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Preface

This reprint contains articles belonging to the Special Issue of the Journal Physics devoted to

the 75th anniversary of the physical effect predicted by Hendrik Brugt Gerhard Casimir 75 years

ago. Currently, this effect is being intensively studied both experimentally and theoretically. The

multidisciplinary character of the Casimir effect is caused by the fact that it is determined by the

zero-point and thermal fluctuations of quantized fields, which play an important role in any physical

system. Modern discussions deal with concepts such as the Casimir force, Casimir torque, Casimir

energy and free energy, the Casimir entropy, non-equilibrium Casimir and Casimir–Polder forces, etc.

These concepts are used in quantum field theory, condensed matter physics, nanotechnology, atomic

physics, physics of elementary particles, gravitation, and cosmology. Experiments that measure

the Casimir force have already covered a wide class of physical systems, ranging from metallic,

dielectric, and semiconductor test bodies to nanostructured devices, metamaterials, and 2D materials,

including graphene. Despite the great achievements in this field, the Lifshitz theory of Casimir

forces, which was proposed by Evgeny M. Lifshitz in 1954, has long suffered from unresolved

problems. These problems arose when describing the electromagnetic response of different materials

to the low-frequency electromagnetic field by using simple, partially phenomenological models of

dielectric permittivity. The articles contained in this reprint cover the state-of-the-art advances in the

above-mentioned subjects.

Galina L. Klimchitskaya and Vladimir M. Mostepanenko

Editors
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Editorial

Advances and Prospects in Casimir Physics
Galina L. Klimchitskaya 1,2 and Vladimir M. Mostepanenko 1,2,3*
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Abstract: In the present introductory to the Special Issue “75 Years of the Casimir Effect: Advances
and Prospects”, we summarize the state of the art in this field of physics, briefly describe the topics
of the contributing papers, formulate several unresolved problems, and outline possible pathways
towards their resolution. Special attention is given to experiments on measuring the Casimir force,
to the known problem of the dissipation of conduction electrons when one compares experiment
with theory, and to the Casimir effect in novel materials and non-traditional situations. We conclude
that in the future, this multidisciplinary quantum effect will continue to play a crucial role in both
fundamental physics and its applications.

1. Introduction

The Casimir effect [1] was discovered 75 years ago, and now is an appropriate time to
summarize its role in different physical phenomena, the results thus far obtained, and the
unsolved problems, as well as to outline possible pathways towards their resolution.

At first sight, the Casimir prediction of the attractive force acting between two parallel,
uncharged ideal metal planes kept at zero temperature could be considered to have a rather
modest physical significance. The reason is that this force takes noticeable values only
at extremely short separations between the plates, and both the ideal metal and the zero
temperature are idealizations which are literally unrealizable in physical experiments.

The importance of the Casimir discovery greatly exceeded these expectations. The
Casimir force is determined by the vacuum fluctuations of the electromagnetic and other
quantum fields. These fluctuations are inherent to all physical phenomena in which
Casimir forces may play some role. A few years after its discovery, the Casimir effect was
generalized for the case of ideal metal planes kept at non-zero temperatures [2–4] and,
within the framework of the Lifshitz theory [5–7], for two thick plates made of any material.
It was shown that the Casimir force is a generalization of the van der Waals force [8] for
separations where relativistic effects come into play, and to any temperature. The forces in
question also act between atoms, molecules, and material surfaces, and in this case they are
called Casimir–Polder forces [9].

There are a great number of applications of the Casimir force caused by the zero-
point and thermal fluctuations of the electromagnetic field in condensed matter physics
and atomic physics. In condensed matter physics, the Casimir force acts between any
closely spaced surfaces made of metallic, dielectric, and semiconductor materials (see,
e.g., Refs. [10–31], reviews [32,33], and monographs [34,35]). In atomic physics, the Casimir–
Polder force has been calculated in many systems [36–47]. It plays a primary role in the
phenomena of quantum reflection [48–55] and Bose–Einstein condensation [56–61] (see
also the monograph [62,63]).

Many measurements of the Casimir force have been performed by means of an atomic
force microscope, where the sharp tip was replaced with a relatively large sphere (see
Refs. [32,34,64–78]), and by means of a micromechanical torsional oscillator [32,34,79–85].

Physics 2024, 6, 1072–1082. https://doi.org/10.3390/physics6030066 https://www.mdpi.com/journal/physics1
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Based on these measurement results, the Casimir force was applied for the creation of vari-
ous next-generation micro- and nanoelectromechanical devices [86–99]. The Casimir–Polder
force has been measured in experiments on quantum reflection [49–52] and Bose–Einstein
condensation [56,57,60,61].

The Casimir effect for other than electromagnetic (scalar, spinor, gluon, etc.) fields
has found prospective applications in elementary particle physics, for instance, in the bag
model of hadrons (see Refs. [100–106] and the monograph [107]). It has been demonstrated
that the Casimir effect is also of high importance in topologically non-trivial cosmological
models, where the identification conditions play the same role as the materials boundaries,
changing the spectrum of the vacuum fluctuations and leading to non-zero Casimir energy
density [108–113]. A similar effect was found in multi-dimensional physics, where the extra
spatial dimensions are compactified at some energy scale [114–116].

All of the above permits us to conclude that the Casimir force, regarded initially as an
interesting but toy and somewhat exotic example, has developed over time into a broad
research area, which is often called Casimir physics.

2. The Topics Highlighted in This Special Issue

This Special Issue, entitled “75 Years of the Casimir Effect: Advances and Prospects”,
presents several scientific directions within the wide research area of Casimir-related
phenomena. After the creation of the Lifshtz theory, which allows for the calculation of
the Casimir force in plane-parallel configurations only, it was generalized for the case
of arbitrary-shaped bodies [117–126] and, specifically, for the experimentally important
configuration of a sphere above a plate [127–135]. In this Special Issue, this line of research
is represented by Ref. [136], which is devoted to the application of the scattering approach
for calculating the Casimir–Polder interaction with magnetodielectric bodies, by Ref. [137],
which reviews an application of the method of derivative expansion in Casimir physics, by
Ref. [138], which considers the Casimir forces with periodic structures, and by Ref. [139],
calculating the Casimir–Polder force for a conducting cone.

Special attention in this Special Issue is devoted to recent progress in measuring the
Casimir force. Reference [140] reviews the last experiments performed by means of an
atomic force microscope. This includes measuring the normal Casimir force between the
smooth surfaces of both non-magnetic and magnetic metals, normal and lateral Casimir
forces between the corrugated surfaces, and the thermal Casimir force in graphene systems.
The comparison of the experimental results with theory for graphene systems required
the development of a novel approach to describing the response of graphene to the elec-
tromagnetic field because the previously used semi-phenomenological approaches, based
on the Kubo formula, the two-dimensional Drude model, and density–density correlation
functions [141–144], turned out to be insufficient. The new approach, which was found to
be in agreement with the measurement data, uses the polarization tensor of graphene with
non-zero values of the energy gap and the chemical potential found within the framework
of thermal quantum field theory in (2 + 1) dimensions [145–148].

Two other experimental papers are devoted to the dynamical sensitivity of three-
layer microelectromechanical systems exploiting the Casimir force to the optical
properties of the intervening liquid layer [149] and to the planned experiment on
measuring the Casimir pressure between two parallel plates spaced at micrometer
separations [150]. Realization of the last experiment will allow to strengthen the con-
straints on the Yukawa-type corrections to the Newton law of gravitation and on the
hypothetical constituents of dark matter and dark energy, such as axions, chameleons,
symmetrons, and environment-dependent dilatons [151–155], which are often constrained
from measuring the Casimir force [156–162]. One more experimentally oriented paper
considers the possibility of compensating the electrostatic interaction between dielectric
and metallic test bodies [163]. This investigation is directed towards solving the problem of
surface patches, which complicates measurements of the Casimir force [164,165].
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The major problem of Casimir physics, which has remained unresolved over the
last 25 years, is the question of how to describe the free charge carriers correctly when
calculating the Casimir force. It has been shown Refs. [32,34,72,74,75,80,81,85] that for
metallic test bodies the Casimir force, calculated by means of the Lifshitz theory using
the dissipative Drude model at low frequencies, is excluded by the measurement data. If
the dissipationless plasma model is used in the calculations, the theoretical results agree
with all precise experiments on measuring the Casimir force [32,34,72,74,75,80,81,85]. For
the dielectric test bodies, theory comes into agreement with the measurement data only
if the role of free charge carriers, which are present in all real dielectrics at any non-zero
temperature, is omitted in the computations [32,34,65,69,70,166].

According to the results of Ref. [167] published in this Special Issue, the roots of
the problem are not in accounting for or disregarding the dissipation properties of the
conduction electrons in calculations of the Casimir force, but in the necessity of accounting
for these properties correctly. It is shown that an account of the relaxation properties of
conduction electrons at low frequencies by means of the Drude model in the region of
propagating waves with any polarization and transverse magnetic evanescent waves does
not lead to contradictions with the measurement data. The contradiction between the
calculated and measured Casimir forces arises only when the Drude model is used to
describe the response of metals to the low-frequency evanescent waves with transverse
electric polarization.

It is common knowledge that the Drude model has numerous experimental confirma-
tions in the region of propagating waves. It has also been confirmed by special experiments
in the area of transverse magnetic evanescent waves [168]. As to the area of transverse elec-
tric evanescent waves, the Drude model lacks any reliable experimental confirmation. On
this basis, it was concluded [167] that the experiments on measuring the Casimir force inval-
idate the Drude model in the area of transverse electric evanescent waves. An alternative
experiment in the field of classical electrodynamics was proposed, which can independently
confirm this important conclusion [169,170]. Reference [171] of this Special Issue suggests
another experimental means of distinguishing between the Drude and plasma models,
which is based on measuring the Lorentz force originating from thermal fluctuations.

It is interesting that for the Casimir force between two graphene sheets considered
in Ref. [172] of this Special Issue, theory is in good agreement with the measurement
data. The reason for this is that the electromagnetic response of graphene is described
on the rigorous basis of quantum electrodynamics at non-zero temperature do not using
any phenomenological approach like the Drude model. This is reached by employing the
polarization tensor of graphene with any energy gap and the chemical potential found in
the framework of thermal quantum field theory [145–148].

Several papers belonging to this Special Issue are devoted to the investigation of the
Casimir effect in various specific configurations. Thus, in Ref. [173] the Casimir energy
in (2 + 1)-dimensional field theories is considered which is interesting in connection with
its application to novel two-dimensional materials, such as graphene, silicene, stanene,
phosphorene, and others [174–177]. The Casimir forces in conformal field theories with
defects and boundaries are discussed in Ref. [178]. The normal Casimir force for the
planes with isotropic conductivity in the state of lateral motion is found in Ref. [179]. In
Ref. [180], the Casimir–Lifshitz force of friction, which arises due to the relative motion of
interacting bodies, and resulting heating are considered in the framework of fluctuational
electrodynamics. Finally, it is explained in Ref. [181] how the Casimir force can be used
to stabilize the levitation of a graphene sheet lifted by the repulsive force arising in an
inhomogeneous magnetic field.

In a few papers included in this Special Issue, the Casimir effect is considered in
rather non-standard situations and using some alternative approaches. For instance, in
Ref. [182] the Casimir effect in axion electrodynamics is investigated where, due to the
presence of an additional pseudoscalar quantity, the relationship between the vectors
of the electric field, magnetic induction, electric displacement, and the magnetic field
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becomes more complicated than in the standard electrodynamics of continuous media.
This subject is closely related to new materials called topological insulators, which are of
great practical interest.

An interesting approach to the Casimir effect based on semi-classical electrodynamics
is discussed in Ref. [183] in this Special Issue. This paper includes a preface discussing
different concepts of intermolecular forces in the early history of physics. It is shown how
the semi-classical approach results in the familiar Lifshits formula for Casimir free energy.
One more study [184] is devoted to a derivation of the Casimir pressure between two
Chern–Simons boundary layers deposited on dielectric substrates. For this purpose, gauge-
invariant formalism was developed using the electric and magnetic Green functions. Two
more papers are devoted to the dynamical Casimir effect. One of them [185] considers an
analogy between the dynamical Casimir effect, black holes, and the radiation temperature
of an accelerated electron. The other one [186] investigates an asymmetric force acting on
a moving mirror modeled by the potential, which is equal to the difference between the
delta function and its derivative in two-dimensional space–time. We also list one more
paper published in this Special Issue which is devoted to the one-loop correction to the
mass of an electron in a homogeneous magnetic field [187]. This issue has been considered
by several authors but with somewhat differing results. Keeping in mind that the radiative
corrections are similar in their physical nature to the Casimir effect, it is necessary to resolve
all existing discrepancies.

As was discussed in Section 1, the Casimir effect arises not only in configurations
with material boundaries but also in spaces with non-trivial topology. Because of this, it
plays a significant role in gravitation and cosmology and in multi-dimensional theories
of elementary particle physics. Four papers in this Special Issue represent this scientific
direction in the field of Casimir physics. It is known that anti-de Sitter space–time plays
a significant role in cosmology. Generally speaking, the braneworld model contains the
fields propagating in the bulk or localized on the branes. The boundary conditions on the
branes induce Casimir-type contributions to the expectation values of physical observables.
In Ref. [188], the vacuum expectation of the surface stress–energy tensor for a scalar field is
calculated in the configuration of two parallel branes orthogonal to the boundary of anti-de
Sitter space–time.

Other objects of importance to cosmology are the so-called cosmic strings, i.e., the
topological defects which could have been created in the early Universe during cosmologi-
cal phase transitions. The Casimir interaction between two cosmic strings arising due to
vacuum fluctuations of the scalar field with minimal coupling is considered in Ref. [189] in
the cases both small and large separation distances, taking into account the transverse size
of a string.

Finally, the Casimir effect for two parallel plates in a weak gravitational field and
the wormholes determined by the Casimir energy densities of the Yang–Mills field are
discussed in Ref. [190]. The same paper studies the Casimir energy density in Euclidean
space–time with a non-trivial topology, equivalent to imposing the so-called helix
identification conditions.

3. Future Prospects

As has been demonstrated above, the Casimir effect is a wide research area, with
implications for practically all branches of modern physics. It is actively investigated both
theoretically and experimentally by many research groups working in many countries.
Over the last few years, a number of new breakthrough results have been obtained. Below,
we outline the most crucial problems in this research area to be solved in the future.

Although for metallic test bodies at separations below several micrometers, the Casimir
force was already measured with high precision, at larger separations, and for the test bodies
made of semiconductor and dielectric materials, new breakthrough experimental results
are expected in near future. Progress in precise force measurements can be stimulated using
the traditional and novel techniques (see Refs. [140,150] published in this Special Issue)
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and by compensating for the spurious electric forces [163–165]. The obtained results are
considered to be used for the creation of next-generation micro- and nanoelectromechanical
devices driven by the Casimir force (see Ref. [149] of this Special Issue, elaborating this
scientific direction).

One can expect that the problem of disagreement between experiment and theory,
taking into account the dissipation of conduction electrons by means of the Drude model
(this problem is often called the Casimir puzzle [32,34,75]), will be solved soon. In this
Special Issue, the problem has already been narrowed down to the inapplicability of the
Drude model in the region of transverse electric evanescent waves [167]. It has been
shown [191–193] that if to modify the Drude model in this area phenomenologically by
adding a spatially non-local contribution, the theoretical predictions come to an agree-
ment with the measurement data. It remains to put the phenomenology on a solid
fundamental basis as has already been made for the electromagnetic response of
graphene [77,78,145–148].

In near future, Casimir physics is going also to find new applications in modern theo-
retical approaches beyond the Standard Model, e.g., in the brane models, multi-dimensional
physics with compacted extra dimensions, the theory of topological defects, etc. It is to
be used for obtaining stronger constraints on the Yukawa-type corrections to Newtonian
gravity and the hypothetical particle constituents of dark matter and dark energy.

We hope that the papers published in this Special Issue, “75 Years of the Casimir
Effect: Advances and Prospects”, will be helpful by stimulating further developments in
this prospective field of physics.
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Abstract: Fluctuation-induced forces are a hallmark of the interplay between fluctuations and ge-
ometry. We recently proved the existence of a multi-parametric family of exact representations of
Casimir and Casimir–Polder interactions between bodies of arbitrary shape and material composition,
admitting a multiple scattering expansion (MSE) as a sequence of inter-body and intra-body multiple
wave scatterings. The approach requires no knowledge of the scattering amplitude (T-matrix) of the
bodies. In this paper, we investigate the convergence properties of the MSE for the Casimir–Polder
interaction of a polarizable particle with a macroscopic body. We consider representative materials
from different classes, such as insulators, conductors, and semiconductors. Using a sphere and a
cylinder as benchmarks, we demonstrate that the MSE can be used to efficiently and accurately
compute the Casimir–Polder interaction for bodies with smooth surfaces.

Keywords: Casimir–Polder force; scattering expansion; surface integral equation; silicon; gold; polystyrene

1. Introduction

Following the seminal paper of Hendrick Casimir, who discovered that two discharged
perfectly conducting parallel plates at zero temperature attract each other with a force
originating from quantum fluctuations of the electromagnetic (EM) field [1], Evgeny Lifshitz
successfully used the then-new field of fluctuational electrodynamics to compute the
Casimir force between two parallel, infinite surfaces of dispersive and dissipative dielectric
bodies at finite temperature [2]. By taking the dilute limit for one of the two bodies, Lifshitz
could also compute the Casimir–Polder (CP) force between a small polarizable particle and
a planar surface. Lifshitz’s results remained unsurpassed for a long time, because it was not
understandable how to extend his computation beyond planar surfaces. Computing the
Casimir and CP interactions in non-planar geometries is actually a notoriously complicated
problem, due to the collective and non-additive character of dispersion forces. For many
years, the only method to estimate dispersion forces in non-planar setups was the Derjaguin
additive approximation [3], the so-called Proximity Force Approximation (PFA), which
expresses the Casimir force between two non-planar surfaces as the sum of the forces
between pairs of small opposing planar portions of the surfaces. Because of its simplicity,
the PFA is still often used to interpret modern experiments with curved bodies; for reviews,
see [4–9].

A significant step forward in the study of curved surfaces was made in the 1970s by
Dieter Langbein, who used scattering methods to study the Casimir interaction between
spheres and cylinders [10]. The remarkable study of Langbein went quite unnoticed, and it
was quickly forgotten. A new wave of strong interest in the problem arose at the beginning
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of this century, spurred by modern precision experiments on the Casimir effect [11–18].
The intense theoretical efforts that were put forward culminated in the discovery of the
scattering Formula [19–21]. According to this formula, which was initially devised for
non-planar mirrors [22,23], the interaction between dielectric bodies is expressed in terms
of their scattering amplitude, known as T-operator. While this formalism has been the basis
of the theoretical advancements made in recent years, its practical use is limited by the
feature that the T-operator is known only for highly symmetric bodies, such as spheres
and cylinders, or for a few perfectly conducting shapes [24]. Remarkably enough, it has
been found that the scattering formula can be computed exactly for the sphere–plate and
sphere–sphere systems for Drude conductors in the high temperature limit [25,26]. By
improved numerical methods, the scattering formula for a dielectric sphere and a plate at
finite temperature can be computed with high precision also for experimentally relevant
small separations [27]. To note, however, is that the precision of current experiments using
a simple enough sphere–plate geometry has not yet reached the point where deviations
from the PFA to be observed.

As mentioned above, the practical use of the scattering approach is limited to the
few simple shapes for which the scattering amplitude is known. A more fundamental
limitation of the scattering approach is that interlocked geometries evade this method due
to lack of convergence of the mode expansion [28]. The necessity of theoretical formulations
for a precise force computation in complex geometries has become urgent lately, because
recent experiments using micro-fabricated surfaces [28–30] have indeed shown large devia-
tions from the PFA. Theoretical progress has been made for the special case of dielectric
rectangular gratings by using a generalization of the Rayleigh expansion in Refs. [31–33].
On a different route, a general approach has been devised for gently curved surfaces, for
which a gradient expansion can be used to obtain first order curvature corrections to the
proximity force approximation for the Casimir force [34–37]. In this approach, the Casimir
energy is expanded in powers of derivatives of the height functions of the surfaces, whose
coefficients can be computed analytically by matching the gradient expansion with the
perturbative expansion of the energy in the common domain of validity of both expansions.

A breakthrough occurred in 2013 [38] when it was shown that surface integral-
equations methods [39,40], which have been used for a long time in computational elec-
tromagnetism, can also be used to compute, at least in general, Casimir interactions for
arbitrary arrangements of any number of (homogeneous) magneto-dielectric bodies of any
shape. The formulation in [38] expresses Casimir forces and energies as traces of certain
expressions involving a surface operator, evaluated along the imaginary frequency axis.
The surface operator consists of linear combinations with constant coefficients of free Green
tensors of the EM field of N + 1 homogeneous infinite media, having the permittivities of the
N bodies, and of the medium surrounding them. A potential problem with the approach of
Ref. [38] is that the expression for the Casimir interaction contains the inverse of the surface
operator, which has to be computed numerically by replacing the continuous surfaces with
a suitable discrete mesh. This operation replaces the surface operator by a large matrix
whose elements involve double surface integrals of the free Green tensors over all pairs of
small surface elements composing the mesh. The generation of the matrix is time consum-
ing because of the strong inverse-distance cubed singularity of the surface operator in the
coincidence limit. In addition, the size of the non-sparse matrix for sufficiently fine meshes
can quickly exceed the memory-usage limit, preventing the matrix numerical inversion.

Inspired by earlier papers of Roger Balian and Bertrand Duplantier on the Casimir
effect for perfect conductors [41,42], we have recently derived a multiple scattering ex-
pansion (MSE) of Casimir and CP interactions for magneto-dielectric bodies of arbitrary
shape [43,44]. Similar to Ref. [38], in the MSE approach the interactions have the form of
traces of expressions involving the inverse of a surface operator, M(iξ), evaluated along
the imaginary frequency axis. A crucial difference with respect to Ref. [38] is that the MSE
kernel M has the form of a Fredholm surface integral operator of the second kind,

M = I−K . (1)
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Here, I and K represent the identity and the surface scattering operator (SSO), respectively.
The Fredholm form implies that the inverse M can be computed as a power

(Neumann) series,
M−1 = I+K+K2 + . . . , (2)

which converges, provided that the spectral radius of K is less than one. Hence, one obtains
an expansion of Casimir and CP interaction in the powers of K, which can be interpreted
as an expansion in the number of scatterings off the surfaces of the bodies. Specifically, the
MSE has the form of an iterated series of surface integrals of elementary functions, running
over the surfaces of the bodies. Let us note that a particular choice of the free coefficients
in the kernel K exists, such that the kernel has a weak 1/|u− u′| singularity, where u
and u’ are the points on the surface. The weak singularity feature should simplify and
expedite numerical evaluations on a mesh. An additional advantage implied by the MSE,
if implemented on a mesh, is that one does not need to store the matrix for K in memory,
since its elements can be computed at the moment of performing the matrix multiplication.

Considering specifically the CP interaction of a polarizable particle with a dielectric
body, let us note that the problem has been studied by many authors in the past, using
a variety of methods. A distinction can be made between approaches devised for bodies
of special shapes, as opposed to formulations that can handle bodies of arbitrary shapes.
The first group includes spheres and cylinders, for which the scattering formula leads to a
simple exact expression for the CP energy in terms of the exactly known T-operator [45–48].
This group also includes the computation of the exact CP interaction between an atom and
a rectangular dielectric grating [32,49], based on the Rayleigh expansion. Regarding the
second group of approaches, it has been shown [50,51] that the gradient expansion [34–37]
can be used to compute the leading and the next-to-leading curvature corrections beyond
the PFA for the CP energy of an atom in front of a gently curved surface of any shape.
A numerical time-domain approach to compute the CP interaction of an atom with an
arbitrary micro-structured body has been recently discussed [52]. Let us stress that this
elegant approach offers the possibility of dealing with a broad range of dielectric materials,
including inhomogeneous and possibly non-local materials.

In this paper, we investigate the power of the MSE in the computation of CP interac-
tions. In its present formulation, the MSE allows one to deal with homogeneous and local
magneto-dielectric bodies of any shapes, which is the situation of interest in experiments
carried out so far. In [43], we showed that only a few terms of the MSE are sufficient to
obtain a fairly accurate estimate of the Casimir energy between a Si wedge and a Au plate.
The purpose of the present study is to investigate the convergence properties of the MSE
for the CP interaction between a polarizable isotropic particle and a dielectric body. We
use as benchmarks two shapes that can be solved exactly by using the scattering approach,
namely a sphere or a cylinder. We consider different types of materials for the sphere
and the cylinder in order to see how the material properties of the bodies affect the rate
of convergence of the MSE. We demonstrate that, in all the cases considered, the MSE
converges quite fast and uniformly with respect to the particle-surface separation. Since
there is no reason to expect that the convergence properties of the MSE bring whatever
difference for bodies that are smooth deformations of a sphere or a cylinder, we argue that
the findings of the current study imply that the MSE can be used to efficiently compute the
CP interactions for compact and non-compact dielectric bodies with smooth surfaces of an
arbitrary shape.

2. Casimir–Polder Energy of a Polarizable Particle and a Magneto-Dielectric Body

We study the CP interaction between a small polarizable particle and a magneto-
dielectric body (see Figure 1). The optical response of the particle is described by its
(complex) electric, α(ω), and magnetic, β(ω), polarizability tensors, where ω is the fre-
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quency. It is known [6,44] that the CP energy can be expressed in terms of the scattering
Green tensor Γ(r, r′) evaluated at the particle’s position r0, as

ECP = −4πkBT
∞

∑′

n=0
κn

3

∑
i,j=1

[
αij(i ξn)Γ

(EE)
ij (r0, r0; κn) + βij(i ξn)Γ

(HH)
ij (r0, r0; κn)

]
, (3)

where kB is Boltzmann constant, T is the temperature, ξn = 2πnkBT/h̄, with h̄ the reduced
Planck’s constant and n = 0, 1, 2 . . ., are the Matsubara frequencies, κn = ξn/c with c the
speed of light, the prime in the sum indicates that the n = 0 terms has to be taken with a
weight of 1/2. The superscripts ’EE’ and ’HH’ denote the electric and the magnetic fields,
respectively. Here, only one scattering at the particle is considered, which is completely
justified for particles that are much smaller than the distance from the surface, d. However,
multiple scatterings at the body need to be considered. Using the surface integral-equation
formulation of EM scattering by a dielectric body [44], one can show that Γ(r, r′) can be
expressed as a surface integral extending over the surface, S, of the body,

Γ(r, r′) =
∫

S
dsu

∫

S
dsu′ G0(r, u)(I−K)−1(u, u′)M(u′, r′) , (4)

where K(u, u′) denotes the following SSO,

K(u, u′) = 2P(Ci +Ce)−1n(u)×
[
CiG1(u, u′)−CeG0(u, u′)

]
, P =

( 0 −1
1 0

)
, (5)

M(u, u′) is the surface operator,

M(u, r) = −2P(Ci +Ce)−1Ce n(u)×G0(u, r) , (6)

In Equations (4)–(6), G0 and G1 are the empty-space Green tensors for the homogenous
media with the permittivities ε0 and ε1 and the permeabilities µ0 and µ1, respectively (see
Appendix E of Ref. [44] for the definition of G0 and G1), while n(u) is the outward unit
normal vector to the surface S at point u. The action n(u)× on the 3× 3 matrices G(pq)

1

and G(pq)
0 (p, q ∈ {E, H}) is respectively defined by (n(u)×G(pq)

1 )v ≡ n(u)× (G(pq)
1 v) and

(n(u)×G(pq)
0 )v ≡ nσ(u)× (G(pq)

0 v), for any vector v. To note is that K and M depend on
four arbitrary coefficients, which must form two invertible diagonal 2× 2 matrices, Ci and Ce.

R

d

Figure 1. Configuration of a dielectric body (sphere, cylinder) of radius R with the permittivity ε1 and
permeability µ1 interacting with a polarizable particle at position r0 outside the object at a distance d
from the surface. ε0 and µ0 denote, respectively, the permittivity and permeability of the surrounding
medium. M, G0 and K are the operators of the multiple scattering expansion. u, u’ and u” mark some
positions on the surface of the dielectric body. The arrows denote ordering of the operators. See text for
more details.

The existence of an MSE follows from the Fredholm type of the operator (I−K)−1 in
Equation (4), which permits an expansion of Γ(r, r′) in powers of K. This in turn leads to
an MSE expansion of the CP energy in Equation (3) in terms of the number of scatterings at
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the surface of the body. It is useful to show the first terms of the MSE of the CP energy for
the simple case of a particle having an isotropic electric polarizability, αij = α δij with δij
the Kronecker delta, and a negligible magnetic polarizability, β,

ECP = −4πkBT
∞

∑′

n=0
κn α(i ξn)

{
∑

p=E,H

∫

S
dsutr

[
G(Ep)

0 (r0, u; κn)M(pE)(u, r0; κn)
]

+ ∑
p,q=E,H

∫

S
dsu

∫

S
dsu′ tr

[
G(Ep)

0 (r0, u; κn)K(pq)(u, u′; κn)M(qE)(u′, r0; κn)
]}

+ · · · , (7)

where the symbol ’tr’ denotes a trace over the tensor spatial indices. Since the kernels K and
M are combinations of free-space Green tensors G0 and G1, which are elementary functions
of the coordinates, it is understandable that the CP energy involves an iterated series of
integrals of elementary functions running over the surface, S, of the body. Since the Green
tensors decay exponentially with distance for imaginary frequencies, one immediately sees
from Equation (7) that the CP interaction is dominated by the region of the surface that
is most closer to the particle. However, one notes that, for the classical term n = 0, the
Matsubara frequency vanishes and the operators decay only according to a power law.

3. Equivalent Expressions of the SSO

It has to be noticed that different choices of the matrices for the interior, Ci, and
the exterior, Ce, coefficients lead to equivalent SSO, in the sense that the right-hand side
of Equation (4) provides different representations of the same scattering tensor for all
coefficients [44], given that neither the interior nor the exterior matrices vanish, and that
the sum Ci +Ce is invertible. This in turn also implies that the CP energy is independent
of the values of these coefficients. However, at any finite order of the MSE, the CP energy
does depend on the chosen coefficients, which implies that the rate of convergence of the
MSE depends in general on this choice. This important property gives one the possibilities
of optimizing convergence of the MSE by suitably choosing the coefficients, dependent
on the optical properties of the surfaces. Among the infinite number of the choices for the
coefficients, there are two cases which we consider of most importance and describe in
detail here.

C1. When the two surface positions, u and u′, are close one to another, the SSO has, in
general, a 1/|u− u′|3 singularity. However, a unique choice of the coefficients exists
[53], for which the singularity is reduced to a weaker 1/|u− u′| divergence. The
coefficient matrices ensuring this remarkable property are

Ci = diag(ε1, µ1) , Ce = diag(ε0, µ0) . (8)

The corresponding surface operator K has unique mathematical properties (see
Section 6 of Ref. [44]).

C2. A fully asymmetric, material independent choice of coefficient matrices is

Ci = diag(1, 0) , Ce = diag(0, 1) . (9)

For good conductors, one observes relatively fast convergence of the MSE with this
choice what is consistent with the observation made in Ref. [42].

4. Results and Discussion

The MSE of the CP energy (7) converges if all eigenvalues of the SSO K are less than 1
in modulus which to be called here the boundedness property. No a general bound on the
eigenvalues of K was possible to be derived. However, we can prove [44] the boundedness
property for the choice case C1 of the coefficients (see Equation (8)) in the asymptotic
limit of infinite frequencies for bodies of any shape. For compact bodies, the boundedness
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property also holds in the static limit κ = 0. For the special case of perfect conductors of
compact shape, the boundedness property was proven much earlier for all frequencies [41].

While having a proof of convergence of the MSE is well desirable, from the practical
point of view it is of more need to know if the convergence is fast enough for the first few
terms of the MSE, in order to provide a good approximation of an entire series. Given the
current status of experiments, obtaining the CP energy with an error of less than a percent
would be acceptable. To investigate this problem, we consider using as a benchmark the
CP interaction of a particle with a body for which the scattering amplitude (T-matrix) is
known exactly, and then to verify in such a setup the rate of convergence of the MSE
expansion to the energy exact formula. In what follows, choose to study a dielectric sphere
and a dielectric cylinder. We consider three different materials: a conductor (gold), a
semiconductor (silicon), and an insulator (polystyrene). Since these materials have quite
different permittivities, one can check how the rate of convergence of the MSE is affected
by the magnitude of the permittivity. We compare the rate of convergence of the MSE for
the two cases of choice C1 and C2, of the free coefficients that enter in the definition of the
SSO. We Let us denote by MSEk, k = 0, 1, . . ., the estimate of the CP energy corresponding
to the inclusion of K up to the k power into the MSE (3).

4.1. Materials

In the computations here, the following expressions for the permittivities of the
materials are used:

εAu(i ξn) = 1 +
Ω2

p

ξ(ξ + γ)
+

6

∑
j=1

f j

ω2
j + gjξ + ξ2

, (10)

εSi(i ξn) = ε
(Si)
∞ +

ε
(Si)
0 − ε

(Si)
∞

1 + ξ2/ω2
UV

, (11)

εpolystyrene(i ξn) = 1 +
4

∑
j=1

f j

ω2
j + gjξ + ξ2

, (12)

where Ωp = 9 eV/h̄, γ = 0.035 eV/h̄, ε
(Si)
∞ = 1.035, ε

(Si)
0 = 11.87, and ωUV = 4.34 eV/h̄;

the oscillator parameters ωj, f j, gj for Au and polystyrene are listed in Tables 1 and 2,
respectively. The particle’s polarizability, α, is assumed to be frequency-independent.

Table 1. Oscillator parameteres for Au [54]. See Equation (10).

j ωj (eV/h̄) fj (eV2/h̄2) gj (eV/h̄)

1 3.05 7.091 0.75
2 4.15 41.46 1.85
3 5.4 2.7 1.0
4 8.5 154.7 7.0
5 13.5 44.55 6.0
6 21.5 309.6 9.0

Table 2. Oscillator parameteres for polystyrene [4]. See Equation (12).

j ωj (eV/h̄) fj (eV2/h̄2) gj (eV/h̄)

1 6.35 14.6 0.65
2 14.0 96.9 5.0
3 11.0 44.4 3.5
4 20.1 136.9 11.5
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4.2. CP Energy for a Sphere

The scattering approach yields the following Formula [45,46] for the CP interaction
energy of a polarizable particle at distance d from the surface of a sphere of radius R in
vacuum (ε0 = µ0 = 1):

E(exact)
CP =

kBT
a2

∞

∑′

n=0
κn α(i ξn)

∞

∑
l=1

(2l + 1) (13)

×
{

THH
l (i ξn)K2

l (κna)− TEE
l (i ξn)

[
K′2l (κna) +

l(l + 1)
κ2

na2 K
2
l (κna)

]}
,

where a = R + d, l is the multipole index, Kl(x) = xkl(x), kl(x) =
√

2
πx Kl+1/2(x) is the

modified spherical Bessel function of the third kind, K′l(x) = dKl/dx, and THH
l , TEE

l are
the T-matrix elements (Mie coefficients) of the sphere,

THH
l (iξ) =

√
µ/ε Il(

√
εµκR) I ′l (κR)− I ′l (

√
εµκR) Il(κR)

Kl(κR) I ′l (
√

εµκR)−
√

µ/ε Il(
√

εµκR) K′l(κR)
, (14)

TEE
l (iξ) =

√
ε/µ Il(

√
εµκR) I ′l (κR)− I ′l (

√
εµκR) Il(κR)

Kl(κR) I ′l (
√

µ/εκR)−
√

ε/µ Il(
√

εµκR) K′l(κR)
, (15)

TEH
l (iξ) = THE

l (iξ) = 0 , (16)

where ξ = κc, Il(x) = xil(x), and I ′l (x) = dIl/dx, with il(x) =
√

π
2x Il+1/2(x) the modified

spherical Bessel function of the first kind.
The matrix elements of the SSO K and the operator M can be straightforwardly

computed in the basis of vector spherical harmonics. The corresponding matrices are both
diagonal with respect to multipole indices, (l, m), −l ≤ m ≤ l, and, in addition, these
matrices are independent of m. Therefore, the matrix for K has the structure of l-dependent
4× 4 blocks Kp,r,l,m;q,s,l′ ,m′ = δll′δmm′K

(l)
p,r;q,s, where r, s = 1, 2 label the tangential fields

Y1,lm(r̂) and Y2,lm(r̂), introduced in Equation (8.1) of Ref. [42].
In Figures 2–4, we show the ratios of the MSE for the CP energy E(MSEk)

CP and the exact
result for the CP energy E(exact)

CP obtained from Equation (13) versus d/R for Au, Si, and
polystyrene. In the case of Au, a comparison of Figure 2a with Figure 2b shows that the rate
of convergence is much faster with the asymmetric choice C2 of the coefficients. Actually,
with the C2 choice, MSE3 already differs from the energy exact values by less than one
percent for all displayed separations: specifically, the maximum error is of 0.6% for d/R = 1,
while for d/R = 0.03 the error is as small as 0.1%. In the case of Si, the performance of
the choice C1 is better than that for C2. Indeed, with the C1 choice, the maximum error
of MSE4 is 0.8% for d/R = 0.03, while the minimum error is 0.2% for d/R = 1, while for
the choice C2, the maximum error is 3.4% for d/R = 1. In the case of polystyrene, the
performance of C1 case is amazingly good, since with MSE3 the maximum error is 0.6% for
d/R = 1, while for d/R = 0.04 the error is as low as 0.003%. For polystyrene, the rate of
convergence of (C2) is instead quite poor.

18



Physics 2024, 6

○
○
○
○
○
○

○

○

○

○

○
○
○○○○○○

○
○
○
○
○
○
○
○
○
○
○
○

▲
▲
▲
▲
▲
▲
▲

▲

▲

▲

▲

▲
▲
▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

△△△
△△

△
△
△
△
△
△
△
△△

△△△△△△△△△△△△△△△△

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

○ MSE0

▲ MSE1

● MSE2

△ MSE3

□ MSE4

0.05 0.10 0.50 1
0.6

0.7

0.8

0.9

1.0

d/R

E
C
P

(M
S
E
k
) /
E
C
P

(e
xa
ct
)

(a) Choice C1 Au T=300K R=30μm

○○○○○○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△□□□□□□ □□ □□ □□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

○ MSE0

▲ MSE1

● MSE2

△ MSE3

□ MSE4

0.05 0.10 0.50 1
0.75

0.80

0.85

0.90

0.95

1.00

1.05

d/R

E
C
P

(M
S
E
k
) /
E
C
P

(e
xa
ct
)

(b) Choice C2 Au T=300K R=30μm

Figure 2. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for an Au sphere of radius R = 30 µm at room temperature versus d/R, where d is the
distance from the surface, for (a) C1 and (b) C2 choices. See text for details.
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Figure 3. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for a Si sphere of radius R = 30 µm at room temperature versus d/R for (a) C1 and (b)
C2 choices. See text for details.
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Figure 4. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (13) for a polystyrene sphere of radius R = 30 µm at room temperature versus d/R, for C1
choice. See text for details.
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4.3. CP Energy for a Cylinder

Within the scattering T-matrix approach, the CP interaction energy of a polarizable
particle at distance d from the surface of an infinitely long cylinder of radius R with the
permittivity ε1 = ε permeability µ1 = µ in vacuum (ε0 = µ0 = 1) is

E(exact)
CP =

kBT
π

∞

∑′

n=0
κ2

n α(i ξn)
∫ ∞

−∞
dkz

∞

∑
m=−∞

(17)

×
{

TEE
kzm(iξn)

1
κ2

n

[
k2

zK′m
2
(p0a) +

(
m2k2

z

p2
0a2

+ p2
0

)
K2

m(p0a)

]

− THH
kzm (iξn)

[
K′m

2
(p0a) +

m2

p2
0a2

K2
m(p0a)

]

+ TEH
kzm(iξn)

4mkz

κn p0a
Km(p0a)K′m

2
(p0a)

}
,

where a = R + d, p0 =
√

κ2 + k2
z, m is the multipole index, Km is the modified Bessel

function of second kind and K′m its derivative, and TNM
kzm , (N, M ∈ {E, H}) are the T-matrix

elements of a dielectric cylinder [48],

THH
kzm (iξ) = − Im(p0R)

Km(p0R)
∆1∆4 + Υ2

∆1∆2 + Υ2 , (18)

TEE
kzm(iξ) = −

Im(p0R)
Km(p0R)

∆2∆3 + Υ2

∆1∆2 + Υ2 , (19)

THE
kzm(iξ) = −TEH

kzm(iξ) =
Υ√

εµ(p0R)2Km(p0R)2
1

∆1∆2 + Υ2 , (20)

with Im the modified Bessel function of first kind and

Υ =
mkz√
εµR2κ

(
1
p2 −

1
p2

0

)
, (21)

with p =
√

εµκ2 + k2
z and

∆1 =
I′m(pR)

pRIm(pR)
− 1

ε

K′m(p0R)
p0RKm(p0R)

, (22)

∆2 =
I′m(pR)

pRIm(pR)
− 1

µ

K′m(p0R)
p0RKm(p0R)

, (23)

∆3 =
I′m(pR)

pRIm(pR)
− 1

ε

I′m(p0R)
p0RIm(p0R)

, (24)

∆4 =
I′m(pR)

pRIm(pR)
− 1

µ

I′m(p0R)
p0RIm(p0R)

. (25)

To notice is that, in general, the polarization is not conserved under scattering,
i.e., TEH

kzm 6= 0 6= THE
kzm. This property, together with its quasi-2D shape, makes the cylinder

an important benchmark test for the convergence of the MSE.
The CP energy can be straightforwardly obtained as an MSE since the SSO K and the op-

erator M can be computed by substituting for the free Green functions in Equations (5) and (6)
an expansion in vector cylindrical waves. In Figure 5, we again show the numerical results
for the ratio of the MSE for the CP energy E(MSEk)

CP at MSE of the order k and the exact result
for the CP energy E(exact)

CP obtained from Equation (18). The materials, temperature, and
geometric lengths are the same as in the case of a sphere. For Si, one observes that the
MSE with the choice case C1 has converged at order MSE3 to the energy exact calculations

20



Physics 2024, 6

within approximately 3%, with the largest deviations at the shortest (2.4%) and longest
(3.3%) considered separation. The deviation is minimal at intermediate distances around
d/R = 0.2, with an error of only 0.1%. Hence, the performance of the MSE for an infinite
cylinder is quite similar to a compact sphere. We do not consider the coefficients from the
C2 choice as they performed worse than the choice case C1 for a sphere. For polystyrene,
we consider again only the choice case C1, for the same reason. Due to its low dielectric
contrast, one expects the choice C1 to give good convergence of the MSE at low orders.
Indeed, the rate of convergence is quite fast so that the MSE can be terminated at the order
MSE1 already, with a maximum deviation from the energy exact value of only 1.9% at the
separation d = R. Let us note that, in general, that with the choice case C1, the lowest
order MSE0, the estimate of the energy for the cylinder is not as good as that for the sphere.
This is presumably due to arbitrarily long-range charge and current fluctuations along the
cylinder, which require at least one power of the operator K to be described properly.
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Figure 5. The ratio of MSE of the CP energy (7) up to the k-power of the kernel K to the energy exact
Formula (18) for (a) a Silicon cylinder and (b) a polystyrene cylinder of radius R = 30 µm at room
temperature T = 300 K, for the choice case C1. See text for details.

Finally, it is necessary to discuss the case of a metal, such as Au. As the dielectric
function diverges in the limit κ → 0, the classical term n = 0 of the Matsubara sum
resembles that of a perfect conductor. We have shown that, for a cylinder, the SSO K, for
the choice case C1, in the partial wave channel m = 0, has an eigenvalue that approaches
unity when κ → 0 and ε → ∞ [44]. For the choice case C2 the situation is even worse as
there is an eigenvalue approaching unity in all partial wave channels. This property is
expected to persist for all quasi-2D shapes with a compact cross section. Hence, for such
metallic shapes the classical term n = 0 cannot be obtained from an MSE. However, the
surface scattering approach as developed by us is also useful for zero frequency κ = 0
as the inverse of M = I−K can be computed directly, without resorting to an MSE. We
note that for κ = 0 the expression for K simplifies considerably, in particular in the perfect
conductor limit [44].

To conclude, we have demonstrated that the MSE provides an especially well-suited
tool to compute Casimir–Polder interactions with high precision for a quite wide range of
materials. Let us stress that this conclusion is not specific to the shapes considered here
but is expected to hold generically for any compact 3D shape or quasi-2D shape. Here,
we considered a sphere and a cylinder just because, for those shapes, the exact results
are known and hence the convergence of our MSE can be tested. Most essentially, for
general shapes where the T-matrix is not known the SSO K can be computed and the MSE
implemented to obtain high precision results for the interaction.
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Abstract: We review the derivative expansion (DE) method in Casimir physics, an approach which
extends the proximity force approximation (PFA). After introducing and motivating the DE in contexts
other than the Casimir effect, we present different examples which correspond to that realm. We focus
on different particular geometries, boundary conditions, types of fields, and quantum and thermal
fluctuations. Besides providing various examples where the method can be applied, we discuss a
concrete example for which the DE cannot be applied; namely, the case of perfect Neumann conditions
in 2 + 1 dimensions. By the same example, we show how a more realistic type of boundary condition
circumvents the problem. We also comment on the application of the DE to the Casimir–Polder
interaction which provides a broader perspective on particle–surface interactions.

Keywords: Casimir effect; derivative expansion; proximity force approximation; Casimir–Polder force

1. Introduction

Casimir forces are one of the most intriguing macroscopic manifestations of quantum
fluctuations in Nature. Their existence, first realized in the specific context of the interaction
between the quantum electromagnetic (EM) field and the boundaries of two neutral bodies,
manifests itself as an attractive force between them. That force depends, in an intricate
manner, on the shape and EM properties of the objects. Since the discovery of this effect by
Hendrik Casimir 75 years ago [1] this, and closely related phenomena, have been subjected
to intense theoretical and experimental research [2–5]. The outcome of that work has not
just revealed fundamental aspects of quantum field theory, but also subtle aspects of the
models used to describe the EM properties of material bodies. Besides, it has become
increasingly clear that this research has potential applications to nanotechnology.

Theoretical and experimental reasons have called for the calculation of the Casimir
energies and forces for different geometries and materials [6], and with an ever increasing
accuracy. The simplicity of the theoretical predictions when two parallel plates are involved,
corresponds to a difficult experimental setup, due to alignment problems (in spite of this,
the Casimir force for this geometry has been measured at the 10% accuracy level [7]).
Equivalently, geometries which are more convenient from the experimental point of view,
and allow for higher precision measurements, lead to more involved theoretical calculations.
Such is the case of a cylinder facing a plane [8], or a sphere facing a plate, which is free
from the alluded alignment problems [9–15].

From a theoretical standpoint, finding the dependence of the Casimir energies and
forces on the geometry of the objects, poses an interesting challenge. Indeed, even when
evaluating the self-energies which result from the coupling on an object to the vacuum
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field fluctuations, results may be rather non-intuitive; as in the case of a single spherical
surface [16].

For a long time, calculations attempting to find analytical results for the Casimir and
related interactions had been restricted to using the so called proximity force approximation
(PFA). In this approach, the interaction energies and the resulting forces are computed
approximating the geometry by a collection of parallel plates and then adding up the
contributions obtained for this approximate geometry. This procedure was presumed to
work well enough, at least for smooth surfaces when they are sufficiently close to each other;
in more precise terms: when the curvature radii of the surfaces Ri are much larger than the
distance d between them. Indeed, this is the main content of the Derjaguin approximation
(DA), developed by Boris Derjaguin in the 1930s [17–19] , which is pivotal in the study of
surface interactions, especially in the context of colloidal particles and biological cells. This
approach has significant implications in understanding colloidal stability, adhesion, and
thin film formation.

It is worth introducing some essentials of the DA, in particular, of the geometrical
aspects involved. Assuming the interaction energy per unit area between two parallel
planes at a distance h is known, and given by Eq(h), the DA yields an expression for the
interaction energy between two curved surfaces, UDA [2,4,17–20]. Indeed,

UDA(a) = 2πReff

∫ ∞

a
Eq(h)dh, (1)

where a denotes the distance between the surfaces, R1 and R2 are their curvature radii (at
the point of closest distance), while Reff = R1R2/(R1 + R2). It is rather straightforward to
implement the approximation at the level of the force fDA between surfaces:

fDA(a) = 2πReffEq(a). (2)

This approximation is usually derived from a quite reasonable assumption, namely, that
the interaction energy can be approximated by means of the PFA expression:

UPFA =
∫

dS Eq. (3)

Here, the surface integration may be performed over one of the participating surfaces, but
it could also be over an imaginary, “interpolating surface”, which lies between them. The
DA is obtained from the expression above, by approximating the surfaces by (portions of)
the osculating spheres (with radii R1 and R2) at the point of closest approach.

Based on this hypothesis, on dimensional grounds one can expect the corrections to
the PFA to be of order O(a/Ri). Note, however, that since the PFA had not been obtained
as the leading-order term in a well-defined expansion, the approximation itself did not
provide any quantitative method to asses the validity of that assumption.

A need for reliable measure of the accuracy of the results obtained using different
methods became increasingly crucial, specially since the development of the “precision era”
in the measurement of the Casimir forces [9–15]. It was in this context that the Derivative
Expansion (DE) approach, was first introduced by us in 2011 [21], as a tool to asses the
validity of the PFA, by putting it in the framework of an expansion, and to calculate
corrections to the PFA using that very same expansion. When one realizes that the PFA
had previously been proposed in contexts which are rather different to Casimir physics, it
becomes clear that the improvement on the PFA which represents the DE may and does
have relevance on those realms, regardless of them having an origin in vacuum fluctuations
or not. Indeed, when one strips off the DE of the particularities of Casimir physics, one
can see the ingredients that allowed one to implement it are also found, for example, in
electrostatics, nuclear physics, and colloidal surface interactions.

Here, we present the essential features of the DE, its derivation, and consider some
examples of its applications. The review is organized as follows. In Section 2 , we recall
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some aspects of the DA which stem from its application to nuclear and colloidal physics.
We start with the DA not just for historical reasons, but also because we believe that this
sheds light on some geometrical aspects of the approximation, in a rather direct way (like
the relevance of curvature radii and distances).

Then, in Section 3, we introduce the DE in one of its simplest realizations, namely,
in the context of electrostatics, for a system consisting of two conducting surfaces kept at
different potentials [22]. We first evaluate the PFA in this example, and then introduce
the DE as a method to improve on that approximation. In Section 4, we introduce a more
abstract, and therefore more general, formulation of the DE [23]. By putting aside the
particular features of an specific interaction, and keeping just the ones that are common to
all of them, we are lead to formulate the problem as follows: the DE is a particular kind of
expansion of a functional having as argument a surface (or surfaces). We mean “functional”
here in its mathematical sense: a function that assigns a number to a function or functions.
We elucidate and demonstrate some of the aspects of the DE in this general context; the
purpose of presenting those aspects are not just a matter of consistency or justification, but
they also provide a concrete way of applying and implementing the DE to any example
where it is applicable.

Then, in Section 5, we focus on the DE in the specific context of the Casimir interac-
tion between surfaces, for perfect boundary conditions at zero temperature; i.e., vacuum
fluctuations [21,24]. Then in Section 6 we review the extension of those results to the
case of finite temperatures and real materials [25,26]. As we shall see, the temperature
introduces another scale, which affects the form one must adopt for the different terms in
the DE. Then we comment on an aspect which first manifests itself here: as it happens with
any expansion, it is to be expected to break down for some specific examples, when the
hypothesis that justified it are not satisfied. We show this for the case of the Casimir effect
with Neumann conditions at finite temperatures [26,27]. We also show that the application
of the DE to the EM field is free of this problem, if dissipative effects are included in the
model describing the media [28].

The application of the DE to Casimir-Polder forces for atoms near smooth surfaces [29]
is described in Section 7. Other alternatives to compute Casimir energies beyond PFA [30]
are described in Section 8. Section 9 contains our conclusions.

2. Proximity Approximations in Nuclear and Colloidal Physics

The introduction of the Derjaguin Approximation (DA) to nuclear physics dates back
to the seminal paper [31]. In this paper, the DA was rediscovered and applied to calculate
nuclear interactions, starting with a Derjaguin-like formula for the surface interaction
energies. The approach was based on a crucial “universal function”—a term referring
here to the interaction energy between flat surfaces, calculated using a Thomas-Fermi
approximation. In spite of the rather different context, the analogy with the approach
followed in the DA becomes clear when one introduces three surfaces, the physical ones,
ΣL and ΣR, and the intermediate one Σ which one uses to parametrize the interacting ones.
Then, if the physical surfaces are sufficiently smooth, the interaction energy should, to a
reasonable approximation, be described by the PFA, in a similar fashion as in Equation (3).
To render the assertion above more concrete, we yet again use the function h : Σ→ R,
measuring the distance between ΣL and ΣR at each point on Σ. Since h will have level
sets which are, except for a zero measure set, one-dimensional (closed curves), and the
interaction depends just on h, the PFA expression for the interaction energy U may be
rendered as a one-dimensional integral:

UPFA =
∫

dh J(h) Eq(h), (4)

where J(h)dh is the infinitesimal area between two level curves on Σ: the ones between h
and h + dh, while Eq is the universal function.
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We now assume that Σ is a plane, and that the physical surfaces may be both described
by means of just one Monge patch based on Σ. This surface is then naturally thought of (in
descriptive geometry terms) as the projection plane. Using Cartesian coordinates (x1, x2) ≡
xq on Σ, assuming (for smooth enough surfaces) that J may be regarded as constant, and
using a second-order Taylor expansion of h around a (the distance of closest approach):

h(xq) ' a +
1
2

(
x2

1
R1

+
x2

2
R2

)
(5)

produces, when evaluating the PFA interaction energy (4), the DA energy (1). Here, R1 and
R2 are the radii of curvature of the surface by x3 = h(xq) at x3 = a.

This result may be improved, even within the spirit of the PFA, by introducing some
refinements. Indeed, in Ref. [32], a generalization of the PFA has been introduced such
that the starting point was Equation (4), but now allowing for the surfaces to have larger
curvatures, as long as they remained almost parallel locally. The main difference that
follows from those weaker assumptions is that, now, the Jacobian J may become a non-
trivial function of h. For instance, introducing a linear expansion:

J(h) ≈ J0 + J1h, (6)

a straightforward calculation shows that the force f becomes:

fPFA(a) = J0Eq(a)− J1(a)
∫ ∞

a
dh Eq(h). (7)

Note that the result is the sum of the DA term plus a second term proportional to the
derivative of the Jacobian with respect to h. This is a correction to the DA obtained from
the same starting point we used for the DA: UPFA. In other words, Equation (7) is still
determined by the energy density for parallel plates. As we shall see, the DE will introduce
corrections that go beyond Eq(a). The correction will depend on both the geometry and the
nature of the interaction.

We wish to point out that the lack of knowledge of an exact expression for Eq is not
specific to nuclear physics, but of course it may appear in other applications. The general
PFA approach can nevertheless be introduced; the accuracy of its predictions will then be
limited not just by the fulfillment or not of the geometrical assumptions, but also by the
reliability of the expression for Eq. Using different approximations for Eq gives as many
results for the PFA. For a recent review in the case of nuclear physics, see Refs. [33,34].

An apparently unrelated approximation, based on different physical assumptions,
was introduced in the context of colloidal physics. Let us now see how it yields a result
which agrees with the DA: it is the so called Surface Element Integration (SEI) [35], or
Surface Integration Approach (SIA) [36]. This approach may be introduced as follows: let
us consider a compact object facing the x3 = 0 plane. x3 is then the normal coordinate to the
plane, pointing towards the compact object. With this conventions, the SEI approximation
applied to the interaction energy amounts to the following:

USEI = −
∫

plane
dx1dx2

n̂ · ê3

|n̂ · ê3|
Eq. (8)

Here n̂ denotes the outwards pointing unit normal to each surface element of the object.
We see that, when the compact object may be thought of as delimited by just two surfaces,
one of them facing the plane and the other away from it, the SEI consists of the difference
between the PFA energies of those surfaces. This (possibly startling) fact is, as we shall
see, related to the fact that the SEI becomes exact for almost transparent bodies, a situation
characterized by the fact that the interaction is the result of adding all the (volumetric)
pairwise contributions.
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In the context of colloidal physics , the SEI method relies heavily upon the existence
of a pressure on the compact object. The effect of that pressure should be integrated over
the closed surface surrounding the compact object, in order to find the total force [35]. An
alternative route to understand the SEI is to showthat Equation (8) becomes exact when
the interaction between macroscopic bodies is the superposition of the interactions for
the pair potentials of their constituents [36]. That may be interpreted by using a simple
example. Consider two media, one of them, the left medium L, corresponding to the x3 ≤ 0
half-space, while the right medium, R, is defined as the region:

R = {(x1, x2, x3) : ψ1(xq) ≤ x3 ≤ ψ2(xq)}. (9)

The interaction energy U is a functional of the two functions ψ1,2. When the media are
diluted, we expect the interaction energy to have the form

U[ψ1, ψ2] =
∫

d2xq(Eq(ψ1)− Eq(ψ2)), (10)

where Eq(a) is the interaction energy per unit area, between two half-spaces at a distance a.
This formula can be interpreted as follows: to obtain the interaction energy for the configu-
ration described by ψ1 and ψ2, one must certainly subtract from Eq(ψ1) the contributions
from x3 > ψ2. This “linearity” is expected to be valid only for dilute media, and in that
situation it coincides with the result obtained using the SEI. One expects then the SEI to
give an exact result for almost-transparent media, for which the superposition principle
holds true, and the total interaction energy is due to the sum of all the different pairwise
potentials [36]. It is worth noting, at this point, the important fact that the PFA also becomes
exact in Casimir physics when the media constituting the objects are dilute. Indeed, this
has been pointed out in Refs. [37,38].

The examples just described illustrate the relevance of the DA, and of some of its
variants, to different areas of physics. At the same time, the main drawback is made rather
evident: in spite of being based on reasonable physical assumptions, it is difficult to assess
its validity. The reason for this difficulty is that the approximation is uncontrolled, and
therefore the estimation of the error incurred is difficult, within a self-contained approach.

The DE provides a systematic method to improve the PFA, and to compute its next-to-
leading-order (NTLO) correction in a consistent set up.

3. Introducing the Derivative Expansion
3.1. The PFA in an Electrostatic Example

We introduce the PFA, and then the DE, in an example which neatly illustrates the
DE main aspects, in the context of electrostatics. Here, contrary to what happens when
dealing with more involved systems, like, say, Van der Waals, nuclear or Casimir forces, the
physical assumptions and their implementations are more transparent. We follow closely
Ref. [22]

The set-up we want to describe consists of two perfectly-conducting surfaces, one
of them an infinite grounded plane and the other a smoothly curved surface kept at an
electrostatic potential V0. We use coordinates such that the plane corresponds to z = 0
while the smooth surface is such that it can be described by a single function, namely, by
an equation of the form z = ψ(xq). The electrostatic energy contained between surfaces can
then be written as follows:

U =
ε0

2

∫
d2xq

∫ ψ(xq)

0
dz |E|2, (11)

where ε0 denotes the permittivity of vacuum. In terms of U and V0, the capacitance C of
the system is then given by C = 2U/V2

0 .
Let us see how one implements the PFA in order to calculate U (from which one can

extract, for instance, an approximate expression for C) expecting it to be accurate when
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the distance between the two surfaces is shorter than the curvature radius of the curved
conductor. To that end, one first finds and approximation to the electric field between the
conductors, by proceeding as follows: the smooth conductor is regarded as a set of parallel
plates (Figure 1), in the sense that the electric field E points along the z direction and has a
z-independent value. The electric field does, however, depend on xq since it is assumed to
have, for every xq, the same intensity as the electric field due to two (infinite) conducting
planes at a distance ψ(xq). Namely, E(x) = −V0/ψ(xq) ẑ. Therefore, the approximated
expression for the electrostatic energy becomes:

UPFA =
ε0V2

0
2

∫
d2xq

1
ψ(xq)

. (12)

It is implicitly understood in the equation above, that the region to integrate is such that
the assumption on the distance and curvature is satisfied. On the contrary, regions such
that the assumption is not satisfied can be consistently ignored (see the example below).

  z

Figure 1. In the PFA, the interaction between a smoothly curved surface and a plane is approximated
by that of a set of parallel plates. For each pair of parallel plates, border effects are ignored.

It should be evident that Equation (12) provides a rather convenient tool to obtain
estimates for the electrostatic energy in many relevant situations. Indeed, to illustrate this
point we consider a cylinder of length L and radius R in front of a plane, and denote by
a the minimum distance between the two surfaces. The cylinder is not a surface that can
be described by a single patch; namely, one needs at least two functions. However, in the
context of the PFA, it is reasonably to assume that only the half that is closer to the plane
should be relevant. Assuming the axis of the cylinder to be along y, the function ψ reads:

ψ(x) = a + R

(
1−

√
1− x2

R2

)
, (13)

with the variable x assumed to be in the range −xM < x < xM < R. Note that for
xM/R = O(1) < 1 the assumption on the distance and the curvature is satisfied. It is to be
expected that, as long as R� a (where the PFA gives an accurate value of the electrostatic
energy), the final result will not depend on xM. This can be readily checked by inserting
Equation (13) into Equation (12), computing the integral, and expanding that result for
a� R. Doing this we obtain:

Ucp
PFA ≈

ε0V2
0 Lπ√
2

√
R
a

, (14)
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which is independent of xM. An immediate consequence of this is that, when the cylinder
approaches the plane, the electrostatic force behaves as a−3/2.

Let us check now the accuracy of Ucp
PFA. We take advantage of the knowledge of the

exact expression for the electrostatic interaction energy:

Ucp =
πLε0V2

0
arccosh

(
1 + a

R
) . (15)

For a/R� 1, Ucp yields the PFA result Ucp
PFA (14). The relevance of the corrections to the

PFA can be estimated by expanding the exact result, but keeping also the next-to-leading
order (NTLO) when a << R:

Ucp ≈ ε0V2
0 Lπ√
2

√
R
a

(
1 +

1
12

a
R

)
. (16)

We will now introduce the DE. By construction, it should produce the NTLO result
(for this an other surfaces), without resorting to the expansion of any exact expression (the
knowledge of which, needless to say, is usually lacking).

3.2. Improvement of the PFA Using a Derivative Expansion

We begin by noting that the electrostatic energy is a functional of the function which
defines the shape of the surface. A second observation is that, in principle, there is no
reason to assume that the functional is local in ψ. Here, “local” means that it contains just
one integral over xq of a sum of terms involving powers of ψ(xq) and derivatives at ψ(xq).
On the contrary, the exact functional will generally involve terms where, for example,
there are two or more integrals over xq, and kernels depending of those variables, and
products of ψ with different arguments. However, regardless of the non locality of the exact
expression, it must become local when the surfaces are sufficiently smooth and close to
each other. Indeed, if the PFA becomes valid asymptotically in that limit, then the energy
must approach a result which is a local function of ψ. Not whatever local functional but
just one without derivatives.

The way we found to depart slightly but significantly from the PFA, has been to add
terms involving derivatives of ψ. Namely, we shall assume that the electrostatic energy
can be expanded in local terms involving derivatives of ψ. One can think of the condition
|∇ψ| � 1, as introducing a small, dimensionless expansion parameter. In physical terms,
this means that the curved surface is almost parallel to the plane on the points where it is
satisfied.

To introduce the first departure from the PFA, we include terms with up to two
derivatives. Then the electrostatic energy has to be (up to this order) of the form:

UDE '
∫

d2xq
[
V(ψ) + Z(ψ)|∇ψ|2

]
, (17)

for some functions V and Z. The gradient is the two-dimensional one, and it can only
appear in such a way that the energy is a scalar (ψ is a scalar under changes of coordinates
on the plane). Besides, recalling the equations of electrostatics, and on dimensional grounds,
the result must be proportional to ε0V2. On top of that it must reproduce UPFA for constant
ψ. Furthermore, as ψ is the only other dimensionful quantity, both functions V and Z have
to be proportional to ψ−1. Thus, we have restricted even further the functional to:

UDE '
ε0V2

0
2

∫
d2xq

1
ψ
(1 + βE|∇ψ|2), (18)

where βE is a numerical coefficient to be determined (the subindex E stands for electrostat-
ics). It is worth stressing that βE is independent of the specific surface being considered, as
long as it is smooth. Therefore, it can be obtained once and for all just from its evaluation
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for a particular case. A simple procedure to obtain the coefficient βE, when an exact analytic
solution to the problem is known, would be to retrieve its value by expanding that solution.
Let us do that for the configuration of a cylinder in front of a plane. Inserting Equation (13)
into Equation (18), and performing the integrals, an expansion of the result in powers of
a/R, allow us to fix βE. Indeed, in order to agree with the expansion of the exact result in
Equation (16), this fixes its value to βE = 1/3. Of course, one will obtain the same value for
any other particular example for which the exact solution was known.

It is worthy of noting that, since the DE is a perturbative approach, it should be
desirable to have a perturbative method to calculate the coefficient βEM. In other words,
to compute it from first principles, using the appropriate expansion. One can do that, for
instance, by solving perturbatively the Laplace equation and then resorting to the method
described in Section 5. We have performed that calculation in Ref. [22], and refer the reader
to that work for details, and also for the application of the DE to other electrostatic examples.

3.3. Two Smooth Surfaces

As a natural generalization of the previously discussed situation, let us now consider
two surfaces described by the two functions ψ1(xq) and ψ2(xq), each one of them measuring
the respective height of a surface with respect to a reference plane Σ. This geometry was
first considered in the context of the DE for the Casimir effect in Ref. [24].

To construct the DE for the electrostatic energy in this case, we keep up to two
derivatives of the functions. This allows we to write the general expression:

UDE[ψ1, ψ2] =
∫

Σ
d2xq Uq(ψ)

[
1 + β1|∇ψ1|2

+ β2|∇ψ2|2 + β×∇ψ1 · ∇ψ2 + β− ẑ · ∇ψ1 ×∇ψ2) + · · ·
]
, (19)

where ψ = |ψ2 − ψ1| is the height difference, Uq(ψ) = ε0V2
0 /(2ψ) is the electrostatic energy

between parallel plates, and the dots denote higher derivative terms. Equation (19) actually
contains four numerical constants: β1, β2, β×, and β−. However, symmetry considerations
imply some constraints on them: the energy must be invariant under the interchange of
ψ1 and ψ2, since that is just a relabeling: β1 = β2 and β− = 0. Furthermore, in order
to reproduce the result for a single smooth surface in front of a plane we must have
β1 = β2 = 1/3. The coefficient β× can be determined taking into account that the energy
should be invariant under a simultaneous rotation of both surfaces [24]. Indeed, for an
infinitesimal rotation of each surface by an angle ε in the plane (x, z), the changes induced
on the functions ψi are δψi = ε(x + ψi∂xψi), for i = 1, 2. To simplify the determination of
β× we can assume that, initially, ψ1 = 0 and that ψ2 is only a function of x. Computing
explicitly the variation of UDE to linear order in ε one can show that

δUDE = 0⇒ β× = 1/3, (20)

and therefore

UDE[ψ1, ψ2] =
ε0V2

0
2

∫

Σ
d2xq

1
ψ

[
1 +

1
3

(
|∇ψ1|2 + |∇ψ2|2 +∇ψ1 · ∇ψ2

)]
. (21)

Note that, by taking the variation of the electrostatic energy Equation (19) with respect
to translations or rotations of one of the surfaces, one can obtain the vertical and lateral
components of the force, as well as the torque, due to the remaining surface.

The identities β1 = β2 and β− = 0 are universally valid, regardless of the interaction
(as long as the surfaces are of an identical nature), but β× = β1 holds true for the electro-
static interaction. This depends upon the fact that the leading term is proportional to ψ−1

(i.e., it is then not valid for the Casimir energy).
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For later use, let us recall that, for a general function Eq(ψ), the relation between the
different coefficients becomes [24]:

2(β1 + β2) + 2β× + ψ
d log Eq

dψ
= 1. (22)

The relation (22) shows that, for any interaction, the DE for the interaction energy between
two curved surfaces can be reduced to the problem of a single surface in front of a plane.
Indeed, in the later case one can determine β1 and β2, while Equation (22) determines the
remaining coefficient β×.

To summarize: when computing the electrostatic energy associated with a configura-
tion of two conductors at different potentials, with smoothly curved surfaces, one can go
beyond the PFA by simply assuming that the energy admits an expansion in derivatives of
the functions that define the shapes of the conductors. If the exact electrostatic energy for a
single non trivial curved configuration is known, one can determine all the free parameters
in the expansion.

Finally, the NTLO correction produces an appreciable improvement in the DA and,
by the same token, also provides an assessment for its validity. An interesting alternative
approach to compute electrostatic forces beyond the PFA can be found in Ref. [39].

4. Obtaining the DE from a Perturbative Expansion

Regardless of the interaction considered, the DA and its improvement, the DE, can
be obtained by performing the proper resummation of a perturbative expansion [23]. The
required expansion is in powers of the departure of the surfaces, about a two flat parallel
planes configuration. This connection yields a systematic and quite general approach to
obtain the DE, even when an exact solution is not available.

To keep things general, we work with a general functional of the surface; that func-
tional may correspond to an energy, free energy, force, etc. Besides, we do not make any
assumption about the kind of interaction involved, not even about whether it satisfies a
superposition principle or not.

To begin, let us we assume a geometry where there are two surfaces, one of which, L,
is a plane, which with a proper choice of Cartesian coordinates (x1, x2, x3), is described by
x3 = 0. The other one, R, is assumed to be describable by x3 = ψ(xq).

The object for which we implement the approximation is denoted by F[ψ], a functional
of ψ. Then we note that the PFA for F, to be denoted here by F0, is obtained as follows: add,
for each xq, the product of a local surface density F0(ψ(xq)) depending only on the value
of ψ at the point xq, times the surface element area; namely,

F0[ψ] =
∫

d2xq F0(ψ(xq)). (23)

The surface density is, in turn, determined by the (assumed) knowledge of the exact form
of F for the case of two parallel surfaces, as follows:

F0(a) = lim
S→∞

F[a]
S , (24)

where S denotes the area of the L plate and a is a constant. Namely, to determine the
density one needs to know the functional F just for constant functions ψ ≡ a. Note that, if
the functional F is the interaction energy between the surfaces, F0 becomes the interaction
energy per unit area Eq, and F0 becomes UPFA (see Equation (3)).

Let us now show how to derive the PFA (and its corrections) by the resummation of a
perturbative expansion. To that end, we evaluate F for a ψ having the form:

ψ(xq) = a + η(xq). (25)

and write the resulting perturbative expansion in powers of η, which has the general form:
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F[ψ] = SF0(a) + ∑
n≥1

∫ d2k(1)q
(2π)2 ...

d2k(n)q
(2π)2 δ(k(1)q + ... + k(n)q ) h(n)(k(1)q , ..., k(n)q ) η̃(k(1)q )...η̃(k(n)q ), (26)

where δ(·) is the Dirac delta function, and the form factors h(n) can be computed by using
perturbative techniques. For the Dirichlet-Casimir effect, this can be done in a rather
systematic way [40]. Although the approach to follow in order to obtain those form factors
may depend strongly on the kind of system considered, the form of the expansion shall be
the same. Note that the form factors may depend on a, although, in order to simplify the
notation, we will not make that dependence explicit.

Up to now, we have not used the hypothesis of smoothness of the R surface. We do
that now by assuming that the Fourier transform η̃ is peaked at the zero momentum. What
follows is to make use of this assumption for all terms in the expansion. In Equation (26),
we set then: h(n)(k(1)q , ..., k(n)q ) ' h(n)(0, ..., 0), and, as a consequence:

F(ψ) ' SF0(a) + ∑
n≥1

h(n)(0, ..., 0)
∫

d2xq[η(xq)]n. (27)

One could evaluate the form factors at the zero momentum straighforwardly. However,
there is a shortcut here that allows one to obtain all of them immediately: consider a
constant η(xq) = η0, so that the interaction energy is given by Equation (27) with the
replacement

∫
d2xq η(xq)n → Sηn

0 . For this particular case, F becomes just the functional
corresponding to parallel plates, which are separated by a distance a + η0:

F0(a + η0) = F0(a) + ∑
n≥1

h(n)(0, ..., 0)ηn
0 . (28)

We then conclude that, in this low-momentum approximation, the series can be summed
up with the result:

F0[ψ] '
∫

d2xqF0(a + η(xq)) =
∫

d2xqF0(ψ), (29)

which is just the PFA.
The calculation just above shows that, for the class of geometries considered in this

paper, the PFA can be justified from first principles as the result of a resummation of a
perturbative calculation corresponding to almost flat surfaces. In order to be well defined,
the PFA requires that the form factors h(n)(k(1)q , ..., k(n)q ) have a finite limit as k(i)q → 0.

This procedure also suggests how the PFA could be improved; one can include the
NTLO terms in the low-momentum expansions of the form factors. We assume that they
can be expanded in powers of the momenta up to the second order. We stress that this is by
no means a trivial assumption. Indeed, depending on the the interaction considered, the
form factors could include nonanalyticities (we will discuss some explicit examples below).
In case of no nonanalyticities, one can introduce the expansions:

h(n)(k(1)q , ..., k(n)q ) = h(n)(0, ..., 0) + ∑
i,α

A(n)
iα k(i)q α + ∑

i,j,α,β
B(n)

ijαβk(i)q αk(j)
q β . . . , (30)

for some a−dependent coefficients A(n)
iα and B(n)

ijαβ. Here i, j = 1, ..., n label arguments while
α, β = 1, 2 label their components. Symmetry considerations are crucial, since they allow
us to simplify the above expression (30), as follows: rotational invariance implies that the
form factors depend only on the scalar products k(i)q · k

(j)
q . Additionally, they have to be

symmetric under the interchange of any two momenta. This thus leads to

h(n)(k(1)q , ..., k(n)q ) = h(n)(0, ..., 0) + B(n) ∑
i

k(i) 2
q + C(n) ∑

i 6=j
k(i)q · k

(j)
q , (31)
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for some coefficients B(n) and C(n).
Inserting Equation (31) into Equation (26) and taking integrations by parts, one then

finds the form of the first correction to the PFA:

F2[ψ] =
∫

d2xq

[
∑
n≥2

D(n) ηn−2

]
|∇η|2, (32)

where the coefficients D(n) are linear combinations of B(n) and C(n). The subindex 2 in F
indicates that this is the part of the functional containing two derivatives.

We complete the calculation by calculating the sum in Equation (32). To that end,
we evaluate the correction F2 for a particular case: η(xq) = η0 + ε(xq), with ε � η0, and
expand up to the second order in ε. Thus,

F2[a + η0 + ε] =
∫

d2xq

[
∑
n≥2

D(n) ηn−2
0

]
|∇ε|2. (33)

The resummation can be obtained in this case, by considering the usual perturbative
evaluation of the interaction energy up to second order in ε. This evaluation does, naturally,
depend on the interaction considered, but, once one has that result one can obtain the sum
of the series above. We we will denote by Z that sum, namely:

Z(a + η0) ≡ ∑
n≥2

D(n) ηn−2
0 . (34)

Upon replacement η0 → η in Equation (34), one obtains

F2[ψ] =
∫

d2xq Z(ψ)|∇ψ|2. (35)

This is the NTLO correction to the PFA. This concludes our systematic derivation of the
PFA, including its first correction, a result which may be put as follows:

FDE[ψ] =
∫

d2xq
[
V(ψ) + Z(ψ)|∇ψ|2

]
, (36)

where V(ψ) = F0(ψ) is determined from the (known) expression for the interaction energy
between parallel surfaces, while Z(ψ) can be computed using a perturbative technique. In
practice, Z(ψ) can be evaluated setting η0 = 0 in Equation (34).

The higher orders may be derived by an extension of the procedure described just
above. It should be evident that, for the expansion to be well-defined, the analytic structure
of the form factors is quite relevant. Indeed, the existence of nonanalytic zero-momentum
contributions can render the DE non applicable. This should be expected on physical
grounds, since the presence of nonanalytic terms implies that the functional cannot be
approximated, in coordinate space, by the single integral of a local density. Physically, it is a
signal that the nonlocal aspects of the interaction cannot be ignored. That should not come
up as a surprise, when one recalls that the same kind of phenomenon does happen when
evaluating the effective action in quantum field theory, and the quantum effects contain
contributions due to virtual massless particles. In this case, the effective action may develop
nonanalyticities at zero momentum.

The main messages of this Section are the following: irrespective of the nature of the
interaction, the energy and forces between objects are functionals of their shapes. The PFA
is recovered when the form factors of the functionals are evaluated at zero momentum.
Enhancements to this approximation are achievable by expanding these form factors at low
momenta. If the expansion is analytic, a resummation of the form factors produces the DE.
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5. DE for the Zero-Temperature Casimir Effect

The application of the DE to the Casimir interaction energy between two objects was,
actually, our original motivation to introduce the approximation, and it is useful briefly
review some aspects of this application here. We consider first a real vacuum scalar field
satisfying Dirichlet boundary conditions (Section 5.1) and then we move to the EM field
with perfect-conductor boundary conditions (Section 5.2). We follow Ref. [21] for the
derivation of the DE in the Dirichlet case.

5.1. Scalar Field with Dirichlet Boundary Conditions

We consider here a massless real scalar field ϕ in 3 + 1 dimensions, coupled to two
mirrors which impose Dirichlet boundary conditions. In our Euclidean conventions, we use
x0, x1, x2, x3 to denote the spacetime coordinates, x0 being the imaginary time. As before,
the mirrors occupy two surfaces, denoted by L and R, defined by the equations x3 = 0 and
x3 = ψ(xq), respectively.

On only dimensional grounds, and using natural units (h̄ ≡ c ≡ 1), the DE approxima-
tion to the interaction energy to be of the form

EDE = − π2

1440

∫
d2xq

1
ψ3

[
αD + βD(∂αψ)2

]
, (37)

where αD and βD are dimensionless coefficients that do not depend on the geometry. The
subindex D stands for Dirichlet. An evaluation of the above expression for parallel plates
fixes αD ≡ 1. As in the electrostatic case, the coefficient βD could be computed from explicit
examples where the interaction energy is known exactly.

Let us recall, from Section 4, that the interaction energy can also be computed from an
expansion of the Casimir energy in powers of η for

ψ(xq) = a + η(xq), (38)

where a (assumed to be greater than zero) is the spatial average of ψ whereas η contains
its varying piece. The expansion needed is of the second order in η, and with up to two
spatial derivatives.

To obtain such an expansion, we start from a rather general yet formal expression for
the energy (for earlier perturbative computations of the Casimir force see, for example,
Refs. [41,42]). That formal expression follows from the functional approach to the Casimir
effect, where we deal with Z , the zero-temperature limit of a partition function. That
partition function, for a scalar field in the presence of two Dirichlet mirrors is given by

Z =
∫
Dϕ δL(ϕ) δR(ϕ) e−S0(ϕ), (39)

with S denoting the real scalar field free (Euclidean) action

S0(ϕ) =
1
2

∫
d4x (∂ϕ)2, (40)

while the δL and δR impose Dirichlet boundary conditions on the L and R surface, respec-
tively.

The vacuum energy, E, is then obtained as follows:

E = − lim
T→∞

logZ/T, (41)

where T is the extent of the time dimension (or β−1, in a thermal partition function setting).
We discard from E the terms that do not contribute to the Casimir interaction energy
between the two surfaces. These terms will appear as factors in Z ; among them the one
describing the zero point energy of the field in the absence of the plates, and also the
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‘self-energy’ contributions, due to the vacuum distortion produced by each mirror, even
when the other is infinitely far apart.

Exponentiating the two Dirac delta functions by introducing two auxiliary fields, λL
and λR, we obtain for Z an equivalent expression:

Z =
∫
DϕDλLDλR e−S(ϕ;λL ,λR), (42)

with

S(ϕ; λL, λR) = S0(ϕ)− i
∫

d4xϕ(x)
[

λL(xq)δ(x3) + λR(xq)
√

gR(xq) δ(x3 − ψ(xq))
]

where we have introduced xq ≡ (x0, x1, x2) = (x0, xq). The factor depending on the
determinant of the induced metric on the R, gR(xq) ≡ 1 + |∇ψ(xq)|2 makes the expression
above reparametrization invariant. However, by a redefinition of the auxiliary field λR
one gets rid of that factor, at the expense of generating a Jacobian. That Jacobian does
not depend on the distance between the two surfaces, since only derivatives of ψ are
involved. Therefore it will not contribute the the Casimir interaction energy and thus we
shall subsequently ignore such factor, as well as others that will appear in the course of the
calculations.

Integrating out ϕ, we see that Z0, corresponding to the field ϕ in the absence of
boundary conditions factors out, while the rest becomes an integral over the auxiliary fields:

Z = Z0

∫
DλLDλRe−

1
2
∫

d3xq
∫

d3yq ∑α,β λα(xq)Tαβλβ(yq), (43)

with:
Z0 =

∫
Dϕ e−S0(ϕ), (44)

and α, β = L, R . We have introduced the objects:

TLL(xq, yq) = 〈xq, 0|(−∂2)−1|yq, 0〉, (45)

TLR(xq, yq) = 〈xq, 0|(−∂2)−1|yq, ψ(yq)〉, (46)

TRL(xq, yq) = 〈xq, ψ(xq)|(−∂2)−1|yq, 0〉, (47)

TRR(xq, yq) = 〈xq, ψ(xq)|(−∂2)−1|yq, ψ(yq)〉, (48)

where we use a “bra-ket” notation to denote matrix elements of operators, and ∂2 is the
four-dimensional Laplacian. Thus, for example,

〈x|(−∂2)−1|y〉 =
∫ d4k

(2π)4
eik·(x−y)

k2 . (49)

A subtraction of the zero point contribution contained in Z0 leads to:

E = lim
T→∞

( 1
2T

Tr logT
)
, (50)

which still contains self-energies. Up to now, we have obtained a formal expression for the
vacuum energy; let us now proceed to evaluate its DE.

We need to expand E to the second order in η, keeping up to the second order term in
an expansion in derivatives. It is convenient to do so first for Γ ≡ 1

2 Tr logT . Namely,

Γ(a, η) = Γ(0)(a) + Γ(1)(a, η) + Γ(2)(a, η) + . . . (51)

where the upper index denotes the order in derivatives. Each term will be a certain
coefficient times the spatial integral over xq of a local term, depending on a and on η-
derivatives. Additionally, because the configuration is time-independent, they should be
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proportional to T (a factor that will cancel out). Expanding first the matrix T in powers of η

T = T(0) +T(1) +T(2) + . . . , (52)

we obtain: Γ = Γ(0) + Γ(1) + Γ(2) + . . .,

Γ(0) =
1
2

Tr logT(0) ,

Γ(1) =
1
2

Tr log
[
(T(0))−1T(1)

]
,

Γ(2) =
1
2

Tr log
[
(T(0))−1T(2)

]
− 1

4
Tr log

[
(T(0))−1T(1)(T(0))−1T(1)

]
, (53)

where, in Γ(l), we need to keep up to l derivatives of η.
Then, the zeroth-order term is obtained as follows: replace ψ by a constant, a, and then

subtract from the result its a→ ∞ limit (this gets rid of self-energies). This leads to:

Γ(0)(a) =
1
2

Tr log
[
1− (T(0)

LL )
−1T(0)

LR (T(0)
RR)

−1T(0)
RL
]
. (54)

Here, the T(0)
αβ are identical to the ones for two flat parallel mirrors separated by a distance a.

Taking the trace, leads to:

Γ(0) =
T
2

∫
d2xq

∫ d3kq
(2π)3 log[1− e−2kqa]. (55)

Then, we recall the general derivation to note that the replacement a→ ψ leads to:

E(0) =
1
2

∫
d2xq

∫ d3kq
(2π)3 log[1− e−2kqψ(xq)]

= − π2

1440

∫
d2xq

1
ψ(xq)3 , (56)

which is the PFA expression for the vacuum energy.
To improve on the previous result, we consider its first non trivial correction. There

can be no first order term because of symmetry considerations. while to terms contribute
to the second order

Γ(2) = Γ(2,1) + Γ(2,2), (57)

where,

Γ(2,1) =
1
2

Tr log
[
(T(0))−1T(2)

]
(58)

and
Γ(2,2) = −1

4
Tr log

[
(T(0))−1T(1)(T(0))−1T(1)

]
. (59)

In the terms above, we have to keep just up to two derivatives of η. We see that, in
Fourier space, and before implementing any expansion in momentum (derivatives), they
have the structure:

Γ(2,j) =
T
2

∫ d2kq
(2π)2 f (2,j)(kq) |η̃(kq)|2 (60)
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(j = 1, 2), with η̃ denoting the Fourier transform of η, and with the f (2,j) kernels denoting
the k0 → 0 (i.e., static) limits of the more general expressions:

f (2,1)(kq) = −
∫ d3 pq

(2π)3
|pq| |pq + kq|

1− e−2|pq+kq|a ,

f (2,2)(kq) = −
∫ d3 pq

(2π)3
|pq||pq + kq|e−2|pq+kq|a(1 + e−2|pq|a)

(1− e−2|pq|a)(1− e−2|pq+kq|a)
.

By subtracting all the a-independent contributions, one finds:

Γ(2) =
T
2

∫ d2kq
(2π)2 f (2)(kq) |η̃(kq)|2 (61)

with:

f (2)(kq) = −2
∫ d3 pq

(2π)3
|pq| |pq + kq|

(1− e−2|pq|a)(e2|pq+kq|a − 1)
. (62)

The low-momentum behaviour of f (2) determines whether the DE can be applied or
not. In this case, the function is analytic and therefore a local expansion of the vacuum
energy exists. We need to extract its k2 order term in a Taylor expansion at zero momentum,
namely f (2)(kq) ' χ kq

2. We find:

χ = − π2

1080 a3 . (63)

Thus,

Γ(2)(a, η) = −T
2

π2

1080

∫ d2kq
(2π)2

kq
2

a3 |η̃(kq)|2

= −T
2

π2

1080

∫
d2xq

1
a3 (∂αη)2. (64)

Therefore, the NTLO term in the DE becomes:

E(2) =
Γ(2)(ψ)

T
= −1

2
π2

1080

∫
d2xq

(∂αψ)2

ψ3 , (65)

where the index α runs from 1 to 2.
Putting together the terms up to second order,

EDE ≡ E(0) + E(2) = − π2

1440

∫
d2xq

1
ψ3

[
1 +

2
3
(∂αψ)2

]
. (66)

The leading-order term above is the Casimir energy according to the PFA , while the second
order one represents the first significant deviation from it. We note that the structure of
both terms had been anticipated by dimensional analysis and symmetry considerations.
The overall normalization, on the other hand, had been fixed by our previous knowledge
of the (well-established) result for parallel plates.

We would like to insist on the fact that the relative weight between the PFA and its
correction term–the factor βD = 2/3–is independent of the surface geometry. This value
of βD has been independently corroborated in concrete examples by expanding the exact
Casimir energy expressions. Interesting cases among them are, for example, either a sphere
or a cylinder positioned in front of a plane.

We conclude this Section with an application of the DE to the particular geometry
of a sphere in front of a plane. Let us express the function ψ of Equation (13) in polar
coordinates ρ, with R the radius of the sphere and d the distance to the plane. The function
ψ(ρ) describes an hemisphere when 0 ≤ ρ ≤ R. By inserting the expression of ψ into the
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DE for the Casimir energy, it becomes possible to explicitly calculate the integrals, to get a
rather compact analytical expression:

EDE = EPFA

(
1 +

1
3

a
R

)
, (67)

where EPFA = −h̄cπ3R/(1440a2).

5.2. The EM Case

The results for the scalar field satisfying Dirichlet boundary conditions, described
in Section 5.1 above, have been generalized to different boundary conditions and fields.
Results for the EM field case and two curved surfaces have been presented in Ref. [24].
Note that, as pointed out at the end of Section 3.3, symmetry considerations allow for the
two-surface problem to be reduced to the one of a curved surface facing a plane, namely,
the geometry we have just dealt with in the Dirichlet case above. Indeed, as shown in
Ref. [24], the extension of Ref. [21] to two curved surfaces is restricted among other things
by the tilt invariance of the reference plane, to which the two surfaces can be projected.
This served as a rigorous test for the self-consistency of perturbative results.

Venturing beyond the scalar Dirichlet (D) case of Ref. [21], they calculated the DE for
Neumann (N), mixed D/N, and electromagnetic (EM) (perfect metal) surfaces. Interestingly,
they observed that the EM correction must align with the sum of D and N corrections. They
also replicated previous findings for cylinders under D, N, and mixed D/N conditions, as
well as for the sphere with D boundary conditions. However, their calculations did not
confirm previous results for the sphere/plane geometry, either with N or EM boundary
conditions. Indeed, the results for β were found to disagree with those obtained from
Refs. [43–45]. This discrepancy was later resolved in Ref. [46] in favour of the results in
Ref. [24].

Another interesting concrete example presented in Ref. [24] is the DE for two spheres
of radii R1 and R2, both imposing the same boundary conditions. It was found there that

E = EPFA

[
1− a

R1 + R2
+ (2β− 1)

(
a

R1
+

a
R2

)]
, (68)

where EPFA = −(απ3R1R2))/[1440a2(R1 + R2)]; a is chosen to be the distance of closest
separation, and β is a number that depends on the type of boundary condition, as can be
seen from Table 1. α = αEM = 2 in the EM boundary conditions case. The corresponding
formula for the sphere/plane case can be obtained by taking one of the two radii to infinity
(in fact it coincides with the D case in Equation (67) when α = αD = 1 and β = βD = 2/3).

A rather different example corresponds to two circular cylinders (with identical bound-
ary conditions) whose axes are inclined at a relative angle θ. Using the DE, the interaction
Casimir energy reads:

E = − απ3√R1R2

1440a2 sin θ

[
1 +

(
β− 3

8

)
a

R1 + R2

]
. (69)

For this particular geometry, the interaction energy has been computed numerically in
Ref. [47]. The numerical results reproduce Equation (69) at short distances.

The results obtained for the β-coefficients in each case are summarized in Table 1.
Having presented in this Section a derivation and some interesting results obtained

by applying the DE to the Casimir effect at zero temperature and for perfect boundary
conditions, we present in the rest of the review some generalizations and applications.
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Table 1. β coefficient from (68) for the following five cases: a scalar field obeying Dirichlet (D) or
Neumann (N) boundary conditions on both surfaces, or D boundary condition on one surface and
N boundary condition on the other, or vice versa, and for the electromagnetic (EM) field with ideal
metal boundary conditions [24].

βD βN βDN βND βEM

2/3 2/3(1− 30/π2) 2/3 2/3− 80/7π2 2/3(1− 15/π2)

6. Finite Temperature, Nonanalyticities, and DE

The DE can be extended to the finite temperature case [25,26,28], the free energy
being the relevant functional to approximate. There are at least two reasons why this
extension is not trivial: firstly, the temperature introduces a dimensionful magnitude, and
this will reflect itself in the form of the DE (part of it was fixed by dimensional analysis).
Second, a known phenomenon in quantum field theory at finite temperature is the so-called
“dimensional reduction”, by which a bosonic model which is defined in d + 1 dimensions at
zero temperature, becomes effectively d-dimensional at high temperatures. The DE should
therefore manifest (and interpolate between) those two cases.

We first describe, in Section 6.1, the results for a scalar field satisfying Dirichlet condi-
tions [26] in d+ 1 dimensions. Then, Section 6.2 discusses the appearance of nonanaliticities
for Neumann boundary conditions [26,27]. Finally, we comment on the results for the EM
field with imperfect boundary conditions [25,28] (Section 6.3) and on semianalytic formula
for plane–sphere geometry (Section 6.4).

6.1. Dirichlet Boundary Conditions

In the finite-temperature case, and for the same geometry that we have considered in
the zero temperature case, the functions V(ψ) and Z(ψ) cannot be completely determined
from dimensional analysis alone. Indeed, on general grounds, we can assert that the
Casimir free energy in d + 1 dimensions, if the DE is applicable, must have the form:

FDE[ψ] =
∫

dd−1xq

{
b0

(
ψ

β
, d
)

1
[ψ(xq)]d

+ b2

(
ψ

β
, d
)

(∇ψ)2

[ψ(xq)]d

}
, (70)

where b0 and b2 are dimensionless and depends on the ratio of the local distance between
surfaces ψ and the inverse temperature β. They can be obtained from the knowledge of
the Casimir free energy for small departures around ψ(xq) = a = constant. They are given
by [26]

b0(ξ) =
ξ

2

∞

∑
n=−∞

∫ dd−1pq
(2π)d−1 log

(
1− e−2

√
(2πnξ)2+(pq)2

)
, (71)

b2(ξ) =
1
2

[
∂F(2)(ξ, n, lq)

∂|lq|2

]

n→0,|lq|→0

, (72)

where

F(2)(ξ; n, |lq|) = −2ξ
+∞

∑
m=−∞

∫ dd−1pq
(2π)d−1





√
(2πm ξ)2 + p2

q

1− exp
[
− 2
√
(2πmξ)2 + p2

q
]

×
√
(2π(m + n) ξ)2 + (pq + lq)2

exp
{

2
√
[2π(m + n)ξ]2 + (pq + lq)2

}
− 1

}
. (73)

In the zero-temperature limit, the Matsubara sum becomes an integral that can be analyti-
cally computed. The results are described in Table 2. The ratio b2/b0 tends to 1 for large
values of d.
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Table 2. Values of the ratio b2(d)/b0(d) for different dimensions. The ratio tends to 1 for d→ ∞. See
text for details.

Dimension b2(d)/b0(d) Approximate Value

d = 1 1
π2

(
1 + π2

3

)
0.435

d = 2 1+6ζ(3)
12ζ(3) 0.569

d = 3 2/3 0.667
d = 4 −ζ(3)+10ζ(5)

12ζ(5) 0.737

d = 5 10π2−21
10π2 0.787

d = 6 −2ζ(5)+7ζ(7)
6ζ(7) 0.824

In the high temperature limit, we find
[
b0(ξ, d)]ξ�1 ' ξ

[
b0(ξ, d− 1)]ξ→0 ≡ ξ b0(d− 1),[

b2(ξ, d)
]

ξ�1 ' ξ
[
b2(ξ, d− 1)

]
ξ→0 ≡ ξ b2(d− 1), (74)

where ξ = ψ/β. The coefficients b0(d− 1) and b2(d− 1) agree with those for perfect mirrors
at zero temperature, but in d− 1 dimensions, i.e., the “dimensional reduction” effect.

An interesting result is found when this is applied to the (Dirichlet) Casimir interaction
for a system consisting of a sphere in front of an infinite plane. Denoting by a the distance
between the surfaces, and by R the radius of the sphere, we get for the free energy at high
temperatures:

FDE[ψ]|ψ/β�1,d=3 ∼ −
ζ(3)R
8βa

(
1− 1

6ζ(3)
a
R

log
( a

R

))
. (75)

We see that the R/a2-behavior corresponding to the dominant contribution at zero tem-
perature changes to R/aβ in the high temperature case. This could be expected on di-
mensional grounds, if one assumes that the free energy is linear in the temperature in
this limit. Note that the same problem has been exactly solved in Ref. [48], and one can
show that Equation (75) does agree with the small-distance expansion obtained from the
exact solution.

It is worth to remark that the NTLO correction from the DE becomes nonanalytic,
because of the integration, in the ratio a/R. This behavior has been observed in numerical
calculations of the Casimir interaction energy for this geometry, in the infinite temperature
limit, for the electromagnetic case (see Refs. [48,49]). It is important to recognize that this
nonanalyticity has nothing to do with the nonanalyticity in momenta of the form factors
described in Section 4, and is a non trivial prediction of the DE.

6.2. Neumann Boundary Conditions

This case, discussed in Ref. [27], highlights a potential warning to the applicability
of the DE, already mentioned previously: the appearance of nonanalyticities in the form
factors. To begin with, we deal with the zero temperature case in 2 + 1 dimensions, since
the nonanalyticity appears because of the existence of a Matsubara mode which behaves as
a massless field in 2 + 1 dimensions, with Neumann boundary conditions.

The free Euclidean action for the vacuum (i.e., T = 0) field ϕ is given by

S0 =
1
2

∫
d3x (∂ϕ)2, (76)
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and, instead of imposing perfect Neumann boundary conditions on the surfaces, we add
the following action to describe the interaction between the vacuum field and the mirrors:

SI[ϕ] =
1

2µ̄

∫
d3x
[
δ(x2)(∂2 ϕ(x))2 +

√
g(x‖)δ(x2 − ψ(x‖))(∂n ϕ(x))2

]
. (77)

The constant µ̄, which has the dimensions of a mass, is used to impose Neumann boundary
conditions in the µ̄ → 0 limit. We use the same µ̄ on both L and R mirrors, since we will
assume them to have identical properties, differing just in their position and geometry.

The DE approximation to the Casimir energy can be computed following standard
steps. The result reads, in the limit µ̄ψ→ 0 [27],

EDE[ψ] = − 1
16π

∫ ∞

−∞
dx1

1
ψ(x1)2

[
ζ(3) + log[µ̄ψ(x1)]

(
dψ(x1)

dx1

)2
]

. (78)

In the expression above, the first term is the PFA contribution while the second one is a
non trivial correction to it, and depends on the shape of the boundary (defined by ψ). It
is then clear that, as this equation shows, the DE is well posed when imposing imperfect
Neumann boundary conditions in 2 + 1 dimensions. On the contrary, it cannot be applied
when the boundary conditions become perfect (µ̄ = 0). The reason is that the hypothesis
of analyticity in momentum, used to derive the DE, is clearly violated. The non-existence
of a local expansion is due to the existence of massless modes, allowed by Neumann
boundary conditions.

At finite temperatures, a 3 + 1 dimensional theory may be decomposed into the sum
of an infinite tower of decoupled 2 + 1 dimensional Matsubara modes, each one satisfying
N boundary conditions, and with a mass 2nπ

β , n = 0, 1, 2, . . . The existence of the massless
n = 0 mode (the only one surviving in the high temperature limit) means that analyticity
will be lost in 3 + 1 dimensions, for any non zero temperature. That is indeed the case [26].
We summarize here some of the main features of that example: the free energy in the d + 1
dimensional Neumann case can again be written as before (see Equation (70), but with
coefficients c0 and c2 instead of b0 and b2. The zero order term coincides with the one for
the Dirichlet case; namely: c0 = b0.

When d = 3, the NTLO term contains, besides a local term, a nonlocal contribution
which is linear in T, and thus present for any T > 0. Hence, there is no local DE for perfect
Neumann boundary conditions at d = 2 at zero temperature and for d = 3 at any finite
temperature. Indeed, an expansion for small values of |kq| of the form factor contains, in
addition to a term proportional to k2

q , one proportional to (Ta)k2
q log(k2

q a2).

6.3. The Electromagnetic Case for Imperfect Boundary Conditions

We have seen that, for a real scalar field in the presence of Neumann boundary
conditions, the DE cannot be applied when in 2 + 1 dimensions at zero temperature, or in
3 + 1 dimensions at a non-zero temperature [26]. The reason is that, as we have shown,
nonanalyticities in the form factors appear. We have shown that the nonanalyticity could be
cured by introducing a small departure from perfect Neumann conditions [27]. It is natural
to wonder whether the nonanalyticities could also be cured by a similar approach for the
EM field in 3+ 1 dimensions at finite temperatures. We know, based on the insight obtained
from Ref. [27], that nonanalyticities are originated in contributions due to dimensionally
reduced massless modes: zero Matsubara frequency terms. To obtain an answer to this
question, in Ref. [28] we singled out in detail the zero-mode contributions to the free energy,
for a media described by non trivial permittivity ε(ω) and permeability µ(ω) functions.

We start from the free energy F for the EM field, which can be written in terms of the
partition function Z(ψ), as follows:

F(ψ) = − 1
β

log
[Z(ψ)
Z0

]
, (79)
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where the denominator, Z0, denotes the partition function for the EM field in the absence
of media and

Z(ψ) =
∫ [
DA

]
e−Sinv(A). (80)

The gauge invariant action Sinv(A) reads

Sinv(A) =
∫ β

0
dτ
∫ β

0
dτ′

∫
d3x

[
1
2

F0j(τ, x)ε(τ − τ′, x)F0j(τ
′, x)

+
1
4

Fij(τ, x)µ−1(τ − τ′, x)Fij(τ, x)
]

. (81)

Here, indices like i, j . . . run over spatial indices, Einstein summation convention is as-
sumed, and ε(τ − τ′, x) and µ(τ − τ′, x) denote the imaginary time versions of the permit-
tivity and permeability, respectively (µ−1 is the inverse integral kernel of µ).

The geometry of the system is determined by same two surfaces L and R we have
considered before, and defined by x3 = 0 and x3 = ψ(xq), but now they correspond to the
boundaries of the media, i.e.,

ε(τ − τ′, x) = θ(−x3)εL(τ − τ′) + θ(x3)θ(ψ(xq)− x3) + θ(x3 − ψ(xq))εR(τ − τ′),

µ(τ − τ′, x) = θ(−x3)µL(τ − τ′) + θ(x3)θ(ψ(xq)− x3) + θ(x3 − ψ(xq)) µR(τ − τ′),

where εL,R(τ − τ′) and µL,R(τ − τ′) characterize the permittivity and permeability of the
respective mirror.

We can expand the fields and the electromagnetic properties as

Aµ(τ, x) =
1
β

+∞

∑
n=−∞

Ã(n)
µ (x) eiωnτ ,

ε(τ − τ′, x) =
1
β

+∞

∑
n=−∞

ε̃(n)(x) eiωn(τ−τ′),

µ(τ − τ′, x) =
1
β

+∞

∑
n=−∞

µ̃(n)(x) eiωn(τ−τ′), (82)

where ωn ≡ 2πn/β (n ∈ Z) are the Matsubara frequencies.
Inserting these expansions into the partition function one can readily check the factor-

ization

Z(ψ) =
∞

∏
n=0
Z (n)(ψ), (83)

and therefore

F(ψ) =
∞

∑
n=0

F(n)(ψ). (84)

As mentioned, we are particularly interested in the n = 0 contribution,

Z (0)(ψ) =
∫
[DÃ(0)

0 DÃ(0)
j ] e−S

(0)(Ã(0)
0 ,Ã(0)

j ), (85)

where

S (0)(Ã(0)
0 , Ã(0)

j ) =
1
β

∫
d3x

[1
2

ε̃(0)(x)(∂j Ã
(0)
0 )2 +

1
4 µ̃(0)(x)

(F̃(0)
jk )2 +

1
2

Ω2
0(x)(Ã(0)

j )2], (86)

and
Ω2

0(x) ≡ lim
n→0

[
ω2

n ε̃(n)(x)
]
. (87)

Note that Ω0 vanishes for a dielectric and also for a metal described by the Drude model. On
the other hand, it equals the plasma frequency for a metal described by the plasma model.
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The zero mode contribution to the free energy therefore splits into a scalar (s) and a
vector (v) contribution, the former associated to the field Ã(0)

0 and the later to Ã(0)
j

F(0) = Fs(ψ) + Fv(ψ). (88)

To discuss the emergence of nonanalyticities in the derivative expansion we computed
Fs and Fv assuming ψ(xq) = a + η(xq) up to second order in η. The quadratic contributions
can be written as

F(2)
s,v =

1
2

∫ d2k‖
(2π)2 f (2)s,v (kq, a) |η̃(kq)|2, (89)

and the crucial point is whether the functions f (2)s,v are analytic or not in k‖.
Omitting the details, we summarize the main results [28]: for finite values of µ and

ε, the scalar contribution f (2)s analytic, including the limit ε→ ∞, in which it tends to the
2 + 1 dimensional Dirichlet value. It develops a nonanalytic (logarithmic) contribution for
µ = ∞, since the kernel corresponds in this case to that of a scalar field in 2 + 1 dimensions
satisfying Neumann boundary conditions. In other words, magnetic materials regulate the
non-analyticity of the TE zero mode.

On the other hand, the TM zero mode is nonanalytic whenever ω2ε(ω)→ Ω2 6= 0 as
ω → 0 for both mirrors. In terms of the models usually considered in the Casimir literature
to describe real materials, this condition corresponds to the plasma model.

In summary, the nonanalyticities we observed for perfect conductors in our previous
work [26], survive only under the assumption of perfectly lossless materials. The NTLO
corrections to PFA for metals (gold) at room temperature have been computed in Ref. [25].

6.4. A Semianalytic Formula for Plane-Sphere Geometry

As a final application of the DE to compute the Casimir free energy we mention the
results of Ref. [50], where the author combined exact calculations for the zero mode and
the DE to obtain a precise formula for the interaction between a sphere and a plane at a
finite temperature which is valid at all separations. We briefly describe here these findings.

Formally, the free energy for this geometry can be written as

F = kBT
′

∑
n≥0

Tr log[1− M̂(iξn)], (90)

where the sum is over the Matsubara frequencies ξn = 2πnkBT/h̄ and M̂ denotes scattering
matrix elements for this geometry. The prime on the sum indicates that the n = 0 term has
an additional 1/2 factor.

The n = 0 contribution can be computed exactly using the Drude model to describe
the materials of the plane and the sphere, and plays a crucial role. Indeed, the proposed
approximation for the Casimir force on the sphere of radius R at a distance a from the
plane is

Fapprox = F(exact)
n=0 + F(PFA)

n>0

(
1− θ

a
R

)
, (91)

where θ can be computed using the DE. Notably, Fapprox describes with high precision
the Casimir force at all separations, as can be checked by comparison with high precision
numerical simulations of the exact scattering formula.

These results have been generalized in subsequent studies to the case of the two
spheres- geometry [51], also considering the differences that come from the use of the
Drude vs plasma models, as well as for grounded vs isolated spheres [52]. The relevance of
the use of grounded conductors in Casimir experiments has also been discussed in Ref. [53].
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7. Casimir-Polder Forces

The DE approach has also been applied to the calculation of the Casimir-Polder
interaction between a polarizable particle and a gently curved surface [29]. We present in
this Section a simplified version of the results contained in that reference.

When a small polarizable particle is at a distance a of a planar surface, the Casimir-
Polder potential reads [4]

U(a) = − 1
a4

∫ dξ

2π
α(iωcξ)β(0)(ξ), (92)

where α(ω) is the frequency dependent polarizability (which is assumed isotropic), ωc =
c/a, and

β(0) =
e−2ξ

2
(1 + 2ξ + 2ξ2). (93)

For moderate distances such that α(ω) ≈ α(0) one obtains the usual Casimir-Polder
potential [54]

U(a) = − 3
8π

α(0)
a4 . (94)

Assume now that the particle is in front of a slightly curved surface. The particle is
at the origin of coordinates, and the surface is described, as usual, by the height function
z = ψ(xq). The DE for the Casimir-Polder interaction UDE assumes that the interaction
depends on the derivatives of the height function ψ evaluated at xq = 0, the point on the
surface closest to the particle (a local minimum for ψ). If the surface is homogeneous and
isotropic, then the interaction energy must be invariant under rotations of the xq coordinates.
The more general expression compatible with this properties describes the Casimir-Polder
interaction energy at T = 0 reads [29]:

UDE = − 1
ψ4

∫ dξ

2π
α(iωcξ)

(
β(0)(ξ) + β(1)(ξ)ψ∇2ψ

)
. (95)

The dimensionless function β(1) can be read from the perturbative expansion of the
potential U, carried to second order in the deformation, that is, for ψ(xq) = a + η(xq) with
η(xq)� a. We stress that here the Casimir-Polder energy is not a functional but a function
of ψ and its derivatives evaluated at the origin of coordinates (recall that ∇ψ(0) = 0). The
DE is expected to be valid when a� R1, R2, the radii of curvature of the surface at xq = 0.
Note that ψ(0) = d and

∇2ψ(0) =
1

R1
+

1
R2

. (96)

Using again the static polarizability approximation, α(ω) ≈ α(0), one obtains

UDE = − 1
πa4 α(0)

[
3
8
− 13

60
a
(

1
R1

+
1

R2

)]
. (97)

The results presented in Ref. [29] are much more general than those described here:
they include the Casimir-Polder potential for a general polarization tensor αµν(ω) and
higher order corrections proportional to (a/Ri)

2, as well as the details of the computation
of the corresponding functions β(p). Additional applications can be found in Refs. [55,56].

8. Other Techniques Beyond PFA

In Ref. [57] a detailed analysis of the Casimir effect’s roughness correction in a setting
involving parallel metallic plates is presented. The plates were defined through the plasma
model. The approach used is perturbative, factoring in the roughness amplitude and
allowing for the consideration of diverse values of the plasma wavelength, plate separation,
and roughness correlation length. A notable finding was that the roughness correction
exceed the predictions of the PFA. The authors have calculated the second-order response
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function, G(k), across a spectrum of values encompassing the plasma wavelength (λP),
distance (a), and roughness wave vector (k):

G(k) = − A
8π2

1
a5q

∫ ∞

0

dKe−2K

1− e−2K

∫ K+q

|K−q|
dK′

(KK′)2 + 1
4 (K

2 + K′2 − q2)2

1− e−2K′ , (98)

applicable when λp → 0. Here, A represents the plate surface area, K the dimensionless
integration variable denoting the imaginary wave vector’s z-component scaled by plate
separation d, K′ the longitudinal component of the imaginary wave vector for the diffracted
wave, and q = ka.

The calculation in Ref. [57] helps to compute the second-order roughness correction
as a function of the surface profiles, h1 and h2. Analytical solutions were determined for
specific limiting cases, revealing a more complex relationship with the perfect reflectors
model than previously recognized [58,59], particularly in scenarios involving extended
distances and small roughness wavelengths. While the asymptotic case of long roughness
wavelengths aligns with PFA predictions, it was established that PFA generally underesti-
mates the roughness correction, a critical aspect for exploring constraints on potentially
new weak forces at sub-millimeter ranges.

As a further expansion to Ref. [57], in Ref. [60], the authors explored the Casimir inter-
action between a plane and a sphere of radius R at a finite temperature T, in terms of the
distance of closest approach, a. Noting that, under the usual experimental conditions, the
thermal wavelength λT satisfies a� λT � R, they evaluated the leading correction to the
PFA, applicable to such intermediate temperatures. They resorted to developing the scatter-
ing formula in the plane-wave basis. The result captures the combined effect of spherical
geometry and temperature, and is expressed as a sum of temperature-dependent logarith-
mic terms. Remarkably, two of these logarithmic terms originated from the Matsubara
zero-frequency contribution.

Defining the variables x = a/R and τ = a/λT , and the deviation δF(T) = F(T)− F(0),
in the intermediate temperature regime x � τ � 1, it is found in Ref. [60] that

∆ =
δF(T)− δFPFA(T)

FPFA(T)

≈ 45
π3 xτ

[
− log2(x) + 2[1− log(2)] log(x) + 2 log2(τ) +O(log(τ))

]
. (99)

The leading neglected terms stem from non-zero Matsubara frequencies.
In Ref. [61], the leading-order correction to PFA in a plane-sphere geometry was

derived. The momentum representation connected this with geometrical optics and semi-
classical Mie scattering. The primary contributions are shown to come from diffraction,
with TE polarization becoming more relevant than TM polarization. The diffraction contri-
bution is calculated at leading order, using the saddle-point approximation, considering
leading order curvature effects at the sphere tangent plane.

Additionally, the next-to-leading order (NTLO) term in the saddle-point expansion
contributed to the PFA correction. This involved computing the round-trip operator
within the WKB (Wentzel–Kramers–Brillouin) approximation, representing sequences of
reflections between the plane and the sphere. A key aspect was the tilt in the scattering
planes, allowing TE and TM polarizations to mix.

Comprehending the implications of polarization mixing channels on the geometric
optical correction applied to PFA holds considerable importance. Indeed, these channels are
recognized for inducing negative Casimir entropies with a geometric foundation [62–67]. In
spite of the non-vanishing contribution of the polarization mixing matrix elements, the total
correction associated with the tilt between the scattering and Fresnel planes is zero at NTLO.
This implies that the primary correction to the PFA would remain unchanged even if the
complexities arising from the differences between the Fresnel and scattering polarization
bases were initially ignored. The latter points to the fact that a different approach, one that
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completely omits the effect of polarization mixing, could directly produce the leading order
correction to PFA. Plane waves proved to be a well-suited basis for studying the Casimir
effect, as has been evidenced in the more recent study [30]. The utility of that basis ranges
from analytical to numerical applications, particularly when dealing with objects in close
proximity, the most relevant situation in experiments. It has been also shown that the use of
plane waves was notably effective in improving the interpretation of results in the realms
of geometrical optics and diffractive corrections.

In the context of a setup involving two spheres with arbitrary radii in vacuum, it was
shown in Ref. [30] that the PFA emerged as the leading term in an asymptotic expansion
for large radii. Extending a prior calculation based on the saddle-point approximation,
involving a trace over multiple round-trips of electromagnetic waves between the spheres,
the study encompassed spheres made of bi-isotropic material, requiring the consideration
of polarization mixing during reflection processes. The result was naturally elucidated
within the framework of geometrical optics.

Then, by relying on a saddle-point approximation framework, the authors derived
leading-order corrections, of geometrical and diffractive origins. Explicit results, at first
obtained for perfect electromagnetic conductors (PEMC) spheres at zero temperature,
indicated that for certain material parameters, the PFA contribution vanishes; should that
be the case, the leading-order correction would be the dominant term in the Casimir energy.

In the lowest-order saddle-point approximation, but including diffractive corrections,
one can show that the expression for the Casimir energy becomes:

ELO−SPA = −π3Reff

720a2

[
1− 15

π2 x +
15(10 + 3π)

4π3 x3/2 + . . .
]

, (100)

where x = a/Reff. As expected, this result reproduces the PFA result and its leading-order
diffractive correction. The NTLO correction behaves as x3/2. However, the prefactor
obtained accounts for about 90% of the one coming from numerical results [61]. This
discrepancy may be traced back to having neglected the NTLO-SPA and NNTLO-SPA
contributions.

9. Conclusions

In this review, we have discussed several properties and applications of the DE
approach, mostly as a method to improve the predictions of the Proximity Force Approxi-
mation, of long standing use in many different fields.

We started the review by briefly discussing the precursor of the PFA: the Derjaguin
(and related) approximations, since we have found them rather appropriate in order to
display the essentially geometric nature of the kind of problem we discuss: two quite
close smooth surfaces, and an interaction energy between them. Depending on the kind of
system being considered, that interaction between the two surfaces may or not be the result
of the superposition of the interactions between pairs. An example of an interaction which
is not the result of such a superposition is the Casimir effect. Note, however, that even when
the fundamental interaction satisfies a superposition principle, like in electrostatics, the
actual evaluation of the Coulomb integral to calculate the total interaction energy could be a
rather involved problem because the actual charge density may not be known a priori. That
is indeed the case when the surfaces involved are conductors, since that usually requires
finding the electrostatic potential. We have used precisely this problem in order to present
the idea of the DE in a concrete example: to calculate the electrostatic energy between two
conducting surfaces held at different potentials.

After introducing and applying the DE in that example, we have discussed its more
general proof of that expansion, by first putting the problem in a more general and abstract
way: how to approximate, under certain smoothness assumptions, a functional of a pair
of surfaces. At the same time, the proof provides a concrete way to determine the PFA
and its NTLO correction, the DE: one just needs to perform an expansion in powers of the
deformation of the surfaces about the situation of two flat and parallel surfaces.
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The derivations and examples here have been presented for a geometrical setting were
one surface is a plane, while the other may be described by a single Monge patch based
on that plane. However, as shown by other authors, under quite reasonable and general
assumptions, the results obtained for that situation may be generalized to the case of two
curved surfaces parametrized by their respective patches, based on a common plane (which
now does not coincide with one of the physical surfaces).

Then we reviewed different applications of the DE to the zero temperature Casimir
effect, considering different fields and boundary conditions, staring from the cases of the
scalar field with Dirichlet boundary conditions, then the EM field in the presence of perfectly
conducting surfaces, and commented on the scalar field with Neumann conditions.

We afterwards presented a description and brief review of the extension of DE to finite
temperature cases, and different numbers of spatial dimensions. The temperature is a di-
mensionful magnitude and the phenomenon of dimensional reduction presents a problem
when there are Neumann boundary conditions or when an EM field is involved. Indeed,
dimensional reduction implies the existence of a massless 2 + 1 dimensional field (with
Neumann conditions), and this mode introduces a nonanalyticity in momentum space,
which violated one of the hypothesis of the DE, and therefore it cannot be applied. Never-
theless, we have shown that the introduction of a small departure from ideal Neumann
conditions solves this issue, namely, analyticity is recovered and the DE may be applied.

We also mentioned the application of DE to the Casimir-Polder interaction, particularly
between a polarizable particle and a gently curved surface. This example highlights the
broader implications of DE in understanding particle-surface interactions beyond the
Casimir force itself.

To conclude, we have presented in this review the main features of the DE approach,
with a focus in the Casimir effect, but pointing at the fact that its applicability can certainly
go beyond that realm. We have shown that explicitly for electrostatics, but we expect it
to be applicable to, for example, the same kind of systems where the DA, SEI and SIA
were introduced.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the support from Agencia Nacional de Promoción
Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET), Universidad de Buenos Aires (UBA), and Universidad Nacional de Cuyo (UNCuyo),
Argentina.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B 1948, 51, 793–795.

Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 6 January 2023).
2. Milonni, P.W. The Quantum Vacuum. An Introduction to Quantum Electrodynamics; Academic Press, Inc.: San Diego, CA, USA, 1994.

[CrossRef]
3. Milton, K.A. The Casimir Effect. Physical Manifestations of Zero-Point Energy; World Scientific: Singapore, 2001. [CrossRef]
4. Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press:

Oxford, UK, 2009. [CrossRef]
5. Dalvit, D.; Milonni, P.; Roberts, D.; da Rosa, F. (Eds.) Casimir Physics; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef]
6. Mostepanenko, V.M. Casimir puzzle and Casimir conundrum: Discovery and search for resolution. Universe 2021, 7, 84. [CrossRef]
7. Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev.

Lett. 2002, 88, 041804. [CrossRef] [PubMed]
8. Brown-Hayes, M.; Dalvit, D.A.R.; Mazzitelli, F.D.; Kim, W.J.; Onofrio, R. Towards a precision measurement of the Casimir force in

a cylinder-plane geometry. Phys. Rev. A 2005, 72, 052102. [CrossRef]
9. Lamoreaux, S.K. Demonstration of the Casimir force in the 0.6 to 6 µm range. Phys. Rev. Lett. 1997, 78, 5–8. [CrossRef]

48



Physics 2024, 6

10. Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 µm. Phys. Rev. Lett. 1998, 81, 4549–4552.
[CrossRef]

11. Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical
system by the Casimir effect. Science 2001, 291, 1941–1944. [CrossRef]

12. Decca, R.S.; López, D.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Mostepanenko, V.M. Precise comparison of theory and
new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann.
Phys. 2005, 318, 37–80. [CrossRef]

13. Chang, C.C.; Banishev, A.A.; Castillo-Garza, R.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Gradient of the Casimir
force between Au surfaces of a sphere and a plate measured using an atomic force microscope in a frequency-shift technique.
Phys. Rev. B 2012, 85, 165443. [CrossRef]

14. Bimonte, G.; López, D.; Decca, R.S. Isoelectronic determination of the thermal Casimir force. Phys. Rev. B 2016, 93, 184434.
[CrossRef]

15. Bimonte, G.; Spreng, B.; Maia Neto, P.A.; Ingold, G.-L.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Decca, R.S. Measurement of the
Casimir force between 0.2 and 8 µm: Experimental procedures and comparison with theory. Universe 2021, 7, 93. [CrossRef]

16. Boyer, T.H. Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged
particle. Phys. Rev. 1968, 174, 1764–1774. [CrossRef]

17. Derjaguin, B.V. Untersuchungen über die Reibung und Adhäsion, IV. Koll.-Z. 1934, 69, 155–164. [CrossRef]
18. Deriagin, B.V.; Abrikosova, I.I. Direct measurement of the molecular attraction of solid bodies. I. Statement of the problem

and method of measuring forces by using negative feedback. Sov. Phys. JETP 1957, 4, 819–829. Available online: http:
//jetp.ras.ru/cgi-bin/e/index/e/3/6/p819?a=list (accessed on 6 January 2024).

19. Derjaguin, B.V. The force between molecules. Sci. Am. 1960, 203, 47. [CrossRef]
20. Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press/Elsevier, Inc.: Oxford, UK, 2011. [CrossRef]
21. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. The proximity force approximation for the Casimir energy as a derivative expansion.

Phys. Rev. D 2011, 84, 105031. [CrossRef]
22. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. An improved proximity force approximation for electrostatics. Ann. Phys. 2012, 327,

2050–2059. [CrossRef]
23. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative-expansion approach to the interaction between close surfaces. Phys. Rev.

A 2014, 89, 062120. [CrossRef]
24. Bimonte, G.; Emig, T.; Jaffe, R.; Kardar, M. Casimir forces beyond the proximity approximation. Europhys. Lett. 2012, 97, 50001.

[CrossRef]
25. Bimonte, G.; Emig, T.; Kardar, M. Material dependence of Casimir forces: Gradient expansion beyond proximity. App. Phys. Lett.

2012, 100, 074110. [CrossRef]
26. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative expansion for the Casimir effect at zero and finite temperature in d + 1

dimensions. Phys. Rev. D 2012, 86, 045021. [CrossRef]
27. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Derivative expansion for the electromagnetic and Neumann Casimir effects in 2 + 1

dimensions with imperfect mirrors. Phys. Rev. D 2015, 91, 105019. [CrossRef]
28. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. On the derivative expansion for the electromagnetic Casimir free energy at high

temperatures. Phys. Rev. D 2015, 92, 125007. [CrossRef]
29. Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder interaction for gently curved surfaces. Phys. Rev. D 2014, 90, 081702. [CrossRef]
30. Schoger, T.; Spreng, B.; Ingold, G.L.; Neto, P.A.M. Casimir effect between spherical objects: Proximity-force approximation and

beyond using plane waves. Int. J. Mod. Phys. A 2022, 37, 2241009. [CrossRef]
31. Blocki, J.; Randrup, J.; Swiatecki, W.J.; Tsang, C.F. Proximity forces. Ann. Phys. 1977, 105, 427–462. [CrossRef]
32. Blocki, J.; Swiatecki, W.J. A generalization of the proximity force theorem. Ann. Phys. 1981, 132, 53–65. [CrossRef]
33. Myers, W.D.; Swiatecki, W.J. Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 2000, 62, 044610. [CrossRef]
34. Dutt, I.; Puri, R.K. Comparison of different proximity potentials for asymmetric colliding nuclei. Phys. Rev. C 2010, 81, 064609.

[CrossRef]
35. Bhattacharjee, S.; Elimelech, M. Surface element integration: A novel technique for evaluation of DLVO interaction between a

particle and a flat plate. J. Colloid. Interface Sci. 1997, 193, 273–285. [CrossRef] [PubMed]
36. Dantchev, D.; Valchev, G. Surface integration approach: A new technique for evaluating geometry dependent forces between

objects of various geometry and a plate. J. Colloid Interface Sci. 2012, 372, 148–163. [CrossRef]
37. Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; Lopez, D.; Mostepanenko, V.M. Application of the proximity force

approximation to gravitational and Yukawa-type forces. Phys. Rev. D 2009, 79, 124021. [CrossRef]
38. Milton, K.A.; Parashar, P.; Wagner, J.; Shajesh, K.V. Exact Casimir energies at nonzero temperature: Validity of proximity force

approximation and interaction of semitransparent spheres. arXiv 2009, arXiv:0909.0977. [CrossRef]
39. Hudlet, S.; Saint Jean, M. ; Guthmann, C.; Berger, J. Evaluation of the capacitive force between an atomic force microscopy tip and

a metallic surface. Eur. Phys. J. B. 1998, 2, 5–10. [CrossRef]
40. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Fourth order perturbative expansion for the Casimir energy with a slightly deformed

plate. Phys. Rev. D 2012, 86, 125018. [CrossRef]

49



Physics 2024, 6

41. Emig, T.; Hanke, A.; Golestanian, R.; Kardar, M. Normal and lateral Casimir forces between deformed plates. Phys. Rev. A 2003,
67, 022114. [CrossRef]

42. Lambrecht, A.; Neto, P.A.M.; Reynaud, S. The Casimir effect within scattering theory. New J. Phys. 2006, 8, 243. [CrossRef]
43. Bordag, M.; Nikolaev, V. Casimir force for a sphere in front of a plane beyond proximity force approximation. J. Phys. A 2008, 41,

164001. [CrossRef]
44. Bordag, M.; Nikolaev, V. Analytic corrections to the electromagnetic Casimir interaction between a sphere and a plate at short

distances. Int. Mod. J. Phys. A 2010, 25, 2171–2176. [CrossRef]
45. Bordag, M.; Nikolaev, V. First analytic correction beyond the proximity force approximation in the Casimir effect for the

electromagnetic field in sphere-plane geometry. Phys. Rev. D 2010, 81, 065011. [CrossRef]
46. Teo, L.P.; Bordag, M.; Nikolaev, V. Corrections beyond the proximity force approximation. Phys. Rev. D 2011, 84, 125037.

[CrossRef]
47. Rodriguez-Lopez, P.; Emig, T. Casimir interaction between inclined metallic cylinders. Phys. Rev. A 2012, 85, 032510. [CrossRef]
48. Bimonte, G.; Emig, T. Exact results for classical Casimir interactions: Dirichlet and Drude model in the sphere-sphere and

sphere-plane geometry. Phys. Rev. Lett. 2012, 109, 160403. [CrossRef]
49. Canaguier-Durant, A.; Ingold, G.L.; Jaekel, M.T.; Lambrecht, A.; Neto, P.A.M.; Reynaud, S. Classical Casimir interaction in the

plane-sphere geometry. Phys. Rev. A 2012, 85, 052501. [CrossRef]
50. Bimonte, G. Going beyond PFA: A precise formula for the sphere-plate Casimir force. EPL (Europhys. Lett.) 2017, 118, 20002.

[CrossRef]
51. Bimonte, G. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature. Phys. Rev. D 2018,

97, 085011. [CrossRef]
52. Bimonte, G. Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature II: Plasma versus

Drude modeling, grounded versus isolated spheres. Phys. Rev. D 2018, 98, 105004. [CrossRef]
53. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Difference between the vacuum Casimir energies for grounded and isolated

conductors. Phys. Rev. D 2016, 94, 085024. [CrossRef]
54. Casimir, H.B.G.; Polder, D. The Influence of retardation on the London–van der Waals forces. Phys. Rev. 1948, 73, 360–372.

[CrossRef]
55. Bimonte, G.; Emig, T.; Kardar, M. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces. Phys. Rev.

D 2015, 92, 025028. [CrossRef]
56. Bimonte, G.; Emig, T. Interplay of curvature and temperature in the Casimir–Polder interaction. J. Phys. Condens. Mater. 2015, 27,

214018. [CrossRef] [PubMed]
57. Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Roughness correction to the Casimir force: Beyond the proximity force approximation.

Europhys. Lett. 2005, 69, 924–930. [CrossRef]
58. Genet, C.; Lambrecht, A.; Maia, Neto, P.; Reynaud, S. The Casimir force between rough metallic plates. Europhys. Lett. 2003, 62,

484–490. [CrossRef]
59. Emig, T.; Hanke, A.; Golestanian, R.; Kardar, M. Probing the strong boundary shape dependence of the Casimir force. Phys. Rev.

Lett. 2001, 87, 260402. [CrossRef]
60. Henning, V.; Spreng, B.; Neto, P.A.M.; Ingold, G.L. Casimir interaction between a plane and a sphere: Correction to the

proximity-force approximation at intermediate temperatures. Universe 2021, 7, 129. [CrossRef]
61. Henning, V.; Spreng, B.; Hartmann, M.; Ingold, G.L.; Neto, P.A.M. Role of diffraction in the Casimir effect beyond the proximity

force approximation. J. Opt. Soc. Am. B 2019, 36, C77–C87. [CrossRef]
62. Canaguier-Durand, A.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Thermal Casimir effect in the plane-sphere geometry. Phys. Rev.

Lett. 2010, 104, 040403. [CrossRef]
63. Canaguier-Durand, A.; Neto, P.A.M.; Lambrecht, A.; Reynaud, S. Thermal Casimir effect for Drude metals in the plane-sphere

geometry. Phys. Rev. A 2010, 82, 012511. [CrossRef]
64. Zandi, R.; Emig, T.; Mohideen, U. Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude

and plasma models. Phys. Rev. B 2010, 81, 195423. [CrossRef]
65. Milton, K.A.; Guérout, R.; Ingold, G.-L.; Lambrecht, A.; Reynaud, S. Negative Casimir entropies in nanoparticle interactions. J.

Phys. Condens. Matter 2015, 27, 214003. [CrossRef] [PubMed]
66. Ingold, G.-L.; Umrath, S.; Hartmann, M.; Guérout, R.; Lambrecht, A.; Reynaud, S.; Milton, K.A. Geometric origin of negative

Casimir entropies: A scattering-channel analysis. Phys. Rev. E 2015, 91, 033203. [CrossRef] [PubMed]
67. Umrath, S.; Hartmann, M.; Ingold, G.-L.; Neto, P.A.M. Disentangling geometric and dissipative origins of negative Casimir

entropies. Phys. Rev. E 2015, 92, 042125. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

50



Citation: Castillo-López, S.G.;

Esquivel-Sirvent, R.; Pirruccio, G.;

Villarreal, C. Casimir Forces with

Periodic Structures: Abrikosov Flux

Lattices. Physics 2024, 6, 394–406.

https://doi.org/10.3390/

physics6010026

Received: 4 December 2023

Revised: 27 January 2024

Accepted: 30 January 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Casimir Forces with Periodic Structures: Abrikosov Flux
Lattices
Shunashi Guadalupe Castillo-López, Raúl Esquivel-Sirvent, Giuseppe Pirruccio and Carlos Villarreal *

Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Mexico City 01000, Mexico;
shunashi@fisica.unam.mx (S.G.C.-L.); raul@fisica.unam.mx (R.E.-S.); pirruccio@fisica.unam.mx (G.P.)
* Correspondence: carlos@fisica.unam.mx

Abstract: We investigate the influence of the Abrikosov vortex lattice on the Casimir force in a
setup constituted by high-temperature superconductors subject to an external magnetic field. The
Abrikosov lattice is a property of type II superconductors in which normal and superconducting
carriers coexist and the latter define a periodic pattern with square symmetry. We find that the optical
properties determined by spatial redistribution of the superconducting order parameter induce
Casimir forces with a periodic structure whose minimal strengths coincide with the vortex cores.

Keywords: Casimir force; superconductor; quantum vortex; fluxon; Abrikosov lattice; vortex matter

1. Introduction

Seventy-five years have passed since, motivated by a suggestion by Niels Bohr during
a walk, Hendrik Casimir proposed that vacuum fluctuations could induce an attractive force
per unit area between two perfectly conducting parallel plates, a distance d apart, given by
F = −h̄cπ2/240d4 [1] with h̄ = h/2π the reduced Planck constant and c the speed of light.
A more realistic theory was proposed by Evgeny Lifshitz in 1956 by considering fluctuating
electrodynamics, based on the fluctuation–dissipation mechanism. Lifshitz theory allows
to determine the Casimir force in terms of the dispersive and dissipative properties of the
materials [2], as described by its optical properties. Grounded on Lifshitz formulation,
numerous experiments [3–13] have been performed on measuring the Casimir forces
involving a diversity of experimental arrangements and materials [14,15]. The influence
and taming of these forces in the design and construction of micro- and nanodevices is a
current field of research. Extensive treatments of the Casimir effect and its applications, are
presented in Refs. [16–20].

In spite of the fruitful advances in the investigations of the Casimir effect there exist
yet pending fundamental problems on the basic theory, concerning the role of dissipative
mechanisms on the strength of the force between metallic bodies. These may involve
electron scattering by impurities, other electrons, phonons, etc., yielding a total scattering
rate τ−1 = τ−1

el−imp + τ−1
el−el(T) + τ−1

el−ph(T) + · · · . Actually, the inclusion of this kind of
contributions in the theoretical characterization of the optical response of materials involved
in a given setup should be necessary to achieve congruence with the fluctuation–dissipation
theorem underlying the Lifshitz theory. However, earlier measurements of Casimir forces
in metals at room temperature at body separations d ≈ 50–600 nm showed consistence with
theoretical predictions if dissipative effects are neglected. This hypothesis is also consistent
with more recent experimental studies of the gradient of the Casimir force between metallic
surfaces performed at larger separations, d > 700 nm, such that kBT ∼ h̄c/d [21–23],
with kB the Boltzmann constant. On the contrary, experiments carried out at micrometer
distances to measure the total magnitude of the Casimir force display a better agreement
with predictions including electronic relaxation [19]. The main difference between the
results at small and large separations, is that in the latter thermal effects become important.
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It has been proposed that the study of the Casimir effect in superconducting (SC) ma-
terials may constitute an excellent scenario to asses the influence of relaxation phenomena
on the strength of the Casimir force between metallic bodies [24–28]. This is motivated
by the finding that charge carriers in these materials exhibit a transition from dissipative
transport to a dissipationless coherent behavior at a critical temperature T = Tc. However,
measurements of the influence of the SC transition on the Casimir force in setups involving
conventional BCS (Bardeen–Cooper–Schrieffer) superconductors turn out to be extremely
difficult, since for typical values Tc ∼ 1 K, and kBTc � h̄c/d for sub-µm body separations.
Therefore, indirect approaches have been proposed based on observations of the Casimir-
induced shift of the critical magnetic field Hc of a thin superconducting film, or differential
measurements of the Casimir force [29,30].

This suggests that the use of high-temperature superconductors (HTSCs), with Tc ≈ 100 K,
could constitute a suitable alternative to perform a direct analysis of the effect of the SC
transition on the Casimir effect. In previous studies, we investigated the Casimir forces
between objects made of optimally doped YBa2Cu3O7−δ (YBCO), with Tc = 93 K , either in
thermal [31], or out of thermal equilibrium [32]. In the first case, we found that the Casimir
force displays an abrupt increment as as T approaches Tc from above, T → Tc. On the
other hand, for T < Tc, the (force × distance) approaches a constant in the limit T � Tc. In
the second case, each slab was in local equilibrium with a thermal reservoir at respective
temperatures, T1 = 300 K and T2, where 300 ≥ T2 ≥ 0 K. In contrast with the thermal
equilibrium situation, the Casimir force displays an abrupt decrement in the transit from
normal metal to the SC state as T2 → Tc. The low-temperature asymptotic behavior of the
force is similar to that displayed in the equilibrium situation.

To get further insight on the influence of superconductivity-related effects on the
Casimir effect, in this paper, we study the effect of the Abrikosov lattice (AL) [33] on the
local properties of Casimir forces associated to high-temperature superconductors (HTSCs).
The AL is a manifestation of the Meissner effect, in which the presence of an external
magnetic field induces surface screening supercurrents, which expel out the magnetic field
lines from the material’s interior within a London penetration length λL(T) ∼ ns(T)−1/2.
Here, ns(T) is the number density of Cooper pairs (CPs) at a temperature T. In the case
of type-II superconductors, such as YBCO, the Meissner effect involves the existence of a
mixed phase of coexistence of normal and SC charge carriers determined by two critical
magnetic fields, Hc1 < Hc2. For values of the applied field higher than Hc1, magnetic
flux lines penetrate the sample in the form of quantum vortexes, Φ0 = h/2e, with e the
elemantary charge, thus inducing local screening currents to overcome the applied field
[34]. Upon increasing magnitude of the field, the vortex density increases and saturates at
the upper critical field Hc2, where superconductivity disappears. Remarkably, as shown
by Alexei Abrikosov [33], for intensities of the applied field just below Hc2 the vortexes
align in a compact square lattice with period Lx = Ly =

√
2πξ(T), where ξ(T) is the CP

coherence length. In the case of YBCO, ξ(0) ≡ ξ0 ≈ 1.65 nm, and λL(0) ≡ λ0 ≈ 156 nm,
while the temperature-independent ratio κ = λL(T)/ξ(T) ≈ 95 [34].

It can be shown that the AL vortexes strongly repel each other, giving rise to highly
correlated configurations which are stable when thermal fluctuations and disorder are both
negligible. A measure of the magnitude of the energy associated to thermal fluctuations
with respect to the magnetic condensation energy is provided by the Ginzburg number [35],
Gi = 2γ2κ4(kBTc/Hc2(0)2ξ3

0
)2, where γ is a measure of the anisotropic conductivity (dis-

cussed below). In the case of conventional BCS superconductors, Gi = 10−7. In comparison,
in the case of HTSCs, Tc ∼ 102 K and κ ∼ 102, implying that Gi ∼ 10−2. This relatively
large value of Gi joined with the feature that these materials display a layered anisotropic
structure at the atomic level, leads to the manifestation of a manifold of phenomena gen-
erally termed as vortex matter, encompassing a complex phase diagram under different
environmental conditions and material compositions [36]. Thus, thermal fluctuations may
significantly alter the properties of the AL, generally leading to melting towards a liquid
phase displaying vortex deformation, entanglement or migration. Superposed with repul-
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sive interactions and thermal fluctuations, disorder due to material imperfections induce
vortex pinning, which may conduce to the formation of glassy configurations [35–37].
Vortex matter has been investigated by recurring to techniques such as scanning tunneling
microscopy [38] or muon spin rotation [39]. In addition, the possibility of using cold atoms
to asses vortex-noise has been considered in the literature [40].

In order to examine the influence of the AL on the Casimir force, in this study we
consider a setup, depicted in Figure 1, constituted by a spherical Au nanoparticle located at
a minimum distance d from a planar YBCO substrate, in presence of an applied magnetic
field directed along the z-axis. We show that the force acquires a spatial structure congruent
with the AL due to the modulation imprinted by the vortexes on the dielectric permittivity.

~

~

Figure 1. Setup consisting of a spherical Au nanoparticle of radius R located at a minimum distance
d from a planar substrate made of optimally-doped YBCO (YBa2Cu3O7−δ), both at the same tem-
perature T—Tns and Tsub, respectively,—in presence of an applied magnetic field directed along
the z axis. We show the resulting lattice structure with elementary cells of nondimensional spatial
periods a = Lx = Ly. Induced supercurrents coincide with equiprobability contours defined by the
number density of Cooper pairs, ns = |Ψ(r̃)|2, where Ψ(r̃) is the superconducting order parameter.
The vortex cores of radius ξ correspond to the darkest inner zones. ~B denotes the magnetic field,
and the tilde stands for adimensional variables, x̃ = x/λab and ỹ = y/λab, where λab repersents the
ab-plane penetration length.

In what follows, we present the formalism aimed to evaluate the Casimir force between
a planar substrate and a nanosphere, which relies upon the frequency-dependent optical
properties of the involved materials. To investigate the optical response of YBCO under
the action of an external magnetic field, we then discuss a generalization of the Ginzburg–
Landau (GL) theory of superconductivity, which allows the consideration of the anisotropic
properties HTSCs, allowing the characterization of the number density of SC pairs, ns(r),
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with a spatial dependence induced by the action of the applied magnetic field, as provided
by the Abrikosov solution of the GL equation. We then discuss the thermal behavior of
ns(r) by taking into account that SC charge carriers in HTSCs may be described as a 2D
(2-dimensional) gas of weakly-interacting CPs able to form a Bose–Einstein condensate
(BEC). In Section 2, we model the optical response of YBCO by combining the derived
expression for ns(r, T) with experimental data for the YBCO dielectric function obtained in
the normal (T = 100 K) and SC regime (T = 2 K). We then integrate the former antecedents
to evaluate the Casimir force associated to the AL, and discuss the derived results.

2. Theory and Definitions
2.1. Casimir Force between a Nanosphere and a Planar Substrate

The theory of the Casimir effect between a sphere and a planar surface beyond the
Proximity Force Approximation has been investigated within alternative perspectives,
including some developed by authors of the present study [18,41–47]. In this Section,
we extend the formalism previously presented in Refs. [41–43] to calculate the finite-
temperature Casimir force for the nanosphere-substrate setup displayed in Figure 1, with
the corresponding dielectric function of the nanosphere, εns(ω), and substrate, εsub(r, ω).
We first evaluate the zero-temperature interaction energy as a sum over proper frequencies,
ωk(r⊥; d), of the considered configuration:

E(r⊥; d) =
1
2 ∑

k
(h̄ωk(r⊥; d)− h̄ωk(r⊥; d→ ∞)), (1)

where r⊥(x, y) . Straightforward use of the argument principle method lets us express the
sum over proper mode frequencies as a sum over the zeros of a spectral function G(ω; r⊥; d)
(discussed below). This is determined by the solutions of Maxwell equations with boundary
conditions satisfied by the plate-sphere setup:

E(r⊥; d) =
1

2πi

∮

C
h̄ω

2
∂

∂ω
[log G(ω; r⊥, d)− log G(ω; r⊥, d→ ∞)]dω. (2)

Here, the (counter clock-wise) contour C is defined along the imaginary axis of the
complex ω-plane and a semicircle in the right hand of this plane with its radius tending
to infinity. The integral along the semicircle yields a null contribution, and the integral
in Equation (3) may be evaluated by considering a contour between −i∞ and i∞. An
integration by parts leads to

E(r⊥; d) = − h̄
4π

∫ ∞

−∞
[log G(ω; r⊥, d)− log G(iζ; r⊥, ∞)]dξ. (3)

The Casimir force is then obtained by calculating the derivative F(r⊥; d) = −∂E(r⊥; d)/∂d.
The eigenfrequency set of the sphere-substrate setup {ωk(r⊥; d)} is obtained by assuming
that the vacuum fluctuations induce a charge distribution on the sphere, described at lowest
level, as a point dipole moment located at its center:

p0
ns(ω) = α(ω)Evac(ω), (4)

where α(ω) = 4πR3(εns − 1)/(εns + 2) denotes the nanosphere polarizability with R the
nanosphere radius and Evac denoting the electric field in vacuum. This dipole moment
introduces in turn a charge distribution in the YBCO half-space. By using the images
method it follows that the total induced dipole moment on the sphere is

pns(ω; r⊥) = α(ω)[Evac(ω) +T · psub(r⊥)]. (5)

Here, T is the dipole-dipole interaction tensor T = (3r0r0 − r2
0I)/r5

0, with r0 a vector
joining the center of the sphere and its image dipole below the substrate surface. In turn,
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the relation between the dipole moment on the sphere and the dipole moment induced on
the YBCO substrate is psub(ω; r⊥) = fc(ω; r⊥) M · pns(r⊥), where M = diag(−1,−1, 1) is
a diagonal matrix in the chosen coordinate frame, and the contrast factor fc(ω; r⊥) ≡ (1−
εsub(ω; r⊥))/(1 + εsub(ω; r⊥)). By substituting psub(ω; r⊥)) into Equation (5), one obtains:

[
α−1(ω)I+ fc(ω; r⊥)M ·T

]
· pns(ω; r⊥)) = Evac(ω), (6)

which, by introducing the function u(ω) = [1− εns(ω))]−1 and explicitly substituting
α(ω), may be re-expressed as the secular equation:

[−u(ω)I+H(r⊥)] · pns(ω; r⊥) = Ẽvac(ω), (7)

where H(r⊥) = (1/3)[I+ R3 fc(ω; r⊥)M ·T], and Ẽvac = (1/3)R3Evac. By performing the
change of variable ω → iζ, it follows that the matrix H in Equation (7) is real. This allows
us to introduce the spectral function such that

G(iζ; r⊥, d) ≡∏
l
[−u(iζ) + ηl(iζ; r⊥, d)] = 0, (8)

which in the present case implies three eigenvalues,

η1,2(iζ; r⊥, d) =
1
3

[
1 +

fc(iζ; r⊥)
[2(1 + d/R)]3

]
; η3(iζ; r⊥, d) =

1
3

[
1 +

2 fc(iζ; r⊥)
[2(1 + d/R)]3

]
, (9)

whose structure reflects the dipole–dipole interaction described by the tensor T, and η1,2
correspond to dipoles parallel to the surface, while η3 is perpendicular. Substitution of
G(iζ; r⊥, d) into Equation (2) leads to a final expression for Casimir force at null temperature:

F(r⊥, d) =
h̄

4π

∂

∂d ∑
l

∫ ∞

−∞
log[−u(iζ) + ηl(iζ; r⊥, d)] dζ (10)

=
h̄

16πR
1

(1 + d/R)4

∫ ∞

−∞

[
fc(iζ; r⊥)

−u(iζ) + η1(iζ; r⊥, d)
+

fc(iζ; r⊥)
−u(iζ) + η3(iζ; r⊥, d)

]
dζ,

where the feature that η1(iζ; r⊥, d) = η2(iζ; r⊥, d) has been considered.
This result may be generalized to the finite-temperature regime by use of the Mat-

subara formalism. In this approach, the frequency integration is replaced by a summation
over discrete frequencies ζn = 2πkBTn/h̄, with n an integer number. In that case, the final
expression for temperature-dependent Casimir force is:

F(r⊥, d; T) =
kBT
4R

1
(1 + d/R)4

∞ ′
∑
n=0

[
fc(iζn; r⊥)

−u(iζn) + η1(iζn; r⊥)
+

fc(iζn; r⊥)
−u(iζn) + η3(iζn; r⊥)

]
, (11)

where the prime implies that the n = 0 term should be multiplied by a factor 1/2.
The influence of higher-order multipoles on the Casimir force for the present configura-

tion has been studied in Refs. [42,43]. It follows that for sphere–substrate multipolar interac-
tion of order l and l′, respectively, the interaction energy E(r⊥; d) ∼ f (r⊥)/(2[R + d])l+l′+1,
and therefore, F(r⊥; d) ∼ f (r⊥)/(2[R + d])l+l′+2. However, specific calculations [42] in-
dicate that the contributions for l, l′ > 1, only become relevant for distances d/R < 2,
consistently with the dipolar approximation considered in this study.

2.2. Ginzburg–Landau Theory and the Optical Response of the YBCO Substrate

In the expressions derived in Section 2.1, the functions u(ω) and fc(ω) are respectively
determined by the dielectric response of the nanosphere, εns, and the planar substrate,
εsub. The dielectric properties of the gold nanosphere may be straightforwardly repre-
sented by a Drude function εns(ω) = 1 − ω2

Au/(ω2 + iγAuω), where the gold plasma
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frequency, ωAu = 9.1 eV, and the inverse scattering rate, γAu = 0.02 eV. Therefore,
u(iζ) = −(ξ2 + γAuζ)/ω2

Au.
On the other hand, to characterize the dielectric response of the YBCO subject to

the action of an applied magnetic field, H, we put forth a straightforward variation of
the GL theory of superconductivity that takes into account specific SC features of HTSCs,
such as YBCO. In the GL theory, the transit to the SC state is described as a second-order
phase transition determined by a complex order parameter, Ψ(r), null in the normal phase,
but finite in the SC phase, characterizing a long-range order specified by the number
density of SC pairs, ns(r) = |Ψ(r)|2. We incorporate in the GL formalism the following
findings [48]: (i) cuprate superconductors exhibit a layered crystallographic structure
in which superfluid transport of CPs occurs mainly along CuO2 planes (the ab-planes),
whereas CP transport along the perpendicular c-axis occurs due to Josephson tunneling,
with respective effective masses, m∗ab and m∗c , reflecting an anisotropic charge transport
measured by the ratio γ2 = m∗c /m∗ab ≈ 50, (ii) an extremely short CP coherence length,
such that the GL parameter κ � 1. The finding that γ2 � 1 implies that YBCO is
an uniaxial material with a concomitant anisotropic dielectric response characterized by
the diagonal tensor ε = diag(εab, εab, εc) in the coordinate system depicted in Figure 1.
However, a related study on the radiative heat transfer between nearby YBCO surfaces [49]
revealed that electromagnetic mode contributions involving εc are relevant only for thin
film configurations. Therefore, in the following, we assume that εsub = εab. On the other
hand, the joint conditions (i) and (ii) are indicative of a strongly binding pair interaction,
leading the formation of a 2D gas of weakly-interacting particles, able to form a BEC [50].

In this framework, the anisotropic free energy density in the SC state in presence of a
magnetic field B(r) = ∇×A(r), with A the electromagnetic potential, can be expressed as

fs(T) = fn(T) +
1
2
(π̂Ψ)† ·

(
1

m∗

)
· (π̂Ψ) + aT |Ψ|2 +

b
2
|Ψ|4 + 1

2µ0
B2(r), (12)

where fn(T) is the normal state contribution, Ψ is the superconducting order parameter, the
symbol † denotes hermitian conjugate, µ0 is magnetic permeability of free space, the canoni-
cal momentum π̂ = −ih̄∇+ e∗A, with e∗ = 2e the CP charge, and the reciprocal mass tensor
is also diagonal in the chosen coordinate system: (1/m∗) = diag(1/m∗ab, 1/m∗ab, 1/m∗c ). In
the original GL approach, aT = a0(T− Tc) and b > 0; however, as shown in Section 2.3, a
more accurate description of the physical properties of SC materials can be achieved by
considering alternative temperature parameterizations.

In the SC state, the total energy is obtained by spatial integration of Equation (12),
Fs =

∫
fs(T)d3r. It follows that the functional differentiation, δFs(T)/δΨ∗(r), then leads to

the anisotropic GL equation

− h̄2

2

[
∇− ie∗

h̄
A
]
·
(

1
m∗

)
·
[
∇− ie∗

h̄
A
]

Ψ +
(

aT + b|Ψ|2
)

Ψ = 0, (13)

while the differentiation δFs(T)/δA(r) yields the current density

Js = −
ih̄e∗

2

(
1

m∗

)
· [Ψ∗∇Ψ−Ψ∇Ψ∗]−

(
1

m∗

)
· e∗2A|Ψ|2. (14)

It can be shown that the mass anisotropy induces in turn anisotropic coherence lengths,
ξ j(T), satisfying the relations ξ2

ab(T) = h̄2/2m∗ab|aT |, and ξ2
c (T) = h̄2/2m∗c |aT | [48]. In

absence of external fields or material boundaries, the former equations predict a second-
order phase transition, with an order parameter magnitude, |Ψ∞|2 = 0, for aT > 0, and
ns = |Ψ∞|2 = −aT/b, for aT < 0, and a null current density. In this case, the condensation
energy of the superconductor (per unit volume) is given by [48]

fs(T)− fn(T) = −a2
T/2b = −µ0H2

c2(T)/4κ2, (15)
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with Hc2(T) = Φ0/2πξ2
ab(T). In the general case, Equations (13) and (14) represent a

coupled equation system; however, for type II materials this system uncouples by taking
into account that a thermodynamic phase transition also occurs for magnetic fields H = Hc2.
Since the phase transition is of second order, Ψ is small and so is the magnetization M.
Therefore, B = µ0(H + M) ≈ µ0H, where H is the applied field. This implies that, near Hc2,
the spatial variation in B(r) can be neglected and consider that it has the form B = B ez,
where ez is directed along the crystallographic c-axis. Then, in the Landau gauge, the vector
potential A = Bx ey. A further consequence of the smallness of Ψ is that the GL equation
may be linearized by dropping cubic term in Equation (13). Then, the GL equation becomes

−h̄2

2m∗ab

(
∇⊥ −

ie∗

h̄
B xey

)2
Ψ− h̄2

2m∗c

∂2

∂2
z

Ψ = |aT |Ψ. (16)

As shown by Abrikosov [33], Equation (16) admits Landau-level solutions of the form
Ψ(r) = Φ(r⊥)eikzz, where the ground state is given by kz = 0, and

Φ(r⊥) =
∞

∑
n=−∞

Cnei(2πny)/Ly exp[−(x + nΦ0/BLy)
2/ξ2

ab(T)], (17)

which is a periodic function provided Cn = Cn+ν, for some integer ν. The case ν = 1
corresponds to a square lattice as displayed by HTSCs, while the case ν = 2 yields a
triangular lattice, characteristic of conventional superconductors [34]. The stability of these
solutions can be analyzed by incorporating the effects of nonlinear terms in the description.
This is determined by the Abrikosov parameter, βA = 〈|Ψ|4〉/〈|Ψ|〉2. In the homogeneous
case, βA = 1, whereas βA > 1 implies less favorable energies. In particular, the energy of
the triangular configuration is smaller than that of the square one by less than 1% [34]. In
the square lattice configuration, the summation may be re-expressed in terms of a Jacobi
theta function, θ3(z; q) = ∑∞

n=−∞ qn2
e2inz, so that

Φ(x̃, ỹ) = Ce−
1
2 κ2 x̃2

θ3

[
1;
√

2π κi(x̃ + iỹ)
]
. (18)

In this case, κ = λab/ξab where λab is the ab-plane penetration length, while x̃ = x/λab,
ỹ = y/λab. Notice that λab describes the magnetic field screening by supercurrents flowing
along the ab-plane. Figure 1 depicts the resulting contours of constant probability defined
by |Φ(r̃⊥)|2. We observe a lattice structure with square elementary cells with dimensionless
periods Lx = Ly =

√
2π/κ. By writing Φ(r̃⊥) = |Φ(r̃⊥)|eiχ(r̃⊥) it follows that the GL

current density is given by Js = (h̄e∗/2m∗ab)|Φ|2(∇χ − (e∗/h̄)A), indicating that super-
current lines coincide with the equi-probability contours, being the vortex cores located at
the darkest zones of the figure. Notice that the vortex size can be tuned by the substrate
temperature T, which modulates the lattice parameter. In normal units, it follows that
Lx(T) = Ly(T) =

√
2πξab(T), so that Lx(2 K) ≈ 4 nm, whereas Lx(90 K) ≈ 16 nm.

2.3. Thermal Properties of the Order Parameter

We describe the thermal properties of the order parameter by recurring to the Lon-
don two-fluid model of superconductivity, inspired in turn by the two-fluid model of
the superfluid He4. This model assumes that the charge density, n, at a fixed position,
is split as a sum of normal and SC contributions, n = nn(T) + ns(T). The tempera-
ture behavior of ns(T) is frequently described according to the Casimir–Gorter model,
ns(T)/n = 1− (T/Tc)4 [51]. However, this empirical relation is in clear disagreement with
experimental observations [48].

We consider instead, as mentioned above, that CPs define a 2D gas of weakly-
interacting particles with BE statistical properties. As a consequence, the energy excitation

spectrum is given by Bogoliubov expression Ek =
[
(h̄csk)2 + (h̄2k2/2m∗)2

]1/2
which, in

the low-momentum limit, leads to a phonon dispersion relation, Ek ≈ h̄csk, with cs the
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sound’s speed, consistent with Landau’s criterion for superfluid particle transport [52]. In
that case, we assume the pair occupancy density at any given position can be expressed,
for T < TBEC, in the form [53]

n2D = n2D
0 (T) + ∑

k 6=0

1
exp(h̄csk/kBT)− 1

. (19)

Here, TBEC =
(

2πh̄2c2
s n2D/k2

Bζ(2)
)1/2

, and ζ(2) is a Riemann’s zeta function. The
summation in Equation (19) can be straightforwardly evaluated by integrating over a 2D
density of states. It follows that n2D

0 (T)/n2D = 1− (T/Tc)2 [53,54]. Taking into account
that in the dilute regime the condensate and the density of superfluid charge carriers
coincide, we identify TBEC = Tc. This latter result implies, in particular, that the penetration
length satisfies the universal relation λ2

ab(0)/λ2
ab(T) = 1 − (T/Tc)2, which has shown

to represent an accurate description of experimental data for YBCO systems under an
ample range of doping levels in the whole temperature interval 0 < T < Tc [54–56].
By assuming now that the former results hold at every position over the SC substrate,
n2D

0 (r, T) ≈ n2D
s (r, T), and then

n2D
s (r⊥, T) = |Φ(r⊥)|2

[
1− (T/Tc)

2
]
. (20)

2.4. YBCO Dielectric Response

The optical properties of HTSCs have been experimentally investigated for different
compounds at several temperatures and frequencies using reflectivity and impedance-type
measurements [57–59]. In particular, the dielectric function, ε(ω), of YBCO samples has
been measured in the normal and SC states at T = 100 K and T = 2 K, respectively.
Notably, the estimated values of the optical parameters remain practically unaltered in
these temperature extremes. In particular, the plasma frequency, ω2

p = e∗2n/ε0m∗, satisfies
ωp(2K) = ωp(100 K) = 0.75 eV, suggesting that London’s two-fluid model of superconduc-
tivity can be employed to derive an interpolation, ε(ω; T), valid in the entire temperature
range 2 < T < 100 K. For T > Tc, an accurate representation of the dielectric response
includes a constant term, ε∞, in the optical spectrum, as well as Drude, mid-infrared (MIR),
and Nph phonon contributions:

ε
(n)
ab (ω) = ε∞ −

ω2
p

ω2 + iγ(T)ω
− Ω2

MIR
ω2 −ω2

MIR + iΓMIR ω
−

Nph

∑
r=1

Ω2
ph

ω2 −ω2
r + iγr ω

. (21)

Here, ε∞ = 3.8, the inverse scattering rate γ(T) = 0.037 + γ1T eV, with
γ1 = 8× 10−15 eV/K, and the MIR parameters ΩMIR = 2.6 eV,
ωMIR = 0.26 eV, ΓMIR = 1 eV, whereas the phonon parameters are given in Refs. [57,58].
In the SC regime, dissipative scattering does not occur, so that γ → 0. In that limit,
(ω± iγ)−1 → P(1/ω)∓ iπδ(ω), with δ(ω) the Dirac delta function, and the dielectric
function becomes:

ε
(s)
ab (ω; r⊥) = ε∞ −

[
iπω2

p

2ω
δ(ω) +

ω2
p

ω2

](
1− (T/Tc)

2
)
|Ψ(r)|2 −

ω2
p (T/Tc)2

ω2 + i γ(T)ω
(22)

− Ω2
MIR

ω2 −ω2
MIR + iΓMIR ω

−
Nph

∑
r=1

Ω2
ph

ω2 −ω2
r + iγr ω

.

As explained in Section 2.1, the dielectric function has to be calculated in the ro-
tated frequency space iζ where the details can be found in Ref. [60]. In this scheme,
the nanosphere and substrate permittivities are respectively given by εns(iζ) = εAu(iζ),
εsub(iζ, r⊥, T) = ε

(n)
ab (iζ, r⊥, T > Tc) and εsub(iζ, r⊥, T) = ε

(s)
ab (iζ, r⊥, T < Tc).
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3. Results

We show in Figure 2 the structure of Casimir force at T = 2 K, as a function of the
position of the Au nanosphere over the AL. Here, the nanosphere radius R = 4 nm, and
d = 2R. Although the dipole approximation requires, actually, d� R, as mentioned above,
in a previous study, it was found that higher multipolar contributions to the force become
negligible at this separation [42]. This figure reveals that the Casimir force displays a
periodic structure congruent with the spatial charge distribution induced by the AL. It can
be observed that the modulation amplitude ∆F = |Fmax − Fmin| is maximized at regions
corresponding to the vortex cores, consistently with the finding that the material reflectivity
is strongly reduced at these zones. In order to compare how these results are altered with
increasing temperature, we present in Figure 3 a cross-section of the Casimir force surface
at a fixed value of Lx = 0.5, for three different temperatures: T = 2 K, T = 40 K, and
T = 90 K, with corresponding lattice size: Lx(2 K) = 4.1 nm, Lx(40 K) = 4.6 nm, and
Lx(90 K) = 16.4 nm. We observe that in the low-temperature regime, 2 ≤ T ≤ 40 K, quite
similar periodic patterns arise, essentially independent of the temperature, with a relatively
small modulation amplitude ∆F ≈ 0.04 pN. On the other hand, for T ≈ Tc the vortex cell
size increases, but the force modulation is drastically reduced.

Figure 2. Periodic structure of the Casimir force as a function of the location of the Au nanosphere
over the Abrikosov lattice at T = 2 K, for a fixed distance d = 2R. Here, R = Lx(2 K) ≈ 4 nm. It can
be observed that the minimal strength of the Casimir force corresponds to the vortex cores.
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Figure 3. Comparison of the Casimir force profiles as a function of the normalized coordinate ỹ/Ly

along a line passing right above the vortex core (x̃/Lx = 0.5), and d = 2R = 8 nm, at three different
temperatures: T = 2 K, T = 40 K and T = 90 K as indicated. Depending on the temperature,
each unit period Ly corresponds to spatial periods: Ly(2 K) = 4.1 nm, Ly(40 K) = 4.6 nm, and
Ly(90 K) = 16.4 nm. We observe that in the low-temperature regime the force magnitude shows
almost coincident values up to T = 40 K, consistent with expectations that vacuum fluctuations
(∼ h̄c/d) overwhelm thermal fluctuations (∼ kBT) at nanometer separations. Here, h̄, c, and kB

denote the reduced Planck constant, the speed of light, and the Boltzmann constant, respectively.

4. Discussion and Conclusions

The former results have been derived within a mean-field approach that neglects
thermal fluctuations of the order parameter and pinning disorder. However, in the weak-
interacting limit of Cooper pairs, thermal effects can be taken into account [36]. The effect
of disorder in the vortex array can be introduced by adding white noise to the coefficients
of the GL free energy and performing the Z functional integration, or by performing
vortex matter simulations based on the numerical analysis of the time-dependent GL
formulation [35,36].

Although the present study was focused on the action of magnetic fields just below
the upper critical field, H ≤ Hc2, the effect of fields near the lower critical value, H ≥ Hc1
can be straightforwardly discussed within the clean-limit of the London theory [34]. In
that case, the order parameter is given by |φ(r)|2 ≈ (1 + 2ξ2

ab/r2)−1, while the local

magnetic induction B(r) = Φ0 K0

(√
r2 + 2ξ2

ab/λab

)
/2πλ2

ab, where K0(x) is a modified
Bessel function. Then, the total order parameter can be built as the product ∏i φ(|r− ri|),
where ri denotes the localization of the different vortexes, whereas the total magnetic
induction B(r) = ∑i B(|r− ri|) [61].

The periodic structure of the system could, actually, induce diffractive effects in the
predicted spatial-pattern observed in the Casimir force. Indeed it has been shown how
diffraction gratings modify the force [62]. We did not consider this kind of effects because
they would occur for wavelengths of the order of the period of the Abrikosov lattice, about
4–16 nm in our case. This corresponds to frequencies higher than 300 eV. For these high
values of energy, the dielectric function is constant (tends to the high-frequency value, ε∞),
and no position dependence will be observed.

In conclusion, we presented a general methodology aimed to evaluate the Casimir
force in setups constituted by SC materials under the action of an external magnetic field.
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We have shown that the Abrikosov vortex lattice displayed by a type II superconductor
induces Casimir forces with a periodic structure that mirrors the local charge redistribution
due to superconducting currents conducing to magnetic fluxon confinement within the
vortex cores. This approach may be applied to SC systems under different conditions of
temperature, oxygen doping, and magnetic field configurations, allowing the analysis of
alternative orderings competing with vortex matter, such as charge density waves [63],
or the investigation of normal matter inside the vortexes subject to multiple Andreev
reflections [64].
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Abstract: Using the formulation of the electromagnetic Green’s function of a perfectly conducting
cone in terms of analytically continued angular momentum, we compute the Casimir–Polder interac-
tion energy of a cone with a polarizable particle. We introduce this formalism by first reviewing the
analogous approach for a perfectly conducting wedge, and then demonstrate the calculation through
numerical evaluation of the resulting integrals.

Keywords: Casimir–Polder interaction; Kontorovich–Lebedev transformation; electromagnetic
Green’s function

1. Introduction

The Casimir–Polder interaction between an uncharged conducting object on a polariz-
able particle [1–3] provides one of the simplest examples of a mesoscopic fluctuation-based
force. Since the particle can be treated as a delta-function potential, its effects can be evalu-
ated in any basis. As a result, in the scattering formalism, the interaction energy between
the particle and conducting object can be determined directly from the full electromagnetic
Green’s function in the presence of the object. In contrast, for the Casimir force between two
objects, one needs the scattering T-matrices for each object connected by the free Green’s
function expressed in each object’s scattering basis to propagate fluctuations between
objects [4–9].

Along with the standard plane, cylinder, and sphere geometries, for which there
exist analytic expressions in terms of scattering modes for the Green’s function in the
presence of a perfect conductor, the conducting wedge [10,11], which also models a cosmic
string [12], is a case where the Green’s function can be obtained analytically as a mode
sum, by imposing the wedge boundary conditions through a discrete, fractional, angular
momentum index. However, one can also use analytic continuation to a continuous,
complex angular momentum to express this Green’s function in terms of the T-matrix for
scattering in the angular (rather than radial) variable [13–16], an approach that then extends
to the case of the cone [16] and puts the Green’s function into a form that is more directly
analogous to the sphere, cylinder, and plane results. Mathematically, this approach is based
on the Mehler–Fock and Kontorovich–Lebedev transforms [17]. The complex angular
momentum approach requires that one consider only imaginary frequencies, however, so
though it is well-suited to equilibrium problems at both zero and nonzero temperature, it
cannot be applied to heat transfer [18], which must be computed on the real axis.

All of these calculations allow for investigation of the Casimir–Polder interaction near
a sharp edge or tip, where the derivative expansion approach [19–23] is not applicable,
yielding semi-analytic results in terms of a small number of integrals and sums. However,
this approach is limited to perfect conductors and, as a result, complements calculations
based on surface current methods [24–27], which are more complex numerically, but
applicable to more general geometries and materials. Recent work using the multiple
scattering surface method, in which one combines expansions in scattering between and
within objects [28], provides a particularly relevant comparison by demonstrating the
Casimir force between a dielectric wedge and plane.

Physics 2023, 5, 1003–1012. https://doi.org/10.3390/physics5040065 https://www.mdpi.com/journal/physics64
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Here we use the analytically continued scattering formalism to calculate the Casimir–
Polder force of a conducting cone on a polarizable atom, as might arise, for example, in the
case of a particle beam passing by an atomic force microscope. We begin by reviewing
the wedge calculation in the discrete angular momentum approach, and show how to
obtain the same result using the analytic continuation approach. We then extend this
calculation to the case of the cone, obtaining a result in terms of a sum and integral over
angular momentum variables. For a special case where the particle lies on the cone axis,
the calculation simplifies to a single integral. This calculation can be straightforwardly
extended to frequency-dependent polarizability and nonzero temperature, although, in
those cases, an additional sum or integral over frequency must be done numerically.

2. Review of Casimir–Polder Wedge

Let us begin by reviewing the Casimir–Polder interaction energy for a conducting
wedge, which was computed in Refs. [10,29] and considered in the context of repulsive
forces in Refs. [30,31]. Let the wedge run parallel to the z-axis and have a half-opening
angle 0 < θ0 < π around θ = 0 with the wedge vertex located at x = y = 0, and consider

imaginary wavenumber k = iκ with κ > 0. Note that by allowing θ0 >
π

2
, one is able

to consider a case where the particle is inside the wedge. For a particle located at angle
θ ∈ [0, 2π] obeying θ0 < θ < 2π − θ0, one can write the full Green’s function for the wedge
in terms of ordinary cylindrical wavefunctions of fractional order [10,11],

G(r1, r2, κ) = − p
π

∫ ∞

−∞

dkz

2π

∞

∑
`=−∞

(
Moutgoing

`kzκ ⊗Mregular
`kzκ

∗ − Noutgoing
`kzκ ⊗ Nregular

`kzκ
∗
)

, (1)

in terms of the magnetic (transverse electric) and electric (transverse magnetic) modes,
respectively,

M`kzκ(r) =
1√

κ2 + k2
z
∇×

[
ẑ f|`p|

(√
κ2 + k2

z r
)

eikzz cos(`p(θ − θ0))

]

N`kzκ(r) =
1

κ
√

κ2 + k2
z
∇×∇×

[
ẑ f|`p|

(√
κ2 + k2

z r
)

eikzz sin(`p(θ − θ0))

]
(2)

with ` the quantum number, the hat denoting unit vector, and p =
π

2(π − θ0)
, where the

regular (outgoing) function is evaluated at the point r1 or r2 with the smaller (larger) value
of the cylindrical radius r and the radial functions given in terms of Bessel functions for
regular and outgoing modes as:

f regular
|`p| (

√
κ2 + k2

z r) = I|`p|

(√
κ2 + k2

z r
)

and f outgoing
|`p| (

√
κ2 + k2

z r) = K|`p|

(√
κ2 + k2

z r
)

. (3)

This Green’s function then obeys:

(∇×∇×+κ2)G(r1, r2, κ) = δ(3)(r1 − r2) (4)

in the presence of the conducting wedge, whereas the free Green’s function G0(r1, r2, κ),
given by setting p = 1 and replacing the trigonometric functions sin(`p(θ − θ0)) and
cos(`p(θ − θ0)) in Equation (2) with ei`θ/

√
2, obeys the same equation in empty space.

One can then use the “TGTG” (T-matrix/free Green’s function) [4–9] formulation of
the Casimir energy, considering only the lowest-order interaction with the potential for a
particle with polarizability α at position r,

V(r′) = −4πακ2δ(3)(r− r′) , (5)

which can be expressed in any basis since it is a delta function, δ(3)(r− r′).
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The result for the interaction energy of a particle with isotropic polarizability α be-
comes [10,29]:

U(r) = − h̄c
2π

∫ ∞

0
Tr
[
V(r)

(
G(r, r′, κ)−G0(r, r′, κ)

)]
dκ

= 2αh̄c
∫ ∞

0
κ2 tr[G(r, r, κ)−G0(r, r, κ)]dκ

= − 3αh̄c
8πr4 sin4(p(θ − θ0))

[
p4 − 2

3
p2(p2 − 1) sin2(p(θ − θ0))−

1
135

(p2 − 1)(p2 + 11) sin4(p(θ − θ0))

]
, (6)

where h̄ is the reduced Planck’s constant, c denotes the speed of light, ’ Tr’ denotes the
trace, which includes the trace over the spatial coordinate, and ’ tr’ denotes the trace only
over polarizations. In this approach, there is not a straightforward way to subtract the free
contribution mode-by-mode, so one instead uses a point-splitting argument to subtract the
entire contribution from the free Green’s function at once.

For the case of the cone, there does not exist an analog of this full Green’s function
written in terms of a rescaled order. As a result, we next recompute the result for the
wedge using a different form of the Green’s function, which generalizes more readily to
the case of the cone. In this approach, the angular momentum sum is replaced via analytic
continuation by an integral, yielding for the free Green’s function [13,16]:

G0(r1, r2, κ) = − 1
π2

∫ ∞

−∞

dkz

2π

∫ ∞

0
dλ
(

Moutgoing,+
λkzκ ⊗Mregular,+

λkzκ
∗ + Moutgoing,−

λkzκ ⊗Mregular,−
λkzκ

∗

−Noutgoing,+
λkzκ ⊗ Nregular,+

λkzκ
∗ − Noutgoing,−

λkzκ ⊗ Nregular,−
λkzκ

∗
)

, (7)

where the transverse modes are:

Mλkzκ(r) =
1√

κ2 + k2
z
∇×

[
ẑKiλ

(√
κ2 + k2

z r
)

eikzz fλ(θ)

]
and Nλkzκ(r) =

1
κ
∇×Mλkzκ(r) (8)

and θ ∈ [−π, π]. One has both even and odd modes, with regular modes given by:

f regular,+
λ (θ) = cosh(λθ) and f regular,−

λ (θ) = sinh(λθ) (9)

and outgoing modes given by

f outgoing,+
λ (θ) = cosh(λ(π − |θ|)) and f outgoing,−

λ (θ) = sinh(λ(π − |θ|)) sgn θ , (10)

where λ denotes the analytically continued angular quantum number, and the regular
(outgoing) functions are evaluated at the point r1 or r2 with the smaller (larger) value of
|θ|. Note that the star indicates the conjugation of the complex exponential part of the
function only.

Although not needed for the computation, the corresponding longitudinal mode is:

Lλkzκ(r) =
1
κ
∇
[

Kiλ

(√
κ2 + k2

z r
)

eikzz fλ(θ)

]
. (11)

If its contribution is added to the free Green’s function, the result is equal to the scalar

Green’s function,
1

2π

∫ ∞

−∞

dkz

2π
K0

(√
κ2 + k2

z

∣∣∣r1eiθ1 − r2eiθ2
∣∣∣
)

eikz(z>−z<), times the identity

matrix; without this contribution, one obtains the same scalar times the projection matrix
on to the transverse components. Here, z> (z<) is the z coordinate associated with the point
with the larger (smaller) value of |θ|.

In this approach, we take the wedge to be located at θ = ±θ0 and the particle’s location
will always have |θ| > θ0. One then obtains the full Green’s function by replacing the
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regular solution with a combination of regular and outgoing solutions given in terms of
the T-matrix:

T M,+
λ =

sinh(λθ0)

sinh(λ(π − θ0))
= −T N,−

λ and T M,−
λ =

cosh(λθ0)

cosh(λ(π − θ0))
= −T N,+

λ , (12)

so that it now obeys the conducting boundary conditions on the wedge, yielding:

G(r1, r2, κ) = − 1
π2

∫ ∞

−∞

dkz

2π

∫ ∞

0
dλ
[

Moutgoing,+
λkzκ ⊗

(
Mregular,+

λkzκ
∗ + T M,+

λ Moutgoing,+
λkzκ

∗
)

+Moutgoing,−
λkzκ ⊗

(
Mregular,−

λkzκ
∗ + T M,−

λ Moutgoing,−
λkzκ

∗
)

−Noutgoing,+
λkzκ ⊗

(
Nregular,+

λkzκ
∗ + T N,+

λ Noutgoing,+
λkzκ

∗
)

−Noutgoing,−
λkzκ ⊗

(
Nregular,−

λkzκ
∗ + T N,−

λ Noutgoing,−
λkzκ

∗
)]

. (13)

In this form, one can subtract the free Green’s function mode-by-mode, leaving only the
terms with outgoing waves multiplied by the T-matrix. One obtains for the energy:

U(r) = − αh̄c
π3r2

∫ ∞

0
dκ
∫ ∞

−∞
dkz

∫ ∞

0
dλ

1
sinh(2(π − θ0)λ){

Kiλ(
√

κ2 + k2
z r)2

[(
r2
(

κ2 + k2
z

)
+ λ2

)
cosh(2(π − θ)λ) sinh πλ

+

(
r2
(

κ2 + k2
z

)
+

κ2 − k2
z

κ2 + k2
z

λ2
)

sinh((π − 2θ0)λ)

]

+r2
(

∂

∂r
Kiλ(

√
κ2 + k2

z r)
)2(

cosh(2(π − θ)λ) sinh πλ +
k2

z − κ2

k2
z + κ2 sinh((π − 2θ0)λ)]

)}

= − αh̄c
πr4

∫ ∞

0
dλ

[
λ + λ3

3
coth πλ− 1

3
coth(2(π − θ0)λ) +

cosh(2(π − θ)λ)

sinh(2(π − θ0)λ)

]
, (14)

where the integrals over κ and kz are done using polar coordinates. After carrying out the
λ integral, one obtains agreement with Equation (6).

3. Electromagnetic Cone Green’s Function

Let us now construct the Green’s function for the perfectly conducting cone with
half-opening angle 0 < θ0 < π, centered on the z-axis with the cone vertex at z = 0, as
shown in Figure 1. We again consider imaginary wavenumber k = iκ with κ > 0. Note

that by allowing θ0 >
π

2
, one can consider a case where the particle is inside the cone.

From Ref. [16], one has magnetic (transverse electric) and electric (transverse magnetic)
transverse modes:

Mλmκ(r) = ∇×
[
rkiλ− 1

2
(κr)eimφ fλm(r)

]
and Nλmκ(r) =

1
κ
∇×Mλmκ(r) (15)

with
f regular
λm (r) = P−m

iλ− 1
2
(cos θ) and f outgoing

λm (r) = Pm
iλ− 1

2
(− cos θ) , (16)

where Pm
iλ− 1

2
(cos θ) is the Legendre function of the first kind and km

iλ− 1
2
(κr) =

√
2

πκr
Kiλ(κr)

is the modified spherical Bessel function of the third kind, both with complex degree/order

` = iλ− 1
2

. The “ghost” mode [16] is:

Rλmκ = r×∇
[

kiλ− 1
2
(κr)P−|m|

iλ− 1
2
(± cos θ)eimφ

]
, (17)
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where the ± sign is for regular(’+’) and outgoing (’−’) modes. Its contribution arises from
the contour integral used to turn the sum over the angular momentum quantum number `
into the integral over its analytic continuation λ, in which it cancels the contribution from
the ` = 0 mode, since that mode does not exist in electromagnetism. As a result, it is only

ever evaluated at λ =
1
2i

, corresponding to ` = 0.

Figure 1. Geometry of cone with half-opening angle θ0 and particle at radius r and angle θ > θ0.

In this basis, the free Green’s function is [16]:

G0(r1, r2, κ) = − κ

4π

[
∞

∑
m=−∞

∫ ∞

0

λ tanh πλ

λ2 + 1
4

dλ
(

Moutgoing
λmκ ⊗Mregular

λmκ
∗ − Noutgoing

λmκ ⊗ Nregular
λmκ

∗
)

+
∞

∑
m=−∞

m 6=0

Γ(|m|)Γ(|m|+ 1)Routgoing
λmκ ⊗ Rregular

λmκ
∗
∣∣∣∣
λ= 1

2i

]
, (18)

where the regular (outgoing) function is evaluated at the point r1 or r2 with the smaller
(larger) value of |θ|, and Γ(x) is the gamma function. Note that, as above, the star indicates
the conjugation of the complex exponential part of the function only. Here, the integral

over λ =
1
i

(
`+

1
2

)
represents the analytic continuation of the sum over `.

For completeness, we also give the longitudinal mode:

Lλmκ = −

√
λ2 + 1

4

κ
∇
[
kiλ− 1

2
(κr)eimφ fλm(r)

]
(19)

for this geometry. If its contribution is added to the free Green’s function, the result is

equal to the scalar Green’s function
κ

4π
k0(κ|r1 − r2|) times the identity matrix; without

this contribution, one obtains the same scalar times the projection matrix on to the trans-
verse components.

The full Green’s function in the presence of the conducting boundary G is then given
by the same expression with the replacement, χregular∗ → χregular∗ + T χ

λmχoutgoing∗, where
χ = M, N, R; again, the star indicates the conjugation of the complex exponential part of
the function only, and T χ

λm is the corresponding T-matrix element [16],

T N
λm = −

P−m
iλ− 1

2
(cos θ0)

Pm
iλ− 1

2
(− cos θ0)

, T M
λm = −

∂
∂θ0

P−m
iλ− 1

2
(cos θ0)

∂
∂θ0

Pm
iλ− 1

2
(− cos θ0)

, and T R
λm =

P−|m|
iλ− 1

2
(cos θ0)

P−|m|
iλ− 1

2
(− cos θ0)

, (20)

in terms of θ0, the half-opening angle of the cone. Subtracting the contribution from the free
Green’s function then cancels the term with the regular solution, leaving only the product
of outgoing solutions in the interaction energy.
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4. Electromagnetic Cone Casimir–Polder Energy

After some algebra and simplification, one obtains the Casimir–Polder interaction
energy for an atom with isotropic and frequency-independent polarizability α at distance r
from the cone vertex and angle θ from the cone axis, with |θ| > θ0, as:

U(r) = 2αh̄c
∫ ∞

0
κ2 tr[G(r, r, κ)−G0(r, r, κ)]dκ

= −αh̄c
2π

∫ ∞

0
κ3 tr

[
∞

∑
m=−∞

∫ ∞

0

λ tanh πλ

λ2 + 1
4

dλ
(
T M

λm Moutgoing
λmκ ⊗Moutgoing

λmκ
∗ − T N

λmNoutgoing
λmκ ⊗ Noutgoing

λmκ
∗
)

+
∞

∑
m=−∞

m 6=0

Γ(|m|)Γ(|m|+ 1)T R
λmRoutgoing

λmκ ⊗ Routgoing
λmκ

∗
∣∣∣∣
λ= 1

2i

]
dκ

=
αh̄c

2πr2

∞

∑
m=−∞

∫ ∞

0
κdκ

{ ∫ ∞

0
dλλ tanh πλ

[((
∂

∂θ
Pm

iλ− 1
2
(− cos θ)

)2
+

m2

sin2 θ
Pm

iλ− 1
2
(− cos θ)2

)

×
(
T N

λm

( ∂

∂r

(
rkiλ− 1

2
(κr)

))2
− T M

λmκ2r2kiλ− 1
2
(κr)2

)
1(

λ2 + 1
4

)

+T N
λm

(
λ2 +

1
4

)
Pm

iλ− 1
2
(− cos θ)2kiλ− 1

2
(κr)2

)]
−
(

1 + cos θ

1− cos θ

)|m|(1− cos θ0

1 + cos θ0

)|m| 2|m|
sin2 θ

e−2κr

}

=
αh̄c
8r4

{
∞

∑
m=−∞

∫ ∞

0
dλλ sech πλ tanh πλ

[
2T N

λm

(
λ2 +

1
4

)
Pm

iλ− 1
2
(− cos θ)2

+
(
T N

λm − T M
λm

)(( ∂

∂θ
Pm

iλ− 1
2
(− cos θ)

)2
+

m2

sin2 θ
Pm

iλ− 1
2
(− cos θ)2

)]
− 1

π

sin2 θ0

(cos θ − cos θ0)2

}
, (21)

where the last term arises from the “ghost” mode contribution. Here,

λ2 + 1
4

2r2

∫ ∞

0
κkiλ− 1

2
(rκ)2dκ =

∫ ∞

0
κ3kiλ− 1

2
(rκ)2dκ =

∫ ∞

0

κ

r2

[
∂

∂r

(
rkiλ− 1

2
(rκ)

)]2
dκ =

π

4r4

(
λ2 +

1
4

)
sech πλ (22)

is used [32] to carry out the integral over κ, with integrals involving derivatives with respect
to r obtained by differentiating under the integral sign. The ghost term can be computed
using the derivative of a geometric series,

∞

∑
m=1

m
(

1 + cos θ

1− cos θ

)m(1− cos θ0

1 + cos θ0

)m
=

sin2 θ sin2 θ0

4(cos θ − cos θ0)2 , (23)

along with an elementary κ integral.
One can check the result (21) numerically in the case of θ0 = π/2, when this result be-

comes the Casimir–Polder energy of a particle at a distance d = r| cos θ| from a conducting

plane, U(r) = − 3αh̄c
8πd4 . Let us also note that the difference of T-matrices simplifies to

T N
λm − T M

λm =
4 cosh πλ

π sin θ0

1
∂

∂θ0
[Pm

iλ− 1
2
(− cos θ0)2]

(24)

by using the Wronskian relation between Pm
` (z) and Pm

` (−z).
Carefully taking the limit θ → π, one obtains a special case where the particle lies on

the cone axis. Here, the only contributions arise from m = −1, 0,+1, leading to a result that
simplifies to:

U(r) =
αh̄c

2πr2

∫ ∞

0
κdκ

{ ∫ ∞

0
dλλ

(
λ2 +

1
4

)
tanh πλ

[(
T N

λ0 − κ2r2T M
λ1

)
kiλ− 1

2
(κr)2
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+T N
λ1

(
∂

∂r

(
rkiλ− 1

2
(κr)

))2
]
− e−2κr tan2 θ0

2

}

=
αh̄c
8r4

{∫ ∞

0
dλλ

(
λ2 +

1
4

)
sech πλ tanh πλ

[
2T N

λ0 +

(
λ2 +

1
4

)(
T N

λ1 − T M
λ1

)]
− 1

π
tan2 θ0

2

}
(25)

for the cone–particle interaction energy when θ = π. Here, it is helpful to obtain the
result in the first line, before integration over κ, because that result can straightforwardly
be extended to nonzero temperature and frequency-dependent polarization, as will be
described in more detail below.

Within this special case, it is illustrative to consider θ0 =
π

2
, where the cone becomes a

plane, for which T N
λ0 = −1 and T N

λ1 = −T M
λ1 = − 1(

λ2 + 1
4

) . One then uses the κ integrals

above along with the integrals [32,33] (the second integral does not appear to have been
obtained previously):

∫ ∞

0
kiλ− 1

2
(κr)2λ tanh πλdλ =

1
2κr

e−2κr

∫ ∞

0
kiλ− 1

2
(κr)2λ3 tanh πλdλ =

1
2κr

(
κr +

1
4

)
e−2κr

∫ ∞

0

(
∂

∂r

(
rkiλ− 1

2
(κr)

))2
λ tanh πλdλ =

1
2κr

(
κ2r2 − κr +

1
2

)
e−2κr

∫ ∞

0
dλλ

(
λ2 +

1
4

)
sech πλ tanh πλ =

1
2π

, (26)

where, again, the integrals involving derivatives with respect to r are obtained by differ-
entiating under the integral sign, to do both the κ and λ integrals explicitly and in either
order and obtain the standard results for the plane,

U(r) = − αh̄c
2πr2

∫ ∞

0
κdκ

{ ∫ ∞

0
dλλ tanh πλ

[(
λ2 +

1
4
+ κ2r2

)
kiλ− 1

2
(κr)2 +

(
∂

∂r

(
rkiλ− 1

2
(κr)

))2
]
+ e−2κr

}

= − αh̄c
4πr3

∫ ∞

0
dκ
(

2κ2r2 + 2κr + 1
)

e−2κr

= −αh̄c
2r4

[∫ ∞

0
dλλ

(
λ2 +

1
4

)
sech πλ tanh πλ +

1
4π

]
= − 3αh̄c

8πr4 , (27)

where, in the second line, we have done the λ integral first and, in the third line, we have
done the κ integral first. The former expression shows that if the ghost contribution is
grouped with the electric modes, the contributions from the electric and magnetic modes
match the planar calculation individually as functions of κ, and, as a result, reproduce the
5:1 ratio of the total contributions of the electric and magnetic modes [34].

5. Anisotropic Polarizability

By repeating the above calculation in the case where α is a matrix, one can extend these
results to the case of an anisotropic particle. We write the polarizability in the general form:

α =




α⊥ cos2 β αxy − iγz αxz + iγy
αxy + iγz α⊥ sin2 β αyz − iγx
αxz − iγy αyz + iγx αzz


 , (28)

which includes both the symmetric and antisymmetric (nonreciprocal) off-diagonal compo-
nents. Without loss of generality, we take the particle to be at φ = 0, so that it lies in the
xz-plane. In terms of these parameters, one obtains for the energy:
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U(r) =
h̄c
8r4

{
∞

∑
m=−∞

∫ ∞

0
dλλ sech πλ tanh πλ

×
[(

∂

∂θ
Pm

iλ− 1
2
(− cos θ)

)2(
(α⊥ cos2 β cot2 θ − 2αxz cot θ + αzz)T N

λm − α⊥ sin2 β T M
λm

)

+ 2m
γx + γz cot θ

sin θ

(
∂

∂θ
Pm

iλ− 1
2
(− cos θ)

)
Pm

iλ− 1
2
(− cos θ)(T N

λm − T M
λm)

+ Pm
iλ− 1

2
(− cos θ)2

(
m2
(

2αxz cot θ − α⊥ cos2 β cot2 θ − αzz

)
T M

λm

+ 2
(

1
4
+ λ2

)(
αzz cos2 θ +

2m2α⊥
(1 + 4λ2)

csc2 θ sin2 β + 2αxz cos θ sin θ + α⊥ cos2 β sin2 θ

)
T N

λm

)]

+
(2αxz cos θ sin θ − α⊥ + (α⊥ cos2 β− αzz) sin2 θ) sin2 θ0

2π(cos θ − cos θ0)2

}
, (29)

which, on the axis θ = π, simplifies to

U(r) =
h̄c
4r4

{ ∫ ∞

0
dλλ

(
1
4
+ λ2

)
sech πλ tanh πλ

[
αzzT N

λ0 +
(α⊥

4
+

γz

2

)(1
4
+ λ2

)
(T N

λ1 − T M
λ1 )

]
− α⊥ tan2(θ0/2)

4π

}
.

(30)

Of particular interest is the γz term, which generates a nonreciprocal torque around
the z-axis. Comparing the αzz and α⊥ contributions also enables us to compare whether a
particle with a single polarization axis prefers to be aligned with or perpendicular to the
axis of the cone.

6. Results and Discussion

To visualize these results numerically, in Figure 2, the Casimir–Polder interaction
energy of an isotropic particle is plotted scaled by the fourth power of r sin(θ − θ0), which

gives the perpendicular distance from the particle to the plane in the case where θ− θ0 <
π

2
.

For θ0 = π/2, the result in units of αh̄c is − 3
8π
≈ −0.1194, and past this inflection point,

as the the cone envelops the particle, its interaction becomes much stronger.
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Figure 2. Scaled Casimir–Polder interaction energy,
Ur4 sin4(θ − θ0)

αh̄c
, for an isotropic particle as a

function of θ and θ0 (left) and as a function of θ0 for θ = π (right). See text for details.

All of the above calculations can be extended to nonzero equilibrium temperature

T, in which case the integral over κ from 0 to ∞ is replaced by
2πkBT

h̄c
times the sum
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over Matsubara frequencies, κn =
2πnkBT

h̄c
, for all n = 0, 1, 2, 3, . . ., where the n = 0

contribution is counted with a weight of
1
2

. This term must be considered carefully, since
the Bessel function has a logarithmic singularity as κ → 0 for fixed λ. For the special
case of θ0 = π/2, one can see explicitly from the above that this singularity disappears
when the integral over λ is done first, which should remain the case in general. In all of
these calculations, one can also straightforwardly move α inside the κ integral or sum to
model a frequency-dependent polarizability. However, introducing either or both nonzero
temperature and frequency-dependent polarizability then requires the κ sum or integral to
be carried out numerically.
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Abstract: Here, we review recent advances in precision Casimir force measurements with both
non-magnetic and magnetic materials. In addition, the measurement of the geometric dependence of
the Casimir force, both lateral and normal, using uniformly corrugated surfaces is briefly presented.
Finally, the measurement of the thermal Casimir force in graphene is discussed.
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1. Introduction

Precision measurements of the Casimir force have been ongoing since they were first
published, more than two decades ago [1,2]. The rapid progress in precision measurements
between metallic test bodies over this period [3–6] has revealed a puzzling problem through
disagreement between experiment and theory. In many experiments performed by different
groups, it was found that the predictions of the Lifshitz theory came into conflict with
the measurement data if the much-studied relaxation properties of conduction electrons
at low frequencies were taken into account in computations (detailed in monograph [7])
and reviews [8,9]. In this paper, we briefly review some of the experimental advances in
the University of California(UC)-Riverside group since the publication of the previous re-
views [7,10]. In Section 2, we recap the results from the recent precision measurement of the
Casimir force between smoother Au-coated surfaces of a sphere and plate for much larger
separations from 250 nm to 1300 nm in an ultra-high vacuum, using a more force-sensitive
cantilever in the custom-built dynamic atomic force microscope (AFM)-based setup. Here,
both ultraviolet (UV) light and Ar-ion cleaning of the Au surfaces were carried out to re-
move ambiguities of electrostatic patches. In Section 3, we briefly consider experiments on
the geometric dependence of the Casimir force using sinusoidal corrugated surfaces. Here,
measurements of the lateral Casimir force as well as the normal Casimir force between the
two uniformly corrugated surfaces are reviewed. In Section 4, earlier experiments on the
role of magnetic fluctuations are reviewed. These experiments, in addition to demonstrat-
ing the effect of magnetic permeability, were also able to rule out any prominent role for
electrostatic patches as an explanation for the disagreement between experiment and theory.
Finally, in Section 5, we review our recent experiment measuring the Casimir force from
graphene. Graphene provides many advantages towards understanding the disagreement
between precision measurements of the Casimir force and the Lifshitz theory. The reason is
that the response of graphene to electromagnetic fluctuations can be deduced from the first
principles of quantum electrodynamics, thus eliminating the key uncertainty of the material
properties in theoretical calculations of the Casimir force when metal test bodies are used
where tabulated values of the permittivity [11] and its extrapolation to zero frequency are
needed. Key details in all the experiments mentioned above are (i) independent measure-
ment of the residual electrostatic force between the interacting surfaces; (ii) keeping the
contribution of this residual electrostatic force either negligible or small compared with the
Casimir force, by using clean experimental surfaces in an ultra-high vacuum chamber; and
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(iii) using only surfaces where the residual electrostatic force is independent of distance,
allowing its definitive subtraction. In the precision Casimir force measurements with nor-
mal metals such as Au, the disagreement between the experimental measurement and the
Lifshitz theory, using tabulated values of the permittivity and its extrapolation including
the dissipation of the free conduction electrons, remains an unresolved puzzle to date.
Note that in Refs. [12,13], an agreement was obtained only by subtracting a hypothetical
electrostatic force between a centimeter-size spherical lens and a plate that was ten times
larger than the Casimir force. The measurements reviewed below, acquired using magnetic
metal surfaces [14,15] and difference force measurements using over layers [16], reconfirm
this conclusion to high precision.

2. Recent Precision Casimir Force Measurements to 1.3 µm

The most recent direct precision measurements of the gradient of the Casimir force
between an Au-coated surface of a sphere and a plate for separations to 1.3 µm were
reported in Refs. [17–20]. A large sphere and plate, rather than two plates, were used
to avoid problems with keeping two plates parallel. The schematic of the experiment is
shown in Figure 1a. A custom-built ultra-high vacuum atomic force microscope cantilever
technique was used to measure the Casimir force between an Au-coated sphere and plate.
The resonance frequency shift of this microcantilever is related to the sphere-plate force
gradient, as:

∆ f = − f0

2k

(
∂Fel
∂z

+
∂FCas

∂z

)
, (1)

where ∆f is the frequency shift, f 0 is the cantilever resonant frequency when no force
is applied, k is the cantilever spring constant, Fel and FCas are electrostatic force and
Casimir force, respectively. The electrostatic force Fel is used for calibration. The following
improvements over our previous measurements were achieved [17–20]:

i. Force measurement sensitivity improved by a factor of 10.
ii. An in situ Ar ion beam and UV cleaning procedure for the interacting surfaces were

introduced, eliminating the effects of ambiguous electrostatic forces and achieving
ultra-high vacuum.

iii. The surface roughness of the plate was reduced by a factor of 2 to 1.08 nm through
the use of polished Si wafer substrates and e-beam Au coating, which eliminated
uncertainties in separation distance (reduced to a smaller than 10−4 effect).

iv. Measurements were made to larger separation distances from 250 to 1300 nm (factor
of 2 larger than previously).

The gradient of the Casimir force was measured between the Au-coated hollow glass
sphere of R = 43.446 ± 0.042 µm radius and the Au-coated silicon plate. The hollow glass
spheres were made from liquid phase and had negligible asphericity with the difference
along two perpendicular axes being less than or equal to 0.1%. The spring constant k of
this cantilever was reduced by decreasing its thickness through etching with 60% KOH
(potassium hydroxide) solution. The electron micrograph of the Au-coated hollow glass
spheres attached to the cantilever end is shown in Figure 1b. The use of polished silicon
wafer as the base plate instead of sapphire or fused silica plates used previously [6] and an
e-beam evaporator for making the Au coatings instead of a thermal evaporator allowed
a decrease in the surface roughness by up to a factor of 2. The root-mean square (rms)
roughness on the sphere and the plate was 1.13 nm and 1.08 nm, respectively (compared
with 2.0 nm and 1.8 nm, respectively, in Ref. [6]). The Au-coated plate was mounted
on a piezoelectric tube which helped to precisely control its position, see Figure 1a. The
precise plate position was measured with the 520 nm interferometer shown in Figure 1a.
The cantilever oscillation was monitored with a 1550 nm laser optical interferometer. The
finesse of the cavity was maximized by Au coating the cantilever top end. Care needed to
be taken, as Au coating of the cantilever would reduce the oscillator quality factor, Q.
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Figure 1. (a) Schematic of the experimental setup. “UV” stands for “ultraviolet” and “UHV” stands
for “ultra-high vacuum”. (b) SEM (scanning electron microscope) micrograph of a microcantilever
with attached Au-coated sphere.

Removing Ambiguity from Electrostatic Patches

A major improvement over all previous experiments is the in situ UV followed by
Ar-ion cleaning of the test bodies and surfaces inside the vacuum chamber. The in situ
cleaning of interacting surfaces in Casimir force measurements is critical for the removal
of any surface contaminants that lead to background electrostatic forces. In particular,
the contaminants lead to inhomogeneous work functions of the Au surface, resulting
in patch potentials [21–24]. Such patch potentials result in electrostatic forces having a
distance dependence (electric multipole effects), complicating their subtraction and leading
to ambiguity in precision measurements of the Casimir force. Traditional vacuum cleaning
by baking to high temperatures is not suitable, as the interferometer alignment is destroyed
by thermal stress. In Figure 2, the sphere–plate residual potential is shown as a function of
separation distance before and after UV plus Ar-ion-beam cleaning. In Ar-ion cleaning, the
ions are focused on the interacting sphere–plate surfaces, as shown in Figure 1a, and the
adsorbed contaminants on the experimental chamber walls are not completely removed.
Thus, over time, the desorption of contaminants from the chamber walls leads to the
redeposition of some of the contaminant molecules on the Au surfaces of the test samples,
resulting in an increase in residual electric potential difference. First, applying UV light
leads to desorption of surface contaminants from the entire chamber, either through direct
ionization or reaction with generated ozone, which is then pumped out. As a result of
the UV light followed by Ar-ion-beam cleaning, the residual potential difference between
sphere and plate, as shown in Figure 2, was lowered by an order of magnitude, leading
to the near elimination of electrostatic forces, as discussed in the literature [18,19]. Its
value is also independent of sphere–plate separation distance, pointing to the absence
of electric multipole effects from any patch effects. In addition, the residual potential
difference between the two surfaces remains near zero for considerably longer, allowing
stable Casimir force measurements.

The measurement results [18,19] for the gradient of the Casimir force obtained are
shown in Figure 3a,b over the separation range from 250 to 950 for 10 nm cantilever
oscillation amplitude.
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Figure 3. The Casimir force gradient measured as a function of the sphere–plate separation for
(a,b) 10 nm cantilever oscillations and (c,d) 20 nm cantilever oscillations [18]. The experimental data
(error bars) for the force gradient and separation agree with the no-dissipation theory calculations
(lines) for zero-point photon-free electron scattering for all separations shown.

Using larger cantilever oscillation amplitudes of 20 nm, the frequency shift measure-
ment can be improved, allowing Casimir force gradient measurements to 1300 nm. The
measured gradients are shown as crosses in Figure 3c,d over the separation region from
600 nm to 1.3 µm. The vertical size of the crosses indicates the total error in measuring
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the force gradient at the 67% confidence level. The horizontal size is determined by the
constant error in measuring the absolute separations ∆z = 0.5 nm in Figure 3a,b and 1.1 nm
in Figure 3c,d. For ease of visualization, only every third data point is plotted. In the theory
calculations, the Au metal response is given by the permittivity ε(ω), where the tabulated
values in Ref. [11] were used along with the extrapolation to low frequencies made using

ε(ω) =
ω2

p
ω(ω+iγ) , where ωp = 9.0 eV is the plasma frequency and the relaxation frequency is

γ = 35 meV [11] for the dissipative Drude model and γ = 0 for the dissipationless plasma
model. The theoretical values represented by the solid blue line were calculated with the
tabulated Au permittivity [11] and dissipative Drude extrapolation to zero frequency. The
theoretical values represented by the solid red line were calculated with the tabulated
Au permittivity [11] and dissipationless plasma extrapolation to zero frequency. As is
seen in Figure 3a–d, the theoretical predictions using the dissipationless plasma model
are consistent with the measurement data over the entire range from 250 nm to 1.3 µm.
The predictions of the Lifshitz theory using the dissipative Drude model are excluded at
all separations up to 1.1 µm. Thus, the range of separations where the dissipative Drude
model is excluded has been significantly extended.

3. Geometric Dependence of the Casimir Force with Sinusoidally Corrugated Surfaces
3.1. Demonstration of Asymmetry and Nonadditivity in Lateral Casimir Force

Controlling the length scale of the zero-point photon fluctuations using boundary
geometry, dielectric properties, and temperature leads to profoundly interesting effects.
In particular, uniformly corrugated boundaries are of interest due to the diffraction-type
coherent scattering effects of zero-point photons that have been reported in these sys-
tems [23,25–34]. The zero-point photon wavelengths that matter are those that correspond
to the separation distance. Additional important length scales in the problem are the
corrugation period, λ, separation between the corrugations, z, the thermal wavelength
h̄c/kBT, the temperature, T, and the material reflectivity through the plasma wavelength
2πc/ωp, where ωp is the plasma frequency, h̄ is the reduced Planck constant, c denotes the
speed of light, and kB is the Boltzmann constant. The coupling of scales of different lengths
and the angle between the two corrugations led to rich behavior, making it a promising
probe into these interconnected phenomena [35–40].

Of the above, the most intriguing feature is the nonadditive behavior of the Casimir
force and, thus, the complicated dependence on the shape of the boundary surfaces con-
nected with diffraction effects. The nontrivial behavior of the normal Casimir force was
experimentally demonstrated in the configuration of a smooth sphere above a sinusoidally
corrugated plate [25]. For the case of the additive regime, we reported measurement of the
lateral Casimir force between two aligned sinusoidally corrugated surfaces of a sphere and
a plate [26]. In the case of the nonadditive regime, the deviation of both the experimental
data and the exact theory from the prediction of the proximity force approximation (PFA)
was quantified in Refs. [29,30]. PFA approximates curved surfaces as a collection of in-
finitesimal flat surface elements and the local parallel plate contributions are added [27,28].
Thus, PFA neglects the diffraction effects of the zero-point photons. Compared with our
previous lateral force measurement [2,26], this demonstration [29,30] of asymmetry and
nonadditivity required many improvements such as a decrease of more than 50% in the
grating period along with a 71% increase in the amplitude of the aligned imprinted grating.
Here, the experimental chamber with a pressure less than 10 mTorr contained a sinusoidally
corrugated Au-coated grating of size 5 × 5 mm2 vertically mounted on the piezotube of the
AFM. In order to achieve the nonadditive regime, the corrugations had an average period
of 574.7 nm, i.e., less than half of that in Refs. [2,26] and an amplitude of 85.4 ± 0.3 nm, com-
pared with 59 nm in Refs. [2,26]. This flat grating served as the first test body. A 320 µm long
V-shaped silicon nitride cantilever for the AFM was specially prepared first by uniformly
coating it with 40 nm of Al to improve its thermal and electric conductivity and to prevent
deformation due to differential thermal expansion in a vacuum. The lateral Casimir force
results from the interaction between two perfectly aligned uniaxially corrugated surfaces of
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the same period. With the goal to keep the contact region for the imprinting of the grating
and to make the second corrugated surface far away from the silicon nitride cantilever, a
200 ± 4 µm diameter polystyrene sphere was placed at the end of the cantilever, to the
bottom of which a freshly cleaved mica sheet of 400 µm length, 200 µm width, and a few
micrometers thickness was attached. A second polystyrene sphere was then attached to the
bottom free end of the mica sheet. The complete system was uniformly coated with a 10 nm
layer of Cr and then with a 50 nm layer of Au in a thermal evaporator. The corrugations
of the flat grating were imprinted on the Au-coated sphere using a stepper motor and by
applying a voltage to the AFM piezo, as has been described. The lateral Casimir force
between the two aligned sinusoidally corrugated Au-coated surfaces was measured for
separation distances between 121.1 nm and 175.3 nm, much smaller than the 221–257 nm
measured previously. The uncertainty in the measured separation distances was reduced
to 4 nm, compared with 32 nm previously [6].

In addition, an independent electrostatic measurement of the separation distance
was taken [2,26–30]. The measured asymmetric lateral Casimir force was observed from
its nonsinusoidal phase dependence, as shown in Figure 4a. Here, the measurement
data are compared with the exact theory describing the Rayleigh scattering [31] of the
electromagnetic oscillations on the sinusoidally corrugated boundary surfaces of a sphere
and plate with no fitting parameters. In Figure 4a, both the experimental data shown
as dots and the theoretical line shown in red demonstrate that the lateral Casimir force
is asymmetric and that the dependence of the lateral Casimir force as function of the
phase is purely sinusoidal only if the calculation is restricted to the lowest order in the
corrugation amplitudes. The asymmetry of the lateral Casimir force can be clearly observed
even without the red theoretical curve, because the average shift of the maxima from the
midpoint of two adjacent minima is (0.12 ± 0.02)λ. The experimental data of the measured
lateral Casimir force amplitude as a function of separation are shown in Figure 4b as crosses,
along with error bars. These data were found to be in good agreement with the theory,
which takes into account the photon correlation. In Figure 4b, the measured forces are
found to deviate from the PFA, which neglects diffraction effects. This experiment using
large amplitude corrugations with a significatly smaller period allowed demonstration of
the asymmetry of the lateral Casimir force and had the ability to quantify deviations from
the PFA.
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Figure 4. (a) The measured lateral Casimir force for a separation distance of z = 124.7 ± 4.0 nm as
a function of the phase shift between the corrugations (black dots) compared with the theory (red
solid line) given by the Rayleigh scattering approach [29]. Note that the maximum is not at the
midpoint of the minima, demonstrating asymmetry. (b) The amplitude as a function of separation
distance (shown with error bars) compared to the Rayleigh scattering theory, which includes photon
correlation (blue solid line), and to the PFA with no photon correlation (red dashed line) [30].
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3.2. Role of Coherent Scattering in the Normal Casimir Force between Two Uniformly
Corrugated Surfaces

Whereas the lateral Casimir force acts parallel to the two corrugated surfaces, the
normal Casimir force is measured perpendicular to the periodically corrugated surfaces
and provides us with valuable insight into the macroscopic geometric effects of vacuum
fluctuations. As in Section 3.1, these geometry effects are quantified in terms of deviation
from PFA where the Casimir energy is treated as the simple addition of flat infinitesimal
surface elements which represent the curved surface. In addition to neglecting diffraction
effects, the PFA ignores correlations from the interplay of geometry, material properties,
and temperature.

The measurement of the normal Casimir force between two sinusoidally corrugated
diffraction gratings on a gold-coated plate and sphere at various angles between corruga-
tions was previously reported in Refs. [32,41]. The data are shown in Figure 5a where the
measured Casimir force is shown to increase by 15% at 130 nm separation when the orien-
tation angle between corrugations increased from 0 to 2.4. Figure 5b shows the deviation of
the measured force from PFA for an angle between the corrugations of 1.2◦. The measured
forces are seen to deviate from the PFA (deviations measure diffraction-like coherent effects
not included in PFA) and to be in agreement with the gradient approximation theory [42,43]
including correlation effects of geometry and real metal–dielectric properties. The system
is also seen to be highly sensitive to the role of thermal photons and is thus a measurement
of the thermal Casimir effect between corrugated surfaces.
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Figure 5. (a) Measured (shown with error bars) normal Casimir force between two sinusoidally
corrugated surfaces corresponding to corrugation orientation angles of 0◦, 1.2◦, 1.8◦, and 2.4◦ (top to
bottom) compared to the theory (solid lines) using the derivative expansion [32]. (b) The difference
(Fexp − FPFA) between the measured and PFA-predicted Casimir forces (shown with error bars) for a
corrugation orientation angle of 1.2◦ compared to the corresponding difference (FDeriv Expan – FPFA)
between the gradient expansion and PFA theories at T = 300 K [41]. This difference a measure of
the correlation and diffraction effects (see text for details). The bars represent the total (combined
systematic and random) errors at a 67% confidence level.

The above results experimentally demonstrate the angle dependence of the normal
Casmir force between a corrugated plate and corrugated sphere. The strong angular and
temperature dependences of normal Casimir force for two oriented corrugations make it
a uniquely important system for understanding the nontrivial combined interactions of
geometry, material properties, and temperature.

4. Role of Magnetic Fluctuations in the Casimir Force

More than 40 years after the prediction of potentially repulsive contributions from
magnetic fluctuations [44,45], the first experimental demonstration of the role of magnetic
permeability, µ, was reported [14,15] and the results were compared to a new measurement
with non-magnetic Au surfaces [6]. The use of materials such as Ni with µ > 0 reduces
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the Casimir force by adding a repulsive contribution. The experiments also showed that
the role of electrostatic patch charges on surfaces was negligible in our experimental
scheme. In Ref. [14], we reported the first demonstration of the Casimir force between
two ferromagnetic Ni boundary surfaces. The experimental data, as shown in Figure 6,
were found to be in good agreement with the predictions of the Lifshitz theory for magnetic
boundary surfaces combined with the dissipation-less plasma model approach to describe
the low-frequency permittivity of the metal. Tabulated [11] values of ε and µ were used,
except for the dissipation γ = 0 (plasma) or γ > 0 (Drude model) for the low-frequency
response of Au.
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Figure 6. Measured (shown with error bars) Casimir force gradient between a ferromagnetic Ni-
coated sphere and plate at small (a) and large (b) separation distances [14]. The bars represent total
error at a 67% confidence level. The experimental data are in remarkable agreement with the plasma
model with magnetic properties of Ni included. There are no fitting parameters used.

In Ref. [15], the measured gradient of the Casimir force between a Ni plate and the non-
magnetic Au sphere was reported. The mean gradient of the Casimir force (see Figure 7)
was compared with theoretical predictions of the Lifshitz theory with no fitting parameters.
The data are in good greement with both the plasma model and Drude model description
of the metal-free electrons as they coincide for these separations.
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parameters were used in comparison.
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Conclusion on Role of Electrostatic Patches

To answer the critical question of whether zero-point photons dissipate energy on free
electron scattering, one has to show agreement with either the plasma (no dissipation) or
Drude (dissipative) model. For the Au-coated sphere and plate, using a different tabulated
ε and µ to calculate the theoretical Casimir force makes a negligible difference [14,15] to the
agreement with the dissipationless plasma model. However, for non-magnetic materials,
an agreement can possibly be brought about by using electrostatic forces [21,23] with
specialized charge density and size distributions. Yet, from the results of the experiments
indicated in Figures 3, 6 and 7, one can see that anomalous forces from electrostatic patches
in the experiments (a) have to be negligible and (b) cannot explain the difference from the
Drude model consistently. To bring about an agreement with Drude model, one needs
positive contribution in Figure 6 (two magnetic material surfaces), but a negative one in
Figure 3 (non-magnetic material surfaces). In the experiment in Figure 7 with one magnetic
material and one non-magnetic material, both models overlap and agree with data for this
separation region. As electric patch forces only add to the total force, the only consistent
explanation is that they have to be negligible [46,47]. Following these results, a difference
force measurement [16] showed that the non-dissipative plasma model was in remarkable
agreement and the dissipative Drude model in disagreement with their data by a factor
of 103.

5. Precision Casimir Force Measurements with Graphene

Unlike normal metals, where for comparison between experiment and theory, the
metal properties have to be input from tabulated values with extrapolation to zero fre-
quency, the non-local response function of graphene to electromagnetic fluctuations can
be calculated from the first principles of quantum electrodynamics [48–50]. Another in-
teresting feature is an unusually large thermal correction to the Casimir force between
two parallel graphene sheets spaced at separations of less than 1 µm, first predicted by
Gómez-Santos [51]. Many physical effects in graphene have also been described [52]. In
a more recent measurement [53], the gradient of the Casimir force between an Au-coated
microsphere and a graphene sheet deposited on a silica glass (SiO2) plate obtained in a high
vacuum using a custom dynamic AFM was performed. In the previous experiment [53],
the graphene sheet was deposited on a SiO2 film covering a Si plate. The gradient of the
Casimir force was measured and found to be in good agreement with the theory. However,
the thermal effect could not be identified because of the large uncertainty in the charge
carrier concentration of the Si plate used.

In this Casimir force gradient measurement system, a tipless AFM cantilever was used
whose spring constant was reduced through chemical etching, as described above. As in
previous experiments, a hollow glass microsphere attached to the end of the cantilever
using silver epoxy and coated with Au was used as the second surface. The thickness
of the Au coating and the diameter of the coated sphere were measured to be 120.3 nm
and 120.7 µm, using an AFM and a scanning electron microscope, respectively. The rms
roughness of the Au coating was measured to be δ = 0.9 nm. The resonant frequency
of the complete Au-coated cantilever–sphere system in the vacuum was measured to be
ω0 = 6.1581 × 103 rad/s.

A large area of graphene monolayer originally grown by chemical vapor deposition
on a Cu foil was transferred onto a polished JGS2 grade fused silica double-sided optically
polished substrate of 100 mm diameter and 500 µm thickness through an electro-chemical
delamination procedure. A 1 × 1 cm2 piece of the graphene-coated fused silica wafer
was then cut from the large sample and used. After the force gradient measurements, the
roughness of the graphene on the fused silica substrate was measured to be δ = 1.5 ± 0.1 nm
using an AFM. After the Casimir force gradient measurement, the impurity concentration of
graphene was determined utilizing Raman spectroscopy. The respective zero-temperature
value of the chemical potential for our sample is given by µ = 0.24 ± 0.01 eV. The values of
the energy gap ∆ for graphene on a SiO2 substrate vary between 0.01 eV and 0.2 eV.
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The fused silica-supported graphene sample and gold sphere probe were loaded
into the vacuum chamber which was pumped down to a pressure below 9 × 10−9 Torr.
Because of the sensitive nature of the graphene sample, the UV/Ar-ion radiation treatment
described in Section 2 for cleaning the Au surfaces was not implemented, to avoid potential
damage to the single atomic layer of graphene. To ensure the accuracy of the measurement,
the residual potential difference between the gold and graphene surfaces was determined
through the same standard electrostatic calibration procedure as stated in Section 2. The
change in the resonant frequency ∆f in the presence of external force was recorded by the
PLL (phase-locked loop) every 0.14 nm while the graphene plate was moved toward the
grounded sphere, starting at the maximum separation. This was repeated with one of ten
different voltages Vi that varied between 0.083 V and 0.183 V and eleven voltages equal
to the residual potential difference V0 (see below) applied to the graphene using ohmic
contacts while the sphere remained grounded.

The gradients of the total and Casimir forces were calculated from the measured
frequency shifts using electrostatic calibration. At each separation, the gradient of the
Casimir force was measured 21 times with the different applied voltages mentioned above.
The random errors of the mean were determined at a 67% confidence level and combined
in quadrature with the systematic errors originating primarily from the errors in measuring
the frequency shifts. The obtained measurement data for the force gradient with their errors
are shown in Figure 8 as crosses corresponding to error bars. For visual clarity, in Figure 8a,
all data points are indicated, whereas in Figure 8b,c, every other data point and in Figure 8d,
only every third are shown. For the comparison with the theory, the relativistic version of
the Lifshitz formula with reflection coefficients expressed via the exact polarization tensor
of graphene in the framework of the Dirac model takes into account the nonzero energy
gap, ∆. and chemical potential, µ [54–57]. The computational results for the boundaries of
allowed theoretical bands are shown in Figure 8 by the two bands, computed at T = 294 K
and T = 0 K. The upper line in each band was computed for µ = 0.25 eV, ∆ = 0 eV, and
the lower line for µ = 0.23 eV, ∆ = 0.2 eV. As shown in Figure 8, the measurement data are
in very good agreement with the theory at T = 294 K. The unusually large thermal effect
in the force gradient equal to the difference between the top and bottom bands is clearly
demonstrated over the region from 250 to 590 nm. For example, at sphere–plate separations
of 250, 300, 400, 500, and 590 nm, the thermal corrections were 4%, 5%, 7%, 8.5%, and 10%
of the total force gradient, respectively.
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detection of the thermal Casimir effect with graphene at sphere–plate separations of 250–300 nm (a),
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6. Conclusions

Precision Casimir force measurements have undergone remarkable progress over the
last two decades. Some of the results of the UC Riverside group are presented above.
The experimental results have, in turn, encouraged a tremendous amount of theoretical
developments, some detailed in Ref. [60]. In addition to improvements in experimen-
tal methodology, considerable rogress has also been achieved with the use of compli-
cated geometries [61,62] other than the sinusoidally corrugated cases discussed above.
Many other exciting geometric dependences [63–66] and material-dependent repulsive
forces [9,67–71] remain to be investigated and exploited in nanomechanical devices [72,73].
Casimir torques [74,75] and their experimental exploitation represent another area of much
promise. An exciting and as yet unresolved issue that remains is the disagreement between
the experiment and the Lifshitz theory [76–79] when the dielectric response of metals is
deduced from the optical data extrapolated down to zero frequency by means of the Drude
model, where the relaxation parameter γ describes the energy losses of conduction electrons
due to phonon scattering. It has been a puzzle that agreement between experiment and
theory is obtained only if one makes γ equal to zero. This might lead to the conclusion that
are no energy losses at low frequencies for zero-point photon interactions with materials,
unlike the case of real photons. However, this hypothesis alone would lead to the violation
of the fluctuation dissipation theorem which is central to all of physics. Much light was
shed from the precision experiments with graphene, discussed above, where the dielectric
response of graphene was calculated from first principles of quantum electrodynamics.
Based on the graphene’s dielectric response, it appears that it is the phenomenological
character of the Drude model at low frequencies that might be in error. In particular, the
Drude model does not capture the complete wave vector dependence of the dielectric
response for evanescent waves, which are electromagnectic fluctuations that are not on the
mass shell. Here again, there have been suggestions [80] for how to bring about a resolution
to this long-standing problem, which are discussed elsewhere in Ref. [60].
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Abstract: Here, we investigate the actuation dynamics of a micro device with different intervening
liquids between the actuating components under the influence of Casimir and dissipative hydrody-
namic forces. This is enabled via phase space portraits, which demonstrate that by increasing the
dielectric response of the intervening layer the autonomous device may not come into stiction due
to the decreasing in magnitude Casmir force. Unlike the micro devices that are placed in vacuum
with an intervening liquid, the phase portraits show only a spiral trajectory which eventually stops at
a rest position due to the strong energy dissipation by the position dependent hydrodynamic drag
forces, even when considering sufficiently strong restoring forces. Moreover, it is feasible to expand
the area of motion using intervening liquids with lower dynamic viscosity or increasing the slip
length of the intervening fluid. Finally, under the influence of an external driven force, which is the
realistic case for possible applications, the system can reach stable oscillation at larger separations
with an amplitude higher for the liquid that led to lower Casimir and hydrodynamic forces. Hence,
the results presented in this study are essential for studying the dynamical behavior of MEMS and
their design in liquid environments.

Keywords: Casimir effect; hydrodynamic force; MEMS; NEMS; actuation dynamics; stiction

1. Introduction

During the past decades the emergence of rapid development in micro/nano fabrica-
tion has led to scaling down of electromechanical systems into submicron-length scales.
This opens new areas for the application of the Casimir forces, since they could inevitably
play role in the operation of micro/nano systems [1–8]. These devices have sufficiently
large surface areas and gaps small enough for the Casimir force to pull components together
leading to permanent adhesion, a phenomenon known as stiction [9–12]. This malfunction
in many cases is unavoidable for the dynamical stability of micro/nano electromechanical
systems (MEMS/NEMS) such as sensors, micro switches, actuators. Hence, a comprehen-
sive knowledge about the magnitude and direction of the Casimir force can provide strong
insight into the design and architecture of MEMS/NEMS.

The Casimir force, which originates from perturbations of fluctuating electromagnetic
(EM) fields [13,14], was discovered in 1948 by the Dutch physicist Hendrick Casimir [15].
This is a quantum mechanical attractive force between two parallel, neutral, and per-
fectly conducting flat plates, and without considering thermal fluctuations (at temperature
T = 0 K) [15]. In the 1950s, Evgeny Lifshitz and collaborators proposed the general theory
for the Casimir force between parallel flat plates made of real dielectric materials [16]. For
this purpose, the fluctuation–dissipation theorem was utilized to relate the dissipative prop-
erties of the plates (optical absorption by many microscopic dipoles) and EM fluctuations.
The Lifshitz theory predicts the attractive force between the two parallel plates of arbitrary
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materials and covers both at short ranges (non-retarded regime) the van der Waals forces,
and at longer ranges (retarded regime) the Casimir forces. [16,17].

Furthermore, the Lifshitz theory enables the prediction of the actuation dynamics of
micro/nano devices actuation since the omnipresent Casimir force could play a significant
role. This is because the Lifshitz theory allows to compute the tuning of the Casimir
force, actually, for both the magnitude and direction, by a suitable choice of the interacting
materials with the necessary optical properties [18–21]. As a result, several studies have
been performed on the effect of optical properties on the actuation dynamic of devices in
order to widen the range of their applications [22–25]. For example, in Ref. [23], it was
illustrated how the use of phase change materials can delay chaotic motion in MEMS
without changing the materials. Also, in Ref. [24], it was investigated how one can decrease
the influence of the temperature on the magnitude of the Casimir force with the use of
suitable materials in order to survive operation at low or high temperatures. Finally, in
Ref. [25], it was demonstrated how the magnetoelectric effect in micro devices consisting of
topological insulators can become dominant on the operation of MEMS and taking into
account its sensitive dependence on thermal fluctuations.

Actually, a three-layer system consisting of two actuating components immersed inside
a liquid has attracted extensive attention because it provides unique advantages. In this
system, under certain conditions, it is possible to generate repulsive Casimir forces leading
to stable operation without employing a restoring mechanical spring [26–36]. Moreover,
with a ferrofluid between the actuating components one can open new opportunities in
nanotechnology [29], for instance, in micromechanical sensors [30], microfluidics [31,36],
and micro robotics [37]. Therefore, we consider here a MEMS operating inside a fluid, and
the main aim is to investigate how stable operation is sensitive to optical properties of
the intervening layer by taking also into account the dynamic viscosity of the intervening
fluids as well as the fluid slip length on the walls of the actuating plate. Hence, the results
presented in this study are essential for studying the dynamical behavior of MEMS and
their design in liquid environments.

2. Methods and Materials

Here, we assume that the actuating components of the MEMS device are coated with Au,
which is a good conductor. The latter has static conductivity ωp

2/ωτ|Au ≈ 1600 eV [38] (ωp
and ωτ define the plasma and relaxation frequencies, respectively), and it is also extensively
used for Casimir force measurements. Moreover, ethanol and kerosene are used as the
intervening layer between the Au plates. Previous studies have shown that ethanol could
produce repulsive Casimir forces in a system consisting of different interacting bodies
(with dielectric functions εLiquid, ε1, ε2, respectively) if the condition ε1 < εLiquid < ε2 is
satisfied [26–28], and kerosene is also used in ferrofluid-based microdevices. In any case,
both materials, as an intervening medium, have attracted attention in investigations related
to Casimir forces [29–32]. The dielectric response of ethanol at imaginary frequencies can
be described by a three-oscillator Ninham–Parsegian model [29]:

εE(iξ) = 1 +
ε0 − ε IR

1 + (ξ/ωMW)
+

ε IR − (n0)
2

1 +
(

ξ/ωIR)
2
+

(n0)
2 − 1

1 +
(

ξ/ωUV)
2

, (1)

where ζ is the Matsubara frequency, n0 = 1.35 is the refractive index in the visible range,
ε0 = 25.07 is the static dielectric constant, and εIR = 4.2 is the dielectric constant where the
microwave (MW) relaxation ends and the infrared (IR) begins. ωMW = 6.97 × 109 rad/s,
ωIR = 2.588 × 1014 rad/s, and ωUV = 1.924 × 1016 rad/s are the characteristic MW, IR, and
ultraviolet (UV) absorption frequencies, respectively. Similarly, one has for the dielectric
function of kerosene at imaginary frequencies [29]:

εK(iξ) = 1 +
B

1 + (ξτ)
+

CIR

1 +
(

ξ/ωIR)
2
+

CUV

1 +
(

ξ/ωUV)
2

, (2)
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where the second term on the right-hand side describes the contribution to the dielec-
tric permittivity from the orientation of permanent dipoles. The values of B = 0.020
and 1/τ = 8.0 × 108 rad/s were determined from the measured data of Ref. [38] in the
MW region. The third term shows the effect of ionic polarization with CIR = 0.007 and
ωIR = 2.14 × 1014 rad/s as obtained using the infrared optical data of Ref. [39]. The fourth
term describes the optical data in the UV region with the values CUV = 0.773 (obtained from
the static dielectric permittivity at zero frequency εK = 1.8 [38] since εK = 1 + B + CIR + CUV)
and ωUV = 1.0× 1016 rad/s. Finally, the dielectric functions, ε(iξ), of all media at imaginary
frequencies, which are vital as input for the calculations of the Casimir force via the Lifshitz
theory, are shown in Figure 1a.
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The dielectric function ε (iξ) is a vital input function to compute the Casimir force
using the Lifshitz theory [16]. The Casimir force between two parallel plates at T = 300 K
is given in terms of the Lifshitz theory (at the imaginary frequency representation) by
the equation

F(T, z) =
kT
π

∞

∑
n=0

′ ∫ ∞

0
dq q |k0| g(q, iζn), (3)

where z denotes the separation, q denotes the in-plane vector, the imaginary frequencies (ξ)
describe the discreet Matsubara frequencies (ζ = 2πkTn/h̄). Here, h̄ is the reduced Planck’s
constant, k denotes the Boltzmann constant, and the prime in the sum of Equation (3)
means that the n = 0 term must be taken with half weight. The term g(q, iζn) describes the
multiple reflections from the inner surfaces of the interacting bodies, which is represented
by the equation

g(q, iζn) = ∑
ν=s,p

rν
1rν

2e−2k0z/
(

1− rν
1rν

2e−2k0z
)

, (4)

where the Fresnel reflection coefficients are given by

rs
i = (k0 − ki)/(k0 + ki) (5)
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and
rp

i = (εi k0 − ε0 ki)/(εi k0 + ε0 ki) (6)

where the superscript “s” indicates the transverse electric polarization (TE), and the sub-
perscript “p” indicates the transverse magnetic polarization (TM) of the electromagnetic
field, respectively. ε0 (iξ) and εi (iξ) are the dielectric functions of the intervening layer and
the interacting components, respectively. ki =

√
εi (iξ) ξ2/c2 + q2 (i = 0,1,2) describes the

out-off plane wave vector in the intervening layer between the interacting components
(k0), and in each of the interacting components (ki=1,2), c is the speed of light, and q is the
in-plane wave vector.

Moreover, we consider a typical MEMS, which is shown in the inset of Figure 1a,
consisting of two plates with the upper one being able to move. Both components are
assumed to be coated with Au, (with a coating thickness of more than 100 nm in order
to be considered optically bulk material) [40]. Moreover, we assume flat plates because,
at short separations (<<100 nm), nanoscale roughness can significantly affect the Casimir
force. The initial distance of the parallel plates is assumed to be d = 300 nm, and the
system temperature being T = 300 K. The intervening medium between these components
is assumed to be ethanol or kerosene. The equation of motion for the MEM system without
any external driven force is given by

M
d2z
dt2 +

(
Mω0

Q

)
dz
dt

= Fres + FCas + Fh, (7)

where M is the mass of the moving plate. The term (Mω0/Q) (dz/dt) describes the Stokes
term for the energy losses of the moving plate, whereas Q defines the quality factor
of the MEMS (in this study, Q = 400 is considered, while the calculations performed
with low values of Q = 10 do not have significant effect). We also assume ω = 300 kHz,
which is a typical frequency for Atomic Force Microscopy cantilevers and MEMS [41].
Fres(z) = −k(d − z) is the restoring force, where k is the elastic spring stiffness, and FCas(z)
is the Casimir force, which is computed via the Lifshitz theory. Finally, Fh defines the
separation-dependent hydrodynamic force, which is the dominant dissipation term due to
its 1/z dependence at short separations, and it is given by [42–51]

Fh(z) = −
Aµ

z
dz
dt

f ∗ , (8)

where A is the area of the plates, and we consider for both the length (Lx) and width (Ly) of
the plates the value of 10µm. µ is the dynamic viscosity of the intervening liquid. The latter
at 300 K has the value µ = 0.001 kg/ms and µ = 0.0016 kg/ms for ethanol and kerosene,
respectively. f ∗ is the correction due to deviations from the Reynolds flow because of fluid
slip on solid surfaces (see Figure 1b). In this study we consider the same slip length b on
the surface of both plates. If b = 0 then f ∗ = 1, otherwise it is given by [42–51]

f ∗=
1
4
{1 + 3z

2b
[(1 +

z
4b

) (1 +
4b
z
) − 1]}. (9)

Equation (8) is valid for fluid flow with low Reynolds numbers and short separations
between the interacting components.

3. Results and Discussion

Before analyzing the actuation dynamics, we illustrate the influence of the optical
properties of the intervening layer on the Casimir force via Lifshitz theory calculations.
In order to achieve the aim, we introduce the reduction factor ηp(z) (<1) to normalize the
Casimir force, with respect to the maximum Casimir force (FC = π2h̄c/240z4) [15] between
ideal metals at T = 0 K. The Casimir force calculations are shown in Figure 2 and confirm
that, by increasing the magnitude of the dielectric function ε(iξ) of the intervening layer
(since εAu(iξ) > εethanol(iξ) > εkerosene(iξ)), the strength of the Casimir force is reduced.
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Figure 2. Casimir reduction factor for different three-layer micro systems versus separation between
the plates. The fixed and moving components are assumed to be decorated Au with 100 nm thickness
in order to be considered optically bulk. The intervening liquid layer is indicated.

Furthermore, for the discussion of the actuation dynamics for the three-layer micro
device, it is helpful to consider the separation of z∗, where there is equilibrium between the
Casimir and the restoring forces or Fc(z∗) + Fres(z∗) = 0. The latter yields the characteristic
spring stiffness, K∗ = (z∗)/(d − z∗). d defines the initial separation between plates where
the spring is supposed to be unstretched (d = 300 nm). Indeed, K∗ determines the minimum
spring stiffness for the system to be able to sustain some form of motion against the stiction
of the moving component on the fixed plate.

In the beginning, in order to show how the presence of the hydrodynamic drag force
can change the motion and consequently the phase portrait, we have considered a micro
device which is placed in vacuum or air. Under these conditions, the energy dissipation
is described only by the Stokes dissipation term (Mω0/Q) (dz/dt), where the values of
the Q factor considered here are typical for a multitude of MEMS/NEMS operating in
vacuum [4,41]. Figure 3 shows the corresponding phase portraits for a microsystem con-
sisting of Au coated components that are placed in vacuum. As it can be seen in Figure 3a,
when the stiffness of the restoring force is sufficiently strong the phase portrait reveals
closed orbits, which correspond to periodic motion around a stable center equilibrium
point. Also, by decreasing the magnitude of the restoring force for lower stiffness, the
size of orbits enlarges, allowing the moving plate to come rather close to the fixed plate
and preserve its stable operation. Notably, the stable operation can be preserved until
the restoring force is stronger than the force corresponding to K∗ for a considered initial
condition. Hence, if the restoring force becomes smaller than the force corresponding to
K∗, there is no more closed orbit. Indeed, according to Figure 3b, by considering a weak
value of the restoring force (K < K∗), it can be seen that the close orbit changes into an open
orbit, which is the evidence of motion of the moving plate towards the fixed one, leading
to irreversible adhesion between the components. This phenomenon is called stiction. If,
however, the restoring force is increased, the dissipation energy, or equivalently the quality
factor Q is decreased, then it is still possible to decrease the possibility to drive the system
into stiction. The effect of the finite value of Q, due to intrinsic and extrinsic dissipation
mechanisms of the oscillating plate, is shown in Figure 3b. Indeed, calculations illustrate
that the transition from unstable motion towards stiction to stable oscillation is possible if
dissipative motion takes place. Therefore, proper tuning of the system Q factor can also aid
to prevent the permanent adhesion of an otherwise unstable micro system.
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Figure 3a,b is considered with an initial condition (z = 0.95d) and for different values 
of the stiffness for the restoring force (K < K* and K > K*). In Figure 3c, a fixed stiffness K 
(which corresponds to z = 0.95d) is assumed, and different initial conditions are consid-
ered. According to Figure 3c, there is a homoclinic orbit, including one unstable equilib-
rium point on the sharp side of the orbit and one stable equilibrium inside it. This ho-
moclinic curve can sharply separate unstable motion (leading to stiction within one pe-

Figure 3. Phase portraits for micro system coated with Au. Q = 10,000, λ = 0.95 (λ = z∗/d), d = 300 nm,
and K∗ = 0.000465 are used. (a) K >> K∗, where the value of K is indicated. (b) Influence of the
damping term on the actuation dynamics of the Au−Au micro device with K = 0.000464 (K < K∗), and
different values of the quality factor Q as indicated. The closed orbits indicate stable motion, while
an open orbit is the sign of unstable motion leading to stiction. (c) Phase portraits for K = 0.000465
(K = K∗), and initial conditions inside and outside the homoclinic orbit. The stable center point and
unstable saddle point are indicated. See text for details.

Figure 3a,b is considered with an initial condition (z = 0.95d) and for different values
of the stiffness for the restoring force (K < K* and K > K*). In Figure 3c, a fixed stiffness K
(which corresponds to z = 0.95d) is assumed, and different initial conditions are considered.
According to Figure 3c, there is a homoclinic orbit, including one unstable equilibrium
point on the sharp side of the orbit and one stable equilibrium inside it. This homoclinic
curve can sharply separate unstable motion (leading to stiction within one period) from
the periodic closed orbits around the stable center point. Any solution of the equation
of motion with initial conditions within the homoclinic orbit that goes until the unstable
saddle point (square in shape in Figure 3c) will lead to stable periodic motion around the
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stable center. However, for any other initial conditions outside of the homoclinic orbit, the
upper plate will perform unstable motion, leading to collapse on the fixed plate. In the
latter case, the micro system is unstable during oscillation around these points due to the
stronger Casimir force which leads to the collapse of the moving plate on the fixed one.
The periodic solutions indicate that the restoring force is strong enough to keep system in
operation and avoid any stiction instabilities.

Further, we consider the three-layer microsystem consisting of Au-coated components
within a liquid (ethanol or kerosene) playing the role of an intervening layer. In this system,
besides the Stokes dissipation term (Mω0/Q) (dz/dt), the additional hydrodynamic force
also describes dissipation for the micro system, and consequently can play an inevitable
role for the motion and phase portrait of these devices. In this case, the phase portraits
related to the autonomous micro device containing liquid do not reveal closed orbits or
equivalently continuous oscillation. Unlike the micro device, which is placed in vacuum,
even by considering a sufficiently strong restoring force, the phase portraits show a spiral
trajectory which eventually stops at the resting position z = d. This is shown in the
calculations in Figure 4, where λ* (=z∗/d) = 0.5 is considered as an initial position to activate
the actuation. If the spring stiffness is K > K∗, then for both micro systems the moving
component approaches slowly the resting position toward z = d and eventually stops.
By considering K >> K∗, the corresponding curve in phase space shows that the moving
component exhibits stronger velocity due to the enhancement of the restoring force. For
the value of K < K∗, the moving component eventually collapses on fixed plate leading to
permanent adhesion or stiction.

Physics 2023, 5, FOR PEER REVIEW  7 
 

 

riod) from the periodic closed orbits around the stable center point. Any solution of the 
equation of motion with initial conditions within the homoclinic orbit that goes until the 
unstable saddle point (square in shape in Figure 3c) will lead to stable periodic motion 
around the stable center. However, for any other initial conditions outside of the homo-
clinic orbit, the upper plate will perform unstable motion, leading to collapse on the fixed 
plate. In the latter case, the micro system is unstable during oscillation around these 
points due to the stronger Casimir force which leads to the collapse of the moving plate 
on the fixed one. The periodic solutions indicate that the restoring force is strong enough 
to keep system in operation and avoid any stiction instabilities. 

Further, we consider the three-layer microsystem consisting of Au-coated compo-
nents within a liquid (ethanol or kerosene) playing the role of an intervening layer. In this 
system, besides the Stokes dissipation term (Mω0/Q) (dz/dt), the additional hydrodynamic 
force also describes dissipation for the micro system, and consequently can play an inev-
itable role for the motion and phase portrait of these devices. In this case, the phase por-
traits related to the autonomous micro device containing liquid do not reveal closed or-
bits or equivalently continuous oscillation. Unlike the micro device, which is placed in 
vacuum, even by considering a sufficiently strong restoring force, the phase portraits 
show a spiral trajectory which eventually stops at the resting position z = d. This is shown 
in the calculations in Figure 4, where λ* (=𝑧∗/d) = 0.5 is considered as an initial position to 
activate the actuation. If the spring stiffness is 𝐾 > K∗, then for both micro systems the 
moving component approaches slowly the resting position toward z = d and eventually 
stops. By considering 𝐾 >> K∗, the corresponding curve in phase space shows that the 
moving component exhibits stronger velocity due to the enhancement of the restoring 
force. For the value of K < K∗, the moving component eventually collapses on fixed plate 
leading to permanent adhesion or stiction. 

 
Figure 4. Phase portraits for the three−layer Au microsystem with (a) ethanol (b) kerosene. 𝑧∗ = 
0.5d, d = 300 nm, and b = 0 are used. Phase space dissipative motion for various values of K (0.0005, 
0.005, 0.05 N/m). 𝐾ா∗ = 0.000635 N/m and 𝐾∗  = 0.000675 N/m are considered for the micro systems 
containing ethanol and kerosene, respectively. 

Figure 4. Phase portraits for the three−layer Au microsystem with (a) ethanol (b) kerosene. z∗ = 0.5d,
d = 300 nm, and b = 0 are used. Phase space dissipative motion for various values of K (0.0005,
0.005, 0.05 N/m). K∗E = 0.000635 N/m and K∗K = 0.000675 N/m are considered for the micro systems
containing ethanol and kerosene, respectively.

Further, Figure 5 shows phase space portraits using as initial condition λ∗ = 0.5
and significant spring stiffness K >> K∗, leading to spiral trajectory towards immobility.
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By increasing the restoring force, the spiral curve and consequently the velocity of the
moving component becomes wider. Also, by increasing the slip length b, the hydrodynamic
dissipation, which acts against the motion, reduces and, as a consequence, the spiral
trajectory is more extended for both liquids. However, the effect of the slip length (b), as
the spring stiffness increases, becomes more pronounced for the micro system containing
kerosene, for which the Casimir force is stronger than that of micro system containing
ethanol as shown also in Figure 2. However, both micro systems preserve the ability to
move if the spring stiffness K is stronger than the value that corresponds to λ∗ (K∗E and
K∗K for micro system containing ethanol and kerosene, respectively), while for both micro
systems stiction occurs if K < K∗. Although the hydrodynamic force cannot influence the
magnitude of K∗ (which depends on the magnitude of the Casimir force), this term is
significantly important in phase space. Indeed, as Figure 6 shows, for K < K∗ the reduction
of the hydrodynamic force causes the approach to stiction to take place significantly faster.
Therefore, increasing the slip length (b), or equivalently decreasing the hydrodynamic
dissipation in the system containing kerosene, it is possible to make the trajectory of both
micro systems similar to each other (Figure 6b).
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Figure 5. Phase portraits for the three−layer Au−Au microsystem with (a) ethanol and (b) kerosene.
z∗ = 0.5d, d = 300 nm, and K >> K∗ are used. The value of the slip length, b, is indicated.
K∗E = 0.000635 N/m and K∗K = 0.000675 N/m are considered for the micro systems containing ethanol
and kerosene, respectively.

Figure 7 compares the magnitudes of Casimir and hydrodynamic forces for a three-
layer system including ethanol for the spring stiffness K = 0.008 N/m. As can be seen
for small and large separations, the magnitudes of both forces become comparable and
consequently both forces play role in the dynamical behavior of the microsystem.

Finally, in Figure 8, we investigate the response of the three-layer micro device with a
liquid as an intervening medium under the presence of an external driven periodic force
(F(t) = F0cos(ωd t)), which is a realistic case for possible applications. In this case, the
equation of motion has the more general form:

M
d2z
dt2 +

(
Mω0

Q

)
dz
dt

= Fres + FCas + Fh + F0cos(ωdt) (10)
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Figure 6. Phase portraits for the both three−layer Au microsystem with ethanol and kerosene.
z∗ = 0.5d and d = 300 nm are used. (a) b = 0 and the value of K as indicated; (b) the previous values of K
are applied, and the value of slip length, b, as indicated. K∗E = 0.000635 N/m and K∗K = 0.000675 N/m
are considered for the micro systems containing ethanol and kerosene, respectively. λ = 0.5 is
considered as initial condition (I.C).
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Figure 7. Casimir and hydrodynamic forces for the three−layer Au microsystem with ethanol.
λ = z/d and d = 300 nm are used. For computing hydrodynamic force z*/d is considered of 0.1 and
K = 0.008 N/m.

By decreasing the magnitude of the Casimir force (for large value of λ or, equivalently,
larger separations) and the hydrodynamic force, the influence of the periodic driven force
becomes dominant, and the micro system can achieve continuous stable oscillation around
the resting position (z = d). Indeed, according to Figure 8a, the amplitude of the stable
oscillation is higher for micro system containing ethanol due to the lower magnitude
of Casimir and hydrodynamic forces. This is also depicted in Figure 8b,c, where the
amplitude of the continuous oscillation is smaller in the micro system containing kerosene
due to the stronger magnitude of the Casimir force and hydrodynamic force. Moreover, as
Figure 8b,c indicate, an increasing amplitude of the external driven periodic force (F0) leads
to significant influence on the continuous oscillation, while decreasing the hydrodynamic
force (by increasing slip length) is no longer making significant difference on the oscillatory
motion for both liquids.
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4. Conclusions

In this study, we investigated the actuation dynamics of a micro device consisting of
Au-coated components with different intervening liquids between the actuating compo-
nents under the influence of Casimir and separation-dependent dissipative hydrodynamic
drag forces. This is accomplished via phase space portraits, which demonstrate that by
increasing the dielectric response of the intervening layer, one can prevent the microdevice
to come into stiction due to decreasing in magnitude Casmir forces. Using the phase
portraits of a microsystem that is placed in vacuum or air, it has been shown how the
presence of a liquid and, as a consequence, the additional dissipation term due the position
dependent hydrodynamic drag force can significantly influence the actuation dynamics
of MEMS/NEMS. By assuming vacuum or air between the actuating components, there
are closed or open orbits inside the phase portraits providing evidence that the restoring
force is sufficiently strong or very weak in order to preserve stable operation of the micro
devices. In addition, it is shown how the reduction of the quality factor Q or, equivalently,
by enhancing the Stoke energy dissipation can change an unstable motion towards stiction
to stable dissipative motion.
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However, by considering liquid (ethanol or kerosene) as the intervening medium, and
as a consequence the existence of the additional hydrodynamic force between the compo-
nents of MEMS the actuation dynamics changes drastically. Indeed, for both at the absence
and presence of the external driven force, it is illustrated that it is feasible to expand area of
motion using intervening liquids with lower dynamic viscosity or increasing the slip length
(b) of the surrounding fluid leading to weaker hydrodynamic forces. It is indicated that
the phase portraits related to the autonomous micro device containing liquid do not reveal
closed orbit or, equivalently, continuous oscillation. Even by considering sufficiently strong
restoring force, the phase portraits show spiral trajectory which eventually terminates
the motion at a rest position. Finally, we investigated the influence of an external driven
periodic force, which is the realistic case for device applications. It is demonstrated that the
system can reveal continuous stable oscillation with an amplitude higher for the liquid that
led to lower Casimir and hydrodynamic drag forces. Notably the amplitude of the driven
force leads to significant influence on the continuous stable oscillation that takes place
at relatively larger separations, while any decrease in hydrodynamic force via increasing
the slip length has limited influence. Therefore, this study addresses the influence of the
optical properties of the intervening layer for the three-layer actuating micro system. And
the results presented in this study are essential for studying the dynamical behavior of
three-layer micro devices, and for the designing and manufacturing of MEMS in order to
operate in a stable manner in different environments.
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Abstract: During the past few decades, abundant evidence for physics beyond the two standard
models of particle physics and cosmology was found. Yet, we are tapping in the dark regarding our
understanding of the dark sector. For more than a century, open problems related to the nature of the
vacuum remained unresolved. As well as the traditional high-energy frontier and cosmology, techno-
logical advancement provides complementary access to new physics via high-precision experiments.
Among the latter, the Casimir And Non-Newtonian force EXperiment (CANNEX) has successfully
completed its proof-of-principle phase and is going to commence operation soon. Benefiting from
its plane parallel plate geometry, both interfacial and gravity-like forces are maximized, leading to
increased sensitivity. A wide range of dark sector forces, Casimir forces in and out of thermal equilib-
rium, and gravity can be tested. This paper describes the final experimental design, its sensitivity,
and expected results.

Keywords: Casimir effect; dark sector; force metrology; seismic isolation

1. Introduction

Continuous improvements in measurement methods during the past few decades
have unveiled a number of tensions between predictions of the standard models of particle
physics (SM) and cosmology (ΛCDM) with observations. Since the 1970s, the development
and testing the SM have been dominated by collider experiments culminating in the
experimental discovery of the Higgs particle. However, further advancement on the
high-energy frontier appears difficult, as the required technological and financial efforts
grow over-proportionally with the gain in energy. Yet there are still sixteen orders of
magnitude missing between the current 10 TeV scale and the Planck scale. Therefore,
precision measurements at lower energy have established themselves as an alternative
route to test existing theories and to search for the physics beyond.

Precision tests have unveiled a growing number of ‘tensions’ in various fields that
cannot be explained well on the basis of existing theory. We can highlight only a few of
these here. For quantum electrodynamics, measurements of the relative gyromagnetic
moments, (g − 2)/2, of fermions have revealed values [1] that differ from theoretical
expectations by 2.5σ (standard deviation) for electrons and 4.2σ for muons, giving a strong
signal of an incomplete understanding of either vacuum fluctuation contributions or new
physics. Charge radii of the proton and the deuteron have been determined using precision
(Lamb-shift) spectroscopic measurements with H and D, as well as from electron and muon
scattering experiments (see review [2]). Even after a recent re-analysis of experimental
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errors, and new measurements, tensions at the 2σ [3] and 3.5σ [2] level, respectively, exist
between different experiments and between experiments and theory. While QED is still
referred to as the ‘best-tested theory’, even after about 150 years, the question of whether the
electromagnetic energy momentum tensor is traceless or not in materials remains open [4].
Tensions are also known for other elements of the SM. For example, the Cabibbo–Kobayashi–
Maskawa (CKM) quark mixing matrix of QCD shows increasing signs of non-unitarity
(currently 2.2σ [5] or up to 2.8σ [6]), which, if confirmed, would be an indication for beyond
SM physics. In QCD, the breaking of CP symmetry being suppressed by a factor 10−10

creates a fine tuning problem that could be resolved [7,8] by an additional spontaneously
broken ‘Peccei–Quinn’ symmetry leading to the axion as its associated Nambu–Goldstone
boson [9,10]. The latter is constrained strongly but is not yet excluded. Another strong
motivation for the axion is due to it providing an excellent candidate for dark matter (DM).

DM has a solid basis of evidence, as galaxy rotation curves have been measured since
the early 20th century [11], and newer probes, such as cosmic microwave background
or weak lensing data indicate that a fraction ΩDM ≈ 0.27 [12] of the total mass in the
universe can be attributed to DM (see [5] for a review). Numerical simulations [13] show
that the current large-scale structure of the universe can only be obtained if DM is taken
into account, with baryonic matter (Ωb ≈ 0.05) playing a sub-leading role.

Twenty five years ago after the discovery of accelerated expansion [14–16], there
are clear indications that by far the largest fraction of the energy/mass content of our
universe (ΩDE ≈ 0.68) is due to the existence of what is generically termed ‘dark energy’
(DE). In general relativity (GR), dark energy can effectively be described in terms of a
cosmological constant Λ providing the negative pressure necessary to account for an
accelerated expansion of our universe. In combination with ’cold’ DM this constitutes
the cosmological standard model ΛCDM. However, as the Hubble constant H0—being
a measure of expansion—obtained from data on the cosmic microwave background at
large redshift z, is at significant tension (5σ) with the one obtained from local distance
ladder measurements at z < 2.36 and a range of other measurements [17], speculations
arise (among others) if Λ is a constant after all [18]. Significant tensions exist not only
in measurements of H0 but also for several other parameters of ΛCDM) [19]. Since DE
accounts for the largest fraction of the energy/mass content of our universe, the quest for
an answer to the question what the dark sector is composed of has received significant
attention. It is currently unknown whether DE and DM are composed of new particles or
not, but the answer lies probably beyond the current SM/ΛCDM framework.

While amending general relativity by the cosmological constant enables us to describe
an accelerated expansion, such a procedure would lead to a severe fine-tuning problem,
which is the so-called ‘(old) cosmological constant problem’ [20]. This is due to contri-
butions in addition to Einstein’s original (bare) cosmological constant, coming from the
zero-point energies of all quantum fields (SM fields as well as possible unknown ones), as
well as the Higgs potential during its phase transition related to electroweak symmetry
breaking [21]. Introducing a cutoff at the Planck scale or electroweak unification scale in
order to render the zero-point energies finite, these contributions provide values for Λ
that are 123 or 55 orders of magnitude above the measured value containing all contri-
butions [20]. This may suggest that quantum fluctuations of the vacuum do not seem to
gravitate [22], which has cast some doubt on their reality. Some authors have resorted to
the rather metaphysical anthropological principle [23] to explain the ‘cosmological constant
problem’ [24], while others, just to give an example, have attempted to find explanations
in terms of a natural cutoff given by metric feedback at high energies [25]. If there existed
additional interactions, cancellations of the zero-point energies of these new fields and the
ones of the standard model [26] could explain the smallness of Λ. However, we would be
left with a severe fine tuning problem, which adds to the problem of the non-gravitation of
vacuum fluctuations. By now, a whole host of conceptually distinct approaches has been
devised to avoid this problem (see, e.g., [20,21,27]) with no final solution.
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While no general consensus has been found on the above tensions, one approach to
explain them is to introduce new interactions. The historically very successful approach to
search for the associated new particles in colliders, however, has not led to any discoveries
so far, for either DM or DE. Indications for weakly interacting massive particles (WIMPs)
have not been found at high energies. Lighter particles searched for by recoil experiments
have also eluded detection (the DAMA experiment’s periodic DM signal [28] is not gen-
erally considered to be confirmed at the time of writing) despite quite large international
efforts. Astronomical observations, on the other hand, may have found indications for ster-
ile neutrinos [29,30] and WIMPS [31]. Indications were also found in long baseline nuclear
experiments but are still being discussed. As no clear signs regarding the type or energy
range of new interactions have been found, theoreticians have turned to the broad field of
effective field theories to give generic predictions that allow experimentalists to narrow
down the possibilities for DM and DE models. Irrespective of the true physical origin,
an effective field theory enables describing and classifying the low-energy behavior of the
corresponding fundamental theory in a model-independent way. As such, the ‘Standard
Model Extension’ [32] covers all possible CP(T)-violating terms that could be added to
the SM. Several of these can also be written in terms of bosonic spin-0 or spin-1, scalar,
vector, or tensor interactions (and their respective pseudo or axial counterparts) between
SM fermions [33,34]. The latter leads to a class of effective potentials that can be tested in a
large number of experiments [35]. For DE, besides modified gravity, variable dark energy
models, and black holes, a class of screened scalar fields has been investigated that would
describe dynamical ‘quintessence’ scalar fields with an effective potential depending on the
local mass density. This local variability permits them to ‘hide’ in denser environments and
evade stringent astrophysical bounds while still being able to prevail in low density regions,
thereby describing DE. However, these models have several free parameters, and only a
few, such as the string-inspired dilaton, have a more solid motivation.

In any case, the cosmological constant problem provides further indications that our
understanding of the quantum vacuum may be incomplete. This has been one of many
motivations for investigations of the Casimir effect. Being the only known quantum effect
causing forces between separated macroscopic objects, experiments have been performed
since its prediction in 1948 [36]. Modern experiments starting in the 1990s [37–39] have tested
non-trivial boundary dependence [40,41] and lateral forces [42,43], thin layers [44], dielectric
properties [45–51], influence on micro-electromechanical elements [52,53], torque [54], and
repulsion [55–57], to name just a few topics. Regarding the description of the dielectric
properties, especially for the thermal contribution to the Casimir effect, there has been a
discussion going on for more than two decades (see review [58]). Specifically, a disagree-
ment between theoretical predictions and experimental results put the focus on the proper
account of dissipation in the description of the material optical response. Surprisingly, a sim-
ple non-dissipative model provides a better description of several experiments measuring
the Casimir interaction between metallic objects. Consequently, the same experiments ap-
pear to exclude an account of dissipation in terms of the commonly used Drude model [59].
A similar issue was noticed for free electrons in semiconductors [60]. Within the same con-
text, attention has also been devoted to surface roughness [61] and patch potentials [62,63]
as a possible source for the disagreement between theory and experiment. Other material
properties were investigated and, in particular, non-locality (spatial dispersion) has also
attracted attention [64] in relation to thermodynamic inconsistencies, which may appear
when the Drude model is adopted for the description of a metal [65]. However, up to now,
all attempts have failed to reach an unanimous consensus, and more precise experimental
data are required to settle the controversy [58]. More recently, it was pointed out that a
non-equilibrium configuration in which the objects are at different temperatures, T1 and
T2, can serve as an additional benchmark of the theoretical framework surrounding the
Casimir effect [66]. In this case, an additional contribution to the interaction, anti-symmetric
under the exchange T1 ↔ T2, has been predicted. Still, this contribution has not yet been
quantitatively confirmed in a Casimir experiment.
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Experimentally, precision Casimir experiments have also been used to set limits on
new interactions [67–79] at small separation a, as proposed four decades ago [80]. However,
the sensitivity is limited [81], as one of the strongest uncertainties in such measurements
comes from local surface charges that are hard to quantify and control [62,81]. These uncer-
tainties can be mostly avoided by using the ‘iso-electronic’ technique [59,70,82] (allowing
only relative measurements) or by placing an electrostatic shield between the test objects,
leading to the Cavendish configuration that has been extensively used in torsion balance
experiments [83–96] to measure gravity-like interactions. However, a shield between the
interacting objects precludes the measurement of Casimir forces and DE screened scalar
fields. Another common disadvantage of most existing precision force experiments in either
configuration is that they use curved surfaces of some radius Rs. Depending on the distance
dependence of the investigated interaction, the effective surface area generating the force is
thereby dramatically reduced from A = R2

s π to Aeff ≈ πRsa [97,98] with a� Rs. Therefore,
one looses a factor ηeff ≡ a/Rs = 10−2 to 10−4 in force sensitivity [99]. This problem is
maximally avoided for plane parallel plates, where ηeff = 1. The downside is that one
has to measure and control parallelism and use perfectly flat surfaces, which introduces
significant technical complications. Previous attempts to measure Casimir force gradients
between parallel plates [100,101] have suffered from electrostatic and other unresolved
offsets for which the results included a free fit parameter.

The Casimir And Non-Newtonian force EXperiment (CANNEX) has been designed
from the onset to perform measurements between macroscopic plane parallel plates [102].
After a first proof of principle [103], we continuously updated the design [99,104] to
characterize, attenuate, or actively control all relevant disturbances. The setup allows
synchronous measurements of the pressure and pressure gradient with nominal sensitivities
of 1 nN/m2 and 1 mN/m3, respectively, in both the Cavendish and Casimir configurations,
in the distance regime 3 µm to 30 µm. Recently, we selected the Conrad Observatory
(COBS), a geoseismic and geomagnetic surveillance station inside a tunnel system in
the Alps as a location. The seismic and thermal stability there will reduce errors and
technical requirements of isolation systems for CANNEX. Operations at COBS are expected
to commence in the summer of 2024.

In this paper, we present the final design and its predicted performance in Cavendish
and interfacial (Casimir) configurations in Section 2. Subsequently, we update our recent
error budget [99] taking into account actual device specifications and preliminary noise
measurements. We then give an update on prospects for measurements of in- and out-of-
equilibrium Casimir forces [66] in Section 4.1. Finally, we present updated prospects for DE
screened scalar field limits [99,102,105] in Section 4.2, based on fully consistent numerical
calculations taking into account the experimental and theoretical uncertainties, and close
with a short outlook in Section 5.

2. Experimental Design

CANNEX is a metrological setup designed to synchronously measure forces and force
gradients between plane parallel plates at separations between 3 µm and 30 µm in interfacial
and Cavendish configurations. Force (gradients) are measured by interferometrically
detecting (see Section 2.5) the movement of a mass-spring system consisting of a ‘sensor’
plate and a set of helical springs. Forces onto the sensor plate are sourced by a second
fixed ‘lower’ parallel plate, as shown in Figure 1d. Since this mechanical detection system
is highly sensitive to mechanical vibrations, surface charges, and thermal changes, we
have included countermeasures for all of these disturbances in terms of active control
and attenuation systems into the design, described in detail in Sections 2.1, 2.2, and 2.4,
respectively. In what follows in this section, we give an overview of the setup.
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Figure 1. The CANNEX setup. (a) Simplified cut view of the actual core design in interfacial config-
uration. (b) Simplified focus view of the Cavendish configuration with the electrostatic shield and
associated adjustment stages. (c) Schematic representation of the core including all elements and
configurations. (d) View of the core with the translator stages in their upper position, in which the
ion tunnels are opened for Ar ion cleaning and UV irradiation. (e) Cut view of the complete setup.
(f) Schematic view of the seismic attenuation system (SAS).

The setup’s ‘core’ contains the actual measuring device. Here, the lower plate, made
of silica glass, is mounted in a fitting (light gray in Figure 1a–d) that isolates it thermally
and electrically from the rest of the setup. The fitting is supported by three linear piezo
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transducers with a range of 200 µm, allowing us to fine-tune the parallelism and separation
between the plates. Thermal control of the lower plate can be achieved via Peltier elements
(PE)s below it and a platinum sensor at its center. Attached to the side of the lower plate
are three optical fibers used to measure the plate separation and tilt (see Section 2.5).

The force sensor is fabricated from a silicon single crystal (Norcada Inc., Edmonton,
AB, Canada) and placed directly above the lower plate. Its position can be adapted by
a three-axis drift-free stick-slip stage (SLC-1720, Smaract GmbH, Oldenburg, Germany)
supporting the entire upper part of the core. The sensor’s frame is connected to a massive
support structure (middle gray in Figure 1a,c,d) that is thermally controlled by distributed
PEs, and electrically grounded. The support carries a thermal shroud (green) allowing for
non-contact thermal control of the sensor and its springs.

Sensor movements are detected via an optical fiber placed above its center (see Section 2.5).
The fiber is attached to a drift-free stick-slip piezo transducer allowing us to adjust the cavity
size. Similarly, the separation a between the lower and upper plate is monitored by three
interferometers arranged around the rim of the lower plate. The fibers’ end faces are
polished optically together with the lower plate in order for them to be at exactly the
same height. CANNEX implements three different configurations. In the first—interfacial
—configuration, the sensor plate directly faces the top surface of the lower plate. In the
second—Cavendish—configuration, we add a gold-coated silicon nitride membrane acting
as an electrostatic shield (ESS) between the two plates. The ESS is held by three stick-slip
piezos (see Figure 1b) to change its height and orientation. Despite its relatively large area
(1 cm2) and small thickness (<1 µm), the ESS has an extremely low hang-through under
gravity of about 1 µm. Three pinholes in the ESS allow the lower plate’s interferometers
to operate both through the ESS (to measure a) and when shifted slightly to the side
to monitor the separation between the ESS and the lower plate. This mechanism allows
us to unambiguously determine and control the relative position of all three plates with
respect to each other. In the third configuration discussed in Section 2.4, which is only used
for surface characterization, either the sensor and the shroud, or the lower plate and its
fitting, are replaced by a Kelvin probe setup able to scan the surface potential and topology
of the entire surface area of the remaining plate.

The core assembly, Figure 1a, is enclosed inside an ultra-high vacuum (UHV) ‘core’
chamber. This chamber can be evacuated down to a pressure of 10−9 mbar by using an
ion-getter pump or be filled with up to 500 mbar of Xe gas for measurements of screened
DE interactions [106]. On the outside of the core chamber wall, the core electronics are
placed on a copper plate that allows generated heat to be guided away without mechanical
contact to the outside of the outer chamber (shown partially in Figure 1e). A similar but
independent mechanism exists for the heat pipes emerging from the core itself. Details on
these systems are given in Section 2.3. The core chamber is suspended on a 6-axis seismic
attenuation system (SAS) shown in Figure 1e,f. The SAS comprises an inverted pendulum
(green) for horizontal isolation, a geometric anti-spring (GAS) filter (blue) for vertical
isolation, and a mass tower (yellow) improving tilt isolation, as described in more detail
below. Additionally, a hollow silicon carbide rod, known as a compensation wand (magic
wand), is connected to the tip of the GAS filter to improve the attenuation performance [107].
Vertical and horizontal positions of the SAS can be sensed by linear variable differential
transformer (LVDT) sensors, and controlled by motorized pre-tension springs. In addition,
the dynamical behavior in translational degrees of freedom can be influenced by voice coil
actuators. For higher sensitivity at intermediate frequencies, geophones are used to monitor
all but the vertical rotation degree of freedom. Inverted pendulums (IPs) support the base
plate of the GAS filter, thereby combining vertical and horizontal attenuation systems.

The entire SAS with the core is enclosed in an ‘outer’ vacuum chamber at 10−6 mbar
providing further isolation against sound, thermal, and other environmental disturbances.
This chamber is mechanically decoupled from the SAS, to ensure deformations due to
pressure differences do not influence the performance of the SAS. The outer chamber is
fitted with a dense grid of copper bars and a 25 cm insulation layer to reduce temperature
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gradients on the chamber wall. We use PEs on the mentioned copper bars to control the
chamber temperature with a precision of about 4 mK. Eventually, the chamber includes
several exterior mechanisms (not shown) to open it, and to extract the core with minimum
mechanical input to the sensor. The entire setup is placed inside an ISO class 7 cleanroom
inside the tunnels at COBS.

2.1. Seismic Attenuation

Seismic vibrations present a significant impediment to the precision of small-distance
metrology setups, necessitating a comprehensive understanding of their impact on the
respective measurements. CANNEX uses non-linear mechanical elements developed for
gravitational wave detectors [108–110]. For vertical isolation, a geometric anti-spring
(GAS) filter [111] (blue in Figure 1e) provides 40 dB/decade attenuation from roughly
100 mHz. We employ so-called ‘magic wands ’ [107] to augment filter performance at low
frequencies and near the sensor resonances. Horizontal isolation is achieved by inverted
pendula [112] (green) carrying the GAS filter and a regular pendulum suspending the
core chamber. The tilt of the core chamber around the horizontal axes is attenuated by the
core chamber being mounted on the pendulum close to its center of gravity. The latter
is raised to the hinge point by means of a massive tower (yellow), which reduces the tilt
resonance frequency.

Previously, the Atominstitut (ATI) of TU Wien, Austria, was considered as the location
for CANNEX [99]. We have identified a more suitable location in the underground laboratory
of the Conrad observatory, roughly 50 km southwest of Vienna. Seismic spectra have been
recorded at both locations and are shown in Figure 2. As we discuss in Section 3.1 below,
a one-staged passive SAS at COBS already fulfills all requirements for the targeted error
level, while at ATI, a two-stage isolation system would be required [99]. In what follows
here, we describe the final system, which is similar to already realized systems in the
literature [109,110].
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Figure 2. Seismic background in (a) vertical and (b) horizontal (eastern) direction. Data were recorded
at COBS using calibrated STS-2 seismometers between 30 April 2023 and 30 June 2023, including four
earthquakes of magnitude up to 3.3. The black line is the logarithmic mean of the data, while the
dashed gray lines represent the quantiles obtained from histograms at each frequency. The green and
blue color encodes the probability. In comparison, the seismic background at the Atominstitut (ATI)
in Vienna, recorded using calibrated Sercel L4C geophones during 24 h starting 28 September 2018, is
significantly higher due to a nearby highway, subway, and in-house noise sources. For reference, we
give Peterson’s new high- and low-noise models [113] (NHNM and NLNM, respectively).

107



Physics 2024, 6

The principle of GAS filters [111] and inverted pendula [112] relies on the instability of
non-linear mechanical systems at which the stable operating point splits into two distinct
solutions. Such points lead (theoretically) to zero resonance frequency and thereby ideal
isolation. In practice, internal damping and creep set limits on the achievable minimum
resonance frequencies. We can describe our SAS by the model shown in Figure 3. The re-
spective small-signal Lagrange functions LD for the horizontal (D = h) and vertical (D = v)
directions are given by

Lh =Th − Vh (1)

with Th =
1
2

[
I0(∂tα0)

2 + I2(∂tα2)
2 + m1(∂tx1)
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2
]

,

Vh =
1
2
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,
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(a)  horizontal (b)  vertical

Figure 3. Model for the dynamical behavior of the CANNEX SAS in (a) horizontal and (b) vertical
direction. The centers of mass are indicated by ‘com.’. See text for details.

Here, in Th, the first two terms describe the angular kinetic energy of the top and
payload masses m1 and m2, respectively. The last three terms are the linear kinetic energies
of the top, payload, and inverted pendulum (m0) masses. Potential energies for the inverted
pendulum tilt and wire tilt are given by the first two terms in Vh, while the last two terms
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regard the change in the absolute height of m1 and m2 due to rotary (sidewards) movements
of the inverted pendulum and pendulum, respectively. The wire is resisting with elastic
constant kw2 its deformation at both fixed ends with angles δ1l and δ2u due to the swing x2
and tilt α2 of the payload. Viscous damping between all parts is considered by the Rayleigh
dissipation terms inRh, while internal friction is added ad hoc by adding to the effective
values ki = ω2

i mi (for masses i = 1, 2 and resonance frequencies ωi), representing the
spring constant of system i a factor (1 + iφ) with φ < 1 [107], which is not shown here
for brevity. Similarly, for the vertical direction, we have the linear kinetic energy of the
payload mass and wand counter weight µc in Tv. Deformation of the GAS filter gives a
contribution to the potential energy Vv, while viscous damping between the top stage and
the payload contributes to the damping term Rv. y1 approximates the vertical shift of
m1 for small angle, α0. Consequently, y2 is the vertical shift of m2 due to the combined
action of the pendulum and inverted pendulum. The Ix denote the moments of inertia
of the inverted pendula (x = 0), the upper platform (x = 1), the payload (core chamber,
x = 2), and the GAS springs (x = eff) obtained numerically from CAD software. γx denote
damping coefficients, kx are (effective) elastic constants, and mx are masses as defined in
Figure 3. Note that we use the notation ∂x ≡ ∂/∂x.

The Euler–Lagrange equations giving the dynamical behavior of the system are then

∂L
∂u
− ∂

∂t
∂L

∂(∂tu)
− ∂R

∂(∂tu)
= 0 , (3)

for u = xi, zi , αi. Equation (3) can be resolved for the transfer functions Tx0x2 ≡ X2/X0,
Tx0α2 ≡ α2/X0, and Tz0z2 ≡ Z2/Z0 for the horizontal, tilt, and vertical degrees of freedom.
We have optimized the system’s parameters with respect to low resonance amplitude and
maximum attenuation around the sensor resonance frequency f0 = 9.8 Hz, resulting in the
responses shown in Figure 4. We obtain a vibration suppression of about 77 dB and 66 dB
in the horizontal (both axes) and vertical direction, respectively, at f0, which suffices to
achieve the targeted sensitivity under all circumstances, as discussed further in Section 3.
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Figure 4. Transfer functions of the passive CANNEX SAS from horizontal and vertical vibrations to
core movement and tilt, respectively, as indicated. The vertical dashed lines indicate the position of
the sensor resonance.

The current design includes linear variable differential transformers (LVDT) combined
with voice coils for force feedback on the horizontal and vertical degrees of freedom as
well as geophones. These sensors and actuators shall be used to reduce the amplitude of
resonances and improve the overall performance, as described for similar systems [114].
The design of the feedback system is still in progress.

2.2. Surface Charge Cancellation

Electrostatic patch potentials due to local variations in the Fermi potential of surfaces,
chemical impurities, and charge accumulation [115] are a major nuisance in all interfa-
cial force experiments [81,116,117]. Over the years, several methods to characterize and
compute these forces (gradients) have been developed [62,116,118–120]. Recently, a new ex-
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perimental approach was presented to reduce surface charges in situ [121]. UV irradiation
can be used to dissociate larger molecules and extract electrons from surfaces. The residual
impurities can then easily be removed by a variant of plasma cleaning using a low-energetic
beam of Ar ions. After the process, the surfaces have been demonstrated to exhibit strongly
reduced local variations in the potential and a low overall force minimizing potential.

In CANNEX, we implement a dual strategy. Firstly, in all configurations (interfacial
and Cavendish), active surface cleaning using an Ar ion source and UV irradiation are
possible without the need to break the vacuum. This is enabled by the vertical translator
stage of the upper plate being able to lift the sensor to a distance of about 5 mm above the
lower plate and simultaneously open a window in the shield to clear the path for an Ar ion
beam (see Figure 1d). Using eight high-power LEDs viewing the gap between the plates,
we can apply UV irradiation at 275 nm wavelength with up to 2 W in short pulses (visible
in Figure 1c,d). Secondly, the performance of the cleaning procedure can be monitored
in situ using a custom-built Kelvin probe setup (see Section 2.4) mounted in place of the
force sensor. Once the distribution, stability, and amplitude of the surface potentials after
cleaning and intermittent exposure to air [115] have been determined on both interacting
surfaces, the regular force measuring configuration is restored to perform exactly the same
cleaning procedures as before.

Apart from patch potentials, two opposing surfaces differ in their absolute potential
even if grounded together due to contact potentials. To cancel these, we use an active
homodyne compensation method that was successfully applied in recent measurements
of Casimir forces [122–124] and in the proof of principle for CANNEX [103]. The method
is similar to amplitude modulation Kelvin probe force microscopy (see below), and relies
on a small electrostatic excitation, vAC(t) = Vac sin ωACt, being applied to the lower plate,
resulting in signals at frequencies ωAC and 2ωAC, whose amplitudes are measured using a
lock-in amplifier. The prior signal is then used to drive a feedback circuit that applies an
additional potential VDC to the plate, thereby driving (VDC−V0) to zero [103,122] with high
accuracy. The signal at 2ωAC can be used to independently measure the surface separation
electrostatically or what is not required in CANNEX due to the optical method, to perform
an independent measurement of the mechanical properties of the sensor. Importantly, all
potentials are applied to the lower plate, while the sensor and all other parts are kept on the
ground potential. Note also that all surfaces and contacts, except for isolating spacers, are
coated by gold to exhibit the same absolute surface potential. The real potentials applied to
both plates are measured at all times using a calibrated in situ electrometer amplifier.

2.3. Temperature Control

According to the error budget described in Ref. [99], achieving the targeted error
levels of 1 nN/m2 and 1 mN/m3 is only possible if the thermal stability of the sensor
and optical cavities of 0.1 mK is guaranteed. In order to comply with this requirement,
both plates have an independent thermal control system responsible for providing the
desired thermal stability. We use calibrated custom-made low-noise controllers with 24-bit
converters. The lower plate’s thermal system is based on thermal conduction and consists
of several PEs located below a copper plate attached to the bottom of the lower plate
and a platinum sensor situated in a hole at the center of the lower plate body to read
the temperature as close as possible to the top surface of the plate. The copper plate is
insulated thermally from other parts by reflective coatings and mechanically by a gap to
suppress heat transfer via radiation and conduction, respectively, between the lower plate
and other parts of the core. The lower plate itself is clamped down onto the copper plate
and into its fitting using spring-loaded ruby balls, which minimizes mechanical contact
area and limits heat loss towards the sides. The sensor plate’s temperature is stabilized
with a combination of a contact and a non-contact feedback loop. The contact loop consists
of several platinum sensors and PE combinations on a copper plate between the upper
plate support (Figure 1a) and the thermal shroud on top of it, thereby controlling the
sensor frame. The central disk of the sensor is connected to its frame only via the long and
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thin spring arms, for which thermal conduction plays a minor role. On the other hand,
the sensor plate exchanges radiation with the lower plate. Despite highly reflective metal
coatings on both sides, heat will be transferred between the two plates as soon as they have
different temperature setpoints. As the function of the sensor precludes any mechanical
contact with its center, the only option to stabilize the upper plate’s temperature is via
radiation. For this purpose, a blackened copper ring being controlled in temperature by a
separate circuit is placed inside the shroud such that it is visible from the sensor plate’s
surface. This ring counteracts radiation heating or cooling of the sensor plate by the lower
plate. Importantly, we optimized the view factor to the sensor’s springs such that they are
minimally influenced by radiation from either the ring or the lower plate. Another opening
in the shroud allows a thermopile to view the sensor plate and monitor its temperature
with <0.1 m°C precision. This input is used to control the temperature of the ring and in
consequence the temperature of the sensor disk. A finite element method (FEM) study
was conducted using COMSOL Multiphysics to examine the temperature and respective
gradients in all parts of the core. Figure 5a,b show the preliminary results of this study
for the temperature distributions of both plates for a temperature setpoint of the lower
plate being 10 °C higher than the ambient temperature. The deviation on the upper plate
with respect to the setpoint (293.130 K) is kept below 0.27 mK, while on the lower plate,
the deviation reaches 3.31 mK.

Temperature[mK]

(a) (b) (c)

0.24 
293,145+

0.5
1
2.5
3
3.5

4.5
4

4.70

303,132+
0.074
1
1.5
2
2.5
3

4
3.5

4.05

293,139+
0.083
0.10

0.15

0.20

0.25

0.30

0.35
0.354

Figure 5. Results of an FEM analysis of thermal distributions. (a) sensor plate (b) lower plate in
the core for a nominal difference of 10 °C between the two plates. (c) chamber wall grid cell (see
text). Here, only the relative deviations on the parts are accurate, while the absolute temperatures
may contain relatively small offsets due to fixed power input instead of feedback control in the
numerical computations.

Proper operation of a PE requires the side opposite to the controlled surface to be
connected to a heatsink. Therefore, all PEs atop the upper plate, support, and shroud are
connected via vertical copper columns to the large circular heatpipe on top connected via
flexible parts (not shown) to a thermal feedthrough at the back chamber wall. Below the
lower plate, the non-control side of the PEs is connected to a heat pipe (shown on the
lower left of Figure 1d), which leads to a radiator permitting contactless heat transmission
between the core and a feedthrough at the back chamber wall of the core. Similarly, there
are two radiators between the core chamber and outer chamber that contactlessly exchange
heat with their respective counterpart, partially visible in Figure 1e. These radiators on the
inner side of the outer walls are connected to heat pipes leading through the outer wall to a
thermal controller regulating the heat pipe temperature and effectively releasing excess
heat via a heat exchanger to the environment. The radiators themselves are interleaved
comb-like structures with a relatively large overlap between the interacting parts, blackened
on the inside and reflective on the outside. Optimization and testing of these structures is
still in progress.
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The strong dependency of the working point of the non-linear mechanical elements
of the SAS on thermal variations [111] makes it crucial to actively stabilize the temper-
ature of the outer chamber wall as well to within about 5 mK. This requirement is not
changed by our DC-feedback with the pre-tension springs. The low amount of power
produced by CANNEX’s SAS, which still could be a critical thermal disturbance, is dissi-
pated via radiation interaction with the wall. At the setup’s location at COBS, the ambient
temperature changes by much less than 0.1 °C per day with an average of roughly 10 °C,
for which we expect little exterior thermal fluctuations. To keep the chamber close to the
setpoint (about 290 K), we add 25 cm of passive thermal isolation around the entire chamber.
Below the isolation, the entire chamber wall is covered with a dense grid of 5 mm thick
copper bars to improve the heat conduction on the walls. On top of the copper bars, we
add 50 independent calibrated control units each consisting of two PEs and two platinum
resistors. In Figure 5c, we show the results of an FEM study of the resulting temperature
distribution on the inside of the chamber wall for one representative unit cell of the gridded
chamber wall.

2.4. AFM/KPFM Setup

In Section 2.2, we discussed the setup for surface charge cancellation by the combined
action of an Ar-ion beam and UV irradiation cleaning. To ensure the consistency and per-
formance of these methods, to investigate the long-time evolution of the surface potentials,
and to measure the influence of exposure of the setup to the atmosphere [125] (which is
inevitable while working on it), we add a Kelvin probe force microscope (KPFM) to the
setup. The KPFM has been designed to offer two configurations. In the first one shown
in Figure 6, the surface charge distribution on the lower plate can be investigated in situ
before and after cleaning. The sensor plate and shroud (see Figure 1) of the force sensing
setup are replaced by a u-shaped structure (green) carrying an AFM cantilever. The optical
fiber, which is otherwise used for measurements on the sensor plate, is remounted at an
angle to detect the movement of the cantilever interferometrically, in a similar way as
demonstrated previously [124,126]. In order to align the fiber with the cantilever tip in situ,
we use a stack of horizontal stick-slip translators. The scanning motion of the tip and
vertical coarse alignment is carried out by the movement of the 3-axis stick-slip piezo
translator stack (golden, at the bottom in Figure 6). Note that these stages have a range of
more than 12 mm, for which they can be used to investigate the entire area of the lower
plate with the KPFM. Because of the comparably large surface separation in CANNEX, only
patches of size λp & a/10 are of interest [127], with a being the separation between the
plates. Therefore, the tip of the cantilever is chosen to be of spherical shape with a diameter
of a few µm. Using a common sharp tip, the same setup can also be used to characterize
the roughness (and potentials) on all scales with lateral resolution <10 nm. In the vertical
direction, we implement a common tapping mode method, where the height adaptation
with 0.2 nm resolution is enabled by the three linear piezo-electric stages otherwise used
for tilt adjustment of the lower plate.

In the second configuration (not shown in this paper) the KPFM is turned upside down
and the lower plate is replaced by the cantilever holder, allowing an in situ measurement
of the upper plate’s lower surface or the electrostatic shield’s potential distribution in the
same way as described above. With these two configurations, we can achieve a complete
characterization of all surfaces that can then be used to compute the patch potential
contribution to the measurements based on actual data instead of statistics.
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Figure 6. Rendering of the AFM/KPFM configuration for measurements of potentials and topology
of the lower plate.

It has been demonstrated that frequency-modulated (FM)-KPFM is able to achieve
higher resolutions than amplitude-modulated (AM)-KPFM, as artifacts caused by the
capacitance of the cantilever are more prominent in AM-mode operation [128–130]. On the
other hand, lower bias voltages in AM KPFM reduce the distance dependence of the
minimizing potential [131] and result in a higher reliability for the topological loop to
prevent damaging the surface or the tip [132]. Recently, the introduction of heterodyne
detection methods in both AM [133] and FM [134] KPFM has been shown to yield improved
resolution and speed. In CANNEX, we intend to use heterodyne AM. In contrast to the
literature, our cantilever is excited at its resonance frequency ωc0 electrostatically. This
method is less prone to artifacts and offers increased resolution compared to both classical
AM and FM KPFM. Moreover, heterodyne KPFM enables us to detect the contact potential
difference simultaneously to ∂2C/∂a2, where C is the capacitance and a is the distance
between the tip and the surface [134–136]. In the potential domain, we expect the resolution
to be better than 0.1 mV [137]. This setup can easily be adjusted to any homo- or heterodyne
detection method. If necessary, we will diverge from the intended use of heterodyne
AM-KPFM if other methods prove to lead to higher resolutions.

2.5. Optical Detection System: Force and Distance Measurements

A major problem in the proof of principle for CANNEX [103,104] was the parasitic
coupling of AC signals into the cavity. We have, therefore, replaced the capacitive detection
system by a entirely optical one to detect all relevant parameters. Electrical potentials
between the plates are now defined by a single source driven by the active potential
compensation circuit described in Section 2.2.

2.5.1. Force and Force Gradient Detection

CANNEX uses Fabry–Pérot cavities formed by the polished ends of optical fibers and
the reflecting surfaces of the sensor plate to measure the extension of the latter and its
distance to the opposing lower plate. An overview of the complete optical setup is given
in Figure 7.
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Figure 7. Complete schematic of the optical detection system.

A periodic force F or movement of the sensor base z0 at circular frequency ω leads to
a displacement amplitude ∆z of the sensor plate according to the transfer functions

TFz ≡
∆z
F

=
1

m
(
ω2

0 −ω2 − ∂aF/m− iωω0/Q
) , and Tz0z ≡

∆z
z0

=
ω2

(
ω2

0 −ω2 − ∂aF/m− iωω0/Q
) . (4)

Here, Q ≈ 104 is the quality factor of the sensor.
Note that at ω = 0, the transfer function reduces only approximately to Hooke’s law,

as TFz → (mω2
0− ∂aF)−1 = (k− ∂aF)−1. We denote the sensor spring constant by k, the free

resonance frequency by ω0, and the effective mass by m, which is larger than the physical
plate mass m0 due to the dynamical contribution of the spring elements. At the smallest
separations a → 3 µm, the ratio (∂aF)/k reaches values up to 0.01 such that the force
gradient ∂aF cannot be neglected when evaluating DC extension data. We, therefore, have
to either measure or calculate ∂aF for all measurements. The sensor resonance frequency ωr
(defined as the frequency at which the mechanical system has π/2 phase shift with respect
to the sinusoidal force excitation signal) shifts according to

ωr =

√
ω2

0 −
∂aF
m

+
1
m
O
(
(∂2

aF)TFzF
)

, (5)

where the relative error due to the last term is smaller by four orders of magnitude than the
effect of the second at all separations.

We use the single interferometer above the sensor (see Figure 7, ‘sensor cavity’) to syn-
chronously detect the DC extension ∆z in response to constant forces acting onto the plate,
and the dynamical response ∆z(t) to an electrostatic excitation Fexc(t) = (ε0/4a2)V2

exc cos ωrt
(with the vacuum permittivity ε0).

Due to the voltage Vexc applied between the plates at frequency ωr/2. Using a phase-
locked loop (PLL), we can track ωr and detect the shift ∆ω = ωr − ω0 of the resonance
frequency, from which we extract ∂aF by inverting Equation (5). For measurements in
Xe gas, the sensor is over-critically damped, such that ∆ω cannot be measured. In these
measurements, we move to a > 10 µm, where ∂aF/k � 10−2 and the error by using the
computed values for the force gradients due to the dominant electrostatic and Casimir
force contributions is negligible.
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The value of ∆z(t) is extracted from the optical signal

S = SA + SB cos
4π(d− ∆z)

λ
, (6)

where the offset SA and the amplitude SB are determined by the optical and geometric
properties of the cavity, the laser power PL and the wavelength λ, and the sensitivity of
the detector. All appearing parameters are calibrated independently (see Section 2.5.2).
In order to maximize the sensitivity of S to ∆z in Equation (6), we need to adjust λ such
that cos 4πd/λ = 0, which we call the ‘quadrature point’. Before data taking, we ensure the
latter condition by performing a sweep of λ at large distance, where ∆z can be calculated
with sufficient precision. The sweep data are then fitted by Equation (6), with free param-
eters SA, SB, and d. Note that for all a the interferometric cavity size d only changes by
|∆z| � |d− λ/2| (the size of a fringe) due to the sensor’s reaction to forces applied between
the two plates. We can, thus, measure d and adjust λ to be at quadrature. The same sweep
method with a wide range of λ allows us to measure the absolute distance ai between
the two plates at the position of the lower three interferometers; see Figures 1 and 7. We
extract ai either from fits as described above or from the peaks appearing in the Fourier
transformed data S̃(d) of S(λ). Which method is used depends on the cavity size. At large
a & 20 µm, where sufficiently many fringes can be covered by the modulation range (1520–
1620 nm) of the QuantifiPhotonics 2003 laser (QuantifiPhotonics Ltd., Auckland, New
Zealand) laser, the Fourier method gives fast and accurate values of ai, while at the smallest
separations, not even one fringe can be covered and only the fit method can be applied.

The optical paths 2d and 2ai of our cavities change with the vacuum pressure and are
significantly influenced during the measurements in Xe gas. For this reason, we use
an auxiliary fixed-distance cavity made of a material with an effectively zero thermal
expansion coefficient, sourced by the same laser driving the upper sensor cavity. Being
located next to the sensor, this cavity gives a reference signal SR(PL, λ, ρG) depending on
the density ρG of the gas and fluctuations in both the laser power and wavelength. For
the three interferometers below the sensor, we use a power monitor to eliminate power
fluctuations from the signal. As all excitations and resonances are well below 20 Hz, we use
slow low-noise detectors with cutoff-frequency 1 kHz to eliminate high-frequency noise.

Measurements in the interfacial and Cavendish configurations are performed in
sweeps starting at the maximum separation amax = 30 µm, reducing the separation for
each measurement point in discrete logarithmic steps towards amin = 3 µm. Before each
sweep, a full re-calibration is performed (see below) to cancel drifts. The cavity size d and
wavelength λ are re-calibrated before each single measurement point. For measurements
in Xe, a is kept constant and sets of several consecutive measurements are performed at
the same pressure. Each set is preceded by a full calibration with d and λ recalibrations in
between single measurements.

2.5.2. Calibration

In order to perform an absolute measurement of forces, we need to calibrate all the
optical, mechanical, and electric properties of our detection system. Some calibrations
are invalidated only by ageing for which one measurement per experimental campaign
is sufficient, while others have to be repeated as often as possible to compensate drift.
Constant offsets requiring only few re-calibrations concern the dependence of laser power
on the wavelength, transmission functions of wiring and electronics, etc., taken into account
in the error calculations in Section 3. The remainder of this Section focuses on the frequent
calibration of physical properties of the sensor and optical system. Mechanically, the sensor
response is influenced by thermal fluctuations, long-term changes in the residual water
layer on its surface, and surface charges. Even if these effects are expected to be relatively
small, only a calibration can exclude them with certainty.

We start by re-calibrating the time-dependent wavelength offset of our lasers using a
second laser with wavelength locked to an acetylene transition at λref = 1532.832 30(8) nm
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and a beat technique [138]. For this method, the output of the tested laser is combined
with that of the reference laser and lead to a high-frequency detector (see Figure 7).
Then, the λset setting of the TLX1 is adjusted to result in a minimum beat frequency,
∆ f = (c/2)(λ−1

set − λ−1
ref ) (with c the speed of light), using a lock-in amplifier. From the

difference between λset and λref, and from the residual ∆ f (resolution of λset), we can
determine the (constant) error in λset to within about 0.1 pm.

Next, in a similar way as in the proof of principle [103], we increase the plate separation
in high vacuum to acal ≈ 5 mm, where all interactions (electrostatic, Casimir, and gravity)
between the plates fall off by at least two orders of magnitude with respect to their values
at a = 30 µm. In this position, the properties of the sensor cavity (see Figure 7) and the
reference cavity are determined by a wavelength sweep as described above. Subsequently,
at λset ≈ λref, d is adapted iteratively to match that of the reference cavity such that both
cavities are of the same size and at quadrature. Then, a precisely known electrostatic
excitation is applied at frequency ωexc that is swept over a range from ω0/2 to 2ω0 and the
signal amplitude and phase are decoded by a lock-in amplifier. Finally, a DC voltage is
applied between the plates and its value is swept over a range around zero, resulting in
similar signal levels as in the actual measurement of the Casimir force. Both the extension
∆z and the frequency shift ∆ω in response to the electrostatic force are recorded. Then,
a synchronous fit of data from both sweeps (frequency and voltage) to Equations (4) and (5),
considering the signal non-linearity from Equation (6), with all separately recorded voltages,
power fluctuations (see below), and calculated forces and their gradients contributing to
∆z at a = acal, is performed. This fit results in accurate values for m, ω0, and Q.

3. Error Budget

We already published a complete error budget [99] on the basis of a preliminary design
considering a two-stage SAS, but at a location inside a (seismically and thermally) noisy lab
in Vienna. The leading reason to relocate CANNEX to COBS is significantly lower environ-
mental disturbances. Here, we update the previous error budget, firstly, with respect to the
new location, and, secondly, for the final design and the characteristics of the actually used
devices. As we show subsequently, the final design implements major improvements with
respect to the previous conservative estimations, leading to expected final sensitivities of
0.259 nN/m2 and 0.0179 mN/m3, with projected uncertainties (of statistical (stat.), system-
atic (syst.) and constant (const.) errors) 0.119 nN/m2(stat.+ syst.) + 0.139 nN/m2(const.)
and 8.6 µN/m3(stat.+ syst.) + 9.3 µN/m3(const.), respectively, at the 68% confidence level
(1σ) for 100 days of measurements at a = 20 µm. These figures represent an improvement
by factors 2 and 30 for measurements of the pressure and pressure gradient between the
flat parallel plates, respectively, in comparison to our previous estimate.

3.1. Seismic Noise

As shown in Figure 2 above, the seismic noise at the COBS is significantly lower
than in Vienna at all frequencies above the micro-seismic peak. Due to a near seismically
active zone in the Pannonian basin south of Vienna, earthquakes of low magnitude are fre-
quent. However, the observatory houses official geomagnetic, seismic, and meteorological
surveillance stations, including several STS-2 seismometers (Streckeisen GmbH, Pfungen,
Switzerland), which can be used not only to veto affected data but also to correct variations
in the gravitational acceleration g due to Earth tides and irregular local mass shifts at the
location of CANNEX.

The lower seismic noise at the COBS relaxes our requirements for the SAS such that
the one-staged system described in Section 2.1 suffices. In Figure 8, we show the expected
spectral seismic disturbance together with the limits from RMS noise, signal non-linearity,
and the signal-to-noise ratio (SNR). At all frequencies at COBS, the passive SAS alone
already fulfills the requirement with 53 dB and 22 dB (amplitude) buffers in the horizontal
and vertical directions, respectively, around the sensor resonance. Near the resonance of
the GAS filter (assumed 100 mHz) in the vertical direction, the buffer reduces to 14 dB.
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Such a low resonance frequency is usually not achieved by a passive system but since
active feedback can lower the resonance frequency and the corresponding amplitude even
further, we use this assumption in our calculations. At frequencies below 30 mHz, RMS
noise becomes an issue. However, all data below 10 s−1 will be corrected by STS-2 data,
which eliminates the constraint. Furthermore, the current error budget does not include
additional damping by active feedback, as the respective design is not yet complete. We
conservatively expect 2 dB additional damping around the sensor resonance and about
twice this reduction for the amplitude of the primary GAS filter and pendulum resonances.
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Figure 8. Numerical result of the passive (a) horizontal and (b) vertical seismic background on the
core chamber, compared to updated requirements (red lines) representing upper limits (for details
see [99]). The vertical dashed lines indicate the position of the vertical sensor resonance.

3.2. Detection Noise

For the error budget, we have to consider the time-dependent offsets and noise in
all the calibrated quantities, parameters, inputs, excitation and detection signal paths,
and measurement devices. With respect to the previous error budget, we now have detailed
and specific information about most quantities available, which allows us to compute the
final error level expected for the measurements.

General boundary conditions are a total number of 100 distance sweeps, each including
a re-calibration of the cavity sizes, laser wavelength and sensor parameters, and elimination
of seismic disturbances at frequencies lower than (10 s)−1 using seismometer data. In the
following, we construct the error budget by first analyzing the signal paths for DC and
AC measurements independently, leading to a voltage and frequency signal, respectively.
mentioned. Please confirm or revise naming “first step” clearly. Those signals are then
converted to the pressure and pressure gradient using the calibrated mechanical properties
of the sensor. In each of these two stages and for the calibration, we perform a detailed
and—to the best of our knowledge—complete error analysis assuming small and normally
distributed statistical errors and time-dependent drifts wherever manufacturer data are
available. Details on each considered error are given in Appendix A.

For DC signals of the extension ∆z, we consider variations δd in the cavity size d due to
seismic vibrations and thermal drift. Note that errors σd in the cavity size determination are
constant offsets that need to be considered only for the conversion to a force below, as they
are nullified for the voltage signal at quadrature. Wavelength errors δλ are due to the laser
bandwidth and spectral frequency noise as well as time-dependent wavelength accuracy
errors σλ(t). The latter can be reduced by first assuring the independence (specifications
obtained directly from the manufacturer) of the offset σλ(λ) from the wavelength, for all
λ values in the tuning range of the TLX1 laser, using a spectrometer with less than 0.1 pm
accuracy. Then, during operation, σλ will be measured repeatedly (before each force mea-
surement) at one single wavelength using a frequency-locked reference laser as described
above. According to the manufacturer’s information, the uncertainty of the reference laser
wavelength is mainly limited by thermal drift. The given uncertainty value σλ = 0.08 pm
is specified for δT = 3.5°, for which we reduce this value by a factor 0.1/3.5 for operation
at COBS. For the signal error, we further consider the relative power fluctuations δPL of the
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laser leading to intensity fluctuations affecting both the signal of the measuring cavity and
the one of the reference cavity, SR. As both signals are measured independently, this allows
us to normalize the signal in realtime. Both optical signals contain stochastic noise δVdet
of the detectors, and δVDAQ of the two Keysight 34470A voltmeters, discretization error
δValias, voltage offsets σVDAQ(T), depending on fluctuations of the ambient temperature
T, and a stochastic component for cable pickup noise. This leads to an expression for the
total measured signal Vsig, where for brevity, we combine for some quantities the respective
constant and systematic errors σX(t) that may contain drift depending on time t and the
stochastic noise δX as δX(t):

Vsig =
VR(0) + δVR0

VR(t) + δVR

(
δVDAQ(t) + δVdet + [1 + δPL(t)]

[
SA + SB

4π[d + δd(t)]
λ + δλ(t)

])
, (7)

with VR(t) = δVDAQ(t) + δVdet(t) + [1 + δPL]

[
SA,R + SB,R

4π[dR + σR]

λ + δλ(t)

]
.

The reference signal VR(0) is measured before the start of the measurements with long
integration time τR (see below), determined from the minimum between noise averaging
and the rising influence of long-term variations (drift). The measured ambient temperature
in the tunnel at COBS generally changes over periods of weeks rather than hours and has a
typical fluctuation amplitude of 5× 10−3 °C per day. As a worst case (in the case of work
being performed in the tunnel), we consider a sinusoidal diurnal temperature deviation
with peak amplitude 0.1° with zero transition at the start of the measurement. For the
resulting offset errors, we use manufacturer specifications for the voltmeters amended
by noise measurements with the actual devices. The lasers are temperature-stabilized
but nonetheless are affected by changes in T. For the TLX1, the power noise has a 1/ f
characteristic for frequencies below 10 Hz extrapolated from −105 dBc at 10 Hz to smaller
frequencies, and flattening off at −40 dBc at around 2× 105 s due to the power regulation
circuit; specifications were confirmed by actual measurements over 3 h [139]. We computed
the Allan deviation from these data, showing no clear minimum but flattening around 5 ks).
The laser frequency noise δ fL is most pronounced around 1 Hz and reduced for smaller
frequencies by a dither keeping the DC value of the wavelength constant within 10 kHz
(approximately 0.1 fm). Due to the periodic laser frequency offset calibration between
measurements, continuous power normalization, internal temperature calibration of the
data acquisition system, and all-year temperature stability at COBS, any long-term drift is
expected to be insignificant for the period of data taking (100 days). We, thus, cut off drift
contributions (δVDAQ(t), δ fL(t), δPL) at the integration time τ = 1× 10−5 s by integrating
over the fluctuation spectra from f = t−1 to ∞ with a cutoff function, f I( f ) = 1/(1+ 2π f τ),
provided by the detector with τ = τdet = 10−3 s and τ = t for a variable integration time
(2 s for DC measurements and 83 s for AC measurements, 1000 s with averaging for
one measurement point) to obtain the respective RMS error. This procedure replaces the
1/
√

τ factor considered generally for stochastic quantities for all errors for which we have
spectral information. The cavity size d has an uncertainty due to seismic disturbances
(δd = 4 pmRMS for τ = 2 s and δd = 2.8× 10−2 pm for τ = 1000 s). Another contribution to
δd comes from the thermal drift. Based on the thermal expansion coefficients and geometry,
we expect an effective coefficient of about 5× 10−8 m/°C (with rather large uncertainty),
which translates to 5 pm maximum amplitude. This error needs to be evaluated carefully
but our results here indicate that in order to keep the effect of this error small, we need
to re-calibrate d after each measurement point. Note that for δVsig,constant errors in d are
irrelevant, as they cancel out by subtracting the signal from the one at acal.

Without error normalization (i.e., by setting VR(t) = VR(0)), we obtain for an
integration time of τi = 1000 s a total (statistical and systematic) detection error,
δVsig = 4.85× 10−6 V, which is dominated by stochastic δPL at short times and δλ drift at
times larger than approximately 100 s. Including the reference measurement, which has a
fixed-length cavity without distance fluctuations or temperature drift, this figure can be re-
duced (assuming even 10% mismatch between sensor and reference cavity) to 8.90× 10−7 V,
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which is dominated by seismic vibration at short times, and δVDAQ at τ & 500 s. Error
contributions for a single measurement and 500 sequential measurements comprising one
force (gradient) measurement are given in Table 1. For comparison, a pressure of 1 nN/m2

would result in a signal of 3.03× 10−6 V. Note that δVDC has no significant dependence
on a.

Table 1. Components of the DC signal error for fixed a = 3 µm and τDC = 2 s for a single datum
(N = 1) and for N = 500 (τ = 1000 s) representing one single measurement point, considering drift
models and constant deviations σR = d + 10 nm, SA,R = 1.1SA, and SB,R = 1.1SB. See text for details.

Error Symbol Value [V] Error
N = 1 N = 500 Type

Detector noise δVdet 6.0× 10−8 2.7× 10−9 stat.
DAQ input noise δVDAQ 8.9× 10−8 4.0× 10−9 stat.
Laser power fluct. (canceled) δPL 0 0 stat.
Laser bandwidth δλ 2.1× 10−12 9.3× 10−14 stat.
Laser frequency noise δλ 1.6× 10−10 7.6× 10−12 stat.
Seismic vibrations δd 3.3× 10−5 1.3× 10−7 stat.
Tot. ref. measurement noise (72 h) δVR 8.2× 10−8 stat.

DAQ input error σVDAQ(t) 2.3× 10−11 1.3× 10−11 syst.
Laser wavelength drift σλ(t) 7.0× 10−13 1.3× 10−10 syst.
Cavity size drift σd(t) 2.9× 10−9 8.3× 10−7 syst.
Tot. ref. measurement error (72 h) σVR 7.9× 10−7 syst.

DAQ calibration σVDAQ 1× 10−7 const.
Tot. ref. measurement error (72 h) σVR 1× 10−7 const.

For AC measurements of the frequency shift, ∆ω = 2π∆ f , we consider the inher-
ent phase stability of the lock-in amplifier and PLL feedback circuitries, δ fLI and δ fPID,
respectively. There is no simple expression, such as Equation (7) that could be used for
direct error propagation, since the frequency measurement involves numerical operation
of the PLL. Therefore, we measured the noise and stability of the actual lock-in ampli-
fier and feedback using a first-order passive RC-lowpass filter as the test device. This
measurement results in higher noise than in measurements with the CANNEX sensor,
as the Q-factor is significantly lower. Aiming to give a (quite) conservative estimate,
we consider these measurements representative, nonetheless. Furthermore, we consider
the uncertainty in the ω0 calibration obtained from simulations (see below). Constant
offsets σ f of the lock-in amplifier clock are reduced to <5 × 10−10 Hz by referencing
the PLL to an external Rubidium clock. In addition, the Allan deviation of the clock be-
tween calibrations (once per 24 h) could give an error at the level 0.05 ppm/◦C, which we
take into account. Voltage noise sources as described for DC measurements, vibrations,
and laser frequency noise are considered indirectly by expressing the amplitude noise of
the sensor signal in terms of a phase φ at the zero transition, δφ = (∂V/∂ωt)−1δV and
δφ = [∂Arg(TFz)(ω)/∂ω]δω, where Arg() is the argument function. This computation
over-estimates the real phase error by at least a factor of two but we consider it as a worst
case. We obtain δ fV = ω0λ/(16πQ∆zexc)δV, with the excitation displacement amplitude
∆zexc depending on Vexc and a, and δVsig = 7.33× 10−7 , σVsig = 5.58× 10−7 V, evalu-
ated as described above for DC measurements but with τi = 83 s. Note that we adapt
Vexc(a) = Vexc(10 µm)× (a/10 µm)3/2 to render the excitation and associated shift in the
sensor resonance frequency independent of a. The same uncertainties lowered by longer in-
tegration time are used for the calibration of ω0 (see Section 2.5.2). We then obtain the total
frequency shift measurement error by adding all the constant, systematic, and statistical
errors listed in Table 2, as described in Section 3.3 below, leading at the shortest separation
a = 3 µm to a single point (τ = 1000 s) frequency determination error δ f = 4.68× 10−7 Hz
dominated by δ fLI at all integration times (up to τ ∼ 104 s) and σ f = 8.31× 10−9 Hz. This
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has to be compared by a minimum signal ∆ f = 4.95× 10−6 Hz for a pressure gradient of
1 mN/m3.

Table 2. Components of the AC signal error for fixed a = 3 µm and τAC = 83 s for a single datum
(N = 1) and for N = 12 (τ = 1000 s) representing one single measurement point, considering
drift models. See text for details.

Error Symbol Value [Hz] Error
N = 1 N = 12 Type

Signal noise δ fV 3.9× 10−9 1.4× 10−10 stat.
f -detection δ fPID 2.2× 10−6 6.3× 10−7 stat.
PLL frequency noise δ fLI 1.8× 10−9 5.2× 10−10 stat.

Signal drift σ f δV(t) 3.0× 10−10 1.6× 10−11 syst.
PLL phase stability σ fLI(τ) 8.8× 10−10 1.1× 10−8 syst.
Resonance freq. error σω0 2.3× 10−10 2.3× 10−10 syst.

Signal noise σ fV 4.5× 10−9 const.
PLL phase error σ fLI 5× 10−10 const.
Resonance freq. error σω0 8.8× 10−11 const.

The measured frequency shift can be converted to a total force gradient by invert-
ing Equation (5), where we require the effective mass m and ω0 from the calibration.
In order to determine the error on m, Q, and ω0, we performed a Monte Carlo simu-
lation of complete calibration data on Vsig and ωr considering all the voltage and fre-
quency measurement errors discussed in this Section as normally distributed random
quantities with the known width, and offsets depending on time. For frequency data,
we created voltage signals containing δVsig and extracted the resulting amplitude and
phase using a software lock-in amplifier. We then selected 300 arbitrary sets of frequency
shift and voltage shift data, from which we extracted values for m, Q, ω0, as described
in Section 2.5.2. Eventually, we computed the standard deviation of the fit results, which
we interpret as a systematic error (i.e., statistical, averaging with the number of calibrations
only). The difference between the mean fit value and the originally used parameter value
is representative of a constant error for this parameter. We obtain δm = 58.6× 10−12 kg,
σm = 1.42× 10−12 kg, δQ = 1.30× 10−5, σQ = 2.83× 10−2, δω0 = 1.44× 10−9 rad/s,
σω0 = 4.4× 10−11 rad/s. For m and ω0, the constant errors are significantly smaller than the
systematic ones, which indicates that repeated calibrations may be required to average out
the systematic errors. For further computation, we use the constant frequency detection error
σ f = 5.53× 10−10 Hz for σω0/(2π) instead of the smaller constant error from the simulation
given above. We consider a measurement scheme in which one calibration is performed per
distance sweep (i.e., per day) and assume that due to the thermal stability of the system, σm
and σω0 can be reduced as 1/

√
Ncal with the number Ncal of calibrations. We then resolve

ωr + δωr(t) =
√
(ω0 + σω0)2 − ∂aF/(m + σm) for the total gradient ∂aF, and propagate all

errors. To evaluate the latter expression, we require a value for ωr, where we assume the
Casimir force gradient (see Section 4.1) and an electrostatic interaction ∂aFES = ε0 AV2/a3,
with V = 0.5 mV× (a/10 µm)3/2 for the excitation and the sensor interaction area A. Using
the quantities just above and the frequency determination error δ∆ f (t), we finally obtain
the errors listed in Table 3 for a = 3 µm, yielding a total pressure gradient detection errors
δ∂aF/A = 0.097 mN/m3(stat. + syst.) and σ∂aF/A = 0.001 mN/m3(const.), dominated
by the frequency measurement error δ fPID, which is based on our test measurements at
low Q-factor.
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Table 3. Components of the pressure gradient error for fixed a = 3 µm and τAC = 83 s for a single
datum (N = 1) and for N = 12 (τ = 1000 s) representing one single measurement point, considering
drift models.

Error Symbol Value [N/m3] Error
N = 1 N = 12 Type

Frequency detection
error δ f 3.3× 10−4 9.4× 10−5 stat.

Mass calibr. uncertainty σm 4.8× 10−5 4.8× 10−5 syst.
Resonance freq. uncert. σω0 4.6× 10−8 4.6× 10−8 syst.
Frequency detection
error σ f (t) 1.4× 10−7 1.6× 10−6 syst.

Mass calibration error σm 1.2× 10−6 const.
Resonance freq. error σω0 1.1× 10−7 const.
Frequency detection
error σ f 1.1× 10−7 const.

The measured DC signal voltage can be interpreted as an extension ∆d = F TFz|ω→0
of the sensor due to a force F and its transfer function TFz, given in Equation (4). In order
to evaluate the latter quantity, we require the errors of ∂aF, m, d, as well as the optical
amplitude SB and Vsig. Eventually, we propagate the errors according to

F(a) =
1

4π

[
∂aF+δ∂aF(t)− (m+σm)(ω0+σω0)

2
]

(8)

×
[

4πσd− (λ+δλ(t))asin
(

Vsig+δVsig(t)
SB + σSB

+ sin
4πσd

λ + δλ(t)

)]
,

resulting in an error of δF/A = 0.324 nN/m2 and σ∂F/A = 0.167 nN/m2, for a single
measurement of 1000 s at a = 3 µm dominated by the uncertainty δVsig and uncertainty
σd in the cavity size. The value of σd is the parameter error obtained by the wavelength
sweep fit during repeated calibrations, for which we categorize it as systematic error,
influenced by thermal variation. The corresponding offset (constant error) was below
machine precision in the fit. We, thus, consider in the final budget a factor 1/

√
Nsweep

with Nsweep = 500 for σd. All errors contributing to δF/A are listed in Table 4. These
results highlight again the need for thermal stability and vibration attenuation as well as
proper thermal design. In Figure 9a,b, we show the detection errors for the pressure and its
gradient as a function of the integration time. In light of the considerations of this section,
the previous error budget [99] is thereby improved by up to one order of magnitude in
both measured quantities. For the pressure error, the main contributions are the drift and
uncertainty (σd) in the cavity size, the DC measurement noise, which, in turn, depends
on vibrations, and the uncertainty σm in the mass of the sensor. For the pressure gradient,
the most important contributions come from the frequency measurement that depends
strongly on the internal stability of the PLL and the sensor mass. The temperature drift is a
crucial parameter influencing most systematic errors considered here.
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Figure 9. Updated error budget for CANNEX. (a,b) Time dependence of the detection error in the
pressure and pressure gradient, respectively, for a single calibrated measurement at fixed separation
a = 3 µm. (c,d) Error contributions from Ref. [99] with only detection errors and seismic errors up-
dated. Note that here, δX denotes the total error of quantity X and σX denotes the the corresponding
combined systematic and constant error.

Table 4. Components of the pressure error for fixed a = 3 µm, τDC = 2 s and τAC = 83 s for a single
datum (N = 1) and for N = 12 (τ = 1000 s) representing one single measurement point, considering
drift models.

Error Symbol Value [N/m2] Error
N = 1 N = 12 Type

Force gradient error δ∂aF 6.0× 10−12 5.0× 10−13 stat.
DC signal error δVsig 1.8× 10−10 2.0× 10−12 stat.
Zero force DC signal error δV0 1.8× 10−10 2.4× 10−11 stat.

Mass calibr. uncertainty σm 4.1× 10−11 1.2× 10−11 syst.
Resonance freq. uncertainty σω0(t) 8.6× 10−16 2.5× 10−16 syst.
Cavity size error σd(t) 4.2× 10−10 1.2× 10−10 syst.
Wavelength drift σλ(t) 1.4× 10−12 4.0× 10−13 syst.
Fringe amplitude
uncertainty σSB 1.3× 10−11 3.6× 10−12 syst.

Force gradient error σ∂aF 6.6× 10−13 1.9× 10−13 syst.
DC signal error σVsig 9.0× 10−11 4.9× 10−11 syst.
Zero force DC signal error σV0 9.1× 10−11 1.7× 10−10 syst.

Mass cal. uncertainty σm 9.0× 10−12 const.
Resonance freq. uncertainty σω0(t) 2.1× 10−15 const.
Cavity size error σd(t) 6.7× 10−11 const.
Wavelength accuracy σλ(t) 3.9× 10−14 const.
Force gradient error σ∂aF 2.2× 10−13 const.
DC signal error σVsig 4.8× 10−11 const.
Zero force DC signal error σV0 4.8× 10−11 const.
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3.3. Updated Error Budget

Apart from the seismic and detection errors updated above in Sections 3.1 and 3.2,
respectively, we also improved our statistical methods. Following Ref. [140], we compute
the total error σtot

p at probability p for Nδ statistical errors σstat
j , Nσ systematic errors σ

syst
k ,

and Nconst independent constant errors σconst
i using

σtot
p = ∑

i
σconst

i +

√√√√t2
p(νδ)

Nδ

∑
j
[δstat

j ]2 + t2
p(νσ)

Nσ

∑
k
[σ

syst
k (τ)]2 . (9)

Note that constant errors occur for many devices and are not limited to the aliasing error,
as mentioned in the literature [141]. For example, consider an internal calibration offset of a
voltmeter due to aging that may change on timescales larger than the experimental period.
Even if a traceable certified calibration is performed before the experiment, the error cannot
be determined during the experiment but has to be considered as a maximum offset. Such
errors are not statistically distributed (varying) over the timescales of the experiment and
can only be estimated conservatively from the accuracy limit given by the manufacturer.
They are linearly added and do not reduce with time. δj are statistical random errors
varying on timescales shorter than any integration time τ, such that they properly probe
a (normal) distribution and can be reduced by a factor 1/

√
τ. σ

sys
k (t) are the (statistical

components of) systematic errors. In this category, we have any offset that has changes that
are quick enough to exhibit a distribution during the experiment that may probably not be
sampled completely. For example, we have aliasing errors and temperature drift as well as
errors of parameters determined in repeated calibrations. These errors average with the
number of calibrations or the number of measurements obtained at the same conditions
and parameters. tp(ν) is the p-% point of the student distribution that depends on the
number ν of degrees of freedom, νx = Nx − 1, for x being δ or σ. Note that for p = 0.68 at
1 σ level, tp < 1 for which the total error is smaller than the single errors in Figure 9. For all
δi determined from Ni individual measurements xj, each with a total error σj, it is common
to consider the (weighted) error of the mean

δ =

[
Ni

∑
j=1

σ−2
j (xj − x̄w)

∑Ni
k=1 σ−2

k

] 1
2

, with x̄w =
Ni

∑
j=1

σ−2
j xj

∑Ni
k=1 σ−2

k

, (10)

where we have introduced the weighted mean x̄w. While for experimental data points,
weighted quantities can differ from unweighted ones due to singular noise events, in the
present estimation of the error to the total mean, it holds that σj = σ ∀j for which Equa-
tion (10) reduces to the geometric mean and its error.

With the seismic and detection errors updated, we achieve the prospective error budget
in Figure 9c,d. We replot the errors discussed in Ref. [99] with only the seismic and detection
errors updated. All the detection errors have a mild dependence on separation due to
the adaptation of Vexc. For details on other errors, see the detailed discussion in Ref. [99].
The detection error is the main limitation at separations a & 10 µm, for which the updated
error budget presented here improves the prospects for measurements at large separations.
Deformation errors, including the sag of the surfaces due to the measured pressures and
gravity, are the second-strongest error contribution at small consider replacing. separations
after residual patch effects. Using Talbot interferometry on the actual plate surfaces, we are
able to measure the deformation and take it into account, for which the error given here
(green line), which considers a residual spherical deformation of 4 nm amplitude, can be
considered as an absolute worst case. Note further that local differences in the Xe density in
the gas pressure modulation measurements near the surfaces due to temporal adsorption,
rarefaction, or other stratification effects would cause only negligible errors not influencing
the budget presented here. As the present error budget is still partially based on models,
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we nonetheless present the updated prospects below considering the previous worse
error budget.

4. Prospective Results

Recently [99], we gave prospective limits on axion-like interactions, Symmetron DE in-
teractions, and measurements of the Casimir effect. Although the error budget in Section 3
demonstrates a further improvement in both the pressure and pressure gradient measure-
ments, we conservatively keep the baseline of 1 nN/m2 and 1 mN/m3. In this section, we
present updated calculations regarding equilibrium and non-equilibrium Casimir forces
and limits on a range of DE interactions with updated theoretical methods and consider
the final design. The latter limits supersede the previous ones in Refs. [99,102].

4.1. Casimir Effect

Casimir force experiments open an extensive window into the quantummechanical
behavior of physical systems. Since the prediction of the Casimir effect in 1948 [36], the
theoretical framework characterizing this phenomenon has substantially evolved, and
nowadays it is situated at the intersection of very diverse areas of physics, ranging from
material science and statistical physics to quantum field theory. An accurate measurement
of the Casimir force has, therefore, the potential not only to offer more information about
the behavior of the system’s quantum fluctuations but also to test how different theories
merge together, possibly providing a new window into fundamental physics.

One of the most remarkable aspects of the Casimir interaction is its dependence on
the involved materials, the thermodynamic state, and the geometry of the system. Indeed,
investigations have shown that by modifying these properties the Casimir force can be
tuned, with interesting implications both for fundamental research and modern quantum
technologies. Below, we provide a brief review of how these three aspects affect the
Casimir interaction and the role that CANNEX may play in approaching them separately or
also simultaneously.

4.1.1. Material Properties

Already from Casimir’s original paper on the force between two parallel perfect
reflecting plates, it appears clear that the properties of the materials involved in the system
can play a role in determining the behavior of the force. The work by Evgeny Lifshitz in
1955 [142] underlined this aspect even further. The celebrated Lifshitz formula,

PLif(a, T) = −Im
∫ ∞

0

dω

π

∫ dk
(2π)2 ∑

σ

h̄ coth
[

h̄ω

2kBT

]
κ

rσ
1 (ω, k)rσ

2 (ω, k)e−2κa

1− rσ
1 (ω, k)rσ

2 (ω, k)e−2κa , (11)

provides the force per unit of area between two parallel planar structures separated by a
distance a in terms of the planes’ reflection coefficients rσ

i (ω, k). In Equation (11), σ defines
the polarization (TE or TM) of the electromagnetic field, k is the component of the wave
vector parallel to the surfaces, k = |k| and κ =

√
k2 −ω2/c2 (Im[κ] ≤ 0; Re[κ] ≥ 0) and kB

denotes the Boltzmann constant. Considering materials with different reflection properties,
several experimental groups have shown that the Casimir pressure can be substantially
modified [46,47,49,50,54,57,143–146]. In particular, leveraging the interplay between optical
properties and geometry (see also Section 4.1.2), not only the strength but also the sign of
interaction can be changed [146–150].

One of the most representative and, at the same time, most controversial examples
highlighting the relevance of material properties in the Casimir interaction is provided by
their role in determining the finite-temperature correction to the Casimir force between
parallel metal plates. For more than two decades now this has been a topic of intense
investigation and debate. A description of the metal in terms of the commonly used
Drude model,

ε(ω) = 1− Ω2

ω(ω + iγ)
, (12)
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where Ω is the plasma frequency and γ a non-zero dissipation rate, gives rise to a temper-
ature dependence of the force, which considerably differs from that obtained for perfect
reflectors [151]. (For recent reviews on the debate around the thermal correction of the
Casimir force, see [152,153] and references therein.) This is particularly relevant at large
temperatures and/or distances where the force predicted by the Drude model is half the
value obtained for perfect reflectors. Puzzlingly, such behavior is not found in many precise
measurements of the Casimir force [49,59,145,154–156]. Experiments where the reduction
in strength predicted by the Drude model was observed [63,144,157] needed to consider
systematic effects, such as the presence of patch potentials in their setups [127,158,159].
Perhaps even more surprising is that the experiments disagreeing with the prediction
of the Drude model (12) are in very good agreement with the result obtained by setting
γ = 0 in the same model. This quite suggestive behavior highlights the role of the material
properties and, for the present model, of dissipation in the controversy. More generally,
within the Lifshitz framework, the disagreement between the experimental measurements
and theoretical predictions obtained using the Drude model is related to the description
of the optical response of metals at low frequency. This can substantially affect the contri-
bution of the transverse electric (σ =TE) polarization [160–163]. More specifically, in the
limit of large separations a, the difference between the two models discussed here arises
because for the Drude model with γ 6= 0, in agreement with the Bohr—van Leeuwen
theorem [164,165], the contribution of the TE-polarization in Equation (11) vanishes at large
distance [163]. The model resulting by setting γ = 0 in Equation (12), often called the
plasma model, is equivalent to a relatively simple description of a superconductor [166],
which does not fulfill the Bohr–van Leeuwen theorem.

A complementary perspective can be given in terms of specific solutions of the
Maxwell equations corresponding to purely dissipative (i.e., over-damped) modes [167],
which are physically connected with the Foucault current or ‘eddy current’ in the interior of
the plate’s material [162,168–170] (see also Refs. [171,172] for related investigations). These
modes have pure imaginary frequencies (see Figure 10) and their dynamics are described by
a diffusion equation. The diffusion constant is given by D = γλ2, where γ is the dissipation
rate of the metal and λ ≡ c/Ω is the plasma penetration depth. The electromagnetic field
associated with these currents is evanescent in vacuum, i.e., it exponentially decays with
the distance from the surface of the metal. In superconductors, eddy current modes are
suppressed by the Meissner effect, explaining the behavior of the Casimir effect with the
plasma model. It was shown that the eddy current contribution alone accounts for the
difference in the prediction for the Casimir effect at finite temperature obtained with the
Drude and the plasma model [162,168]. In particular, in agreement with earlier observa-
tions [160,161], the largest contribution of these modes arises for the TE-polarization [163].
Eddy currents are also helpful to understand why accounting for spatial dispersion in
light–matter interaction [173] can remove pathologies occurring in the thermodynamic
behavior of the Casimir entropy when the Drude model is used [65,174–177]. In particular,
they enable discerning among the different models describing spatial dispersion, showing
also that not all of them are able to eliminate these inconsistencies [170].

Due to the accuracy and the flexibility of the measurements, as well as the possibility
to approach the system in its simplest geometry (two parallel plates), CANNEX allows
approaching the study of the interplay between material properties and the Casimir effect
from a new perspective. The same flexibility also allows probing the impact on the interac-
tion of materials with special or exotic properties, such as magnetic materials [145,178,179],
graphene [51,180–182], and others [183–186], using planar structures. This can offer new
understandings for the resolution of the controversy and, in general, additional information
about the behavior of the Casimir force in regimes and, in particular, for distances that
were not explored before in experiments.
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Figure 10. Schematic representation of the typical electromagnetic mode-frequencies vibrating within
a planar cavity made by dispersive and dissipative metallic mirrors described in terms of the Drude
model [167]. Due to dissipation and according to causality, all modes are resonances described by
a complex frequency located in the lower half of the complex-frequency plane. Typical resonances
include surface plasmons (green crosses) and cavity modes (blue dots) [187,188]. Due to their diffusive
nature, the eddy currents are described in terms of a pure imaginary frequency and are, therefore,
located along the negative imaginary axis [162,168].

4.1.2. The Geometry of the System

It was recognized early on that the Casimir effect can be substantially modified by
changing the geometry of the involved objects. One of the most remarkable examples is
probably the calculation of T. Boyer in 1968 predicting a repulsive Casimir force on a perfectly
conducting spherical shell cavity [189] (see also Ref. [190] for recent evaluations with the
same geometry). In the last decade, theoretical developments have shown how to efficiently
compute the Casimir interaction in systems involving complex structures. A large variety
of methods, ranging from semi-analytical [191–199] to full numerical [199–204], have been
developed. The main drives of this progress have been, on the one side, the necessity to
accurately interpretmeasurements of the Casimir force in realistic setups, and, on the other
side, the ambition to deterministically tune the interaction. Controlling the Casimir force can
help in reducing unwanted stiction in microscopic devices like MEMS and NEMS, and it can
serve as an additional contactless mechanical actuator for similar devices [205,206].

Among the most studied geometries different from plane–plane originally considered
by Casimir, one finds the plane–sphere configuration. As a matter of fact, this geometry
has been for a long time the workhorse in experiments aiming to measure the Casimir
force [37,38,156,205,207,208]. Considering a sphere in front of a plane indeed releases the
constraint of parallelism, drastically simplifying the experimental setup. The price to pay is,
however, a smaller signal and a more difficult interpretation of the measurement. The latter
has for a long time relied on the so-called proximity force approximation, sometimes also
called the Derjaguin approximation [207]. If the radius of the sphere is larger than the
distance between the surfaces of the two objects, this approximation connects the sphere–
plane Casimir force to the energy in the plane–plane configuration. Although previous
experiments have directly investigated the plane–plane configuration [100,209], CANNEX is
one of the first modern apparatuses designed to reexamine this geometry without strongly
penalizing compromises between control, accuracy, and strength of the signal. This same
characteristic and the flexibility of this setup can be employed in order to investigate from a
new perspective the interaction between different planar structures, ranging from multilayer
stacks to nanostructured surfaces, like periodic gratings [191,193–195,197,210–214] or more
modern and complex arrangements, such as, for example, metasurfaces [215–217].

Specifically, the one-dimensional lamellar grating structure has already found its
way into Casimir physics. Its relative simplicity has allowed for an accurate theoreti-
cal description of the Casimir interaction between two vacuum-separated gratings with
commensurable periods. Within the framework of the scattering approach [218–221] the
evaluation is essentially reduced to the calculation of the scattering matrices of the two
nanostructured objects. For instance, the Casimir pressure at temperature T between
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two parallel gratings with the same period p separated by the distance a can be obtained
from [192,193].

P(a) = −4kBT
∞

∑
l=0

′
∫ ∞

0
dky

∫ π/p

0
dα0 ∂a log det

[
1− R←−

LP(a) R−→
RP(a)

]
. (13)

Here, P are the matrices describing the propagation of the electromagnetic field in the
vacuum between the gratings, andR are the gratings’ reflection matrices. The arrows under
the reflection and propagation matrices indicate the direction of propagation of light, and
their expression can be obtained using rigorous coupled wave approaches (RCWA), as in
classical photonics [222]. The propagation matrices are diagonal in a plane-wave, Rayleigh
basis (see for example [192] for explicit expressions). All these matrices are evaluated at
the Matsubara imaginary frequencies, ωl = iξl = i2πlkBT/h̄ [223], and the primed sum
indicates that the l = 0 term has half weight. A particular example of this geometry is
represented in Figure 11, left, where the depth h of one of the gratings was reduced to
zero to recover a plane. For a grating structure with specific geometrical parameters and
comprised by a metal described using the Drude model, the predictions corresponding to
Equation (13) are reported in Figure 11, right. At short separations, due to the finite grating
conductivity, the pressure scales as ∝ a−3. At large separations, the pressure tends towards
the value ζ(3)kBT/(8πa3), which is the same limiting behavior for the Casimir pressure
predicted for the plane–plane configuration using the Drude model.
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Figure 11. Left: A schematic representation of one of the simplest configurations for investigating the
impact of nanostructuring on the Casimir effect: a one dimensional lamellar grating facing a plane.
The grating can be characterized with the help of the following parameters: width of the grooves
p1, width p2, and height h of the teeth. Right: Casimir pressure between a metallic grating and a
metallic plane (see Ref. [194] for further details). The metal is modeled using the Drude model with
Ω = 8.39 eV and γ = 0.043 eV, corresponding to the values of gold. The grating is characterized by
the following parameters: p1 = 160 nm, p2 = 90 nm, and height h = 216 nm. The temperature of
the system is set to T = 300 K. At separations larger than the thermal wavelength [λT = h̄c/(kBT)],
the pressure tends towards the value ζ(3)kBT/(8πa3) (dashed curve), which is the same limiting
behavior for the Casimir pressure predicted for the plane–plane configuration using the Drude model.
At short separations, the pressure is proportional to a−3 because of the finite grating conductivity.
The yellow shadow region describes the distance range investigated in Ref. [213] and the star indicates
the value of the Casimir pressure measured around 1 µm in the same experiment. See text for details.

Despite systems involving ‘simple’ one-dimensional grating structures having been actively
investigated both theoretically [191,193–195,197,212,213] and experimentally [43,210,211,213,214,224],
some disagreements between the predictions and measurements of the corresponding Casimir
pressure remain. For example, an experiment reported in Ref. [213] measuring the Casimir force
between a gold sphere and a one-dimensional gold grating at finite temperature has shown that the
Casimir force can be tailored in a nontrivial way by modifying the grating’s period [213]. Conversely
to comparable measurements involving a dielectric grating [210,211,214], however, the theoretical
predictions and the experimental results do not agree, indicating once again the possibility that
when metals are involved something in the physics of the system still needs to be understood.
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In Figure 11, right, we depict the theoretical predictions for the Casimir pressure
between a plane and a grating with dimensions quite similar to those used in Ref. [213],
as well as the designated working range of the CANNEX setup. The distance range, as
well as the value of the pressure measured for the largest plane–sphere separation in the
experiment reported in Ref. [213], are also represented, showing that CANNEX has the
potential to inspect a complementary regime. Specifically, the device’s accuracy of 1 nPa
could allow to investigate the pressure behavior within a range of distances corresponding
to the transition to the thermal regime. This is expected to occur for distances of the order
of λT = h̄c/(kBT) ' 7.6 µm (green shadowed region in Figure 11), considerably higher
than the largest separation considered in many experiments. Shorter separations could be
investigated using the same setup with a slightly more rigid sensor. This would reduce the
sensitivity, but as the Casimir forces in this distance range scale as a−n with n between 3
and 4, while other disturbing effects, such as patches or electrostatics scale with 2 ≤ n < 4,
the precision of the measurement would not be reduced.

4.1.3. The Thermodynamic State of the System: Configurations out of Thermal Equilibrium

The Lifshitz theory of Casimir interactions assumes that the whole system is at ther-
mal equilibrium at temperature T. Recent investigations have shown, however, that when
non-equilibrium configurations are taken into account, interesting phenomena can oc-
cur [225–227]. Out-of-equilibrium configurations can be realized with different expedients,
including temperature gradients [66,225,228–230], moving objects [226,227], and also sce-
narios where external lasers act on a system initially in thermal equilibrium [231,232].
In many experiments, non-equilibrium physics aremore the rule than the exception. In
particular, the presence of different temperatures in the system can considerably affect
the Casimir force’s behavior, giving rise to repulsive interactions and different power-law
dependencies [66,225,229,230]. In addition to providing alternative ways to tailor Casimir
forces, non-equilibrium configurations also offer opportunities to differently investigate
the interplay between the Casimir interaction, the material’s optical properties, and the
system geometry, possibly adding new relevant information for solving some of the issues
mentioned above.

The high symmetry of the plane–plane configuration has allowed in Ref. [228] for a
detailed calculation of the thermal non-equilibrium Casimir pressure acting on the inside
faces of two planar plate configuration. As in the Lifshitz Formula (11), the planes can be
characterized using the corresponding reflection coefficients rσ

i , i = 1, 2. If each planar plate
is assumed to be locally in thermal equilibrium at the temperature Ti within an environment
that is kept at temperature T3, the total Casimir pressure on the plate i can be written as
follows [66]:

P(i)(a, T1, T2) =
1
2 ∑

i=1,2

[
PLif(a, Ti) +

4σSB

3c
T4

i

]
+ ∆Pneq(a, T1, T2)−

2σSB

3c
(T4

i + T4
3 ) , (14)

where σSB is the Stefan–Bolzmann (SB) constant. The first term is equivalent to the average
equilibrium pressure predicted by the Lifshitz formula and the SB law evaluated at the two
different plates’ temperatures. The last term is the pressure of the environmental radiation
on the plate i (for both plates, we assumed the external surfaces to be blackened [66,233]).
The second term, ∆Pneq, is a pure non-equilibrium contribution: It can be written as the
sum of two contributions arising from evanescent and propagating waves, respectively.
Moreover, ∆Pneq is non-zero only if the two planar structures are different such that rσ

1 6= rσ
2

and it is odd if the plates’ temperatures are swapped ∆Pneq(a, T1, T2) = −∆Pneq(a, T2, T1)
(see Appendix B for more details).

The direct connection between the detailed expression for P(i)(a, T1, T2) and their
reflection coefficients (from the inside of the resulting cavity) allows for some flexibility
in the description of the planar structure and, in particular, for the consideration of mul-
tilayered structures [234,235]. An example is given in Figure 12, left, which represents
a typical configuration used in the CANNEX setup. A possible measurement scheme in-
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volves the upper plate, which is kept at equilibrium with the surrounding environment,
i.e., T1 = T3 = Teq = 293 K, while the lower plate is cooled by ∆T2 = 10 K during a first
measurement campaign and then warmed by the same quantity during a second cam-
paign. According to Equation (14), the difference between the two sets of measurements
considering the pressures acting on the CANNEX’s sensor plate is given by

P(1)
diff(a) = P(1)(a, Teq, Teq + ∆T2)− P(1)(a, Teq, Teq − ∆T2). (15)
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Figure 12. Left: Schematic configuration of the two planar multilayer structures which shall be used in
the CANNEX setup for interfacial measurements (not to scale). The lower plate is made by a 1 µm thick
gold layer over a silica substrate. The upper/sensor plate is made of a platinum/tungsten/platinum
multilayer deposited over a silicon structure. For describing the metals, we use the Drude model
(12) with the following parameters: ΩAu = 8.39 eV, γAu = 43.4 meV [213]; ΩPt = 5.48 eV,
γPt = 86.5 meV [236]; ΩW = 6.41 eV, γW = 60.4 meV [237]. For simplicity, we described the sil-
icon and silica layers using the same dielectric function described in terms of the Lorentz model (A8),
with the following parameters: ε0 = 11.87, ε∞ = 1.035, Ω0 = 4.346 eV, and Γ = 43.5 meV [238].

Right: Differential pressure P(1)
diff(a) (see Equation (15)) (top) and its gradient (bottom) corresponding to

out-of-equilibrium configurations, where T1 = T3 = Teq = 293 K, while the lower plate’s temperature
is in one case at temperature T2 = Teq + ∆T2, and T2 = Teq − ∆T2 in the other case. The value of ∆T2

is taken to be 10 K corresponding to the temperature difference, which can be obtained in CANNEX.
The red curves indicate a negative difference while the blue curves describe positive ones. See text for
more details.

Since CANNEX can simultaneously measure both the pressure and the pressure gra-
dient, in Figure 12, right, we plot the prediction corresponding to these two quantities
for the differential measurement described above and in relation to the material configu-
ration in Figure 12, left. For comparison, in Figure 13, we also report the corresponding
equilibrium values (Ti = Teq = 293 k) for both the pressure and its gradient calculated
using the Lifshitz Formula (11). Notice that over a range of 3–30 µm, we can predict
a maximal value for P(1)

diff(a) of about −0.1 mPa for a distance a = 3 to 4 µm and a
change in sign from negative (P(1)(a, Teq, Teq + ∆T) < P(1)(a, Teq, Teq − ∆T2)) to posi-
tive (P(1)(a, Teq, Teq + ∆T2) > P(1)(a, Teq, Teq − ∆T2)) around a = 13 µm. This means that
for sufficiently short distances, the pressure measured by the sensor plate when the lower
plate is warmer than the environment is larger than the corresponding pressure measured
for a plate which is cooler than the environment. This balance, however, changes as a
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function of the separation between the plates. Coherently, Figure 12, bottom right, shows
that the pressure gradient, in the range of distance considered in our analysis, changes sign
between 3 and 4 µm and again around 20 µm.
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Figure 13. Pressure (left) and its gradient (right) in equilibrium at temperature T = Teq = 293 K for
the configuration depicted in Figure 12. The pressure is negative (attraction) while its gradient is
positive. The values of both quantities are evaluated using the Lifshitz Formula (11) (see Appendix B)
and the material parameters reported in the caption of Figure 12.

4.2. Scalar Dark Energy

A common approach to solving the cosmological constant problem proposes the
existence of new hypothetical scalar fields. However, these scalar fields typically introduce
so-called fifth forces. Since such additional forces are tightly constrained by ongoing
high-precision experiments, these scalar fields must incorporate some kind of ‘screening
mechanism’ to avoid conflict with current experimental results. Several such screening
mechanisms have been suggested, such as the chameleon [239,240], K-mouflage [241,242],
Vainsthein [243], and Damour–Polyakov [244] mechanisms. All these mechanisms have
in common that the fifth force is suppressed in high-density environments. For this
reason, high-precision vacuum experiments, such as CANNEX, are ideal tools to probe these
hypothetical forces.

The investigations in this paper cover the environment-dependent dilaton [245,246],
symmetron [247–249], and chameleon field theories [250]. Notably, the self-interaction
potential of the dilaton finds its theoretical origin in the strong coupling limit of string the-
ory [251–253]. The corresponding screening mechanism is highly sensitive to the parameter
values and the corresponding behavior has been investigated in detail in [105]. In contrast,
symmetrons, resembling the Higgs, employ spontaneous symmetry breaking to realize
a screening mechanism. In low-density regions, the field is in its spontaneously broken
phase and, hence, acquires a non-vanishing vacuum expectation value (VEV), resulting
in a fifth force. However, in high-density regions, the symmetry is restored and the fifth
force vanishes. Still another screened scalar field theory is the chameleon with a screening
mechanism, which increases the mass in dense environments (see, e.g., [250,254] for reviews
concerning the symmetron and chameleon field).

While the chameleon and the symmetron field have been constrained by several experi-
ments, such as atomic interferometry [255,256], Eöt–Wash experiments [257], gravity resonance
spectroscopy [247,248,258], precision atomic measurements [259], and others [250,254], more
recent investigations on the dilaton model have so far provided only constraints by gravity
resonance spectroscopy, lunar laser ranging, and neutron interferometry [105,260]. Concerning
CANNEX, prospective constraints have been derived for either of these fields [99,102,105].
However, these earlier analyses suffer from various shortcomings, e.g., the chameleon analysis
has neglected the vacuum region above the setup’s movable mirror in the calculation of the
induced pressure. Furthermore, the chameleon parameter Λ has been fixed to the specific
value of 2.4 meV. As of now, pressure gradients have not been considered and investigations
related to chameleons and symmetrons have not taken variations in the vacuum pressure and
plate separation into account. Herein, the most rigorous and complete investigation, closing
the discussed gaps, has been carried out.
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4.2.1. Theoretical Background

The effective potential of the scalar fields considered herein is given by

Veff(φ; ρ) = V(φ) + ρA(φ), (16)

where V(φ) is the self-interaction potential and A(φ) the ‘Weyl factor’ providing the
coupling to the ambient matter density ρ. For all models investigated in this paper,
A(φ) ' 1 holds. The dilaton (D), symmetron (S), and chameleon (C) models are defined
by [250,254]

VD(φ) = V0 e−λDφ/mpl ,

VS(φ) = −
µ2

2
φ2 +

λS
4

φ4 ,

VC(φ) =
Λn+4

φn ,

(17)

together with the Weyl factors

AD(φ) = 1 +
A2

2
φ2

m2
pl

,

AS(φ) = 1 +
φ2

2M2 ,

AC(φ) = eφ/Mc ' 1 +
φ

Mc
.

(18)

The dilaton field is characterized by three parameters, i.e., V0, an energy scale associ-
ated with DE, λD, a numerical constant, and A2, a dimensionless coupling parameter. Then,
mpl denotes the reduced Planck mass. Furthermore, the symmetron parameters are given
by the tachyonic mass µ, a dimensionless self-coupling constant λS, and M as a coupling
constant to matter with a dimension of a mass. Finally, for chameleons, n ∈ Z+ ∪ 2Z−\{−2}
determines the power of the self-interaction potential, Λ defines an energy scale that is
sometimes related to DE, Mc = mpl/β is a coupling constant with dimension of a mass, and
β being the dimensionless coupling. To justify the neglect of any higher-order couplings,
the analysis herein is restricted to

A2

2
φ2

m2
pl

,
φ2

2M2 ,
φ

Mc
� 1 . (19)

The resulting equations of motion are given by

�φ + Veff,φ(φ; ρ) = 0 , (20)

while the non-relativistic force acting on a point particle with mass m is [249]

~fφ = −m~∇ ln A(φ) . (21)

For the analysis herein, the CANNEX setup is approximated in one dimension along the
z-axis as follows: The fixed lower mirror is located at z < 0 with density ρM = 2514 kg/m3,
while the movable upper mirror with density ρM and thickness D = 100 µm is located at
a < z < a + D with 3 µm ≤ a ≤ 30 µm. Between both mirrors and above the upper mirror,
vacuum prevails with an adjustable density of 5.3× 10−12 kg/m3 ≤ ρV ≤ 2.6 kg/m3. To
justify the neglect of the vacuum chamber above the upper plate, an interaction range
cut-off at 1 mm has been applied in our analysis. For even greater interaction ranges,
the matter content of the vacuum chamber induces a pull on the upper plate, thereby
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effectively lowering the pressure on the upper plate. Hence, the force on the upper mirror
is given by [261].

~fφ = −ρM

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ a+D

a
dz ∂z ln A

(
φ
)
~ez , (22)

and the pressure in the z-direction on the movable mirror is, therefore,

P = ρM
(

ln A(φ(a))− ln A(φ(a + D)
)

' ρM
(

A(φ(a))− A(φ(a + D)
)

. (23)

If the field reaches its potential minimum value φM inside the upper mirror, the latter
expression can be simplified further to [105]

P =
ρM

ρM − ρV

(
Veff(φV , ρV)−Veff(φ0, ρV)

)
, (24)

where φ0 := φ(a/2) is the value of the scalar field in the middle between both plates.
This assumption, however, is not very restrictive, since the screening mechanism typically
suppresses the field inside the mirror such that the field can effectively reach its potential
minimum value. We have checked explicitly that this assumption is actually satisfied for
parameter values where limits were set. In order to obtain φ0, the following differential
equation has to be solved:

d2φ

dz2 −Veff,φ
(
φ(z), ρ(z)

)
= 0 . (25)

Since the field effectively reaches its potential minimum values inside both mirrors,
φ(z) = φM has been set as a boundary condition deep inside the mirrors. For some
cases, analytical solutions to this equation exist [248,249,262]. However, for the new limits
obtained herein, we solved this equation numerically. Whenever possible, we performed
a comparison with analytical solutions as an additional check. This allowed the reliable
computation of the pressure as a function of the plate distance as well as the vacuum
density. The pressure gradients can straightforwardly be computed by using

∂aP ' P(a + δ)− P(a− δ)

2δ
, (26)

for small enough δ.

4.2.2. Dilaton Constraints

The resulting constraints for the dilaton field theory are shown in Figure 14. CANNEX

will indeed be able to probe parts of the dilaton parameter space that have not been
excluded by existing experiments. However, adding pressure gradients to the existing
analysis does not improve the constraints that can be obtained with CANNEX.
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Figure 14. Prospective CANNEX limits on dilaton interactions (in color) alongside the already existing
constraints from qBounce and neutron interferometry (assuming the Fermi-screening approxima-
tion [105]). The combined constraints from pressure and pressure gradient measurements are plotted.
The parameter space of the dilaton field naturally falls into two regimes. Left: For small values
of the parameter λD, the model has an additional parameter symmetry, such that the physics only
depend on the product λDV0 rather than λD or V0 individually. Therefore, the shape of the excluded
parameter areas remains the same for increasing V0, but only shifts towards lower values of λD.
Right: For large values of λD, the dilaton approximately depends only on A2 ln

(
V0/ρ

)
, but not on

their individual values. Therefore, the excluded parameter areas shift towards lower A2 for increasing
V0 without changing their shape. However, in contrast to the small λD regime, the areas are cut by an
ever stronger cut-off as indicated by the arrows.

4.2.3. Symmetron Constraints

The resulting constraints for the symmetron field theory are shown in Figure 15. For
too small values of µ, the field vanishes entirely and with it the induced pressure as well.
This happens approximately for [248]

√
µ2 − ρV

M2 a <
π

2
. (27)

For too large µ values, however, the force between the plates gets very weak. Hence,
CANNEX can only probe a small interval of µ values. It has been found that in some cases
the pressure gradients provide better constraints than the pressure itself and that the plate
separation has strong impact on the limits. The analysis herein significantly improves on
the analysis in Ref. [99]. Specifically, for µ = 1 eV, corresponding roughly to an interaction
range of 0.2 µm, the CANNEX limits have previously been underestimated by a factor of
∼1020 on the λS axis, since a plate separation of 10 µm was assumed. Clearly, a smaller
plate separation of 3 µm yields an enormously stronger pressure and consequently better
constraints. Due to the same reason, previous limits for µ = 10−0.5 eV have also been un-
derestimated by several orders of magnitude. Based on Equation (27), in combination with
a value of a = 10 µm, the conclusion was drawn in [99] that CANNEX can probe only param-
eter values M > 102 GeV for µ = 10−3/2 eV, resulting in weak limits. However, increasing
a to 20 µm removes this constraint and more substantial limits with M > 10−4.5 GeV can
be obtained, resulting in significant improvements with respect to the existing constraints.
Indeed, CANNEX will be able to improve upon existing table-top experiment constraints by
several orders of magnitude.
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Figure 15. Prospective constraints on symmetron interactions from CANNEX. The colored areas refer
to the constraints for µ ∈ {10−1.5, 10−0.5} eV, the colored dashed lines enclose the constraints for
µ ∈ {10−1, 100} eV, as indicated. Only the combined constraints from pressure and pressure gradient
measurements are shown, alongside already existing constraints.

4.2.4. Chameleon Constraints

Since each value of n is typically considered as a separate chameleon model, the anal-
ysis herein has been restricted to two cases. The most commonly studied model is n = 1
and, hence, limits have been computed for n = 1 and varying Λ. However, within the
current limits of the applied theoretical analysis, no new parts of the parameter space can
be probed using CANNEX. Nevertheless, fixing Λ = 2.4 meV to the DE scale and varying
1 ≤ n ≤ 10, which is also commonly studied, will indeed result in narrowing the gap
between the existing limits, as shown in Figure 16.

Figure 16. The blue area shows the combined prospective constraints of pressure and pressure
gradient measurements on chameleon interactions resulting from CANNEX, while gray areas indicate
parameter combinations already excluded by torsion balances and atom interferometry. The parame-
ter Λ has been fixed here to the DE scale of 2.4 meV. See text for details.
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5. Discussion

CANNEX has completed its design phase and is about to be realized, with the first
results expected in 2024. It is the first experiment to perform highly accurate measure-
ments of both interfacial and gravity-like forces and force gradients in the distance regime
3–30 µm with truly plane parallel plates. This geometry increases the sensitivity to distance-
dependent forces by several orders of magnitude with respect to the curved interacting
surfaces used in most other experiments. High accuracy naturally demands control of
various disturbing effects. We have designed and (partially) tested thermal control at the
(sub-)mK precision level both in thermal equilibrium and with the two interacting plates
being out of thermal equilibrium by 10 °C. We also designed a six-axis passive seismic
attenuation system, in situ surface charge and impurity removal by UV irradiation and Ar
ions, purely optical detection systems, and an in situ Kelvin probe/AFM setup to charac-
terize the surfaces. Importantly, our calibration procedures rely on references that can be
traced to metrological standards (wavelengths, voltages, frequencies).

In the present paper, we give a final update on the design and measurement pro-
cedures, on the basis of which we compute a detailed update of the detection error and
seismic disturbances. Using specifications of and noise measurements with the actual
devices, we find that the error at large separation a & 15 µm can realistically be reduced by
factors 2 and 30 in the pressure and its gradient, respectively, with respect to the previous
error budget in Ref. [99].

CANNEX can be operated in different configurations. In the interfacial configuration,
the two plates directly face each other, which allows us to measure the Casimir forces,
and the hypothetical screened scalar DE forces. Measuring the former at the percent level
at separations both smaller and larger than the thermal wavelength allows us for the
first time to probe the transition from a predominantly quantum mechanical origin to
a thermal origin in the Casimir force at high accuracy. The respective data may lead to
further insights regarding longstanding problems regarding the role of dissipation and
locality in the description of the dielectric response of metals. CANNEX could also perform
the first quantitative measurements of Casimir forces out of thermal equilibrium, thereby
testing the respective theory. Eventually, the plates can easily be modified by structuring.
Thanks to control of parallelism at the µrad level, gratings or cylinders at arbitrary angles
could be investigated, thereby generating high-precision data that can be used to further
verify theoretical approaches currently disagreeing with the measurement results for such
geometries. While the Casimir force is a worthwhile subject to study, it also poses a problem
if we aim to measure screened scalar DE forces which have a similar distance dependence,
but in comparison, several orders of magnitude lower strength. An electrostatic shield
would entirely block these interactions. For this reason, we adapt our measurement
procedure by remaining in interfacial configuration at the same surface separation but
changing the ambient pressure of the Xe gas. In the presence of the gas, electrostatic, Casimir
and gravitational forces only show a negligible and calculable increase, while screened DE
forces would decrease in strength. In a relative measurement with and without Xe, our
sensitivity to such hypothetical forces is maximized. Here, we have presented updated
prospective exclusion graphs for the most prominent representatives of screened scalar
fields: dilatons, symmetrons, and chameleons. The new calculations properly take into
account the finiteness and geometry of the interacting objects, the formation of the field
within the vacuum chamber, and the validity limits of the theory—aspects that have mostly
been neglected in the literature. For all three scalar fields, even considering only the most
conservative error budget, CANNEX will be able to extend the present limits by several
orders of magnitude.

The second possible configuration is the one of Cavendish, where a thin flat conduct-
ing shield is added between the two plates in order to remove electrostatic and Casimir
forces from the balance. In this configuration, volume-sourced forces, such as gravity or
hypothetical fifth forces between fermions in the two plates, can be measured with high
sensitivity. As we now reconfirm the previous error budget and prospective limits on
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a variety of such forces that have been presented recently [99], we do not update these
data here but refer to the literature [99]. With this in mind, CANNEX is considered to be
able to measure gravity (and thereby Newton’s constant, G) at the 10%-level in a distance
regime down to 10 µm with active masses of roughly 30 mg, thereby probably exceeding
recent experiments with torsion balances and spherical objects probing in this direction.
We remark that, since the thick metal coatings on the plates of CANNEX have densities
that exceed those of the carrier material by an order of magnitude, the effective separation
between the masses sourcing the gravitational interaction lies close to the actual surface
separation, in stark difference to spherical objects.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Alternate Current
AFM Atomic Force Microscope
AM Amplitude Modulation
ATI Atominstitut
CANNEX Casimir And Non-Newtonian force EXperiment
COBS Conrad OBServatory
CKM Cabibbo–Kobayashi–Maskawa matrix
CP(T) Charge Parity (Time)
cal calibration
DAMA DArk MAtter
DAQ Data Acquisition
DC Direct Current
DE Dark Energy
DM Dark Matter
det detector
ESS Electrostatic Shield
EW Evanescent Wave
exc excitation
FEM Finite Element Method
FM Frequency Modulation
GAS Geometric Anti-Spring
GR General Relativity
KPFM Kelvin Probe Force Microscopy
LED Light-Emitting Diode
LI Lock-In amplifier
Lif Lifshitz
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LVDT Linear Variable Differential Transformer
ΛCDM Lambda Cold Dark Matter model
MC Monte Carlo
MEMS MicroElectroMechanical System
NHNM New High-Noise Model
NEMS NanoElectroMechanical System
NLNM New Low-Noise Model
PE Peltier Element
PID Proportional–Integral–Derivative
PLL Phase-Locked Loop
PW Propagating Wave
QCD Quantum ChromoDynamics
QED Quantum ElectroDynamics
RC Resistor–Capacitor
RCWA Rigorous Coupled Wave Approach
RMS Root Mean Square
SAS Seismic Attenuation System
SB Stefan–Boltzmann
STS STreckeisen Seismometer
SM Standard Model
SNR Signal-to-Noise Ratio
SpI Spectral Integration
sig signal
TD Temperature Drift
TE Transverse Electric
TM Transverse Magnetic
TU Technische Universität
UHV Ultra-High Vacuum
UV UltraViolet
WIMP Weakly Interacting Massive Particle

Appendix A. Details of the Error Budget

In this Appendix, we give the models used for the calculation of various specific
detection errors. For easier reference, we give them in a listed format below in their original
units, while their effects on the respective measurement were listed in Tables 1–4.

As a general model for drift estimation, we assume a generic diurnal sinus model with
AT = 0.1 °C amplitude,

TD(t) = AT sin
2πt

24× 3600 s
, (A1)

which over-estimates the actual temperature variation at COBS and statistically exceeds
the error for a normal distribution by up to two orders of magnitude, but serves as a
worst-case scenario. Table A1 lists further parameters assumed throughout the analysis.
For RMS quantities xRMS, we do not use a sharp cutoff at the bandwidth 1/τ but inte-
grate the spectrum x(ω) up to the maximum frequency ωmax with a first-order low-pass
TI(ω, τ) = [1 + iωτ]−1 yielding a more realistic estimate

xRMS(τ) =

[∫ ωmax

0

dω

2π
x2(ω)|TI |2(ω)

] 1
2

. (A2)
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Table A1. Global parameters assumed for the error analysis.

Parameter Value Description

τDC 2.0 s integration time for a single DC voltage measurement

τAC 83.0 s lock-in integration time for a single AC amplitude, frequency, or
phase measurement

m 26.13 mg effective dynamic sensor mass
ω0 2π× 9.8 s−1 free sensor resonance frequency
d 500 µm nominal sensor cavity size
A 1.035 cm2 sensor interaction area

Note again that all statistical errors where we do not have information on the spectral
dependence, are time-averaged with 1/

√
t/τ, where τ is the time constant of the actual

measurement as listed in Table A1. Systematic errors are averaged with 1/
√

Ncal, where
Ncal is the number of calibrations. We furthermore use the following indicators on statistics:
‘SpI’ means that spectral integration is performed according to Equation (A2) instead of
regular time averaging (which includes low-frequency thermal drifts); ‘TD’ indicates that
temperature drift is considered on this error according to Equation (A1).

Appendix A.1. DC Signals

Appendix A.1.1. Statistical Errors

DAQ noise, δDAQ = ( 1
2 + 1)× 10−7 V, containing the aliasing error from 34470A datasheet

(first term). Keysight specifies [263] that the error given in the datasheet is for a
temperature range of ±1◦C and can be adapted if the real temperature variation is
below that. We add 1 µV (second term) to account for noise picked up by cabling,
estimated from actual measurements with the device.

Cavity size fluctuations, δd. We consider the RMS value according to Equation (A2) of
the measured vertical vibration spectrum (see Figure 2) at COBS, the passive SAS
Tx0x2(ω), and the sensor response Tz0z(ω) up to 1/τ Hz with τ ≥ τDC. For τ = τDC,
we have δd = 8.5 pm.

Detector noise, δVdet. At λ = 1550 nm, the detectors have a noise level of 0.19 pW/
√

Hz,
at a total incident flux of 1 mW from the fiber interferometer into the detector (based
on laser power and the optical properties of the cavity and fiber). We consider a 1 kHz
bandwidth for the low-pass filter, resulting in 60 nV RMS noise.

Laser power fluctuations, δPL (SpI). We received actual TLX1 intensity noise spectra from the
manufacturer ranging from 1/(3× 3600) s to 10 kHz. From these data, we determined
a temperature correlation coefficient of 4.38± 0.03× 10−6 K−1, but not all of the drift
is temperature-related. We, thus, use the measured Allan deviation as error here.
For integration times 2, 83, and 1000 s, using Equation (A2), we obtain RMS relative
intensity errors 5.53× 10−4, 1.51× 10−5, and 1.54× 10−6, respectively. To the first
order, this error is canceled exactly by the normalization in Equation (7).

Laser bandwidth, δλBW. Given by the datasheet to be 10 kHz (0.08 fm), nominally, as the
low-frequency limit of the frequency noise.

Laser frequency noise, δλ f (SpI). Derived from manufacturer data of the spectral frequency
noise δ f in the range 3 Hz–100 MHz. At lower frequencies, the noise is assumed to
stay constant at 6.8 MHz/

√
Hz, which is three orders of magnitude larger than the

specified linewidth but serves as a worst-case estimate. We convert these data to
wavelength noise by δλ f = (λ2/c)δ f for the mean wavelength λ = 1590 nm after
integration over the spectrum as described at the start of Appendix A, resulting in
RMS values 6.28 fm, 1.04 fm, and 0.31 fm for τ = 2, 83 and 1000 s, respectively.
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Reference cavity signal, δVR. Respective values are obtained from the total δVDC without
seismic vibrations and thermal distance fluctuations, as the reference cavity is a
monolithic block made of a material with thermal expansion coefficient of less than
2×10−8 K−1. We obtain a total δVref = 4.82× 10−6 V and 1.06× 10−6 V for 1000 s and
72 h integration time, indicating the errors for VR(t), and VR(0), respectively. This
error could be reduced in practice, as power fluctuations being the main error here
also have a significant temperature dependence.

Appendix A.1.2. Systematic Errors

DAQ error, σVDAQ (TD). We use the temperature drift according to manufacturer specifi-
cations σDAQ = (SA × 1 µV + 1 µV)× TD(τ) with SA = 0.55 V . For longer measure-
ments, we consider a reset of this error by the Keysight 34470A’s auto-calibration
routing after τ = 1000 s.

Cavity drift, σd(t) (TD). The effective temperature coefficient of d can only be measured,
as uncertainties in the material properties lead to rather different values. Considering
the actual geometry and materials, we obtain an estimate of 5× 10−8 m/K, which,
together with a preliminary stability 0.1 mK of the core temperature and TD(τ), results
in the second-strongest error at large τ. Knowing the actual temperature, this error
could be removed from the results but we do not consider this possibility in the error
budget here. We rather assume that σd(t) can be reset using a λ-sweep calibration
preceding each measurement point, leading to respective statistical averaging and
consider TD(τ) with amplitude 5 pm. We add to σd(t) the uncertainty of determination
obtained from simulated calibration data. For this purpose, we computed 100 λ-sweep
datasets considering independently randomized δλ, δVsig, δd, and fixed σλ with their
respective known statistical widths. The single sweep data are fit to Equation (6) with
free parameters SA, SB, d, and σλ. σd is then the standard deviation of all the MC
results and the mean parameter error (added as systematic errors) of the fits. The same
procedure is used for the reference cavity size determination error σdref, where we
set δd = 0 for data generation. For the computation of the 72 h reference signal, we
assume periodic re-calibration and reset of σd(t) every 500τDC + τcal, with calibration
time τcal = 2800 s.

Wavelength drift, σλ(t) (TD), is derived from the 1.5 GHz accuracy of the TLX1 for a range
10–40 °C. As the absolute wavelength can be re-calibrated using the frequency-
locked reference laser, we assume for operation at COBS a pessimistic maximal
error of 12.6 pm/100 as amplitude for TD(τ). This error averages with the number
of measurement points of both data and reference signal; we assume periodic re-
calibration and reset of σλ(t) every 500τDC + τcal.

Reference cavity signal (TD): systematic component of σVR = 4.7 and 0.79 µV for 1000 s and
72 h integration time, respectively. Obtained in the same way as σVDAQ.

Appendix A.1.3. Constant Errors

DAQ error, σDAQ = 0.1 µV, for the Keysight 34470A offset error, exceeding the specifica-
tions from the datasheet.

Reference cavity signal: constant component of σVref = 0.1 µV, similar as for σDAQ.

Note that constant errors in d and λ do not appear as voltage errors due to measure-
ment at quadrature. The constant errors are considered in Appendixes A.3 and A.4.

Appendix A.2. AC Signals

Appendix A.2.1. Statistical Errors

PLL frequency noise, δ fLI. The short-time stability of the lock-in amplifier’s phase-tracking
based on phase stability δφLI was measured as the RMS value of the phase using

139



Physics 2024, 6

a first-order passive RC-lowpass as a device under test over 3 h, without feed-
back. This error combines internal electrical noise, aliasing errors, and internal
oscillator stability (without an external Rubidium reference clock). We obtained
δ fLI ≤ δφLIω0/(4πQ) = 1.80 nHz (for Q = 104 and δφLI = 2.4× 10−4°).

Frequency measurement, δ fPID. This noise quantifies the stability of the frequency tracking
algorithm of the PLL together with PID feedback. We measured it using the same
first-order passive RC lowpass, resulting in δ fPID = 2.2 µHz.

Signal noise, δ fV (SpI, indirectly; see Appendix A.1). Voltage noise (containing all error
sources described in Appendix A.1) can be converted into time jitter of a sinusoidal
signal at frequency ω, as explained in the main text in Section 3.2, resulting in
δVsig = 7.39× 10−7 and 5.59× 10−7 V, σ fV = 3.90 and 0.51 nHz for τAC and 1000 s
integration time, respectively and a = 3 µm.

Appendix A.2.2. Systematic Errors

PLL phase stability, σ fLI(t) (TD). This error quantifies the 0.05 ppm/°C drift of the internal
oscillator of the lock-in amplifier with temperature, and the respective deviation at
COBS. For multiple measurements, we consider periodic re-calibration to average this
error. σ fV(t) = 0.88 and 10.5 nHz for τAC and 1000 s integration time, respectively.

Resonance frequency calibration error, σω0. The resonance frequency is calibrated prior to
each distance sweep or once per day. We use the combined standard deviation and
parameter error obtained from MC simulations of the calibration data as described in
Section 2.5.2. σω0 = 1.44× 10−9 s−1.

Signal drift, σ fV(t) (TD, indirectly; see Appendix A.1). Drifts of the voltage signal, con-
verted to frequency error, as described in Section 3.2. We obtain σVsig = 3.64× 10−7

and 6.69× 10−7 V, σ fV(t) = 1.92 and 3.63 nHz for τAC and 1000 s integration time,
respectively, and a = 3 µm.

Appendix A.2.3. Constant Errors

PLL phase error, σ fLI. This error reflects the absolute 0.05 ppm frequency accuracy of
the reference Rubidium atomic clock, applied to the sensor resonance frequency
( f0 = 10 Hz).

Resonance frequency calibration error, σω0. This error comes from the mean constant offset
error seen in our MC simulations. It is caused by non-linearities in combination with
other errors, leading to a constant estimation error σω0 = 5.53× 10−7 s−1.

Signal error: constant component of the signal error, amounting to σ fV = 0.1 µV or 0.53 nHz
(see Section 2.5.2).

Appendix A.3. Pressure Gradient

Appendix A.3.1. Statistical Errors

Frequency measurement, δ f (SpI, indirectly; see Appendix A.1. This error is propagated
from the AC error described in Appendix A.2 and amounts for τAC to δ f = 1.62 and
0.47 µV for τ = τAC and 1000 s, respectively, at a = 3 µm.

Appendix A.3.2. Systematic Errors

Frequency measurement, σ f (t) (TD, indirectly; see see Appendix A.1). This error is prop-
agated from the AC error described in Appendix A.2. We obtain σ f = 0.71 and
7.76 nHz for τ = τAC and 1000 s, respectively.

Resonance frequency calibration error, σω0. This error (described already in Appendix A.2) is
considered separately here, as it appears in the expression for the total gradient ∂aF,
expressed from Equation (5). σω0 = 1.44× 10−9 s−1.
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Mass calibration error, σm. We again use the standard deviation and parameter error deter-
mined from MC simulations of calibration data (see Section 2.5.2). σm = 5.86× 10−11 kg.

Appendix A.3.3. Constant Errors

Frequency measurement, σ f = 5.13 nHz, is the constant part of the error propagated from
the AC frequency detection.

Resonance frequency error, σω0 = 5.53× 10−7 s−1. Mean parameter offset from fits to MC
simulation data (see Section 2.5.2).

Mass calibration error, σm = 1.28× 10−11 kg. Mean parameter offset from fits to MC simu-
lation data (see Section 2.5.2).

Appendix A.4. Pressure

Appendix A.4.1. Statistical Errors

Signal fluctuation, δVsig. Propagated statistical error from the DC signal. Amounts to
δVsig = 0.74 and 0.10 µV for τAC and 1000 s integration time, respectively, at a = 3 µm.

Reference signal, δV0. Statistical error of the zero-force reference signal taken at acal (do not
confuse with δVR from the reference cavity). As DC detection is independent of a,
we use the same models as for δVsigdescribed in Appendix A.1. δV0 = 0.01 µV for
τ = 1000 s integration time.

Force gradient, δ∂aF. Correcting the spring constant k introduces a dependence on the force
gradient. We propagate the corresponding error described in Appendix A.3, resulting
in δ∂aF = 32.5 and 9.36 nN/m for τAC and 1000 s integration time, respectively.

Appendix A.4.2. Systematic Errors

Mass calibration error, σm = 5.86× 10−11 kg, was described in Appendix A.3.

Resonance frequency error, σω0 = 1.44 × 10−9 s−1. This is the same error described in
Appendix A.2.

Wavelength error, σλ(t) (TD, partially). While σλ can be measured and brought close to zero
by the beat method (see Section 2.5.2), it can also be obtained from a fit to a λ-sweep
(see σd above). We use the average parameter uncertainty of the fits combined with
the standard deviation of the results using 300 sets of calibration data, resulting in
σλ = 0.16 pm. In addition, we use the known temperature dependence, as described
in Appendix A.1: σλ = 12.6 pm/100× TD(τ), and add the two uncertainties.

Cavity size determination error, σd(t). Same as described in Appendix A.1.

Signal error, σVsig (TD, indirectly; see Appendix A.1). Systematic component of the signal
error from Appendix A.1. We use σVsig = 0.36 and 0.69 µV for τAC and 1000 s,
respectively.

Reference signal error, σV0 (TD, indirectly; see Appendix A.1). Systematic error of the zero-
force reference, from Appendix A.1 for τ = 1000 s. σV0 = 0.69 µV.

Force gradient error, σ∂aF (TD, indirectly; see Appendix A.3. Systematic error of the syn-
chronous force gradient measurement, considering all errors from Appendix A.3,
σ∂aF = 3.55 nN/m2 for both τ = τAC and 1000 s, respectively.

Appendix A.4.3. Constant Errors

Resonance frequency error, σω0 = 5.53× 10−7 s−10. Mean offset from MC simulations, see
Appendix A.3.
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Mass calibration error, σm = 1.28 × 10−11 kg. Mean offset from MC simulations, see
Appendix A.3.

Wavelength offset error, σλ. Absolute error of the Thorlabs LLD1530 reference laser from
manufacturer data, adjusted for better thermal stability at COBS, as described in
Section 3.2. During the experiment, this may turn out to be a systematic error.
Conservatively, we consider it to be constant here. σλ = 3.4 fm.

Signal error, σVsig. Propagated constant error of the DC signal Vsig. σVsig = 0.19 µV.

Reference signal error, σV0. Constant error of the zero-force reference signal. σV0 = 0.19 µV.

Force gradient error, σ∂aF. Constant part as described in Appendix A.3, amounting to
σ∂aF = 1.16 nN/m.

Appendix A.5. Other Errors

The radius of the plates is specified with uncertainty 5 µm. It can be measured with
slightly better accuracy. To convert the errors on the force and its gradient to a pressure
and pressure gradient, we consider a constant error A→ A(1 + σA) with σA = 2.5× 10−3,
considering the maximal deviation on both plates and alignment errors.

Appendix B. Evaluation of the Out of Thermal Equilibrium Casimir Pressure

In the expression for the non-equilibrium Casimir pressure given in Equation (14),
the pure non-equilibrium term, ∆Pneq, can be written as the sum of a contribution aris-
ing from the evanescent waves (∆PEW

neq ) and a contribution due to the propagating waves
(∆PPW

neq ) [66,228,233]. Considering local and isotropic materials, the two contributions can be
conveniently written as

∆PEW
neq (a, T1, T2) = −h̄

∫ ∞

0

dω

π
∆n(ω, T1, T2)

∫ ∞

ω
c

dk
2π

k ∑
σ

κ
Im[rσ

1 ]Re[rσ
2 ]− Re[rσ

1 ]Im[rσ
2 ]

|1− rσ
1 rσ

2 e−2κa|2 e−2κa

= − h̄
2

∫ ∞

0

dω

π
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0
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2π ∑
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κ2 2 Im[rσ
1 (r

σ
2 )
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∆PPW
neq (a, T1, T2) = −

h̄
2

∫ ∞

0
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2 |2
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1 rσ
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where it is also assumed that each of the plates is locally in thermal equilibrium at the
corresponding temperature. In expressions (A3) and (A4), the same conventions and
definitions as described after Equation (11) are used, while ‘∗’ indicates the complex con-
jugate of the corresponding quantity. In the second line of Equation (A3), given that κ
is non-negative over the whole integration range, we changed the variable from k to
κ. Similarly, in the second line of Equation (A4), we performed the variable change
k→ kz =

√
ω2/c2 − k2 = iκ (Im[kz] ≥ 0; Re[kz] ≥ 0). We have also defined

∆n(ω, T1, T2) = n(ω, T1)− n(ω, T2) =
1
2

(
coth

[
h̄ω

2kBT1

]
− coth

[
h̄ω

2kBT2

])

=
1
2

tanh
[

h̄ω

2kB

(
1
T1
− 1

T2

)](
1− coth

[
h̄ω

2kBT1

]
coth

[
h̄ω

2kBT2

])
, (A5)

where n(ω, T) = 1/[e
h̄ω

kBT − 1] is the Bose–Einstein occupation number.
As pointed out in Section 4.1.3, the result (11) allows for the consideration of mul-

tilayered structures. In this case, numbering the layers in the stack from the top (n = 1
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corresponds to the medium above the first interface) to the bottom, the reflection coeffi-
cients, as seen from an electromagnetic wave impinging from the top of the layer onto the
topmost interface can be obtained using the following recurrence formula [234,235]:

rσ
n =

r̃σ
n + rσ

n+1e−2tn+1κn+1

1 + r̃σ
nrσ

n+1e−2tn+1κn+1
, (A6)

where r̃σ
n is the interface reflection coefficient between the layer n and n + 1, tn is the

thickness of the nth-layer and κn =
√

k2 − εn(ω)ω2/c2, with εn(ω) the corresponding
permittivity. In the case of a finite multilayer structure having N layers, we set rσ

N = r̃σ
N .

For local and isotropic materials, the expression for r̃σ
n can be given in terms of Fresnel

coefficients [66,233]
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c2 + εn(ω)
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. (A7)

Commonly, multilayer structures are made out of metallic and insulating layers. One
of the simplest mathematical expressions for the dielectric function of metals is given by
the Drude model (12). For semiconductors or insulators, a relatively simple description is
given by the Lorentz model,

ε(ω) = ε∞ +
(ε0 − ε∞)Ω2

0
Ω2

0 −ω2 − iΓω
. (A8)

For example, this expression is used in Figure 12 to describe the optical properties for both
silicon and silica. For simplicity, both materials were described using the parameters as
given in Ref. [238], to which we add a small dissipation rate to account for the material
dissipation near resonance (see Figure 12).

Figure 12 also presents a calculation involving the pressure gradient P′(a, T1, T2).
Although the expression for P′(a, T1, T2) can be obtained analytically from the expression
for P(a, T1, T2), the numerical evaluation of the corresponding result can be quite unstable.
For this reason, the pressure gradient was obtained by applying a symmetric eighth-
order numerical differentiation algorithm, which gives an estimate of the derivative of the
function f (x) at the point x0 as

f ′(x0) ≈
1
δ

[
1

280
f (x0 − 4δ)− 4

105
f (x0 − 3δ) +

1
5

f (x0 − 2δ)− 4
5

f (x0 − δ)

+
4
5

f (x0 + δ)− 1
5

f (x0 + 2δ) +
4

105
f (x0 + 3δ)− 1

280
f (x0 + 4δ)

]
. (A9)

for sufficiently small δ. We checked the result (A9) against the corresponding expression
for the derivative with respect to the distance of the Lifshitz Formula (11), which can be
obtained by using the identity

∂a
e−2κa

1− rσ
1 rσ

2 e−2κa = − 2κe−2κa

(1− rσ
1 rσ

2 e−2κa)2 . (A10)

The comparison successfully validated the numerical differentiation scheme with
δ = 1/8 µm to the level of one part in a million.

143



Physics 2024, 6

References
1. Keshavarzi, A.; Khaw, K.S.; Yoshioka, T. Muon g− 2: A Review. Nucl. Phys. B 2022, 975, 115675. [CrossRef]
2. Gao, H.; Vanderhaeghen, M. The Proton Charge Radius. Rev. Mod. Phys. 2022, 94, 015002. [CrossRef]
3. Tiesinga, E.; Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA Recommended Values of the Fundamental Physical Constants: 2018.

Rev. Mod. Phys. 2021, 93, 025010. [CrossRef]
4. Burger, F.A.; Corkery, R.W.; Buhmann, S.Y.; Fiedler, J. Comparison of Theory and Experiments on van der Waals Forces in

Media—A Survey. J. Phys. Chem. C 2020, 124, 24179–24186. [CrossRef]
5. Workman, R.L. et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [CrossRef]
6. Hardy, J.C.; Towner, I.S. Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM

unitarity Phys. Rev. C 2020, 102, 045501. [CrossRef]
7. Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [CrossRef]
8. Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Pseudoparticles. Phys. Rev. D 1977,

16, 1791–1797. [CrossRef]
9. Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [CrossRef]
10. Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [CrossRef]
11. Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 1933, 6, 110–127. Available online: https:

//www.e-periodica.ch/digbib/view?pid=hpa-001:1933:6#112 (accessed on 7 February 2024).
12. Aghanim, N. et al. [Planck Collaboration] Planck 2018 Results. VI. Cosmological Parameters. Astron. Astrophys. 2020, 641, A6.

[CrossRef]
13. Angulo, R.E.; Hahn, O. Large-Scale Dark Matter Simulations. Liv. Rev. Comput. Astrophys. 2022, 8, 1. [CrossRef]
14. Perlmutter, S.; Aldering, G.; della Valle, M.; Deustua, S.; Ellis, R.S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Groom, D.E.; Hook,

I.M.; et al. Discovery of a Supernova Explosion at Half the Age of the Universe. Nature 1998, 391, 51–54. [CrossRef]
15. Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner,

R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astrophys. J.
1998, 116, 1009–1038. [CrossRef]

16. Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut,
B.; Spyromilio, J.; et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe
Using Type Ia Supernovae. Astrophys. J. 1998, 507, 46–63. [CrossRef]

17. Hu, J.P.; Wang, F.Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. [CrossRef]
18. Koch, B.; Käding, C.; Pitschmann, M.; Sedmik, R.I.P. Vacuum Energy, the Casimir Effect, and Newton’s Non-Constant. Universe

2023, 9, 476. [CrossRef]
19. Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An Update. New Astron. Rev. 2022, 95, 101659. [CrossRef]
20. Solà, J. Cosmological Constant and Vacuum Energy: Old and New Ideas. J. Phys. Conf. Ser. 2013, 453, 012015. [CrossRef]
21. Martin, J. Everything You Always Wanted to Know about the Cosmological Constant Problem (but Were Afraid to Ask). Comptes

Rendus Phys. 2012, 13, 566–665. [CrossRef]
22. Padmanabhan, T. Why Does Gravity Ignore the Vacuum Energy? Int. J. Mod. Phys. D 2006, 15, 2029–2058. [CrossRef]
23. Weinberg, S. Theories of the Cosmological Constant. arXiv 1996, arXiv:astro-ph/9610044. [CrossRef]
24. Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1. [CrossRef]
25. Cree, S.S.; Davis, T.M.; Ralph, T.C.; Wang, Q.; Zhu, Z.; Unruh, W.G. Can the Fluctuations of the Quantum Vacuum Solve the

Cosmological Constant Problem? Phys. Rev. D 2018, 98, 063506. [CrossRef]
26. Adler, R.J.; Casey, B.; Jacob, O.C. Vacuum Catastrophe: An Elementary Exposition of the Cosmological Constant Problem. Am. J.

Phys. 1995, 63, 620–626. [CrossRef]
27. Nobbenhuis, S. The Cosmological Constant Problem, an Inspiration for New Physics. Ph.D. Thesis, Utrecht University, Utrecht,

The Netherlands, 2006. [CrossRef]
28. Bernabei, R.; Belli, P.; Bussolotti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.-J.; D’Angelo, A.; Di Marco, A.; He, H.-L.; et al.

First Model Independent Results from DAMA/LIBRA–Phase2. Universe 2018, 4, 116. [CrossRef]
29. Bulbul, E.; Markevitch, M.; Foster, A.; Smith, R.K.; Loewenstein, M.; Randall, S.W. Detection of an Unidentified Emission Line in

the Stacked X-ray Spectrum of Galaxy Clusters. Astrohpys. J. 2014, 789, 13. [CrossRef]
30. Hofmann, F.; Wegg, C. 7.1 keV Sterile Neutrino Dark Matter Constraints from a Deep Chandra X-ray Observation of the Galactic

Bulge Limiting Window. Astron. Astrophys. 2019, 625, L7. [CrossRef]
31. Barkana, R. Possible Interaction between Baryons and Dark-Matter Particles Revealed by the First Stars. Nature 2018, 555, 71–74.

[CrossRef]
32. Colladay, D.; Kostelecký, V.A. Lorentz-Violating Extension of the Standard Model. Phys. Rev. D 1998, 58, 116002. [CrossRef]
33. Moody, J.E.; Wilczek, F. New Macroscopic Forces? Phys. Rev. D 1984, 30, 130–138. [CrossRef]
34. Fadeev, P.; Stadnik, Y.V.; Ficek, F.; Kozlov, M.G.; Flambaum, V.V.; Budker, D. Revisiting Spin-Dependent Forces Mediated by New

Bosons: Potentials in the Coordinate-Space Representation for Macroscopic- and Atomic-Scale Experiments. Phys. Rev. A 2019,
99, 022113. [CrossRef]

35. Sponar, S.; Sedmik, R.I.P.; Pitschmann, M.; Abele, H.; Hasegawa, Y. Tests of Fundamental Quantum Mechanics and Dark
Interactions with Low-Energy Neutrons. Nat. Rev. Phys. 2021, 3, 309–327. [CrossRef]

144



Physics 2024, 6

36. Casimir, H.B.G. On the Attraction between Two Perfectly Conducting Plates. Proc. Kon. Ned. Akad. Wet. B 1948, 51, 793–795.
Available online: https://dwc.knaw.nl/DL/publications/PU00018547.pdf (accessed on 7 February 2024).

37. Lamoreaux, S. Demonstration of the Casimir Force in the 0.6 to 6 µm Range. Phys. Rev. Lett. 1997, 78, 5. [CrossRef]
38. Mohideen, U.; Roy, A. Precision Measurement of the Casimir Force from 0.1 to 0.9 µm. Phys. Rev. Lett. 1998, 81, 4549–4552.

[CrossRef]
39. Roy, A.; Mohideen, U. Demonstration of the Nontrivial Boundary Dependence of the Casimir Force. Phys. Rev. Lett. 1999,

82, 4380–4383. [CrossRef]
40. Tang, L.; Wang, M.; Ng, C.Y.; Nikolic, M.; Chan, C.T.; Rodriguez, A.W.; Chan, H.B. Measurement of Non-Monotonic Casimir

Forces between Silicon Nanostructures. Nat. Photon. 2017, 11, 97. [CrossRef]
41. Garrett, J.L.; Somers, D.A.T.; Munday, J.N. Measurement of the Casimir Force between Two Spheres. Phys. Rev. Lett. 2018,

120, 040401. [CrossRef]
42. Chen, F.; Mohideen, U.; Klimchitskaya, G.L.; Mostepanenko, V.M. Demonstration of the Lateral Casimir Force. Phys. Rev. Lett.

2002, 88, 101801. [CrossRef]
43. Chiu, H.C.; Klimchitskaya, G.L.; Marachevsky, V.N.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the Asymmetric

Lateral Casimir Force between Corrugated Surfaces in the Nonadditive Regime. Phys. Rev. B 2009, 80, 121402. [CrossRef]
44. Lisanti, M.; Iannuzzi, D.; Capasso, F. Observation of the Skin-Depth Effect on the Casimir Force between Metallic Surfaces. Proc.

Natl. Acad. Sci. USA 2005, 102, 11989. [CrossRef]
45. Chen, F.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the Difference in the Casimir Force for

Samples with Different Charge-Carrier Densities. Phys. Rev. Lett. 2006, 97, 170402. [CrossRef]
46. de Man, S.; Heeck, K.; Wijngaarden, R.J.; Iannuzzi, D. Halving the Casimir Force with Conductive Oxides. Phys. Rev. Lett. 2009,

103, 040402. [CrossRef]
47. Torricelli, G.; van Zwol, P.J.; Shpak, O.; Binns, C.; Palasantzas, G.; Kooi, B.J.; Svetovoy, V.B.; Wuttig, M. Switching Casimir Forces

with Phase-Change Materials. Phys. Rev. A 2010, 82, 010101. [CrossRef]
48. Torricelli, G.; Pirozhenko, I.; Thornton, S.; Lambrecht, A.; Binns, C. Casimir Force between a Metal and a Semimetal. Europhys.

Lett. 2011, 93, 51001. [CrossRef]
49. Banishev, A.A.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of the Casimir Force between Ferromag-

netic Surfaces of a Ni-Coated Sphere and a Ni-Coated Plate. Phys. Rev. Lett. 2013, 110, 137401. [CrossRef]
50. Banishev, A.A.; Wen, H.; Xu, J.; Kawakami, R.K.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Measuring the Casimir

Force Gradient from Graphene on a SiO2 Substrate. Phys. Rev. B 2013, 87, 205433. [CrossRef]
51. Liu, M.; Zhang, Y.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Demonstration of an Unusual Thermal Effect in the

Casimir Force from Graphene. Phys. Rev. Lett. 2021, 126, 206802. [CrossRef]
52. Ardito, R.; Frangi, A.; Corigliano, A.; Masi, B.D.; Cazzaniga, G. The Effect of Nano-Scale Interaction Forces on the Premature

Pull-in of Real-Life Micro-Electro-Mechanical Systems. Microel. Reliab. 2012, 52, 271. [CrossRef]
53. Broer, W.; Palasantzas, G.; Knoester, J.; Svetovoy, V.B. Significance of the Casimir Force and Surface Roughness for Actuation

Dynamics of MEMS. Phys. Rev. B 2013, 87, 125413. [CrossRef]
54. Somers, D.A.T.; Garrett, J.L.; Palm, K.J.; Munday, J.N. Measurement of the Casimir Torque. Nature 2018, 564, 386–389. [CrossRef]
55. Lee, S.w.; Sigmund, W.M. Repulsive van der Waals Forces for Silica and Alumina. J. Coloid Interf. Sci. 2001, 243, 365–369.

[CrossRef]
56. Feiler, A.A.; Bergström, L.; Rutland, M.W. Superlubricity Using Repulsive van der Waals Forces. Langmuir 2008, 24, 2274–2276.

[CrossRef]
57. Munday, J.N.; Capasso, F.; Parsegian, V.A. Measured Long-Range Repulsive Casimir–Lifshitz Forces. Nature 2009, 457, 170–173.

[CrossRef]
58. Mostepanenko, V.M. Casimir Puzzle and Casimir Conundrum: Discovery and Search for Resolution. Universe 2021, 7, 84.

[CrossRef]
59. Bimonte, G.; López, D.; Decca, R.S. Isoelectronic Determination of the Thermal Casimir Force. Phys. Rev. B 2016, 93, 184434.

[CrossRef]
60. Chen, F.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Mohideen, U. Control of the Casimir force by the modification of dielectric

properties with light. Phys. Rev. B 2007, 76, 035338. [CrossRef]
61. van Zwol, P.; Svetovoy, V.; Palasantzas, G. Characterization of Optical Properties and Surface Roughness Profiles: The Casimir

Force Between Real Materials. In Casimir Physics; Dalvit, D., Milonni, P., Roberts, D., da Rosa, F., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 311–343. [CrossRef]

62. Behunin, R.O.; Intravaia, F.; Dalvit, D.A.R.; Neto, P.A.M.; Reynaud, S. Modeling Electrostatic Patch Effects in Casimir Force
Measurements. Phys. Rev. A 2012, 85, 012504. [CrossRef]

63. Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. Observation of the Thermal Casimir Force. Nat. Phys. 2011, 7, 230–233.
[CrossRef]

64. Klimchitskaya, G.L.; Mostepanenko, V.M. An Alternative Response to the Off-Shell Quantum Fluctuations: A Step Forward in
Resolution of the Casimir Puzzle. Eur. Phys. J. C 2020, 80, 900. [CrossRef]

65. Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Violation of the Nernst Heat Theorem in the Theory of the
Thermal Casimir Force between Drude Metals. Phys. Rev. A 2004, 69, 022119. [CrossRef]

145



Physics 2024, 6

66. Klimchitskaya, G.L.; Mostepanenko, V.M.; Sedmik, R.I.P. Casimir Pressure between Metallic Plates out of Thermal Equilibrium:
Proposed Test for the Relaxation Properties of Free Electrons. Phys. Rev. A 2019, 100, 022511. [CrossRef]

67. Bordag, M.; Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M. Stronger Constraints for Nanometer Scale Yukawa-type
Hypothetical Interactions from the New Measurement of the Casimir Force. Phys. Rev. D 1999, 60, 055004. [CrossRef]

68. Mostepanenko, V.M.; Novello, M. Constraints on Non-Newtonian Gravity from the Casimir Force Measurements between Two
Crossed Cylinders. Phys. Rev. D 2001, 63, 115003. [CrossRef]

69. Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; López, D.; Mostepanenko, V.M. Improved Tests of Extra-Dimensional
Physics and Thermal Quantum Field Theory from New Casimir Force Measurements. Phys. Rev. D 2003, 68, 116003. [CrossRef]

70. Decca, R.S.; López, D.; Chan, H.B.; Fischbach, E.; Krause, D.E.; Jamell, C.R. Constraining New Forces in the Casimir Regime
Using the Isoelectronic Technique. Phys. Rev. Lett. 2005, 94, 240401. [CrossRef]

71. Decca, R.; López, D.; Fischbach, E.; Klimchitskaya, G.; Krause, D.; Mostepanenko, V. Novel Constraints on Light Elementary
Particles and Extra-Dimensional Physics from the Casimir Effect. Eur. Phys. J. C 2007, 51, 963–975. [CrossRef]

72. Mostepanenko, V.M.; Decca, R.S.; Fischbach, E.; Klimchitskaya, G.L.; Krause, D.E.; López, D. Stronger Constraints on Non-
Newtonian Gravity from the Casimir Effect. J. Phys. A 2008, 41, 164054. [CrossRef]

73. Masuda, M.; Sasaki, M. Limits on Nonstandard Forces in the Submicrometer Range. Phys. Rev. Lett. 2009, 102, 171101. [CrossRef]
74. Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Advance and Prospects in Constraining the Yukawa-type

Corrections to Newtonian Gravity from the Casimir Effect. Phys. Rev. D 2010, 81, 055003. [CrossRef]
75. Sushkov, A.O.; Kim, W.J.; Dalvit, D.A.R.; Lamoreaux, S.K. New Experimental Limits on Non-Newtonian Forces in the Micrometer

Range. Phys. Rev. Lett. 2011, 107, 171101. [CrossRef]
76. Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Constraints on Corrections to Newtonian Gravity from Two Recent

Measurements of the Casimir Interaction between Metallic Surfaces. Phys. Rev. D 2013, 87, 125031. [CrossRef]
77. Bezerra, V.B.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Romero, C. Constraints on axion-nucleon coupling constants from

measuring the Casimir force between corrugated surfaces. Phys. Rev. D 2014, 90, 055013. [CrossRef]
78. Chen, Y.J.; Tham, W.K.; Krause, D.E.; López, D.; Fischbach, E.; Decca, R.S. Stronger Limits on Hypothetical Yukawa Interactions

in the 30–8000 Nm Range. Phys. Rev. Lett. 2016, 116, 221102. [CrossRef]
79. Klimchitskaya, G.L.; Mostepanenko, V.M. Constraints on Axionlike Particles and Non-Newtonian Gravity from Measuring the

Difference of Casimir Forces. Phys. Rev. D 2017, 95, 123013. [CrossRef]
80. Kuz’min, V.A.; Tkachev, I.I.; Shaposhnikov, M.E. Restrictions Imposed on Light Scalar Particles by Measurements of van der

Waals Forces. JETP Lett. 1982, 36, 59–62. Available online: http://jetpletters.ru/ps/1330/article_20101.shtml (accessed on 7
February 2024).

81. Behunin, R.O.; Dalvit, D.A.R.; Decca, R.S.; Speake, C.C. Limits on the Accuracy of Force Sensing at Short Separations Due to
Patch Potentials. Phys. Rev. D 2014, 89, 051301. [CrossRef]

82. Wang, J.; Guan, S.; Chen, K.; Wu, W.; Tian, Z.; Luo, P.; Jin, A.; Yang, S.; Shao, C.; Luo, J. Test of Non-Newtonian Gravitational
Forces at Micrometer Range with Two-Dimensional Force Mapping. Phys. Rev. D 2016, 94, 122005. [CrossRef]

83. Adelberger, E.G.; Stubbs, C.W.; Heckel, B.R.; Su, Y.; Swanson, H.E.; Smith, G.; Gundlach, J.H.; Rogers, W.F. Testing the Equivalence
Principle in the Field of the Earth: Particle Physics at Masses below 1 µeV? Phys. Rev. D 1990, 42, 3267–3292. [CrossRef] [PubMed]

84. Hoyle, C.D.; Kapner, D.J.; Heckel, B.R.; Adelberger, E.G.; Gundlach, J.H.; Schmidt, U.; Swanson, H.E. Submillimeter Tests of the
Gravitational Inverse-Square Law. Phys. Rev. D 2004, 70, 042004. [CrossRef]

85. Adelberger, E.G.; Heckel, B.R.; Hoedl, S.; Hoyle, C.D.; Kapner, D.J.; Upadhye, A. Particle-Physics Implications of a Recent Test of
the Gravitational Inverse-Square Law. Phys. Rev. Lett. 2007, 98, 131104. [CrossRef]

86. Hammond, G.D.; Speake, C.C.; Trenkel, C.; Patón, A.P. New Constraints on Short-Range Forces Coupling Mass to Intrinsic Spin.
Phys. Rev. Lett. 2007, 98, 081101. [CrossRef]

87. Schlamminger, S.; Choi, K.Y.; Wagner, T.A.; Gundlach, J.H.; Adelberger, E.G. Test of the Equivalence Principle Using a Rotating
Torsion Balance. Phys. Rev. Lett. 2008, 100, 041101. [CrossRef]

88. Heckel, B.R.; Adelberger, E.G.; Cramer, C.E.; Cook, T.S.; Schlamminger, S.; Schmidt, U. Preferred-Frame and CP-Violation Tests
with Polarized Electrons. Phys. Rev. D 2008, 78, 092006. [CrossRef]

89. Geraci, A.A.; Smullin, S.J.; Weld, D.M.; Chiaverini, J.; Kapitulnik, A. Improved Constraints on Non-Newtonian Forces at 10
Microns. Phys. Rev. D 2008, 78, 022002. [CrossRef]

90. Hoedl, S.A.; Fleischer, F.; Adelberger, E.G.; Heckel, B.R. Improved Constraints on an Axion-Mediated Force. Phys. Rev. Lett. 2011,
106, 041801. [CrossRef]

91. Heckel, B.R.; Terrano, W.A.; Adelberger, E.G. Limits on Exotic Long-Range Spin-Spin Interactions of Electrons. Phys. Rev. Lett.
2013, 111, 151802. [CrossRef]

92. Terrano, W.A.; Adelberger, E.G.; Lee, J.G.; Heckel, B.R. Short-Range, Spin-Dependent Interactions of Electrons: A Probe for Exotic
Pseudo-Goldstone Bosons. Phys. Rev. Lett. 2015, 115, 201801. [CrossRef]

93. Tan, W.-H.; Yang, S.-Q.; Shao, C.-G.; Li, J.; Du, A.-B.; Zhan, B.-F.; Wang, Q.-L.; Luo, P.-S.; Tu, L.-C.; Luo, J. New Test of the
Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation. Phys. Rev. Lett. 2016,
116, 131101. [CrossRef] [PubMed]

146



Physics 2024, 6

94. Tan, W.-H.; Du, A.-B.; Dong, W.-C.; Yang, S.-Q.; Shao, C.-G.; Guan, S.-G.; Wang, Q.-L.; Zhan, B.-F.; Luo, P.-S.; Tu, L.-C.; et al.
Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range. Phys. Rev. Lett. 2020, 124, 051301.
[CrossRef] [PubMed]

95. Lee, J.G.; Adelberger, E.G.; Cook, T.S.; Fleischer, S.M.; Heckel, B.R. New Test of the Gravitational 1/r2 Law at Separations down
to 52 µm. Phys. Rev. Lett. 2020, 124, 101101. [CrossRef] [PubMed]

96. Zhao, Y.-L.; Tan, Y.-J.; Wu, W.-H.; Luo, J.; Shao, C.-G. Constraining the Chameleon Model with the HUST-2020 Torsion Pendulum
Experiment. Phys. Rev. D 2021, 103, 104005. [CrossRef]

97. Sedmik, R.I.P.; Almasi, A.; Iannuzzi, D. Locality of Surface Interactions on Colloidal Probes. Phys. Rev. B 2013, 88, 165429.
[CrossRef]

98. van Zwol, P.J.; Svetovoy, V.B.; Palasantzas, G. Distance upon Contact: Determination from Roughness Profile. Phys. Rev. B 2009,
80, 235401. [CrossRef]

99. Sedmik, R.I.P.; Pitschmann, M. Next Generation Design and Prospects for CANNEX. Universe 2021, 7, 234. [CrossRef]
100. Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir Force between Parallel Metallic Surfaces. Phys. Rev.

Lett. 2002, 88, 041804. [CrossRef] [PubMed]
101. Antonini, P.; Bimonte, G.; Bressi, G.; Carugno, G.; Galeazzi, G.; Messineo, G.; Ruoso, G. An Experimental Apparatus for

Measuring the Casimir Effect at Large Distances. J. Phys. Conf. Ser. 2009, 161, 012006. [CrossRef]
102. Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.I.P. Force Sensor for Chameleon and Casimir Force Experiments with Parallel-Plate

Configuration. Phys. Rev. D 2015, 91, 102002. [CrossRef]
103. Sedmik, R.; Brax, P. Status Report and First Light from Cannex: Casimir Force Measurements between Flat Parallel Plates. J. Phys.

Conf. Ser. 2018, 1138, 012014. [CrossRef]
104. Sedmik, R.I.P. Casimir and Non-Newtonian Force Experiment (CANNEX): Review, Status, and Outlook. Int. J. Mod. Phys. A

2020, 35, 2040008. [CrossRef]
105. Fischer, H.; Käding, C.; Sedmik, R.I.P.; Abele, H.; Brax, P.; Pitschmann, M. Search for Environment-Dependent Dilatons. Phys.

Dark Univ. 2024, 43, 101419. [CrossRef]
106. Brax, P.; van de Bruck, C.; Davis, A.C.; Shaw, D.J.; Iannuzzi, D. Tuning the Mass of Chameleon Fields in Casimir Force Experiments.

Phys. Rev. Lett. 2010, 104, 241101. [CrossRef]
107. Stochino, A.; DeSalvo, R.; Huang, Y.; Sannibale, V. Improvement of the Seismic Noise Attenuation Performance of the Monolithic

Geometric Anti-Spring Filters for Gravitational Wave Interferometric Detectors. Nucl. Instrum. Meth. A 2007, 580, 1559–1564.
[CrossRef]

108. Stochino, A.; Abbot, B.; Aso, Y.; Barton, M.; Bertolini, A.; Boschi, V.; Coyne, D.; DeSalvo, R.; Galli, C.; Huang, Y.; et al. The Seismic
Attenuation System (SAS) for the Advanced LIGO Gravitational Wave Interferometric Detectors. Nucl. Inst. Methods A 2009,
598, 737. [CrossRef]

109. Blom, M.R.; Beker, M.G.; Bertolini, A.; van den Brand, J.F.J.; Bulten, H.J.; Doets, M.; Hennes, E.; Mul, F.A.; Rabeling, D.S.;
Schimmel, A. Vertical and Horizontal Seismic Isolation Performance of the Advanced Virgo External Injection Bench Seismic
Attenuation System. Phys. Procedia 2015, 61, 641–647. [CrossRef]

110. van Heijningen, J.V.; Bertolini, A.; Hennes, E.; Beker, M.G.; Doets, M.; Bulten, H.J.; Agatsuma, K.; Sekiguchi, T.; van den Brand,
J.F.J. A Multistage Vibration Isolation System for Advanced Virgo Suspended Optical Benches. Class. Quant. Grav. 2019,
36, 075007. [CrossRef]

111. Cella, G.; Sannibale, V.; DeSalvo, R.; Márka, S.; Takamori, A. Monolithic Geometric Anti-Spring Blades. Nucl. Instr. Meth. A 2005,
540, 502–519. [CrossRef]

112. Takamori, A.; Raffai, P.; Márka, S.; DeSalvo, R.; Sannibale, V.; Tariq, H.; Bertolini, A.; Cella, G.; Viboud, N.; Numata, K.; et al.
Inverted Pendulum as Low-Frequency Pre-Isolation for Advanced Gravitational Wave Detectors. Nucl. Instrum. Meth. A 2007,
582, 683–692. [CrossRef]

113. Peterson, J.R. Observations and Modeling of Seismic Background Noise; USGS Numbered Series 93-322; U.S. Geological Survey:
Reston, VA, USA, 1993. [CrossRef]

114. Beker, M.G.; Bertolini, A.; van den Brand, J.F.J.; Bulten, H.J.; Hennes, E.; Rabeling, D.S. State Observers and Kalman Filtering for
High Performance Vibration Isolation Systems. Rev. Sci. Instrum. 2014, 85, 034501. [CrossRef]

115. Rossi, F.; Opat, G.I. Observations of the Effects of Adsorbates on Patch Potentials. J. Phys. D Appl. Phys. 1992, 25, 1349–1353.
[CrossRef]

116. Garrett, J.L.; Kim, J.; Munday, J.N. Measuring the Effect of Electrostatic Patch Potentials in Casimir Force Experiments. Phys. Rev.
Res. 2020, 2, 023355. [CrossRef]

117. Robertson, N.A.; Blackwood, J.R.; Buchman, S.; Byer, R.L.; Camp, J.; Gill, D.; Hanson, J.; Williams, S.; Zhou, P. Kelvin Probe
Measurements: Investigations of the Patch Effect with Applications to ST-7 and LISA. Class. Quant. Grav. 2006, 23, 2665.
[CrossRef]

118. Speake, C.C.; Trenkel, C. Forces between Conducting Surfaces due to Spatial Variations of Surface Potential. Phys. Rev. Lett. 2003,
90, 160403. [CrossRef]

119. Kim, W.J.; Sushkov, A.O.; Dalvit, D.A.R.; Lamoreaux, S.K. Surface Contact Potential Patches and Casimir Force Measurements.
Phys. Rev. A 2010, 81, 022505. [CrossRef]

147



Physics 2024, 6

120. Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D. Electrostatic Interaction due to Patch Potentials on Smooth Conducting Surfaces.
Phys. Rev. A 2013, 88, 062501. [CrossRef]

121. Liu, M.; Schafer, R.; Xu, J.; Mohideen, U. Elimination of Electrostatic Forces in Precision Casimir Force Measurements Using UV
and Argon Ion Radiation. Mod. Phys. Lett. A 2020, 35, 2040001. [CrossRef]

122. de Man, S.; Heeck, K.; Iannuzzi, D. No Anomalous Scaling in Electrostatic Calibrations for Casimir Force Measurements. Phys.
Rev. A 2009, 79, 024102. [CrossRef]

123. Sedmik, R.I.P.; Borghesani, A.F.; Heeck, K.; Iannuzzi, D. Hydrodynamic Force Measurements under Precisely Controlled
Conditions: Correlation of Slip Parameters with the Mean Free Path. Phys. Fluids 2013, 25, 042103. [CrossRef]

124. Sedmik, R.I.P.; Urech, A.; Zalevsky, Z.; Carmeli, I. Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular Thin
Films. arXiv 2023, arXiv:2306.16209. [CrossRef]

125. Turetta, N.; Sedona, F.; Liscio, A.; Sambi, M.; Samorì, P. Au(111) Surface Contamination in Ambient Conditions: Unravelling the
Dynamics of the Work Function in Air. Adv. Mater. Interf. 2021, 8, 2100068. [CrossRef]

126. Chavan, D.; Gruca, G.; de Man, S.; Slaman, M.; Rector, J.H.; Heeck, K.; Iannuzzi, D. Ferrule-Top Atomic Force Microscope. Rev.
Sci. Instrum. 2010, 81, 123702. [CrossRef]

127. Behunin, R.O.; Dalvit, D.A.R.; Decca, R.S.; Genet, C.; Jung, I.W.; Lambrecht, A.; Liscio, A.; López, D.; Reynaud, S.; Schnoering, G.;
et al. Kelvin Probe Force Microscopy of Metallic Surfaces Used in Casimir Force Measurements. Phys. Rev. A 2014, 90, 062115.
[CrossRef]

128. Zerweck, U.; Loppacher, C.; Otto, T.; Grafström, S.; Eng, L.M. Accuracy and Resolution Limits of Kelvin Probe Force Microscopy.
Phys. Rev. B 2005, 71, 125424. [CrossRef]

129. Axt, A.; Hermes, I.M.; Bergmann, V.W.; Tausendpfund, N.; Weber, S.A.L. Know Your Full Potential: Quantitative Kelvin Probe
Force Microscopy on Nanoscale Electrical Devices. Beilstein J. Nanotechnol. 2018, 9, 1809–1819. [CrossRef]

130. Ma, Z.M.; Mu, J.L.; Tang, J.; Xue, H.; Zhang, H.; Xue, C.Y.; Liu, J.; Li, Y.J. Artifacts in KPFM in FM, AM and Heterodyne AM
Modes. Key Engin. Mater. 2014, 609–610, 1362–1368. [CrossRef]

131. Burke, S.A.; LeDue, J.M.; Miyahara, Y.; Topple, J.M.; Fostner, S.; Grütter, P. Determination of the Local Contact Potential Difference
of PTCDA on NaCl: A Comparison of Techniques. Nanotechnol. 2009, 20, 264012. [CrossRef]

132. Garrett, J.L.; Munday, J.N. Fast, High-Resolution Surface Potential Measurements in Air with Heterodyne Kelvin Probe Force
Microscopy. Nanotechnology 2016, 27, 245705. [CrossRef]

133. Sugawara, Y.; Kou, L.; Ma, Z.; Kamijo, T.; Naitoh, Y.; Jun Li, Y. High Potential Sensitivity in Heterodyne Amplitude-Modulation
Kelvin Probe Force Microscopy. Appl. Phys. Lett. 2012, 100, 223104. [CrossRef]

134. Sugawara, Y.; Miyazaki, M.; Li, Y.J. Surface Potential Measurement by Heterodyne Frequency Modulation Kelvin Probe Force
Microscopy in MHz Range. J. Phys. Commun. 2020, 4, 075015. [CrossRef]

135. Ma, Z.M.; Kou, L.; Naitoh, Y.; Li, Y.J.; Sugawara, Y. The Stray Capacitance Effect in Kelvin Probe Force Microscopy Using FM, AM
and Heterodyne AM Modes. Nanotechnology 2013, 24, 225701. [CrossRef]

136. Miyazaki, M.; Sugawara, Y.; Li, Y.J. Dual-Bias Modulation Heterodyne Kelvin Probe Force Microscopy in FM Mode. Appl. Phys.
Lett. 2022, 121, 241602. [CrossRef]

137. Nonnenmacher, M.; O’Boyle, M.P.; Wickramasinghe, H.K. Kelvin Probe Force Microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.
[CrossRef]
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Abstract: The Casimir forces between metals or good conductors have been checked experimentally.
Semiconductors and especially dielectrics have not been investigated because of the surface charges,
which generate strong electrostatic forces. Here, it is proposed to study the Casimir interaction of a
dielectric and metal using a thin dielectric layer deposited on an optically thick metallic substrate.
If the thickness of the layer is a few tens of nanometers, the electrostatic force due to charging can
be compensated for by applying an extra voltage between the metallic plates. On the other hand,
the contribution of the dielectric layer to the Casimir force is sufficiently large to extract information
about the interaction between the bulk dielectric and metal.

Keywords: Casimir force; electrostatic force; charging effect; dielectric layer; compensation potential

1. Introduction

The Casimir forces [1] between bulk bodies have been intensely investigated during
the last 20 years (see reviews [2–5]). Critical experiments have been performed in vacuum
with a high precision at distances of the order of 100 nm [6–9]. A theoretical description of
these forces generated by thermal and quantum fluctuations of the electromagnetic field
has been proposed by Evgeniy Lifshitz and later developed along with his colleagues, Igor
Dzyaloshinskii and Lev Pitaevskii [10,11]. Predictions of the Lifshitz theory have been
checked in special experiments. The dependence of the Casimir forces on the dielectric
functions of interacting materials has been verified [12–17], including magnetic materi-
als [18,19]. Shorter distances up to 10 nm have been explored [20,21] and the importance of
the effects of surface roughness has been stressed [22,23]. Larger distances in the range of
micrometers have been carefully investigated experimentally [24–27] and it was found that
there are some systematic deviations in the thermal contribution to the force.

The total force that is directly measured in the experiments includes the Casimir and
electrostatic forces. The latter to be considered a background effect and has to be excluded.
To minimize the electrostatic force, nearly all experiments have been performed with well-
conducted materials but, even for good conductors, the electrostatic contribution to the
total force is still important. The electrostatic force originates from the contact potential
difference between different materials. However, even for similar interacting materials, the
contact potential is nonzero because of the potential difference in the external circuit.

Dielectrics have never been used for force measurements because they contain trapped
charges resulting in a strong electrostatic contribution. Even for semiconductors, only a few
special cases have been tackled: silicon passivated with hydrogen (H-terminated) [13,28]
that prevents oxidation and silicon carbide heavily doped with nitrogen [21], which behaves
similar to metals. In general, the effect of charging significantly restricts the choice of
materials that can be used for measurements of the Casimir forces.

Investigation of the insulating materials has been concentrated on the space charge in
materials [29,30], where the trapped charges in localized states are produced by irradiation,
ionization or injection. For thick dielectrics, the charging can be non-homogeneous in depth
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but, here, one considered homogeneously charged thin dielectric layers on metallic surfaces.
The charging mechanisms in general are rather complicated but the total concentration of
the surface charges can vary in the range of 1010–1013 cm−2 depending on the technological
processing, with typical values in the range of 1011–1012 cm−2.

The purpose of this paper is to demonstrate that the electrostatic force between
two metals, one of which is covered by a thin dielectric layer, can be compensated for
by applying an external potential between the bodies. Only for thick dielectrics is it not
possible to compensate for the electrostatic force. It is also demonstrated that a layer with a
thickness of a few tens of nanometers is sufficient to extract information about the Casimir
interaction of the dielectric and metal. Only metallic substrates are considered here to
concentrate on the main idea but not on the technical details. The application of the same
idea applied to semiconductor substrates will be considered elsewhere. The problem solved
in this paper is rather simple but, to the best of our knowledge, it has not been discussed in
relation to the Casimir force measurements.

2. Electrostatic Interaction of Metals Covered by the Dielectric

Let us consider the electrostatic force between two metal plates, one of which is
covered by a thin dielectric layer (see Figure 1). The dielectric can be deposited on the metal
surface in a controlled way, for example, by magnetron sputtering. The dielectric layer
with the thickness d can be made of any chemical compound and is charged with the bulk
density ρ0. The Casimir force will be larger if only one metal is covered by the dielectric,
so let us consider this configuration. In the experiments measuring the Casimir forces,
researchers always try to avoid surface charges. When the force is measured between
metals, the residual potential difference can be compensated for by applying an external
voltage between the metals, as has been carried out in all the experiments [6–9]. If one
metal has a dielectric covering, one has to take into account a finite concentration of charges
in the dielectric. Here, we are going to answer the question: is it possible to compensate for
the electrostatic force in this case?

Figure 1. The structure under investigation. The plates are separated by a vacuum gap, h, and the
thickness of the dielectric layer on one of the metals is d. The relative dielectric functions (ε1,2) of the
materials are indicated; they are needed to calculate the Casimir attraction in this structure.

2.1. Solution of the Electrostatic Problem

The structure under investigation is shown in Figure 1. The relative dielectric functions
ε1,2 and εd are, in general, functions of frequency, ω, but, for the electrostatic interaction
(ω → 0), εd is a constant and ε1,2 → ∞. Let the potential the metal 1 be Ψ1; however, the
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potential of metal 2 can be chosen to be zero: Ψ2 = 0. In between the metals, the potential
is described by the Poisson equation

d2Ψ
dx2 =





0, 0 < x < h,

−ρ0/ε0εdrm, h < x < h + d,
(1)

where ε0 is the permittivity of the vacuum.
The external boundary conditions are chosen as Ψ(0) = Ψ1 and Ψ(h + d) = 0. The

solution that obeys the external boundary conditions is

Ψ(x) =





Ψ0 + Ax, 0 < x < h,

− ρ0(x−h−d)2

2ε0εd
+ B(x− h− d), h < x < h + d,

(2)

where A and B are unknown constants which are defined by the internal boundary condi-
tions. At the vacuum–dielectric interface x = h, these are the continuity of the potential and
electric displacement. Some surface charges can exist in the dielectric at the interface with
the metal. However, in contrast with semiconductors, those charges do not contribute be-
cause the static dielectric constant of metals is going to infinity. Thus, the internal boundary
conditions are

Ψ(h− δ) = Ψ(h + δ),
dΨ
dx

∣∣∣∣
h−δ

= εd
dΨ
dx

∣∣∣∣
h+δ

, δ→ 0. (3)

The electric field, E, in the vacuum gap is E = A and the electrostatic pressure between
the plates is defined by the normal component of the Maxwell stress tensor, Pe = −ε0E2/2,
(minus sign because the force is attractive). Determining the constant A from the internal
boundary conditions, one finds, for the pressure:

Pe = − ε0

2

[
(ρ0d/ε0)(d/2εd)−Ψ1

h + d/εd

]2

. (4)

If there are no trapped charges in the dielectric (ρ0 = 0), the only difference in the
electrostatic pressure between metals is the effective increase in the distance between the
plates, which is heff = h + d/εd. At a finite density of charges, the metal potential, Ψ1, is
shifted to the value,

∆U =

(
ρ0d
ε0

)(
d

2εd

)
, (5)

where one can interpret ρ0d as the projection of the charge density on the surface.
In most of the Casimir force experiments, a sphere–plate configuration is used for

measurements and the electrostatic force has to be defined for this configuration. The
electrostatic force acting between the sphere and the plate can be immediately found from
Equation (4) by applying the proximity force approximation (Derjaguin’s approximation [31,32]),
which is true for h� R, where R is the radius of the sphere. Then, one finds the electrostatic
force between the sphere and the plate:

Fe ≈ −
(

πRε0

2

)
[(ρ0d/ε0)(d/2εd)−Ψ1]

2

h + d/εd
. (6)

This result also depends on the shifted potential and effective distance. The exact
expression for the force can be found analytically, but one can expect that this expression
can also depend on the shifted potential and effective distance. It is worth noting that, at
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short distances, the roughness of the interacting surfaces starts to contribute. One can deal
with the electrostatic forces on the same basis as was proposed for the Casimir forces [23].

2.2. Compensation of the Surface Charges

In all the experiments, both plates (more often it is a sphere and plate) are grounded.
Nevertheless, Ψ1 is nonzero and can be as large as 100 mV or so. This value is due to
the contact potential difference, Vc: Ψ1 = Vc. In the case of two metals, this potential
can be compensated for by applying the external voltage between the bodies as equal to
−Vc. Equation (4) shows that one can also compensate for the electrostatic force between
two metals, one of which is covered by the dielectric. If the external voltage is U, then
Ψ1 = Vc + U and one finds the compensating potential,

U = −Vc + ∆U. (7)

Thus, in the case of the charged dielectric, one has to apply, in addition to −Vc, an
extra voltage, ∆U, which is proportional to the density of charges in the dielectric. Similarly
to the two metals case, the compensating potential does not depend on the distance, h,
between the plates.

Consider an example where metal 2 is covered by silicon dioxide with the dielectric
constant, εd = 3.9. It is convenient to consider as a parameter the surface charge density

σs = ρ0d0, d0 = 10 nm. (8)

The expected value for this parameter [30] is in the range of |σs| = 10−8− 10−7 C/cm2

(concentration of the surface charges Ns ∼ 1011 − 1012 cm−2). The extra voltage needed to
compensate for the electrostatic force is estimated to be in the range of

|∆U| = (14.5− 145)(d/d0)
2 mV. (9)

If one considers |∆U| < 1 V as a realistic compensating potential, then Equation (9)
restricts the thickness of the dielectric layer. From this restriction, one can conclude that,
for the largest charge density, the dielectric film thickness has to be smaller than 26 nm and,
for the smallest |σs| = 10−8 C/cm2, it has to be smaller than 83 nm. Now, the question is:
can one obtain information about the Casimir interaction between the metal and dielectric
measuring the force between two metals, one of which is covered by the dielectric with a
thickness of approximately 40 nm?

3. Casimir Interaction of Metal Covered by the Dielectric

Let us consider the Casimir force in the configuration shown in Figure 1. The force can
be calculated using the Lifshtz formula, where, as the reflection coefficient for plate 2 (the
one covered with the dielectric), one has to use the following reflection coefficients [33]:

Rν
2 =

rν
vd − rν

md exp(−2kdd)
1− rν

vdrν
md exp(−2kdd)

. (10)

This is the same for each polarization state ν = s or p. The reflection coefficients for
vacuum–dielectric (rvd) and for metal–dielectric (rmd) interfaces are defined as

rs
ab =

ka − kb
ka + kb

, rp
ab =

εbka − εakb
εbka + εakb

, (11)

where ka,b is the normal component of the wave vector in the medium a or b (a, b = v, d,
or m) that is defined at the imaginary frequency, ω = iζ, as

ka =
√

εa(iζ)ζ2/c2 + q2. (12)
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In Equation (12), q is the absolute value of the wave vector in the plane of the plates,
c denotes the speed of light, and the dielectric function of metal 2 is εm = ε2. For the
reflection coefficient of plate 1, one can use Rν

1 = rν
vm, where εm = ε1 has to be taken.

The Casimir force between the plates is calculated according to the Lifshtz formula [11],
which can be presented in the form,

PC(h) = −
kBT
π

∞

∑
n=0

′ ∞∫

0

dqqkv ∑
ν=s,p

Rν
1Rν

2e−2kvh

1− Rν
1Rν

2e−2kvh , (13)

where the sum is running on the Matsubara frequencies, ζn = 2πnkBT/h̄ with kB the
Boltzmann constant, T the temperature, and h̄ the Planck constant, the prime denotes that
the term at n = 0 has to be taken with the coefficient 1/2, and kBT is the thermal energy.

The Casimir pressure is calculated as a function of distance h between two Au plates,
one of which is covered by a layer of SiO2 with the thickness d. The optical data for Au are
taken from [34] (sample 3) and the data for SiO2 are taken from the handbook [35]. Figure 2a
shows the results in the zero temperature limit for the dielectric thickness d = 0, 20, and
40 nm. Figure 2b shows the relative difference, ∆R, between the pressures with and without
the dielectric layer with respect to the pressure between the metallic plates:

∆R(h) =
P m/d

C − P m
C

P m
C

, (14)

where the superscripts, ‘m’ and ‘m/d’, refer to metal and metal covered by a dielec-
tric, respectively.

Figure 2. (a) Casimir pressure between two Au plates, one of which is covered by the SiO2 layer with
the thickness d. (b) Difference between the pressures with the dielectric layer and without it related
to the pressure between bare metallic plates.
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Figure 2a demonstrates that, at small distances, the underlying Au has a weak effect on
the pressure since the pressures for d = 20 and 40 nm approach each other. At h = 20 nm,
the pressure for bare Au is 2.35 times larger than that for d = 40 nm. At h = 200 nm, this
ratio is 1.54 and still significant. The situation does not change essentially if one considers
the sphere–plate interaction. In this case, the ratio of the forces without and with the
dielectric layer is 2.30 and 1.40 at h = 20 nm and h = 200 nm, respectively. This example
shows that the presence of a thin dielectric layer on the metallic plate significantly changes
the force. This means that one can investigate the dielectric materials by sputtering thin
films on good conductors and comparing the pressures with and without the dielectric layer.
The unwanted electrostatic force due to the charging of the dielectric can be compensated
for if the layer is sufficiently thin.

The difference between the pressures with and without the dielectric layer can be
presented via only two elementary reflection coefficients, rvd and rvm. The coefficient rmd
is expressed via rvd and rvm by the relation (10) at d = 0:

rmd =
rvm − rvd

1− rvdrvm
. (15)

Equation (15) is true for both polarizations. The difference, ∆ = P m/d
C − P m

C , between
the pressures can be presented using the Lifshitz formula (13) as

∆ =− kBT
π

∞

∑
n=0

′ ∞∫

0

dqqkv ∑
ν=s,p

1− e−2kdd

rvm
×

[
1− R1rvde−2kvh

rvd − rvm
− (rvd − R1e−2kvh)e−2kdd

1− rvdrvm

]−1
R1R2e−2kvh

1− R1R2e−2kvh ,

(16)

where the reflection coefficients, R1,2, refer to bare metals and coincide with rvm for metal 1
and 2, respectively. If metal 1 and metal 2 are similar, then R1 = rvm.

The pressure difference can be compared with the pressure between the metal and
bulk dielectric as shown in Figure 3. Naively, one could expect that the difference,
∆ = P m/d

C − P m
C , is the pressure between the dielectric membrane with the thickness

d and the metal. Figure 3a shows that this is not the case since the pressure, P d
C , between

the metal and bulk dielectric is even smaller than ∆. One can also see from Equation (16)
that ∆ does not coincide with the pressure between the dielectric membrane and metal.
The difference, ∆, still keeps information about the underlying metal. Nevertheless, the
contribution of the dielectric layer to ∆ is significant, as one can see in Figure 3b, which
shows the ratio, ∆/P d

C , as a function of the distance, h.
The effect of the dielectric layer is reduced with its thickness and, for successful

experiments, one has to keep the balance between the increasing compensating voltage
and the increasing influence of the dielectric layer on the increase in its thickness. To some
degree, one can influence the charge in the dielectric by plasma treatment or UV (ultra-
violet) irradiation. The less the charge, the thicker the layer of the dielectric that can be used.
Note that the thickness of the layer can be well characterized ellipsometrically. It is worth
mentioning that the dielectric layer contributes significantly even at rather large distances.
For example, at h = 200 nm, the relative contribution of the layer (see Equation (14)) is
∆R = 0.352 and, at h = 2000 nm, it is 0.054.
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Figure 3. (a) Difference between pressures, ∆ = P m/d
C − P m

C (blue curve), and the pressure, P d
C ,

between Au and bulk SiO2 (red curve). In P m/d
C , the thickness of the dielectric is d = 40 nm. (b) Ratio

of the pressures presented in (a). The ratio shows that ∆ carries significant information about the
metal–dielectric interaction.

4. Conclusions

The total force measured experimentally includes a significant contribution from
the electrostatic force that has to be separated from the Casimir force. When the force is
measured between metals, the problem is solved by applying the compensating potential.
The same method cannot be applied to dielectrics, for which the electrostatic force is strong
due to the charging effect. The main idea of this paper was to use, instead of a bulk
dielectric, a thin layer deposited on a metallic (or metallized) substrate. If the dielectric
layer is sufficiently thin, the electrostatic force can be compensated for by applying an extra
voltage to the metallic substrates. For a layer thickness above 100 nm, the compensating
voltage becomes above 1 V, which is too large for practical use.

At the same time, at separations smaller than or of the order of 100 nm, a dielectric
layer thicker than 10 nm contributes significantly to the Casimir force between a metal and
the other metal covered with the dielectric. There is an optimal thickness of the layer such
that the electrostatic force can be compensated for, but the contribution of the layer to the
Casimir force is sufficient to extract information about the Casimir interaction of the metal
with the bulk dielectric.

The main idea proposed in this paper can be generalized to the interaction of two di-
electrics but, physically, an even more interesting case is the interaction of a semiconductor
with metal.
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Abstract: We consider the Casimir pressure between two metallic plates and calculate the four contri-
butions to it determined by the propagating and evanescent waves and by the transverse magnetic
and transverse electric polarizations of the electromagnetic field. The range of interplate separations
is considered where nearly the whole pressure has its origin in the electromagnetic response of con-
duction electrons. In the Casimir physics, this response is described either by the dissipative Drude
model resulting in contradictions with the measurement data or by the experimentally consistent
but dissipationless plasma model. It is shown that the total transverse magnetic contribution to the
Casimir pressure due to both the propagating and evanescent waves and the transverse electric con-
tribution due to only the propagating waves, computed by means of the Drude model, correlate well
with the corresponding results obtained using the plasma model. We conclude that the disagreement
between the theoretical predictions obtained using the Drude model and precision measurements of
the Casimir force is not caused by the account of dissipation in itself, but arises from an incorrect
description of the response of metals to the low-frequency transverse electric evanescent waves by
this model. It is demonstrated that the Drude model has no supporting experimental evidence in
the range of transverse electric evanescent waves, so that the above conclusion is consistent with all
available information. The alternative test of the Drude model for the transverse electric evanescent
waves suggested in the framework of classical electrodynamics is discussed.

Keywords: Casimir force; Lifshitz theory; Drude model; plasma mode; propagating waves;
evanescent waves; transverse electric and transverse magnetic polarizations; dissipation of
conduction electrons

1. Introduction

The Casimir effect is a relativistic and quantum phenomenon which has attracted
widespread attention in the 75 years since its prediction in 1948 [1]. This effect is very
popular owing to its unusual character. Casimir predicted that two parallel uncharged
ideal metal planes at zero temperature attract each other with the force which depends
only on the interplate separation and the fundamental constants h̄ and c. In 1955, Lifshitz
demonstrated [2] that the Casimir force falls into the general theory of dispersion forces,
which act between any material bodies. From the point of view of the Lifshitz theory, both
the van der Waals and and Casimir forces are the manifestations of a single dispersion
force, but in different regions of separations and temperatures. The Lifshitz theory makes
it possible to calculate the Casimir force between two thick material plates by using the
response functions of plate materials to the electromagnetic field in the form of frequency-
dependent dielectric permittivities.

The Casimir force is unique in being important for such diverse fields of physics as
the theory of elementary particles, gravitation and cosmology, quantum electrodynamics,
condensed matter physics, atomic physics, and also for nanotechnology. As a result,
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a great number of papers was devoted to this subject during recent decades (see the lists
of references in the monographs [3–13]). In doing so, much attention has been paid to
precision measurements of the Casimir force.

The present stage in measuring the Casimir force started with an experiment [14],
which used the configuration of an Au-coated spherical lense of a centimeter-size radius
above an Au-coated plate. As was understood later, the presence of the so-called patch
potentials [15] and surface imperfections [16] on the centimeter-size surfaces prevents from
reaching the highly precise results in measuring the Casimir force. The highly accurate
measurements were performed between a microscopic sphere and a plate by means of an
atomic force microscope and a micromechanical torsional oscillator pioneered in Refs. [17]
and [18], respectively.

The many measurements of the Casimir force performed by means of a micromechani-
cal torsional oscillator [19–24] and an atomic force microscope [25–31] led to unexpected
results. It was found that the measurement data are in a very good agreement with the-
oretical predictions of the Lifshitz theory if the low-frequency response of metals to the
electromagnetic field is described by the dissipationless plasma model. If the dissipative
Drude model is used, which should describe the conduction electrons correctly, the theoret-
ical predictions are excluded by the data with certainty [19–31]. The force values computed
by means of the Drude model were only confirmed in a single experiment [32], but the
measurements were performed by means of a centimeter-size spherical lens. As a result,
the theoretical uncertainty due to patch potentials removed by means of the fitting proce-
dure exceeded the Casimir force value by an order of magnitude. Moreover, the surface
imperfections, which are always present on lens surfaces, were not taken into account in
this experiment [16,33].

The contradiction between theoretical predictions of the Lifshitz theory obtained using
the apparently well-tested Drude model and measurements of the Casimir force is often
named the Casimir puzzle [34–36]. A rich variety of approaches has been suggested in the
literature in an effort to resolve it. One could mention an employment of the alternative
sets of the optical data [37,38], modeling the patch effect [15,32,39], a more accurate account
of the surface roughness [40–42], refined theory for the sphere-plate geometry [43–48], etc.
(see [12,49–51] for a review).

Particular emphasis has been placed on the frequency region of the anomalous skin
effect where the Drude dielectric function becomes inapplicable due to the spatial nonlocal-
ity [52–54]. It was found, however, that the corresponding correction to the Casimir force is
too small and cannot explain the discrepancy between the measurement data and theory
which uses the Drude model [52].

An important step was made in Refs. [55,56] where it was shown that large thermal
correction to the Casimir force predicted by the Drude model arises from the transverse
electric (s-polarized) evanescent waves with low frequencies. This result was obtained by
analyzing the frequency spectrum of the thermal correction along the real frequency axis.
The predicted large thermal correction to the Casimir force, which distinguishes the Drude
model from the plasma model and the model of an ideal metal, was also interpreted as
arising from the contribution of eddy (Foucault) current modes [57,58].

Furthermore, it was shown that at separations exceeding the thermal length (i.e.,
above approximately 6 µm at T = 300 K) the contributions of the transverse electric
propagating and evanescent waves to the total Casimir force calculated using the Drude
model are equal in magnitude and cancel each other [59]. According to Ref. [60], at large
separations the contributions of the transverse magnetic (p-polarized) and transverse
electric propagating waves are equal regardless of which dielectric model (Drude or plasma)
is used in computations. As to the contribution of transverse magnetic evanescent waves,
it is equal to zero for both the Drude and plasma models. Thus, at large separations,
the difference in Casimir forces computed using the Drude and plasma models originates
solely from the contribution of transerse electric evanescent waves.
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In this paper, we investigate the contributions of both the transverse magnetic and
transverse electric propagating and evanescent waves into the Casimir force per unit area
(i.e., the Casimir pressure) for two parallel Au-coated plates in the experimentally relevant
separation region from 0.5 to 4 µm where the total force value, in the limits of measurement
errors, is determined by the dielectric response of conduction electrons. The contributions
of the transverse magnetic and transverse electric propagating and evanescent waves are
calculated in the framework of the Lifshitz theory employing either the Drude or the
plasma model. For this purpose, we combine the computational results obtained using the
formalisms represented in terms of the pure imaginary and real frequencies.

It is shown that the contributions of the transverse magnetic waves to the total Casimir
force computed using the Drude and plasma models nearly coincide. The contributions of
the transverse electric propagating waves to the Casimir force computed using the Drude
and plasma models also turned out to be rather close. As a result, the relatively large
difference between the theoretical predictions for the total Casimir force made by means
of the Drude and plasma models over the experimentally relevant range of separations
comes from different contributions of the transverse electric evanescent waves. Taking into
account that this large difference is experimentally excluded by the measurement data of
numerous experiments mentioned above, the conclusion is made that the Drude model
breaks down in the region of transverse electric evanescent waves. We demonstrate that
this conclusion is not in conflict with numerous experimental tests of the Drude model.
The obtained results are discussed in connection with the role of dissipation of conduction
electrons in the Lifshitz theory.

The paper is organized as follows. In Section 2, we briefly present the formalisms
of the Lifshitz theory in terms of either pure imaginary or real frequencies separating
the contributions of the transverse magnetic and transverse electric polarizations and the
propagating and evanescent waves. Section 3 is devoted to computations of the Casimir
pressure between metallic plates using the Drude and the plasma models and the optical
data for the complex index of refraction. In Section 4, the contributions of the propagating
and evanescent waves are studied for the transverse magnetic and transverse electric
polarizations using the Drude and plasma models. Section 5 discusses the failure of
the Drude model for the transverse electric evanescent waves, the role of dissipation of
conduction electrons, and the possibilities of alternative tests disconnected with the Casimir
effect. Section 6 contains our conclusions.

2. Formalisms of the Lifshitz Theory in Terms of Real or Pure Imaginary Frequencies

We consider the Casimir force per unit area of two similar metallic plates described by
the dielectric permittivity, ε(ω), i.e., the Casimir pressure with ω the wave frequency. The
plates are at temperature T in thermal equilibrium with the environment and are separated
by a distance a. Then, the Casimir pressure can be expressed by the Lifshitz formula [2].
This formula can be presented in terms of real frequencies or pure imaginary (Matsubara)
frequencies.

In terms of real frequencies, the Casimir pressure is given by the sum of contributions
from the propagating and evanescent waves, each of which, in its turn, consists of two
components determined by the transverse magnetic (TM) and transverse electric (TE)
polarizations:

P(a, T) = P prop
TM (a, T) + P prop

TE (a, T) + P evan
TM (a, T) + P evan

TE (a, T). (1)

Here [12],

P prop
TM,TE(a, T) = − h̄

2π2

∞∫

0

dω coth
h̄ω

2kBT

ω/c∫

0

dk⊥k⊥Im

[
q

r2
TM,TE(ω, k⊥)e−2aq

1− r2
TM,TE(ω, k⊥)e−2aq

]
(2)
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and

P evan
TM,TE(a, T) = − h̄

2π2

∞∫

0

dω coth
h̄ω

2kBT

∞∫

ω/c

dk⊥k⊥q Im
r2

TM,TE(ω, k⊥)e−2aq

1− r2
TM,TE(ω, k⊥)e−2aq . (3)

In Equations (1)–(3), the following notations are introduced. T denotes the temperature,
h̄ is the reduced Planck’s constant, the Boltzmann constant is kB, the magnitude of the
wave vector projection on the plane of plates is k⊥, the reflection coefficients for the TM
and TE polarizations are

rTM(ω, k⊥) =
ε(ω)q− p
ε(ω)q + p

, rTE(ω, k⊥) =
q− p
q + p

, (4)

and

q ≡ q(ω, k⊥) =
(

k2
⊥ −

ω2

c2

)1/2

, p ≡ p(ω, k⊥) =
[

k2
⊥ − ε(ω)

ω2

c2

]1/2

, (5)

where c denotes the speed of light.
Note that by solving the Maxwell equations with the continuity boundary conditions

on the surfaces of metallic plates, one determines the Casimir energy via the sum of discrete
photon eigenfrequencies (or the cavity modes or the wave guide modes, as they are often
referred to Ref. [61]). The continuous frequencies in Equation (3) appear after performing a
summation over the discrete frequencies by means of the argument principle.

As is seen from Equation (2), for the propagating waves k⊥ 6 ω/c in accordance to
the mass-shell equation in free space. The quantity q in this case is pure imaginary and the
integrand in Equation (2) contains the rapidly oscillating function, exp(−2aq), that plagues
numerical computations. For the evanescent waves in Equation (3), the mass-shell equation
is violated because k⊥ > ω/c, but the quantity q takes real values making accessible
computations of Pevan

TM,TE by means of Equation (3).
One can conclude that Equations (1)–(3) are not convenient for computations of the

total Casimir pressure (1), but the contributions Pevan
TM,TE from the evanescent waves can be

computed by (3).
In terms of the pure imaginary Matsubara frequencies, ω = iξl = 2πikBTl/h̄ with

l = 0, 1, 2, . . ., the Casimir pressure is expressed by the most commonly used Lifshitz
formula,

P(a, T) = PTM(a, T) + PTE(a, T), (6)

where [12]

PTM,TE(a, T) = − kBT
π

∞

∑
l=0

′
∞∫

0

k⊥dk⊥ql
r2

TM,TE(iξl , k⊥)e−2aql

1− r2
TM,TE(iξl , k⊥)e−2aql

. (7)

The prime on the summation sign in Equation (7) divides the terms with l = 0 by 2,
and the reflection coefficients are again defined by Equation (4) with ω = iξl , so that in line
with Equation (5)

q = ql ≡ q(iξl , k⊥) =

(
k2
⊥ +

ξ2
l

c2

)1/2

, p = pl ≡ p(iξl , k⊥) =

(
k2
⊥ + ε l

ξ2
l

c2

)1/2

, (8)

where ε = ε l ≡ ε(iξl).
Equation (7) is convenient for numerical computations of PTM,TE, but it alone does not

allow computation of the contributions from the propagating and evanescent waves. Actu-
ally, all the four components of the Casimir pressure on the right-hand side of Equation (1)
can be found by the combined application of the Lifshitz formula (3) in terms of real
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frequencies and Equation (7) in terms of the Matsubara frequencies. For this purpose, it
is necessary to compute the contributions Pevan

TM,TE by Equation (3) and the total Casimir
pressures PTM,TE by Equation (7). Then, the remaining contributions Pprop

TM,TE are found from

P prop
TM,TE(a, T) = PTM,TE(a, T)− P evan

TM,TE(a, T). (9)

The numerical computations of all four components of the total Casimir pressure
between metallic plates using different dielectric functions of a metal are presented in the
next sections.

3. Calculation of the Casimir Pressure between Metalic Plates Using the Drude and
Plasma Models

It has been known that the dielectric response of metals to the electromagnetic field is
determined by the combined action of conduction and bound (core) electrons. In doing so,
the corresponding contributions to the dielectric permittivity make a substantially different
impact on the Casimir pressure [12]. At short separations between the plates (up to tens of
nanometers), the major contribution to the Casimir pressure is given by the region of very
high frequencies, where ε is fully determined by the core electrons. In the transition region
(from tens to hundreds of nanometers), both the conduction and core electrons determine
the value of ε at the frequencies contributing to the Casimir pressure. Finally, at separations
exceeding several hundreds of nanometers, only the conduction electrons determine the
dielectric response of metals at the characteristic (low) frequencies.

Taking into account that the problem of disagreement between experiment and the-
ory discussed in Section 1 arises exclusively due to the role of conduction electrons, it is
appropriate to consider the separation region where the role of core electrons in computa-
tions of the Casimir pressure is negligibly small. In this section, the sought for region is
found for two Au plates at room temperature T = 300 K (the same results are valid for the
plates made of any material coated with an Au layer of thickness exceeding several tens of
nanometers [12]).

As discussed in Section 1, the conduction electrons are commonly described by the
dielectric permittivity of the dissipative Drude model:

εD(ω) = 1−
ω2

p

ω(ω + iγ)
, εD,l = 1 +

ω2
p

ξl(ξl + γ)
, (10)

where, for Au, the plasma frequency ωp ≈ 1.37× 1016 rad/s and the relaxation parameter,
γ, at T = 300 K takes the value γ ≈ 0.53× 1014 rad/s [62].

The dielectric permittivity of the plasma model, which disregards the dissipation
properties of conduction electrons, is obtained from Equation (10) by putting γ = 0

εp(ω) = 1−
ω2

p

ω2 , εp,l = 1 +
ω2

p

ξ2
l

. (11)

This model is physically applicable only at high frequencies in the region of infrared
optics. However, as mentioned in Section 1, the theoretical results obtained using the plasma
model at low frequencies, including the zero frequency, agree with measurements of the
Casimir force. As to the Drude model, which is physically applicable at low frequencies,
it leads to contradictions between theoretical predictions of the Lifshitz theory and the
measurement data.

As it was widely discussed in the literature starting from Refs. [63,64], the important
formal difference between the dielectric permittivities (10) and (11) is that they lead to
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radically different values of the TE reflection coefficient defined in Equation (4) at zero
frequency:

rTE,D(0, k⊥) = 0, rTE,p(0, k⊥) =
ck⊥ −

√
c2k2
⊥ + ω2

p

ck⊥ +
√

c2k2
⊥ + ω2

p

. (12)

It immediately follows that at large separations, where the Casimir pressure is deter-
mined by the terms of Equation (7) with l = 0,

P 0
TE,D(a, T) = 0, P 0

TM,D(a, T) = P 0
D(a, T) = − kBT

8πa3 ζ(3), (13)

where ζ(z) is the Riemann zeta function. This is one half of the result obtained at large
separations for the ideal metal planes.

For the plasma model, the case of ideal metal planes is obtained in the limit ωp → ∞
where

lim
ωp→∞

rTE,p(0, k⊥) = −1 (14)

and the terms of Equation (7) with l = 0 are

P 0
TM,p(a, T) = P 0

TE,p(a, T) = − kBT
8πa3 ζ(3), P 0

p (a, T) = − kBT
4πa3 ζ(3). (15)

These are the same results as are obtained for the ideal metal planes. The quantities (13)
and (15) do not depend on h̄. They represent the classical limit of the Casimir pressure at
large separations found using the Drude and plasma models, respectively.

To determine the region of separations, where the dielectric permittivities of the Drude
and plasma models (10) and (11) determine nearly the total Casimir pressure, we first
compute the values of PD and Pp and then compare the obtained results with the Casimir
pressures computed using the available optical data of Au extrapolated down to zero
frequency by means of the Drude or plasma models.

Numerical computations of the Casimir pressure at T = 300 K were performed
by Equations (6) and (7) with the reflection coefficients (4) and the dielectric permittivities
(10) and (11). The computational results for the ratios of obtained pressures to P 0

D defined
in Equation (13) are presented in Figure 1 as a function of separation by the top and bottom
solid lines computed using the plasma and Drude models, respectively. The two dashed
lines indicate the corresponding limiting values of the pressure ratios at large separations.

Figure 1. The ratio of the Casimir pressures for Au plates computed at T = 300 K using the Drude
(D) or the plasma (p) model to the classical limit of the Casimir pressure P 0

D (13) found using the
Drude model, is shown as a function of separation.
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As is seen in Figure 1, the theoretical predictions obtained using the plasma and Drude
models differ by the factors of 1.09 at a = 0.5µm, 1.2 at a = 1.1µm, and 1.86 at a = 4µm.
In the limit of large separations (classical limit) the difference is by the factor of 2.

Now we determine the error in Casimir pressures made by omitting the contribution
of core electrons in the dielectric permittivity. For this purpose, we find the dielectric
permittivity of Au along the imaginary frequency axis by means of the Kramers-Kronig
relation where the imaginary part of this permittivity is given by the tabulated optical
data of Au [62] extrapolated down to zero frequency by means of the plasma or the Drude
model (see, e.g., [12,49] for details). Then the Casimir pressure, P core

D,p , is again computed
by Equations (4), (6) and (7).

The relative deviation between the Casimir pressures obtained using the simple Drude
and plasma models and using the optical data taking into account the core electrons can be
characterized by the quantity

δPD,p(a, T) =
PD,p(a, T)− P core

D,p (a, T)

P core
D,p (a, T)

. (16)

In Figure 2, the computational results for δPD,p are shown as a function of separation by
the top and bottom lines computed using the Drude and plasma models and corresponding
extrapolations of the optical data, respectively. In the inset, the region of separations from 2
to 4µm, where the two lines are partially overlapping, is shown on an enlarged scale for
better visualization.

Figure 2. The relative deviation between the Casimir pressures for Au plates computed at T = 300 K
using the simple Drude (D) or plasma (p) model and the optical data for Au extrapolated to zero
frequency by the same models is shown as a function of separation. The inset: the region of large
separations is shown on an enlarged scale.

As is seen from Figure 2, at a = 0.5µm the simple Drude and plasma models reproduce
the Casimir pressure computed with due regard for core electrons with the relative errors
less than 0.3% and 0.35%, respectively. These errors quickly decrease with increasing
separation. Thus, at a = 1µm they are below 0.05% and 0.052%, respectively.

Note that in the separation region above 0.5µm the already performed precision
determinations of the effective Casimir pressure between two parallel plates by measuring
the force gradient in the sphere-plate geometry [19–23,25–31] reliably distinguish between
the top and bottom lines in Figure 1 in favor of the former at a < 1.1µm. However,
at a > 0.5µm the same experiments cannot discriminate between the theoretical predictions
made by means of only the simple Drude or plasma model and taking into account the
core electrons. As an example, the total experimental error in measuring the Casimir
pressure determined at the 67% confidence level is δPexpt = 1.5% at a = 0.5µm [21,22] and
δPexpt = 27.5% at a = 1.1µm [30,31] (by measuring the Casimir force in the sphere-plate
geometry, the theoretical description using the Drude model was excluded at all separations
a 6 4.8µm [24]).
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4. Comparison Studies of Contributions from the Propagating and Evanescent Waves

Now we are in a position to find all four contributions to the Casimir pressure (1) when
using the simple Drude and plasma models and determine which of them is responsible for
a disagreement between experiment and theory. In accordance with the results of Section 3,
this should be performed at separations between the plates exceeding 0.5µm where the
dielectric permittivities of the simple Drude and plasma models contribute nearly the total
value of the pressure. There is no point in considering separations which are too large
because the experimental situation there is uncertain. We begin with the contribution of
the TM polarized waves to the Casimir pressure.

4.1. Transverse Magnetic Polarization

The contribution of the TM polarized waves, PTM, is calculated by Equation (7) where
the reflection coefficient rTM is given by the first equality in Equation (4) taken at ω = iξl .
Depending on whether one uses the Drude (10) or the plasma (11) model of the dielectric
permittivity, we obtain either PTM,D or PTM,p.

The computational results for PTM normalized to P 0
D at T = 300 K are shown in

Figure 3a as a function of separation by the solid and dashed lines computed using the
Drude and plasma models, respectively. As can be seen in Figure 3a, the solid and dashed
lines almost coincide.

Figure 3. (a) The transverse magnetic contributions to the Casimir pressure for Au plates normalized
to P 0

D computed at T = 300 K using the simple Drude or plasma model are shown as a function
of separation by the solid and dashed lines, respectively. (b) The relative deviation between these
contributions is shown by the solid line.

In order to understand the measure of agreement between the theoretical predictions of
the Lifshitz theory using the Drude and plasma models, we consider the relative deviation

δPTM(a, T) =
PTM,D(a, T)− PTM,p(a, T)

PTM,p(a, T)
. (17)
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In Figure 3b, the computational results for δPTM at T = 300 K are shown by the solid
line as a function of separation. As is seen in Figure 3b, the relative deviation between the
predictions obtained using these models decreases from approximately 0.38% at a = 0.5µm
to 0.04% at a = 4µm. Remembering that the Drude model takes into account the dissipation
processes, which are fully disregarded by the plasma model, one can conclude that the
transverse magnetic contribution to the Casimir pressure between metallic plates is scarcely
affected by the dissipation of conduction electrons. It also becomes clear that the impact of
dissipation in different contributions to PTM,D has to be somehow compensated (see below
in this section).

Let us now determine the contributions of propagating and evanescent waves to PTM
when using the Drude and plasma models in computations. The contribution of evanescent
waves is found by Equation (3) with the reflection coefficient rTM defined in Equation (4),
whereas the contribution of propagating waves can be obtained by Equation (9), where the
total TM contribution to the Casimir pressure is already computed (see Figure 3a).

First of all, it is evident from Equation (3) that

P evan
TM,p(a, T) = 0. (18)

This is because the dielectric permittivity of the plasma model (11) and, thus, the re-
flection coefficient rTM,p in Equation (4) are the real functions for evanescent waves.

Then, from Equation (9) one concludes that

P prop
TM,p(a, T) = PTM,p(a, T), (19)

where PTM,p is already shown by the red dashed line in Figure 3a.
For the Drude model, the computations of P evan

TM,D are again performed by Equation (3)
with the reflection coefficient rTM,D defined in Equation (4) and the dielectric permittiv-
ity (10). The quantity P prop

TM,D is obtained from Equation (9), where the already computed
PTM,D is shown by the solid line in Figure 3a.

Figure 4 shows the computational results for P prop
TM,D and P evan

TM,D at T = 300 K by the top
short-dashed and bottom long-dashed lines as a function of separation. Both these lines
are blue. For comparison purposes, in Figure 4 we also reproduce from Figure 3a the blue
solid line and the overlapping it red dashed line demonstrating the separation dependence
of PTM,D and PTM,p, respectively (the latter also depicts the behavior of P prop

TM,p).

Figure 4. The transverse magnetic contributions to the Casimir pressure for Au plates due to
propagating and evanescent waves normalized to P 0

D computed at T = 300 K using the simple Drude
model are shown as a function of separation by the top short-dashed and bottom long-dashed blue
lines, respectively. The solid blue and long-dashed red lines for the normalized total transverse
magnetic contributions to the Casimir pressure computed using the Drude and plasma models are
reproduced from Figure 3a.
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From Figure 4 it is seen that, although the quantities PTM,D and PTM,p are almost equal,
their constituent parts due to the propagating and evanescent waves are different. For the
plasma model, PTM,p is determined entirely by the propagating waves, whereas for the
Drude model the contribution of P prop

TM,D to PTM,D is partially compensated by P evan
TM,D which

is of the opposite sign, i.e., corresponds to the Casimir repulsion. This explains why there
is no eventual impact of dissipation on PTM,D, even though the Drude model is dissipative.

4.2. Transverse Electric Polarization

We calculate the contribution of the transverse electric polarization, PTE, to the Casimir
pressure by Equation (7) with the reflection coefficient rTE from Equation (4) using the
dielectric permittivities of the Drude model (10) and the plasma model (11). In Figure 5,
the computational results for PTE,D and PTE,p normalized to P 0

D at T = 300 K are shown as a
function of separation by the lower (blue) and upper (red) solid lines for the Drude and
plasma models, respectively.

Figure 5. The transverse electric contributions to the Casimir pressure for Au plates due to prop-
agating and evanescent waves normalized to P 0

D computed at T = 300 K using the simple Drude
model and the total transverse electric contribution are shown as a function of separation by the
top and bottom short-dashed, long-dashed lines, and the lower solid line, respectively. The upper
solid line shows similar results for the transverse electric contribution computed using the simple
plasma model.

From Figure 5 it is seen that the lower and upper solid lines differ considerably.
Keeping in mind that, according to the results of Section 4.1, PTM,D and PTM,p are equal
with a high degree of accuracy, it becomes clear that this difference completely determines
the discrepancy between the total Casimir pressures computed using the Drude and plasma
models, PD and Pp. The question arises what is the physical origin of this discrepancy.

To answer this question, we compute the quantities P evan
TE,D and P evan

TE,p by Equation (3).
As to the latter, it is evident that

P evan
TE,p (a, T) = 0, (20)

because the dielectric permittivity of the plasma model (11) and the reflection coefficient
rTE,p from Equation (4) are the real functions in the region of evanescent waves.

Taking into account Equation (9), one also finds that

P prop
TE,p (a, T) = PTE,p(a, T), (21)

i.e., that for the plasma model the total Casimir pressure determined by the transverse
electric polarization is equal to the contribution of TE-polarized propagating waves. This is
the same as was proven in Section 4.1 above for the TM polarization. Thus, P prop

TE,p is given
by the upper solid line in Figure 5a already drawn for PTE,p.
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The computational results for P evan
TE,D obtained by Equations (3), (4) and (10) at T = 300 K

are shown as a function of separation in Figure 5 by the bottom long-dashed line. As to the
computational results for P prop

TE,D , they are found from Equation (9) and shown by the top
short-dashed line in Figure 5 as a function of separation.

All contributions to PTE are now computed using both models of the dielectric response
of Au and it is possible to analyze the role of each of them. First of all, from Figure 5 it
is seen that the deviation between P prop

TE,D and P prop
TE,p shown by the top short-dashed line

and the upper solid line, respectively (we recall that the latter line also shows PTE,p), is
reasonably small and cannot be responsible for a much larger discrepancy between PD
and Pp. The latter is equal to the discrepancy between PTE,D and PTE,p shown by the two
solid lines. In fact, the deviation between P prop

TE,D and P prop
TE,p demonstrates the impact of

dissipation of conduction electrons on the TE contribution to the Casimir pressure, which is
taken into account by the Drude model and disregarded by the plasma one. It is significant
that this impact carried out through the TE propagating waves is not in contradiction with
the experimental data on measuring the Casimir force.

A completely different type of situation occurs for P evan
TE,D shown by the bottom long-

dashed line in Figure 5. The magnitude of P evan
TE,D is much larger than P evan

TM,D, and this leads
to a significant deviation between PTE,D and PTE,p resulting ultimately in a contradiction
between the measurement data and theoretical predictions of the Lifshitz theory obtained
using the Drude model.

For better understanding of the situation, one has to take into account that the Drude
model has a wealth of alternative experimental confirmations in the area of propagating
waves with any polarization, as well as for the transverse magnetic evanescent waves,
but lacks confirmation for the transverse electric evanescent waves (see a discussion of
experimental situation in Section 5 below). On this basis, one can conclude that experiments
on measuring the Casimir force between metallic test bodies invalidate the dielectric
permittivity of the Drude model in the area of transverse electric evanescent waves. It is
apparent that the alternative experimental confirmations of such a conclusion are highly
desirable (see Section 5 below).

5. Discussion: Failure of the Drude Model for Transverse Electric Evanescent Waves,
the Role of Dissipation, and Possibilities of Alternative Tests

As discussed in Section 1, the theoretical predictions of the fundamental Lifshitz the-
ory are in conflict with the measurement data of many precision experiments of Casimir
physics if the dielectric response of conduction electrons is described by the dissipative
Drude model. However, by disregarding the dissipation properties of conduction elec-
trons, i.e., by using the plasma model, one can bring the measurement data in agreement
with the theoretical predictions. Such a situation is unacceptable because the dissipation
of conduction electrons at low frequencies is the much studied physical effect which is
confirmed by many experiments.

According to the results presented above, an account of dissipation by means of the
Drude model in the transverse magnetic contribution to the Casimir pressure leads to
the same results as are obtained using the dissipationless plasma model. This is because
the dissipation-induced terms in the Casimir pressure arising from the evanescent and
propagating waves cancel each other. The dissipation-induced term in the contribution
to the Casimir pressure from the transverse electric propagating waves is found to be
reasonably small and does not bring the theoretical predictions found using the Drude
model in contradiction with the measurement data.

The performed computations show that the roots of contradiction are not in the ac-
count of dissipation in itself, but in how the Drude model describes the response of metals
to the low-frequency transverse electric evanescent waves. These computations compared
with the measurement data lead us to conclude that the theoretical description of the electro-
magnetic response of metals to the transverse electric evanescent waves given by the Drude
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model is in error. In this context, it is necessary to discuss the alternative experimental
evidence regarding the validity of the Drude model other than the Casimir effect.

In the area of both the transverse magnetic and transverse electric propagating waves,
there is an abundance of experimental confirmations of the Drude model in physics,
electrotechnics, and even in day-to-day life, so it makes no sense to discuss them. However,
direct measurement of the reflection coefficients of a metal in the case of evanescent waves
presents complications as soon as all commonly used methods (ellipsometry, for instance)
are adapted for the propagating waves.

The great interest paid to the evanescent waves during the last decades is connected
with the fact that the evanescent waves made it possible to surmount the optical diffraction
limit [65]. Thus, the physics of plasmons polaritons provides the possibility to obtain a great
deal of evidence about the reflection of evanescent waves on metallic surfaces, but only for
the transverse magnetic polarization [66]. The reflectivity properties of weakly evanescent
waves (for which k⊥ is only just above ω/c) can be examined by means of the total internal
reflection and frustrated total internal reflection [67–69]. Near-field optical microscopy,
which is often used in various technological applications, is reasonably sensitive to only
the transverse magnetic evanescent waves [70,71] (see also the discussion in Ref. [60] for
more details).

The information provided above allows to conclude that the failure of the Drude
model demonstrated by experiments on measuring the Casimir force does not contradict to
all the available experimental evidences in favor of this model, which are irrelevant to the
area of transverse electric evanescent waves.

Despite the fact that there are many experiments mentioned above, which demonstrate
the failure of the Drude model resulting from the region of transverse electric evanescent
waves, it would be highly desirable to perform one more independent test disconnected
from the Casimir effect. Recently, such an alternative test in the field of classical electro-
dynamics was proposed in Refs. [60,72]. It was shown that the lateral components of the
magnetic field of an oscillating magnetic dipole spaced in the proximity of a metallic plate
are determined by solely the transverse electric evanescent waves. According to the results
of Refs. [60,72], by choosing the suitable dipole frequency and using either the Drude or the
plasma model for the dielectric permittivity of the metallic plate, the lateral components
of the dipole field are varied by up to several orders of magnitude depending on the
model used. Thus, by measuring these components for some fixed dipole parameters, it is
possible to reliably conclude whether the Drude model correctly describes the response of
plate metal to the transverse electric evanescent waves.

As an example, in Refs. [60,72], a magnetic dipole of 1 mm size with the dipole
moment of 3.14× 10−5 Am2 oscillating with the frequency of 100 rad/s at 1 cm height
above the Cu plate was considered. Small dipoles of such kind are manufactured in the
form of coils containing about ten turns [73–75]. In this case, the lateral component of
the dipole magnetic field at the same height of 1 cm above the plate computed using the
Drude model was found to be 0.027 A/m = 3.37× 10−8 T [60,72]. If the plasma model is
used in computations, a magnetic field larger by a factor of 10 is obtained [60,72]. Keeping
in mind that the current resolution limit in measurements of weak magnetic fields is of
about 10−13 T [76–78], the proposed alternative test of the Drude model in the region of
transverse electric evanescent waves seems quite feasible.

Finally, if it is confirmed that the Drude model is really invalid in the region of low-
frequency transverse electric evanescent waves, the question arises as to how it could
be corrected. Recently, the modifications of the Drude model at low frequencies caused
by the spatial dispersion were again considered [79,80] in connection with the problems
of Casimir physics. The suggested modifications, however, are incapable to bring the
theoretical predictions in agreement with the measurement data for the Casimir force.
The phenomenological spatially nonlocal alterations in the Drude model, which bring
the theoretical predictions in agreement with all performed experiments on measuring
the Casimir force, were suggested in Refs. [81–83], but they are still lacking fundamental
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theoretical justification. Thus, the proper form of the response function of metals to the
transverse electric evanescent waves remains to be found.

6. Conclusions

To conclude, in this paper we have performed the comparison studies of four contribu-
tions to the Casimir pressure between metallic plates caused by the transverse magnetic and
transverse electric polarizations of the electromagnetic field and by the propagating and
evanescent waves. The region of separations was determined where the major contribution
to the pressure is given by the electromagnetic response of free electrons described by the
dissipative Drude model or the experimentally consistent but dissipationless plasma model
used in comparisons between experiment and theory.

According to our results, the transverse magnetic contributions to the Casimir pressure
computed by using the Drude or plasma models are equal to a high degree of accuracy.
In so doing, if the Drude model is used, the relatively small contribution from the evanes-
cent waves (which is equal to zero when using the plasma model) is cancelled by an
excessive contribution from the propagating waves. Thus, the use of the Drude model for
computation of the Casimir pressure determined by the transverse electric polarization
does not lead to contradictions between experiment and theory.

It was also shown that the transverse electric contribution to the Casimir pressure
caused by the propagating waves, which is computed using the Drude model, deviates
slightly from the transverse electric contribution computed using the plasma model (the
latter is again determined by the propagating waves alone). This deviation is due to the
dissipation processes of propagating waves taken into account by the Drude model. It
cannot explain a discrepancy between the theoretical predictions obtained using the Drude
model and the measurement data because of its small size.

Next, it was found that the experimental inconsistency of the Drude model is de-
termined by the relatively large contribution of the transverse electric evanescent waves.
This leads to a conclusion that the response of metals to the transverse electric evanescent
waves is described by the Drude model incorrectly. In such a manner, the reason why the
Lifshitz theory using the Drude model is experimentally inconsistent is not that it takes
into account dissipation of free electrons, as opposed to the plasma model, but that it takes
it into account incorrectly in the region of the transverse electric evanescent waves.

The presented analysis of experimental tests of the Drude model demonstrates that
it is lacking experimental confirmation in this important region of the wave vectors and
frequencies. Therefore, the recently proposed alternative test of the Drude model as a
response function to the transverse electric evanescent waves should shed new light on
the problem of disagreement between theoretical predictions of the Lifshitz theory and the
measurement data.
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Abstract: In a conducting medium held at finite temperature, free carriers perform Brownian motion
and generate fluctuating electromagnetic fields. In this paper, an averaged Lorentz force density
is computed that turns out to be nonzero in a thin subsurface layer, pointing towards the surface,
while it vanishes in the bulk. This is an elementary example of rectified fluctuations, similar to the
Casimir force or radiative heat transport. The results obtained also provide an experimental way to
distinguish between the Drude and so-called plasma models.

Keywords: Lorentz force; Drude model; metal optics

1. Introduction

The Hall effect is a known phenomenon in conducting media where a current in
a magnetic field generates a transverse voltage due to the Lorentz force. Due to the
large density of free carriers in conductors, significant magnetic fields are also internally
generated. The corresponding eddy currents have applications at low frequencies for non-
invasive material testing (e.g., reduced conductivity at cracks). Alongside currents induced
by oscillating magnetic fields, the Lorentz force also plays a role in this context [1–3].
At frequencies from the infrared through the near-ultraviolet (UV), the Lorentz force
is responsible for frequency mixing because it is a product of current and field. This
occurs at metal surfaces that provide the necessary broken symmetry and leads to, for
example, second-harmonic radiation [4–8]. A similar phenomenon is optical rectification
where typically a short and intense laser pulse generates a surge of an electronic current,
providing a source of THz radiation [9,10]. In samples with inversion symmetry, the electric
and magnetic fields of optical pulses may rectify to a quasi-DC (direct-current) electric
field that is assisting second-harmonic generation via the third-order Kerr nonlinearity [11].
Also in these applications, a relatively strong external field provides the force driving the
conduction electrons.

In this paper is being discussed the Lorentz (or thermal Hall) force that arises from
the Brownian motion of conduction electrons alone, without any external perturbation.
A surface is again needed and defines, with its normal, the distinguished direction of the
fluctuation-averaged (and hence DC) force. This can be understood as an electromagnetic
contribution to the surface or cleavage energy [12–14]. The thermal Hall force will generate
some space charge (depletion zone) below the surface and be balanced by the correspond-
ing electric field. Experimental indications would therefore be the temperature dependence
of the work function or a transient change in the surface charge density when the temper-
ature of conduction electrons is pushed up, for example, after absorption of a ultrashort
laser pulse [15–17].

The problem is addressed within the relatively simple setting of fluctuation electrody-
namics [18] and focussing on the local Drude approximation for the material conductivity.
The calculations provide an alternative viewpoint on the challenge of defining fluctuation-
induced forces inside a macroscopic medium [19]. The expression for the fluctuation-
averaged Lorentz force contains two terms, one of which would be absent if the so-called
plasma model were used for the metal permittivity. In line with previous suggestions
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related to low-frequency magnetic dipole radiation [20,21], the proposed thermal Hall force
therefore provides another experimental clue to understand the anomalous temperature
dependence of the Casimir force and the unusually large radiative heat transfer on the few
nm scale [22,23].

2. Model

The electromagnetic force density is given by the familiar expression

f = ρE + j× B (1)

with charge and current densities ρ and j, and electric and magnetic fields E and B, respec-
tively. For simplicity, pressure terms proportional to the gradient of the carrier density [5]
and viscous shear forces [24,25] are neglected here, that lead to spatial dispersion (equiva-
lently, a nonlocal conductivity). If an equilibrium state (with charge density ρ0 and zero
current) is perturbed, the two terms in Equation (1) are of first and second order, respec-
tively, in small deviations from equilibrium. The Coulomb force leads to the resonance
frequency Ωp with Ω2

p = eρ0/ε0me for electronic plasma oscillations (e and me are the
electron charge and (effective) mass and ε0 is the vacuum permittivity), while the Lorentz
force is responsible for second-harmonic generation [5].

This paper considers the average of the Lorentz force with respect to thermal fluctua-
tions of charges and fields and derives an integral formula for its temperature-dependent
DC profile below the surface of a Drude conductor. The starting point is Rytov’s fluctu-
ation electrodynamics [18], where the electric current density, j(x) = j(r, t), is a random
variable representing both quantum and thermal fluctuations at the position r and time
t. Its symmetrized correlation function is given by the (local) temperature T (fluctuation–
dissipation theorem):

〈ji(x), jk(x′)〉 = 1
2 〈ji(x)jk(x′) + jk(x′)ji(x)〉 − 〈ji(x)〉 〈jk(x′)〉

= δikδ(r− r′)
∞∫

0

dω

2π
cos ω(t− t′)Sj(r, ω) , (2)

with Sj(r, ω) = 2h̄ω Re σ(r, ω) coth
h̄ω

2kBT
, (3)

Here the indices take values i, k = x, y, z, and the brackets 〈· · · 〉 denote the fluctuation
average. The conductivity σ(r, ω) is assumed to be local and isotropic, ω denotes the
angular frequency, δik the Kronecker delta, δ(·) the Dirac delta function, and kB and h̄ are
the Boltzmann and the reduced Planck constants.

The Rytov currents generate a magnetic field whose vector potential, A, solves in the
transverse gauge the Ampère–Maxwell equation,

−∇2A− µ0ω2ε(r, ω)A = µ0j⊥ , (4)

with the permittivity ε(r, ω) = ε0 + iσ(r, ω)/ω, the vacuum permeability µ0 and the
transverse current j⊥. In a homogeneous and isotropic system, one expects 〈j× B〉 = 0,
since there is no preferred direction (see also Ref. [19]). The focus in the following is on the
simple enough half-space geometry, with the metal filling z ≥ 0. Parallel to the surface, a
Fourier expansion with wave vector Q = (qx, qy) is applied where rotational invariance
around the surface normal may be assumed. At fixed Q, the vector potential is given by a
Green tensor

A(Q, z) =
∫ ∞

0
dz′G(Q, z, z′) · j(Q, z′) (5)

with G(Q, z, z′) =
iµ0

2q
(
T̄ e−iqz +RT̄ e+iqz) eiqz′ for z < z′

and G(Q, z, z′) =
iµ0

2q
(
T e−iqz′ +RT̄ e+iqz′) eiqz for z′ < z , (6)

179



Physics 2024, 6

where q2 = µ0ω2ε(ω)−Q2. This q with Re q, Im q ≥ 0 provides the normal component of
the wave vectors q = Q + qez, q̄ = Q− qez for reflected and incident waves, respectively.
The tensors T and T̄ are projectors transverse to q and q̄, respectively. The tensor R
describes the fields reflected from the inner surface. It is diagonal when expanded into
principal transverse polarisations—p for the transverse magnetic and s for the transverse
electric modes—and contains the reflection amplitudes rp and rs, respectively. The average
of the vector product j × B with respect to the Rytov currents gives with the local and
isotropic correlation (2), a vector structure proportional to

〈j∗ × [q× (T̄ · j)]〉 ∝ tr(T̄) q− T̄ · q (7)

with similar expressions involving q̄, RT̄, etc. If the tensor T corresponds to q, the last term
vanishes by transversality. After the integral over the in-plane angle of Q, only components
normal to the surface remain.

Working through the polarisation vectors (see Appendix A.1 for details), it is indeed
found that the fluctuation-averaged Lorentz force density 〈j× B〉 = f ez is orthogonal to
the surface and is given by

f = − µ0

4π

∞∫

0

dω Sj(ω)Re
∞∫

0

Q dQ e2iqz(rp + rs
)

. (8)

Here, the current spectrum Sj is given in Equation (3). The following calculations use the
Drude model for the conductivity

σ(ω) =
σ0

1− iωτ
(9)

with the DC conductivity σ0 and the scattering (collision) rate 1/τ. This model describes
quite well any conducting material between DC and below additional resonance frequen-
cies. The latter may correspond to optically active phonons (typically in the infrared) or
interband transitions (in the visible and above) and depend on the material [26]. The
so-called plasma model corresponds to the limit σ0, τ → ∞ at a fixed plasma frequency of
Ω2

p = σ0/(ε0τ). Physical realisations of this model are superconducting materials below
their gap frequency and at temperatures much below critical. Its characteristic feature is a
entirely imaginary conductivity, except at zero frequency. The weight of the corresponding
δ-function,

Re σ(ω) =
σ0/τ2

1/τ2 + ω2 → π ε0Ω2
p δ(ω), (10)

has been attributed to the density of superconducting carriers (Cooper pairs) [27] and is
generally temperature-dependent.

The reflection coefficients from the “inner” side of a metal–vacuum interface are in the
Fresnel approximation:

rp =
εv− ε0q
εv + ε0q

,

rs =
q− v
q + v

, v =
√
(ω/c)2 −Q2 , (11)

where c denotes the speed of light.
The calculation above focussed on the contribution from fluctuating currents. Within

fluctuation electrodynamics, another contribution arises from fluctuating fields [18]. To pro-
vide a straightforward motivation for this additional term, consider a toy model with just
two normal mode amplitudes a and b. By construction, these amplitudes are uncorrelated.
Two generic fields A and B can be written as a linear combination of the normal modes:
A = c1a + c2b and B = d1a + d2b. Their correlation function is

〈A∗B〉 = c∗1d1 〈a∗a〉+ c∗2d2 〈b∗b〉 . (12)

To relate the coefficients in this expression with measurable quantities, the term c1a = Afl is
attributed to “fluctuations” and c2b = Aind to an “induced” field; and similarly, d1a = Bind
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and d2b = Bfl. Such an identification appears naturally when equations of motion are
linearised around an equilibrium, in particular, in the context of Langevin equations. With
these notations, the correlation reads

〈A∗B〉 = d1

c1
〈A∗fl Afl〉+

c∗2
d∗2
〈B∗flBfl〉 =

∂Bind
∂Afl

〈A∗fl Afl〉+
∂A∗ind
∂B∗fl

〈B∗flBfl〉 . (13)

In the last step, the ratio d1/c1 is expressed by the linear response of variable B to A and vice
versa. With respect to the calculation performed so far, the term 〈A∗fl Afl〉 in Equation (13)
corresponds to current fluctuations, and ∂Bind/∂Afl describes the magnetic field generated
by them. The second term, 〈B∗flBfl〉, corresponds to magnetic field fluctuations that are
now addressed.

The current responds to Bfl via the associated electric field and Ohm’s law jind = σ Efl.
The thermal Lorentz force is thus determined by the average Poynting vector 〈Efl×Bfl〉. The
spectrum of field fluctuations is provided by the fluctuation–dissipation theorem, assuming
thermal equilibrium at temperature T. For the purposes of the calculations here, T coincides
with the electron temperature because the field responds quite quickly to its sources,
in virtue of its wide continuous mode spectrum. Working through the corresponding
calculations (Appendix A.2), one finds that an expression similar to Equation (8) has to be
added to the Lorentz force. The full result has the explicit form

(total) f (z, T) = − h̄µ0

2π
Re

∞∫

0

dω ω σ(ω) coth
h̄ω

2kBT

∞∫

0

Q dQ e2iqz(rp + rs
)
. (14)

Equation (14) is the main result of the present paper. Let us discuss its properties in Section 3
just below.

3. Discussion
3.1. General Features

A net force appears only due to the reflection from the surface at z = 0, as expected
from broken rotational symmetry. Similar to the Casimir effect, the Lorentz force contains a
specific quantum contribution that is UV-dominated, since coth 1

2 βω → 1 at high frequen-
cies. In practice, the UV transparency of the material makes this contribution finite. Indeed,
from the sum of the two Fresnel amplitudes,

rs + rp =
2vq(ε− ε0)

(εv + ε0q)(q + v)
, (15)

it appears explicitly that the integrand decays sufficiently fast at high frequencies. This is
illustrated in Figures 1 and 2 where the integrand of Equation (14) is plotted.

In the zero-temperature limit, it is expedient to shift the frequency integration to
the imaginary axis, ω = iξ. In this representation, relatively large frequencies and wave

vectors are exponentially damped by the factor e2iqz ≈ exp[−2(z/c)
√

Ω2
p + ξ2 + c2Q2]

(this approximation assumes ξ � 1/τ). An approximate estimate of the double integral
yields a scaling of the average Lorentz force density according to

T = 0 : f (z, 0) ∼ h̄Ωp

λ̄p z3 , (16)

where λ̄p = c/Ωp represents the plasma wavelength.
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Figure 1. Integrand of the average Lorentz force due to quantum fluctuations (T = 0, arbitrary units)
for (a) short and (b) large distances, as indicated. A Wick rotation to imaginary frequencies ξ has
been applied. Parameters: plasma frequency Ωp ≈ 210/τ (typical for Au). The dashed lines in (a,b)
mark the values ξ = c/z, ξ = cQ (light cone), ξ = Q2/(µ0σ0) (magnetic diffusion), ξ = 1/τ, and
Q = 1/z. To reduce the dynamics of the data points, the integrand has been multiplied by z3. See
text for more details.
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Figure 2. Spectrum of the thermal Lorentz force density (arbitrary units, real frequencies): (a,b) in-
tegrand of Equation (14), with the T = 0 contribution subtracted and (b) with only the imaginary
part of the conductivity kept (similar to the plasma model); (c) the spectrum f (z, ω) before evalu-
ating the ω-integral. Sign changes occur at the red dashed-dotted lines. Parameters: temperature
kBT = 1.25 h̄/τ, plasma frequency Ωp ≈ 210/τ (as in Figure 1), distance z = 1.5 λ̄p in (a,b). The
dashed lines in (a,b) mark the values Q = 1/z, h̄ω = kBT, and in solid orange the light cone ω = cQ.
The dashed line in (c) indicates h̄ω = kBT. To reduce the dynamics of the data points in (c), the force
has been multiplied by z2.

We expect both the plasma and the Drude model to give comparable contributions,
unless distances larger than cτ � λ̄p are considered. In addition, for frequencies in the
visible range and above, it is mandatory to take into account deviations from the Drude (or
plasma) models, using, e.g., tabulated optical data [28]. A more detailed discussion is left
for future studies.

Deep in the bulk, z → +∞, the exponential e2iqz makes the force vanish. Since the
medium wave vector q in Equation (14) is complex, one may expect an oscillatory behavior.
The exponential e2iqz becomes approximately real deeply below the light cone (Q� ω/c).
The typical long-range behaviour in the infrared is q ≈ (1 + i)/δ with the skin depth
δ2 = 2/(µ0σ0ω). This corresponds to the diffusive propagation of magnetic fields in a
conducting medium.

The limit z→ 0 is beyond the local (Drude or plasma) model because rp tends towards
a constant at large Q, destroying convergence. This is eliminated when using a nonlocal
(q-dependent) conductivity whose magnitude drops for short-wavelength fields. The
leading-order behaviour in the local approximation is discussed in Section 3.2 just below.
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3.2. Thermal Hall Force

In what follows, the quantum contribution is subtracted, coth(h̄ω/2kBT)− 1 = 2n̄(ω/T),
so that the thermal component of the Lorentz force is proportional to the Bose–Einstein dis-
tribution n̄(ω/T). The latter is dominated by frequencies with h̄ω . kBT (mid infrared and
below, see Figure 2c). The plots in Figure 2a,b illustrate that the integrand of Equation (14)
in the (Q, ω)-plane (Figure 2a) would change sign if only the term due to field fluctuations
were kept (Figure 2b).

Note that in the plasma model, where the conductivity is entirely imaginary, the
integrand is nonzero only above the light cone (ω > cQ) and approximately above the
plasma frequency Ωp. Otherwise, the medium wave vector q is entirely imaginary, and the
reflection coefficients rs and rp turn out to be real. This highly suppresses the thermal con-
tribution to the average Lorentz force, since for typical temperatures, one has h̄Ωp � kBT.
It is therefore instructive to evaluate the contribution from the singular DC conductivity
of Equation (10). In calculations along imaginary frequencies, using a generalised plasma
model, this term generates a permittivity ε(iξ) ∼ Ω2

p/ξ2, either by inserting Equation (10)
into Kramers–Kronig relations or, more cautiously, by first isolating the zero-frequency
pole [29,30]. However, a physical interpretation in terms of current fluctuations for super-
conductors is not clear enough. Fields penetrate into a superconducting medium down to
approximately the same depth (the plasma wavelength λ̄p) as the layer where the thermal
Lorentz force is nonzero, see Figure 3. However, one would expect from the Meißner
effect that in the bulk of a sample, there are neither static currents nor magnetic fields.
In Ref. [31], Francesco Intravaia and the present author suggested to interpret the fluctu-
ation electrodynamics of a medium with Equation (10) in terms of an “ideal conductor”
model. Its bulk is filled with “frozen currents” and concomitant magnetic field loops.
Inserting the conductivity (10) into Equation (14), one obtains for the thermal Lorentz force
the expression

(ideal conductor) ∆ f (z, T) = − kBT
λ̄2

p

∞∫

0

dQ e−2Qz Q κ

κ + Q
+ exp. small terms (17)

with κ2 = (Ωp/c)2 + Q2. The integral here has the asymptotic form 1/(8z2) (or 1/(4z2))
for z� λ̄p (for z� λ̄p), the same scaling as the Coulomb force due to image charges. The
exponentially small terms arise from frequencies h̄ω & h̄Ωp � kBT. The resulting force is
shown as dashed-dotted lines in Figure 3.
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Figure 3. Distance dependence of the DC force density, normalised to T/z2 and with flipped sign,
for different temperatures, calculated for an ideal conductor (17) (black dashed-dotted curve) and a
Drude conductor with finite damping time τ (colour curves). The straight dashed gray lines show the
short-distance and large-distance limits of Equation (17) and the short-distance limit of Equation (18).
The parameters are as in Figure 2: for typical conductors such as Au, the parameters correspond to
h̄/τ ≈ 400 K and λ̄p = c/Ωp ≈ 20 nm.
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In good metallic conductors, the reflection coefficients are dominated by |rp| ≈ 1,
while rs ≈ − 1

4 (ε− 1)(ω/cQ)2 → 0 for Q� |ε|ω/c, ω/c (evanescent waves). This allows
for an approximate evaluation of the Q-integral in Equation (14). In the leading order, rs is
dropped, and one obtains again the scaling law f ∼ −1/z2. It has been checked that this
captures well the short-distance behaviour of the force density, f (z, T) ≈ −c2(T)/z2 with a
prefactor given by

c2(T) ≈
h̄µ0σ0

4π

∞∫

0

dω
ω n̄(ω/T)
1 + ω2τ2

=
kBT

8πλ̄2
p

(
β log

β

2π
− π − β ψ(β/2π)

)
. (18)

Here, β = h̄/(kBT τ) and ψ(·) is the digamma function. Recall that τ is the scattering time
in the Drude conductivity, and n̄(ω/T) the Bose–Einstein distribution. This expression
is shown in Figure 4 after dividing out the scale factor kBT/λ̄2

p: one observes only quite
minor dynamics, even though the product kBTτ/h̄ varies over three orders of magnitude.
The agreement with the full numerical integration is particularly good at the short distance
z = 0.2 λ̄p.

The distance dependence at a fixed temperature can be found from Figure 3 where
the combination − f (z, T) z2/(kBT) is shown. The force decays into the bulk with strongly
damped oscillations, of which there remains only a crossing of the curves for different
temperatures at a depth z ≈ 3.5 λ̄p. Beyond this depth, the linear scaling with temperature
becomes exact. The rectified Lorentz force is thus restricted to a few plasma penetration
depths, typically about 100 nm. The ideal conductor also gives a scaling linear in T, but the
weak modifications relative to the 1/z2 power law display the opposite trend.
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Figure 4. Temperature dependence of the amplitude c2(T) of the rectified Lorentz force density
f ≈ −c2(T)/z2 at short distances, normalised to kBT/λ2

p, calculated using Equation (18) (solid line)
and with the numerical integration of Equation (14) with the T = 0 contribution subtracted (symbols).
Material parameters as in Figure 2. Here, τ is not temperature-dependent.

3.3. Physical Consequences

Among the physical consequences suggested by these calculations, Section 1 men-
tioned a temperature-dependent shift ∆φ(T) in the work function of a metal. Indeed, the
Lorentz force is pulling charges towards the surface. To calculate the corresponding energy
gain, one needs to regularise the 1/z2 divergence as z→ 0. This is physically achieved by
adopting a non-local dielectric function (spatial dispersion), as discussed in Refs. [26,32,33].
A characteristic length scale related to the compressibility of the electron gas is the Debye
screening length, `D = vF/Ωp, where vF is typically of the order of the Fermi velocity.

If one integrates the Lorentz force density from z = ∞ down to a cutoff at z = `D and
divides by the equilibrium carrier density n0, the following estimate is obtained
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∆φ(T) ≈ − c2(T)
n0`D

≈ −0.06 kBT
e2

ε0h̄c
h̄/λ̄p

mvF
. (19)

Both ratios on the right-hand side of Equation (19) are less than unity: the first ratio is
4π/137 ≈ 0.0917, and for gold, the second ratio results to ≈0.00380. However, a Kelvin
probe locked to a periodic temperature modulation may prove to be sufficiently sensitive.

A complementary phenomenon is the induced subsurface space charge that screens
the thermal Lorentz force, restoring electro-chemical equilibrium. From the Coulomb law,
its cumulative density ∆Q/A per unit area is of the order of

∆Q
A
≈ ε0

en0
lim

z→`D
f (z) ≈ −0.06

e
λ̄2

p

kBT
mv2

F
. (20)

This is again, as just above, a quite small charge, barely an elementary charge per square
micron for gold. If this charge shows fluctuations in the MHz frequency band, however, these
may be detectable with miniaturised ion traps because the corresponding fluctuations in the
Coulomb force work against the laser cooling of the ion to its motional ground state [34].

4. Conclusions

In this paper, a thermal Hall effect has been explored that arises from the correlation
between current density and magnetic field in a conducting medium at finite temperature.
It turns out that in a thin layer below the material surface (its thickness being comparable
to the Meißner penetration depth, λ̄p), the Lorentz force density, averaged over thermal
fluctuations, is nonzero and points towards the surface, similar to the interaction with
image charges. It has been found that a Drude model gives a distinct prediction compared
to the so-called plasma model because the corresponding force spectra have opposite signs
(see Figure 2a,b). The thermal Hall voltage is relatively small, however.

The next step could be the regularisation on short-length scales, using a spatially
dispersive permittivity and suitable boundary conditions. Another interesting perspective
is the fluctuation spectrum of the Lorentz force around its thermal average that arises from
fourth-order correlations of Rytov currents. This may provide an alternative, physical
picture for the unusual electric field fluctuations observed in ion traps (anomalous heating)
that are often attributed to surface contaminations [34].
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Appendix A. Details of the Calculation

Appendix A.1. Polarisation Vectors

The following transverse polarisation vectors are used to expand the transverse pro-
jection tensor T = es ⊗ es + ep ⊗ ep:

es = Q̂× ez , ep = (qQ̂−Qez)/k , (A1)

where Q̂ is the unit vector parallel to Q, and k = ω[µ0ε(ω)]1/2. For the wave vector q̄ of
the incident wave (orthogonal projector T̄), the mirror images are used

ēs = es , ēp = (qQ̂ + Qez)/k . (A2)
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This leads to the following compact form of the transverse reflection tensor [35]

RT̄ = rs es ⊗ ēs + rp ep ⊗ ēp . (A3)

As a consistency check, consider the limit of normal incidence where both polarisations
behave in the same way. According to Equation (7), one needs the trace of this tensor:

trRT̄ = rs + rp (q2 −Q2)/k2 (A4)

and the image of the reflected wave vector:

RT̄ · q = 2rp ep qQ/k . (A5)

This expression is nonzero because q̄ and q differ by one mirror reflection from the surface.
Let us perform the angular integration over the in-plane angle ϕ of Q. The reflection

coefficients only depend on its magnitude Q. One has
∫ dϕ

2π
q = q ez ,

∫ dϕ

2π
ep = −(Q/k)ez , (A6)

so that after integrating over ϕ, Equation (7) becomes
∫ dϕ

2π

[
tr(RT̄) q−RT̄ · q

]

= q
[
rs + rp (q2 −Q2)/k2

]
ez + 2q rp (Q2/k2) ez = q

(
rs + rp

)
ez . (A7)

One still has to multiply Equation (A7) with the phase factor eiq(z+z′) from the Green
function (6). The terms without the reflection coefficients (homogeneous medium) cancel
thanks to the first integral in Equation (A6): the limits z′ ↘ z and z′ ↗ z are combined and
the local current correlation function (2) exploited to evaluate the z′-integral. Taking into
account the symmetrised correlation function, eventually introduces a real part [36], and
one obtains Equation (8).

Appendix A.2. Average Poynting Vector

As outlined after Equation (11), the contribution of field rather than current fluctua-
tions involves the calculation of the correlation function 〈E∗(r, ω)× B(r, ω′)〉. Using the
Faraday equation to express the magnetic field, one has to evaluate

〈E∗(r, ω)× [∇′ × E(r′, ω′)]〉 = ∇′〈E∗(r, ω) · E(r′, ω′)〉 − 〈[E∗(r, ω) · ∇′] E(r′, ω′)〉 , (A8)

eventually taking the limit r′ → r. The electric field autocorrelation is given by the fluctua-
tion–dissipation theorem [18,37,38]:

〈E∗i (r, ω)Ej(r′, ω′)〉 = 4πh̄ δ(ω−ω′)
eh̄ω/kBT − 1

ImGij(r, r′, ω) . (A9)

Let us assume here for simplicity the medium to be reciprocal so that Gij(r, r′, ω) =
Gji(r′, r, ω). Recall that this Green tensor determines the electric field E(r, ω) radiated
by a monochromatic point dipole of amplitude d located at position r′ in the medium,
E = G · d.

The Green tensor splits into a part relevant for a homogeneous bulk medium that only
depends on the difference r− r′. Its derivative vanishes for r′ → r. The remaining part near
a planar surface can be written with reflection coefficients (Weyl expansion, z, z′ ≥ 0) [35]:

Grefl(r, r′, ω) = iµ0ω2
∫ d2Q

(2π)2
ei(q·r−q̄·r′)

2q
RT̄ . (A10)

Performing the derivatives of Equation (A8) under the imaginary part of this expression,
leads to a quite similar calculation as in Appendix A.1 and results in
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∇′ Im trGrefl(r, r′, ω)−∑
i,j

∂

∂x′i
ImGrefl

ij (r, r′, ω) ej

= −ez
µ0

4π
ω2 Im

∞∫

0

dQ Q e2iqz(rs + rp
)

. (A11)

The final steps are to multiply Equation (A11) by −iσ∗/ω to convert E∗ into j∗ and
∇× E into B (see Equation (A8)) and to take the real part to obtain the symmetrised correlation.
This makes the imaginary part of the conductivity appear. Writing the frequency integral over
positive frequencies only, leads in conjunction with Equation (8) to the final result (14).
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Abstract: We consider the Casimir pressure between two graphene sheets and contributions to it
determined by evanescent and propagating waves with different polarizations. For this purpose, the
derivation of the 2-dimensional (2D) Fresnel reflection coefficients on a graphene sheet is presented
in terms of the transverse and longitudinal dielectric permittivities of graphene with due account
of the spatial dispersion. The explicit expressions for both dielectric permittivities as the functions
of the 2D wave vector, frequency, and temperature are written along the real frequency axis in the
regions of propagating and evanescent waves and at the pure imaginary Matsubara frequencies
using the polarization tensor of graphene. It is shown that in the application region of the Dirac
model nearly the total value of the Casimir pressure between two graphene sheets is determined
by the electromagnetic field with transverse magnetic (TM) polarization. By using the Lifshitz
formula written along the real frequency axis, the contributions of the TM-polarized propagating
and evanescent waves into the total pressure are determined. By confronting these results with the
analogous results found for plates made of real metals, the way for bringing the Lifshitz theory
using the realistic response functions in agreement with measurements of the Casimir force between
metallic test bodies is pointed out.

Keywords: graphene; Casimir pressure; Dirac model; spatial dispersion; polarization tensor; propa-
gating waves; evanescent waves

1. Introduction

By now, graphene has assumed great importance in the field of fundamental physics
and its numerous applications, where it plays a broad spectrum of roles [1,2]. The distinctive
characteristic features of graphene, as opposed to ordinary bodies, are the 2-dimensional
(2D) crystal structure of carbon atoms and massless quasiparticles described not by the
Schrödinger equation, but by the Dirac equation, where the speed of light is replaced
with the much smaller Fermi velocity. As a result, at energies below a few eV, the electri-
cal and optical properties of graphene are well described by the relatively simple Dirac
model [1–6]. This enables one to investigate the main features of graphene not by using
some phenomenological approach, which is the usual practice in condensed matter physics,
but on the solid basis of thermal quantum field theory and, more specifically, quantum
electrodynamics at nonzero temperature.

The subject of this paper is the Casimir force [7], which acts between any two un-
charged closely spaced material bodies owing to the zero-point and thermal fluctuations
of the electromagnetic field. In his original publication [7], Casimir calculated the force
acting between two ideal metal planes kept at zero temperature. At a later time, E. M.
Lifshitz [8–10] developed the general theory expressing the Casimir force between two
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plates at any temperature via the reflection coefficients written in terms of the frequency-
dependent dielectric permittivities of plate materials. In recent years, the Casimir force
continues to grow in popularity due to the role it plays in quantum field theory, elemen-
tary particle physics, condensed matter, atomic physics, and even cosmology (see the
monographs [11–13]).

Experiments measuring the Casimir force between metallic test bodies faced problems
when comparing the measurement data with theoretical predictions of the Lifshitz theory.
It turned out that if the low-frequency response of metals is described by the universally
used dissipative Drude model, the obtained theoretical predictions are excluded by the
measurement data. If, however, the low-frequency response is described by the dissipa-
tionless plasma model, which should not be applicable at low frequencies, the theory gives
results in agreement with the experiment (see [12,14–17] for a review). Quite recently, it
was shown [18] that the roots of the problem are not in the Drude model as a whole, but
only in its possible incorrectness in the restricted area of transverse electric evanescent
waves where it has no sufficient experimental confirmation.

The response functions of metals, including the Drude model, are of more or less phe-
nomenological character. In this regard, of special interest is the Casimir effect in graphene
systems, which has drawn the attention of many authors. At the early stages of investiga-
tion, the response of graphene to the electromagnetic field was also described by means
of phenomenological methods based on the 2D Drude model, density functional theory,
Boltzmann transport equation, random phase approximation, Kubo theory, hydrodynamic
model, etc., and the obtained results were used to calculate the Casimir force in graphene
systems [19–39]. In doing so, it was found that in the framework of the Dirac model the
spatially nonlocal response of graphene at the pure imaginary Matsubara frequencies can
be described by the polarization tensor in (2+1)-dimensional space-time and calculated
precisely from the first principles of thermal quantum field theory [40,41]. These results
were generalized to the entire plane of complex frequencies including the real frequency
axis [42,43]. In such a manner, the reflection coefficients of electromagnetic fluctuations on
a graphene sheet were expressed directly via the components of the polarization tensor.

The results of first-principles calculations of the Casimir force between two graphene
sheets using the polarization tensor were compared [44] with those obtained using various
phenomenological methods, and serious limitations of the latter were demonstrated. What
is more, the measurement data of two experiments measuring the Casimir force in graphene
systems were compared with the predictions of the Lifshitz theory using the reflection
coefficients on graphene expressed via the polarization tensor and found to be in excellent
agreement [45–48]. Specifically, the most precise measurements [47,48] confirmed the
theoretical prediction of [24] that for graphene systems a big thermal effect in the Casimir
force arises at much shorter separations than for metallic or dielectric bodies.

Thus, in the case of graphene, the Lifshitz theory does not suffer from a problem
arising for metallic plates whose electromagnetic response was determined on partially
phenomenological grounds (we recall that the experimental data for the complex index
of refraction of metals are available only in the frequency region above some minimum
frequency and are usually extrapolated by the Drude model to below this frequency [49]).
One can conclude that graphene supplies us with some kind of road map on how to cor-
rectly describe the Casimir force between metallic plates. Because of this, it is important
to compare both theoretical descriptions in parallel, including the form of reflection coef-
ficients, the contributions of different polarizations of the electromagnetic field, and the
propagating and evanescent waves.

In the current study, we underline that the reflection coefficients on a graphene sheet
expressed via the polarization tensor are nothing more than the 2D Fresnel reflection
coefficients expressed via the spatially nonlocal longitudinal and transverse dielectric
permittivities. It is stressed that for a 2D graphene sheet, as opposed to the 3D Casimir
configurations, the spatial dispersion can be taken into account exactly on a rigorous
theoretical basis. Then, it is shown that in the application region of the Dirac model
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the Casimir force between two pristine graphene sheets is completely determined by
the transverse magnetic polarization of the electromagnetic field. In doing so, at short
separations up to hundreds of nanometers, both the propagating and evanescent waves
make essential contributions to the Casimir force, whereas at larger separations the total
force value is mostly determined by the contribution of evanescent waves. This is compared
with the case of metallic plates where the evanescent waves play an important role in the
problem of disagreement between the predictions of the Lifshitz theory using the Drude
model and the measurement data.

The paper is organized as follows. In Section 2, we present the detailed derivation
of the 2D Fresnel reflection coefficients on a graphene sheet in terms of the dielectric
permittivities of graphene with an accurate account of the spatial dispersion. In Section 3,
the explicit expressions for the transverse and longitudinal dielectric permittivities of
graphene at any temperature are presented. Section 4 contains the results of the numerical
computations of contributions to the Casimir pressure between two graphene sheets due
to different polarizations of the propagating and evanescent waves. Section 5 provides a
discussion of both similarities and distinctions in the Casimir pressures between metallic
plates and graphene sheets. Finally, Section 6 contains our conclusions.

2. Fresnel Reflection Coefficients on a Two-Dimensional Sheet

It is known that the Casimir force between two parallel plates is expressed by the
Lifshitz formula through the amplitude reflection coefficients of the electromagnetic waves.
For the ordinary three-dimensional plates, these are the familiar Fresnel reflection coeffi-
cients written in terms of the frequency-dependent dielectric permittivity of the voluminous
plate material. Graphene is a two-dimensional sheet of carbon atoms. Its dielectric per-
mittivity is spatially nonlocal and essentially depends not only on the frequency, but
on the wave vector and also on temperature. The expressions for the two-dimensional
analogues of the Fresnel coefficients presented in terms of the dielectric permittivity of
a 2D material are not quite known (see, e.g., [50–52], where the transverse magnetic
coefficient [50,51] and both reflection coefficients [52] were expressed in terms of the 2D
conductivity with no account of spatial dispersion, or [13,31] where they are presented
with no detailed derivation).

Below, we demonstrate in detail that the reflection coefficients on a 2D sheet are
obtainable in close analogy to the standard 3D Fresnel reflection coefficients, but with due
account of the spatial dispersion.

Let the graphene sheet be in the plane z = 0, where the z-axis is directed downward
in the plane of Figure 1 and the y-axis is directed upward perpendicular to it.

II

I

n

z

x

Figure 1. The configuration of a graphene sheet located at the plane (x, y) perpendicular to the plane
of the figure. The y-axis is directed upward. The unit normal vector n is directed from the region I to
II along the positive direction of the z-axis.
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There are empty half spaces I and II on both sides of the graphene sheet. The fluc-
tuating electromagnetic field induces some surface charge density, $2D(ρ, t), and current
density, j2D(ρ, t), on the sheet where ρ = (x, y) and t denotes the time. Then, the Maxwell
equations in the 3D space take the form

∇D(r, t) = 4π$3D(r, t),

∇B(r, t) = 0,

∇× E(r, t) +
1
c

∂B(r, t)
∂t

= 0,

∇× H(r, t)− 1
c

∂D(r, t)
∂t

=
4π

c
j3D(r, t), (1)

where r = (x, y, z) = (ρ, z), c denotes the speed of light, D is the electric displacement, B is
the magnetic induction, and E and H are the electric and magnetic fields, respectively. The
3D charge and current densities in Equation (1) are given by [13,50]

$3D(r, t) = $2D(ρ, t)δ(z), j3D(r, t) = j2D(ρ, t)δ(z). (2)

Note that we use the Gaussian units in Equation (1) and below. In these units, j3D has
the dimension of g1/2cm−1/2s−2, whereas the dimension of j2D is g1/2cm1/2s−2.

The standard electrodynamic boundary conditions on the plane z = 0 are given by

[DII(ρ, 0, t)− DI(ρ, 0, t)] · n = 4πρ2D(ρ, t),

[BII(ρ, 0, t)− BI(ρ, 0, t)] · n = 0,

[EII(ρ, 0, t)− EI(ρ, 0, t)]× n = 0,

[HII(ρ, 0, t)− HI(ρ, 0, t)]× n = −4π

c
j2D(ρ, t), (3)

where n = (0, 0, 1) is the unit vector directed along the z-axis (see Figure 1).
Below we assume that all fields have the form of monochromatic plane waves, e.g.,

E(r, t) = E0ei(kr−ωt), H(r, t) = H0ei(kr−ωt), B(r, t) = B0ei(kr−ωt). (4)

Here, E0, H0, and B0 are the amplitudes; k = (kx, ky, kz) ≡ (q, kz) is the 3D wave
vector, and ω is the wave frequency.

For a derivation of the Fresnel reflection coefficients on a 2D sheet, it is suffice to
restrict our consideration to the third line of the Maxwell equations (1) and the third and
fours lines in the boundary conditions (3).

Substituting Equation (4) into the third line of Equations (1) and (3), it is readily seen
that in both regions I and II

k× E0 − ω

c
B0 = 0 (5)

and
(E0

II − E0
I )× n = 0, (6)

where E0
I and E0

II are the field amplitudes in the regions I and II, respectively.
Now we look at the fourth line in the boundary conditions (3). Taking into account

that the graphene sheet is a spatially nonlocal material, the 2D current density in the fourth
line of Equation (3) takes the form

j2D(ρ, t) =
t∫

−∞

dt′
∫

d2ρ′σ2D(ρ− ρ′, t− t′)Elat(ρ
′, t′). (7)
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Here, σ2D(ρ, t) is the 2D conductivity of a graphene sheet (it has the dimension cm/s)
and Elat is the projection of the electric field on the plane of graphene calculated at z = 0:

Elat(ρ, t) = E(ρ, 0, t)− n(E(ρ, 0, n) · n) = n× [E(ρ, 0, t)× n]. (8)

Substituting Equations (4) and (7) into the fourth line of Equation (3), one obtains

(H0
II − H0

I )× n = −4π

c
σ2D(q, ω)E0

lat, (9)

where σ2D(q, ω) is the Fourier image of σ2D(ρ, t) in the 2D space and time, q is the 2D
wave vector, and E0

lat is the amplitude of the quantity (8):

Elat(ρ, t) = E0
late

i(qρ−ωt),

E0
lat = n× [E0 × n]. (10)

Note that by introducing σ2D(q, ω) we have used the translational invariance in the
plane of a graphene sheet. In the standard Casimir problems, where the plates are made
of 3D materials separated by a gap, there is no translational invariance in the 3D space
and it is impossible to rigorously introduce the conductivity σ3D(k, ω) (and the dielectric
permittivity) depending on the 3D vector k. Because of this, for taking into account
the effects of spatial dispersion, it is necessary to use some approximations, such as the
suggestion of specular reflection [53,54].

We recall also that the spatially dispersive materials are characterized by the two inde-
pendent conductivities, in our case, σ2D,L(q, ω) and σ2D,Tr(q, ω), depending on whether
E0

lat in Equation (9) is parallel or perpendicular to the wave vector q, respectively [55,56].
These conductivities are called the longitudinal and transverse ones.

We are coming now to the derivation of the amplitude reflection coefficients on
a graphene sheet for two independent polarizations of the electromagnetic field using
Equations (5), (6) and (9).

Let us start with the case of transverse electric polarization when the amplitudes of the
electric field of the incident, E0

0, transmitted, E0
2, and reflected, E0

1, waves are perpendicular
to the plane of incidence (x, z) and directed along the positive direction of the y-axis (see
Figure 2). The corresponding wave vectors are k0, k2, and k1, and the amplitudes of the
magnetic field, which lie in the plane of incidence, are H0

0, H0
2, and H0

1.
Taking into account that the 2D sheet spaced in the plane (x, y) or, equivalently, z = 0

is spatially homogeneous, one finds k0x = k1x = k2x. Considering also that k2
0 = k2

1 = k2
2 =

ω2/c2 because the space outside of a graphene sheet is empty, one obtains

sin θ0 =
k0x

k0
= sin θ1 =

k1x
k1

= sin θ2 =
k2x

k2
, (11)

i.e., in our case, all the three angles are equal.
According to Figure 2,

E0
I = E0

0 + E0
1, E0

II = E0
2, (12)

where E0
0 = (0, E0

0y, 0), E0
1 = (0, E0

1y, 0), and E0
2 = (0, E0

2y, 0).
Taking this into account, the boundary condition (6) reduces to

E0
0y + E0

1y = E0
2y. (13)
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II

I

n

z

x

θ2

θ1θ0

k0

k1

k2

E0
0 E0

1

E0
2

H0
0

H0
1

H0
2

Figure 2. The electromagnetic wave with the transverse electric polarization is incident on a graphene
sheet. The amplitudes of the incident, E0

0, reflected, E0
1, and transmitted, E0

2, electric field are perpen-
dicular to the plane of incidence and directed in the positive direction of the y-axis perpendicular to
the plane of the figure. The corresponding amplitudes of the magnetic field, H0

0, H0
1, and H0

2, lie in
the plane of incidence, whereas k0, k1, and k2 are the corresponding wave vectors.

The boundary condition (9), where E0
lat is defined in Equation (10), is more complicated.

In view of Equation (6), both E0
I and E0

II can be substituted into Equation (10) in place of E0.
We choose E0

II for the sake of brevity. Then the condition (9) takes the form

(H0
II − H0

I )× n = −4π

c
σ2D,Tr(q, ω)[n× [E0

II × n]]. (14)

Here, we took into account that the electric field is perpendicular to q.
From Figure 2, it follows that

H0
I = H0

0 + H0
1, H0

II = H0
2, (15)

where H0
0 = (H0

0x, 0, H0
0z), H0

1 = (H0
1x, 0, H0

1z), and H0
2 = (H0

2x, 0, H0
2z).

Substituting Equations (12) and (15) into the boundary condition (14), one obtains
after the elementary algebra:

H0
2x − H0

0x − H0
1x =

4π

c
σ2D,Tr(q, ω)E0

2y. (16)

From the Maxwell equation (5), written for the incident wave in free space where
B0 = H0, one obtains

H0
0 =

c
ω
[k0 × E0

0]. (17)

With account of k0 = (k0x, 0, k0z) and E0
0 = (0, E0

0y, 0), this reduces to

H0
0x = − c

ω
k0zE0

0y, (18)

where, considering Equation (11) and using that in this case k0x plays the role of q,

k0z =
ω

c
cos θ0 =

√
ω2

c2 − q2. (19)

In a similar way, from Equation (5) written for the reflected and transmitted waves,
one finds
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H0
1x = − c

ω
k0zE0

1y, H0
2x = − c

ω
k0zE0

2y. (20)

Substituting Equations (18) and (20) into Equation (16), we finally obtain

E0
0y − E0

1y − E0
2y =

4πω

c2k0z
σ2D,Tr(q, ω)E0

2y. (21)

By solving this equation together with Equation (13), the transverse electric (TE)
reflection coefficient is found in the form

rTE(q, ω) =
E0

1y

E0
0y

= − 2πωσ2D,Tr(q, ω)

c2k0z + 2πωσ2D,Tr(q, ω)
. (22)

Note that in Ref. [52] this reflection coefficient was obtained in the special case of
normal incidence with ignored spatial dispersion.

By taking into account that for a 2D sheet, the spatially nonlocal dielectric permittivity
is expressed via the conductivity as [13,31]

ε2D,Tr(q, ω) = 1 +
2πiσ2D,Tr(q, ω)q

ω
, (23)

and using Equation (19), we rewrite the reflection coefficient (22) in the final form

rTE(q, ω) = − ω2[ε2D,Tr(q, ω)− 1]

ic2q
√

ω2

c2 − q2 + ω2[ε2D,Tr(q, ω)− 1]
. (24)

This is the transverse electric Fresnel reflection coefficient on a 2D graphene sheet
expressed via the spatially nonlocal transverse dielectric permittivity of graphene.

We now proceed to a derivation of the transverse magnetic reflection coefficient on
a graphene sheet. In this case, the amplitudes of the magnetic field of the incident, H0

0,
transmitted, H0

2, and reflected, H0
1, waves are perpendicular to the plane of incidence and

directed along the positive direction of the y-axis (see Figure 3). The amplitudes of the
electric field, E0

0, E0
2, and E0

1, lie in the plane of incidence.

II

I

n

z

x

θ2

θ1θ0

k0

k1

k2

H0
0 H0

1

H0
2

E0
0 E0

1

E0
2

Figure 3. The electromagnetic wave with the transverse magnetic polarization is incident on a
graphene sheet. The amplitudes of the incident, H0

0, reflected, H0
1, and transmitted, H0

2, magnetic
field are perpendicular to the plane of incidence and directed in the positive direction of the y-axis
perpendicular to the plane of the figure. The corresponding amplitudes of the electric field, E0

0, E0
1,

and E0
2, lie in the plane of incidence, whereas k0, k1, and k2 are the corresponding wave vectors.
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According to Figure 3,

H0
I = H0

0 + H0
1, H0

II = H0
2, (25)

where H0
0 = (0, H0

0y, 0), H0
1 = (0, H0

1y, 0), and H0
2 = (0, H0

2y, 0).
Taking into account that, in this case,

E0
II = E0

2 = (E0
2x, 0, E0

2z), (26)

one obtains

[E0
2 × n] = (0,−E0

2x, 0),

n× [E0
2 × n] = (E0

2x, 0, 0) = (E0
2 cos θ0, 0, 0), (27)

where cos θ0 is defined in Equation (19).
The boundary condition (9), (10) takes the form

(H0
II − H0

I )× n = −4π

c
σ2D,L(q, ω)[n× [E0

II × n]] (28)

The longitudinal conductivity σ2D,L appears in this equation because the 2D wave
vector q is now parallel to E0

lat.
Substituting Equations (25) and (27) into the boundary condition (28), one finds

H0
2y − H0

0y − H0
1y = −4πσ2D,L(q, ω)

c
E0

2 cos θ0. (29)

For the transverse magnetic polarization, the boundary condition (6) reduces to

E0
0x + E0

1x − E0
2x = 0. (30)

With account of Equation (11), which is valid for both polarizations of the electromag-
netic field, Equation (30) is equivalent to

E0
0 cos θ0 − E0

1 cos θ0 − E0
2 cos θ0 = 0 (31)

and finally to
E0

0 − E0
1 − E0

2 = 0. (32)

Let us now use the Maxwell equation (5) for the incident wave H0
0 = B0

0 = (0, H0
0y, 0).

Then it takes the form of Equation (17). By using E0
0 = (E0

0x, 0, E0
0z), one obtains from

Equation (17) with the help of Equations (11) and (19)

H0
0y =

c
ω
(k0zE0

0x − k0xE0
0z) =

c
ω
(k0z cos θ0 + k0x sin θ0)E0

0 = E0
0. (33)

In a similar way, from the Maxwell Equation (17) applied to the reflected and transmit-
ted waves, one obtains

H0
1y = E0

1, H0
2y = E0

2 . (34)

Substituting Equations (33) and (34) into Equations (29) and (32), one finds

H0
2y − H0

0y − H0
1y = −4πσ2D,L(q, ω)

c
H0

2y cos θ0,

H0
0y − H0

1y − H0
2y = 0. (35)
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By solving these equations together, we derive the transverse magnetic (TM) reflection
coefficient on a 2D graphene sheet:

rTM(q, ω) =
H0

1y

H0
0y

=
2πσ2D,L(q, ω) cos θ0

c + 2πσ2D,L(q, ω) cos θ0
. (36)

The result (36) was obtained in Refs. [50–52] in the spatially local case. In the presence
of spatial dispersion, both the results (22) and (36) are presented in Refs. [13,31] with no
detailed derivation.

By using an expression for the longitudinal dielectric permittivity of a 2D sheet through
its conductivity [13,31]

ε2D,L(q, ω) = 1 +
2πiσ2D,L(q, ω)q

ω
, (37)

and Equation (19), one obtains

rTM(q, ω) =
[ε2D,L(q, ω)− 1]

√
ω2

c2 − q2

iq + [ε2D,L(q, ω)− 1]
√

ω2

c2 − q2
. (38)

This is the transverse magnetic Fresnel reflection coefficient on a 2D graphene sheet
expressed via the longitudinal dielectric permittivity of graphene.

3. Spatially Nonlocal Dielectric Permittivities of Graphene and the Polarization Tensor

It is common knowledge that at low energies (smaller than approximately 3 eV [57])
graphene is well described by the Dirac model as a set of massless quasiparticles satis-
fying the Dirac equation, where the speed of light c is replaced with the Fermi velocity
vF ≈ c/300 [1–3]. In the framework of the Dirac model, it is possible to derive explicit
expressions for the polarization tensor of graphene, which describes the response of a
graphene sheet to the electromagnetic field [40–43], and thus find both the transverse
and longitudinal permittivities of graphene starting from the first principles of quantum
electrodynamics. The dielectric permittivities obtained in this way depend on the wave
vector, on the frequency, and also on temperature.

The polarization tensor of graphene in (2+1)-dimensional space-time is notated as
Πµν(q, ω), where µ, ν = 0, 1, 2 and the dependence on temperature is implied (here, we
consider the pristine graphene sheet with no energy gap in the spectrum of quasiparticles
and perfect hexagonal crystal lattice). The transverse dielectric permittivity of graphene is
expressed as [58]

ε2D,Tr(q, ω)− 1 = − c2

2h̄qω2 Π(q, ω), (39)

where the quantity Π is the following combination of the components of the polarization
tensor:

Π(q, ω) ≡ q2Π µ
µ (q, ω) +

(
ω2

c2 − q2
)

Π00(q, ω), (40)

h̄ is the reduced Planck’s constant and the summation is made over the repeated indices.
The longitudinal dielectric permittivity of graphene is immediately expressed via the

00 component of the polarization tensor [58]

ε2D,L(q, ω)− 1 =
c2

2h̄q
Π00(q, ω), (41)

The polarization tensor of graphene along the real frequency axis was obtained in
Ref. [42]. It was considered for the propagating waves, which satisfy the condition

q 6 ω

c
, (42)
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and for the evanescent waves, which satisfy either the condition

ω

c
< q 6 ω

vF
≈ 300

ω

c
(43)

(the so-called plasmonic region [59]) or the condition

q >
ω

vF
≈ 300

ω

c
. (44)

Using the expression from Ref. [42] for Π in the region of propagating waves (42) and
in the plasmonic region (43), the transverse dielectric permittivity of graphene (39) in these
regions can be written in the same form:

ε2D,Tr(q, ω)− 1 = iπαq
c

2ω2

√
ω2 − v2

Fq2

− 8αc2

v2
Fq





u(−)∫

0

du
eβu + 1

[
1− 1

2ω2

√
ω2 − v2

Fq2 ∑
λ=±1

B(2cu + λω)

]

+

∞∫

u(−)

du
eβu + 1

[
1− 1

2ω2

√
ω2 − v2

Fq2 ∑
λ=±1

λB(2cu + λω)

]
. (45)

Here and below, it is assumed that ω > 0 and the following notations are introduced:

u(−) =
1
2c

(ω− vFq), β =
h̄c

kBT
, B(x) =

x2
√

x2 − v2
Fq2

, (46)

α denotes the fine structure constant, kB is the Boltzmann constant and T is the temperature
of a graphene sheet.

In the region (44), using the corresponding expression for Π [42], one obtains another
expression for the transverse dielectric permittivity of graphene

ε2D,Tr(q, ω)− 1 = −παq
c

2ω2

√
v2

Fq2 −ω2

− 4αc
v2

Fq

√
v2

Fq2 −ω2
∞∫

0

dw
eDw + 1


1− 1

2 ∑
λ=±1

(
√

v2
Fq2 −ω2w + λω)2

ω2
√

1− w2 − 2λωw√
v2

Fq2−ω2


, (47)

where D = h̄
√

v2
Fq2 −ω2/(2kBT).

In a similar way, using the expression from Ref. [42] for Π00 in the region of propagat-
ing (42) and plasmonic (43) wave vectors and frequencies, one finds the explicit form of the
longitudinal dielectric permittivity of graphene (41) in these regions:

ε2D,L(q, ω)− 1 = iπαcq
1

2
√

ω2 − v2
Fq2

+
8αc2

v2
Fq





u(−)∫

0

du
eβu + 1


1− 1

2
√

ω2 − v2
Fq2

∑
λ=±1

F(2cu + λω)




+

∞∫

u(−)

du
eβu + 1


1− 1

2
√

ω2 − v2
Fq2

∑
λ=±1

λF(2cu + λω)





, (48)
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where
F(x) =

√
x2 − v2

Fq2. (49)

Using the expression of Π00 [42] in the region (44), for the longitudinal permittivity of
graphene (41) in this region, one obtains

ε2D,L(q, ω)− 1 = παcq
1

2
√

v2
Fq2 −ω2

+
4αc
v2

Fq

√
v2

Fq2 −ω2
∞∫

0

dw
eDw + 1


1− 1

2 ∑
λ=±1

√√√√1− w2 − 2λωw√
v2

Fq2 −ω2


. (50)

Thus, both the transverse and longitudinal dielectric permittivities of graphene are
obtained in all ranges of the wave vectors and frequencies (42)–(44). We emphasize that
the first lines of Equations (45), (47), (48) and (50) represent the corresponding dielectric
permittivity at zero temperature. The terms in the next lines of these equations define the
thermal correction to it found in the framework of the Dirac model. These terms make a
profound effect on the reflectivity [42] and conductivity [60] properties of graphene, and
also on the Casimir interaction between graphene sheets [44,46–48]. By construction from
the polarization tensor, the obtained permittivities satisfy the Kramers–Kronig relations.
The specific form of these relations was investigated in the spatially local limit q→ 0 [61]
and at zero temperature [62].

For the calculation of the Casimir force in graphene systems, it is helpful to use the re-
flection coefficients (24) and (38), as well as the dielectric permittivities of graphene, written
at the pure imaginary Matsubara frequencies ω = iξl = 2πikBTl/h̄, where l = 0, 1, 2, . . . .

Substituting ω = iξl into Equations (24) and (38), one obtains, respectively,

rTE(q, iξl) = −
ξ2

l [ε
2D,Tr(q, iξl)− 1]

c2q

√
q2 +

ξ2
l

c2 + ξ2
l [ε

2D,Tr(q, iξl)− 1]

,

rTM(q, iξl) =
[ε2D,Tr(q, iξl)− 1]

√
q2 +

ξ2
l

c2

q + [ε2D,Tr(q, iξl)− 1]

√
q2 +

ξ2
l

c2

. (51)

These are the Fresnel reflection coefficients in two dimensions calculated at the pure
imaginary Matsubara frequencies. The same expressions are obtained if one substitutes
Equations (39) and (41) into the reflection coefficients derived in Refs. [40,41] directly in
terms of the polarization tensor.

The spatially nonlocal dielectric permittivities of graphene along the imaginary fre-
quency axis are immediately obtainable from Equations (47) and (50) valid in the inter-
val (44) by putting ω = iξl . The results are
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ε2D,Tr(q, iξl)− 1 = παq
c

2ξ2
l

√
v2

Fq2 + ξ2
l

− 4αc
v2

Fq

√
v2

Fq2 + ξ2
l
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0

dw
eDl w + 1


1 +

1
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√
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Fq2 + ξ2

l w + iλξl)
2

ξ2
l

√
1− w2 − 2iλξl w√

v2
Fq2+ξ2

l


,

ε2D,L(q, iξl)− 1 = παcq
1

2
√

v2
Fq2 + ξ2

l

+
4αc
v2

Fq

√
v2

Fq2 + ξ2
l

∞∫

0

dw
eDl w + 1


1− 1

2 ∑
λ=±1

√√√√1− w2 − 2iλξlw√
v2

Fq2 + ξ2
l


, (52)

where now Dl = h̄
√

v2
Fq2 + ξ2

l /(2kBT).
These expressions are indeed real as it should be. The same dielectric permittivities are

obtained at once from Equations (39) and (41) written at ω = iξl when substituting expres-
sions for Π(q, iξl) and Π00(q, iξl) derived directly along the imaginary frequency axis [63]
rather than analytically continued from the real frequency axis as it was made above.

4. Contribution of Different Polarizations and the Role of Evanescent Waves in the
Casimir Pressure between Two Graphene Sheets

The Casimir pressure between two parallel graphene sheets at temperature T separated
by distance a is given by the Lifshitz formula, which can be presented in terms of either
pure imaginary Matsubara or real frequencies [8,12]. In both cases, the total pressure is the
sum of contributions from the electromagnetic waves of TM and TE polarizations.

We begin from the representation in terms of the Matsubara frequencies

P(a, T) = PTM(a, T) + PTE(a, T), (53)

where

PTM,TE(a, T) = − kBT
π

∞

∑
l=0

′
∞∫

0

dq q

√

q2 +
ξ2

l
c2


r−2

TM,TE(q, iξl) e2a

√
q2+

ξ2
l

c2 − 1



−1

. (54)

Here, the prime on the summation sign adds the factor 1/2 to the term with l = 0,
and the reflection coefficients on a graphene sheet for both polarizations are defined in
Equation (51) with the dielectric permittivities of graphene presented in Equation (52).

We performed computations of both PTM and PTE in the application region of the
Dirac model, i.e., under a condition that the characteristic energy of the Casimir force
h̄ωc = h̄c/(2a) should be less than 3 eV [57]. This condition is well satisfied at a > 200 nm,
where h̄ωc 6 0.5 eV.

The computational results for the magnitudes of PTM and PTE at T = 300 K are
presented in Figure 4 in the logarithmic scale by the upper and lower lines, respectively, as
the function of separation between the graphene sheets. Both PTM and PTE are negative,
i.e., they contribute to the Casimir attraction.
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Figure 4. The magnitudes of contributions of the transverse magnetic (TM) and transverse electric
(TE) polarizations to the Casimir pressure between two graphene sheets at T = 300 K are shown in
the logarithmic scale as the function of separation by the upper and lower lines, respectively.

As seen in Figure 4, the major contribution to the Casimir pressure at a > 200 nm is
given by the transverse magnetic polarization, whereas the transverse electric one makes
only a negligible small contribution. Thus, at a = 200 nm, we have PTM/PTE = 1530,
i.e., PTM/P = 0.99935. The role of the TM polarization only increases with increasing
separation. As two more examples, at a = 2 and 4 µm one finds that PTM/PTE = 1.92× 104

and 1.49× 105, respectively. This results in the following respective fractions of PTM in the
total Casimir pressure: PTM/P = 0.99995 and 0.999993.

In Section 3, devoted to the nonlocal dielectric permittivities of graphene, they were
considered in the region of propagating (42) and evanescent (43) and (44) waves. In so doing,
within the region of propagating (42) and in the plasmonic subregion (43) of evanescent
waves, these permittivities have a common analytic form. Nevertheless, keeping in mind
an especially important role of the propagating waves (42), which are on the mass shell in
free space, it is appropriate to consider their contribution to the Casimir pressure separately.
Then, the contribution of the evanescent waves is computed as a sum of two terms using
two different forms of the dielectric functions depending on whether the condition (43)
or (44) is satisfied. Such a separation into the propagating and evanescent waves is also
dictated by the form of the Lifshitz formula written in terms of real frequencies (see below).

The representation mathematically equivalent to Equations (53) and (54) of the Lifshitz
formula in terms of real frequencies can be written in the form

P(a, T) = Pprop
TM (a, T) + Pprop

TE (a, T) + Pevan
TM (a, T) + Pevan

TE (a, T). (55)

Here, the contributions of the propagating waves with different polarizations are given
by [8,12]

Pprop
TM,TE(a, T) = − h̄

2π2

∞∫

0

dω coth
h̄ω

2kBT

ω/c∫

0

q dq

× Im





√
q2 − ω2

c2


r−2

TM,TE(q, ω) e
2a
√

q2− ω2
c2 − 1



−1




, (56)

where the reflection coefficients are defined in Equations (24) and (38) and the dielectric
permittivities in the region (42) are given by Equations (45) and (48).
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The contributions of evanescent waves to Equation (55) with different polarizations
take the form [8,12]

Pevan
TM,TE(a, T) = − h̄

2π2

∞∫

0

dω coth
h̄ω

2kBT

∞∫

ω/c

q dq

√
q2 − ω2

c2

× Im


r−2

TM,TE(q, ω) e
2a
√

q2− ω2
c2 − 1



−1

, (57)

where the reflection coefficients are again defined in Equations (24) and (38). As to the
dielectric permittivities entering these reflection coefficients, in the region (43), they are
given by Equations (45) and (48), but in the region (44), by Equations (47) and (50).

Equations (56) and (57) are not as convenient for computations as Equation (54). This is
most pronounced in Pprop

TM,TE defined in Equation (56), which contains the quickly oscillating
functions due to the pure imaginary power in the exponential factor. As to Equation (57),
the power of the exponent remains real.

Taking into account that in the application region of the Dirac model nearly the total
Casimir pressure is determined by the TM polarized waves, we compute the quantity Pevan

TM by
Equations (57) and (38) using the dielectric permittivities defined in Equations (48) and (50).
As to the quantity Pprop

TM , it is more convenient to not compute it directly by Equation (56),
but determine it as a difference

Pprop
TM (a, T) = PTM(a, T)− Pevan

TM (a, T), (58)

where PTM is already computed by the Lifshitz formula (54) written in terms of the Matsub-
ara frequencies.

The computational results for PTM, Pevan
TM , and Pprop

TM at T = 300 K normalized to the
Casimir pressure between two ideal metal plates in the classical limit [12]

PIM(a, T) = − kBT
4πa3 ζ(3), (59)

where ζ(z) is the Riemann zeta function, are presented in Figure 5 as the function of
separation by the solid, long-dashed, and short-dashed lines, respectively.

According to Figure 5, at separations of 200–400 nm both the evanescent and propagat-
ing transverse magnetic waves contribute significantly to the Casimir pressure. At larger
separations, the dominant contribution is given by the evanescent waves. In doing so,
the contribution of evanescent waves is attractive at all separation distances. Calculations
show, however, that this attraction is combined from the attractive part caused by the
plasmonic region (43) and the repulsive part caused by the region (44). The contribution of
the TM propagating waves to the Casimir pressure between two graphene sheets changes
its character from attraction to repulsion and vice versa with increasing separation.
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Figure 5. The contributions of the transverse magnetic polarizations to the Casimir pressure between
two graphene sheets at T = 300 K and to its parts determined by the evanescent and propagating
waves normalized to the Casimir pressure between two ideal metal plates in the classical limit are
shown as the function of separation by the solid, long-dashed, and short-dashed lines, respectively.

5. Discussion: Whether Graphene Helps to Solve the Problem Arising for Real Metals

The main distinctive feature of the Casimir pressure in the configuration of two
graphene sheets considered above is that in the framework of the Dirac model, the spatially
nonlocal dielectric permittivities of graphene are found precisely starting from the first
principles of thermal quantum field theory. As to the dielectric permittivities of metals
used in computations by means of the Lifshitz formula, they contain phenomenological
parameters, such as the relaxation parameter of the Drude model, and have not been tested
experimentally within all frequency regions essential for the Casimir effect (i.e., in the
region of transverse electric evanescent waves).

The formalism of the Lifshitz theory for two graphene sheets presented in Sections 2 and 3
is in perfect analogy with that commonly used for two metallic plates. The Lifshitz formula
for the Casimir pressure remains unchanged, and only the 3D Fresnel reflection coefficients
are replaced with their 2D analogues as it should be done when considering the Casimir
interaction of plane structures. Taking into account the fundamental character of the Lifshitz
theory, we obtain the conclusion that only some drawback in the used response functions of
metals to the electromagnetic field could cause a disagreement of the theoretical predictions
with measurements of the Casimir interaction between Au surfaces.

As shown in Section 4, for two graphene sheets, the total Casimir pressure is deter-
mined by the contribution of only the transverse magnetic waves. This is because in the
application region of the Dirac model at a > 200 nm the Casimir force between graphene
sheets is already in the classical limit where the contributions of the TE polarized prop-
agating and evanescent waves cancel each other. The same occurs for the Casimir force
between metallic plates described by the Drude model at separations exceeding the thermal
length [64], i.e., larger than 7.6 µm at room temperature. At so large separations, however,
there are no reliable measurement data available. As to the experimental separations be-
tween metallic plates, both the TM and TE polarizations contribute to the Casimir pressure
irrespective of whether the experimentally consistent plasma model or the Drude model
excluded by the measurement data is used [18].

By and large, the case of graphene suggests to us that when calculating the Casimir
force using the Lifshitz theory, it is important to adequately describe the response of
boundary materials to both the propagating and evanescent waves with the transverse
magnetic and transverse electric polarizations and take proper account of the effects of
spatial dispersion.
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6. Conclusions

In the foregoing, we considered the Casimir pressure between two graphene sheets
using the Lifshitz theory in the form that is most frequently used for a description of the
Casimir effect between conventional 3D materials. For this purpose, we presented the
detailed derivation of the 2D Fresnel reflection coefficients on a graphene sheet with due
account of the spatial dispersion. As a result, the reflection coefficients for two independent
polarizations of the electromagnetic field were expressed via the transverse and longitudinal
dielectric permittivities of graphene, which depend on the 2D wave vector, frequency, and
temperature. These reflection coefficients are equivalent to those expressed directly via the
polarization tensor of graphene.

Next, we presented the explicit expressions for the transverse and longitudinal di-
electric permittivities of graphene along the real frequency axis in the regions of both the
propagating and evanescent waves and also at the pure imaginary Matsubara frequencies.
This was made using the polarization tensor of graphene, which was found earlier in the
framework of the Dirac model.

Using the Lifshitz formula written in terms of the Matsubara frequencies, we demon-
strated that the total Casimir pressure between two graphene sheets at separations exceed-
ing 200 nm is fully determined by the TM polarized electromagnetic field. By applying
the Lifshitz formula along the real frequency axis, the contributions of the TM polarized
propagating and evanescent waves to the total pressure were found.

Finally, the above results obtained for graphene sheets were confronted with the
corresponding results valid for two metallic plates. This confrontation points the way for
bringing the Lifshitz theory in agreement with the measurement data by using the more
accurate dielectric functions of metallic test bodies. In the future, it is planned to consider
different contributions to the Casimir force between two real graphene sheets possessing
the nonzero chemical potential, which prevents from reaching the classical limit at the
experimental separations.
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Abstract: We explore the dependence of vacuum energy on the boundary conditions for massive
scalar fields in (2 + 1)-dimensional spacetimes. We consider the simplest geometrical setup given
by a two-dimensional space bounded by two homogeneous parallel wires in order to compare it
with the non-perturbative behaviour of the Casimir energy for non-Abelian gauge theories in (2 + 1)
dimensions. Our results show the existence of two types of boundary conditions which give rise to
two different asymptotic exponential decay regimes of the Casimir energy at large distances. The two
families are distinguished by the feature that the boundary conditions involve or not interrelations
between the behaviour of the fields at the two boundaries. Non-perturbative numerical simulations
and analytical arguments show such an exponential decay for Dirichlet boundary conditions of
SU(2) gauge theories. The verification that this behaviour is modified for other types of boundary
conditions requires further numerical work. Subdominant corrections in the low-temperature regime
are very relevant for numerical simulations, and they are also analysed in this paper.

Keywords: vacuum energy; (2 + 1)-dimensional field theories; boundary conditions

1. Introduction

The role of boundary effects in quantum field theory is fundamental for many quantum
phenomena. One of the earliest applications was the Casimir effect [1]. A quantum field,
when confined between two solid bodies, generates a dependence of the renormalized
vacuum energy on the boundary conditions at the interfaces of the bodies. This dependence
of the vacuum energy generates a force between them which depends on the nature of the
boundary conditions of the quantum fields. Although this effect is very tiny, it has been
experimentally measured in various setups [2–7].

A remarkable effort has been made in understanding and computing the Casimir
effect for different models and setups. Some relevant results were obtained in Ref. [8],
where the Casimir vacuum energy at zero temperature was computed for general boundary
conditions and arbitrary dimensions for massless scalar fields using heat kernel methods.
These results were later extended to finite temperatures in (3 + 1) dimensions [9].

Less known are the characteristics of the effect for interacting theories [10]. Quite re-
cently, the behaviour of the Casimir energy has been investigated in
(2 + 1)-dimensional Yang–Mills theories, where some reparametrization of gauge fields in
terms of scalar fields allows for an analytic approach to the problem [11–13]. Numerical
simulations with Dirichlet boundary conditions on gauge fields confirm the results of this
analytic approach [14].

For SU(2) gauge theories, the analytic approach is based on the description of gauge
fields in terms of a massive scalar field, whose mass depends on the gauge coupling that in
(2 + 1) dimensions is not dimensionless as in (3 + 1) dimensions. In that case, the Casimir
energy of the strongly interacting gauge theories with Dirichlet boundary conditions
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coincides with the Casimir energy of a scalar field with a magnetic mass m = g2/π, where
g is the gauge coupling constant.

Some numerical simulations are in progress with different boundary conditions on
gauge fields [15] to test if the relation between Casimir energy of massive fields and Yang–
Mills theory is robust under the change in boundary conditions. Making comparisons with
what happens for scalar fields requires knowing the behaviour of the Casimir energy of the
massive scalars for different families of boundary conditions.

In this paper, we study the vacuum energy for massive scalar fields with general bound-
ary conditions in a two-dimensional setup bounded by two homogeneous parallel wires by
using a regularization scheme similar to the one used in Refs. [16,17] for massless theories.
To compare our results with the lattice gauge theories’ results, it is necessary to work at a
finite temperature; thus, it is important to understand how the thermal fluctuations affect
the Casimir energy at low temperatures in both (2 + 1)-dimensional SU(2) gauge theories
and massive scalar field theories in order to have some analytical background reference to
compare results to.

Independent of these motivations, some interest has been raised recently on the appli-
cations of the thermal Casimir effect in nano-electronic devices [18,19] or the appearance
of negative self-entropy related to this effect [20–22], which has boosted interest in new
aspects of these thermal effects.

2. Effective Action of a Massive Scalar Field in (2 + 1) Dimensions

We consider a free scalar massive field in (2 + 1) dimensions confined between two
homogeneous infinite wires separated by a distance L. Depending on the structure of
the wires, the quantum fields have to satisfy some conditions on the boundary wires.
Moreover, finite temperature T 6= 0 effects can be described in the Euclidean formalism by
compactification of the Euclidean time direction into a circle of radius β/(2π) = 1/(2πT).
In this case, the partition function can be written as the following determinant:

Z(β) = det
(
−∂2

0 −∇2 + m2
)−1/2

, (1)

where m is the mass of the fields, ∇2 is the spatial Laplacian and ∂0 is the Euclidean time
derivative. As already mentioned, the boundary conditions are periodic in time
ψ(t + β, x) = ψ(t, x), and because of the homogeneity of the boundary wires, the
spatial boundary conditions can be given in terms of 2×2 unitary matrices
U ∈ U(2) [23]

ϕ− iδϕ̇ = U(ϕ + iδϕ̇), (2)

where δ is an arbitrary scale parameter and

ϕ =

(
ϕ(L/2)

ϕ(−L/2)

)
, ϕ̇ =

(
ϕ̇(L/2)

ϕ̇(−L/2)

)
, (3)

are the boundary values ϕ(±L/2) = ψ(t, x1,±L/2) of the fields ψ and their outward
normal derivatives ϕ̇(±L/2) = ±∂2ψ(t, x1,±L/2) on the wires. From now on, we will
assume that δ = 1 for simplicity.

In the standard parametrization of U(2) matrices

U(α, γ, n) = eiα(I cos γ + in · σ sin γ); α ∈ [0, 2π], γ ∈ [−π/2, π/2], (4)

in terms of a unit vector n ∈ S2 and Pauli matrices σ = (σ1, σ2, σ3),the space of bound-
ary conditions that preserve the non-negativity of the spectrum of the operator −∇2 is
restricted by the inequalities 0 ≤ α± γ ≤ π [8]. Moreover, since the scalar field is real, the
second component of the unit vector n has to vanish, i.e., n2 = 0.

The determinant of the second-order differential operator −∂2
0 − ∇2 + m2 in

Equation (1) is ultraviolet (UV) divergent but can be regularized by means of the zeta
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regularization method [24,25]. The effective action is defined by the logarithm of the
partition function, which can be expressed as

Seff = − log Z = −1
2

d
ds

ζ(s)|s=0, (5)

and in terms of the zeta function as

ζ(L, m, β; s) = µ2s
(
−∂2

0 −∇2 + m2
)−s

(6)

where we have introduced the scale parameter µ, which encodes the standard ambiguity of
zeta function renormalization techniques (see, e.g., [26,27] for a detailed discussion and
comparison with other renormalization methods), to make the zeta function dimensionless.
This ambiguity will be fixed by the renormalization scheme prescription. Actually, the scale
parameter µ can be seen as an explicit implementation of the renormalization group.

In our case of a massive scalar field confined between two infinite wires, the eigenval-
ues of operator −∂2

0 −∇2 are given by the sum of the square of the temporal modes 2πl/β
associated with the Matsubara frequencies, the continuous spatial modes k, and the discrete
spatial modes ki that depend on the boundary conditions imposed by the boundary wires

λ =

(
2πl

β

)2
+ k2 + k2

i + m2 l ∈ Z, i ∈ N. (7)

Thus, the zeta function in this case reads as follows:

ζ(L, m, β; s) = µ2s A
2π ∑

l,i

∫ ∞

−∞
dk

((
2πl

β

)2
+ k2 + k2

i + m2

)−s

, (8)

where A is the length of the wires. Now, we can integrate the continuous spatial modes
using the analytic extension of the zeta function

ζ(L, m, β; s) = µ2s AΓ(s− 1/2)
2
√

πΓ(s) ∑
l,i

((
2πl

β

)2
+ k2

i + m2

)−s+1/2

. (9)

It was shown in Ref. [8] that for homogeneous boundary conditions along the wires,
the discrete spatial modes are given by the zeros of the spectral function

hL
U(k) = sin(kL)

(
(k2 − 1) cos γ + (k2 + 1) cos α

)
− 2k sin α cos(kL)− 2kn1 sin γ, (10)

in the following way

ζ(L, m, β; s) = µ2s AΓ(s− 1/2)
4π3/2iΓ(s)

∞

∑
l=−∞

∮
dk

((
2πl

β

)2
+ k2 + m2

)−s+1/2
d
dk

log hL
U(k), (11)

where the integral is defined along the contour of a thin strip enclosing the positive real
axis, where all the zeros of the spectral function hU(k) are located.

All ultraviolet divergences arise in the zero temperature limit of the vacuum energy
and the removal of such divergences requires a consistent prescription method (renor-
malization scheme) with a clear physical meaning. They appear in the leading terms of
the zero-temperature expansion that has the following asymptotic behaviour in the large
L limit [8,16]:

Sl=0
eff = βE0 = C0(m)A βL + C1(m)Aβ +

Aβ

L
Cc(m, L) + . . . . (12)
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where E0 is the vacuum energy, C0(m) the divergent bulk vacuum energy density, C1(m)
the divergent energy density of the boundary wires, and Cc(m, L) is the finite coefficient of
the Casimir energy.

One renormalization prescription which allows us to eliminate all these divergences
consists of the redefinition of the renormalized effective action as follows [16,17]:

Sren
eff = −1

2
d
ds

ζren(L, m, β; s)
∣∣∣
s=0

, (13)

where

ζren(L, m, β; s) = lim
L0→∞

(ζ(L, m, β; s) + ζ(2L0 + L, m, β; s)− 2ζ(L0 + L, m, β; s)), (14)

in terms of an auxiliary length L0. Notice that the physical condition which fixes this
renormalization scheme is the complete removal of the spurious contributions to the bulk
and the boundary vacuum energies, leaving only Casimir energy terms and nonlinear
β-temperature-dependent contributions to the effective action. These are precisely the
physical requirements that fix the renormalization scheme’s prescription.

The sum over Matsubara modes can be explicitly computed in the low-temperature regime.

3. Low-Temperature Regime

In the low-temperature limit βm� 1, we cannot express the result as an infinite series
of 1/β. This means that we have to first deal with the Matsubara modes and later with the
boundary modes. We start by rewriting (9) as follows:

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s− 1/2)
βΓ(s) ∑

i

∞

∑
l=−∞

(
l2 +

(
kiβ

2π

)2
+

(
mβ

2π

)2
)−s+1/2

. (15)

Now, we use the Mellin transform

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

π

βΓ(s) ∑
i

∞

∑
l=−∞

∫ ∞

0
dt ts−3/2 e

−
(

l2+
(

ki β
2π

)2
+
(

mβ
2π

)2
)

t
(16)

and apply the Poisson formula for the sum over l modes

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s) ∑
i

∞

∑
l=−∞

∫ ∞

0
dt ts−2 e

−
((

ki β
2π

)2
+
(

mβ
2π

)2
)

t− (πl)2
t . (17)

We can compute the integral

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)


Γ(s− 1)∑

i

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1−s

+ 4 ∑
i

∞

∑
l=1

(πl)−1+s

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s

(
βl
√

k2
i + m2

)
, (18)

where we have obtained a term (l = 0) that has a linear dependence on β, and the rest of
the terms can be expressed in terms of the modified Bessel function of the second type Kν.
Let us focus on the first term, which is the zero-temperature one, by replacing the sum of
boundary modes with an integral modulated by the spectral function (10). We have

ζ l=0(L, m, β; s) = µ2s AβΓ(s− 1)
8π2iΓ(s)

∮
dk
(

k2 + m2
)1−s d

dk
log hL

U(k). (19)
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Thus, the zero-temperature term of the renormalized zeta (14) is

ζ l=0
ren (L, m, β; s) = µ2s AβΓ(s− 1)

8π2iΓ(s)
lim

L0→∞

∮
dk
(

k2 + m2
)1−s d

dk
log

hL
U(k)h

2L0+L
U (k)

(
hL0+L

U (k)
)2 . (20)

As it was explained previously, this combination cancels the UV divergences on the
integral; thus, the only divergent terms left are the ratio of two Gamma functions whose
asymptotic behaviour in the small s expansion is

Γ(s− 1)
Γ(s)

= −1− s +O(s2) (21)

which allows us to calculate the derivative

d
ds

(
−(1 + s)

(
k2 + m2

)1−s
µ2s
)∣∣∣∣

s=0
= (k2 + m2)

(
log
(

k2 + m2
)
− 2 log µ− 1

)
. (22)

Thus, we have

(
ζ l=0

ren

)′
(L, m, β; 0) =

Aβ

8π2i
lim

L0→∞

∮
dk
(

k2 + m2
)(

log
(

k2 + m2
)
− 2 log µ− 1

)

×


 d

dk
log

hL
U(k)h

2L0+L
U (k)

(
hL0+L

U (k)
)2


. (23)

Since the integrand is holomorphic, we can extend the integration contour to an infinite
semicircle limited by the imaginary axis on its left. Also, because the integration over the
semicircle is zero, we can reduce the integral to the imaginary axis

(
ζ l=0

ren

)′
(L, m, β; 0) =

Aβ

8π2i
lim

L0→∞

∫ ∞

−∞
dk
(

k2 −m2
)(

log
(

m2 − k2
)
− 2 log µ− 1

)

×


 d

dk
log

hL
U(ik)h

2L0+L
U (ik)

(
hL0+L

U (ik)
)2


. (24)

Taking into account that the integrand is parity odd, the integral would vanish if it
were not for the contribution of the branching point k = m of the logarithm log(m2 − k2),
which gives a factor 2πi for the interval (m, ∞), which is absent in the interval (−∞,−m).
Thus, the expression reduces to

(
ζ l=0

ren

)′
(L, m, β; 0) =

Aβ

4π
lim

L0→∞

∫ ∞

m
dk
(

k2 −m2
) d

dk
log

hL
U(ik)h

2L0+L
U (ik)

(
hL0+L

U (ik)
)2 . (25)

Since the integral domain begins at m, we can take the limit L0 → ∞ on the spectral
functions by noticing that

lim
L∗→∞

hL∗
U (ik) = lim

L∗→∞
ek(L∗)

(
(k2 + 1) cos γ + (k2 − 1) cos α + 2k sin α

)
. (26)

If we define the result in terms of the limit for the spectral function

h∞
U (ik) ≡

(
(k2 + 1) cos γ + (k2 − 1) cos α + 2k sin α

)
, (27)
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we obtain a simplified formula:

(
ζ l=0

ren

)′
(L, m, β; 0) = −Aβ

4π

∫ ∞

m
dk
(

k2 −m2
)(

L− d
dk

log
hL

U(ik)
h∞

U (ik)

)
. (28)

Temperature-Dependent Terms

Let us now compute the terms with l 6= 0 of the zeta function

ζ l 6=0(L, m, β; s) =
(

µβ

2π

)2s 4Aπ

βΓ(s) ∑
i,l=1

(πl)−1+s

((
kiβ

2π

)2
+

(
mβ

2π

)2
)1/2−s/2

×
(

K1−s

(
βl
√

k2
i + m2

))
. (29)

Since the Bessel special function K1 decreases exponentially as the argument grows,
both sums are finite; thus, the only divergent contribution is the Gamma function, which
after derivation gives

(
ζ l 6=0

)′
(L, m, β; 0) =

2A
π ∑

i

∞

∑
l=1

√
k2

i + m2

l
K1

(
βl
√

k2
i + m2

)
(30)

and we can we rewrite the sum of the discrete eigenvalues by means of the spectral
formula (10)

(
ζ l 6=0

)′
(L, m, β; 0) =

A
π2i

∞

∑
l=1

∮
dk

√
k2 + m2

l
K1

(
βl
√

k2 + m2
) d

dk
log
(

hL
U(k)

)
. (31)

Thus, the temperature-dependent terms of the renormalized zeta function (14) have
the following form:

(
ζ l 6=0

ren

)′
(L, m, β; 0) =

A
π2i

lim
L0→∞

∞

∑
l=1

∮
dk

√
k2 + m2

l
K1

(
βl
√

k2 + m2
) d

dk
log

hL
U(k)h

2L0+L
U (k)

(
hL0+L

U (k)
)2 .

In a similar manner as was carried out for the l = 0 term, since the integrand is also
holomorphic we can extend the contour to an infinite semi-circle limited by the imaginary
axis. Because the integral is zero on the semi-circle, we can reduce the integral to just the
imaginary axis

(
ζ l 6=0

ren

)′
(L, m, β; 0) = − A

π2i
lim

L0→∞

∞

∑
l=1

∫ ∞

−∞
dk

√
−k2 + m2

l
K1

(
βl
√
−k2 + m2

)

×


 d

dk
log

hL
U(ik)h

2L0+L
U (ik)

(
hL0+L

U (ik)
)2


. (32)

Because the integrand is odd, the contribution of (−m, m) is zero, whereas the branch-
ing point of

√
m2 − k2 introduces a change of sign on the integrand on (−∞,−m) and

also in the argument of the Bessel function. Given that K1(z̄) = K1(z), the real part of
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the integrals between (−∞,−m) and (m, ∞) is twice one of the integrals, whereas the
imaginary part cancels out. In summary, the integral can be reduced to

(
ζ l 6=0

ren

)′
(L, m, β; 0) = −2A

π2 lim
L0→∞

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))

×


 d

dk
log

hL
U(ik)h

2L0+L
U (ik)

(
hL0+L

U (ik)
)2


. (33)

We can take the limit L0 → ∞ using Equation (26) as we did for the l = 0 term, and
the integral is simplified to

(
ζ l 6=0

ren

)′
(L, m, β; 0) =

2A
π2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))(

L− d
dk

log
hL

U(ik)
h∞

U (ik)

)
.

4. Casimir Energy

The Casimir energy can be derived from the terms we have just computed in the
previous sections. We can easily compute the free energy with the effective action simply
using the expression F = Seff/β. This free energy has two different contributions [22],
the non-temperature-dependent part (l = 0) which corresponds to the Casimir energy of
the system

Fl=0
U (L, m, β) = Ec

U(L, m) =
A

8π

∫ ∞

m
dk
(

k2 −m2
)(

L− d
dk

log
hL

U(ik)
h∞

U (ik)

)
, (34)

and the temperature-dependent part

Fl 6=0
U (L, m, β) = − A

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))(

L− d
dk

log
hL

U(ik)
h∞

U (ik)

)
.

Both terms of the free energy decrease to zero as the distance between the wires L
grows to infinite, which is the expected behaviour. The temperature-dependent term also
vanishes Fl 6=0

U → 0 when the temperature does (β→ ∞).

Asymptotic Behaviour

Let us now analyse the behaviour of the Casimir energy when mL → ∞. First, we
rewrite the hyperbolic functions of the spectral function as

hL
U(ik) = ekL

(
(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α

)(
1 + n1 sin(γ)A e−kL + B e−2kL

)
,

where A and B are

A(k, α, γ) =
4k

(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α
, (35)

B(k, α, γ) =
−(k2 + 1) cos γ− (k2 − 1) sin α + 2k sin α

(k2 + 1) cos γ + (k2 − 1) sin α + 2k sin α
. (36)

We can use this expression to approximate the logarithm of the quotient of spectral
functions as

log
hL

U(ik)
h∞

U (ik)
= kL + n1 sin γA e−kL + (B − A

′

2
)e−2kL + O(e−3kL), (37)
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where A′ = (n1 sin(γ)A)2, and we expand the logarithm in powers of e−kL. Now, we
introduce this expression on the integral of the Casimir energy formula

Ec
U = − A

8π

∫ ∞

m
dk(k2 −m2)

d
dk

(
n1 sin γA e−kL + (B − A

′

2
)e−2kL + O(e−3kL)

)

=
A

4π

∫ ∞

m
dk k

(
n1 sin γA e−kL + (B − A

′

2
)e−2kL + O(e−3kL)

)
. (38)

We can expand this integral as a power series of 1/L for each exponential order by
integrating by parts as follows:

∫ ∞

m
dkg(α, γ, n1, k)e−jkL = − g(α, γ, n1, k)

jL
e−jkL

∣∣∣∣
∞

m
+
∫ ∞

m
dk

g(α, γ, n1, k)′

jL
e−jkL, (39)

and iterate this process since all derivatives of g(α, γ, n1, k) are regular in [m, ∞]. Thus, the
Casimir energy is given by

Ec
U =

∞

∑
j=1

∞

∑
ν=1

cj,ν(α, γ, n1, m)

(jL)ν
e−jmL, (40)

where the coefficients corresponding to the leading order in the exponential expansion are
of the form

c1,ν = −n1 sin γ

4π

dν(kA(α, γ, k))
dkν

∣∣∣∣
∞

m
. (41)

This means that when n1 sin γ = 0, all the terms that behave as e−mL vanish and the
leading contribution will be of the order of e−2mL. Thus, we have two different families of
boundary conditions with different asymptotic behaviours

LEc
U ∼

{
e−mL if tr(Uσ1) 6= 0,
e−2mL if tr(Uσ1) = 0,

(42)

depending on whether the matrix U that defines the boundary conditions depends or not
on σ1.

This is the most important result of this paper because it classifies the boundary
conditions into two families. The difference between the two families is the rate of the
exponential decay of the Casimir energy (42).

The physical characterization of the two families of boundary conditions with different
exponential decays is the vanishing or not of tr(Uσ1). The non-vanishing case corresponds
to boundary conditions which connect the values of the fields or its normal derivatives at
the two boundary wires, whereas the vanishing case corresponds to families of boundary
conditions which only constrains the values of the fields or its normal derivatives at each
boundary separately.

The result is obtained for a massive free-field bosonic theory. If the observed rate of
decay in gauge theories has the same behaviour, it will provide strong evidence of the
scenario that describes the dynamics of gauge theories in (2 + 1) dimensions in terms of a
bosonic massive scalar field.

5. Special Cases of Boundary Conditions

Let us analyse some particular cases where the integral of the Casimir energy can be
analytically computed and which are of special interest for their potential implementation
for gauge fields. An alternative derivation based on the explicit calculation of the spectrum
of spatial Laplacian for these cases is postponed to Appendix A.
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5.1. Dirichlet and Neumann Boundary Conditions

Dirichlet boundary conditions correspond to the physical case of fields vanishing at
both boundary wires ϕ(L/2) = ϕ(−L/2) = 0; in our parametrization (4), they are given
by UD = −I. Notice that these boundary conditions do not relate the boundary values of
the fields of one boundary with the boundary values at the other one.

The derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UD

(ik)/h∞
UD

(ik)
)
= L coth(kL). (43)

We can integrate the Casimir energy formula (34)

Ec
D(L, m) = − A

16πL2

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
, (44)

which, in the massless limit, gives

Ec
D(L, 0) = − Aζ(3)

16πL2 . (45)

But in the very large mL� 1 asymptotic limit, the Casimir energy has a fast exponen-
tial decay e−2mL, as predicted by the feature that −Tr I σ1 = 0.

The temperature-dependent terms of the free energy

Fl 6=0
D (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))

(1− coth(kL)) (46)

cannot be analytically computed, but from the asymptotic expansion of the term

1− coth(kL) ≈ −e−2kL

of the integrand, it can be shown that they have the same exponential decay, with mL as
the Casimir energy (44).

Neumann boundary conditions correspond to the case where the normal derivative of
the fields vanish at the boundary wires ϕ̇(L/2) = ϕ̇(−L/2) = 0. They are parameterized
by the unitary matrix UN = I. The derivative of the logarithm of the quotient of spectral
functions is the same as for Dirichlet boundary conditions (43), which tell us that the free
energy has the same value, Ec

N = Ec
D and Fl 6=0

UD
= Fl 6=0

UD
.

5.2. Periodic Boundary Conditions

The periodicity of the fields and the anti-periodicity of their normal derivatives at the
boundaries ϕ(L/2) = ϕ(−L/2),ϕ̇(L/2) = −ϕ̇(−L/2) correspond to periodic boundary
conditions associated with the unitary matrix UP = σ1. Notice that, by definition, periodic
boundary conditions relate the boundary values of the fields at one boundary to the values
of the fields at the other one.

In this case, the derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UP

(ik)/h∞
UP

(ik)
)
= L coth(kL/2). (47)

Thus, the Casimir energy is

Ec
P(L, m) = − A

2πL2

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(48)
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and the massless limit becomes

Ec
P(L, 0) = −Aζ(3)

2πL2 . (49)

Notice that, in this case, the exponential decay of the Casimir energy e−mL in the
asymptotic limit mL→ ∞ is slower than that observed in Dirichlet or Neumann boundary
conditions, which corresponds to the feature that Tr σ1 σ1 = 2 6= 0. The rest of terms of the
free energy

Fl 6=0
P (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))

(1− coth(kL/2)).

(50)

share the same behaviour.

5.3. Anti-Periodic Boundary Conditions

Anti-periodic boundary conditions correspond to the values and normal derivatives
of the field at the boundary wires satisfying ϕ(L/2) = −ϕ(−L/2), ϕ̇(L/2) = ϕ̇(−L/2),
and the associated unitary matrix is UA = −σ1. Again in this case, the boundary conditions
relate the boundary values of the fields at one boundary with the boundary values at the
other one. In this case, the derivative of the logarithm of the quotient of spectral functions is

d
dk

log
(

hL
UA

(ik)/h∞
UA

(ik)
)
= L tanh(kL/2). (51)

Thus, the Casimir energy is

Ec
UA

(L, m) = − A
2πL2

(
mL Li2

(
−e−mL

)
+ Li3

(
−e−mL

))
(52)

which, in the massless limit, agrees with the well-known results

Ec
A(L, 0) =

3Aζ(3)
8πL2 . (53)

Notice that in this case the exponential decay of the Casimir energy e−mL is similar
to the case of periodic boundary conditions, corresponding to the feature that −Tr σ1 σ1 =
−2 6= 0. The rest of the terms of the free energy

Fl 6=0
UA

(L, m, β) = − AL
βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))

(1− tanh(kL/2)) (54)

have the same exponential decay because 1− tanh(kL/2) ≈ e−kL.

5.4. Zaremba Boundary Conditions

Zaremba boundary conditions correspond to the case where one wire has Dirich-
let boundary conditions whereas the other has Neumann boundary conditions. In our
parametrization, UZ = ±σ3, and the derivative of the spectral function is

d
dk

log
(

hL
UZ

(ik)/h∞
UZ

(ik)
)
= L tanh(kL). (55)

The Casimir energy is

Ec
UZ

(L, m) = − A
16πL2

(
2mL Li2

(
−e−2mL

)
+ Li3

(
−e−2mL

))
, (56)
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which, in the massless limit, reduces to

Ec
Z(L, 0) =

3Aζ(3)
64πL2 . (57)

The temperature-dependent part of the free energy is

Fl 6=0
Z (L, m, β) = − AL

βπ2

∞

∑
l=1

∫ ∞

m
dk

√
k2 −m2

l
<
(

K1

(
iβl
√

k2 −m2
))

(1− tanh(kL)). (58)

In both cases, the exponential suppression e−2mL coincides with that of Dirichlet or
Neumann boundary conditions, and again in this case, the boundary conditions do not
relate the boundary values of the fields at one boundary with the values at the other one.

5.5. Asymptotic Behaviour

The asymptotic behaviour of the Casimir energy for these boundary conditions follow
the rule (42) in which Dirichlet, Neumann (44), and Zaremba (56) conditions decay as
follows:

LEc
U ∼ e−2mL (59)

since for these cases tr(Uσ1) = 0, whereas the periodic (48) and anti-periodic (52)
behave as follows:

LEc
U ∼ e−mL (60)

because these boundary conditions satisfy the inequality tr(Uσ1) 6= 0. We can also appreci-
ate the difference in the factor of the exponential decaying behaviour plotting the Casimir
energy for these boundary conditions (Figure 1).

Figure 1. Dependence of the Casimir energy in logarithmic scale as a function of the effective distance
mL between the two boundary wires for different boundary conditions.

By plotting the temperature-dependent part of the free energy Fl 6=0
U (see Figure 2), it

can also be seen how these terms exponentially decay to zero as mL grows.
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Figure 2. Free energy behaviour of the temperature-dependent part in logarithmic scale as a function
of the effective distance mL between the two boundary wires for different boundary conditions, with
mβ = 1.

The physical difference between the two families gives rise to different asymptotic
behaviours: the families with faster decays (Dirichlet, Neumann, Zaremba) are conditions
imposed on each boundary wire separately, whereas in the second family (periodic, anti-
periodic, pseudo-periodic) with slower decay rates, the boundary conditions involve a
relationship between the values of the fields in both wires, establishing a interconnection
between them.

6. Conclusions

We have shown the existence of two types of boundary conditions which give rise to
different regimes of exponential decay of the Casimir energy at large distances for scalar
field theories. The two types are distinguished by the feature that the boundary conditions
involve or not interconnections between the behaviour of the fields at the two boundaries.

The fast exponential decays of the Casimir energy associated with all massive fields
make Casimir energy negligible when compared with the contribution of massless fields
coming from electrodynamics. This means that there is no hope of measuring its effects
experimentally. However, from a conceptual point of view, it can become of crucial impor-
tance to understand the confining infrared behaviour of non-Abelian gauge theories if this
regime can be effectively driven by a massive scalar field.

Indeed, analytic arguments [11,12] and non-perturbative numerical simulations [14]
show that there is a similar exponential decay in gauge theories with Dirichlet boundary
conditions. The verification that such a behaviour is modified for other types of boundary
conditions would provide further evidence to the claim that the low-energy behaviours of
non-Abelian SU(2) gauge theories are governed by an effective scalar field with a fixed non-
vanishing mass. A remarkable feature is that the mass of this scalar field is considerably
smaller than the lowest mass of the glueball spectrum [11,12].

In particular, the confirmation of the existence of the two regimes for different bound-
ary conditions will be crucial for the verification of this conjecture. Numerical simulations
are in progress to clarify this issue.
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Appendix A. Alternative Calculation of the Free Energy

As an additional check of previous calculations derived by using the spectral function
of the spatial Laplacian, let us calculate the free energy directly in some cases where the
spectrum of the spatial Laplacian is explicitly known.

Appendix A.1. Dirichlet Boundary Conditions

In this case, the discrete eigenvalues of the spatial Laplacian are given by k j = π j/L
with j = 1, . . . , ∞.

Let us consider the low-temperature limit of the effective action. The corresponding
zeta function (9) is

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s− 1/2)
βΓ(s)

∞

∑
j=1

∞

∑
l=−∞

(
l2 +

(
jβ
2L

)2
+

(
mβ

2π

)2
)−s+1/2

, (A1)

with which, using the Mellin transform (16) and the Poisson formula (17) on the Matsubara
modes, we arrive at

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

∞

∑
j=1

∞

∑
l=−∞

∫ ∞

0
dt ts−2 e

−
((

jβ
2L

)2
+
(

mβ
2π

)2
)

t− (πl)2
t . (A2)

After integration, the expression (A2) reduces to

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)


Γ(s− 1)

∞

∑
j=1

((
jβ
2L

)2
+

(
mβ

2π

)2
)1−s

+ 4
∞

∑
j,l=1

(πl)s−1

((
jβ
2L

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s


βl

√(
π j
L

)2
+ m2




. (A3)

To obtain the contribution of the second term to the effective action, we just have to
derive the gamma function Γ(s) on the denominator. We obtain

(
ζ l 6=0

)′
(L, m, β; 0) =

2A
L

∞

∑
j,l=1

1
l

√
j2 +

(
mL
π

)2
K1


πβl

L

√
j2 +

(
mL
π

)2

 (A4)

Now, we rewrite the first term of (A3) as

ζ l=0(L, m, β; s) =
(

µL
π

)2s AπβΓ(s− 1)
4L2Γ(s)

∞

∑
j=1

(
j2 +

(
mL
π

)2
)1−s

, (A5)
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and by applying the Mellin transform (16) and the Poisson formula (17), which in this
case reads

∞

∑
n=1

e−2παn2
=

1√
2α

∞

∑
n=1

e−
πn2
2α +

1
2

(
1√
2α
− 1
)

, (A6)

for the sum in the modes j, we have

ζ l=0(L, m, β; s) =
(

µL
π

)2s Aπ
√

πβ

4L2Γ(s)

(
∞

∑
j=1

∫ ∞

0
dt ts− 5

2 e−(
mL
π )

2
t− (π j)2

t

+
1
2

∫ ∞

0
dt ts− 5

2 e−(
mL
π )

2
t

(
1−
√

t√
π

))
. (A7)

After integrating out the t variable, we obtain

ζ l=0(L, m, β; s) =
(

µL
π

)2s Aπ
√

πβ

8L2Γ(s)

(
Γ
(

s− 3
2

)(
mL
π

)3−2s
− Γ(s− 1)√

π

(
mL
π

)2−2s

+4
∞

∑
j=1

(π j)s−3/2
(

mL
π

)3/2−s
K3/2−s(2jmL)

)
. (A8)

Upon derivation, the only non-vanishing contribution of this term comes from the
derivative of Γ(s) in the first and third terms, whereas we have to use the asymptotic
expansion (21) for the second. The result is

(
ζ l=0

)′
(L, m, β; 0) =

ALβm3

6π
+

Am2β

4π

(
log(µ/m) +

1
2

)

+
Aβ

8L2π

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
. (A9)

From the renormalized effective action (13), we can compute the Casimir energy

Ec
D(L, m) = − A

16L2π

(
2mL Li2

(
e−2mL

)
+ Li3

(
e−2mL

))
(A10)

which is the same as what we obtained in Equation (44) with the spectral function. The
temperature-dependent component of the free energy

Fl 6=0
D (L, m, β) =− A

βL

∞

∑
j,l=1

1
l

√
j2 +

(
mL
π

)2
K1


πβl

L

√
j2 +

(
mL
π

)2

 (A11)

− 1
2β

lim
L0→∞

((
ζ l 6=0

)′
(2L0 + L, m, β; 0)− 2

(
ζ l 6=0

)′
(L0 + L, m, β; 0)

)
. (A12)

can be shown to be equivalent to Equation (46).

Appendix A.2. Periodic Boundary Conditions

The discrete eigenvalues of the spatial Laplacian in this case are k j = 2π j/L with j ∈ Z.
We can derive the effective action directly from the spectrum by rewriting (8)

ζ(L, m, β; s) =
(

µβ

2π

)2s A
√

πΓ(s− 1/2)
Γ(s)

∞

∑
l,j=−∞

(
l2 +

(
jβ
L

)2
+

(
mβ

2π

))−s+1/2

, (A13)
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and by using the Mellin transform and the Poisson formula on the Matsubara modes,
we have

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

Γ(s)

∞

∑
l,j=−∞

∫ ∞

0
dt ts−2e

−
((

jβ
L

)2
+
(

mβ
2π

))
t− (πl)2

t , (A14)

which, after integration, becomes

ζ(L, m, β; s) =
(

µβ

2π

)2s Aπ

βΓ(s)

∞

∑
j=−∞


Γ(s− 1)

((
jβ
L

)2
+

(
mβ

2π

)2
)1−s

(A15)

+ 4
∞

∑
l=−∞

(πl)s−1

((
jβ
L

)2
+

(
mβ

2π

)2
)1/2−s/2

K1−s


βl

√(
2π j

L

)2
+ m2




.

The derivative of the second term gives

(
ζ l 6=0

)′
(L, m, β; 0) =

4A
L

∞

∑
j=−∞

∞

∑
l=1

1
l

√
j2 +

(
mL
2π

)2
K1


2πβl

L

√
j2 +

(
mL
2π

)2

. (A16)

We rewrite Equation (A15) as

ζ l=0(L, m, β; s) =
(

µL
2π

)2s AβΓ(s− 1)π
L2Γ(s)

∞

∑
j=−∞

(
j +
(

mL
2π

)2
)1−s

(A17)

and follow the same strategy as for Dirichlet boundary conditions from Equation (A5) to
Equation (A9) with these particular spatial modes. We thus arrive at

(
ζ l=0

)′
(L, m, β; 0) =

ALβm3

6π
+

Aβ

L2π

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(A18)

and the Casimir energy is

Ec
P(L, m) = − A

2πL2

(
mL Li2

(
e−mL

)
+ Li3

(
e−mL

))
(A19)

which coincides with result obtained by the general spectral function method (48). Mean-
while, the temperature-dependent component of the free energy is

Fl 6=0
P (L, m, β) =− 2A

βL

∞

∑
j=−∞

∞

∑
l=1

1
l

√
j2 +

(
mL
2π

)2
K1


2πβl

L

√
j2 +

(
mL
2π

)2



− 1
2β

lim
L0→∞

((
ζ l 6=0

)′
(2L0 + L, m, β; 0)− 2

(
ζ l 6=0

)′
(L0 + L, m, β; 0)

)

(A20)

which also agrees with Equation (50).
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Abstract: We investigate the quantum forces occurring between the defects and/or boundaries of a
conformal field theory (CFT). We propose to model imperfect defects and boundaries as localized
relevant double-trace operators that deform the CFT. Our focus is on pointlike and codimension-one
planar defects. In the case of two parallel membranes, we point out that the CFT 2-point function
tends to get confined and develops a tower of resonances with a constant decay rate when the
operator dimension approaches the free field dimension. Using a functional formalism, we compute
the quantum forces induced by the CFT between a variety of configurations of pointlike defects,
infinite plates and membranes. Consistency arguments imply that these quantum forces are attractive
at any distance. Forces of the Casimir–Polder type appear in the UV (ultraviolet), while forces of
the Casimir type appear in the IR (infrared), in which case the CFT gets repelled from the defects.
Most of the forces behave as a non-integer power of the separation, controlled by the dimension of
the double-trace deformation. In the Casimir regime of the membrane–membrane configuration, the
quantum pressure behaves universally as 1/`d; however, information about the double-trace nature
of the defects still remains encoded in the strength of the pressure.

Keywords: Casimir force; Casimir–Polder forces; conformal field theory

1. Introduction

Quantum field theory (QFT) predicts that macroscopic bodies can experience forces
of a purely quantum nature [1,2]. Such quantum forces are usually computed within the
framework of weakly coupled QFT; see, e.g., Refs. [3–8] for modern reviews. In this paper,
we propose to explore the quantum forces that arise in a particular class of QFTs for which
calculations are possible, even with strong coupling: conformal field theories (CFTs).

Conformal field theories are ubiquitous in the real world. Many thermodynamic and
quantum critical points exhibit conformal invariance. For example, the liquid–vapor critical
points, the superfluid transition in liquid helium, and Heisenberg magnets are all described
by the same family of scalar 3D (3-dimensional) CFTs; see, e.g., Refs. [9,10] . CFTs are also
ubiquitous in the space of quantum field theories: most renormalisation group (RG) flows
end on a CFT, either in the infrared (IR) or the ultraviolet (UV). Reversing the logic, one can
also think of generic weakly coupled QFTs as CFTs deformed by operators that are either
relevant or irrelevant.

The CFTs that appear in the real world are not ideal. Critical systems obtained in the
laboratory certainly have boundaries. Moreover, real-world CFTs can contain impurities
of various codimensions. A subfield of CFT studies focuses on extracting data from
CFTs with boundaries and defects using inputs from symmetry, unitarity and causality;
see, e.g., Refs. [11–15] for some seminal papers, Refs. [16–27] for recent progresses, and
Refs. [28,29] for recent reviews. The present study does not pursue this approach. Our
focus is rather a set of observable phenomena that we compute via QFT methods adapted
to the CFT context.
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Boundaries and defects in the real world are not ideal either. Physical defects cannot,
in general, be thought as ideal truncations of the spatial support of a field theory with
fluctuations of any wavelength. A more realistic description of defects should feature some
notion of smoothness. The modeling of such imperfect defects and boundaries is somewhat
familiar from weakly coupled QFT. There, a defect is sometimes modeled by a bilinear
operator, whose spatial support represents the defect [30–32]. Within such a model, the
defect ideally repels the field only asymptotically in the IR. More generally, for arbitrary
wavelengths, the quantum field propagates to some extent inside the defect [33,34]. One of
the points of this paper is to model imperfect defects in CFTs in an analogous manner. This
is performed in Section 3.

The second aim of this paper is the computation of observable quantities: the quantum
forces induced by the CFT between pairs of defects and/or boundaries. We assume that
spacetime dimension is equal to or larger than three; see, e.g., Refs. [35–39] for Casimir-type
computations in 2d CFT. We mainly focus on quantum fluctuations in spacetime; however,
our approach can analogously apply to thermal fluctuations in Euclidean space since
quantum and statistical field theories are related via Wick rotation. In the thermodynamic
context, the fluctuating field describes an order parameter of a continuous phase transition.
One commonly uses the term critical Casimir forces [10] to refer to forces appearing near
criticality, where the system becomes a CFT. The quantities computed in the thermal case
are, however, slightly different from the ones in QFT. In QFT, one computes a force or
potential between non-relativistic bodies, while in the thermal case, one typically computes
the free energy at criticality.

Our results on quantum forces are presented in Section 5, where we also discuss
monotonicity and the connection to critical Casimir forces. In the process, we analyze the
properties of 2-point correlators confined between membranes in Section 4. Section 2 con-
tains the necessary introductory material, and Section 6 contains a summary of our results.

2. Basics
2.1. CFT Rudiments

A conformal field theory is a field theory that is invariant under the conformal group
SO(d, 2)—or SO(d + 1, 1) in Euclidean space. The symmetries of the conformal group are
so strong that they fully constrain both the 2-point and 3-point correlation functions of any
operator. Still due to symmetries, operators and states are in one-to-one correspondence,
and the operator product expansion (OPE) has a finite radius of convergence. The OPE,
combined with crossing symmetry, provides nontrivial constraints on 4-point correlators,
which is the theme of the “Conformal Bootstrap” program; see [40–45] for modernreviews
on CFTs. In this paper, we only need the most basic features of CFTs, and no prior CFT
knowledge is needed.

The symmetries of the conformal group impose that so-called primary operators Oi
have 2-point positon correlators of the form

〈Oi(x1)Oj(x2)〉 =
aiδij

x2∆i
12 ,

(1)

with x2
12 = (x1 − x2)

µ(x1 − x2)µ. ∆i is the scaling dimension of Oi under the dilata-
tion operator, δij is the Kronecker delta, the brackets 〈· · · 〉 denote the quantum averaging,
the Latin latter indexes labelling the primary operators, and the Greek letter indexes taking
0 (temporal), 1, . . . , d− 1 (space) values.

The overall constant ai is not fixed by symmetries. In this paper, we adopt the nor-
malization ai ≡ 1. CFT unitarity implies that an operator is a free field if and only if
∆ = (d− 2)/2, where d denotes the dimension of space-time. For a canonically normalized
4D free field, we have ai → 1/(4π2). We convert to this normalization when comparing
with the 4D free field results throughout this paper.
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The formal CFT operators Oi can be understood as traces of combinations of matrices,
such as the irreducible representations of an internal SU(N) group. This is why operators
of the form [O(x)]n are commonly called n-uple trace operators. In this paper, a central
role is played by the double-trace operators [O(x)]2. An operator is said to be relevant,
marginal and irrelevant if ∆ < d, ∆ = d, and ∆ > d, respectively.

We further assume that the CFT has a large enough number of degrees of freedom,
i.e., large N such that ’t Hooft’s large-N expansion applies. This assumption renders many
calculations possible; here, we only need to work at the leading order of the large N
expansion. (Moreover, we only focus on 2-point correlators. At large enough N, the 2-point
correlators that we compute amount to those of a scalar generalized free field (GFF), i.e.,
a free scalar with dimension ∆ > (d− 2)/2 [46]. An actual GFF would appear by taking
N → ∞, in which case all the higher-point correlators of a GFF are trivially expressed as a
function of the 2-point GFF correlator via Wick’s theorem; see, e.g., Ref. [47]. In this paper,
we do not need to take infinite N, which is known to be an ill-defined limit in CFT and
beyond; see, e.g., Refs. [48,49]. We assume large enough but finite N, and all our results are
given up to O(1/N2) corrections.) In this regime, the scaling dimension of the double-trace
operator is only ∆O2 = 2∆ + O(1/N2).

CFTs in the real world live in finite volumes with boundaries. Furthermore, they
may contain impurities. This has triggered a formal program of studies constraining CFTs
with boundaries and defects—the boundary conformal bootstrap; see [46–49] for general
references. In this paper, we do not use bootstrap techniques. It might be fruitful to apply
bootstrap techniques to the class of defects and boundaries that we introduce further below;
this is left for future work.

2.1.1. Momentum Space

We compute the CFT 2-point function of a scalar primary O in momentum space

(pM). The Fourier transform convention is O(x) =
∫ dd p

(2π)dO(p)e−ip·x . We introduce the
reduced correlator

〈O(p1)O(p2)〉 = (2π)dδ(d)(p1 + p2)⟪O(p1)O(p2)⟫ , (2)

where δ(d)(·) is the d-dimensional Dirac delta function and the brackets ⟪· · ·⟫ denotes the
reduced correlator where the momentum conservation has been used.

One has 〈O(x1)O(x2)〉 =
∫ dd p

(2π)d e−ip·x12⟪O(p)O(−p)⟫ and obtain

⟪O(p)O(−p)⟫ = −i
πd/2Γ(d/2− ∆)

Γ(∆)

(
4
−p2

)d/2−∆
, (3)

where Γ represents the gamma function.
A convenient way to compute the Fourier transform is via the Schwinger parametriza-

tion; see Appendix A.

2.1.2. Momentum–Position Space

Since we are interested in codimension-one defects, it is also useful to single out
one of the spatial dimensions corresponding to the orthogonal direction to the defects,
xM = (yµ, z). We compute the CFT correlator in mixed position–momentum space (pµ, z).
For this, we introduce the reduced mixed-space correlator

〈O(p1, z1)O(p2, z2)〉 = (2π)d−1δ(d−1)(p1 + p2)⟪O(p1, z1)O(p2, z2)⟫ . (4)
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We have 〈O(x1)O(x2)〉 =
∫ dd−1 p

(2π)d ⟪O(p, z1)O(−p, z2)⟫e−ip·y12 and obtain

⟪O(p, z1)O(−p, z2)⟫ = −i
2π

d−1
2

Γ(∆)

(
4z2

12
−p2

) d−1−2∆
4

K d−1
2 −∆

(√
−p2z2

12

)
, (5)

that, again, as in Section 2.1.2, can be obtained using the Schwinger parametrization; see
Appendix A. Kα is the modified Bessel function of the second kind of order α. A useful
integral representation is

Kα(z) =
1
2

(
2
z

)α ∫ ∞

0

dt
t

tαe−t− z2
4t . (6)

We further introduce

⟪O(p, z1)O(−p, z2)⟫ ≡ iG(p; z1, z2) . (7)

With this definition, G(p; z1, z2) is real for spacelike momenta (p2 < 0) or if one
Wick-rotates p to Euclidean space.

2.2. Casimir Forces in the Functional Formalism

In this paper, our interest lies in computing Casimir and Casimir-type forces between
the defects and/or boundaries of a CFT. To this end, we use a variational approach intro-
duced long ago in, for example, Ref. [50], and recently exploited/developed in Ref. [34]. In
Ref. [51] a similar approach was used; see also [52] for related developments.

In this formalism, one considers the generating functional of the correlators of the
system (i.e., the free energy in Euclidean space) in the presence of a static source J(x),

E[J] = iT log Z[J] , Z[J] =
∫
DΦeiS[Φ,J], (8)

where Φ refers collectively to the set of quantum fields.
The quantity E[J] can be referred to as the vacuum energy evaluated in the presence

of the source J. In the present study, the source is ultimately identified with the defects
and/or boundaries of the system.

A variation of the source produces a variation in the vacuum energy. This variation in
energy is identified as a quantum version of the notion of the work. We write this quantum
work as

Wλ = −∂λE[Jλ] , (9)

where λ is a deformation parameter, and ∂λ ≡ ∂/∂λ. In cases where the deformation of
the source is simple enough, the quantum work can be factored out as displacement times
force. The force that emerges from Wλ encodes all the effects of the quantum fluctuations.
This is how we compute quantum forces in this note.

The functional formalism sketched above applies, by definition, to any field theory
(either weakly or strongly coupled), and admits any kind of deformation. While the
principle of the approach is conceptually straightforward, the precise formulation is slightly
technical due to the finding that one needs to parametrize a generic deformation of the
source. Assuming for simplicity that the density is constant in λ and x, i.e., that the source
is incompressible and homogeneous, the source is written as Jλ(x) ≡ n1J(x) ≡ n Θ[lλ(x)]
with the support function lλ(x) > 0 on the support of J, lλ(x) = 0 at its boundary and
is negative otherwise. (The general case including compressible, heterogenous sources is
presented in Ref. [34].) The deformation of Jλ is described by a vector field L referred to as
the deformation flow such that

lλ+dλ(x) = lλ(x− L(x)dλ) . (10)
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Introducing ∂λ, one obtains the definition of the quantum work as a variation in λ,
written in Equation (9).

If the fields couple bilinearly to the source,

S[Φ, J] =
∫

dxd
(
L[Φ(x)]− ξ

2
Φ2(x)J(x)

)
, (11)

then the quantum work is found to be [34]

Wλ = − ξ

2

∫
dd−1x〈Φ(x)Φ(x)〉J∂λ Jλ(x) . (12)

Here, 〈Φ(x)Φ(x)〉J is the 2-point correlator of Φ evaluated in the presence of the J
source and taken at the coincident point. Equation (12) is the general formula we use in
this paper. When the deformation is simple enough, the quantum work can be written as
Wλ = L · F, where F is identified as the quantum force.

A crucial feature highlighted by the quantum work formalism is that the matter in
the source must be conserved [34]. Otherwise, nonphysical divergences would appear in
the quantum work, while it must be finite by definition. At constant density, i.e., for an
incompressible homogeneous source, the statement of matter conservation becomes that
the deformation flow must be divergence-less, ∂ · L(x) = 0, where ∂ denote the ... . This
is a firm condition that constrains the admissible deformations of J. An example of the
arbitrary deformation of an arbitrary source is shown in Figure 1.

Figure 1. Deformation of a source. The arrows represent the divergence-less deformation flow.

3. Double-Trace Deformations as Defects and Boundaries
3.1. Modeling Imperfect Defects and Boundaries

In weakly coupled QFTs, it is common to model an imperfect boundary using a
mass term localized in space, J(x) = m21J(x)where 1J is the function whose value is
unity on the support of J. This mass term dresses the φ propagator, forming a Born
series Gφ(x1, x2)− i

∫
ddxGφ(x1, x)J(x)Gφ(x, x2) + . . . (the Born series can be derived by

integrating out the φ field in the partition function of the theory). In the m2 → ∞ limit, the
φ field is repelled from the support of J, and thus acquires a Dirichlet boundary condition
on ∂J. This can be shown at the level of the equation of motion [34], or by inspecting the
dressing of the propagator as shown further below.

The mass term is, in any d, a relevant operator. Accordingly, the m2 → ∞ limit can be
understood as the limit of low momentum, i.e., the infrared regime of the RG flow. With
this viewpoint, one deduces that the field is repelled from J at a long distance while it
propagates to some extent inside J at a short distance. This provides a straightforward
picture of an imperfect defect/boundary in weakly coupled QFT. We now define a model
that reproduces such a behavior in CFT.

The natural CFT analogue of a mass term is the CFT double-trace deformation. A
double-trace deformation can be just thought as a term added to the CFT action,
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SCFT
deformed = SCFT − ξ

2

∫
dxdO2(x)J(x) , (13)

where ξ is coupling constant.
The deformation breaks the conformal symmetry unless ∆O2 = d exactly. Still, in the

large-N limit, we can compute the correlator of the deformed 2-point CFT by dressing the
correlator in the absence of defect.

Following the features of weakly coupled QFT, we require that the O2 be relevant. At
the leading order in the large-N limit, this implies that the dimension of O must satisfy

d− 2
2
≤ ∆ <

d
2

. (14)

In this Section, we further motivate this bound.
Let us first review the effect of a double-trace operator occupying the whole space. In

that case, J = 1. The CFT 2-point correlator is strightforwardly expressed in momentum
space (at the leading order in the large-N limit, the leading effect in the dressing comes
from insertions of the −iξ vertex; the contributions built from higher-point correlators are
automatically N-suppressed and thus negligible):

〈OO〉J =
1

〈OO〉−1 + iξ
. (15)

Like in the weakly coupled case, this can be derived from the partition function, which
produces a Born series representing the 2-point CFT correlator dressed by insertions of −i J.
If the O operator satisfies Equation (14), the dressed correlator takes the form

〈OO〉J = −
i
ξ
+

1
ξ2 〈OO〉

−1 + O(ξ−3), (16)

in the IR. The first term is a mere contact term. The second term features the inverse 2-point
correlator, that turns out to be proportional to the 2-point correlator of an operator Õ with
dimension ∆̃ = d− ∆ with d/2 < ∆̃ < d/2 + 1. One says that the deformations induce a
RG flow from a UV CFT with an operator of dimension ∆ to an IR CFT with an operator of
dimension d− ∆. See [53] and the references therein, and the seminal papers [54,55].

Let us now model imperfect defects and boundaries in CFT via a localized relevant
double-trace deformation. Like in the weakly coupled case, the 2-point correlator can be
expressed as a Born series. To express it rigorously in position space, we introduce the
convolution product ? as f ? g(x1, x2) =

∫
ddx f (x1, x)g(x, x2) and introduce the inverse

A ? A−1(x) = δd(x) . (17)

We also introduce Σ(x, x′) = −i J(x)δd(x− x′). Using this notation, we can write the
propagator entirely using convolutions. The exact resummed Born series is expressed as

〈O(x1)O(x2)〉J = ∑∞
r=0〈OO〉[? ξΣ ? 〈OO〉]r(x12) (18)

=
[
〈OO〉−1 − ξΣ

]−1
(x12) . (19)

If O2 is relevant, then in the infrared, the ξ term must dominate at any point of the J
support. We thus obtain that, for any x1 or x2 in J,

〈O(x1)O(x2)〉J =
1
ξ

δd(x12) +
1
ξ2 〈O(x1)O(x2)〉−1 + O(ξ−3) . (20)

One can see that the deformed CFT 2-point correlator tends not to propagate in-
side J in the infrared regime. Asymptotically in the IR, when ξ → ∞, we obtain that
〈O(x1)O(x2)〉J → 0 anywhere on J and its boundary. Therefore, the 2-point correlator
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satisfies a Dirichlet condition on the boundary of J in the IR. Such a behavior appropriately
models an imperfect defect/boundary for a CFT.

3.2. The Double-Trace Membrane

A simple extended double-trace defect is the one whose support is a codimension-one
plane. We refer to it as a membrane. The support of the membrane is defined (from now
on, we include the coupling constants ξ in J) as follows:

J(x) = ξδ(z− z0) . (21)

To compute the dressed propagator, one uses the position–momentum space 2-point
correlator Equation (5). Dressing the propagator with a membrane necessarily involves
evaluating ⟪O(p, z1)O(−p, z2)⟫ at z12 = 0. Let us investigate its behavior for relatively
small z12 at fixed p. In this limit, the Bessel function has quite a small argument expansion.
We find

⟪O(p, z1)O(−p, z2)⟫d =

(
⟪O(p)O(−p)⟫d−1 +

c
z2∆−d+1

12

)[
1 + O

(
(pz12)

2
)]

, (22)

with

c = −i
Γ(∆ + 1−d

2 )

Γ(∆)
. (23)

The two terms shown in Equation (22) are the leading non-analytical and analytical
ones. These two terms correspond respectively to the regions of relatively small and large pz
momenta covered by the corresponding Fourier integral. The ⟪O(p)O(−p)⟫d−1 correlator,
which is independent of z12, corresponds exactly to the 2-point correlator of an operator of
dimension ∆ in d− 1 dimensions. One could equivalently obtain it by averaging over z12
in the original position space correlator.

The c/z2∆−d+1
12 term corresponds to a relatively large pz momentum. One could

equivalently obtain it by averaging the transverse coordinates in the original position
space correlator. One can see that this term diverges when z12 → 0 if ∆ > (d− 1)/2. This
divergence might need to be treated via renormalization of the defect. This would deserve
a separate treatment that is beyond the scope of this note. Therefore, in the presence of a
membrane, we restrict ∆ as

d− 2
2
≤ ∆ <

d− 1
2

. (24)

We denote the 2-point function in the presence of the defect J as

⟪O(p, z1)O(−p, z2)⟫J ≡ iGJ(p; z1, z2) . (25)

In the case of the membrane (21), we obtain

GJ(p; z1, z2) = G(p; z1, z2) + G(p; z1, z0)
ξ

1− ξG0(p)
G(p; z0, z2) . (26)

where G0(p) = G(p; z0, z0) = ⟪O(p)O(−p)⟫d−1 corresponds to the 2-point function in
(d− 1) space defined in Equation (22). Explicitly,

G0(p) = −π
d−1

2 Γ( d−1
2 − ∆)

Γ(∆)

(
4
−p2

) d−1
2 −∆

. (27)

If the double-trace operator is relevant, G0(p) grows when p decreases. In the limit for
which ξG0(p)� 1, we have, therefore,

GJ(p; z1, z2) −−−−→
small p

G(p; z1, z2)− G(p; z1, z0)G−1
0 (p)G(p; z0, z2), (28)
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which satisfies the Dirichlet boundary condition on the membrane.
The membrane defect can serve as an approximation for a plate-shaped defect of finite

width. The approximation appears in the IR regime when the plate width is smaller than
all other distance scales of the problem such that, by dimensional analysis, the correlator
must see the plate approximately as a membrane.

3.3. AdS/CFT Motivation

Another motivation for implementing relevant double-trace deformations as defects
and boundaries comes from the AdS/CFT correspondence; see [47,56–58] for some anti-de
Sitter AdS/CFT reviews.

Let us consider the (d + 1)-dimensional Poincaré patch with a boundary at y = y0,
ds2 = L2(dxµdxµ + dy2)/y2, y ≥ y0. Consider a scalar field in the bulk of AdS with mass
m2

Φ = ∆(∆− d)L2. For any ∆ > (d− 2)/2, the brane-to-brane propagator of Φ behaves as
the one of a d-dimensional free field φ mixing with the 2-point function of a CFT operator
of dimension ∆ via an operator φO. The same is true for higher-point correlators. This is
sometimes referred to as the ∆+ branch of the correspondence.

When ∆ < d/2, a second possibility appears: the brane-to-brane correlators can be
directly identified as the CFT correlators of an operator with dimension d− ∆; see [59,60]
and, for example, Refs. [53,61,62] for more recent studies. We refer to this identification
as the ∆− branch of the correspondence. Here, we write the general statement of the ∆−
branch as ∫

DϕCFTeiSCFT+iS0[O,J] ≡
∫
DΦ0eiS0[Φ0,J]

∫

Φ0

DΦeiSAdS[Φ], (29)

where Φ0 denotes the value of the fields on the boundary, here Φ0 = Φ|z=z0 . (The S0
action can contain a linear source term S0[X, J̄] =

∫
ddxXJ̄, that can be used to define the

correlators on both sides upon functional derivative in J̄.)
In our model of defect CFT, the general double-trace deformation (13) corresponds to

setting the S0 action to

S0[X, J] ≡ − ξ

2

∫
ddxX2 J . (30)

Using Equation (29), one sees that this corresponds to a boundary-localized mass term
for Φ on the AdS side. Therefore, the double-trace deformation on the CFT side is encoded
as a deformation of the boundary condition of Φ on the AdS side. The double-trace defect
of the CFT is realized as a boundary mass term with a support that is localized along the
boundary volume. In brief, the defect is on the boundary (Figure 2).

Figure 2. The double-trace defect of the CFT. See text for details.
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The domain for which the ∆− correspondence applies is precisely the range given in
Equation (14). Thus, our model of defect CFT can always be realized holographically from
the AdS viewpoint: the double-trace deformation defined via AdS is automatically relevant.

At the level of the vacuum energies, we have the identification

ECFT[J] = EAdS[J] (31)

with

EAdS[J] = iT log ZAdS[J] , ZAdS[J] =
∫
DΦ0ei

∫
∂ ddx ξ

2 J(x)Φ2
0

∫

Φ0

DΦeiSAdS[Φ] . (32)

When the correspondence (31) holds, applying the functional formalism of Section 2.2
to ECFT means on the AdS side that we deform the support of the boundary-localized
mass term. In other words, the boundary condition for the bulk fields gets deformed. The
phenomenon of the 2-point correlator being repelled from the defect in the IR is understood
on the AdS side as the bulk field being repelled from the boundary due to the mass term.
For ξ → ∞, the AdS propagator vanishes on the boundary of the defect localized on the
AdS boundary.

We do not use further the AdS picture in the following.

4. A CFT between Two Membranes

We explore further the properties of the 2-point CFT correlators in the presence of
two double-trace membranes. The full defect is given by

J(x) = Ja(x) + Jb(x) =
ξa

2
δ(z− za) +

ξb
2

δ(z− zb) . (33)

We define |zb − za| = L. A convenient way to obtain the 2-point function is by dressing it
successively with the two membranes Ja and Jb. We obtain

Ga(p; z1, z2) = G(p; z1, z2) + G(p; z1, za)
ξa

1− ξaG(p; za, za)
G0(p; za, z2) , (34)

Ga,b(p; z1, z2) = Ga(p; z1, z2) + Ga(p; z1, zb)
ξb

1− ξbGa(p; zb, zb)
Ga(p; zb, z2) (35)

= G12 +
ξbG1b(ξaGabGa2 + (1− ξaG0)Gb2) + ξaG1a(ξbGabGb2 + (1− ξbG0)Ga2)

(ξaG0 − 1)(ξbG0 − 1)− ξaξbG2
ab

.

In the second line of Equation (35), we introduce the notation G(p; zi, zj) ≡ Gij.

4.1. Dirichlet Limit

To understand the behavior of this 2-point function, we take the ξa,b → ∞. At finite
ξa,b, this corresponds to the asymptotic limit associated to the infrared regime. In this limit,
the CFT gets literally confined inside the [0, L] interval. The 2-point correlator becomes

GD(p; z1, z2) = G12 +
G1bGabGa2 − G1bG0Gb2 + G1aGabGb2 − G1aG0Ga2

G2
0 − G2

ab
. (36)

4.2. Poles

We stay in the Dirichlet limit for simplicity. Due to the denominator in Equation (36),
it turns out that GD features a series of poles in the complex plane of p determined by
the condition

G(p; za, zb) = ±G0(p) . (37)
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Explicitly, the poles in p are determined by solving

1
Γ(α)

(√
−p2L

)α

Kα(
√
−p2L) = ±1, α =

d− 1
2
− ∆ , (38)

with − 1
2 < α < 1

2 . We denote the complex values of p solving Equation (38) by m±n . There
is no massless pole (p = 0) nor light pole (p � 1/L) thanks to the asymptotic behavior
at relatively small p is Gab → G0 (see Equation (22)), in which case Equation (37) is either
trivial or impossible to satisfy.

4.3. Residues

The residues associated to the p = m±n poles take quite a simple factorized form,
(Ga1 ∓ Gb1)(Ga2 ∓ Gb2),

G(p; z1, z2)
p∼m±n≈ −1

2
f±n (z1) f±n (z2)

Gab ∓ G0
, fn(z) ≡ G(m±n , z, za)∓ G(m±n , z, zb) . (39)

This factorized form is reminiscent of weakly coupled QFT on an interval, which
develops a sequence of discrete modes. In the weakly coupled case, the poles lie on the
real line up to the corrections due to the interactions. Equation (39) then corresponds to the
Kállen–Lehmann representation of the propagator confined in the [0, L] interval. Here, we
see that the factorized structure remains true even if the poles lie anywhere in the complex
plane.

4.4. Free Limit

In the case of the free field in d = 4, we have ∆ = 1. The 2-point correlator becomes

iGfree(p; z1, z2) = −i4π2a
e−
√
−p2|z1−z2|

2
√
−p2

, (40)

where, for a canonically normalized field, a = 1/(4π2). In this case, the poles determined
by Equation (38) are real, with mfree

n = nπ/L, n ∈ N?. The propagator dressed by the
two membranes takes the form

iGfree(p; z1, z2) = i
sinh

(√
−p2(za − z<)

)
sinh

(√
−p2(z> − zb)

)

√
−p2 sinh

(√
−p2(zb − za)

) , (41)

where we assume za < zb and define z<(>) = min(max)(z, z′). This matches the result
obtained by solving the free field equation of motion on the interval with Dirichlet boundary
conditions on the membranes (see, for example, the Appendix of Ref. [63]).

4.5. Resonances

Slightly away from the free field case, for ∆− (d− 2)/2� 1, it turns out that the set of
poles of the CFT behaves as a tower of narrow resonances at values p = mn ≡ mfree

n − iΓn/2
with Γn � mfree

n . Expanding the relation (38), we find that the resonances feature a common
decay rate Γn:

Γn ≈
(

∆− d− 2
2

)
π/L . (42)

Details of the computation are given in Appendix B.
One obtains, thus, a notion of unstable particle states directly from a CFT. Since the

CFT has internal degrees of freedom, one may think of these resonances as collective
excitations. The fact that the resonances decay reflects the fact that, for ∆ > (d− 2)/2, the
theory is interacting. However, the decay width is independent of the underlying physics
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of the CFT; it is controlled by the dimension of the double-trace operator that causes the
CFT confinement on the interval.

5. CFT Casimir Forces between Defects and Boundaries

We compute the quantum forces induced by the CFT between localized double-trace
operators with pointlike and planar supports. The planar geometry includes the case of a
flat boundary (for example, z > 0) of a membrane and also the case of a plate of any width.
We consider two disjoint defects, described by

S = SCFT −
1
2

∫
ddxO2(x)J(x) , J(x) = ξa Ja(x) + ξb Jb(x) . (43)

The ξa,b parameters have mass dimension: [ξa,b] = d− [Ja,b]− 2∆.
We consider a rigid deformation of J such that Jb gets shifted along a constant L while

Ja remains identical,

Ja,λ+dλ(x) = Ja,λ(x) , Jb,λ+dλ(x) = Jb,λ(x− Ldλ) , (44)

exemplified as shown in Figure 3.

Figure 3. Rigid deformation. See text for details.

The quantum work is then expressed as

W = − ξb
2

∫
dd−1x〈O(x)O(x)〉J∂λ Jb,λ(x). (45)

Equation (45) is the formula we apply throughout this Section.
The CFT propagator in the presence of J can always be written in the form of a Born

series as described in Equation (19). Evaluating the expression in a closed form for, for
example, a plate is more challenging. Here, we limit ourselves to computing analytical
results for the force between Ja and Jb in two limiting cases: the asymptotic Casimir–Polder
and Casimir regimes.

5.1. CFT Casimir–Polder Forces

In the UV regime, i.e., in the limit of short separation, the effect of the J insertion in
the Born series tends to be quite small. In this limit, the first terms of the series dominate. It
turns out that the leading contribution to the quantum work is [34]

W = −i
ξaξb

2

∫
dd−1xddx′〈O(x′)O(x)〉Ja(x)〈O(x)O(x′)〉L · ∂Jb(x′) + O(ξ3) . (46)

Upon integration by part, we recognize the structure of a potential W = −L · ∂Vab
with

Vab = −i
ξaξb

2

∫
dd−1xdd−1x′ Ja(x)Jb(x′)

∫
dt 〈O(0, x)O(t, x′)〉2 . (47)
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The Vab potential has a Casimir–Polder-like structure; it is a loop made of two CFT
correlators that connects the two defects. Hence, we refer to this limit as the Casimir–Polder
limit.

5.1.1. Point–Point Geometry

We first consider two defects that are pointlike,

Ja(x) = δd−1(x) , Jb(x) = δd−1(x− r) . (48)

The potential becomes

V(r) = −i
ξaξb

2

∫
dt 〈O(0)O(t, r)〉2, (49)

with r = |r|.
We compute Equation (49) by going to the full momentum space. The momentum

space correlator is Equation (3). In momentum space, the potential is given by

V(p) = i
ξaξb

2
πdΓ2(d/2− ∆)

Γ2(∆)

∫ ddk
(2π)d

(
4
−k2

)d/2−∆( 4
−(k + p)2

)d/2−∆
, (50)

where p0 = 0. We rotate the integral to Euclidean space with Euclidean momentum qM

satisfying q2 = −k2, and go to spherical coordinates,

V(p) = − ξaξb
2

πdΓ2(d/2− ∆)
Γ2(∆)

∫ ddq
(2π)d

(
4
q2

)d/2−∆( 4
(q + p)2

)d/2−∆
. (51)

We need to evaluate
∫ ddq

(2π)d

(
(p + q)2

)a(
q2
)b

, (52)

for some a, b. We apply the identity

(
(p + q)2

)a(
q2
)b

=
∫ 1

0
dx

(x(p + q)2 + (1− x)q2)a+b

xa+1(1− x)b+1
Γ(−a− b)

Γ(−a)Γ(−b)
. (53)

The integral on the right-hand side converges for Re(a), Re(b) < 0. However, provided
the final result of the calculation is analytic in a, b, the result can be extended by analytical
continuation such that restrictions on a, b are ultimately lifted. Shifting the loop momentum
l ≡ q + px, one obtains for Equation (52):

∫ 1

0
dx
∫ ddl

(2π)d
(l2 + x(1− x)p2)a+b

xa+1(1− x)b+1
Γ(−a− b)

Γ(−a)Γ(−b)
. (54)

We evaluate the loop integral with

∫ ddl
(2π)d

(
l2 + ∆

)c
=

Γ
(
−c− d

2

)

Γ(−c)
∆c+d/2

(4π)d/2 . (55)

Again, the loop integrals are performed in the domain of (c, d), where the integral
on the left-hand side converges. The functions on the right-hand side are analytic in c
anywhere away from the integral values of c; hence, the final result will be ultimately
analytically continued in c. For certain values of ∆ at even d, a physical divergence appears,
which requires renormalization. However, such divergences are irrelevant for our study as
soon as it is ultimately only the branch cut of V(p) that contributes to the spatial potential;
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see [64]. Hence, no divergence appears in the position space propagators when ∆ is set to
integer values.

Putting Equations (53) and (55) together yields for Equation (52):

1

(4π)
d
2

(
p2
)a+b+ d

2
Γ
(
−a− b− d

2

)

Γ(−a)Γ(−b)

∫ 1

0
dxxb+ d

2−1(1− x)a+ d
2−1. (56)

We identify the remaining integral as being the integral representation of the Beta
function. Evaluating the integral, one obtains for Equation (52):

1
(4π)d/2

(
p2
)a+b+d/2 Γ(−a− b− d/2)

Γ(−a)Γ(−b)
Γ(a + d/2)Γ(b + d/2)

Γ(a + b + d)
. (57)

The potential in momentum space is thus

V(p) = − ξaξb
2

πdΓ2(d/2− ∆)
Γ2(∆)

4d−2∆ 1
(4π)d/2

(
p2
)2∆−d/2 Γ(−2∆ + d/2)

Γ( d
2 − ∆)Γ( d

2 − ∆)
Γ2(∆)
Γ(2∆)

. (58)

Simplifying,

V(p) = − ξaξb
2

(
p2

4

)2∆−d/2
πd/2 Γ(−2∆ + d/2)

Γ(2∆)
. (59)

We can recognize that Equation (59) is proportional to the momentum space 2-point
correlator of the double-trace operator O2 with p0 = 0. That is, due to the properties of the
CFT, the loop of O can be understood as a tree exchange of O2. (Particle physics models
involving such processes have been considered in Refs. [65–67].) The overall coefficient is
nontrivial; however, our loop calculation is required to determine it. This phenomenon
occurs only in the Casimir–Polder regime.

One may notice that the numerator diverges if ∆ → d/4, which is allowed when
d ≤ 4 since ∆ ≥ (d− 2)2. However, the expression for the potential in position space
computed below is automatically finite even in the case ∆ → d/4, This is because this
is a quantity computed at separated points. Keeping a general, non-integer, dimension
∆ throughout the calculation plays the same role as dimensional regularization weakly
coupled QFT. Finally, we can go back to position space with a (d− 1) Fourier transform,

V(r) =
∫ dd−1 p

(2π)d−1 eiprV(p). We obtain the final result for the CFT Casimir–Polder potential
between two pointlike double-trace deformations,

V(r) = −
√

π
ξaξb

2
Γ(2∆− 1

2 )

Γ(2∆)
1

r4∆−1 . (60)

As a cross check, taking ∆ = 1 and using the a = 1
4π normalization for each correlator,

we recover exactly the Casimir–Polder potential from the exchange of 4D free massless
scalars, V(r) = −ξ2/(64π3r3). Notice that [ξa,b] = 1− 2∆; thus, [V] = 1.

5.1.2. Point–Plate

We calculate the Casimir–Polder potential between a point particle and an infinite
plate located at z < 0. In terms of the support functions, this is described by

Ja(x) = Θ(−z) , Jb(x) = δd−2(x‖)δ(z− `) , (61)

where Θ(·) is the Heaviside function.
We assume that the deformation moves Jb along the z direction, i.e., L = (0, 1). The x‖

are the coordinates parallel to the plate.
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The CFT force between the point and the membrane can be straightforwardly obtained
by integrating the point–point Casimir–Polder potential over Ja. This simplified approach
is valid only in the Casimir–Polder limit. The ξa,b are defined such that the parametriza-
tion (43) holds, now with the defect (61). ξa is related to the pointlike source coupling by
ξa = nξ

point
a , where n is the number density of Ja.

The Casimir–Polder force is given by the potential

V(`) = n
∫ 0

−∞
dz
∫

d2x‖
∫ d3 p

(2π)3 eipz(`−z)eip‖ .x‖V(p) . (62)

The p‖ is the momentum component along the plate. The integral reduces to

V(`) = −πd/2 ξaξb
2

Γ(−2∆ + d/2)
Γ(2∆)

∫ 0

−∞
dz
∫ dpz

2π
eipz(`−z)

(
p2

4

)2∆−d/2

. (63)

The momentum integral can be performed and gives

∫ dpz

2π
eipz(`−z)

(
p2

4

)2∆−d/2

=
Γ(2∆ + 1−d

2 )
√

πΓ( d
2 − 2∆)

1
(`− z)4∆+1−d . (64)

The integral over z converges, provided ∆ > d/4. When computing the force further
below, the divergence matters only when for a free field in d = 3. In the convergent case,
we have

V(`) = − π(d−1)/2

2(4∆− d)
Γ(2∆ + 1−d

2 )

Γ(2∆)
ξaξb

`4∆−d , (65)

where d > 4. The force is then given by F = −∂V/∂`, which gives

F(`) = −π(d−1)/2 Γ(2∆ + 1−d
2 )

2 Γ(2∆)
ξaξb

`4∆−d+1 . (66)

For a free field in d = 4, one obtains

F(`) = −π2

2
ξaξb
`

. (67)

This correctly reproduces the ∝ 1
` scalar Casimir–Polder force derived in Ref. [34],

− ξaξb
32π2 `

, once one takes into account the canonical normalization of the free fields, which
introduces the factor a2 = ( 1

4π2 )
2. (A factor of 1

2 is missing in Equation (6.29) of Ref. [34]).
The case of the free field in d = 3 necessitates the assumption that the plane has finite

width L. We obtain

F(`) = −π Γ(2∆− 1)
2 Γ(2∆)

ξaξb log
(

1 +
L
`

)
. (68)

5.1.3. Plate–Plate CFT Casimir–Polder

We similarly compute the Casimir–Polder pressure between two infinite plates. This
is described by

Ja(x) = Θ(−z) , Jb(x) = Θ(z− `) . (69)

We assume that the deformation moves Jb along the z direction, i.e., L = (0, 1). (In
general, one should require that the plates end far away, i.e., are not formally infinite, in
order for the deformation flow to be divergence-free [34]; while this is necessary in general,
this detail does not affect the present Casimir–Polder calculation.)

The ξa,b are defined such that the parametrization Equation (43) holds, now in the
presence of the defect (61). ξa,b is related to the pointlike source coupling by ξa,b = na,bξ

point
a,b
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with na,b, the number density of Ja,b. Similarly to the point–plate case, we integrate the
point–point potential over the two defects, with, for example,

Fplate−plate(`) = −nbSd−2

∫ ∞

`
dzFpoint−plate(z), (70)

where Sd−2 =
∫

dd−2x‖ is the volume integral in Equation (70) in the directions parallel to
the plate. As long as ∆ > d/4, the integral is IR convergent and gives

F(`)
Sd−2

= − π(d−1)/2

2(4∆− d)
Γ(2∆ + 1−d

2 )

Γ(2∆)
ξaξb

`4∆−d . (71)

The case of a free field in d = 4 is logarithmically divergent. This is a physical
divergence that signals that we should consider finite plates instead of approximating them
as infinite. It is sufficient to assume that one of the plates, here, the second plate integrated
in Equation (70), has finite width L. We find

F(`)
S1

= −π2

2
ξaξb ln

(
1 +

L
`

)
. (72)

The IR divergent behavior also appears in the result of Ref. [34], in the case where the
free field is massless. There is no IR divergence if the free field is massive.

5.2. CFT Casimir Forces

We compute forces beyond the Casimir–Polder approximation. Our focus is on
membranes. Computing analytical results for plates of finite widths is more challenging.
However, in the IR regime for which the plate width is smaller than other distance scales of
the problem, we expect the results to reproduce the one obtained with membranes.

Since the chosen defects feature membranes, we restrict ∆ to the interval (24). The case
∆ ≥ (d− 1)2 deserves a separate analysis.

5.2.1. Point–Membrane CFT Casimir

We first compute the force between a membrane at z = 0 and a point at distance z = `.
The two defects are parametrized as

Ja(x) = δ(z) , Jb(x) = δd−2(x‖)δ(z− `) . (73)

The membrane is infinitely thin in contrast with the point–plate case of the previous
section, where the plate had a large width. We choose that the deformation moves the
pointlike defect along z, while the membrane stays in place, i.e., it is given by Equation (44),
where L is oriented along z. The deformation of the defect is then given by

∂λ J = −ξbLδd−2(x‖)∂zδ(z− `) . (74)

The quantum force is given by

F(`) = −1
2

∫
dd−1x 〈O(x)O(x)〉J ∂λ Jb,λ(x) (75)

= − ξb
2

∂z〈O(xα, z)O(xα, z)〉J
∣∣
z→`

. (76)

Here, 〈O(xα, z)O(xα, z)〉J is the CFT 2-point function dressed by the membrane at
z = 0. This correlator is computed in Equation (26). Going to the position–momentum
space, one has

GJ(p; z, z) = G0(p) + G2(p; 0, z)
ξa

1− ξaG0(p)
, (77)
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where G0(p) is defined in Equation (27).
The quantum force is then expressed as

F(`) = − iξb
2

∫ dd−1 p
(2π)d−1 ∂zGJ(p; z, z)

∣∣
z→`

(78)

= − i
2

∫ dd−1 p
(2π)d−1

ξaξb
1− ξaG0(p)

∂z

(
G2(p; 0, z)

)
z→`

, (79)

where G0(p) does not contribute since it is constant in z.
The derivative piece takes a straightforward form:

∂z

(
G2(p; 0, z)

)
z→`

= −16πd−1`

Γ2(∆)

(
4`2

−p2

) d−2−2∆
2

K 1−d
2 +∆

(√
−p2`

)
K 3−d

2 +∆

(√
−p2`

)
. (80)

One may notice it is proportional to the product of two correlators with dimension ∆
and ∆ + 1.

We can identify the potential directly from the line (79), where the ∂z derivative is
equivalent to ∂`. We rotate to Euclidean momentum qM and use spherical coordinates. We
find the general result:

V(`) = − π
d−1

2

2d−3Γ( d−1
2 )Γ2(∆)

∫
dqqd−2 ξaξb

1− ξbG0(q)

(
2`
q

)d−1−2∆
K2

1−d
2 +∆

(q`) , (81)

F(`) = − π
d−1

2 `

2d−5Γ( d−1
2 )Γ2(∆)

∫
dqqd−2 ξaξb

1− ξbG0(q)

(
2`
q

)d−2−2∆
K 1−d

2 +∆(q`)K 3−d
2 +∆(q`) . (82)

One can evaluate the loop integral in both the Casimir–Polder regime ξaG0(p)� 1
and the Casimir regime ξaG0(p) � 1. We write the two Bessel functions using the rep-
resentation (6), and perform the loop momentum integral and then the t and t′ integrals.
The intermediate steps involve hypergeometric functions, but the final results are remark-
ably simple.

In the Casimir–Polder regime, we obtain the potential

V(`) = −π(d−1)/2 Γ(2∆ + 1−d
2 )

2 Γ(2∆)
ξaξb

`4∆−d+1 . (83)

It is attractive for any ∆ satisfying the unitarity bound. For d = 3 and 4 the Casimir–
Polder force is

Fd=3(`) = −
πξaξb
`4∆−1 and (84)

Fd=4(`) =
π3/2Γ(2∆− 1

2 )

Γ(2∆)
ξaξb
`4∆−2 , (85)

respectively.
For the free field in d = 4, including two factors of a = 1

4π2 to recover canonical

normalization, we find F(`) = − ξaξb
32π2`2 . Notice that this Casimir–Polder limit corresponds

to a loop between a point and an infinitely thin membrane; it differs from the point–plate
geometry of Section 5.1.2, where the width of the plate is quite large.

In the Casimir regime, one obtains

V(`) = −
√

πd Γ(d− 1− ∆)
2dΓ(1 + d

2 )Γ(
d−1−2∆

2 )

ξb
`2∆ . (86)
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The potential depends only on ξb and is attractive for ∆ in the interval of interest,
d−2

2 ≤ ∆ < d−1
2 . For d = 3 and 4, one obtains the forces

Fd=3(`) = ∆(∆− 1)
ξb

`2∆+1 and (87)

Fd=4(`) = −
√

π∆ Γ(3− ∆)
4Γ( 3

2 − ∆)
ξb

`2∆+1 , (88)

respectively.
For the free field in d = 4, including one factor of a = 1

4π2 to recover canonical
normalization, one finds F(`) = −ξb/(16π2`3). This reproduces exactly the Casimir
force obtained from the plate–point configuration taken in the Dirichlet limit computed
in Ref. [34]. This illustrates that, in the Casimir regime, only the boundary of the defect
matters. The V(`) ∝ `−2∆ dependence in the Casimir regime is reminiscent of the feature
that the O2 operator in a boundary CFT admits a vev with profile 〈O2〉 ∝ z−2∆.

5.2.2. Membrane–Membrane CFT Casimir

We turn to the force between two membranes at z = 0 and z = `. The two defects are
parametrized as

Ja(x) = δ(z) , Jb(x) = δ(z− `) . (89)

The deformation of the defect is given by

∂λ J = −ξbL∂zδ(z− `) . (90)

Following the same steps as in Section 5.1.1, we arrive at the quantum pressure

F(`)
Sd−2

= − iξb
2

∫ dd−1 p
(2π)d−1 ∂zGJ(p; z, z)

∣∣
z→`

, (91)

with Sd−2 =
∫

dd−2x‖. The 2-point correlator in the presence of two membranes is com-
puted in Equation (35).

Unlike in the other cases previously treated (see Equation (81)), it is not possible
to identify a potential directly from Equation (91). This is due to the feature that the ∂z
derivative cannot be traded for a derivative in ` as soon as the dressed 2-point correlator
depends nontrivially on `; see Equation (35). Rather, we first compute the force, which is
the fundamental quantity, then one may optionally infer a potential from it.

Our focus is on the Casimir limit, which amounts to taking quite large ξa,b. Notice that
one cannot use in Equation (91) the Dirichlet limit (36), for which ξa,b = ∞. This would lead
to an indefinite 0×∞ form in Equation (91). Instead, one should compute the expansion of
GJ for relatively large but finite ξa,b. The self-consistency of the quantum work formalism
ensures that this expansion and the ξb factor in Equation (91) will conspire to give a finite
result for the pressure.

One finds

∂zGJ(p; z, z)
∣∣
z→`

=
1
ξb

∂z(G2(0, z))z→`

G2
0(p)− G2(p; 0, `)

+ O

(
1
ξa

,
1
ξ2

b

)
. (92)

To obtain this result, we use that ∂zG(p; z, z′)|z′→z = 0 by symmetry. This sets to zero
the would-be leading term ξ0

a,b. As a result, the 1/ξb term is the leading one.
The quantum pressure between the membranes is then

F(`)
Sd−2

=
π

d−1
2

2d−1Γ( d−1
2 )

∫
dqqd−2 ∂z(G2(q; 0, z))z→`

G2
0(q)− G2(q; 0, `)

. (93)
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Using the identity

∂z log(G(q; 0, z))
∣∣
z→`

= −
qK∆− d

2 +
3
2
(q`)

K∆− d
2 +

1
2
(q`)

, (94)

one finds the final form

F(`)
Sd−2

=
π

d−1
2

2d−5−2∆Γ( d−1
2 )

∫
dqqd−1

(q`)2dK∆− d
2 +

3
2
(q`)K∆− d

2 +
1
2
(q`)

23+2∆(q`)2dK2
∆− d

2 +
1
2
(q`)− 2d(q`)2∆+2d+1Γ2( d−1−2∆

2 )
. (95)

As a sanity check, for a free field (∆ = (d− 2)/2), one recovers exactly the known
Casimir pressure between two membranes in any dimension [68]. The quantum pressure
between the membranes is negative on the d−2

2 < ∆ < d−1
2 interval. It is independent on

ξa,b and scales as F(`)/Sd−2 ∝ 1/`d as can be seen from Equation (95).
One can see that the Casimir regime displays a sense of universality. In the Casimir

regime, the pressure does not depend on the strength of the double-trace couplings ξa,b.
The pressure scales as `−d just like for a weakly coupled CFT; this scaling is dictated
by the geometry of the problem. The sign of the force is also fixed; see Section 5.3 just
below. The only non-trivial data are the strength of the force. One can check via numerical
integration that the strength of the force does depend on ∆. Hence, in spite of the screening,
information about the double-trace nature of the boundary still remains encoded in the
overall coefficient of the pressure.

5.3. Monotonicity from Consistency

In all the previous results, it may seem that the ξa,b coefficients can be arbitrary real
numbers such that the ξaξb product can get both signs and thus that some of the forces may
be either attractive or repulsive. Let us show that this is not the case.

From Section 5.1, it is clear that the quantum force between any two bodies in the
Casimir–Polder (i.e., UV) regime has the sign of −ξaξb, i.e., it is attractive (repulsive) if
ξaξb > 0 (ξaξb < 0). On the other hand, we have found in Section 5.2 that the force between
two membranes in the Casimir (i.e., IR) regime is negative independently of ξa,b. None
of these observations in themselves constrain ξa,b, but one may note that if ξaξb < 0, then
the force would have to flip sign in the transition from Casimir–Polder to Casimir. To
understand whether such a behavior is allowed, we need to consider the exact formulas
that interpolate between the UV and IR regimes.

First, consider the point–membrane configuration given in Equation (79). We focus
on the dressed 2-point correlator shown Equation (77). For d−2

2 ≤ ∆ < d−1
2 , one has

G0(p) ∈ R− for the spacelike or Euclidean momentum. This implies that if ξa < 0, then the
dressed correlator features a pole at real negative p2. This is a tachyon, whose mass is

m2
tachyon = −4

(
− Γ(∆)

π
d−1

2 Γ( d−1−2∆
2 ) ξa

) 2
2∆−d+1

. (96)

The presence of the tachyon pole has a firm consequence: having ξa < 0 would make
the loop integral in Equation (79) divergent. Since the force must be finite, this possibility
is ruled out. Therefore, ξa must be positive.

Similar analysis can be performed in the membrane–membrane configuration. For
example, the same tachyon mass Equation (96) shows up if one lets one of the ξi be quite
small. The tachyon pole also exists if, for example, ξa = ξb , in which case the tachyon mass
receives a `-dependent correction from the G2(p; 0, `) term. One concludes that again ξa
and ξb must be positive.

Having ξa,b > 0 implies that the force does not change sign for any value of the separa-
tion `. In other words, the absence of the tachyon is tied to the potential being monotonic.

240



Physics 2024, 6

A similar reasoning involving a tachyon has been applied for a double-trace defor-
mation occupying all spacetime in Ref. [53]. In this study, the existence of the tachyon
for ξ < 0 is understood as an obstruction to the RG flow—while for ξ > 0, there is no
obstruction. Our argument here can be seen as an analogous version of this obstruction
statement for a case where the double-trace deformation is localized on a membrane. The
said obstruction appears particularly when computing the quantum force.

Let us briefly mention that in the d−1
2 < ∆ < d

2 case, the sign of the Γ( d−1−2∆
2 ) factor

that appears in Equation (96) becomes positive. Applying the above chain of arguments
would then imply that ξ should be negative in this range of ∆. However, as pointed out in
Section 3.2, the computations likely cannot be trusted in this domain—extra effort would
be needed to appropriately treat the divergent piece in G0 (see Equation (22)).

Finally, let the support of the defect, J(x), be interpreted not just as an abstract distri-
bution but as a physical density of matter. At the level of the Lagrangian, this is strightfor-
wardly written covariantly by coupling O2 to the trace of the stress–energy tensor Tµ

µ , with

L = − ξ

2m
O2Tµ

µ (x), (97)

with m as the mass of the matter particle. In the presence of non-relativistic static matter,
we simply have Tµ

µ (x) = ρ(x) = mn(x) with n(x), the number density. Then, the generic
ξa,b parameters that we have been using for each defect are related to a single fundamental
coupling ξi = niξ. In that view, any of the above arguments that constrain some of the
ξa to be positive implies that ξ > 0. It then follows that the ξi of any defects are positive;
therefore, the potential between any two defects is monotonic. In other words, under the
condition that J is interpretable as a physical density, the quantum force between any two
defects is attractive at any value of their separation. (The notion of J being interpretable as
a physical density is also needed to ensure the finiteness of the quantum work [34].)

5.4. Critical Casimir Forces

Here, we briefly connect our results to critical Casimir forces. We just present the
scalings predicted from our double trace model in the geometries considered in Sections 5.1
and 5. For thermal fluctuations at criticality, the relevant quantity is βcδF with βc = 1/Tc,
where Tc is the critical temperature and δF is the geometry-dependent term of the free
energy. βcδF has a vanishing mass dimension.

In the Euclidean field theory, the coupling of the double trace operator to the source
is 1

2

∫
ddxEξO2(xE)J(xE). The ξ coupling has a scaling dimension [ξ] = d− [J]− 2∆. The

behavior of the forces follows by dimensional analysis.
The free energy in the short distance limit gives non-retarded van der Waals forces. In

the point–point, plate–point and plate–plate geometries, one obtains

βcδF|pt−pt ∝
ξaξb
`4∆ , βcδF|plate−pt ∝

ξaξb

`4∆−d , βcδF|plate−plate ∝
ξaξb

`4∆−2d . (98)

In the long distance limit, this gives Casimir-type forces. The membrane–point and
membrane–membrane results are:

βcδF|memb−pt ∝
ξ

`2∆ , S−1
d−1βcδF|memb−memb ∝

1
`d−1 . (99)

ξ is the coupling to the pointlike defect. The couplings to the membranes do not
appear in the Casimir limit. In the membrane–membrane case, we give the free energy
per units of area of the membrane, Sd−1. The point–point and membrane–point results
match the predictions made from limits of the sphere–sphere geometry in the critical Ising
model [69–71].

241



Physics 2024, 6

6. Summary

We explore the quantum forces occurring between the defects and/or boundaries of
conformal field theories. While defect CFTs are often investigated formally, our approach
here is much firmer. Since such CFTs do exist in the laboratory, our focus is to predict
phenomena that may, at least in principle, be experimentally observed. Our computations
only require basic notions of CFT and a solid formalism to derive quantum forces in
arbitrary situations.

Defects and boundaries in the real world are not ideal, in the sense that no real-world
material can truncate the spatial support of a field theory fluctuating at all wavelengths.
Inspired by models used in weakly coupled QFT, we propose to model the imperfect defects
of CFTs as localized relevant double-trace operators. This idea is nicely supported by the
∆− branch of the AdS/CFT correspondence, in which case the defects are identified as
mass terms localized on the (regularized) boundary of the Poincaré patch.

In order to compute quantum forces, one needs to know the 2-point CFT correlators in
the presence of such “double-trace” defects. Assuming relatively large N, this is described
by a Born series that dresses the CFT correlator with insertions of the defect.

We first clarify that the CFT correlators get repelled from the defects in the infrared
regime. Asymptotically in the IR, the CFT satisfies a Dirichlet condition on the boundary of
the defect. In this limit, the interior of the defect becomes irrelevant.

The archetype of an extended defect is the codimension-one hyperplane, i.e., the
membrane. In the presence of a membrane, we restrict the conformal dimension to
d−2

2 ≤ ∆ < d−1
2 to avoid dealing with a divergence in the membrane-to-membrane correla-

tor. A careful analysis of the ∆ > d−1
2 case remains to be performed.

We compute the 2-point correlator in the presence of two parallel membranes and
investigate some if its features. We find that the CFT between the membranes develops
a sequence of poles away from the real axis, which should be understood as a set of
resonances, or collective excitations, of the CFT constituents. In the near-free limit, these
resonances are narrow with the decay rate depending only on the separation between the
two membranes and on the dimension of the double-trace operator. It would be interesting
to study further the properties of these resonances, including their interactions.

We then explore the quantum forces between pointlike and/or planar double-trace
defects in the asymptotic Casimir–Polder and Casimir regimes. The Casimir–Polder regime
typically appears at a short separation, i.e., in the UV, when the first term of the Born series
is leading. The CFT Casimir–Polder force between a pointlike defect and another pointlike
defect, a membrane, or an infinite plate, is respectively proportional to 1/`4∆−2, 1/`4∆−d+2,
1/`4∆−d+1. The force between two infinite plates is in 1/`4∆−d.

The Casimir regime appears at large enough separation, i.e., in the IR, when the Born
series must be resummed. The Casimir force between a point and a membrane is 1/`2∆+1,
while the pressure between two membranes is 1/`d. The membrane–membrane quantum
pressure has, in a sense, a universal behavior analogous to the one induced from free fields.
However, information about the double-trace nature of the boundary still remains in the
overall coefficient of the force, which is ∆-dependent.

In membrane configurations, we show that the sign of the double-trace operator is
constrained in order for the potential to be well defined at any distance. This is tied to
requiring the absence of a tachyon in the spectrum of the 2-point correlator. In turn, this
constraint guarantees that the potential is monotonic. Assuming that the support of the
defects can be interpreted as a physical matter distribution—an assumption that is also
needed to ensure the finiteness of the quantum work—one concludes that the potential
between any two defects is monotonic. Hence, the quantum forces between any two
double-trace defects are attractive at any distance.

It would be interesting to determine real-world systems—either quantum or critical—for
which the defects and boundaries may, at least approximately, be described by double-trace
deformations. It would also be interesting to devise laboratory experiments that can test
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some of the phenomena predicted in this paper. The exploration of these possibilities is left
for future work.
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Appendix A. 2-Point Correlator in Mixed Space

The Schwinger parametrization is

1
x2∆

12
=

1
Γ(∆)

∫ ∞

0

dt
t

t∆e−tx2
12 . (A1)

We use parametrization (A1) to compute the Fourier transform

⟪O(p, z1)O(−p, z2)⟫ =
∫

dd−1y12 eiy12·p 1
x2∆

12

= 1
Γ(∆)

∫ ∞
0

dt
t t∆−tz2

12
∫

dd−1y12 eiy12·pe−ty2
12

= −i π
d−1

2
Γ(∆)

∫ ∞
0

dt
t t∆− d−1

2 e−tz2
12+

p2
4t .

(A2)

In Equation (A2), the time integral is evaluated upon Wick rotation to the Euclidean
space, y0

12 = −iy0,E
12 , which makes the overall −i factor appear. In Equation (A2), one

recognizes the integral representation of the Bessel K (6), which one can put in the form

∫ ∞

0

dt
t

t∆− d−1
2 e−tz2− q2

4t = 2
( q

2z

)∆− d−1
2 K∆− d−1

2
(qz) . (A3)

We remind that Kα(z) = K−α(z). Identifying Equation (A3) in Equation (A2), one
obtains the momentum–position representation of the 2-point correlator (5).

Appendix B. Computation of the Decay Widths

Consider the denominator of Equation (36),

D(p) = G2
0(p)− G2(p; 0, L) . (A4)

For ∆ = d− 2/2, one has

D(p) =
4πd

Γ2
(

d−2
2

) 1− e−2L
√
−p2

p2 . (A5)

In that case, D(p) has a set of zeros on the real line D(mfree
n ) = 0 at the values

p = mfree
n ≡ nπ/L, n ∈ N/0. These are the familiar modes of the free field confined in a

[0, L] Dirichlet interval.
For ∆ close to the free field dimension, one can expand the denominator in ε = ∆− d−2

2 .
This produces a relatively small correction to Equation (A5). One obtains

D(p) ≈ 4πd

Γ2( d−2
2 )

(√
−p2

L

)ε
(

L
√
−p2

)2ε
− e−2L

√
−p2

p2 . (A6)
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By continuity, the poles are given by mn = mfree
n + εδn,r + iεδn,i + O(ε2).

We assume that the imaginary part of the δ-correction is negative, δn,i < 0. Plugging
this form into Equation (A6) and expanding in ε determines the δ corrections. One finds

δn,r = −ε log
(nπ

L

)
, (A7)

δn,i = −ε
π

2L
. (A8)

One has, thus, δn,i < 0, consistent with our hypothesis. These poles describe narrow
resonances. In particle physics, the imaginary part is commonly written as

δn,i ≡ −
Γn

2
, (A9)

where Γn � mn is the decay rate, i.e., the width of the resonance. This leads to the
formula (42).
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Abstract: We consider the two planes at zero temperature with isotropic conductivity that are in
relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken
into account—the constant and frequency-dependent Drude models. The normal (perpendicular to
planes) Casimir force is analyzed in detail for two systems—(i) two planes with identical conductivity
and (ii) one plane that is a perfect metal. The velocity correction to the Casimir energy, ∆vE∝ v2, for
small enough velocities is used for all considered cases. In the case of constant conductivity, η, the
energy correction is ∆vE ∝ η/a3(v/η)2 for v� η � 1.

Keywords: dynamic Casimir effect; lateral motion; constant conductivity

1. Introduction

The Casimir effect was initially considered for perfect conductive plates, and has
now been extended to many non-ideal and new materials [1,2]. Hendrik Casimir noted
in Ref. [3] that Niels Bohr suggested considering the zero-point energy as an origin of this
effect and simplifying the derivation of the force. In the case of perfect conductive planes,
the Casimir effect relies solely on fundamental constants and interplane distance. However,
for actual materials, the Casimir effect depends on various factors, such as the shape and
structure of the material, conductivity, chemical potential, temperature, and the presence of
impurities [1,2].

The Casimir force between bodies is further influenced by their relative motions
(see the recent review on the dynamic Casimir effect [4] and Refs. [1,5,6]). The relative
motions are lateral (parallel to the planes), perpendicular to planes, or, in general, a
combination of these. The Casimir effect for perpendicularly and uniformly moving
slabs was first considered in Refs. [7,8] for electromagnetic and massless scalar fields.
It is a direct consequence of the quantum field theory with moving boundaries [9]. In
the non-relativistic scenario, the velocity correction to the Casimir pressure is quadratic,
∝ v2 (∝ v2/c2 in dimensional units, where c denotes the speed of light) for both fields, but
with opposite signs. For the scalar field, the relative velocity correction for Casimir pressure
is δP = (P − Pv=0)/P = 8

3 v2, while for the electromagnetic field is
δP = −

(
10/π2 − 2/3

)
v2.

For the massless scalar field, δP , while is negative for the electromagnetic case.
The lateral relative motion of different planes gives rise to two distinct Casimir

pressures in perpendicular directions. One of these pressures acts normally to planes,
similar to perpendicular motion, while the other acts along planes, known as quantum,
non-contact, or Casimir friction. The study of normal force has been carried out in
earlier studies [10,11] for layers in stratified dielectric media with magneto-electric and
non-reciprocal constant coupling, and for plates with general electric permittivity and
magnetic permeability, respectively. For a three-layer system [10], the force can be either
attractive or repulsive depending on the velocity directions of the extreme layers. In the
non-relativistic case, the velocity correction to the force becomes repulsive when the extreme
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layers have the same velocity directions with respect to the middle layer, and becomes
attractive for opposite velocity directions. The velocity correction to the Casimir energy
follows a similar order of magnitude, approximately proportional to v2. For relativistic
velocities, both attractive and repulsive effects can occur. A general expression for the
normal force between two plates was obtained in Ref. [11] using the Fresnel reflection
coefficients. It was shown that the same quadratic correction ∝ v2, applies to the ordinary
Casimir force.

Quantum friction is a more challenging topic for analysis and is currently a subject
of debate [11–24], with some even negating its existence [11]. Two dielectric planes at
different temperatures with lateral relative motion have been considered in Refs. [12,13].
The quantum friction force was calculated within the framework of Rytov fluctuation
theory [25]. It was demonstrated that the force is proportional to the first power of the
velocity v, but can have different signs, resulting in either the deceleration or acceleration of
the planes. Mkrtchian investigated two conductive planes with relative lateral motion and
calculated the force and viscosity of vacuum for different plane impedance models [14]. The
dependence of the force on the interplane distance heavily relies on the chosen model, but
in any case, the velocity correction to the typical Casimir force proportional v emerges as the
typical dependence for Casimir friction. The quantum friction for planes with temporally
dispersive conductivity was analyzed in Ref. [15], revealing a cubic, v3, dependence at
relatively small velocities and a v−1 ln v-dependence at quite high velocities. In Ref. [16] a
general theory for quantum friction within the framework of fluctuation electrodynamics
was developed. Though Ref. [11] claims the absence of quantum friction as a whole, the
existence of a normal force remains without doubt (see Ref. [17]).

The study of quantum friction using scattering theory was carried out in Refs. [18,19],
demonstrating the existence of a quantum friction threshold: the friction force is zero
when the relative velocity is smaller than the speed of light within the slabs’ materials.
The origin of quantum friction was connected to quantum Cherenkov radiation: the
super-luminally moving object spontaneously emits photons. This concept is closely related
to super-radiance, where a rotating body amplifies incident waves [26]. In Refs. [20,21],
quantum friction was calculated for two graphene sheets using the effective action approach,
revealing a velocity threshold: the friction is zero when the relative velocity is smaller than
the Fermi velocity. The correlation of threshold with the findings of Refs. [18,19] arises
from the feature that the Dirac electron in graphene is described by the Dirac equation
with the Fermi velocity instead of the speed of light. The threshold was confirmed through
different calculations in Ref. [24]. The nonperturbative approach was employed to study
quantum friction in Ref. [22], where the friction force was associated with electromagnetic
instability: the kinetic energy of the relative motion transforms into exponentially growing
coherent radiation.

In this study, we investigate the normal force between two laterally moving planes
with isotropic conductivities. Previously [24], a general approach was developed for two
conductive planes with relative lateral motion, which allowed for the calculation of both
normal and tangential forces. The normal force was found to reduce to the typical Casimir
force for planes with tensorial conductivities [27], with a specific form for the tensor of the
moving plane being used. Quantum friction was also found to arise as an imaginary part
of the energy calculated for complex frequencies, as discussed in the earlier papers [28–30].

In the current paper, we focus specifically on the normal force for laterally moving
planes with isotropic conductivities. As noted in the earlier studies [31,32], Ohm’s law for
the moving plane needs to be considered carefully. The Lorentz transformation for a moving
plane with scalar constant conductivity is not straightforward, as it involves a coefficient
between three vectors of the electric current and an electric field. The transformation
law of the conductivity tensor was discussed previously in Ref. [32] utilizing a linear
response tensor [33]. In the case of graphene, the linear response tensor plays the role
of polarization tensor [24,34]. To obtain the isotropic conductivity of a moving plane,
we adopt the approach suggested in Ref. [24] for graphene and consider the formal limit
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where the Fermi velocity and mass gap tend to zero. In this limit, the conductivity tensor
becomes isotropic in the co-moving frame of the plane. However, in the laboratory frame,
the conductivity is not diagonal and depends on the velocity. It is worth noting that here
we employ the graphene approach as a computational tool only. The results obtained
are applicable to various compositions with isotropic conductivity, including those with
temporal dispersion (not considered in Ref. [10]).

In previous studies [6,35–37], the Casimir and Casimir–Polder effects for planes with
isotropic conductivity were explored. Two models of conductivity were employed: (i) the
constant conductivity, σ = σ0I, where σ0 denotes the scalar constant conductivity, and I is
the 2× 2 unit matrix, and (ii) the Drude–Lorentz model with seven oscillators σ = σDL(ω)I,

σDL(ω) =
f0ω2

p

γ0 − iω
+

7

∑
j=1

iω f jω
2
p

ω2 −ω2
j + iωγj

,

with the parameters of this model obtained from experimental data for graphite from
Ref. [38]. Here, f j, ωj and γj denote parameters of the model, ω is the frequency and
0 subscript notifies the Drude contribution. The first term in the model represents a
Drude-like contribution, while the other terms have a Lorentz-like form. Since graphene
is a single layer of graphite, the conductivity of graphene is obtained by multiplying the
above expression by the interplane distance in graphite. The estimation of the binding
energy per single sheet of graphene in graphite (a stack of graphenes) made in Ref. [36]
revealed that the constant conductivity model underestimates the binding energy, whereas
the Drude–Lorentz seven-oscillator model aligns well with the experimental data.

Both models were employed to describe the Casimir effect in a stack of graphene
layers and the Casimir–Polder effect for a micro-particle near the stack. The general case
of a layered system consisting of conductive planes with tensorial conductivities was
analyzed in Ref. [39]. This study demonstrated that the expressions for force and energy
have the same form as those obtained for the case of scalar constant conductivity, but with
corresponding reflection coefficients for transverse electric (TE) and transverse magnetic
(TM) modes.

In the case of constant conductivity, the Casimir energy exhibits a 1/a3-dependence for
all interplane distances. However, this relationship only holds for large interplane distances
in the case of graphene, where the parameter ma is much greater than one (m is mass gap).
This can be straightforwardly explained by noting that in the constant conductivity model,
there are no dimensional parameters other than the interplane distance. For the case of
small conductivity (ηgr = 2πσgr = 0.0114 for graphene), the TM mode contributes linearly
in η, while the TE mode contributes as η2. However, this is not the case for two graphenes,
where both modes contribute quadratically. As previously mentioned in Ref. [24], the
spatial dispersion of conductivity plays an important role in the Casimir effect, causing the
contribution to change from linear to quadratic.

The paper is organized is as follows. In Section 2, we re-derive the conductivity of a
moving graphene sheet by applying boundary conditions and obtain the main formula
for normal Casimir energy. We discuss the problem of determining the eigenvalues
of the product of reflection matrices. The Fresnel matrices do not commute, and their
eigenvalues are not simply the product of the eigenvalues of the individual reflection
matrices. Additionally, we briefly discuss the general property of lateral force along the
planes and demonstrate that the necessary condition for this force is that the modulus of
the Fresnel matrices is greater than one, indicating the production of photons. In Section 3,
we obtain the expressions for the normal Casimir force for isotropic conductivity in two
scenarios: (i) two identical planes and (ii) an isotropic plane and a perfect metal. We perform
numerical calculations of the Casimir energy and analytically derive the v2-dependence
for the velocity correction to the energy and pressure. We also evaluate the Drude-like
model of isotropic conductivity numerically and demonstrate that, for large distances, the
Drude-like model yields quite similar results to the constant conductivity model. Finally,
in the conclusion in Section 4, we discuss the results obtained in this study.
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Throughout this paper, the natural units with h̄ = c = 1 are used; here, h̄ represents
the reduced Planck’s constant.

2. The Casimir Energy of Moving Planes

We use the approach for the Casimir effect of lateral moving graphene developed in
Ref. [24] as a computational trick. In order to provide a comprehensive understanding of
this approach, let us review the key steps of derivations of the normal force outlined in
Ref. [24] with some expanded explanations.

The system under consideration involves two parallel conductive planes with isotropic
conductivities and an interplane distance, a. The first plane remains stationary in the
laboratory frame, while the second plane undergoes lateral motion with a velocity v. The
fluctuating electric field induces a current in the second plane following Ohm’s law. This
current affects the boundary condition and ultimately alters the energy spectrum. The
current induced in the second conductive plane, which is in motion, is described by Ohm’s
law in its co-moving frame. To solve the scattering problem in the laboratory frame, it
is necessary to determine the conductivity of the second plane in laboratory frame. The
Lorentz transformation of Ohm’s law was discussed in Ref. [31,32]. Given that Ohm’s law
has no covariant form, as it represents a linear relationship between the three-vector of
the electric field and current density, the method of linear response tensor, Πµν [33], is
preferred in this particular case. Within the framework of this approach, the four-vector, Jµ,
of the current density and the four-potential, Aν, are linearly connected through a tensor of
linear response: Jµ = Πµ

ν Aν. Here, the Greek letter indices denote the time (0) and space
(1, 2, 3) coordinates, xµ, under the space-time metric (+,−,−,−). The latter represents
a covariant relation that can be Lorentz-transformed into another inertial frame. This
approach was successfully implemented in Refs. [31,32], where it was demonstrated that
the transformation of the conductivity tensor assumes a complex and non-standard form.

A similar methodology was applied in Ref. [24] for a graphene sheet, where the
polarization tensor serves as the linear response tensor. The complete action, which includes
the Dirac electron, the classical electromagnetic field, and the effective action due to fermion
loop correction [34], yields the following set of Maxwell equations:

∂µFµν = −δ(z− a)Πνα Aα = −4π Jν, (1)

where z = a represents the position of the graphene plane and Πνα denotes the polarization
tensor resulting from the Dirac electron fermion loop. The current density assumes the
form of a boundary condition. Here, ∂µ ≡ ∂/∂xµ, Fµν represents the electromagnetic
tensor, and δ(z− a) is the Dirac delta function. By integrating the relationship (1) over an
infinitesimally small interval (a− ε, a + ε) with ε approaching zero, Equation (1) can be
transformed into Ohm’s law with the conductivity tensor,

σab =
Πab

iω
,

where the lower-case Latin letter indices take the values 1, 2.
The invariance of the boundary conditions with respect to 3-boosts,

Λ =

(
u0 −u
−u I + u⊗u

u0+1

)
, u = (u1, u2), (2)

along the graphene plane was utilized in Ref. [24] to determine the transformation of
the conductivity tensor of graphene to the laboratory frame, with u denoting the spacial
velocity and ⊗ representing the tensor product. In the current study, we employ this
approach to calculate the boost transformation of the isotropic conductivity tensor. The
conductivity tensor in the laboratory frame is represented by

σ =
ω′

ω
Gσ′GT , (3)
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where

G = I− ω

(ku)
u⊗ u
u0 + 1

+
u⊗ k
(ku)

,

k represents the wave vector and the prime denotes the quantities defined in the co-moving
frame.

In the framework of the scattering matrix approach [27], the Casimir energy density,
E , per unit area can be expressed in terms of the scattering matrix, S :

E =
i

4π

∫∫ d2k
(2π)2

∫ ∞

0
ln detS k3dk3√

k2 + k2
3

, (4)

where the S-matrix of the total system consists of the reflection, R, and transmission,
T , matrices:

S =

(
R T ′

T R′

)
.

The matrix (2) describes the scattering of the electromagnetic field:
(←

El
→
Er

)
= S

(→
El
←
Er

)
,

where the direction of the vector indicates the direction of the wave,
→
E ∝ e+ik3z,

←
E ∝ e−ik3z

and indexes ”l” and ”r” stand for electromagnetic field on the left and right sides of the total
system, correspondingly. The system, in general, can consist of a set of planes. The vectors
over the fields denote the wave direction. The scattering matrix S cannot be reduced to a
product of matrices for each plane [39].

The general relation can be transformed [27] into the following expressions for the
energy density, E , and the pressure, P , for real frequencies:

E = − 1
2i

∫∫ d2k
(2π)3 (I− − I+) and P =

∫∫ d2k
(2π)3 (J− + J+), (5)

where

I± =
∫ ∞

k
dω ln det

[
1− e±2iak3R(±k3)

]
, (6)

J± =
∫ ∞

k
dωk3

e±2iak3(trR(±k3)− 2e±2iak3 detR(±k3))

det
[
I− e±2iak3R(±k3)

] , (7)

R(±k3) = r′I(±k3)rI I(±k3), k3 =
√

ω2 − k2 and rA with A = I, I I denote the reflection
matrices. The integration in Equation (5) is taken over the xy-plane. Formulas (5) only
consider the propagating waves, because ω ≥ k. The subscript I(I I) indicates that all
reflection matrices are related to the rest (moving) plane.

The scattering matrix for each part of the system (each plane) has the following form:

SA =

(
rA t′A
tA r′A

)
,

with the corresponding index A = I, I I and argument. It connects the electromagnetic
waves on the left side (l) of the specific plane of the system with that on the right (r) side
by relation:

(←
El
→
Er

)
= SA

(→
El
←
Er

)
.
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The reflection matrices for the conductive plane were derived in Ref. [27] using the
boundary condition on the plane:

rA = r′A = − ω2ηA − k⊗ (kηA) + Iωk3 det ηA
ω2 tr ηA − kkηA + ωk3(1 + det ηA)

, (8)

where ηA = 2πσA, and σi is the conductivity tensor of the plane A = I, I I. In domain
ω < k, there are evanescent and waveguide modes [40], but, as demonstrated in this
Section below, through the rotation of the contour of integration to the imaginary axis, the
contribution of these modes is cancelled out with the energy of the boundary states of
corresponding modes.

Then, a rotation of the integration contour over the real axis, <ω, in I± (6) and J± (7)
is applied to the imaginary axis, =ω; see Figure 1.

Figure 1. The contours γ± of integration for I± (6) and J± (7) in the ω-plane. The integration over
imaginary frequency, ξ = −iω, yields the energy, E⊥. The potential presence of poles within the
contours may contribute to a non-zero energy E‖. ε denotes an infinitely small distance to the axes
and k is the wave vector.

After the rotation of the contour to the imaginary axis, two contributions survive,
which we refer to as E⊥ and E‖, corresponding to normal (real) and parallel (imaginary)
to the planes, respectively. The first contribution with integration along the imaginary
frequency, ξ = −iω, is given by

E⊥ =
∫∫ d2k

2(2π)3

∫ +∞

−∞
dξ ln det

[
1− e−2akER(ikE)

]
, (9)

where kE =
√

ξ2 + k2. The corresponding force is perpendicular to the planes, as is typical
for the Casimir force. This expression can be simplified by using the eigenvalues of matrix
R and can be represented as a sum of TE and TM contributions. The matrices r′I and rI I
do not commute (see below in this Section), and therefore the eigenvalues of R are not
a product of the eigenvalues of r′I and rI I . The eigenvalues of R can be found in closed,
albeit complicated, forms [24], corresponding to the contributions of the TM and TE modes
separately. Instead of applying this approach, we use the expression for energy in the
form [27] straghtforwardly including the conductivity matrices, ηA:
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E⊥ =
∫ d2k

2(2π)3

∫ ∞

−∞
dξ ln

(
1 + e−4akE

ξ2k2
E

bIbI I
det ηI det ηI I

− e−2akE

[
ξ2k2

E
bIbI I

[(1− det ηI)(1− det ηI I) + det(ηI − ηI I)]−
ξkE
bI
− ξkE

bI I
+ 1

])
, (10)

where bA = ξ2 tr ηA + (kkηA) + ξkE
(
1 + det ηA

)
. The E‖ contribution represents the

Casimir friction.
If the conductivity tensor is given by

ηA = ηTE
A I + (ηTM

A − ηTE
A )

k⊗ k
k2 , (11)

it possesses the eigenvalues ηTM
A and ηTE

A , corresponding to the TM and TE modes, respectively.
In particular, the graphene conductivity tensor has such a structure [34] with corresponding
conductivities of modes. The Hall conductivity gives an additional antisymmetric term [41]. In
this case, the expression (10) for Casimir energy can be transformed to the known [1] form of
sum contributions for the TE and TM modes:

E⊥ =
∫ d2k

2(2π)3

∫ ∞

−∞
dξ


ln


1− e−2akE

(
1 + kE

ξηTE
I

)(
1 + kE

ξηTE
I I

)


+ ln


1− e−2akE

(
1 + kE

ξηTM
I

)(
1 + kE

ξηTM
I I

)





.

In the case considered here, the conductivity of the moving plane does not have form (11),
and we use the Casimir energy in the form (10).

In Ref. [24], the normal force was considered for moving graphene with the following
conductivity in a co-moving frame:

η = ηgr
k̃
ω

(
I + v2

F
k⊗ k

k̃2

)
Φ̃
(

k̃
2m

)
, (12)

where ηgr = πe2/2 with e the electron charge, vF is the Fermi velocity,

Φ̃(y) =
2i
πy

(
1− y2 + 1

y
arctanh y

)
and k̃ =

√
ω2 − v2

Fk2. (13)

In the laboratory frame, the general structure of the moving plane’s conductivity
tensor (3) takes the form [24]

ηI I = i1I + i2k⊗ k + i3(k⊗ v + v⊗ k), (14)

where

i1 =
ηgrΦ̃′

ωk2k̃′

(
k2k̃′2 +

1− v2
F

1− v2 ((kv)2 − k2v2)k2
3

)
,

i2 =
ηgrΦ̃′

ωk2k̃′

(
k2v2

F +
1− v2

F
1− v2 v2k2

3

)
,

i3 =
ηgrΦ̃′

k2k̃′
1− v2

F
1− v2

(
k2 −ω(kv)

)
, (15)

and

k̃′ =

√

k̃2 +
1− v2

F
1− v2 [ω

2v2 + (kv)2 − 2ω(kv)], (16)
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is the Lorentz transformation of k̃ (13).
The reflection matrices ri (8), on the basis of eigenvectors, are given as

r̂I(k3) = −



k3η

ηk3+k̃
0

0 ηk̃
ηk̃+k3


 and r̂I I(k3) = −




k3η′

η′k3+k̃′
0

0 η′ k̃′

η′ k̃′+k3


, (17)

where the hat denotes the diagonalized reflection matrices, η = ηgrΦ̃(y), η′ = ηgrΦ̃(y′), and

T−1
A rATA = r̂A ⇔ rA = TA r̂AT−1

A . (18)

The matrices Ti diagonalize the reflection matrices ri and have the form

TI =

(
k2 k1
−k1 k2

)
and TI I =


 k2 − v2

k2
3

ω−(kv) k1 − v1ω

−k1 + v1
k2

3
ω−(kv) k2 − v2ω


.

It is worth noting that the eigenvalues of rI I can be obtained from the eigenvalues of
rI through a Lorentz transformation. Specifically, k3 → k3, k̃→ k̃′, and η → η′ under these
transformations, resulting in r̂I → r̂I I . This is expected, as eigenvalues are invariants of
a matrix.

The eigenvector basis of rI ,

a1 = (k2,−k1), a2 = (k1, k2) = k,

is orthogonal with a1 · a2 = 0, and a2
1 = a2

2 = k2. On the other hand, the eigenvector basis
of rI I ,

c1 =

(
k2 − v2

k2
3

ω− (kv)
,−k1 + v1

k2
3

ω− (kv)

)
,

c2 = (k1 − v1ω, k2 − v2ω),

is not orthogonal:

c1 · c2 =
k2 −ω(kv)

ω− (kv)
(kvn) 6= 0, (19)

where na = δa
3 with δa

b the Kronecker delta. Through straightforward calculations, the
following expression for the commutator is obtained:

[rI , rI I ] = ηη′
(1− v2

F)
2

1− v2
ω((kv)ω− k2)

k̃k̃′bIbI I
(k2

3k⊗ v−ω2v⊗ k), (20)

Therefore, the commutator [rI , rI I ] 6= 0 and the rI and rI I cannot be diagonalized simultaneously;
this means that the eigenvalues of rI · rI I are not a product of the eigenvalues of the matrices
rI and rI I .

The straightforward calculations give the following expression for the eigenvalues of
matrix R:

rTM/TE(k3) =
ηη′

2PQP′Q′
{

α
(

k3

(
k2Q′ + Q

(
(ku)2 − k2

3

))
+ α
(
(ku)ω− k2

3u0

)
2
)
+ 2k2

3QQ′

±α

√(
k3
(
k2Q′ + Q

(
(ku)2 − k2

3
))

+ α
(
(ku)ω− k2

3u0
)

2
)2

+ 4k4
3QQ′((ku)2 − k2u2)

}
, (21)

where α = 1− v2
F, ± defines the TM (plus sign) and TE (minus sign),

Q = k̃η + k3, P = k̃ + ηk3, and Q′ = k̃′η′ + k3, P′ = k̃′ + η′k3.
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In the case of zero velocity, u = 0, r̂ = r̂2
I , is obtained, as expected. To establish the

correct correspondence, the following square root sign convention is employed:
√
(αk2 + 2k3Q)

2 = αk2 + 2k3Q, (22)

The eigenvalues (21) have quite a complex form. Hence, expression (10) is used where the
Casimir energy is directly expressed in terms of the tensors’ conductivities.

Let us briefly discuss the contribution E‖, which can contribute to the force along the
planes. The contribution to the Casimir pressure takes the form

P‖ =
∫∫ d2k

(2π)3

{∮

γ−
dωk3

e−2iak3(trR(−k3)− 2e−2iak3 detR(−k3))

det
[
I− e−2iak3R(−k3)

]

+
∮

γ+

dωk3
e2iak3(trR(k3)− 2e2iak3 detR(k3))

det
[
I− e2iak3R(k3)

]
}

, (23)

with the contours γ± as shown in Figure 1. This expression only has a non-zero value if
poles appear inside the contours, satisfying the relations

det
[
I− e±2iak3 r′1(±k3)r2(±k3)

]
= 0. (24)

The relation (24), within various contexts, has been noted in the earlier studies
[19,28–30,42]. If the matrix R has the eigenvalues rTM and rTE, this relation can be separated
into the two scalar relations:

1− e±2iak3 rTM(±k3) = 0 and 1− e±2iak3 rTE(±k3) = 0, (25)

respectively.
The solutions of the relations (25) must possess imaginary parts to contribute as

residues. It can be demonstrated that solutions to these relations exist if, and only if,

|rTM(±k3)| > 1 and |rTE(±k3)| > 1. (26)

Since sign(=k3) = sign(=ω), then

∣∣∣e±2iak3
∣∣∣ =

[
e±2iak3 e∓2iak∗3

]1/2
= e∓2a=k3 = e−2a|=k3| < 1.

Given this inequality, one can obtain the inequalities (26) from the relations (25).
Then, it follows that the condition P‖ 6= 0 is associated with virtual photon production

because the modulus of the reflection coefficients is greater than 1. Lifshitz demonstrated
[43] that without relative velocity, Equation (24) has no solutions since the inequalities (26)
cannot be satisfied. This statement can be proven for graphene with zero mass gap (for
simplicity). For velocity v = 0 and m = 0,

r−1
TM(±k3) =

(
1± k̃

ηk3

)2

=

(
1 +

k̃
ηgrk3

)2

,

r−1
TE (±k3) =

(
1± k3

ηk̃

)2
=

(
1 +

k3

ηgr k̃

)2

, (27)

are obtained. Then,

∣∣∣r−1
TM(±k3)

∣∣∣ =
(

1 +
|k̃|2

η2
gr|k3|2

+ 2
<k̃<k3 +=k̃=k3

ηgr|k3|2

)2

. (28)
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It can be straightforwardly shown that <k̃<k3 +=k̃=k3 > 0, thus, satisfying
∣∣∣r−1

TM(±k3)
∣∣∣ > 1. (29)

Hence, one concludes that the inequalities (26) cannot be satisfied in the case considered
in this paper, indicating there are no solutions for Equation (24). However, one would
expect that solutions may exist due to relative motion of the planes.

3. The Case of Isotropic Conductivity

The case of isotropic conductivity can be obtained by taking the formal limits vF → 0
and Φ̃ → 1 (m → 0) in Equation (12) and replacing the graphene conductivity, ηgr, with
the conductivity, ηi, of the corresponding plane. After taking these limits, the conductivity
tensor for the plane at rest becomes diagonal ηI = ηII and k̃′ = γωv, where ωv = ω− kv,
γ = 1/

√
1− v2 is the relativistic factor, and

ηI I = i′1I + i′2k⊗ k + i′3(k⊗ v + v⊗ k), (30)

where

i′1 =
ηI Iγ

(
k2ω2

v + ((kv)2 − k2v2)k2
3
)

k2ωωv
, i′2 =

ηI Iγv2k2
3

k2ωωv
, i′3 =

ηI Iγ

k2ωv
(k2 −ω(kv)). (31)

The quantity ωvγ represents the frequency of photons in a laboratory that was emitted in a
co-moving frame.

By performing straightforward calculations at the imaginary axis ω = iξ, one obtains:

bI = (ηIξ + kE)(ξ + ηIkE), bI I =
ξ

γξv
(ηI Iγξv + kE)(γξv + ηI IkE),

det(ηI − ηI I) = (ηI − ηI I)
2 + ηIηI I

(
γv2 k2

E
ξξv

+ 2(1− γ)

)
, det ηA = η2

A, (32)

where ξv = ξ + ikv. Then, we use the polar coordinates for k in Equation (10), kv = kv cos ϕ
and transform the coordinates of the plane k ∈ [0, ∞), ξ ∈ (−∞, ∞) to polar coordinates
ξ = kE cos θ, k = kE sin θ. After these changes, the dependence of kE only survives in the
exponents. Changing akE = y, one observes that the energy depends on the interplane
distance as 1/a3 for constant conductivities, as expected [35]. Thus, the energy and pressure
have the following form (x = cos θ):

E⊥1,2 = <
∫ ∞

0

y2dy
(2πa)3

∫ 1

0
dx
∫ π

0
dϕE1,2, P⊥1,2 =

3
a
E⊥1,2, (33)

where

E1,2 = ln

{
1 + e−4y x2η2

I η2
I I

β I β I I

−e−2y

[
x2

β I β I I

(
(1− ηIηI I)

2 + ηIηI I

(
γv2

xxv
+ 2(1− γ)

))
− x

β I
− x

β I I
+ 1

]}
, (34)

and

β I = (ηI x + 1)(x + ηI), β I I =
x

γxv
(ηI Iγxv + 1)(γxv + ηI I), xv = x + iv

√
1− x2 cos ϕ. (35)
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If the first plane (at rest) is a perfect (ideal) conductor, one takes the limit η1 → ∞
and obtains

Eid,2 = ln

[
1 + e−4y xη2

I I
β I I
− e−2y

(
xη2

I I
β I I
− x

β I I
+ 1

)]
, (36)

whereas for two ideal planes,

Eid,id = 2 ln
(

1 + e−2y
)

, (37)

the energy does not depend on the velocity.
The expressions (33) and (34) coincide with those obtained in Ref. [11], where two

planes of finite thickness with relative lateral motion were considered. As noted in Ref. [44],
the typical reflection coefficients cannot be used for 2D (two-dimensional) materials due to
the impossibility of taking the limit of zero thickness. The reflection coefficients in this case
have to be calculated using scattering theory [45] or 2D quantum electrodynamics[34]. In
the case under consideration here, one needs to use the reflection coefficients (27) for the
plane at rest and the same expressions, but with a boosted wave vector (16), for the moving
plane. Then, one takes limit vF → 0 to obtain the isotropic conductivity. Finally, one arrives
at Equations (33) and (34). For example, the coefficient at e−4y in Equation (34) reads

x2η2
I η2

I I
β I β I I

= rE1rE2rB1rB2

in the notations of Ref. [11].
Without a relative movement, v = 0, the results obtained in Ref. [35] are reproduced:

E = ln
(

1− e−2y ηIηI I
(ηI + x)(ηI I + x)

)
+ ln

(
1− e−2y ηIηI I x2

(xηI + 1)(xηI I + 1)

)
= ETM + ETE, (38)

the sum of TM and TE contributions.
Let us consider the constant conductivities case with equal conductivities: ηI =

ηI I = η = const. For v = 0, one obtains from Equation (33) the sum of the TM and TE
mode contributions,

E0
1,2 = ln

(
1− e−2y η2

(x + η)2

)
+ ln

(
1− e−2y x2η2

(1 + xη)2

)
,

E0
id,2 = ln

(
1− e−2y η

x + η

)
+ ln

(
1− e−2y xη

1 + xη

)
, (39)

respectively.
In the case with η � 1, the Casimir energies read for v = 0:

E0
1,2 =

η

a3
180ζR(3) + π4 + 60π2 − 1440 ln 2

2880π2 = −3.2× 10−3 η

a3 ,

E0
id,2 =

η

a3

[
ln η

32π2 +
90ζR(3) + π4 + 15π2 − 405

2880π2

]
= −

[
3.1 ln η−1 + 1.8

]
× 10−3 η

a3 . (40)

To move to the dimensional SI (International System) units, one has to multiply the
relations (39) and (40) by h̄c = 3.16× 10−26 J ·m.

For small velocity and conductivity, specifically if v� η � 1, one obtains Equation (33):

∆vE⊥1,2

E0
1,2

=
∆vP⊥1,2

P0
1,2
≈ −0.19

(
v
η

)2
,

∆vE⊥id,2

E0
id,2

=
∆vP⊥id,2

P0
id,2

≈ − 0.3
ln η−1 + 0.57

(
v
η

)2
, (41)
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where ∆vE⊥i,k = E⊥i,k − E0
i,k. The relative velocity correction is quadratic in the velocity and is

negative, meaning the force is decreased due to the motion of the planes.
Numerical evaluations of Equation (33) are shown in Figure 2 for two systems:

(1, 2)—two conductive planes with constant conductivity η (solid lines) and (id, 2)—the
first plane at rest, which is a perfect metal (dashed lines). We calculated the velocity
correction to the energy: ∆vE⊥/E0 = (E⊥ −E0)/E0, where E0 is the energy without relative
movement. The velocity correction is negative for both systems and exhibits quadratic
behavior, proportional to v2, for small velocities, v � η � 1. The absolute value of the
correction is larger for the first system.
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Figure 2. The velocity correction ∆vE⊥/E0 = (E⊥ − E0)/E0 for η = 0.01, 0.1. In the case of small
velocity and conductivity, v � η � 1 (left and middle), a quadratic correction is observed in
accordance with Equation (41). The right plot shows the correction for all possible velocities. The
solid lines represent two planes with equal conductivity, as given by Equation (34), while the
dashed lines represent systems where one plane is stationary with perfect conductivity (described by
Equation (36)), and the second plane possesses isotropic conductivity (described by Equation (34)).
Here, c denotes the speed of light.

The above derivation is applicable for isotropic, but frequency-dependent (temporal
dispersion), conductivity, η = η(ω). Let us consider the simple enough case of Drude-like
conductivity with

η1 =
ηΓ

Γ + ξ
, η2 =

ηΓ
Γ + γξv

, (42)

where parameters are considered for graphene: Γ = 6.365 eV and η = ηgr = e2/4, where Γ
denotes a scattering parameter [36]. After changing the integrand variables as in Equation
(33) the Casimir energy acquires an additional dependence on the interplane distance
through conductivity:

ηI =
ηgr(aΓ)
(aΓ) + yx

, ηI I =
ηgr(aΓ)

(aΓ) + γyxv
. (43)

For a = 100 nm and Γ = 6.365 eV, one has aΓ = 3.225. For large values of aΓ � 1, the
conductivities ηI = ηI I = ηgr, consistent with the constant conductivity model, are valid
for large interplane distances.

The Casimir energy is numerically evaluated and presented in Figure 3. It can be
observed that as the interplane distance increases, the energy approaches that of the
constant conductivity case (blue lines), as expected.
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Figure 3. The velocity correction ∆vE⊥/E0 = (E⊥ − E0)/E0 for the Drude model with the parameters
of the interplane distance, a = 10 nm and 100 nm, and constant conductivity, η = ηgr, the graphene
conductivity, for small velocities, v � 1 (left), and the entire range of v (right). The solid lines
correspond to two planes with equal conductivity, and the dashed lines represent a scenario where
one plane is stationary with perfect conductivity. It is worth noting that as the interplane distance
increases, the curves approach the scenario of constant conductivity.

To compare the results obtained here with the analysis of graphene in Ref. [24],
let us consider the case of two graphene sheets. The energy initially increases with
velocity and then becomes negative, reaching a maximum at vc = vF + (ma)/2. When
m = vF = 0, the region with positive energy disappears. Conversely, for two planes
with constant conductivity, the energy is always negative for all values of velocity. Both
cases exhibit a velocity correction of v2 order. Regarding the interplane distance, different
behaviors are observed. For two planes with constant conductivity, the energy has the
1/a3-dependence for any a distance, while for graphene, this dependence is only evident
for large distances. This is expected, as the constant conductivity model for graphene is
valid for large interplane distances. In the case of a system consisting of a perfect conductor
and graphene, the energy is zero up to a specific velocity, while in the aforementioned
scenario, a quadratic behavior is observed at the beginning. The same conclusion holds for
the Drude model of conductivity (42). For large interplane distances, both models closely
align, while for small distances, a weak dependence on distance is observed.

4. Conclusions

In this paper, we investigated the normal (perpendicular to the planes) Casimir force
between two conductive planes with an isotropic conductivity that moves laterally with
a relative velocity v. Within the framework of scattering theory, the main challenge lies
in determining the conductivity of a moving plane in a laboratory frame. In a co-moving
frame, the isotropic conductivity is represented by a coefficient in Ohm’s law, J′ = σ′E′,
where E′ and J′ denote fluctuations in the electric field and corresponding current density.
Transforming this relation to the laboratory frame, where the first plane is at rest, is not a
trivial task. A simplified approach [31,32] to address this issue is to start from the linear
relation between current density and electromagnetic vector potential, Jµ = Πµ

ν Aν, which
is commonly used in plasma physics [33]. A similar approach was employed in Ref. [34],
where the polarization tensor served as the linear response tensor Πµ

ν .
Even in the case of constant conductivity, the transformation of conductivity does

not have quite a simple form [32]. A similar methodology was applied in Ref. [24], where
the linear relations for current and electromagnetic potential, as well as the conservation
of boundary conditions, were utilized. To obtain isotropic conductivity, we adapted the
expressions derived for graphene, taking the limits vF → 0 for Fermi velocity and m→ 0
for mass gap. With these limits, the conductivity tensor in the co-moving frame becomes
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diagonal. In the laboratory frame, it has the form (30). Using these tensors, the Casimir
energy can be calculated using expression (10), originally derived in Ref. [27].

The expressions (34) obtained for two conductive planes and for the system (perfect
conductivity)/(constant conductivity) involve two small dimensionless parameters: the
velocity v of the plane and the conductivity η = 2πσ (dimensionless for 2D systems). In
the case where v� η � 1, the relative energy correction due to velocity is approximately
given by the (v/η)2 behaviour (41). This quadratic v-dependence is typical for normal force
and different directions of motion [7,8,10,24]. The energy dependence on the interplane
distance is 1/a3 for any distance, which is typical for the constant conductivity case [35], as
the constant conductivity model is valid for large distances where the Casimir regime is
satisfied. The Drude model of conductivity shows similar behavior of the system with a
weak dependence on the interplane distances (see Figure 3).

The constant conductivity model, discussed in Refs. [6,35–37], quite well describes the
Casimir effect for graphenes. However, in the case of the normal force considered in this
paper, there is a significant qualitative difference. When the mass gap m 6= 0, the velocity
correction is positive up to its maximum value of v = vF + am/2, whereas the constant
conductivity model gives a negative correction. As stated in Ref. [24], spatial dispersion
plays a crucial role in the Casimir effect. For low conductivity values, the Casimir effect
exhibits a linear dependence on conductivity in the constant conductivity case, whereas it
becomes quadratic when the spatial dispersion of conductivity is taken into account.

Our future investigation concerns the quantum friction in the case of constant and
isotropic conductivity. It is anticipated that the magnitude of the friction force is smaller
by orders of magnitude [16] compared to the normal force. Nevertheless, the study is of
importance due to quite a wide range of the different results obtained for quantum friction.
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Casimir–Lifshitz Frictional Heating in a System of Parallel
Metallic Plates
George V. Dedkov

Institute of Informatics, Electronics and Robotics, Kabardino-Balkarian State University, Chernysheskogo 174,
Nalchik 360004, Russia; gv_dedkov@mail.ru

Abstract: The Casimir–Lifshitz force of friction between neutral bodies in relative motion, along with
the drag effect, causes their heating. This paper considers this frictional heating in a system of two
metal plates within the framework of fluctuation electromagnetic theory. Analytical expressions for
the friction force in the limiting cases of low (zero) temperature and low and high speeds, as well
as general expressions describing the kinetics of heating, have been obtained. It is shown that the
combination of low temperatures (T < 10 K) and velocities of 10–103 m/s provides the most favorable
conditions when measuring the Casimir–Lifshitz friction force from heat measurements. In particular,
the friction force of two coaxial disks of gold 10 cm in diameter and 500 nm in thickness, one of which
rotates at a frequency of 10–103 rps (revolutions per second), can be measured using the heating effect
of 1–2 K in less than 1 min. A possible experimental layout is discussed.

Keywords: Casimir–Lifshitz friction force; quantum friction; radiative heating

1. Introduction

Over the past two decades, much effort has been spent investigating the static [1,2]
and dynamic [3,4] Casimir effect in various geometric configurations, including a system
of two parallel metal (dielectric) plates separated by a narrow vacuum gap. The main
objectives of these studies are the properties of a fluctuating electromagnetic field and its
interaction with matter on the nanoscale. Measurement of these effects paves the way to
the core of nonequilibrium quantum field theory [5–8].

In addition to the attractive (in most cases) Casimir forces between electrically neu-
tral bodies at rest, a dissipative tangential force arises when one or both bodies move
relative to each other. The sources of these forces are dissipative effects within the plates
(Joule losses). In this case, the corresponding fluctuation electromagnetic forces are called
“van der Waals” [9], “Casimir” [10], or “quantum” [11] forces of friction. As it looks, it is
convenient to use the general name “Casimir-Lifshitz” (CL) friction force, which incorpo-
rates all the features of these dissipative forces regarding their distance, temperature, and
material properties.

It is worth noting that, despite of many intense efforts, no convincing experimental
measurements of CL friction forces have been carried out to date. This is due not only
to the small magnitude of these forces relative to the “ordinary” Casimir forces (forces
of attraction) but also to the imperfections of the measurement layout. In particular, the
effective interaction area and relative velocity are significantly limited in the “pendulum”
measurement scheme used in Ref. [12]. Other experimental scenarios [9,13–17] seem to
be more exotic. Recently, in Refs. [15–17], to measure traces of quantum friction, the
authors suggested a scenario in which the nitrogen vacancy center in diamond acquires
the geometric phase during rotation at a frequency of 103–104 rps (revolutions per second)
near the Si- or Au-coated surface. Nitrogen vacancy centers have been proposed for use as
the main components of quantum computer processors [18].

Nearly all experiments to measure Casimir–Lifshitz forces (both conservative and
dissipative) have been performed with well-conducting materials (metals like gold) under
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near-normal temperature conditions. Regarding Casimir–Lifshitz friction forces, it has
usually been assumed that they decrease with decreasing temperature as the resistivity
of metals and ohmic losses decrease. Therefore, at first glance, the friction force also
does. The conclusion that for metals, the temperature behavior of CL friction is not that
simple was first made in Ref. [19] and later discussed in [20,21]. It has been shown that at
temperatures T << θD (θD is the Debye temperature), the force of friction can increase by
several orders of magnitude compared with normal conditions. However, several issues
have not been elucidated, in particular, the relation between friction and heating effects at
thermal nonequilibrium, the relation between quantum friction and friction at close to zero
temperature, and the kinetics of radiation heating, etc. In particular, the interplay between
nonequilibrium dynamics, the quantum and thermal properties of the radiation, and the
confinement of light at the vacuum-surface interface may lead to several intriguing features
caused by nonequilibrium thermodynamics of quantum friction [22–25]. Some other effects
were considered in Refs. [26–30].

The main objective of this paper, in addition to studying CL friction and heating in a
system of parallel metallic plates of nonmagnetic metals like gold, is to substantiate the
possibility of determining the friction force from thermal measurements. In the calcula-
tions, the general results of fluctuation electrodynamics [31,32] are used, without a linear
expansion in velocity in the basic expressions. It is shown that identical metal plates with
different initial temperatures, moving with a constant nonrelativistic velocity, V, relative
to each other, rapidly reach a state of quasithermal equilibrium and continue to heat up
further. The heating rate is then determined by the power of the friction force.

The outline of this paper is as follows. In Section 2, the general relations between
radiative heating and friction force for parallel plates in relative nonrelativistic motion
are given. In Sections 2.2, 2.3, 2.4, and 2.5 I consider the simplest case of identical plates
of Drude metals having the same material parameters and temperature, T. Analytical
expressions are obtained for the friction force of metal plates in the limiting cases of low
(zero) temperature and low and high speeds, as well as general expressions describing
the kinetics of heating. In Section 3, the results of the numerical calculations (heating
rates of plate 1 and friction parameter, η = Fx/V, with Fx the x-component of the friction
force) are given for different thermal configurations and velocities. The analytical results of
Section 2 are compared with the results of numerical integration according to the general
formulas. Section 4 is devoted to a brief discussion of a possible layout of an experiment for
determining the CL friction force by measuring the heating rates of gold plates. Concluding
remarks are given in Section 5. Appendixes A–C contain the details of the analytical
calculations. All formulas are written in the Gaussian units, } and c are the reduced Planck
constant and the speed of light in vacuum, respectively, T denotes the absolute temperature
and is given in units of energy.

2. General Results
2.1. Radiative Heating and Friction Force for Parallel Plates in Relative Motion

Here, we use the standard formulation of the problem, in which the plates are as-
sumed to be made of homogeneous and isotropic materials with permittivities, ε1, ε2, and
permeabilities, µ1, µ2, depending on the frequency, ω, and local temperatures, T1 and T2
(Figure 1).
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Figure 1. Configuration of parallel plates in relative motion. See text for details. 
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In line with Refs. [31,32], the power, FxV, of the friction force x-component, Fx, per
unit surface area applied to plate 2 in the laboratory coordinate system associated with
plate 1 is calculated using

FxV = P1 + P2/γ. (1)

Here, P1 and P2 are the heat fluxes of the plates from a unit surface area per unit time,
and γ =

(
1−V2/c2)−1/2. For all quantities, indices 1 and 2 here and in what follows

correspond to the numbering in Figure 1. Moreover, P1 and P2 are calculated in the rest
frames of the plates. General relativistic expressions for P1 and P2 were obtained in Ref. [31].
In the nonrelativistic case, V/c� 1, but taking retardation into account, a more compact
form of P1 and P2 reads [32]:

P1 =
}

4π3
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0

dωω
∫

d2k
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∣∣Qµ

∣∣2 Im
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}ω−
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, Qµ↔ Q ε. (4)

Here, ω− = ω− kxV, q =
√

k2 −ω2/c2, q1,2 =
√

k2 − ε1,2µ1,2ω2/c2, and a is the gap

width in Figure 1. Variables with a tilde, such as
∼
q2, should be used replacing ω → ω− . The

terms (µ1,2 ↔ ε1,2) are defined by the same expressions with appropriate replacements. In
the general case, the expressions depending on ε1,2 and µ1,2 correspond to the contributions
of electromagnetic modes with P (transverse magnetic, TM) and S (transverse electric, TE)
polarizations. The quantities P1 and P2 are directly related to the heating (cooling) rates of
the plates: dQ1/dt = −P1 and dQ2/dt = −P2, where t denotes the time.

Using Equations (1)–(4), the power of the friction force FxV = P1 + P2 takes the form:

FxV =
}

4π3

∞∫

0

dω
∫

d2k(kxV)
|q|2
∣∣Qµ

∣∣2 Im
(

q1
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)
Im

(∼
q2
µ2

)[
coth

(
}ω

2T1

)
− coth

(
}ω−

2T2

)]
+ (µ1,2 ↔ ε1,2). (5)

Formula (5) can be also recast into a more familiar form in terms of the Fresnel
reflection coefficients [9,32].

At T1 = T2 = T, due to the symmetry of the system, the heating rates of identical plates
are equal. One then has FxV = 2P1,2, and the friction force can be determined using the heat-
ing rate of any plate. For T1 6= T2, it follows that P1 6= P2, but P1(T1, T2) = P2(T2, T1) and,
correspondingly, P1(T1, T2) + P2(T1, T2) = P1(T1, T2) + P1(T2, T1) = P2(T1, T2) + P2(T2, T1).
This means that when measuring the CL friction force, it is sufficient to control the temper-
ature of only one plate.
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2.2. Metal Plates in the Drude Model

In order to treat the problem of temperature-dependent CL friction force between
ordinary metals, they are described using the Drude model in terms of plasma frequency,
ωp, and damping parameter, ν(T) = ω2

pρ(T)/4π, with ρ(T) being the resistivity:

ε(ω) = 1−
ω2

p

ω(ω + i·ν(T)) . (6)

Figure 2 plots the dependences ρ(T) corresponding to the Bloch–Grüneisen (BG)
model [33] and the modified Bloch–Grüneisen (MBG) model (BG scaled in Figure 2 to the
data from Ref. [34]). In the former case, the residual resistance is zero or can be specified by
indicating the effective temperature, below which it is constant. In the MBG model, the
residual resistivity is ρ0 = 2.3× 10−10Ω·m (see Figure 2).
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Figure 2. Resistivity of gold [34]. To obtain resistivity in the Gaussian units, one should use the
relation Ω·m = (1/9)10−9s. The ‘zero RR’ stands for zero residual resistance, TD is the Debye
temperature, and ρ ∼ T denotes a linear fit. See text for more details.

Hereinafter, for simplicity, the plates are assumed been made of similar nonmagnetic
metal (µ1 = µ2 = 1) with the same plasma frequency ωp, but different ν(T) dependence.

Since ε(ω)� 1 for good conductors and the inequality becomes stronger as T → 0,
the terms with ε1,2 in Equations (2), (3) and (5), corresponding to modes with P-polarization,
are negligible compared to the terms with µ1,2, corresponding to modes with S-polarization.
Therefore, in what follows, the contributions of P modes are omitted.

When calculating the integrals in (2), (3), and (5), it is convenient to introduce a new fre-
quency variable ω = νm(T1, T2)t, with νm(T1, T2) = max(ν1(T1), ν2(T2)) and νi(Ti), i = 1, 2,
being the damping parameters of plates 1 and 2 depending on their temperatures T1 and T2,
respectively. The absolute value k of the two-dimensional wave vector (using the polar coor-
dinates k, φ in the plane (k x, ky

)
) is expressed as k =

(
ωp/c

)√
y2 + β2

mt2 in the evanescent
sector k > ω/c (0 ≤ y < ∞) and k =

(
ωp/c

)√
β2

mt2 − y2 in the radiation sector k < ω/c
(0 ≤ y ≤ βmt). Here, the parameters βm = νm/ωp, αi = }νi/Ti, γi = νi/νm, λ = ωpa/c,

ζ = (V/ c)βm
−1., and K =

hν2
m(ωp/c)

2

2π3 are introduced. With these definitions, for k > ω/c,
Equations (2), (3) and (5) take the form:

P1 = K
∞∫

0

dt
∞∫

0

dyy3 f 1(t, y), (7)

P2 = −K
∞∫

0

dt
∞∫

0

dyy3 f 2(t, y), (8)

266



Physics 2024, 6

FxV = K
∞∫

0

dt
∞∫

0

dyy3
√

y2 + β2
mt2 f

3
(t, y), (9)

f1(t, y) = t
π∫

0

dφ
Imw1Imw2

|D|2
Z(t, y, φ), (10)

f2(t, y) =
π∫

0

dφt−
Imw1Imw2

|D|2
Z(t, y, φ), (11)

f3(t, y) = ζ

π∫

0

dφcosφ
Imw1Imw2

|D|2
Z(t, y, φ), (12)

Z(t, y, φ) = coth
(

α1t
2

)
− coth

(
α2t−

2

)
, (13)

w1 =

√
y2 +

t
t + i·γ1

, w2 =

√
y2 +

t−

t− + i·γ2
, t− = t− ζcosφ

√
y2 + β2

mt2, (14)

D = (y + w1)(y + w2)exp(λy)− (y− w1)(y− w2)exp(−λy). (15)

In the sector k < ω/c, Formulas (14) and (15) should be modified by replacing y→ iy
and substituting βmt for ∞ in Equations (7)–(9) in the integrals over y. The expressions for
Imw1,2 can be additionally simplified. For example, it follows that

Imw1 =

(√{
γ2

1y2 + (1 + y2)t2
}2

+ γ2
1t2 − γ2

1y2 −
(
1 + y2)t2

)1/2
sgn(−t)

√
2
(
γ2

1 + t2
) . (16)

The Imw2 is defined by the same expression (16), substituting γ2 for γ1 and t− for t.
For two identical plates at quasithermal equilibrium, it follows that γ1 = γ2 = 1, and a
simpler useful expression is obtained by expanding the square root in Equation (16) and
leaving the expansion terms up to the second order:

Imw1 ≈
|t|·sgn(−t)

2
√
(1 + t2)(y2 + (1 + y2)t2)

. (17)

In this case, an approximate analytical calculations can be done.

2.3. Quantum Friction

In the case T1 = T2 = 0, corresponding to the conditions of quantum friction, the main
role is played by the evanescent modes k > ω/c. At finite temperatures, the evanescent
modes make the dominant contribution at a < 1 µm. This range of distances is highly
promising experimentally. For this reason, hereinafter, let us consider only evanescent
modes, omitting the small term β2

mt2 in Equations (9), (14) and other formulas. Therefore,
at zero temperature, substituting the identity Z(t, y, φ) = sgn(t)− sgn(t− ζycos(φ)) into
Equation (9) yields:

FxV = 2Kζ

∞∫

0

dyy4

π
2∫

0

dφcosφ

ζycosφ∫

0

dt
Imw1Imw2

|D|2
. (18)
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The most straightforward asymptotics of Equation (18) can be worked out for two
identical plates in the limit of low velocities, ζ � 1. Using Equations (15) and (17),
one obtains:

Imw1Imw2 → −
t(ζycosφ− t)

4y2 , |D|2 → 1
16

y−4exp(−2λy). (19)

Inserting Equation (19) into Equation (18) yields:

FxV = −πK
212

ζ4

λ2 = − }ωp
2

213π2

(ωp

c

)2
(

V
c

)2( V
aν0

)2
= − 1

29
}

ρ02a2

(
V
c

)4
, (20)

where ρ0 is the residual resistivity corresponding to the zero-temperature damping factor
ν0 = ν(0). The limit of high velocities, ζ � 1 is more laborious. A reasonable representation
of the double integral in Equation (9) can be worked out using an approximate expression
for Imw1Imw2, based on Equation (17):

Imw1Imw2 =
|t(b− t)|sgn(t)sgn(b− t)

4
[
(1 + t2)

(
1 + (t− b)2

)
(y2 + t2(1 + y2 )

)(
y2 + (t− b)2(1 + y2

))]1/2 . (21)

where b = ζycosφ. The product Imw1Imw2, as a function of t in the range 0 ≤ t ≤ b, reaches
its maximum close to the point t = b/2, with zeroing at the end points t = 0, t = b of the
integration domain of the inner integral in Equation (9). At the same time, the dependence
on t in |D|2 is much weaker. By virtue of this, t = b/2 was inserted into the denominator of
Equation (21) and into |D|2 (in the latter case, cosφ ≈ 1 isalsoused). Expression (21) then
takes the form

Imw1Imw2 ≈ −
t(b− t)

4[ (1 + b2/4)(y2 + b2(1 + y2 )/4)]
. (22)

With these transformations, it follows that (see Appendix A):

FxV = −Kζ

2

∞∫

0

dy
y4

|D|2
π/2∫

0

dφ
cosφ

ψ(y, φ)

ζycosφ∫

0

dtt(ζycosφ− t), (23)

where |D|2 and ψ(y, φ) are calculated using Equations (A2) and (A3). The integrals over t
and φ are calculated explicitly, and finally, we obtain (see Equations (A4) and (A6)):

FxV = −}ν0
2

3π2

(ωp

c

)2
∞∫

0

dy
y5exp(−2λy)
(

y +
√

1 + y2
)4

(
1

y2(1 + y2)
− 2

y2
√

y2ζ2 + 4
+

2
(1 + y2)

√
(1 + y2)ζ2 + 4

)
. (24)

As follows from Equation (24), in this approximation, the power of the quantum
friction force does not depend on the velocity. However, it is worth noting that the condition
ζ � 1 implies ρ0ωp � 4πV/c, and along with V/c � 1, it can only be satisfied if ρ0 is
more than three orders of magnitude smaller than the MBG value shown in Figure 2.
Interestingly, for ζ � 1, Equation (24) also agrees quite well with the numerical calculations
and approximation (20) (see Section 3.2 below).

2.4. Low Temperatures, Linear in Velocity Approximation

In the quasiequilibrium thermal regime, T1 = T2 = T, for two identical metal
plates in the linear in velocity approximation, Equations (5) and (9) can be recast into
the form of [19,20]:

FxV = −}V2

8π2

(ωp

c

)4
α−1Y1(λ, α), (25)
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Y1(λ, α) = α2
∞∫

0

dt
sinh2(αt/ 2)

∞∫

0

dyy5 (Imw1)
2

|D|2
. (26)

In this limit, the friction parameter, η = Fx/V, does not depend on V. It is the
dependence Fx ∝ α−1 in Equation (25) that leads to a large enhancement of friction at low
temperatures, when α = }ν(T)/T → 0, because the function Y1(λ, α) weakly depends on
α. The main contribution to Y1(λ, α) in this case makes the values t < 1, y ∼ 1/ 2λ ∼ 1,
and one can again use Equation (17) for Imw1. Meantime, α2sinh−2(αt/ 2) ≈ 4/t2 (this
is a suitable approximation at α < 0.3) and |D|2 ≈ 16y4exp(2λy). Making use of these
simplifications in Equation (26), one arrives at (see Appendix B)

Y1(λ, α) ≈ χ(λ) =
π

32

{
π

4λ
[H1(2λ)− N1(2λ)]− 1

4λ2

}
, (27)

where H1(x) and N1(x) are the Struve and Neumann functions [35], respectively. Using
the series representations of these functions yields:

χ(λ) =





π
64

(
1
λ − 1

2λ2 +
1

4λ3 + . . .
)

, λ� 1,

π
32

(
1
4 + 2λ

3 − 2λ(lnλ + 0.577)
)

, λ� 1.
(28)

A more straightforward and physically transparent low-temperature representation of
Equation (25) is obtained by using the relation ν(T) = ω2

pρ(T)/4π between the damping
factor and resistivity, yielding

FxV = − 1
2π

(
V
c

)2(ωp

c

)2 T
ρ(T)

χ(λ). (29)

Combining the relation α� 1, which implies }ν(T)� T, and ζ � 1, which implies
the limit of low velocities V/c� ν(T)/ωp, one concludes that the Formula (29) holds at

}ωpV/c� }ν(T)� T. (30)

As a result, the conditions of a low-temperature increase in friction and the applicabil-
ity of the low-speed approximation are met at V/c � T/ωp}. For gold, at T = 1 K, this
implies V/c� 1.5× 10−5.

According to Refs. [19,20], the dependence (29) is associated with a growing penetra-
tion depth of S-polarized electromagnetic modes and an increase in their density at low
temperatures. A significant low-temperature increase in the friction parameter was also
noted in the case of the movement of a metal particle above the metal surface [21].

2.5. Low Temperatures, High-Velocity Limit

The limit ζ � 1 at finite but low temperatures ( α� 1) can be analyzed similarly to
the case of zero temperatures using the properties of the function (21). When substituting
Equation (21) into Equation (9) with allowance for Equation (13), the first exponential term
in Equation (13) makes the dominant contribution at t ∼ 1� b = ζycosφ. Due to this, let
us take an advantage of the substitution |t− b| → b in the denominator of Equation (21).
For the second term in Equation (13), a new variable t′ = t − b is introduced and the
substitution |t′ + b| → b is made in the denominator of Equation (21), while the integral (9)
is then determined using the large exponential factor (exp(αt′)− 1)−1 at t′ ∼ 1� b. Then,
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taking into account these transformations in Equation (9), and summing both contributions,
the double integral in Equation (9) finally takes the form (see Appendix C)

I ≈ ζ2

2

∞∫

0

dyy4|D|−2

π
2∫

0

dφψ1(y, φ)

∞∫

0

dt
t

(eαt − 1)
ψ2(y, φ), (31)

where

|D|−2 ≈
(

y +
√

1 + y2
)−4

exp(−2λy), (32)

ψ1(y, φ) = cos2φ
(

1 + ζ2y2cos2φ
)−1/2

(
1 + ζ2

(
1 + y2

)
cos

2
φ

)−1/2
, (33)

and
ψ2(y, t) =

1

[(1 + t2)(y2 + t2(1 + y2 )]
1/2 . (34)

To proceed further, we replace the function t/
(
eαt − 1

)
with 1/α in the inner integral

(31), which is again a good approximation for α < 0.3. The remaining integral yields:

∞∫

0

dt
t

(eαt − 1)
ψ2(y, t) ≈ 1

α

K(q)√
1 + y2

, q =
(

1 + y2
)−1/2

, (35)

where K(q) is a complete elliptic integral [35]. Taking this into account, the φ -integral in
Equation (31) can be evaluated as the arithmetic mean between the integrals calculated
with the limit functions on the left and right sides of the inequality (see Appendix C):

cos2φ
(

1 + ζ2
(

1 + y2
)

cos2φ
)−1

< ψ1(y, φ) < cos2φ
(

1 + ζ2y2cos2φ
)−1

. (36)

Substituting Equation (A20) into Equations (31) and (9) finally yields:

FxV = − T
8π2 V

(ωp

c

)3
Y2(λ, ζ), (37)

where Y2(λ, ζ) is calculated using:

Y2(λ, ζ) =

∞∫

0

dy
y4e−2λy

(
y +

√
y2 + 1

)4
(1 + y2)

1
2

K

(
1√

1 + y2

)[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
. (38)

Similar to the case of quantum friction (24), the power of the friction force (37) does
not depend on velocity.

To date, there are no other relevant calculations for the friction forces between metal
plates, corresponding to low-temperature conditions. However, it is interesting to com-
pare the results obtained here with those in the case of an atom moving above the metal
surface [22,23]. Let us compare the dependences on the velocity and resistivity of metal
for quantum friction ( T = 0). Equation (20) has the same low-speed dependence, Fx ∼ V3,
but the opposite dependence on resistivity (Equation (16) in Ref. [22]): Fx ∼ ρ−2

0 (yet the
additional condition ρ0ωp � 4πV/c should be met). At high but nonrelativistic velocities
( ρ0ωp � 4πV/c

)
, Equation (24) yields Fx ∼ ρ2

0 in contrast to Fx ∼ ρ0 (Equation (19) in
Ref. [22]). The dependence on velocity in Equation (24) is more moderate, Fx ∼ V−1,
which qualitatively agrees with that in Ref. [22]. The case T > 0, when the friction force
is linear in velocity, is less informative, because the results of Refs. [22,23] correspond to
room conditions. Yet, Formula (29) yields Fx ∼ 1/ρ0 (assuming the condition (30)), which
is different from that in Ref. [23]: Fx ∼ ρ(T)2.
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In general, one should not expect close qualitative similarity between the plate–plate
and atom–plate configurations because in the latter case, the radiative energy exchange
processes, according to Refs. [22,23], are determined by the specific thermal nonequilibrium
in the system. In the case of macroscopic bodies, such as two plates, the system must reach
a state of thermal quasiequilibrium; see Section 2.6 just below.

2.6. Kinetics of Heating of Plates

The heat transfer of plates is described using the equations

P1(T1, T2)∆t = −h1ρ1c1(T1)∆T1 and P2(T1, T2)∆t = −h2ρ2c2(T2)∆T2. (39)

With ci(Ti) being the specific heat capacities, hi and ρi are the thicknesses and densities
of materials, P1(T1, T2) and P2(T1, T2) are defined using Equations (2) and (3), and the
temperature gains ∆Ti correspond to the interval of time ∆t. The dependences T2(T1) and
T1(T2) can be determined using the equation

dT2

dT1
=

P1(T1, T2)c1(T1)h1ρ1

P2(T1, T2)c2(T2)h2ρ2
. (40)

For identical plates, in Equation (40), one can use the replacements P2(T1, T2)→ P1(T2, T1) ,
P1(T1, T2)→ P2(T2, T1) . In what follows, only this case is considered.

When writing Equations (39) and (40), it is also assumed that the heat exchange
due to radiative heat transfer occurs much slower than under thermal diffusion, and the
plates acquire equal temperature at all points because of high thermal conductivity. Using
the thermal diffusion equation along the normal to the plates, ∂T/∂t = a2∂2T/∂z2, the
characteristic time of the heat diffusion necessary to reach thermal quasiequilibrium, is
τ = h2/a2 (where a2 = κ/cρ, and κ is the thermal conductivity). Then it follows that
τ = h2cρ/κ and in the case of gold at T = 10 K and h1,2 = h = 500 µm c = 2.2 J/(kg·K),
κ = 3200 W/(m·K), ρ = 19.8·103 kg/m3 [36]) one obtains τ ' 3 µs. In turn, the kinetics
of heating induced by friction takes dozens of seconds or minutes (see Section 3.3 below),
depending on the velocity and other parameters. Assuming that Pi(T, T) = −0.5η(T, V)V2,
from Equation (39) one obtains:

t =
2hρ

V2

T∫

T0

c(T)
η(T, V)

dT, (41)

the heating time from the initial temperature T0 to the final temperature T. In the simplest
case of η = const and c(T) = a1T + a2T3 (this is a typical low-temperature dependence for
metals), it follows from Equation (41) that

T(t) =
(
−β +

√
β2 + T4

0 + 2βT2
0 + 2ηV2t/hρa2

)1/2
, (42)

where β = a1/a2. At T1 6= T2 and relatively low velocities of plate 2, as follows from
numerical calculations (see Section 3.1 below), the heating/cooling rates of metal plates
differ only in sign, i.e., P1(T1, T2) = −P2(T1, T2). This is the normal mode of heat trans-
fer, when a hotter body cools down, and a colder one heats up. Then the left sides of
Equation (39) can be equated, and the corresponding quasistationary temperature of the
plates is calculated using:

T =

(
−β +

√
β2 + β

(
T2

1 + T2
2
)
+ T4

1 + T4
2

)1/2
, (43)

where T1 and T2 are their initial temperatures. After establishing quasithermal equilibrium,
the temperature of the plates will increase according to Equations (41) and (42).
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3. Numerical Results

For an ideal metal without impurities and defects, within the BG model, the damping
frequency ν(T) in Equation (6) is defined using the formula [33]:

ν(T) = 0.0212(Θ/T)5
Θ/T∫

0

dxx5sinh−2(x/2) (eV). (44)

Numerical calculations were performed using Equation (44) and the MBG approxima-
tion shown in Figure 2 (BG scaled). The used plasma frequency of gold is ωp = 9.03 eV. All
calculations were performed with a gap width of a = 10 nm (Figure 1) unless another value
is indicated. It should be noted that at distances of a > 10 nm, the processes of radiative
heat transfer and friction due to tunneling of electrons and phonons [37,38] seem do not
occur or become insignificant [39–41].

3.1. Quantum Friction

Figure 3 shows the velocity-dependent quantum friction force between the plates of
gold, calculated using Formulas (20) (green line), (9) (red line) and (24) (blue line).
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Figure 3. Quantum friction force of the plates of gold as a function of the velocity of a moving plate 2:
(a) residual resistance of gold corresponds to Bloch–Grüneisen (BG) model at T = 5 K; (b) residual
resistance corresponds to modified BG (MBG) model at T = 0 (see Figure 2). The red lines represent
complete numerical integration in Equation (9), the green and blue lines are calculations using
Formulas (20) and (24). The positions of the maxima and the corresponding velocities are shown,
respectively, by vertical lines and the numbers indicated.

The curves in Figure 3a,b were calculated at residual resistances of 2.13× 10−13 Ω·m
and 2.3× 10−10 Ω·m, which correspond to the BG model (44) at T = 5 K and the MBG
model at T = 0 K. Note that in the latter case, the residual resistance coincides with that
defined using Formula (44) at T = 20.9 K.

3.2. Temperature-Dependent Friction at Thermal Quasiequlibrium

Figure 4 shows the plots of the friction parameter, η = Fx/V, depending on the
temperature T of the gold plates, corresponding to the BG and MBG models. The curves
with symbols were calculated using Equation (9) for V = 1 m/s. Solid curves were plotted
using approximation (25) along with Equation (26) (green lines) or Equation (28) at λ� 1
(blue lines). In Figure 4a, both solid lines merge. The presence of maxima and their
positions on the curves agree with Equations (29) and (30), respectively. These results show
that the linear-in-velocity approximation is valid only to the right of the maxima of the
η(T) dependences.
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Figure 4. Friction parameter of gold plates as a function of their quasiequilibrium temperature for
(a) BG and (b) MBG models. The curves with symbols were calculated using complete numerical
integration in Equation (9). Solid lines correspond to the calculations using Equation (25) with
Equation (26) (green lines) and (28) (blue lines); in (a), the blue and green lines merge. The vertical
numbered lines show the temperatures corresponding to the maxima of the curves.

Figure 5a,b demonstrates the velocity dependences of η in the BG and MBG models.
The red, blue, and green lines correspond to quasiequilibrium temperatures of 5 K, 10 K,
and 77 K, respectively. The different (temperature) order of lines in Figure 5a compared
to Figure 5b is explained by the high residual resistance of gold in the MBG model: the
condition }ν(T) < T, which is necessary for the law-temperature increase in friction, is
violated at T = 5 and 10 K.
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Figure 5. Friction parameter of gold plates as a function of the velocity of plate 2 for the (a) BG
and (b) MBG models. The solid lines represent the calculations using Equation (9), dashed lines—
Equations (37) and (38). The red, blue, and green lines correspond to quasistationary temperatures of
5 K, 10 K, and 77 K, respectively, for both plates. The different temperature order of the curves in (b)
is explained by a different sequence of parameters α = }ν/T: α(10) < α(5) < α(77). The plateau in
the curves corresponds to the linear velocity dependence of the friction force.

Table 1 shows the calculated values of the friction parameter η of the gold plates at
V = 1 m/s, depending on the temperature, T, and separation distance, a. Similar to that in
Figure 4, one can note the effect of increasing friction (up to a maximum) with decreasing
temperature at T < θD, which is more better expressed in the BG model. The height of
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this maximum depends on the velocity-to-resistivity ratio. When the temperature becomes
sufficiently low, condition (30) is violated, and the coefficient of friction decreases.

Table 1. Friction parameter η (in kg/(m2· s)) of gold plates for velocity V = 1 m/s at thermal
quasiequilibrium, Equation (9).

Temperature of
Plates, K

a = 10 nm a = 20 nm a = 10 nm a = 20 nm
Model BG Model MBG

1 4.81 × 10−6 2.77 × 10−6 5.60 × 10−8 2.80 × 10−8

2 2.63 × 10−4 1.47 × 10−4 1.22 × 10−7 5.98 × 10−8

3 1.10 × 10−3 5.73 × 10−4 1.87 × 10−7 9.13 × 10−8

5 3.44 × 10−4 1.67 × 10−4 3.08 × 10−7 1.50 × 10−7

10 2.15 × 10−5 1.04 × 10−5 5.63 × 10−7 2.73 × 10−7

15 4.30 × 10−5 2.09 × 10−6 7.77 × 10−7 3.76 × 10−7

20 1.52 × 10−6 7.35 × 10−7 7.19 × 10−7 3.33 × 10−7

50 2.04 × 10−7 9.90 × 10−8 2.56 × 10−7 1.25 × 10−7

100 1.30 × 10−7 6.30 × 10−8 1.77 × 10−7 8.63 × 10−8

200 1.14 × 10−7 5.54 × 10−8 1.42 × 10−7 6.81 × 10−8

300 1.11 × 10−7 5.41 × 10−8 1.39 × 10−7 6.81 × 10−8

The dependence of η on the separation distance a in all the cases is close to inverse
proportionality (η ∝ a−1 ). This is clearly seen from the data in Table 1 and agrees with our
previous results [19,20,32].

3.3. Friction and Heating under Different Conditions

Figures 6 and 7 show the calculated heating rates of plate 1 (Figures 6a and 7a) and
friction parameters (Figures 6b and 7b), depending on the velocity V of plate 2 for various
thermal configurations.
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rates of plates 1 and 2 are equal in absolute value, differing in sign. According to their 
temperatures, 𝑇ଵ = 4K and 𝑇ଶ = 6K, plate 1 heats up and plate 2 cools down, realizing 
the “normal” heat exchange regime. At the same time, the friction parameters weakly 
depend on the temperature (Figures 6b and 7b). When the speed of plate 2 increases, both 
plates heat up faster. Then, one can see the effect of the “anomalous” heating of plate 2 for 
some time, when it continues to heat up despite the higher temperature. This is similar to 
the case of heating a hotter metal particle moving above a cold surface [21]. However, due 
to different absolute values of the heating rates (cf. the upper and lower lines shown with 

Figure 6. Heating rate of plate 1 (a) and friction parameter η = Fx/V (b) as a function of velocity V
of plate 2 in the BG model. The temperature configuration for the plates are indicated on the curves
as follows: e.g., 6/4 denotes T1 = 6 K, T2 = 4 K. Thermal configurations T1 = 6 K, T2 = 4 K and
T1 = 4 K, T2 = 6 K have the same friction parameters, configurations T = 4 and 6 K correspond to a
quasiequilibrium thermal mode. The data shown by open triangles (∆ (a)) and by open diamonds
(♦ (b)) are multiplied by 3 (cf. [42], where all numerical data to be reduced by π times).
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Figure 7. Same as in Figure 6 but in the MBG model. No additional numerical factors for the
data are used.

One can see that at V < 10 m/s (Figure 6a) and V < 102 m/s (Figure 7a), the heating
rates of plates 1 and 2 are equal in absolute value, differing in sign. According to their
temperatures, T1 = 4 K and T2 = 6 K, plate 1 heats up and plate 2 cools down, realizing the
“normal” heat exchange regime. At the same time, the friction parameters weakly depend
on the temperature (Figures 6b and 7b). When the speed of plate 2 increases, both plates
heat up faster. Then, one can see the effect of the “anomalous” heating of plate 2 for some
time, when it continues to heat up despite the higher temperature. This is similar to the
case of heating a hotter metal particle moving above a cold surface [21]. However, due to
different absolute values of the heating rates (cf. the upper and lower lines shown with
open squares (�) in Figures 6a and 7a), the temperature of plate 1 “catches up” with the
temperature of plate 2, and further on, both plates heat up at the same rate.

The drop in friction parameters for high velocities of plate 2 (Figures 6b and 7b)
is explained by the change in sign of the Doppler-shifted frequency ω− = ω − kxV =
ω− kVcosφ in Equation (5). This occurs at V > ν(T)a because the characteristic absorption
frequency is ω ∼ ν(T) and the characteristic wave vector is k ∼ 1/a. The positions
of the “kinks” on the curves η(V) in Figures 6 and 7 correlate with resistivity because
ν(T) ∼ ρ(T). Indeed, it follows from Figure 2 that ρMBG/ρBG = 102–103 at T = 4–6 K. At
the same time, the ratio ηMBG/ηBG in this case is inversely proportional to resistivities (see
Equation (29) and Table 1).

In general, as follows from the calculations for all considered temperatures and veloci-
ties (Figures 5–7, Table 1), the maximum friction parameter in the BG and MBG models (at
a = 10 nm) is 10−6 − 10−3 kg/(m2·s).

Figure 8 shows the heating time of the plates versus the velocity of plate 2, calculated
using numerical integration of Equation (40) from 4 K to 5 K and from 4 K to 8 K. In these
calculations, the fitting parameters a1 = 0.0035 J/

(
kg·K2

)
and a2 = 0.0023 J/

(
kg·K4

)

of the dependence c(T) = a1T + a2T3 were determined using the data [36] for gold at
T < 20 K.

As follows from Figure 8, quite comfortable (from the experimental point of view)
values of the plate heating times (1–100 s) can be obtained in the velocity range 1–103 m/s.
On the contrary, heating by 1 K at T0 = 300 K, a = 10 nm, and V = 103 m/s will take
about 2 h. Thus, low-temperature thermal measurements have exceptional advantages over
measurements under normal conditions due to a significant reduction in measurement
time and the elimination of noise and other undesirable effects.
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As follows from Figure 8, quite comfortable (from the experimental point of view) 
values of the plate heating times (1–100 s) can be obtained in the velocity range 1– 10ଷm/s. On the contrary, heating by 1 K at 𝑇 = 300K, 𝑎 = 10 nm, and 𝑉 = 10ଷ m/s 
will take about 2 h. Thus, low-temperature thermal measurements have exceptional ad-
vantages over measurements under normal conditions due to a significant reduction in 
measurement time and the elimination of noise and other undesirable effects. 

4. Experimental Proposal 
Initiated by the advantage of the experimental design [15–17] to measure the quan-

tum friction force, I suggested [42] using another experimental layout, as shown sche-
matically in Figure 9. Unlike in Ref. [17], where the setup includes a disk 10 cm in diam-
eter rotating with an angular frequency of up to 7 × 10ଷ rps, it is proposed to use two 
identical disks placed in one thermostat, one of which rotates at a controlled speed. In the 
peripheral region, the disks have an annular metal coating with an effective area 𝜋𝐷𝑤. 
The non-inertiality of the reference system of disk 2 does not appear in this case because 
the rotation frequency is small compared to the characteristic frequencies of the fluctua-
tion electromagnetic field. Accordingly, the original expressions (2) and (3), for heating 
rates remain valid. 

Figure 8. Heating time of gold plates as a function of the velocity of plate 2 at h = 500 µm according
to BG (a) and MBG (b) models. Two upper lines correspond to heating from 4 K to 8 K at a = 20 nm
(crimpson) and a = 10 nm (blue), and two lower lines correspond to heating from 4 K to 5 K at
a = 20 nm (green) and a = 10 nm (red).

4. Experimental Proposal

Initiated by the advantage of the experimental design [15–17] to measure the quantum
friction force, I suggested [42] using another experimental layout, as shown schematically in
Figure 9. Unlike in Ref. [17], where the setup includes a disk 10 cm in diameter rotating with
an angular frequency of up to 7× 103 rps, it is proposed to use two identical disks placed
in one thermostat, one of which rotates at a controlled speed. In the peripheral region, the
disks have an annular metal coating with an effective area πDw. The non-inertiality of the
reference system of disk 2 does not appear in this case because the rotation frequency is
small compared to the characteristic frequencies of the fluctuation electromagnetic field.
Accordingly, the original expressions (2) and (3), for heating rates remain valid.
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Figure 9. A possible setup for measuring Casimir–Lifshitz friction force (side view). The thermal
protection layer is shown in blue, the metal coating is shown in brown. When the upper disk rotates,
the circular sections of disks locating at a distance a move at a linear velocity of 0.5 ΩD relative to each
other. At rotation frequencies n = 1–104 rps (revolutions per second) and disk diameter D = 0.1 m,
the velocity range to be 0.3–3000 m/s.

A possible measurement scenario in this case is the quasiequilibrium thermal mode, in
which the temperatures of plates increase from the initial temperature T0 at the same rate.
It should be noted that the experimental design must take into account possible limitations
on angular velocity imposed by the tensile strength of the material used. Assuming that the
main body of the plate is made of gold, a quite moderate assessment of the linear velocity of
the far-distant annular parts of the plate yields V < (σ0/ρ)0.5, with σ0 = 1.5×108 N/m2 and
ρ = 1.93× 104 kg/m3 being the tensile strength and density of gold [35]. By plugging the
numerical numbers into the above condition, one obtains V ∼ 102 m/s, or n ∼ 300 rps,
which seems to be a well acceptable value.
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5. Concluding Remarks

The Casimir–Lifshitz friction force mediated by the fluctuating electromagnetic field
between metal plates moving with constant velocity relative to each other causes their
heating. In a state out of thermal equilibrium, “anomalous” heating of the moving plate
can be observed when it is heated for some time despite the higher temperature. However,
the system rapidly reaches a state of thermal quasiequilibrium. At low temperatures
T � θD, the Casimir–Lifshitz friction and heating of metal plates increase significantly
(see Equations (29) and (30)) while the heat capacity decreases. In combination with a fairly
high speed of movement, this provides a fairly short heating time, which is convenient for
experiments (see Equation (41)).
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Appendix A. Evaluation of the Integral (24)

Substituting t = b/2 = ζycosφ/2 into Equation (22) takes into account that typically,
ζycosφ/2 � 1 (since ζ � 1, y ∼ 1/ 2λ ∼ 1 ) and |w1,2| ≈

√
y2 + 1. Then |D|2 takes

the form

|D|2 ≈
(

y +
√

y2 + 1
)4

exp(−2λy). (A1)

With these simplifications, Formula (18) reads:

FxV = −Kζ

2

∞∫

0

dy
y2

(
y +

√
y2 + 1

)4 e−2λy
π/2∫

0

dφ
cosφ

ψ(y, φ)

ζycosφ∫

0

dtt(ζycosφ− t), (A2)

ψ(y, φ) =
(

1 + ζ2y2cos2φ/4
)(

1 + ζ2
(

1 + y2
)

cos2φ/4
)

. (A3)

The t -integral in Equation (A2) is just ζ3y3cos3φ/6, while the integral over φ is

Iφ =
ζ3y3

6

π/2∫

0

dφ
cos4φ

ψ(y, φ)
=

8y3

3ζ

π/2∫

0

dφ
cos4φ

(u2 + y2cos2φ)
(

u2 +
(

1 + y2)cos2
φ
) , (A4)

where u = 2/ζ. The integral in Equation (A4) is calculated explicitly using the table integral [35]

π/2∫

0

dφ

a2 + b2cos2φ
=

π

2
1

a
√

a2 + b2
. (A5)

Using Equation (A5) yields:

Iφ =
4πy3

3ζ

(
1

y2(1 + y2)
− 2

y2
√

y2ζ2 + 4
+

2
(1 + y2)

√
(1 + y2)ζ2 + 4

)
. (A6)

Substituting Equation (A6) into Equation (A2) yields Equation (24).
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Appendix B. Evaluation of the Integral (26)

In the case α � 1, the main contribution to Equation (26) makes the values t < 1,
y ∼ 1/ 2λ ∼ 1. Then, from Equation (14), it follows that |w1,2| =

∣∣∣
(
y2 + t/(t + i)

)1/2
∣∣∣ ≈ y.

Using this, one finds:
|D|−2 ≈ 16y4exp(−2λy). (A7)

Meantime, from Equation (21) it follows that

(Imw1,2)
2 =

t2

4(1 + t2)(y2 + t2(1 + y2))
. (A8)

Substituting Equations (A7) and (A8) into Equation (26) yields:

Y(λ, α) =
α2

64

∞∫

0

dyye−2λy
∞∫

0

dt
t2

sinh(αt/2)2
1

(1 + t2)(y2 + t2(1 + y2))
. (A9)

Using the approximation t2

sinh(αt/2)2 → 4/α2 and the table integral [35]

∞∫

0

dx
1

(a2 + x2)

1
(b2 + x2)

=
π

2ab(a + b)
, (A10)

one obtains:

Y1(λ, α) ≈ χ(λ) =
π

32

∞∫

0

dy
e−2λy

(
y +

√
1 + y2

) =
π

32

{
π

4λ
[H1(2λ)− N1(2λ)]− 1

4λ2

}
, (A11)

where H1(x) and N1(x) are the Struve and Neumann functions [35].

Appendix C. Evaluation of the Integral (31)

Let us rewrite Equation (13) in the form

Z(t, y, φ) =
2

exp(αt)− 1
− 2

exp(α|t−|)− 1
, t− = t− ζycosφ. (A12)

The integral in Equation (9) includes two exponential factors, defined by Equation (A12).
By changing the order of integration in the first term, one obtains:

I = 2ζ

∞∫

0

dyy4
π∫

0

dφcosφ

∞∫

0

dt
Imw1Imw2

|D|2
1

exp(αt)− 1
. (A13)

Similar to Appendix B, one can again take advantage of the behavior of the t - in-
tegral in Equation (A13) for α � 1, and ζ � 1, substituting 1

exp(αt)−1 ≈ 1/αt and using

Equation (A1) for |D|2. For Imw1Imw2, let us use Equation (21) with the replacement
|t− b| → ζy|cosφ| . Then Equation (21) takes the form

Imw1Imw2 = − t·ζ|cosφ|·sign(t− ζycosφ)

4[(1 + ζ2y2cos2φ)(1 + ζ2(1 + y2)cos2φ)(1 + t2)(y2 + t2(1 + y2))]
1/2 . (A14)

Inserting Equation (A14) into Equation (A13) yields:

I =
ζ2

α

∞∫

0

dy
y4e−2λy

(
y +

√
y2 + 1

)4
(1 + y2)

1/2

π/2∫

0

dφψ1(y, φ)

∞∫

0

dtψ2(t, y), (A15)
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where
ψ1(φ, y) = cos2φ

[(
1 + ζ2y2cos2φ

)(
1 + ζ2

(
1 + y2

)
cos2φ

)]−1/2
, (A16)

ψ2(t, y) =
1

[
(1 + t2)

(
y2

(1+y2)
+ t2

)]1/2 . (A17)

Substituting Equations (A16) and (A17) into Equation (A15) and taking into account
Equations (A10) and (35), the inner integrals are calculated yielding

Iφ(y) =
∞∫

0

dφ
cos2φ

ψ1(φ, y)
≈ π

2ζ2

[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
, (A18)

It(y) =
∞∫

0

dtψ2(t, y) =
1√

1 + y2
K

(
1√

1 + y2

)
, (A19)

where K(x) is the elliptic integral. Finally, substituting Equations (A18) and (A19) into
Equation (A15) yields:

I =
π

4α

∞∫

0

dy
y4e−2λy

(
y +

√
y2 + 1

)4
(1 + y2)

1/2
K

(
1√

1 + y2

)[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
. (A20)

The second integral in Equation (9) by including t− in Equation (A12) gets to the same
result (but ultimately having the opposite sign) by introducing a new variable t′ = t− b,
and using the substitution |t′ + b| → ζy|cosφ| in Equation (21).
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Stabilizing Diamagnetic Levitation of a Graphene Flake
through the Casimir Effect
Norio Inui

Graduate School of Engineering, University of Hyogo, Shosha 2167, Himeji 671-2201, Japan;
inui@eng.u-hyogo.ac.jp

Abstract: Graphene exhibits diamagnetism, enabling it to be lifted by the repulsive force produced in
an inhomogeneous magnetic field. However, the stable levitation of a graphene flake perpendicular
to the magnetic field is impeded by its strong anisotropic of magnetic susceptibility that induces
rotation. A method to suppress this rotation by applying the Casimir force to the graphene flake is
presented in this paper. As a result, the graphene flake can archive stable levitation on a silicon plate
when the gravitational force is small.

Keywords: Casimir effect; Casimir force; Casimir torce; diamagnetic levitation

1. Introduction

One of the promising applications of the Casimir effect [1,2] is the actuation of mi-
croelectromechanical systems (MEMS) [3–6]. Unlike conventional actuation methods that
rely on electric power sources, the Casimir force, which arises from vacuum fluctuations,
does not require an external energy source such as a battery. This advantage makes it a
desirable option for MEMS actuation. However, the Casimir force can also lead to unex-
pected adhesion [7] between different parts of MEMS, causing their function to cease due
to the omnipresence of vacuum fluctuations. To prevent this adhesion, a straightforward
approach is to generate a repulsive force that levitates the MEMS parts. While the repulsive
Casimir force [8] has been studied and observed in liquid environments [9], its utilization
in atmospheric conditions has not been explored [10].

Levitating MEMS parts without them adhering to substrates can reduce friction and
enhance the sensitivity sensors. Numerous methods for levitating objects in the atmosphere
have been proposed, with magnetic levitation being a well-known technique. According
to Earnshaw’s theorem, the stable levitation of magnets cannot be achieved through a
combination of static magnetic or gravitational force alone; additional control is required.
However, the unique property of diamagnetism enables levitation in the atmosphere
without the need for control [11,12].

Graphite, a highly diamagnetic material [13], can be stably levitated above neodymium
magnets, and more recently, multi-layer graphene flakes have also been successfully levi-
tated [14,15]. However, achieving stable levitation of a single-layer graphene flake above a
magnet in an atmosphere setting remains an unmet challenge. When a magnetic field is
applied perpendicularly to the surface of graphene, a strong magnetic moment is induced.
In contrast, applying a magnetic field parallel to the surface results in minimal magnet mo-
ment induction. Consequently, the graphene rotates to align itself parallel to the magnetic
field, leading to a loss of the levitation force.

This study investigates the levitation of a single graphene flake above a substrate,
considering the interplay between the diamagnetic force and the Casimir force within the
framework of the proximity force approximation (PFA) [16]. Normally, the Casimir force
between a graphene sheet and a substrate is attractive, thereby reducing the levitation force.
However, it is demonstrated that the Casimir effect can counteract rotation and enable the
stable levitation of graphene.

Physics 2023, 5, 923–935. https://doi.org/10.3390/physics5030060 https://www.mdpi.com/journal/physics281
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For a configuration involving a small square plate and an infinitely large substrate
arranged in parallel, the Casimir energy between them is negative and proportional to
the area of the small plate. When the small plate tilts around an axis passing through its
center and parallel to its sides, the projection area onto the substrate decreases due to the
inclination. This decrease in the projection area contributes to an increase in the Casimir
energy. Additionally, the distance between one side of the small plate and the substrate
increases, further increasing the Casimir energy. However, the distance between the other
side of the small plate and the substrate decreases, leading to a decrease in the Casimir
energy. The stability of the parallel state relative to the substrate is determined by the
summation of these contributions. For large separations, the last contribution is smaller
than the others, resulting in a stable parallel state. If the torque induced by magnetic
interaction can be canceled out by the Casimir effect, a graphene flake can be levitated
stably in a vacuum.

The remainder of this paper is organized as follows: In Section 2, the magnetic
properties of a graphene flake based on the tight-binding model is explained. Section 3
focuses on the levitation of a graphene flake, considering the balance between the force
induced by a magnetic field and gravity. In Section 4, the approximation of the Casimir
energy between a single-layer graphene and a silicon substrate as a summation of power
functions is given. In Section 5, the change in the Casimir energy which is expressed as a
power function, due to the rotation being is calculated. This also explores the relationship
between the stability of the parallel state and the separation distance. In Section 6, the
stability of a levitated graphene flake above a silicon substrate through the application of
diamagnetic force is examined. In Section 7, the optimizing the applied magnetic field can
lead to stabilization through the Casimir effect on Earth is demonstrated. Additionally,
the calculation method beyond PFA is discussed. Finally, in the conclusion, the essential
conditions required to achieve stable levitation are summarized.

2. Magnetic Properties of Graphene

The potential energy of a graphene flake in the presence of an external magnetic
field is examined. In this study, the magnetic field is generated by passing an electric
current through a coil. When the electric current is sufficiently large, the graphene flake
can be levitated above the coil, as depicted in Figure 1a. The coil, with a radius R, is
positioned above a silicon substrate at a separation distance d as illustrated in Figure 1b. It
is important to note that the discussion focuses solely on the levitation achieved through
the magnetic force, while the influence of the Casimir effect on the levitation is explored in
subsequent Sections.

z

θ

O

silicon

d

x

(b)

Figure 1. (a) Illustration of the levitation of a graphene flake in a magnetic field generated by an
electric current flowing through a coil positioned above a silicon plate. (b) Positional relationship
between the inclined graphene, coil, and silicon plate.
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The magnetic flux density along the z-axis is expressed as follows:

Bz(z) =
µ0 IR2

2[(z− d)2 + R2]3/2 , (1)

where I is the electric current through the coil, and µ0 = 1.257 × 10−6 NA−2 is the per-
meability in the vacuum. The direction of the electric current is counterclockwise when
observed from above the ring. On the z-axis, the component of the magnetic flux density
parallel to the substrate is zero.

The diamagnetic characteristics of graphene stem from the interaction between the
induced electric current and the magnetic field. This study neglects the spin interactions
and focus on the calculation of the energy eigenvalues of graphene, denoted as εi(B),
which depend on the magnetic field. These eigenvalues are typically determined using the
tight-binding model and the Peierls substitution method [17–19]. The Hamiltonian can be
expressed as follows:

H = −γ0 ∑
〈n,m〉

eiφnm ĉ†
n ĉm, (2)

where γ0 (=3 eV) is the transfer energy; ĉ†
n and ĉn are the annihilation and creation operators

of an electron at site n, respectively. The magnetic dependence of the Hamiltonian is
represented by Peierls phase, φnm, defined by

φnm =
e
h̄

∫ ~rm

~rn
d~r · ~A, (3)

where ~A(r) is the vector potential, and~rs is the position of site s. The symbols e and h̄
denote the elemantary charge and the reduced Planck constant, respectively. If the applied
uniform magnetic field, B, is perpendicular to the graphene surface, the vector potential
can be expressed by (0, Bx, 0) in the Landau gauge.

By calculating eigenvalues εi(B) of the Hamiltonian, the free energy of graphene
including the contribution from the orbital current induced by applying the magnetic field
at temperature T is expressed as

Fm(B) = −2kBT ∑
i

ln
[

1 + exp
(

µ− εi(B)
kBT

)]
, (4)

where kB and µ denote the Boltzmann constant and the chemical potential, respectively.
In Equation (4), the factor of 2 is the spin degeneracy of the levels. The present sudy
considers only the case of µ = 0. When considering small magnetic fields, the induced
magnetic moment of the graphene flake is directly proportional to the applied magnetic
field. Consequently, the magnetic potential can be described as proportional to the inner
product of the magnetic moment and the magnetic field. Thus, the magnetic potential for
the small magnetic field is expressed as cmB2. The coefficient cm depends on the size and
edge type of graphene and is expressed as follows:

cm =
1
2

∂2Fm(B)
∂B2

∣∣∣∣
B=0

. (5)

3. Levitation by Diamagnetic Force

In the case when the angle of inclination is zero and the change in the magnetic field
within the graphene flake is disregarded, the total energy of the graphene system can be
expressed as the sum of the magnetic energy and the gravitational energy:
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Umg(z, d) = cm
µ2

0 I2R4

4[(z− d)2 + R2]3
+ mgz, (6)

where m is the mass of graphene and g is gravitational acceleration. If d = 0 and the
normalized position, ζ ≡ z/R, is introduced, the total energy is expressed as

Umg(ζ) = c0

[
1

(ζ2 + 1)3 + γζ

]
, (7)

where

c0 =
cmµ2

0 I2

4R2 , (8)

γ =
mgR

c0
. (9)

Figure 2a shows the dependence of Umg on ζ for a different γ. For a small γ, there
is a local minimum of Umg, at which the magnetic force balances. Furthermore, this
equilibrium point is stable. Thus, the graphene can be levitated stably along the z-axis. If
γ > γc ≡ 1.329, no local minimum exists and the graphene falls to the substrate. Figure 2b
shows the dimensionless levitation height, ζm, where Umg takes a minimum valueas a
function of γ. The dimensionless levitation height approaches 0.378 in the limit of γ→ γc.

γ = 1.329

γ = 1

γ = 0.8

(a)
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Figure 2. (a) The sum, Umg (7), of magnetic and gravitational potential energies as a function of the
nondimensional height, ζ, for different ratios, γ (9). (b) Relationship between the nondimensional
levitation height, ζm, and γ.

The magnetic susceptibility of graphite vertical to the surface per mass, χ⊥, is
−2.7× 10−7 m3/kg and one parallel to the surface per mass, χ‖, is −6.3× 10−9 m3/kg.
Similarly, the orbital magnetic susceptibility of graphene when aligned parallel to the
surface is expected to be significantly smaller than that when aligned perpendicularly to
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the surface. Thus, it is assumed that χ‖ is zero in the following calculations. Accordingly,
the magnetic energy of the inclined graphene with the angle θ of inclination is given by

Um(ζ, θ) =
c0 cos2 θ

(ζ2 + 1)3 . (10)

The gravitational energy of a graphene flake remains unaffected by its rotation. Con-
sequently, the flake will rotate until it aligns as parallel to the magnetic field, causing the
levitation force to diminish. As a result, the graphene flake descends and eventually comes
in contact with the substrate.

4. Casimir Force between a Graphene Flake and a Silicon Plate

To address the issue of rotation, the utilization of the Casimir effect becomes cru-
cial. According to the Lifshitz theory, the Casimir free energy per unit area between a
single-layer graphene sheet and a dielectric plate, separated by a separation a and at a
temperature T, can be expressed as the sum of contributions for different polarizations η of
the electromagnetic field, namely transverse magnetic (TM) and transverse electric (TE):

FC(a) = FTM(a) +FTE(a), (11)

where

Fη(a) =
kBT

8πa2

∞

∑
l=0

′
∫ ∞

ζl

ydy ln[1− r(g)
η (iζl , y)r(p)

η (iζl , y)e−y]. (12)

Here, ζl with nonnegative integer variable l is the dimensionless Matsubara frequen-
cies defined by 4πakBTl/h̄c, with c denoting the speed of light, and r(g)

η and r(p)
η are the

reflection coefficients on graphene and on a plate for the polarization η, respectively [20–25].
The reflection coefficients on a silicon plate are expressed as

r(p)
TM(iζl , y) =

εly−
√

y2 + ζ2
l (εl − 1)

εly +
√

y2 + ζ2
l (εl − 1),

, (13)

r(p)
TE (iζl , y) =

y−
√

y2 + ζ2
l (εl − 1)

y +
√

y2 + ζ2
l (εl − 1)

, (14)

where εl is the dielectric permittivity of silicon at the imaginary frequency, 2πikBTl/h̄, and
calculated from the optical data [26] based on the Kramers–Kronig relation,

ε(iξ) = 1 +
2
π

∫ ∞

0

ωImε(ω)

ω2 + ξ2 dω. (15)

The reflection coefficients on graphene using the Dirac model are expressed as follows:

r(g)
TM(iζl , y) =

yΠ00

yΠ00 +
h̄
a (y

2 − ζ2
l )

, (16)

r(g)
TE (iζl , y) = − (y2 − ζ2

l )Πtr − y2Π00

(y2 − ζ2
l )(Πtr +

h̄
a y)− y2Π00

, (17)

where Π00 is the 00-component of the polarization tensor, Π, and Πtr = Π1
1 + Π2

2. The
polarization tensor is determined by the temperature [27], mass gap parameter, δg, chemical
potential, µ, and the Fermi velocity, vF = c/300. The polarization tensor is described in
detail in Ref. [21].
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The circles in Figure 3 show the dependence of the Casimir energy per area between
graphene with δg = µ = 0 and a silicon plate on the separation distance at temperature
300 K. The line represents a fitting function,

uC(z) = − c3

z3 −
c2

z2 , (18)

where c3 = 1.11× 10−12 Jm and c2 = 7.96× 10−11 J.
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Figure 3. Casimir energy per area between a graphene sheet and a silicon plate calculated using the
Lifshitz formula (circles) and the fitting function (line).

5. Change in the Casimir Energy by Inclining

The calculation of the Casimir energy between an inclined plate and a flat plate
can be a computationally intensive task [28–30]. As an alternative approach, the PFA is
employed. Within the PFA framework, the Casmir energy between an inclined square
plate, with one side measuring 2L, and an infinite substrate can be approximated by the
following expression:

UC(a, θ) = 2L
∫ L cos θ

−L cos θ
u[a− (tan θ)x]dx, (19)

where u(z) is the Casimir energy per area. If the Casimir energy per area obeys the
power function, u(z) = −cβz−β, where cβ is a constant and β > 1, its dependence on θ is
expressed as

UC(a, θ, β) = − 2cβL
(1− β) tan θ

[
(a + L sin θ)1−β − (a− L sin θ)1−β

]
. (20)

By introducing a dimensionless coordinate α ≡ a/L, the normalized energy, Ũ, with
the absolute value at θ = 0 is expressed as

Ũ(α, θ, β) ≡ U(a, θ, β)

|U(a, 0, β)| , (21)

= − αβ

2(1− β)

(α + sin θ)1−β − (α− sin θ)1−β

tan θ
. (22)

Figure 4a shows Ũ(α, θ, 2) for α = 1.2,
√

2, and 3. For the small values of α, representing
small separation distances, a local minimum is present at the nonzero inclination angle
and the flat state (θ = 0) becomes unstable. As the separation increases above a threshold,
αc =

√
2, the Casimir energy takes the minimum value at θ = 0, and the flat state becomes

stable. Figure 4b shows the relationship between the threshold αc and exponent β. The
thresholds αc are 2 and 2

√
5/3 for β = 3 and 4, respectively. A smaller exponent in the
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Casimir energy equation enables the suppression of plate rotation to suppress from a
smaller separation distance.
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Figure 4. (a) Dependence of the potential energy, U(α, θ, β = 2) (21), of an inclined plate on the angle,
θ, of inclination for different dimensional heights, α. (b) Relationship between the threshold, αc,
above which the flat state is stable and the exponent, β, of the potential energy.

6. Levitation of a Graphene Flake above a Silicon Plate in a Magnetic Field

Let us proceed to investigate whether the suppression of rotation, discussed in
Section 5, can contribute to stabilizing the levitation of a graphene flake in the presence of a
magnetic field. If the graphene flake is levitated on a silicon plate, as depicted in Figure 1b,
the total potential energy can be approximated given the following expression:

U(z, θ) = UC(z, θ, 2) + UC(z, θ, 3) + Umg(z), (23)

= − 2c2L cos θ

L2 sin2 θ − z2
− 2c3Lz cos θ

(L2 sin2 θ − z2)2

+
cmµ2

0 I2R4

4[(z− d)2 + R2]3
+ mgz, (24)

where the Casimir energy between a graphene flake and a coil is neglected. Figure 5a
shows the relationship between the total energy of a flat graphene flake and a silicon plate,
and the separation distance, considering the gravitational acceleration g = 0 and 0.1 m/s2.
The parameters employed in the calculation are summarized in Table 1. Notably, one of
the parameters, cm, plays an important role in determining the magnetic force. Its value is
specific to a graphene flake with hexagonal armchair edges at a temperature of 300 K (see
Ref. [17] for details).
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Table 1. Parameters used in the calculations. See text for details.

Parameters Values

L 11.58 nm
R 4 µm
d 2.5 µm
I 0.3 A

cm 1.24 × 10−5 eV/T2

c2 7.96× 10−11 J
c3 1.11× 10−12 J m
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Figure 5. (a) Dependence of the total Casimir energy, magnetic energy, and gravitational energy on
the separation distance for gravitational acceleration g = 0 and 0.1 m/s2. (b) Dependence of the total
energy at equilibrium heights on the inclined angle.

The levitation heights are measured to be 7.3 and 6.9 µm for the gravitational accelera-
tion of 0 and 0.1 m/s2, respectively. Figure 5b displays the change in the total energy due
to inclination, with the minimum value of ∆U set to zero. The total energy monotonously
increases as the graphene flake tilts away from θ = 0, indicating stable levitation when the
gravitational acceleration is small. As the gravitational acceleration increases, the levitation
height decreases. The results for g = 0.3 m/s2 and 0.4 m/s2 are presented in Figure 6a,b and
illustrate the dependence of total energy on the position and inclination angle, respectively.
When the graphene flake derivates from θ = 0, the total energy decreases, reaching its
minimum at θ = 0.52 rad for g = 0.3 m/s2. The inclined angle increases with an increase
in gravitational acceleration. For g = 0.4 m/s2, the angle of inclination, at which the total
energy is minimized, is 0.67 rad. Figure 6c shows the total energy of inclined graphene
flakes at θ = 0.52 rad for g = 0.3 and θ = 0.67 rad for g = 0.4 m/s2. In the case of g = 0.3 m/s2,
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a local minimum exists in the total energy, enabling the levitation of the graphene flake
in the inclined state. However, for g = 0.4 m/s2, no local minimum exists, causing the
graphene flake to fall onto the substrate after tilting.

(a)

g = 0.3 m/s2

g = 0.4 m/s2

5 6 7 8 9 10

4

6

8

10

12

z ( m)

U
(×
1
0
-
2
8
J
)

(b)
g = 0.4 m/s2

g = 0.3 m/s2

0.40 0.45 0.50 0.55 0.60 0.65 0.70

0

2

4

6

8

10

12

θ (rad)

Δ
U
(×
1
0
-
3
0
J
)

(c)

g = 0.3 m/s2

g = 0.4 m/s2

3 4 5 6 7

-5

0

5

z (μm)

U
(×
1
0
-
2
8
J
)

Figure 6. (a) Dependence of the total energy of the flat graphene flake for g = 0.4 and 0.3 m/s2

on the vertical position. (b) Dependence of the total energy at equilibrium heights on the inclined
angle for g = 0.4 and 0.3 m/s2. The angle at which takes the minimum potential energy exists at
non-zero inclined angle. (c) Dependence of the total energy of the graphene flakes that incline with
the equilibrium angle on the separation distance.

7. Role of a Diamagnetic Force and the Casimir Torque

A diamagnetic force and the Casimir torque must be effectively combined to achieve
stable levitation. In previous calculations, the magnetic field is generated by a circular
current and the levitation was unsuccessful for large gravitational accelerations. However,
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if an appropriate magnetic field is generated, then stable levitation can be realized. For
example, when the magnetic flux density, which is expressed by 0.5 − 0.35 z + 0.08z2 T,
(where z is in µm) near z = 2 µm is generated, the total energy of the flat graphene flake
for g = 9.8 m/s2 takes a minimum at 2 µm as shown in Figure 7a. Furthermore, Figure 7b
shows the total energy at the levitation height and takes the minimum in the flat state
(θ = 0), and indicates that stable levitation can be achieved on Earth if the appropriate
magnetic field is generated.
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Figure 7. (a) Dependence of the total energy of the flat graphene flake for g = 9.8 m/s2 on the vertical
position. (b) Dependence of the total energy at equilibrium heights of 2 µm on the inclined angle for
g = 9.8 m/s2.

The stabilization of levitation results from the feature that the Casimir energy takes
a minimum value when the plates are parallel for large separations. PFA worsens as the
separation distance increases. However, the predicted stability of parallel configurations
may be correct. For perfectly conductive plates, an analytical formula of the Casimir energy
between non-parallel plates was presented in Ref. [30] using the optical approximation,
which is one of the calculation methods beyond PFA [31–33]. Figure 8 shows the inclination
angle of a square plate with side of size L above an infinite plate in a stable configuration,
calculated using the optics approximation; θ∗ is a function of the ratio of the separation
distance between the square center and the infinite plate (δ). The parallel configuration
with a zero inclination angle stabilizes when δ > 0.81. Although sophisticated calculation
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methods are necessary to determine the magnetic field accurately to realize levitation, the
guideline indicating that stabilization through the Casimir effect is highly effective for large
separations can be useful.
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Figure 8. Dependence of the equilibrium of inclination angle, θ∗, obtained by the optical approxima-
tion on nomalized separation distance with the size of a plate, δ. The parallel configuration is stable
for δ > 0.81.

8. Conclusions

The coexistence of attractive and repulsive forces is crucial for achieving the levitation
of objects. Furthermore, the behavior of these forces near the equilibrium point is of great
importance. If they follow the power functions with the same exponent, the resulting
function becomes monotonic, rendering stable levitation impossible.

The Casimir energy between objects is influenced by various physical parameters,
such as the objects’ shapes, distance between objects, permittivity, and temperature [27,34].
It is often represented by a power function. In the case of perfectly conductive plates,
Casimir energy is inversely proportional to the cube of the separation distance, i.e., a−3,
regardless of the distance. However, if the permittivity is finite, Casimir energy varies as
a−2 for small separations. This implies that the force between objects and its derivative
can be manipulated by selecting appropriate materials and separation distances from an
engineering perspective.

To counteract the rotation of the graphene flake and achieve stable levitation, a dia-
magnetic force was employed as a repulsive force. In order for the flake’s surface to remain
perpendicular to the magnetic field, it is necessary to fixate the surface and ensure that the
product of the applied magnetic field and its derivative is sufficiently large. However, in
a vacuum environment, the graphene flake tends to rotate, causing its surface to become
parallel to the magnetic field. To address this issue, the Casimir torque was utilized as one
of the methods for stabilization.

The numerical analysis revealed that the Casimir effect can provide some degree of
stabilization for the diamagnetic levitation of a graphene flake. However, its effectiveness
is limited, and it is insufficient to fully suppress the rotation in Earth’s gravity by the
magnetic field generated through the circular electric current. This limitation arises from
the feature that the suppression of the rotation by the Casimir effect is most effective at
larger separation distances. As the separation distance increases, the Casimir energy rapidly
diminishes, resulting in a weaker restoring torque. Therefore, in order to achieve magnetic
levitation in a strong gravitational field, furthering the optimization of the magnetic field is
necessary as shown in Section 7.

As the separation distance approaches zero, the magnetic energy remains finite. How-
ever, the Casimir energy diverges to negative infinity. This implies that the levitation state
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is metastable [35–37], and a potential barrier is present near the surface. The height of this
potential barrier is not significant. Therefore, to maintain the levitation state, it is necessary
to maintain a high vacuum and low temperature. These conditions help to stabilize the
system and prevent the graphene flake from falling onto the substrate.

Funding: This research was funded by the Ministry of Education, Culture, Sports, Science and Tech-
nology, Grant-in-Aid for Scientific Research(C), MEXT KAKENHI, Japan, Grant Number 21K04895.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Milonni, P.W. The Quantum Vacuum; Academic Press, Inc.: San Diego, CA, USA, 1994. [CrossRef]
2. Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press:

Oxford, UK, 2009. [CrossRef]
3. Chan, H.B.; Aksyuk, V.A.; Kleiman, R.N.; Bishop, D.J.; Capasso, F. Quantum mechanical actuation of microelectromechanical

systems by the Casimir force. Science 2001, 291, 1941–1944. [CrossRef]
4. Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir forces and quantum electrodynamical torques: Physics and

nanomechanics. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 400–414. [CrossRef]
5. Decca, R.; Aksyuk, V.; López, D. Casimir force in micro and nano electro mechanical systems. In Casimir Physics; Dalvit, D.,

Milonni, P., Roberts, D., da Rosa, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 287–309. [CrossRef]
6. Zou, J.; Marcet, Z.; Rodriguez, A.W.; Reid, M.T.H.; McCauley, A.P.; Kravchenko, I.I.; Lu, T.; Bao, Y.; Johnson, S.G.; Chan, H.B.

Casimir forces on a silicon micromechanical chip. Nat. Commun. 2013, 4, 1845. [CrossRef] [PubMed]
7. Palasantzas, G.; Sedighi, M.; Svetovoy, V.B. Applications of Casimir forces: Nanoscale actuation and adhesion. Appl. Phys. Lett.

2020, 117, 120501. [CrossRef]
8. Kenneth, O.; Klich, I.; Mann, A.; Revzen, M. Repulsive Casimir forces. Phys. Rev. Lett. 2002, 89, 033001. [CrossRef] [PubMed]
9. Munday, J.N.; Capasso, F.; Parsegian, V.A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 2009, 457, 170–173.

[CrossRef]
10. Kenneth, O.; Klich, I. Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 2006, 97, 160401. [CrossRef]
11. Geim, A.K.; Simon, M.D.; Boamfa, M.I.; Heflinger, L.O. Magnet levitation at your fingertips. Nature 1999, 400, 323–324. [CrossRef]
12. Simon, M.D.; Geim, A.K. Diamagnetic levitation: Flying frogs and floating magnets (invited). J. Appl. Phys. 2000, 87, 6200–6204.

[CrossRef]
13. McClure, J.W. Diamagnetism of graphite. Phys. Rev. 1956, 104, 666–671. [CrossRef]
14. Niu, C.; Lin, F.; Wang, Z.M.; Bao, J.; Hu, J. Graphene levitation and orientation control using a magnetic field. J. Appl. Phys. 2018,

123, 044302. [CrossRef]
15. Lin, F.; Niu, C.; Hu, J.; Wang, Z.; Bao, J. Graphene diamagnetism: Levitation, transport, rotation, and orientation alignment of

graphene flakes in a magnetic field. IEEE Nanotechnol. Mag. 2020, 14, 14–22. [CrossRef]
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Abstract: We present a concise review of selected parts of axion electrodynamics and their application
to Casimir physics. We present the general formalism including the boundary conditions at a
dielectric surface, derive the dispersion relation in the case where the axion parameter has a constant
spatial derivative in the direction normal to the conducting plates, and calculate the Casimir energy
for the simple case of scalar electrodynamics using dimensional regularization.

Keywords: axion electrodynamics; Casimir effect; topological insulators

1. Introduction

The axion concept has actually a long history. It was introduced by Roberto Peccei
and Helen Quinn back in 1977 [1,2] in connection with the CP (charge conjugation and
parity symmetry) problem in high-energy physics. However, later it was understood as
related to a natural extra term in the electromagnetic Lagrangian with a direct formal
connection to materials like topological insulators and thus of obvious practical interest.
So, we first describe the basic properties of topological materials. Topological insulators
(TIs) are the new phases of matter, which exhibit unique electronic properties due to their
nontrivial topological characteristics, and were discovered in 2005 [3,4]. These materials
have insulating states inside the bulk with a bulk energy gap separating the highest
occupied electronic band from the lowest empty band, like an ordinary insulator, while
conducting states exist on their surfaces in the case of three-dimensional TIs or on their
edges in the case of two-dimensional (2D) TIs, which are topologically protected (robust to
local defects, imperfections, and disorders) by time-reversal symmetry [5]. In 2006, the TI
phase was theoretically predicted [6] and experimentally realized in a CdTe-HgTe-CdTe
quantum well; this quantum well behaves in bulk as an insulator. However, the electric
current was observed across the interface, i.e., it behaves like a conductor in the surface
region [7]. Additionally, one knows from band theory that conductors do not have a
gap between their valence and conduction bands. In contrast, insulators are defined as
materials with a gap between them. The most notable aspect is that Maxwell’s equations are
unable to explain the experimental behaviors of topological insulators. Notably, this kind of
behavior was previously suggested by Frank Wilczek [8] in 1987, along with the possibility
that it could be described by the axion electrodynamics he [9] and Steven Weinberg [10]
developed. Their initial aim was to explain the breaking of combined symmetries of charge
conjugation and parity in strong interactions.

With a topological invariant called the Z2 invariant, one can distinguish trivial insula-
tors from topological insulators. Topological materials have interesting features, and one
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of them is the magnetoelectric effect caused by a term called the θ term. Since this term,
referred to as the magnetoelectric polarizability, has exactly the same form as the action
describing the coupling between a photon and an axion, these magnetoelectric phenomena
are often depicted with axion electrodynamics. In the presence of time-reversal symmetry,
θ takes on a quantized value θ = π(mod 2π) for topological insulators and θ = 0 for
ordinary insulators [11–14]. The value of θ, nevertheless, can be arbitrary in systems with
broken time-reversal symmetry, even depending on space and time as θ(r, t), like in various
semimetallic phases. Moreover, when the dynamics of the axion field is included, the exis-
tence of new quasiparticles, such as the axion polariton [15], is also proposed. For more
details, see [14] and the references therein.

In a separate paper [16] we reviewed the semiclassical electrodynamics and its link
to Casimir physics. Notably, the history of this remarkable effect dates back to 1948 when
it was predicted by Hendrik Casimir [17,18]. A formidable, and highly effective, theory
for the retarded dispersion force between a pair of planar surfaces interacting across an
intervening medium was developed in the 1950s by Evgeny Lifshitz and collaborators
[19,20]. From the late 1960s, groups from around the world explored if a theory based upon
the classical Maxwell’s equations combined with the Planck quantization of light could by
itself lead to a simple and useful semiclassical theory for van der Waals, Lifshitz, and Casimir
interactions [21,22]. As one important example, a semiclassical derivation of Casimir effects
in magnetic media was presented by Peter Richmond and Barry Ninham [23] already in
1971. Many theoretical [24–36] and experimental studies [37–44] have followed in the last
50 years. More information related to Casimir effects in traditional systems can be found
in the extensive literature [45–51]. A number of studies have been carried out with a focus
on predictive theories, nanobiotechnological applications, and novel materials’ growth and
characterization. Notably, going beyond the standard applications, specific ion effects in both
biological systems and colloid chemistry have been proposed to occur partly due to ionic
dispersion potentials [52] acting on ions in salt solutions [53–59]. This leads to a nonlinear
coupling of electrodynamical and electrostatic interactions with a proposed role behind
the so-called (ion-specific) Hofmeister effect [60]. Most interestingly, Casimir and van der
Waals interactions may also have an impact on the growth of ice clusters within mist [61] and
clouds [62,63]. It has been, and still is, relevant to explore the limits of validity of the different
theories for dispersion forces (e.g., between two layered surfaces). A most natural extension
of this conventional semiclassical electrodynamics, as well as quantum electrodynamics,
in media is to allow for an extra pseudoscalar field, called conventionally the axion field a(x)
(x means here spacetime), pervading in the whole volume. Some of the pioneering papers on
axion electrodynamics are listed in Refs. [1,2,10,64–69]. More recent investigations can be
found in Refs. [70–94]. Here, we present an easy-to-follow and concise review of the current
understanding of axion electrodynamics from our point of view.

2. Axion Electrodynamics

Different methods have been suggested to investigate the electromagnetic character-
istics of 3D magnetic topological insulators (see, for example, Refs. [10,64]), which are
based on axion field theory [95,96]. This approach introduces an additional term to the
conventional Maxwell electromagnetic action, expressed as follows:

SA =
e2

32π2h̄c

∫
d3~r dt θ εµναβFµνFαβ, (1)

where e denotes the elementary charge, h̄ is the reduced Planck constant, c denotes the
speed of light. Here and elsewhere below, εµναβ represents the completely antisymmetric
tensor, Fµν is the Maxwell field strength tensor, the Greek letter indices take the 0 (time, t),
1, 2, and 3 (space) values,~r is the space vector, and θ denotes the axion coupling strength.
Originally proposed in the context of quantum chromodynamics (QCD) to address the
strong CP problem [1,97], the axion is a hypothetical pseudoscalar particle and has also
been considered a potential candidate for cosmological dark matter. Since Equation (1)
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bears mathematical similarities to the description of cosmological/QCD axions, the term
“axion” is used in the context of topological insulators. However, the axial coupling in
topological insulators is related to the presence of a surface quantum Hall effect [98].

The reason why a(x) is a pseudoscalar quantity is that the mentioned extra term in
the Lagrangian implies a two-photon interaction with the electromagnetic field, and the
pseudoscalar property of a(x) ensures that its product with the polar vector E together with
the axial vector B becomes a scalar in the Lagrangian. We shall in the following highlight
some essential properties of the axion formalism, assuming a dielectric environment with
the permittivity ε and the permeability µ being constants. It means that the constitutive
relations are simply D = εE, B = µH. The presentation in the following is largely based
upon our earlier papers [91–94]. When magnetoelectric effects occur in topological material,
the magnetic induction B changes the electric displacement vector D, and the magnetic
field intensity H is in turn influenced by the electric field. Then, the relations for D
and B should be changed, D = εE − θαB/π, H = B/µ + θαE/π, where α is the fine-
structure constant. These constitutive relations were given in [99] and in references therein;
see also the later Ref. [100]. As a result, these two polarizations are coupled, meaning
that the electromagnetic boundary conditions are off-diagonal components of the Fresnel
coefficients [101].

In relation to our previous comments in Section 1, it is quite important to note paral-
lelism between two analogous yet distinct phenomena. In the following discussion, our
focus will be on the axion approach rooted in the Peccei–Quinn formalism, while a formal
analogy arises with polariton excitations in condensed media. Our coupling constant gaγγ,
below, will thus refer to the axion case. One might be interested in the corresponding
coupling constant in the polarization case also, but this is a complicated subject into which
we will not enter here. Interested readers may consult, for instance, the paper [102], to ob-
tain detailed information about a strong coupling between a topological insulator and
a III-V heterostructure.

2.1. Basic Equations

We choose the metric convention with signature g00 = −1 and introduce two field
tensors, Fαβ and Hαβ. The components of the original field tensor Fαβ are as in vacuum,
F0i = −Ei, Fjk = εijkBi (where the indices in Latin letters denote the space coordinates),
while the components of the contravariant response tensor Hαβ are H0i = Di, Hjk = εijk Hi.

Including the pseudoscalar axion field a = a(x), we obtain for the Lagrangian

L = −1
4

FαβHαβ + A · J− ρΦ− 1
2

∂µa∂µa− 1
2

m2
aa2 − 1

4
θ(x)Fαβ F̃αβ, (2)

in which A denotes the magnetic potential, J denotes the current, ρ denotes the energy
density, Φ denotes the scalar potential, ma is the axion mass, F̃αβ = εαβγδFγδ/2, and we
have defined the nondimensional field amplitude as

θ(x) = gaγγa(x). (3)

The constant for the coupling of the axion with two photons can be defined as follows,

gaγγ = gγ
α

π

1
fa

, (4)

where gγ is a constant depending on the specific model used and is usually taken to be
0.36 [75]. The fa represents the axion decay constant and for fa, it is commonly assumed
that its value is on the order of 1012 GeV. The Lagrangian’s last term (2), Laγγ, can be
written as Laγγ = θ(x)E · B, explicitly showing the pseudoscalar property of θ(x).

The expression (2) can be used to obtain the generalized Maxwell equations

∇ ·D = ρ− B · ∇θ, (5)
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∇×H = J +
∂

∂t
D +

∂θ

∂t
B +∇θ × E, (6)

∇ · B = 0, (7)

∇× E = − ∂

∂t
B. (8)

These equations are general, and there are no restrictions on the spacetime variation of
a(x). The equations are relativistically covariant. It is crucial that the constitutive relations
stated previously maintain their quite simple form D = εE, B = µH only in the rest system,
and the electromagnetic formalism’s covariance is achieved by introducing two distinct
field tensors, Fµν and Hµν. The field equations describing the system are

∇2E− εµ
∂2

∂t2 E = ∇(∇ · E) + µ
∂

∂t
J + µ

∂

∂t

[
∂θ

∂t
B +∇θ×E

]
, (9)

∇2H− εµ
∂2

∂t2 H = −∇× J−∇×[∂θ

∂t
B +∇θ×E]. (10)

In practice, the influence from axions is typically small in our case here. We do not
consider the field equations for the axions explicitly for simplicity and clarity.

The field equations above contain the second-order derivatives of θ. These may
conveniently be removed if we assume there is a strong external magnetic field Be = Beẑ
present , where ẑ is the normal vector. Then, assuming the axion field

a(t) = a0 cos ωat, (11)

one can separate out the part Ea(t) related to the θ̈ term, where the dot on the top denotes
the time derivative. From the governing equation for Ea(t), ignoring the current J as the
axion-related field,

∇2Ea − εµ
∂2

∂t2 Ea = µθ̈Be. (12)

Then,

Ea(t) = −
1
ε

E0 cos ωat ẑ, (13)

where
E0 = θ0Be. (14)

After this separation, the field equations (9) and (10) take the reduced forms

∇2E− εµ
∂2

∂t2 E = ∇(∇ · E) + µ
∂

∂t
J + µ[θ̇

∂

∂t
B +∇θ× ∂

∂t
E], (15)

∇2H− εµ
∂2

∂t2 H = −∇× J−
[
θ̇∇× B + (∇θ)∇ · E− (∇θ · ∇)E

]
. (16)

In the following, we allow θ to be spatially varying but neglect the second-order
derivatives, i.e., ∂i∂jθ ≈ 0. This means that the model excludes situations where spatial
boundaries lead to δ- and δ′-type terms. Actually, as shown in Equation (25) below, we in the
mathematical analysis take θ to vary linearly in space over the field region of interest. There
will accordingly be no second-order terms in the field region, while the electromagnetic
boundary conditions must be imposed at the boundaries.

It is to be noted that the equations contain the dynamical fields E and B only.
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2.2. Hybrid Form of Maxwell’s Equations. Boundary Conditions

It turns out that one can construct a hybrid form of Maxwell’s equations from which
the generalized boundary conditions at a dielectric surface follow in a very transparent
way. We introduce new fields Dγ and Hγ via

(
Dγ

Hγ

)
=

(
ε θ
−θ 1/µ

)(
E
B

)
, (17)

which shows how Dγ, Hγ relate to the response tensor Hµν. The hybrid Maxwell equations
thus become similar to those in the usual electrodynamics,

∇×Hγ = J +
∂

∂t
Dγ, ∇ ·Dγ = ρ, (18)

∇× E = − ∂

∂t
B, ∇ · B = 0. (19)

The boundary conditions at a dielectric boundary are then immediate:

E⊥ = Eγ,⊥ + Ea,⊥ is continuous, (20)

E⊥, Hγ,⊥ are continuous, (21)

Dγ,‖, B‖ are continuous, (22)

(the symbols ⊥ and ‖mean perpendicular and parallel to the normal, thus parallel and per-
pendicular to the surface). A key quantity is the property of Poynting’s vector, S = E×H.
Taking the z component Sz orthogonal to a dielectric surface, one sees that

S1z = S2z, (23)

showing that the energy flux density is continuous across the surface, dividing media 1
and 2. This is as one would expect as the surface is at rest; the force acting on it is not able
to perform any mechanical work.

2.3. Dispersion Relations

We use now the standard plane wave expansion

E ∝ ei(k·x−ωt), k = (kx, ky, kz) (24)

with k the wave number and the frequency ω.
We start from the reduced Maxwell Equations (15) and (16) and restrict ourselves to

the case where a(x) will vary with space only,

β = ∇θ, (25)

with β assumed constant. This form is mathematically convenient and often used in
the literature. The form is of the same kind as assumed for Weyl semimetals [103,104],
where the gradient of the axion is related to the separation of Weyl nodes in the Brillouin
zone. One may here note that the case of topological insulators is different, as in such a
case the gradient of the axion is taken to be zero except at the interfaces between trivial
and nontrivial phases. The situation is, however, complex, and it should be mentioned
that the configuration given here is very close to the one reported in Ref. [105], where a
topological insulator slab is placed between two perfect conducting plates. We also point
out that instructive papers on the new material, for example, those showing exotic Hall
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effects, those on TRS-broken semimetals, those on Chern insulators, etc., can be found in
the Refs. [101,106,107].

Starting from Equations (15) and (16), assuming ρ = J = 0, we find the determinant
equation determining the dispersion relations. There are two dispersive branches. The first
is a “normal” one, satisfying

εµω2 = k2, (26)

corresponding to waves independent of the axions and polarizing parallel to β. The second
branch, polarizing perpendicular to β, should have

εµω2 = k2 ± µβω. (27)

showing the splitting of this branch into two modes, equally separated from the normal
mode on both sides. This sort of splitting has been encountered before under various
circumstances; see, for instance, Refs. [75,76,108].

The following property of this kind of material should be noticed: the dispersive
property does not influence the electromagnetic energy density. In a complex representation,
the energy density can be written as

Wdisp =
1
4

[
d(εeffω)

dω
|E|2 + |H|2

]
, (28)

where we have assumed for a moment that the medium is nonmagnetic, and we have
introduced an effective permittivity εeff such that

k2 = εeff(ω)ω2. (29)

It then follows that
d(εeffω)

dω
= ε, (30)

which shows that the dispersive correction disappears. The energy density is the same as if
dispersion were absent. This property is not quite trivial.

2.4. Dispersion Relations, When θ Is Time-Dependent

We introduce the variable α as
α = θ̇ (31)

and assume α constant. The dispersion takes the form

εµω2 = k2 ± µα|k|. (32)

We may here for a nonmagnetic medium introduce the refractive index, neff =
√

εeff,
and so obtain

neff(ω) =

√
ε +

α2

4ω2 ±
α

2ω
. (33)

Given the assumed smallness of the axion contributions, we restrict the parameter
values to the region (β + α)/kz � 1.

If kz is the wave number for photons in the z direction, corresponding to axions with
mass ma ∼ ω = 10−5 eV, we have kz = 10−5 eV, so that the condition above can be
rewritten as

β + α� 10−5 eV
( ma

10−5 eV

)
. (34)

3. Energy–Momentum Considerations

It is interesting to consider the electromagnetic energy–momentum tensor in interac-
tion with the axion field. As this is a nonclosed physical system, the four-force density will
in general be different from zero. The system is in this way analogous to the electromag-
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netic field in a medium in ordinary electrodynamics, since also, in that case, the system
is nonclosed because the influence from the mechanical system itself is not accounted for
(this is the point giving rise to the classic Abraham–Minkowski problem). We assume in
this section that ε and µ can vary in space and time but do not restrict the derivatives with
respect to space or time to be constants.

We may start with the electromagnetic energy density,

W =
1
2
(E ·D + H · B). (35)

Together with the Poynting vector,

S = E×H, (36)

this leads to the energy conservation equation

∇ · S + Ẇ = −E · J− θ̇(E · B). (37)

There is thus an exchange of electromagnetic energy with the axion “medium” if
E and B are different from zero and θ(t) is time-varying, even if J = 0.

A more delicate question is the expression for the momentum density g. In accordance
with Planck’s principle of inertia of energy, g = S/c2, one would expect the Abraham
momentum density gA to be right,

gA = E×H. (38)

We notice that the Maxwell stress tensor,

Tik = EiDk + HiBk −
1
2

δik(E ·D + H · B), (39)

is common for the Abraham and Minkowski alternatives, TA
ik = TM

ik ≡ Tik. Here δik is the
Kronecker delta. The momentum conservation equation can thus be expressed in the form

∂kTik − ġA
i = f A

i , (40)

where f A
i are the components of Abraham’s force density

fA = ρE + (J× B) + (εµ− 1)
∂

∂t
(E×H)− gaγγ(E · B)∇a. (41)

The third term on the right-hand side of Equation (41), the Abraham term, has ex-
perimentally turned up only in a few experiments, mainly at low frequencies where the
mechanical oscillations of a test body are directly detectable.

In optics, the Abraham force will fluctuate out. It is therefore mathematically simpler,
and in accordance with all observational experience in optics, to include the Abraham
momentum (physically, a mechanical accompanying momentum) in the effective field
momentum. Therewith, the momentum density becomes just the Minkowski momentum
gM, given by

gM = D× B. (42)

The momentum conservation equation in the Minkowski case yields

∂kTik −
∂

∂t
gM

i = f M
i , (43)

where
fM = ρE + (J× B)− (E · B)∇θ. (44)
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Consider the relativistically covariant form for the energy–momentum balance: Minkowski’s
energy–momentum tensor,

SMν
µ = FµαHνα − 1

4
gν

µFαβHαβ, (45)

has the same form in all inertial frames. The conservation equations for electromagnetic
energy and momentum can be written as

−∂νSMν
µ = f M

µ , (46)

where f M
µ = ( f0, fM) is the four-force density. In the rest system,

f0 = E · J + (E · B)θ̇, (47)

where f M
0 = f A

0 ≡ f0.

4. Casimir Effect between Two Plates

We here restrict ourselves to the simplest case, namely, scalar electrodynamics, mean-
ing that the photons’ vector property is included but not their spin. We assume α = 0
and also zero temperature. Assume the usual setup where there are two large metallic
plates, with a gap L, orthogonal to the z direction. In the intervening region, there is an
axion field a(z) whose amplitude increases linearly with z,

a(z) =
a0z
L

= βz, 0 < z < L, (48)

where a0, the amplitude at z = L, is fixed. There is no external magnetic field. The
magnitude of β is not restricted to be small. The smallness expansion in the present theory
applies rather to the spatial variation of the axion field, as embodied in the restriction
∂i∂jθ ≈ 0, as also mentioned above.

We mention that the reduced Maxwell equations in this case can be written as

∇2E− εµË = gaγγµβẑ× Ė, (49)

∇2H− εµḦ = gaγγβ∂zE. (50)

We obtain two dispersive branches, as before. The first, corresponding to Equation (26),
can now be written

|k| = √εµ ω, kz =
πn
L

, n = 1, 2, 3, · · · , (51)

showing no dependence on the axions. The second branch can be written as

εµω2 = k2 ± gaγγβω, (52)

which can be recast in the form

ω =
1√
εµ

(
|k| ± 1

2
gaγγβ

√
µ

ε

)
, (53)

in view of the smallness of g2
aγγ. This branch, composed of two modes, lies very close to

the first mode above. For a given ω, there are in all three different values of |k|.
Consider now the zero-temperature zero-point energy E of the field, defined by

E =
1
2 ∑ ω. (54)
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From the second branch (53) only, one obtains, per unit plate area,

E =
1

2
√

εµ

∞

∑
n=1

[∫ d2k⊥
(2π)2

√
k2
⊥ +

π2n2

L2 ±
gaγγ

2L2

√
µ

ε

]
, (55)

where k⊥ is the component of k orthogonal to the surface normal (note that the present
definition of β differs from that in Ref. [108]). This expression can be further treated using
dimensional regularization (see, for instance, Ref. [46]), with the result [108]

E =
1√
εµ

(
− π2

1440
1
L3 ∓

gaγγβ

4L2

√
µ

ε

)
. (56)

Of main interest is the contribution from the photons and axions moving in the
z direction. We associate this with the Casimir energy EC. Mathematically, the derivation
involves the Hurwitz zeta function. One obtains

EC =
1

4
√

εµ

(
− π

6L
± 1

2
gaγγβ

√
µ

ε

)
1
L2 . (57)

Here, the first term comes from scalar photons propagating in the z direction, while
the second term is the axionic contribution. With respect to the inverse L dependence,
the Casimir energies for the electrodynamic and the axion parts behave similarly, as one
would expect. In the above, the upper and lower signs match. In Equation (57), the small
axion-induced increase in the Casimir energy arises from the superluminal mode in the
dispersion relation (53) (meaning that the group velocity is larger than 1/

√
εµ). This mode

corresponds to a weak repulsive Casimir force. The other mode corresponds to a weak
attractive force.

5. An Axion Echo from Reflection in Outer Space

Assume that the axion field is of the form a = a(t) = a0 sin ωat, as is often chosen
for outer space, and assume ε = µ = 1. In view of the smallness of the axion velocity,
v ∼ 10−3c, one has approximately ωa = ma. An estimated value of ma = 10 µeV is common.
If the axions are associated with dark matter, we have to make do with a very low energy
density, ρDM = 0.45 GeV/cm3 [71]. We will adopt the simple form

ρa =
1
2

m2
aa2

0. (58)

Assume now that an electromagnetic beam is sent from the Earth to an axion cloud.
We take the initial form of the beam to be Gaussian,

A0(x, t) = c e−x2/2D2
cos k0x ŷ, (59)

with A0 as the vector potential and the constant D as the Gaussian width. Making a
Fourier decomposition,

A0(x.t) =
1
2

∫ ∞

−∞

[
A0(k)ei(kx−ωt) + A∗0(k)e

−i(kx−ωt)
]
dk, (60)

one has as inversion

A0(k) =
1

2π

∫ ∞

−∞
e−ikx

[
A0(x, 0) +

i
ω

∂A0

∂t
(x, 0)

]
dx. (61)

Then, imposing the condition ∂A0/∂t(x, 0) = 0, we obtain

A0(k) = A+
0 (k) + A−0 (k), (62)
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where

A+
0 (k) =

cD
2
√

2π
exp

[
−1

2
D2(k− k0)

2
]

ŷ. (63)

The expression for A−0 (k) implies that k− k0 → k + k0. The right-moving wave, to be
considered henceforth, is

A+
0 (x, t) =

∫ ∞

0
A+

0 (k) cos(kx−ωt)dk, ω = k > 0. (64)

In what follows, we omit the superscript. The incident wave fields are E0(x, t) = −Ȧ0(x, t),
H0(x, t) = ∇×A0(x, t).

The incident wave will interact with the axion cloud. As ρ = J = 0, we see from
Equations (41) or (44) that f = 0, in accordance with the assumed homogeneity of the cloud.
Furthermore, the component f0 in (47) is zero, because E0 and H0 are orthogonal. We
therefore go back to the field equations, from which we obtain

∇2A− Ä = −gaγγ ȧ∇×A. (65)

We here let A→ A0 on the right-hand side of Equation (65). Neglecting ∇2A on the
left-hand side, and using Equation (64), we obtain

Ä(x, t) = −gaγγa0ωa

∫ ∞

0
A0(k)k sin(kx−ωt) cos ωat dk ẑ, (66)

still with ω = k.
In complex notation, extracting the resonance term,

Ä(x, t) =
1
2

gaγγa0ωaIm
∫ ∞

0
A0(k)kei(kx−ωt+ωat) ẑ. (67)

We construct a new quantity A(k, t) as

A(x, t) = Im
∫ ∞

0
eikxA(k, t)dk, (68)

and can thus write
Ä(k, t) = −1

2
gaγγa0ωa A0(k)ke−i(ω−ωa)t ẑ. (69)

With yet another quantity

A(k, t) = A(k, t)e−iωt, (70)

we have
Ä(k, t) = Ä(k, t)eiωt + 2iωȦ(k, t)eiωt −ω2A(k, t)eiωt, (71)

Now, keeping the resonance term only, we obtain

Ȧ(k, t) =
i
4

gaγγa0ωa A0(k)e−i(2ω−ωa)t ẑ. (72)

Integrating over t,

A(k, t) = −gaγγa0ωa
cD

8
√

2π
exp

[
−1

2
D2(k− k0)

2
]

e−i(2ω−ωa)t

2ω−ωa
ẑ. (73)
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The resonance at ω = ω/2 is as expected: an incoming photon 2ω can split an axion
into two components with the same mass, ma = ωa. We focus on the imaginary part of the
above expression and use the relation

lim
sin αx

πx
∣∣
α→∞ = δ(x), (74)

(with δ(x) the Dirac delta function) to obtain

ImA(k, t) = gaγγa0ωa
cD
16

√
π

2
exp

[
−1

2
D2(k− k0)

2
]

δ(ω− 1
2

ωa) ẑ. (75)

From this, the axion echo can be found. This sort of calculation was pioneered by Pierre
Sikivie and collaborators [75,82]. The present generalized form, containing the Gaussian
width D, was given by one of the authors of this paper and Masud Chaichian [91].

6. Discussions and Future Outlooks

We would like to conclude with the following brief points.

1. As already mentioned, the influence of axions, at least in cosmology, is expected
to be very weak. The cosmological axion energy density is often expected to be
about 0.40 GeV/cm3, corresponding to an axion mass of about 10−5 eV and a relative
velocity of about 10−3. Various experiments and proposals of experiments have
been launched:

(a) The haloscope experiment, proposed by Sikivie [75], in which the aim is to
detect resonances between the electromagnetic eigenfrequencies of a dielectric
cylinder and the axions (see also Refs. [70,91]). To date, no such resonance has
been detected.

(b) The idea, also due to Sikivie [75], to observe the axions via their electromagnetic
“echo” returned back to the Earth from an outer cloud (see also Ref. [91]).

(c) The broadband solenoidal haloscope proposed in Ref. [71], which proposes to
make use of the axion “antenna” effect to focus the electromagnetic radiation
emitted from dielectric boundaries towards a detector.

2. The above treatment provides a general review of axion electrodynamics and is,
in principle, not limited to the semiclassical case. This constraint applies similarly to
ordinary electrodynamics, usually when distances are small or temperatures are high.

3. The axion formalism is useful as regards application to topological insulators. Thus,
the constitutive relations (17) can formally be taken over to this kind of modern
material science as they stand. The case of chiral materials, for instance, a Faraday
material, is more complicated since the coupling parameter θ becomes imaginary ;
see, for instance, Ref. [74].

4. To conclude, we have presented a concise summary of the basics of axion electrody-
namics, linking it to the general field of Casimir physics. Notably, additional contribu-
tions to the Casimir interaction are observed that occur as direct consequences of the
extra pseudoscalar axion field. Novel physics, based on improved materials character-
ization requiring new and improved physical models, is likely to be discovered in the
years to come.
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Abstract: From the late 1960s onwards, the groups of Barry Ninham and Adrian Parsegian, and
their many collaborators, made a number of essential contributions to theory and experiment of
intermolecular forces. In particular, they explored the semi-classical theory: Maxwell’s equations
and Planck quantization of light leads to Lifshitz and Casimir interactions. We discuss some selected
thought-provoking results from Ninham and his group. Some of the results have been conceived as
controversial but, we would say, never uninteresting.

Keywords: Lifshitz forces; Casimir effect; semi-classical electrodynamics

1. Introduction

Since the prediction of the Casimir effect in 1948, and its experimental confirmation
in the period after that, there has been a significant interest in studying the forces caused
by fluctuations both theoretically and experimentally [1,2]. Before reviewing some contri-
butions to Casimir physics from semi-classical electrodynamics theory, that is Maxwell’s
equations and Planck quantization of light leading to Lifshitz and Casimir interactions,
with particular emphasis on the paper by Barry Ninham and collaborators, we first present
some historical reflections. The history of intermolecular forces actually goes back to the
early history of science. Thomas Young notably wrote a paper on molecular forces in
1805 [3,4]. Young deduced that they had to obey 1/r6-power-law, where r is the average
distance between molecules. Reverend Pam Challis of Trinity College, in a major address
to the British Association 1836 [5], reviewed the state of molecular forces between colloidal
particles, suggested interferometry for direct measurements, quoting Augustin-Jean Fresnel,
and referred to the subject as “this the highest Department of Science” for which he coined
the term Mathematical Physics. The renowned article by James Clerk Maxwell in the nineth
edition of Encyclopaedia Britannica [6] discussed capillary action and molecular forces,
updated by Lord Rayleigh in the 11th edition [7]. Roger Boscovich (Rud̄er Bošković), a
Croatian Jesuit Priest based in Rome after whom the Rud̄er Bošković Institute in Zagreb
is named, developed a system of the world essentially inventing statistical mechanics
(his book [8] appeared around 1600). To do so, Boscovich needed a molecular potential.
His effective potential oscillated with the period a molecular diameter tailing off into a
gravitational 1/r2. The basis of the study of intermolecular forces was laid by Johannes
Diderik van der Waals in 1873 [9] (see English translation in Ref. [10]). He clarified the
concept of interparticle forces and how molecules interact. Quantum fluctuations create in-
termolecular forces that exist throughout macroscopic bodies. At the molecular separations
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of about a few nanometres or less, these interactions causing the attraction and repulsion
between molecules, are the familiar van der Waals forces.

As discussed by Boris Derjaguin, Irina Abrikossova, and Evgeny Lifshitz in their 1956
review paper [11], the correct understanding of the nature of molecular forces was initially
proposed by Peter (Pyotr) N. Lebedev, back in 1894 [11,12]: “There exist intermolecular
forces whose origin is closely connected with radiation processes.” In general, it is necessary
to understand van der Waals forces and understand their importance compared to other
molecular forces.

Fundamental and applied research on molecular forces continued until Fritz London
proposed the general theory of molecular forces in 1930 [13]. This theoretically improved the
understanding of molecular dispersion forces, and contributed to the interpretation of van
der Waals forces and other molecular forces. Also, the significant contributions of Lifshitz
should be addressed. In 1955, Lifshitz explained how the oscillating charge distribution in
molecules leads to the creation of attractive forces [14]. These explanations contribute to a
deeper understanding of molecular forces and their role in various phenomena.

Ever since Derjaguin and Abrikossova [11] performed their force measurements,
there has been a strong focus on the phenomena The first set of experiments, notably
measuring interactions between quartz and metal plates, studied only the so-called retarded
region. Experiments of David Tabor and Ralph Winterton [15] and subsequently of Jacob
Israelachvili and Tabor [16,17] fitted the measured force to a power law function of 1/Lp

(where L is the distance), where p varied from non-retarded (p = 3) to fully retarded (p = 4)
value. In these early experiments, a gradual transition was observed from non-retarded to
retarded interaction, as the distance between the surfaces increased from around 12 nm
upto 130 nm [16]. Surface force measurements [11,15–18] and theoretical clarifications
and extensions of the Lifshitz formula [19–23] to include, for example, magnetic [24] and
conducting particles [25,26], and liquids between unequal surfaces, were pioneered in the
1970s by the group of Ninham, Israelachvili, and their collaborators at the Department of
Applied Mathematics in the Australian National University.

According to the fundamental theory, the Lifshitz force can also be repulsive, which is
an interesting feature that has attracted quite some of attention [19,27,28]. Charles Anderson
and Edward Sabiski demonstrated this phenomenon in their research on liquid helium films
on smooth surfaces of calcium fluorite (CaF2), among other similar molecularly smooth
surfaces [29]. The thickness of the films in the experiment ranged from 10 Å to 200 Å,
and could be measured with an accuracy of a few percent in most cases. Several past
publications by Ninham have explored the history of intermolecular forces in more detail.
The book by Ninham and Pierandrea Lo Nostro [30] is of a particular interest.

We focus first on reviewing a study that our close and distinguished collaborator
Barry Ninham wrote in 1970 together with Adrian V. Parsegian and George H. Weiss [21].
The reason to highlight this paper is that it seems to us it is not recognized well enough
in the field. The theories of intermolecular dispersion forces have occupied such a vast
literature that one would suspect quite little should remain to be said. However, even
lately, new applications of the fundamental theory have arisen. We firstly address the
semi-classical theory itself, and then briefly discuss our contribution to the theory of
Casimir interaction between real metal plates at high temperatures/large separations. A
controversial, as well as especially intriguing, idea is briefly explored in the current paper,
highlighting that the high-temperature Casimir effect might have a role even in nuclear
physics [31]. To be more specific: it was shown in an unpublished note by Ninham and
Colin Pask [32] more than 50 years ago how Maxwell’s equations for the electromagnetic
field with Planck quantization of allowed modes appear to provide a semiclassical account
of nuclear interactions. The direct consequence if this idea has any relevance is that mesons
would emerge as plasmons, collective excitations in an electron–positron pair-sea [31].
We then proceed to present a study that was initiated by Ninham around 1970 on excited
state interaction between atoms [33]. Related self-energies and excited state interactions
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are, for example, essential in photobiochemistry. We finally wrap up our study with a few
concluding words.

2. The Ninham, Parsegian and Weiss Semi-Classical Derivation of Lifshitz Theory

The theory due to Lifshitz was readdressed by Lifshitz, Igor Dzyaloshinskii and Lev
Pitaevski [19] via some lengthy arguments that exploited Green’s function techniques
in quantum field theory. We outline the general ideas behind the considerably simpler
semi-classical theory of dispersion interactions. The paper [21], which we follow in this
Section with some changes in notation, expanded on general ideas presented by Nicolaas
van Kampen and collaborators [34]. Here, we point out that Ref. [34] only considered the
zero-temperature and non-retarded limit. We use the electrodynamics boundary conditions
given in the book [35] that the components of (Eω, Hω), Ex, Ey, εEz, Hx, Hy, and µHz
(with µ the permeability) are continuous at interfaces between the media, parallel to the
xy-plane at z = 0 and z = d. We are thus considering the simple enough case of two half-
spaces interacting across a media. We assume that the dielectric permittivities are different,
ε1(ω) 6= ε2(ω) where ω denoteds the frequesncy), and the magnetic permeabilities equal to
one. The solutions (Y = ∑ω Yωe−iωt where Yω ∈ { Hω , Eω}) has normal mode frequencies
from the wave equation [21],

∇2Yω + (εω2/c2)Yω = 0, (1)

together with ∇ · Yω = 0. Here, c denotes the speed of light in the vacuum. For the
separate components of Eω and Hω , one assumes the form [21] Θ(z)ei(ux+vy), where u and
v are the wave vector components parallel to the surface, and Θ′′(z) = γ2Θ(z), where
the prime denotes the z-derivative. Here, γ2 = κ2 − [ω2ε(ω)/c2] and κ =

√
u2 + v2 is the

real component of the wave vector parallel to the slab of the intermediate film. Ninham,
Parsegian and Weiss showed [21] that normal modes (ωi) are solutions of transverse
magnetic (TM) and transverse electric (TE) dispersion relations,

D1(ω; d) = 1− ∆2
TMe−2γ2d = 0 = D2(ω; d) = 1− ∆2

TEe−2γ2d, (2)

where
∆TE =

γ2 − γ1

γ2 + γ1
; ∆TM =

ε1γ2 − ε2γ1

ε1γ2 + ε2γ1
. (3)

The two types of electromagnetic modes are TE and TM, and there are no TE evanes-
cent modes. This is put into question for the Drude-plasma model for real metal surfaces,
as discussed briefly in Section 3 below. The requirement of the surface-type solutions (those
that are well-behaved and vanish at infinity), Re(γ2) > 0 implies that κ ≥ (ω/c)Re(ε1/2

2 )
in what follows. Ultimately, the fundamental dispersion relations in Equation (2) combine
into a simple enough relation: D = D1D2 = 0. The Gibbs interaction free energy is given by

F(d, T) =
1

2π

∫ ∞

0
[Fd(r)− F∞(r)]rdr, (4)

where T denotes the tempoerature; the next step is to integrate over wave vector r,

Fd(r) = kT ∑
j

ln[2 sinh(βh̄ωj(r)/2)] (5)

(with k and h̄ are the Boltzmann and the reduced Planck constants, respectively, and
β = 1/(kT)) in the subsequent steps, the sum must be taken over all the available real roots
of Equation (2). From this it follows that

∑
j

g(ωj) =
1

2πi

∮

C
g(ω)[1/D(ω)][dD(ω)/dω]dω. (6)
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In the Formula (6), the path C includes the important points where D has zeros, but does not
include the poles of this function (for details, see [21]). To ensure the validity of Equation (6),
the functions g(z) and D(z) must exhibit analyticity or smoothness, where the contour C
includes the relevant zeros of D, and excludes poles of g(ω). Note that g(z) and D(z) are
assumed analytic for Equation (6) to hold. Since g(ω) = ln[2 sinh(βh̄ω/2)] has branch cuts,
it is convenient to expand it as

g(ω) = ln[2 sinh(βh̄ω/2)]

= ln
[
e

βh̄ω
2 − e−

βh̄ω
2

]

=
βh̄ω

2
+ ln

[
1− e−βh̄ω

]

=
βh̄ω

2
−

∞

∑
n=1

1
n

e−nβh̄ω

(7)

and consider each term separately. To proceed formally, we choose the path in Equation (6)
starting from −i∞ to i∞ along the imaginary axis, then move around the right half-plane
along a semicircular path with an infinity radius. Since ε(|ω|)→ 1 as |ω| → ∞, D(|ω|) = 1
on the semicircle and one can write

Fd(r) =
1

2πi

∫ −∞

∞
g(iξ)

d ln D(iξ; d)
dξ

dξ (8)

=
h̄
2 ∑

j
ωj +

h̄
2π

∞

∑
n=1

∫ ∞

−∞
cos(nβh̄ξ) ln Dr(iξ; d)dξ

− ih̄
2π

∞

∑
n=1

∫ ∞

0
sin(nβh̄ξ) ln

[
Dr(iξ; d)

Dr(−iξ; d)

]
dξ, (9)

where Dr refers to the real roots. Using standard mathematics we exploit the identity

∞

∑
n=1

cos(nx) = π
∞

∑
n=−∞

δ(x− 2πn)− 1
2

, (10)

where δ(·) is the Dirac delta function. When the delta functions are substituted into the
integrals, the integrations can be carried out:

h̄
2 ∑

j
ωj +

h̄
2π

∞

∑
n=1

∫ ∞

−∞
cos(nβh̄ξ) ln Dr(iξ; d)dξ =

kT
2

∞

∑
n=−∞

ln Dr(iξn; d), (11)

where the Matsubara frequency ξn = 2πkTn/h̄ so that

Fd(r) =
kT
2

∞

∑
n=−∞

ln Dr(iξn; d)− ih̄
2π

∞

∑
n=1

∫ ∞

0
sin(nβh̄ξ) ln

[
Dr(iξ; d)

Dr(−iξ; d)

]
dξ. (12)

Noteworthy for dielectric functions depending on ω2 only, one term in Equation (12)
turns out to be zero by symmetry and Equation (12) reduces to

Fd(r) = kT
∞

∑
n=0

′ ln Dr(iξn; d) (13)

The prime notation here represents that the term corresponding to n = 0 is multiplied
by 1/2. This equation is, for instance, valid for the so-called plasma model discussed in
Section 3 just below.
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3. A High-Temperature Semi-Classical Application: The Drude-Plasma Controversy

The Casimir interaction between real metal surfaces has caused controversy in the field
of Casimir physics. The paper [21] discussed above could be relevant to this problem. As is
known [36,37], a real metal has a finite static conductivity. The so-called Drude model is a
suitable model for the optical and dielectric properties of a real metal for small frequencies.
The dielectric function can be described within the Drude model as

ε(ω) = 1 +
4πiσ(ω)

ω
= 1−

ω2
pl

ω(ω + iγ)
. (14)

Setting the dissipation parameter γ equal to zero is commonly called using the
plasma model,

ε(ω) = 1−
ω2

pl

ω2 . (15)

Notably, for metal surfaces using the Drude dielectric function, the condition used
to pass from Equation (12) to Equation (13) is not fulfilled. However, the dissipation
parameter has an actual physical basis. It is not zero for any real metal. Its origin is via
scattering of carriers against impurities within the lattice. Importantly, when using the
plasma model, one by quite a simple ad hoc decision neglects these effects and, as a result,
the static conductivity becomes infinite. In Ref. [36] it is demonstrated how including
the dissipation parameter has a critical effect on the predicted interaction at large surface
separations, where temperature effects impact the results strongly. The plasma model
predicts a result coinciding with that of the classical Gedanken experiment by Casimir
between two perfectly reflecting half-spaces, while the Drude model predicts that this
result is reduced by a factor of two. To understand how these drastic effects occur, one
needs to look at the TM and TE normal modes involved in the problem. When dissipation
is included, there are also TE evanescent modes. At separations where the temperature is
essential, the contribution to the interaction from these TE evanescent modes completely
cancels those from the TE propagating modes. It is known that experimental results
in general agree better with the zero-temperature results between real metal surfaces
and well enough with the zero-temperature result for the Casimir Gedanken experiment.
The agreement is better still with the theoretical room-temperature result obtained when
using the so-called plasma model. This was the seed of the long-standing controversy in
the field. The finite temperature Casimir effect between metallic surfaces is a complex
phenomenon, and care has to be taken about the electrostatic patch potentials, which have
caused uncertainties in the actual interpretation of the data in experiments. Different
theoretical groups have found fundamentally different results [36,38]. A particularly
useful aspect of the original Lamoreaux experiment [39] was that it was carried out at
large enough separations where finite temperature corrections can be expected. Steve
Lamoreaux with collaborators later presented results using a similar experimental setup
where separations were varied from 0.7 to 7 µm [40]. The theoretical predictions based
upon the Drude model were found to agree with the observed results to acceptable accuracy.
Let us stress, however, that other experiments [41–45] (more references can be found in
the recent review by Vladimir Mostepanenko and Galina Klimchitskaya [46]), yielded
results in quite good accordance with the plasma model rather than the Drude model.
The reason for contradictory results (both theoretical and experimental) is not known to
the authors of the present paper. There is still a need for more experiments and theoretical
analysis focusing on Casimir–Lifshitz forces in different systems that include interacting
conducting (metallic) objects. However, it is not the purpose of the current study to explore
this problem. For one side of this long story (and relevant references), we refer to a very
recent paper by Mostepanenko and Klimchitskaya [46]; see also [47]. For another side
of the story, one could, for example, consult the well-explaining paper by Sernelius [37].
More information can be found in elsewhere [48–51]. But, perhaps, a correct calculation
for high-temperature/large-separation Casimir force between real metal surfaces has still
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not been carried out. The solution might from a fundamental point of view, if perhaps not
necessary from a practical point of view, involve both the use of our Equation (12) and the
inclusion in the theory of any intervening plasma as in the following Section 4.

4. Another Intriguing Semi-Classical Story: Casimir Interaction Energy across
a Plasma

Researchers have been looking into Casimir forces over time because of a fundamental
role of those forces in electron stability, particle physics, and nuclear interactions [52–54].
We recently looked at a Casimir–Yukawa problem that is similar to the classic story of
electron stability, often known as “the Casimir mousetrap” [54]. This problem explores
how negative charges on an electron surface create a repulsive force between surface parts,
which has to be counteracted by an attractive force to retain a finite electron radius. Casimir
proposed that the attractive Poincaré stresses could be caused by the zero-point energy
present in electromagnetic vacuum fluctuations [54]. Nevertheless, the study of Timothy
Boyer and others showed that although the interaction’s magnitude was correct, it had
the wrong sign and resulted in a repulsive force [54]. Other relevant models, such as the
dielectric ball, also exhibit their respective problems, some of which are still triggering
discussions recently. Around 50 years ago, Ninham and Pask [32] found that the zero-
temperature Casimir vacuum fluctuation energy was enough to provide the binding energy
of nucleons in a nucleus. At finite temperatures, the expression (4) discussed in Section 2
reads [19]

F(d, T) =
kT
π

∞

∑
n=0

′
∫ ∞

0
dq q ln[1− e−2d

√
q2+ξ2

n/c2
]. (16)

Explicitly, in vacuum (i.e., in the complete absence of an intervening electron–positron
plasma), the following useful expansion [31,52,55,56] were derived,

F(d, T) ≈ −π2 h̄c
720d3 −

ζ(3)k3T3

2πh̄2c2
+

π2dk4T4

45h̄3c3
+ · · · , (17)

where zeta function ζ(3) ≈ 1.202. One observes that the initial term corresponds to the
attractive zero temperature Casimir result. The third term in this expression corresponds to
a black body radiation energy (in vacuum and at equilibrium). More than twenty years ago,
Ninham and one of the authors of this paper discussed how this term opposes the attractive
Casimir term [52]. The remaining term is a chemical potential term that in the Gibbs free
energy is well recognized as being due to an electron–positron plasma formed from the
photons inside the nuclear gap (e− + e+ ↔ γ) [57]. The second term can be analysed using
the known density of an electron–positron plasma [57],

ρ− + ρ+ =
3ζ(3)k3T3

π2h̄3c3
. (18)

For a pair of perfectly conducting plates, the Casimir interaction energy across an
electron–positron plasma is

F(d, T) =
kT
π

∞

∑
n=0

′
∫ ∞

0
dqq ln

[
1− e−2d

√
q2+(ξn/c)2+κ2

]
, (19)

Recall that κ = ωp/c, where ωp denotes the plasma frequency. For any separation at
high enough temperatures, or for any finite temperature at large enough separations, it
follows [52,55,56] an expansion of the form,

F(d, T) = − kTκ

4π

e−2κd

d

[
1 +

1
2dκ

]
− (kT)2e−2ηd

h̄c
e−ρ∗ηd

d
+O(e−4ηd), (20)
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where ρ∗ = ρ e2h̄2/(πmek2 T2), η = 2kT/(h̄c) and κ is defined above. Both the n = 0 and
n > 0 terms behave similarly to the Yukawa potential [31,56]. Both provide contributions
to the Casimir–Yukawa binding energy, depending on the separation (about 0.9 MeV from
the n = 0 term and about 3.6 MeV from the n > 0 term), and surprisingly close to the
experimentally observed binding energy per nucleon (1.1 MeV to about 8.8 MeV) [31].
The idea that there ought to be some kind of link between electromagnetic and nuclear
forces goes back to Richard Feynman (via private communication in the late 1960s between
Ninham and Freeman Dyson, who told Ninham that Richard Feynman had believed there
ought to be a connection between electromagnetic theory and nuclear interactions). This
idea was first explored by Ninham and Pask in early 1970s [32]. We have revived and
expanded on this idea in a series of publications [52,55,56]. The explicit derivation of
meson mass, nuclear binding energy and lifetimes [58] were recently discussed at length
in Ref. [31].

5. Semi-Classical Derivation of Resonance Interaction between Exited State Atom Pair

The semi-classical formalism was also able to describe in detail the ground state van
der Waals potentials between a pair of molecules, or between a molecule and a surfaces [23].
Here, as one in some sense more controversial example [33,59–62], we explore what pre-
dictions come out from semi-classical theory for the resonance interaction energy between
two identical atoms in an excited configuration. The results in this Section were, in the
zero-temperature limit, derived about 50 years ago by Ninham, John Mitchell, and others,
and finally, after deep contemplation and a final extension to finite temperatures [33],
published 20 years ago. Notably, the results are, in the non-retarded limit, identical to
the perturbation theory results [60–63], but in the retarded and finite-temperature limits,
non-oscillatory results are found. This contrast against the oscillatory long-range retarded
resonance interaction obtained from perturbation theory [60,61].

The normal mode expression used to calculate ground state van der Waals interactions
in the case of two identical atoms in air,

1− α(1|ω)α(2|ω)T(d|ω)2 = 0, (21)

can be separated into one anti-symmetric and one symmetric part. Here, T(d|ω) is the
field susceptibility [59] in a material with dielectric function ε(ω), and α(j|ω) represent the
polarizability of atom j. The excited symmetric state has a substantially shorter lifetime
than the excited anti-symmetric state, which can cause the system to end up in an excited
anti-symmetric state [33]. The first-order dispersion energy of such an anti-symmetric state
comes from

U(d) = h̄[ωr(d)−ωr(∞)], (22)

where ωr denotes resonance frequency. The solution of Equation (21) is the pole of
the anti-symmetric part (of the underlying Green’s function). We change the integration
path around this pole to obtain an expression for the first order excited state resonance
interaction energy,

U(d) = (h̄/π)
∫ ∞

0
dξ ln[1 + α(1|iξ)T(d|iξ)]. (23)

As pointed out in the past, any finite temperature systems can approximately be dealt
with in the same way as for the corresponding ground state problem [55,64]. The tempera-
ture (T) dependence follows when replacing the integration over imaginary frequencies by
a summation over discrete frequencies [14]. The leading term, at large separation when the
modes in the (±;x) branch are excited, is

U(d, T) ' ±2kT
d3

∞

∑
n=0

′α(iξn)e−xn[1 + xn + x2n2], (24)
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where x = 2πkTd/(h̄c). In a standard way we approximate the polarizability with α(0) at
large enough separations. Within this approximation, the resonance free-energy is [33],

U(d, T) ' ± 2kTα(0)
2d3(ex−1)3 [1 + e3x − ex(1 + 2x− 2x2) + e2x(−1 + 2x + 2x2)]. (25)

For small values of x, this free energy of resonance interaction goes as 1/d4. How-
ever, for any finite temperature, the long-range interaction within the Ninham model is
dominated by the n = 0 term. This term is here

U(d, T)n=0 = ±kTα(0)/d3. (26)

This manifestation of the correspondence principle is identical in nature to the result
obtained for the retarded van der Waals interaction between two ground-state atoms [55,64].
This highlights that the quantum nature of light has an essential role behind the softening
of intermolecular interactions between ground state or excited state atoms (and indeed in
the same way for Lifshitz interactions between macroscopic surfaces).

6. Discussions and Future Outlooks

This concise review primarily aims to engage an insightful discussion concerning
the semi-classical theory of interactions with ground and excited state van der Waals,
Lifshitz, and Casimir forces. This paper also aims to shed new light on a small, but missing,
element of information that might provide some understanding to settle the Drude-plasma
controversy. To be more precise, as we have already discussed in the study by Ninham,
Parsegian, and Weiss [21], the conventional Lifshitz theory left out one extra term. Further
investigations of the Casimir effect at high-temperatures/short-range regimes may offer
more evidence for its potential influence in both meson and atom–atom physics. The
modern research on van der Waals, Lifshitz, and Casimir interactions was pioneered by
Ninham and Parsegian more than 50 years ago. Their respective groups demonstrated
how to use the complicated Lifshitz theory and how to derive it in a much-simplified
way. Researchers from around the world have developed the field for the last 50–60 years
(notably, Russian researchers, including Yurii Barash and Vitaly Ginzburg [65], presented
some classic works that are similar to those that came from Ninham’s group in Australia).
However, it is still an intensive active research field [36,46]. The field was, for instance,
energized by Michael Elbaum and Michael Schick, who predicted that ice can have a
nanometer sized premelted water layer on an ice surface caused by van der Waals, Lifshitz,
intermolecular forces [66]. In general surface charges, ions, and impurities can induce water
films many orders of magnitude thicker [67–69]. The effects caused by ionic interactions
are in general complicated enough, due partly to the fact that the polarizability of ions
leads to a non-linear coupling of van der Waals and ionic forces leading to the macroscopic
double-layer and Lifshitz forces acting across salt solutions [70–75]. An impact from such
intermolecular forces has also been proposed for frost heaving [76] and thunder cloud
charging [77–79]. Ice melting at surfaces and interfaces could be relevant as habitats for
life on planets and moons in permafrost regions, but also on other planets and moons in
the solar system and beyond [80] (for more discussions on planetary science, see [81–83]).
The reverse reaction with ice forming on a water surface via Lifshitz interactions was ruled
out by the study of Elbaum and Schick [84]. However, in contrast, recent re-investigations
of the optical properties of water and ice suggest such a role [85,86]. Following along
these lines, we investigated how the Lifshitz interaction can contribute to some geophysical
effects, including ice layer formation on gas hydrate surfaces [87]. We have recently
proposed such dispersion interactions as potential energy sources behind a secondary ice
growth mechanism on partially melted ice clusters within mist, fog, and potentially also
in clouds [88]. The contributions from intermolecular forces to geophysics is an evolving
research field with essential contributions from Luis McDowell and collaborators [86,89].
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Dispersion interactions between particles and surfaces occur at finite temperatures
and in the presence of a background plasma. This is not only of vital importance for various
biological applications and catalysis, but it may also surprisingly enough be of interest
for hidden aspects in fundamental quantum electrodynamics. All interactions between
particles take place in the presence of the plasma of the fluctuating electron–positron
pairs; constantly created and annihilated. This is particularly true for the interaction
between nuclear particles. Strong similarities were found, suggesting a potential role for
screened Casimir forces as one major contribution to the nuclear interaction. When non-
relativistic plasma [56] is used, the relativistic energy, mc2, enters the interaction energy in
a quite an intriguing way: it replaces the temperature. This indicates that there could be
some interesting physics hidden in this problem, and we may need to use the relativistic
mass from the beginning. To make further progress, one seems may need to extend
these quite simple consideration to include a relativistic plasma response function and to
include magnetic (spin) susceptibilities. These are problems of the same importance as
occurring in physical chemistry [90]. A fundamental ansatz commonly used, assumes that
all electrostatic interactions (generally analysed in a nonlinear theory) and electrodynamic
interactions (often treated within a linear approximation) can be treated separately. This,
in general, is in violation of the fundamental physical laws [90]. For further progress, one
needs to carefully ponder the foundations of the theory of these attractive and repulsive
intermolecular interactions [91].
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Abstract: We develop a Green’s functions scattering method for systems with Chern–Simons plane
boundary layers on dielectric half-spaces. The Casimir pressure is derived by evaluation of the stress
tensor in a vacuum slit between two half-spaces. The sign of the Casimir pressure on a Chern–Simons
plane layer separated by a vacuum slit from the Chern–Simons layer at the boundary of a dielectric
half-space is analyzed for intrinsic Si and SiO2 glass substrates.

Keywords: Casimir pressure; stress tensor; Chern–Simons layer

1. Introduction

Quantum interaction between macroscopic bodies in the ground state is studied via
the Casimir effect [1,2]—various reviews and books are dedicated to the subject [3–24].
The Lifshitz formula [25] determines the interaction between two dielectric half-spaces
separated by a vacuum slit; it determines interaction due to fluctuations in the relevant
case when transverse electric (TE) and transverse magnetic (TM) polarizations of the
electromagnetic field do not mix after reflection from flat boundaries of dielectrics. In this
case, the Casimir pressure is attractive for dielectric half-spaces separated by a vacuum
slit [26].

Nevertheless, there exist systems with plane boundaries and Casimir repulsive pres-
sure. The Casimir pressure is repulsive for three dielectric media with plane-parallel
boundaries when the inequality for dielectric permittivities ε1(iω) < ε2(iω) < ε3(iω)
holds [27] with ω the frequency; here, the medium with a dielectric permittivity ε2(ω) fills
the space between dielectrics with permittivities ε1(ω) and ε3(ω). The experiment [28]
has demonstrated that the sign of the Casimir–Lifshitz force can indeed be changed from
attractive to repulsive by a suitable selection of interacting materials immersed in a fluid.
The contribution of surface modes in three-layered systems guaranteeing repulsion has
been investigated in Ref. [29], where it was demonstrated that at short separations, surface
modes play a decisive role in the Casimir repulsion. The repulsive critical Casimir forces
emerging in a critical binary liquid mixture near the critical temperature can be used to
counteract attraction due to fluctuating Casimir–Lifshitz forces [30].

Another possibility to obtain the Casimir repulsion is to study the interaction between
plates with dielectric, diamagnetic and magnetodielectric properties [31–35]. The pressure
between a perfectly conducting plate and an infinitely permeable plate is derived by
Timothy Boyer [36]; the pressure is purely repulsive in this case: its magnitude is 7/8 that
of the Casimir pressure between two perfectly conducting plates [2]. Casimir pressure and
repulsion between metamaterials were investigated in Refs. [37–40].

One can also obtain Casimir repulsion in systems with plane-parallel Chern–Simons
layers [41,42]. There is a mixing of TE and TM polarizations of the electromagnetic field
after reflection from the Chern–Simons layer [42]. The general result for the Casimir
energy of two arbitrary Chern–Simons layers in vacuum is expressed through nondiagonal
reflection matrices on the basis of TE and TM polarizations [42]. This structure of reflection
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matrices leads to the Casimir attraction or the Casimir repulsion in systems with plane-
parallel Chern–Simons layers in vacuum and at the boundaries of dielectrics, depending
on the parameters of the layers [41–44]. The Monte Carlo method was used to calculate the
Casimir energy of interacting Chern–Simons layers in vacuum in Refs. [45,46].

Maxwell–Chern–Simons (2 + 1) space-time dimensional Abelian electrodynamics with
the Chern–Simons term was considered in Ref. [47]; there is a massive spin-1 excitation
in this case. The constant of the Chern–Simons action is dimensionless in the (3 + 1) case.
The study of the Casimir energy in systems with Chern–Simons terms in (3 + 1) dimensions
was started in Refs. [48,49] in the framework of rigid, nonpenetrable boundary conditions.

Physical systems are known to be described by the Chern–Simons action with a
quantized constant of the action. In the low-energy effective theory of topological in-
sulators, the term proportional to θEH, with E and H the electric and magnetic fields,
respectively, is added to the standard electromagnetic energy density; integration of this
term over the volume of the topological insulator yields boundary Chern–Simons action.
Chern–Simons boundary action is defined in this case by a dimensionless quantized pa-
rameter a: a = αθ/(2π), θ = (2n + 1)π, where α is a fine structure constant of quantum
electrodynamics and n is an integer number [50]. The Casimir effect for topological insula-
tors was studied in Refs. [51–56].

In the non-dispersive case, Chern insulators [57–59] are described by the Chern–Simons
action with a quantized parameter a = Cα, where C is a Chern number equal to the
winding number of a map from a two-dimensional torus to a two-dimensional unit sphere.
The Casimir effect for Chern insulators was investigated in Refs. [42,60,61].

For quantum Hall layers in an external magnetic field, the quantized parameter of the
Chern–Simons action characterizing Hall plateaus takes the values a = να, where ν is an
integer or a fractional number [43,62,63].

Recently, the formalism based on Green’s functions scattering has been worked out [3,64];
in this approach, one evaluates the Casimir pressure in an explicit gauge-invariant deriva-
tion. The formalism yields gauge-invariant results for electric and magnetic Green’s func-
tions by construction. Note that due to disregard of gauge invariance, the electric and the
magnetic Green’s functions for the Lifshitz problem (two dielectric half-spaces separated
by a vacuum slit) obtained in the book [4] contradict the result for the Casimir–Polder
potential of a polarizable neutral atom located between two dielectric half-spaces [3,64].

The Casimir–Polder potential of a neutral anisotropic atom added to a multi-body
system is expressed in the second-order perturbation theory in terms of electric Green’s
functions for this system [3,65–68]. The Casimir–Polder potential of an anisotropic atom
is repulsive at distances close to the hole in a plane conductor or grooves of a diffraction
grating when the atomic polarizaibility is aligned in a direction perpendicular to the
conductor [69,70] or a diffraction grating [71], in cylindrical and other geometries [72–76].
Note that the repulsion of the point charge from the axisymmetric conductor with an
opening is present in electrostatics [77]. The curvature-induced repulsive effect on the
lateral Casimir–Polder force is studied in Refs. [78–80]. The fundamental limits on the
Casimir–Polder repulsive and attractive forces have been determined in Ref. [81].

The Casimir–Polder potential of a neutral anisotropic atom in the presence of a single
Chern–Simons plane layer has been derived in Ref. [82]. The symmetric part of the po-
larizability for a nonmagnetic ground-state molecule yields potential proportional to the
Casimir–Polder potential in front of a perfectly conducting plane; the asymmetric part of
the polarizability also contributes to the Casimir–Polder potential [82]. Chiral media are
actively studied in the Casimir effect [83,84]; the Casimir–Polder potential of a molecule
with an isotropic chiral polarizability interacting with a chiral medium has been studied
in Ref. [85]. Charge–parity violating effects [86] for the Casimir–Polder potential in the
presence of a Chern–Simons layer have been studied in Ref. [87]: the Chern–Simons layer
induces Casimir–Polder interaction both with a molecule that is not chiral but has an
electric–magnetic cross polarizability and with a molecule having an anisotropic, asymmet-
ric chiral polarizability. Recently, the formalism of Green’s functions scattering has been
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applied to derive analytic results for the Casimir–Polder potentials of an anisotropic neutral
atom in the presence of Chern–Simons plane boundary layers on dielectric half-spaces and
in vacuum [88]. A novel three-body vacuum parity effect has been discovered in the system
Chern–Simons layer–atom–Chern–Simons layer, which manifests as different values of the
Casimir–Polder potential after a 180 degree rotation of one of the layers [88].

In this paper, we develop a Green’s functions scattering method and derive the Casimir
pressure in geometries with Chern–Simons plane boundary layers on dielectric substrates
by evaluation of the Casimir fluctuation pressure via vacuum stress tensor [3,4,25,64,89].
We proceed as follows. In Section 2, we derive expressions for the field of a point dipole
in vacuum in terms of electric and magnetic fields. Then, we derive electric and mag-
netic Green’s functions in a slit between two dielectric substrate half-spaces covered by
Chern–Simons layers. The Casimir pressure is expressed in terms of electric and magnetic
Green’s functions through evaluation of the vacuum stress tensor in the slit. In Section 3,
we study the sign of the Casimir pressure on a Chern–Simons plane layer separated by
a vacuum slit from the Chern–Simons layer at the boundary of a dielectric half-space for
intrinsic Si and SiO2 glass substrates. Connection between representations of the Casimir
energy in the local polar basis and the local basis of TE and TM polarizations in momentum
space is established in Appendix A.

The magnetic permeability of materials µ = 1 throughout the text. We use h̄ = c = 1
for the reduced Planck constant, h̄, and the speed of light, c, and Heaviside–Lorentz units.

2. Casimir Pressure in the System of Two Dielectric Half-Spaces with Chern–Simons
Boundary Layers

Consider the volume charge density (ρ) and the current density (j) of a dipole source
at the point r′ = (0, 0, z′) [82]:

ρ(t, r) = −pl(t)
∂δ3(r− r′)

∂xl , (1)

jl(t, r) =
∂pl(t)

∂t
δ3(r− r′) , (2)

where p is an electric dipole moment vector, r = (x, y, z), t denotes time, the Latin letter
indices denote the space components and δ3(·) is the three-dimensional Dirac delta function.
The four-current density (1)–(2) satisfies the continuity equation ∂ρ/∂t + divj = 0.

The Weyl formula, [90]

eiω|r′−r|

4π|r′ − r| = i
∫∫ ei(kx(x′−x)+ky(y′−y)+

√
ω2−k2

x−k2
y(z′−z))

2
√

ω2 − k2
x − k2

y

dkxdky

(2π)2 , (3)

valid for z′ − z > 0, can be substituted into the solution of equations for scalar (φ) and
vector (A) potentials:

(
∆ + ω2)φ(ω, r) = −ρ(ω, r) , (4)
(
∆ + ω2)A(ω, r) = −j(ω, r) (5)

to find electric and magnetic fields from a dipole source (1)–(2) in free space. As a result,
electric and magnetic fields propagating upwards from the dipole source (1)–(2) in free
space have the form [3]
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E(0)
up (ω, r) =

∫
N(ω, k‖)e

ik‖ ·r‖ eikz(z−z′)d2k‖, (6)

H(0)
up (ω, r) =

1
ω

∫
[k×N(ω, k‖)]e

ik‖ ·r‖ eikz(z−z′)d2k‖, (7)

N(ω, k‖) =
i

8π2kz

(
−(p · k)k + ω2p

)
, (8)

where k‖ = (kx, ky, 0), kz =
√

ω2 − k2
‖, k = (k‖, kz) and r‖ = (x, y, 0).

We start from a solution of the diffraction problem of a dipole field when the dielectric
medium is filling the half-space z > d. Scalar and vector functions defining the half-space
z ≥ d or diffraction from it are denoted by index 1. A homogeneous dielectric half-space
z > d is characterized by a frequency dispersion of a dielectric permittivity ε1(ω) at every
point. In addition, there is a Chern–Simons plane layer at the boundary z = d. The
Chern–Simons layer at z = d is described by the action

SCS =
a1

2

∫
εzνρσ AνFρσ dtdxdy (9)

with a dimensionless parameter a1, ε the Levi-Civita symbol, Aν the electromagnetic four-
potential, Fρσ ≡ ∂ρ Aσ − ∂σ Aρ, the Greek letter indices take Minkowski space-time values,
and ∂ρ ≡ ∂/∂xρ over space-time coordinates.

Consider an upward propagation of the electromagnetic field from a point dipole
(1)–(2). In the presence of a dielectric medium for z > d, one writes the solution of the
Maxwell equations for z < d in the form

E(V1)(ω, r) =
∫

Neik‖ ·r‖ eikz(z−z′)d2k‖ +
∫

v1eik‖ ·r‖ e−ikzzd2k‖ , (10)

H(V1)(ω, r) =
1
ω

∫
[k×N]eik‖ ·r‖ eikz(z−z′)d2k‖

+
1
ω

∫ (
[k‖×v1]− kz[n×v1]

)
eik‖ ·r‖ e−ikzzd2k‖. (11)

The transmitted fields for z > d are written in the form

E(D1)(ω, r) =
∫

u1eik‖ ·r‖ eiKz1zd2k‖ , (12)

H(D1)(ω, r) =
1
ω

∫ (
[k‖×u1] + Kz1[n×u1]

)
eik‖ ·r‖ eiKz1zd2k‖, (13)

where Kz1 =
√

ε1(ω)ω2 − k2
x − k2

y and n = (0, 0, 1). Vector functions v1(ω, k‖) and

u1(ω, k‖) are found from the transversality of the reflected and transmitted fields and
the boundary conditions imposed on the fields:

div(E(V1) − E(0)
up ) = 0, (14)

div E(D1) = 0, (15)

E(V1)
x |z=d = E(D1)

x |z=d, (16)

E(V1)
y |z=d = E(D1)

y |z=d, (17)

H(D1)
x |z=d+ − H(V1)

x |z=d− = 2a1E(V1)
x |z=d, (18)
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H(D1)
y |z=d+ − H(V1)

y |z=d− = 2a1E(V1)
y |z=d. (19)

Boundary conditions (18)–(19) have been used to describe the diffraction of a plane electro-
magnetic wave in a medium with a piecewise constant axion field [91] and in a medium
with Chern–Simons layers [92].

Boundary conditions (14)–(19) can be imposed in cylindrical coordinates in a local
orthogonal basis er, eϕ, ez in momentum space so that k‖ = krer, kr = |k‖|:

u1rkr + Kz1u1z = 0, (20)

v1rkr − kzv1z = 0, (21)

u1reiKz1d = v1re−ikzd + Nreikz(d−z′), (22)

u1ϕeiKz1d = v1ϕe−ikzd + Nϕeikz(d−z′), (23)

kzv1ϕe−ikzd − kzNϕeikz(d−z′) + Kz1u1ϕeiKz1d = −2a1u1reiKz1d, (24)

− kzv1re−ikzd − krv1ze−ikzd + kzNreikz(d−z′) − kr Nzeikz(d−z′)

− (Kz1u1reiKz1d − kru1zeiKz1d) = −2a1u1ϕeiKz1d. (25)

The solution of the transversality conditions (20)–(21) and boundary conditions
(22)–(25) imposed at z = d yields

v1r =

[
− rTM1 + a2

1T1

1 + a2
1T1

Nr +
kz

ω

a1T1

1 + a2
1T1

Nϕ

]
eikz(2d−z′), (26)

v1ϕ =

[
−ω

kz

a1T1

1 + a2
1T1

Nr +
rTE1 − a2

1T1

1 + a2
1T1

Nϕ

]
eikz(2d−z′), (27)

v1z = −
kr

kz

[
rTM1 + a2

1T1

1 + a2
1T1

Nr −
kz

ω

a1T1

1 + a2
1T1

Nϕ

]
eikz(2d−z′), (28)

where the Fresnel reflection coefficients

rTM1 =
ε1(ω)kz − Kz1

ε1(ω)kz + Kz1
, rTE1 =

kz − Kz1

kz + Kz1
(29)

and
T1 =

4kzKz1

(kz + Kz1)(ε1(ω)kz + Kz1)
. (30)

depend on the dielectric permittivity ε1(ω) of the half-space z > d.
Electric and magnetic fields propagating downwards from the dipole source (1)–(2) in

free space have the form [3]

E(0)
down(ω, r) =

∫
Ñ(ω, k‖)e

ik‖ ·r‖ e−ikz(z−z′)d2k‖, (31)

H(0)
down(ω, r) =

1
ω

∫
[k̃× Ñ(ω, k‖)]e

ik‖ ·r‖ e−ikz(z−z′)d2k‖, (32)

Ñ(ω, k‖) =
i

8π2kz

(
−(p · k̃)k̃ + ω2p

)
, (33)

where k̃ = (k‖,−kz).
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The next step is to find a solution of the diffraction problem of a dipole field when
the medium is filling half-space z < 0. Scalar and vector functions defining the half-space
z ≤ 0 or diffraction from it are denoted by index 2. A homogeneous dielectric half-space
z < 0 is characterized by a frequency dispersion of a dielectric permittivity ε2(ω) at every
point. There is a Chern–Simons plane layer characterized by a dimensionless parameter a2
at the boundary z = 0.

In the presence of a dielectric medium for z < 0, one adds the reflected parts of
fields to a solution (31)–(32) and writes the solution of the Maxwell equations for z > 0 in
the form

E(V2)(ω, r) =
∫

Ñ(ω, k‖)e
ik‖ ·r‖ e−ikz(z−z′)d2k‖ +

∫
v2(ω, k‖)e

ik‖ ·r‖ eikzzd2k‖ , (34)

H(V2)(ω, r) =
1
ω

∫
[k̃× Ñ(ω, k‖)]e

ik‖ ·r‖ e−ikz(z−z′)d2k‖

+
1
ω

∫
[k×v2(ω, k‖)]e

ik‖ ·r‖ eikzzd2k‖ . (35)

For z < 0, one writes the transmitted fields in the form

E(D2)(ω, r) =
∫

u2(ω, k‖)e
ik‖ ·r‖ e−iKz2zd2k‖ , (36)

H(D2)(ω, r) =
1
ω

∫ (
[k‖×u2(ω, k‖)]− Kz2[n×u2(ω, k‖)]

)
eik‖ ·r‖ e−iKz2zd2k‖ , (37)

where Kz2 =
√

ε2(ω)ω2 − k2
x − k2

y and n = (0, 0, 1). Vector functions v2(ω, k‖) and

u2(ω, k‖) are found from the transversality of the reflected and transmitted fields and
the boundary conditions imposed on the fields:

div(E(V2) − E(0)
down) = 0, (38)

div E(D2) = 0, (39)

E(V2)
x |z=0 = E(D2)

x |z=0, (40)

E(V2)
y |z=0 = E(D2)

y |z=0, (41)

H(V2)
x |z=0+ − H(D2)

x |z=0− = 2a2E(V2)
x |z=0, (42)

H(V2)
y |z=0+ − H(D2)

y |z=0− = 2a2E(V2)
y |z=0. (43)

It is convenient to write boundary conditions (38)–(43) in cylindrical coordinates in a local
orthogonal basis er, eϕ, ez in momentum space so that k‖ = krer, kr = |k‖|:

v2rkr + kzv2z = 0, (44)

u2rkr − Kz2u2z = 0, (45)

u2r = v2r + Ñreikzz′ , (46)

u2ϕ = v2ϕ + Ñϕeikzz′ , (47)
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−kzv2ϕ + kzÑϕeikzz′ − Kz2u2ϕ = 2ωa2u2r, (48)

kzv2r − krv2z − kzÑreikzz′ − kr Ñzeikzz′ + Kz2u2r + kru2z = 2ωa2uϕ (49)

and get

v2r =

[
− rTM2 + a2

2T2

1 + a2
2T2

Ñr +
kz

ω

a2T2

1 + a2
2T2

Ñϕ

]
eikzz′ , (50)

v2ϕ =

[
−ω

kz

a2T2

1 + a2
2T2

Ñr +
rTE2 − a2

2T2

1 + a2
2T2

Ñϕ

]
eikzz′ , (51)

v2z =
kr

kz

[
rTM2 + a2

2T2

1 + a2
2T2

Ñr −
kz

ω

a2T2

1 + a2
2T2

Ñϕ

]
eikzz′ , (52)

where Fresnel reflection coefficients rTM2 , rTE2 and T2 depend on the dielectric permittivity
ε2(ω) of the half-space z < 0. The local matrix R resulting from Equations (26), (27), (50)
and (51) is defined as follows:

R(a, ε(ω), ω, kr) ≡
1

1 + a2T

(
−rTM − a2T kz

ω aT
− ω

kz
aT rTE − a2T

)
. (53)

The solution of a diffraction problem when both half-spaces are present simultaneously
and the point dipole is located at r′ = (0, 0, z′), 0 < z′ < d can be derived as follows. Denote
the upper dielectric half-space (z > d) by index 1 and the lower dielectric half-space (z < 0)
by index 2. The Chern–Simons boundary layers at z = d and z = 0 are defined by the
parameters a1 and a2 as before (Figure 1). From (53) and the solutions for the diffraction
cases considered above, we define local matrices R1 and R2 for reflection of the tangential
components of the electric field from media above and below the point dipole, respectively:

R1(ω) ≡ R(a1, ε1(ω), ω, kr), R2(ω) ≡ R(a2, ε2(ω), ω, kr). (54)

Figure 1. Two dielectric half-spaces with Chern–Simons boundary layers are separated by a distance
d. The permittivity of the upper dielectric half-space is ε1; the permittivity of the lower dielectric
half-space is ε2. The upper Chern–Simons boundary layer is defined by a1; the lower Chern–Simons
boundary layer is defined by a2.
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Tangential local components of the electric field in the interval 0 < z < d from the point
dipole (1)–(2) are expressed in terms of R1, R2 after the summation of multiple reflections
from media with indices 1 and 2:

(
Er
Eϕ

)
=

I
I − R2R1e2ikzd eikzz

[
R2R1

(
Nr
Nϕ

)
eikz(2d−z′) + R2

(
Ñr

Ñϕ

)
eikzz′

]

+
I

I − R1R2e2ikzd e2ikzde−ikzz
[

R1R2

(
Ñr

Ñϕ

)
eikzz′ + R1

(
Nr
Nϕ

)
e−ikzz′

]
, (55)

where I is the identity matrix. From Equation (55), we define four matrices:

M(1) ≡
(

I − R2(ω)R1(ω)ei2kzd)−1R2(ω)R1(ω), (56)

M(2) ≡
(

I − R2(ω)R1(ω)ei2kzd)−1R2(ω), (57)

M(3) ≡
(

I − R1(ω)R2(ω)ei2kzd)−1R1(ω)R2(ω), (58)

M(4) ≡
(

I − R1(ω)R2(ω)ei2kzd)−1R1(ω) (59)

and write components of the electric field in a cylindrical local system of coordinates
explicitly from Formulas (21), (44), (55) and (56)–(59):

Er = eikzz
[

e−ikzz′ e2ikzd(M(1)
11 Nr + M(1)

12 Nϕ) + eikzz′(M(2)
11 Ñr + M(2)

12 Ñϕ)

]

+ e−ikzze2ikzd
[

eikzz′(M(3)
11 Ñr + M(3)

12 Ñϕ) + e−ikzz′(M(4)
11 Nr + M(4)

12 Nϕ)

]
, (60)

Eϕ = eikzz
[

e−ikzz′ e2ikzd(M(1)
21 Nr + M(1)

22 Nϕ) + eikzz′(M(2)
21 Ñr + M(2)

22 Ñϕ)

]

+ e−ikzze2ikzd
[

eikzz′(M(3)
21 Ñr + M(3)

22 Ñϕ) + e−ikzz′(M(4)
21 Nr + M(4)

22 Nϕ)

]
, (61)

Ez = −
kr

kz
eikzz

[
e−ikzz′ e2ikzd(M(1)

11 Nr + M(1)
12 Nϕ) + eikzz′(M(2)

11 Ñr + M(2)
12 Ñϕ)

]

− e−ikzze2ikzd
[

eikzz′(M(3)
11 Ñr + M(3)

12 Ñϕ) + e−ikzz′(M(4)
11 Nr + M(4)

12 Nϕ)

]
, (62)

where M(s)
11 , M(s)

12 , M(s)
21 , M(s)

22 (s = 1, . . . , 4) are components of the four matrices (56)–(59).
For convenience, we rewrite N and Ñ in a cylindrical system of coordinates:

N =
i

8π2kz

(
−(prkr + kz pz)(erkr + ezkz) + ω2p

)
, (63)

Ñ =
i

8π2kz

(
−(prkr − kz pz)(erkr − ezkz) + ω2p

)
. (64)

The scattered part of the electric field at the point r from the source (1)–(2) at the point
r′ for 0 < z, z′ < d is given by

E(r, r′) =
∫

d2k‖e
ik‖ ·(r‖−r′‖)

(
Erer + Eϕeϕ + Ezez

)
. (65)
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The rotation formulas between a cylindrical local basis and a Cartesian basis for every
given k‖ are standard:

Ex = Er cos ϕ + Eϕ sin ϕ , (66)

Ey = Er sin ϕ− Eϕ cos ϕ, (67)

pr = px cos ϕ + py sin ϕ , (68)

pϕ = px sin ϕ− py cos ϕ , (69)

where px and py denote the Cartesian components of an electric dipole moment vector.
The Cartesian components of the scattered electric Green’s functions are expressed in

terms of components of the reflected electric Green’s functions in a cylindrical local basis
from (66)–(69) for r‖ = r′‖:
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DE
xx(ω, z, z′) =

∫ (
DE

rr(ω, kr, z, z′) cos2 ϕ + DE
ϕϕ(ω, kr, z, z′) sin2 ϕ

) d2k‖
(2π)2 , (70)

DE
yy(ω, z, z′) =

∫ (
DE

rr(ω, kr, z, z′) sin2 ϕ + DE
ϕϕ(ω, kr, z, z′) cos2 ϕ

) d2k‖
(2π)2 , (71)

DE
zz(ω, z, z′) =

∫
DE

zz(ω, kr, z, z′)
d2k‖
(2π)2 , (72)

In Equations (70)–(72), we omit nondiagonal contributions to scattered Green’s functions in
a cylindrical local basis proportional to either cos ϕ sin ϕ, cos ϕ or sin ϕ since integrals over
angle ϕ equal zero for these terms for coinciding arguments r‖ = r′‖.

The components of the scattered electric Green’s functions in a cylindrical local basis
entering (70)–(72) are found from (60)–(64):

DE
rr(ω, kr, z, z′) =

ikz

2

×
[

eikz(z−z′)e2ikzd M(1)
11 + eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 + e−ikz(z+z′)e2ikzd M(4)

11

]
, (73)

DE
ϕϕ(ω, kr, z, z′) =

iω2

2kz

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
, (74)

DE
zz(ω, kr, z, z′) =

ik2
r

2kz

×
[

eikz(z−z′)e2ikzd M(1)
11 − eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 − e−ikz(z+z′)e2ikzd M(4)

11

]
. (75)

After integration over the polar coordinates, we express scattered electric Green’s functions
for coinciding arguments r = r′ in terms of matrix elements of matrices (56)–(59) [88]:

DE
xx(ω, r = r′) = DE

yy(ω, r = r′) =
i

8π

∞∫

0

dkrkr

×
[

kz(e2ikzd M(1)
11 + e2ikzz′M(2)

11 + e2ikzd M(3)
11 + e2ikz(d−z′)M(4)

11 )

+
ω2

kz
(e2ikzd M(1)

22 + e2ikzz′M(2)
22 + e2ikzd M(3)

22 + e2ikz(d−z′)M(4)
22 )

]
, (76)

DE
zz(ω, r = r′) = − i

4π

∞∫

0

dkr
k3

r
kz

×
[
−e2ikzd M(1)

11 + e2ikzz′M(2)
11 − e2ikzd M(3)

11 + e2ikz(d−z′)M(4)
11 )

]
. (77)

Scattered magnetic Green’s functions can be evaluated from reflected electric Green’s
functions:

DH
il (ω, r, r′) =

1
ω2 εijkεlmn

∂

∂xj
∂

∂x′m
DE

kn(ω, r, r′). (78)
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The components of the scattered magnetic Green’s functions in a cylindrical local basis
are found from (78) and (73)–(75):

DH
rr (ω, kr, z, z′) =

ikz

2

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
, (79)

DH
ϕϕ(ω, kr, z, z′) =

iω2

2kz

×
[

eikz(z−z′)e2ikzd M(1)
11 − eikz(z+z′)M(2)

11 + eikz(z′−z)e2ikzd M(3)
11 − e−ikz(z+z′)e2ikzd M(4)

11

]
, (80)

DH
zz(ω, kr, z, z′) =

ik2
r

2kz

×
[

eikz(z−z′)e2ikzd M(1)
22 + eikz(z+z′)M(2)

22 + eikz(z′−z)e2ikzd M(3)
22 + e−ikz(z+z′)e2ikzd M(4)

22

]
. (81)

The Cartesian components of the scattered magnetic Green’s functions are evaluated in
complete analogy to the evaluation of the Cartesian components of the scattered electric
Green’s functions.

For every 0 < z′ < d and the coinciding arguments of the reflected local Green’s
functions z′ = z, these identities hold:

DE
rr(ω, kr, z′, z′) + DH

ϕϕ(ω, kr, z′, z′)− DE
zz(ω, kr, z′, z′) = ikzei2kzd

(
M(1)

11 + M(3)
11

)
, (82)

DH
rr (ω, kr, z′, z′) + DE

ϕϕ(ω, kr, z′, z′)− DH
zz(ω, kr, z′, z′) = ikzei2kzd

(
M(1)

22 + M(3)
22

)
. (83)

The Casimir pressure P equals the Tzz component of the fluctuation stress tensor in
a slit between half-spaces; it is expressed in terms of the scattered electric and magnetic
Green’s functions:

P = − i
2

∫ +∞

−∞

dω

2π

[
DE

xx(ω, r, r) + DE
yy(ω, r, r)− DE

zz(ω, r, r)

+DH
xx(ω, r, r) + DH

yy(ω, r, r)− DH
zz(ω, r, r)

]
. (84)

We use Formulas (70)–(72), identities (82)–(83) and the Wick rotation to express the Casimir
pressure in terms of the reflection matrices R1(iω) and R2(iω):

P =
1

(2π)2

∞∫

0

dω

∞∫

0

dkrkr

×
[

DE
rr(iω, kr, z′, z′) + DE

ϕϕ(iω, kr, z′, z′)− DE
zz(iω, kr, z′, z′)

+ DH
rr (iω, kr, z′, z′) + DH

ϕϕ(iω, kr, z′, z′)− DH
zz(iω, kr, z′, z′)

]

= − 1
(2π)2

∞∫

0

dω

∞∫

0

dkrkr k̃zTr
[(

I − R2(iω)R1(iω)e−2k̃zd
)−1

R2(iω)R1(iω)e−2k̃zd

+
(

I − R1(iω)R2(iω)e−2k̃zd
)−1

R1(iω)R2(iω)e−2k̃zd
]

, (85)
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where “Tr” defines the trace operation and k̃z ≡
√

ω2 + k2
r .

The corresponding Casimir energy on a unit surface has the form

E
S
=

1
(2π)2

∞∫

0

dω

∞∫

0

dkrkrTr ln
(

I − R1(iω)R2(iω)e−2k̃zd
)

. (86)

The equivalence of the Casimir energy (86) to the result for the Casimir energy obtained
within the scattering approach [43] is proved in Appendix A.

3. Casimir Interaction in Systems with Chern–Simons Layers on Realistic Substrates

The scattering approach yields finite expressions for the Casimir energy of several
interacting objects; it has been applied to diffraction gratings [93–96], spheres, cylinders
and other geometries [97–107]. Planes with conductivity have also been studied in the
framework of the scattering approach in Refs. [3,108–112]. The experiment [113] has
confirmed the (2 + 1) finite temperature polarization operator approach in the description
of graphene layers and the strong temperature dependence of the Casimir pressure for
interacting layers of graphene [108].

The Casimir energy of two Chern–Simons layers in vacuum for arbitrary Chern–
Simons constants a1 and a2 was derived in Ref. [42] in the framework of the scattering
approach. For a1 = a2, the Casimir force is repulsive over an interval a1 ∈ [0, amax],
where amax ≈ 1.032502 [41,43]. For a1 = −a2, the Casimir force is always attractive for two
Chern–Simons layers in vacuum [42].

Suppose there is a quantization of Chern–Simons parameters a1 and a2 as in quantum
Hall systems: a1 = αm, a2 = αn, where m and n are integer numbers and α is a fine structure
constant. The Casimir repulsion for two half-spaces covered by Chern–Simons layers was
studied for Au, intrinsic Si and SiO2 glass substrate materials in Refs. [43,44]. In Ref. [43], it
was shown that for two Au substrate half-spaces separated by a vacuum slit, the Casimir
repulsion can be achieved at the maximum distance d = 3.65 nm for a1 = a2 = 0.565,
and for two Si substrate half-spaces, the Casimir repulsion can be achieved at the maximum
distance d = 6.39 nm for a1 = a2 = 0.567. It was demonstrated in Ref. [44] that for two SiO2
substrate half-spaces separated by a vacuum slit, the Casimir repulsion can be realized
at the maximum distance d = 26.52 nm between half-spaces; the maximum distance at
which the Casimir repulsion occurs in this system corresponds to Chern–Simons constants
a1 = a2 = 0.542 or m = n = 74. In Ref. [44], it was shown that the minimum of the Casimir
energy with d > 10 nm is achieved for integer m = n ∈ [34, 115]. The Casimir interaction
of Chern–Simons layers in the presence of realistic substrate materials was not studied
for small enough and different values of a1 and a2 or for geometries different from two
half-space substrates with boundary Chern–Simons layers.

In this Section, we study the Casimir interaction of Chern–Simons layers for small
enough values of a1 and a2 and explore the transition between the regimes of Casimir
attraction and repulsion in the presence of a realistic dielectric substrate. Consider the
Chern–Simons plane layer defined by the constant a1 separated by a vacuum slit of width
d from a dielectric half-space characterized by a dielectric permittivity ε2(ω) and the
boundary Chern–Simons layer defined by the constant a2 (Figure 2). We emphasize that
ε1(ω) = 1 in this case. We evaluate the Casimir energy in this system for two dielectric
substrate materials: intrinsic Si and SiO2 glass. For the dielectric permittivity of intrinsic
Si, the model from Ref. [114] is used. For SiO2 glass, we use data from [115] to evaluate
dielectric permittivity at imaginary frequencies. We apply Equation (86) to evaluate the
Casimir energy.
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Figure 2. The Chern–Simons layer defined by a1 is separated by a distance d from a dielectric
half-space, with the boundary Chern–Simons layer defined by a2. The permittivity of a dielectric
half-space is ε2.

The Casimir energy for the Si substrate and Chern–Simons layers with m = n = 1 is
presented in Figure 3; the minimum of the energy is at the distance d = 35.5 nm. For n = 1,
m = 2, the minimum is at the distance d = 17.6 nm; for n = 1, m = 3, the minimum is at
the distance d = 11.9 nm.
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Figure 3. The Casimir energy (86) as a function of a distance d between the Chern–Simons layer
defined by a1 = α and the Chern–Simons layer defined by a2 = α at the boundary of intrinsic Si
half-space substrate.

The Casimir energy for the SiO2 glass substrate and Chern–Simons plane layers with
n = 1, m = 6 is shown in Figure 4; the minimum of the energy is at the distance d = 13.7 nm.
For n = 1, m = 5, the minimum is at the distance d = 20 nm; for n = 1, m = 4, the minimum
is at the distance d = 38.2 nm; for n = 1, m = 3, the minimum is at the distance d = 276 nm;
for n = 1, m = 2, the minimum is at the distance d = 1547 nm. For n = 1, m = 1, there is
no minimum of the Casimir energy: the Casimir repulsion occurs at all distances between
the Chern–Simons layers.
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Figure 4. The Casimir energy (86) as a function of a distance d between the Chern–Simons layer
defined by a1 = 6α and the Chern–Simons layer defined by a2 = α at the boundary of SiO2 glass
half-space substrate.

4. Discussion and Summary

The Green’s functions scattering method [3,64] is explicitly gauge-invariant by con-
struction; it is based on a direct evaluation of electric and magnetic Green’s functions and
the fluctuation stress tensor in a vacuum slit between objects. In Refs. [3,64], the Casimir
pressure is derived for flat geometries and boundary conditions when there is no mixing
between transverse electric and transverse magnetic polarizations after reflection from
flat boundaries. In Ref. [88] and in this paper, the method is generalized to systems with
Chern–Simons plane layers; in this case, there is mixing between the transverse electric and
transverse magnetic polarizations after reflection from the Chern–Simons layers.

In the present paper, the Casimir pressure is derived for dielectric half-spaces with
Chern–Simons plane-parallel boundary layers via evaluation of the fluctuation stress tensor
in a vacuum slit. Section 2, presents derivation of the Casimir pressure (85) expressed in
terms of reflection matrices through evaluation of the fluctuation stress tensor in a vacuum
slit. The fluctuation stress tensor is expressed through electric and magnetic Green’s
functions in a vacuum slit. We start from evaluation of the electric Green’s functions in a
vacuum slit [88]. The derivation of the magnetic Green’s functions and the stress tensor
in a vacuum slit is new. To our knowledge, the Casimir pressure expressed in terms of
nondiagonal reflection matrices has not been previously derived through evaluation of the
vacuum stress tensor. In Appendix A, we prove the equivalence of the Casimir energy (86)
to the result for the Casimir energy obtained with the scattering approach [43].

The Casimir pressure on a Chern–Simons plane layer separated by a vacuum slit from
the boundary Chern–Simons layer on intrinsic Si or SiO2 glass half-spaces has remarkable
properties for experimental study. In Section 3, we concentrate on the case of quite small
parameters a1, a2 for the boundary Chern–Simons layers: the case that is easier to imple-
ment experimentally. The case of relatively small and different values of a1, a2 was not
investigated before. The geometry of the Chern–Simons plane layer separated by a vacuum
slit from a dielectric half-space with the boundary Chern–Simons layer was not studied
before. It is convenient to consider quantum Hall quantization of the parameters a1 = mα,
a2 = nα, where m and n are integer numbers. For m = n = 1, the Casimir pressure is
repulsive at all separations for the SiO2 substrate; however, there exists a minimum of the
Casimir energy in this case for the Si substrate. For n = 1 and integers m > 1, there is a
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minimum of the Casimir energy both for the Si and SiO2 substrates; the Casimir pressure
is attractive when the separation between the layers is greater than the separation at the
position of the minimum of the energy, and it is repulsive at shorter separations. We find
the positions of the minimum of the Casimir energy for n = 1 and m = 1, 2, 3 for the
intrinsic Si substrate and for n = 1 and integers m ∈ [2, 6] for the SiO2 glass substrate.

The results obtained in this paper demonstrate that intrinsic Si and SiO2 glass are
natural substrate materials for the study of transitions from an attractive regime of the
Casimir pressure to a repulsive one. The positions of the minimum of the Casimir energy
are found at experimentally realizable distances between the layers for quite small integer
numbers of quantization parameters for both Chern–Simons layers, which is important for
experimental realization of the repulsive Casimir force.
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Appendix A. Representations of the Casimir Energy in Two Bases

Here, we prove the equivalence of the Casimir energy (86) to the result for the Casimir
energy obtained with the scattering approach [43,44]. In the present paper, we use the local
polar basis vectors er and eϕ in momentum space; in Ref. [43], the local basis vectors es and
ep of the TE and TM polarizations in momentum space have been used. The amplitudes of
the incident electric fields in the two bases are related by the matrix A f :

(
Nr
Nϕ

)
= A f

(
Ns
Np

)
. (A1)

The amplitudes of the reflected electric field vi are expressed through the amplitudes of the
incident field Ni by the matrix R defined in Equation (53):

(
vr
vϕ

)
= R

(
Nr
Nϕ

)
. (A2)

The amplitudes of the reflected electric field in the two bases are related by the transition
matrix Ag: (

vs
vp

)
= Ag

(
vr
vϕ

)
= AgRA f

(
Ns
Np

)
= R′

(
Ns
Np

)
. (A3)

One immediately finds the relation between the reflection matrices in the two bases:

R′ = AgRA f . (A4)

The transformation matrices for a reflection from the upper half-space have the form

Ag1 =

(
0 −1

ω/kz 0

)
, (A5)

A f1 =

(
0 −kz/ω
−1 0

)
. (A6)
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For a reflection from the lower half-space, the transformation matrices have the form

Ag2 =

(
0 −1

−ω/kz 0

)
, (A7)

A f2 =

(
0 kz/ω
−1 0

)
. (A8)

From (53), (54), (A4) and (A5)–(A8), we obtain reflection matrices in agreement with the
scattering approach [43]:

R′1 =
1

1 + a2
1T1

(
rTE1 − a2

1T1 −a1T1
−a1T1 rTM1 + a2

1T1

)
, (A9)

R′2 =
1

1 + a2
2T2

(
rTE2 − a2

2T2 a2T2
a2T2 rTM2 + a2

2T2

)
. (A10)

One can write the product of the reflection matrices from the upper and the lower half-
spaces:

R′1R′2 =

(
0 −1

ω/kz 0

)
R1

(
0 −kz/ω
−1 0

)(
0 −1

−ω/kz 0

)
R2

(
0 kz/ω
−1 0

)

=

(
0 −1

ω/kz 0

)
R1R2

(
0 kz/ω
−1 0

)
. (A11)

The equality of the trace operations in two different bases follows:

Tr(R′1R′2)
L = Tr(R1R2)

L, (A12)

where L is a positive integer number. The equivalence of the Casimir energy (86) to the
result for the Casimir energy obtained with the scattering approach [43] follows from the
equality (A12).
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Abstract: Classical radiation from a single relativistically accelerating electron is investigated where
the temperature characterizing the system highlights the dependence on acceleration. In the context of
the dynamic Casimir effect with Planck-distributed photons and thermal black hole evaporation, we
demonstrate analytic consistency between the ideas of constant acceleration and equilibrium thermal
radiation. For ultra-relativistic speeds, we demonstrate a long-lasting constant peel acceleration
and constant power emission, which is consistent with the idea of balanced equilibrium of Planck-
distributed particle radiation.

Keywords: moving mirrors; beta decay; black hole evaporation; acceleration radiation

1. Introduction

It is fascinating that black holes (BH), with surface gravity, κBH = c4/4GM, have
‘quantum’ (with the reduced Planck constant, h̄) temperature [1],

TBH =
h̄κBH

2πckB
, (1)

because, in part, the radiated particles in equilibrium are frequency-distributed with a
Planck factor, and the power emitted scales according to P ∼ T2, substantiating black
holes as one-dimensional information channels [2]. Here, G is the Newtonian constant of
gravitation, M is the BH mass, c is the speed of light, and kB is the Bolzmann constant.

In this paper, we help to make the case for a classical analog to Equation (1). We present
new details supporting the idea of a moving point charge radiation effect, quite similar in
form to Equation (1) yet fully classical in origin. The thermal radiation originates from a
single accelerating electron. For clarity, we provide overlap with [3], but the novel results
here focus on temperature and the analytic expressions of time dependence. Our results
are concerned with the equilibrium period of an electron’s radiation: when the power
emitted is uniform and classical thermodynamics applies, the emission has a temperature
proportional to the peel acceleration, κ, of the electron; the latter term is defined and
explained in Section 3.3. One finds the ‘classical’ (no h̄) temperature [4],

Telectron =
µ0e2κ

2πkB
, (2)

which is commensurate with constant power emission [3]. This temperature is in the
Stoney scale [5]; see [6]. Here, e denotes the electron’s charge and µ0 is the vacuum
magnetic permeability. Interestingly, this occurs during Planck-distributed radiation from
an analog moving mirror (dynamical Casimir effect [7–9]) accelerated along the same
specific trajectory (provided in Ref. [3]). A horizontal leveling of the power is visually
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observed at extremely ultra-relativistic final speeds of the electron. A notion of temperature
is congruent with the power P, emitted by the electron scaling according to P ∼ T2 (this
quantity is the P̄c defined in Equation (18)), revealing similar Bekenstein one-dimensional
behavior and power–temperature scaling [2]. In this paper, we investigate the arguments
supporting this conjecture and the classical temperature (2), as well as the analogy to the
quantum temperature (1).

1.1. Analog Bridge

First, let us consider the straightforward action correspondence between
Equations (1) and (2),

h̄→ e2

ε0c
= µ0ce2, (3)

where the h̄ value is,
h̄ = 1.054× 10−34 J s, (4)

and the smaller action (or angular momentum) classical quantity is

µ0ce2 = 9.671× 10−36 J s. (5)

Notice that
h̄

µ0ce2 ≈ 10.91. (6)

For a given acceleration scale, κ, the classical temperature (2) is nominally about a
magnitude order smaller than the quantum temperature (1). The analog ‘substitution’ (3)
can help one bridge the analog connection between the elementary particle and black hole
via a substitution h̄→ µ0ce2 in Equation (1) gives Equation (2). We justify and generalize
this in what follows.

1.2. Temperature Definition

Temperature is a collective property and is almost always defined with an assemblage
of particles. The helpfullness of thermodynamics is particularly salient in a regime with a
large number of particles (in this case, the large amount of radiated particles are infinite
soft thermal photons).

We emphasize that what is meant by ‘the temperature of electron radiation’ in
Equation (2) is a temperature extracted by averaging the photon energy radiated over many
realizations of the same decay experiment with a single asymptotically ultra-relativistic
electron. Only in this context does it make sense to consider a single electron radiating
photons with a defined temperature.

Here, the frequency distribution is also analogous to the moving mirror particle
production, which is Planck-distributed; see Section 4 below. The connection to black hole
temperature is limited in the sense that an explicit Planck distribution has not been derived
for classical electron radiation, unlike the moving mirror Planck distribution, which is a
result of the Bogolubov beta coefficients originating from the quantum fields in a curved
space approach, see e.g., [8–11]. However, the connection is explicitly tethered by the
power–temperature scaling of the (1+1)-dimensional Stefan–Boltzmann law; see Section 5
below. Importantly, this notion of electron radiation temperature is dynamically convenient
because it signals a corresponding period of uniform peel acceleration (which is defined in
Section 3.3).

1.3. Extension Bridge

The bridge (3) is not limited to Equations (1) and (2). It proves helpful as an action
correspondence in general (see Refs. [12–15]) between the quantum moving mirror model
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(denoted below by the q subscript) and the classical moving point charge model (denoted
by the c subscript). This is observed, respectively, in the power (see, e.g., [16,17]),

Pq =
h̄α2

6πc2 , Pc =
µ0e2α2

6πc
, (7)

where α is the proper acceleration of the mirror or electron, and self-force [18,19],

Fq =
h̄α′(τ)
6πc2 , Fc =

µ0e2α′(τ)
6πc

, (8)

with the prime indicating the derivative with respect to proper time, τ, (not coordinate
time, t) (see, e.g., [18,20]), for any limited horizonless trajectory whose acceleration is
asymptotically zero (asymptotic inertia).

Moreover, the bridge also occurs specifically between the spectral radiance of a particu-
lar moving mirror model and lowest-order inner bremsstrahlung (IB) during beta decay [3],
contained therein. More generally, if one examines the infrared limit, this is observed in the
frequency independence of the spectral energy per unit bandwidth (see, e.g., [16,21]),

Iq =
h̄

2π2

(η

s
− 1
)

, Ic =
µ0ce2

2π2

(η

s
− 1
)

, (9)

where s = tanh η is the final speed of the mirror or electron as a fraction of c, and η is the
final rapidity.

In what follows, we check the consistency of our claims by analyzing the correspon-
dence from different sides. In Section 2, we consider the radiation from an accelerated
electron more closely, discussing the relevant scales of the problem. In Section 3, we show
that such an electron is characterized by constant-in-time characteristic quantities, thus
supporting the thermal regime. Section 4 presents the Planck spectrum for a moving mirror
model and its connection to the moving point charge and black holes, also supporting
thermality and the analog bridge of Equations (1) and (2). In Section 5, we provide several
derivations of the Stefan–Boltzmann law in the relevant contexts; the results serve as an
independent confirmation of the quadratic dependence in temperature. Section 6 gives
the conclusions.

2. Energy Radiated by an Electron
2.1. Total Energy Emitted

To obtain the energy per unit bandwidth from Equation (9), one associates the ultra-
violet (UV) scale, ωmax, of the system with the acceleration scale, κ:

ωmax =
πκ

12c
, (10)

such that, using the first equation of Equation (9), the quantum spectral energy per
unit bandwidth,

Iq =
dEq

dω
→ Eq =

h̄κ

24πc

(η

s
− 1
)

, (11)

or with the second equation of Equation (9), the classical spectral energy per bandwidth,

Ic =
dEc

dω
→ Ec =

µ0e2κ

24π

(η

s
− 1
)

. (12)

With the clarity of the International System of Units (SI), this demonstrates that the
two different models have analogous energy emission scaling. Notice that energy (12)
can be expressed as

Ec =
µ0e2κ

48π

[
1
s

ln
(

1 + s
1− s

)
− 2
]

, (13)
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where, again, as in Equation (9), s is the final constant speed of the electron as a fraction
of the speed of light. As shown in Section 3 below, for a thermal plateau, ultra-relativistic
speeds are required, s ∼ 1 (although this is not required in order to obtain the Planck-
distributed photon thermal spectrum). Only the classical version Equation (12) [22] or
lowest-order IB energy [23] have been directly observed in experiments; see, e.g., [24].

2.2. UV Cutoff and Temperature

For some orientations, consider now re-expressing the temperature (2) of the electron
radiation in terms of the maximum appreciable energy emitted, h̄ωmax = h̄πκ/12c (see
Equation (10)),

T =
6

π2
µ0ce2

h̄
Eγ

kB
, (14)

where energy range of the detected photons is UV-limited by Eγ = h̄ωmax and can be
expressed from Equation (14) as

Eγ =
π2

6
h̄

µ0ce2 kBT ≈ 18 kBT. (15)

This provides some perspective on the dependence of the system on the cutoff when
in thermal equilibrium. Consistency of the temperature Formulas (2) and (14) is confirmed
below; see Sections 2.3, 3, 4, and 5 below.

Including these UV limits, experimental evidence of lowest-order IB energy emitted
during beta decay confirms the consistency of the theoretically derived frequency inde-
pendence of the spectral energy per unit bandwidth (9); see, e.g., [24]. In what follows,
we support the physical notion of temperature in this context by providing corroborative
analytic results confirming the mathematical validity of Equation (2).

2.3. Scale Dependence

The analog between black hole temperature and electron radiation temperature, in-
troduced in Section 1, has limitations. Black hole temperature, T = h̄κ/2πckB, varies
dependent on the surface gravity, κBH = c4/4GM, of the black hole, while electron radiation
temperature, T = µ0e2κ/2πkB, varies on the acceleration scale, κ = 12cωmax/π, inherently
a function of the UV scale of the system, ωmax. Hence, because the charge of every electron
is the same, the fine structure does not change in this context, and the temperature of the
electron’s acceleration radiation is UV-dependent, so the two expressions differ with respect
to both intuition and scale. In this context, it is convenient to consider the universality of
the soft factor [25] and the thermal character of the infinite zero-energy photons emitted
in this regime. Indeed, the thermality here is connected to every scattering process in the
deep infrared, at least in the instantaneous collision reference frame [26]. Thus, there is an
argument for the relevance of Equation (2) beyond the bremsstrahlung context.

To this end, we point out that Equation (2) is relevant for Feddeev–Kulish dressed
states, where equivalent particle count and energy results [27] suggest one can can derive
a ‘cloud temperature’. Analog systems with corresponding results are also subject to
thermal character. For instance, ‘mirror temperature’ is an appropriate assignment in the
context of the dynamical Casimir effect [28], as we demonstrate straightforwardly with
the spectral computation (see Equation (26) below). Moreover, since the internal structure
of the source cannot be discerned by long wavelengths, these results can necessarily be
extended in analog to curved spacetime final states [29], where ‘black hole temperature’
leading to a leftover remnant becomes a helpful characterization of the system. We leave
these extensions for future investigations.

3. Thermal Plateaus

In a system with well-defined thermality, one naturally expects to observe an equilib-
rium, which implies that characteristic quantities describing this system remain constant in
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time (up to small fluctuations). For example, a black body immersed in a heat bath radiates
the same amount of energy each second, i.e., the radiation power remains constant.

Since we talk about temperature and thermality for the electron/mirror setup, it is
desirable to see that this system is indeed in a regime where its characteristic quantities
remain constant; in this Section, we explore this in detail. We find that indeed there is a
time window where the characteristic quantities remain constant and exhibit plateaus. In
the ultrarelativistic limit, s → 1, of high final speeds, these plateaus become wide, thus
validating the regime of thermality.

3.1. Constant Power Emission

As expected for thermal equilibrium, a stable emission period of constant power is
measured by a far-away observer. This is best represented as the change in energy with
respect to retarded time, u = t− r/c (r is the distance to the origin), and written as Larmor
power, P̄ = dE/du, such that P̄ = P dt/du = P/(1− β), where P = µ0e2α2/6πc, see
Equation (7). Here, β is the velocity normalized by c.

The main example here is the trajectory directly related to the lowest-order inner
bremsstrahlung in the radiative beta decay [3],

r(t) =
sc
κ

W(eκt/c)r̂ , (16)

Here, r̂ is the unit vector in the r direction, while W is the Lambert product logarithm
defined as a solution to equation, wew = x, such that w = W(x) and W(0) = 0. The Larmor
power can be computed analytically. Its expression, formulated in terms of u, reads:

P̄(u) =
µ0e2κ2s2W2(W + 1− s)

6πc(W + 1)4((1 + s)W + 1− s)3 , where W ≡W[eκu/c(1− s)]. (17)

Equation (17) has a plateau when the final speed of the electron is near the causal limit,
s → 1. Consider analytically two separate limits of high speeds and late times, which
reveal, using Equation (2),

P̄c ≡ lim
u→∞

lim
s→1

P̄(u) =
µ0e2κ2

48πc
=

π

12
k2

B
µ0ce2 T2. (18)

Figure 1 shows P̄(u) at high final asymptotic speeds, s ∼ 1, and illustrates the constant
power plateau indicative of thermal emission.

Keep in mind that we are working with classical (3+1)-dimensional radiation of an
electron. Therefore, we notice that Equation (18) is a (1+1)-dimensional classical power–
temperature relation, with scaling identical to the standard quantum (1+1)-dimensional
Stefan–Boltzmann law [30], which describes (3+1)-dimensional black hole power radiance
(see, e.g., [2]),

Pq =
πk2

B
12h̄

T2. (19)

In the same way that a single-spatial-dimensional Planck distribution yields
Equation (19), an analog Planck distribution, J (without h̄), or spectral energy density
in angular frequency space,

J(ω) =
1

2π

µ0ce2ω

eµ0ce2ω/kBT − 1
, (20)

where Equation (3), h̄ → µ0ce2, can be applied (as an example), integrated over angular
frequency,

∫ ∞

0
J(ω)dω =

π

12
k2

B
µ0ce2 T2, (21)
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which results in Equation (18). It is natural to suppose a distribution similar to J(ω) (20)
might be responsible for Equation (18); see, e.g., [4]. Such a distribution could lend support
for the action correspondence (3), but also corroborate the temperature (2)). It appears
that such a distribution would only characterize the radiation during a long-lived constant
power emission phase at sufficiently high speeds, s ∼ 1. Nevertheless, independent of
any J(ω) supposition and the difficulties commensurate with such speculation, the power
emission (17) possesses a plateau consistent with Equation (18).

power

-1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

u

P
(u
)

Figure 1. The power, P̄(u) (17), with a plateau demonstrating constant emission when the final speed,
s, of the electron is extremely ultra-relativistic, s = 1− 10−9 (or rapidity, η = 10.7, s = tanh η). Here,
κ =
√

48π and µ0 = c = 1 and unit charge so that the plateau is at height P̄(u) = 1. The Larmor
power plateau corroborates the conclusion that, at high electron speeds, the photons, as with the
Planck-distributed particles, produced by the mirror (see Equation (26)), find themselves with the
temperature, T = κ/2π (2). The integral of (17) under the curve, is the experimentally observed soft
inner bremsstrahlung (IB) energy, Ec (12) or (13).

3.2. Constant Radiation Reaction

Having seen the power plateau in P̄(u) originating from P = µ0e2α2/6πc, let us
now turn to the self-force, F = µ0e2α′(τ)/6πc, and the associated power, which we call
‘Feynman power’ [31], F̄(u) = Fdr/du = Fβ/(1− β), as a function of u,

F̄(u) =
µ0e2κ2sW(s−W − 1)

(
2(s + 1)W2 + s + W − 1

)

6πc(W + 1)4((s + 1)W − s + 1)3 , W ≡W[eκu/c(1− s)]. (22)

Taking the same two separate consecutive limits of high speeds and late times, as in
Equation (18), reveals

lim
u→∞

lim
s→1

F̄(u) = −µ0e2κ2

48πc
= − π

12
k2

B
µ0ce2 T2. (23)

Figure 2 shows the period of constant Feynman power. This plot, similar to Figure 1
of the Larmor power, P̄, also exhibits a constant period during which the electron emits
particles in thermal equilibrium. Equation (23) substantiates Equation (2).
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force
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Figure 2. The Feynman power or ‘self-force measure’, F̄(u) (22), with a plateau demonstrating
constant self-force when the final speed of the electron is extremely ultra-relativistic, s = 1− 10−9 (or
rapidity, η = 10.7). Here, κ =

√
48π and µ0 = c = 1 and unit charge so that the plateau is at height

F̄(u) = −1. The Feynman power plateau corroborates the temperature, T = κ/2π (14). The integral
of (22) under the curve is sign-flipped experimentally observed soft IB energy, Ec (13).

3.3. Constant Peel Acceleration

Direct corroboration of an extended period of thermal equilibrium is given by the
object κ̄(u) = v′′(u)/v′(u), where v = t + r/c is the advanced coordinate and the prime
denotes a partial derivative with respect to the independent variable, the retarded time, u,
in this case. This quantity is called the ‘peeling function’ and has been used in the relativity
literature; see, e.g., [32,33]. Following precedent, we call it the ‘peel acceleration’ or ‘peel’
for short.

The peel acceleration typically accompanies thermal particle radiation. For instance,
it has been used as a measure of what Carlitz–Willey [34] called ‘local acceleration’. The
result for IB is [3]

κ̄(u) =
2κsW

(W + 1)2(1 + (s + 1)W − s)
, W ≡W[eκu/c(1− s)]. (24)

In the limit of high speeds and late times, one finds:

lim
u→∞

lim
s→1

κ̄(u) = κ. (25)

The peel acceleration, κ̄(u), is related to the Lorentz-invariant proper acceleration, α, via
the relation, κ̄ = 2αeη , or via the first derivative of the rapidity with respect to retarded
time, κ̄(u) = 2η′(u).

Figure 3 shows the peel acceleration. A quasi-constant peel acceleration is in agreement
with the equilibrium of a thermal distribution and constant power emission; however, it is
important to underscore the fact that a constant peel acceleration does not describe uniform
proper acceleration of the electron.

347



Physics 2023, 5

acceleration

-10 0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

u

κ
(u
)

Figure 3. The peel acceleration, κ̄(u) (24), with a plateau demonstrating constant local acceleration
when the final speed of the electron is extremely ultra-relativistic, s = 1− 10−9 (or rapidity η = 10.7).
Here, κ = c = 1 so that the plateau is at height κ̄(u) = 1. The peel acceleration plateau directly
substantiates the temperature, T = κ/2π (2).

4. Planck Spectrum
4.1. Moving Mirror Model

In the moving mirror model (see, e.g., [9,10]), the Bogolubov beta coefficients corrobo-
rate radiative equilibrium via an explicit Planck distribution. For IB during beta decay, the
Planck distribution is explicitly manifest in Equation (26). Accelerating boundaries radiate
soft particles whose long wavelengths lack the capability to probe the internal structure
of the source [25]. In the spirit of the analogy, the moving mirror spectrum, with the peel
acceleration, κ, supports the appropriate notion of temperature for the soft spectrum of the
electron’s IB. Combining the results for each side of the mirror [28] by adding the squares
of the Bogolubov beta coefficients, the overall spectrum reads [3]:

|βωω′ |2 =
2cs2ωω′

πκ(ω + ω′)
a−2 + b−2

e2πc(ω+ω′)/κ − 1
. (26)

Here, a = ω(1+ s) +ω′(1− s), and b = ω(1− s) +ω′(1+ s), where ω is the out-frequency
mode and ω′ is the in-frequency mode of the massless scalar field [10]; Davies-Fulling
notation [9] is used here. See Figure 4 for an illustration of the symmetry between the
frequency modes of the beta modulus (26).

For a consistency check, using the retarded time clock of the observer, the following
integrations hold:

Ec = −
∫ ∞

−∞
F̄(u)du =

∫ ∞

−∞
P̄(u)du, (27)

along with

Eq =
∫ ∞

0

∫ ∞

0
h̄ω|βωω′ |2 dω dω′, (28)

or
Eq =

∫ ∞

0

∫ ∞

0
h̄ω′|βωω′ |2 dω dω′, (29)

demonstrating consistency with the conservation of energy. Importantly, this also demon-
strates the consistency of the analogy between quantum mirrors and classical electrons.
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Figure 4. The |βωω′ |2 spectrum of Equation (26) in a contour plot. Here, κ = 1 and s = 1/2. Notice
the symmetry between the frequency modes ω and ω′. The qualitative shape is indicative of the
Bose–Einstein statistics explicit in the Planck factor of Equation (26).

The Planck spectrum of Equation (26) is robust to both high-frequency approximations
and low-frequency approximations. This is made particularly explicit by considering
high final speeds, s ≈ 1, then using either frequency approximation. Consider the high
frequency, ω′ � ω approximation [1]. To leading order, one retrieves

|βωω′ |2 =
c

2πκω

1
e2πcω′/κ − 1

. (30)

Likewise, considering high final speeds and the low-frequency, ω′ � ω, approxima-
tion switches the prime on the ω’s, leading to (see, e.g., [35])

|βωω′ |2 =
c

2πκω′
1

e2πcω/κ − 1
, (31)

demonstrating Planck factor validity to either frequency approximation. The spectrum plot
of the moving mirror radiation (Figure 4) illustrates the explicit Planck factor, which
demonstrates the particles are distributed with a temperature given in Equation (2):
N(ω) =

∫
dω′|βωω′ |2.

4.2. Relation to Electrons and Black Holes

The moving mirror model, or dynamical Casimir effect (DCE), is closely related to
electron radiation and black holes. Having the radiation spectrum of the mirror, it is
possible to obtain the radiation spectra for these related systems. Let us explain the details.

The connection between DCE and point charge radiation has been suggested long
ago (by Unruh and Wald [19] and by Ford and Vilenkin [18]), and has been developing
since; see [12–16,36]. Eventually, this led to the realization that there is an exact functional
identity between the radiation spectra in these models [4,37]. In papers [4,37], the cor-
responding transformation recipe was derived and checked; it was established that an
electron corresponding to the mirror equation (26) radiates with the spectrum,

I(ω) =
µ0ce2

2π2

(
tanh−1 s/c

s/c
− 1

)
2πcω/κ

e2πcω/κ − 1
. (32)
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One can immediately see the aforementioned Planck form of the spectrum with the same
temperature as the mirror.

Thermal emission is not so surprising considering the Larmor power plateau
(Figure 1), Feynman power plateau (Figure 2), and acceleration plateau (Figure 3). It is also
in agreement with the close analogy for quantum and classical quantities of powers [16,17]
and self-forces [18,20] between mirrors and electrons.

Black hole evaporation [1], and, in particular, the collapse of a null shell in the s-
wave approximation, can also be described as a DCE [29,38]. This black hole–moving
mirror correspondence has been successfully applied, for example, to such important
spacetimes as Schwarzschild [39,40], Reissner–Nordström [41], and Kerr [42] metrics. In
the triarchy ‘moving mirrors–electrons–black holes’, the quantum-classical temperature
relation between Equation (1) and Equation (2) has been found, supporting the analog
bridge of Section 1.1. It is an interesting question about which geometry corresponds to
mirror Equation (26); we leave this for a future investigation.

5. Stefan–Boltzmann Law

It is natural to consider how the classical power scales according to the (1+1)-dimensional
Stefan–Boltzmann law [30],

P ∼ T2, (33)

rather than the (3+1)-dimensional Stefan–Boltzmann law,

P ∼ AT4, (34)

which governs the power radiated from a black body in terms of its temperature. A first
heuristic answer is the classical electron is a point particle with no area. We note that in flat
spacetime, Equation (34) is the relevant contrasting expression for the energy transmission
of a single photon polarization out of a closed hot black body surface with temperature T
and area A into 3-dimensional space.

Ultimately, a better understanding may be related to black hole radiance. The scaling
could occur for the same reason that black holes are one-dimensional information channels [2],
whose power also scales according to P ∼ T2. In the context of Equation (2), the electron’s
constant power peaks at exactly Equation (18), which is the analog of the known all-time
constant equilibrium emission of the quantum stress tensor for the eternal thermal Carlitz–
Willey moving mirror [11] and the late-time Schwarzschild mirror [39]. The 1+1 spacetimes
corresponding to these mirrors exhibit horizons and have been considered as analogous to
black holes; see, e.g., [29].

A complete investigation concerning the entropy and information flow related to
the quadratic temperature dependence of the electron’s power emission is a worthwhile
study but is outside the scope of this study. Nevertheless, in Sections 5.1–5.4, we make
some necessary preliminary progress regarding exploring this Stefan–Boltzmann law in the
context of its origin from electromagnetic spectral analysis, statistically maximized entropy,
and classical thermodynamics.

5.1. Classical Stefan–Boltzmann

Using the aforementioned Stoney scale [5], the classical temperature of radiation from
an electron is, regarding Equation (2),

T =
µ0e2κ

2πkB
. (35)

Contrast this with the Kelvin scale and the temperature resembles the quantum Davies–
Fulling–Unruh effect,

T =
h̄κ

2πckB
, (36)
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except, here, κ is the peel (not uniform proper acceleration). The Davies–Fulling–Unruh ex-
pression is well-understood as a quantum effect and the proposed temperature of radiation
emitted by an electron in the literature, e.g., [43–46].

However, the classical reasoning for Equation (35) is two-fold: dynamics and spec-
tral analysis. Dynamically, one can compute the power [3] and find it agrees with the
Stefan–Boltzmann law, P ∼ T2, at the plateau for high speeds, s ≈ 1. The spectral anal-
ysis done in Ref. [3] confirms the Planck distribution, using the spectral distribution,
dI(ω)/ dΩ = dE/ dω dΩ [4],

I(ω) =
µ0ce2

2π2

(η

s
− 1
) M

eM − 1
, (37)

where the dimensionless M is an analog to h̄ω/(kBT):

M ≡ µ0ce2

kBT
ω, (38)

with temperature (35). Moreover, as we see in the next sub-section; the characteristic
frequency of the photons confirms the Stefan–Boltzmann law using basic classical electro-
magnetic spectral analysis.

5.2. Stefan–Boltzmann from Spectra

Let us assume thermal emission is described by a heuristic and characteristic frequency
of the radiation when the electron is ultra-relativistic. Then, this frequency is

P
kBT

=
∫ ∞

0
I( f )d f , (39)

where the left-hand side is the ratio of the thermal power divided by the average energy in
equilibrium, kBT, as given by the equipartition theorem for the canonical ensemble. Here,

I( f ) =
I( f )
Iinfra

=
M

eM − 1
(40)

is the dimensionless spectrum, as a function of frequency, f = ω/(2π), so that M = µ0ce2

kBT 2π f .
Here, Iinfra is the infrared limit of the spectrum; see Equation (58) in Ref. [4] and Equation (9)
above. Integrating Equation (39) over f provides the required result for the power,

P =
π

12
k2

B
µ0ce2 T2, (41)

which is same T2 temperature scaling as the (1+1)-dimensional Stefan–Boltzmann law [30]
describing black hole radiance [47] and electron radiance [3], as derived straight from the
dynamics of the trajectory using the proper acceleration via the Larmor power.

While the quadratic scaling of temperature in Equation (41) describes thermal noise
power transfer in one-dimensional optical systems [30],

P =
π

6
k2

B
h̄

T2, (42)

the most known case of one-dimensional thermal radiation is Johnson noise or Nyquist
noise of electrical circuits [48],

P =
π

12
k2

B
h̄

T2, (43)

which is also proportional to temperature squared, yet with an emissivity of ε = 1/2. This
lower emissivity arises from the fact that photons in electrical networks are polarised, and
thus the resistors act as gray bodies rather than black bodies.
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5.3. Stefan–Boltzmann from Entropy

Consider the classical accelerating electron in thermal equilibrium with its environ-
ment. By the second law of thermodynamics, the probability distribution, p(n), must be
such as to maximize the system entropy. Following Oliver [48], we determine p(n), where
n is an integer. Here, n is the number of photons emitted by the ensemble system. We start
with the definition of Gibbs entropy for the electron,

Se = −kB

∞

∑
n=0

p(n) ln p(n), (44)

with constraints of unitarity and averaging

∞

∑
n=0

p(n) = 1,
∞

∑
n=0

n p(n) = n̄. (45)

The first constraint demands n must be some integer. The second constraint provides the
average number of photons present where n̄ need not be an integer.

The above summations will not vary as the distribution is varied as long as the entropy
is maximized. A linear sum of all three,

∑ p(n) ln p(n) +A∑ n p(n) + B∑ p(n), (46)

where A and B are constants, have then zero variation,

∑[ln p(n) + 1 +An + B]δp(n) = 0, (47)

for small perturbations, δp(n), of p(n). This is satisfied if

ln p(n) + 1 +An + B = 0, (48)

which provides a probability distribution,

p(n) = e−1−Be−An. (49)

Using the averaging and unitarity constrain, one obtains:

p(n) =
(

1− e−A
)

e−nA, n̄ =
1

eA − 1
. (50)

Using the distribution p(n) in the entropy, one then finds:

Se

kB
=

ln
(
eA − 1

)

eA − 1
− ln

(
−e−A + 1

)

−e−A + 1
. (51)

The electron can be imagined to absorb an average non-integer classical energy (no h̄),

W̄(ω) = n̄µ0ce2ω, (52)

in analog to n̄h̄ω, suitable for the Stoney scale (nominally, µ0ce2 is, as we have seen, more
than ten times smaller than h̄). For a gray body with absorptivity a, average absorbed
radiation is n̄h̄ω · a. In our setup, a ∼ µ0ce2/h̄; see Section 5.5.

The average energy (52) comes from the surrounding outside thermal environment,
producing an entropy change,

So = −
n̄µ0ce2ω

T
= kB

1
eA − 1

M, (53)

352



Physics 2023, 5

in the rest of the system ‘outside’ the electron. The dimensionless M is the Stoney tempera-
ture scale version of h̄ω/(kBT):

M ≡ µ0ce2

kBT
ω. (54)

The total change, ∆S = Se + So, in entropy will progress until, in equilibrium, ∆S is
maximized. Taking a derivative of ∆S with respect to A provides

1
4

csch2
(A

2

)
(M−A) = 0. (55)

This is true if A = M. The probability distribution and n̄ is then written as

p(n) =
(

1− e−M
)

e−nM, n̄ =
1

eM − 1
. (56)

The average classical energy absorbed by the electron is, therefore

W̄(ω) = n̄µce2ω =
1

eM − 1
MkBT. (57)

The total thermal power is found by

P =
∫ ∞

0
W̄(ω)

dω

2π
=

(kBT)2

µ0ce2
1

2π

∫ ∞

0

M
eM − 1

dM, (58)

whose integral is π2/6, so that

P =
π

12
k2

B
µ0ce2 T2, (59)

which scales as the (1+1)-dimensional Stefan–Boltzmann law. This is classical thermal noise
from a single accelerating electron [4].

5.4. Stefan–Boltzmann from Thermodynamics

The Stefan–Boltzmann law can be derived from thermodynamics alone in two steps
(see the original paper [49]). In this derivation, we do not assume any particular form of
the spectral frequency distribution.

5.4.1. Maxwell Relations

First, consider the Maxwell relations for the entropy. Let U be the radiation energy,
and then U = ρ(T)V, where ρ(T) is the energy density (we suppose that it depends only
on the temperature T). Then, one has:

dU = T dS− p dV , (60)

from which it follows that

dS =
1
T
(dU + p dV) =

1
T

(
V

dρ

dT
dT + (ρ + p)dV

)
. (61)

From this, one can read off the first derivatives:
(

∂S
∂T

)

V
=

V
T

dρ

dT
,

(
∂S
∂V

)

T
=

ρ + p
T

.
(62)
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Figure 5. Radiation in a box. See text for details.

Computing the second derivative, ∂2S
/

∂T∂V , in two different ways, one obtains:

(
∂p
∂T

)

V
=

ρ + p
T

. (63)

To finish the derivation, one needs an equation of state. Let us derive it.

5.4.2. Equation of State in 3+1 Dimensions

We start with the (3+1)-dimensional case. Consider the radiation inside a perfectly
reflecting box (the perfect reflectivity assumption is actually not mandatory, but it simplifies
the derivations.); see Figure 5. When radiation waves hit the box wall, the waves are
reflected and therefore transfer some of the momentum to the wall. Take some area element,
dA, of the wall, and let the x axis be perpendicular to the wall in this vicinity. Let θ be
the angle between the x axis and the wavevector of an incoming electromagnetic wave.
Total momentum of the radiation coming from the solid angle, dΩ, is given by the energy
divided by c:

|~P| = 1
c
· ρ · c dt cos θ · dA · dΩ

4π
= ρ cos θ

dΩ
4π

dA dt. (64)

The momentum transfer is twice the x-projection:

∆Px = 2|~P| cos θ = 2ρ cos2 θ
dΩ
4π

dA dt . (65)

Dividing the momentum Equation (65) by dt, one obtains the force, and then, dividing
by dA, the pressure. Integration over the solid angle, dΩ, one side of the wall finally
provides

p =
2ρ

4π

2π∫

0

dφ

1∫

0

cos2 θ d cos θ =
1
3

ρ . (66)

Plugging Equation (66) into Equation (63) yields an ordinary differential equation,
whose solution,

ρ = C · T4, (67)

is determined only up to an arbitrary constant, C. Note that, in general, this constant must
be positive, but, otherwise, it is not restricted by the above derivation.

5.4.3. Other Dimensions

What happens in lower dimensions?
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Consider a lower dimensional system embedded in 3-dimensional space. This means
that one can still consider electromagnetic waves even for a one-dimensional system. Then,
the only point to modify in the derivation in Section 5.4.2 is the solid angle part.

When the space is two-dimensional, there is no solid angle, and θ represents the polar
angle. The integration in this case provides the result p = ρ/2. In a one-dimensional
system, there are no angles at all, and one obtains: p = ρ.

From this, one can derive the corresponding Stefan–Boltzmann laws. We summarize
the results in Table 1. For a body immersed in an equilibrium radiation heat bath, the
radiated energy per second is proportional to the energy density of the ambient radiation
(the proportionality coefficient depends on the surface area and absorptivity).

Table 1. Stefan–Boltzmann law in various dimensions. See text for details.

Dimension Equation of State Stefan–Boltzmann Law

1 p = ρ P ∼ T2

2 p = ρ/2 P ∼ T3

3 p = ρ/3 P ∼ T4

5.4.4. Lessons

Using only thermodynamics, the Stefan–Boltzmann law is determined by the dimen-
sionality of the space, up to a coefficient. The coefficient is undetermined in this derivation:
it depends on the physical system under consideration and is not fixed. In particular,
Equation (41) is acceptable because of the scaling.

It is quite instructive to find that Equation (41) represents the Stefan–Boltzmann law
in one-dimensional space; indeed what one would expect from a moving mirror in one
spatial and one temporal dimension.

5.5. Electron as a Gray Body

In general, the Stefan–Boltzmann law relates the total power to the temperature. In
1+1 dimensions [30],

Pblack body =
πk2

B
6h̄

AT2 ; (68)

see, e.g., the discussion below Equation (10) in Ref. [30]. Here, A is the body’s “surface
area”: in 1+1 dimensions, A = 1 (one side) or A = 2 (two sides). In the moving mirror
setup, it is natural to take A = 1 as the observer is most often on one (the right) side of
the mirror.

We can compare Equation (68) to the power in our setup. Regarding the quantum
radiation power in Equation (19),

Pq =
πk2

B
12h̄

T2 , (69)

one can see that Equation (69) corresponds to a gray body with absorptivity, a = 1/2 (see,
e.g., Section 3 in Ref. [30]).

The classical radiation power in Equation (18), when re-expressed in terms of the
quantum temperature scale (see Equation (3)), becomes

P̄e =
µ0e2κ2

48πc
=

µ0ce2

h̄
π

12
k2

B
h̄

T2 , (70)

which is also proportional to the square of the temperature, T2. One can see that
Equations (68) and (70) are not quite the same; they are off by a factor (we take A = 1,
which is natural from the mirror’s perspective):
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P̄e =
µ0ce2

2h̄
Pblack body ,

µ0ce2

2h̄
≈ 0.0458 . (71)

The existence of a coefficient tells us that the electron may be considered a (1+1)-dimensional
quantum-radiating gray body that absorbs only about 4.58% of the incoming radiation.

The physical meaning of this absorptivity is intriguing and deserves further investiga-
tion, which we leave for future studies.

6. Conclusions

In this paper, we have helped to develop the analogy between the dynamical Casimir,
black hole, and electron radiation temperature. We have found periods of constant power
and radiation reaction, indicative of thermal equilibrium. Indeed, by analogy with the
dynamical Casimir effect, we have demonstrated thermality, in part, by the symmetry
between frequency modes in the analog spectrum for the radiation of an accelerated
electron, which, at ultra-relativistic speeds, manifests explicit uniform plateau radiation
emission commensurate with the spectral Planck distribution. The constant temperature is
consistent with the constant periods of power, self-force, and peel acceleration.
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Casimir Effect for a Single δ− δ′Mirror
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Abstract: Here, we consider an asymmetric δ− δ′ mirror undergoing time-dependent interactions
with a massless scalar field in 1 + 1 dimensions. Using fluctuation-dissipation theory for a mirror in
vacuum, we compute the force on a moving δ− δ′ mirror with time-dependent material properties.
We investigate the first-order forces arising from the two distinct fluctuation sources and calculate the
linear susceptibility in each case. We then plot the resulting forces. At the second order, we also find
the independent contributions to the total force as well as the force that arises from the interference
phenomena between the two fluctuation sources.
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asymmetric excitations; asymmetric dynamical Casimir effect

1. Introduction

A mirror subject to time-dependent interactions with the quantum vacuum, in which
its position or boundary (material) properties may fluctuate, will experience the dynamical
Casimir effect (DCE) and produce real particles. This phenomenon has been thoroughly
investigated for numerous theoretical configurations (see [1–3] for several detailed reviews
of this topic) and has also been experimentally verified [4]. There has been recent interest
in understanding the consequences of modifying DCE systems by introducing asymmetric
boundary conditions to a mirror undergoing time-dependent interactions with the quantum
vacuum [5–9]. This asymmetry leads to an asymmetric spectrum of produced particles
in what is now known as the asymmetric dynamical Casimir effect (ADCE). To better
understand the ADCE, it is convenient to investigate the interaction between the quantum
vacuum and a partially transparent mirror in a (1 + 1)D (dimensional) spacetime. This
is achieved by modeling the mirror as δ − δ′ potential [5,6,10–16] (δ′ being the spatial
derivative of the Dirac δ function). Previous literature has explored the ADCE spectrum of
a moving δ− δ′ mirror [5] and a δ− δ′ mirror with time-dependent material properties [6]
as well as when the mirror possesses both of these independent fluctuation sources. In this
latter case, there is an interference effect between the two sources that modifies the total
asymmetric spectrum of produced particles [9].

An asymmetric production of photons on either side of the mirror leads to an un-
balanced force on the mirror due to the imbalance in the number of particles produced
by the two sides of the mirror [6–8,17]. Specifically, in the case of a δ − δ′ mirror with
time-dependent properties, the initially stationary mirror will be perturbed in such a way
that the imbalance in particle production will induce motion upon the mirror [6]. The
quantum vacuum will, in turn, act as a dissipative medium and react to the motion of
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objects moving through it. For a perfectly reflective mirror moving in (1 + 1)D spacetime, a
dissipative reaction force acts on the mirror:

F(t) =
h̄

6πc2
d3

dt3 q(t), (1)

which is proportional to the third time derivative of the mirror’s position, q(t). Here, h̄
is the reduced Planck constant and c is the speed of light. Thus, to fully understand the
forces present in the δ− δ′ system, one must account for both the force from the radiation
pressure generated by the asymmetry in particles and the dissipative effects of the object
moving through the quantum vacuum.

In this paper, we compute the full spectrum of forces for a moving δ − δ′ mirror
with time-dependent boundary conditions using fluctuation–dissipation theory [18–20].
At first-order, we calculate the independent force contributions from both the motion of
the mirror and from its time-dependent material properties by first calculating the linear
susceptibility. By prescribing a specific form to the fluctuation sources, we are able to plot
the mean force on the mirror for different magnitudes of λ0, which controls the degree of
asymmetry in the δ− δ′ mirror. In addition to explicit first-order forces, the second-order
forces are presented after first deriving the second-order correction to the output field. At
second-order, the forces resulting from the two independent fluctuation sources are again
found along with the addition of a third force that results from the interference between
the motion of the mirror and its changing properties.

The remainder of this paper is organized as follows. In Section 2, we review fluctuation–
dissipation theory [18], which is used to calculate the susceptibility and force. Section 3
goes over the scattering formalism, which describes the interaction between the quantum
vacuum and the δ− δ′ mirror. Here, we also derive the necessary second-order corrections
to the output field. The first-order forces are then calculated in Section 4, which also includes
numerically integrated plots of the resulting forces. Section 5 contains the calculations of
the second-order forces, including the additional term arising from the interference of the
two fluctuation sources. We conclude with ending remarks in Section 6.

Unless otherwise stated, it is assumed throughout this paper that h̄ = c = 1. We also
use square brackets on a function f [ω] to denote that this frequency domain function is
the Fourier transform of some function f (t) in the time domain. Additionally, we take
η = diag(1,−1). Throughout the paper we will use primes in two distinct ways. A prime
on a function is understood to mean the spatial derivative of that function, where as primes
on variables are understood to simply index distinct variables.

2. Quantum Fluctuation–Dissipation Theorem

This Section reviews the notation and terminology necessary to understand the
fluctuation–dissipation theorem applied to quantum interactions with the vacuum. Fol-
lowing the conventions in Ref. [18], we decompose a (1 + 1)D scalar field into the sum of
two counter-propagating fields, which are denoted as ϕ(t− x) and ψ(t + x). We denote
the incoming fields with an “in” subscript and the outgoing fields with an “out” subscript.
In what follows, we adopt a scattering framework, taking our ingoing field as the initial
field which scatters by some interaction and is perturbatively modified into an outgoing
field. We then specialize this to the case of the background quantum vacuum scattering off
partially reflecting mirrors. We make use of the following column matrix notation to write
the field as

Φ(t, x) =
(

ϕ(t− x)
ψ(t + x)

)
. (2)

In the frequency domain, the field Φ[ω, x] can be expressed in terms of the stationary field
Φ[ω, 0] at x = 0,

Φ[ω, x] =
(

ϕ[ω]eiωx

ψ[ω]e−iωx

)
= eiηωxΦ[ω, 0], (3)
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with the frequency ω.
Going forward, we employ a shorthand for this stationary field by taking Φ(t, 0) =

Φ(t) and Φ[ω, 0] = Φ[ω]. The two stationary incoming counter-propagating fields can be
related to the standard creation and annihilation operators. Explicitly, these are

ϕin[ω] = (2|ω|)−1/2[Θ(ω)aL[ω] + Θ(−ω)a†
L[−ω]

]
(4)

and
ψin[ω] = (2|ω|)−1/2[Θ(ω)aR[ω] + Θ(−ω)a†

R[−ω]
]
. (5)

Here, aj[ω] and a†
j [ω] (j = L, R) are the annihilation and creation operators for the left (L)

and right (R) sides of the mirror, and Θ(ω) is the Heaviside function.
Two important quantities we use below are the energy density, e(t, x), and impulsion

density, p(t, x). One may write these quantities in terms of the counter-propagating fields:

e(t, x) = ϕ′(t− x)2 + ψ′(t + x)2, p(t, x) = ϕ′(t− x)2 − ψ′(t + x)2. (6)

We show below that the mean (expectation) value of these terms can be used to directly
calculate the force on the mirror. In order to calculate these quantities, will use two-point
correlation functions, written in terms of the covariance, which are defined as

cov(Φ(t, x), Φ(t′, x′)) ≡ Cx,x′(t, t′) =
〈

Φ(t, x)Φ(t′, x′)T
〉

. (7)

The flux densities are then

〈e(t, x)〉 =
{

Tr
[
∂t∂t′Cx,x′(t, t′)

]}
t=t′ , 〈p(t, x)〉 =

{
Tr
[
η∂t∂t′Cx,x′(t, t′)

]}
t=t′ , (8)

where “Tr” denotes the trace operation.
Using the following expression for the correlator in the frequency domain,

Cx,x′ [ω, ω′] =
〈

Φx[ω]Φx′ [ω
′]T
〉
= eiηωxC[ω, ω′]eiηω′x′ , (9)

we implicitly define the Fourier transforms of the energy and impulsion densities as,
respectively,

〈e(t, x)〉 =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
Cx,x[ω, ω′]

]
(10)

and

〈p(t, x)〉 =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
ηCx,x[ω, ω′]

]
. (11)

One can now compute the outgoing field (Φout), and the resulting forces, by expressing
the outgoing field in terms of the ingoing field (Φin). The ingoing state corresponds to a
stationary state, whose covariance matrices depend only upon one parameter, and whose
correlator now becomes

C(t, t′) = c(t− t′), C[ω, ω′] = 2πδ(ω + ω′)c[ω]. (12)

For a vacuum ingoing state, we have

cvac[ω] =
Θ(ω)

2ω
I2, (13)

where I2 is the identity matrix.
We now use this framework to analyze an asymmetric δ− δ′ mirror. This is a partially

transparent mirror whose interaction with the ingoing vacuum state can be linearly related
to its modified outgoing field via

Φout[ω] = S[ω]Φin[ω], (14)
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where S[ω] is the scattering matrix. We see that for partially transparent mirrors, the
outgoing correlator can be related to the ingoing correlator as

Cout[ω, ω′] = S0[ω]Cin[ω, ω′]S0[ω
′]T, (15)

where S0 is the zeroth-order scattering matrix (see Equation (49)).
Some authors make use of an overbar to denote quantities taken to be comoving with

the mirror [18]. We do not make use of this notation, except when introducing the moving
mirror in Sections 3.1 and 3.2, as in all other instances we will be able to explicitly work in
the laboratory frame.

The perturbed, outgoing fields is eventually expressed as the zeroth, first, and second-
order corrections from the scattering matrix for both moving mirrors and stationary mirrors
with time-dependent boundary conditions:

Φout[ω] = S0[ω]Φin[ω] +
∫ dω′

2π
δS[ω, ω′]Φin[ω

′] +
∫ dω′

2π

∫ dω′′

2π
δS[ω, ω′, ω′′]Φin[ω

′′]. (16)

Force on a Mirror

In the (1 + 1)D spacetime considered here, the force on a single, stationary mirror is
given by

F(t) = ϕ′in(t)
2 + ψ′out(t)

2 − ϕ′out(t)
2 − ψ′in(t)

2. (17)

The resulting force can be interpreted as the difference between the impulsion densities of
the ingoing and outgoing fields evaluated at the mirror’s position. The force takes the form

F(t) = pin − pout. (18)

This is also related to the Txx component of the stress-energy tensor (radiation pressure)
obtained by taking the difference between the energy densities of the left and right half of
the mirror

F(t) = eL − eR. (19)

One can freely pull through the time averaging to obtain the mean force relation

〈F(t)〉 = 〈pin〉 − 〈pout〉 = 〈eL〉 − 〈eR〉. (20)

Using Equations (11) and (15) in Equation (20), one can now express the mean force as

〈F(t)〉 =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
F[ω, ω′]Cin[ω, ω′]

]
, (21)

where F[ω, ω′] is the matrix

F[ω, ω′] = η − S0[ω
′]TηS0[ω], (22)

which possesses the symmetry F[ω, ω′]T = F[ω′, ω]. Equation (21) allows us to calculate
the mean force for any ingoing state. For any stationary ingoing state, whose correlators
take the form in Equation (12), the mean force becomes

〈F〉 =
∫ dω

2π
ω2 Tr[F[ω,−ω]cin[ω]], (23)

which vanishes in the case of stationary ingoing states [18]. The energy exchange between
the field and the mirror is

〈G〉 =
∫ dω

2π
ω2 Tr[G[ω,−ω]cin[ω]], (24)
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where
G[ω, ω′] = I2 − S[ω′]TS[ω]. (25)

The energy exchange for any stationary state is zero due to the unitarity of the scattering
matrix S.

In general, the perturbed field Φout takes the form in Equation (16). Using this, one
can compute the mean force due to the perturbation δS in the laboratory frame:

〈δF(t)〉 = −〈δpout(t)〉 = −
{

∂t∂t′ Tr
[
ηδCout(t, t′)

]}
t=t′ , (26)

which becomes, to first-order,

〈δF(t)〉 =
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδCout[ω, ω′]

]
, (27)

δCout[ω, ω′] =
∫ dω′′

2π

(
δS[ω, ω′′]Cin[ω

′′, ω′]S0[ω
′]T + S0[ω]Cin[ω, ω′′]δS[ω′, ω′′]T

)
.

(28)

The force in Equation (27) can be further expressed as

〈δF(t)〉 =
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ[ω, ω′] f [ω + ω′], (29)

where f [ω] is the equation that governs the form of time-dependent fluctuations. We
eventually use this form to write the force as a linear response to the mirror’s perturbation,

〈δF[ω]〉 = χ[ω]δf [ω], (30)

expressed in terms of the susceptibility, given by

χ[ω] =
∫ dω′

2π
χ[ω′, ω−ω′]. (31)

3. The Scattering Matrix

The mirror is initially located at x = 0, which allows us to decompose our field as

φ(t, x) = Θ(x)φ+(t, x) + Θ(−x)φ−(t, x), (32)

where φ+ (φ−) is the field on the right (left) side of the mirror. In general, we will use “+”
(“−”) subscripts to refer to any quantities that pertain to only the right (left) side of the
mirror.Using the fact that both φ± obey the Klein–Gordon equation, One may represent
each as the sum of two freely counterpropagating fields. Explicitly, these are

φ+(t, x) =
∫ dω√

2π

[
φout[ω]eiωx + ψin[ω]e−iωx

]
e−iωt (33)

and
φ−(t, x) =

∫ dω√
2π

[
φin[ω]eiωx + ψout[ω]e−iωx

]
e−iωt, (34)

which depend on the incoming and outgoing fields introduced in Section 2. We assume
here that the ingoing and outgoing fields are linearly related as

Φout[ω] = S[ω]Φin.
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Thus far, we have not specified any properties of our mirror except that it is partially
reflecting. In this case, S[ω] can be taken to be the most general partially reflecting scattering
matrix, which is written explicitly as

S[ω] =

(
s+[ω] r+[ω]
r−[ω] s−[ω]

)
. (35)

Here, r±[ω] and s±[ω] are the reflection and transmission coefficients, respectively.
Going forward, we consider the mirror interaction to be described by the asymmetric,
partially reflected δ− δ′ mirror, whose potential is given as

U(x) = µδ(x) + λδ′(x). (36)

Here, µ is related to the plasma frequency of the mirror and λ is a dimensionless factor.
With this, it is now possible to derive explicit forms of the transmission and reflection
components [5]:

r±[ω] =
−iµ0 ± 2ωλ0

iµ0 + ω(1 + λ2
0)

(37)

and

s±[ω] =
ω(1− λ2

0)

iµ0 + ω(1 + λ2
0)

. (38)

Here, we introduce the notation µ0 and λ0 to denote the zeroth-order terms. This distinction
is important when considering perturbative effects due to field interactions with the mirror.

3.1. First-Order Corrections

We start by solving for the ADCE corrections for the δ− δ′ mirror with time-dependent
µ(t). For this analysis, we assume that the mirror is held at rest. Here, we require that the
fluctuations in µ(t) take the form of small oscillations about a fixed value µ0. Specifically,

µ(t) = µ0[1 + ε f (t)], (39)

where µ0 ≥ 1 is a constant and f (t) is an arbitrary function such that | f (t)| ≤ 1, with
ε� 1.

To find the modified outgoing field, we apply the field equation of the system, de-
termined by the potential in Equation (36), to Equations (33) and (34). From here, the
matching conditions can be solved to the first order by following Ref. [5], where the final
form becomes

Φout[ω] = S0[ω]Φin[ω] + ε
∫ dω′

2π
δS(1)

µ [ω, ω′]Φin[ω
′]. (40)

The first-order correction to the scattering matrix due to the introduction of f (t) takes the
form

δS(1)
µ [ω, ω′] = −iµ0h(ω) f [ω−ω′]Sµ[ω

′], (41)

where h(ω) = [iµ0 + ω(1 + λ2
0)]
−1 and

Sµ[ω
′] = J2 + S0[ω

′] =
(

s+[ω′] 1 + r+[ω′]
1 + r−[ω′] s−[ω′]

)
. (42)

Here, J2 is the column-reversed identity matrix. This is in agreement with Ref. [6]. Through-
out this paper, we use the superscripts “(1)” and “(2)” to denote the first- and second-order
contributions, respectively. Additionally, the subscript µ represents the contribution from
the time-varying material properties.
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Let us now calculate the first-order corrections due to the δ− δ′ mirror undergoing
mechanical oscillations about x = 0. Scattering is still linear with

Φout[ω] = S[ω]Φin, (43)

in the co-moving frame (denoted by the overbar in this Section only). In this frame, the
mirror is instantaneously at rest. The movement is assumed to be nonrelativistic (|q̇(t)| � 1,
where the dot denotes the time-derivative) and limited by a small amplitude, such that

q(t) = εg(t), (44)

with |g(t)| ≤ 1 and ε� 1. To solve this in the laboratory frame, we use the relation

Φ(t′, 0) = Φ(t, εg(t)) = [1− εg(t)η∂t]Φ(t, 0) +O(ε2). (45)

Taking advantage of thefact that dt = dt at the first order, Equation (45) can be rewritten as

Φ(t, 0) = [1− εg(t)η∂t]Φ(t, 0). (46)

One finds that applying this transform to Equation (43) in the frequency domain yields

Φout[ω] = S0[ω]Φin[ω] + ε
∫ dω′

2π
δS(1)

q [ω, ω′]Φin[ω
′], (47)

where the subscript q denotes the motion of the mirror. The first-order S-matrix perturba-
tion, δS(1)

q [ω, ω′], takes the form

δS(1)
q [ω, ω′] = iω′g[ω−ω′]S(1)q [ω, ω′], (48)

where
S(1)q [ω, ω′] = S0[ω]η − ηS0[ω

′] (49)

and S0 is the zeroth-order scattering matrix found from Equations (37) and (38). This is in
agreement with Ref. [5].

3.2. Second-Order Corrections

The second-order perturbation due to the time dependence of µ(t) can be found by
carrying through the derivation of the first-order term to second-order in the matching
conditions. With this in mind, one finds that the expression for Φout in Equation (40) to the
second-order term is now

Φout[ω] = S0[ω]Φin[ω] + ε
∫ dω′

2π
δS(1)

µ [ω, ω′]Φin[ω
′] + ε2

∫ dω′

2π

∫ dω′′

2π
δS(2)

µ [ω, ω′, ω′′]Φin[ω
′′], (50)

with the first-order perturbation term, δS(1)
µ [ω, ω′], given in Equation (41), and the second-

order term,

δS(2)
µ [ω, ω′, ω′′] = −µ2

0h(ω)h(ω′) f [ω−ω′] f [ω′ −ω′′]Sµ[ω
′′], (51)

which agrees with Ref. [6].
The second-order correction due to the motion of the mirror is more complicated.

Let us start by evaluating the fields at the time-dependent position of the mirror. This is
the frame in which the mirror is instantaneously at rest whereby the field and its Fourier
transform can be written as, respectively

Φ(τ) = Φqt(t) =
{

e−xη∂t Φ(t)
}

x=qt
, Φ(τ) =

∫ dω

2π
Φ′[ω]e−iωτ , (52)
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where τ is the mirror’s proper time and qt ≡ q(t). The proper time and laboratory time are
related by

dτ =
√

1− q̇t
2 dt. (53)

The first- and second-order expansions in qt of the mirror’s trajectory around q = 0, or
Φ(τ, 0) = Φ(τ, εq(t)), lead to

Φ(τ) = Φ(t)− qtη∂tΦ(t) +
1
2

q2
t ∂2

t Φ(t). (54)

Now, unlike in the first-order expansion when the mirror’s proper time and laboratory
time coincide, dτ is no longer equal to dt. One can see for the second-order time correction,
in the nonrelativistic limit (|q̇(t)| � 1):

dτ ≈
(

1− 1
2

δq̇t
2
)

dt. (55)

Therefore,

τ = t− 1
2

∫
dt δq̇t

2. (56)

Using Equation (44), we obtain the explicit result:

Φ(τ, 0) =
[

1− εg(t)η∂t +
1
2

ε2g(t)2∂2
t

]
Φ(t, 0) +O(ε3) (57)

and
τ = t− 1

2
ε2
∫

dt ġ(t)2 +O(ε3). (58)

To find the field in the frequency domain, we substitute the new form of τ in Equation (58)
into the field’s Fourier transform from Equation (52). We find its second-order approxima-
tion to be

Φ(τ) =
∫ dω

2π
Φ′[ω]e−iωτ ≈

∫ dω

2π

[
1 +

iωε2

2

∫
dt ġ(t)2

]
Φ′[ω]e−iωt. (59)

We can equate this quantity to the Fourier transform of the right-hand side of Equation (54),
where we now arrive at the following relationship

[
1 +

iωε2

2

∫
dt ġ(t)2

]
Φ′[ω] = Φ[ω] + iεη

∫ dω′

2π
ω′g[ω−ω′]Φ[ω′]− ε2

2

∫ dω′

2π

∫ dω′′

2π
ω′′ 2g[ω−ω′]g[ω′ −ω′′]Φ[ω′′]. (60)

Solving for Φ[ω] in Equation (60), and using (1 + x)−1 ≈ 1− x, leads to the second-order
correction to the field in the laboratory frame,

Φ(2)[ω] = − iωε2

2

∫
dt ġ(t)2Φ[ω]− ε2

2

∫ dω′

2π

∫ dω′′

2π
ω′′ 2g[ω−ω′]g[ω′ −ω′′]Φ[ω′′]. (61)

With Equation (61), which describes the relationship between the field in the instanta-
neous frame of mirror with the field in the laboratory frame for the second order, one can
now calculate the output field as a function of the input field using Equation (43). The full
first- and second-order corrections to the outgoing field due to the motion of the mirror are

Φout[ω] = S0[ω]Φin[ω] + ε
∫ dω′

2π
δS(1)

q [ω, ω′]Φin[ω
′] + ε2

∫ dω′

2π

∫ dω′′

2π
δS(2)

q [ω, ω′, ω′′]Φin[ω
′′], (62)

with the definition of δS(1)
q from Equation (48) and

δS(2)
q [ω, ω′, ω′′] =

1
2

ω′′ 2g[ω−ω′]g[ω′ −ω′′]S(2)q [ω, ω′′], (63)
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where
S(2)q [ω, ω′′] = S0[ω

′′]− S0[ω]. (64)

4. First-Order Forces

The first-order (in ε) contribution to the mean force due to the modification of δS(1) is
(see Equations (27) and (28))

〈
δF(1)(t)

〉
=
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(1)

out[ω, ω′]
]
,

δC(1)
out[ω, ω′] =

∫ dω′′

2π

(
δS(1)[ω, ω′′]Cin[ω

′′, ω′]S0[ω
′]T + S0[ω]Cin[ω, ω′′]δS(1)[ω′, ω′′]T

)
.

With a stationary ingoing state (see Equations (12) and (13)), δC(1)
out reads

δC(1)
out[ω, ω′] = δS(1)[ω,−ω′]cin[−ω′]S0[ω

′]T + S0[ω]cin[ω]δS(1)[ω′,−ω]T. (65)

Recall that the force appears as a linear response to the mirror’s perturbation,

〈δF[ω]〉 = χ[ω]δf [ω],

which is expressed in terms of the susceptibility,

χ[ω] =
∫ dω′

2π
χ[ω′, ω−ω′].

4.1. Moving Mirror

Here, we calculate the force on a moving δ− δ′ mirror whose position q(t) fluctuates
about x = 0 with a small amplitude εg(t). Using the first-order correction to the scattering
matrix δS(1)

q from Equation (48) into Equation (65), δC(1)
q becomes

δC(1)
q [ω, ω′] =− iω′g[ω + ω′](S0[ω]η − ηS0[−ω′])cin[−ω′]S0[ω

′]T

− iωg[ω + ω′]S0[ω]cin[ω](ηS0[ω
′]T − S0[−ω]Tη).

(66)

Applying the properties of the trace, Equation (66) can be used to find

Tr
[
ηδC(1)

q [ω, ω′]
]
= g[ω + ω′]Tr

[
F[ω, ω′](iωcin[ω]η + iω′ηcin[−ω′])

]
, (67)

with the matrix F[ω, ω′] from Equation (22). Under a double integral over the full domain of
ω and ω′, one may freely swap these variables. This allows us to modify certain quantities
in a way that enables simplification of the integrand without changing the result of the
integral. Explicitly, we perform the following swap:

g[ω + ω′]Tr
[
F[ω, ω′]iωcin[ω]η

]
=⇒ g[ω′ + ω]Tr

[
F[ω′, ω]iω′cin[ω

′]η
]
, (68)

Then, one may use the argument swapping symmetry on F and the definition of cin
(where cin = cvac from Equation (13)) to re-express Equation (67) as

Tr
[
ηδC(1)

q [ω, ω′]
]

=⇒ i
2

sgn(ω′)g[ω + ω′]Tr
[
F[ω, ω′]η

]
. (69)

In Equations (68) and (69), we use the arrow instead of the equation sign to indicate
that, while these expressions are not equivalent, they lead to the same final result when
integrating. Additionally, when simplifying Equation (69), we used the following definition
for the sign function:

sgn(ω) = Θ(ω)−Θ(−ω). (70)

366



Physics 2024, 6

With Equation (69), we write the first-order motional force in terms of χ[ω, ω′] in the
following manner:

〈
δF(1)

q (t)
〉
=
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ

(1)
q [ω, ω′]g[ω + ω′], (71)

χ
(1)
q [ω, ω′] =

iωω′

2
sgn(ω′)Tr

[
F[ω, ω′]η

]
, (72)

where Equation (72) can be rewritten as

χ
(1)
q [ω, ω′] = sgn(ω′)ωω′h(ω)h(ω′)

[
−2iµ2

0 + 8iλ2
0ωω′ − µ0(1 + λ2

0)(ω + ω′)
]
. (73)

The susceptibility is then

χ
(1)
q [ω] =

∫ dω′

2π
χ[ω′, ω−ω′]

=
i
2

∫ dω′

2π
sgn(ω−ω′)ω′(ω−ω′)Tr

[
F[ω′, ω−ω′]η

]
.

(74)

Taking β = (1 + λ2
0)/µ0, we can determine various expansions when the term βω is

assumed to be large or small. The real and imaginary parts of the susceptibility in Equation (74)
are,

Re χ
(1)
q [ω] =

1
2πβ3(1 + λ2

0)
2

2A(ω) arctan(βω)− CR(ω)−B(ω) log
(
1 + (βω)2)

(4 + (βω)2)
, (75)

Im χ
(1)
q [ω] =

1
2πβ3(1 + λ2

0)
2

2B(ω) arctan(βω) + CI(ω) +A(ω) log
(
1 + (βω)2)

(4 + (βω)2)
, (76)

where

A(ω) = βω
[
4
(

1− 4λ2
0 + λ4

0

)
+ (βω)2

(
1− 6λ2

0 + λ4
0

)]
,

B(ω) = 4
(

λ2
0 − 1

)2
+ (βω)2

(
1 + λ2

0

)2
,

CR(ω) = (βω)2
(

4 + (βω)2
)[

1− 6λ2
0 + λ4

0

]
,

CI(ω) =
2
3

βω
(

4 + (βω)2
)[

2(βω)2λ2
0 − 3

(
λ2

0 − 1
)2
]

.

(77)

For βω � 1:

Re χ
(1)
q [ω] =− 1

2πβ3(1 + λ2
0)

2

[
(βω)4(1 + λ2

0)
2

6
− (βω)6(1 + 6λ2

0 + λ4
0)

15
+O

[
(βω)8

]]
,

Im χ
(1)
q [ω] =

1
6πβ3(1 + λ2

0)
2

[
(βω)3(1 + λ2

0)
2 − (βω)5(3 + 14λ2

0 + 3λ5
0)

10
+O

[
(βω)7

]]
,

(78)

and for βω � 1:
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Re χ
(1)
q [ω] = − 1

2πβ3(1 + λ2
0)

2

[
(βω)2(1− 6λ2

0 + λ4
0) + βωπ(−1 + 6λ2

0 − λ4
0) + 2(1− 6λ2

0 + λ4
0)

+ 2 log(βω)(1 + λ2
0)

2 − 8πλ2
0

βω
+

1 + 66λ2
0 + λ4

0 − 96λ2
0 log(βω)

3(βω)2 +O
[
(βω)−3

]]
,

Im χ
(1)
q [ω] =

1
6πβ3(1 + λ2

0)
2

[
4(βω)3λ3

0 − 6βω(1− 2λ2
0 + λ4

0 − log(βω)(−1 + 6λ2
0 + λ4

0))

+ 3π(1 + λ2
0)

2 − 3(1 + 10λ2
0 − λ4

0 + 16λ2
0 log(βω))

βω
− 48πλ2

0
(βω)2 +O

[
(βω)−3

]]
.

(79)

The limits in Equations (78) and (79) correspond to the low- and high-frequency limits
of the susceptibility, respectively. One should exercise caution though, as using these
to produce time-domain quantities can lead to misleading results as the inverse Fourier
transform requires an integral over the entire frequency domain.

When λ0 = 1, which corresponds to the spectrum of a perfectly reflective δ − δ′

mirror, the relationship β = 2/µ0 holds, where β is now the Robin parameter. In the limits
from Equations (78) and (79), which contain the corrections to the Dirichlet (β → 0) and
Neumann (β→ ∞) limits of a moving Robin mirror, respectively, we find that the correct
leading order linear susceptibility,

χ[ω] = i
ω3

6π
, (80)

is recovered, which leads to the dissipative force in Equation (1).
Notice that when λ0 = 0, which corresponds to a perfectly reflective δ mirror with no

asymmetry in particle production (the spectrum is identical for both sides of the mirror),
the susceptibility does not completely vanish. This is due to the fact that there is still a
reaction force from the vacuum onto the mirror originating from the motion of the mirror
itself. This is not the case, as one sees in Section 4.2 below, for the stationary mirror with
time-dependent µ(t).

The expression in Equation (71) can be directly computed when an appropriate form
of the motion, g(t), is introduced. Here, we use

g(t) = cos(ω0t) exp(−|t|/T ), (81)

where ω0 is the characteristic frequency of the oscillation and T is the effective time of the
oscillation. Integrals of the type present in Equation (71) do not have analytic solutions to
the best of our knowledge. Thus, we numerically integrate this expression; see Figure 1,
where we plot with different values of λ0 and compare these results to the force on a
moving Dirichlet mirror using Equation (80). One sees that as the asymmetry between
the two sides of the δ− δ′ mirror grows larger (λ0 → ∞), the magnitude of the force on
the mirror grows along with it. Along with this increase in magnitude, the force becomes
more sharply peaked. The increase in force arises from the increase in the magnitude
of the asymmetric dynamical Casimir effect; the larger imbalance of generated particles
leads to an increase in the force on the mirror due to increasingly asymmetric radiation
reaction forces.
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Figure 1. The force (see Equation (71)) on a moving δ− δ′ mirror (indicated as δδ′) as a function
of time, presented in natural units, for some values of λ0, where µ0 = ω0 = T = 1. The force on
a moving Dirichlet mirror is presented for comparison. Inset: the behavior of the moving δ− δ′

mirror’s forces near zero. See text for details.

Compared to the dissipative Dirichlet mirror, the signature of the asymmetry present
in the force is apparent. Instead of a positive dissipative force acting on the mirror as it
begins to move, there is an initially negative force that corresponds to non-zero dynamical
Casimir effect forces that arise due to the asymmetry in particle production. This behavior
becomes more obvious when we consider the force on the moving δ− δ′ mirror for λ0 = 0.
The force plot now resembles that of the Dirichlet mirror, where the force is once again
positive near zero, albeit greater.

Presented in Figure 2, the force as a function of time is plotted for two different values
of ω0. As the frequency of oscillation increases, the number of peaks increases along with it.
Compared to the analogous plot for the δ− δ′ mirror with time-dependent properties, there
is a larger increase in the magnitude of the force for the moving mirror. This is expected,
as the asymmetry in particle production for the moving δ− δ′ mirror scales as ω2

0 when
compared to that of the δ− δ′ mirror with time-dependent material properties [7,8]. Thus,
there is an accompanying increase in net force on the moving mirror as the frequency of
oscillation increases.
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Figure 2. The force (see Equation (71)) on a moving δ− δ′ mirror as a function of time, presented in
natural units, for two values of ω0, where µ0 = λ0 = T = 1. See text for details.

4.2. Mirror with Time-Dependent Properties

To find the first-order force on a stationary δ− δ′ mirror with time-dependent µ(t) (see
Equation (39)), let us start by using δS(1)

µ [ω, ω′] from Equation (41) in Equation (65) to find

δC(1)
µ [ω, ω′] = −iµ0 f [ω + ω′]

(
h(ω)Sµ[−ω′]cin[−ω′]S0[ω

′]T + h(ω′)S0[ω]cin[ω]Sµ[−ω]T
)

. (82)

Again using the definition of cin[ω] from Equation (13), and implementing a change of
variables in the second term as done in Equation (68), δC(1)

µ becomes

δC(1)
µ [ω, ω′] =− iµ0

2ω′
h(ω) f [ω + ω′]

(
Θ(ω′)S0[ω

′]Sµ[−ω′]T −Θ(−ω′)Sµ[−ω′]S0[ω
′]T
)

, (83)

which yields

Tr
[
ηδC(1)

µ [ω, ω′]
]
= − iµ0

2ω′
sgn(ω′)h(ω) f [ω + ω′]Tr

[
ηS0[ω

′]Sµ[−ω′]T
]
. (84)

Performing the direct calculation

Tr
[
ηS0[ω

′]Sµ[−ω′]T
]
= 4λ0ω′h(ω′), (85)

one sees that

Tr
[
ηδC(1)

µ [ω, ω′]
]
= −2iλ0µ0sgn(ω′)h(ω)h(ω′) f [ω + ω′]. (86)

From Equation (86), we write the motional force in terms of χ[ω, ω′] in the following
manner

〈
δF(1)

µ (t)
〉
=
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ

(1)
µ [ω, ω′] f [ω + ω′], (87)

χ
(1)
µ [ω, ω′] = −2iλ0µ0sgn(ω′)ωω′h(ω)h(ω′). (88)
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Plugging in Equation (88) into Equation (31) gives the explicit first-order susceptibility for
the time-dependent δ− δ′ mirror,

χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
2 + (βω)2 − 2iβω

4 + (βω)2

[
2i arctan (βω)− log

(
1 + β2ω2

)]
− iβω

]
, (89)

which is in agreement with Ref. [6], up to discrepancy of a factor of 2 on the entire term.
Unlike in the motional case presented in Equation (74), when the asymmetry is no longer
present (λ0 = 0), the susceptibility in Equation (89) completely vanishes. This is expected,
as there are no longer any time-dependent interactions occurring between the mirror and
the vacuum, and thus there is no force present.

The susceptibility’s real and imaginary components are

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
2βω arctan(βω)− (2 + β2ω2) log

(
1 + β2ω2)

4 + β2ω2

]
, (90)

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−4βω− β3ω3 + (2 + β2ω2)2 arctan(βω) + βω log

(
1 + β2ω2)

4 + β2ω2

]
. (91)

For βω � 1:

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
− (βω)4

6
+

(βω)6

10
+O

[
(βω)8

]]
,

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
(βω)3

6
− 2(βω)5

15
+O

[
(βω)7

]]
.

(92)

For βω � 1:

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−2 log(βω) +

π

βω
+
−3 + 4 log(βω)

(βω)2 − 4π

(βω)3 +O
[
(βω−4)

]]
,

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−βω + π − 2(1− log(βω))

βω
− 2π

(βω)2 +
17− 24 log(βω)

3(βω)3 +O
[
(βω)−4

]]
.

(93)

Similar to the moving mirror case of Section 4.1, the limits in Equations (92) and (93)
correspond to the low- and high-frequency limits of the susceptibility, respectively. One
should still exercise caution, as again, using these to produce time-domain quantities can
lead to misleading results as the inverse Fourier transform requires an integral over the
entire frequency domain.

As in the first-order motional case, we again plot the force that arises from the time-
dependent perturbation, now due to µ(t), in Figure 3. The behavior is similar to that of the
moving mirror; the magnitude of the force increases as the asymmetry grows. Compared to
the moving mirror, the positive force peaks have been shifted toward zero slightly but still
dies off just as quickly. While the positive force peaks due to the time-dependent material
properties are of the same order as the force from the motion of the mirror, the initial
negative force is approximately an order of magnitude lower. In Figure 4, the behavior
of the δ− δ′ mirror with time-dependent material properties is plotted. As in the moving
mirror case there is an increase in the number of peaks and the magnitude of the peaks,
although the increase is not as dramatic as the moving case.
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Figure 3. The force (see Equation (87)) on a δ− δ′ mirror with time-dependent µ(t) as function of
time, presented in natural units, for some values of λ0, where µ0 = ω0 = T = 1. The force on a
moving Dirichlet mirror is presented for comparison. Inset: the behavior of the time-dependent δ− δ′

mirror’s forces near zero. See text for details.
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Figure 4. The force (see Equation (87)) on a δ− δ′ mirror with time-dependent µ(t) (see Equation (39))
as a function of time, presented in natural units, for two values of ω0, where µ0 = λ0 = T = 1. See
text for details.
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5. Second-Order Forces

The second-order contribution (of order ε2) to the non-vanishing mean force that arises
due to the terms δS(1) and δS(2) (see Equations (41) and (51), respectively) is

〈
δF(2)(t)

〉
=
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(2)

out[ω, ω′]
]
, (94)

where

δC(2)
out[ω, ω′] =

∫ dω′′

2π

∫ dω′′′

2π

(
δS(1)[ω, ω′′]Cin[ω

′′, ω′′′]δS(1)[ω′, ω′′′]T

+ S0[ω]Cin[ω, ω′′′]δS(2)[ω′, ω′′, ω′′′]T + δS(2)[ω, ω′′, ω′′′]Cin[ω
′′′, ω′]S0[ω

′]T
)

.
(95)

With a stationary ingoing state (see Equations (12) and (13)), this becomes

δC(2)
out[ω, ω′] =

∫ dω′′

2π

(
δS(1)[ω, ω′′]cin[ω

′′]δS(1)[ω′,−ω′′]T

+ S0[ω]cin[ω]δS(2)[ω′, ω′′,−ω]T + δS(2)[ω, ω′′,−ω′]cin[−ω′]S0[ω
′]T
)

.
(96)

It is helpful to simplify δC(2)
out here using the definition cin[ω] from Equation (13). This

becomes

δC(2)
out[ω, ω′] =

∫ dω′′

2π

(
Θ(ω′′)

2ω′′
δS(1)[ω, ω′′]δS(1)[ω′,−ω′′]T

+
Θ(ω)

2ω
S0[ω]δS(2)[ω′, ω′′,−ω]T − Θ(−ω′)

2ω′
δS(2)[ω, ω′′,−ω′]S0[ω

′]T
)

.
(97)

Again, as in Section 4.2, using the fact that exchanging ω and ω′ under the double integral
does not change the result of the integral, we may modify the expression (97) to

Tr
[
ηδC(2)

out[ω, ω′]
]

=⇒
∫ dω′′

2π

(
Θ(ω′′)

2ω′′
Tr
[
ηδS(1)[ω, ω′′]δS(1)[ω′,−ω′′]T

]

+
sgn(ω′)

2ω′
Tr
[
ηS0[ω

′]δS(2)[ω, ω′′,−ω′]T
])

.
(98)

5.1. Moving Mirror

Now, using the definition of the first-order perturbation from Equation (48) and the
second-order perturbation from Equation (63) for a moving δ − δ′ mirror one sees that
Equation (98) becomes

Tr
[
ηδC(2)

q [ω, ω′]
]
=
∫ dω′′

2π

(
Θ(ω′′)

2
ω′′g[ω−ω′′]g[ω′ + ω′′]Tr

[
ηS(1)q [ω, ω′′]S(1)q [ω′,−ω′′]T

]

+
sgn(ω′)

4
ω′g[ω−ω′′]g[ω′ + ω′′]Tr

[
ηS0[ω

′]S(2)q [ω, ω′′,−ω′]T
])

.
(99)

We find

Tr
[
ηS(1)q [ω, ω′′]S(1)q [ω′,−ω′′]T

]
= 8iλ0µ3

0Q[ω, ω′, ω′′]h(ω)h(ω′)h(ω′′)h(−ω′′), (100)

Tr
[
ηS0[ω

′]S(2)q [ω, ω′′,−ω′]T
]
= 4iλ0µ0(ω + ω′)h(ω)h(ω′), (101)

where
Q[ω, ω′, ω′′] =

[
1 + (βω′′)2

]
(ω + ω′)− iβ(ω−ω′′)(ω′ + ω′′). (102)
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Let us now express the second-order force from Equation (94) in terms of χ
(2)
q :

〈
δF(2)

q (t)
〉
=
∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
q [ω, ω′, ω′′]g[ω−ω′′]g[ω′ + ω′′], (103)

where

χ
(2)
q [ω, ω′, ω′′] = iωω′λ0µ0h(ω)h(ω′)

×
[
4µ2

0Θ(ω′′)ω′′Q[ω, ω′, ω′′]h(ω′′)h(−ω′′) + sgn(ω′)ω′(ω + ω′)
]
,

(104)

and thus

〈
δF(2)

q [ω]
〉
=
∫ dω′

2π

∫ dω′′

2π
χ
(2)
q [ω′, ω−ω′, ω′′]g[ω′ −ω′′]g[ω−ω′ + ω′′]. (105)

5.2. Mirror with Time-Dependent Properties

Now, using the definition of the first-order perturbation from Equation (41) and the
second-order perturbation from Equation (51) for a δ − δ′ mirror with time dependent
material properties Equation (98) becomes

Tr
[
ηδC(2)

µ [ω, ω′]
]
=−

∫ dω′′

2π

Θ(ω′′)
2ω′′

µ2
0h(ω)h(ω′) f [ω−ω′′] f [ω′ + ω′′]Tr

[
ηSµ[ω

′′]Sµ[−ω′′]T
]

−
∫ dω′′

2π

sgn(ω′)
2ω′

µ2
0h(ω)h(ω′′) f [ω−ω′′] f [ω′ + ω′′]Tr

[
ηS0[ω

′]Sµ[−ω′]T
] (106)

We find:

Tr
[
ηSµ[ω

′′]Sµ[−ω′′]T
]
=

8λ0(1 + λ2
0)ω

′′ 2

µ2
0 + ω′′ 2(1 + λ2

0)
= −8λ0(1 + λ2

0)ω
′′ 2h(ω′′)h(−ω′′), (107)

Tr
[
ηS0[ω

′]Sµ[−ω′]T
]
=

4λ0ω′

iµ0 + ω′(1 + λ2
0)

2
= 4ω′λ0h(ω′), (108)

Expressing the second-order force in terms of χ
(2)
µ :

〈
δF(2)

µ (t)
〉
=
∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
µ [ω, ω′, ω′′] f [ω−ω′′] f [ω′ + ω′′], (109)

where

χ
(2)
µ [ω, ω′, ω′′] = 2ωω′λ0µ2

0h(ω)h(ω′)h(ω′′)
[
2(1 + λ2

0)Θ(ω′′)ω′′h(−ω′′)− sgn(ω′)
]
, (110)

leads to

〈
δF(2)

µ [ω]
〉
=
∫ dω′

2π

∫ dω′′

2π
χ
(2)
µ [ω′, ω−ω′, ω′′] f [ω′ −ω′′] f [ω−ω′ + ω′′]. (111)

While the first-order force calculation (see Equation (71)) agrees with that from Ref. [6],
the corresponding second-order force calculation (see Equation (111)) does not. The suscep-
tibility in Equation (110) differs substantially and includes an additional term dependant on
(1 + λ2

0). We believe our derivation of the second-order force term is correct and indicates
an issue in the corresponding calculation in Ref. [6].

5.3. Force from the Interference Effect

A system that possesses two distinct sources of time-dependent fluctuations experi-
ences an interference effect due to the interaction between these two sources [9,21]. This
interaction occurs as a second-order effect, as there is no first-order mixing term present.
Thus, in addition to the independent force terms that are present at the second order,
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there is a mixing of the first-order perturbation terms, δS(1)
µ [ω, ω′] (see Equation (41)) and

δS(1)
q [ω, ω′] (see Equation (48)):

〈
δF(2)

int (t)
〉
=
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(2)

int [ω, ω′]
]
, (112)

where

δC(2)
int [ω, ω′] =

∫ dω′′

2π

∫ dω′′′

2π

(
δS(1)

µ [ω, ω′′]Cin[ω
′′, ω′′′]δS(1)

q [ω′, ω′′′]T

+ δS(1)
q [ω, ω′′]Cin[ω

′′, ω′′′]δS(1)
µ [ω′, ω′′′]T

)
.

(113)

With Cin[ω, ω′] = 2πδ(ω + ω′)cin[ω], as in Equation (12), this becomes

δC(2)
int [ω, ω′] =

∫ dω′′

2π

(
δS(1)

µ [ω, ω′′]cin[ω
′′]δS(1)

q [ω′,−ω′′]T + δS(1)
q [ω, ω′′]cin[ω

′′]δS(1)
µ [ω′,−ω′′]T

)
, (114)

which can be further simplified with the definition of cin[ω] as in Equation (13) to obtain

δC(2)
int [ω, ω′] =

∫ dω′′

2π

Θ(ω′′)
2ω′′

(
δS(1)

µ [ω, ω′′]δS(1)
q [ω′,−ω′′]T + δS(1)

q [ω, ω′′]δS(1)
µ [ω′,−ω′′]T

)
. (115)

Now, to simplify this expression, we make a change of variables in the second term of
Equation (115). We take ω′′ → −ω′′ and swap ω ↔ ω′ to arrive at

δC(2)
int [ω, ω′] =

∫ dω′′

2π

(
Θ(ω′′)

2ω′′
δS(1)

µ [ω, ω′′]δS(1)
q [ω′,−ω′′]T +

Θ(−ω′′)
2ω′′

δS(1)
q [ω′,−ω′′]δS(1)

µ [ω, ω′′]T
)

(116)

Using the properties of the trace, we find:

Tr
[
ηδC(2)

int [ω, ω′]
]
=
∫ dω′′

2π

1
2ω′′

Tr
[
ηδS(1)

µ [ω, ω′′]δS(1)
q [ω′,−ω′′]T

]
, (117)

where the identity Θ(ω) + Θ(−ω) = 1 is used. Now, using the definition of the two first-
order perturbation terms δS(1)

µ [ω, ω′] (see Equation (41)) and δS(1)
q [ω, ω′] (see Equation (48))

we find:

Tr
[
ηδC(2)

int [ω, ω′]
]
= −

∫ dω′′

2π

µ0

2
h(ω) f [ω−ω′′]g[ω′ + ω′′]Tr

[
ηSµ[ω

′′]S(1)q [ω′,−ω′′]T
]
. (118)

The trace term becomes

Tr
[
ηSµ[ω

′′]S(1)q [ω′,−ω′′]T
]
= 4iω′′h(ω′)h(ω′′)h(−ω′′)I [ω, ω′, ω′′], (119)

where
I [ω, ω′, ω′′] = iµ2

0(1 + λ2
0) + µ0(1− λ2

0)
2ω′ − 4iλ2

0(1 + λ2
0)ω

′ω′′ (120)

We can now express the second-order force due to the interference of the two sources
(see Equation (112)) in terms of χ

(2)
int :

〈
δF(2)

int (t)
〉
=
∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
int [ω, ω′, ω′′] f [ω−ω′′]g[ω′ + ω′′], (121)

where
χ
(2)
int [ω, ω′, ω′′] = 2iµ0ωω′ω′′h(ω)h(ω′)h(ω′′)h(−ω′′)I [ω, ω′, ω′′]. (122)

The force for the interference term now reads

〈
δF(2)

int [ω]
〉
=
∫ dω′

2π

∫ dω′′

2π
χ
(2)
int [ω

′, ω−ω′, ω′′] f [ω′ −ω′′]g[ω−ω′ + ω′′]. (123)
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6. Conclusions

When a mirror in a vacuum undergoes time-dependent fluctuations, it produces
real particles via the dynamical Casimir effect. In the case when such a mirror possesses
asymmetric boundary properties, its spectrum of particles is also be asymmetric. This
asymmetry in particle production results in a perturbation in the position of the mir-
ror; that is, the imbalance in radiation reaction forces results in induced motion of the
mirror [6–8]. The vacuum, in turn, acts as a dissipative medium and resists the motion
of the mirror, which is described in part by fluctuation–dissipation theory [18]. Here, we
have used fluctuation–dissipation theory to calculate the vacuum-induced response to the
time-dependent fluctuations of an asymmetric δ− δ′ mirror which is both moving and
possesses time-dependent material properties. We find that the resulting forces are both
dissipative and motion inducing, since the asymmetry in particle production generates a
secondary force in addition to the dissipative force of the vacuum, which seeks to suppress
the motion of the mirror.

The linear susceptibility, used to calculate the mean force, is calculated to the first-
and second-order for both the contribution from the motion of the moving mirror and
from the time-dependent boundary conditions. For the first-order, we are able to provide
exact results for the susceptibility as well as expansions in the limits βω � 1 and βω � 1.
We plot the resulting force numerically for different values of λ0 and compare them to
the purely dissipative force of a moving Dirichlet mirror. Additionally, we have also
looked at the resulting changes to the force when the fluctuation oscillation frequency is
increased. The resulting second-order forces are calculated, which also include a mixed
interference term in addition to the second-order contributions from the two separate
fluctuation sources.

Thus far, our numerical analysis has been restricted to first-order forces with only
a single type of oscillation. In the future, we wish to extend these numerical methods
to a higher order in force and study other physically interesting types of fluctuations,
which would cause novel interactions with the vacuum. Additionally, these methods could
be used to analyze work and impulse delivered to the Casimir system, allowing us to
determine optimal system configurations along with parameters for generating motion.
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Abstract: The anomalous magnetic moment of the electron, first calculated by Schwinger, lowers
the ground state energy of the electron in a weak magnetic field. It is a function of the field and
changes signs for large fields, ensuring the stability of the ground state. This has been shown in
the past 50 years in numerous papers. The corresponding corrections to the mass of the electron
have also been investigated in strong fields using semiclassical methods. We critically review these
developments and point out that the calculation for low-lying excited states raises questions. Also,
we calculate the contribution from the tadpole diagram, the relevance of which was observed only
quite recently.

Keywords: QED; electron mass; magnetic moment

1. Introduction

Quantum electrodynamics (QED) is the fundamental theory for describing the inter-
action of matter and light. On the classical level, these are the Maxwell theory and the
relativistic mechanics, joined by a covariant coupling. QED is the quantum version of these.
It was formulated quite early in the history of quantum mechanics, beginning with the
paper of Paul Dirac. One of the first calculations of QED effects was the effective Lagrangian
of Werner Heisenberg and Hans Euler [1], and the first new effect predicted using QED was
the scattering of light on light. About ten years later, in 1948, Hendrick Casimir found [2]
a vacuum interaction between neutral conducting plates caused by the quantized electro-
magnetic field confined between the plates. These two effects can be interpreted as loop
correction, or radiative correction, to external influences. In the first case, such influence
is provided by a classical electromagnetic field, and in the second case, it is provided by a
conductor boundary condition on the plates (or by the freely movable charges within the
plates), which also constitute a classical object.

It must be mentioned that there is a different interpretation for these effects saying
that the vacuum of QED is filled with a fluctuating electromagnetic field, the interaction
of which with the mentioned influences causes the effects. However, in a more formal
approach, there is no need to speak about fluctuating fields. Namely, the mentioned effects
can be equivalently described as vacuum-to-vacuum transition amplitude in an external
field or as the vacuum expectation value of the energy–momentum tensor in the presence
of external influences. For details, we refer to one of many books on this topic [3].

Beyond the two mentioned effects go the radiative, or loop, corrections like the
anomalous magnetic moment of the electron and the Lamb shift. The former one can
be viewed as a correction to the mass of the electron and to its magnetic moment, µ.
The magnetic moment can be expressed as µ = gµB in terms of the Bohr magneton, µB , and
the gyromagnetic ratio, g. From the Dirac equation, g = 2 follows, whereas the radiative
corrections cause a deviation, ae = (g− 2)/2, called the anomaly of the magnetic moment.
In 1948, Julian Schwinger found [4] ae = α/(2π) in the lowest order in the fine structure
constant, α. This anomaly lowers the energy of the ground state of an electron in a magnetic
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field. Also, it results in a split of the excited energy levels. This split was measured in the
so-called g− 2 experiments with high precision and showed an excellent agreement with
the theory (including higher powersof α).

In a weak magnetic field, the lowering of the ground state energy is proportional to
the magnetic field. However, for an increasing field (as well as for higher excited states), it
becomes a function of the field and it changes sign before the total energy can reach zero,
ensuring the stability of the ground state. It must be mentioned that in theories with higher
spin (s > 1/2), there is no stability. An example is quantum chromodynamics (QCD),
where the so-called Savvidy vacuum is unstable, as shown in Ref. [5]; for a recent review,
see [6].

In line with these examples, the Casimir effect is not only a phenomenon arising from
vacuum fluctuations, but it may also bear instabilities under certain boundary conditions.
In Appendix A, we refer to the Robin boundary conditions as an example. Like in a strong
magnetic field, for certain values of the parameters, the energy of the lowest state may be
below zero and constitute the instability of the system. It must be mentioned that in the
literature on the Casimir effect, a situation with instabilities is rarely considered, although it
well deserves more attention.

The present paper is a critical review on the question of the stability of QED in a
magnetic field. The point is the following. While for the ground state the stability can be
shown using a quite simple calculation and for high excited states and/or strong magnetic
field using asymptotic methods, for lower exited states and medium fields, one is left with
numerical investigation. Such analysis was performed in Ref. [7].

However, as we point out here, there are questions about the methods used in Ref. [7].
In addition, recently, in Ref. [8], it was observed that a class of diagrams (one-particle
irreducible ones) do not vanish in distinction from earlier belief and may give an addi-
tional contribution.

For this reason, in what follows, we are interested only in the one-loop correction to
the mass of the electron in a homogeneous magnetic field. Therefore, we do not consider
the motion of the electron in the direction of the field and use the simplified notation.

It worth noting that the motion of an electron in a magnetic field is a field of vital
interest, not so much in connection with the stability of QED as in connection with the
synchrotron radiation which appears on the tree level as well as from the imaginary part
of the radiative correction to the electron mass, see [9] and the book [10], for example.
An essential tool is the semiclassical approximation, i.e., mass correction for high excited
levels, see [11–13].

The paper is organized as follows. In Section 2, we reproduce and discuss the formulas
known in the literature with a focus on the proper time representation. In Sections 2.1 and 2.2,
we discuss the problems which appear. In Section 3, we consider the one-particle irreducible
(1PI) contribution. Section 4 gives conclusions of the study.

Throughout the paper, we use notations with h̄ = c = 1 for the reduced Planck’s
constant, h̄, and the speed of light, c.

2. The Mass and the Magnetic Moment of the Electron in a Magnetic Field

We consider the effective Dirac equation, i.e., the Dirac equation with loop corrections,

(i /D−m)ψ(x) +
∫

dx′ Σ(x, x′)ψ(x′) = 0, (1)

in one loop approximation. Here, x represents a four-dimensional coordinate, ψ is the wave
function, m denotes the mass of a particle. The covariant derivative is /D = γµDµ, with
γµ the Dirac matrices, Dµ = ∂µ − ieAµ, where e is the elementary charge, Aµ denotes the
electromagnetic potential, the Greek indices take the values 0 (for the time coordinate), 1, 2,
and 3 (space), and the self-energy operator, Σ(x, x′), reads
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Σ(x, x′) =
x´x

= −ie2Dµν(x, x′)γµS(x, x′)γν, (2)

where the wavy line represents the photon propagator, Dµν(x, x′), the doubled line repre-
sents dressed electron propagator and the dots represent interaction vertices. The spinor
propagator S(x, x′), which is ‘exact’ in the field Aµ, obeys

(i /D−m)S(x, x′) = δ(x− x′), (3)

where δ(x− a) is the Dirac delta function.
From Equation (1), for the electron, a mass,

M = m + ∆M, (4)

follows with a mass correction ∆M. In the given order of approximation, ∆M is the expecta-
tion value of the self-energy operator in the unperturbed states.

From here on, we consider a homogeneous magnetic field, H. Then, the mass correc-
tion is the average

∆M(N, ζ) = 〈N, ζ | Σ(x, x′) | N, ζ〉, (5)

=
∫

d3x
∫

d3x′ ψM,ζ(~x)Σ(x, x′)ψM,ζ(~x)

and it depends on the state of the electron. The eigenfunctions, taken in coordinate repre-
sentation, read 〈x | N, σ〉 = e−iEN tψN,ζ(~x), and they obey the Dirac equation

(i /D−m) | N, ζ〉 = 0. (6)

The ψN,ζ(~x) are the known eigenspinors, and the one-particle energy is

EN =
√

m2 + p2
3 + 2eHN, N = 0, 1, . . . , (7)

where p3 is the momentum third space-component.
The states are numbered by N, and the spin projection is ζ = ±1. The number N

consists of two parts,

N = n +
1
2
(1− ζ) (8)

where n = 0, 1, . . . numbers the Landau levels in the magnetic field. The ground state
has n = 0 and ζ = 1 (spin projection parallel to the field). The excited states are doublets,
which are degenerated on the tree level and split by the radiative correction.

As soon as ζ2 = 1, the mass correction (5) can be written in the form

∆M(N, ζ) = ∆M0(N) + ζ ∆Mζ(N), N = 1, 2, . . . , (9)

for the excited states. For the ground state, one has only

∆M(N, ζ) = ∆M0(0). (10)

A split like in the excited states is formally possible, but physically meaningless.
Making a non-relativistic approximation in (7), one comes to

EN = m +
p2

3
2m

+ µBH
(

2n + 1− g
ζ

2

)
+ . . . . (11)
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For the free Dirac equation, g = 2 follows, and from the loop correction, one has

g = 2(1 + ae), (12)

where ae is the anomaly factor and µBae is the so-called anomalous magnetic moment.
Comparing Equation (11) with Equation (7), one identifies

∆M(N, ζ) = µBHae. (13)

This way, the anomaly factor becomes a function of both the field and the state.
For the calculation of the mass correction, there are two known methods. The first

starts from the representation of the electron propagator in terms of the eigenspinors
ψN,ζ(x) and the one-particle energies EN , which is an eigenfunction representation. This
way was used in Refs. [14,15]. The representation of the mass correction is in terms of an
integral over the photon loop momentum (in polar coordinates |k| and cos θ) and a sum
over the intermediate states of the electron. It is convenient for strong fields since in that
case only the lowest intermediate state contributes.

The second method uses the proper time representation of the propagators. In Ref. [16],
the spinor propagator in the magnetic field was represented this way by performing the
sum over the intermediate states. In Ref. [17], this representation was used to obtain an
integral representation of the self-energy operator, Σ(x, x′).

In Ref. [18], a similar result was obtained using the algebraic procedure of Schwinger [19].
This method allows us to obtain the result through bypassing the summation of the eigen-
functions. The method was refined in a subsequent paper [20], and we follow the represen-
tation given there.

We use the following notations instead of the ones used in Ref. [20]. We change the
integration variable y→ x. For the energy E, we insert EN (7), and set p3 = 0. In addition,
we set m = 1 (except in the factor in front) and also e = 1 so that one has: E/m → EN ,
(E2 −m2)/m2 → 2NH and (E2 −m2)/(eH)→ 2N. Finally, the prime is dropped: ζ ′ → ζ.
With this notation, Equation (32) from Ref. [20] reads

∆M(N, ζ) =
αm
2π

∫ ∞

0

dx
x

∫ 1

0
du e−iux/H (F− Fsub) , (14)

where

Fsub = 1 + u (15)

is the ultraviolet subtraction and

F = e−i(β−(1−u)x)2N W, (16)

W =
1√
∆
{cos(β− x)− iζEN sin(β− x) + u[cos(β + x)− iζEN sin(β + x)]

+ (1− u)2NH W0},

W0 =
1− u

∆
cos(β− x) +

u
∆

sin(x)
x

cos(β)− cos(β + x).

Equation (25) from Ref. [20] defines β as

tan(β) =
(1− u) sin(x)

(1− u) cos(x) + usin(x)/x
(17)

and Equation (29) of Ref. [20] defines

∆ = (1− u)2 + 2u(1− u)
sin(x) cos(x)

x
+ u2

(
sin(x)

x

)2

, (18)
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which appears in the denominator.
Actually, these notations are not convenient enough. For that reason, we rewrite the

notations. We start with the definition

h = 1− u + u
sin(x)

x
e−ix . (19)

Multiplying h by its complex conjugate, one can see see that ∆ factorizes,

∆ = h h∗. (20)

Further, let us consider

1 + i tan(β) =
heix

(1− u) cos(x) + usin(x)/x
, (21)

which allows one to write

e2i(β−x) =
h
h∗

. (22)

Next, let us consider W0 in Equation (16). We write the trigonometric functions as
sum/difference of the corresponding exponentials, and with Equation (22) one arrives at

W0 =
1− h e2ix

2
√

h h∗
+ c.c. , (23)

where ‘c.c.’ denotes the complex conjugate. Using these formulas, we rewrite F in
Equation (16) in the form

F =

(
h∗

h

)N
e−2iuxN W, (24)

W =
1

2h
(1 + ζEN)

(
1 + u e−2ix

)
+

1
2h∗

(1− ζEN)
(

1 + u e2ix
)

+ (1− u)
[

1− h e2ix

2h h∗
+ c.c.

]
2NH.

In this representation, the first two terms are interrelated by the complex conjugation
and spin reversal: ζ → −ζ. The third term is of a real value.

The expression (24) can be simplified by keeping in the third term only the contribu-
tions from the ‘1’ in the numerator,

W =
1

2h

[(
1 + ue−2ix

)
(1 + ζEN)− (1− u)e−2ix2NH

]
(25)

+
1

2h∗
[(

1 + ue2ix
)
(1− ζEN)− (1− u)e2ix2NH

]

+
1− u
h h∗

2NH.

Finally, one arrives at

W =
e−ix

h

[
cos(x)(1 + ζEN)−

1− u
2

e−ix EN(EN + ζ)

]
(26)

+
eix

h∗

[
cos(x)(1− ζEN)−

1− u
2

eix EN(EN − ζ)

]

+
1− u
h h∗

2NH.
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The expression (26) coincides with that in Refs. [17] with σ = −ζ, up to an overall
factor EN , of which Ref. [17] has more in the denominator (probably a typo).

In Ref. [7], the expression for ∆M was taken over from Ref. [17] (using different no-
tations). Also using the operator method, in Ref. [21], a representation—Equation (3.18)
in Ref. [21]—was derived which coincides with the above one. This representation was
also taken over in Ref. [22], Equation (1), where, however, new notations were intro-
duced, s(x) = 1− sin(x)/x, for instance. Regrettably, the last term in the second line
in Equation (1) [22] has a misprint and coincides with Equation (1) if one substitutes
−us(x)→ 1 + usin(x)/x.

In Ref. [7], a further set of notations was introduced. In Equation (8), the energy
correction is split into real and imaginary parts. This is the expression which in Ref. [7]
was used for the numerical evaluation. It can be obtained from Equation (26) with the
application of Equation (7), which here takes the form E2

N = 1 + 2NH. Equation (26)
then reads:

W =
1

h h∗
(A + 2NH B + iζEN C) (27)

with

A = (1− u)(1 + u cos(2x)) + u(1 + u)
sin(2x)

2x
, (28)

B = (1− u)
(

1− (1− u) cos(2x)− u
sin(2x)

2x

)
,

C = 2u(1− u) sin(x)
(
− cos(x) +

sin(x)
2x

)
.

Actually, Equation (28) is Equations (25) or (26), taken on a common denominator.
In order to investigate the structure of the expression F in Equation (14), it is necessary

to look for the singularities in the complex plane. Denoting x = ξ + iη, let us first look for
the zeros of the expression h (19),

h =
1

2ix

(
2i(ξ + iη)(1− u) + u− ue2η(cos(2ξ)− i sin(2ξ)

)
. (29)

For h = 0, one obtains two equations:

e2η cos(2ξ) = 1− 2
1− u

u
η, (30)

e2η sin(2ξ) = −2
1− u

u
ξ. (31)

Equation (31) can be resolved for η, and from the quotient of Equations (30) and (31),
one obtains:

η =
1
2

ln
(

1− u
u

−2ξ

sin(2ξ)

)
, (32)

tan(2ξ) =
−2(1− u)ξ

u− 2(1− u)η
. (33)

Inserting η (32) into Equation (33), it can be seen that there are solutions for

π(k + 1/2) < ξ < π(k + 1), k = 0, 1, . . . . (34)

For solutions (34), from Equation (32), follows that η > 0.

383



Physics 2024, 6

This way, the zeros of h are in the upper half-plane. Straightforwardly, h∗ has its zeros
in the lower half-plane. For u = 1, these zeros reach the real axis in ξ = πk. For u → 0,
the zeros go to infinity, x = π

(
k− 1

2

)(
1 + 1

ln(1/u)

)
, η ∼ 1

2 ln 1
u . The zeros are shown in

Figure 1.

π

2
π

3π

2
2π

ξ

-6

-4

-2

2

4

6

η

Figure 1. In the complex plane, x = ξ + iη, the locations of the zeros of h (19) (upper half-plane,
dashed) and of h∗ (lower half-plane). In these curves, the parameter u takes values from u = 1 at
η = 0 to u→ 0 at η → ±∞.

For the ground state, N = 0, ζ = 1, the expressions simplify, and using Equations (24)
and (25), one comes to

Fground state =
1
h

(
1 + ue−2ix

)
. (35)

Since h has zeros only in the upper half-plane, according to the exponential factor
in Equation (14), one may rotate the integration path towards the negative imaginary
axis, x → −iy. The result is a well-converging expression which allows for an immediate
numerical evaluation. We repeat here in Figure 2 the representation given in Ref. [23].

0.2 0.4 0.6 0.8 1.0
H

-0.04

-0.02

0.02

0.04

0.06

ΔM0(0)/
αm

2π

Figure 2. The mass correction ∆M0(0), see Equation (10), for the ground state, divided by αm/(2π),
as a function of the magnetic field. In the minimum, this function takes small values and must be
additionally multiplied by α to compare with the rest mass.
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For the excited states, the numerical evaluation is considerably more complicated. So
far, only one attempt has been undertaken [7], which we consider in Section 2.1 just below.

2.1. On the Numerical Evaluation in Ref. [7] for the Excited States

In Section III of Ref. [7], it is mentioned that a numerical integration over the real x-axis
is complicated because of the singularities in x = πn. A rotation of the integration path
downwards in the complex plane, x → −iy, would cross the singularities (see Figure 1). In
Ref. [7], the authors use the following method. The u-integration is divided into two parts at
some u0. For 0 ≤ u ≤ u0, there are no problems on the real axis and a numerical integration
is possible. For u0 ≤ u ≤ 1, they turn the integration path towards the imaginary axis, see
Equation (11) in Ref. [7]. However, this is not possible. As one can see in Figure 1, there
are zeros in the denominator for all values of u. From this, we conclude that the numerical
results in Ref. [7] are questionable.

2.2. On the Strong Field Limit

The limit of the strong magnetic field, H → ∞, was calculated for the ground state in
Refs. [18,24]. Recently, using an expression similar to Equation (35) from Ref. [23], the limit
was recalculated, including the constant term,

∆M0(0) =
αm
2π

5
2

(
ln(2H)− γE −

3
2

)2
+ a +O

(
1
H

)
, (36)

a ' 4.028717,

where γE is the Euler’s constant.
For the low exited states (N = 1, 2, . . . ), there is only one calculation of the strong field

limit [24]. It is in terms of the eigenfunction method and it is only for the spin-dependent
part. It delivered

∆Mζ(N) ' αm
2π

ln(2H)

N
. (37)

This way, for a strong field, the mass correction is also positive.

2.3. The Mass Correction for Low-Lying Excited States

An attempt to calculate this mass correction from the formulas which were reproduced
in Section 2.2 above hits the following problem. When turning the integration path in (14)
into the complex plane, x → −iy, besides the contributions from the poles which one
crosses, the following integral shows up:

∆M(N, ζ) =
αm
2π

∫ ∞

0

dy
y

∫ 1

0
du e−uy/H(F− Fsub) + pole terms. (38)

However, for y→ ∞, one observes an asymptotic behavior, using Equations (19) and (30)
with x → −iy,

F =

(
u e2(1−u)y

u + 2(1− u)y
+O(1)

)N[
y
u
(1− ENζ) +

y
u + 2(1− u)y

(1 + ENζ) +O
(

e−2y
)]

, (39)

where

h = 1− u +
u
2y

+O
(

e−2y
)

, h∗ =
u
2y

e2y +O(1) (40)

was used. In addition, there is the factor e−uy/H in the integrand. This way, one observes
an exponential growth in the integrand for y → ∞ for H < uy

2(1−u)N , i.e., for all finite H.
Let us mention that this divergence is absent in the ground state, i.e., for N = 0. Also, this
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divergence cannot be related to the infrared divergence of the mass operator Σ(x, x′) in
Equation (2), since ∆M in Equation (5) is taken in states. Now, one could speculate on a
cancellation from the pole contributions. But this is quite unlikely.

One may wonder how under such circumstances the weak-field expansion derived in
Refs. [18,25,26] may be possible. The point is that for real x an expansion in the powers of
u and x brings the power N down to factors N, and the resulting, oscillating integrals well
may give finite answers. And they do, as follows from the mentioned papers. However, it
is clear that the low-field expansion must be an asymptotic one.

3. The Contribution from the Tadpole Diagram

As observed quite recently in Ref. [8], 1PI diagrams can contribute to the effective
Lagrangian in a homogeneous background field. The feature is that a tadpole diagram does
not vanish. It contributes to the electron self-energy,

Σ1PI(x, x) = x x´

z

= ieγνDµν(x, z)jµ(z)δ(x− x′). (41)

The tadpole diagram can be derived from the one-loop Heisenberg–Euler (HE) La-
grangian (see, e.g., [27]) that

L1−loop
HE =

1
8π2

∫ dT
T3 e−mT2

[ √
2F T

tanh(
√

2F T)
− 2

3
T2F − 1

]
, (42)

with F = 1
4 (FµνFµν). To mention is the possibility of deriving it from the worldline

methods as performed, for example, in Ref. [28] for the spinor propagator. Such a diagram
contributes a current (in Ref. [8] called a photon current),

jν(k) = ieBεµν3 kµδ(4)(k)
∂L1−loop

HE
∂F , (43)

where, for a constant purely magnetic field, B, directed along the z-axis, Fµν = −εµν3B,
F = B2/2, kµ is the 4-momentum, εµν3 is the antisymmetric Levi-Civita symbol, δ(4)(k) is
the four-dimensional Dirac delta, with [8]

∂L1−loop
HE
∂F =

e2

8π

[
4ζ ′(−1, χ)− χ (ζ ′(0, χ)− ln χ + χ)− 1

3
ln χ− 1

2

]
, χ =

m2

2eB
, (44)

following. In Equation (43), the indices µ and ν take only values 1 and 2. In Equation (44),
ζ(s, χ) stands for the Hurwitz zeta function.

As it stands, the expression (44) is zero due to the factor k in front of the delta function
and the general theory of distributions, and from symmetry reasons as well. However,
a more detailed investigation [8] made a regularization of the delta function by considering
a non-constant background field. The reason for the vanishing of Equation (43) is that a
constant background field cannot support momentum transfer and therefore the momen-
tum k must be zero. However, in a non-constant field, this argument cannot be applied and,
in the limit of removing the regularization, one comes to an undefined expression of the
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type zero times infinity, to be considered in more details. The calculation realization rests
on the ‘local constant field approximation’ [29], which allows us to use the expression of
the one-loop effective Lagrangian for constant fields. This way, Ref. [8] calculated the 1PI
contribution to the two-loop HE Lagrangian.

A similar effect appears also for the mass correction of the electron. From the Feynman
rules and from Equation (41), a mass correction,

∆M1PI(N, ζ) = 〈N, ζ | Σ1PI(x, x′) | N, ζ〉, (45)

follows, which adds to ∆M(N, ζ) in Equation (5).
In the sense of some regularization, we take for the delta function in Equation (43)

the expression

δ
(4)
ε (k) =

e−k2/4ε

(4πε)2 , (46)

which is most convenient in the given case. Then, the mass correction ∆M1PI(n, ζ) in
Equation (45) can be calculated using the states | n, ζ〉; these states are known, see, e.g., [30].
In order to be close to the notations of Ref. [30], we change the notation from N from
Section 2 to n, and note

| n, s, ζ〉 = eip3z
√

L
eilϕ

√
2π

√
γ√

Kn(Kn + m)

(
ξ+δζ,1 + ξ−δζ,−1

)
. (47)

where the following notations, also close to those in Ref. [30], are used: γ = B/2, Kn =√
m2 + p2

3 + 4γn and

ξ+ =




(Kn + m)In−1,s(ρ)e−iϕ/2

0
p3 In−1,s(ρ)e−iϕ/2

i
√

4γnIn,s(ρ)eiϕ/2


, ξ− =




0
i(Kn + m)In,s(ρ)eiϕ/2
√

4γn In−1,s(ρ)e−iϕ/2

−p3 In,s(ρ)eiϕ/2


, (48)

where ρ = Br2/2 is the radial variable, ξ± are the spinor factors for spin projection ζ = ±1
and n = 0, 1, . . . enumerates the energy levels (7). These levels are degenerated with respect
to the orbital quantum number l, which is related by

l = n + s (49)

to the principal quantum number s = 0, 1, . . . and takes values −∞ < l < n. The radial
wave functions In,s(ρ) are given by

In,s(ρ) = (−1)l
√

n!
s!

ρ−l/2e−ρ/2L−l
n (ρ) (50)

in terms of Laguerre polynomials. Below, we set the electron mass m = 1.
Using Equations (47)–(50), the calculation of the matrix elements becomes just a

computing task. Since the dependence on the momentum p3 in the direction of the magnetic
field can be restored by a Lorentz transform, we restrict ourselves to p3 = 0. The mass
correction reads

〈n, s, ζ|Σ1PI(x, x′)|n′, s′, ζ ′〉 =
∫

d4x ψ̄n,s
ξ (x)ieγνψn′ ,s′

ξ ′ (x)
∫

d4z jµ(z)Dµν(z, x) . (51)
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Using momentum representation for the current jµ and the Euclidean propagator,
one obtains:

∫
d4zjµ(z)Dµν(z, x) =

1
(2π)4

∫
d4k

e−ikx

k2 jν(k) (52)

=
2eBενµ3

(4πε)2

∫ ∞

0
dt

∂

∂xµ

∫
d4k e−

k2
4ε−ikx−tk2

=
ieB
32

∂L1−loop
HE
∂F ενµ3 xµ. (53)

We represent the vector x in Equation (53) as x = r
(

cos ϕ
sin ϕ

)
. It is to be multiplied by

the gamma matrices. Then,

x2γ1 − x1γ2 =
r
2i

(
(γ1 − iγ2)eiϕ − (γ1 + iγ2)e−iϕ

)
. (54)

With Equation (48), the spinor diagonal matrix elements turn into

ξ†
±(x2γ1 − x1γ2)ξ± = −2i

√
n(Kn + m)In,s(ρ)In−1,s(ρ). (55)

These matrix elements (55) are independent of the spin projection and, thanks to this,
cannot contribute to the anomalous magnetic moment. Further, there is no contribution
to the ground state (n = 0) and no contribution to a spin flip. As well, one can observe
that the dependence on the azimuthal angle, ϕ, dropped out so that, from Equation (47),
the conservation of angular momentum for non-diagonal matrix elements follows. Finally,
one has to insert Equations (47) and Equation (55) into Equation (45) and are left with a
radial integration,

∫ ∞

0
dρ
√

ρ In,n−l(ρ)In−1,n−l(ρ) =
√

n. (56)

so that one arrives at

∆M1PI(n, s) =
eB
16

∂L1−loop
HE
∂F

√
n

Kn

∫ ∞

0
dρ
√

ρ In,n−l(ρ)In−1,n−l(ρ). (57)

=
eB
16

∂L1−loop
HE
∂F

n√
1 + 2eB n

.

Here, ∂L1−loop
HE /∂F is defined in Equation (44). As it turns out, this contribution to

the mass corrections does not depend on the orbital momentum, l, similar to Equation (5).
Examples for the dependence on the magnetic field are shown in Figure 3.

2 4 6 8 10 12 14
B

-0.005

0.005

ΔM

n=1

n=2

n=3

Figure 3. The mass correction ∆M1PI in Equation (57), as a function of the magnetic field, B, for a
few n values as indicated.
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For the mass correction in a strong field, using the asymptotics of ∂L1−loop
HE /∂F derived

in Equation B.6 of Ref. [8] one obtains

∆M1PI(n, s) =
αe

48
√

2π

√
eBn ln

(
eB√

2

)
+O(

√
B). (58)

This way, the contribution from the tadpole graph follows the general expectation,
a negative contribution for small fields and a positive contribution for strong fields.

4. Conclusions

We reconsidered the calculation of the one-loop mass correction of the electron in a
homogeneous magnetic field. There are two kind of representations known in the literature.
One is in terms of eigenfunctions, and the other one uses the proper time representation
and the operator method. We focused on the second case and compared the corresponding
results obtained by different authors. In convenient notations, the result can be best written
in the form ∆M(N, ζ) in Equation (14), with W (26) (or (27)). Quite obvious misprints in
the various papers are identified.

For studying the structure of the integrand F, Equation (26) is the most convenient
since it has the simplest form of the denominators. On the real x-axis, one observes for
u = 1, simple poles in x = π

(
n + 1

2

)
, n = 0, 1, . . . . The ratio h/h∗ in front is regular, and

the last term in Equation (26) also has a simple pole if accounting for the integration over u
and the factor (1− u) in the nominator. In the complex plane, one observes simple poles,
the locations of which are shown in Figure 1.

As for the ground state, there are coinciding results from all the studies referred to
here. The mass correction is shown in Figure 2 and its asymptotics for H → ∞ are given
in Equation (36). The finding demonstrates the stability of the ground state for arbitrary
strength of the magnetic field.

For the low excited states, a similar result was obtained numerically in Ref. [7]. How-
ever, the method used for the calculation, as laid out in Section III in Ref. [7], raises questions
as discussed in Section 2.1 here. More questions arise from the attempt to use the formulas
shown in Section 2 for N > 0. As shown in Section 2.3, the rotation into the complex plane,
x → −iy, results in an exponential growth for y→ ∞, which should not have been there.

In addition, we calculated the so-far-overlooked contribution to the mass correction
from the tadpole. The findings show no addition to the anomalous magnetic moment
as well as no addition to the ground state energy. The tadpole contribution to the low
excited states is shown in Figure 3. However, in order to compare this contribution with
the contribution from Equation (2), more studies are necessary.

It worth mentioning that for high excited states, N � 1, which is of interest primarily
for synchrotron radiation, a semiclassical approach delivers quite simple formulas which
all demonstrate a growth in the mass correction in a magnetic field. We did not consider
those calculations in the present paper.

In summary, the existing calculation for the mass correction of the electron in a
magnetic field suggests no instability in QED. However, there are doubts in the correctness
of the mentioned calculations, and a recalculation is advised.
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Appendix A. Robin Boundary Condition

In this Appendix, we refer to the basic formulas with the Robin boundary conditions,
which are of interest in context with the Casimir effect and instabilities. The simplest case
is a scalar field in four dimensions, obeying the wave equation and the boundary condition

(∂2
t − ∂2

|| − ∂2
z)φ(x) = 0, (1 + β∂z)φ(x)|z=0 = 0 , (A1)

where ∂t = ∂/∂t, ∂|| = (∂/∂x, ∂/∂y) the underlining in x denotes a four-vector, β is some
parameter and we consider z ≥ 0. After a Fourier transform in time and with the directions
parallel to the plate,

φ(x) = e−iωt+ik||x||ϕ(z), (A2)

the equation (−ω2 + k2
|| − ∂2

z)ϕ(z) = 0 follows. With the ansatz ϕ(z) = e−κz, from the
boundary condition (A1), κ = 1/β follows. One must assume β > 0 to obtain a normaliz-
able solution and to arrive at

ω2 = k2
|| − κ2 (A3)

for the frequency. For k2
|| > κ2, the frequency is real. This solution describes a surface

mode (known, for example, on the surface of metals). However, for k2
|| < κ2, the frequency

becomes imaginary and there will be a solution exponentially increasing in time. This is
the mentioned instability, which is typically excluded from investigating the Casimir effect.
It is interesting to note the similarities between Equations (A3) and (11).
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Surface Casimir Densities on Branes Orthogonal to the
Boundary of Anti-De Sitter Spacetime
Aram Saharian

Institute of Physics, Yerevan State University, 1 Alex Manogian Street, Yerevan 0025, Armenia; saharian@ysu.am

Abstract: The paper investigates the vacuum expectation value of the surface energy–momentum
tensor (SEMT) for a scalar field with general curvature coupling in the geometry of two branes
orthogonal to the boundary of anti-de Sitter (AdS) spacetime. For Robin boundary conditions on
the branes, the SEMT is decomposed into the contributions corresponding to the self-energies of the
branes and the parts induced by the presence of the second brane. The renormalization is required
for the first parts only, and for the corresponding regularization the generalized zeta function method
is employed. The induced SEMT is finite and is free from renormalization ambiguities. For an
observer living on the brane, the corresponding equation of state is of the cosmological constant type.
Depending on the boundary conditions and on the separation between the branes, the surface energy
densities can be either positive or negative. The energy density induced on the brane vanishes in
special cases of Dirichlet and Neumann boundary conditions on that brane. The effect of gravity
on the induced SEMT is essential at separations between the branes of the order or larger than the
curvature radius for AdS spacetime. In the considerably large separation limit, the decay of the SEMT,
as a function of the proper separation, follows a power law for both massless and massive fields. For
parallel plates in Minkowski bulk and for massive fields the fall-off of the corresponding expectation
value is exponential.
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1. Introduction

Among the interesting directions in the development of the Casimir effect theory (for
a general introduction and applications, see, e.g., [1–6]) is the study of the dependence of
expectation values of physical characteristics for quantum fields on the bulk and boundary
geometries, as well as on the spatial topology. The interest is motivated by applications
in gravitational physics, in cosmology, and in condensed matter physics. Exact analytic
expressions for physical characteristics are obtained in geometries with a sufficient degree
of symmetry. In particular, the corresponding background geometries include maximally
symmetric spacetimes sourced by positive and negative cosmological constants. These
geometries, referred as de Sitter (dS) and anti-de Sitter (AdS) spacetimes, respectively, are
among the most popular bulks in quantum field theory on curved backgrounds.

The goal of this paper is to investigate the surface Casimir densities on two parallel
branes for a scalar field in AdS spacetime. Quantum field theoretical effects on a fixed
AdS background have been extensively studied in the literature. These investigations are
important for several reasons. The AdS spacetime is a non-globally hyperbolic manifold
with a timelike boundary at spatial infinity and the early interest in the formulation of quan-
tum field theory in that geometry was related to principal questions of quantization [7–9]
(see also the references in Ref. [10]). The necessity to control the information through
the spatial infinity requires the imposition of boundary conditions on quantum fields
(for a discussion of possible boundary conditions on the AdS boundary, see, e.g., [11,12]).
The different boundary conditions correspond to physically different field theories. The
AdS boundary at spatial infinity plays a central role in models of AdS/conformal field
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theory (AdS/CFT) correspondence [13–16]. The latter establishes duality between con-
formal field theory living on the boundary of AdS spacetime and supergravity or string
theory on AdS bulk. This holographic correspondence between two different theories
provides an efficient computational framework for non-perturbative effects, mapping them
to the perturbative region of the dual theory. Within this approach interesting results have
been obtained in high energy physics, in quantum chromodynamics, and in condensed
matter physics [14,17,18]. The braneworld models [19] with large extra dimensions, both
phenomenological- and string-theory-motivated, present another interesting setup where
the properties of AdS spacetime play a crucial role. They provide a geometrical solution to
the hierarchy problem between the electroweak and gravitational energy scales and serve
as an interesting framework to discuss the problems in high energy physics, gravitation,
and cosmology.

The braneworld models contain two types of field: fields propagating in the bulk and
fields localized on the branes. In simplified models, the interaction between branes and
bulk fields is reduced to boundary conditions on the branes. Those conditions modify
the spectrum of vacuum fluctuations of bulk quantum fields and give rise to the Casimir-
type contributions in the expectation values of physical observables, such as the ground
state energy and the vacuum forces acting on the branes. The Casimir energy and forces
in the geometry of branes parallel to the AdS boundary have been widely studied in
the literature (see [20–35] for early investigations and [36] for a more complete list of
references). The Casimir forces can be used as a possible mechanism for stabilization of
the interbrane distance that is required to escape the variations in physical constants in the
effective theory on the branes. The vacuum fluctuations of the bulk field may also provide
a mechanism for the generation of the cosmological constant on branes. More detailed
information on the properties of the vacuum state is contained in the expectation values
of bilinear combinations of fields, such as the field squared and the energy–momentum
tensor. In braneworld models on AdS bulk, those expectation values are considered in
Refs. [32,37–45] for scalar, fermionic, and electromagnetic fields.

In the references cited above, the branes are parallel to the AdS boundary (Randall–
Sundrum-type models [46,47]). In a number of recent developments in conformal field
theories, additional boundaries are present (see, e.g., [48] and references therein). In the
context of AdS/CFT correspondence, the corresponding dual theory on the AdS bulk
contains boundaries intersecting the AdS boundary (AdS/BCFT correspondence) [49,50].
Another interesting problem on AdS bulk with surfaces crossing its boundary is related
to the evaluation of the entanglement entropy of a quantum system in conformal field
theory with a boundary. In accordance with the procedure suggested in Refs. [51,52], the
entanglement entropy in a bounded region from the CFT side on the AdS boundary is
expressed in terms of the area of the minimal surface in the AdS bulk that asymptotes
the boundary of CFT (see also [53,54] for reviews). Motivated by those developments, the
influence of branes orthogonally intersecting the AdS boundary on the local properties of
the scalar vacuum in a general number of spatial dimensions was studied in Refs. [55,56].
As local characteristics of the vacuum state, the expectation values of the field squared
and of the energy–momentum tensor were considered. By using the corresponding vac-
uum stresses, the Casimir forces acting on the branes were investigated as well. It was
shown that, in addition to the component perpendicular to the brane, those forces have
a nonzero parallel component (shear force). In quantum field theory with boundaries,
the expectation values of physical quantities may contain contributions localized on the
boundary. The expression for the surface energy–momentum tensor of a scalar field with
a general curvature coupling parameter, and for general bulk and boundary geometries,
was derived in Ref. [57] by using the standard variational procedure. The corresponding
vacuum expectation value in the problem with branes parallel to the AdS boundary was
investigated in Refs. [58,59]. The present paper considers the vacuum expectation value of
the surface energy–momentum tensor (SEMT) for a scalar field in the problem with two
parallel branes orthogonal to the AdS boundary.
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The organization of the paper is as follows. Section 2 describes the geometry of
the problem and present the expression for the surface energy–momentum tensor. The
corresponding vacuum expectation value (VEV) is investigated in Section 3 by using the
two-point function from [56]. The surface energy density is decomposed into contributions
corresponding to the self-energy of the brane when the second brane is absent and the part
induced by the second brane. The renormalization is required only for the first contribution.
In the limit of infinite curvature radius, the result for parallel plates in the Minkowski
bulk is recovered. Another special case with conformal relation to the Casimir problem in
Minkowski spacetime corresponds to a conformally coupled massless field. The behavior
of the SEMT in asymptotic regions of the parameters is discussed in Section 4. A numerical
analysis for the induced surface energy density is presented as well. The main results of
the paper are summarized in Section 5. The regularization of the self-energy contribution,
by using the generalized zeta function approach, is considered in Appendix A. The finite
part is separated on the basis of principal part prescription.

2. Geometry of the Problem

AdS spacetime is the maximally symmetric solution of the Einstein equations with a
negative cosmological constant Λ as the only source of the gravitational field. In Poincaré
coordinates (t, x1, x, z), with t denoting the time, x = (x2, . . . , xD−1) the space coordinates
with the spatial dimension D > 1, the corresponding metric tensor, gik, is given by

ds2 = gikdxidxk =
(α

z

)2
[

dt2 −
(

dx1
)2
− dx2 − dz2

]
. (1)

Here, the parameter α =
√

D(1− D)/(2Λ) determines the curvature radius of the
background spacetime, −∞ < xi < +∞ for i, k = 0, 1, 2, . . . , D− 1, and 0 ≤ z < ∞. The
D-dimensional hypersurfaces z = 0 and z = ∞ present the AdS boundary and horizon,
respectively. The proper distance along the z-direction is measured by the coordinate
y = α ln(z/α), −∞ < y < +∞. In the coordinate system (t, x1, x, y) one has g′DD = 1 and
g′ik = gik = e−2y/αηik, with ηik being the metric tensor for Minkowski spacetime.

The aim is to investigate the surface Casimir densities induced by quantum fluctu-
ations of a scalar field ϕ(x) on codimension one parallel branes located at x1 = a1 and
x1 = a2, a1 < a2 (see Figure 1 for the geometry of the problem). Throught the paper, it is
assumed that the field is prepared in the Poincaré vacuum state. For a scalar field with
curvature coupling parameter ξ, the corresponding field equation reads

(
�+ ξR + m2

)
ϕ(x) = 0, (2)

where � = gik∇i∇k is the covariant d’Alembertian, m is the mass, and R = 2Λ(D +
1)/(D − 1) is the Ricci scalar for AdS spacetime. On the branes, the field operator is
constrained by Robin boundary conditions,

(Aj + Bjni
(j)∇i)ϕ(x) = 0, x1 = aj, (3)

where ni
(j) is the normal to the brane at x1 = aj pointing into the region under consideration.

The branes divide the background space into three regions: x1 ≤ a1, a1 ≤ x1 ≤ a2, and
x1 ≥ a2. In the first and third regions, one has ni

(1) = −δi
1z/α and ni

(2) = δi
1z/α, respectively,

where δi
k is the Kronecker symbol. For the region a1 ≤ x1 ≤ a2, the normal in Equation (3) is

expressed as ni
(j) = (−1)j−1δi

1z/α. In the discussion below, the region between the branes is

considered. The VEVs for the regions x1 ≤ a1 and x1 ≥ a2 are obtained in the limits a2 → ∞
and a1 → −∞. For the sets of the coefficients (Aj, Bj) = (Aj, 0) and (Aj, Bj) = (0, Bj) the
constraints (3) are reduced to Dirichlet and Neumann boundary conditions, respectively.
For Robin boundary conditions, here the special case Bj/Aj = αβ j/z is assumed, with β j,
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j = 1, 2, being constants. For this choice, the boundary conditions (3), written in terms of
the coordinate x1

(p) = αx1/z, take the form

(1 + β jn1
(j)∂x1

(p)
)ϕ(x) = 0, x1 = aj, (4)

where ∂a ≡ ∂/∂a.

Figure 1. The geometry of two branes orthogonal to the AdS boundary. See text for details.

The latter is the Robin boundary condition with constant coefficient β j. This coefficient
characterizes the properties of the brane and can be used to model the finite penetration
length of quantum fluctuations. Note that the coordinate x1

(p) in Equation (4) measures the
proper distance from the brane for a fixed z.

For the scalar field modes in the region between the branes, the eigenvalues of the
quantum number k1, corresponding to the momentum along the direction x1, are quantized
by the boundary conditions (4). Those eigenvalues are roots of the transcendental equation
(see [56])

(β1 + β2)k1a cos
(

k1a
)
+
[

β1β2(k1)2 − 1
]

sin
(

k1a
)
= 0, (5)

where a = a2 − a1. Depending on the values of the Robin coefficients, this equation, in
addition to an infinite set of roots with real k1, may have purely imaginary roots k1 = iχ
(for the corresponding conditions, see [60]). The energy of the scalar modes, with the
momentum k = (k2, . . . , kD−1), −∞ < ki < +∞, i = 2, . . . , D − 1, in the subspace with
coordinates x, is expressed as E =

√
(k1)2 + k2 + γ2, where 0 ≤ γ < ∞ is the quantum

number corresponding to the z-direction. The dependence of the mode functions on the
coordinate z is expressed in terms of the function zD/2 Jν(γz), with Jν(u) being the Bessel
function and

ν =

√
D2

4
− D(D + 1)ξ + m2α2. (6)

Note that, in contrast to the Minkowski bulk, the energy of the scalar modes with
given momentum does not depend on the mass of the field quanta. The mass enters in the
problem through the parameter ν ≥ 0. Now, one can see that in the presence of imaginary
roots k1 = iχ, for the scalar field modes with k2 + γ2 < χ2, the energy becomes imaginary.
This signals the instability of the vacuum state under consideration. In the discussion
below, the values of the coefficients β1 and β2, for which there are no imaginary roots of
the eigenvalue Equation (5), are assumed. The corresponding conditions read [60]

β1,2 ≤ 0∪ {β1β2 ≤ 0, β1 + β2 > 1/a}. (7)
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For a general (D + 1)-dimensional spacetime with a smooth boundary ∂Ms, the SEMT
T(s)

ik (x) = τikδ(x; Ms), localized on the boundary by the one-sided Dirac delta function
δ(x; Ms), is given by [57]

τik = (1/2− 2ξ)hik ϕnl∇l ϕ + ξKik ϕ2. (8)

Here, hik = gik + nink is the induced metric on the boundary, with ni being the inward-
pointing unit normal vector for Ms, and Kik = hl

ih
m
k ∇lnm is the corresponding extrinsic

curvature tensor. The expression (8) was obtained in Ref. [57] by using the standard
variational procedure for the action of a scalar field with general curvature coupling
parameter and with an appropriate boundary term localized on Ms. Denoting the vacuum
state by |0〉, the VEV of the SEMT is presented as

〈0|T(s)
ik (x)|0〉 = δ(x; Ms)〈0|τik(x)|0〉, (9)

where the VEV 〈τik(x)〉 ≡ 〈0|τik(x)|0〉 is written in terms of the Hadamard function
G(1)(x, x′) = 〈0|ϕ(x)ϕ(x′) + ϕ(x′)ϕ(x)|0〉 by the formula

〈τik(x)〉 = 1
2

lim
x′→x

[
(1/2− 2ξ)hiknl∇l + ξKik

]
G(1)(x, x′). (10)

The limit contains two types of divergences. The first type of the divergences is present
already in the case when the point x does not belong to the boundary. The corresponding
divergent part is the same as that in the problem where the branes are absent and is removed
by the subtraction from the Hadamard function in Equation (10), the corresponding function
in the brane-free geometry. The SEMT is absent in the latter geometry and the brane-
free Hadamard function does not contribute to the VEV of the SEMT. The second type
of divergences originates from the surface divergences in quantum field theory with
boundaries and arises when the point x belongs to the boundary.

3. VEV of the SEMT
3.1. General Expression

In the problem under consideration, and for the region a1 ≤ x1 ≤ a2, the inward-
pointing normal is given by ni = n(j)i = (−1)jδ1

i α/z for the brane at x1 = aj. The
corresponding induced metric reads hik = gik, i, k 6= 1, and h11 = 0. Now, it can be
immediately checked that the extrinsic curvature tensor for the branes vanishes, Kik = 0.
Hence, the VEV of the SEMT is expressed as

〈τik(x)〉 =
(

1
4
− ξ

)
hiknl lim

x′→x
∇lG(1)(x, x′). (11)

The expression for the Hadamard function in the region between the branes is obtained
from the corresponding expression for the Wightman function derived in Ref. [56]. The
Wightman function is presented in the decomposed form

G(1)(x, x′) = G(1)
j (x, x′) +

2(zz′)D/2

(2πα)D−1

∫
dk eik∆x

∫ ∞

0
dγ γJν(γz)Jν(γz′)

×
∫ ∞

w
dλ

cosh(
√

λ2 − w2∆t)√
λ2 − w2

2 cosh
[
λ
(
x1 − x′1

)]
+∑l=±1

[
e|x

1+x′1−2aj |λcj(λ)
]l

c1(λ)c2(λ)e2aλ − 1
, (12)

where ∆x = x− x′, w =
√

γ2 + k2, k = |k|, Jν is the Bessel function, and

cj(λ) =
β jλ− 1
β jλ + 1

. (13)
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In Equation (12),

G(1)
j (x, x′) = G(1)

0 (x, x′) +
(zz′)D/2

(2πα)D−1

∫
dk eik∆x

∫ ∞

0
dγ γJν(γz)Jν(γz′)

×
∫ ∞

0
dλ

e−i
√

λ2+w2∆t
√

λ2 + w2 ∑
l=±1

[
ei|x1+x′1−2aj |λcj(iλ)

]l
, (14)

is the Hadamard function in the problem with a brane at x1 = aj when the second brane
is absent. Again, it is obtained from the corresponding Wightman function given in
Refs. [55,56]. The first term in the right-hand side, G(1)

0 (x, x′), is the Hadamard function
in AdS spacetime without branes. The last term in Equation (12) is interpreted as the
contribution to the Hadamard function in the region a1 ≤ x1 ≤ a2, induced by the brane at
x1 = aj′ when this term is added to the problem with a single brane at x1 = aj. Here, and
below, j′ = 1 for j = 2 and j′ = 2 for j = 1.

Combining (11) and (12), the SEMT on the brane at x1 = aj is decomposed as

〈τik〉j = 〈τik〉(0)j + 〈τik〉ind
j . (15)

Here, 〈τik〉(0)j is the VEV of the SEMT when the second brane is absent and 〈τik〉ind
j is

induced by the second brane at x1 = aj′ . The VEV 〈τik〉(0)j is obtained from Equation (11)
with the Hadamard function (14). By taking into account that in the AdS spacetime without
branes the SEMT is absent, one obtains:

〈τk
i 〉

(0)
j = (4ξ − 1)

δk
i β jzD+1

(2π)D−1αD

∫
dk

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ

1√
λ2 + b2

λ2

1 + λ2β2
j
. (16)

The vacuum SEMT induced by the second brane comes from the last term in Equation (12).
It is presented in the form

〈τk
i 〉ind

j = (4ξ − 1)
2δk

i β jzD+1

(2π)D−1αD

∫
dk

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

b
dλ

λ2
√

λ2 − b2

×
β j′λ + 1
β jλ− 1

1
(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

. (17)

The expression (16) for the self-SEMT is divergent and needs a regularization with a
subsequent renormalization removing the divergences. This type of surface divergence is
well known in quantum field theory with boundaries.

Note that for an observer living on the brane x1 = aj, the D-dimensional line element
is obtained from Equation(1), taking dx1 = 0. It describes D-dimensional AdS spacetime
generated by a cosmological constant Λ′ = (1− 2/D)Λ. From the point of view of an
observer on the brane, the energy–momentum tensor 〈τk

i 〉j is a source of gravitation,
with the energy density ε j = 〈τ0

0 〉j and isotropic effective pressure pj = −〈τ2
2 〉j = · · · =

−〈τD
D 〉j. The corresponding equation of state reads pj = −ε j, hence 〈τk

i 〉j is a source of
the cosmological constant type. Certainly, the latter property is a consequence of the
symmetry in the problem under consideration. In accordance with Equation (15), the
surface energy density is decomposed into the self-energy and the contribution induced by
the second brane:

ε j = ε
(0)
j + εind

j , (18)

where εind
j = 〈τ0

0 〉ind
j .

The regularization of the divergent expression on the right-hand side of Equation (16),
based on the generalized zeta function approach, is discussed in Appendix A. The expres-
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sion is decomposed into pole and finite contributions obtained from Equation (A15) in
combination with Equation (A2). In the principal part prescription the finite self-energy, ε

(0)
j

is identified with the finite part of the corresponding Laurent expansion near the physical
point s = 1. In order to remove the divergent part, to note is that the VEV 〈τik〉j is a part
of a theory which contains other contributions localized on the brane and the divergences
in 〈τik〉j are absorbed by renormalizing the parameters in those contributions. The finite

part of the SEMT 〈τik〉(0)j is given by Equation (A19). This part contains renormalization
ambiguities, which can be fixed by imposing additional renormalization conditions. Here,
the situation is completely parallel to that for the case of the total Casimir energy discussed,
for example, in Ref. [4]. Similar to Equation (15), the Casimir energy for a system composed
of separate bodies is decomposed into the self-energies and the interaction energy. The
renormalization is required only for the self-energies.

Unlike the self-energy part, ε
(0)
j , the surface energy density, εind

j , and the related SEMT,

〈τk
i 〉ind

j , are finite and uniquely defined. The main concern in the discussion below is
that part of the energy–momentum tensor. Integrating over the angular coordinates of k
and introducing the polar coordinates in the plane (k, u), one integrates over the related
polar angle:

〈τk
i 〉ind

j =
(4ξ − 1)δk

i β jzD+1

2D−2π
D−1

2 Γ(D−1
2 )αD

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dr rD−2 β j′λ + 1

β jλ− 1

× λ

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

∣∣∣∣
λ=
√

γ2+r2
. (19)

Next, let us introduce polar coordinates in the plane (γ, r). The angular integral is
evaluated by using the result [61]

∫ 1

0
dxx(1− x2)

D−3
2 J2

ν(ux) =
Γ(D−1

2 )

22ν+1 u2νFν(u), (20)

with the function

Fν(u) =
1F2(ν + 1

2 ; D+1
2 + ν, 1 + 2ν;−u2)

Γ(D+1
2 + ν)Γ(1 + ν)

. (21)

Here, Γ is the gamma function and 1F2(a; b, c; x) is the hypergeometric function.
This gives:

〈τk
i 〉ind

j =
(4ξ − 1)δk

i β jzD+2ν+1

2D+2ν−1π
D−1

2 αD

∫ ∞

0
dλ

β j′λ + 1
β jλ− 1

λD+2ν+1Fν(λz)
(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)

. (22)

From this it follows that the induced SEMT on the brane x1 = aj vanishes for special
cases of Dirichlet and Neumann boundary conditions on that brane. Depending on the
coefficients β j and on the separation between the branes, the induced energy density
εind

j can be either positive or negative (see numerical examples below). Introducing a

new integration variable u = λz, one can see that the product αD〈τk
i 〉ind

j depends on the
quantities z, aj, β j, having dimension of length, in the form of two dimensionless ratios
a/z, β j/z. Those ratios are the proper values of the quantities, measured by an observer
with fixed z, in units of the curvature radius α. This feature is a consequence of the AdS
maximal symmetry.

3.2. Minkowskian Limit and a Conformally Coupled Massless Field

To clarify the features of the SEMT on the branes, let us consider special cases and
asymptotic regions of the parameters. First, let us discuss the Minkowskian limit cor-
responding to α → ∞ for fixed coordinate y. For the coordinate z, in the leading or-
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der, one has z ≈ α and the line element (1) tends to the Minkowskian interval ds2
M =

dt2 −
(
dx1)2 − dx2 − dy2. The geometry of the corresponding problem consists of two par-

allel plates at x1 = a1 and x1 = a2 with the boundary condition (1− (−1)jβ j∂1)ϕ(x) = 0
at x1 = aj in the region a1 ≤ x1 ≤ a2; here, ∂1 ≡ ∂/∂x1 . For relatively large values of α
and for a massive field, the parameter ν is large, ν ≈ mα, and one needs the asymptotic
of the function Fν(λz) when both the argument and the order are considerably large. The
corresponding analysis in Ref. [55] shows that the function Fν(νλ/m) is exponentially
suppressed for ν� 1 and λ < m. For λ > m, the leading behavior is approximated by [55]

Fν

( ν

m
λ
)
≈
(
λ2 −m2)D/2−1

(2m/ν)2ν+1

2
√

πΓ(D
2 )λ

D+2ν−1
. (23)

By using this asymptotic for the part of the integral in Equation (22) over the region
m ≤ λ < ∞, one obtains the SEMT on the plate x1 = aj in Minkowski spacetime, 〈τk

i 〉ind
(M)j =

limα→∞〈τk
i 〉ind

j , given by

〈τk
i 〉ind

(M)j =
(4ξ − 1)δk

i β j

2D−1πD/2Γ(D
2 )

∫ ∞

m
dλ

β j′λ + 1
β jλ− 1

λ2(λ2 −m2)D/2−1

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)
. (24)

This result for a massive field was obtained in Ref. [58] as a limiting case of the problem
with two branes in AdS spacetime parallel to the AdS boundary. In the case of a massless
field, the expression for 〈τk

i 〉ind
(M)1 + 〈τk

i 〉ind
(M)2, obtained from Equation (24), coincides with the

result derived in Ref. [60]. The VEV of the SEMT for a single Robin boundary in background
of (3 + 1)-dimensional Minkowski spacetime has also been considered in Refs. [62,63].

In the case of a massless field with conformal coupling, one has ξ = ξD = D−1
4D

and ν = 1/2. By taking into account that J1/2(x) =
√

π
2x sin x, from Equation (20) one

obtains [55]:

F1/2(u) =
2√
πu2


 1

Γ
(

D
2

) −
J D

2 −1(2u)

u
D
2 −1


. (25)

Substituting this expression into Equation (22) one obtains

εind
j = (z/α)Dεind

(M)j, (26)

with

εind
(M)j = −21−Dβ j

Dπ
D
2

∫ ∞

0
dλ

β j′λ + 1
β jλ− 1


 1

Γ
(

D
2

) −
J D

2 −1(2λz)

(λz)D/2−1




× λD

(β1λ− 1)(β2λ− 1)e2aλ − (β1λ + 1)(β2λ + 1)
. (27)

For a conformally coupled massless scalar field, the problem considered here is con-
formally related to the problem of two Robin plates at x1 = aj, j = 1, 2, in Minkowski

spacetime, described by the interval ds2
M = dt2 −

(
dx1)2 − dx2 − dz2, intersected by a

Dirichlet plate located at z = 0. The presence of the latter is related to the boundary
condition for scalar field modes imposed on the AdS boundary z = 0. The surface energy
density (27) is induced on the plate x1 = aj by the presence of the second plate x1 = aj′ .
The part of εind

(M)j coming from the first term in the square brackets is the corresponding
quantity in the geometry where the plate z = 0 is absent (see Equation (24) for m = 0). The
part with the second term is a consequence of the presence of the plate z = 0. Note that

399



Physics 2023, 5

εind
(M)j vanishes on that plate: εind

(M)j|z=0 = 0. This is a consequence of Dirichlet boundary
conditions at z = 0.

4. Asymptotics and Numerical Analysis

In this Section, the behavior of the VEV for SEMT in asymptotic regions of the parame-
ters is studied. Let us start with the asymptotics at relatively small and large separations
between the branes. For a given z, the proper separation between the branes is given by
a(p) = αa/z. For quite small proper separations compared to the curvature radius, one
has a/z � 1 and the integral in Equation (22) is dominated by the contribution of the
region with large enough values of the argument of the function Fν(λz). By using the
corresponding asymptotic [55],

Fν(u) ≈
22ν

√
πΓ
(

D
2

)
u2ν+1

, u� 1, (28)

one can see that the relation

〈τk
i 〉ind

j ≈ (z/α)D〈τk
i 〉ind

(M)j|m=0, (29)

takes place, where 〈τk
i 〉ind

(M)j|m=0 is given by Equation (24) with m = 0. In the limit under
consideration, the main contribution to the SEMT comes from the zero-point fluctuations
with wavelengths smaller than the curvature radius and the effect of the gravitational field
is weak. The asymptotic (29) is further simplified if the separation a is smaller than the
length scales determined by the boundary conditions, a/|βl | � 1, l = 1, 2. For Dirichlet
boundary conditions on the brane x1 = aj′ , β j′ = 0, the condition a/|β j| � 1 is assumed.
Under those conditions, λ|βl | � 1 (λ|β j| � 1 in the case β j′ = 0) for the region of λ that
dominates in the integral on the right-hand side of Equation (24) (with m = 0). In the
leading order one obtains:

〈τk
i 〉ind

j ≈ δk
i
(z/α)D(4ξ − 1)

2Dπ
D+1

2 aD−1
ζ(D− 1)Γ

(
D− 1

2

){
1/β j′ , β j′ 6= 0(
22−D − 1

)
/β j, β j′ = 0

, (30)

with ζ(u) being the Riemann zeta function. Note that the asymptotic (29) also describes the
behavior of the SEMT near the AdS horizon. As is seen from Equation (30), in the special
cases of minimally (ξ = 0) and conformally (ξ = ξD) coupled fields and for quite small
separations between the branes, the energy density induced on the brane x1 = aj by the
second brane is positive for β j′ < 0 and negative for β j′ > 0. For the Dirichlet boundary
condition on the second brane (β j′ = 0), the sign of the induced energy density coincides
with the sign of the product (1− 4ξ)β j.

In the opposite limit of considerably large proper separations compared with the
curvature radius, one has a/z� 1 and the main contribution to the integral in Equation (22)
gives the region near the lower limit, corresponding to λz � 1. In the leading order,
replacing the function Fν(λz) by

Fν(0) =
1

Γ(ν + 1)Γ
(

D+1
2 + ν

) , (31)

one obtains

〈τk
i 〉ind

j ≈ 8(4ξ − 1)δk
i (z/2)D+2ν+2β j/z

π
D−1

2 Γ(ν + 1)Γ
(

D+1
2 + ν

)
αD

∫ ∞

0
dλ

λβ j′ + 1
λβ j − 1

λD+2ν+1

(λβ1 − 1)(λβ2 − 1)e2λa − (λβ1 + 1)(λβ2 + 1)
. (32)

This expression is further simplified for separations larger than the length scales in
Robin boundary conditions. Assuming a� |βl |, l = 1, 2, one can see that λ|βl | � 1 for the
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region, giving the dominant contribution to the integral in Equation (32). For the case of
Neumann boundary conditions on the brane x1 = aj′ , corresponding to the limit |β j| → ∞,
for separations a� |β j|, one has λ|β j| � 1 in the region with the dominant contribution
to the integral. For the leading order term in the VEV of the SEMT and for non-Neumann
(Aj 6= 0) boundary conditions on the second brane, one finds:

〈τk
i 〉ind

j ≈ δk
i
(1− 4ξ)ζ(D + 2ν + 2)β j/a

π
D
2 Γ(ν + 1)αD(2a/z)D+2ν+1

(D + 2ν + 1)Γ
(

D
2
+ ν + 1

)
. (33)

For Neumann boundary conditions on the second brane, an additional factor (2−D−2ν−1 − 1)
should be added to the right-hand side of Equation (33). One can see that at considerably
large distances between the branes the decay of the SEMT, as a function of the proper sepa-
ration, is a power law for both massive and massless fields. This feature for massive fields
is in contrast with the corresponding behavior for parallel plates in the Minkowski bulk,
where the suppression is exponential, by the factor e−2ma. Let us note that the Formula (32)
also gives the asymptotic of the SEMT near the AdS boundary. As seen, for fixed β j, the
SEMT tends to zero on the AdS boundary, like zD+2ν+1. The asymptotic estimate (33)
shows that for β j < 0, and for non-Neumann boundary conditions on the second brane
(1/β j′ 6= 0), at quite large separations between the branes the induced energy density εind

j
is negative for minimally and conformally coupled fields.

Figure 2 presents the VEV of the energy density, induced on the brane at x1 = a1 by
the brane at x1 = a2 as a function of the proper separation between the branes a/z. The
graphs are plotted for a scalar field in (4 + 1)-dimensional AdS spacetime (D = 4), for the
Robin boundary condition with β1/z = −0.5 and with the mass corresponding to mα = 0.5.
The dependence on the proper separation is displayed for different values of the ratio β2/z
(the numbers near the curves) and for Dirichlet and Neumann boundary conditions on the
second brane. Figure 2, left, and Figure 2, right, correspond to conformally and minimally
coupled fields, respectively. In accordance with the asymptotic analysis given above, for
minimally and conformally coupled fields and at relatively small separations between
the branes, the energy density, induced by the second brane, is positive (negative) for
non-Dirichlet (Dirichlet) boundary conditions on the second brane. At considerably large
separations, the energy density is negative for non-Neumann boundary conditions on the
second brane and is positive for Neumann boundary conditions. The inset in Figure 2, right,
is given to emphasize the change in the sign of the surface energy density as a function of
the separation between the branes.

In Figure 3, for conformally (Figure 3, left) and minimally (Figure 3, right) coupled
scalar fields in D = 4 spatial dimensions, the dependence of the energy density εind

1 on
the Robin coefficient β1/z is plotted for different values of the Robin coefficient β2/z
(the numbers marking the curves) on the second brane and for Dirichlet and Neumann
boundary conditions. The graphs are plotted for mα = 0.5 and a/z = 1.
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Figure 2. The induced surface energy density on the brane for conformally (left) and minimally
(right) coupled fields at x1 = a1, in units of α−D, versus the proper separation between the branes for
D = 4, mα = 0.5, and β1/z = 0.5. The graphs are presented for different values of the ratio β2/z (the
numbers marking the curves) and for Dirichlet (marked ”Dir”) and Neumann (”Neu”) boundary
conditions on the second brane (β2/z = 0 and β2/z = ∞, respectively). See text for details.
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Figure 3. The induced surface energy density on the brane for conformally (left) and minimally
(right) coupled fields at x1 = a1 for D = 4, mα = 0.5, and a/z = 1 versus the Robin coefficient
β1/z for different values of β2/z (the numbers marking the curves), β2/z = 0 and β2/z = −∞ for
Dirichlet (marked ”Dir”) and Neumann (”Neu”) boundary conditions). See text for details.

The dependence of the surface energy density on the mass of the field (in units of
1/α) is displayed in Figure 4 for conformally (Figure 4, left) and minimally (Figure 4, right)
coupled scalar fields in spatial dimensions D = 4. The graphs are plotted for a/z = 1,
β1/z = −0.5, and for different values of the ratio β2/z (the numbers marking the curves).
The graphs corresponding to Robin boundary conditions, −∞ < β2/z < 0, are located
between the graphs corresponding to Neumann and Dirichlet boundary conditions on
the second brane (β2/z = −∞ and β2/z = 0, respectively). As seen, the induced energy
density, in general, is not a monotonic function of the field mass. In addition, for fixed
values of the other parameters it may change the sign as a function of the mass. In particular,
that is the case for a minimally coupled field with the boundary conditions corresponding
to β1/z = −0.5 and β2/z = −0.25 (see Figure 4, right).
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Figure 4. The dependence of the surface energy density on the first brane, induced by the second
brane for conformally (left and minimally right coupled fields versus the field mass for D = 4,
a/z = 1, β1/z = −0.5 and for separate values of β2/z (the numbers marking the curves). The graphs
for Dirichlet (marked “Dir”) and Neumann (”Neu”) boundary conditions on the second brane are
presented as well. See text for details.

5. Conclusions

For a scalar field with general curvature coupling, the VEV of the SEMT induced on
branes in AdS spacetime orthogonal to its boundary has been studied. On the branes,
the field operator is constrained by the boundary conditions (3) or, equivalently, by the
conditions (4). To ensure the stability of the vacuum state, the values of the parameters
in Robin boundary conditions are restricted by (7). For the geometry of the branes under
consideration, the extrinsic curvature tensor is zero and the general formula for the SEMT
is simplified to Equation (11). From the viewpoint of observers living on the branes this
SEMT presents a gravitational source with the equation of state for a cosmological constant.
In order to evaluate the corresponding VEV, the Hadamard function is used, obtained
from the positive frequency Wightman function from Ref. [56]. In the region between the
branes, the Hadamard function is decomposed into single-brane and the second-brane-
induced contributions. This allows the separation of the part generated by the second
brane from the total VEV of the SEMT. The surface divergences are contained in the self-
energy contributions on the branes and the renormalization is required for those parts
only. In order to extract the finite parts in the corresponding VEVs, in Appendix A, the
regularization procedure based on the generalized zeta function approach is employed. The
divergences, appearing in the form of simple poles, are absorbed by the renormalization
of the corresponding parameters in the “classical” action localized on the branes. The
finite part of the SEMT separated in this way contains renormalization ambiguities and
additional conditions are required to obtain a unique result. This is fully similar to the
case of the self-energy in the Casimir effect in the geometry of a single boundary (see, for
example, the corresponding discussion in Ref. [4]).

The part of the SEMT induced on the brane by the presence of the second brane
is finite and uniquely defined. The induced SEMT on the brane x1 = aj is given by
the expression (22). It vanishes for special cases of Dirichlet and Neumann boundary
conditions on that brane. As a consequence of the maximal symmetry of AdS spacetime,
for the general case of Robin boundary conditions, the dimensionless quantity αD〈τk

i 〉ind
j is

completely determined by the dimensionless ratios a/z and β j/z, j = 1, 2. The first one is
the proper separation between the branes, measured by an observer with fixed z in units of
the curvature radius α. The VEV of the SEMT for Robin parallel plates in the Minkowski
bulk is obtained from Equation (22) in the limit α→ ∞ and is expressed as Equation (24).
The latter includes special cases previously discussed in the literature and coincides with
the result obtained in Ref. [58] as a limit α → ∞ of the SEMT in the geometry of branes
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parallel to the AdS boundary. For a conformally coupled massless field, the problem in
the AdS bulk is conformally related to the problem in Minkowski spacetime consisting of
two parallel Robin plates perpendicularly intersected by a Dirichlet plate, the latter being
the image of the AdS boundary. The VEV in the Minkowski counterpart is given by the
Formula (27), where the contribution of the Dirichlet plate comes from the term in the
square brackets with the Bessel function.

At quite small separations between the branes, compared to the curvature radius and
length scales determined by the Robin coefficients, the influence of the gravitational field on
the SEMT is small enough and the leading term in the corresponding expansion is expressed
by Equation (30). In this limit, and for non-Dirichlet (Dirichlet) boundary conditions on the
brane x1 = aj′ , the sign of the surface energy density induced on the brane x1 = aj coincides
with the sign of the product (4ξ − 1)β j′ ((1− 4ξ)β j). The effects of the gravitational field are
essential at proper separations between the branes of the order or larger than the curvature
scale of the background geometry. Additionally, assuming that the separation is larger than
the length scales fixed by the boundary conditions, the leading behavior of the induced
SEMT is described by Equation (33) for non-Neumann boundary conditions on the second
brane. The sign of the energy density coincides with the sign of (1− 4ξ)β j. For Neumann
conditions on the second brane, an additional factor (2−D−2ν−1 − 1) needs to be added on
the right-hand side of Equation (33) and the energy density at quite large distances has
an opposite sign. An important feature of the large-distance behavior of the SEMT is the
power law decay as a function of the proper separation. For parallel plates in Minkowski
spacetime, the corresponding decay for massive fields is exponential. The induced surface
energy density vanishes on the AdS boundary like zD+2ν+1 and behaves as (z/α)D near
the AdS horizon.

The investigations of the brane-induced effects on the properties of the scalar vacuum
in AdS spacetime have discussed the branes parallel or perpendicular to the AdS boundary.
An interesting generalization, that includes these special cases, would be the geometry of
branes crossing the AdS boundary at an arbitrary angle. In this case, the dependence of the
scalar mode functions on the coordinates parallel and perpendicular to the AdS boundary
are not separable and the problem is more complicated. It is expected that for a general
crossing angle, in addition the normal and shear Casimir forces, a rotational momentum to
appear generated by the vacuum fluctuations.

The study of the boundary-induced effects on the fermionic and electromagnetic vacua
for branes perpendicular to the AdS boundary is another direction for further research. The
dependence of the mode functions on the coordinate z is expressed in terms of the functions
Jmα±1/2(γz) for the fermionic field (with m being the mass of the field) and in terms of
the function JD/2−1(γz) for the vector potential of the electromagnetic field. Similar to the
case of a scalar field, it is expected that the equation determining the eigenvalues of the
quantum number corresponding to the direction normal to the branes to be the same as
that in the Minkowski bulk, with the same boundary conditions on planar boundaries.
The summation over those eigenvalues in the corresponding mode sum for the VEV of
the energy–momentum tensor can be achieved using the generalized Abel–Plana formula.
This allows the explicit extraction of the brane-induced contribution. Note that previous
investigations of the vacuum energy–momentum tensor for fermionic and electromagnetic
fields have considered branes parallel to the AdS boundary (see [41–45]). The bag boundary
condition has been imposed for the fermionic field, and for the electromagnetic field, the
perfect conductor and confining boundary conditions have been discussed.
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Appendix A. Surface Densities for a Single Brane

It was shown above that the VEV of the SEMT for a single brane at x1 = aj is presented
in the form (16). The corresponding expression is divergent and can be regularized by
using the generalized zeta function approach (for a general introduction and applications
in the theory of the Casimir effect, see, e.g., [64–66]). Let us consider the function

F(s, z) =
µs−1β jzD+1

(2π)D−1

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ λ2

∫
dk

(
λ2 + γ2 + k2)− s

2

1 + λ2β2
j

, (A1)

with, in general, complex argument s. As seen below, the expression on the right-hand side
is finite for Re s > D. The scale parameter µ, having dimension of inverse length, is intro-
duced to keep the function F(s, z) dimensionless. Following the principal part prescription,
considered previously in the literature for the total Casimir energy in ultrastatic manifolds
with boundaries (see [64,65,67]), the SEMT in the geometry of a single brane is obtained as

〈τk
i 〉

(0)
j = δk

i
4ξ − 1

αD PP[F(s, z)]s=1, (A2)

where PP[F(s, z)]s=1 corresponds to the finite part of the Laurent expansion of the function
F(s, z) near s = 1. The evaluation of that part is reduced to the extraction of the pole term.

The integral over k in Equation (A1) is expressed in terms of the gamma function and
one obtains

F(s, z) =
µs−1β jzD+1

2D−1πD/2

Γ(1− D−s
2 )

Γ( s
2 )

∫ ∞

0
dγ γJ2

ν(γz)
∫ ∞

0
dλ λ2

(
λ2 + γ2) D−s

2 −1

1 + λ2β2
j

. (A3)

For the further transformation of the expression on the right-hand side of Equation (A3)
the integral representation

(
λ2 + γ2

) D−s
2 −1

=
1

Γ
(

1− D−s
2

)
∫ ∞

0
dx x

s−D
2 e−(λ2+γ2)x (A4)

is used.
With this representation, the integral over γ is evaluated by the formula [61]

∫ ∞

0
dγ γJ2

ν(γz)e−γ2x =
1

2x
exp

(
− z2

2x

)
Iν

(
z2

2x

)
, (A5)

with Iν(u) being the modified Bessel function. Passing to a new integration variable
u = z2/(2x), one finds

F(s, z) =
µs−1β jzs+1

2
D+s

2 πD/2Γ( s
2 )

∫ ∞

0
du u

D−s
2 −1e−u Iν(u)

∫ ∞

0
dλ

λ2e−λ2 z2
2y

1 + λ2β2
j

. (A6)

The λ-integral is evaluated in terms of the complementary incomplete gamma function
Γ(−1/2, x). As a result, the function F(s, z) is presented as

F(s, z) =
(µz)s−1β jz2

2
D+s

2 +2π
D−1

2 Γ( s
2 )|β j|3

∫ ∞

0
du u

D−s
2 −1S

(
2β2

j /z2, u
)

, (A7)

where the function

S(b, u) = e−u Iν(u)e
1

bu Γ
(
−1

2
,

1
bu

)
(A8)

is used.

405



Physics 2023, 5

In the limit u→ ∞, the function (A8) tends to the limiting value
√

2b/π and limu→0 S(b, u) =
0. This shows that the representation (A7) is valid in the region Re s > D of the complex
plane s.

The divergence of the integral in Equation (A8) at s = 1 comes from the divergence
in the upper limit of the integral. By using the expansions of the functions e−u Iν(u) and
e

1
bu Γ
(
− 1

2 , 1
bu

)
(see, e.g., [68]) for quite large values of u, the following expansion is obtained:

S(b, u) =

√
2b
π

∞

∑
n=0

[
An(b)

un −
√

π
Bn(b)

un+ 1
2

]
. (A9)

For the coefficients, one has:

A0 = 1, A1 =
2
b
− 1

2

(
ν2 − 1

4

)
,

A2 =
4

3b2 +

(
ν2 − 1

4

)[
1
8

(
ν2 − 9

4

)
− 1

b

]
, (A10)

and

B0 =
1√
b

, B1 =
1

b
3
2
− 1

2
√

b

(
ν2 − 1

4

)
,

B2 =
1

2
√

b

[
1
b2 +

(
ν2 − 1

4

)(
1
4

(
ν2 − 9

4

)
− 1

b

)]
. (A11)

In order to separate the pole term in Equation (A7), let us rewrite the function F(s, z)
in the form

F(s, z) =
(µz)s−1β jz2

2
D+s

2 +2π
D−1

2 Γ( s
2 )|β j|3

{∫ 1

0
du u

D−s
2 −1S

(
bj, u

)

+
∫ ∞

1
du u

D−s
2 −1[S

(
bj, u

)
− SN

(
bj, u

)]
+
∫ ∞

1
du u

D−s
2 −1SN

(
bj, u

)}
, (A12)

where bj = 2β2
j /z2 and

SN(b, u) =

√
2b
π

N

∑
n=0

[
An(b)

un −
√

π
Bn(b)

un+ 1
2

]
. (A13)

For N > (D− 3)/2, the first two integrals in the curly brackets in Equation (A12) are
convergent for s = 1. By using Equation (A13) in the last integral in Equation (A12), the
corresponding contribution to the function F(s, z) is presented as

F̄(s, z) = −

(
µz/
√

2
)s−1

z

2
D+1

2 π
D
2 Γ( s

2 )β j

N

∑
n=0

[
An(bj)

s + 2n− D
−

√
πBn(bj)

s + 1 + 2n− D

]
. (A14)

The function F̄(s, z) has a simple pole at s = 1. The pole comes from the term with
n = (D− 1)/2 for odd D and from the term with n = D/2− 1 for even D.

Expanding the function (A14) near the physical point s = 1, the function F(s, z) is
decomposed as

F(s, z) =
F(p)(s, z)

s− 1
+ F(f)(z) + · · · , (A15)
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where the unshown terms represent the part vanishing in the limit s → 1. Here, the
coefficient in the pole term reads

F(p)(s, z) = − zCD(bj)

(2π)
D+1

2 β j

, (A16)

and the finite term reads

F(f)(z) =
β jz2

2
D+1

2 +2π
D
2 |β j|3

{∫ 1

0
du u

D−3
2 S
(
bj, u

)
+
∫ ∞

1
du u

D−3
2
[
S
(
bj, u

)
− SN

(
bj, u

)]}

+
z

(2π)
D+1

2 β j

{
CD(bj)

[
ln
(

µz√
2

)
+

1
2

ψ(1/2)
]
−

N′
∑
n=0

[
An(bj)

1 + 2n− D
−
√

πBn(bj)

2 + 2n− D

]}
, (A17)

where the prime in the sum indicates that the term n = (D− 1)/2 for odd D and the term
n = D/2− 1 for even D to be omitted. In Equation (A17), ψ(x) is the digamma function
with ψ(1/2) ≈ −1.964 and

CD(b) =

{
A D−1

2
(b) for odd D ,

−√πB D
2 −1(b) for even D .

(A18)

In the principal part prescription, the physical value extracted from the divergent
expectation value of the SEMT 〈τk

i 〉
(0)
j is identified with

〈τk
i 〉

(0)
j = δk

i
4ξ − 1

αD F(f)(z). (A19)

Note that this result contains a scale ambiguity. Under scale change it transforms to

〈τk
i 〉

(0)
j (µ′) = 〈τk

i 〉
(0)
j (µ) + δk

i (4ξ − 1)
ln(µ′/µ)CD(bj)z

(2π)
D+1

2 αDβ j

. (A20)

The logarithmic dependence on the scale µ is a distinctive feature of the regularization
procedure.
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Abstract: The paper provides an extended overview of recent results obtained by the authors in the
process of studying the vacuum interaction of topological cosmic strings at short distances, taking
into account their transverse size a and the mass m of the quantized field. We consider the case of a
massive real-valued scalar field with minimal coupling. It is shown that at the interstring distances
significantly larger than the Compton length, lc = 1/m, the Casimir effect is damped exponentially.
On the other hand, at distances smaller than lc but much larger than the typical string width, the
field-mass influence becomes insignificant. In this case, the partial contribution of a massive field to
the Casimir energy is of the same order as the contribution of a massless one. At these distances, the
string’s transverse size is insignificant also. However, at the interstring distances of the same order as
a string radius, the energy of the vacuum interaction of thick strings may significantly surpass the
one for two infinitely thin strings with the same mass per unit length.

Keywords: Casimir effect; topological strings; effective action; dimensional regularization

1. Introduction

Seventy-five years ago, a phenomenon was predicted [1] and then named the Casimir
effect in honor of the author. Being experimentally confirmed, it became direct evidence of
the close relationship between the macroscopic external conditions and quantized fields.
Since those times, it has shown great development, both in experimental investigations and
at the level of theoretical research. Now, it is a subject of study not only by specialists in
quantum field theory and physics of condensed matter and nanotechnology but also by
scientists working in various fields of gravity and cosmology (see, e.g., [2]).

One of the problems related to modern astrophysics, which was considered in the
literature, is the problem of the vacuum interaction of cosmic strings.

Cosmic strings are considered as one-dimensional-extended topological defects (closed
or infinite), which might be created under cosmological phase transitions during the Uni-
verse evolution [3,4]. In what follows, we use the term “string” for this kind of cosmic
string (so-called topological cosmic strings) and do not consider the case of non-topological
F-strings and D-strings, which may be formed during the interaction of multidimen-
sional branes.

A special interest in these types of defects arose in connection with the hypothesis that
they might represent one of the basic sources of primary fluctuations in the Hot Universe.
The hypothesis was not confirmed, but the cosmic strings are still considered to be a
possible origin of some observable effects (a review of the possible appearance and indirect
effects of cosmic strings is to be found in Ref. [5]). This stimulates the searches for ways
to detect cosmic strings and, consequently, the investigation of features concerning how
classical (or quantum) matter behaves in the corresponding curved backgrounds.

The study of the evolution of the cosmic-string net during its formation in the Early
Universe phase transitions implies that the investigations of processes happened under
close contact of strings and collisions [3,4]. In these processes, the account of the vacuum
(Casimir) string interaction may turn out to be significant.

Physics 2023, 5, 1163–1180. https://doi.org/10.3390/physics5040075 https://www.mdpi.com/journal/physics410
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The first estimate of the energy of Casimir of two parallel infinitely thin strings was
obtained in Ref. [6]. Subsequently, the result of this study was corrected in Refs. [7–9].

In papers [7,9], the authors proceeded within the framework of a local formalism,
where the object of study was the renormalized vacuum average of the energy–momentum
tensor (EMT) operator. In paper [8], a global formalism was applied, which allowed us
to work directly with the renormalized total vacuum energy. In studies [7–9], the direct
product of the two-dimensional Minkowski space and a two-dimensional locally flat surface
with two conical singularities was chosen as the spacetime model.

Meanwhile, the creation and evolution of cosmic strings do not imply that they are
necessarily parallel. In Ref. [10], the global formalism was extended to the different mutual
directions of strings. The Casimir energy due to the massless scalar field and infinitely thin
strings was computed for two interacting straight strings.

However, the string’s radius is determined by the energy scale of that phase transition
with broken symmetry when the string was created, and for the GUT strings, the radius has
an estimate of a ∼ 10−28cm. At these scales, the cone vertex represents not just a point-like
singularity but also the curvature, distributed over a cylindrical region of radius a, while
the metric should smoothly transit to the external conical domain. Therefore, it raises the
following question: how does the transverse string size influence the quantum field effects
near the strings?

In the meantime, another problem concerns the influence of the quantized field’s
mass on the Casimir effect. It is natural to suppose that the characteristic lengthy scale,
where the mass is significant, is a Compton length. Quantitatively, the latter is much larger
(for all known elementary particles) than the transverse size of Grand Unified Theory
(GUT) strings.

The effects of the finite core on the vacuum polarization around a single cosmic string have
been investigated earlier, and some nontrivial field-theory effects have been discovered [11–17].
In the present paper, we perform the next step and consider the Casimir effect arising in the
net of parallel cosmic strings, taking into account not only the non-zero strings’ widths but also
the non-zero field’s mass.

The striking feature of the multi-string background is that, due to translational sym-
metry along the z-axis, it is enough to analyze the geometry in the two-dimensional plane
transverse to the string net. Inside this plane, the scalar curvature does not vanish only on
a system of non-overlapping compact domains. As a result, the direct gravitational inter-
string interaction is absent. However, the global distinction of the spacetime considered
here, from the Minkowski one, leads to a change in the spectrum of vacuum fluctuations
and, consequently, to the appearance of the interstring attraction force, the Casimir effect.

Let us start with a qualitative analysis of the problem. First, to notice is that the energy
(per unit string’s length) of vacuum interaction has a dimensionality of the inverse length
square. Thus, from the dimensional quantities in the problem considred here, it can depend
only upon the interstring distance, d, the string radius, a, and the field’s Compton length,
lc = 1/m.

Then the relative energy (per unit length) of the interaction of two similar strings,
parallel to the z-axis, in the units of G = h̄ = c = 1 (where G denotes the Newtonian
constant of gravity, h̄ the Planck’s constant, and c the speed of light) can be presented in
the form

ECas

Z
= − 4

15π

µ1µ2

d2 F
( a

d
, md

)
, Z =

∫
dz , (1)

where µ1,2 is the strings’ masses per unit length, while F is a real-valued function. The
pre-factor just in front of F is determined using dimensional analysis and is specified to be
equal to the Casimir energy of two infinitely thin strings interacting via the massless scalar
field with minimal coupling. Let us note that with that choice of the pre-factor, the function
F tends to unit as a/d→ 0+ or md→ 0+. Actually, the vanishing of these arguments can
be interpreted both as neglect of the strings’ radii and as a transition to the massless field.
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Hereafter, we restrict the study to the case of the scalar field with minimal coupling.
It is related to the observation that for the case of the infinitely thin string, the non-zero
coupling leads to the appearance of a potential with the Aharonov-Bohm δ-like singularities
in the field equation. Such an appearance takes special attention, and the computational
results may drastically vary, in dependence on how one interprets these singularities [18,19].

However, the Compton length of the most massive currently known particle (the
t-quark) is lc ∼ 10−15 cm, while the width of GUT strings is estimated as a ∼ 10−28 cm,
what is of many orders less. If one considers the distances d � a then strings are to be
approximately considered to be infinitely thin, and hence, in Equation (1), one can replace

F
( a

d
, md

)
→ F1(md) = F (0, md) .

Now let us estimate the behavior of F1(md) as md tends to zero. This limit can be
regarded as a transition to the massless field limit with finite values d, and consequently,
with the choice of a pre-factor in Equation (1), one has F1 = 1 in this limit. On the other
hand, equally, this limit can be regarded as a transition d→ 0+ (for infinitely thin strings),
keeping the mass fixed. Therefore, the scale where the mass influence is significant is a
Compton length. Thus, at interstring distances of the order of lc or smaller, the influence of
mass is significant, and the partial contribution of massive modes into the vacuum energy
is comparable with the one of a massless field. But for finite strings’ width, if one considers
the distances 2a < d � lc, then the string transverse size cannot be neglected. However,
if the above estimates hold, in this regime, one can neglect the field’s mass and carry out
another substitution in Equation (1):

F
( a

d
, md

)
→ F2

( a
d

)
= F

( a
d

, 0
)

.

In what follows, the length scale, where the transverse strings’ size is significant, is
the string radius. Thus again, as soon as z̃ = a/d → 0+ the function F2 tends to unity.
Actually, if this limit is to be regarded as limit d→ ∞, then it is quite evident that at these
distances, strings interact as infinitely thin ones. Consequently, the result should reproduce
the Casimir energy of interaction of two infinitely thin strings, with the coefficient F2 = 1.
The same limit is to be valid if a tends to zero. But for the finite-width (or, equivalently,
”thick”) strings, one has d > 2a. Hence, the significant difference F2 from unity (and the
significant difference of the Casimir energy from the strings’ width) should take place if the
interstring distance does not significantly exceed 2a.

Below, it is explicitly shown that these qualitative estimates are fully confirmed.
Actually, there is a variety of string models. Some of them imply that the gravity-

induced Casimir force is not the only interaction. We compute a partial contribution to
the total interstring interaction within any model, for which the above assumptions on the
metric hold.

The computation is carried out within the so-called tr-ln formalism for the effective
action, where one starts from the expression for the total vacuum energy, expressed in
terms of the effective action.

Throughout the paper, we use the system of units G = h̄ = c = 1; the metric signature
is (+,−,−,−).

2. Multi-String Spacetime

Consider the following four-dimensional spacetime, which represents the Cartesian
product of two-dimensional Minkowski space and two-dimensional Riemannian manifold.
The observation that any two-dimensional Riemannian surface is locally conformal to the
Euclidean plane allows the reduction, by the appropriate coordinate transformation, of the
four-dimensional metric to the form

ds2 = dt2 − dz2 − e−σ(x)
(

dx2
1 + dx2

2

)
, (2)
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where x1 and x2 are the two-dimensional Riemannian space coordinates and t denotes the
time.

Let

σ(x) = ∑
α

σα

(
|x− xα|

)
, |x− xα| =

[
(x1 − xα1)

2 + (x2 − xα2)
2
]1/2

. (3)

Then the Ricci scalar reads:

R = ∑
α

Rα = ∑
α

eσ∆σα , (4)

where ∆ stands for the Laplacian associated with two-dimensional Euclidean metric in the
transverse subspace. If the supports of partial contributions, ∆σα, are compact and do not
intersect each other, one deals with ultra-static spacetime, where the curvature is non-zero
in a series of non-overlapping domains.

Choose the functions σα in the form

σα(x) = 2(1− βα) fα

(
rα

)
θ
(
aα − rα

)
+ 2(1− βα) ln

rα

aα
θ
(
rα − aα

)
, (5)

where aα is a conformal radius of αth string, all parameters βα 6 1, θ(·) stands for
the Heaviside step-function, and f is a twice-differentiable function of an argument
rα = |x− xα|, which satisfies the following boundary conditions:

fα

∣∣∣
rα=aα

= 0 ,
d fα

drα

∣∣∣∣
rα=aα

=
1
aα

. (6)

With such a choice of the conformal factor, e−σ, the scalar curvature vanishes every-
where if |x− xα| > aα holds for all α. Moreover, in this domain, the metric coincides with
that of a system of parallel infinitely thin cosmic strings [20]. Furthermore, the criterion of
the perturbation smallness and thus the validity of calculations within the perturbation
theory is a smallness of parameters (1− βα). It is assumed that for the GUT strings, the
estimate of these parameters is 10−6.

Therefore, the space defined above is to be regarded as a spacetime generated by the
net of parallel cosmic strings with non-zero width. The scalar curvature of this spacetime
reads:

R(x) =
{

eσ ∆σα , if exists α : |x− xα| 6 aα ;
0 , if for all α |x− xα| > aα .

(7)

The metric under consideration satisfies the Einstein equation, where on the right-hand
side, the energy-momentum tensor has the following time component:

Ttt =
R

16π
=

1
16π

eσ ∑
α

∆σα.

Hence, the energy per unit length of a system of thick strings equals

∫
Ttt
√
−g d2x =

1
16π ∑

α

∫
d2x ∆σα =

1− βα

8π ∑
α

∫
d2x ∆ fα ,

where g is the determinant of the metric tensor.
In what follows, the quantity

µα :=
1− βα

8π

∫
d2x ∆ fα (8)

is to be regarded as the energy per unit length of the αth string.
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The transition to the infinitely thin strings implies the limit of any support ∆σα to be
the single dot x = xα, preserving the value of integrals over d2x. This limit (as aα → 0+)
corresponds to the fixation of the linear energy density of any string. In this limit, the
exponential power in Equation (2) goes to

σ(x) = 2 ∑
α

(1− βα) ln |x− xα| . (9)

Then, regarding the limit in the distributional sense, one obtains:

lim
aα→0+

∆σα = 4π(1− βα) δ2(x− xα) . (10)

Therefore, in addition to Equation (6), when specifying the functions fα, one has to
demand ∫

d2x ∆ fα = 2π .

Then from Equation (8), one obtains

µα =
1− βα

4
,

and, in the limit aα → 0+, the heuristic expression,

Ttt(x) = eσ(x) ∑
α

µα δ2(x− xα) , (11)

holds.
As shown in Ref. [20], any two-dimensional x1x2-plane represents the locally flat

surface with a series of conical singularities located at the points xα, while the parameter
(1− βα) represents the angular deficit, related to αth conical vertex

δϕα = 8π µα = 2π(1− βα) .

Hereafter, we assume that the conformal coordinates cover the x1x2-plane globally.
In the case of single singularity, it takes place if µ < 1/4, while in the case of more
singularities—if the restriction ∑ µα < 1/2 holds and thus the conical subspace does not
acquire the sphere topology [21–24].

In the case of a single infinitely thin string, the spacetime metric has two striking
features: (i) the absence of any length parameters and (ii) higher symmetry. The first allows
us to state that for a massless field, the vacuum expectation value of the EMT depends
upon the distance, r, from the observation point to the singularity. In four dimensions of a
spacetime the EMT scales as

〈Tµν〉vac ∼ r−4

with µ, ν the four-dimensional indices.
The second feature allows the separation of variables in the field equation to construct

Green’s function analytically and to compute the renormalized 〈Tµν〉vac. In the case of
two strings and more, the problem becomes too complicated, and the perturbation theory
techniques become of particular significance [7–9].

The transition to the finite-width strings complicates the problem and demands the
concretization of functions σα. The smoothing of the cone vertices can be realized with the
following choice of the functions fα [25,26]:

fα(rα) = −
1
2

(
1− r2

α

a2
α

)
. (12)
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Now, the Ricci scalar is given by

R(x) =
{

4(1− βα)eσ/a2
α , if exists α : |x− xα| 6 aα ;

0 , if for all α |x− xα| > aα .

This model is known as the ”ballpoint-pen” model, and below, when considering the
Casimir effect in a system of thick strings, we restrict ourselves to this particular case.

For a single cosmic string, the schematic illustrations of a two-dimensional section for
the infinitely thin string and the ”smoothed” one are shown in Figure 1.

Figure 1. Schematic illustration of two-dimensional sections of two models of cosmic-string space:
(a) a cone which corresponds to the infinitely thin cosmic string; (b) the so-called ”ballpoint-pen”
model, which corresponds to the cosmic string with radius a and is of use in this paper.

3. The Setup

The action of the real-valued scalar field φ with mass m can be chosen in the form

Sφ = −1
2

∫
d4x φ(x) L(x, ∂) φ(x) ,

where the field operator L(x, ∂) =
√−g (� + m2) and � = ∇µ∇µ—the curvilinear

Laplace– Beltrami operator.
Represent operator L(x, ∂) in the form

L(x, ∂) = (∂2 + m2) + δL(x, ∂) , ∂2 = ∂2
t − ∂2

1 − ∂2
2 − ∂2

z , (13)

where ∂µ ≡ ∂/∂xµ.
Hereafter, the scalar products of 4-vectors are regarded in the sense of the Minkowski

spacetime metric. The operator δL(x, ∂), corresponding to the metric (2), equals

δL(x, ∂) = Λ(x)
(

∂2
t − ∂2

z + m2
)

, Λ(x) = e−σ(x) − 1 . (14)

Therefore, Λ(x) does not depend on t and z and thus can be equivalently denoted as
Λ(x).
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In the case considered in this paper, all the external factors (the metric, matter, bound-
aries, external fields, etc.) are static, hence the effective action, Weff, is just proportional to
the total vacuum energy, Evac, namely:

Weff = −TEvac ,

where T denotes the total time [27].
On the other hand, the effective action can be reexpressed as [28]

Weff =
i
2

tr ln L =
i
2

ln det L

and consequently, within the tr-ln formalism, we infer:

Evac = −
i

2T
ln det L . (15)

If δL can be considered to be a small perturbation, then one has

ln det L = ln det
(

∂2 + m2 + δL
)

= ln det
(

∂2 + m2
)
+ ln det

[
1 + (∂2 + m2)−1 δL

]

= tr ln
(

∂2 + m2
)
+ tr ln

[
1 + (∂2 + m2)−1 δL

]
(16)

= tr ln(∂2 + m2) + tr
[
(∂2 + m2)−1δL

]
− 1

2
tr
[
(∂2 + m2)−1δL (∂2 + m2)−1δL

]
+ ...

However, the latter formal expansion is well-defined iff all its operator constituents
represent the trace-class operators [29]. In the problem considered here, this is not the
case. Hence, in the computation of traces, one requires some regularization. Here, we use
the dimensional regularization. However, the usage of it can generate another difficulty.
As shown by Hawking [30], in the case of curved spacetime, there is no natural recipe
for which dimensions should be specified for the dimensional analytical continuation.
The final result may depend upon this choice and, moreover, may differ from the results
obtained by other regularization schemes. The way, proposed in Ref. [30], consists of the
construction of the direct product of the curved four-dimensional spacetime and fictitious
(d− 4)-dimensional flat space. Such a continuation leads to the result, which coincides with
that obtained with the help of generalized zeta-function. In our case, the spacetime under
consideration represents the direct product of a two-dimensional curved Riemann surface
times a two-dimensional flat Minkowski. Thus, we make the dimensional continuation of
the Minkowski subspace and keep the dimensionality of transverse curved subspace; thus,
the prescript, proposed in Ref. [30], works as well.

Within the dimensional regularization technique, the computation of the first two
terms in Equation (16) yields:

tr ln(∂2 + m2) + tr
(
(∂2 + m2)−1 δL

)
= −iTZ mD Γ[−D/2]

(4π)D/2

∫ (
Λ(x) + 1

)
d2x

= −iTZ mD Γ[−D/2]
(4π)D/2

∫ √
−g(x) d2x , (17)

where Γ is the gamma function and D = 4− 2ε. The corresponding contribution to the
effective action coincides with the first term of deWitt–Schwinger expansion and should be
neglected in the subsequent renormalization procedure [28].
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Therefore, for the separation of the Casimir contribution to the total vacuum energy to
the first non-zero perturbational order, one must take the third term of the expansion (16):

Evac =
i

4T
tr
[
(∂2 + m2)−1 δL (∂2 + m2)−1 δL

]
. (18)

In the Fourier basis, the latter expression becomes

Evac =
i

4T

∫ d4k
(2 π)4

d4p
(2π)4

δL(k, i(p + k)) δL(−k, ip)
[p2 −m2] [(p + k)2 −m2]

, (19)

where
δL(k, ip) =

∫
d4x eikx

[
δL(x, ∂)

∣∣
∂→−ip

]
. (20)

In our problem, from Equation (14) we infer:

δL(k, ip) = −Λ(k)
(

p2
0 − p2

z −m2
)

, (21)

(where Λ(k) denotes the four-dimensional Fourier-transform of Λ(x)). The direct n-
dimensional Fourier-transform (with the indication of dimensionality in text) is defined as

f (k) =
∫

eikx f (x)dnx .

Thus, the vacuum energy is determined by the following expression:

Evac =
i

4T

∫ d4k
(2 π)4

d4p
(2π)4

(p2
0 − p2

z −m2)2

[p2 −m2] [(p + k)2 −m2]
Λ(k)Λ(−k) . (22)

Under the derivation of Equation (22), it was taken into account that

Λ(k) = 4π2δ(k0) δ(kz)Λ(k) , (23)

where Λ(k) stands for the two-dimensional Fourier-transform of Λ(x), k = (k1, k2) , and
δ(·) is the Dirac delta function. Consequently, in the expressions below, one has to fix
k0 = kz = 0 .

The integral over d4p in Equation (22) diverges, but it has a standard form appropriate
for the usage of the dimensional regularization method.

The Wick rotation,

p0 = i p0
E , d4p = i d4pE , p2 = −p2

E ,

where the subscript ‘E’ indicates the Euclidean space, and subsequent substitution of d4p
by µ̃4−DdDpE reduce the expression (22) to the form

E reg
vac = −

µ̃4−D

4T

∫ d4k
(2π)4 Λ(k)Λ(−k)

∫ dDpE

(2π)D
(p2

0 + p2
z + m2)2

E

(p2 + m2)E[(p + k)2
E + m2]

, (24)

where µ̃ is an arbitrary mass scale factor introduced to preserve the physical dimension of
regularized expression (24).

The internal integral over dDpE has a typical quantum filed theory (QFT) form. Thus,
it can be computed with the help of the Feynman parametrization (see, e.g., [31]). In the
subsequent integration over d4k, we encounter the observation that the integrand contains
Λ(k) squared (23), i.e., squares δ(k0) and δ(kz), respectively. We resolve this problem in a
standard way:

[
δ(k0)

]2
= δ(k0) δ(0) =

δ(k0)

2π

∫
eik0t dt

∣∣∣
k0=0

=
T

2π
δ(k0) .
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The same for the delta-function of kz yields:

[
δ(kz)

]2
=

Z
2π

δ(kz) .

As a result, for the regularized vacuum energy one has the following expression:

E reg
vac =−

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)×

×
1∫

0

dη
[
2Γ(−2 + ε)Ψ2 + 2m2Γ(−1 + ε)Ψ + m4Γ(ε)

]( Ψ
4πµ̃2

)−ε

, (25)

where
Ψ = η(1− η)k2 + m2 .

Then one expands
(
Ψ/µ̃2)−ε with respect to small ε:

(
Ψ
µ̃2

)−ε

= 1− ε ln
Ψ
µ̃2 +O(ε2) . (26)

The first term in Equation (26) leads to the appearance of terms proportional to the
“pole-valued” Γ-functions, in the expression for E reg

vac (25). These terms are to be excluded in
our renormalization scheme [28].

The procedure of dimensional regularization on curved background in four dimen-
sions reduces to separation and discarding the terms proportional to Γ(ε), Γ(−1 + ε),
Γ(−2 + ε). It is shown (see, e.g., [28]) that the renormalized effective action obtained under
this prescription coincides with the analogous expressions obtained under other often used
regularization techniques.

Thus, one obtains:

E ren
vac =

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)

1∫

0

dη (Ψ−m2)2 ln
Ψ
µ̃2

=
Z

4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k)k4

1∫

0

dη η2(1− η)2 ln
Ψ
µ̃2 . (27)

This expression is taken as the starting point for further research, which is developed
in Sections 4 and 5 below.

4. Vacuum Interaction of Strings: d � 2a

As mentioned in Section 1, in the regime d � 2a, the strings can be considered to
be infinitely thin. If so, the functions σα are to be specified in the form (9), hence their
Fourier-transforms equal

σα(k) = −
16πµα

k2 eikxα . (28)

Assuming that the exponential power σ in Equation (14) is small enough and the
substitution

Λ(x) −→ −∑
α

σα(x) ,
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is valid, one arrives at the following expression:

E ren
vac =

Z
4(4π)2 ∑

α,β

∫ d2k
(2π)2 σα(k) σ∗β (k) k4

1∫

0

dη η2(1− η)2 ln
Ψ
µ̃2 . (29)

Within the problem formulation, common for the Casimir effect, the criterion of
elicitation of the Casimir contribution from the total vacuum energy is a dependence upon
the distance between ”walls”. It was shown (see, e.g., [2]) that for the finite-sized bodies,
separated by the finite distance, the corresponding Casimir contribution into the total
(generally, diverging) vacuum energy turns out to be finite. In the problem considered
here, this prescript allows the neglect of those terms in the integrand, which contain
products σασα.

One can see that only the summand terms with α 6= β are responsible for the Casimir
interaction since the latter depends upon the relative interstring distances. Thus, with
the computational perturbation-order accuracy used here, the Casimir interaction is to be
regarded as pairwise.

Taking into account Equation (28), the integration with respect to η reduces the Casimir
energy expression into

ECas =
8Zµ1µ2

15

∫ d2k
(2π)2 eikd

[
ln

m
µ̃
+ A(x)

(
1− 2

x2 +
6
x4

)
−
(47

60
− 3

2x2 +
6
x4

)]
, (30)

where

x =
|k|
m

, A(x) =
√

1 + (2/x)2 arcsinh
x
2

.

Being integrated, the constant terms in the square brackets yield δ2(d), and therefore,
they do not contribute to ECas, by virtue of d > 0.

Furthermore, at small values of x the function A(x) behaves like

A(x) = 1 +
1

12
x2 − 1

120
x4 +

1
840

x6 +O(x8) , (31)

and, as is straightforward to verify, the integrand has no non-integrable singularity as
|k| → 0+.

On the other hand, as (x � 1) the following expansion holds

A(x) = ln x +
2 ln x + 1

x2 − 2 ln x− 1/2
x4 +O

( ln x
x6

)
, (32)

so the integral (regarded in the Riemann sense) diverges at large |k|.
This divergence occurs due to the logarithmic behavior of the function A(x) at infinity,

so we proceed as follows. Add and subtract ln x inside the square brackets in Equation (30).
The minus-logarithm is to remain inside the integrand, while the Fourier-transform of
the plus-logarithm is to be separated as an independent term. Therefore, we represent
Equation (30) in the form

ECas =
8Zµ1µ2

15

∫ d2k
(2π)2 eikd

[
A(x)

(
1− 2

x2 +
6
x4

)
− ln x +

( 3
2x2 −

6
x4

)]
− 4Zµ1µ2

15d2 . (33)

We took the help of the point that the Fourier-transform of the logarithm is well-defined
in the sense of distributions [32]. The latter yields a non-integral term in Equation (33).
Now, the remaining integral in Equation (33) is well-defined as a Riemannian one.
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Subsequent integration with respect to the polar angle ϕ in the (k1, k2)-plane with help
of the table integral [33]

2π∫

0

dϕ eiqr cos ϕ = 2π J0(qr) , (34)

where J0 is a zeroth-order Bessel function of the 1st kind, yields

ECas =
4Zµ1µ2

15π

∞∫

0

dk k J0(kd)
[

A
( k

m

)(
1− 2

m2

k2 + 6
m4

k4

)
− ln

k
m

+
3
2

m2

k2 − 6
m4

k4

]
− 4Zµ1µ2

15d2 . (35)

Notice that the non-integral term in Equation (35) coincides with the known result for
the massless scalar field. Therefore, the dependence of the Casimir effect upon mass, which
is of interest here, is completely determined by the integral term in Equation (35). Thus,
for the function F = Evac(m)/Evac(0) , introduced formally in Equation (1), one obtains a
definite expression

F = −d2
∞∫

0

dk k J0(kd)
[

A
(

1− 2
m2

k2 + 6
m4

k4

)
− ln

k
m

+
3
2

m2

k2 − 6
m4

k4

]
+ 1 . (36)

After the variable change s = k/2m, the integral splits as follows:

F (z) = 1− z2
[

h0(z)−
1
2

h1(z) +
3
8

h2(z)
]

, z = 2md ,

where hn(z) are defined as

h0(z) =
∞∫

0

ds J0(sz)
[√

1 + s2 arcsinh s− s ln 2s
]

,

h1(z) =
∞∫

0

ds
J0(sz)

s2

[√
1 + s2 arcsinh s− s

]
,

h2(z) =
∞∫

0

ds
J0(sz)

s4

[√
1 + s2 arcsinh s− s− s3

3

]
. (37)

These integrals can be computed:

h0(z) =
1
z2 +

1
4

[
K2

0

( z
2

)
− K2

1

( z
2

)]
,

h1(z) =
z
2

U(z) ,

h2(z) = −
z2

9

[
K2

0

( z
2

)
− K2

1

( z
2

)]
− z3

18
U(z)− z

6
K0

( z
2

)
K1

( z
2

)
, (38)

where Kn(·) are Macdonald functions (modified Bessel functions of the 3rd kind), while
U(·) stands for the following special integral Macdonald function:

U(z) =
∞∫

z

dx
x2 K2

0

( x
2

)
. (39)
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As a result, for F (z) one obtains eventually:

F (z) = z2

4

[( z2

6
− 1
)[

K2
0

( z
2

)
− K2

1

( z
2

)]
+
( z2

12
+ 1
)

zU(z) +
z
4

K0

( z
2

)
K1

( z
2

)]
. (40)

The plot of F (z) is presented in Figure 2.
In what follows, for z� 1, the asymptotic expansion reads:

F (z) = π

16
e−z
(

15− 75
2z

+
25,031
128z2 +O

(
z−3
))

.

Therefore, at large (with respect to the Compton length) distances, the Casimir effect
is damped exponentially.

Figure 2. F (z) function given by Equation (40).

In the opposite case, for z� 1, the expansion is given by

F (z) = 1 +
5
8

z2
(

ln
z
4
+ γ +

1
3

)
+O

(
z4| ln z|

)
,

and thus, one can see that for d� lc, the contribution of massive modes into the Casimir
energy turns out to be comparable to the contribution of massless modes, as follows from
the qualitative speculations.

The plot of dependence of the Casimir energy,

ECas = −
4Zµ1µ2

15d2 F (2md) , (41)

as a function of interstring distance in doubly logarithmic scale is presented in Figure 3.
The dashed line corresponds to the massless limit.

The corresponding attraction force per unit strings’ length is to be found as a deriva-
tive of the Casimir energy ECas with respect to the strings-separation distance d. There-
fore, both the Casimir energy and the Casimir force (both per unit length) are given by
finite expressions.
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Figure 3. Energy of the Casimir attraction of two strings as a function of interstring distance (in units

l(m=1)
c = 1) in doubly logarithmic scale: for the massive fields with m = 0.5 (red, dashdotted), m = 1

(green, solid), m = 2 (black, dotted), and for the massless field (blue, dashed). See text for details.

5. Vacuum Interaction of Strings: 2a < d � lc

As was noted in Section 1, the case d� lc corresponds to the observation that the field
can be considered to be massless.

Then, returning to Equation (27) and fixing m = 0, one obtains:

E ren
vac =

Z
4(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k) k4

1∫

0

dη η2(1− η)2 ln
η(1− η)k2

µ̃2 , (42)

and after the η-integration:

E ren
vac =

Z
60(4π)2

∫ d2k
(2π)2 Λ(k)Λ(−k) k4

[
ln |k|+O(1)

]
. (43)

Now after the substitution Λ(k)→ −σ(k) the expression (43) is rewritten as a sum of
two integrals. One of them reads:

∫ d2k
(2π)2 |k|

4 σ(k) σ(−k) =
∫

d2x[∆σ(x)]2 '
∫

d2x R2(x) . (44)

The integral, which contains a logarithm in Equation (43), also can be transformed
into the coordinate representation:

∫ d2k
(2π)2 |k|

4 ln |k| σ(k) σ(−k) = − 1
2π

∫
d2x d2x′

∆σ(x)∆′σ(x′)
|x− x′|2

' − 1
2π

∫
d2x d2x′

R(x) R(x′)
|x− x′|2 . (45)
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In the expressions (44) and (45), it was taken into account that to the lowest order of
(1− β), which is of interest here,

∆σ(x) = ∑
α

∆σα(x) ' R(x) = ∑
α

Rα(x) . (46)

For two strings separated by distance d > a1 + a2 (d = x1 − x2), the supports of the
partial contributions Rα and Rβ do not overlap. Hence, that contribution to Equation (44),
which depends upon the distance d, vanishes, and the Casimir contribution to the total
vacuum energy (46) is completely determined by the contribution due to the integral (45).
This contribution can be presented in the form

ECas = −
Z

15 (4π)3

∫

|x|<a1,
|x′ |<a2

d2x d2x′
R1(x) R2(x′)
|x− x′ + d|2 . (47)

Introduce two polar coordinate systems ($, ϕ) and ($′, ϕ′) (with suggestive notations)
with origins in the centers of strings. Then, both angular integrations are carried out with
the help of the table integral [33]

2π∫

0

dϕ

A + B cos ϕ
=

2π√
A2 − B2

.

It results in the following expression for the Casimir energy per unit length:

ECas

Z
= − 16

15π

µ1µ2

a2
1a2

2

a1∫

0

$d$

a2∫

0

$′d$′√
[(d + $′)2 − $2][(d− $′)2 − $2]

.

Integrating with respect to $, one has:

ECas

Z
= − 8

15π

µ1µ2

a2
1a2

2

a2∫

0

$′d$′
(

ln
d
$′
− arccosh

d2 + $′2 − a2
1

2d$′
)

. (48)

The final integration yields:

ECas

Z
=

8
15π

µ1µ2

a2
1a2

2

[
d2 − 2a2

1
8

− 1
8

√(
d2 + a2

1 − a2
2
)2 − 4d2a2

1+

+
a2

1
2

(
arccosh

d2 + a2
1 − a2

2
2da1

− ln
d
a1

)
+
{

a1 ←→ a2
}]

. (49)

In the case of GUT strings, both the mass per unit length and the string’s width are
determined by the energy scale of the corresponding phase transition, ηGUT ∼ 1016 GeV.
Hence it is reasonable to fix

a1 = a2 = a = aGUT ∼ η−1
GUT, µ1 = µ2 = µ = µGUT ∼ η2

GUT

and consider two similar strings. Then, introducing

ξ =
a
d
<

1
2

,
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the energy of the Casimir attraction per unit length of two finite-width strings equals [34]

ECas

Z
=

4
15π

µ2

d2
1
ξ4

ξ2∫

0

dx ln
1 + x− ξ2 +

√
(1 + x− ξ2)2 − 4x
2

. (50)

Finally, integrating with respect to x, the Casimir energy of two equivalent strings is
given by

ECas

Z
= − 4

15π

µ2

d2
1
ξ2

[
1− 2 ln

1 +
√

1− 4ξ2

2
− 1−

√
1− 4ξ2

2ξ2

]
. (51)

The dependence of the Casimir energy (normalized by (−4µ2/15π)) of attraction of
two similar strings upon the interstring distance is plotted in Figure 4.

In the case d� a, the direct expansion in ξ � 1 yields

ECas

Z
= − 4

15π

µ2

d2

[
1 +

a2

d2 +
5
3

a4

d4 +O(d−6)

]
, (52)

what to the leading (in a/d) order coincides with the result for infinitely thin strings [7–9].
In Figure 5, we plot the curve of a ratio of the Casimir energy for the ballpoint-pen

model with respect to the same quantity for infinitely thin strings.

Figure 4. Casimir energy (normalized by the factor 16µ1µ2/15π) versus the distance between centers
for fixed equal string radii (red solid) in a = 1 units, compared with the infinitely thin string (black
dashed). See text for details.

Let us consider the case a1 � a2 < d separately. It can be considered to be a case when
one of the strings (namely, a2) was formed under the electroweak (EW) phase transition.
It happened with considerably lower energies (ηEW ∼ 103 GeV) and corresponds to the
transverse size of the created strings of aEW ∼ 10−15 cm, what significantly exceeds the
corresponding width of a typical GUT-string (aGUT ∼ 10−28 cm).
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Figure 5. Relative Casimir attraction energy versus the interstring distance, with respect to the
attraction of infinitely thin strings.

Then from the expression (48) we infer:

ECas

Z
= − 8

15π

µ1µ2

a2
2

a2∫

0

$′d$′

d2 − $′2
+O(a2

1/d2) . (53)

In what follows, in the limit a1 → 0+, denoting a2 = a, one obtains

ECas

Z
=

4
15π

µ1µ2

a2 ln
(

1− a2

d2

)
, (54)

so, for d� a, we return to the result valid for two infinitely thin strings.
However, in the case of close contact, where the interstring gap, δ = d− a, is consid-

erably smaller than the interstring distance d, Equation (54) gives logarithmic singularity
(ECas ∼ ln(2δ/d)) as (δ → 0+). This implies that if δ becomes of the same order as the
width of the thinner string, one cannot neglect string’s radius.

Let us demonstrate that under a contact of the strings of any finite width, the Casimir
energy per unit length is finite within the model under interest. Then, two radii are related
by a2 = d − a1. Define a = min{a1, a2} now and introduce ξ̄ := a/d. Then for any
0 < ξ̄ 6 1/2,

ECas

Z
= − 4

15π

µ1µ2

d2
1
ξ̄2

[
ξ̄2(1− ln ξ̄)− ξ̄

(1− ξ̄)2 − ln(1− ξ̄)

]
. (55)

For ξ̄ = 1/2 one reproduces the result (51) with ξ = 1/2:

F = 4(2 ln 2− 1) , (56)

while, in the opposite limiting case (ξ̄ � 1), the expansion in relatively small a reads:

ECas

Z
= − 4

15π

µ1µ2

d2

(
ln

d
a
− 1

2

)
+O(a| ln a|) . (57)

From the quantitative viewpoint, this case (applied to the pair GUT-plus-EW strings)
is of a significantly lower interest than the case of two similar GUT strings discussed in this
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Section. It happens since the energy per unit length, µEW ∼ η2
EW, of the EW string is many

orders smaller than the same energy, µGUT, for the GUT string. But from the qualitative
viewpoint, for the EW strings, these effects take place already at the distances of the order
of d ∼ 1/ηEW ∼ 10−15 cm, in contrast to the orders 10−28 cm for the Casimir interaction of
two GUT strings. Also, the model considered above once again illustrates the nontrivial
dependence of this effect on the strings’ size.

6. Discussion

We have presented an extended overview of recent results obtained by the authors
in the process of studying the vacuum interaction of topological cosmic strings at short
distances [34,35]. Within the tr-ln formalism, we have considered the vacuum interaction
of finite-width topological cosmic strings, which interact via a massive scalar field with
minimal coupling. It is shown that at distances much less than the Compton length but
significantly larger than the strings’ width, the partial contribution of massive fields to the
Casimir energy is comparable with the contribution of massless fields. Therefore, at such
small (in the sense mentioned above) distances, one can neglect the mass. Nevertheless, if
the interstring distance becomes comparable with the strings’ width, one cannot neglect
the string radius. Furthermore, if the interstring gap is of the order of the string’s width,
the energy of the Casimir interaction may significantly surpass the same quantity for the
infinitely thin strings with the same mass per unit length.

The results obtained here may be useful in subsequent issues on the interaction of
strings at short distances, on their collisions, and on accompanying intertanglements
and reconnections.
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Abstract: In this paper, we review some recent findings related to the Casimir effect. Initially, the
thermal corrections to the vacuum Casimir energy density are calculated, for a quantum scalar field,
whose modes propagate in the (3+1)-dimensional Euclidean spacetime, subject to a nontrivial compact
boundary condition. Next, we analyze the Casimir effect induced by two parallel plates placed in a
weak gravitational field background. Finally, we review the three-dimensional wormhole solutions
sourced by the Casimir density and pressures associated with the quantum vacuum fluctuations of
the Yang-Mills field.

Keywords: Casimir effect; finite-temperature effect; nontrivial compact boundary condition; weak
gravitational field; wormhole; Yang–Mills field

1. Introduction

From the classical physics point of view, the phenomenon called the Casimir effect [1]
cannot find its explanation. The effect manifests itself as an attractive force between
the two parallel electrically neutral ideal metallic plates at zero temperature placed at
a certain distance in a vacuum, according to the original configuration. According to
classical electrodynamics, there is no force in such a scenario. Thus, this phenomenon
can only be understood in the context of quantum physics, and its origin is related to
the oscillations of the zero-point (vacuum) energy or, equivalently, to the fluctuations of
the quantum electromagnetic field as a consequence of boundary conditions imposed to
the field due to the presence of the plates. This is the most basic configuration that leads
to the Casimir effect. This phenomenon associated with the vacuum fluctuations of the
quantum electromagnetic field was predicted by Hendrik Casimir [1] in 1948, who obtained
an intriguing and remarkably simple formula for this force per unit area of the plates:

F = − π2

240
h̄c
L4 , (1)

where L denotes the distance between the two plates and h̄ and c are the reduced Planck
constant and the speed of light in vacuum, respectively. That is, the force depends on a
geometrical factor, the distance between the plates, and the two fundamental constants, the
former related to the quantum physics and the latter one to the relativistic consideration.

Originally, the Casimir effect was associated with the electromagnetic field and mate-
rial boundaries made of a perfect conductor. Thus, taking into account that the Casimir
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effect, as originally conceived, is a direct consequence of the vacuum fluctuations of phys-
ical photons, whose propagating behavior depends on the presence of boundaries as
compared with the free spacetime, and assuming the predictions of the quantum field the-
ory that boundaries, independent of their nature, if material or due to the topology, induce
nonzero vacuum expectation values, it is natural to expect that similar phenomena occur
for countless configurations of quantum fields with different spins subject, for example,
to boundary conditions dictated by the nontrivial topology associated with flat or curved
spacetime [2–5].

During seventy-five years, since the discovery of this remarkable pure quantum effect,
specifically from the seventies of the twentieth century up to nowadays, the line of research
along the generalization described just above, in particular, concerning the role played by
the nontrivial topology of spacetime on the quantum vacuum energy in the framework of
the general theory of relativity, has been extensively investigated, with the breakthrough
findings. As pioneering papers about this topic, we mention firstly the one that investigates
the zero-point energy of quantum fields placed in background gravitational fields with a
nontrivial topology [6]. As the second point, we call a cosmological model with a nontrivial
topology, namely the Einstein universe with a topology R1 × S2. In this cosmological
scenario, considering a conformally coupled massless scalar field, the Casimir energy
density and pressure are given by [7]

ε0 =
h̄c

480π2R4 and P0 =
ε0

3
, (2)

respectively, where R denotes the radius of the universe.
These pioneering studies inspired investigations concerning the role of the global

structure of spacetime or, in other words, the role of the nontrivial topology, on the zero-
point energy of quantum fields, placed in flat or curved backgrounds. Some of these studies
related to the role played by boundary conditions imposed by the nontrivial topology in
locally or globally flat spacetimes are given in Refs. [5,8–21]. Concerning the presence of
gravitational fields, some interesting investigations were performed [4,13,22–51].

Over these seventy-five years, since its discovery [1], the Casimir effect has been ac-
tively investigated from theoretical point of view as well as experimentally. Particularly in
the last three decades, and more recently, due to the possibility of numerous applications of
this physical manifestation of zero-point energy, not only in fundamental sciences but also
in applied sciences. It is a multidisciplinary phenomenon that arises when any quantum
field is submitted to boundary conditions caused by material bodies or associated with
a nontrivial space topology. It arises in different contexts, namely, quantum electrody-
namics, condensed matter physics, quantum chromodynamics, gravitation and cosmology,
and nanotechnology.

This paper reviews three different scenarios in which this phenomenon manifests,
confirming the multifaceted and interdisciplinary features of the Casimir effect and its
importance. In order to emphasize this multifaceted character, a revision is made about
three different topics. The first one is related to the thermal corrections to the Casimir
energy of massive and massless scalar fields, under boundary conditions with a nontrivial
topology, in flat spacetime using the zeta function formalism [52]. The second concerns the
investigation on how the Casimir effect manifests itself when the plates are embedded in a
weak gravitational field sourced by a certain mass [50]. The third topic addressed in this
review proposes the generation of wormholes in 2+1 dimensions by the Casimir energy
associated to a Yang–Mills field [53]. Therefore, there is a progression in the scenarios
discussed with respect to spacetime, ranging from flat one, then a slightly curved and
finally a highly curved one.

The different topics considered in this review are believed to give us a better under-
standing of how the structure of spacetime influences a quantum phenomenon, shedding
light on the relation between quantum fields, geometry and topology.
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We begin by reviewing the generalized zeta function method, in Section 2. We calculate
the Casimir energy for a massless scalar field and its respective thermal correction, taking
into account a nontrivial compact boundary condition. In Section 3, we review the formal-
ism to calculate the Casimir energy in a weak static gravitational field and revisit previous
results of the literature. In Section 4, we study what is termed Casimir wormholes, and, in
Sections 5 and 6, the summary of the results obtained and the conclusions are presented.

2. Thermal Corrections to the Casimir Energy Density: Scalar Field Subject to a
Nontrivial Compact Boundary Condition

In what follows, the generalized zeta function method is used to obtain the thermal
corrections to the Casimir energy density of a scalar field, initially calculated at zero
temperature, by imposing a nontrivial compact boundary condition on the field. This
condition was originally called the helix boundary condition in Refs. [18,54].

The expressions for the heat kernel function and free energy density are obtained in
exact and analytic forms. In these calculations, quantum scalar fields with mass and those
massless are taken into account. In particular, for the massless case, the internal energy
density is analyzed concerning the limits corresponding to high and low temperatures. The
influence of the boundary condition is the focus of the analysis along with the contribution
by the thermal corrections to the Casimir energy density of the quantum scalar fields.
It is worth noticing that all calculations are performed in a flat spacetime. Therefore,
all modifications to the local features of the zero-point energy are due to the boundary
conditions imposed on the fields.

2.1. Generalized Zeta Function Method

Let us review in what follows the vacuum energy and its temperature corrections for a
real quantum scalar field with a nontrivial compact boundary condition following studies
presented in Refs. [18,54,55] at zero temperature and in Ref. [52], at finite temperature. We
adopt the method of the generalized zeta function defined as [56–58]

ζ4(s) = ∑
j

λ−s
j , (3)

where λj represents the eigenvalues of a four-dimensional Laplace–Beltrami operator, Â4,
where the subindex refers to the spacetime dimension, and j takes the values 1, 2, . . . , ∞.

It is worth noticing that ζ4(s) (3) converges for {Re(s) > 2 and it is regular at s = 0,
in four dimensions. It can be analytically extended to the interval Re(s) < 2, with poles
at s = 2 and s = 1. As concerns its spectrum of eigenvalues denoted by λj, it is not
necessarily discrete [58]. The path integral formulation of quantum field theory allows us
to link the zeta function (3) with the partition function, Z, thus providing a way to study
the thermodynamic properties of a quantum system. This connection is made through Â4
and is given by [52,56,58]

Z = det
(

4
πµ2 Â4

)
, (4)

where the parameter µ is a constant with a dimension of mass and stands for an integration
measure in the functional space, and should be suppressed by the renormalization. Note
that, in the case we are considering, the operator Â4 is identified as the Laplace-Beltrami
operator in the four-dimensional Euclidean space. Hence, in natural units, the operator has
a dimension of mass squared, what makes Equation (4) dimensionless.

Upon using the known identity e−ζ ′4(0) = det(Â4), where the prime denotes the
s-derivative, from Equation (4), one finds [52,56,58]:

ln Z =
1
2

ζ ′4(0) +
1
2

ln
(

πµ2

4

)
ζ4(0). (5)
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From Equation (5), we conclude that the partition function (4) can be determined if
the zeta function (3) and its s-derivative at s = 0 are known.

The trace of the operator Â4 defines the heat kernel K(η):

K(η) = Tr
[
e−ηÂ4

]
= ∑

j
e−Ωjη , (6)

where Ωj is the set of eigenvalues of Â4. The generalized zeta function (3) can be written in
terms of Equation (6) as

ζ(s) =
1

Γ(s)

∫ ∞

0
ηs−1Tr

[
e−ηÂ4

]
dη, (7)

where Γ(s) is the Gamma function.
Equation (7) corresponds to another representation of the generalized zeta function (3).

Note that, in representation (7), the generalized zeta function does not depend on the
spacetime coordinates. The form (7) is quite helpful to calculate the vacuum free energy
when the eigenvalues of the operator Â4 are known. With the zeta function in hand, we
just use Equation (5) to calculate the partition function and, immediately, the vacuum-
free energy.

The temperature corrections enter when a periodic boundary condition is imposed on
the imaginary time, τ coordinate, of the scalar field, φj(x), whose solution can be written as

φj(x) = e−iωnτ ϕ`(r) with ω2
n =

(
2πn

β

)2
, (8)

where n = 0,±1,±2, . . ., j = (n, `) are the quantum modes and β = 1/kBT is the period,
with kB being the Boltzmann constant and T the temperature.

The eigenvalues are given by λn = ω2
n + k2 + m2, with k being the three-momentum

and m the mass of the field. The factor ϕ`(r) is the part of the solution of the quantum
scalar field φj(x), which depends on the spatial coordinates.

It is worth pointing out that the approach we are adopting to calculate the thermal
corrections are, in general, applicable, when the spacetime is ultra static [59–62], in which
case, the solution can be written according to Equation (8).

Using the solution given by Equation (8), the general expression for the zeta function (7)
turns into

ζ4(s) =
β√

4πΓ(s)

{
Γ(s− 1/2)ζ3(s− 1/2) + 2

∞

∑
n=1

∫ ∞

0
ηs− 3

2 e−
(nβ)2

4η Tr
[
e−ηÂ3

]
dη

}
, (9)

where the operator Â3 with eigenvalues k corresponds to the spatial part of the operator
Â4 and ζ3(s) is the zeta function whose general expression is given by Equation (7).

Now, Equations (5) and (9) can be used to calculate the free energy, which is given
as follows:

F = − ln Z
β

=
1
2

ζ3(−1/2)− C̄2

2(4π)2 ln(C2)− 1√
4π

∞

∑
n=1

∫ ∞

0
η−

3
2 e−

(nβ)2
4η Tr

[
e−ηÂ3

]
dη, (10)

where
√

πe2µ/8, with e being the elementary charge.
The first two terms correspond to the vacuum energy at zero temperature, and the

third one furnishes the thermal corrections. Note that the result given by Equation (10)
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presents an ambiguity in the definition of the vacuum energy at zero temperature if the
coefficient C̄2 is different from zero. Let us write C̄2 as [4]

C̄2 = C2 − C1m2 +
C0m4

2
, (11)

where C0, C1, and C2 are the heat kernel coefficients. It is worth calling attention to the
feature that, in the massless case, the ambiguity disappears when C2 vanishes.

The heat kernel coefficients are introduced using the heat kernel expansion [4]:

K(η) =
e−m2η

(4πη)3/2

∞

∑
p=0

Cp/2ηp/2 + ES, (12)

where Cp/2 are the heat kernel coefficients and ”ES” stands for exponentially suppressed
terms.

To proceed with the regularization of the vacuum energy, we can write the first two
terms of Equation (10) as [4]

E0(s) =
C2s

2
ζ3(s− 1/2). (13)

Therefore, the renormalized vacuum energy reads

Eren
0 = lim

s→0
[E0(s)− Ediv

0 (s)], (14)

where Ediv
0 (s) is the divergent contribution of the regularized expression in Equation (13) [4].

This divergent contribution is given in terms of the heat kernel coefficients Cp/2. As shown
in Section 2.2 below, the only divergent contribution is given in terms of C0, which is related
to the Euclidean heat kernel divergent contribution to the zeta function ζ3(s− 1/2). In the
massive case, other coefficients appear, and thus, it is necessary to include an additional
normalization condition to obtain the renormalized vacuum energy, and thus justifying
the subtraction of terms proportional to the positive powers of the mass m [4]. Then, the
normalization condition is given by

lim
m→∞

Eren
0 = 0, (15)

which is satisfied in the case under consideration, as expected. The condition (15) has
been suggested in Ref. [63] and provides a unique physical meaning for the renormalized
vacuum energy, since, in the large (infinite) mass limit, there should be no quantum vacuum
fluctuations. The condition (15) implies that it is necessary to implement a renormalization
of finite terms proportional to the positive powers of mass, in addition to the renormaliza-
tion of infinite terms which, in general, takes place in vacuum energy configurations.

2.2. Nontrivial Compact Boundary Condition, Heat Kernel, and Thermal Corrections

In what follows, we assume that the quantum modes of the scalar field propagate in a
(3+1)-dimensional Euclidean spacetime and experience a boundary condition given by

ϕ(x + a, y, z) = ϕ(x, y + h, z), (16)

which is also known as the helix boundary condition in the literature [18,54]. According
to Refs. [18,54], the condition (16) is topologically equivalent to a helix and the geomet-
ric parameters h and a are the pitch and the helix radius, respectively. The boundary
condition expressed by Equation (16) was also considered by investigating the Casimir
effect at zero [18,54] and nonzero [52] temperatures. The helix-like topology of the space-
time codified in Equation (16) is constructed using the mathematical notion of the equiv-
alence relation, equivalence classes, and quotient space as discussed in Refs. [18,54]
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(see also Ref. [64]). For instance, the points (x, y) and (x + nxa, y + nya) in R2, with
nx, ny = 0,±1,±2,±3, . . ., present an equivalence relation if x → x + nxa and y→ y + nyh.
A quotient space may be obtained by separately identifying the endpoints in each di-
mension x and y to form a compact space with topology S1 × S1. Thus, we end up with
two independently compactified dimensions. However, in the present case, a quotient
space R2/ v is obtained by identifying the points (a, 0) and (0, h), for instance, and conse-
quently, making the direction along the green solid line in Figure 1 compact, with length
d =

√
a2 + h2. Hence, the nontrivial compact condition described in Equation (16) is

presented as R2 ×R2/ v.

z

a

d

h

y

x
Figure 1. Illustration of the direction of the compactification. According to the condition given by
Equation (16), the scalar field has the same value at (a, 0) and (0, h) if one considers (x, y) = (0, 0).
The parameters a and h can be topologically associated with a helix [18,54].

In the present study, we are interested in reviewing some important aspects of the
problem related to heat kernel coefficient contributions and also to divergences associated
with these coefficients.

The corresponding eigenvalues of the problem are written as [52]

λ` = k2
x +

(
kxa
h
− 2πn

h

)2
+ k2

z + m2

=

(
kyh

a
+

2πn
a

)2

+ k2
y + k2

z + m2. (17)

As the components of the momentum kx and ky are related, the spatial quantum modes
are indexed by ` = (n, ky, kz) or ` = (n, kx, kz). In the calculation that follows, the latter
option is assumed. Taking into account the recently obtained result concerning the heat
kernel for the problem under consideration [52]:

K(η) = V
e−m2η

(4πη)3/2

∞

∑
n=−∞

e−
n2d2

4η , (18)

where the Euclidean contribution to the heat kernel is given by [60–62]

KE(η) = V
1

(4πη)3/2 e−m2η , (19)

where only the term n = 0 was taken into account. Note that the heat kernel (18) can be
interpreted as the one obtained from space with topology R2 × S1, with d being the size of
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the compact dimension. This becomes clear if, in the first line of Equation (17), we perform
the substitution

kx =
h
d

(
kX +

2aπn
hd

)
, (20)

where kX is the momentum in the new direction, X. Hence, Equation (17) can be written as

λ` = k2
X +

4π2n2

d2 + k2
z + m2. (21)

The problem considered here is equivalent to the one in a four-dimensional spacetime
with Cartesian coordinates (t, X, Y, z), with the Y dimension compactified into a circle of
length d [65]. In other words, the spacetime topology characterized by the condition (16) is
effectively equivalent to a space with topology R2 × S1, as previously noted. That is why
we have also called Equation (16) a nontrivial compact boundary condition.

Comparing the heat kernel (18) with the heat kernel expansion (18), we find that the
C0 is only coefficient different from zero and given by C0 = V, where V is the volume of
the (3+1)-dimensional Euclidean spacetime. It is worth calling attention to the feature that
C0 is responsible for the divergent contribution to the zeta function (7) and, thus, should be
cancelled to obtain a finite result for the Casimir energy density. On the other hand, the
contribution of the third term of the free energy (10), which arises from the Euclidean heat
kernel (19), corresponds to the scalar thermal (blackbody) radiation contribution [56]. To
find a renormalized result for the thermal correction contributions [39,40], the appropriate
subtractions have to be performed. As a result, the classical limit for the free energy is
recovered for high temperatures, as expected.

Now, substracting the Euclidean heat kernel contribution equation (19) from the heat
kernel (18) and assuming the boundary condition given by Equation (16), the renormalized
heat kernel for the field ϕ`(r) reads as :

Kren(η) = V
e−m2η

4(πη)3/2

∞

∑
n=1

e−
n2(a2+h2)

4η . (22)

Let us return to the generalized zeta function (7), which can be written as

ζ3(s− 1/2) = V
23−sm4−2s

(4π)3/2Γ(s− 1/2)

∞

∑
n=1

f2−s(mnd). (23)

where

fµ(x) =
Kµ(x)

xµ , (24)

with Kµ(x) being the modified Bessel function of the second kind.
Let us consider the free energy (10), where the first two terms correspond to the

Casimir energy at zero temperature. Thus, using Equations (13) and (14), the following
expression is obtained:

Eren
0 = −V

m4

2π2

∞

∑
n=1

f2(mnd). (25)

The result given by Equation (25) is the renormalized Casimir energy at zero tempera-
ture [18,54,55]. Taking into account the massless field, the renormalized Casimir energy
can be obtained from Equation (25) assuming that the arguments of the modified Bessel
function are very small, such that Kµ(x) ' (2/x)µΓ(µ)/2 [66,67]. Thus, the following
result is obtained [18,54,55]:

Eren
0 = −V

π2

90d4 , (26)

where the Riemann zeta function, ζR(4) = π4/90, was used [58,66,67].
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Notice that the results obtained do not depend on the energy scale, M, and as a
consequence, there is no ambiguity. One should remember that the term containing
the parameter M in Equation (10), which introduces an ambiguity in the definition of the
vacuum energy at zero temperature, is nonzero only when the coefficient C̄2 in Equation (11)
exists. As in the the case considered here, where C̄2 = C0m4/2, with C0 = V, as already
stated in this Section. Actually, the second term on the right-hand side of Equation (10)
is nonzero. However, as we expect a decreasing in the vacuum energy for large masses,
this term should be discarded, since it grows with the mass m and must be subtracted
in order to obey the normalization (15). Such a process, in the massive case, leads to the
renormalized vacuum energy in Equation (25). On the other hand, the massless vacuum
energy case does not carry the term depending on M in Equation (10) since C̄2 = 0. So,
naturally, one obtains Equation (26).

As discussed above, the results for the Casimir energies given by Equations (25) and (26)
can be obtained, effectively, by considering a space with topology R2 × S1, where one of
the dimensions has been compactified into a circle of length d. But, then, what are the new
features here? To answer this question, one should remember that the length d is defined in
terms of the radius a and pitch h of the helix in Figure 1, i.e., d =

√
a2 + h2. This makes it

possible to calculate the Casimir force both along h and a, as shwon in Ref. [18]. In Ref. [18],
it is also shown that the Casimir force in the h direction behaves according to Hooke’s law
in the regime when the parameter ratio, r = h/a, is exceptionally small, i.e., r � 1, whereas
in the opposite regime, r � 1, the Casimir force behaves according to an inverse square law.
The helix-like topology also allows us to apply the results presented here to investigate the
influence of the Casimir energy in an RNA structure of a virus like SARS-CoV-2, as has
been performed in a simplified initial study in Ref. [68].

In what follows, the thermal corrections to the renormalized Casimir energy densities
given by Equations (25) and (26), for the massive and massless cases, respectively, will be
calculated. To do this end, the following results will be considered:

FE
T = −V

m4

2π2

∞

∑
n=1

f2(mnβ), (27)

and

FE
T = −V

π2

90
(kBT)4 (28)

for the massive and massless cases, respectively. Equations (27) and (28) are obtained using
the Euclidean heat kernel (19). Equation (28) corresponds to the massless scalar thermal
(blackbody) radiation contribution [56]. It should be subtracted from the temperature
correction to obtain the classical limit at high temperatures [39,40].

The normalized temperature correction, Fren
T (25), to the Casimir energy density is

obtained with the use of the renormalized heat kernel equation (22).
Then, we arrives at

Fren
T = −V

m4

π2

∞

∑
j=1

∞

∑
n=1

f2

[
mβ(j2 + n2γ2)1/2

]
, (29)

where γ = d/β = kBTd. It is worth calling attention to the feature that the result (29) is
exponentially suppressed at low temperatures, which means that βm� 1, in which case,

Kµ(x) '
√

π
2x e−x [66,67]. Thus, the result expressed by Equation (29) is consistent with the

requirement that the temperature corrections must vanish for low temperatures. For high
temperatures, which means βm� 1, we obtain:

Fren
T = −V

2
π2

∞

∑
n=1

∞

∑
j=1

1
(j2β2 + n2d2)2 . (30)
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Taking into account the massive case, the renormalized free energy is given by

Fren
T = −V

m4

2π2

∞

∑
n=1

f2(mnd)−V
m4

π2

∞

∑
j=1

∞

∑
n=1

f2

[
mβ(j2 + n2γ2)

1
2

]
, (31)

where the sum of Equations (25) and (29) was considered. Note that the second term in
Equation (31) is exponentially suppressed, and only the first term contributes [18,54,55].

In the massless case, Equations (26) and (30) can be combined and written as

Fren = −V
π2

90d4 −V
2

π2

∞

∑
n=1

∞

∑
j=1

1
(j2β2 + n2d2)2 . (32)

In this case, the low and high temperatures limit can be analyzed and interesting
results are obtained. Firstly, let us perform the sum in j in Equation (32), to obtain the
high-temperature limit. In what concerns the limit of low temperatures, it is obtained by
performing the sum in n, firstly. Taking these procedures into account, the result obtained
for the high-temperature limit, kBTd� 1, is as follows:

Fren ' −
kBT

2πd3 ζ3 −
2(kBT)2

d2 e−2πγ. (33)

Note that the second term in Equation (33) is exponentially suppressed, while the first one
corresponds to the classical scenario and dominates in this limit.

In the low-temperature limit, Equation (32) turns into

Fren ' −
π2

90d4 +
π2

90
(kBT)4 − (kBT)3

2πd
ζ(3)− 2(kBT)3

πd
e−

2π
kBTd . (34)

Note that the first term corresponds to the Casimir energy at zero temperature and is the
dominant one. In what concerns to the third term, it is exponentially suppressed.

3. Casimir Energy in Weak Static Gravitational Field

When comprehensively examining the Casimir Effect in curved spacetime, special con-
sideration should be given to scenarios involving weak background gravity. This assertion
stems from the anticipation that feasible laboratory conditions for assessing the interaction
between vacuum energy and gravity will likely involve relatively small gravitational effects.
For instance, the Archimedes experiment [69,70] aims to measure the weight of the vacuum
and is expected to occur in such a setting. The initial results of this experiment are eagerly
awaited, as they may offer a means to scrutinize the reality of the vacuum fluctuation energy
and its gravitational behavior further. From a theoretical standpoint, researchers generally
expect the vacuum energy to behave following the principle of equivalence, a fundamental
aspect of general relativity. However, experimental confirmation is still pending.

In this Section, we review the fundamentals of the Casimir effect in curved spacetime
and revisit several works from the literature that delve into the simplest case of a Casimir
apparatus subjected to weak, spherically symmetrical gravity, a suitable approximation for
Earth’s gravitational field. We begin with an elegant and explicit calculation introduced by
Francesco Sorge in Ref. [44], along with similar findings from other sources. Subsequently,
we discuss the corrections proposed by Augusto Lima and colleagues in Ref. [50], leading
to a somewhat surprising prediction of null corrections to the measured “vacuum weight”
at the first relevant order. This contradicts some earlier works that suggest that the Casimir
energy should be affected by gravity like any other form of energy. We then briefly outline
how Sorge resolves this issue in Ref. [71].

3.1. General Method

Firstly, let us review the method for computing the Casimir effect in curved spacetime
highlighting a simplified approach proposed in Ref. [44]. This involves studying the
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Casimir effect in the basic scenario of rectangular parallel plates under Dirichlet boundary
conditions, considering a real massless scalar field within a static weak gravitational field.
The configuration is shown in Figure 2.

R

z

xL{

Figure 2. Diagram illustrating the placement of plates and the observer’s coordinate system.

In a curved spacetime, the action of the scalar field, φ, can be written as

S =
∫

d4x
√

g
[

1
2

gµν∂µφ∂νφ +
1
2

εRφ2
]

, (35)

and the field equation as

1√
g

∂µ[
√

ggµν∂νφ] + εRφ = 0, (36)

where gµν is the 4-dimensional metric tensor with a signature (+,−,−,−), the Greek in-
dices take the values 0 (temporal component), 1, 2, and 3 (spatial components), g is the
determinant of gµν, ε denotes the vacuum energy,R is the Ricci scalar, and ∂µ ≡ ∂/∂xµ.

In order to get a simple enough expression for the energy density, we consider a static
observer who performs measurements with the four-velocity:

uµ = g−1/2
00 δ

µ
0 , (37)

where δ
µ
ν is the Kronecker delta.

The orthonormal mode solutions obey the scalar product:

〈φn, φm〉 =
∫

Σ

√
gΣnµ[φ∗n∂µφm − (∂µφ∗n)φm]dΣ, (38)

where Σ stands for the boundaries, and

〈(φn,~kn), (φm,~km)〉 = δ(~kn −~km)δnm, (39)

with n and m representing discrete modes, while~k refers to the transverse wave numbers,
and δ(~kn −~km) is the Dirac delta function.

The mean vacuum energy is defined as

ε̄ =
1

Vp

∫

Σ
d3x
√

gΣuµuν〈0|Tµν|0〉, (40)
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where Vp is the proper volume of the cavity Vp =
∫

Σ d3x
√

gΣ and Tµν represents the
stress–momentum–energy of the scalar field. In terms of the field modes, Equation (40) can
be written in terms of the orthonormal mode solutions as [44]

ε̄ =
1

Vp
∑
n

∫
d2k
√

gΣ(g00)
−1T00[φ

∗
n, φn], (41)

where, T00[φ
∗
n, φn] represents a bilinear form analogous to the time–time component of the

stress–energy tensor:

T00[φ
∗
n, φn] = ∂0φ∗n∂0φn − g00gµν∂µφ∗n∂νφn. (42)

3.2. Sorge’s Result and Generalizations

The field is governed by the ordinary Klein–Gordon equation; the boundaries are
planes with coordinate separation, L; and field obeys the conditions φ(z = 0) = φ(z =
L) = 0. The orthonormal solutions are given by

φ(x) =
1

2π
√

ωnFL
sin
(nπz

L

)
exp[i(ωnFt− k⊥x⊥)], (43)

where ωnF =
√

k2
⊥ + (nπ/L)2 is the mode frequency (with the ⊥ subscript denoting the

transverse component and the “F” subscript standing for a flat spacetime). Using these
mode solutions in Equations (41) and (42), we obtain:

ε̄ =
1

8π2L ∑
n

∫
d2k⊥ωnF. (44)

Employing Schwinger’s proper time representation and zeta function regularization,
we arrive at the renormalized value for the Casimir energy in Minkowski spacetime:

ε̄Cas = −
π2

1440L4 . (45)

To explore the curved case, we commence with the explicit calculation proposed by
Sorge [44]. The spacetime metric is defined as

ds2 = −(1 + 2Φ(r))dt2 + (1− 2Φ(r)(dr2 + r2dΩ2)), (46)

where r is the radius-vector, Ω is the space solid angle, Φ(r) = −M/r is the Newtonian
gravitational potential, withM being the mass parameter, in the framework of the weak
field approximation of the Schwarzschild spacetime. In this background, the Casimir
energy is sought in a scenario where two parallel rectangular plates are present. To simplify
the calculations, a Cartesian-like coordinate system is employed between the plates, whose
origin is located at the center of the lower plate, and the z-axis is aligned parallel with the
radial direction (see Figure 2).

Concerning the metric, it is written as

ds2 = −(1 + 2Φ0 + 2Υz)dt2 + (1− 2Φ0 − 2Υz)(dx2 + dy2 + dz2). (47)

Applying the following coordinate changes: dt → (1 + 2Φ0)
−1dt, ~dx → (1 −

2Φ0)
−1 ~dx, the metric (47) turns into

ds2 = −(1 + 2Υz)dt2 + (1− 2Υz)~dx
2
, (48)

which reduces to Equation (47) with Φ0 = 0. Therefore, up to order (M/R)2, the relevant
parameter is Υ. Notice that, in the case where there are no crossing terms in the metric, the
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Casimir energy for a general constant perturbation measured by the observer, given by
Equation (37), remains unaltered [72]. This is what is expected because this spacetime is
equivalent to the Minkowski one.

The vacuum expected value of the energy–momentum tensor can then be determined
by the standard manner using orthonormal solutions of the Klein–Gordon Equation (36)
and substituting into Equation (41).

The perturbative calculation is performed, order by order [44], starting with the zeroth
order (flat spacetime) and, in the sequel, to the first order (up to Φ0 in Equation (47)). An
intriguing observation is that, when calculating to the order of Φ0—constant perturbative
terms relative to Minkowski spacetime—it is demonstrated that there is no correction to the
conventional flat spacetime Casimir energy. This stems from the observation that setting
Υ = 0 in Equation (47) results in a flat spacetime with a gauge transformation [44]. Then,
we proceed to the second-order calculation following these steps.

The case Υ = 0 corresponds to the first-order approximation being calculated explicitly,
with a null result [44]. In the sequel, the correction of the second order of the metric (48) is
taken into account. In this case, the field equation turns into

−(1− 4Υz)∂2
t φ +∇2φ = 0, (49)

where ∇2 ≡ δij∂i∂j. The solutions are, then, given by

φn,k = χn(z)eiωnt−ik⊥x⊥ , (50)

and asymptotically turn into

χn(u) = Anu−1/4 sin
(

2
3

u3/2 + ϕ

)
, (51)

where
u(z) = −(z− p/q)q1/3, q = 4Υω2

n, p = ω2
n − k2

⊥, (52)

and ωn = (1 + ΥL)ωnF are the frequencies. In the results obtained in Ref. [44], the
expansion is performed in terms of the solution for the flat case, as follows:

φn = φ
(0)
n + δφn. (53)

Using this approach, the energy–momentum tensor and Casimir energy can be written as

T00[φ
∗
n, φn] = T00[φ

(0)∗
n , φ

(0)
n ] + {T00[δφ∗n, φ

(0)
n ] + c.c}, (54)

and ε̄ = ε̄(0) + δε̄. Here, “c.c.” stands for complex conjugate.
Substituting the first term on the right-hand side of Equation (54) into Equation (41)

and subsequently renormalizing, we obtain:

ε̄
(0)
ren = −(1− 2ΥLp)

π2

1440L4
p

. (55)

In the expression (55), Lp =
∫

dz
√
|g33| represents the proper separation distance

between the plates.
Considering the second term, which is analogous to the flat spacetime expression (44),

the calculation is performed by integrating the frequency change of the modes (neglecting
other terms since δφ itself is of order Υ):

δε̄ =
1

8π2L ∑
n

∫
d2k⊥δωn = ΥLp

(
− π2

1440L4
p

)
, (56)
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with the following result:

ε̄Cas = −(1− ΥLp)
π2

1440L4
p
= −(1− ΥL)ε̄0, (57)

with ε̄0 being the standard flat spacetime result. Notably, in Ref. [44] it is meticulously
ensured that the result is expressed exclusively in terms of proper quantities, not in the
coordinate ones. This constitutes the original outcome presented in Ref. [44].

Several generalizations to the result (57) have been proposed, such as one in Ref. [73]
where a general weak field metric is suggested by considering distincts Φ and Υ parameters
as follows:

ds2 = −(1 + 2Φ0 + 2Υ0z)dt2 + (1− 2Φ1 − 2Υ1z)(dx2 + dy2 + dz2). (58)

Taking into account the Neumann boundary conditions, a calculation can be carried
out for both scalar and vector fields. In particular, for a real scalar massless field, the
following result for the proper energy density is obtained:

ε̄ = −(1 + Φ0 + Υ0
Lp

2
)ε̄0. (59)

This approach can be applied to specific cases, including the far-field limit of Kerr
spacetime (also discussed in Ref. [74]), Fermi spacetime, and the scenario of Horava–Lifshitz
gravity with a cosmological constant. This can be achieved by adjusting the coefficients
Φ and Υ. It is important to note however, that Equation (59) does not seem to recover the
result obtained in Equation (57). Several additional examples involving spacetimes sharing
some similarity with Equation (58) are explored. These include the study of a similar model
for extended theories of gravity [75], the Casimir effect in post-Newtonian gravity with
Lorentz violation [76], and the Casimir effect in quadratic theories of gravity [77].

3.3. Revisiting

Recently, Lima and colleagues [50] have revisited the the problem we consider here
addressed by Sorge in Ref. [44]. Let us first revisit Sorge’s approach [44] to calculate
second-order corrections. The same reasoning that leads to the second-order calculations
can be applied to compute the first-order correction; let us examine the outcome.

Assuming that Φ = Φ0 in Equation (46) and substituting Equation (45) into Equation (42)
and integrating, we obtain

ε̄0 =
1

Vp

1
(2π)22L

(1− 3Φ0)∑
n

∫
d2kω0. (60)

Performing the renormalization and writing the result in terms of LP, we find

ε̄0
ren = −(1− 4Φ0)

π2

1440L4
p

. (61)

The frequencies are ω ' (1 + 2Φ0)ω0, so we should have

δε̄ = −2Φ0
π2

1440L4
p

. (62)

Adding the contributions given in Equations (61) and (62), a nonzero energy shift is
found. The method falters due to the assumption that δε̄ can be computed by substituting
ω0 for δω, as in the flat spacetime case.

Lima and colleagues [50] demonstrated that this is not the case and that the correction
factor is linked to a geometrical term reminiscent of the normalization condition (38). In
what follows, the details are presented.
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Let us begin by writing Equation (51) as a perturbative expansion in terms of Υ,
as follows

χ(z) =
1

2π
√

ω0L
sin
(nπz

L

)
+ Υχ(1)(z) +O(M/R)3, (63)

where χ(1) defines the first order correction. To obtain χ(1), we have to determine An, ϕ
and ωn. The frequencies are obtained by imposing the periodicity of the solution, namely,
φ(0) = φ(L) = 0, which gives us

ωn ' (1 + ΥL)ω0, where ω0 = [k2 + (nπ/L)2]1/2. (64)

Imposing that χ(z = 0) = 0, the following solution is obtained:

φ = −2
3

u3/2(0). (65)

To obtain the coefficients An, let us write Equation (38) by restricting to the hypersur-
face t = 0. Thus, the following normalization condition is obtained:

〈χ(n, k1), χ(n, k2)〉 = δ2(k1⊥ − k2⊥)δnm, (66)

and as a consequence,

An =

[
(2π)22ω

∫

V
d3x(1− 4Υz))Θ2

n]

]−1/2
with Θn = u−1/4 sin

(
2
3

u3/2 + ϕ

)
. (67)

Now, let us use the results for An, ϕ and ωn in the expansion of Equation (51) in
powers of Υ, similarly to Equation (63). As a result, we get

χ(1)(z) = [2nπω2
0 L2(L− z)z cos(nπz/L)

+L(2n2π2z + 2k2L2z− k2L3) sin(nπz/L)]/4Ln2π3
√

ω0L. (68)

The solution given by Equation (63), can be used to verify that the Klein–Gordon
equation given by Equation (36), along with the boundary condition and normalization
relation, is satisfied up to order (M/R)2.

Now, we have all the necessary information to write Equation (41). In order to do this,
let us express Equation (42) in terms of χ(z), as

T00[ψ
∗
n, ψn] =

1
2

ω2
nχ2

n +
1
2
(1 + 4Υz)[k2

⊥χ2
n + (∂zχn)

2]. (69)

Thus, the unnormalized vacuum energy density reads

ε̄ =
1

Vp

S
8π2L

(1 + ΥL/2)∑
n

∫
d2k⊥ω0, (70)

while the renormalized Casimir energy density is given by

ε̄Cas = −
π2

1440L4 (1 + 2ΥL) = − π2

1440L4
p
= ε̄0. (71)

Therefore, regarding the proper length of the cavity, measured by a static observer, the
mean value of the Casimir energy density is identical to the one obtained in a flat spacetime
case, for a rigid cavity.

Verify if the result (71) has important consequences is challenging. As it is written in
generalized coordinates, this verification should be not straightforward.
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To distinguish between physical effects and those arising due to the choice of coordi-
nates. The Casimir energy density appears to be the same as that obtained in the case of flat
spacetime, where there is no imposition of boundary onditions, for instance. Setting aside
these considerations from a heuristic perspective, it is intriguing that the shift in the field
solution found in this calculation is sufficient to compensate for the geometrical factors.

Furthermore, in Ref. [50], it is demonstrated that the above conclusion also holds for
the case of the more general metric (58). According to the this new result (71), there would
be no correction to the Casimir energy and, consequently, no correction to the force between
the plates, in the presence of weak field gravity. The initial calculation seems to yield a
seemingly controversial result, which might not align with the equivalence principle.

The question of whether or not the vacuum should gravitate by the principle of
equivalence has been explored in earlier papers [78–81]. These papers are dedicated to
the question “How does Casimir energy fall?” and conduct in-depth analyses with a
seemingly general agreement that the buoyancy of the vacuum energy should indeed obey
the equivalence principle. Following this line of reasoning, we conclude that, although the
calculations following from the definition given by Equation (40) have been performed
correctly, the obtained result, given by Equation (71), is not consistent with the equivalence
principle, since to obey this principle in the order of approximation considered, a term of
Newtonian potential energy would be expected, highly suggesting there is a problem with
the initial proposition.

Returning to the earlier discussion, presented in Section 3.2, a new calculation for the
Casimir energy in the presence of weak gravity was conducted in Ref. [31], this time and
using the Schwinger method [82,83], the same result given by Equation (57) was obtained.
With respect to the results expressed by Equation (71), it was also obtained in Ref. [84].

Going deeper, in Ref. [71], Sorge proposes another method of obtaining the vacuum
energy by calculating the quasi-local Tolman mass of the vacuum between the plates.
Additional insight is provided for the meaning (or lack thereof) of expression (41), which
represents a summation of the expectation value for the energy–momentum tensor taken in
the frame of a series of different observers. Since a single observer cannot simultaneously
measure values for the entire region with infinite points, this does not reflect a measurable
experimental result.

Through a detailed formal calculation, the Sorge demonstrates that the total measured
energy for the system at a specific instant in time should be

Et =
∫

Σ
d3x
√
|g|〈T0

0〉vac. (72)

When compared to the density definition (41), it becomes apparent that the former is
missing an extra

√
|g00| factor, attributed to a redshift factor between the local observer

and an ideal one at spatial infinity.
It is then demonstrated through a Lagrangian method that the energy attributed to the

Casimir apparatus subjected to a weak gravitational field at a given time t, in the laboratory
frame of a Fermi observer, is

E = −
[

1 + Υ
(

H +
Lp

2

)]
Sp

π2

1400L3
p
=

[
1 + Υ

(
H +

Lp

2

)]
Vp ε̄0, (73)

where H is the reference height of the lower plate in the laboratory frame. This implies that
the correction,

δE = Υ
(

H +
Lp

2

)
Vp ε̄0, (74)

acts as a gravitational potential energy, where zcm ≡ H + Lp/2 is the vertical coordinate
of the center of mass of the vacuum field, being then in concordance with the principle of
equivalence. Notice that this result is in accordance with the one obtained in Ref. [73] if
one takes H → R. Nazari also proposes a quasi-local stress–tensor formalism in Ref. [85],
although the results differ from those obtained by Sorge [31].
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As it is stressed by Sorge and Nazari, for typical values of the Υ factor on Earth’s
surface, corrections proposed to the Casimir energy due to the planet’s gravitational field
are quite small (approximately 10−22-times the value of the ordinary Casimir interaction),
but the possibilities of measuring these effects have been discussed since Ref. [43]. Those
discussions may be of help to fuel the idealization of the Archimedes experiment [69,70].

In Ref. [86], an instructive analysis is carried out for the problem of a rigid Casimir
cavity radially falling in geodesic motion towards a Schwarzschild event horizon. In this
case, on the comoving observer frame, the horizon gives rise to a non-static background.
It is found that, still in a perturbative approach (although it is outlined that the method
proposed could be a starting point to a nonperturbative one), through the effective action
method, somewhat small corrections to the proper energy density related to vacuum
polarization (static Casimir effect) and the creation of quanta inside the cavity. It is shown
that the energy variations considering both aspects coincide precisely, suggesting the two
contributions might be intrinsically related, although, as already pointed out this is quite
complicated to ensure because of the perturbative first-order nature of the calculations
carried out.

In Ref. [87], several earlier results are generalized in the analysis of a Casimir apparatus
orbiting in a background described by the Kerr spacetime. In paper [87], rather than
calculating the effects due to the variation of the geometry inside the cavity, the metric
components are taken as approximately constant inside the plates, and instead, lower order
(bigger magnitude) corrections due to the nonstatic nature of spacetime are obtained, related
to the loss of azimuthal symmetry in this scenario. Some limiting cases are considered such
as those when the orbit is close to a null path, and thus, the measured energy approaches
zero; this case is also close to the case of the innermost stable circular orbits of extremal
Kerr black holes, as pointed out in Ref. [87]. Another noticeable result of Ref. [87] is that
observers with zero angular momentum relative to the source will detect no disturbance in
the ordinary Casimir interaction.

References [86,87] exemplify even more relevant subjects such as tidal and dynamic
effects on the vacuum state, which may be found considering time-dependent backgrounds
and stronger gravitational effects. Further details of the Casimir effect in gravitational
spacetimes such as Kerr and Schwarzschild ones are forseeing to be uncovered in the
forthcoming years, although more detailed calculations involving variations of the energy–
momentum tensor in small Casimir cavities involving factors such as plate finiteness and
anisotropies in the field solutions may prove to be cumbersome. Likewise, one may also
expect many exciting results to arise from the study of vacuum energy in the context of
other feature-rich objects, such as wormholes.

Different extensions of the elementary particles Standard Model predict the existence
of light massive and massless elementary particles [88,89], which can be exchanged between
atoms of material bodies separated by a given distance implying the appearance of correc-
tions to Newton’s gravitational law of the Yukawa-type as well as the power type [90]. The
deviation from Newtonian gravity is commonly investigated by fixing the constraints on
the parameters of non-Newtonian gravity performed using the experiments of Eötvos and
Cavendish types [90]. One limitation of this kind of experiments is that the strength of the
obtained constraints quickly decreases when the bodies are separated by distances below a
few micrometers. At such distances, the Casimir force [1] becomes dominant as compared
to Newton’s gravitational force. In this case, the investigations concerning non-Newtonian
interactions are of crucial importance as may reveal some insight into how to connect
the two apparently incompatible theoretical pillars of modern physics, namely quantum
mechanics and general relativity. This makes the search for non-Newtonian gravity at
considerably short separations an important scientific problem to be considered, and, in ad-
dition, the measurements of the Casimir force appear as important data that can be used to
obtain stronger constraints on the parameters that measure the deviations from Newtonian
gravity, due to hypothetical interactions predicted in different unification schemes beyond
the Standard Model. During the last two decades, measurements of the Casimir interaction
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were performed using different configurations [91–99], and, as a consequence, there was
a significant improvement concerning the constraints on the Yukawa-type corrections to
Newton’s gravitational law. The present generation of experiments to measure the Casimir
force permits us to impose strong constraints on chameleon cosmological models [100].
Concerning the symmetrons [101], some results were addressed recently [102], even in
a scenario of a hypothetical Casimir experiment. As was shown above, to explain the
deviations from Newton’s law of gravitation at sub-millimeter separations between macro-
scopic bodies, the measure of the Casimir force with high accuracy has a fundamental role,
not only concerning the comprehension of this specific point, but also to clarify on the
questions related to the dark sector and a new physics phenomenology. To improve the
acquisition of data related to this measurements. The Casimir And Non-Newtonian force
EXperiment (CANNEX) is a project to allow for the measurements of the force between
parallel macroscopic plates separated by distances between 3 and 30 micrometers [103,104].
The improvement of the apparatus sensitivity, with the CANNEX, may potentially open a
window to detect several physical phenomena beyond the Standard Model and general
relativity based on the quantum phenomenon termed the Casimir effect.

4. Casimir Wormholes

The distinctive feature of the Casimir energy density lies in its ability to violate energy
conditions, notably attaining negative values for specific configurations. This unique
property turns the Casimir energy density a rare energy source with the potential to facilitate
the existence of traversable wormholes, as discussed in Ref. [105]. These objects are
solutions to Einstein’s equations, akin to hypothetical spacetime tunnels connecting distant
points in the universe. Traversable wormholes typically necessitate the presence of exotic
matter, as outlined in Ref. [106]. However, it is worth noting that certain modified theories of
gravity, as explored in Ref. [107], have offered alternative perspectives on this requirement,
which has proven to be instrumental in the study of such exotic structures [108,109].

The pioneering exploration of the energy–momentum tensor associated with the
Casimir effect as a potential contributor to the building of four-dimensional traversable
wormholes within the framework of general relativity emerged in 2019 through the research
of Remo Garattini [110]. Garattini’s study [110] resulted in the derivation of the following
“Casimir” wormhole solution, characterized by a throat radius denoted as r0. In the form of
a Morris–Thorne solution, one has:

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)/r
+ r2dΩ2, (75)

with the shape function b(r) given by

b(r) =
2r0

3
+

r2
0

3r
, (76)

and the redshift function Φ(r) is

Φ(r) = log
(

3r
3r + r0

)
. (77)

It is worth calling attention to the feature that such a solution obeys the traversability
conditions that should be satisfied by a wormhole, namely:

(i) the flaring-out condition, determined by the minimality of the wormhole throat,
which imposes that (b− b′r)/b2 > 0, where the “prime” means derivative with
respect to r and at the throat, b(r0) = r0;

(ii) the condition to guarantee the existence of wormholes, given by 1 − b/r ≥ 0;
and finally,
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(iii) the condition that there are no horizons, which are identified by the existence of
surfaces with eΦ → 0, so that Φ(r) is finite everywhere [106].

It is worth mentioning that the solution given by Equations (75)–(77) adheres to the
Casimir equation of state (EoS), pr = 3ρ = −3π2/(720r4), where the radial coordinate
replaces the customary separation between plates, hence the denomination “Casimir worm-
holes”. A criticism that can be made to this direct approach is that, to build a complete
wormhole solution using quantum fields, one must simultaneously solve the quantum
field theory and the gravitational equations, thus accounting for the backreaction of the
renormalized stress–energy tensor of the quantum fields beyond the linearized (or pertur-
bative) approximation.

Soon after, the Garattini study [110] was followed by various others in the same line
of investigation, including modified theories [111–118], and expanded to encompass d
spacetime dimensions, as documented in Ref. [119]. Nonetheless, the research of Geová
Alencar, Valdir Bezerra and Celio Muniz [120] has revealed that, within the context of
2+1 dimensions, the Casimir energy density and pressure alone do not have the necessary
attributes to support a wormhole structure. Consequently, it is not feasible to create
what may be referred to as “pure” Casimir wormholes within this reduced dimension, as
elaborated upon in Ref. [120].

Three-Dimensional Casimir–Yang–Mills Wormholes

Motivated by earlier investigations that explored the utilization of quarkonic matter as
a catalyst for wormholes, as referenced in Ref. [121], the pursuit of discovering traversable
Casimir wormholes confined to 2+1 dimensions has been revisited. This re-evaluation
was prompted by adopting a perspective based on the Casimir effect of gluon fields, as
expounded upon in Ref. [53]. This new approach involves considering the potentials
derived from lattice simulations based on first principles within the Yang–Mills theory,
characterizing the interactions between perfect chromoelectric conductors at both short
and long distances, as initially presented in Ref. [122]. In Ref. [122], the lattice calculation
of the Casimir energy for the SU(N) gauge theory was fitted by the following expression:

E
L
= −DimG

ζ(3)
16π

(
R
√

σ
)−ν

R2 e−MCasR, (78)

where DimG is the dimension of the group (Dim(SU(3)) = 3; for the group SU(3), L is the
length of each wire, R is the distance between them, and σ is the tension of the confining
(fundamental) Yang–Mills string at zero temperature). The exponent ν represents an
anomalous dimension of the Casimir potential at short distances and MCas represents the
effective Casimir mass associated with the nonperturbative mass gap at large distances.
The quantities ν and MCas are free parameters that can be controlled to obtain the best
lattice fit. It is worth mentioning that the Casimir energy of the non-interacting case (short
distances) is obtained by performing ν = MCas = 0 in the expression (78) above.

With this motivation, an innovative approach has been introduced in the quest for
a traversable Casimir wormhole solution within lower dimensions in the context of the
vacuum fluctuations of Yang–Mills fields. This approach entails introducing a subtle
perturbation to the EoS, which relates Casimir energy density to the corresponding pressure,
by incorporating a series of functions characterized by inverse power laws relative to
the radial coordinate. This perturbation was taken into account in both the short- and
long-range interactions of the referenced quantum fields, as comprehensively detailed in
Ref. [53], yielding distinct classes of static and circularly symmetric Casimir wormhole
solutions. By averaging such deformation in the EoS, the authors identified that the original
equation of state is maintained, and therefore, it forms a legitimate Casimir source on
average. The energy conditions and stability of these novel solutions were studied in detail.
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In this context of three-dimensional Casimir–Yang–Mills wormholes, we focus on the
long-range interaction case, where a Casimir mass, denoted as MCas, is associated with
gluons. The simplest wormhole solution within the obtained spectrum of solutions can
succinctly be described as follows. In terms of the shape function, we have [53]:

b(r) = r0 + 2κλσ−
ν
2 Mν+1

Cas r[Γ(−ν− 1, MCasr)− Γ(−ν− 1, MCasr0)], (79)

where Γ(a, z) is the incomplete gamma function. For the redshift function, we obtain

Φ(r) =
r0

2r
(2 + ν + MCasr0) +

1
2

MCasr0 ln
(

r
r0

)
− r0(ν−MCasr0)

r− r0
ln
(

r
r0

)
. (80)

The metric functions (79) and (80) ensure the asymptotic local flatness and flaring-
out conditions of the wormhole solution. It is interesting to note the nontrivial topology
that emerges from this solution, since asymptotically, it presents a conical singularity
behavior, i.e.,

b(r)
r
≈ −2κλσ−

ν
2 MCasΓ(−ν− 1, MCasr0), (81)

which does not happen in the short-distance scenario.
Another interesting aspect of the analysis involves the examination of the solution

stability through the adiabatic sound velocity, vs, within the source, vs, defined as

v2
s (r) =

1
2

[
d(pr + pθ)

dρ

]
=

1
2

[
p′r(r) + p′θ(r)

ρ′(r)

]
. (82)

In the expression (82), pr and pθ represent the radial and lateral pressures, respectively. It
is worth noting that, in contrast to the short-range case, only the long-range interaction
case exhibits stability (vs ≥ 0), and the sound velocity remains less than 1 nearby and on
the wormhole throat, lending physical significance to this solution as can be seen in the
parameter space depicted in Figure 3.
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Figure 3. Parameter space (r0, MCas) nearby the Casimir–Yang–Mills wormhole throat (r ≈ r0) for
the simplest solution of the interacting scenario, pointing out the region in which 0 ≤ v2

s ≤ 1, with
ν = 0.05, λ = 3ζ(3)/(16π). See text for details.
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Energy conditions also were evaluated, and as anticipated, violations were indeed
observed. This finding is in line with the expectations, since it is consistent with the negative
Casimir energy density serving as the primary source for these wormhole solutions.

5. Summary of Results

The generalized zeta function method and the heat kernel expansion were used
to obtain the renormalized free energy for massive and massless scalar fields, at zero
temperature, as well as the thermal corrections, in a closed and analytic form. These studies
were performed in Minkowski spacetime, by imposing on the fields a nontrivial compact
boundary condition. In the massless case, the limits of high and low temperatures were
obtained and discussed.

A discussion was presented about the explicit derivation of the Casimir interaction
from quantum field orthonormal solutions. It emphasizes the problem related to the energy
definition in the equation and its implications, in particular the conclusion of the absence
of sensible corrections to the Casimir force due to gravity. This is a reminder that energy,
as a non-local quantity, presents difficulty with its definition in curved spacetime. It was
shown that this problem is solved with more thorough treatment involving the quasi-local
formalism, and the results were reconciled with the principle of equivalence.

Finally, a traversable wormhole solution was obtained by considering the Casimir
energy associated with the quantum vacuum fluctuations of the Yang–Mills field in a
three-dimensional spacetime, as a source of the gravitating body.

Quantum fields, as exemplified in this study, are confined to a bounded domain with
nontrivial compact boundary conditions. These fields experience influences due to the
bounded nature of the space and the imposed boundary conditions. Additionally, when a
finite temperature is considered, it also impacts the Casimir effect, as expected.

Concerning the Casimir energy of a scalar field placed in a weak gravitational field,
between two parallel plates, the obtained result tells us that this energy depends exclusively
on the proper values of the quantities involved in the energy expression.

Finally, the wormhole solution sourced by a Casimir energy of Yang–Mills origin was
considered. It was shown that the energy conditions are violated, as expected. Another
point analyzed concerns the stability of the solution, which is present only in the long-range
interaction regime. In this regime, an asymptotic conical singularity also occurs.

6. Conclusions and Discussion

Let us summarize the findings of this study.
First, we have obtained the Casimir energy density with thermal corrections for a

quantum scalar field, with and without mass, in a (3+1)-dimensional Euclidean spacetime,
under the restriction that the field obeys a nontrivial compact boundary condition. To
find this result, we used the generalized zeta function method and the renormalized heat
kernel expansion given by Equation (22), which can be written as the sum of the n = 0
term, corresponding to the Euclidean contribution, given by Equation (19). When using the
Euclidean heat kernel to obtain the free energy at zero temperature, we faced a problem,
namely the appearance of a divergence term. This problem is solved by appropriately
subtracting this divergence. Concerning the thermal corrections, in the massive case, the
Euclidean heat kernel gives a finite contribution, while for the massless case, a blackbody
radiation contribution is obtained, as shown in Equation (27)). Even being finite, these
contributions should also be subtracted, to obtain the correct classical limit at high tem-
perature, for the massless scalar field. The renormalization approach used to calculate the
vacuum energy at zero temperature and nonzero temperatures gives us exact and analytic
results for the renormalized free energy (31) and (32) for both cases, namely massive and
massless, respectively.
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In the particular case of the massless field, it was shown that the free energy density (32)
has asymptotic behaviors, concerning the temperature, which permits us to write down
the free energy density in a relatively simple and appropriate form to analyze the high-
temperature and low-temperature limits. Performing the sum concerning j, the high-
temperature limit is obtained as in Equation (33), and the correct classical limit is confirmed,
as one would expect. On the other hand, when the sum is firstly performed over n in
Equation (32), the low-temperature limit is achieved, as shown in Equation (34).

As a final observation related to this topic on the influence of nontrivial compact
boundary conditions, as well as of the finite temperature, the results obtained show explic-
itly the changes in the physical observables due to the nontrivial condition imposed on the
quantum scalar fields, for both cases, massive and massless, as well as the changes due to
the finite-temperature effect, expressed by the thermal correction.

In Section 3, in the second part of this paper, we briefly discussed the explicit derivation
of the Casimir interaction from quantum field orthonormal solutions in a weak gravita-
tional field. However, as demonstrated, an issue arises due to the energy definition in
Equation (41), leading to the conclusion that meaningful corrections to the Casimir force
caused by gravity are absent. This highlights the challenge of obtaining total energies, which
are non-local quantities in curved spacetime. A more comprehensive treatment involving
quasi-local formalism reconciles the results with the equivalence principle. Although it is
predicted that vacuum energy should gravitate like any other form of energy, experimental
confirmation is still pending. Therefore, the results of the Archimedes experiment are
eagerly awaited as they are believed to bring breakthrough measurements.

The Casimir energy’s capacity to violate energy conditions has moved researchers
to explore its potential in forming traversable wormholes, which connect distant regions
or universes. Garattini’s paper introduced the concept of Casimir wormholes [110], but
integrating quantum field theory and gravity to form complete solutions consistently is still
a challenge. Studies exploring modified theories and higher dimensions have demonstrated
that Casimir energy does not provide support for wormholes in 2+1 dimensions. However,
as we have shown, a recent investigation into the Casimir effects associated with Yang–Mills
fields ([53]) uncovered various feasible classes of three-dimensional traversable Casimir
wormholes by introducing perturbations to the linear equation of state. While energy
condition violations were observed, stable solutions emerged in the long-range interaction
scenario hinting at potential physical validity. In addition, an asymptotic conical singularity-
like behavior emerged due to the intricate interplay between the strong Yang–Mills field
dynamics and the spacetime geometry. The study aimed to enhance the comprehension of
the relationship between the Casimir energy and the emergence of spacetime structures
including those with nontrivial topologies.

Thus, we reviewed three theoretical scenarios that have been approached in recent
years. The one scenario considered was one related to thermal corrections of the Casimir
effect considering the influence of helix boundary conditions dictated by the topology. In
the other case, the influence of a weak gravitational field on a Casimir apparatus formed
by two parallel plates placed in a vacuum with this field was considered. Finally, a three-
dimensional configuration corresponding to a non-Abelian field as a source to shape a
static and circularly symmetric traversable wormhole was considered where the Casimir
effect is present.

There are several directions research connected with the Casimir effect. For example,
those concerning the interaction between two mirrors mediated by massive fermion fields,
such as quarks or neutrinos, and the effect of the topology, among many others. However,
despite the intensive researches in the field over the last seventy-five years, quite a number
of problems stay unsolved up to nowadays. Thus, after seventy-five years, scientists will
have several mysteries to discover and applications to find, certainly, related to the Casimir
effect, a pure quantum manifestation of zero-point energy.
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