R(0.6) 0.0020 0.00220 0.1838 94.7% O3 80.5925 0.0005 0.00021 0.0568

H(0.6) 0.1803 0.40288 2.3868 95.0% O4 0.6090 0.0220 0.01361 0.4150

R(0.85) −0.0018 0.00065 0.1001 95.9% −0.0005 0.00004 0.0241

H(0.85) 0.7125 4.25301 7.5901 95.2% 0.0816 0.09367 1.0046

90

β 0.0505 0.06859 1.0078 95.4% O1 0.1039 0.0057 0.00047 0.0761

θ 0.0318 0.03404 0.7127 94.5% O2 0.0011 0.0036 0.00019 0.0488

R(0.6) 0.0004 0.00155 0.1544 95.2% O3 103.7077 −0.0004 0.00005 0.0271

H(0.6) 0.0682 0.23049 1.8638 95.7% O4 0.7099 0.0103 0.00266 0.1933

R(0.85) 0.0003 0.00047 0.0853 95.4% −0.0004 0.00001 0.0113

H(0.85) 0.2743 2.23659 5.7659 95.4% 0.0327 0.01719 0.4665

Table 4. Bias, MSE, WCI and CP for parameters and Reliability measures: β = 1.4, θ = 0.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.2883 0.66402 2.9892 95.1% O1 0.5529 0.0373 0.0172 0.9061

θ 0.0923 0.03017 0.5771 96.5% O2 0.0045 0.0191 0.0010 0.2005

R(0.6) −1.3142 0.00273 2.9892 95.1% O3 156.4684 −1.3223 0.0002 0.9061

H(0.6) 4.4198 3.85075 0.5771 96.5% O4 3.6685 3.8534 0.1199 0.2005

R(0.85) −1.3780 0.00051 2.9892 95.1% −1.3834 0.0000 0.9061

H(0.85) 11.2462 28.57208 0.5771 96.5% 9.6102 0.7761 0.2005

25

β 0.2330 0.41596 2.3587 95.6% O1 0.3694 0.0242 0.0044 0.6032

θ 0.0565 0.01912 0.4950 95.3% O2 0.0024 0.0058 0.0001 0.1311

R(0.6) −1.3222 0.00166 2.3587 95.6% O3 187.5492 −1.3244 0.0001 0.6032

H(0.6) 4.3140 2.50974 0.4950 95.3% O4 4.2533 3.8249 0.0314 0.1311

R(0.85) −1.3812 0.00029 2.3587 95.6% −1.3839 0.0000 0.6032

H(0.85) 10.8980 18.07372 0.4950 95.3% 9.5259 0.2003 0.1311

0.8

20

β 0.3112 0.59476 2.7674 95.4% O1 0.5183 0.0446 0.0176 0.9133

θ 0.0862 0.02909 0.5773 95.3% O2 0.0042 0.0168 0.0009 0.1972

R(0.6) −1.3207 0.00218 2.7674 95.4% O3 156.8018 −1.3236 0.0002 0.9133

H(0.6) 4.4902 3.51118 0.5773 95.3% O4 1.9839 3.8741 0.1242 0.1972

R(0.85) −1.3808 0.00036 2.7674 95.4% −1.3838 0.0000 0.9133

H(0.85) 11.4035 25.72157 0.5773 95.3% 9.6601 0.7988 0.1972

25

β 0.2760 0.46980 2.4606 94.4% O1 0.3856 0.0304 0.0058 0.6125

θ 0.0560 0.01951 0.5019 95.5% O2 0.0025 0.0054 0.0001 0.1304

R(0.6) −1.3254 0.00173 2.4606 94.4% O3 188.0939 −1.3251 0.0001 0.6125

H(0.6) 4.4269 2.85414 0.5019 95.5% O4 10.4186 3.8416 0.0413 0.1304

R(0.85) −1.3822 0.00027 2.4606 94.4% −1.3842 0.0000 0.6125

H(0.85) 11.1889 20.49050 0.5019 95.5% 9.5678 0.2637 0.1304
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Table 4. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

50

0.3

35

β 0.1928 0.26587 1.8755 95.3% O1 0.2300 0.0209 0.00625 0.2453

θ 0.0636 0.01464 0.4038 95.4% O2 0.0010 0.0111 0.00034 0.0531

R(0.6) 0.0022 0.00138 0.1454 96.0% O3 266.3510 0.0003 0.00009 0.0379

H(0.6) 0.4533 1.64429 4.7044 95.0% O4 4.7886 0.0504 0.04467 0.6665

R(0.85) 0.0017 0.00022 0.0583 95.2% −0.0001 0.00001 0.0118

H(0.85) 1.2631 11.59297 12.4008 95.4% 0.1365 0.28360 1.6561

45

β 0.1025 0.15357 1.4834 95.2% O1 0.1528 0.0111 0.00136 0.1177

θ 0.0252 0.00856 0.3492 95.8% O2 0.0005 0.0027 0.00005 0.0238

R(0.6) 0.0010 0.00090 0.1177 95.9% O3 332.8660 −0.0007 0.00002 0.0179

H(0.6) 0.2438 0.97587 3.7545 95.7% O4 9.7083 0.0284 0.00981 0.3228

R(0.85) 0.0015 0.00015 0.0473 95.2% −0.0003 0.00000 0.0057

H(0.85) 0.6769 6.72601 9.8189 95.4% 0.0737 0.06177 0.7925

0.8

35

β 0.2216 0.30042 1.9661 95.3% O1 0.2360 0.0286 0.00733 0.2601

θ 0.0591 0.01448 0.4111 95.5% O2 0.0010 0.0097 0.00031 0.0514

R(0.6) −0.0014 0.00128 0.1404 95.7% O3 264.3238 −0.0009 0.00009 0.0380

H(0.6) 0.5296 1.84331 4.9029 95.3% O4 6.8233 0.0715 0.05206 0.7134

R(0.85) 0.0005 0.00020 0.0555 94.9% −0.0004 0.00001 0.0117

H(0.85) 1.4571 13.09846 12.9931 95.3% 0.1886 0.33239 1.7468

45

β 0.1251 0.17500 1.5656 94.3% O1 0.1585 0.0147 0.00189 0.1420

θ 0.0244 0.00782 0.3334 95.3% O2 0.0005 0.0023 0.00004 0.0228

R(0.6) −0.0008 0.00097 0.1224 96.3% O3 331.8112 −0.0011 0.00003 0.0200

H(0.6) 0.3053 1.12358 3.9811 94.4% O4 3.4415 0.0380 0.01355 0.3838

R(0.85) 0.0010 0.00015 0.0485 95.8% −0.0004 0.00000 0.0064

H(0.85) 0.8313 7.71142 10.3916 94.4% 0.0977 0.08563 0.9557

100

0.3

70

β 0.1020 0.10312 1.1941 96.0% O1 0.0930 0.0071 0.00176 0.1407

θ 0.0390 0.00642 0.2745 95.2% O2 0.0002 0.0063 0.00013 0.0334

R(0.6) 0.0012 0.00065 0.0997 94.9% O3 526.4983 0.0006 0.00003 0.0220

H(0.6) 0.2402 0.65129 3.0217 95.9% O4 3.0162 0.0158 0.01276 0.3863

R(0.85) 0.0007 0.00010 0.0386 95.3% 0.0001 0.00002 0.0070

H(0.85) 0.6667 4.49884 7.8970 96.1% 0.0451 0.07991 0.9471

90

β 0.0661 0.06870 0.9948 95.5% O1 0.0688 0.0055 0.00046 0.0784

θ 0.0164 0.00369 0.2292 95.4% O2 0.0001 0.0014 0.00002 0.0160

R(0.6) −0.0005 0.00048 0.0858 95.7% O3 654.6192 −0.0003 0.00001 0.0117

H(0.6) 0.1605 0.44507 2.5397 95.2% O4 6.7361 0.0139 0.00338 0.2125

R(0.85) 0.0003 0.00007 0.0332 95.6% −0.0001 0.00001 0.0038

H(0.85) 0.4370 3.01381 6.5894 95.3% 0.0361 0.02109 0.5289

0.8

70

β 0.1036 0.10480 1.2028 95.8% O1 0.0929 0.0115 0.00204 0.1556

θ 0.0320 0.00609 0.2791 95.3% O2 0.0002 0.0050 0.00011 0.0339

R(0.6) −0.0002 0.00064 0.0994 95.7% O3 525.8864 −0.0002 0.00004 0.0232

H(0.6) 0.2484 0.66914 3.0567 95.8% O4 4.7902 0.0283 0.01472 0.4259

R(0.85) 0.0003 0.00009 0.0381 96.1% −0.0002 0.00002 0.0073

H(0.85) 0.6812 4.58927 7.9658 95.9% 0.0754 0.09250 1.0493

90

β 0.0652 0.07266 1.0258 95.7% O1 0.0689 0.0060 0.00052 0.0794

θ 0.0161 0.00373 0.2310 95.1% O2 0.0001 0.0013 0.00002 0.0161

R(0.6) −0.0001 0.00052 0.0894 94.8% O3 650.3684 −0.0004 0.00001 0.0124

H(0.6) 0.1583 0.47338 2.6260 95.6% O4 6.4073 0.0153 0.00379 0.2188

R(0.85) 0.0005 0.00008 0.0345 94.8% −0.0002 0.00001 0.0040

H(0.85) 0.4317 3.19473 6.8025 95.6% 0.0396 0.02362 0.5400
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Table 5. Bias, MSE, WCI and CP for parameters and Reliability measures: β = 0.4, θ = 0.5.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

30

0.3

20

β 0.0477 0.03572 0.7173 96.0% O1 0.0822 0.0069 0.0009 0.2488

θ 0.1693 0.10228 1.0642 95.4% O2 0.0011 0.0454 0.0066 0.3352

R(0.6) 0.0653 0.01134 0.7173 96.0% O3 0.0822 0.0392 0.0014 0.2488

H(0.6) 1.0736 0.26208 1.0642 95.4% O4 0.0011 1.0039 0.0089 0.3352

R(0.85) −0.1242 0.00977 0.7173 96.0% −0.1418 0.0008 0.2488

H(0.85) 3.1086 1.57995 1.0642 95.4% 2.8625 0.0409 0.3352

25

β 0.0420 0.02739 0.6279 95.8% O1 0.0591 0.0051 0.0003 0.1640

θ 0.0938 0.05590 0.8511 94.9% O2 0.0006 0.0139 0.0009 0.2075

R(0.6) 0.0413 0.00854 0.6279 95.8% O3 170.1243 0.0291 0.0003 0.1640

H(0.6) 1.0797 0.21444 0.8511 94.9% O4 5.0156 1.0038 0.0029 0.2075

R(0.85) −0.1395 0.00729 0.6279 95.8% −0.1478 0.0002 0.1640

H(0.85) 3.0747 1.22571 0.8511 94.9% 2.8470 0.0134 0.2075

0.8

20

β 0.0747 0.04126 0.7408 96.2% O1 0.0818 0.0116 0.0012 0.2625

θ 0.1633 0.09437 1.0204 96.1% O2 0.0011 0.0378 0.0051 0.3251

R(0.6) 0.0443 0.01003 0.7408 96.2% O3 131.1160 0.0330 0.0012 0.2625

H(0.6) 1.1578 0.29506 1.0204 96.1% O4 3.2292 1.0197 0.0110 0.3251

R(0.85) −0.1436 0.00864 0.7408 96.2% −0.1467 0.0007 0.2625

H(0.85) 3.2918 1.79718 1.0204 96.1% 2.8933 0.0527 0.3251

25

β 0.0589 0.02782 0.6120 95.7% O1 0.0592 0.0065 0.0003 0.1698

θ 0.0991 0.04971 0.7834 95.8% O2 0.0006 0.0125 0.0006 0.2058

R(0.6) 0.0296 0.00743 0.6120 95.7% O3 159.3168 0.0275 0.0003 0.1698

H(0.6) 1.1330 0.21505 0.7834 95.8% O4 2.2242 1.0084 0.0034 0.2058

R(0.85) −0.1517 0.00618 0.6120 95.7% −0.1491 0.0002 0.1698

H(0.85) 3.1924 1.23457 0.7834 95.8% 2.8564 0.0157 0.2058

50

0.3

35

β 0.0369 0.01839 0.5118 95.6% O1 0.0387 0.0044 0.00032 0.0627

θ 0.1055 0.04398 0.7108 95.9% O2 0.0002 0.0229 0.00165 0.1006

R(0.6) 0.0183 0.00581 0.2903 95.5% O3 230.4277 0.0052 0.00044 0.0790

H(0.6) 0.0795 0.14627 1.4672 95.2% O4 2.9344 0.0102 0.00326 0.2111

R(0.85) 0.0086 0.00523 0.2817 95.6% 0.0021 0.00026 0.0627

H(0.85) 0.2401 0.84128 3.4719 95.8% 0.0328 0.01498 0.4164

45

β 0.0292 0.01287 0.4300 95.8% O1 0.0284 0.0031 0.00009 0.0311

θ 0.0523 0.02265 0.5534 95.8% O2 0.0001 0.0065 0.00019 0.0406

R(0.6) 0.0030 0.00414 0.2520 94.7% O3 287.7103 0.0000 0.00010 0.0390

H(0.6) 0.0702 0.10813 1.2599 95.7% O4 3.0968 0.0088 0.00092 0.1034

R(0.85) −0.0003 0.00374 0.2397 94.6% −0.0008 0.00006 0.0317

H(0.85) 0.1885 0.59457 2.9324 95.7% 0.0220 0.00423 0.2099

0.8

35

β 0.0451 0.01827 0.4997 95.6% O1 0.0375 0.0065 0.00039 0.0608

θ 0.0916 0.03438 0.6323 95.2% O2 0.0002 0.0181 0.00104 0.0866

R(0.6) 0.0071 0.00524 0.2826 95.7% O3 223.9769 0.0018 0.00038 0.0752

H(0.6) 0.1093 0.14684 1.4405 95.6% O4 1.6721 0.0177 0.00378 0.2016

R(0.85) −0.0004 0.00484 0.2727 95.5% −0.0005 0.00024 0.0604

H(0.85) 0.2965 0.83295 3.3853 95.6% 0.0468 0.01780 0.4059

45

β 0.0295 0.01341 0.4392 95.7% O1 0.0280 0.0034 0.00010 0.0323

θ 0.0448 0.02086 0.5386 96.2% O2 0.0001 0.0054 0.00016 0.0383

R(0.6) 0.0003 0.00415 0.2525 93.7% O3 288.9783 −0.0006 0.00009 0.0395

H(0.6) 0.0723 0.11132 1.2774 96.0% O4 3.5188 0.0098 0.00097 0.1069

R(0.85) −0.0018 0.00383 0.2426 94.8% −0.0012 0.00006 0.0328

H(0.85) 0.1896 0.61493 2.9842 95.8% 0.0236 0.00451 0.2164
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Table 5. Cont.

MLE Bayesian

n r s Bias MSE WACI CP Optimality Bias MSE WCCI

100

0.3

70

β 0.0267 0.00855 0.3473 95.7% O1 0.0171 0.0024 0.00012 0.0376

θ 0.0690 0.01783 0.4484 95.0% O2 0.0000 0.0117 0.00043 0.0568

R(0.6) 0.0090 0.00284 0.2061 95.8% O3 442.4535 0.0026 0.00016 0.0489

H(0.6) 0.0645 0.07290 1.0283 95.1% O4 2.9947 0.0057 0.00125 0.1240

R(0.85) 0.0020 0.00263 0.2008 95.7% 0.0010 0.00010 0.0387

H(0.85) 0.1797 0.40180 2.3841 95.5% 0.0177 0.00568 0.2530

90

β 0.0129 0.00536 0.2827 94.7% O1 0.0128 0.0013 0.00003 0.0181

θ 0.0256 0.00907 0.3597 95.0% O2 0.0000 0.0029 0.00006 0.0233

R(0.6) 0.0024 0.00205 0.1771 95.8% O3 572.9885 0.0000 0.00003 0.0222

H(0.6) 0.0310 0.04803 0.8508 94.7% O4 2.3973 0.0038 0.00031 0.0595

R(0.85) 0.0007 0.00187 0.1696 94.9% −0.0003 0.00002 0.0179

H(0.85) 0.0838 0.25437 1.9506 94.9% 0.0096 0.00137 0.1225

0.8

70

β 0.0274 0.00795 0.3328 95.3% O1 0.0168 0.0034 0.00013 0.0392

θ 0.0565 0.01500 0.4261 95.1% O2 0.0000 0.0098 0.00034 0.0558

R(0.6) 0.0035 0.00280 0.2070 94.8% O3 441.2820 0.0011 0.00015 0.0484

H(0.6) 0.0693 0.06869 0.9913 94.9% O4 3.2956 0.0092 0.00133 0.1304

R(0.85) −0.0016 0.00254 0.1976 95.5% −0.0002 0.00010 0.0390

H(0.85) 0.1834 0.37293 2.2845 94.9% 0.0243 0.00610 0.2614

90

β 0.0109 0.00515 0.2782 95.1% O1 0.0127 0.0013 0.00003 0.0183

θ 0.0212 0.00904 0.3635 95.5% O2 0.0000 0.0026 0.00005 0.0248

R(0.6) 0.0022 0.00212 0.1802 95.2% O3 577.1218 0.0000 0.00003 0.0236

H(0.6) 0.0253 0.04644 0.8393 94.9% O4 2.5652 0.0037 0.00028 0.0612

R(0.85) 0.0011 0.00191 0.1712 94.9% −0.0004 0.00002 0.0190

H(0.85) 0.0693 0.24508 1.9224 94.9% 0.0092 0.00125 0.1231

• The key general finding is that the suggested values for θ, β, R(t), and h(t) performed well.
• All estimations of θ, β, R(t), and h(t) functioned satisfactorily as n(or s) grew.
• In most cases, the MSE, Bias, and WCI of all unknown parameters fell while their CPs grew as

(T1, T2) increased.
• Due to the gamma information, the Bayes estimates of θ, β, R(t), and h(t) behaved more

predictably than the other estimates. Regarding credible HPD intervals, the same statement
might be made.

• When the parameter of binomial r was increased, the proposed estimates of θ, β, R(t), and h(t)
performed better in most cases.

7. Application
The data set, which has been examined by [11], had 30 assessments of the tensile strength of

polyester fibers. The following details are included in the data set: “0.023, 0.032, 0.054, 0.069, 0.081,
0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481,
0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926”. For data on the strength of polyester fibers,
where the Kolmogorov-Smirnov distance is 0.0569 with a p-value of 0.9999, [11] explores the MLE of
this model using several measures of goodness-of-fit. The Kolmogorov-Smirnov test findings showed
that the KMKu distribution fits the data on polyester fiber strength.

Two GPHCS-T2 samples with s = 20 and 25 were produced from the tensile strength of polyester
fibers data in order to explain the proposed estimation methodology. The binomial removal has
been used to obtain the GPHCS-T2 samples with different parameters of p = 0.2, 0.5, and 0.8. Table 6
lists the computed R(t) and h(t) at t = 0.6 and 0.85 by maximum likelihood estimates (MLE) and
Bayesian estimation, respectively, along with their standard error (SE). By repeating the MCMC
sampler 12,000 times and disregarding the first 2000 times as burn-in, the Bayes estimates (with their
SE) were evaluated using incorrect gamma priors and are also provided in Table 4 because there was
no prior knowledge about the unknown KMKu parameters θ, and β from the given data set. In order
to estimate unknown hyperparameters for the computational logic, elective hyperparameters were
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employed. In terms of the minimum standard error and interval width values, it is evident from
Table 6 that the MCMC estimates of θ, β, R(t), and h(t)performed better than the others.

Table 6. MLE and Bayesian estimation.

MLE Bayesian

Estimates SE
R(0.6) R(0.85)

Estimates SE
R(0.6) R(0.85)

s p H(0.6) H(0.85) H(0.6) H(0.85)

20

0.2
β 0.8884 0.5264 0.3253 0.1189 0.9884 0.3296 0.3047 0.1017

θ 1.0033 0.2514 2.7480 6.4884 1.0556 0.2365 2.9811 7.1010

0.5
β 1.5376 0.5760 0.2111 0.0436 1.3577 0.3243 0.2505 0.0608

θ 1.2293 0.2692 4.1919 10.4235 1.2399 0.1761 3.7759 9.3192

0.8
β 1.5404 0.5751 0.2091 0.0431 1.6921 0.3877 0.1800 0.0324

θ 1.2231 0.2677 4.2022 10.4439 1.2090 0.1681 4.5521 11.3874

25

0.2
β 1.4928 0.4925 0.1858 0.0392 1.5520 0.3081 0.1795 0.0360

θ 1.0776 0.2203 4.1819 10.2139 1.0966 0.1464 4.3074 10.5745

0.5
β 1.5231 0.5001 0.1884 0.0389 1.5572 0.3157 0.1811 0.0362

θ 1.1143 0.2294 4.2299 10.3859 1.1085 0.1507 4.3121 10.6013

0.8
β 1.5221 0.4996 0.1883 0.0389 1.4511 0.3053 0.2044 0.0451

θ 1.1129 0.2293 4.2285 10.3804 1.1252 0.1523 4.0571 9.9345

Figures 2–4 were created to examine the maximum values of the estimators by profile likelihood
as well as the existence and uniqueness of the log-likelihood function by contour plot with regard
to different d and q options based on GPHCS-T2 samples with s = 20 and distinct p = 0.2, 0.5, and
0.8, respectively. Figure 5 clearly shows that the MCMC technique converged favorably and that
the recommended size of the burn-in sample was adequate to completely nullify the impact of the
recommended beginning values. Figure 5 demonstrates that the estimated estimates of θ and β were
roughly symmetrical for each sample when s = 20.

Figures 6–8 were created to examine the maximum values of the estimators by profile likelihood
as well as the existence and uniqueness of the log-likelihood function by contour plot with regard
to different d and q options based on GPHCS-T2 samples with s = 25 and distinct p = 0.2, 0.5, and
0.8, respectively. Figure 9 clearly shows that the MCMC technique converged favorably and that
the recommended size of the burn-in sample was adequate to completely nullify the impact of the
recommended beginning values. Figure 9 demonstrates that the estimated estimates of θ and β were
roughly symmetrical for each sample when s = 25.
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8. Conclusions and Discussion
This paper examines the reliability analysis of the unknown parameters, reliability, and hazard

rate functions for the generalized type-II progressive hybrid censoring-based KMKu model. The
“maxLik” package of the R programming language was used to compute the frequentist estimates
with their asymptotic confidence intervals for the unknown parameters and any function of them.
Since the likelihood function was produced in complex form, the posterior density function was
obtained in nonlinear form. Consequently, the Bayesian estimates and the related HPD intervals were
created using the Metropolis-Hastings technique and accounting for the squared error loss function.
Numerous simulation experiments were run utilizing various total test unit choices, observed failure
data, threshold times, and progressive censoring schemes in order to compare the behavior of
the collected estimates. The outcomes demonstrated that the Bayes–MCMC strategy performed
substantially better than the frequentist approach. Under generalized type-II progressive hybrid
censoring, it was suggested to estimate the KMKu distribution’s parameters, reliability, and hazard
functions using the Bayesian MCMC paradigm. We believe that the technique and results described
here will be helpful to reliability practitioners and that they will be used to inform future censoring
tactics. The 30 assessments of the tensile strength of polyester fibers are used to demonstrate how the
recommended strategies may be applied in real-world circumstances. The most important results can
be summarized in the following points:

• The key general finding is that the suggested values for θ, β, R(t), and h(t) performed well.
• All estimations of θ, β, R(t), and h(t) functioned satisfactorily as n (or s) grew.
• In most cases, the MSE, Bias, and WCI of all unknown parameters fell while their CPs grew as

(T1, T2) increased.
• Due to the gamma information, the Bayes estimates of θ, β, R(t), and h(t) behaved more pre-

dictably than the other estimates. Regarding credible HPD intervals, the same statement might
be made.

• In most cases, the proposed estimates of θ, β, R(t), and h(t) performed better when the parameter
of binomial r was increased.

• The MLE has a unique solution and a maximum value of log-likelihood.
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