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Preface

Digitalization and digital transformation are currently affecting many areas of human activity

which include but are not limited to industry, medicine, economics, education, and ecology. This

rapid expansion poses new challenges for researchers whose goal is to develop principles and

technologies of applied and computational mathematics that would serve as guidelines for studying

such phenomena.

This reprint is constructed as follows. It comprises 10 papers covering various topics on the

usage of applied and computational mathematics in practical problems in digital environments.

These papers were published in Volumes 11 (2023) and 12 (2024) of the MDPI Mathematics journal,

and were accepted for publication in the Special Issue “Applied and Computational Mathematics for

Digital Environments, 2nd Edition”.

The topics of interest include, among others, scientific research, applied tasks, and problems in

the following areas:

• Building mathematical, structural, and information models of intelligent computer systems for

monitoring and managing the parameters of digital environments;

• Software and mathematical technologies in the implementation of the intelligent monitoring

and computer control of digital environments’ parameters;

• Th application of mathematical models, Internet of Things technologies, machine learning, and

artificial intelligence for big data analysis of digital environments;

• Mathematical models and algorithms for identifying stable patterns between the parameters of

digital environments and their complex and separate influence;

• Mathematical modeling, machine learning, and their implementation within the concept of

“smart” digital environments.

This reprint may be of interest to researchers involved in finding solutions to actual practical

problems in digital environments through the use of applied and computational mathematics.

As the Guest Editor of the Special Issue “Applied and Computational Mathematics for Digital

Environments, 2nd Edition” of the MDPI Mathematics journal, I am grateful to all contributing

authors. I also express my gratitude to all of the reviewers for their valuable comments, which made

it possible to improve the quality of the submitted papers, and to the administrative staff of MDPI

publications for their support in completing this project. Special thanks are due to Dr. Syna Mu,

Journal Development Editor, for his excellent collaboration, valuable assistance, and support.

Liliya Demidova

Editor
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Article

Universal Stabilisation System for Control Object Motion along
the Optimal Trajectory

Askhat Diveev † and Elena Sofronova *,†

Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44, build. 2,
Vavilova Str., Moscow 119333, Russia; aidiveev@mail.ru
* Correspondence: sofronova_ea@mail.ru
† These authors contributed equally to this work.

Abstract: An attempt to construct a universal stabilisation system that ensures the object motion
along specified trajectory from certain class is presented. If such a stabilisation system is constructed,
then only the problem of optimal control is solved, but for a model of the object, which includes a
stabilisation system and a subsystem with a reference model for generating a specified trajectory. In
this case, the desired control is the control in the reference model. Statement of complete optimal
control problem includes two problems, optimal control problem and stabilisation system synthesis
problem for motion along given trajectory in the state space. Numerical methods for solving these
problems based on evolutionary computation and symbolic regression are described. It is shown that
when solving the stabilisation system synthesis problem, it is possible to obtain a universal system
that provides stabilisation of the object motion relative to any trajectory from a certain class. Therefore,
it is advisable to formulate an optimal control problem for an object with a motion stabilisation system.
A computational example of solving the problem for the spatial motion of a quadrocopter is given.

Keywords: optimal control; control synthesis; stabilisation system; evolutionary algorithm; symbolic
regression

MSC: 49M25; 68W50

1. Introduction

When solving the optimal control problem in the classical Pontryagin statement [1],
a solution is obtained in the form of a time-dependent control function. Such a solution
cannot be directly implemented in the real control object, since it leads to the construction
of an open-loop control system that is not sensitive to the real current position of the
control object. The control system without feedback is sensitive to small perturbations.
The control object with an open-loop control system cannot reach the terminal state with a
given accuracy and provide the optimum value of the given quality criterion. Therefore, in
most cases, the optimal control problem is considered as an initial problem for obtaining
an optimal program control and an optimal program trajectory. In order to implement
the obtained solution in a real control object, it is necessary to further solve the problem
of stabilisation system synthesis for the control object motion along the obtained optimal
program trajectory.

Two things should be noted here. First, solving the control synthesis problem is often
no less complicated than solving the original optimal control problem, because in the
synthesis problem, the control function is sought as a function of the state vector. Second,
solving the control synthesis problem changes the dynamics of the control object. The
mathematical model of the control object in the form of differential equations contains the
control function in the right side, so the optimal control found for the original mathematical
model may no longer be optimal for the mathematical model of the object with a motion
stabilisation system. In any case, a system that provides feedback control is necessary to

Mathematics 2023, 11, 3556. https://doi.org/10.3390/math11163556 https://www.mdpi.com/journal/mathematics1
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implement the solution of the optimal control problem, although this does not follow from
the most classical statement of the optimal control problem.

The statement of the control problem, where it is necessary to find the control function
of the state vector, was also proposed by R. Bellman a long time ago [2]. To solve this
problem, a dynamic programming method was developed that allows numerically find
the value of the control vector for each value of the state vector. If we solve the problem
in the Bellman statement using the dynamic programming method for an initial state, as
in the Pontryagin statement, the resulting solution will also be sensitive to changes in
the initial conditions, and the dependence of the control function on the state vector will
not provide an adequate response to disturbances. Solving the Bellman optimal control
problem by dynamic programming for a set of initial states faces the problem of the curse
of dimensionality.

In [3], a refined statement of the optimal control problem is formulated. The classical
statement is complemented by the requirement that the resulting optimal trajectory has a
non-empty neighbourhood with attractor properties. It means that the resulting optimal
control should ideally be a special solution of the differential equation, an attractor. To
achieve this, the control is first sought as a function of time and state, and to implement the
stabilisation system, the initial state is replaced by the initial state domain.

Ensuring additional requirements can be obtained in various ways, for example, by
reformulating the optimal control problem into a problem of general control synthesis for a
given area of initial states [3]; then, each particular solution from a given area provides the
optimal value of a given quality criterion. Such a task is computationally difficult. Another
approach is to solve the control synthesis problem in order to ensure stability with respect
to the terminal state, but in this case, we do not guarantee that the optimal value of the
given quality criterion can be obtained.

To stabilise the movement of the control object along the optimal trajectory, theoretical
works [4] propose linearising the model relative to the trajectory and obtaining a linear non-
stationary model of the object. For the stability of such an object, linear feedback is proposed.
In general, stability for a non-stationary object is not an unsolved problem. In most practical
works, points are set on the tracked trajectory and the control object is made stable relative
to these points. PI and PID controllers are used for this purpose [5–8]. Movement on stable
trajectory points slows down the movement of the object near the stability point, so the
optimum value of the criterion is not maintained. In the work [9], a system for tracking
the trajectory of a quadcopter is built based on stabilization of the quadcopter speed in the
horizontal plane along a straight line. For this purpose, a proportional regulator is built
based on the Lyapunov function. Movement along the trajectory of straight segments with
a constant speed is not optimal. It is necessary to track the trajectory not only in space but
also in time.

In [10], an approach to solving the optimal control problem by the synthesized control
method is considered. According to this approach, first the synthesis problem to ensure the
stability of the object relative to the equilibrium point in the state space is solved, and the
optimal control problem in the original statement is solved at the second stage, where the
optimal positions of the stable equilibrium points are found. Optimal control is achieved by
changing the positions of stable equilibrium points after a given time interval. Synthesised
control is a universal approach to solving the optimal control problem in the class of feasible
systems, but in any particular case it may have several solutions. Each of the solutions may
be differently sensitive to disturbances of the initial conditions. The practical advantage
of the synthesized control is that the synthesis problem of ensuring the stability of the
equilibrium point is solved at a preliminary stage, i.e., at the stage of creating a control
system, and the solution of the optimal control problem by choosing the position of the
equilibrium points can be solved on the on-board computer for a specific current situation.
Solving the problem of synthesising a control system on an on-board computer is usually
complicated due to the high computational cost.
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The problem of synthesis of motion stabilisation along the optimal trajectory was
first considered in [11], where the method of symbolic regression was applied to solve
the synthesis problem. Before that, the symbolic regression method was used to solve the
problem of general control synthesis, without solving the optimal control problem. As
a result, we obtain a control system that includes a reference model for generating the
optimal trajectory in time. Studies have shown that the stabilisation system depends on
the type of optimal trajectory. In practice, it means that the use of such a control system is
difficult, that is, when the situation changes and a new optimal control problem arises, it is
necessary not only to solve the optimal control problem, but to re-solve the stabilisation
system synthesis problem, which is unacceptable for the on-board computer.

In contrast to the previous works, in this paper, it is proposed to use a universal
stabilisation system. The universality of the stabilisation system is that one system of
motion stabilisation for a particular object is obtained for different types of trajectories.
The obtained stabilisation system can be used for other trajectories as well. There may
be trajectories for which this stabilisation system is not suitable, but this requires addi-
tional research, which is currently underway. The stabilisation system should ensure the
stabilisation of control object motion along the given optimal trajectories from a certain
class. For this purpose, first the synthesis problem is solved for one stabilisation system
for several given trajectories. The class of trajectories is considered as a training set, and
the stabilisation system synthesis is the learning of control system for a given training set.
Next, this stabilisation system is applied to the motion along the trajectory that was not
included in the training set. To solve the stabilisation system synthesis problem, methods
of symbolic regression are applied [12,13].

The rest of the paper is organized as follows. The statements of optimal control
problems and the synthesis of a motion stabilisation system along a given trajectory, as
well as a new optimal control problem for an object that includes a reference model and a
motion stabilisation system relative to the trajectory obtained using the reference model in
the control system, are presented in Section 2. Such stabilisation system is called universal.
Next, the network operator method, one of methods of symbolic regression, is described
in Section 3. An example of the universal stabilisation system synthesis for the spatial
movement of a quadcopter and the use of this system when the quadcopter is moving
along a complex trajectory is given in Section 4. Computational experiments are followed
by a conclusion in Section 5 and a discussion in Section 6, respectively.

2. Statement of Complete Optimal Control Problem

We consider some statements of the optimal control problem that make it complete
in terms of implementing of the control problem solution in a real object. To implement
a solution, it is necessary to obtain a closed-loop control system, so that a found control
function depends on the state space vector.

The classical statement of the optimal control problem does not allow obtaining a
closed-loop control system, so a found control function depends only on time. In the
following, a classical statement of the optimal control problem is considered.

2.1. Optimal Control Problem

The mathematical model of a control object is given in the form of an ordinary differ-
ential equation system

ẋ = f(x, u), (1)

where x is a state vector of control object, x ∈ Rn, x = [x1 . . . xn]T , u is a control vector,
u ∈ U ⊆ Rm, U is a compact set that defines control constraints. For example, values of
control vector components can be bounded from above and below

u− � u � u+, (2)

u− = [u−
1 . . . u−

m ]
T , u = [u1 . . . um]T , u+ = [u+

1 . . . u+
m ]

T .

3
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For System (1), the initial state is given:

x(0) = x0. (3)

The terminal state is given as
x(t f ) = x f , (4)

where t f is a terminal time of achievement of the terminal state. The terminal time is not
specified, but it is limited; t f � t+, t+ is a given time limit.

The quality criterion is given in the common integral form

J0 =

t f∫
0

f0(x, u)dt → min
u∈U

. (5)

When solving the problem by direct numerical approach, the terminal state (4) is
reached with a certain accuracy, which is included in the quality criterion (5). Therefore,
the quality criterion for the numerical solution of the problem has the following form:

J1 =

t f∫
0

f0(x, u)dt + p1‖x f − x(t f )‖ → min
u∈U

, (6)

where p1 is a weight coefficient;

t f =

{
t, if t < t+and ‖x f − x(t)‖ � ε1

t+, otherwise
, (7)

where ε1 is an accuracy of achievement of the terminal state (4).
In the classical optimal control problem, a control function is sought as a function

of time:
u = v(t) ∈ U. (8)

To implement the solution of the optimal control problem, it is necessary to synthesise
the stabilisation system of a motion along the obtained optimal trajectory. This stabilisation
system should change the mathematical model of the control object in such a way that
the optimal trajectory in the state space acquires a non-zero neighbourhood with attractor
properties. In the statement of the optimal control problem, either these requirements
should be included and then the implementation of this property is conducted at the
discretion of the control system designer, or it is necessary to add a statement of the
stabilisation system synthesis problem of the motion along the optimal trajectory, and then
solve these two problems together sequentially.

Thus, the control synthesis problem for stabilising the motion along the optimal
trajectory is described as follows.

2.2. Stabilisation System Synthesis

The same mathematical model of control object as in the optimal control problem (1)
is used.

Instead of the one initial state (3), a domain of initial states is specified. For a numerical
solution, the initial state domain is given in the form of a finite set of points

X0 = {x0,1, . . . , x0,K}. (9)

The terminal state is given (4).
The optimal trajectory is a time function

x∗(t), t ∈ (0; t f ). (10)

4
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It is necessary to find the optimal control as a function of the deviation of the state
space vector from the optimal trajectory

u = h(x∗ − x). (11)

If the control function (11) is placed in the right part of ODE system (1), then the
following system is obtained:

ẋ = f(x, h(x∗ − x)). (12)

The control function (11) should minimize the sum of maximum deviations of all
particular solutions of the system (12) from initial states of the given domain (9)

J2 =
K

∑
i=1

(
max

t∈(0;t f ,i)
‖x∗ − x(t, x0,i)‖+ p1‖x f − x(t f ,i)‖

)
→ min

u∈U
, (13)

where t f ,i is a time of achievement the terminal state of the particular solution from the
initial state x0,i defined by Equation (7), x(t, x0,i) is a particular solution of the system (12)
from the initial state x0,i.

There is an ambiguity in this problem statement: How to obtain the value of the
optimal trajectory (10) at a given time? When solving the optimal control problem in the
first stage, the optimal control function is sought as a function of time, but not an optimal
trajectory. When searching by a direct approach, the optimal control function is usually
approximated by a piece-wise continuous function. The result is an analytical mathematical
expression for the control function. The optimal trajectory in the general case has no
mathematical expression and it is obtained numerically after simulation of the control
object model (1) with the optimal control function. To obtain the optimal trajectory and use
it to solve the stabilisation system synthesis problem in the second stage, the results of the
simulation of the control object model (1) with the optimal control function can be kept as
an array of time points and values of the state space vector at this moment. Another way is
to simulate the control object model (1) with the optimal control function together with the
control object model used for the synthesis of the stabilisation system. Then, instead of the
control object model (1) and the optimal trajectory (10) in the statement of the stabilisation
system synthesis problem, a model with two subsystems is used:

ẋ = f(x, u),
ẋ∗ = f(x∗, u∗). (14)

The first subsystem is the mathematical model of the control object with a sought-after
control function for stabilising the movement relative to the optimal trajectory. The second
subsystem is the reference model that generates the optimal trajectory.

It should be noted that the stabilisation system changes the dynamics of the control
object and the optimal control for the control object without a stabilisation system can be
non-optimal for the control object with a stabilisation system. In order to solve the synthesis
problem of the stabilisation system, a machine learning control by symbolic regression
is used. The stabilisation system in a common case cannot provide stabilisation for any
trajectory, and therefore it should be synthesised for each new optimal trajectory.

2.3. Optimal Control Problem for Object with Motion Stabilisation System

In this work, a universal stabilisation system synthesis problem is considered. This
universal stabilisation system provides motion of a control object along any trajectory from
some class. To solve the universal stabilisation system synthesis problem, machine learning
control by symbolic regression is performed for the same model of the control object and
for some given trajectories at the same time. Suppose such a universal stabilisation system
is obtained. If it is known that an optimal trajectory belongs to the class of trajectories

5
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stabilised by the universal stabilisation system, then the optimal control problem can be
solved for the control object with a stabilisation system.

The problem statement of the optimal control problem for a control object with a uni-
versal stabilisation system of movement along the trajectory has the following description.

The mathematical model of the control object with a universal stabilisation system
and with a reference model for the generation of the program trajectory is given as

ẋ = f(x, h(x∗ − x)),
ẋ∗ = f(x∗, u),

(15)

where the function of stabilisation system h(x∗ − x) satisfies the constraints on control for
any values of its arguments

h(x∗ − x) ∈ U. (16)

The initial state is given in (3). The terminal state is given in (4). The quality criterion
is as follows:

J3 =

t f∫
0

f0(x, h(x∗ − x))dt + p1‖x f − x(t f )‖ → min
u∈U

. (17)

It is necessary to find a control function as a time function

u = v∗(t) ∈ U, (18)

with the constraint (16) that the particular solution of the system (15) from the given
initial state (3) reaches the given terminal state (4) with the optimal value of the given
criterion (17).

In this problem, a control function is sought as a function of time and a closed-loop
system with feedback control is obtained.

3. Symbolic Regression for Solving the Control Synthesis Problem

Symbolic regression is a unique computational technique that allows finding the
mathematical expressions of the desired functions. Note that artificial neural networks
can also approximate any function, but they do not find the structure of the function. The
structure of an artificial neural network is determined by the type of network. It can vary
regularly over a certain range by changing the number of layers and the number of neurons
in each layer.

The universal approximation of functions by an artificial neural network is provided
by a large number of parameters. The determination of parameter values as a result of
network training allows obtaining the required values of the desired function for the entire
set of specified values of its arguments. The technique of using an artificial neural network
is similar to the technique of digging a hole using only a shovel. Obviously, any hole can
be dug with a shovel if a large number of workers is used; in the neural network, these are
parameters. But why is it impossible to use more advanced mechanisms, such as excavators,
in approximation problems? These are nonlinear transformations. They should not be used
just because they are difficult to use and require qualification.

Note that nonlinear effects are characteristic of physical and natural phenomena. Many
models of physical processes are nonlinear. Only for nonlinear differential equations it
is possible to obtain a stable limit cycle or an attractor property for a manifold of non-
zero dimension.

There are problems that are difficult to solve with an artificial neural network. One
example is the control synthesis problem. In this problem, it is necessary to find a function
that is part of the mathematical model of the control object. Each new function changes
the dynamic properties of the object, so we cannot define the behaviour of the object with
the optimal control function in advance since the form of the desired function is unknown
at the time of the search. The lack of a training example complicates the application of an

6
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artificial neural network. The function should be searched only by the value of the quality
criterion. Paper [14] explicitly states that the future of artificial intelligence is not connected
with incomprehensible neural networks, but with quite clear symbolic regression.

Here, the symbolic regression method is used to solve the control synthesis problem.
All symbolic regression methods encode mathematical expressions in the form of special
codes. To encode a mathematical expression, first, the alphabet of elementary functions
is defined. The search for a mathematical expression is performed by a special genetic
algorithm on the space of codes of mathematical expressions. In a special genetic algorithm,
the crossover operation is performed taking into account the code of the mathematical
expression so that after the crossover operation, two correct codes of new mathematical
expressions are obtained.

The best known symbolic regression method is genetic programming (GP) [15]. GP
encodes a mathematical expression in the form of a computational tree. On the leaves of
the tree are the arguments of the mathematical expression. Each node of the tree represents
an elementary function. The number of branches leaving the node is equal to the number
of arguments of the elementary function. The crossover operation in GP involves randomly
selecting nodes in the parent trees and swapping the subtrees originating from those nodes.
GP is not the most convenient method of symbolic regression because after the crossover
operation the codes of mathematical expressions change length and the number of identical
arguments of a mathematical expression should be equal to the number of occurrences of
that argument in the desired mathematical expression. GP has also been applied to solve
control problems [16,17].

There are now about twenty symbolic regression methods. In this paper, one of them,
the network operator method (NOP) [12], is used to solve the control synthesis problem.
NOP uses only functions with one or two arguments in the alphabet of elementary functions.
It encodes a mathematical expression in the form of a directed graph. Source nodes of the
graph are associated with the arguments of the mathematical expression. Other nodes of
the graph are associated with the functions of two arguments. The edges of the graph are
associated with functions of one argument.

We consider an example of encoding a mathematical expression by the network
operator method. A mathematical expression is given:

y = a exp(−bx1)(sin(cx2) + cos(dx2)), (19)

where a, b, c, d are constant parameters, x1, x2 are variables. Parameters and variables are
arguments of mathematical expression (19).

To encode the mathematical expression, we use the following functions:

(1) functions with one argument:

F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = exp(z),
f1,4(z) = sin(z), f1,5(z) = cos(z)};

(20)

(2) functions with two arguments:

F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1 · z2}. (21)

Functions with two arguments should be commutative, associative and have a unit
element,

f2,i(ei, z) = f2,i(z, ei) = z,

where ei is a unit element of function f2,i(z1, z2).
Figure 1 shows the directed graph of NOP for mathematical expression (19).

7
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Figure 1. The network operator graph for the mathematical expression.

In the network operator graph, the arguments of the mathematical expression are
shown in the source node. The numbers of functions with two arguments are shown in
other nodes. Numbers of functions with one argument are displayed next to the edges. The
nodes are indexed in their upper parts. If the node indices are sorted such that the index of
node where the edge comes out is of a lesser value than that of the index of nodes where
the edge comes in, then the network operator matrix is upper triangular.

In PC memory, the network operator is presented as an integer matrix, that has a
structure like that of the network operator graph adjacency matrix. The network operator
matrix for the graph in Figure 1 has the following form:

Ψ = [ψi,j] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0 0 0 3
0 0 0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 0 0 2 5 0
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i, j = 1, . . . , L = 11, (22)

where L is a number of nodes in the network operator graph, dim(Ψ) = L × L.
In the network operator matrix, lines with zeros on the main diagonal are linked with

source-nodes. Other non-zero elements on the main diagonal are the function numbers
with two arguments. Non-zero elements above the main diagonal ψi,j �= 0 are function
numbers with one argument.

For calculation values of the mathematical expression by network operator, a vector
of nodes is defined. Initially, the vector of nodes consists of mathematical expression
arguments and unit elements of the corresponding functions with two arguments.

For considered mathematical expression, the initial vector of nodes has the following
form:

z(0) = [x1 x2 a b c d 1 1 1 0 1]T , (23)

where 1 is a unit element for function of multiplication f2,2(z1, z2) = z1 · z2, 0 is a unit
element for function of summary f2,1(z1, z2) = z1 + z2.

The calculation of mathematical expression is performed by the following equation:

z(i)j ←
⎧⎨⎩ f2,ψj,j(z

(i−1)
j , f1,ψi,j(z

i−1
i )), if ψi,j �= 0

z(i−1)
j , otherwise

, i = 1, . . . , L − 1, j = i + 1, . . . , L. (24)

8
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To find an optimal mathematical expression by the network operator method, the vari-
ation genetic algorithm is used. This algorithm implements the principle small variations
of basic solution [18]. According to this principle, small variations of code are defined and
only one basic solution is encoded. Other possible solutions are coded as sets of small
variations. A code of small variation is an integer vector of four components,

w = [w1 w2 w3 w4]
T , (25)

where w1 is a type of small variation, w2 is the line number, w3 is the column number,
w3 ≥ w2, w4 is a new value of a network operator matrix element.

In the network operator, four types of small variations are used: w1 = 0 is an exchange
of the function with one argument: if ψw2,w3 �= 0, then ψw2,w3 ← w4; w1 = 1 is an exchange
of the function with two arguments: if ψw2,w2 �= 0, then ψw2,w2 ← w4; w1 = 2 is an insertion
of the additional function with one argument: if ψw2,w3 = 0, then ψw2,w3 ← w4; w1 = 3 is
an elimination of the function with one argument: if ψw2,w3 �= 0 and ∃ψw2,j �= 0, j > w2,
j �= w3 and ∃ψi,w3 �= 0, i �= w2, then ψw2,w3 ← 0.

In the search algorithm, a population of possible solutions is used. Any possible
solution other than the basic solution is encoded as a set of small variation vectors

Wi = {w1,1, . . . , wi,d}, i = 1, . . . , H, (26)

where d is a depth of variation, a parameter of the search algorithm, H is a number of
possible solutions in the population.

Any possible solution Ψi is obtained by small variations of the basic solution Ψ0.
Variation vector is an operator changing of the network operator matrix. Therefore, for any
possible solution, one can write the following equation:

Ψi = Wi ◦ Ψ0 = wi,d ◦ wi,d−1 ◦ · · · ◦ wi,1 ◦ Ψ0. (27)

To perform a crossover operation, two possible solutions are selected randomly:

Wα = {wα,1, . . . , wα,d},
Wβ = {wβ,1, . . . , wβ,d}.

(28)

The crossover point is selected randomly, c ∈ {1, . . . , d}. Two new possible solutions
are obtained by the exchange of tails after the crossover point of selected possible solutions

WH+1 = {wα,1, . . . , wα,c−1, wβ,c, . . . , wβ,d},
WH+2 = {wβ,1, . . . , wβ,c−1, wα,c, . . . , wα,d}.

(29)

4. Computation Experiment

Consider the optimal control problem of the spatial motion of a quadcopter. The
mathematical model of the control object is

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = u4(sin(u3) cos(u2) cos(u1) + sin(u1) sin(u2)),
ẋ5 = u4 cos(u3) cos(u1)− g,
ẋ6 = u4(cos(u2) sin(u1)− cos(u1) sin(u2) sin(u3)),

(30)

where g = 9.80665.
For a given model of the control object, it is necessary to build a system for stabilising

the motion along a given spatial trajectory, where the shape of the trajectory is not known
in advance. For this purpose, we first create a universal stabilisation system. Solving

9
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the optimal control problem, we obtain several different trajectories, and then solve the
stabilisation system synthesis problem for all the trajectories.

4.1. Synthesis of Universal Stabilisation System

Usually, the development of a system for stabilising the movement of an object along
a given trajectory [19] is to study the mathematical model of the control object, determine
the control channels, determine the deviation of the object from the trajectory or from the
nearest point [7] located on the trajectory and inserting the regulator into the control channel
for qualitative compensation of the deviation. Sometimes model predictive controls with a
simplified model of the control object are used to quickly determine the deviation [20]. In
this work, an attempt is made to develop a universal system for stabilising the movement
along a given trajectory based on machine learning control by symbol regression. In this
approach, the analytical study of the mathematical model of the control object is entrusted
to the computer, which itself finds the necessary control channels and inserts the necessary
regulators there.

To generate program trajectories, we formulate an optimal control problem for a given
object (30).

Initial and terminal states are given as

x(0) = x0 = [0 5 0 0 0 0]T , (31)

x(t f ) = x f = [10 5 10 0 0 0]T , (32)

where t f is a time of achievement of the terminal state, t f is not given, but limited,
t f � t+ = 5.6.

Phase constraints are included in the quality criterion,

ϕi(x) = ri −
√
(x1,i − x1)2 + (x3,i − x3)2 � 0, i = 1, . . . , M, (33)

where M is a number of obstacles, M = 2, ri is a radius of obstacle i, r1 = 2, r2 = 2,
(x1,i, x3,i) are coordinates of their centers, x1,1 = 2.5, x3,1 = 2.5, x1,2 = 7.5, x3,2 = 7.5.

The control object should move through some specified areas. Changing the position
of the these areas affects the optimal trajectory shape. This condition is also included in the
quality criterion,

δ
(k)
i (x(t)) = min

0�t�t f

{√
(z(k)1,i − x1(t))2 + (z(k)3,i − x3(t))2 − d(k)i

}
� 0, (34)

where (z(k)1,i , z(k)3.i ) are coordinates of the area centers on the horizontal plane, i = 1, . . . , S,

k = 1, . . . , P, d(k)i is a size of area, S is a number of areas, S = 4, d(k)i = 0.6, P is a number of
optimal control problems, P = 4, k is a current optimal control problem.

The quality criterion is

J(k)4 = t f + p1‖x f − x(t f )‖+ p2

M

∑
i=1

t f∫
0

ϑ(ϕi(x))dt + p3

S

∑
j=1

ϑ(δ(k)(x(t))) → min
u∈U

, (35)

where p1 = 2, p2 = 3, p3 = 3, ϑ(α) is the Heaviside step function

ϑ(α) =

{
1, if α > 0
0, otherwise

. (36)

10
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To obtain a variety of trajectories, we consider the conditions for the object to pass
through specified areas when solving the optimal control problem. Various optimal trajec-
tories were obtained as a result of different locations of the specified areas.

The training set contained four trajectories in defined locations in the required areas.
The coordinates of required area centers are

z(1)1,1 = 2.5, z(1)3,1 = 0.4, z(1)1,2 = 5.0, z(1)3,2 = 2.0, z(1)1,3 = 7.5, z(1)3,3 = 4.5, z(1)1,4 = 9.6, z(1)3,4 = 7.5,

z(2)1,1 = 2.5, z(2)3,1 = 0.4, z(2)1,2 = 4.5, z(2)3,2 = 2.5, z(2)1,3 = 5.5, z(2)3,3 = 7.5, z(2)1,4 = 7.5, z(2)3,4 = 9.6,

z(3)1,1 = 0.0, z(3)3,1 = 2.0, z(3)1,2 = 2.0, z(3)3,2 = 5.0, z(3)1,3 = 5.0, z(3)3,3 = 8.0, z(3)1,4 = 8.0, z(3)3,4 = 10.0,

z(4)1,1 = 0.4, z(4)3,1 = 2.5, z(4)1,2 = 2.5, z(4)3,2 = 4.5, z(4)1,3 = 7.5, z(4)3,3 = 5.5, z(4)1,4 = 9.6, z(4)3,4 = 7.5.

When solving optimal control problems, we used a direct approach. For this purpose,
we divided the time axis into equal intervals and looked for the values of constant param-
eters at the boundaries of the intervals. Taking into account the control constraints, the
piecewise linear approximation of the control function has the following form:

u(k)
i =

⎧⎪⎪⎨⎪⎪⎩
u+

j , if ûk
j > u+

j

u−
j , if ûk

j < u−
j

ûk
j , otherwise

(37)

where
û(k)

j = q(k)j+mi + (q(k)j+m(i+1) − q(k)j+mi)
t − iΔt

Δt
, (38)

i = 1, . . . , N, j = 1, . . . , m, N is a number of time intervals, Δt is a time interval,

N =

⌊
t+

Δt

⌋
=

⌊
5.6
0.4

⌋
= 14. (39)

For numerical solution a hybrid algorithm [21] was applied. A hybrid algorithm
is based on three well-known algorithms: the genetic algorithm [22], particle swarm
optimization [23], and the grey wolf optimizer [24].

The total (N + 1)m = 15 × 4 = 60, q(k) = [q1 . . . q60]
T parameters were found.

The solutions of the optimal control problem obtained by the hybrid evolutionary
algorithm are given in the Data Availability section.

The parameters of hybrid evolutionary algorithm are the number of possible solutions
in population—1024, the number of generations—512, the number of evolutionary trans-
formations in each population—512. For GA, the number of bits for integer part—4, the
number of bits for fructional part—12, the probability of mutation—0.75. For GWO, the
number of leaders—4. For PSO, the parameters are kα = 0.729, kβ = 0.85, kγ = 0.15, kσ = 1,
and the number of randomly selected solutions to choose the informant—4.

The projections of optimal trajectories on the horizontal plane of the four optimal
control problems are shown in Figures 2–5. In the figures, red circles indicate obstacles that
define phase constraints of the problem. Small dotted circles indicate the specified areas
mandatory for trajectories to follow.

After obtaining the optimal program trajectories, the problem of synthesis of the object
motion stabilisation system along these trajectories was solved (1)–(2), (9)–(13). It was
necessary to find one stabilisation system for all four program trajectories from the training
set according to criterion (13). The domain of initial conditions (9) contained K = 26 vectors
of initial states.

11
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Figure 2. Projection of optimal trajectory 1 on the horizontal plane.

Figure 3. Projection of optimal trajectory 2 on the horizontal plane.

Figure 4. Projection of optimal trajectory 3 on the horizontal plane.
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Figure 5. Projection of optimal trajectory 4 on the horizontal plane.

To solve the synthesis problem, the network operator method [12] implemented in the
software package developed by the authors was used. The parameters of the algorithm were
the number of chromosomes in the initial population—512; the number of generations—
128; the number of couples in one generation—128; the dimension of network operator
36 × 36; the number of variations of one possible solution—5. The computational time for
the universal stabilisation system synthesis on PC with CPU Intel Corei7 2.8 GHz for four
trajectories was approximately 10 min.

The following solution was obtained:

ui =

⎧⎪⎨⎪⎩
u+

i , if ũi > u+
i

u−
i , if ũi < u−

i
ũi, otherwise

, (40)

where
ũ1 = μ(A) + ρ19(q2), (41)

ũ2 = (ũ1 − ũ3
1)ϑ(q6(x∗6 − x6) + q3(x∗3 − x3)), (42)

ũ3 = ũ2 + ρ17(q1 arctan(x∗1 − x1) + q4(x∗4 − x4)), (43)

ũ4 = ũ2
3 + sgn(B + μ(A) + ρ19(q2))

√|B + μ(A) + ρ19(q2)|+
ϑ(C) + sin(D) + sgn(−A arctan(E)F) + arctan(G) + 3

√
F+

sin(q4(x∗4 − x4)) + exp(q2(x∗2 − x2)) +
√

q1,
(44)

A = q6(x∗6 − x6) + q3(x∗3 − x3) + ϑ(q6(x∗6 − x6)),

B = H + tanh(D) + exp(E) + 3√F + exp(q5(x∗5 − x5)),

C = D + tanh(−A arctan(E)F) + ρ18(F),

D = −A arctan(E)F +
3√G + sgn(A)+

sin(q1 arctan(x∗1 − x1) + q4(x∗4 − x4)) + cos(q3(x∗3 − x3)),

E = F3 + q1 arctan(x∗1 − x1) + q4(x∗4 − x4) + ϑ(q5(x∗5 − x5))+

arctan(q4)− (x∗6 − x6) + (x∗5 − x5)
2,

13
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F = sin(q6(x∗6 − x6)) + q5(x∗5 − x5) + (q2 + 1)(x∗2 − x2) + cos(q1)− (x∗2 − x2)
3,

G = ρ19(A) + E + ln(|q6(x∗6 − x6) + q3(x∗3 − x3)|) + exp(F)+

ϑ(q5(x∗5 − x5)) + sgn(x∗5 − x5) + (x∗2 − x2)
3,

H = exp(C) + cos(q6(x∗6 − x6)) + sgn(C)
√
|C|+ sgn(D)

√
|D|+ sin(q5(x∗5 − x5)),

ϑ(α) =

{
1, if α > 0
0, otherwise

,

μ(α) =

{
α, if |α| < 1
sgn(α), otherwise

,

ρ17(α) = sgn(α) ln(|α|+ 1),

ρ18(α) = sgn(α)(exp(|α|)− 1),

ρ19(α) = sgn(α) exp(−|α|),
q1 = 12.10181, q2 = 4.23291, q3 = 15.55688, q4 = 14.70337, q5 = 7.75635, q6 = 10.45923.

Figures 6–9 show projections of one optimal trajectory (in blue) and eight perturbed
trajectories (in black) from the domain of initial conditions (9). The figures show that the
same stabilisation system (40)–(44) provides the object motion in the neighbourhood of all
four optimal trajectories. It should be considered universal.

Figure 6. Projections of optimal trajectory 1 and perturbed trajectories from eight initial states on the
horizontal plane.
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Figure 7. Projections of optimal trajectory 2 and perturbed trajectories from eight initial states on the
horizontal plane.

Figure 8. Projections of optimal trajectory 3 and perturbed trajectories from eight initial states on the
horizontal plane.
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Figure 9. Projections of optimal trajectory 4 and perturbed trajectories from eight initial states on the
horizontal plane.

4.2. Solution of Complete Optimal Control Problem for Object with Motion Stabilisation System

In the second computational experiment, we solved the complete optimal control
problem for an object with a universal stabilisation system (40)–(44). The spatial motion of
the quadrotor along a closed trajectory was considered. The mathematical model of the
control object with a universal stabilisation system has the following form:

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = h4(x

∗ − x)(sin(h3(x
∗ − x)) cos(h2(x

∗ − x)) cos(h1(x
∗ − x))

+ sin(h1(x
∗ − x)) sin(h2(x

∗ − x))),
ẋ5 = h4(x

∗ − x) cos(h3(x
∗ − x)) cos(h1(x

∗ − x))− g,
ẋ6 = h4(x

∗ − x)(cos(h2(x
∗ − x)) sin(h1(x

∗ − x))
− cos(h1(x

∗ − x)) sin(h2(x
∗ − x)) sin(h3(x

∗ − x))),
ẋ∗1 = x∗4 ,
ẋ∗2 = x∗5 ,
ẋ∗3 = x∗6 ,
ẋ∗4 = u4(sin(u3) cos(u2) cos(u1) + sin(u1) sin(u2)),
ẋ∗5 = u4 cos(u3) cos(u1)− g,
ẋ∗6 = u4(cos(u2) sin(u1)− cos(u1) sin(u2) sin(u3)),

(45)

where x = [x1 . . . x6]
T , x∗ = [x∗1 . . . x∗6 ]T .

For the control object, the initial conditions coincide with the terminal conditions

x0 = x f = [0 5 0 0 0 0]T . (46)

Four phase constraints are

ϕi(x) = ri −
√
(x1,i − x1)2 + (x3,i − x3)2 � 0, i = 1, . . . , M, (47)

where M is the number of obstacles, M = 4, ri is the radius of obstacle i, ri = 2, i = 1, . . . , 4,
(x1,i, x3,i) are coordinates of their centers, x1,1 = 5, x3,1 = 0, x1,2 = 10, x3,2 = 5, x1,3 = 5,
x3,3 = 10, x1,4 = 0, x3,4 = 5.
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The three specified areas are as follows:

δi(x(t)) = min
0�t�t f

{√
(z1,i − x1(t))2 + (z3,i − x3(t))2 − di

}
� 0, (48)

where (z1,i, z3.i) are the coordinates of the area centers on the horizontal plane, i = 1, . . . , S,
S is the number of areas, S = 3, di is the size of the area, di = 0.6.

The coordinates of the required area centers are z1,1 = 10, z3,1 = 0, z1,2 = 10, z3,2 = 10,
z1,3 = 0, z3,3 = 10.

The optimal control problem was solved on the basis of the direct approach by a hybrid
evolutionary algorithm [21]. To solve the problem, we set t+ = 15.2 and time interval
Δt = 0.4. There were 38 intervals in total. For each interval boundary, M = 4 controls had
to be found. Thus, the total (N + 1)m = 39 × 4 = 156, q = [q1 . . . q156]

T parameters were
found.

The values of the found parameters for optimal control are given in the Data Avail-
ability section. The value of the quality criterion (35) is J4 = 15.1221. Figure 10 shows the
projection of the new found optimal trajectory on the horizontal plane.

Figure 11 shows a new optimal trajectory (in blue) and eight perturbed trajectories (in
black) for an object with a universal stabilisation system. As it can be seen from the figure,
all perturbed trajectories are in the neighbourhood of the optimal trajectory and satisfy
the phase constraints. A value of the quality criterion (35) for the object with a universal
stabilisation system without perturbations (blue) is J4 = 16.341.

To estimate the results, a comparable experiment was performed. For models with and
without a stabilisation system, the initial states were subjected to random perturbations,

xi(0) = x0
i + 2β0(ξ(t)− 1), (49)

where ξ(t) is a random numbers generator. Function ξ(t) returns a random number from 0
to 1 after each call, β0 is a level of perturbations.

Figure 10. Projection of a new optimal trajectory on the horizontal plane.
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Figure 11. Projections of a new optimal trajectory (blue) and perturbed trajectories (black) on the
horizontal plane.

The values of quality criterion (35) for perturbed initial states at β0 = 0.1 for object
with and without stabilisation system are given in Table 1.

The last two lines show average value and standard deviation (SD) on experiments.
As it can be seen from Table 1, an object model without a stabilisation system is essentially
more sensitive to the perturbation of initial conditions.

Table 1. Sensitivity of solutions to perturbations of initial states.

No Direct Stabilisation

1 20.5112 16.4147
2 18.5402 16.4715
3 19.3551 16.4456
4 18.3839 16.3356
5 20.0805 16.4408
6 18.7307 16.4417
7 19.0710 16.4456
8 21.3337 16.4120
9 20.3913 16.4495

10 18.5464 16.4710

Avg. 19.4940 16.4323

SD 1.02170 0.04012

5. Conclusions

The paper presents a statement of the complete optimal control problem in which,
according to the classical statement, it is necessary to find the control function and the opti-
mal program trajectory, and to implement the solution, it is necessary to solve the synthesis
problem of motion stabilisation along the program trajectory. To solve the stabilisation
system synthesis problem, machine learning of control by the symbolic regression method
is used.

For the first time, it is proposed to synthesise a universal stabilisation system that
ensures the motion of an object along different trajectories from some class. To synthesise
a universal stabilisation system, a training set of different trajectories is generated. As a
result of solving the problem of stabilisation system synthesis, we obtain one universal
stabilisation system which provides object motion along all trajectories from the training set.

18



Mathematics 2023, 11, 3556

The obtained solution was tested on stabilisation of the object motion along the
trajectory, which was not included in the training set. An example of solving the complete
optimal control problem for quadcopter motion in space with four obstacles was given.
The optimal trajectory was a closed curve, which passed through the specified areas and
avoided the obstacles.

Training of the stabilisation system was performed on trajectories that differed signifi-
cantly from the example. The training set included four trajectories that were obtained as a
result of solving the optimal control problem of quadcopter spatial motion from a given
initial point to a given terminal point in space with two phase constraints. The trajectories
differed in that they avoided obstacles from different sides. The computational experiment
showed that the universal stabilisation system provided qualitative motion of the object
along the closed optimal trajectory, which was not included in the training set.

6. Discussion

Future research is aimed at expanding of the class of trajectories that are included in
the training set. It is important to identify and investigate the properties of trajectories that
cannot be stabilised by the obtained stabilisation system, i.e., to determine the limits of
applicability of the proposed universal stabilisation system.

Furthermore, the construction of universal stabilisation systems for different control
objects will exclude the most time-consuming stage of synthesis of the trajectory motion
stabilisation system from the solution of the optimal control problem. If for some object it
is necessary to construct several stabilisation systems for different classes of trajectories, it
is necessary to synthesise such stabilisation systems and further use them to solve different
optimal control problems.
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Abstract: The development of artificial intelligence systems assumes that a machine can indepen-
dently generate an algorithm of actions or a control system to solve the tasks. To do this, the machine
must have a formal description of the problem and possess computational methods for solving it.
This article deals with the problem of optimal control, which is the main task in the development of
control systems, insofar as all systems being developed must be optimal from the point of view of a
certain criterion. However, there are certain difficulties in implementing the resulting optimal control
modes. This paper considers an extended formulation of the optimal control problem, which implies
the creation of such systems that would have the necessary properties for its practical implementation.
To solve it, an adaptive synthesized optimal control approach based on the use of numerical methods
of machine learning is proposed. Such control moves the control object, optimally changing the
position of the stable equilibrium point in the presence of some initial position uncertainty. As a result,
from all possible synthesized controls, one is chosen that is less sensitive to changes in the initial
state. As an example, the optimal control problem of a quadcopter with complex phase constraints
is considered. To solve this problem, according to the proposed approach, the control synthesis
problem is firstly solved to obtain a stable equilibrium point in the state space using a machine
learning method of symbolic regression. After that, optimal positions of the stable equilibrium point
are searched using a particle swarm optimization algorithm using the source functional from the
initial optimal control problem statement. It is shown that such an approach allows for generating the
control system automatically by computer, basing this on the formal statement of the problem and
then directly implementing it onboard as far as the stabilization system has already been introduced.

Keywords: stabilization; optimization; symbolic regression; synthesized control; evolutionary computations;
quadcopter model; ordinary differential equations

MSC: 49M99

1. Introduction

Long ago, Leonard Euler spoke about the optimal arrangement of everything in the
world: “For since the fabric of the universe is most perfect and the work of a most wise
Creator, nothing at all takes place in the universe in which some rule of maximum or
minimum does not appear”. Striving for optimality is natural in every sphere.

In order to optimally move an autonomous robot to a certain target position, currently,
as a standard, engineers first solve the problem of optimal control, obtain the optimal
trajectory, and then solve the additional problem of moving the robot along the obtained
optimal trajectory. In most cases, the following approach is used to move the robot along a
path. Initially, the object is made stable relative to a certain point in the state space. Then,
the stability points are positioned along the desired path and the object is moved along the
trajectory by following these points from one point to another [1–7]. The difference between
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the existing methods is in solving the control synthesis problem to ensure stability relatively
to some equilibrium point in the state space and in the location of these stability points.

Often, to ensure stability, the model of the control object is linearized relative to a
certain point in the state space. Then, for the linear model of the object, a linear feedback
control is found to arrange the eigenvalues of the closed-loop control system matrix on the
left side of the complex plane. Sometimes, to improve the quality of stabilization, control
channels or components of the control vector are defined that affect the movement of an
object along a specific coordinate system axis of the state space. Then controllers, as a
rule PI controllers, are inserted into these channels with the coefficients that are adjusted
according to the specified control quality criterion [3,4]. In some cases, analytical or semi-
analytical methods are used to solve the control synthesis problem and build nonlinear
stable control systems [5,7]. But the stability property of the nonlinear model of the control
object, obtained from the linearization of this model, is generally preserved only in the
vicinity of a stable equilibrium point.

The main drawback of the approach when the control object is moved along the stable
points on the trajectory is that even if this trajectory is obtained as a solution of the optimal
control problem [8], then the movement itself will never be optimal. To ensure optimality,
it is necessary to move along the trajectory at a certain speed, but when approaching the
stable equilibrium point, the speed of the control object tends to zero.

The optimal control problem generally does not require ensuring the stability of the
control object. The construction of a stabilization system that provides the stability of the
object relative to some equilibrium point in the state space is carried out by the researcher
to achieve predictable behavior of the control object in the vicinity of a given trajectory.

The optimal control problem in the classical formulation is solved for a control object
without any stabilization system; therefore, the resulting optimal control and the optimal
trajectory will not be optimal for this object with a further introduced stabilization system.
It follows that the classical formulation of the optimal control problem [9] is missing
something as far as its solution cannot be directly implemented in the real object, since
this leads to an open-loop control. The open-loop control system is very sensitive to small
disturbances, but they are always possible in real conditions, since no model accurately
describes the control object. In order to achieve optimal control in a real object, it is necessary
to build a feedback control system, which should provide some additional properties,
for example stability relative to the trajectory or points on this trajectory. The authors
of [10] proposed an extended formulation statement of the optimal control problem, which
has additional requirements established for the optimal trajectory. The optimal trajectory
must have a non-empty neighborhood with a property of attraction. Performing these
requirements provides implementation of the solution of the optimal control problem
directly in the real control object.

In [11,12], an approach to solving the extended optimal control problem on the base
of the synthesized control is presented. This approach ensures obtaining a solution of
the optimal control problem in the class of practically implemented control functions.
According to this approach, initially, the control synthesis problem is solved. So, the control
object becomes stable in the state space relatively to some equilibrium point. In the second
stage, the optimal control problem is solved by determination of optimal positions of the
stable equilibrium point. Switching stable points after a constant time interval ensures
moving the control object from initial state to the terminal one optimally according to the
given quality criterion. Optimal positions of stable equilibrium points can be far from the
optimal trajectory in the state space; therefore, a control object does not slow down its
motion speed. Studies of synthesized control in various optimal control problems have
shown that such control is not sensitive to perturbations and can be directly implemented
in a real object [13,14].

In synthesized control, the optimal control problem is solved for a control object
already with a stabilization system. Another advantage of synthesized control is that the
position of the stable point does not change during the time interval; that is, an optimal
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control function is solved using the class of piece-wise constant functions, which simplifies
the search for the optimal solution.

It is possible that piece-wise constant control in the synthesized approach finds several
optimal solutions with practically the same value of the quality criterion. This circumstance
prompted in us the idea to find among all almost-optimal solutions one that is less sensitive
to perturbations. This approach is called adaptive synthesized control.

In this work, a principle of adaptive synthesized control is proposed in Section 2, meth-
ods for solving it are discussed in Section 3 and further in the Section 4, a computational
experiment to determine the solution of the optimal control problem for the spatial motion
of quadcopter by adaptive synthesized control is considered.

2. Adaptive Synthesized Control

Consider the principle of adaptive synthesized control for solving the optimal control
problem in its extended formulation [10].

Initially, the control synthesis problem is solved to provide stability of the control
object relatively some point in the state space. In the problem, the mathematical model of
the control object in the form of ordinary differential equation system is given.

ẋ = f(x, u), (1)

where x is a state vector, x ∈ Rn, u is a control vector, u ∈ U ⊆ Rm, U is a compact set that
determines restrictions on the control vector.

The domain of admissible initial states is given

X0 ⊆ R
n. (2)

To solve the problem numerically, the initial domain (2) is taken in the form of the
finite number of points in the state space:

X̃0 = {x0,1, . . . , x0,K}. (3)

Sometimes, it is convenient to set one initial state and deviations from it:

x0,j = x0 − Δ0 + 2  (j)2Δ0, j = 1, . . . , 2n − 1, (4)

where x0 is a given initial state, Δ0 is a deviations vector, Δ0 = [Δ1 . . . Δn]T ,  is Hadamard
product of vectors, (j)2 is a binary code of the number j. In this case K = 2n − 1.

The stabilization point as a terminal state is given by

x f1 ∈ R
n. (5)

It is necessary to find a control function in the form

u = h(x f1 x) ∈ U, (6)

where h(x): Rn → Rm, such that it minimizes the quality criterion

J0 =
K

∑
i=0

(
t f1,i + p‖x f1 − x(t f1,i, x0,i)‖

)
→ min, (7)

where t f1,i is the time of achieving the terminal state (5) from the initial state x0,i, t f1,i is
determined by an equation

t f1,i =

{
t, if t < t+and ‖x f1 − x(t, x0,i)‖ ≤ ε0

t+, otherwise
, (8)
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x(t, x0,i) is a particular solution from initial state x0,i, i = 1, . . . , K, of the differential
Equation (1) with an inserted control function (6)

ẋ = f(x, h(x f1 − x)), (9)

ε0 is a given accuracy for hitting to terminal state (5), t+ is a given maximal time for control
process, p is a weight coefficient.

Further, using the principles of synthesized optimal control the following optimal
control problem is considered. The model of control object in the form (9) is used

ẋ = f(x, h(x∗ − x)), (10)

where the terminal state vector (5) is changed into the new unknown vector x∗, which will
be a control vector in the considered optimal control problem.

In accordance with the classical formulation of the optimal control problem, the initial
state of the object (10) is given

x0 ∈ R
n. (11)

In the engineering practice, there can be some deviations in the initial position; there-
fore, in adaptive synthesized control, instead of one initial state (11) the set of initial states
used are defined by Equation (4). The vector of initial deviations Δ0 is defined as a level
of disturbances.

The goal of control is defined by achievement of the terminal state

x f ∈ R
n. (12)

The quality criterion is given

J1 =

t f∫
0

f0(x, h(x∗ − x))dt → min, (13)

where t f is a terminal time, t f is not given but is limited, t f ≤ t+, t+ is a given limit time of
control process.

According to the principle of synthesized control, it is necessary to choose time interval
Δt and to search for optimal constant values of the control vector x∗,i for each interval

x∗ = x∗,i, if (i − 1)Δt ≤ t < iΔt, i = 1 . . . , M, (14)

where M is a number of intervals

M =

⌊
t+

Δt

⌋
. (15)

So the system (10) with the found optimal constant values of the control vector (14)
in the right-hand side of differential equations has a particular solution which reaches the
terminal state (12) from the given initial state (11) with an optimal value of the quality
criterion (13).

Algorithmically, in the second stage of the adaptive synthesized control approach,
the optimal values of the vector x∗ are found as a result of the optimization task with
the following quality criterion, which takes into account the given grid according to the
initial conditions:

J2 =
K

∑
i=1

⎛⎜⎝ t f ,i∫
0

f0(x, h(x∗,i − x))dt + p‖x f − x(t f ,i, x0,i)‖

⎞⎟⎠ → min
x∗

, (16)

where K is number of initial states, t f ,i is determined by Equation (8).

24



Mathematics 2023, 11, 4035

3. Methods of Solving

As described in the previous section, the approach based on the principle of adaptive
synthesized optimal control consists of two stages.

To implement the first stage of the approach under consideration for solving the
control synthesis problem (1)–(9), any known method can be used. For linear systems,
for example, methods of modal control [15] can be applied, as well as such analytical
methods such as backstepping [16,17] or synthesis based on the application of the Lyapunov
function [18]. In practice, stability is ensured through linearization of the model (1) in
the terminal state and setting PI or PID controllers in control channels [19,20]. All known
analytical and technical methods have their limitations, which mostly depend on the
type of the model used to describe the control object. The mathematical formulation of
the stabilization problem as a control synthesis problem is needed to apply numerical
methods and automatically obtain a feedback control function. Today, to solve the synthesis
problem for nonlinear dynamic objects of varying complexity, modern numerical methods
of machine learning can be applied [21]. Among different machine learning techniques,
only symbolic regression allows searching both for the structure of the needed mathematical
function and its parameters. In our case, the needed function is a control function. So, in
the present paper machine learning by symbolic regression [22,23] is used.

Methods of symbolic regression search for the mathematical expression of the desired
function in the encoded form. These methods differ in the form of this code. The search for
solutions is performed in the space of codes by a special genetic algorithm.

Let us demonstrate the main features of symbolic regression on the example of the
network operator method (NOP), which was used in this work in the computational exper-
iment. To code a mathematical expression NOP uses an alphabet of elementary functions:

– Functions without arguments or parameters and variables of the mathematical expression

F0 = { f0,1 = x1, . . . , f0,n = xn, f0,n+1 = q1, . . . , f0,n+r = qn+r}; (17)

– Functions with one argument

F1 = { f1,1(z) = z, f1,2(z), . . . , f1,W(z)}; (18)

– Functions with two arguments

F2 = { f2,1(z1, z2), . . . , f2,V(z1, z2)}. (19)

Any elementary function is coded by two digits: the first one is the number of argu-
ments, the second one is the function number in the corresponding set. These digits are
written as indexes of elements in the introduced sets of the alphabet (17)–(19). The set of
functions with one argument must include the identity function f1,1(z) = 1. Functions with
two arguments should be commutative, associative and have a unit element.

NOP encodes a mathematical expression in the form of an oriented graph. Source-
nodes of the NOP-graph are connected with functions without arguments, while other
nodes are connected with functions with two arguments. Arcs of the NOP-graph are
connected with functions with one argument. If on the NOP-graph some node has one
input arc, then the second argument is a unit element for the function with two arguments
connected with this node.

Let us define the following alphabet of elementary functions:

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = q1, f0,4 = q2};
F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = cos(z), f1,4(z) = sin(z)};
F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1z2}.

(20)
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With this alphabet the following mathematical expressions can be encoded in the form
of NOP:

y1 = cos(x1) sin(x2)− sin(x1) cos(x2);
y2 = cos(q1x1 + q2 sin(x2));
y3 = q1 sin(q2x2) + q2 cos(q1x1);
y4 = q1 sin(q2 cos(x1)) + q2 cos(q1 sin(x2)).

(21)

The NOP-graphs of these mathematical expressions are presented in Figure 1. The
nodes of the graph are numbered. Inside each node there is either the number of a binary
operation or an element of the set of variables and parameters F0, and the arcs of the graph
indicate the numbers of unary operations.

In the computer memory, the NOP-graphs are presented in the form of integer matrices.

Ψ = [ψi,j], i, j = 1, . . . , L. (22)

Figure 1. NOP-graphs for mathematical expressions (21), (a) y1, (b) y2, (c) y3, (d) y4.

As the NOP-nodes are enumerated in such a way that the node number from which
an arc comes out is less than the node number to which an arc enters, then the NOP-matrix
has an upper triangular form. Every line of the matrix corresponds some node of the graph.
Lines with zeros in the main diagonal corresponds to source-nodes of the graph. Other
elements in the main diagonal are the function numbers with two arguments. Non-zero
elements above the main diagonal are the function numbers with one argument.

NOP-matrices for the mathematical expressions (21) have the following forms:

Ψ1 =

⎡⎢⎢⎢⎢⎣
0 0 3 4 0
0 0 4 3 0
0 0 2 0 2
0 0 0 2 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎦, Ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 2 0 1 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ψ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 2 0 3 0 0
0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ψ4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 3 0 0 0 0
0 0 0 0 0 4 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 2 0 4 0 0
0 0 0 0 0 2 0 3 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

To calculate a mathematical expression by its NOP-matrix, initially, the vector of nodes
is determined. The number of components of the vector of nodes equals to the number of
nodes in a graph. The initial vector of nodes includes variables and parameters in positions
that correspond to source nodes, as well as other components equal to the unit elements
of the corresponding functions with two arguments. Further, every line of the matrix is
checked. If element of the matrix does not equal zero, then corresponding element of the
vector of nodes is changed. To calculate mathematical expression by the NOP-matrix, the
following equation is used:

z(i)j ←
⎧⎨⎩ f2,ψj,j(z

(i−1)
j , f1,ψi,j(z

(i−1)i )), if ψi,j �= 0

z(i−1)
j , otherwise

, i = 1, . . . , L − 1, j = i + 1, . . . , L, (24)

where

z(0)i =

{
f0,i, if ψi,i = 0
eψi,i , otherwise

, (25)

ej is a unit element for function with two arguments f2,j(z1, z2),

f2,j(ej, z) = f (z, ej) = z. (26)

Consider an example of calculating the second mathematical expression in (21) on its
NOP-matrix Ψ2.

The initial vector of nodes is

z(0) = [x1 x2 q1 q2 1 1 0 0]T .

Further, all strings in the matrix Ψ2 are checked and non-zero elements are found.

ψ1,5 = 1, z(1)5 = f2,2(z
(0)
5 , f1,1(z

(0)
1 )) = 1 · f1,1(z

(0)
1 ) = 1 · x1 = x1,

ψ2,6 = 4, z(2)6 = f2,2(z
(1)
6 , f1,4(z

(1)
1 )) = 1 · f1,4(z(1)) = 1 · sin(x2) = sin(x2),

ψ3,5 = 1, z(3)5 = f2,2(z
(2)
5 , f1,1(z

(2)
3 )) = x1 · q1 = q1x1,

ψ4,6 = 1, z(4)6 = f2,2(z
(3)
6 , f1,1(z

(3)
4 )) = sin(x2) · q2 = q2 sin(x2),

ψ5,7 = 1, z(5)7 = f2,1(z
(4)
7 , f1,1(z

(4)
5 )) = 0 + q1x1 = q1x1,

ψ6,7 = 1, z(6)7 = f2,1(z
(5)
7 , f1,1(z

(5)
6 )) = q1x1 + q2 sin(x2),

ψ7,8 = 3, z(7)8 = f2,1(z
(6)
8 , f1,3(z

(6)
7 )) = 0 + cos(q1x1 + q2 sin(x2)) = cos(q1x1 + q2 sin(x2)).

The last mathematical expression coincides with the needed mathematical expression
for y2 (21).

So, we considered the way of coding in the NOP method. Then, to search for an
optimal mathematical expression in some task, the NOP method applies a principle of
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small variations of a basic solution. According to this principle, one possible solution is
encoded in the form of the NOP-matrix Ψ0. This solution is the basic solution and it is set
by a researcher as a good solution. Other possible solutions are presented in the form of
sets of small-variation vectors. A small variation vector consists of four integer numbers

w = [w1 w2 w3 w4]
T , (27)

where w1 is a type of small variation, w2 is a line number of the NOP-matrix, w3 is a column
number of NOP-matrix, w4 is a new value of an NOP-matrix element. There are four types
of small variations: w1 = 0 is an exchange of the function with one argument, if ψw2,w3 �= 0,
then ψw2,w3 ← w4; w1 = 1 is an exchange of the function with two arguments, if ψw2,w2 �= 0,
then ψw2,w2 ← w4; w1 = 2 is an insertion of the additional function with one argument, if
ψw2,w3 = 0, then ψw2,w3 ← w4; w1 = 3 is an elimination of the function with one argument,
if ψw2,w3 �= 0 and ∃ψw2,j �= 0, j > w2, j �= w3 and ∃ψi,w3 �= 0, i �= w2, then ψw2,w3 ← 0.

The initial population includes H possible solutions. Each possible solution
i ∈ {1, . . . , H} except the basic solution is encoded in the form of the set of small varia-
tion vectors

Wi = (wi,1,, . . . , wi,d), i ∈ {1, . . . , H}, (28)

where d is a depth of variations, which is set as a parameter of the algorithm.
The NOP-matrix of a possible solution is determined after application of all small

variations to the basic solution

Ψi = wi,d ◦ . . . ◦ wi,1 ◦ Ψ0, i ∈ {1, . . . , H}, (29)

Here, the small variation vector is written as a mathematical operator changing matrix
Ψ0.

During the search process sometimes the basic solution is replaced by the current best
possible solution. This process is called a change of an epoch.

Consider an example of applying small variations to the NOP-matrix Ψ3. Let d = 3
and there are three following small variation vectors:

w1 = [0 3 5 2]T , w2 = [2 5 6 3]T , w3 = [2 8 9 4]T

After application of these small variation vectors to the NOP-matrix Ψ3, the following
NOP-matrix is obtained:

Ψ5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 2 3 3 0 0
0 0 0 0 0 2 0 4 0
0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 2 4
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This NOP-matrix corresponds to the following mathematical expression:

y5 = sin(q1 sin(q2x2 cos(−q1x1))) + q2 cos(−q1x1).

Similar to a search engine, a genetic algorithm is used. To perform the main genetic
operation of crossover, two possible solutions are selected randomly

Wα = (wα,1, . . . , wα,d),
Wβ = (wβ,1, . . . , wβ,d).

(30)
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A crossover point is selected randomly c ∈ {1, . . . , d}. Two new possible solutions
are obtained as the result of exchanging elements of the selected possible solutions after
the crossover point:

WH+1 = (wα,1, . . . , wα,c, wβ,c+1, . . . , wβ,d),
WH+2 = (wβ,1, . . . , wβ,c, wα,c+1, . . . , wα,d).

(31)

The second stage of the synthesized principle under consideration is to solve the prob-
lem of optimal control via determination of the optimal position of the equilibrium points.
Studies have shown that for a complex optimal control problem with phase constraints,
evolutionary algorithms allow the system to cope with such problems. Good results were
demonstrated [24] by such algorithms as a genetic algorithm (GA) [25], a particle swarm op-
timization (PSO) algorithm [26–28], a grey wolf optimizer (GWO) algorithm [29] or a hybrid
algorithm [24] involving one population of possible solutions and all three evolutionary
transformations of GA, PSO and GWO selected randomly.

4. Computational Experiment

Consider the optimal control problem for the spatial motion of a quadcopter. In the
problem, the quadcopter should move for a minimum time on a closed-loop circle from the
given initial state to the same terminal state, avoiding collisions with obstacles and passing
through the given areas.

4.1. Mathematical Model of Spatial Movement of Quadcopter

In the general case, the mathematical model of a quadcopter as a hard body has the
following form:

ẍ = F(cos(γ) sin(θ) cos(ψ) + sin(γ) sin(ψ))/m;
ÿ = F cos(γ) cos(θ)/m − g;
z̈ = F(cos(γ) sin(θ) sin(ψ) + sin(γ) cos(ψ))/m;
γ̈ = ((Iyy + Izz)θ̇ψ̇ + Mx)/Ixx;
ψ̈ = ((Izz + Ixx)γ̇θ̇ + My)/Iyy;
θ̈ = ((Ixx + Iyy)γ̇θ̇ + Mz)/Izz.

(32)

where F is a summary thrust force of all drone screws, m is a mass of drone, g is acceleration
of gravity, g = 9.80665, Mx, My, Mz are control moments around the respective axes.

Figure 2 shows how the angles of a quadcopter turn are linked with its axes.

Figure 2. Inertial coordinate system for quadcopter.

To transform the model (32) to a vector record, the following designations are entered:
x = x1, y = x2, z = x3, ẋ1 = x4, ẋ2 = x5, ẋ3 = x6, γ = x7, ψ = x8, θ = x9, γ̇ = x10, ψ̇ = x11,
θ̇ = x12, M1 = Mx, M2 = My, M3 = Mz.

As a result the following mathematical model is received:
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ẋ1 = x4;
ẋ2 = x5;
ẋ3 = x6;
ẋ4 = F(cos(x7) sin(x9) cos(x8) + sin(x7) sin(x8))/m;
ẋ5 = F(cos(x7) cos(x9)/m − g;
ẋ6 = F(cos(x7) sin(x9) sin(x8) + sin(x7) cos(x8))/m;
ẋ7 = x10;
ẋ8 = x11;
ẋ9 = x12;

ẋ10 = ((Iyy + Izz)x11x12 + Mx)/Ixx;
ẋ11 = ((Izz + Ixx)x10x12 + My)/Iyy;
ẋ12 = ((Ixx + Iyy)x10x11 + Mz)/Izz;

(33)

where x is a state space vector, x = [x1 . . . xn]T , M is a vector of control moments,
M = [M1 M2 M3]

T .
As a rule, quadcopters are manufactured with some angle stabilization systems. This

means that a drone can be stabilized at any angle for some interval. The system of angle
stabilization provides a stable location of the drone relatively, given angles by control moments:

Mi = wi(x∗7 − x7, x∗8 − x8, x∗9 − x9, x10, x11, x12), i = 1, 2, 3. (34)

Assume that the angular stabilization system works out the given angles of the quad-
copter quickly enough, at least in comparison with spatial movement. In this case we can
assume that the control of the spatial movement of the quadcopter is carried out using the
angular position of the drone and the thrust force. Let us define components of the spatial
control vector: x7 = u1, x8 = u2, x9 = u3, F/m = u4.

As a result we receive the following model of spatial quadcopter movement:

ẋ1 = x4;
ẋ2 = x5;
ẋ3 = x6;
ẋ4 = u4(cos(u1) sin(u3) cos(u2) + sin(u1) sin(u2));
ẋ5 = u4 cos(u1) cos(u3)− g;
ẋ6 = u4(cos(u1) sin(u3) sin(u2) + sin(u1) cos(u2)).

(35)

In this work, this model is used to obtain optimal control for the spatial motion of
the quadcopter.

4.2. The Optimal Control Problem for Spatial Motion of Quadcopter

The model (35) of the control object is given. Here, x is a state space vector, x ∈ R6, u

is a control vector ∈ U ∈ R4. U is a compact set that defines restrictions on values of control
vector components,

u−
1 = −π/12 ≤ u1 ≤ π/12 = u+

1 ,
u−

2 = −π ≤ u2 ≤ π = u+
2 ,

u−
3 = −π/12 ≤ u3 ≤ π/12 = u+

3 ,
u−

4 = 0 ≤ u4 ≤ 12 = u+
4 .

(36)

According to the principle of synthesized control, initially the control synthesized
problem (1)–(9) is solved. The model (35) is used as a model of the control object. To con-
struct the set of initial states (4), the following vector of deviations is used:

Δ0 = [2 2 2 0 0 0]T . (37)

In the problem, initial state and terminal state were equal:

x0 = x f = [0 5 0 0 0 0]T . (38)
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For calculation of the quality criterion (7), the following parameters are used: t+ = 2,
ε0 = 0.1, p = 2.

To solve the control synthesis problem, the network operator method [23] was used.
NOP found the following solution:

ui =

⎧⎪⎨⎪⎩
u+

i , if ûi > u+
i

u−
i , if ûi < u−

i
ûi, otherwise

, i = 1, . . . , m = 4, (39)

where
û1 = μ(C), (40)

û2 = û1 − û3
1, (41)

û3 = û2 + ρ19(W + μ(C)) + ρ17(A), (42)

û4 = û3 + ln(|û2|) + sgn(W + μ(C))
√
|W + μ(C)|+ ρ19(W)+

arctan(H) + sgn(F) + arctan(E) + exp(q2(x f
2 − x2)) +

√
q1, (43)

C = q6(x f
6 − x6) + q3(x f

3 − x3), W = V + tanh(G) + exp(D),

A = q1(x f
1 − x1) + q4(x f

4 − x4), H = G + tanh(F) + ρ18(B),

F = E + C + arctan(D)− B, E = D + sgn(x f
5 − x5) + (x f

2 − x2)
3,

V = exp(H) + cos(q6(x f
6 − x6)) + sgn(D)

√
|D|, G = F +

3√E + sin(A),

B = sin(q6(x f
6 − x6)) + q5(x f

5 − x5) + q2(x f
2 − x2) + cos(q1) + ϑ(x f

2 − x2),

D = ρ17(C) + B3 + A + ϑ(q5(x f
5 − x5)) + (x f

5 − x5)
2,

μ(z) =

{
z, if |z| < 1
sgn(z), otherwise

, ρ17(z) = sgn(z) ln(|z|+ 1),

ρ18(z) = sgn(z)(exp(|z|)− 1), ρ19(z) = sgn(z) exp(−|z|),
q1 = 7.26709, q2 = 11.46143, q3 = 12.77026, q4 = 3.20630, q5 = 8.38501, q6 = 5.56250.

In the second stage, the optimal control problem is considered. In the problem, the
mathematical model (35) is given. The initial state coincides with the terminal state (38).

It is necessary to find a control in the form of points in the state space (14). For synthe-
sized control it is necessary to minimize the following quality criterion:

J3 = t f + p1‖x f − x + (t f )‖+ p2

N

∑
i=0

t f∫
0

ϑ(ϕi(x))dt+

p3

S

∑
j=1

p3ϑ(min
t

|δj(x)| − ε) → min
x∗

, (44)

where p1 = 2, p2 = 3, p3 = 3,

ϕi(x) = ri −
√
(xi,1 − x1)2 + (xi,3 − x3)2, (45)
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i = 1, . . . , N = 4, r1 = r2 = r3 = r4 = 2, x1,1 = 5, x1,3 = 0, x2,1 = 10, x2,3 = 5, x3,1 = 5,
x3,3 = 10, x4,1 = 0, x4,3 = 5,

δj(x) =
√
(yi,1 − x1)2 + (yj,3 − x3)2, (46)

j = 1, . . . , S = 7, y1,1 = 5, y1,3 = −2, y2,1 = 10, y2,3 = 0, y3,1 = 12,+ y3,3 = 5, y4,1 = 10,
y4,3 = 10, y5,1 = 5, y5,3 = 12, y6,1 = 0, y6,3 = 10, y7,1 = 2, y7,3 = 5, ε = 0.6.

In the optimal control problem, the terminal time t f is determined by the Equation (8)
with t+ = 14.4, ε0 = 0.1. It is necessary to find coordinates of control points on each time
interval, Δt = 0.8. The desired vector includes 3M parameters, where

M =

⌊
t+

Δt

⌋
=

⌊
14.4
0.8

⌋
= 18, (47)

that is, q∗ = [q1 . . . q54]
T . The hybrid evolutionary algorithm has found the following

optimal solution:

x∗,1 = [4.83910 1.14025 − 5.22899]T , x∗,2 = [11.07056 6.79389 − 2.48647]T ,
x∗,3 = [9.19808 1.54674 15.87195]T , x∗,4 = [−0.12204 0.12276 − 1.82381]T ,

x∗,5 = [−4.08347 2.93658 5.89553]T , x∗,6 = [ 16.72896 2.18022 2.27907]T ,
x∗,7 = [1.18106 2.56582 14.41088]T , x∗,8 = [8.67198 5.78737 − 2.90409]T ,

x∗,9 = [8.59478 2.73948 11.33252]T , x∗,10 = [−1.25924 [−1.97448 − 1.42747]T ,
x∗,11 = [2.45445 7.42257 − 0.38164]T , x∗,12 = [8.68306 − 0.78496 15.41667]T ,
x∗,13 = [0.60972 7.02724 7.66403]T , x∗,141 = [−0.59975 0.39324 − 1.31307]T ,

x∗,15 = [−2.39004 7.95279 3.02003]T , x∗,16 = [2.52642 6.69332 9.17356]T

x∗,17 = [−0.95896 4.42529 − 0.36318]T , x∗,18 = [−0.01193 5.02821 15.40007]T .

(48)

For the found solution (48), the value of the quality criterion is J3 = 14.7010.
In Figure 3, projections of the optimal trajectory on the horizontal plane {x1; x3} are

presented. Here, red circles are phase constraints described by (45), small black circles are
passing areas described by (46) and small black boxes are control points (48).

Figure 3. Optimal trajectory for synthesized control.

For the new adaptive synthesized control proposed in this paper, the set of initial
states is determined by Equation (3) with deviation vector

Δ0 = [0.2 0.2 0.2 0 0 0]T . (49)
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It is necessary to find the same number of control points according to the following
quality criterion:

J4 =
K

∑
k=1

⎛⎜⎝t f ,k + p1‖x f − x(t f ,i, x0,i) + p2

N

∑
i=0

t f∫
0

ϑ(ϕi(x))dt+

p3

S

∑
j=1

p3ϑ(min
t

|δj(x)| − ε)

)
→ min

x∗
, (50)

where K = 7, t f ,k is defined by Equation (8). Other parameters of the criterion are the same
as for the criterion (44).

Again, the hybrid algorithm was applied and the following optimal solution has
been found:

x∗,1 = [17.46361 1.14030 − 8.00000]T , x∗,2 = [11.07060 6.79390 − 2.48650]T ,
x∗,3 = [9.19810 2.05890 15.87207]T , x∗,4 = [−0.27800 2.51633 − 1.99493]T ,
x∗,5 = [−3.98430 2.27048 13.40976]T , x∗,6 = [17.18235 0.26253 2.19246]T ,

x∗,7 = [−3.56784 3.44842 14.94369]T , x∗,8 = [4.53881 2.20612 − 2.99328]T ,
x∗,9 = [9.06419 2.49928 11.30274]T , x∗,10 = [−0.16333 − 1.88939 − 0.75766]T .
x∗,11 = [2.17956 6.92983 − 1.06412]T , x∗,12 = [10.24873 − 0.51465 5.82840]T ,

x∗,13 = [1.12164 2.84506 7.93804]T , x∗,14 = [0.10678 3.23489 − 1.55778]T ,
x∗,15 = [−2.54374 0.99732 2.82005]T , x∗,16 = [7.41006 6.49634 12.02799]T ,

x∗,17 = [−0.67510 4.03845 − 0.28527]T , x∗,18 = [−0.18037 4.62980 6.89661]T .

(51)

A value of the quality criterion (50) for one initial state x(0) = [0 5 0 0 0 0]T , is
J4 = 15.6090. In Figure 4, projections of the optimal trajectory on the horizontal plane
{x1; x3} found by the adaptive synthesized control (51) are presented.

Figure 4. Optimal trajectory for adaptive synthesized control.

Since the initial state in the problem coincided with the terminal state, in order to force
the control object to move along a closed path, mandatory conditions for passing through
certain areas were added to the quality criterion. For trajectories that meet the criteria for
passing through the specified areas, the value of the quality criterion will not change at
p3 = 0. This is seen in Figures 3 and 4 as both trajectories pass through all specified areas.

Let us check the sensitivity of the obtained solutions to random perturbations of the
initial state

xi(0) = x0
i + β0(2ξ(t)− 1), i = 1, . . . , n = 6, (52)
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where ξ(t) is a function generator of random noise, which returns a random number from
interval (0; 1) at every call, β0 is a constant level of noise.

In Figures 5 and 6, the optimal (in blue) and eight perturbed trajectories (in black) for
β0 = 0.1 for the solutions obtained by synthesized (Figure 5) and adaptive synthesized
(Figure 6) control are presented.

Figure 5. Optimal and eight disturbance trajectories of synthesized control.

Figure 6. Optimal and eight disturbance trajectories of adaptive synthesized control.

For comparison, for a model (35) without stabilization systems (39), the problem of
optimal control directly was solved, where control was sought in the form of a piece-wise
linear function, taking into account restrictions (36).

ui =

⎧⎪⎨⎪⎩
u+

i , if ũi > u+
i

u−
i , if ũi < u−

i
ũi, otherwise

, i = 1, . . . , m = 4, (53)
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where

ũi = (qi+jm − qi+(j−1)m)
t − (j − 1)Δt

Δt
+ qi+(j−1)m, i = 1, 2, 3, 4, (54)

(j − 1)Δt ≤ t < jΔt, j ∈ {1, . . . , K + 1}, qi is a component of desired parameters vector,
i = 1, . . . , m(M + 1),

q = [q1 . . . qm(M+1)]
T . (55)

In this work, we set the same time interval Δt = 0.8; therefore, from (15) M = 18,
and it is necessary to find m(M + 1) = 4 · 19 = 76 parameters, q = [q1 . . . q76]

T .
To solve the optimal control problem, the same hybrid algorithm was used. As a result,

the following solution was obtained:

q = [12.57045 − 4.58471 − 2.74617 2.90422 − 9.26325 − 0.10990
−2.63222 18.36841 0.00816 − 17.35177 0.00165 4.28718
−11.81492 1.88489 − 8.01206 15.87943 10.84894 0.06505
9.65475 19.51903 2.79860 − 4.06408 − 0.88992 10.50507
−19.19030 17.90240 12.52431 19.00010 4.76513 − 11.97648
0.00010 8.85464 2.92334 0.14238 8.60919 7.83194
5.74904 − 8.35383 − 3.42757 12.87671 18.58717 15.43057
9.06137 12.55621 − 1.54628 1.47314 2.40706 8.67602
0.00091 − 11.91236 − 19.94063 17.08304 19.92640 − 1.33145
−7.77258 15.54094 − 19.93278 − 17.37121 − 9.31290 5.03257
−0.90297 − 5.22021 0.62653 4.21368 − 2.04314 − 0.53192
0.09353 14.25213 − 0.11587 9.05588 − 0.03270 11.23667
0.03826 − 16.78047 0.18220 19.81652]T .

(56)

In Figure 7, the projection of the optimal trajectory obtained by the direct method
is presented.

Figure 7. Optimal trajectory of direct control.

In Table 1 there are values of the quality criterion (44) of ten experiments for perturbed
solutions obtained by the synthesized (column Synthesized), the adaptive synthesized
(column Adaptive) control and the direct solution (Direct). In two last strings of the table,
average values of the functionals and standard deviations for all experiments are presented.

As can be seen from Figures 5 and 6 and Table 1, the solutions obtained by adaptive
synthesized control are less sensitive to perturbations of initial states than the solutions
obtained by simple synthesized control or, especially, by the direct approach.
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Table 1. Sensitivity of decisions to perturbations of initial states.

No Synthesized Adaptive Direct

1 14.7651 15.4892 19.2082
2 20.7377 15.4829 19.8854
3 15.2888 15.6947 16.7706
4 16.9743 15.4935 16.2334
5 18.6159 16.0397 19.2815
6 19.5227 15.7950 19.3866
7 20.0937 15.4178 16.8263
8 17.5416 16.1424 23.3437
9 20.1225 17.0695 19.6251

10 19.9257 15.3893 20.8163

Av 18.3588 15.8014 19.1377

SD 2.1234 0.5167 2.1285

5. Conclusions

A new method for solving the problem of optimal control in the class of implemented
functions, an adaptive synthesized control principle is presented. Unlike synthesized con-
trol, the new method takes into account the perturbations of the initial state when solving
the optimal control problem. Therefore, the value of the quality criterion is calculated as
the sum of the quality criterion values for the different initial states. As a result of this
approach, a solution is chosen in such a way that for the origin initial state it may not give
the best quality criterion value, but in the case of disturbances of the initial state, the quality
criterion value changes slightly.

6. Discussion

Obtaining a solution based on replacing the optimal solution is less optimal, but also
less sensitive to disturbances. At first glance, this seems obvious and can be applied to any
method of solving the optimal control problem. However, this is not the case. A direct
solution to the optimal control problem results in control in the form of a time function and
an open-loop control system. Perturbation of the initial conditions for such a system gives
large variations in quality criterion values, which cannot be reliably estimated from the
average value due to the large variance.

The synthesized control method firstly makes the control object stable relative to some
equilibrium point in the state space. This means that the perturbed and unperturbed
trajectories at each point in time move towards a stable equilibrium point. The adap-
tive synthesized control method sets the positions of the equilibrium points so that all
disturbed trajectories are located in some tube that does not violate phase constraints
whenever possible.

In the future, when using the adaptive synthesized control method, it is necessary to
assess the required size of the initial state region and reduce the number of initial state
points, since this significantly increases the time for finding the optimal solution.
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Abstract: Bayesian optimization algorithms are widely used for solving problems with a high
computational complexity in terms of objective function evaluation. The efficiency of Bayesian
optimization is strongly dependent on the quality of the surrogate models of an objective function,
which are built and refined at each iteration. The quality of surrogate models, and hence the
performance of an optimization algorithm, can be greatly improved by selecting the appropriate
hyperparameter values of the approximation algorithm. The common approach to finding good
hyperparameter values for each iteration of Bayesian optimization is to build surrogate models
with different hyperparameter values and choose the best one based on some estimation of the
approximation error, for example, a cross-validation score. Building multiple surrogate models for
each iteration of Bayesian optimization is computationally demanding and significantly increases
the time required to solve an optimization problem. This paper suggests a new approach, called
exploratory landscape validation, to find good hyperparameter values with less computational effort.
Exploratory landscape validation metrics can be used to predict the best hyperparameter values,
which can improve both the quality of the solutions found by Bayesian optimization and the time
needed to solve problems.

Keywords: Bayesian optimization; Gaussian process; surrogate modeling; hyperparameter tuning;
exploratory landscape analysis; exploratory landscape validation; variability map of objective function

MSC: 90C26; 90C56; 90C59

1. Introduction

Continuous optimization problems with high computational complexity in terms of
objective functions arise in many fields of engineering, material design, automatic machine
learning, and others [1]. In real-world optimization problems, evaluating the value of an
objective function requires time-consuming computational experiments or simulations.
The time needed to solve an optimization problem is primarily defined by the total number
of objective function evaluations performed by the optimization algorithm. When solving
computationally expensive optimization problems, the main termination criterion for the
algorithm is the maximum number of objective evaluations, which is usually called the
computational budget [2].

Problems with a limited computational budget are best solved by optimization al-
gorithms that utilize surrogate models of the objective function [2]. The most promising
candidates for objective evaluation are identified by refining and exploring surrogate mod-
els at every optimization iteration. Hence, both the quality of surrogate models and the
parameters of the model exploration procedure can have an impact on the optimization
algorithm’s efficiency. Many studies have focused on tuning the parameters of the model
exploration procedure, specifically the type and the parameters of the acquisition function,
as well as the parameters of the algorithm for optimizing it [3,4]. This article focuses on
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ways to improve the efficiency of optimization algorithms by increasing the quality of
surrogate models.

Surrogate models are usually built by approximation algorithms with tunable hy-
perparameters. Numerous studies have been conducted to find the best hyperparameter
values that maximize the accuracy of surrogate models and, hence, the optimization al-
gorithm’s efficiency [5–7]. The process of finding such hyperparameter values is called
hyperparameter tuning. Here are some examples of hyperparameters being tuned for
different types of surrogate models:

• Degree of polynomial regression models;
• Size of the hidden layer for models based on neural networks;
• Kernel type and parameters for models based on Gaussian process (GP) regression;
• Number of trees and tree depth for models based on random forest regression.

This article considers the tuning of kernel parameters for models based on GP regres-
sion, which includes, for example, the scale mixture parameter α of the rational quadratic
kernel or the ν parameter of the Matern kernel [8].

In order to perform hyperparameter tuning, the hyperparameter efficiency metric is
defined based on the quality estimate of a surrogate model built with a given hyperpa-
rameter vector. The model quality is usually measured on a test sample of points using
some error approximation metric, such as mean absolute error, mean squared error, R2

score, etc. [9,10]. In cases of a strict computational budget, maintaining a separate test
sample by evaluating a costly objective function is not sufficient. To increase the reliability
of hyperparameter efficiency estimates, resampling procedures are used, which involve the
building of multiple models for each hyperparameter vector, for example, the well-known
cross-validation procedure [10]. Using cross-validation for hyperparameter efficiency esti-
mation significantly increases the computational cost of hyperparameter tuning. This article
introduces a new approach for estimating hyperparameter efficiency called exploratory
landscape validation, along with new efficiency metrics that require less computational
effort, and that, in some cases, outperform cross-validation in terms of solution quality.
One of the metrics is based on a so-called ranking preservation indicator [11], calculated
on an extended training sample. Another metric is evaluated by comparing the variability
maps of an objective function [12] constructed for a training sample and a surrogate model.

Much of the recent research on the parameter tuning of optimization algorithms,
which also includes the hyperparameter tuning of surrogate models, has focused on using
exploratory landscape analysis (ELA) algorithms to estimate the characteristic features of
optimization problems [13–15]. The hyperparameter prediction process is based on the
following idea. Given the ELA feature vectors, which incorporate the specifics of problems,
and the best hyperparameter values found for those problems, a machine learning (ML)
algorithm is used to build a tuning model to predict the best hyperparameter values or
the best approximation algorithm [12,16,17]. According to such an ELA-ML approach, the
tuning model is then used to identify hyperparameter values that are reasonably effective
when solving similar problems based on the feature vectors of those problems. In [16], for
example, the authors constructed tuning models that are based on different classification
algorithms to predict the best surrogate modelling algorithm using the ELA features of
the problem. Despite the fact that additional computational effort is required to collect
the training data and build a tuning model, the increase in efficiency of the optimization
algorithm outweighs the computational costs in a long-term perspective. This article also
explores the benefits of using tuning models that are built using the proposed metrics for
finding effective hyperparameter values.

The rest of the article is organized in the following way. Section 2 presents a state-
ment for a global continuous optimization problem, describes the canonical form of the
Bayesian optimization algorithm, and formalizes the hyperparameter tuning and predic-
tion problems. In Section 3, a new approach to the quality estimation of surrogate models,
called landscape validation, is introduced, and includes a variety of criteria for selecting
and predicting the best hyperparameter values. Section 4 starts with the general setup
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for computational experiments, followed by a description of the experiments performed
with the hyperparameter tuning and hyperparameter prediction approaches based on the
proposed hyperparameter efficiency metrics; then, the experimental results are discussed.

2. Bayesian Optimization with Hyperparameter Tuning and Prediction

The following statement of the continuous global optimization problem q is considered:

min
X∈DX⊂R|X|

f (X) = f (X∗) = f ∗, (1)

where X =
(

x1, ..., x|X|
)

is the vector of continuous variables of size |X|; f (X) ∈ R1 is a
scalar objective function; DX is a convex region of the permissible variables’ values; X∗ is the
vector of the variables’ values for which the objective function has the minimal value f ∗. It is
assumed that the region DX is formed by the set of inequalities x−i ≤ xi ≤ x+i , i ∈ (1 : |X|),
where x−i and x+i are the lower and upper bounds of the i-th variable, respectively. The
problem (1) is referred to as the base optimization problem.

Due to the high computational complexity of the objective function, the total number
of objective evaluations allowed for solving the problem (1) is limited to Nmax, which is
called the computational budget of the problem. When solving computationally expensive
base problems, common practice is to build and explore surrogate models f̂ (X) of the
objective function f (X). By using a surrogate model f̂ (X), promising areas of the search
region DX can be located approximately without utilizing the budget Nmax. The algorithm
for building surrogate models usually has tunable hyperparameters, the vector of the
values of which is denoted as P =

(
p1, ..., p|P|

)
.

In this section, the Bayesian optimization algorithm is described and the problem
statements for hyperparameter tuning and hyperparameter prediction for the surrogate
modeling algorithm are formulated. The aim of this section is to outline and formalize
common approaches for solving computationally expensive optimization problems, on
the basis of which, new approaches to the hyperparameter efficiency estimation will be
presented in the next section.

2.1. Bayesian Optimization Algorithm

In contrast to other surrogate-based optimization algorithms, Bayesian optimization
algorithms use surrogate models that are based on Gaussian process (GP) approximation.
In GP models, each point X of the search region DX is associated with a normal distribution
of the predicted objective values N

(
μ f̂ (X), σ2

f̂
(X)

)
, where μ f̂ is the mean and σ f̂ is the

standard deviation of f̂ values. Having the probability distribution over f̂ allows for
selection of promising points for the objective function evaluation based on both predicted
objective values and uncertainty estimates of those predictions. Formally, promising
point selection is defined as the maximization problem of a so-called acquisition function.
Hence, the tunable parameters of a Bayesian optimization algorithm include the type
and parameters of the acquisition function, as well as the hyperparameters of the GP
approximation algorithm, which are the type and parameters of a covariance function, also
referred to as a kernel [5].

The Bayesian optimization algorithm includes the following steps (Figure 1):

1. Generate the initial sample L0 =
{(

Xi, f i), i ∈ (1 : Ninit)
}

for training the first GP
model, where Ninit < Nmax is the initial sample size. Points Xi ∈ DX are chosen either
randomly or according to one of the designs of the experiment algorithm, e.g., the
Latin hypercube sampling (LHS) algorithm [18];

2. Perform iterations r ∈ (1 : Niter), where Niter = Nmax − Ninit as follows:

a. Build the surrogate model f̂ r(X) using the current training sample Lr and the
vector P of the hyperparameter values;
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b. Select the next point Xi+1 for the objective function evaluation by optimizing an
acquisition function, e.g., by minimizing the lower confidence bound (LCB) [19]
function as follows:

Xi+1 = arg min
X∈DX⊂R|X|

μ f̂ (X)− κσ2
f̂ (X), (2)

where κ is a tunable parameter;
c. Evaluate the objective function for point Xi+1 to obtain the corresponding value

f i+1 and extend the training sample Lr+1 = Lr ∪ (
Xi+1, f i+1).

3. The point that has the minimal corresponding objective value (X∗, f ∗) ∈ LNiter is
considered as the solution of the base problem (1).

Figure 1. Bayesian optimization with fixed hyperparameter values.

Although the formal optimality of the best-found point X∗ is not guaranteed in any
sense, the same notation as in the problem definition (1) is used for simplicity. The rest of
the article focuses on ways to improve the optimization algorithm’s efficiency by tuning
the GP hyperparameters.

2.2. Hyperparameter Tuning for a Bayesian Optimization Algorithm

The efficiency of Bayesian optimization can be improved by selecting, at each iteration,
the vector P∗ that is the best for the training sample Lr according to the hyperparameter
efficiency metric φ(Lr, P). Given the set of allowed hyperparameter values DP ⊂ R|P|, the
best vector P∗ is found by solving the following hyperparameter optimization problem at
step 2a (Figure 2):

opt
P∈DP⊂R|P|

φ(Lr, P) = φ(Lr, P∗), (3)

Figure 2. Bayesian optimization with hyperparameter tuning.

The hyperparameter efficiency metric φ(Lr, P) is commonly defined based on approxi-
mation accuracy metrics, e.g., mean squared error, on a test sample.

In most cases, the size of sample L in Bayesian optimization is already not sufficient
for the search space dimension |X| due to a very limited budget Nmax. Since it would not
be practical either to split sample L into train and test parts or to spend the budget Nmax on
collecting and updating a separate test sample, the cross-validation procedure is used to
estimate the average accuracy of the surrogate models built with the given vector P. The
corresponding hyperparameter efficiency metric φCV(Lr, P) is calculated as follows:

φCV(Lr, P) =
1
K

K

∑
k=1

R2(Lr
k, P) =

1
K

K

∑
k=1

⎡⎢⎣1 −
∑
(

f i
k − f̂ i

k

)2

∑
(

f i
k − f k

)2

⎤⎥⎦, (4)
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where K is the total number of cross-validation folds, R2(Lr
k, P

)
is the coefficient of determi-

nation, Lr
k ⊂ Lr is the test sample for the k-th fold, f i

k and f̂ i
k are the known and predicted

objective values at the k-th fold correspondingly, and f k is the mean of the known objective
values at the k-th fold.

Using the metric φCV(Lr, P) when solving the problem (3) requires building as many
GP models for each vector P as there are cross-validation iterations. Since building a GP
model has O

(
|L|3

)
complexity, where |L| is the training sample size, the hyperparameter

tuning process may become time consuming and unprofitable. In this article, it is proposed
to develop new hyperparameter efficiency metrics that reduce the computational complex-
ity of solving the problem (3) while maintaining the accuracy of solutions comparable to
the metric φCV(Lr, P).

2.3. Hyperparameter Prediction for a Bayesian Optimization Algorithm

Solving the problem (3) from scratch at each iteration of the Bayesian optimization
is a straightforward but time-consuming approach to hyperparameter tuning. Modern
approaches to parameter tuning or the selection of optimization algorithms involve com-
bining ELA and ML to predict the most efficient algorithm or parameters for solving the
base problem (1) [16,17]. The ELA-ML approach relies on the assumption that the best
optimization algorithm or parameter values for solving similar optimization problems will
also be nearly identical. The similarity of optimization problems can be estimated by a
similarity measure between the corresponding ELA feature vectors.

Although many of the known ELA-ML approaches are developed for the best opti-
mization algorithm selection, the same idea can be adapted for hyperparameter tuning the
following way. The process of solving the problem (3) is divided into separate phases as is
shown in Figure 3.

Figure 3. Bayesian optimization with hyperparameter prediction.

Exploration phase—before solving the base problem (1):

1. Define a representative set Q =
{

qi, i ∈ (
1 : MQ

)}
of test optimization problems qi,

where MQ is the number of test problems;
2. Generate random training samples

{
Li,j, j ∈ [1 : ML]

}
of different sizes

∣∣Li,j
∣∣ ≤ Nmax,

where ML is the number of samples for each problem qi;
3. For each sample Li,j, calculate the vector of ELA features Ci,j and find the vector P∗

i,j
that is the best according to some metric φ

(
Li,j, P

)
by solving the problem (3);

4. Build a tuning model P̂(C) using the set of known pairs
{

Ci,j, P∗
i,j

}
, the total number

of which is MQ × ML.

Exploitation phase—at step 2a of the Bayesian optimization algorithm:

1. Calculate the vector of features Cr using the current training sample Lr;
2. Predict the best hyperparameter values P̂r = P̂(Cr) using the tuning model built at

step 4 of the exploration stage;
3. Build the surrogate model f̂ r(X) using the current training sample Lr and the vector

P̂r of the predicted hyperparameter values.

The efficiency of hyperparameter prediction is generally defined by the set Q, the
feature vector C, and the metric φ(L, P). The exploration phase involves most of the
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computational expenses of solving the problem (3), which makes it practical to apply even
costly metrics, such as the metric φCV(L, P). As illustrated in Figure 3, the test problems
set Q can be refined and extended permanently, even during the exploitation phase. New
metrics are proposed in Section 3 to speed up the quality estimation of surrogate models
for hyperparameter tuning and prediction. The efficiency of hyperparameter prediction
with the metric φCV(L, P) and with the proposed new metrics will be examined in Section 4.
The scope of the article does not include formation of a representative set Q of the test
problems, or identification of the most suitable vector C of ELA features.

3. Exploratory Landscape Validation

This section presents new metrics for estimating the efficiency of vector P on a given
sample L. The new metrics evaluate not only the approximation accuracy of the surrogate
models, as the metric φCV(L, P) does, but also certain properties of them that could be
crucial for the optimization algorithm’s performance. Since the metrics are developed on
the basis of an ELA algorithm, namely the variability map (VM) algorithm [12], we refer to
them as exploratory landscape validation (ELV) metrics.

There are known metrics for estimating the quality of surrogate models that are
not based on approximation accuracy and can, hence, be considered ELV metrics. For
example, the ranking preservation (RP) metric [11], which we will refer to as φRP(L, P),
estimates the level of preservation of comparative relations between pairs of objective
values approximated by the given surrogate model. According to the authors, the metric
φRP(L, P) is calculated using an independent test sample of points, that is not practical
to collect in the context of a strict budget for objective function evaluations. At the same
time, when using interpolating approximation algorithms, such as GP, the metric value
calculated for the training sample will be close to the maximum possible value. To be able
to use the metric φRP(L, P) for hyperparameter tuning, an algorithm for generating an
extended training sample Lext is introduced in this paper. The proposed metrics, which
are based on extended samples Lext, are referred to as φRP(Lext, P) and φAD(Lext, P). The
metric φAD(Lext, P) is unique in the sense that it estimates the quality of surrogate models
by directly comparing the VMs of those models with the VM of the training sample.

Section 3.1 starts with an improved algorithm for building a VM, followed by a
discussion of VM quality assessment. Next, in Section 3.2, an algorithm for constructing
an extended variability map (EVM) from a VM is suggested to enhance the reliability of
landscape validation by extending the training sample. Based on that, new EVM-based
landscape validation metrics φRP(Lext, P) and φAD(Lext, P) are proposed and explained in
Section 3.3. Thus, the proposed ELV approach consists of the process of building VMs,
extending VMs, and calculating values of one of the suggested metrics based on an extended
training sample when solving the problem (3).

3.1. Variability Map of an Objective Function

VMs were first proposed to estimate ELA features of the function f (X) based on a
given sample L [12]. A VM is built by collecting a set of triples T =

{
tj, j ∈ (1 : |T|)}

from the sample L, where |T| is the total number of triples. Each triple tj =
(

ij
1, ij

2, ij
3

)
is composed of points

(
Xi1 , Xi2 , Xi3

)
that are neighboring in X space. The triples for

each point of sample L are collected from all of its neighboring points. Two points are
considered neighbors if the distance between them is less than the maximum distance
between pairs of the closest points in sample L, taken with some correction factor. Using the
corresponding objective values

(
f i1 , f i2 , f i3

)
of the collected triples, the pair of increment

values
(

δ
j
1, δ

j
2

)
is calculated. The values δ

j
1, δ

j
2 characterize increments of the objective

function between pairs of points (i1, i2) and (i2, i3), respectively. The set of increment
values

{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |T|)

}
then forms the VM and can be visually represented as a

cloud of points on the plane 0δ1δ2, as shown in Figure 4.
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(a) (b) 

Figure 4. Landscape plots and corresponding VMs for (a) Rosenbrock and (b) Rastrigin test optimiza-
tion functions. VM’s increment values are represented by blue dots.

In cases where sample L is irregular, such as when point density varies a great deal,
using a max–min distance estimate for triple collecting, as suggested in [12], may not be
a sustainable strategy. We propose a new algorithm for VM building based on angular
ranges, which works better with irregular samples as well.

The new algorithm consists of the steps listed below:

1. Select a random point Xi2 from sample L and find the closest point Xi3 :

i3 = arg min
i3∈[1:|L|],i3 �=i2

di2,i3 , (5)

where di2,i3 =
∣∣∣∣Xi3 − Xi2

∣∣∣∣ is the Euclidean distance between the points;

2. Find all the points
{

Xk, k ∈ [1 : |L|], k �= i2, k �= i3
}

that satisfy the conditions:

dk,i2 < dk,i3 ,
dk,i2 < di2 ,

αk,i2,i3 ≥ π/2,
(6)

where di2 is the mean distance from i2-th point to all the other points, αk,i2,i3 is the
angle formed by Xk, Xi2 , Xi3 points in the X space. The first condition is a quick check
that reduces the number of points for which the angle needs to be calculated;

3. For each angle range [α−, α+] from the set of ranges {[90, 120], [120, 150], [150, 180]},
that is formed by splitting the range (90, 180) into three equal ranges, do the following:
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a. find a point Xi1 ∈
{

Xk
}

that has the minimal distance di1,i2 in that angle range:

Xi1 = arg min
Xi1∈{Xk}

di1,i2 ,

α− < αi1,i2,i3 ≤ α+;
(7)

b. extend the set of triples T with a new one t = (i1, i2, i3);
c. increase the distances di1,i2 and di2,i3 by a factor of 2 so that the other points are

considered if i2 is randomly selected in the next iterations.

4. If the maximum number of triples |T| is not reached, move to step 1.

The presented algorithm has several tunable parameters. The set of angle ranges is
formed by splitting the range of allowed angles (90, 180) into three equal ranges. It is
recommended to use a lower bound of at least 90 degrees as triples with smaller angles
may not be informative for landscape analysis purposes [12]. At the same time the angle
formed by a triple of points in the X space is limited to 180 degrees. The number of splits
determines the maximum number of triples to be collected for each considered point. It is
recommended to increase the number of splits for bigger dimensions |X|. Both the lower
bound of the allowed angle range and the number of splits are tunable parameters of the
algorithm. The maximum number of triples |T| is another parameter of the algorithm
that is usually set as the multiple of the total number of points |L|, e.g., by multiplying
|L| by the number of angle ranges. Increasing the distance between the points in step 3c
helps to avoid selecting the same points for the next triples. It is recommended to multiply
the distance between Xi1 and Xi2 at least by 1.5 and completely remove Xi3 from the Xi2

neighbors (e.g., by setting the corresponding distance value to infinity).
In Figure 5, the difference between the old and the new algorithm for collecting VM

triples based on an irregular sample of points is illustrated. The training sample of size
|L| = 30 is represented by black dots in the X space with dimension |X| = 2. The points of
the collected triples are connected by multicolor lines. It can be seen from the figure that
the new algorithm provides better “coverage” of the X space with the same number of
triples. In Figure 5b, triples form connections between more distant points and fill the gaps
in X space caused by an irregular sample structure. The new algorithm generates triples
with a lesser number of shared pairs of points, which is better for the landscape validation
algorithm, further described below, and which is based on extended training samples.

  
(a) (b) 

Figure 5. Triples of points collected (a) based on the max–min distance between the points and
(b) with the proposed algorithm based on angular ranges. Black dots represent the training sample
points in X space (|X| = 2), and multicolor lines connect the points of the collected triples.
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The quality of a VM-building algorithm can be formally measured by the average
distance between the points of the triples and average angles formed by those points.
Formalizing the “coverage” quality and analyzing the connection between the quality of
the VM and the efficiency of hyperparameter tuning or prediction is beyond the scope of
this article.

3.2. Extended Variability Map of an Objective Function

A training sample-based landscape validation is not suitable for interpolation tech-
niques like GP; at the same time, it is not practical to evaluate an expensive objective
function for additional points in such cases. We propose the following method for extend-
ing the training sample L using an extended version of a VM, built on that sample.

1. Collect the set of triples T =
{

tj, j ∈ (1 : |T|)} as it was described in Section 3.1;
2. For each triple t ∈ T, where t = (i1, i2, i3), perform the following steps:

a. split the vector Xi1 Xi2 into three parts by the points Xk1 and Xk2 , so that the
points Xi1 , Xk1 , Xk2 , Xi2 are arranged in the given order on the same line in X
space, where k1, k2 > |L| for the new points Xk1 , Xk2 ;

b. calculate the approximate objective values f̃ k1 , f̃ k2 for the new points Xk1 , Xk2, respec-
tively, using a linear interpolation between the known points

{(
Xi1 , f i1

)
,
(
Xi2 , f i2

)}
;

c. update the training sample Lext = Lext ∪
{(

Xk1 , f̃ k1
)

,
(

Xk2 , f̃ k2
)}

;

d. update the extended set of triples Text = Text ∪ {(i1, k1, k2), (k1, k2, i2)};
e. repeat steps a-d for the vector Xi2 Xi3 .

The set of triples Text =
{

tj, j ∈ (1 : |Text|)
}

and the corresponding increment values{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |Text|)

}
form the extended variability map (EVM). The EVM is based

on an extended training sample Lext, which includes the new points linearly interpolated
between the points of triples T. The examples of the original training sample L and the
extended sample Lext, built with the proposed algorithm, are shown in Figure 6. It is clear
from Figure 6b that the new points are placed along the triples of the original sample
presented in Figure 6a.

  
(a) (b) 

Figure 6. The points and triples of the (a) original and (b) extended samples. Black dots represent
points of the original and the extended training samples in X space (|X| = 2), and multicolor lines
connect the points of the collected triples.

Note that the set of triples Text does not include the original set T, while the sample
Lext also includes the points from L. It is recommended to locate the new points Xk1 , Xk2

closer to the points Xi1 , Xi2 , e.g., by making logarithmic steps when splitting the vector
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Xi1 Xi2 , since it may positively affect the accuracy of landscape validation. The closer the
new points are to the original ones, the stronger the requirements for the surrogate model
to preserve comparative relations between pairs of those points.

In Figure 7, the VM of the original sample and the EMV of the extended sample can
be seen. Since the new points are linearly interpolated, the additional points of the EVM
(Figure 7b) are located on the diagonals δ1 = δ2 and δ1 = −δ2.

 
(a) (b) 

Figure 7. VM plots for the (a) original and (b) extended samples. VM’s increment values are
represented by blue dots.

3.3. Landscape Validation Metrics

To measure the landscape consistency between a surrogate model and the original
sample Lr using the extended training sample Lr

ext, the value of φRP(Lr
ext, P) metric is

calculated the following way:

1. Build a surrogate model f̂ (X) using the training sample Lr and the vector P of
hyperparameter values;

2. Using the model f̂ (X), calculate f̂ i values for all the points Xi of the extended sample
Lr

ext, where i ∈ (1 : |Lext|). The corresponding values form the sample L̂r
ext;

3. Given the samples Lr
ext and L̂r

ext, that have the common Xi values, calculate the
ranking preservation metric:

φRP(Lr
ext, P) =

1(|Lr
ext|
2

) |Lr
ext |

∑
i=1

|Lr
ext |

∑
j=i+1

{
1, i f comp

(
f i, f j) = comp

(
f̂ i, f̂ j

)
0, otherwise

, (8)

where comp
(

f i, f j) is the result of the comparison of f i and f j values with the possible
outcomes: less, equal, more.

Note that Lr
ext includes both the original values f i from L and the linearly interpolated

values f̃ i. The value of the metric φRP(Lr
ext, P) in the range (0, 1) measures the ratio of

pairwise comparisons of objective values that are preserved by the model f̂ (X).
Figure 8 shows an example of models with different levels of ranking preservation. The

training sample points are shown in black, while the predicted model values are shown in
blue. The highest level of ranking preservation is achieved for Model 1, shown in Figure 8a,
as for any pair of points x1, x2 in the given range the ranking preservation condition
comp

(
f 1, f 2) = comp

(
f̂ 1, f̂ 2

)
is met. Model 2 in Figure 8b is violating the rankings near

the edge points of the training sample. Although Model 1 preserves the ranking better, both
Model 1 and Model 2 will have the highest value of the metric φRP(L, P) when estimated
based on the training sample L only.
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(a) (b) 

Figure 8. Example of models with (a) high and (b) low ranking preservation levels, |X| = 1.

Figure 9 illustrates the idea of using the extended training sample to identify the level
of ranking preservation. Although Model 2, shown in Figure 9b, has a better accuracy on
the training sample, the violation of extra point ranking indicates that the model may not
be suitable for optimization purposes. Although the metrics φRP(Lext, P) and φCV(L, P) are
correlated, they are not identical, meaning that models with similar accuracy may preserve
the landscape of the training sample differently.

 
(a) (b) 

Figure 9. Example of models with (a) high and (b) low ranking preservation levels for the extended
training sample, |X| = 1

We propose another landscape validation metric φAD(Lext, P), called the angular diver-
gence (AD) of the EVM. The metric is based on the extended sample Lext, the extended set
of triples Text and the corresponding increment values

{(
δ

j
1, δ

j
2

)
, j ∈ (1 : |Text|)

}
. Instead

of directly measuring the consistency of the f̂ (X) model’s landscape using the original
sample L, it measures the consistency of the corresponding EVMs in the following way:

1. Build a surrogate model f̂ (X) using the training sample Lr and the vector P of
hyperparameter values;

2. Using the model f̂ (X), calculate f̂ i values for all the points Xi of the extended sample
Lr

ext, where i ∈ (1 : |Lr
ext|). The calculated values form the sample L̂r

ext;

3. For all the triples from Tr
ext, calculate the increment values

{(
δ̂

j
1, δ̂

j
2

)
, j ∈ (1 : |Tr

ext|)
}

using the sample L̂r
ext;

4. Assuming each pair of the increment values
(

δ
j
1, δ

j
2

)
correspond to the vector Δj in

the δ1δ2 space, and each pair of the values
(

δ̂
j
1, δ̂

j
2

)
—to the vector Δ̂j, calculate the

angular divergence metric based on the cosine similarity of the vectors Δj and Δ̂j:

φAD(Lr
ext, P) =

1
|Tr

ext|
Tr

ext

∑
j=1

Δj·Δ̂j

||Δj||||Δ̂j
∣∣∣∣∣∣ , (9)
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where Δj·Δ̂j is a dot product of the corresponding vectors.

The metric φAD(Lext, P) is calculated as an average angle of rotation of EVM points
around the central point of the 0δ1δ2 plane. The rotation angle is determined by the model’s
ability to preserve the ratio between the δ

j
1 and δ

j
2 values, and not the absolute magnitude

of those values. In Figure 10, the example of the AD calculation of a single triple for
models with different levels of ranking preservation is shown. Model 1, presented in
Figure 10a, preserves the signs of the increment values, so the angle between the EVM
points that correspond to the sample and the model is relatively small. Model 2, shown
in Figure 10b, alters the sign of the second increment value, hence the angular divergence
for the corresponding EVM point is around 90 degrees. The signs of both increments are
altered by Model 3 shown in Figure 10c, which results in an even larger angular divergence.
Figure 11 illustrates the angular divergence for the whole EVMs built for GP models with
different values of the Matern kernel parameter. The extended sample increments are
shown in black points, while the increments calculated for the models are shown in blue.
The value of the metric φAD(Lext, P) of the first model shown in Figure 11a is lower than
for the second model shown in Figure 11b (13 and 19 degrees on average, correspondingly).

(a) (b) ( ) 

Figure 10. Example of angular divergence of a single triple and the corresponding point on a VM for
models with (a) high, (b) medium, and (c) low ranking preservation levels, |X| = 1.

 
(a) (b) 

Figure 11. EVMs of GP models with Matern kernel parameter (a) ν = 0.5 and (b) ν = 2.5.
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4. Computational Experiment

In this section, the results of computational experiments performed with the proposed
landscape validation metrics are presented. The baseline is set by estimating the Bayesian
optimization efficiency with fixed hyperparameter values. In the first experiment, the
efficiency of Bayesian optimization with hyperparameter tuning based on different land-
scape validation metrics is estimated. The second experiment evaluates the efficiency of the
hyperparameter prediction approach based on ELA-ML approach with different landscape
validation metrics.

4.1. General Setup

The Bayesian optimization efficiency is estimated on the set Q =
{

qi, i ∈ (
1 : MQ

)}
of optimization problems that are based on the BBOB set of 24 test functions, that are
widely used for optimization efficiency studies [20]. The BBOB set is accessed by using
Python interface of the IOHexperimenter package [21]. Each function in the BBOB set is
available for arbitrary dimensions |X| and the numbers of so-called instances obtained by a
random shift in X space. The set Q of test optimization problems is composed of BBOB test
functions that have dimensions |X| = 2, 4, 8 and the fixed instance number. Hence the total
number of test problems is MQ = 72.

To solve test problems Q, an open Python implementation of the Bayesian opti-
mization algorithm in the ByesOpt package is used [22]. The surrogate models are
built using the Matern kernel, which has a tunable parameter ν with a recommended
value of νrec = 2.5 specified in the package. The set of allowed ν values is fixed to
Dν = {0.5, 1.5, 2.0, 2.5, 3.0, in f } for hyperparameter tuning and prediction. By default,
the package uses the LCB acquisition function with κ = 2.576 to select the next point for
objective evaluation [22].

The set of ELA features C = (c1, . . . c84) is used to categorize the test problems for
hyperparameter prediction. The vector C includes 41 features evaluated by the pFlacco
package [23] and 43 features based on VM [12]. Only ELA features that are based on a fixed
sample of points are used since additional objective evaluations are not permissible with
a fixed computational budget. The ELA features that require cell mapping of the search
space are also excluded. Due to the exponential growth of the total number of cells with the
dimension |X|, the sample sizes will not be sufficient for cell mapping feature calculation.

In the following sections, the method of solving the tuning problem (3) is referred to as
a strategy of the Bayesian optimization algorithm. The efficiency of the following strategies
is analyzed:

• Fixed vector P—no hyperparameter tuning;
• Hyperparameter tuning with the considered metrics:

- metric φCV(L, P) with 5 folds (see Equation (4) in Section 2.2);
- metric φRP(Lext, P) (see Equation (8) in Section 3.3);
- metric φAD(Lext, P) (see Equation (9) in Section 3.3).

• Predicted vector P̂ (see Section 2.3);
• The metrics φRP(Lext, P) and φAD(Lext, P) will be referred to as φRP(L, P) and φAD(L, P),

respectively, to simplify the experiment description.

In the experiments, the efficiency of the Bayesian optimization algorithm with a given
strategy is measured by the solution’s quality and by the computational cost of solving a
test problem. The solution’s quality is determined by the best objective value found during
the run. The computational cost is assessed by estimating the average time required to
solve a test problem, which includes the time spent on building surrogate models and
calculating values of the selected metric. Since test problems are used, the time spent on
objective evaluation is negligible. The time required to build a tuning model is not taken
into account when using the hyperparameter prediction strategy. The experiments were
performed on a computer with an Intel E5-2643 processor.
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4.2. Bayesian Optimization with Hyperparameter Tuning

To compare the efficiency of Bayesian optimization with fixed hyperparameter values
and hyperparameter tuning, the experiment with the following steps is performed.

1. For each problem qi ∈ Q with the objective function fi(X), generate the number of

random initial samples
{

L0
i,j, j ∈ (1 : 10)

}
, each sample of size

∣∣∣L0
i,j

∣∣∣ = 5|X|;
2. Using each initial sample L0

i,j, perform iterations r ∈ (1 : 10|X|) of the Bayesian
optimization algorithm, as described in Section 2.1;

3. Using each initial sample L0
i,j, perform iterations r ∈ (1 : 10|X|) of the Bayesian

optimization algorithm with hyperparameter tuning, as described in Section 2.2, with
each of the following metrics: φCV

(
Lr

i,j, P
)

, φRP

(
Lr

i,j, P
)

and φAD

(
Lr

i,j, P
)

. The best
hyperparameter values are selected from the set Dν;

4. Estimate the average of the best objective values f
∗
i found in 10 random runs with

fixed hyperparameter values in step 2 and with hyperparameter tuning based on the
metrics φCV

(
Lr

i,j, P
)

, φRP

(
Lr

i,j, P
)

and φAD

(
Lr

i,j, P
)

in step 3:

f
∗
i =

1
10 ∑

j
f ∗i,j, (10)

where f ∗i,j is the best objective value found for the problem qi in the j-th run;
5. For each problem qi select the metric φi(L, P) with which the best objective value was

found on average.

In the described experiment, each of the 72 test optimization problems was solved
using 10 random initial samples and four different strategies with the computational budget
15|X|−2880 runs of the Bayesian optimization algorithm in total.

4.3. Bayesian Optimization with Hyperparameter Prediction

The experiment aims to measure the efficiency of using the hyperparameter prediction
approach based on the ELA-ML framework by performing the following steps for each op-
timization problem qi, i ∈ (1 : 72). The experiment is split into exploration and exploitation
phases as it is described in Section 2.3.

Exploration phase—evaluate ELA features, find the best hyperparameter values:

1. Remove problems from the set Q that are based on the same BBOB function as
the current problem qi, including those with different dimensions |X|, so that the
remaining problems compose the set Qi = {qk, k ∈ (1 : 69)};

2. For each problem qk generate the random samples
{

Lk,s, s ∈ (1 : 300)
}

with different
sizes

∣∣Lk,s
∣∣ ∈ (5|X|, 15|X|). Within the given range, 20 sample sizes are chosen and

15 random samples of each size are generated in DX ;
3. For each sample Lk,s calculate the vector of ELA features Ck,s, where

∣∣Ck,s
∣∣ = 84 and

find the best hyperparameter values P∗
k,s by solving the problem (3) with the set of

allowed values Dν. As the hyperparameter efficiency metric use the metric φk(L, P),
which showed the best performance for the problem qk in Section 4.2;

4. Use the set of pairs
{

Ck,s, P∗
k,s

}
as a training sample to build a tuning model P̂i(C) by

using the random forest classifier implemented in the scikit-learn package [24].

Exploitation phase—use the tuning model P̂i for hyperparameter prediction:

1. For the current problem qi, generate the number of random initial samples
{

L0
i,j, j ∈ (1 : 10)

}
,

each sample of size
∣∣∣L0

i,j

∣∣∣ = 5|X|;
2. Using each initial sample L0

i,j perform iterations r ∈ (1 : 10|X|) of the Bayesian opti-

mization algorithm with hyperparameter prediction by using the tuning model P̂i, as
described for the exploitation phase in Section 2.3;
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3. Estimate the average of the best objective values f
∗
i found in 10 random runs with

hyperparameter prediction.

Each tuning model P̂i is built using 20,700 pairs of observations, all of which are
collected for problems based on different BBOB functions. The experiment is structured
in such a way that it is comparable to the cross-validation procedure. Each problem qi
is excluded from the exploration phase to build a tuning model and is solved during
the exploitation phase with the hyperparameter values predicted by that model. The
hyperparameter values are predicted based on the ELA features similarity between the
problem qi and the set of problems {qk} analyzed during the exploration phase. In our case,
the accuracy of hyperparameter prediction for a particular problem qi depends, among
other factors, on the presence of BBOB functions with a similar landscape in the set {qk}.

4.4. Experimental Results

The results of the first experiment are summarized in Table 1. For each problem qi,
the best strategy is selected that provides the best value f

∗
i . For each considered strategy,

the table shows the number of problems qi where the best result was found while using
that strategy. It should be noted that for certain test problems, such as with the linear slope
objective function, multiple strategies were able to find the optimal solution.

Table 1. The number of best-solved problems with the fixed hyperparameter value and the hyperpa-
rameter tuning approach using different metrics.

Bayesian Optimization Strategy Number of Problems with the Best
–
f
*

i

Fixed vector P 12
Hyperparameter tuning with:

metric φCV 24
metric φRP 24
metric φAD 21

With the fixed hyperparameter values, the number of best-solved problems is the
lowest, as expected. Using the proposed metrics for hyperparameter tuning leads to the best
results on a wider range of problems. Based on the results, it can be assumed that different
problems require different approaches to hyperparameter tuning, i.e., different metrics.

Table 2 summarizes the results of the second experiment in the same manner. On top
of that, the average of the best-found values f

∗
i and the average time required to solve a test

problem are provided. Since the scale of objective values of the test problems vary a great
deal, the best-found values f

∗
i were normed to the range (0; 1), so that 0 and 1 correspond

to the best and worst values f ∗i,j found for the problem qi in all the runs with different
strategies.

Table 2. The experimental results with the fixed hyperparameter value, the hyperparameter tuning
approach using different metrics and the hyperparameter prediction approach.

Bayesian Optimization
Strategy

Number of Problems

with the Best Value f
*
i

Average of Normed

Best Values f
*
i

Average Time for
Solving a Problem, s

Fixed vector P 9 0.379 24
Hyperparameter tuning with:

metric φCV 19 0.303 457
metric φRP 13 0.305 211
metric φAD 17 0.305 173

Predicted vector P̂ 26 0.290 144

It is evident that the proposed hyperparameter prediction approach provides the best
results for a larger number of problems. The metric φCV that requires cross-validation of the
surrogate models is the most time-consuming but also the most accurate metric. However,
with the proposed metrics φRP and φAD the results of comparable quality can be found
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with over 50% less effort. By using the hyperparameter prediction strategy, the problems
can be solved with even less time (up to 70%), while the quality of the results is about 5%
better than for the most accurate metric φCV .

Fixedmetric φCVmetric φRPmetric φADPredictedWhen benchmarking optimization
algorithms, average efficiency estimates are often not sufficient for making informed con-
clusions. Figure 12 presents the experimental results in the form of so-called performance
profiles [25]. The performance profile of each strategy is constructed by calculating the
number of test problems with a better value f

∗
i ≤ f

′
for all possible values f

′ ∈ (0, 1). As a
result, the performance profile plot shows the number of test problems as a function of the
quality of the solution. For example, the two most effective strategies for finding near-best
values f

∗
i ≤ 0.1 use the fixed vector P and hyperparameter tuning with the metric φCV .

Figure 13 presents the same performance profiles for all the algorithm runs with random
initial samples (10 random runs for each of the 72 problems).

Figure 12. Performance profile plots for different strategies of Bayesian optimization: the number of
test problems solved with better values f

∗
.

Figure 13. Performance profile plots for different strategies of Bayesian optimization: the number of
runs with better values f ∗.
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In Figure 14 the performance profile plots are shown for the number of test problems
as a function of the time required to solve a problem. It can be clearly seen that the plot has
«jumping» segments due to the time difference between solving the problems of different
dimensions |X| = 2, 4, 8. The computational complexity grows with the problem dimension
slower for the metric φAD than for the metric φRP. The hyperparameter prediction strategy
is relatively expensive for smaller dimensions due to the computational costs involved
in estimating the features vector C and evaluating the tuning model P̂(C). Using the
fixed vector P and selecting hyperparameter values with the metric φCV are obviously
the strategies with the best and the worst time efficiency, respectively. Figure 15 presents
the same performance profiles for all the algorithm runs with random initial samples
(10 random runs for each of the 72 problems).

Figure 14. Performance profile plots for different Bayesian optimization strategies: the number of
test problems solved in less time.

Figure 15. Performance profile plots for different Bayesian optimization strategies: the number of
runs completed in less time.
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5. Discussion

The presented exploratory landscape validation approach enables the finding pf ef-
fective hyperparameter values without relying on approximation accuracy estimations of
surrogate models. In cases of limited computational budget and hence relatively small train-
ing samples, landscape validation metrics provide a faster way to estimate the efficiency
of hyperparameter values. The presented metrics summarize the essential differences
between the landscapes of surrogate models and training samples, that are generally char-
acterized by ELA features. The study, however, has the following potential limitations.
The experiments were performed with test optimization problems, but the applicability of
the proposed metrics is mainly determined by the computational complexity of objective
evaluation and hence the computational budget. In the event of a higher complexity of
objective evaluation and relatively small budget, the computational impact even of the
cross-validation metric may become negligible. On the other hand, if the budget is large
enough, the increase in the optimization algorithm’s efficiency may not be sufficient to
justify the computational cost of hyperparameter tuning with any of the considered metrics.
Analyzing applicability conditions for different tuning strategies when solving practical
optimization problems could be the focus of future research. It is also promising to explore
other ways of estimating the level of landscape feature preservation by surrogate models
based on the known ELA methods, for example, by direct comparison of ELA feature
vectors. Landscape validation can be based on various ways of measuring the differences
between the variability maps of samples and surrogate models.

It was shown that landscape validation metrics can be used to both find and predict
the best hyperparameter values during Bayesian optimization. Another potential extension
of this work is to analyze the efficiency of hyperparameter prediction with different ELA
algorithms and approximation algorithms used for building a tuning model. The efficiency
of hyperparameter prediction is also affected by the level of similarity between the problems
being solved at exploration and exploitation phases, which is difficult to formalize. One
possible approach would be to use the ELA features of the test problem set to define the
region of allowed feature values for the exploitation-phase problems. If the new problem
has unrelated feature values, then the efficiency of the predicted hyperparameter values
cannot be guaranteed; therefore, the default hyperparameter values should be used for that
problem. In such cases, the test problem set should be refined to keep it representative of
the problems solved during the exploitation phase.

6. Conclusions

The article considers different approaches to improving the efficiency of Bayesian
optimization algorithms by selecting the best hyperparameter values of the surrogate
modeling algorithm. The optimal vector of hyperparameter values is found based on a
hyperparameter efficiency metric, which defines the way of measuring the quality of a
surrogate model built with different vectors. The hyperparameter tuning problem is being
solved at each iteration of Bayesian optimization, so using computationally demanding
metrics may lead to a significant increase in the time spent solving the problem.

When solving computationally expensive optimization problems, the number of
objective evaluations allowed is relatively small, as well as the size of the training sample for
building a surrogate model. The commonly used efficiency metric for such cases is the cross-
validation score, which requires building multiple surrogate models on different subsets
of the training sample. In this article, a new approach is introduced called exploratory
landscape validation (ELV), which includes the proposed hyperparameter efficiency metrics
to assess the quality of surrogate models without considering the approximation error
estimates. The experiments showed that hyperparameter tuning with the new metrics can
provide solutions of comparable quality with less than half the time required when using
the cross-validation metric. The experimental results also indicate that different metrics
provide the best solutions for different optimization problems.
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Another way of reducing the costs of hyperparameter tuning is to build a model
that predicts the best hyperparameter values during Bayesian optimization based on ELA
features estimated from the training sample. The hyperparameter prediction approach is
based on collecting a test set of problems, estimating the ELA features of those problems,
finding the best hyperparameter values according to an efficiency metric, and building a
tuning model. In general, each optimization problem has its own best-suited efficiency
metric for hyperparameter tuning. In the computational experiment, the tuning models are
built to predict the hyperparameter values that are most effective according to the metrics
chosen individually for each test optimization problem. With the suggested hyperparameter
prediction approach and individual efficiency metrics, better-quality solutions were found
in less than 70% of the time needed by a hyperparameter tuning approach based on cross-
validation score. Even though additional computational expenses are required to create a
tuning model, they are insignificant when compared to potential permanent improvement
in the optimization algorithm’s efficiency.
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Abstract: This article describes the solution of two problems. First, based on the fractional diffusion
equation, a boundary problem with arbitrary values of derivative indicators was formulated and
solved, describing more general cases than existing solutions. Secondly, from the consideration of the
probability schemes of transitions between states of the process, which can be observed in complex
systems, a fractional-differential equation of the telegraph type with multiples is obtained (in time:
β, 2β, 3β, . . . and state: α, 2α, 3α, . . .) using orders of fractional derivatives and its analytical solution
for one particular boundary problem is considered. In solving edge problems, the Fourier method
was used. This makes it possible to represent the solution in the form of a nested time series (one in
time t, the second in state x), each of which is a function of the Mittag-Leffler type. The eigenvalues
of the Mittag-Leffler function for describing states can be found using boundary conditions and the
Fourier coefficient based on the initial condition and orthogonality conditions of the eigenfunctions.
An analysis of the characteristics of time series of changes in the emotional color of users’ comments
on published news in online mass media and the electoral campaigns of the US presidential elections
showed that for the mathematical expectation of amplitudes of deviations of series levels from the
size of the amplitude calculation interval (“sliding window”), a root dependence of fractional degree
was observed; for dispersion, a power law with a fractional index greater than 1.5 was observed;
and the behavior of the excess showed the presence of so-called “heavy tails”. The obtained results
indicate that time series have unsteady non-locality, both in time and state. This provides the rationale
for using differential equations with partial fractional derivatives to describe time series dynamics.

Keywords: differential equations with fractional derivatives; time series; self-organization; presence
of memory; non-stationarity; fractality of time series; sociodynamic processes

MSC: 37M10

1. Introduction

When modeling the dynamics of various processes, three types of fractional-differential
equations can be considered: equations with a fractional derivative by coordinate (in the
case of one-dimensional space), equations with a fractional derivative by time, as well as
mixed-type equations, including fractional operators both by coordinate and by time.

It should be noted that in different problems, depending on the nature of the processes
under investigation, the concept of “coordinate” may have different meanings. For instance,
in most physical studies, the coordinate, or in the case of three dimensions, coordinates,
refer to spatial dimensions. When modeling the dynamics of time series, the coordinate is
defined as the variable that describes the changes in the levels of the series and is measured
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in units corresponding to the nature of the observed process. For instance, if fractional-
differential equations are used to analyze and model the dynamics of market indicators,
the levels of the series represent the prices of stocks, commodities, currency ratios, etc.

Differential equation with fractional partial derivatives in the general case has the
following form (this is a fractional diffusion equation):

∂βρ(x, t)
∂tβ

= D
∂αρ(x, t)

∂xα
(1)

where α and β are the exponents of the fractional derivative (according to Caputo); ρ(x, t)
is the probability density function of observing state x at time t, depending on both time t
and state x; and D is a constant coefficient. When describing diffusion, ρ(x, t) represents
the concentration of the diffusing substance, and D stands for the diffusion coefficient.

In general, the fractional derivative of order ν for the function ψ(x) is defined as
follows [1]:

dνψ(x)
dxν

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(−ν)

·∫ x
a

f (ξ)dξ

{x−ξ}ν+1 , ν < 0
1

Γ(1−ν)
· d

dx

∫ x
a

f (ξ)dξ

{x−ξ}ν , 0 ≤ ν < 1
1

Γ(2−ν)
· d2

dx2

∫ x
a

f (ξ)dξ

{x−ξ}ν−1 , 1 ≤ ν < 2
1

Γ(3−ν)
· d3

dx3

∫ x
a

f (ξ)dξ

{x−ξ}ν−2

· · ·
, 2 ≤ ν < 3

or
dνψ(x)

dxν
=

1
Γ(1 − [ν])

· d(max{ν})

dx(max{ν})

∫ x

a

f (ξ)dξ

{x − ξ}[ν]
where [ν] denotes the fractional part of the ν value in the exponent, and max{ν} represents
rounding the fractional value of the ν to the nearest integer.

The definition of Caputo fractional derivatives differs from that of Riemann–Liouville.
In the Caputo approach, the procedure initiates by differentiating the function with an
integer order n, surpassing the non-integer order after rounding to the nearest integer
(max{ν}). Subsequently, the obtained result experiences integration with an order of 1 − [ν].

At present, an analytical solution to the fractional diffusion Equation (1) has only
been obtained for the case where 0 < β ≤ 1 and 1 ≤ α ≤ 2 [2–9]. Solutions beyond the
boundaries of these specified values of α and β are not presented in the literature.

For instance, in [4], a general solution to Equation (1) is described. Relying on the
theory of Lie groups, the authors in [4] introduce a one-parameter family of scaling trans-
formations: x = λax; t = λbt; ρ

(
x, t

)
= λcρ(x, t), where a, b and c are constants, and λ is a

real parameter confined within an open interval I containing λ = 1.
By employing scaling transformations, it is possible to derive [4]

∂βρ
(

x, t
)

∂tβ
− D

∂αρ
(
x, t

)
∂xα

= λc+bβ ∂βρ
(
x, t

)
∂tβ

− Dλc+aα ∂αρ
(
x, t

)
∂xα

If a/b = β/α and denoting γ = c/b, then by making the substitution z = xt−β/α

in Equation (1) and utilizing the Lie group method, it is possible to obtain a general
scale-invariant solution (γ ≥ 0) for this equation (given 0 < β ≤ 1 and 1 ≤ α ≤ 2) [4]:

ρ(x, t) = tγ
n

∑
j=0

Cj·zα−j·W
(−β,1+γ−β+

β
α j),(α,1+α−j)

(zα/D) (2)
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where Cj are arbitrary real constants, 1 ≤ j ≤ n; γ is the scaling coefficient; and
W

(−β,1+γ−β+
β
α j), (α, 1+α−j)

(zα/D) represents a Wright function of the form

W
(−β,1+γ−β+

β
α j),(α,1+α−j)

(zα/D) =
∞

∑
k=0

{zα/D}k

Γ
(

1 + γ − β + β
α j − βk

)
Γ(1 + α − j + αk)

(3)

ρ(x, t) = tγ
n

∑
j=0

Cj·zα−j·
∞

∑
k=0

{zα/D}k

Γ
(

1 + γ − β + β
α j − βk

)
Γ(1 + α − j + αk)

(4)

It should be noted that a series of solutions is obtained for the case of integer α and
0 < β ≤ 1 [4]. In the case of α = 2, scale-invariant solutions of Equation (1) for the entire
real line are expressed [4] using the Wright function as follows:

ρ(|x|, t) = tγ
∞

∑
k=0

{
|z|/√D

}k

Γ
(

1 + γ − β
2 k

)
k!

(5)

ρ(|x|, t) = tγ
∞

∑
k=0

{|z|/D}k

Γ(1 + γ − βk)k!
(6)

ρ(|x|, t) = tγ
∞

∑
k=0

|z|α−1·{|z|α/D
}k

Γ
(

1 + γ + β
α − β[k + 1]

)
Γ(α[k + 1])

(7)

The obtained solutions coincide, for γ = 0, with known solutions presented in [6–9] (the
condition of scale invariance transformation of the probability density function
ρ
(

x, t
)
= ρ(x, t), is related to the preservation of total probability under any transformations).

For practical application of Equation (4) in the analysis and modeling of time series
behavior, it is necessary to determine the constants Cj. In practice, this depends on the
specific nature of the problem being solved to describe the dynamics of the time series. The
determination of constants Cj is a separate issue for discussion, similar to the convergence
of the series in Equation (4).

Due to the complexity of the problems and substantial challenges in obtaining analyti-
cal solutions, numerical methods are frequently employed in practice. For instance, in [10],
numerical methods were utilized to investigate solutions over an interval for an equation
of the form

ρ(x, t)
∂t

= D
∂αρ(x, t)

∂xα
at 1 < α < 2

Meanwhile, in [11], the solution over an interval for an equation of this form was obtained:

∂βρ(x, t)
∂tβ

= D
∂2ρ(x, t)

∂x2 at 1 < β ≤ 1

The function ρ(x, t) can, for instance, be interpreted as the probability density of
observing a particular value level within a time series at time t, if these levels can randomly
vary over time.

In the case of a normal distribution law, the dispersion σ2(t) exhibits a linear relation-
ship with time (σ2(t) ∼ t) If there is a slower growth of σ2(t) concerning t (σ2(t) ∼ β

√
t,

where 0 < β < 1), such a process is classified as subdiffusion [12,13].
If there is a faster growth observed for σ2(t) concerning t (σ2(t) ∼ tβ, where

1 < β < 2), such a process is classified as superdiffusion [14]. The distribution function de-
scribing subdiffusive processes is obtained from the solution of a fractional-differential equa-

tion of the form ∂βρ(x,t)
∂tβ = D ∂2ρ(x,t)

∂x2 , and superdiffusion from the equation ∂ρ(x,t)
∂t = D ∂αρ(x,t)

∂xα ,
where α and β are the exponents of fractional derivatives, and D is a certain coefficient (dif-
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fusion coefficient). Additionally, processes of anomalous diffusion [15,16] can be observed,
which is described by a mixed-type fractional-differential equation (Equation (1)).

Currently, the most developed and studied fractional-differential models are the ones
created to describe various kinds of physical problems and are mainly devoted to the study
of the processes of physical kinetics, abnormal diffusion [17] and relaxation in various
environments [18–24], as well as wave processes [25–28].

Since this article will further consider the conclusion of the stochastic fractional-
differential equation with multiples (in time: β, 2β, 3β . . .. . . and status: α, 2α, 3α . . .. . .),
orders of fractional derivatives and the analytical solution for one particular boundary
problem (with an arbitrary value of β and α = 1) is presented; then, as a comparison and
representation of the novelty of the results obtained, we give a description of the solution
of similar wave-type fractional-differential equations. Work [25] deals with the solution of
the fractional Zener wave equation:

∇2U (x, y, z, t)− 1
c2

0

∂2U (x, y, z, t)
∂t2 + τα

σ
∂α

∂tα
∇2U (x, y, z, t)− τ

β
ε

c2
0

∂β+2U (x, y, z, t)
∂tβ+2 = 0

where U (x, y, z, t), in the case of elastic waves, is the amount of displacement of medium
particles from the equilibrium position at a point with coordinates x, y, z at time t; C0 is the
wave velocity; and τε и τσ are positive time constants. In this case, α and β are different
values of fractional derivatives over time and operator ∇2 is not fractional.

This equation can be derived from the fractional ratio of stress–strain of Zener in the
propagation of elastic waves and accounting and in the linearized conservation of mass
and momentum. The Ziner wave equation allows us to describe three different attenuation
modes with characteristics of the power law [25]. Models based on this equation have very
important applications in medical elastography and acoustics.

Work [27] provides a detailed description of the solution to the Zener equation for
the case of α = β (α and β can be derivatives of fractional positive numbers specifying
time derivatives t). This result is very important since solving any fractional-differential
equations in analytic form has significant problems.

A further development of the wave equation with a fractional derivative in time was
obtained in work [28] to describe the behavior of waves in non-Newtonian liquids.

An example of an application of fractional-differential equations of the diffusion type
to describe the dynamics of social processes is presented in work [29].

Fractional derivation by the state variable x and time derivative t allow you to describe
non-local processes in which the transition to a certain state of the system (or process) x
at time t depends not only on the local characteristics of the process or the behavior of
the system in the vicinity of the point x under consideration. but also on the values of x
obtained throughout the entire interval under study, that is, it globally depends on the
distribution over all states of x and on the history of the process (memory) throughout
the time t. Using fractional equations according to both time and coordinates allows for
memory effects. The effect of non-locality in time t and non-locality in state x on the
probability density of detecting a system or process in state x is qualitatively different.
Non-locality in time affects the probability density at the initial moment of time, which
can lead to self-organization, and non-locality in x affects the asymptotic behavior of the
probability density at very late moments of time [12–16].

2. Data Processing and Analysis of Observed Time Series

In several studies [30–33], it was demonstrated that observed time series of social
processes exhibit fractality, while the systems they describe showcase memory and self-
organization. For instance, analyzing the dependence of the mean and dispersion of
amplitude changes in time series on the interval of calculating these amplitudes reveals
complex relationships. For example, their dispersion is dependent on the size of the
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“sliding” window as a fractional root, significantly differing from, for instance, a normal
distribution law.

An analysis of the observed data can be used to justify the possibility of using
fractional-differential equations in modeling complex processes.

We analyzed the time series of the emotional attitude of users of the “RIA Novosti” portal
toward the news published during the day, for a period of 1460 days from 1 January 2019 to
31 December 2022. The following emotions were chosen as the subjects of this study: “like”
and “dislike”.

In addition to analyzing the activity of users commenting on news on social media,
an analysis of the preferences of voters of presidential electoral campaigns in the United
States in 2012 and 2016 was carried out (data taken from the resource: http://www.
realclearpolitics.com/epolls/, accessed on 27 April 2018).

For a preliminary analysis of the time series dynamics and determining their charac-
teristics (for example, the possible presence of memory), the normalized range method
of Hurst [34] can be employed. This method allows for the determination of their fractal
dimension and classification of behavior type.

It is possible to normalize the range of sequence levels, R, using the standard de-
viation of these values, S, and represent their ratio (normalized range) as an equation:
R/S = CτH (log[R/S] = H ∗ log[τ] + log[C]) , where C is a constant, τ is the number of
observations (levels of the sequence) comprising the considered time series, and the H
exponent is known as the Hurst coefficient or exponent.

The presence of breakpoints in the R/S (τ) dependency may indicate the existence of
characteristic time scales and/or periodicities. The value of the Hurst coefficient H allows
for the classification of time series according to the nature of their behavior [35].

For the time series, the Hurst coefficient for the “like” emotion turned out to be 0.22
and for “not like”, it was 0.24. For the election campaign for the US presidential election
in 2012, the Hurst indicator for the temporary series of the preferences of Obama voters
turned out to be 0.29 and for Romney voters, it was 0.22. In 2016, the Hurst’s indicator for a
temporary series of the preferences of Clinton (Hillary) voters turned out to be 0.36 and for
Trump voters, it was 0.30.

In all cases, the H value is significantly less than 0.5 and, therefore, the observed time
series are anti-persistent (ergodic). Since the values of the Hurst coefficient are significantly
different from 0.5, it follows from this that the structure of these series has fractality, and
the processes described by it can have short-term memory [35].

The possible presence of memory should be taken into account in the model describing
the dynamics of processes observed in complex social systems, for example, such as
user activity when commenting on the news of online mass media or a change in voter
preferences during electoral campaigns.

In order to justify the possibility of using the dynamics of processes in complex
systems of fractional-differential equations for modeling, it is necessary to check whether
the conditions of non-locality of behavior in time (variable t) and variable (x) describing the
level of the series (for example, the proportion of “likes” and “dislikes” when commenting
on news resources, or the proportion of voters with a preference for one candidate over
another) are met.

For this, there were studies on the dependence of the mathematical expectation, vari-
ance, asymmetry (third moment of distribution) and excess (fourth moment of distribution)
of the amplitudes of the deviations of the levels of time series from the calculation time
intervals (dimensions of the “sliding window”) of these amplitudes.

The study of the behavior of “excesses” allows you to show the presence of so-called
“heavy tails” (when the graph of the distribution function lies above the graph of the
Gaussian distribution function). In practice, “light tails” can also be observed. The presence
of “tails” other than the Gaussian distribution indicates the non-locality of the process
over the variable x. The study of the behavior of expectation can show the presence of
non-stationary (or vice versa, stationary), and the study of the behavior of variance can
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show non-locality over time (variable t). The identified non-localities can be described
using fractional derivatives.

The observed value of mathematical expectation, dispersion, asymmetry and excess
can be calculated by the following equations:

μ(t) =
∑N

j=1 xj(t)

∑M
l=1 nl

σ2(t) =
∑N

j=1
{

xj(t)− μ(t)
}2

∑M
l=1 nl

As(t) =
∑N

j=1
{

xj(t)− μ(t)
}3

σ3∑M
l=1 nl

Ex(t) =
∑N

j=1
{

xj(t)− μ(t)
}4

σ4∑M
l=1 nl

− 3

where ∑M
l=1 nl is calculated from the number of nl amplitudes.

For example, when executing the normal distribution law for a stationary time series

(x, t) = 1
2
√

πDt
·e− x2

4·D·t , the amount of expectation μ(t) would have to be zero:

μ(t) =
∫ +∞

−∞
x·ρ(x, t)dx =

1
2
√

πDt

∫ +∞

−∞
x·e− x2

4·D·t dx = 0

where x is the value of the amplitude, and t is the interval of its calculation time (the value
of the “sliding window”).

When fulfilling the normal law, a linear dependence on the “sliding window” value
would have to be observed for amplitude dispersion:

σ2(t) =
∫ +∞

−∞
x2ρ(x, t)dx =

1
2
√

πDt

∫ +∞

−∞
x2e−

x2
4·D·t dx = 2Dt

Processing shows that

1. Mathematical expectations of changes in the amplitudes of time series levels depend
on the time interval for calculating these changes (the “sliding window”). This
indicates the unsteadiness of the time series under consideration and the inability to
describe their parameters using the normal distribution law.

2. The values of the dispersion of the amplitudes of the change in user activity on
news commentary depends on the time interval for calculating these amplitudes
(the “sliding window”) in a complex way: it is proportional to the fractional degree
from the time interval from which they are calculated. The fractional dependence
on the time interval indicates that the studied processes have a non-locality in time t
(i.e., have a consequence or memory).

3. The studies of the excess distribution of amplitudes show the presence of the so-called
“heavy tails”, which are significantly greater than the normal distribution (where
the excess is 3). With significant positive deviation values, the distribution function
decreases more slowly at a distance from the average than with small values. If the
deviation is more than three, the distribution density plot will be higher than the
normal distribution plot and lower than three. This indicates that the processes under
consideration not only have non-locality in time t, but also non-locality in state—let
us designate it as x.
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3. Setting a Study Objective

Studies devoted to the analysis of the dynamics and forecasting of the development
of processes in complex systems are of high importance both from the point of view of
science and from a practical perspective. A variety of studies have been conducted in
this area [36–45]. Of these, we highlight the use of the theory and methods of neural net-
works [36–40], the use of the fuzzy logic apparatus [41], and the creation of non-parametric
models based on chaos theory and methods of supporting regression vectors [42]. Also,
the development of sets of rules based on genetic algorithms [43,44], as well as the use of
self-organizing adaptive models [45] should be distinguished.

However, these studies have not taken into account the problems associated with
studying processes in complex systems. Complex systems such as socioeconomic systems
can be defined as structures involving at least one human element. On the one hand,
they are characterized by stochasticity due to the influence of various random factors. In
addition, there is uncertainty associated with the sometimes irrational behavior of people.
However, on the other hand, the presence of the human factor also creates conditions for
self-organization in such systems and can enable the storage of a memory of previous states
of the processes occurring in these systems.

The joint action of these factors leads to the emergence of organized complexity, or
“emergence”. Its origin cannot be reduced to a simple addition of element characteristics;
it is the result of the formation of system relationships and adaptive redistribution of
functions between elements.

The presence of all the listed features of complex systems leads to the need to find
new approaches and methods for analyzing and modeling the dynamics of the processes
observed in them.

In conclusion, we note that non-local processes in which the transition to a given state
x depends not only on the local characteristics or behavior of the system in the vicinity
of the point in question at a given moment in time, but also from the values taken by it
over the entire studied interval of the values of the series levels at any time, which can be
described on the basis of differential equations with fractional partial derivatives along t
and x (and not only of the diffusion type).

Taking into account all the above, we can conclude that the development of new
methods for describing the dynamics of stochastic processes based on differential equations
with fractional partial derivatives may allow us to take into account the presence of self-
organization and memory (not Markov processes that take into account the consequences).

Sociodynamic processes are widespread and have a wide variety of manifestations.
One of the most important objects where sociodynamic processes are observed is the
Internet, particularly, news and blogs, under which, users of social networks and mass
media leave their comments or express their emotional attitude towards them. These are
one of the most important online phenomena and can act as indicators of public opinion
and mood.

4. Theoretical Model

4.1. Setting and Solving the Boundary Problem for Arbitrary Values of Derivatives of
Diffusion-Type Fractional-Differential Equations

Given that the processes observed in complex systems have features that vary over a
wide range of values, for the construction of the model, it is impossible to consider only the
non-locality of the state of the system x (variable describing the level of the time series) or
only non-locality of time t. In addition, it is necessary to consider a more general case with
arbitrary fractional values of α and β, and not just the case of 0 < β ≤ 1 and 1 ≤ α ≤ 2. Or,
we should consider differential equations containing multiple fractional derivatives, both
in time and in state (this will be discussed later in one of the paragraphs in the section on
the theoretical model).
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To analyze and model the time series of processes observed in complex systems, you
can consider the edge problem of the form

ρ(0, t) = ρ(L, t) = 0

with the initial condition given by the delta function:

ρ(x, 0) = δ(x − 0)

The choice of such boundary conditions is due to the fact that when considering, for
example, the dynamics of the amplitudes of change in the levels of the time series (in
economics, this is called volatility), the state of x can change within a certain permissible
range of values from 0 to L, and at the time of the beginning of observations (t = 0), any
change must be equal to 0. The ρ function (x, t) can be considered as the probability density
for the amplitude x over the time interval t.

Work [46] considers the solution of the boundary problem (on the segment [0, 1])
based on Equation (1) at β = 1: ρ(0, t) = ρ(1, t) = 0 with the initial condition given by the
delta function ρ(x, 0) = δ(x − 0).

ρ(x, t) =
∞

∑
n=1

CneλnD·t·xα−1
∞

∑
k=0

{λnxα}k

Γ(α[k + 1])
(8)

where Cn are the coefficients of the Fourier series and λn are the zeros of the Leffler-Mittag

function: Eα,α(λk) =
∞
∑

k=0

{λk}k

Γ(α[k+1]) .

To determine the Cn coefficients [46],

ϕ(x) = ρ(x, 0) =
∞

∑
n=1

Cnxα−1
∞

∑
k=0

{λnxα}k

Γ(α[k + 1])

Note that the function system θn =

{
xα−1

∞
∑

k=0

{λnxα}k

Γ(α[k+1])

}∞

k=1
forms a basis in L2 (0, 1) [47].

Since it is not orthogonal, it is necessary to also create a system of functions

φn(x) =

{
(1 − x)α−1

∞

∑
k=0

{
λn(1 − x)α}k

Γ(α[k + 1])

}∞

n=1

that are biorthogonal to the θn system [48].
After that, unknown Cn coefficients can be determined through the dot product φn

and ϕ(x) [46]: (ϕ(x)·φn(x)) using the initial condition.
It should be noted that the determination of the Cn coefficients and zeros of the Leffler-

Mittag function performed in work [46] was not carried out, but the existence of a solution
to the boundary problem formulated by the authors was investigated in a general form.

Consider the solution of the formulated boundary problem for the case of arbitrary
fractional values of α and β (not only the case of β = 1 or 0 < β ≤ 1 and 1 ≤ α ≤ 2).

In this case, the equations obtained in [2–11,46] cannot be used and it is necessary to
look for other solutions. In this regard, we suggest the following. First, using the Fourier
method, imagine the ρ(x, t) as ρ(x, t) = X(x)·T(t). After substituting into Equation (1) and
separating the variables, we obtain

∂αX(x)
∂xα

+
λ

D
X(x) = 0 (9a)

∂βT(t)
∂tβ

+ λT(t) = 0 (9b)
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where λ is some constant that appears due to the fact that after substituting
ρ(x, t) = X(x)·T(t) into Equation (1), the left side will depend only on the variable t,
and the right only on the variable x.

To define the X(x) function, we encountered an problem finding eigenvalues. The
solution to this problem is presented in the works [21,49,50]. In these studies, a solution
has only been proven for eigenvalues of λn that are function zeros:

Eα,α(λnxα) =
∞

∑
n=0

{
λn
D ·xα

}n

Γ(α[n + 1])

There are eigenfunctions that are particular solutions of Equation (9a). Zeros can be found
using the given boundary conditions ρ(0, t) = ρ(L, t) = 0. The eigenfunctions are equal to

Xn =

⎧⎪⎨⎪⎩xα−1
∞

∑
n=0

{
λn
D ·xα

}n

Γ(α[n + 1])

⎫⎪⎬⎪⎭
∞

n=1

where λn are the zeros of the Leffler-Mittag function.
Using the Laplace transform method for the function T(t), one can write

pβG(p)− 1
p1−β

− λG(p) = 0

Next,

G(p) =
1

p1−β
· 1
pβ − λ

=
1
p
· 1
1 − λ

pβ

=
1
p

∞

∑
q=0

{
− λ

pβ

}q
=

∞

∑
q=0

(−1)qλq

pβ+1

Let us make the inverse Laplace transform and go from p to t:

Tn(t) =
∞

∑
q=0

(−1)qλ
q
ntβq

Γ(βq + 1)

Thus, the general solution to the formulated edge problem can be written as

ρ(x, t) = xα−1
∞

∑
n=0

Cn

∞

∑
q=0

(−1)qλ
q
ntβq

Γ(βq + 1)

{
λn
D ·xα

}n

Γ(α[n + 1])
(10)

To find the zeros of the Mittag-Leffler function, you can use the boundary condition
ρ(L, t) = 0 and the results obtained in [51–55], which examined the behavior of the zeros
of this function for various α values, which allows us, taking into account the boundary
condition, to obtain the following result.

In the case of α < 2, α ∈ C, zeros are λn and determined using the equation

λ±
n = e±i π

2 α

{
2πn

L

}α{
1 + O

{
log n

n

}}
When α = 2,

λn =
{πn

L

}2
{

1 + O
{

1
n

}}
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In the case of α > 2, α ∈ C, all zn functions are large enough modulo zeros that

Eα,α(z) = ∑∞
n=0

{z}n

Γ(α[n+1]) and are described by the equation

zn = λnLα = −
{

π

sin
[

π
α

]{n + 1/2 +
α − 1

α

}
+ Ωn

}α

At 6 > α > 2, Ωn = O
{

n−α·τ ·e−πn·ctg[ π
α ]
}

τ =

{ 1
α , n �= 0

1+α
α , n = 0

At α = 6, Ωn = O
{

e−πn·ctg[ π
α ]
}

At α > 6, Ωn = O
{

e−πn·[cos[ π
α ]−cos[ 3π

α ]]

sin[ π
α ]

}
Next, consider the definition of Fourier series coefficients Cn through the dot product

(ϕn(x)·φm(x)), where

ϕn(x) = Cnxα−1·
∞

∑
n=0

{λnxα}n

Γ(α[n + 1])

φm(x) = (L − x)α−1
∞

∑
m=0

{
λn(L − x)α}m

Γ(α[m + 1])

Using the biorthogonality property of functions ϕ(x) and φn in L2(0, L),

L∫
0

ϕn(x)·φm(x)dx =

{
1, n = m
0, n �= m

Next, we assume that with a weight equal to 1 on the segment [0, L], the following
condition should be met:

L∫
0

ϕn(x)·φm(x)dx =

L∫
0

δ(x − 0)·φm(x)dx

This allows you to define Cn:

Cn =
Lα−1∑∞

m=0
{λn Lα}k

Γ(α[k+1])∫ L
0 xα−1·(L − x)α−1∑∞

n=0
{λnxα}n

Γ(α[n+1]) ·∑∞
m=0

{λn(L−x)α}m

Γ(α[m+1]) dx

4.2. Derivation of Telegraph-Type Fractional-Differential Equation with Multiple Orders of
Fractional Derivatives from Consideration of Probability Schemes of Transitions between
Process States

To derive the basic equation of our proposed model, we can use the approach to
describe the stochastic dynamics of processes, taking into account memory, as well as
possible self-organization, which we developed earlier and is described in works [30,31].

This method allows us, based on the schemes of probabilistic transitions between
states, to formulate a boundary value problem regarding the probability of achieving any
of the states x as a function of time t. One can then consider solving this problem (to obtain
a theoretical approximating distribution function) based on a model that takes into account
the memory about previous states and their potential self-organization.

The essence of this approach is as follows. Let us designate the current state as xi
(process state). Suppose the state change time interval is τ (extremely small). It is assumed
that during this time period, the τ state of the system may increase by a value of ε (indicating
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an increasing trend) or decrease by a value of ξ (indicating a decreasing trend). Let us
represent the entire set of states as X. The state observed at time t can be denoted as xi (xiX),
where x represents the level of values in the time series describing the observed process.
We express the value of the current time as t = hτ, where h is the number of transition steps
between states (the transition process between states becomes quasi-continuous with an
infinitesimal time interval τ), and h takes values of 0, 1, 2, 3, N. The current state xi at step
h can increase by some amount of ε or decrease by an amount of ξ after the transition in
step (h + 1), and accordingly, turn out to be equal to (xi + ε), or (xi − ξ).

Consider the concept of the probability of finding a process in a certain state. Suppose,
after a certain number of steps h in the described process, it can be argued that

1. P(x − ε, h)—probability that it is in the state of (x − ε);
2. P(x, h)—probability that it is in the state of x;
3. P(x + ξ, h)—probability that it is in the state of (x + ξ).

Following each step, the state xi (hereinafter, the index i may be omitted for brevity)
can change by an amount of ε or ξ.

The probability of P(x, h + 1)—indicating the likelihood of the process being in the
state x at the next (h + 1) step—will be influenced by multiple transitions (see Figure 1):

P(x, h + 1) = P(x − ε, h) + P(x + ξ, h)− P(x, h) (11)

Figure 1. Diagram of possible transitions between process states in h + 1 step.

Let us explain the Expression (11) and the diagram shown in Figure 1. The probability
of transition to state x in step h, denoted as P(x, h + 1), is determined by the sum of the prob-
abilities of transition to this state from states (x − ε) : P(x − ε, h) and (x + ξ) : P(x + ξ, h)
where the system was at step h. From this sum, we subtract the probability of the system
transitioning (P(x, h)) from state x (where it was at step h) to any other state at step h + 1.

In this context, we consider a Markov continuous process devoid of state memory.
However, in real conditions, it is possible to store information about the previous state.
To take into account memory (not Markov processes), we will determine the probabilities
P(x–ε, h), P(x + ξ, h) and P(x, h) through the states in the previous h − 1 step. In this case,
the following algebraic equation can be obtained for the probability of transition:

P(x, h + 2) = P(x − 2ε, h) + P(x + 2ξ, h) + P(x, h) + 2{P(x − [ε − ξ], h)− P(x − ε, h)− P(x + ξ, h)} (12)

In this instance, the parameter h is augmented by the quantity m = 2.
Having carried out the necessary mathematical actions and considering that t = h·τ

where t is the process time, h is the step number, τ is the duration of one step can be
obtained for any arbitrary value m, the following recurrent expression is the probability
P (x, t + mτ) that the process state, for some time t, at memory depth m, will be equal to x:

P(x, t + mτ) =

⎧⎨⎩
m
∑

k,l=0
(−1)m−k−l m!·P(x−[k·ε−l·ξ], t)

k!·l!(m−k−l)! , пpи m − k − l ≥ 0

0, пpи m − k − l < 0
(13)
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If we differentiate Equation (13) by the variable x, we obtain the equation for the
probability density:

ρ(x, t + mτ) =

⎧⎨⎩
m
∑

k,l=0
(−1)m−k−l m!·ρ(x−[k·ε−l·ξ], t)

k!·l!(m−k−l)! , пpи m − k − l ≥ 0

0, пpи m − k − l < 0
(14)

In order to take into account the previously described properties of the observed
processes, it is necessary to move from the obtained algebraic equation for probability
density to a differential equation with derivatives of fractional orders (derivatives of
Caputo). To accomplish this, we conduct the corresponding decompositions of the terms of
this equation into a Taylor series over the derivatives of fractional order [16] in the vicinity
of the transition point.

ρ(x, t + mτ) = ρ(x, t) +
{mτ}β

Γ(β + 1)
·∂

βρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2α

+ · · ·

ρ(x − [k·ε − l·ξ], t) = ρ(x, t) + (−1)α [k·ε − l·ξ]α
Γ(α + 1)

·∂
αρ(x, t)

∂xα
+ (−1)2α [k·ε − l·ξ]2α

Γ(2α + 1)
·d

2αρ(x, t)
dx2α

+ · · ·

Note that for fractional derivatives of β and α, the equation has multiples of orders β,
2β, 3β and α, 2α, 3α.

We substitute the corresponding expansions into Equation (14) and obtain, taking
into account no more than the second derivatives (not to be confused with the order), the
following differential equation for changing the density of the probability of detecting a
process in some state x depending on the value of time t and memory depth m:

ρ(x, t) +
{mτ}β

Γ(β + 1)
·∂

β]ρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2β

= ρ(x, t) +
m

∑
k,l=0

(−1)m−k−l ·m!
k!·l!(m − k − l)!

⎧⎨⎩ (−1)α [k·ε−l·ξ]α
Γ(α+1) · ∂αρ(x,t)

∂xα +

+(−1)2α [k·ε−l·ξ]2α

Γ(2α+1) · d2αρ(x,t)
dx2α

⎫⎬⎭
Or

{mτ}β

Γ(β + 1)
·∂

βρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2β

=
m

∑
k,l=0

(−1)m−k−l ·m!
k!·l!(m − k − l)!

⎧⎨⎩ (−1)α [k·ε−l·ξ]α
Γ(α+1) · ∂αρ(x,t)

∂xα +

+(−1)2α [k·ε−l·ξ]2α

Γ(2α+1) · d2αρ(x,t)
dx2α

⎫⎬⎭ (15)

The resulting equation contains two derivatives in time and two in state, which allows
you to characterize it as a telegraph-type equation. It is interesting in that it allows you
to take into account previous states due to different m values and the influence of the
fractional derivatives of α and β of different orders.

For a member of a view equation ∂βρ(x,t)
∂tβ , if the rate of change of process states changes

over time, then a term of the equation of the form ∂2βρ(x,t)
∂t2β can be, by analogy using physical

kinetics, seen as acceleration. In this interpretation, the term ∂2αρ(x,t)
∂x2α of the equation takes

into account random transitions (diffusion wandering of the state of the system), and the
term ∂αρ(x,t)

∂xα will describe ordered transitions (trend or demolition), for example, or when
the value of the state increases (ε > ξ), or decreases (ε < ξ).

A significant difference between Equation (15) and fractional-diffusion and fractional
wave equations is that the resulting equation, being stochastic (derived from the consid-
eration of probability schemes of transitions between states), contains multiple orders of
fractional derivatives, both in time (β, 2β) and state (α and 2α). This is a novelty that allows
you to expand the class of fractional-differential equations and their application to describe
the dynamics of complex systems. The Zener equation [25] contains only fractional time
operators, and the fractional diffusion equations do not contain multiple derivatives.
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Solving Equation (15) generally requires a separate study, and a simpler case with
arbitrary values can be considered to begin with β, α = 1 and ε = ξ.

Considering that
m

∑
k,l=0

(−1)m−k−l m!
k!·l!(m − k − l)!

= 1

m

∑
k,l=0

(−1)m−k−l m!
k!·l!(m − k − l)!

·k =
m

∑
k,l=0

(−1)m−k−l m!
k!·l!(m − k − l)!

·l = m

m

∑
k,l=0

(−1)m−k−l m!·k2

k!·l!(m − k − l)!
=

m

∑
k,l=0

(−1)m−k−l m!·l2

k!·l!(m − k − l)!
= m2

m

∑
k,l=0

(−1)m−k−l m!·k·l
k!·l!(m − k − l)!

= m(m − 1)

Then,

{mτ}β

Γ(β + 1)
·∂

βρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2β

=
1
2

{
m2ε2 − 2m(m − 1)εξ + m2ξ2

}∂2ρ(x, t)
∂x2 − m[ε − ξ]

∂ρ(x, t)
∂x

(16)

If any state transitions have the same value, then ε = ξ.

{mτ}β

Γ(β + 1)
·∂

βρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2β

= mε2 ∂2ρ(x, t)
∂x2 (17)

4.3. Setting and Solving the Boundary Problem for a Particular Case using Telegraph-Type
Fractional-Differential Equation (Arbitrary β and α = 2)

Consider for Equation (17) the solution of the previously formulated boundary
problem ρ(0, t) = ρ(L, t) = 0 with the initial condition given by the delta function:
ρ(x, 0) = δ(x − 0).

Using the Fourier method, we present the ρ(x, t) as ρ(x, t) = X(x)·T(t). After substi-
tuting Equation (17) and separating the variables, we obtain

∂2X(x)
∂x2 +

λ

mε2 X(x) = 0 (18a)

{mτ}β

Γ(β + 1)
·∂

βρ(x, t)
∂tβ

+
{mτ}2β

Γ(2β + 1)
·∂

2βρ(x, t)
∂t2β

+ λT(t) = 0 (18b)

where λ is some constant that appears as a result of substituting ρ (x,t) = X(x) · T(t) into
Equation (17). As a result of this substitution, the left side becomes dependent only on the
variable t, and the right side only on the variable x. Then, you can find partial solutions of
Equation (18a,b), and the general solution is represented in the form of a Fourier series.

To determine the function X(x), we must solve the eigenvalue problem (Sturm–
Liouville problem). This solution under given boundary conditions is well known and has
the form Xn(x) = Cnsin(λnx), where λn are eigenvalues (λn = πn/L, n = 0, 1, 2, 3 . . .).

To find a solution for Tn(t), we perform the Laplace transform according to t:

{mτ}β

Γ(β + 1)

{
pβG(p, x)− 1

p1−β

}
+

{mτ}2β

Γ(2β + 1)

{
p2βG(p, x)− 1

p1−2β

}
+ λG(p, x) = 0

Next,

G(p, x) =

{mτ}2β

p1−2β ·Γ(2β+1)
+ {mτ}β

p1−β ·Γ(β+1)

{mτ}2β p2β

Γ(2β+1) + {mτ}β pβ

Γ(β+1) + λ
=

1
p
· a1(p)
a1(p) + λ

=
1
p
· 1
1 + λ

a1(p)
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a1(p) =
{mτ}2β p2β

Γ(2β + 1)
+

{mτ}β pβ

Γ(β + 1)

Let us designate z = λ
a1(p) and if 0 ≤ z < 1, we will carry out binomial decomposition:

1
1 − (−z)

= ∑∞
q=0

(− z)q = ∑∞
q=0

{
− λ

a1(p)

}q
= ∑∞

q=0 (−1)q
{

λ

a1(p)

}q
=

=
∞

∑
q=0

(−1)q

⎧⎪⎨⎪⎩ λ

{mτ}2β p2β

Γ(2β+1) + {mτ}β pβ

Γ(β+1)

⎫⎪⎬⎪⎭
q

=
∞

∑
q=0

(−1)q λq

{mτ}2βq pβq

{Γ(2β+1)}q

{
pβ + Γ(2β+1)

{mτ}βΓ(β+1)

}q

After substituting the result into the equation for G(p, x), we obtain

G(p, x) =
∞

∑
q=0

(−1)qλq{Γ(2β + 1)}q

{mτ}2βq · p−βq−1{
pβ + Γ(2β+1)

{mτ}βΓ(β+1)

}q =
∞

∑
q=0

(−1)qλq{Γ(2β + 1)}q

{mτ}2βq · p−βq−1{
pβ + Ω

}q

Γ(2β + 1)

{mτ}βΓ(β + 1)
= Ω

We perform the inverse Laplace transform and move from the image p−βq−1

{pβ+Ω}q by p to

its original by t. Consider the integral for this:∫ ∞
0 e−pt·tb−1· ∞

∑
j=0

(−Ωtμ)j

Γ(μj+b) dt =
∞
∑

j=0

(−Ω)j

Γ(μj+b) ·
∫ ∞

0 tμj+b−1·e−ptdt =

∞
∑

j=0

(−Ω)j

Γ(μj+b) ·
∫ ∞

0
1
p · yμj+b−1

pμj+b−1 ·e−ydy =
∞
∑

j=0

(−Ω)j

pμj+b =
∞
∑

j=0

1
pb ·

{
− Ω

pμ

}j
=

1
pb · 1

1+ Ω
pμ

= pμ−b

pμ+Ω

(19)

where
∞
∑

j=0

(−Ωtμ)j

Γ(μj+b) is the Mittag–Leffler function, μ and b are some real numbers greater than

0, and t is a variable. When calculating the integral
∫ ∞

0 tμj+b−1·e−ptdt, replacement was
used: pt = y. It should also be borne in mind that∫ ∞

0
yμq+b−1·e−ydy = Γ(μq + b)

We differentiate the obtained Expression (19) on the right and left by Ω ν = (q − 1)
times (here, the derivative of the integer is calculated, not a fractional order):

∫ ∞

0
e−pt·tb−1·

{
d(q−1)

dΩ(q−1)

∞

∑
j=q−1

(−Ωtμ)j

Γ(μj + b)

}
dt = (−1)q−1 (q − 1)!·pμ−b

{pμ + Ω}q

Next,

∫ ∞

0
e−pt·tb−1·

∞

∑
j=0

(j + ν)!(−tμ)j+νΩj

j!·Γ(μj + μν + b)
dt =

∫ ∞

0
e−pt·tb−1·

∞

∑
j=0

(j + q − 1)!(−tμ)j+q−1Ωj

j!·Γ{μj + μ(q − 1) + b} dt = (−1)q−1 (q − 1)!·pμ−b

{pμ + Ω}q
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Equating expressions pμ−b

{pμ+Ω}q and p−βq−1

{pβ+Ω}q , we find that at μ = β and b = β(q + 1) +

1, the following equality is performed:

∫ ∞

0
e−pt·tβ(q+1)·

∞

∑
j=0

(j + q − 1)!(−tβ)
j+q−1

Ωj

j!·Γ{β(2q + j) + 1} dt = (−1)q−1 (q − 1)!·p−βq−1

{pα + Ω}q

Next, (−1)q−1 (q−1)!·p−βq−1

{pα+Ω}q is equated to the expression

tβ(q+1)·
∞

∑
j=0

(j + q − 1)!(−tβ)
j+q−1

Ωj

j!·Γ{β(2q + j) + 1} =(−1)q−1·t2βq
∞

∑
j=0

(j + q − 1)!(−Ωtβ)
j

j!·Γ{β(2q + j) + 1}

Next, we find

(−1)q−1·t2βq
∞

∑
j=0

(j + q − 1)!(−Ωtβ)
j

j!·Γ{β(2q + j) + 1} � (−1)q−1 (q − 1)!·p−βq−1{
pβ + Ω

}q

Or, rewrite in the form

p−βq−1{
pβ + Ω

}q � t2βq

(q − 1)!

∞

∑
j=0

(j + q − 1)!(−Ωtβ)
j

j!·Γ{β(2q + j) + 1} = t2βq

{
1

Γ{2βq + 1} +
∞

∑
j=1

(−Ωtβ)
j
∏

j
i=1 (q + i − 1)

j!·Γ{β(2q + j) + 1}

}
After all the necessary substitutions, we obtain

Tn(t) = ∑∞
q=0 (−1)qλ

q
n{Γ(2β + 1)}q·

{
t

mτ

}2βq
{

1
Γ{2βq + 1} + ∑∞

j=1

(−Ωtβ)
j
∏

j
i=1 (q + i − 1)

j!·Γ{β(2q + j) + 1}

}

λn = πn/L (n = 0, 1, 2, 3), Ω =
Γ(2β + 1)

{mτ}βΓ(β + 1)

Accordingly, the general solution for ρ(x, t) is

ρ(x, t) =
∞

∑
n=0

CnTn(t)·Xn(x)

Using the initial condition and orthogonality property of the function Xn(x) = Cnsin(λnx),
we find that Cn = 2/L.

5. Conclusions

The dynamics of the behavior of complex systems is very complex, including the
presence of memory and the possibility of self-organization. It should be noted that different
processes of nature can be observed at the same time, and the driving causes of which
may be of a hidden nature. It should be noted that to date, the dynamics of the behavior
of various physical systems have been the most well studied. In many works devoted,
for example, to the study of physical kinetics, modeling is carried out without the use of
fractional-differential equations. In this regard, we can mention [56], in which, a dynamic
renormal group analysis of the Burgers equation was carried out, which is a nonlinear
generalization of the diffusion equation taking into account the influence of random noise on
the behavior of the processes studied. The obtained results were applied to the description of
a growing interface with the media during polymerization and the appearance of transverse
fluctuations in the directed growth of a polymer in a random medium. The occurrence of
noise may not be related to the diffusion process, but may have correlations with it in space
and/or time. Weak and strong noise, according to the results obtained by the authors of the
article [56], lead to different scaling indicators and the appearance of correlations. For spatial

73



Mathematics 2024, 12, 484

correlations with sizes less than critical values, any amount of noise matters, resulting in a
strong link. In the absence of temporal correlations, two modes can be observed, with sizes
smaller than the critical size, either hydrodynamic behavior is determined by white noise
and correlations are not important, or correlations dominate.

To some extent, the processes studied can be processes with memory and self-organization
at certain scales in terms of coordinates and time.

The solution of the generalized diffusion equation containing Cardara–Parisi–Zhang
nonlinearity taking into account the influence of spatially correlated noise in combination
with the long-range nature of interactions was considered in works [57,58], where an
approach based on renorms of groups and phase diagrams was also used.

It is possible that in terms of considering correlations in space and/or time, the use of
the Burgers equation or other generalized equations of nonlinear diffusion may be one of
the alternatives to fractional-differential equations.

However, models based on fractional-differential equations do not require the con-
sideration of characteristic scales and the introduction of critical dimensions, which, for
example, can be an advantage when considering processes in social and economic systems.

Studies of complex social processes, for example, electoral campaigns and user activity
on social networks, show that the time series observed in practice have fractality, and
the systems whose dynamics they describe have memory and show self-organization.
For example, if we analyze the dynamics of changes in mathematical expectations and
dispersions of amplitudes of time series levels depending on the time interval for calculating
these amplitudes (using a “sliding window”), complex dependencies are observed.

For example, for the mathematical expectation, there is a root dependence of a fractional
degree and for dispersion, there dependence on a power law for a fractional exponent greater
than 1.5. Fractional time dependencies indicate the presence of non-locality for this variable.

The examination of the excess shows the presence of the so-called “heavy tails”, with
its size significantly greater than that of the normal distribution. This excess behavior
indicates the presence of non-locality in the states of the time series levels.

The obtained results indicate that the process under consideration has memory and
the possibility of self-organization, and its time series have unsteady, as well as non-locality,
both in time and state.

Non-local processes are characterized by the fact that the transition to a certain state
of the system or process depends not only on the local characteristics of the process or the
behavior of the system near the point in question at the current moment in time, but also
on the values obtained throughout the studied interval at previous points in time, i.e., they
are globally dependent on the distribution over all states and on the history of the process
(memory). Non-locality over time affects the probability density at the initial point in time,
which can lead to the phenomenon of self-organization, and non-locality in the state affects
the asymptotic behavior of the probability density to detect a certain state x at time t at
large intervals of time.

Various types of fractional partial derivative differential equations can be used to
describe such processes. Currently, a fractional diffusion equation is used to build models

of the dynamics of time series with non-locality over states and time: ∂βρ(x,t)
∂tβ = D ∂αρ(x,t)

∂xα .
Analytical or numerical process models based on this equation are obtained only for the
case of 0 < β ≤ 1 and 1 ≤ α ≤ 2. Solutions outside the limits of these values of α and β are
not present in the literature.

Given that the processes observed in complex systems have features that vary over a
wide range of values, it is impossible to only consider non-locality of the state of the system
x (variable describing the level of the time series) or of time t for the construction of the
model. In addition, it is necessary to consider a more general case with arbitrary fractional
values of α and β, and not just the case of 0 < β ≤ 1 and 1 ≤ α ≤ 2, or consider differential
equations containing multiple fractional derivatives, both in time and in state.
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Based on the fractional-diffusion equation, an edge problem with arbitrary values of
derivatives was formulated and solved. An analytical solution was obtained that can be used
in practice to analyze the dynamics of time series of processes observed in complex systems.

In addition, a fractional-differential equation of the telegraph type with multiples
(in time: β, 2β, 3β . . . and state: α, 2α, 3α . . .) by orders of fractional derivatives and its
analytical solution for one particular boundary problem was considered.

In solving edge problems, the Fourier method was used. This makes it possible to
represent the solution in the form of nested time series (one in time t, the second in state x),
each of which is a function of the Mittag-Leffler type. The eigenvalues of the Mittag-Leffler
function for describing states can be found using boundary conditions and the Fourier
coefficient based on the initial condition and orthogonality conditions of the eigenfunctions.

The resulting solutions can be tested based on the observed time series. It is necessary
to calculate the parameters of the developed models (α, β, ε, D values) and check the
accuracy of the forecasts obtained.

The novelty of the models described in this article is that the differential stochastic
equation obtained when considering the probability schemes of transitions between process
states (time series levels) contains multiple orders of fractional derivatives, both in time (β,
2β) and state (α and 2α). Also, for the obtained equation, the solution of one of the edge
problems is considered. This allows you to expand the class of fractional-differential equa-
tions and their use to describe the dynamics of complex systems. The Zener equation [25]
contains only fractional time operators, and the fractional diffusion equations do not contain
multiple derivatives.

In addition, it is new that the article presents a solution for one of the edge problems

fractionally—a diffusion-type equation ∂βρ(x,t)
∂tβ = D ∂αρ(x,t)

∂xα for arbitrary α and β values—
while existing solutions are limited to considering fractional derivative values of 0 < β ≤ 1
and 1 ≤ α ≤ 2.
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Abstract: Differential evolution is a popular heuristic black-box numerical optimization algorithm
which is often used due to its simplicity and efficiency. Parameter adaptation is one of the main
directions of study regarding the differential evolution algorithm. The main reason for this is that
differential evolution is highly sensitive to the scaling factor and crossover rate parameters. In this
study, a novel adaptation technique is proposed which uses the success rate to replace the popular
success history-based adaptation for scaling factor tuning. In particular, the scaling factor is sampled
with a Cauchy distribution, whose location parameter is set as an nth order root of the current success
rate, i.e., the ratio of improved solutions to the current population size. The proposed technique
is universal and can be applied to any differential evolution variant. Here it is tested with several
state-of-the-art variants of differential evolution, and on two benchmark sets, CEC 2017 and CEC 2022.
The performed experiments, which include modifications of algorithms developed by other authors,
show that in many cases using the success rate to determine the scaling factor can be beneficial,
especially with relatively small computational resource.

Keywords: differential evolution; parameter adaptation; numerical optimization

MSC: 68W50; 68T20; 65K10

1. Introduction

Over the last several years, the differential evolution (DE) [1] algorithm has become
one of the most commonly used numerical optimization techniques within the evolutionary
computation (EC) community. DE is used in unconstrained, constrained, multi-objective,
dynamic, multimodal and other cases [2], when the problem being solved has numerical
parameters. Hence, developing more advanced and efficient DE variants is an important
research direction for many evolutionary algorithms.

The main problem of DE stems from its main advantage: only three main parameters,
scaling factor F, crossover rate Cr and population size N, control most of the optimization
process, which makes DE highly sensitive to settings. This problem has been significantly
mitigated by parameter adaptation techniques proposed in jDE [3], JADE [4], SHADE [5]
and some other schemes [6]. However, there still seems to be room for further improvement.
The existing adaptation techniques rely on subsequent immediate improvements, which
may constitute a greedy approach. In particular, the popular success history-based adapta-
tion tunes the scaling factor F and crossover rate Cr values based on the most successful
values in the last generations, but this does not guarantee that these values will result in
good coverage of the search space and good convergence in the long term. This problem
was considered in [7], where the effects of bias in parameter adaptation were studied.
Hence, some other sources of information could be used to determine parameter values,
for example, the number of improved solutions at every generation.

In this study, the scaling factor F adaptation technique is proposed, which is based
on the success rate (SR) value, i.e., the ratio of the number of successful new solutions
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divided by the total number of individuals. This value is not used explicitly in any of the
DE variants to the best of our knowledge, although it is part of the averaging in the JADE
and SHADE (Success History Adaptive Differential Evolution) algorithms. The idea of
using the success rate came from analyzing the results of the genetic programming (GP)
algorithm applied to design novel parameter adaptation techniques [8]. In particular, it was
observed that GP heavily relies on the success rate in many of its solutions. Here, a refined
variant of this idea is presented, more specifically, a cth order root of the success rate is
utilized. To evaluate the efficiency of the new approach for F sampling, it is tested on sev-
eral algorithms, including L-SHADE-RSP [9], NL-SHADE-RSP [10], NL-SHADE-LBC [11]
and L-NTADE [12]. The experiments are performed on two benchmark sets, namely the
Congress on Evolutionary Computation (CEC) competitions from 2017 [13] and 2022 [14].

The main features of this study can be outlined as follows:

1. The success rate adaptation of the scaling factor improves the performance of most
DE variants and requires the same settings independent of the algorithm;

2. The proposed adaptation scheme shows small dependence on the computational
resource or problem dimension;

3. Compared to success history adaptation, success rate adaptation performs better with
relatively small computational resource.

The Section 2 contains a short overview of parameter adaptation in differential evolu-
tion, the Section 3 describes the proposed approach, the Section 4 contains the experimental
setup and results; after that, in Section 5, a discussion of the results is provided, and
Section 6 concludes the paper.

2. Related Work

2.1. Differential Evolution

The main focus of our study is on differential evolution, so we only consider its
variants and modifications. The reason for this is that, as latest competitions (such as CEC
2017, CEC 2021, CEC 2022) show, other techniques, such as genetic algorithms, particle
swarm optimization, and other biology inspired algorithms are not competitive in a single-
objective black-box setup. The only exclusion may be the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm and its hybrids with DE.

The main idea of the differential evolution algorithm proposed in [15] is to use differ-
ence vectors between individuals to produce new solutions during mutation. The algorithm
starts with the initialization of N individuals, xi = (xi,1, xi,2, . . . , xi,D), i = 1, . . . , N, within
the bounds:

S = {xi ∈ RD|xi = (xi,1, xi,2, . . . , xi,D) : xi,j ∈ [xlb,j, xub,j]}, (1)

where D is the number of variables. Most of the studies use the uniform random generation
of individuals:

xi,j = xlb,j + rand × (xub,j − xlb,j). (2)

After initialization and target function evaluation, the mutation step begins. Many
mutation strategies have been proposed for DE, but the two most popular ones are rand/1
and current-to-pbest/1:

vi,j = xr1,j + F × (xr2,j − xr3,j), (3)

vi,j = xi,j + F × (xpbest,j − xi,j) + F × (xr1,j − xr2,j), (4)

where xi is called the target vector, vi is the mutant or donor vector, F is the scaling factor,
pbest is the index of one of the p% best individuals, and indexes r1, r2, r3 and pbest are
chosen randomly so that they are different from each other and the current individual with
index i. The mutation is performed for all solutions in the population, i = 1, 2, . . . , N.
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After a set of donor vectors is generated, the crossover step is performed. The most
widely used method is binomial crossover, described as follows:

ui,j =

{
vi,j, if rand(0, 1) < Cr or j = jrand
xi,j, otherwise

, (5)

where ui is called the trial vector, Cr is the crossover rate parameter, and jrand ∈ [1, D],
generated randomly. In other words, binomial crossover combines the information in target
vector xi and mutant vector vi to produce the trial vector, and jrand is required to make
sure that the trial vector is different from the target one.

The mutation may generate vectors which are outside the [xlb,j, xub,j] range, so a
bound constraint handling technique is required in DE. One of the widely used ones is the
midpoint-target method [16], which works as follows:

ui,j =

{ xlb,j+xi,j
2 , if vi,j < xlb,j

xub,j+xi,j
2 , if vi,j > xub,j

. (6)

If some of the components of the trial vector overshoot the boundaries, then the
coordinate of the parent (target vector) is used to move towards the boundary without
reaching it. We note that this step can be applied after mutation or after crossover.

The last step in DE is the selection, which here plays the role of a replacement mecha-
nism. If the trial vector, ui, is better in terms of the target function value compared to target
vector xi, then replacement occurs:

xi =

{
ui, if f (ui) ≤ f (xi)

xi, if f (ui) > f (xi)
. (7)

Although this selection mechanism is known to be simple and efficient, there are some
attempts to modify it, for example, by using information about neighbuorhood [17] or
replacing other individuals [12].

2.2. Parameter Adaptation in Differential Evolution

Most of the modern studies which are focused on DE or apply DE to some problem
use one of the previously proposed parameter adaptation techniques. Here, it would
be impractical to cover all of the existing parameter adaptation techniques, so interested
readers are advised to refer to surveys such as [18,19] as well as some recent papers
considering the problem [7].

Some of the earliest successful experiments on parameter adaptation were presented
in the jDE algorithm [3], where, on each iteration t before the mutation and crossover steps
of the search loop, new control parameters are generated in the following way:

Fi,t+1 =

{
random(Fl , Fu), if random(0, 1) < τ1

Fi,t, otherwise
, (8)

CRi,t+1 =

{
random(0, 1), if random(0, 1) < τ2

CRi,t, otherwise
. (9)

In the equations above, values Fl = 0.1 and Fu = 0.9 represent the lower and upper
boundaries for F, and the parameters controlling the frequency of change τ1 and τ2 are
set to 0.1. If, during selection, improvement occurs, then the new values for F and Cr are
saved. This technique was successfully applied in several highly efficient versions of jDE,
including the jDE100 [20] and j2020 [21] algorithms, which have shown competitive results
in CEC 2019 and 2020 competitions, respectively.
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Another important algorithm is JADE, proposed in [4]. Despite the fact that JADE
introduced one of the most used mutations, current-to-pbest/1, it also proposed sampling
of F and Cr in a way similar to the SaDE algorithm [22]. However, instead of using fixed
means, in JADE, F and Cr are sampled with Cauchy and normal distributions around μF
and μCr: {

F = randc(μF, 0.1)
Cr = randn(μCr, 0.1)

, (10)

where randc(μ, s) and randn(μ, s) are random numbers sampled from Cauchy and normal
distribution with location parameter μ and scale parameter s = 0.1. The update of μ values
is performed as follows:{

μF = (1 − c) · μF + c · meanL(SF)

μCr = (1 − c) · μCr + c · meanA(SCr)
, (11)

where meanA() is the arithmetic mean, c is the update parameter, SF and SCr contain the
successful values of F and Cr, i.e., values which produce individuals better than parents,
and meanL() is the Lehmer mean:

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

. (12)

The success of JADE’s parameter adaptation has led to the development of the even
more efficient Success History Adaptation (SHA), proposed in the SHADE algorithm [5].
Unlike JADE, in SHADE, there are H memory cells, each containing a pair (MF,h, MCr,h),
i.e., mean values to be used for sampling F and Cr. These values are used in a similar way
as in Equation (10): {

F = randc(MF,h, 0.1)
Cr = randn(MCr,h, 0.1)

. (13)

The h index is randomly sampled from [1, H] before each mutation and crossover.
At the end of the generation, the new means are calculated using a weighted Lehmer
mean [23], where weights are set based on the improvements Δ f = | f (uj)− f (xj)|, stored
in SΔ f :

meanwL,F =
∑
|SF |
j=1 wjS2

F,j

∑
|SF |
j=1 wjSF,j

, meanwL,Cr =
∑
|SCr |
j=1 wjS2

Cr,j

∑
|SCr |
j=1 wjSCr,j

, (14)

where wj =
SΔ f j

∑
|S|
k=1 SΔ f k

. Next, one of the memory cells with index k, iterated every generation,

is updated: {
Mt+1

F,k = 0.5(Mt
F,k + meanwL,F)

Mt+1
Cr,k = 0.5(Mt

Cr,k + meanwL,Cr)
, (15)

where t is the current generation number. If k > H, then it is set to k = 1.
As for the population size, in L-SHADE [24], the Linear Population Size Reduction

(LPSR) was proposed, which is a widely used technique nowadays. The LPSR works by
determining new population size at every generation as follows:

Ng+1 = round
(

Nmin − Nmax

NFEmax
NFE

)
+ Nmax, (16)

where NFE is the current number of target function evaluations, NFEmax is the total avail-
able computational resource, Nmax and Nmin are the initial and final number of individuals,
g is the generation number. The main idea of LPSR consists in spreading across the search
space at the beginning and concentrating at the end of the search. LPSR allows achievement
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of significant improvements in performance if the computational resource limit is known.
However, some other studies modify it and use non-linear reduction; for example, [10].

In [9], it was shown that adding tournament or rank-based selection strategies to
sample the indexes of individuals for further mutation may be beneficial. The exponential
rank-based selection was implemented by selecting an individual depending on its fitness
in a sorted array, with the ranks assigned as follows:

ranki = e
−kp·i

N , (17)

where kp is the parameter controlling the pressure and i is the individual number. Larger
ranks are assigned to better individuals, and discrete distribution is used for selection.

It is hard to underestimate the importance of the L-SHADE (SHADE with LPSR)
algorithm: the success history adaptation was further developed and improved in many
studies [6]. To provide some examples, the jSO algorithm [25] proposed specific rules
for parameter adaptation, limiting the F and Cr values depending on computational
resource, and used in L-SHADE-RSP [9] with rank-based selection, proposed in [26], DB-
LSHADE proposed distance-based adaptation, where weights are based on the Euclidean
distance instead of fitness improvement [27,28]. In [7], the effect of modified Lehmer
means was considered. Nevertheless, most of the adaptive DE variants tend to apply small
modifications to the SHA general scheme without changing it dramatically. The main
problem of SHA is that it follows immediate improvements in fitness and tunes F and Cr
to them, which is a greedy approach. The biased adaptation introduced with the Lehmer
mean in the JADE algorithm was, in fact, proposed to eliminate this effect by sampling
higher F values than they should be. A more detailed consideration of the effects of bias on
parameter adaptation was performed in [7].

Some other modifications of DE include population regeneration in case of pre-
mature convergence [29], modifications for binary search space [30], Gaussian–Cauchy
mutation [31] and using an ensemble of mutation and crossover operators [32]. Some
works focus on proposing new mutation strategies, such as the triple competitive approach
recently proposed in [33]. In [34], the Unbounded DE (UDE) was proposed, where all
the individuals generated throughout the whole search space are saved and used in the
search. Such an approach shows some interesting effects of using old solutions in the
search process.

3. Proposed Approach

Developing new algorithmic schemes, including parameter adaptation techniques,
could be a tedious process requiring prolonged experimentation and brand new ideas. In a
recent study [8], an attempt to use genetic programming solving symbolic regression as
a knowledge extraction technique was performed, and as a result, it was discovered that
the success rate can be an important source of information for the adaptation of scaling
factor F. Based on this idea, as well as some additional experiments, success rate-based
adaptation is proposed.

Success rate is calculated as the ratio of the number of successful solutions NS to the
current population size N:

SR =
NS
N

. (18)

In other words, NS is equal to the amount of elements in SF or SCr. Success rate shows,
in general, how well the algorithm performs: if the search is efficient, then NS is quite high,
and if the population is stuck in a local optimum or optima, then it is low. Success rate is
used to calculate the MF value, which acts as a mean for sampling F:

MF = SR1/c, (19)

82



Mathematics 2024, 12, 516

where c is the parameter value. Some of the solutions found by GP used the square root
of the success rate. However, further experiments have shown that using the cube root or
even larger c values may produce better results. The MF value is then used as follows:

F = randc(MF, 0.1). (20)

Joining together all the above equations, the scaling factor for every mutation can be
calculated as follows:

F = randc

((
NS
N

)1/c
, 0.1

)
. (21)

As in many other methods, if F > 1, it is set to 1, and if F < 0, it is sampled again until
positive. Such a technique is very simple compared to SHADE, or even JADE and jDE, as it
does not require additional values to be stored or the average to be calculated. Moreover, it
can be applied to any DE algorithm without significant effort.

Figure 1 shows the dependence of MF on SR with different c parameter values.

Figure 1. MF values for different c parameter values.

As shown in Figure 1, small success rate values (<0.05) lead to MF values between 0
and 0.5, while larger success rates result in MF being larger than 0.5.

The main advantage of the proposed technique is its simplicity: to apply it, a single
Equation (21) is required, whereas SHA needs to store memory cells, successful parameter
values, calculate weights, Lehmer means and update memory cells (Equations (13)–(15)).
This creates additional computational effort. To illustrate this, in Figure 2, the two tech-
niques are compared. In the next section, when the modifications of DE variants are
considered, the steps of success history adaptation are replaced by a single step of success
rate adaptation.

Figure 2. Comparison of steps required for success rate-based adaptation and success history-
based adaptation.
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The proposed technique was implemented for L-SHADE-RSP, NL-SHADE-RSP, NL-
SHADE-LBC, L-NTADE and other algorithms, and the results are considered in the
next section.

4. Experimental Setup and Results

4.1. Benchmark Functions and Parameters

The main purpose of the experiments in this study was to determine the efficiency of
success rate-based adaptation in different scenarios. For this, two benchmark sets were
chosen, namely the CEC 2017 [13] and 2022 [14] Single Objective Bound Constrained
Numerical Optimization problems. These benchmarks have different numbers of functions,
30 and 12, respectively, different dimensions and computational resource. For CEC 2017,
the test functions were defined for D = 10, 30, 50 and 100, and for CEC 2022 D = 10 and 20.
The number of available function evaluations was set to NFEmax = 10,000D for CEC 2017,
and for CEC 2022 it was set to NFEmax = 2 × 105 for 10D and NFEmax = 1 × 106 for 20D.
All the experiments with algorithms and their modifications were performed according to
competition rules.

All the tested algorithms were implemented in C++, and ran on eight AMD Ryzen 3700
PRO processors with eight cores each under Ubuntu Linux 20.04; the experiments were
paralleled using OpenMPI 4.0.3, and post-processing was performed using Python 3.8.5.

To compare different results, two main techniques were applied. The first was the
Mann–Whitney rank sum statistical test with normal approximation and tie-breaking,
with significance level set to p = 0.01. In addition to the result of the test (win/tie/loss),
the standard Z score values were calculated and summed over all test functions. We note
that Z = ±2.58 corresponds to p = 0.01. The second is the Friedman ranking procedure,
applied in the Friedman statistical test. Here, it was used to compare a set of algorithms
or their variants, and the ranks were assigned to the results obtained on every run and
function independently, and then summed together. We note that unlike CEC 2017, in CEC
2022, the ranking of results included not only the best achieved values, but also the total
computational resource spent, and this ranking was used in both the Mann–Whitney test
and Friedman ranking.

4.2. Numerical Results

In order to consider the proposed modification from different points, in the following
subsections, several aspects were considered, including the effects of SR-based adaptation
on the performance of different existing algorithms when success history-based adaptation
is replaced; the influence of the available computational resource and mutation strategies;
comparison with the best methods on two sets of benchmark functions. Also, a visualization
of the parameter adaptation process was considered for a better understanding of the effects
on the differential evolution algorithm.

4.2.1. Modification of Existing Algorithms

As was mentioned above, the success rate-based adaptation for F replaced the success
history adaptation in four tested algorithms. As for the crossover rate Cr adaptation, it was
unchanged. In the case of the L-SHADE-RSP algorithm, which uses a specific mutation
strategy with F and F2, when using the success rate, F2 was set equal to F, and specific
rules based on the current resource from jSO algorithm were removed. The parameters for
all the algorithms were set according to those used in corresponding papers.

The majority of modern DE algorithms rely on the success history adaptation method
introduced in SHADE, so the purpose of the study was to compare the adaptation methods,
and not specific algorithms. For this purpose, in Tables 1–10, we modified L-SHADE-RSP,
NL-SHADE-RSP, NL-SHADE-LBC, L-NTADE, jSO, LSHADE-SPACMA, APGSK-IMODE,
MLS-LSHADE and MadDE with success rate-based adaptation and compared the results.

Tables 1 and 2 present the comparison of the original L-SHADE-RSP with the modified
L-SHADE-RSP (SR) with different c values. Each cell in the tables contains the number of
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wins/ties/losses and the total standard score in brackets. Larger standard score means that
the modified algorithm is better.

Table 1. L-SHADE-RSP (SR) vs. L-SHADE-RSP, CEC 2017.

c 10D 30D 50D 100D

1 3/18/9 (−45.16) 0/9/21 (−157.01) 0/7/23 (−163.79) 2/5/23 (−183.13)
2 3/23/4 (−12.68) 4/11/15 (−74.72) 4/8/18 (−87.52) 4/9/17 (−91.82)
3 5/23/2 (4.32) 5/16/9 (−28.41) 5/15/10 (−25.87) 8/12/10 (−16.28)
4 4/26/0 (19.57) 2/23/5 (−18.11) 5/20/5 (2.37) 11/11/8 (11.60)
5 5/23/2 (14.58) 3/20/7 (−31.34) 1/25/4 (−11.09) 12/10/8 (16.57)
6 6/19/5 (8.65) 2/18/10 (−41.83) 3/20/7 (−33.75) 12/11/7 (4.25)

Table 2. L-SHADE-RSP (SR) vs. L-SHADE-RSP, CEC 2022.

c 10D 20D

1 7/3/2 (29.61) 3/3/6 (−11.30)
2 7/3/2 (30.91) 4/4/4 (4.29)
3 6/3/3 (21.43) 4/6/2 (18.58)
4 4/2/6 (−8.13) 2/8/2 (−3.00)
5 4/4/4 (−8.23) 2/6/4 (−14.21)
6 3/5/4 (−9.17) 1/7/4 (−16.18)

As can be seen from Tables 1 and 2, the c parameter significantly influences perfor-
mance, and if for CEC 2017 c = 1, i.e., MF = SR, is a bad choice; for CEC 2022 it is a
reasonable setting for 10D. The setting which leads to good performance is c = 4 for CEC
2017. In this case, for 10D, 50D and 100D, there are more improvements than losses, but for
30D the success history adaptation works better. In the case of the CEC 2022 benchmark,
the best choice isc = 3.

In Tables 3 and 4, the comparison of the basic NL-SHADE-RSP and the modified
NL-SHADE-RSP (SR) is presented.

Table 3. NL-SHADE-RSP (SR) vs. NL-SHADE-RSP, CEC 2017.

c 10D 30D 50D 100D

1 0/13/17 (−77.34) 1/6/23 (−134.10) 1/9/20 (−128.17) 6/6/18 (−91.88)
2 0/25/5 (−18.32) 7/21/2 (17.65) 14/13/3 (45.81) 20/6/4 (89.04)
3 2/27/1 (8.46) 14/14/2 (64.24) 15/13/2 (100.78) 22/7/1 (134.60)
4 7/22/1 (28.38) 15/14/1 (81.37) 17/11/2 (111.83) 22/6/2 (141.35)
5 8/21/1 (33.83) 16/13/1 (73.35) 18/10/2 (111.43) 21/7/2 (139.24)
6 6/24/0 (29.73) 13/14/3 (66.20) 17/11/2 (111.59) 22/5/3 (135.73)

Table 4. NL-SHADE-RSP (SR) vs. NL-SHADE-RSP, CEC 2022.

c 10D 20D

1 4/4/4 (2.46) 0/6/6 (−39.78)
2 5/6/1 (14.26) 1/8/3 (−8.21)
3 6/2/4 (14.37) 5/4/3 (5.05)
4 6/2/4 (8.26) 5/3/4 (4.18)
5 5/3/4 (9.20) 5/3/4 (6.02)
6 6/2/4 (11.19) 5/4/3 (8.10)

The situation with NL-SHADE-RSP is quite different as this method was not tuned
for CEC 2017 or CEC 2022. Nevertheless, small values of the c parameter lead to poor
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performance on both benchmarks, and increasing c up to 3 or 4 produces much better
results. After c = 4, performance gains become smaller.

Tables 5 and 6 show the results of NL-SHADE-LBC and its modified version.

Table 5. NL-SHADE-LBC (SR) vs. NL-SHADE-LBC, CEC 2017.

c 10D 30D 50D 100D

1 0/17/13 (−63.46) 2/8/20 (−138.49) 5/8/17 (−103.11) 7/4/19 (−108.71)
2 2/24/4 (−13.13) 7/13/10 (−15.57) 18/3/9 (62.92) 16/8/6 (63.66)
3 4/24/2 (21.91) 14/12/4 (73.17) 23/6/1 (161.08) 23/5/2 (161.72)
4 8/21/1 (40.55) 16/13/1 (97.39) 25/4/1 (185.04) 25/5/0 (190.54)
5 10/20/0 (53.79) 16/13/1 (106.44) 25/5/0 (186.03) 27/3/0 (199.10)
6 10/20/0 (56.07) 17/12/1 (106.95) 25/4/1 (176.66) 26/4/0 (193.90)

Table 6. NL-SHADE-LBC (SR) vs. NL-SHADE-LBC, CEC 2022.

c 10D 20D

1 6/3/3 (26.91) 3/3/6 (-19.44)
2 2/3/7 (−23.34) 1/4/7 (−37.09)
3 3/2/7 (−25.30) 2/5/5 (−20.46)
4 2/3/7 (−26.51) 3/4/5 (−17.18)
5 2/3/7 (−28.37) 3/4/5 (−20.26)
6 2/3/7 (−28.53) 3/4/5 (−18.72)

As can be seen from Tables 5 and 6, the situation with NL-SHADE-LBC is quite
different. As this method was specifically developed for the CEC 2022 benchmark, its
parameter adaptation was not tuned for the CEC 2017 benchmark, and applying success
rate-based adaptation significantly improves results, with up to 27 improvements out of
30 functions in 100D. However, for CEC 2022, the success rate adaptation was not able
to deliver better performance, but still c = 4 or higher is a reasonable choice for both
benchmarks. The reason why SR-based adaptation worked worse with NL-SHADE-LBC
is that the parameter adaptation of this algorithm was specifically tuned for the CEC
2022 benchmark.

Tables 7 and 8 contain the results of the L-NTADE algorithm and its modification.

Table 7. L-NTADE (SR) vs. L-NTADE, CEC 2017.

c 10D 30D 50D 100D

1 2/10/18 (−105.68) 0/8/22 (−192.68) 0/4/26 (−218.98) 1/2/27 (−219.12)
2 6/15/9 (−11.94) 3/14/13 (−65.01) 4/8/18 (−108.84) 5/3/22 (−124.60)
3 9/15/6 (22.08) 12/15/3 (43.24) 8/17/5 (19.67) 8/9/13 (-6.39)
4 11/14/5 (37.30) 14/15/1 (75.39) 15/11/4 (69.26) 15/11/4 (70.63)
5 10/16/4 (44.53) 14/15/1 (73.95) 17/10/3 (67.77) 15/11/4 (65.51)
6 11/17/2 (36.40) 9/19/2 (48.88) 13/11/6 (25.88) 11/12/7 (24.52)

Table 8. L-NTADE (SR) vs. L-NTADE, CEC 2022.

c 10D 20D

1 5/3/4 (11.08) 3/2/7 (−22.99)
2 6/4/2 (25.53) 3/3/6 (−6.99)
3 6/4/2 (25.45) 3/5/4 (1.07)
4 5/5/2 (26.17) 2/6/4 (−1.82)
5 3/8/1 (13.29) 2/6/4 (−10.64)
6 2/6/4 (−10.49) 2/7/3 (−12.62)
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Although L-NTADE has two populations and has a different algorithmic scheme,
applying success rate-based adaptation improved the results in both benchmarks. As
before, small c values are inefficient. However, setting c = 4 for CEC 2017 or probably even
larger values offers significant performance benefits.

In order to test the applicability of the proposed approach to other algorithms, several
of them for which the source codes were available were modified and the modifications
were compared to the original results. For the CEC 2017 benchmark, in the jSO (derived
from L-SHADE) [25], the mutation step, which uses two factors, F and F2, was modified
to have only a single one, and the control rules for F were deactivated. For LSHADE-
SPACMA [35], the scaling factor sampling in the DE part was replaced by Equation (19).
The comparison is shown in Table 9.

Table 9. Comparison of other modified approach vs. original versions, CEC 2017.

Algorithm 10D 30D 50D 100D

jSO (SR, c = 4) vs. 1/21/8 8/16/6 6/14/10 11/9/10
jSO [25] (−37.08) (21.04) (−25.27) (−2.29)

LSHADE-SPACMA (SR, c = 4) vs. 3/22/5 1/24/5 0/22/8 0/23/7
LSHADE-SPACMA [35] (−22.61) (−41.67) (−64.32) (−42.11)

As can be seen from Table 9, the modification of jSO with c = 4 may be beneficial
in some cases, for example, in the 30D scenario, but in 10D the number of losses was
much larger than the number of wins. As for LSHADE-SPACMA, using success rate-based
adaptation leads to decreased performance. The main reason why SR-based adaptation
failed to improve the performance in these cases could be that both jSO and LSHADE-
SPACMA were specifically tuned for the CEC 2017 benchmark, and the SR-based adaptation
is a more general approach, which was not tuned for these particular algorithms.

In Table 10, the same modification was applied to APGSK-IMODE (only in IMODE
part) [36], MLS-LSHADE [37] and MadDE [38]. Due to a simpler benchmark in terms of
computation time, the experiments were performed with different c values.

Table 10. Comparison of other modified approaches vs. original versions, CEC 2022.

Algorithm 10D 20D

APGSK-IMODE (SR, c = 2) vs. 4/5/3 1/5/6
APGSK-IMODE [36] (3.66) (−24.33)

APGSK-IMODE (SR, c = 3) vs. 4/4/4 1/8/3
APGSK-IMODE [36] (12.88) (−14.19)

APGSK-IMODE (SR, c = 4) vs. 3/4/5 1/8/3
APGSK-IMODE [36] (−8.81) (−12.24)

APGSK-IMODE (SR, c = 5) vs. 3/4/5 1/8/3
APGSK-IMODE [36] (−8.81) (−12.24)

MLS-LSHADE (SR, c = 2) vs. 4/3/5 0/4/8
MLS-LSHADE [37] (−2.05) (−49.53)

MLS-LSHADE (SR, c = 3) vs. 2/3/7 0/6/6
MLS-LSHADE [37] (−29.50) (−41.34)

MLS-LSHADE (SR, c = 4) vs. 3/1/8 0/5/7
MLS-LSHADE [37] (−32.78) (−41.91)

MLS-LSHADE (SR, c = 5) vs. 1/3/8 0/5/7
MLS-LSHADE [37] (−37.41) (−40.96)
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Table 10. Cont.

Algorithm 10D 20D

MadDE (SR, c = 2) vs. 5/4/3 2/6/4
MadDE [38] (12.46) (−9.56)

MadDE (SR, c = 3) vs. 4/5/3 3/8/1
MadDE [38] (14.78) (13.48)

MadDE (SR, c = 4) vs. 4/5/3 3/8/1
MadDE [38] (13.10) (15.39)

MadDE (SR, c = 5) vs. 3/6/3 3/6/3
MadDE [38] (4.88) (0.68)

The effect of success rate-based scaling factor adaptation is different for different
algorithms. For example, the performance of APGSK-IMODE was improved only in the
10D case, with c = 2 and c = 3, but for MLS-LSHADE the effect was mainly negative.
As for the MadDE algorithm, it was mostly improved by the modification, especially for
c = 3 and c = 4.

4.2.2. Effect of the Available Computational Resource

The main difference between the two considered benchmarks is the number of com-
putations available for every function. The experiments shown above demonstrated that
there is a possibility that amount of resource may influence the performance of success
rate-based adaptation. To test this hypothesis, a set of experiments was performed for the
L-NTADE algorithm on CEC 2022, where the number of function evaluations NFEmax was
decreased to 10%, 20% and so on up to 100%. Figure 2 shows the Friedman ranking of the
results in the form of heatmaps.

In Figure 3, the ranking was performed independently in every column, as there is no
sense in comparing algorithms with different available resource. The best ranks are shown
in red. In the 10D case, if the resource is relatively small, the success rate adaptation is
significantly better than SHA. However, as the NFEmax grows, the SHA may take the lead.
In the 20D case, however, the SR adaptation is always better, and the best settings are c = 5
or c = 6, although c = 4 is very similar. From these results, it can be concluded that, first of
all, success rate-based adaptation is not highly influenced by available resource, but there
is a difference in performance compared to SHA.
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Figure 3. Comparison of L-NTADE with and without success rate adaptation with different available
resource NFEmax, Friedman ranking.

4.2.3. Visualization of Parameter Adaptation Process

For a better understanding of what SR actually does during the search process,
Figures 4 and 5 show the graphs of F values set by the SHA and SR methods in the case of
the L-SHADE-RSP algorithm.

Figure 4. Graphs of parameter adaptation of L-SHADE-RSP with and without success rate adaptation,
CEC 2017, 30D, selected functions.

The graphs in Figure 4 show that the behavior of the two considered adaptation
methods is quite different, and sometimes even opposite. For example, at the beginning of
the search, the success rate is high, and so is the MF value, and they both decrease, while
SHA makes larger F values. If the success rate drops close to 0, this makes the MF values
oscillate between 0 and 0.5, while SHA slowly tunes values in the memory cells, as seen on
functions F15 and F19. If the search process is going well, SR tends to maintain relatively
high F values, and switches to an oscillating mode if the success rate is low.

Figure 5 shows similar trends, but they are seen much better due to larger resource.
For example, for functions F4, F7 and F8, the success history adaptation leads to memory
cell values close to zero at some points in the middle of the search, but success rate
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adaptation tries every possible F value from 0 to around 0.4 when the success rate drops
low. Also, oscillation tends to become higher closer to the end of the search. This is simply
the effect of smaller a population size.

Figure 5. Graphs of parameter adaptation of L-SHADE-RSP with and without success rate adaptation,
CEC 2022, 20D.

4.2.4. Success Rate-Based Adaptation With Different Mutation Strategies

One of the possible explanations of the high performance of success rate-based adap-
tation for F could be that it works in combination with the current-to-pbest strategy. If the
success rate is low, smaller F values force more exploration, while F closer to 1 leads to
a move towards one of the p% best solutions. To test this effect of success rate-based
adaptation, a set of experiments was performed on the standard L-SHADE algorithm with
different mutation strategies, such as rand/1, rand/2, current-to-best/1, current-to-rand/1,
best/1 and best/2. The c parameter was also altered from 1 to 6, and the original L-SHADE
was tested. Next, the Friedman ranking procedure was applied to compare the performance
of SHA with SR. The ranks were assigned for each mutation strategy (column) indepen-
dently. The experiments were repeated for both CEC 2017 and CEC 2022 benchmarks.
The parameters of L-SHADE were the following: N = 60 × D

2
3 , pbest = 0.2, H = 5, initial

MF = 0.5, MCr = 0.5, archive was not used. Figures 6 and 7 contain the heatmaps of
the comparison.

90



Mathematics 2024, 12, 516

Figure 6. Comparison of L-SHADE with different strategies, with and without success rate adaptation,
CEC 2017, Friedman ranking.

Figure 7. Comparison of L-SHADE with different strategies, with and without success rate adaptation,
CEC 2022, Friedman ranking.

The heatmaps for the CEC 2017 benchmark show that in low-dimensional cases like
10D and 30D, the SHA may perform better than SR, but only for current-to-pbest/1, current-
to-best/1 and current-to-rand/1. As for the other strategies, rand/1 and rand/2 performed
much better with the modified approach, and so did best/1 and best/2, although the
difference here was smaller. In high-dimensional cases, SR is always performing better,
especially when the rand/2 strategy is used. Different strategies prefer different c values;
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for example, rand/1 and rand/2 only use c = 1, i.e., linear dependence. In fact, this means
that the success rate is used directly. Other strategies, such as best/1 and best/2, prefer
c = 2, c = 3 or c = 4, but this value is always smaller for best/2 compared to best/1.
The same is true when comparing rand/1 and rand/2: the effect of smaller c values is
larger in the case of rand/2. The current-to-best and current-to-rand strategies are similar
to current-to-pbest ones, and the best settings for them are close. The comparison on CEC
2022 demonstrates the same trends, but in general smaller c values are preferred for all
strategies except current-to-rand ones. Also, on this benchmark, the SHA is never the
best choice.

To compare different strategies with current-to-pbest, the best performing ones from
every dimension and every benchmark were chosen and compared to current-to-pbest
with SR. The standard SHA was not considered here. The Mann–Whitney statistical tests
for both benchmarks are shown in Tables 11 and 12.

Table 11. L-SHADE (SR) with different mutation strategies, current-to-pbest strategy vs. best variants,
CEC 2017.

Strategy 10D 30D 50D 100D

current-to-pbest/1 vs. 10/11/9 19/9/2 24/4/2 18/8/4
rand/1 (26.18) (110.36) (150.35) (133.91)

current-to-pbest/1 vs. 11/16/3 20/9/1 25/3/2 20/6/4
rand/2 (56.51) (134.71) (174.02) (146.97)

current-to-pbest/1 vs. 15/10/5 5/22/3 4/22/4 11/10/9
current-to-best/1 (45.26) (17.98) (3.20) (19.94)

current-to-pbest/1 vs. 11/17/2 19/11/0 19/9/2 22/7/1
current-to-rand/1 (52.97) (119.34) (135.04) (164.06)

current-to-pbest/1 vs. 9/17/4 15/11/4 23/4/3 20/6/4
best/1 (20.28) (80.90) (108.31) (107.48)

current-to-pbest/1 vs. 11/16/3 17/11/2 24/4/2 20/6/4
best/2 (27.58) (80.53) (123.93) (108.48)

Table 12. L-SHADE (SR) with different mutation strategies, current-to-pbest strategy vs. best variants,
CEC 2022.

Strategy 10D 20D

current-to-pbest/1 vs. rand/1 4/5/3 (1.77) 3/5/4 (−5.97)

current-to-pbest/1 vs. rand/2 4/5/3 (8.87) 2/7/3 (−1.72)

current-to-pbest/1 vs. current-to-best/1 1/7/4 (−15.58) 1/8/3 (−8.00)

current-to-pbest/1 vs. current-to-rand/1 7/4/1 (35.73) 5/6/1 (22.00)

current-to-pbest/1 vs. best/1 5/3/4 (1.91) 5/4/3 (12.18)

current-to-pbest/1 vs. best/2 3/4/5 (−10.48) 6/2/4 (13.10)

In the case of the CEC 2017 benchmark in Table 11, the current-to-pbest strategy
dominates other strategies in terms of performance in all cases. However, the closest
competitor is the current-to-best which performed similar in the 50D case, which might
indicate a non-optimal choice of the pbest parameter for current-to-best. As for the results
on CEC 2022, the current-to-pbest outperformed most of the strategies but the current-
to-best had several wins in both the 10D and 30D cases. Also, the rand/1 strategy has
shown some competitive performance in 20D, as well as best/2 in 10D. Considering the
improvements that success rate-based adaptation was able to deliver for these strategies
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compared to success history adaptation (Figures 6 and 7), one may conclude that SR can be
efficiently applied to other strategies, and even make them competitive.

4.2.5. Comparison With Alternative Approaches

Tables 13–15 contain the comparison of the L-NTADE (SR) algorithm with c = 4 to
other modern DE algorithms on the CEC 2017 benchmark, and Tables 16–18 on the CEC
2022 benchmark. Table 13 shows the results of Mann–Whitney statistical tests, Table 14
contains the Friedman ranking results, the ranking that is used in a Friedman statistical test
to compare several sets of measurements; smaller total ranks are better. Table 15 shows
the recently proposed U-scores [39]. Tables 16–18 contain the same results for CEC 2022.
The U-scores represent a trial-based dominance method for comparing several optimization
methods using Mann–Whitney U tests. For CEC 2017, the convergence speed is not taken
into consideration, while for CEC 2022 the number of function evaluations to reach the
desired accuracy is considered.

Table 13. L-NTADE (SR) vs. alternative approaches, Mann–Whitney tests, CEC 2017.

Algorithm 10D 30D 50D 100D

L-NTADE (SR, c = 4) vs. 9/18/3 17/6/7 14/3/13 14/1/15
LSHADE-SPACMA [35] (25.76) (75.97) (17.98) (1.50)

L-NTADE (SR, c = 4) vs. 6/21/3 19/10/1 22/6/2 24/1/5
jSO [25] (7.27) (139.25) (153.40) (147.83)

L-NTADE (SR, c = 4) vs. 3/19/8 16/9/5 18/7/5 22/2/6
EBOwithCMAR [40] (−37.99) (79.00) (110.30) (131.61)

L-NTADE (SR, c = 4) vs. 3/24/3 18/11/1 20/8/2 20/6/4
L-SHADE-RSP [9] (2.69) (127.15) (131.90) (121.52)

L-NTADE (SR, c = 4) vs. 12/9/9 23/4/3 29/1/0 29/0/1
NL-SHADE-RSP [10] (17.82) (173.49) (250.21) (241.25)

L-NTADE (SR, c = 4) vs. 6/20/4 21/8/1 28/2/0 27/1/2
NL-SHADE-LBC [11] (6.58) (176.68) (227.05) (210.08)

L-NTADE (SR, c = 4) vs. 11/14/5 14/15/1 15/11/4 15/11/4
L-NTADE [12] (37.30) (75.39) (69.26) (70.63)

Table 14. L-NTADE (SR) vs. alternative approaches; Friedman ranking. Smaller ranks are better,
CEC 2017.

Algorithm 10D 30D 50D 100D Total

LSHADE-SPACMA [35] 139.42 127.42 100.55 85.06 452.45

jSO [25] 134.97 131.33 132.14 139.09 537.53

EBOwithCMAR [40] 116.15 123.19 124.94 131.67 495.94

L-SHADE-RSP [9] 133.93 126.37 121.91 122.36 504.58

NL-SHADE-RSP [10] 146.25 196.87 226.37 226.63 796.13

NL-SHADE-LBC [11] 133.80 177.80 193.38 191.89 696.88

L-NTADE [12] 143.55 110.41 100.85 101.93 456.75

L-NTADE (SR, c = 4) 131.92 86.60 79.85 81.37 379.75

As can be seen from Table 13, the L-NTADE algorithm with success rate-based adapta-
tion is able to outperform most of the alternative algorithms in both benchmarks. EBOwith-
CMAR performed better in the 10D case, and LSHADE-SPACMA showed comparable
in the 100D case. Table 14 supports these results, ranking L-NTADE with c = 4 the best
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algorithm overall, and even the standard L-NTADE is very competitive. In Table 15,
the comparison yields similar results, and L-NTADE with c = 4 ranks first, followed by
LSHADE-SPACMA and L-NTADE.

Table 15. L-NTADE (SR) vs. alternative approaches, U-scores. Larger ranks are better [39], CEC 2017.

Algorithm 10D 30D -

LSHADE-SPACMA [35] 263,193 293,839.5 -

jSO [25] 272,469 282,122.5 -

EBOwithCMAR [40] 322,146.5 303,458.5 -

L-SHADE-RSP [9] 276,570.5 296,012 -

NL-SHADE-RSP [10] 244,170 112,109 -

NL-SHADE-LBC [11] 276,146 161,327 -

L-NTADE [12] 248,186 336,712.5 -

L-NTADE (SR, c = 4) 281,959 399,259 -

Algorithm 50D 100D Total

LSHADE-SPACMA [35] 364,005.5 404,653 1,325,691

jSO [25] 281,506 262,631 1,098,728.5

EBOwithCMAR [40] 298,859 282,227 1,206,691

L-SHADE-RSP [9] 305,628.5 305,817 1,184,028

NL-SHADE-RSP [10] 34,664.5 34,687 425,630.5

NL-SHADE-LBC [11] 121,800.5 124,111 683,384.5

L-NTADE [12] 362,005 359,221 1,306,124.5

L-NTADE (SR, c = 4) 416,371 411,493 1,509,082

Table 16. L-NTADE (SR) vs. alternative approaches, CEC 2022.

Algorithm 10D 20D

L-NTADE (SR, c = 4) vs. 8/2/2 10/0/2
APGSK-IMODE [36] (36.86) (52.60)

L-NTADE (SR, c = 4) vs. 4/2/6 4/1/7
MLS-LSHADE [37] (−9.67) (−19.78)

L-NTADE (SR, c = 4) vs. 8/2/2 8/2/2
MadDE [38] (39.05) (43.60)

L-NTADE (SR, c = 4) vs. 2/6/4 5/3/4
EA4eigN100 [41] (−15.49) (5.51)

L-NTADE (SR, c = 4) vs. 3/4/5 6/2/4
NL-SHADE-RSP-MID [42] (−5.98) (17.59)

L-NTADE (SR, c = 4) vs. 5/3/4 4/6/2
L-SHADE-RSP [9] (14.23) (12.24)

L-NTADE (SR, c = 4) vs. 6/3/3 7/4/1
NL-SHADE-RSP [10] (24.51) (34.78)

L-NTADE (SR, c = 4) vs. 2/3/7 4/4/4
NL-SHADE-LBC [11] (−30.20) (−3.75)

L-NTADE (SR, c = 4) vs. 5/5/2 2/6/4
L-NTADE [12] (26.17) (−1.82)
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The comparison on the CEC 2022 benchmark in Table 16 shows that L-NTADE with
c = 4 is outperformed by NL-SHADE-LBC and EA4eigN100 in the 10D case, but in 20D
the difference between them decreases. However, the MLS-LSHADE is able to deliver
better performance in the 20D case. The Friedman ranking in Table 17 sets EA4eigN100 in
first place, followed by NL-SHADE-LBC, and MLS-LSHADE and L-NTADE with c = 4.
However, when using U-scores in Table 18, L-NTADE with c = 4 takes second place after
NL-SHADE-LBC, and MLS-LSHADE has an almost identical total rank. We note that
L-NTADE used the same parameter settings in both benchmarks, and still was able to show
highly competitive results in both of them.

Table 17. L-NTADE (SR) vs. alternative approaches, Friedman ranking. Smaller ranks are better,
CEC 2022.

Algorithm 10D 20D Total

APGSK-IMODE [36] 81.57 87.92 169.48

MLS-LSHADE [37] 64.05 50.13 114.18

MadDE [38] 87.15 87.02 174.17

EA4eigN100 [41] 39.17 53.02 92.18

NL-SHADE-RSP-MID [42] 58.92 71.25 130.17

L-SHADE-RSP [9] 66.65 59.07 125.72

NL-SHADE-RSP [10] 88.23 83.58 171.82

NL-SHADE-LBC [11] 49.77 56.73 106.50

L-NTADE [12] 64.58 55.92 120.50

L-NTADE (SR, c = 4) 59.92 55.37 115.28

Table 18. L-NTADE (SR) vs. alternative approaches, U-scores. Larger ranks are better [39], CEC 2022.

Algorithm 10D 20D Total

APGSK-IMODE [36] 38,228 28,381.5 66,609.5

MLS-LSHADE [37] 52,255 62,548.5 114,803.5

MadDE [38] 35,727 30,402.5 66,129.5

EA4eigN100 [41] 50358 60,202 110,560

NL-SHADE-RSP-MID [42] 56,740.5 44,291.5 101,032

L-SHADE-RSP [9] 44,754.5 54,543.5 99,298

NL-SHADE-RSP [10] 35,363.5 32,772.5 68,136

NL-SHADE-LBC [11] 64,330 56,998.5 121,328.5

L-NTADE [12] 51,346 57,894 109,240

L-NTADE (SR, c = 4) 56,897.5 57,965.5 114,863

In order to compare the computational complexity of the proposed approach, the ex-
periment on the CEC 2022 benchmark was performed according to the rules of the CEC
2022 competition rules [14]. The T0, T1 and T2 values are the estimations of time required
for the processor to perform mathematical evaluations, target function evaluation time and
the algorithm runtime, respectively. Table 19 compares L-NTADE with the SHA and the SR
adaptation methods.
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Table 19. Computational complexity of L-NTADE with SHA and the SR adaptation methods.

L-NTADE

D T0 T1 T2 (T2 − T1)/T0

D = 10 2.5 × 10−2 2.1 × 10−2 1.358 × 10−1 4.592
D = 20 2.5 × 10−2 5.0 × 10−2 1.704 × 10−1 4.816

L-NTADE (SR, c = 4)

D T0 T1 T2 (T2 − T1)/T0

D = 10 2.5 × 10−2 2.1 × 10−2 1.192 × 10−1 3.928
D = 20 2.5 × 10−2 5.0 × 10−2 1.658 × 10−1 4.632

As can be seen from Table 19, applying SR reduces the amount of time, as the calcu-
lation of the weighted Lehmer mean for F in success history-based adaptation requires
significant computational effort.

5. Discussion

The main advantage of the proposed success rate-based adaptation of the scaling factor
is its simplicity. As simple as the original DE, it relies on a naturally present value in the
algorithm, namely the number of successful individuals, i.e., the number of solutions that
were improved according to the selection step. This number is, in fact, calculated by the
majority of existing DE algorithms. Success rate-based adaptation does not require complex
calculations of means, averaging over time and other techniques, and still performs very
well. Moreover, the experiments have shown that the sensitivity to the c parameter is
very low: the same value, c = 4, works on different benchmarks, different functions and
different computational resource. This property makes for a universal approach, which
seems to work well enough in most scenarios. Although there are cases when the success
history adaptation may deliver better performance, we believe that this can be mitigated
by further development of SR-based adaptation schemes.

As for the reasons for high performance, and why c = 4 is a good choice in many
cases, the following explanation seems reasonable. The SR in most tested algorithms
worked together with the current-to-pbest mutation strategy, which has a specific structure.
If F > 0.5, then the new solutions are attracted closer to some of the best ones, although this
also means that larger steps in other directions will be made. If F < 0.5, this means that the
attention towards better solutions is smaller, and the algorithm searches more around the
current positions of each individual. What the success rate adaptation does is it switches
between these two behaviors. If the search is going well, it makes DE generate solutions
closer to better ones, and the F values are relatively stable. However, if the algorithm is
stagnating, a wider search is beneficial. In this case, success rate adaptation makes MF
oscillate in the [0, 0.5] range, sampling smaller F values and trying to escape local optima.
In this manner, applying a simple curve like SR1/4 produces the desired behavior of DE
without complex adaptation mechanisms.

The experiments with other mutation strategies revealed that SR-based adaptation
works not only with the current-to-pbest strategy, but also with other ones, and in all cases
there was a setting of c which lead to improved performance. Moreover, in most cases, any
c value resulted in better performance than SHA. In the case of the rand/1 and rand/2
strategies, this improvement was very significant, and even allowed for current-to-pbest
to be outperformed in some cases. This might mean that the SR-based adaptation can be
used as a universal mechanism, independent of the mutation strategy, although the c value
should be set accordingly.

Replacing the original success history adaptation in other DE-based algorithms, such
as APGSK-IMODE, MLS-LSHADE, MadDE, jSO and LSHADE-SPACMA, did not always
improve performance; nevertheless, the results were mostly comparable. Some of the
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modified algorithms represented hybrids with other methods, such as local search or
covariance matrix adaptation, and probably better results could be achieved with a more
careful tuning of the hybridization.

Of course, the presented experiments cannot cover all the possibilities of success
rate-based adaptation. However, it is worth mentioning some of the possible directions of
further studies, which include:

1. Developing a crossover rate adaptation scheme based on the success rate,
2. Connecting the success rate to the pbest parameter,
3. Combining the advantages of the success history and success rate adaptation.

6. Conclusions

In this study, a new adaptation technique for the scaling factor parameter in differential
evolution was proposed. The new method relies on the success rate, and the performed
experimental analysis showed that the new method is insensitive to computational resource,
works with different mutation strategies, and can be included in various algorithms.
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L-NTADE Linear population size reduction Newest and Top Adaptive Differential Evolution

References

1. Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg,
Germany, 2005.

2. Das, S.; Suganthan, P. Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [CrossRef]
3. Brest, J.; Greiner, S.; Boškovic, B.; Mernik, M.; Žumer, V. Self-adapting control parameters in differential evolution: a comparative

study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]
4. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Trans. Evol. Comput.

2009, 13, 945–958. [CrossRef]
5. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78. [CrossRef]
6. Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm

Evol. Comput. 2018, 43, 88–108. [CrossRef]
7. Stanovov, V.; Akhmedova, S.; Semenkin, E. Biased Parameter Adaptation in Differential Evolution. Inf. Sci. 2021, 566, 215–238.

[CrossRef]

97



Mathematics 2024, 12, 516

8. Stanovov, V.; Akhmedova, S.; Semenkin, E. The automatic design of parameter adaptation techniques for differential evolution
with genetic programming. Knowl. Based Syst. 2022, 239, 108070. [CrossRef]

9. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC
2017 Benchmark Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro,
Brazil, 8–13 July 2018; pp. 1–8.

10. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC
2021 Numerical Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland,
28 June–1 July 2021; pp. 809–816. [CrossRef]

11. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC
2022 Numerical Optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

12. Stanovov, V.; Akhmedova, S.; Semenkin, E. Dual-Population Adaptive Differential Evolution Algorithm L-NTADE. Mathematics
2022, 10, 4666. [CrossRef]

13. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 special Session and
Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapoure, 2016.

14. Kumar, A.; Price, K.; Mohamed, A.K.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session
and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Nanyang Technological University:
Singapoure, 2021.

15. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]
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Abstract: This paper discusses the problem of detecting cancer using such biomarkers as blood
protein markers. The purpose of this research is to propose an approach for making decisions in the
diagnosis of cancer through the creation of cost-sensitive SVM classifiers on the basis of datasets with
a variety of features of different nature. Such datasets may include compositions of known features
corresponding to blood protein markers and new features constructed using methods for calculating
entropy and fractal dimensions, as well as using the UMAP algorithm. Based on these datasets,
multiclass SVM classifiers were developed. They use cost-sensitive learning principles to overcome
the class imbalance problem, which is typical for medical datasets. When implementing the UMAP
algorithm, various variants of the loss function were considered. This was performed in order to select
those that provide the formation of such new features that ultimately allow us to develop the best
cost-sensitive SVM classifiers in terms of maximizing the mean value of the metric MacroF1 − score.
The experimental results proved the possibility of applying the UMAP algorithm, approximate
entropy and, in addition, Higuchi and Katz fractal dimensions to construct new features using blood
protein markers. It turned out that when working with the UMAP algorithm, the most promising
is the application of a loss function on the basis of fuzzy cross-entropy, and the least promising is
the application of a loss function on the basis of intuitionistic fuzzy cross-entropy. Augmentation of
the original dataset with either features on the basis of the UMAP algorithm, features on the basis
of the UMAP algorithm and approximate entropy, or features on the basis of approximate entropy
provided the creation of the three best cost-sensitive SVM classifiers with mean values of the metric
MacroF1 − score increased by 5.359%, 5.245% and 4.675%, respectively, compared to the mean values
of this metric in the case when only the original dataset was utilized for creating the base SVM
classifier (without performing any manipulations to overcome the class imbalance problem, and also
without introducing new features).

Keywords: oncological disease; cost-sensitive SVM classifier; features; UMAP algorithm; loss
function; entropy; fractal dimension

MSC: 68Q32; 68T05

1. Introduction

At present, the processes of digital transformation are becoming more and more
apparent and sought-after in many spheres of human society, including the spheres of
medicine and healthcare. First of all, digital transformation in the spheres of medicine
and healthcare is a complex continuous process that involves a complete restructuring of
the fundamental principles of the functioning of medical organizations at all hierarchy
levels, as well as the concept of their work with patients [1]. Now, the implementation
of innovative digital technologies is aimed at establishing high standards of healthcare
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delivery and moving towards the “4P medicine” model [1,2], which integrates preventive,
personalized, participatory and predictive aspects of medical practice.

Digital transformation in sphere of healthcare consists of the transition from standard
approved clinical approaches recommended for use in the examination and treatment of
patients, to personal and individual approaches, as well as the prevention of certain diseases
through timely early diagnosis, the constant monitoring of patients, active involvement of
patients in treatment process, etc. [2]. An important key aspect of the digital transformation
in the sphere of healthcare involves creating the prerequisites for reducing morbidity and
mortality, as well as for increasing the active life expectancy of a person. Advanced health
monitoring technologies should help not only to detect certain diseases in their early stages,
but also to prevent disease progression through the application of innovative treatments
for certain diseases.

The design of intellectual analysis tools for processing medical data of large and
ultra-large volumes with the involvement of advanced machine learning (ML) [3–7] and
deep learning (DL) [8–12] technologies provides an opportunity to receive and analyze new
previously hidden knowledge both directly in the medical sphere and in related ones. These
technologies are actively applied in solving various problems of medical diagnosis and, in
particular, in solving problems of diagnosis of oncological diseases (ODs). The logistic re-
gression algorithm [13], k-nearest neighbors (kNN) algorithm [14], support vector machine
(SVM) algorithm [15], random forest (RF) algorithm [16] and DL algorithms [8–10] are
usually applied when creating classifiers to solve OD diagnosis problems. Such classifiers
are created on the basis of datasets which accommodate information about both patterns
with diagnosed ODs of various types and patterns with unconfirmed ODs (i.e., normal
patterns) [13–20].

Recently, applied and computational mathematics tools have become increasingly in
demand, especially in the sense of digital transformation in healthcare. At the present time,
the integration of applied and computational mathematics into digital health platforms is an
important factor for efficient analysis and processing of medical data. These tools provide
more accurate detection of pathologies at early stages of development, which is critical
for the successful prevention of diseases, including cancer [13,21–23]. The use of applied
and computational mathematics methods in the digital transformation of healthcare not
only improves the accuracy of diagnosis but also contributes to the formation of innovative
methods of disease prevention and treatment. As a result, the basis for personalized
and predictive healthcare strategies is created, including strategies of cancer prevention
and diagnosis.

Oncological diseases (ODs) are considered to be one of the most critically danger-
ous diseases due to the potentially severe consequences for patients, especially with late
diagnosis [24,25]. These consequences include severe pain and serious psychological dis-
tress. Treatment for ODs can take a very long time. In addition, it is associated with huge
financial costs both on the part of patients and on the part of the state. ODs are dangerous
immune violations that cause abnormal cells to divide and grow in some organ of the
patient. In addition, these immune violations can very quickly cover the patient’s entire
body and lead to a sad outcome. Clearly, timely early diagnosis of ODs is crucial so that the
doctor can promptly choose an effective method for treating the patient. Unfortunately, the
problem of early diagnosis of ODs is challenging and extremely difficult, because obvious
characteristic symptoms do not manifest themselves until late in the course of the disease,
so even innovative treatments may not be effective.

One approach to early diagnosis of ODs involves analyzing the results of various
tests, for example, gene tests (GTs) [13,26] and protein tests (PTs) [13,27,28]. In the last
few years, experts have favored PT-based OD diagnostic tools involving blood protein
markers [13–16,26]. While GTs are static, PTs are dynamic, so PTs, when performed in a
timely manner, can detect the disease onset and monitor its progression [13]. In addition,
PTs are performed non-invasively. Also, they are cheap. It is assumed that PT-based
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diagnostic technologies provide the forecasting of risks of cancer development for 1–3 years
in advance and, therefore, allow us to carry out advanced prevention and diagnosis of ODs.

Various protein markers are present in the blood. It is known that for different types
of ODs, the values of blood protein markers (BPMs) differ from each other [13]. It can
be reasonably assumed that taking into account the entire spectrum of BPMs should
provide an increase in the accuracy of diagnostics of various diseases. The use of data
mining (DM) tools with the involvement of ML and DL technologies will allow us to reveal
the relationships between the values of BPMs hidden in PT data for different types of
ODs [13,14,20].

The main problem that arises when solving medical diagnosis problems is the class
imbalance of the dataset [14,20]. As a rule, the number of normal data patterns describing
situations with the absence of any ODs greatly exceeds the number of pathologic ones
describing situations of OD of one type or another. As a result, the pattern class of normal
data represents the majority class, while the pattern classes of pathologic data represent the
minority classes (minority classes). When solving the problem of early diagnosis of ODs,
the target classes, i.e., the classes whose correct classification of patterns is most important,
are the minority classes. In addition, the medical diagnosis problem itself is usually a
multiclass classification problem.

The problem of creating a multiclass classifier on the basis of an imbalanced dataset
is very difficult, as the classifier must be trained to accurately classify the patterns of dif-
ferent classes that are imbalanced. Currently, a lot of approaches to overcoming the class
imbalance problem have been proposed [29,30]. The most commonly used approaches are
those that implement various class balancing algorithms realizing the strategies of over-
sampling [31–34], undersampling [34,35] and their combinations, as well as approaches
that implement cost-sensitivity learning (CSL) and take into account the cost of incorrect
decisions [14,36]. In [29], the authors show that, currently, there is no universal approach to
address class imbalance. They propose a taxonomy that covers methods to eliminate class
imbalance such as through performing cost-sensitive classification or through data sam-
pling. The authors show that a lot of DM problems are cost-sensitive and class-imbalanced.
In [30], the authors note that it is common to use data-level approaches, algorithm-level
approaches, ensemble approaches and hybrid approaches to deal with class imbalance.
They present a systematic literature review and perform an analysis of the studies presented
in more than 400 papers from 2002 to June 2017. This analysis emphasizes the significant
impact that inherent problems in the data have on the results obtained from classification
problems. In addition, the analysis covers methods for handling imbalanced data and
methods used to deal with skewed data distributions. The authors reveal trends and gaps
in this sphere of research and discuss directions for future research.

Obviously, in each specific case, when applying one or another method to overcoming
the class imbalance problem, it is necessary to check whether undesirable effects have not
appeared, for example, in the form of a loss of representative data during undersampling,
the appearance of mistaken or redundant data during oversampling, a significant increase
in time for classifier development, a significant decrease in accuracy for classifying patterns
of the majority class, etc. [20]. In this regard, when evaluating the quality of the created
classifier, it is advisable to perform a thorough analysis of different classification quality
metrics using the test set, particularly metrics which allow taking the dataset imbalance
into account; e.g., such metrics as F1 − score and balanced accuracy can be used for this
purpose. In addition, it is advisable to use k-fold cross-validation to empirically assess the
generalization ability of the created classifier.

The problem of working with data accommodating information on blood protein
markers is addressed in a number of scientific papers [13,21–25,37,38]. In particular, in [13],
the so-called CancerSEEK test based on the logistic classifier (LC) is considered. The
authors of the pilot study [13] choose eight types of ODs described by the patterns of
this dataset due to the fact that these types are most often found in residents of Western
countries and, additionally, because in clinical practice, blood tests were not applied for the
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early identification of ODs. As a result, the dataset contains information about patterns
belonging to nine classes: eight of them correspond to eight types of ODs, and another one
corresponds to patterns for which no OD has been diagnosed. Also, the authors consider
each individual’s sex, levels of eight proteins and facts of mutations in 1933 various genomic
locations. Based on the results of the experiments, the authors argue that blood protein
markers reflect most of the information about the localization of ODs, because mutations in
genes are most often not tissue-specific.

Later, there appeared research that proposed approaches to the development of classi-
fiers that diagnose ODs based on datasets that accommodate data only on blood protein
marker values [14,20], that is, they do not take into account data about the values of gene
markers. Thus, in [14], the authors propose a cost-sensitive three-class kNN classifier
created on the basis of the three-class imbalanced dataset extracted from the dataset used
in [13]. The new dataset accommodates only patterns describing information for 39 blood
protein markers mapped to 39 features. The authors extract additional information hidden
in the 39-dimensional data patterns using sample entropy and approximate entropy, form
two new features and add them to the used dataset, hoping to improve the data classifica-
tion quality. In the research [20] performed earlier by the author of this paper, the aspects of
kNN [14,39] and SVM [15,39] classifier development using sampling class balancing tools
are considered. In this study, oversampling strategies are applied to balance classes [31–34].
In addition, the research explored various approaches to the formation of new features
based on the methods for calculating entropy [40–45], Hjorth parameters [46,47] and fractal
dimension [48,49], as well as on the basis of the UMAP (Uniform Manifold Approximation
and Projection) algorithm [50–53], which is a nonlinear dimension reduction algorithm.
New features were created to be added to the original dataset in different combinations, as
well as to independently use these combinations as datasets when developing classifiers.

In general, we can note the high interest of scientists and practitioners in developing
approaches to diagnosing cancer based on blood protein markers. At the same time, ideas
are proposed for the development of both binary classifiers aimed at identifying any one
cancer disease and multiclass classifiers seeking to identify different classes of diseases,
which is much more difficult.

The aim of this research is to develop efficient classifiers of ODs (in terms of providing
high values of classification quality metrics) using modern DM tools and ML techniques.
We propose to develop SVM classifiers [15,20,39] using cost-sensitive algorithms that allow
for the different estimation of classification errors in majority and minority classes when
working with the original dataset and the extended datasets created on the basis of the
original dataset using different tools for forming new features. In particular, when forming
new features, as in [20], it is planned to use:

• The UMAP algorithm [50–53], which implements the nonlinear dimensionality reduc-
tion of data;

• Methods for calculating the approximate entropy (AE) [45] as well as Higuchi fractal
dimension (HFD) [48] and Katz fractal dimension (KFD) [48].

While working with the UMAP algorithm, the plan is to investigate how different
loss functions affect the results of embedding the original dataset into a lower-dimensional
space. Also, we plan to research how the choice of loss function (LF) affects the quality of
the extended datasets and the quality of the SVM classifiers developed from them.

In addition, it is planned to perform a comparative analysis of the SVM classifiers cre-
ated in this study with the SVM classifiers created in [20], both in terms of the classification
quality metrics and the time taken to train and test the SVM classifiers.

The rest of the paper is organized as follows. Section 2 is devoted to a review of works
related to the presented research. Section 3 summarizes the design aspects of cost-sensitive
SVM classifiers used to address the class imbalance problem in datasets. Furthermore,
the applied quality metrics for multiclass classification are emphasized. In addition, a
brief description of the principles of the UMAP algorithm and the various LFs used in it,
which affect the results of embedding the original dataset from a high-dimensional space
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into a low-dimensional space, is also provided. Moreover, the methods for computing the
approximate entropy, Higuchi fractal dimension and Katz fractal dimension are mentioned.
Section 4 presents the experimental results. First, a brief background to this research is
given; in particular, a description of the approach to generating datasets and the previously
obtained results of the creation of multi-class classifiers using oversampling algorithms are
discussed. Then, aspects of the analysis of the original three-class datasets on the basis of the
UMAP algorithm using various LFs are considered. Furthermore, the results of developing
cost-sensitive SVM classifiers based on various datasets are discussed. Section 5 discusses
the obtained results. Section 6 provides conclusions and purposes for future research. The
section Appendix A contains the names of concepts and their abbreviations in Table A1
and reference information on the datasets and the composition of their features in Table A2.
The section Appendix B contains figures visualizing the graphical dependencies for the LFs
used in the UMAP algorithm when the original dataset is embedded in two-dimensional
space. Section Appendix C contains information on the results of statistical tests with the
developed models.

2. Related Work

In a pilot study [13], the authors propose to evaluate the levels of proteins and mu-
tations in extracellular deoxyribonucleic acid and apply this information in a nine-class
CancerSEEK test based on LC. The dataset applied during the development of the Can-
cerSEEK test is available in the supplementary materials to the paper [13] under the name
aar3247_cohen_sm_tables-s1-s11.xlsx. It should be noted that new data are constantly being
added to this dataset. A regularly updated version of this dataset is openly presented in
the repository titled as Catalog of Somatic Mutations in Cancer (COSMIC) [54] under the
title NIHMS982921-supplement-Tables_S1_to_S11.xlsx. In developing the CancerSEEK
test, the authors use 1005 patterns of data from patients with clinically identified “Breast”,
“Colorectum”, “Esophagus”, “Liver”, “Lung”, “Ovary”, “Pancreas” or “Stomach” ODs. In
doing so, they propose to consider each individual’s sex, levels of eight proteins and facts
of mutations in 1933 various genomic locations. The authors believe that the facts of the
gene mutations or the growth in the level of any of the eight proteins allows a pattern of
data to be classified as a pattern with detectable OD. They use 10-fold cross-validation to
calculate values of the classification quality metrics and show that for all types of ODs, the
mean value of such metrics as sensitivity is about 70%; however, there are great differences
by classes: the lowest value of this metric, equal to 33%, is found for the breast class, and
the highest value of this metric, equal to 98%, is found for the ovarian class. Also, authors
show that the value of this metric depends significantly on the stage of the disease: the
lower the disease stage number, the lower the sensitivity metric value.

In [14], the authors develop a cost-sensitive three-class kNN classifier on the basis
of imbalanced dataset patterns describing data only for 39 blood protein markers. Each
pattern belongs to one of the following classes: “Normal”, “Ovary” and “Liver”. The
authors refused the idea of developing a nine-class classifier, as was performed in [14],
because of the poor separability of the patterns of the nine classes. They expand the
original dataset containing 39 features with 2 new features formed using sample entropy
and approximate entropy, and they use the extended 41-dimensional dataset to create a
cost-sensitive kNN classifier. In this research, the dataset contained 897 patterns belonging
to one of three classes in the such ratio as “Normal”:“Ovary”:“Liver” = 799:54:44. The
values of metrics such as Precision, Recall, MacroF1 − score and AUC were equal to 0.807,
0.833, 0.819 and 0.920, respectively. The overall accuracy of the classifier was equal to 0.952.

In study [20], the author of this paper develops kNN [14,39] and SVM [15,39] clas-
sifiers using such class balancing tools as SMOTE (Synthetic Minority Oversampling
Technique) [31], Borderline SMOTE-1 [32], Borderline SMOTE-2 [32] and ADASYN (ADap-
tive SYNthetic sampling approach) [33], which allow us to restore class balance based on
oversampling strategies. The creation of classifiers is performed on the basis of both the
original dataset and the new datasets designed on the basis of the original dataset using
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different tools for forming new features. Thus, five methods of entropy calculation [40–45],
such as approximate entropy (AE), sample entropy (SE), singular value decomposition
entropy (SVDE), spectral entropy (SPE) and permutation entropy (PE); two methods of
Hjorth parameter calculation [46,47], such as Hjorth complexity and Hjorth mobility (HC
and HM); and three methods for calculating fractal dimensions [48,49], such as Higuchi
fractal dimension (HFD), Katz fractal dimension (KFD) and Petrosian fractal dimension
(PFD) were used to form potentially new features from the 39-dimensional patterns of
the original dataset. Based on the results of the analysis of values of the mean and the
standard deviation (SD), calculated for each class, as well as correlation assessments, the
methods for calculating approximate entropy AE, Higuchi fractal dimension HFD and Katz
fractal dimension KFD were selected for further use. In addition, the UMAP algorithm
(Uniform Manifold Approximation and Projection) [50–53], which implements non-linear
dimensionality reduction on the data by embedding them in a lower-dimensional space,
was applied to form new features from 39-dimensional patterns of the original dataset. The
dimensionality reduction was performed not only to 2-dimensional space (as it is usually
carried out when solving data visualization problems in two-dimensional space), but also
to other dimensions (from 3 to 38) in order to select the best dimensionality reduction
option in the context of solving the problem of achieving higher data classification quality.

The research in reference [20] is the first attempt to create datasets using different
tools for generating new features by recovering data that are hidden in 39 features of the
original dataset and then selecting the best tools for generating new features. In particular,
the selection of new feature formation tools was founded on the correlation analysis of
potentially new features among themselves, as well as on their ability to separate patterns
that belong to different classes, using the mean and the SD values of features for each
class. This approach to the creation of a group of datasets describing the subject area was
first applied in the field of medical diagnostics, including the identification of ODs using
blood protein markers. These datasets were further subjected to balancing using SMOTE,
Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN oversampling tools followed by
choosing the best of them. The best oversampling tools were used in developing kNN and
SVM classifiers followed by choosing the best classifiers in terms of maximizing the mean
value of the metric MacroF1 − score. In this research, the best kNN classifier was created
using the original dataset extended by the feature on the basis of approximate entropy,
and the best SVM classifier was created using the original dataset extended by the feature
on the basis of approximate entropy and 28 features on the basis of the UMAP algorithm.
The mean values of the metric MacroF1 − score of kNN and SVM classifiers increased by
16.138% and 4.219%, respectively, in comparison with the mean values of this metric in the
case when the original dataset was applied to create kNN and SVM classifiers. Thus, the
mean values of the metric MacroF1 − score of the best kNN and SVM classifiers were 0.878
(with the SD value equal to 0.050) and 0.914 (with the SD value equal to 0.050), respectively.
In addition, in [20], it was shown that it is promising to work with other considered tools of
new feature formation, because their use in the datasets applied in the creation of classifiers
also provided an improvement in data classification quality, although not as significant as
the best classifiers mentioned above. Thus, the feasibility of using the proposed approach
to form a group of datasets describing the subject area has been experimentally proven.

Despite the clearly significant results of the study performed in [20], we should note
the drawbacks of the approach to solving the class imbalance problem, which implements
work with oversampling tools that involve the synthesis of new patterns (perhaps never
hypothetically possible). First, oversampling may lead to even more class mixing (in the
case when classes are already poorly separable from each other) due to the impossibility
of a priori accurate knowledge about the spatial geometry of data patterns because of the
refusal (due to substantial time expenditures) to conduct additional research to study the
spatial geometry of data patterns. However, in a sense, this disadvantage can be offset by
evaluating the quality of the developed classifiers while screening out the unreliable ones.
Second, oversampling always leads to an increase in the time cost of classifier development,
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both because of the need to synthesize new patterns and because of the need to develop
classifiers on significantly larger datasets.

Due to this, it is reasonable to consider approaches to overcoming the class imbalance
problem, in which algorithms that take into account the cost sensitivity of wrong decisions
are implemented. CSL, and, in particular, cost-sensitive algorithms, have been addressed
and applied in a large number of research works. For example, such an approach is used in
the aforementioned work [14] related to the development of a three-class kNN classifier for
diagnosing ODs.

In [36], the authors note that CSL accounts for the misclassification cost and possibly
costs of other types as well. The purpose of CSL is to minimize the total cost. CSL handles
various classification errors differently. In particular, the classification cost of marking the
positive data pattern as negative may not be equal to the classification cost of marking
the negative data pattern as positive. Non-cost-sensitive learning does not account for the
misclassification cost.

In [55], the authors show that the class imbalance problem (CIP) is one of the serious
ML problems. Training on very imbalanced data leads to the fact that classifiers will be
overloaded with data patterns from majority classes; therefore, the false negative rate will
be high. They note that many methods are currently known to address the class imbalance
problem, including sampling methods and CSL methods, but these methods are usually
applied independently of each other. The authors propose two empirical methods on the
basis of sampling methods and CSL methods. The first method suggests to create SVM
classifiers conjoining sampling methods with CSL methods. The second method suggests
to use CSL methods with a locally optimized cost matrix. The authors show that the
first method allows reducing the misclassification costs, while the second method allows
improving the classifier performance.

In [56], the authors argue that CSL has made significant efforts to address the CIP, but in
practice, it is almost impossible to assess the misclassification cost exactly. Additionally, they
show that the classification quality depends on the used feature subsets from the dataset
and the values of the classifier parameters. The authors embed evaluation metrics such
as AUC (Area Under Curve) and G − mean (Geometric Mean) into the objective function
to improve the classification quality of the cost-sensitive SVM classifier. They offer the
method that tries to find the best combination of feature subsets, values of misclassification
costs and values of the classifier parameters. The authors show that the proposed method
is more efficient than commonly used sampling methods.

In [57], the authors propose robust cost-sensitive classifiers developed via the modifica-
tion of the target functions of ML algorithms such as decision tree, random forest, extreme
gradient boosting and logistic regression and apply them to efficiently predict medical
diagnoses. Unlike sampling methods, the authors’ approach does not change the original
data distribution. The authors implement standard versions of the algorithms mentioned
above and compare them with cost-sensitive versions. The cost-sensitive classifiers take
into account the imbalanced class distribution during training, leading to more robust
performance compared to classifiers on the basis of sampling methods.

In [58], the authors show that although methods such as cost-sensitive methods,
sampling methods and ensemble learning methods can improve classification accuracy for
minority class patterns, they are restricted by the problems of selection of cost parameter
values and overfitting. The authors suggest a hybrid approach that includes data block
construction, dimensionality reduction and ensemble creation with DL neural network
classifiers. The effectiveness of the proposed hybrid approach is validated by experimental
results using eight unbalanced datasets evaluated in terms of Recall, G − mean and AUC.

In [59], the authors analyze CSL aspects and postulate its importance in medicine.
They note that doctors are interested in models which can seek to minimize several types
of healthcare-related costs such as the attribute cost (e.g., the diagnostic test cost) and the
misclassification cost (e.g., the false negative test cost). They show that the diagnostic
tests and the misclassification errors have high financial and human costs. The authors
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propose ideas for dealing with CSL and its medical applications and provide an overview
of research on CSL, including approaches and methods for the creation and evaluation of
cost-sensitive classifiers.

Currently, especially in 2022–2023, there is a significant increase in the number of
studies addressing aspects of the use of ML and DL technologies in the context of solving the
problem of early diagnosis of cancer [3–7,11–14,20,26,37,38,60–66]. At the same time, many
of them are aimed at solving the problem of diagnosing ODs on the basis of biomarkers,
including blood protein markers [13,14,20–24,27,28,37,38,60]. However, most research
solves the problem of binary classification with the identification of one specific disease,
for example, breast [22], liver [12] or lung [37] cancer. It is obvious that the problem of
multiclass classification is, on the one hand, more complex, but, on the other hand, the data
used in its solution contain more complex dependencies, the restoration of which should
help the rapid diagnosis of oncological diseases [13,14,20].

3. Materials and Methods

3.1. Aspects of Developing Cost-Sensitive SVM Classifiers

Various ML and DL algorithms can be used in the development of data classifiers,
including multi-class classifiers, such as kNN [14,20,39,67,68], SVM [15,20,39,69,70], LR
(Logistic Regression) [13,71] and RF [16,72,73], as well as algorithms on the basis of certain
neural network architectures [8–12]. In addition, an increase in the quality of data classifi-
cation can be achieved by applying cascade algorithms and ensembles on the basis of ML
and DL algorithms. In this case, when developing certain classifiers, it is possible to use
the default values of the parameters of the eponymous algorithms or to adjust the values
of these parameters by applying, for example, grid search algorithms or well-established
population optimization algorithms [74].

It should be noted that there are no universal approaches to classifier development
which would guarantee that the classifier developed with their application will ensure
high-quality classification for every task. In particular, the quality of data classification
will depend both on the key features of the mathematical apparatus used in classifier
development and on the specifics of the dataset used in classifier development, including
its balance. In some cases, the time spent on classifier development, as well as on making
classification decisions, may be of fundamental importance. Obviously, preference should
be given to classifiers that provide high data classification quality with minimum time
cost. For example, the kNN algorithm can be characterized as an algorithm that requires
minimal time to develop a classifier as well as to make classification decisions, unlike
the RF algorithm. The SVM algorithm is generally less time-consuming than the RF
algorithm but more time consuming than the kNN algorithm. It is for this reason that the
author of the study in [20] used the kNN and the SVM algorithms in the creation of the
eponymous classifiers.

In this study, only the SVM algorithm is considered, and a cost-sensitive one at that.
This choice is made in connection with the previously stated goal of the study. The rejection
of the kNN algorithm used by the author of this study along with the SVM algorithm
in [20] can be justified by the fact that the SVM classifiers provided a higher quality of
data classification in the earlier study. Therefore, it was decided to conduct an additional
study to see if the SVM classifiers could be developed with even higher quality by utilizing
cost-sensitive learning principles.

Let U = {〈x1, y1〉, . . . , 〈xs, ys〉} be the dataset applied in the creation of the SVM
classifier, where xi (i = 1, s) is the pattern described by q features; xi ∈ X; X is the set of
patterns; yi is the class labels of the pattern xi (i = 1, s); yi ∈ Y = {1, . . . , M}; Y is the set of
pattern class labels; s is the number of patterns in the dataset U; M is number of classes in
the dataset U [39].

Suppose that the SVM classifier is trained on S patterns. Additionally, the SVM
classifier is tested on s − S patterns. In this case, the k-fold cross-validation procedure can
be used to assess the quality of the SVM classifier.
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The base SVM algorithm assumes that M = 2, that is, the classification is binary,
and implements binary data classification by constructing a hyperplane that separates
the classes [39,62]. In this case, each data pattern xi ∈ X corresponds to a class label
yi ∈ Y = {−1;+1} (i = 1, s).

When developing a binary SVM classifier, we must solve the problem of constructing
a hyperplane that separates the classes. This problem can be reduced, accordingly with
the Kuhn–Tucker theorem, to a quadratic programming problem that contains only dual
variables λi (i = 1, S) [39,69]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 ·

S
∑

i=1

S
∑

j=1
λi·λj·yi·yj·κ

(
xi, xj

)− S
∑

i=1
λi → min

λ
,

S
∑

i=1
λi·yi = 0,

0 ≤ λi ≤ C, i = 1, S,

(1)

where κ
(
xi, xj

)
is the kernel function; C (C > 0) is the value of the regularization parameter.

The kernel function κ
(
xi, xj

)
can be linear, radial basis, polynomial or sigmoid, the last

three of which carry out a transition to a higher-dimensional space than the original feature
space in order to provide better separability of pattern classes from each other.

In the proposed study, as in [20], the radial basis function (RBF) kernel is applied.

Such function can be defined as κ
(
xi, xj

)
= exp

(
− (xi−xj)·((xi−xj))

2·σ2

)
, where σ (σ > 0) is

the kernel function parameter.
When creating a binary SVM classifier with an a priori defined RBF kernel function

κ
(
xi, xj

)
, we must define the value of the parameter σ and the value of the regularization

parameter C [62], which assures the minimum classification error. The task of searching for
optimal values of these parameters can be solved on the basis of grid search (GS) algorithms
or population optimization algorithms.

Support vectors, which are patterns of the original dataset located near the hyperplane
that separates classes, are defined as a result of solving problem (1). They present all
information about the class separation rules. For the support vectors, the values of the dual
variables λi satisfy the condition λi �= 0 [75].

The classification rule, according to which the membership class of pattern x is deter-
mined, has the following form [39,69]:

F(x) = sign

(
S

∑
i=1

λi·yi·κ(xi, x) + b

)
(2)

where b = ω·xi − yi; ω = ∑S
i=1 λi·yi·xi.

In order to form classification decisions in the case of multiclass classification, i.e., when
the number of classes is greater than 2, either the OvR (One-vs-Rest) strategy or the OvO
(One-vs-One) strategy is applied [75].

Since the purpose of this research is to create a multi-class cost-sensitive SVM classifier,
we can use different values of the regularization parameter Cj (j = 1, M) for different
classes by defining them as Cj = weightj·C, where weightj is the weight coefficient of the

j-th class. Thus, weightj can be defined as S
M·Sj

, where Sj is the number of patterns in the

j-th class; ∑M
j=1 Sj = S. Furthermore, we can consider arbitrary combinations of weights

for different classes, assigning large weights weightj
(

j = 1, M ) to small classes. As a
result, it will be possible to select such combinations of weights that guarantee high-quality
data classification according to some quality metric at not the highest costs (penalties) for
classification errors.

When evaluating the quality of multiclass classification, it is reasonable to use metrics
such as Accuracy, MacroPrecision, MacroRecall and MacroF1 − score [20,76]. Such met-
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rics as MacroPrecision, MacroRecall and MacroF1 − score are useful and effective when
developing classifiers using imbalanced datasets [76].

We can calculate Accuracy, MacroPrecision and MacroRecall as

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

MacroPrecision =
1
M∑M

m=1
TPm

TPm + FPm
, (4)

MacroRecall =
1
M ∑M

m=1
TPm

TPm + FNm
, (5)

where TP is the total number of true positive patterns; TN is the total number of true
negative patterns; FP is the total number of false positive patterns; FN is the total number
of false negative patterns; M is the total number of classes; TPm is the number of true
positive patterns with the m-th class label; FPm is the number of false positive patterns with
the m-th class label; FNm is the number of false negative patterns with the m-th class label.

The metric MacroF1 − score is based on metrics MacroPrecision and MacroRecall. This
metric allows us to simultaneously consider information about the precision and recall of
the decisions formed by the classifier. It can be calculated as follows [20,76]:

MacroF1 − score = 2· MacroPrecision·MacroRecall
MacroPrecision + MacroRecall

. (6)

A high value of the metric MacroF1 − score means that the classifier has good perfor-
mance on all the classes, whereas a low value of the metric MacroF1 − score means that the
classes are poorly predictable [76].

In the proposed study, just like in [20], the SVM classifier having the maximum value
of the metric MacroF1 − score is recognized as the best one.

3.2. Aspects of New Feature Generation
3.2.1. Generation of Features on the Basis of the UMAP Algorithm with Different
Loss Functions

The UMAP algorithm carries out nonlinear dimensionality reduction by embed-
ding patterns whose feature values are defined in high-dimensional space into lower-
dimensional space. When performing such an embedding, the UMAP algorithm preserves
local and global data structures that are defined in the high-dimensional space better [50,53]
than similar algorithms, for example, the t-SNE (t-distributed stochastic neighbor embed-
ding) algorithm [77].

Let X = {x1, x2, . . . , xs} be some dataset. The UMAP algorithm embeds q-dimensional
patterns xi (i = 1, s) described by q features into h-dimensional space (h ≤ q).

At the first stage, the UMAP algorithm constructs a fuzzy weighted undirected graph.
At the second stage, the UMAP algorithm optimizes the LF [50].

At the first stage, k nearest neighbors [78] are found for each pattern xi (i = 1, s), and
then distances dil (l = 1, k) to k nearest neighbors are calculated based on some distance
metric (e.g., on the basis of the Euclidean metric). Next, the values ρi that define the
distances to the nearest neighbor are found for each pattern xi (i = 1, s).

Then, a binary search is carried out to look for the values σi that satisfy the condition:

∑k
l=1 e(

ρi−dil
σi

)
= log2 k. (7)

An array Mi is formed for each pattern xi (i = 1, s). The array’s component μij
(μij ∈ [0, 1]) is a fuzzy number that defines how similar the i-th and the j-th patterns
belonging to dataset X are. If the patterns xi and xj are not neighbors, the component μij of
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the array Mi is assumed to be 0. If the patterns xi and xj are neighbors, the component μij
of the array Mi is calculated as follows:

μij = e(
ρi−dij

σi
). (8)

As a result, a weighted adjacency matrix Matr ∈ Rs×s is formed in which the i-th
row is defined on the basis of components from the array Mi (i = 1, s). The matrix Matr
is asymmetric. It defines the fuzzy weighted oriented graph that encodes the pairwise
similarity of patterns xi (i = 1, s).

At the second stage, the UMAP algorithm carries out the symmetrization of the matrix
Matr on the basis of the probabilistic t-conorm:

μij ← μij + μji − μij·μji
(
i = 1, s ; j = 1, s

)
, (9)

where μll = 0 (l = 1, s).
Representations of q-dimensional patterns xi (i = 1, s) in h-dimensional space as

h-dimensional patterns yi (i = 1, s) are computed using spectral embedding [50] (h ≤ q).
As a result, a dataset Y = {y1, y2, . . . , ys} is generated.

The base UMAP algorithm implements optimization using an LF [79] that is a weighted
fuzzy cross-entropy with reduced repulsion:

L(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
μijln

μij

νij
+

∑s
k=1 μik

2s
ln

(
1 − μij

1 − νij

))
, (10)

where Matr ∈ Rs×s is a symmetric adjacency matrix containing fuzzy values that determine
the pairwise similarity of patterns of high dimensionality (i.e., of dimensionality q) from
the dataset X; Y ∈ Rs×h is the representation of s patterns of low dimensionality (i.e., of
dimensionality h); μij ∈ [0, 1] is the number that defines the fuzzy similarity of the i-th
and the j-th patterns of high dimensionality that belong to the dataset X; νij ∈ [0, 1]
is the number that defines the fuzzy similarity of the i-th and the j-th patterns of low
dimensionality that belong to the dataset Y.

Pairwise similarity of the i-th and the j-th patterns of low dimensionality that belong
to the dataset Y is defined as:

νij =
(

1 + ad2b
ij

)−1
, (11)

where dij is the distance between the i-th and the j-th patterns of low dimensionality
that belong to the dataset Y, calculated based on some distance metric (e.g., based on the
Euclidean metric); a and b are coefficients fitted using the nonlinear least squares method
(11) on the curve:

ψij =

{
1, dij ≤ dmin

e(dmin−dij), dij > dmin
, (12)

where dij is the distance between the i-th and j-th patterns of low dimensionality that
belong to the dataset Y; dmin is the parameter (dmin ∈ (0, 1]) that influences the density of
clusters created in the low-dimensional space during the optimization of the LF.

In the proposed study, as in the earlier study [20], the Euclidean metric is used as the
distance metric.

The base UMAP algorithm applies the stochastic gradient descent (SGD) algorithm to
optimize the LF (10) [50]. Pattern representations yi (i = 1, s) of low dimensionality from
the dataset Y are refined at each iteration of the SGD algorithm during minimization of the
LF (10).

In addition to the LF (10), other LFs can be used.
We will additionally use the LFs described in [53] and presented below.
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The LF based on fuzzy cross-entropy can be written as [53]

L1(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
μijln

μij

νij
+

(
1 − μij

)
ln

(
1 − μij

1 − νij

))
. (13)

The LF based on symmetric fuzzy cross-entropy can be written as [53]

L2(Matr, Y) =
s

∑
i=1

s

∑
j=1

((
μij − νij

)
ln

(
μij

(
1 − νij

)
νij

(
1 − μij

)))
. (14)

The LF based on intuitionistic fuzzy cross-entropy can be written as [53]

L3(Matr, Y) =
s

∑
i=1

s

∑
j=1

⎛⎝μijln
μij

1
2 μij +

1
2 νij

+
(
1 − μij

)
ln

(
1 − μij

1 − 1
2
(
μij + νij

))
⎞⎠. (15)

In the following, for convenience of presentation, we will refer to the LF (10) based on
weighted fuzzy cross-entropy with reduced repulsion as L4.

LFs (10) and (13)–(15) determine how the embedding of q-dimensional patterns xi
(i = 1, s) into h-dimensional space (h ≤ q) will look like.

It should be noted that in the author’s study [50], function (10) is stated as an LF,
but in fact, in the author’s version of the UMAP algorithm software (v. 0.5.5) library in
Python [70], the LF is not explicitly specified, and the optimization process itself when
performing pattern embedding from a high-dimensional space to a low-dimensional space
can be described precisely by the LF (10), as proven by the authors of study [79].

The main parameters involved in the work of the UMAP algorithm are the parameters
k and dmin.

k is the number of nearest neighbors that are found for each pattern in the high-
dimensional space. This parameter is responsible for controlling balance between local and
global structures in the data. Low values of k (n_neighbors in the software library [80]) will
force the UMAP algorithm to pay attention to a very local structure. Large values of k will
force the UMAP algorithm to pay attention to larger neighborhoods of each pattern during
assessment of the topological structure of the data, but in this case, it is possible to lose
small detail structure wanting to cover more data. Traditionally, k = 15. In our research,
we will enumerate values for parameter k from the range [10, 20] with a step of 5.

dmin is the threshold distance (dmin ∈ (0, 1]). This parameter influences the density
of clusters created in the low-dimensional space during the optimization of the LF. It is
responsible for controlling how densely UMAP algorithm packs points together. It defines
the minimum distance between the patterns in the low-dimensional space. Low values
of dmin (min_dist in the software library [80]) will lead to clumpier embeddings. Larger
values of dmin will make it possible to avert from packing patterns together and focus on
the preserving of the broad topological structure. Traditionally, dmin = 0.1. In our research,
we will enumerate values for parameter dmin from the range [0.1, 0.3] with a step of 0.1.

The UMAP algorithm also works with the parameter h, which determines the dimen-
sion of low-dimensional space. Traditionally, h = 2. In our research, we will enumerate
values for parameter h from the range [2, 38] with a step of 2 to investigate the performance
of the UMAP algorithm when embedding data in spaces with dimensions other than 2.

3.2.2. Generation of Features on the Basis of the Approximate Entropy, the Higuchi Fractal
Dimension and the Katz Fractal Dimension

The study carried out in [20] has shown the feasibility of using the methods of calcu-
lating the approximate entropy AE [45], Higuchi fractal dimensionality HFD [48] and Katz
fractal dimensionality KFD [48] for the creation of new features. These are the methods
that will be used in the proposed research. They are described in detail in [20].
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3.2.3. Computational Complexity of Developing Classifiers

The assessment of the computational complexity of developing the proposed SVM
classifiers can be performed as follows. Let s be the number of patterns in the dataset and q
be the number of features.

The computational complexity of the standard SVM classifier training has both a
quadratic component and a cubic one [81]. It increases at least like s2 when the value of
the regularization parameter C is small and like s3 when the value of the regularization
parameter C is large [81,82]. In general, the computational complexity of the standard SVM
classifier training can be estimated as O

(
qs3).

The computational complexity of the UMAP algorithm realization can be estimated as
O
(
qs2) [50,83].

The computational complexity of the approximate entropy calculation method can be
estimated as O

(
q2) [84,85]. Because we calculate the approximate entropy for each pattern

in the dataset, the total computational complexity can be estimated as O
(
q2s

)
.

The computational complexity of the methods for calculating the Higuchi fractal
dimension and the Katz fractal dimension can be estimated as O

(
q2) [48]. Because we

calculate the fractal dimensions for each pattern in the dataset, the total computational
complexity can be estimated as O

(
q2s

)
.

Thus, the main computational complexity comes from training the SVM classifier.
However, state-of-the-art SVM realizations typically have computational complexity that
scales between O(s) and O

(
s2.3), if we assume that the number of features q is not large

compared to the number patterns s [86]. We can improve the computational complexity
to O(s) using parallel mixture [87]. Also, we can use such modern solvers as the Pegasos
SVM [88] and the quantum SVM [89] to improve the computational complexity of standard
SVM classifier training. Hence, this complexity can be reduced to quadratic (and even
lower), both taking into account the specifics of the dataset and through the use of modern
solvers. Though, these are only empirical observations and not theoretical guarantees [82].

Working with fractal dimensions does not make a significant contribution to the
computational complexity of the developed classifiers. The computational complexity of
the UMAP algorithm implementation and the computational complexity of the approximate
entropy calculation method (taking into account working with all patterns in the dataset)
are comparable.

Thus, the computational complexity of developing one SVM classifier in this research
in the worst case is determined as O

(
s3), but in some cases it can be estimated as O

(
s2).

When working with modern solvers, we can obtain computational complexity of O
(
s2) (if

the UMAP algorithm is used when creating a dataset) and even less (if only entropy and
fractal dimension calculation methods are used when creating a dataset).

4. Experimental Studies

All experimental studies were performed in the interactive cloud environment Google
Colab. We used the Python 3.10 programming language for software development, since it
allows us to work with a large number of different software libraries, including libraries
that implement ML algorithms.

A three-class dataset on oncological diseases accommodating data on 39 serum protein
markers (39 features) for 910 patterns was used in experimental studies. The following
classes are considered: “Normal” (corresponding to the case when no OD was detected),
“Liver” and “Ovary”. Each protein marker in this dataset corresponds to a feature in the
dataset. A list of serum protein markers can be found in [20]. This dataset is extracted from
the original nine-class dataset, which contains 1817 patterns of classes such as “Normal”,
“Breast”, “Colorectum”, “Esophagus”, “Liver”, “Lung”, “Ovary”, “Pancreas” and “Stom-
ach”. Such a dataset with nine classes is publicly available in the COSMIC repository [54].
However, as shown in [14,20], the nine-class dataset is characterized by both poor separabil-
ity of classes from each other and significant imbalance. In this regard, an attempt to work
to restore class balance through the use of sampling strategies will not give the desired
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result. The use of oversampling strategies can lead to an even greater deterioration of the
situation in the context of class separability as a result of even greater mixing of patterns
of different classes, and the use of undersampling strategies can lead to the unreasonable
deletion of representative patterns belonging to the “Normal” class, which is the biggest
one, that is, the majority class. In [14,20], it is shown that the three-class dataset is also
poorly balanced.

In [20], the visualization results using the UMAP algorithm in two-dimensional space
for the original nine-class dataset and for the three-class dataset are presented. At the same
time, it is assumed that the class separation in the three-class dataset should be better than
in the original one. In this regard, it was the three-class dataset that was chosen for further
research in [20]. It should be noted that the class ratio in a three-class dataset is as follows:
“Normal”:”Liver”:”Ovary” = 812:44:54.

The UMAP algorithm has a library implementation in Python [80], proposed by the
authors of this algorithm [50]. The authors argue that UMAP is a stochastic algorithm, so
they use elements of randomness both to speed up the approximation steps and during the
solution of optimization problems using the SGD algorithm.

Figure 1 shows the two-dimensional visualization for the three-class dataset using
the library implementation of the UMAP algorithm with default parameter values of
n_neighbors = 15, min_dist = 0.1, metric = ‘euclidean’ and random_state = 42, where n_neighbors
is the number of neighbors taken into account when assessing local and global properties
of a diverse data structure [80]; min_dist is the parameter that determines the minimum
distance at which data patterns can be located in low-dimensional space [80]; random_state is
the parameter responsible for the initialization of UMAP algorithm and the reproducibility
of results [80]; metric is the parameter that defines the metric used when calculating the
distance between patterns [80]. Each two-dimensional point in Figure 1 corresponds to
a 39-dimensional data pattern. The points corresponding to different classes are marked
with different colors.

Figure 1. Two-dimensional visualization for three-class dataset using the library implementation
of the UMAP algorithm [80] with the default parameter values (n_neighbors = 15, min_dist = 0.1,
metric = ‘euclidean’, random_state = 42). The points corresponding to different classes are marked with
different colors.

Since the dataset has three classes, the classification problem is multi-class, and its
solution includes the development of a multi-class classifier.

4.1. Brief Background of This Study

Previously, in [20], approaches to the creation of three-class kNN and SVM classifiers
based on datasets generated in various ways were investigated. The original dataset
was tested for feature correlation. This test showed that there was no strong correlation
between all the features. The correlation index values for all pairs of features, except
one, turned out to be less than 0.6. Only for one pair of features with numbers 34 and 35

113



Mathematics 2024, 12, 538

(sHER2/sEGFR2/sErbB2 (pg/mL) and sPECAM-1 (pg/mL)), the value of the correlation
index was 0.604. Thus, the feasibility of using all features when performing further research
was proven. Also, different options for extracting features from those in question were
previously analyzed as well. In particular, five methods for calculating entropies such as
approximate entropy (AE), sample entropy (SE), singular value decomposition entropy
(SVDE), spectral entropy (SPE) and permutation entropy (PE); two methods for calculating
Hjort parameters such as Hjorth complexity and Hjorth mobility (HC and HM); and three
methods for calculating fractal dimensions such as Higuchi fractal dimension (HFD), Katz
fractal dimension (KFD) and Petrossian fractal dimension (PFD) were considered. These
methods were applied to the three-class dataset whose feature values were not subjected to
preliminary scaling to [0, 1] to generate potential new features.

The values of entropies, Hjorth parameters and fractal dimensions were combined
according to pattern class labels. Then, for each class, the mean value and the SD value of
the potential new feature were calculated.

For each potential new feature, based on the results of the analysis of values of
the mean and the SD for each class, the following conclusions were made. The biggest
differences between the classes are observed for potentially new features based on the
entropies AE and SE, as well as based on the fractal dimensions HFD and KFD. At the same
time, the SD values for the aforementioned potentially new features are not large (and only
for the feature based on the fractal dimension KFD they are slightly larger). It was these
four potential new features that were selected for further consideration and examined for
correlation with each other. We discovered that the potential new features based on the
entropies AE and SE highly correlate with each other (the correlation score value is equal to
0.931). The feature based on the sample entropy SE was removed from consideration since
it had a lesser correlation with the target feature that defines the pattern class label [20]. We
also discovered that the potential new features based on the fractal dimensions HFD and
KFD weakly correlate with each other (the correlation score value is equal to 0.141).

Thus, the preliminary analysis showed the feasibility of using the new feature on the
basis of the approximate entropy AE as well as new features on the basis of the fractal
dimensions HFD and KFD.

The additional experiments showed a slight excellence of the feature on the basis of
the approximate entropy AE over the feature on the basis of the sample entropy SE in terms
of maximizing the mean value of the metric MacroF1 − score.

In addition, the library implementation of the UMAP algorithm [63] was used in [20]
to embed a three-class 39-dimensional dataset into spaces of lower dimensions h (h = 2, . . .,
38) to form new features.

Thus, the new generated features belonged to one of the following three groups:

• Feature on the basis of the approximate entropy AE;
• Features on the basis of the fractal dimensions HFD and KFD;
• Features on the basis of the UMAP algorithm.

We created the new datasets either by appending various combinations of new features
of the three groups mentioned above to the original dataset or by appending various
combinations of new features of the first two groups mentioned above to the features of
the third group formed on the basis of the UMAP algorithm. As a result, we developed
classifiers of 12 types: we developed classifiers of 4 types once (since we did not use the
UMAP algorithm in the creation of the corresponding datasets) and classifiers of another
8 types over and over again (since we used the UMAP algorithm in the creation of the
corresponding datasets for h = 2, . . ., 38, where h is the dimension of the space into which
the original dataset is embedded).

Figure 2 schematically shows all 12 ways for creating datasets. Table A2 in Appendix A
contains information on the composition of features for all 12 datasets.
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Figure 2. Scheme of creating of all 12 datasets applied in the research for the development of classifiers.

The developed classifiers subsequently have the same names as the datasets on the
basis of which they are developed. Thus, the designation C7 in Figure 2 corresponds to a
dataset obtained by supplementation of the original three-class dataset with the feature on
the basis of the approximate entropy AE, as well as the features on the basis of the UMAP
algorithm for a certain dimension h (h = 2,. . ., 38) of space in which the original three-class
dataset is embedded. Based on dataset C7 for a certain space dimension h, homonymous
classifier C7 is developed. All 12 considered three-class datasets are unbalanced, since the
three-class dataset C1 extracted from the original nine-class dataset is unbalanced.

It should be noted that all the principles formulated above for forming new groups
of datasets can be applied when developing classifiers on the basis of any ML algorithms,
since they only have an impact on the stage of preparing datasets applied in the creation
of classifiers.

In [20], the CIP was overcome by applying oversampling algorithms such as SMOTE [31],
Borderline SMOTE-1 [32], Borderline SMOTE-2 [32] and ADASYN [33]. Then, the best
oversampling algorithms in terms of maximizing the mean value of the metric MacroF1 −
score were selected. In this case, all datasets were either immediately used to develop classifiers
or were first subjected to oversampling based on SMOTE, Borderline SMOTE-1, Borderline
SMOTE-2 and ADASYN algorithms.

We found that Borderline SMOTE-1 is the best oversampling algorithm for developing
kNN classifiers. Also, we found that the base SMOTE algorithm is the best oversampling
algorithm for developing SVM classifiers.

The choice of these different oversampling algorithms was justified by the fact that
these particular algorithms made it possible to provide the best classification quality
assessed using the metric MacroF1 − score for the kNN and SVM classifiers.

The following conclusions were made based on the experimental results:

• SVM classifiers outperform kNN classifiers, both in the absence of oversampling
and in the case of its use, in terms of maximizing the mean value of the metric
MacroF1 − score.
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• In the case of oversampling, SVM classifiers provided the best classification quality
assessed using the metric MacroF1 − score, but the time spent on their development
increased significantly.

In this regard, it was decided to continue researching the capabilities of SVM classifiers.
In order to solve the CIP, it was decided to use the cost-sensitive algorithms instead of
oversampling algorithms. If a positive result is obtained from experiments using cost-
sensitive algorithms, we will be able to significantly reduce the time spent on creating SVM
classifiers and, possibly, improve the data classification quality.

The method for finding the best SVM classifiers is described in detail in [20]. It involves
searching through a grid of parameter values that provide the maximum value of the metric
MacroF1 − score.

In particular, we applied a grid search to find the values of parameters such as C and
gamma, that, respectively, determine the regularization parameter and the parameter of the
RBF kernel. The values of parameter C and parameter gamma varied in the range [0.4, 2]
with a step of 0.1. We used the default values from the software implementation of the SVM
algorithm in the scikit-learn library of Python as the values of the remaining parameters.

We used the metric MacroF1 − score as the main classification quality metric. This was
performed to minimize the negative impact of the existing class imbalance in the original
dataset C1 on the classification performance.

We applied a grid search to find the optimal values of the SVM classifier parame-
ters [20] using stratified 10-fold cross-validation [90,91] with three-time repetition and the
multi-class OvO strategy. We calculated the mean value of the metric MacroF1 − score with
the corresponding SD value. Also, we calculated the mean values of the metrics Accuracy,
MacroPrecision and MacroRecall with the corresponding SD values for the best classifiers.
In addition, we determined the hyperparameter values for the best classifiers.

Table 1 demonstrates, for reference, the mean values of the metric MacroF1 − score
and the corresponding SD values for the best classifiers of 12 types created without the
application of oversampling algorithms [20]. Based on the information in Table 1, we can
select best potential types of classifiers, which, in the future, first of all, should be paid
attention to when developing classifiers based on CSL principles.

Table 1. Characteristic values of the best classifiers of different types created without the application
of oversampling algorithms and cost-sensitive algorithms on the basis of the metric MacroF1 − score.

Characteristic
Classifiers

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Mean 0.877 0.837 0.864 0.799 0.840 0.846 0.873 0.885 0.878 0.880 0.866 0.876
Standard deviation 0.078 0.095 0.074 0.101 0.090 0.090 0.075 0.079 0.078 0.074 0.078 0.080

Values greater than 0.850 are highlighted in bold.

As we can see, classifiers C3, C7, C8, C9, C10, C11 and C12 have the mean values of
the metric MacroF1 − score exceeding 0.850. The mean values of the metric MacroF1 − score
of these classifiers are highlighted in bold in Table 1. In the future, it will be interesting
to evaluate the behavior of classifiers of these types if CSL principles will be applied for
their development.

We found that that even the best SVM classifiers do not have good quality metric
values due to class imbalance: the values of the metric MacroF1 − score are small, while all
classifiers make many errors on patterns belonging to minority classes [20].

4.2. Experiments to Implement the Concept of This Study

When performing experiments in this study, it was decided to:

• Apply the principles of cost-sensitive algorithms for developing classifiers;
• Explore the possibility of generating new features using the UMAP algorithm, which

uses five variants of the LF.
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We plan to select the parameter values of the UMAP algorithm on the basis of the
GS algorithm.

It should be noted that, as in [20], methods for calculating the approximate entropy
AE, the Higuchi fractal dimension HFD and the Katz fractal dimension KFD will be used
to generate new features.

We plan to use the following variants for the LF:

• Variant available in the library implementation in Python [80];
• Four variants described in [53] and available in the library implementation in Python [92].

Unfortunately, the LF in the library implementation in Python [80] is set implicitly,
although the authors really use an SGD algorithm to solve an optimization problem when
embedding the dataset from the high-dimensional space into the low-dimensional space;
that is, in fact, the LF (13) declared by the authors in [50] is not used. The authors of
study [79] tried to explicitly write down the formula for the LF, relying on the library
implementation in Python [80]. They concluded that the LF resembles formula (10). In
this case, with some error, they reproduced the work of the UMAP algorithm in the library
implementation in Python [80]. In what follows, we will call the implicit LF used in the
library implementation [80] as L0 and the LF (10) as L4.

The LFs in [92] are defined in accordance with (10) and (13)–(15). In this case, the
optimization problem is solved using full gradient descent (FGD). The parameter value
of random_state equal to 42 is used only when initializing the embedding of patterns into
low-dimensional space.

We suggest using the following methodology when performing experiments.

1. Create datasets C1–C12 in accordance with the scheme presented in Figure 2, for a
fixed combination of the parameter values (h, LF type, n_neighbors, min_dist), where
h is the dimension of the low-dimensional space (h is selected from the range [2, 38]
with a step of 2); the LF type is defined as one of the types in the list [L0, L1, L2, L3,
L4]; n_neighbors is the number of nearest neighbors of the data pattern in the high-
dimensional space (n_neighbors is selected from the range [10, 20] with a step of 5);
min_dist is the threshold distance that influences the density of clusters created in the
low-dimensional space (min_dist is selected from the range [0.1, 0.3] with a step of 0.1).
During the experiments, a walk through the grid is carried out for combinations of
parameter values (h, LF type, n_neighbors, min_dist).

2. Develop cost-sensitive SVM classifiers based on datasets C1–C12 for a fixed combina-
tion of penalty values (weight1, weight2, weight3) for the misclassification of patterns
of different classes.

3. Assess the data classification quality using the cost-sensitive SVM classifiers based on
datasets C1–C12 on the basis of stratified 10-fold cross-validation. Select classifiers
that maximize the mean value of the metric MacroF1 − score (6). Analyze of the mean
values of the metrics Accuracy (3), MacroPrecision (4) and MacroRecall (5). Assess
the time spent training and testing the cost-sensitive SVM classifiers.

At step 1 of the methodology, we prepare different datasets that vary from each other
in the composition of features. Additional information on the formation of such datasets is
also reflected in [20].

At step 2 of the methodology, we can use the options for setting penalties for classifi-
cation errors proposed in Section 3.1. Selecting fine values involves a certain amount of
time. It can be performed by walking through the grid or by analyzing the most intuitively
selected combinations of penalty values based on the following considerations: the smaller
the number of patterns in a class, the greater the penalty for misclassifying patterns of this
class. At the same time, considering various combinations of penalties and maximizing
the mean value of the metric MacroF1 − score, it is advisable to choose combinations with
smaller penalties with similar mean values of the metric MacroF1 − score. For the three-
class dataset under study, we preferred the combination of penalties in the form (weight1,
weight2, weight3) = (1, 10, 10).
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At step 3 of the methodology, it makes sense to pay special attention to the mean values
of the metrics MacroF1 − score and MacroRecall: we maximize the first in order to select
the best classifier, and the second allows us to assess whether there is an increase in the data
classification quality in terms of sensitivity to identifying truly existing diseases. In addition,
with similar values of the data classification quality for SVM classifiers, it makes sense to
give preference to those whose training and testing time will be lesser (paying attention
to time costs makes sense, for example, when comparing the cost-sensitive classifiers
and classifiers created using oversampling technologies). It should be noted that when
choosing classifiers for further use, it is advisable to pay attention to the results of certain
statistical tests.

Figure 1 shows the two-dimensional visualization of the three-class dataset using the
UMAP algorithm, for which there is a library implementation in Python [80], with the
values of parameters n_neighbors, min_dist, random_state and metric set as default. These are
the values of the parameters that were used in [20]. It should be noted that, unfortunately,
this library implementation does not provide an explicit output of the values of the LF,
and the results of the embedding, even with fixed values of the parameters n_neighbors
and min_dist, depend on the initialization of the UMAP algorithm using the parameter
random_state. In addition, the final results of the UMAP algorithm’s application depend on
the version of the library implementation, which is in a state of constant improvement, as
well as on the version of the libraries associated with it, including the Numba library [93],
which is responsible for parallelizing calculations and allows for speeding up the operation
of the UMAP algorithm.

In the proposed study for the UMAP algorithm with LFs L0, L1, L2, L3 and L4, the
GS was performed for the values of parameters n_neighbors and min_dist, providing devel-
opment of the best cost-sensitive SVM classifiers in terms of maximizing the mean value
of the metric MacroF1 − score. In our research, we enumerate values for the parameter
n_neighbors in the range [10, 20] with a step of 5, and enumerate values for the parameter
min_dist in the range [0.1, 0.3] with a step of 0.1. In addition, we enumerate values for the
parameter that defines the space dimension h in the range [2, 38] with a step of 2.

The tuple of parameter values (n_neighbors, min_dist) which allowed us to obtain a
cost-sensitive SVM classifier of a specific type with the maximum possible mean value of
the metric MacroF1 − score was considered the best.

It should be emphasized that the creation of cost-sensitive SVM classifiers was carried
out. At the same time, different ratios of penalties for classification errors were considered
for different classes, but in the end, a ratio of the form 1:10:10 was chosen, respectively, for
the classes “Normal”, “Liver” and “Ovary”.

With this ratio of penalties for classification errors, the best cost-sensitive classifier
C1 has a mean value of the metric MacroF1 − score equal to 0.907 (with the SD value
equal to equal to 0.052). In what follows, we will consider this mean value of the metric
MacroF1 − score to be the base (threshold) value. It is with this value that we will compare
the mean values of the metric MacroF1 − score of cost-sensitive SVM classifiers of other
types in order to select the truly best one, that is, superior to classifier C1, developed based
on a cost-sensitive SVM algorithm.

Table 2 shows the main characteristics of the base classifier C1 [20], created on the
basis of the original three-class 39-dimensional dataset not subjected to any manipula-
tion, balanced classifier C1 using SMOTE algorithm [20], balanced classifier C7 using the
SMOTE algorithm (at h = 28) [20] and the base cost-sensitive classifier C1, developed on
the basis of the original three-class 39-dimensional dataset, which was not subjected to
any manipulation.
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Table 2. Characteristics of such SVM classifiers as the base C1, balanced C1, balanced C7 (at h = 28)
and the base cost-sensitive C1.

Characteristic

Classifiers

Base C1
[20]

Balanced
C1

Using
SMOTE Algorithm [20]

Balanced
C7 (at h=28)

Using SMOTE Algorithm
[20]

Base
Cost-Sensitive

C1

Number of features in the
dataset 39 39 68 39

gamma 1.2 1 0.7 0.8

C 2.0 0.4 0.7 0.4

MacroF1 − score (mean/SD) 0.877/0.078 0.910/0.064 0.914/0.050 0.907/0.052

Accuracy (mean/SD) 0.973/0.015 0.977/0.015 0.978/0.012 0.977/0.013

MacroRecall (mean/SD) 0.843/0.088 0.907/0.081 0.907/0.065 0.907/0.066

MacroPrecision (mean/SD) 0.950/0.053 0.929/0.058 0.937/0.048 0.923/0.053

Training time (mean/SD), s. 0.123/0.008 0.886/0.214 0.489/0.021 0.169/0.023

Quality metrics calculation
time (mean/SD), s. 0.007/0.001 0.013/0.004 0.008/0.001 0.011/0.003

It should be noted that the best kNN and SVM classifiers created on the basis of over-
sampling strategies and presented in [20] outperformed the cost-sensitive kNN classifier
developed in [14] in terms of maximizing the mean value of the metric MacroF1 − score. In
addition, the best SVM classifier [20] outperformed the kNN classifier [20] in terms of the
same indicator. In this regard, the main attention in the proposed study is paid specifically
to the aspects of creating cost-sensitive SVM classifiers that have a higher data classification
quality than previously developed classifiers.

As can be seen from Table 2, the base cost-sensitive classifier C1 has a higher mean
value of the metric MacroF1 − score than the base classifier C1. However, this value in case
of the cost-sensitive classifier C1 is less than that of classifier C1 balanced using the SMOTE
algorithm [20] and classifier C7 balanced using the SMOTE algorithm (at h = 28) [20]. At
the same time, the time spent on developing and testing base cost-sensitive classifier C1 is
comparable to a similar time for the base classifier C1.

Figure 3a–e show the two-dimensional visualization of the three-class dataset using the
UMAP algorithm with LFs L0, L1, L2, L3 and L4 for tuples of parameter values (n_neighbors,
min_dist) providing development of the best cost-sensitive SVM classifiers, called C3, for
h = 2 in terms of maximizing the mean value of the metric MacroF1 − score. It should be
said that, generally speaking, the best SVM classifiers, called C3, can be obtained in spaces
of dimension h other than 2. Each two-dimensional point in Figure 3a–e corresponds to
a 39-dimensional data pattern. The points corresponding to different classes are marked
with different colors.

Figure A1a–d, from Appendix B, show graphical dependencies for LF L1, L2, L3
and L4, obtained by constructing embeddings of the original 39-dimensional three-class
dataset into the two-dimensional space, presented in Figure 3b–e. It should be noted that
the ability to analyze and display the values of the LF L0 is not provided by the library
implementation [80]; therefore, graphical dependency is not shown.

119



Mathematics 2024, 12, 538

(a) (b) (c)

(d) (e)

Figure 3. Two-dimensional visualization of the 39-dimensional three-class dataset using the UMAP
algorithm with various LFs with parameter values n_neighbors and min_dist, ensuring the creation
of the best cost-sensitive classifiers C3 (at h = 2) in the terms of maximizing the mean value of the
metric MacroF1 − score: (a) L0: implicitly set LF (n_neighbors = 10; min_dist = 0.3; MacroF1 − score :
mean = 0.924; SD = 0.047); (b) L1: LF based on fuzzy cross-entropy with FGD (n_neighbors = 15;
min_dist = 0.1; MacroF1 − score : mean = 0.918; SD = 0.049); (c) L2: LF based on symmetric fuzzy
cross-entropy with FGD (n_neighbors = 15; min_dist = 0.1; MacroF1 − score : mean = 0.916; SD = 0.047);
(d) L3: LF based on intuitionistic fuzzy cross-entropy with FGD (n_neighbors = 15; min_dist = 0.3;
MacroF1 − score : mean = 0.914; SD = 0.055); (e) L4: LF based on weighted fuzzy cross-entropy
with FGD (n_neighbors = 20; min_dist = 0.2; MacroF1 − score : mean = 0.915; SD = 0.044). The points
corresponding to different classes are marked with different colors.

The best cost-sensitive classifier C3 on the basis of the library implementation [80] has
parameter values n_neighbors and min_dist (Figure 3a) different from the default values
(Figure 1). At the same time, the mean values of the metric MacroF1 − score for the best
cost-sensitive classifier C3 and the cost-sensitive classifier C3 with the default values of
the parameters n_neighbors and min_dist are equal to 0.924 (with the SD value equal to
0.047) and 0.913 (with the SD value equal to 0.045), respectively, i.e., the best cost-sensitive
classifier C3 outperformed the cost-sensitive classifier C3 with default parameter values
by 1.205%. It should be noted that in both cases, the used default value of the parameters
random_state was equal to 42. We decided to check how choosing the value of parameter
random_state affects the final quality of the cost-sensitive classifier C3. In order to do this, we
varied the values of the parameter random_state from 1 to 50 with a step of 1. Unfortunately,
it turned out that only in 11 cases out of 50, which is 22%, we were able to receive a mean
values of the metric MacroF1 − score of no less than 0.907. Moreover, only in 7 cases out
of 50, which is only 14%, we were able to receive mean values of the metric MacroF1 − score
of no less than 0.908: three of them turned out to be equal to 0.908, one of them turned
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out to be equal to 0.909, two of them turned out to be equal to 0.911 and only one of
these, which is only 2%, turned out to be 0.924. In this regard, the following conclusions
can be deduced: Indeed, we can reduce the dimension of space even to 2, obtaining in
some cases mean values of the metric MacroF1 − score of no less than 0.907, which is not
bad, because in this case, it is possible to reduce the dimension of space from 39 to 2.
However, such cases occur rarely, and searching for them is associated with the additional
time expenditures. The case where the mean value of the metric MacroF1 − score is 0.924
turned out to be the only one. The remaining cases in which it was possible to obtain
mean values of the metric MacroF1 − score of no less than 0.907 did not occur often, and
the corresponding mean values of the metric MacroF1 − score turned out to be significantly
less than the found maximum mean value of 0.924. So, obviously, one should not expect
that simply iterating over the values of the parameter random_state will quickly lead us to
the desired result, namely, to mean values of the MacroF1 − score of no less than 0.924. We
can say that the use of the SGD algorithm in the problem under consideration, although it
makes it possible to reduce the time spent searching for a solution, in most cases leads to
finding only certain local extrema. Therefore, to find better solutions, i.e., solutions close
to the global extremum, repeated runs of the SGD algorithm are required. So, choosing
a different value for the parameter random_state other than 42 does not guarantee that
we will obtain a mean value of the metric MacroF1 − score for cost-sensitive classifier C3
no worse than the mean value of the metric MacroF1 − score for cost-sensitive classifier
C1. We will look for classifiers that are no worse in terms of the mean value of the metric
MacroF1 − score than the cost-sensitive classifier C1, assuming that, perhaps, with equal
mean values of the MacroF1 − score we will be able to decrease the number of features in
the datasets on the basis of which cost-sensitive classifiers will be developed. A smaller
number of features in the dataset that is applied for a certain classifier development, with all
other characteristics being equal for the compared classifiers, can be considered a positive
property of this classifier.

As can be seen from Figure 3a–e, only four LFs, named L0, L1, L2 and L4, provide
good separation of classes in the two-dimensional space. They are used in the formation of
two-dimensional datasets, a visualization of which is presented in Figure 3a–c,e.

However, for the purity of the experiment and the formation of convincing conclusions,
we conducted experiments with all five LFs, without abandoning the LF L3, for all values
of the space dimension h indicated above, i.e., for values h from 2 to 38 with a step of 2.

It should be noted, based on the results obtained when developing cost-sensitive
classifiers C3 (at h = 2) based on different LFs, that the best cost-sensitive classifiers C3
have parameter values recommended for use by default in the library implementation
of the UMAP algorithm in only two out of five cases [80]. It can be assumed that the
best cost-sensitive SVM classifiers on the basis of the UMAP algorithm result in spaces
with dimension h different from 2 and may have parameter values of n_neighbors and
min_dist different from those that are recommended to be used by default in the library
implementation of the UMAP algorithm [80].

Next, the responses to two research questions (RQs) will be presented.
Question 1. Which types of cost-sensitive SVM classifiers are the best in terms of

maximizing the mean value of the metric MacroF1 − score when using LFs L0, L1, L2, L3
and L4 for different combinations of values of parameters n_neighbors (in the range [10, 20]
with a step of 5) and min_dist (in the range [0.1, 0.3] with a step of 0.1), as well as different
values of the space dimension h (from 2 to 38 with a step of 2)?

Question 2. How often do cost-sensitive SVM classifiers of each type have mean values
of the metric MacroF1 − score no lower than the base (threshold) mean value of the metric
MacroF1 − score inherent to the base cost-sensitive classifier C1 and equal to 0.907, when
using different LFs for different combinations of values of parameters n_neighbors (from 10
to 20 with a step of 5) and min_dist (from 0.1 to 0.3 with a step of 0.1), as well as different
values of the space dimension h (in the range [2, 38] with a step of 2)?
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4.2.1. Identifying the Best Cost-Sensitive SVM Classifiers and Analysis of
Their Characteristics

In order to answer Question 1, Table 3 shows the names of the best cost-sensitive
SVM classifiers and their characteristics, such as the mean value and the SD value of the
metric MacroF1 − score, as well as the dimension of space h (in the case of using the UMAP
algorithm) in the format classifier name/mean/standard deviation/space dimension.

Table 3. Names of the best cost-sensitive SVM classifiers and their characteristics.

Tuple
of Parameter

Values (n_neighbors,
min_dist)

Loss Functions

L0 L1 L2 L3 L4

(10, 0.1) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-
(10, 0.2) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-
(10, 0.3) C3/0.924/0.047/2 * C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/-

(15, 0.1) C8/0.918/0.047/- C7/0.919/0.046/22 C7/0.917/0.048/12 C8/0.918/0.047/- C8/0.918/0.047/-
(15, 0.2) C8/0.918/0.047/- C7/0.919/0.042/8 C7/0.919/0.042/6 C8/0.918/0.047/- C7/0.918/0.046/6
(15, 0.3) C8/0.918/0.047/- C7/0.920/0.044/28 C7/0.921/0.048/26 C8/0.918/0.047/- C8/0.918/0.047/-

(20, 0.1) C8/0.918/0.047/- C8/0.918/0.047/- C8/0.918/0.047/- C3/0.918/0.045/12 C7/0.920/0.047/34
(20, 0.2) C8/0.918/0.047/- C7/0.920/0.052/30 C8/0.918/0.047/- C8/0.918/0.047/- C11/0.919/0.054/8
(20, 0.3) C8/0.918/0.047/- C7/0.921/0.045/28 *** C7/0.923/0.047/28

** C8/0.918/0.047/- C3/0.921/0.045/6

* the classifier, which took first place in the ranking in terms of maximizing the mean value of the metric
MacroF1 − score, is highlighted in bold; ** the classifier, which took second place in the ranking in terms of
maximizing the mean value of the metric MacroF1 − score, is highlighted in bold italic font; *** the classifiers,
sharing third place in the ranking in terms of maximizing the mean value of the metric MacroF1 − score, are
highlighted in italics.

We can see from Table 3 that the best cost-sensitive SVM classifiers for the considered
tuples of the parameter values (n_neighbors, min_dist) turned out to be cost-sensitive classi-
fiers C3, C7, C8 and C11. At the same time, cost-sensitive classifiers C7 and C8 most often
took the lead, 11 and 30 times, respectively. Cost-sensitive classifiers C3 and C11 were
leaders three times and one time, respectively.

In Table 3, the cost-sensitive SVM classifier, which is the absolute leader in terms of
maximizing the mean value of the metric MacroF1 − score, is highlighted in bold. This is the
cost-sensitive classifier C3 with values of the mean and the SD of the metric MacroF1 − score
equal to 0.924 and 0.047, respectively. The dataset used in the development of this classifier
was created by supplementing the original three-class 39-dimensional dataset with new
features generated on the basis of the library implementation of the UMAP algorithm [80]
(i.e., using the LF L0). Based on the results of previously performed experiments with the
LF L0, we can conclude that its use when implementing the UMAP algorithm does not give
the expected effect when working with spaces of dimensions h different from 2, with a fixed
value of the parameter random_state, which affects the results of stochastic gradient descent.
By default, in the library implementation of the UMAP algorithm [80], the value of the
parameter random_state is 42. Previously performed experiments with different values of
the parameter random_state at h = 2 did not improve the quality of cost-sensitive classifiers
C3, so the feasibility of similar experiments with other values of the space dimension h is
questionable, but it is related to large time expenditures.

In Table 3, the cost-sensitive SVM classifier, which took second place in the ranking
in terms of maximizing the mean value of the metric MacroF1 − score, is highlighted in
bold italic font. This is the cost-sensitive classifier C7 with values of the mean value and
the SD of the metric MacroF1 − score equal to 0.923 and 0.047, respectively. This classifier
is built on the basis of the original 39-dimensional dataset, supplemented with a feature
on the basis of the approximate entropy AE as well as features on the basis of the UMAP
algorithm at h = 28 using LF L2.

In Table 3, three cost-sensitive SVM classifiers, sharing third place in the ranking in
terms of maximizing the mean value of the metric MacroF1 − score, are highlighted in
italics. These are such cost-sensitive SVM classifiers as the following:
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• Classifier C7, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.045, respectively (this classifier is built on the basis of the original
39-dimensional dataset, supplemented with a feature on the basis of the approximate
entropy AE, as well as features on the basis of the UMAP algorithm at h = 28 using
the LF L1);

• Classifier C7, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.048, respectively (this classifier is built on the basis of the original
39-dimensional dataset, supplemented with a feature on the basis of the approximate
entropy AE, as well as features on the basis of the UMAP algorithm at h = 26 using
the LF L2);

• Classifier C3, with values of the mean value and the SD of the metric MacroF1 − score
equal to 0.921 and 0.045, respectively (this classifier is built on the basis of the orig-
inal 39-dimensional dataset, supplemented with features on the basis of the UMAP
algorithm at h = 6 using the LF L4).

In this case, obviously, preference should be given to the cost-sensitive classifier C3,
because it allows us to work with low-dimensional dataset h (at h = 6) in the UMAP
algorithm, unlike the other two cost-sensitive classifiers C7, for which the dimension of the
low-dimensional space h in the UMAP algorithm is equal to 26 or 28.

As can be seen from Table 3, the LF turned out to be the most successful and reliable
L1 in the context of its use for the formation of new features: for all analyzed tuples of
parameter values (n_neighbors, min_dist), using this function allowed us to develop cost-
sensitive classifiers C7, which became the best in terms of maximizing the mean value of the
metric MacroF1 − score in five out of nine experiments. In this regard, we can conclude that
the LF L1 successfully copes with the problem of reducing dimensionality when embedding
the original dataset into spaces of different dimensions h (both small and large) and can be
recommended for further use when working with the UMAP algorithm.

Second place in the success rating was shared by LFs L2 and L4. The use of the
LF L2 made it possible to develop the cost-sensitive classifiers C7, which became the
best in terms of maximizing the mean value of the metric MacroF1 − score in four out of
nine experiments.

The use of the LF L4 allowed to develop two cost-sensitive classifiers C7, one cost-
sensitive classifier C3 and one cost-sensitive classifier C11, which became the best in terms
of maximizing the mean value of the metric MacroF1 − score in four out of nine experiments.
It should be noted that although one cost-sensitive classifier C7 (at h = 6) has the same
mean value of the metric MacroF1 − score as the cost-sensitive classifier C8, we will assume
that the cost-sensitive classifier C7 (at h = 6) is the winner, because it has a slightly lower
standard deviation value (it is equal to 0.46), while the cost-sensitive classifier C8 has a
standard deviation value of 0.47. However, 6 more additional features were used during
development of the cost-sensitive classifier C7.

The LFs L0 and L3 in the proposed study did not show significant success in solving
the problem of generating new features that would improve the data classification quality:
the successes of these LFs, according to the experimental results given in Table 3, can
rather be called random (single, characteristic only of individual tuples of parameter values
(n_neighbors, min_dist). Working with these LFs can lead to a substantial increase in time
expenditure without any guarantee that the results expected from them will be obtained. It
should be emphasized that even the success of the LF L0 is only partial: the results depend
significantly on how successfully the initialization of the UMAP algorithm was performed.

Table 4 shows the main characteristics of the five best cost-sensitive classifiers from
Table 3, ranked in the first three places, as well as the main characteristics of the base
cost-sensitive classifier C1 (Table 2).
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Table 4. Characteristics cost-sensitive the winning classifiers of the rating and the base cost-sensitive
classifier C1.

Characteristics

Classifiers

Base Cost-Sensitive
C1

C3
(at h=2)

C7
(at h=28)

C7
(at h=26)

C7
(at h=28)

C3
(at h=6)

Number of features in the
dataset 39 41 67 65 67 45

Loss function - L0 L1 L2 L2 L4

n_neighbors - 10 20 15 20 20

min_dist - 0.3 0.3 0.3 0.3 0.3

gamma 0.8 0.5 0.7 0.5 0.5 0.4

C 0.4 0.8 0.6 1 1 1.3

MacroF1 − score (mean/SD) 0.907/0.052 0.924/0.047 0.921/0.045 0.921/0.048 0.923/0.047 0.921/0.045

Accuracy (mean/SD) 0.977/0.013 0.980/0.012 0.979/0.011 0.980/0.012 0.981/0.010 0.979/0.012

MacroRecall (mean/SD) 0.907/0.066 0.920/0.061 0.911/0.056 0.913/0.065 0.916/0.062 0.915/0.060

MacroPrecision (mean/SD) 0.923/0.053 0.943/0.046 0.944/0.052 0.943/0.053 0.945/0.050 0.941/0.045

Training time (mean/SD), s. 0.169/0.023 0.238/0.041 0.133/0.013 0.125/0.012 0.130/0.008 0.231/0.030

Quality metrics calculation
time (mean/SD), s. 0.011/0.003 0.017/0.007 0.011/0.002 0.012/0.001 0.013/0.001 0.017/0.007

As can be seen from Table 4, all winning cost-sensitive classifiers surpassed the
base cost-sensitive classifier C1 in terms of maximizing of the mean value of the met-
ric MacroF1 − score (note that it was previously decided to use the mean value of the metric
MacroF1 − score of the base cost-sensitive classifier C1 as the base (threshold) values for
comparison). In addition, all winning cost-sensitive classifiers outperformed the base classi-
fier C1 (Table 2, [20]); the classifier C1, balanced using the SMOTE algorithm (Table 2, [20]);
and the classifier C7, balanced using the SMOTE algorithm (at h = 28) (Table 2, [20]) in
terms of maximizing of the mean value of the metric MacroF1 − score. In this case, there is
a decrease in the SD value for the metric MacroF1 − score, especially compared to the same
value of the base classifier C1 (Table 2, [20]).

In addition, we can notice an increase in the mean value of the metric MacroRecall
with a decrease in the SD value for the metric MacroRecall, especially compared to the
same value of the base classifier C1 (Table 2, [20]).

It should be noted that the winning cost-sensitive SVM classifiers are created on the
basis of datasets whose number of features is greater than the number of features in the
original 39-dimensional dataset.

Table 5 shows, for reference, the mean values of the metric MacroF1 − score and the
corresponding SD values for the best cost-sensitive classifiers of 12 types. Bold font in
Table 5 indicates information on the cost-sensitive classifiers that outperformed the base
cost-sensitive classifier C1 (information for which is marked in bold italics) in terms of
maximizing the mean value of the metric MacroF1 − score.

We can notice that cost-sensitive classifiers of all types, with the exception of the
cost-sensitive classifier C4, improved their mean values of the metric MacroF1 − score
compared to similar classifiers, during the development of which no manipulations were
used to overcome the problem of class imbalance (Table 2, [20]). First of all, it should be
noted that classifiers C1, C3, C7, C8, C10, C11 and C12, whose mean values of the metric
MacroF1 − score exceeded the similar value for the base classifier C1 (Table 2, [20]), turned
out to be more than 0.900.
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Table 5. Characteristic values for the best cost-sensitive classifiers of different types based on the
metric MacroF1 − score.

Characteristic
Classifiers

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Mean 0.907 * 0.874 0.924 ** 0.799 0.851 0.849 0.923 0.918 0.898 0.915 0.919 0.913
Standard deviation 0.052 0.079 0.047 0.108 0.065 0.067 0.047 0.047 0.063 0.053 0.054 0.065

* information for the base cost-sensitive classifier C1 is highlighted in italics; ** information for classifiers that
outperformed the base cost-sensitive classifier C1 in terms of maximizing the mean value of the metric MacroF1 −
score is highlighted in bold.

4.2.2. Identification of the Best Loss Functions in the UMAP Algorithm and Analysis of
Their Capabilities in the Context of the Formation of New Features

In order to answer Question 2 in Table 6 for each tuple of parameter values (n_neighbors,
min_dist) it is shown how many times a cost-sensitive classifier of a certain type performed
no worse than the base cost-sensitive classifier C1 in terms of maximizing the mean value of
the metric MacroF1 − score. Moreover, the percentage of successfulness to the total number
of experiments is indicated for each tuple of parameter values (n_neighbors, min_dist).
The total number of experiments is 19, because the dimension of space h in the UMAP
algorithm varies from 2 to 39 with a step of 2. Table 6 provides information only about
those cost-sensitive classifiers that that were no worse than the base cost-sensitive classifier
C1 more than once (in all experiments). It can be noted that, according to the information
from Table 5, the cost-sensitive classifier C12 outperformed the base cost-sensitive classifier
C1, but it did this only once (when using the LF L0 in the UMAP algorithm (at h = 2,
n_neighbors = 10 and min_dist = 0.3).

Table 6. Names of the best cost-sensitive SVM classifiers and their win rates.

Tuple of
Parameter Values

(n_neighbors, min_dist)

Loss Functions

L0 L1 L2 L3 L4

(10, 0.1)

C3: 0 (0%) C3: 2 (10.526%) C3: 2 (10.526%) C3: 1 (5.263%) C3: 3 (15.789%)
C7: 5 (26.316%) C7: 18 (94.737%) C7: 18 (94.737%) C7: 2 (10.526%) C7: 7 (36.842%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 9 (47.368%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 1 (5.263%)

(10, 0.2)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 2 (10.526%) C3: 0 (0%) C3: 3 (15.789%)
C7: 7 (36.842%) C7: 18 (94.737%) C7: 17 (89.474%) C7: 1 (5.263%) C7: 3 (15.789%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 0 (0%) C10: 2 (10.526%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 1 (5.263%)

(10, 0.3)

C3: 1 (5.263%) C3: 2 (10.526%) C3: 2 (10.526%) C3: 0 (0%) C3: 3 (15.789%)
C7: 11 (57.895%) C7: 18 (94.737%) C7: 17 (89.474%) C7: 2 (10.526%) C7: 3 (15.789%)

C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)
C10: 0 (0%) C10: 2 (10.526%) C10: 1 (5.263%) C10: 0 (0%) C10: 0 (0%)

C11: 1 (5.263%) C11: 2 (10.526%) C11: 0 (0%) C11: 0 (0%) C11: 2 (10.526%)

(15, 0.1)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 3 (15.789%) C3: 0 (0%) C3: 4 (21.053%)
C7: 4 (21.053%) C7: 18 (94.737%) C7: 18 (94.737%) C7: 4 (21.053%) C7: 15 (78.947%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 1 (5.263%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 1 (5.263%) C11: 1 (5.263%) C11: 0 (0%) C11: 3 (15.789%)

(15, 0.2)

C3: 2 (10.526%) C3: 2 (10.526%) C3: 0 (0%) C3: 1 (5.263%) C3: 4 (21.053%)
C7: 8 (42.105%) C7: 18 (94.737%) C7: 19 (100%) C7: 6 (31.579%) C7: 9 (47.368%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 1 (5.263%) C10: 3 (15.789%) C10: 5 (26.316%) C10: 0 (0%) C10: 0 (0%)
C11: 0 (0%) C11: 2 (10.526%) C11: 2 (10.526%) C11: 0 (0%) C11: 5 (26.316%)

(15, 0.3)

C3: 0 (0%) C3: 0 (0%) C3: 1 (5.263%) C3: 1 (5.263%) C3: 6 (31.579%)
C7: 4 (21.053%) C7: 18 (94.737%) C7: 19 (100%) C7: 4 (21.053%) C7: 7 (36.842%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 4 (21.053%) C10: 8 (42.105%) C10: 0 (0%) C10: 1 (5.263%)
C11: 0 (0%) C11: 2 (10.526%) C11: 2 (10.526%) C11: 0 (0%) C11: 4 (21.053%)
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Table 6. Cont.

Tuple of
Parameter Values

(n_neighbors, min_dist)

Loss Functions

L0 L1 L2 L3 L4

(20, 0.1)

C3: 1 (5.263%) C3: 3 (15.789%) C3: 1 (5.263%) C3: 2 (10.526%) C3: 9 (47.368%)
C7: 3 (15.789%) C7: 19 (100%) C7: 15 (78.947%) C7: 2 (10.526%) C7: 16 (84.211%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 6 (31.579%) C10: 4 (21.053%) C10: 0 (0%) C10: 1 (5.263%)
C11: 0 (0%) C11: 3 (15.789%) C11: 1 (5.263%) C11: 2 (10.526%) C11: (36.842%)

(20, 0.2)

C3: 1 (5.263%) C3: 4 (21.053%) C3: 2 (10.526%) C3: 1 (5.263%) C3: 15 (78.947%)
C7: 6 (31.579%) C7: 19 (100%) C7: 18 (94.737%) C7: 1 (5.263%) C7: 17 (89.474%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 4 (21.053%) C10: 0 (0%) C10: 0 (0%) C10: 2 (10.526%)
C11: 0 (0%) C11: 3 (15.789%) C11: 1 (5.263%) C11: 0 (0%) C11: 13 (68.421%)

(20, 0.3)

C3: 1 (5.263%) C3: 5 (26.316%) C3: 1 (5.263%) C3: 1 (5.263%) C3: 14 (73.684%)
C7: 7 (36.842%) C7: 19 (100%) C7: 19 (100%) C7: 2 (10.526%) C7: 16 (84.211%)
C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%) C8: 19 (100%)

C10: 0 (0%) C10: 3 (15.789%) C10: 11 (57.895%) C10: 0 (0%) C10: 4 (21.053%)
C11: 0 (0%) C11: 5 (26.316%) C11: 2 (10.526%) C11: 0 (0%) C11: 11 (57.895%)

Analysis of the results given in Table 6 confirms the clear advantage of the LF L1: its
use allows us to develop cost-sensitive SVM classifiers of different types that exceed the
base cost-sensitive classifier C1 in terms of maximizing of the mean value of the metric
MacroF1 − score.

In addition, analysis of the results given in Table 6 allows us to notice that, usually,
the number of successful cost-sensitive classifiers C3 for each tuple of parameter values
(n_neighbors, min_dist) is no more than three. Most often, such situations arise when the
dimensionality h of the low-dimensional space in the UMAP algorithm is two, four or
six. However, when using the LF L4 in the UMAP algorithm, the number of successful
cost-sensitive classifiers C3 for each tuple of parameter values (n_neighbors, min_dist) is
always at least 3, and for tuples (n_neighbors, min_dist) taking values (20, 0.2) and (20, 0.3),
the number of successful cost-sensitive classifiers C3 is 15 and 14, respectively (i.e., such
classifiers are successful with different dimensions h of space (both small and large)).

It should be noted that all cost-sensitive SVM classifiers, indicated in Table 6, are
developed based on datasets whose number of features is greater than the number of
features in the original 39-dimensional dataset.

5. Discussion

Experimental results of creating SVM classifiers using the cost-sensitive SVM algorithm
confirmed that high data classification quality can be achieved through modification of
the original dataset by adding different combinations of new features on the basis of the
approximate entropy AE and the fractal dimensions KFD and HFD, as well as on the
basis of the UMAP algorithm. The most successful in terms of maximizing the mean
value of the metric MacroF1 − score turned out to be classifiers C3, C7 and C8, developed,
respectively, on the basis of the original three-class 39-dimensional datasets, supplemented,
respectively, with new features on the basis of the UMAP algorithm; on the basis of the
UMAP algorithm and the approximate entropy AE; as well as only on the basis of the
approximate entropy AE.

All winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in descending
order of the mean values of the metric MacroF1 − score, outperformed the base SVM
classifier (Table 2, [20]) in terms of maximizing the mean value of the metric MacroF1 − score
by 5.359%, 5.245%, 4.789%, 4.675%, 4.333% and 4.105%, respectively.

All winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in de-
scending order of the mean values of the metric MacroF1 − score, outperformed the base
cost-sensitive classifier C1 (Table 2) in terms of maximizing the mean value of the metric
MacroF1 − score by 1.874%, 1.764%, 1.323%, 1.2135, 0.882% and 0.662%, respectively.
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Also, all winning classifiers, C3, C7, C11, C8, C10 and C12 (Table 5), presented in
descending order of the mean values of the metric MacroF1 − score, outperformed the best
classifier C1 on the basis of the SMOTE algorithm (Table 2, [20]) in terms of maximizing of
the mean value of the metric MacroF1 − score by 1.538%, 1.429%, 0.989%, 0.879%, 0.549%
and 0.330%, respectively.

In addition, five out of the six winning classifiers, C3, C7, C11, C8, C10 and C12
(Table 5)—namely classifiers C3, C7, C11, C8 and C10, presented in descending order of
the mean values of the metric MacroF1 − score—outperformed the best classifier C7 on the
basis of the SMOTE algorithm (Table 2, [20]) in terms of maximizing the mean value of
the metric MacroF1 − score by 1.094%, 0.985%, 0.547%, 0.438% and 0.109%, respectively.
Only classifier C12 turned out to be worse than the best classifier C7 on the basis of the
SMOTE algorithm (Table 2, [20]) in terms of maximizing the mean value of the metric
MacroF1 − score by 0.109%.

We can see that the advantage of the best cost-sensitive classifiers over the best classi-
fiers C1 and C7 on the basis of the SMOTE algorithm is not very large. However, it was
possible to significantly reduce the time expenditures for developing and testing classifiers
(Table 4) compared to similar time estimates obtained when developing classifiers using
the SMOTE algorithm, which implements the strategy of oversampling new data patterns
(Table 2, [20]).

So, for example, we can compare the total time spent on the training and testing of
the cost-sensitive classifiers C7, recognized as the best in the proposed study and in [20].
They are created on the basis of the original 39-dimensional dataset, supplemented with
features created on the basis of the approximate entropy AE and the UMAP algorithm. At
the same time, in [20], the library implementation of the UMAP algorithm with the default
parameter values is applied, and in the proposed study for the UMAP algorithm, the value
enumeration of the parameters n_neighbors and min_dist is implemented for five LFs with
the choice of the best variant. However, the CIP is solved differently in the proposed study
and in [20]. The best SVM classifier in [20] is the classifier C7, in which the CIP was solved
using the oversampling SMOTE algorithm. One of the best cost-sensitive SVM classifiers in
the proposed study is the cost-sensitive classifier C7 (Table 4), for which the CIP was solved
using the CSL concept. In this case, the LF L2 was used in the UMAP algorithm, and the
parameters n_neighbors and min_dist took the values 20 and 0.3, respectively. The total time
spent on the training and testing of the cost-sensitive classifier C7 in the proposed study
turned out to be only 1.1 times longer than the time to develop the base classifier C1 and
1.26 times less than the time to develop the base cost-sensitive classifier C1, while it took
3.48 times less than the same time for classifier C7 built using the SMOTE algorithm and
being the best in [20], as well as 6.29 times less than the same time for classifier C1 built
using the SMOTE algorithm [20].

The function L1 that implements the calculation of fuzzy cross-entropy with FGD
should be recognized as the best function in the context of working with different LFs in
the UMAP algorithm in order to form new features that complement the original dataset
and ensure the development of classifiers with high data classification quality. The function
L3 that implements the calculation of intuitionistic fuzzy cross-entropy with FGD and then
the LF L0 that implements the calculation of implicitly set LF should be recognized as the
worst LFs. Such conclusions were made based on the efficiency of these LFs in terms of
embedding of the original 39-dimensional dataset into spaces of arbitrary dimensions h
(from 2 to 38 with a step of 2) in the context of the formation of new datasets and the further
development of a classifier with high data classification quality, superior to the quality of
the base cost-sensitive classifier C1. Thus, the function L1 was successful in these terms
for all space dimensions h, while the successes of the function L3 were solitary. The L0
function’s successes were also solitary. Although the use of the function L0 made it possible
to obtain the best classifier C3 in the terms of maximizing the mean value of the metric
MacroF1 − score, that is, the absolute winning classifier in our rating (Table 3), the use of
this LF is associated with selecting the value of another parameter, namely the random_state
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parameter, affecting the final results of UMAP algorithm. This leads to additional time
expenditures without a guaranteed expected result. The LFs L2 and L4 turned out to be
less successful than the LF L1 in the terms under consideration but more successful than
the LFs L0 and L3. However, their use in the UMAP algorithm made it possible to obtain
the winning classifiers in our rating (Table 3), so it is advisable to use them (in the absence
of significant restrictions on the time spent on the development of high-quality classifiers).

In order to statistically test the superiority of the developed classifiers, which solve the
CIP in different ways, over other classifiers, we applied the Wilcoxon signed rank test [94,95]
to the obtained quality estimates of various classifiers. To obtain statistically representative
results, we repeated the evaluation of each pair of classifiers using stratified 10-fold cross-
validation [90,91] with three-time repetition: each time, the datasets were divided into
10 blocks, and the classifiers were evaluated on 10 different parts of each dataset. This was
performed three times. Thus, each of the resulting classifier quality distributions contained
a total of 30 values. The distribution obtained for the base classifier C1 based on the original
dataset was compared with all other distributions obtained for other classifiers in this study.
When assessing the quality of the classifiers, we considered the metrics MacroF1 − score
and Recall, as well as estimates of the training time and testing time of the classifiers. The
values of metrics MacroF1 − score and Recall should be maximized. Estimates of training
time and testing time for classifiers should be minimized.

According to the null hypothesis H0, the two compared distributions did not have
statistically significant differences [94,95]. The p-value was set to 0.05. The obtained results
are presented in Tables A4–A7 in Appendix C. We compared the classifiers developed
in this study with the base SVM classifier based on the original dataset [20], with the
SVM classifier based on the original dataset and the SMOTE algorithm [20], and also
with the SVM classifier based on the original dataset expanded using features based on
the approximate entropy AE, the UMAP algorithm and the SMOTE algorithm [20]. In
Tables A4–A7, the “=“ sign means that there are no statistically significant differences
between the compared distributions of the classifiers, the “+” sign means that the classifier
in the row header is superior to the classifier in the column header, and the “–” sign means
the opposite.

According to Table A4, classifiers C3 (at h = 2) with L0, C7 (at h = 28) with L1, C7 (at
h = 26) with L2, C7 (at h = 28) with L2, C3 (at h = 6) with L4 and balanced C7 (at h = 28)
using the SMOTE algorithm [20] surpassed the base classifier C1 as measured by the metric
MacroF1 − score. The base cost-sensitive classifier C1 and the balanced classifier C1 using
the SMOTE algorithm [20] have no statistically significant differences from the base C1 by
this metric. When comparing the classifiers developed in the proposed study using the
same metric with classifiers developed using the SMOTE algorithm [20], it was possible to
reveal only the superiority of the C3 classifier (at h = 2) with L0.

According to Table A5, all classifiers that solve the CIP in one way or another out-
performed the base classifier C1 as measured by the metric Recall. When comparing the
values of the same metric of the classifiers developed in the proposed study with classi-
fiers developed using the SMOTE algorithm [20], it was also possible to reveal only the
superiority of the C3 classifier (at h = 2) with L0.

According to Table A6, all classifiers that solve the CIP in one way or another lose to
the base classifier C1 in training time (which was expected). When comparing the training
time of the classifiers developed in the proposed study with the classifiers developed using
the SMOTE algorithm [20], the superiority of the cost-sensitive classifiers is observed. At
the same time, the balanced classifier C7 (at h = 28) using the SMOTE algorithm [20]
outperformed the balanced classifier C1 using the SMOTE algorithm [20] in training time
(possibly due to better separability of classes).

According to Table A7, all classifiers that solve the CIP in one way or another lose to
the base classifier C1 in terms of testing time (which was expected). When comparing the
testing time of the classifiers developed in the proposed study with the same time of the
balanced classifier C1 using the SMOTE algorithm [20], the superiority of the cost-sensitive

128



Mathematics 2024, 12, 538

classifiers is observed, with the exception of the classifier C3 (at h = 2) with L0 that lost.
At the same time, the balanced classifier C7 (at h = 28) using the SMOTE algorithm [20]
outperformed all classifiers in testing time except the base classifier C1, which it lost to.

In general, the following should be noted. All classifiers that solve the CIP in one way
or another and are developed on the basis of modified datasets are superior to the base
classifier C1 by the metrics MacroF1 − score and Recall.

The best cost-sensitive classifiers developed in the proposed study outperform the
base cost-sensitive C1 in terms of metrics MacroF1 − score and Recall; however, they do
not have statistical differences among themselves in these metrics. In terms of training time
and classifier testing time, all these classifiers are statistically different. Therefore, when
choosing a classifier, one can focus, for example, on the minimal time required to train a
classifier. Thus, classifier C7 (at h = 26) with L2 provides minimal time of training.

In general, limitations on the applicability of the proposed approach may be due to
the following reasons. First, we may experience limitations caused by the computational
complexity of developing SVM classifiers using standard implementations of the SVM
algorithm. However, this problem can be solved using modern SVM solvers [87–89].
Secondly, certain problems may be caused by the very nature of the used dataset. Data
should be subjected to exploratory analysis and, if possible, cleared of omissions, outliers
and similar defects. In the case of data of very poor quality, their preprocessing can lead
to an even greater imbalance of classes, up to the loss of a significant part of the patterns
belonging to minority classes. In this regard, a qualitative solution to the imbalance problem
using CSL algorithms or, for example, oversampling algorithms will be questionable. In
addition, the nature of the used dataset may be such that the data of different classes in
it will initially be poorly separable, for example, due to the poor separability of patterns
determined by blood protein markers according to their membership in different classes.
In this regard, both attempts to develop SVM classifiers based on the original dataset and
attempts to generate new features, for example, based on approximation entropy and
the UMAP algorithm, will be unsuccessful: new features will not improve the quality
of dividing data patterns into different classes. Third, it should be noted that additional
experiments are needed when determining penalties for misclassifying patterns of different
classes in the case of CSL or when determining the class ratio that should be achieved after
restoring the balance, for example, using oversampling algorithms.

In the proposed study, we used a dataset, the properties of which were previously
studied in detail in [13,14,20], and in [20] it was noted that there was no strong correlation
both between the features of the original dataset and when introducing those new features
approved for use.

In the proposed study, we used a dataset, the properties of which were previously
studied in detail in [13,14,20], including in [20], where it was noted that there was no strong
correlation both between the features of the original dataset and when introducing those
approved for use new features.

It should be noted that the combination of the CSL principles and the approach pro-
posed in [20] to the creation of datasets by forming new features using various technologies
with their acquisition and application as a new dataset or adding to the original dataset may
be considered appropriate. In this case, varying the values of the parameters n_neighbors
and min_dist, as well as working with several LFs in the UMAP algorithm, ultimately
made it possible to obtain qualitatively better cost-sensitive SVM classifiers in terms of
maximizing the mean value of the metric MacroF1 − score.

6. Conclusions

In this research, we investigated a previously suggested approach [20] for the diagnosis
of cancer using blood protein markers through creation of the SVM classifiers on the basis
of datasets with a variety of features of different nature. These features may correspond to
blood protein markers or be constructed using methods for calculating entropy and fractal
dimensions, as well as using the UMAP algorithm. These medical datasets are imbalanced.
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To overcome the class imbalance problem, the concept of cost-sensitive learning was
implemented, the use of which allowed the best developed SVM classifiers to outperform
the base SVM classifier in data classification quality and the best SVM classifiers developed
on the basis of the oversampling strategy, not only in data classification quality but also in
the time spent on their development. The most successful in terms of maximizing the mean
value of the metric MacroF1 − score are the following cost-sensitive SVM classifiers, listed
in descending order of successfulness: C3, C7, C8, C11 and C10. The UMAP algorithm
was applied to create new features in datasets used to develop classifiers C3, C7 and
C11. The approximate entropy was applied to create a new feature in datasets used to
develop classifiers C7, C8 and C10. The Katz and Higuchi fractal dimensions were applied
to create new features in datasets used to develop classifiers C10 and C11. Each time,
new features supplemented the original dataset. We showed that to create additional
features on the basis of the UMAP algorithm, it is advisable to use the LFs L1, L2 and L4,
defined explicitly by formulas (13), (14) and (10). The use of an implicitly defined LF, which
we called L0, applied in the library implementation [80], is complicated because of the
impossibility of explicitly estimating the values for the LF, although it cannot be considered
unambiguously inexpedient.

The purpose of further research is to explore ways to improve data classification quality
by forming new features on the basis of various dimensionality reduction algorithms, such
as UMAP [53], t-SNE [77], TriMAP (Triplet Manifold Approximation) [96] and PaCMAP
(Pairwise Controlled Manifold Approximation) [97], for which both the initialization of
the initial embedding of patterns into low-dimensional space and the optimization of the
embedding of patterns into low-dimensional space are performed in different manners. We
also plan to implement a simultaneous combination of CSL and oversampling technologies
with the selection of the best combinations of penalties and the best class proportions when
synthesizing new data patterns.
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Appendix A

Table A1. Names of concepts and their abbreviations.

Name
of Concept

Abbreviation

ADASYN ADaptive SYNthetic sampling approach
AE Approximate Entropy
AUC Area Under Curve
CIP Class Imbalance Problem
COSMIC Catalog of Somatic Mutations in Cancer
CSL Cost-Sensitivity Learning
BPM Blood Protein Marker
FGD Full Gradient Descent
GT Gene Test
HC Hjorth Complexity
HFD Higuchi Fractal Dimension
HM Hjorth Mobility
KFD Katz Fractal Dimension
DL Deep Learning
DM Data Mining
kNN k-Nearest Neighbors
LF Loss Function
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Table A1. Cont.

Name
of Concept

Abbreviation

LR Logistic Regression
ML Machine Learning
OD Oncological Disease
OvO One-vs-One strategy
OvR One-vs-Rest strategy
PaCMAP Pairwise Controlled Manifold Approximation
PFD Petrosian Fractal Dimension
PT Protein Test
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-Sampling Technique
SVDE Singular Value Decomposition Entropy
SVM Support Vector Machine
RBF Radial Basis Function
RF Random Forest
RQ Research Question
t-SNE T-Distributed Stochastic Neighbor Embedding
TriMAP Triplet Manifold Approximation
SE Sample Entropy
SD Standard Deviation
SPE SPectral Entropy
UMAP Uniform Manifold Approximation and Projection

Table A2. Datasets and the composition of their features.

Dataset Name The Composition of Features

C1 FOD *
C2 FUMAP **
C3 FOD, FUMAP
C4 FUMAP, FAE ***
C5 FUMAP, FHKFR ****
C6 FUMAP, FAE, FHKFR
C7 FOD, FUMAP, FAE
C8 FOD, FAE
C9 FOD, FHKFR

C10 FOD, FAE, FHKFR
C11 FOD, FUMAP, FHKFR
C12 FOD FUMAP, FAE, FHKFR

* FOD are the Features of the Original Dataset; ** FUMAP are the Features on the basis of the UMAP algorithm;
*** FAE is the Feature on the basis of Approximate Entropy; **** FHKFR are the Features on the basis of Higuchi
and Katz Fractal Dimensions.

Table A3. Basic algorithms and description of their changeable parameters.

Algorithm Parameter Parameter Value or Range
with Step of Change

SVM
C is the regularization parameter (C in the scikit-learn library of Python) [0.4, 2] with a step of 0.1
σ (σ > 0) is the parameter of the RBF kernel (gamma in the scikit-learn library of
Python) [0.4, 2] with a step of 0.1

UMAP

k in the number of nearest neighbors that are found for each pattern in the
high-dimensional space (n_neighbors in the software library [80]) [10, 20] with a step of 5

dmin is the threshold distance (dmin ∈ (0, 1]) that influences the density of clusters
created in the low-dimensional space (min_dist in the software library [80]) [0.1, 0.3] with a step of 0.1

h is the dimension of the low-dimensional space (n_components in the software
library [80]) [2, 38] with a step of 2

metric is the distance metric in the software library [80] Euclidean
random_state is the parameter responsible for initialization of UMAP algorithm and
reproducibility of results in the software library [80] 42
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Appendix B

(a) (b)

(c) (d)

Figure A1. Graphical dependencies for LFs obtained by constructing embeddings of the original
39-dimensional three-class dataset in the two-dimensional space on the basis of the UMAP algo-
rithm with various LFs with parameter values n_neighbors and min_dist, ensuring the creation of
the best cost-sensitive classifiers C3 (at h = 2) in the terms of maximizing the mean value of the
metric MacroF1 − score) presented in Figure 3. (a) L1: LF based on fuzzy cross-entropy with FGD
(n_neighbors = 15; min_dist = 0.1; MacroF1 − score : mean = 0.918; SD = 0.049); (b) L2: LF based on sym-
metric fuzzy cross-entropy with FGD (n_neighbors = 15; min_dist = 0.1; MacroF1 − score : mean = 0.916;
SD = 0.047); (c) L3: LF based on intuitionistic fuzzy cross-entropy with FGD (n_neighbors = 15;
min_dist = 0.3; MacroF1 − score : mean = 0.914; SD = 0.055); (d) L4: LF based on weighted fuzzy
cross-entropy with FGD (n_neighbors = 20; min_dist = 0.2; MacroF1 − score : mean = 0.915; SD = 0.044).

Appendix C

Table A4. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on
the basis of the metric MacroF1 − score.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 = 0.071 = 0.950 = 0.761
C3 (at h = 2) with L0 + 0.002 = 0.200 + 0.034

C7 (at h = 28) with L1 + 0.005 = 0.214 = 0.594
C7 (at h = 26) with L2 + 0.004 = 0.252 = 0.462
C7 (at h = 28) with L2 + 0.004 = 0.147 = 0.795
C3 (at h = 6) with L4 + 0.008 = 0.178 = 0.795

balanced C1
using SMOTE
algorithm [20]

= 0.125 Not Not = 0.795

balanced C7 (at h = 28 ) using SMOTE
algorithm [20] + 0.021 = 0.795 Not Not
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Table A5. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on
the basis of the metric Recall.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 + 0.001 = 0.740 = 0.102
C3 (at h = 2) with L0 + 4.571 × 10−5 = 0.153 + 0.039

C7 (at h = 28) with L1 + 2.194 × 10−4 = 0.331 = 0.810
C7 (at h = 26) with L2 + 3.405 × 10−4 = 0.365 = 0.576
C7 (at h = 28) with L2 + 2.682 × 10−4 = 0.207 = 0.420
C3 (at h = 6) with L4 + 2.309 × 10−4 = 0.283 = 0.909

balanced C1
using SMOTE
algorithm [20]

+ 0.004 Not Not = 0.724

balanced C7 (at h = 28 ) using SMOTE
algorithm [20] + 2.043 × 10−4 = 0.724 Not Not

Table A6. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on
the basis time of training.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C3 (at h = 2) with L0 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 28) with L1 − 1.863 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 26) with L2 − 3.725 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C7 (at h = 28) with L2 − 3.725 × 10−9 + 1.863 × 10−9 + 1.863 × 10−9

C3 (at h = 6) with L4 − 5.588 × 10−9 + 1.863 × 10−9 + 3.239 × 10−6

balanced C1
using SMOTE
algorithm [20]

− 1.863 × 10−9 Not Not − 1.863 × 10−9

balanced C7 (at h = 28) using SMOTE
algorithm [20] − 1.863 × 10−9 + 1.863 × 10−9 Not Not

Table A7. Results of the Wilcoxon signed rank test applied to classifiers, which were estimated on
the basis time of testing.

Classifier Base C1
Balanced C1

Using SMOTE
Algorithm [20]

Balanced C7 (at h = 28)
Using SMOTE
Algorithm [20]

Classifier Sign p-Value Sign p-Value Sign p-Value

base cost-sensitive C1 − 2.608 × 10−8 + 0.013 − 1.863 × 10−8

C3 (at h = 2) with L0 − 1.106 × 10−4 − 0.002 − 0.003
C7 (at h = 28) with L1 − 2.608 × 10−8 + 0.0128 − 1.863 × 10−8

C7 (at h = 26) with L2 − 3.725 × 10−9 + 1.863 × 10−8 − 2.608 × 10−8

C7 (at h = 28) with L2 − 3.725 × 10−9 + 1.863 × 10−8 − 2.608 × 10−8

C3 (at h = 6) with L4 − 2.608 × 10−8 + 0.013 − 1.863 × 10−8

balanced C1
using SMOTE
algorithm [20]

− 1.863 × 10−9 Not Not − 1.863 × 10−9

balanced C7 (at h = 28) using SMOTE
algorithm [20] − 0.002 + 1.863 × 10−9 Not Not
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Abstract: We propose new multistart techniques for finding good local solutions in global optimiza-
tion problems. The objective function is assumed to be differentiable, and the feasible set is a convex
compact set. The techniques are based on finding maximum distant points on the feasible set. A
special global optimization problem is used to determine the maximum distant points. Preliminary
computational results are given.
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1. Introduction

Within the concept of a “smart” digital environment, methods of mathematical mod-
eling and machine learning are actively used to design and implement digital twins of
complex technical, technological, and organizational systems. In this case, it is usually
necessary to solve complex global optimization problems to automate the selection of
effective structures and parameters of the corresponding models of these digital twins.
The effectiveness of global optimization methods depends significantly on the choice of
the initial set of solutions, which are subsequently used to find the global optimum or a
good local optimum that approximates the global one. This is especially important when
using global optimization methods for the continuously differentiable functions of real
variables, because in this case, it is possible to obtain optimal solutions guaranteed by the
strict mathematical apparatus of applied mathematics.

Let a differentiable function f : Rn → R and a convex compact set X ⊂ Rn with a
nonempty interior, int(X) �= ∅, be given. The problem considered in this paper consists
in finding a good local minimum using the multistart strategy. In order achieve this, it is
necessary to allocate p starting points x1, . . . , xp in X, such that they cover X “more or less
uniformly”. The proposed multistart strategy is based on the CONOPT solver [1].

Various uniform sampling procedures can be used for this purpose. A survey of
special methods for allocation points on spheres is presented in [2]. If X is a polytope,
sampling based on simplicial decomposition of X is applied, as given in [3]. In [4], a class
of Markov chain Monte Carlo (MCMC) algorithms for distribution points on polytopes is
described. In a more general case, when X is a convex body, a random walk strategy [5]
based on the MCMC technique is successfully applied. A brief review of different kinds
of random walk can be found in [4]. However, uniform random sampling algorithms are
of exponential complexity [6]. Uniform sampling is usually used for the approximate
calculation of an integral or volume of X. We are interested in finding a good local solution
in global optimization problems. The most attractive feature of uniform sampling consists
in the following: a global minimum solution can be found with a probability of one as the
length of the sampling tends to infinity. However, due to the specifics of high-dimensional
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spaces [7], random sampling is not efficient from a practical point of view. Nevertheless,
uniform sampling continues to draw attention, and investigations on this topic are of
serious interest [8]. Approaches based on the p-location problem [9] and p-center method-
ology [10] can also be used for solving the problems considered in our paper. However, we
aimed to check the efficiency of a global optimization approach.

In our paper, we propose a procedure for the good allocation of points on a convex
compact set X. The idea is to use a special global optimization problem as an auxiliary
one for allocation. The special global optimization problem consists in maximizing the
Euclidean norm plus a linear term over a convex compact set. Because of the particular
form of the problem, it can be solved to global optimality for a sufficiently large number
of variables, for example, for n ∼ 30 − 50. In doing so, we achieve a better covering of
set X by a family of points. We believe that a combination of the proposed approach and
advanced metaheuristics [11] will be of serious practical importance.

The first approach. The most attractive statement of the problem can be formalized
as follows:

t → max, t = ‖xi − xj‖2, xi, xj ∈ X, 1 ≤ i < j ≤ p. (1)

Problem (1) means that it is necessary to allocate p points such that the distance between
any two points is the same and is as maximal as possible. In this case, the set {x1, . . . , xp} is
called the set of equidistant points . However, it is well known that Problem (1) is solvable
only if p ≤ n + 1. When p = n + 1, then points {x1, . . . , xn+1} are vertices of a regular
simplex. If ‖xi − xj‖ = δ, 1 ≤ i < j ≤ n + 1, all points xi belong to the sphere of radius

R = δ

√
n

2(n + 1)
(2)

centered at

xc =
1

n + 1

n+1

∑
j=1

xj.

However, in many applications, it is necessary to allocate more than n + 1 points.
The second approach. We move to another problem of the following form:

min
1≤i<j≤p

{‖xi − xj‖2} → max, xi, xj ∈ X. (3)

We want to allocate p points such that the minimum distance between any two of them
is as maximal as possible. Problem (3) always has a solution since the objective function
is continuous and the feasible set is nonempty and compact. The objective function is
nonsmooth, but this can be avoided by the standard reduction of Problem (3) to the
following one:

t → max, t ≤ ‖xi − xj‖2, xi, xj ∈ X, i, j = 1, . . . , p, j > i. (4)

Two main difficulties are unavoidable when solving Problem (4). Firstly, the number of
variables is equal to p(p−1)n

2 . Secondly, the feasible domain is nonconvex. Hence, we have
to overcome the nonconvexity of the feasible domain, but we are seriously restricted in
dimension n.

The third approach. Given p − 1 points vi ∈ X, find point vp as a solution to the
problem

ϕp(x) = min
1≤j≤p−1

{‖x − vj‖2} → max, x ∈ X. (5)

As a result, set X is covered by p balls centered at v1, . . . , vp with radius rp equal to
√

ϕp(vp).

We start from an arbitrary point v1 ∈ X and sequentially determine points v2, v3, . . . and
functions ϕ2, ϕ3, . . . according to (5). Let θ(x) = 0 ∀x ∈ X be identical a zero function on X.
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The theoretical foundation of the approach based on solving Problem (5) is given by the
following theorem.

Theorem 1. The sequence of functions ϕp, p = 2, 3, . . . uniformly converges to function θ over X.

Proof. Functions ϕp, p = 2, . . . are Lipschitz functions with the same Lipschitz constant.
Therefore, ϕp, p = 2, . . . is an equicontinuous sequence of functions. Since X is a compact
set, then ϕp(x) ≤ D(X) < +∞, where D(X) is the diameter of X, and functions ϕp,
p = 2, . . . are uniformly bounded. By construction ϕp(x) ≤ ϕp−1(x) ∀x ∈ X. Hence,
due to the Arzelà–Ascoli theorem, ϕp, p = 2, . . . is a sequence of functions uniformly
convergent to a continuous function η : η(x) ≤ ϕp(x) ∀x ∈ X, p = 2, . . .. By construction
ϕp(vi) = 0 ∀i < p; hence,

η(vp) = 0 ∀p. (6)

Assume that lim
p→∞

ϕp(vp) = ρ > 0. Let vpj , j = 1, 2, . . . be a subsequence conver-

gent to a point v� such that η(v�) = ρ. From (6), due to the continuity of η, we have
lim
j→∞

η(vpj) = η(v�) = 0, a contradiction, which proves the theorem.

Hence, we can theoretically achieve the covering of X by a number of balls with
sufficiently small radius. In practice, especially in high dimensions we restrict ourselves to
a reasonable value of p.

Let us rewrite Problem (5) in a more computationally tractable form. Point vp is
the maximum distant point from points vj, j = 1, . . . , p − 1. Since ‖x − vj‖2 = ‖x‖2 −
2x�vj + ‖vj‖2 and min

1≤j≤p−1
{‖x‖2 − 2x�vj + ‖vj‖2} = ‖x‖2 + min

1≤j≤p−1
{‖vj‖2 − 2x�vj}, we

can rewrite Problem (5) in the form

‖x‖2 + t → max, t ≤ ‖vj‖2 − 2x�vj, j = 1, . . . , p − 1, x ∈ X. (7)

The feasible domain in (7) is convex, and the objective function is convex. Therefore, we
have a convex maximization problem, and special advanced methods [12] can be used for
solving (7).

In our paper, we develop the iterative scheme of the third approach based on solving
problems of type (7). The description is the following. Take an arbitrary first point v1.
The other points are determined according to the solutions to problem (7) for p = 2, 3, . . ..
Points are found sequentially: the new point is determined after finding the previous ones.
This is why we call points v1, v2, . . . , vp obtained on the base of the iterative solution of
problem (7) sequentially maximum distant pointsor simply sequentially distant points .
Notation:
ej, j = 1, . . . , n are unit vectors with 1 on the j-th position and 0 on the others;
xj is the j-th component of vector x ∈ Rn;
xi is the i-th vector in a sequence of n-dimensional vectors x1, . . . , xi, . . .;
x�y is the dot (inner) product of vectors x, y ∈ Rn.

2. Allocation of Points in the Unit Ball

Assume that X is the unit ball, that is,

X = B = {x ∈ R
n : ‖x‖2 ≤ 1}.

In this case, Problem (5) can be solved analytically. The obtained points are called ball
sequentially distant points . We start with the problem of setting the n + 1 equidistant point
in B that is equivalent to inscribing a regular simplex in B. The distance between points
can be determined from (2) with R = 1,

δ =

√
2(n + 1)

n
=

√
2

√
1 +

1
n

. (8)
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Since the points are equidistant:

‖xi − xj‖2 = ‖xi − xk‖2 ⇔ (xk − xj)�xi = 0, 1 ≤ i < j < k ≤ n + 1.

Due to the symmetry of B, we can set x1 = e1 = (1, 0, . . . , 0)�. Then, from (2),

xj
1 = xk

1, 2 ≤ j < k ≤ n + 1. (9)

Since points xj, j = 2, . . . , n + 1 belong to the intersection of a plane orthogonal to x1

and a boundary of B, we also can choose the point x2 as a point with maximal zero
components. Therefore, we set x2

l = 0, l = 3, . . . , n. The distance ‖x1 − xj‖2 = (1 −
x2

1)
2 + (x2

2)
2 = δ2, and (x2

1)
2 + (x2

2)
2 = 1. From these two equations and (9), we obtain

xj
1 = − 1

n , j = 2, . . . , x2
2 =

√
(n−1)(n+1)

n2 . Now, let us repeat the same consideration for the
n − 1-dimensional ball centered at x2 and obtained as an intersection of the plane {x ∈ Rn :

x1 = − 1
n} and B. Then, we determine x3 =

(
− 1

n ,−
√

n+1
n · 1

n(n−1) ,
√

n+1
n · n−2

n , 0, . . . , 0
)

.

After repeating this consideration similarly for the remaining cases, we obtain the final
description of the equidistant point in the unit ball:

xk
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
√

n+1
n · 1

(n−j+2)(n−j+1) , 1 ≤ j < k,√
n+1

n · n−k+1
n−k+2 , j = k,

0, k < j ≤ n,

, k = 1, . . . , n + 1. (10)

Let us switch now to the construction of the sequentially maximum distant points.
Again, due to the symmetry of B, the starting point v1 = e1. The next point, which is
denoted by vn+1, is determined as vn+1 = arg max{‖x − v1‖2 : x ∈ B} = −e1. Point v2 is a
solution to the problem

min{‖x − v1‖2, ‖x − vn+1‖2} → max, x ∈ B. (11)

Let us introduce the sets

X21 = {x ∈ B : ‖x − v1‖2 ≤ ‖x − vn+1‖} = {x ∈ B : x1 ≥ 0},

X22 = {x ∈ B : ‖x − vn+1‖2 ≤ ‖x − v1‖} = {x ∈ B : x1 ≤ 0}.

Then, solving Problem (11) is reduced to solving the following two problems:

f21(x) = ‖x − v1‖2 → max, x ∈ X21 (12)

and
f22(x) = ‖x − vn+1‖2 → max, x ∈ X22. (13)

Since f21(x) = ‖x‖2 − 2x1 + 1 ≤ 2 − 2x1 ∀x ∈ B, the upper bound for the maximum
value in (12) is given by max{2 − 2x1 : x ∈ X21} = 2 and is achieved, for example,
at point e2. The value f21(e2) = 2. Therefore, e2 is a solution to problem (12). Similarly,
f22(x) = ‖x‖2 + 2x1 + 1 ≤ 2+ 2x1 ∀x ∈ B, the upper bound max{2+ 2x1 : x ∈ X22} = 2 is
also achieved at e2 and f22(e2) = 2. Hence, point e2 is a solution to problem (13). The latter
means that e2 is a solution to Problem (11), and we can set v2 = e2.

Consider now the problem

min{‖x − v1‖2, ‖x − v2‖2, ‖x − vn+1‖2} → max, x ∈ B. (14)

Determine sets
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X31 = {x ∈ B : ‖x − v1‖2 ≤ ‖x − v2‖2, ‖x − v1‖2 ≤ ‖x − vn+1‖2} =

= {x ∈ B : − x1 + x2 ≤ 0, x1 ≥ 0},

X32 = {x ∈ B : ‖x − v2‖2 ≤ ‖x − v1‖2, ‖x − v2‖2 ≤ ‖x − vn+1‖2} = {x ∈ B : x2 ≥ |x1|},

X33 = {x ∈ B : ‖x − vn+1‖2 ≤ ‖x − v1‖2, ‖x − vn+1‖2 ≤ ‖x − v2‖2} =

= {x ∈ B : x1 + x2 ≤ 0, x1 ≤ 0}.

Problem (14) is reduced to find solutions to the three auxiliary problems

f3i(x) = ‖x − vi‖2 → max, x ∈ X3i, i = 1, 2,

f33(x) = ‖x − vn+1‖2 → max, x ∈ X33.

Again, f31(x) ≤ 2 − 2x1 ∀x ∈ X31 and f33(x) ≤ 2 + 2x1 ∀x ∈ X33. In both cases,
the maximum value 2 is attained at the point −e2. For the last auxiliary problem, we
have f32(x) ≤ 2 − 2x2 ∀x ∈ X32, that is, the corresponding maximum value cannot be
greater than 2. Therefore, point vn+2 = −e2 is a solution to Problem (14).

So far, four points vi = ei, vn+i = −ei, i = 1, 2 are obtained. We are going to prove
by induction that the same principle is true for 2n points: vi = ei, vn+i = −ei, i = 1, . . . , n.
The basis of induction: the hypothesis is true for k = 2. The induction step: let us prove
that the hypothesis is true for the case k + 1. Consider the problem

min
1≤i≤k

{‖x − vi‖2, ‖x − vn+i‖2} → max, x ∈ B. (15)

Define for i ∈ K = {1, . . . , k} the following sets

Xk+1,i = {x ∈ B : ‖x − vi‖2 ≤ ‖x − vj‖2, j ∈ K \ {i}, ‖x − vi‖2 ≤ ‖x − vn+j‖2, j ∈ K},

Xk+1,n+i = {x ∈ B : ‖x − vn+i‖2 ≤ ‖x − vj‖2, j ∈ K, ‖x − vn+i‖2 ≤ ‖x − vn+j‖2, K \ {i}}.

Then, Problem (15) disintegrates into 2k problems

fk+1,i = ‖x − vi‖2 → max, x ∈ Xk+1,i = {x ∈ B : xi ≥ 0, xi ≥ |xj|, j ∈ K \ {i}}, (16)

fk+1,n+i = ‖x − vn+i‖2 → max, x ∈ Xk+1,n+i = {x ∈ B : xi ≤ 0, xi ≤ −|xj|, j ∈ K \ {i}}. (17)

As above, fk+1,i(x) ≤ 2 − 2xi ≤ 2 ∀x ∈ Xk+1,i, i ∈ K, fk+1,i(ek+1) = 2 and
ek+1 ∈ Xk+1,i i ∈ K. Similarly, fk+1,n+i(x) ≤ 2 + 2xi ≤ 2 ∀x ∈ Xk+1,n+i, i ∈ K. Therefore,
we can take ek+1 as a solution to Problem (15) and set vk+1 = ek+1.

Let us consider now the next problem:

fk+2(x) = min
{

min
1≤j≤k+1

‖x − vj‖2, min
1≤j≤k

‖x − vn+j‖2
}

→ max, x ∈ B. (18)

Using the same arguments as earlier, it is easy now to see that fk+2(x) ≤ 2 ∀x ∈ B and
fk+2(−ek+1) = 2. Hence, we can accept −ek+1 as a solution to (18) and set vn+k+1 = −ek+1.

Therefore, the first 2n points are determined as

vi = ei, vn+i = −ei, i = 1, . . . , n. (19)
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The maximum distance between any two points in (19) is equal to 2, and the minimum
distance between any two points is equal to

√
2.

Let us now determine point v2n+1. In order to do this, we have to solve the problem

f2n+1(x) = min{ min
1≤j≤n

‖x − vj‖2, min
1≤j≤n

‖x − vn+j‖2} → max, x ∈ B. (20)

Rewrite f as follows:

f2n+1(x) = min
1≤j≤n

{
min{‖x − vj‖2, ‖x − vn+j‖2}

}
= min

1≤j≤n

{
‖x‖2 + 1 − 2|xj|

}
=

= ‖x‖2 + 1 − 2 max
1≤j≤n

|xj| = ‖x‖2 + 1 − 2‖x‖∞ ≤ ‖x‖1‖x‖∞ + 1 − 2‖x‖∞ =

= (‖x‖1 − 2)‖x‖∞ + 1. (21)

The maximal value of the expression in (21) over B is obviously equal to 1 and is achieved
at the origin 0 = (0, . . . , 0)�. From (19) and (20), we have f2n+1(0) = 1; hence, v2n+1 = 0.
The maximum distance between any two points in the set {vi, vn+i, i = 1, . . . , n, v2n+1} is
equal to

√
2, and the minimum distance is equal to 1.

The solution to the problem

f2n+2(x) = min{ min
1≤j≤n

‖x − vj‖2, min
1≤j≤n

‖x − vn+j‖2, ‖x‖2} → max, x ∈ B.

is given by the point v2n+2 = ( 1√
n , 1√

n , . . . , 1√
n )

�, since f2n+2(v2n+2) = 1 and
f2n+2(x) ≤ 1 ∀x ∈ B. Due to the symmetricity of B, the next 2n − 1 points are other
vertices of cube C̃ = {x ∈ Rn : − 1√

n ≤ xj ≤ 1√
n , j = 1, . . . , n}.

Finally, sequentially distant 2n + 1 + 2n points for the unit ball are given by

vi = ei, vn+i = −ei, i = 1, . . . , n, v2n+1 = (0, . . . , 0)�, (22)

v2n+1+i, i = 1, . . . , 2n, are vertices of the cube C̃. (23)

The maximum distance between any two points is obviously equal to 1. Due to the
symmetricity of the ball, the minimum distance can be determined as the distance between
v2n+2 and any point vj, j = 1, . . . , n. For example, ‖v2n+2 − v1‖ =

√
2
√

1 − 1√
n . Points in

(22) and (23) are calculated without solving the corresponding optimization problems.
The above procedures can be generalized for the allocation of points in a general ball

B(xc, R) = {x ∈ Rn : ‖x − xc‖ ≤ R}.
Case A. Generalization of the n + 1 equidistant points. We add the center xc to the

set of points and obtain the following n + 2 ball sequentially distant points v1, . . . , vn+2

with (10)

vk
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xc

j − R
√

n+1
n · 1

(n−j+2)(n−j+1) , 1 ≤ j < k,

xc
j + R

√
n+1

n · n−k+1
n−k+2 , j = k,

xc
j , k < j ≤ n,

, k = 1, . . . , n + 1, (24)

vn+2 = xc. (25)

The obtained points are not equidistant. The maximum distance between any two points is

equal to R, and the minimum distance is equal to R
√

2
√

1 + 1
n (see (8)).
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Case B. Ball sequentially distant 2n + 1 points. These points are just a direct general-
ization of (22),

vi = xc + Rei, vn+i = xc − Rei, i = 1, . . . , n, v2n+1 = xc. (26)

The maximum distance is equal to R, and the minimum distance is equal to R
√

2.
Case C. Ball sequentially distant 2n + 2n + 1 points. Introduce cube Ĉ = {x ∈ Rn :

xc
j − R ≤ xj ≤ xc

j + R, j = 1, . . . , n}. Then, the points are determined as follows:

vi = xc + Rei, vn+i = xc − Rei, i = 1, . . . , n, v2n+1 = xc, (27)

v2n+1+i, i = 1, . . . , 2n, are vertices of the cube Ĉ. (28)

The maximum distance between any two points is equal to R, and the minimum distance is
equal to R

√
2
√

1 − 1√
n .

Let us compare the allocation of a ball sequentially 2n + 1 from (26) without the center
v2n+1 and with a uniform distribution over a unit sphere. We take the minimum distance
between two points as a measure of allocation efficiency: the greater minimum distance,
the better the allocation. The uniform distribution over the unit sphere is obtained using
normal distribution with mean 0 and standard deviation 1 by normalization. The minimum
distance between two ball sequentially distant points is

√
2 ≈ 1.414 for any n. If we

uniformly distribute 200 points over the unit sphere in a 100-dimensional case, then the
minimum distance is on average 1.098 (after 10 repetitions). Therefore, the ball sequentially
distant points allocation is almost 40% better than the uniform allocation.

3. Mapping the Ball Sequentially Distant Points on a Compact Convex Set

Let X be a convex compact set defined by a system of inequalities

X = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . , m},

gi, i = 1, . . . , m are convex and twice continuously differentiable functions, and int(X) �= ∅.
We use the concept of an analytical center xa [13]. The point xa is the solution to the convex
optimization problem

F(x) → max, x ∈ X, (29)

F(x) =
m
∑

i=1
ln(−gi(x)), and F is a twice continuously differentiable concave function. Since

int(X) �= ∅, we have gi(xa) < 0, i = 1, . . . , m, so the following ellipsoid can be defined:

E = {x ∈ R
n : (x − xa)�H(x − xa) ≤ 1}, (30)

H = −∇2F(xa) =
m

∑
i=1

(
1

g2
i (xa)

∇gi(xa)∇gi(xa)� − 1
gi(xa)

∇2gi(xa)

)
.

Then, X ⊃ E. The Hessian H can be represented as H = U�ΛU, U is an n × n or-
thonormal matrix with eigenvectors of H as columns, and Λ is an n × n diagonal matrix
with eigenvalues λi > 0, i = 1, . . . , n on the main diagonal. Let us introduce new
variables y = Λ

1
2 U(x − xa). Then, in variables y, ellipsoid E in (30) is the unit ball

B = {y ∈ Rn : y�y ≤ 1}. Let {vi, i = 1, . . . , N} be ball sequentially distant points
in y-space constructed in correspondence to the cases A (N = n + 2), B (N = 2n + 1) or C
(N = 2n + 2n + 1) from the previous section. In the x-space, we define points

wi = xa + U�Λ− 1
2 vi, i = 1, . . . , N. (31)
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Images wi of the ball equidistant points (i = 1, . . . , n + 1) are solutions to the problem

t → max, t = (xi − xj)�H(xi − xj), xi, xj ∈ E, 1 ≤ i < j ≤ n + 1.

Images wi of the ball sequentially distant points (cases D or C, i = 1, . . . , N, n = 2n + 1
or N = 2n + 2n + 1) are solutions to the problem

min
1≤j≤i−1

{(x − wj)�H(x − wj)} → max, xj ∈ E.

Example 1. Consider the following problem:

f (x1, x2) = −1 + cos(12
√
(x1 − 0.7)2 + (x2 − 3)2)

0.5((x1 − 0.7)2 + (x2 − 3)2) + 2
→ min, x ∈ X,

X = {x ∈ R
2 : g1(x) = x2

1 − x2 ≤ 0, g2(x) = −x1 + 3x2 − 10 ≤ 0, g3(x) = −7x1 + x2 ≤ 0},

f is the shifted drop-wave function [14], and global minimum x∗ = (0.7, 3.0), f (x∗) = −1. After
solving the corresponding problem (29), we determine the analytical center xa = (0.982, 2.125)�
and matrices

H = −∇2F(xa) =

(
6.806 −1.909

−1.909 1.210

)
, U =

(−0.956 −0.296

0.296 −0.956

)
, Λ =

(
7.395 0

0 0.621

)
.

We use Case C from the previous section, so N = 2n + 2n + 1 = 9 for n = 2. Points
vi, i = 1, . . . , 9 are determined in (27) and (28) with R = 1, points wi = xa + U�Λ− 1

2 vi,
i = 1, ...9, points x∗,i are stationary points determined by the CONOPT solver [1] starting
from points wi, and f ∗,i = f (x∗,i) are the corresponding objective function values (see
Table 1).

Table 1. Starting and stationary points in Example 1.

i vi wi x∗,i f∗,i

1 ( 1, 0)� (0.631, 2.233)� (0.700, 3.000)� −1.000

2 (−1, 0)� (1.333, 2.016)� (1.256, 1.665)� −0.656

3 ( 0, 1)� (0.607, 0.912)� (1.804, 3.935)� −0.656

4 ( 0,−1)� (1.356, 3.337)� (0.231, 1.452)� −0.605

5 ( 0, 0)� (0.982, 2.125)� (1.227, 2.560)� −0.885

6 ( 1√
2

, 1√
2
)� (0.469, 1.344)� (1.358, 2.218)� −0.793

7 (− 1√
2

,− 1√
2
)� (1.495, 2.905)� (0.700, 3.000)� −1.000

8 (− 1√
2

, 1√
2
)� (0.965, 1.190)� (1.357, 2.702)� −0.885

9 ( 1√
2

,− 1√
2
)� (0.998, 3.058)� (0.700, 3.000)� −1.000

We can see from Table 1 that the global minimum point was determined three times.
In the other six cases, different stationary points were found with two points x∗,2 and x∗,3

with the same value −0.656, and two points x∗,5 and x∗,8 with the value −0.885.
Geometrical interpretation of points wi, i = 1, . . . , 9 and the ellipsoid as a dashed

curve are given in Figure 1.
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Figure 1. Starting points wi in feasible domain and the inscribed ellipsoid in Example 1.

The advantage of the proposed approach consists in the following: well-allocated
points in “narrow and arbitrary oriented” convex compact sets can be determined since the
ellipsoid (30) provides a good inner approximation of X.

Example 2. We extend the proposed approach to solve the following problem [15]:

f (x) = 5
4

∑
j=1

xj − 5
4

∑
j=1

x2
j −

13

∑
j=5

xj → min .

Set X is determined by the following system:

2x1 + 2x2 + x10 + x11 ≤ 0,

2x1 + 2x3 + x10 + x12 ≤ 0,

2x2 + 2x3 + x11 + x12 ≤ 0,

−2x4 − x5 + x10 ≤ 0,

−2x6 − x7 + x11 ≤ 0,

−2x8 − x9 + x12 ≤ 0,

−8x1 + x10 ≤ 0,

−8x2 + x11 ≤ 0,

0 ≤ xj ≤ 1, j = 1, . . . , 9,

0 ≤ xj ≤ 100, j = 10, 11, 12,

0 ≤ x13 ≤ 1.
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Points vi, i = 1, . . . , 2n + 1 = 27 were determined according to Case B (26). Points
wi, i = 1, . . . , 27 were computed by (31), and xa is the analytical center of X. Since the
objective function is nonconvex and quadratic, the global minimum is achieved on the
boundary of X. Points ui were obtained as intersections of rays xa + τ(wi − xa), τ ≥ 0,
i = 1, . . . , 27 with the boundary of X. Then, the multistart procedure started from points ui

was applied, and the global minimum x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1)�, f (x∗) = −15
was found.

4. Allocation of an Arbitrary Given Number of Points

In the previous section, the number of allocated points was equal to n + 2 or 2n + 1
or 2n + 2n + 1. The allocation procedure was based on setting the points in a ball. In this
section, we assume that the number of allocated points is p, which is different from
the previous values, and, more importantly, the allocation procedure is not connected
to the ball. The price for such an approach is a sequential solution to a special global
optimization problem.

Problem (7) is to be iteratively solved as was announced in Section 1. This problem
is a problem of the global maximization of a convex quadratic function over a bounded
polyhedral set. Hence, special methods can be used for the solution.

Let the number p of allocated points be given. The first point v1 can be chosen
arbitrarily. The remaining points are found by solving the global optimization problem

vk+1 ∈ Arg max{‖x‖2 + t : 2x�vj + t ≤ ‖vj‖2, j = 1, . . . , k, x ∈ X}, k = 1, . . . , p − 1. (32)

In solving the examples below, we used the solver SCIP [16] for finding the global maximum
in Problem (32).

Example 3. The number of allocated points p = 16, set X = {(x1, x2) : x1 + 2x2 � 2, x1 � 0,
x2 � 0}. Since the feasible set is polytope, it was decided to start from the vertex v1 = (0, 0)�.
In Figure 2, a geometrical interpretation of the allocated points is given.

x1

x2

0.5

1

0.5 1 1.5 2v1

v2

v3

v4

v5

v6v7

v8

v9v10

v11

v12

v13

v14

v15
v16

Figure 2. Allocation of the starting points in Example 3.

In Table 2, the coordinates of vectors vi are given, and r2 is the squared maximum
distance from the current point to the previous ones.

Example 4. The number of allocated points p = 16, set X = {(xx, x2) : −x1 + x2 � 3, x1 +
2x2 � 15, 2x1 − x2 � 10, −3x1 − 5x2 � −15}. The starting vertex v1 = (0, 3)�. The deter-
mined vertices are shown in Figure 3.
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Table 2. Points and distances in Example 3.

i vi
1 vi

2 r2 i vi
1 vi

2 r2

1 0 0 — 9 1.031 0.133 0.136

2 2 0 4 10 0.344 0.133 0.136

3 1 0.5 1.25 11 1.313 0.344 0.122

4 0 1 1 12 0.687 0.656 0.122

5 0.375 0.5 0.391 13 1.688 0.156 0.122

6 1.375 0 0.391 14 0.313 0.844 0.122

7 0.867 0 0.348 15 0.719 0.328 0.109

8 0 0.609 0.153 16 0.080 0.305 0.099

x1

x2

1

2

3

4

5

6

1 2 3 4 5 6 7

v1

v2

v3

v4

v5

v6

v7
v8

v9

v10

v11

v12
v13

v14

v15

v16

Figure 3. Allocation of starting points in Example 4.

Table 3 contains the coordinates of vi and again the squared maximum distances (r2)
from the current point to the previously found ones.

Table 3. Points and distances in Example 4.

i vi
1 vi

2 r2 i vi
1 vi

2 r2

1 0 3 — 9 1.535 2.079 3.303

2 7 4 50 10 3.465 0.921 3.203

3 5 0 20 11 3.273 4.221 2.337

4 3.154 5.923 18.491 12 4.471 3.108 1.748

5 3.216 2.693 10.436 13 5.779 3.532 1.711

6 5.484 2.258 5.333 14 4.703 1.245 1.637

7 4.792 4.391 5.029 15 1.178 3.224 1.438

8 1.745 4.280 4.684 16 4.200 5.400 1.368
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Example 3 shows that vertices of the given polytope are not necessarily covered by
points vi. The vertex (3, 6)� is not covered.

In practice, it is enough to find a new point, which is sufficiently far from the previous
points. Hence, a good local solver can be used for finding the solution to Problem (32).
In the testing below, we used the IPOPT solver [17] for this purpose. In the testing problems,
the feasible set X was a bounded polyhedral set

X = {x ∈ R
n : Ax ≤ b, x ≤ x ≤ x},

with m × n matrix A. Vectors b ∈ Rn, x, x ∈ Rn were determined randomly in a such a way
that int(X) �= ∅. The first two points v1 and v2 are approximate solutions to the problem

‖x − y‖2 → max, x ∈ X, y ∈ X, (33)

where v1 = x∗, v2 = y∗. For solving Problem (33), the SCIP solver was used with
the solution time limitation increased by 30 s. The number of points was equal to 100.
The solution to the corresponding problems (32) for k = 3, . . . , 99 were obtained by the
IPOPT solver. The last point, v100, was obtained by the SCIP solver with the time limitation
increased to 300 s. In Table 4, n is the number of variables, m is the number of rows in
matrix A, Δ12 = ‖v1 − v2‖, δ is the obtained maximum distance from the last point v100 to
the previous ones, and T is the solving time in seconds. Testing was performed on IntelCore
i7-3610QM (2.3 Ghz, 8 GB DDR3 memory).

Table 4. Initial and final distances for testing Problem (33).

n m Δ12 δ T

5 10 1043.004 243.887 29.125

10 20 1931.523 608.201 116.189

20 30 2972.218 1272.148 414.603

30 45 3162.046 1430.453 461.576

40 60 4074.319 2166.210 551.885

50 75 4274.107 2145.411 630.431

In problems with five and ten variables, globally optimal solutions were found.
In other words, for example, when n = 10, the diameter of X was equal to 1931.523,
and the exact maximum distance from the 99 previous points to the point x100 was equal
to 608.201. In higher-dimensional problems, approximate solutions were determined.

5. Two Kinds of Multistart Strategy

We know that the feasible set X can be covered by p balls with centers at v1, . . . , vp

and with radius rp =
√

ϕ(vp) (see Problem (5)). Consider the p optimization problem

f (x) → min, ‖x − vj‖2 ≤ r2
p, x ∈ X, (34)

where j = 1, . . . , p. Let x�,j, j = 1, . . . , p be points obtained as a result of the application of
the CONOPT solver to Problem (34) using vj, j = 1, . . . , p as the starting points. Compare
Problem (34) with the following one:

f (x) → min, x ∈ X, (35)

Let x∗,j, j = 1, . . . , p be solutions of (35) obtained also by the CONOPT solver applied p
times also from points vj, j = 1, . . . , p as the starting points. Points x�,j, j = 1, . . . , p have a
“local nature” because of constraints ‖x − vj‖ ≤ r2

p, j = 1, . . . , p. Therefore, we can make

the following assumption: the set Ω�
p = {x�,j : j = 1, . . . , p} contains more different local
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minima than the set Ω∗
p = {x∗,j : j = 1, . . . , p}. It is not difficult to construct an example,

in which all points x�,j, j = 1, . . . , p as well as points x∗,j, j = 1, . . . , p are points of different
local minima. The first multistart strategy is connected to the construction of the sets Ω∗

p.

The second multistart strategy is connected to the construction of the sets Ω�
p. However,

in practice there can be a significant difference between these sets of points for particular
cases. Let us consider the following examples.

Example 5. Consider the Bird problem:

f (x1, x2) = (x1 − x2)
2 + e(1−sin(x1))

2
cos(x2) + e(1−cos(x2))

2
sin(x1),

xi ∈ [−2π, 2π], i = 1, 2.

This problem has many local minima and two global minimum points, xg,1 = (4.701, 3.152)� and
xg,2 = (−1.582,−3.130)� with f (xg,1) = f (xg,2) = −106.765. For p ≤ 5, sets Ω�

p and Ω∗
p do

not contain global minimum points. When p = 6, the set Ω�
6 contains five different local minima,

and one of them is a global minimum. The set Ω∗
6 contains four different local minima, and one of

them is a global minimum. In total, the set Ω∗
6
⋃

Ω�
6 contains six different points of minimum, and

one of them is a global minimum. The set Ω∗
7 contains five local minima and two of them are global

minima. The set Ω�
7 contains the same of local minima as Ω�

6. In total, the set Ω∗
6
⋃

Ω�
6 contains

seven different local minima, and two of them are global minima.

Example 6. Consider the Branin problem:

f (x1, x2) =

(
−1.275

x2
1

π2 + 5
x1

π
+ x2 − 6

)
+

(
10 − 5

4π

)
cos(x1) cos(x2)+

+ log(x2
1 + x2

2 + 1) + 10,

xi ∈ [−5, 15], i = 1, 2.

The global minimum is unique, xg = (−3.2, 12.53)�, f (xg) = 5.559. When p ≤ 17, the sets Ω�
17

and Ω∗
17 do not contain the global minimum point. The set Ω∗

18 contains nine different local minima,
and one of them is the global minimum. The set Ω�

18 also contains nine different local minima, and
one of them is the global minimum. Sets Ω∗

18 and Ω�
18 do not coincide, and their union Ω∗

18
⋃

Ω�
18

contains 10 different local minima, and one of them is the global minimum.

Example 7. Consider the egg crate problem:

f (x1, x2) = x2
1 + x2

2 + 25
(

sin2(x1) + sin2(x2)
)

,

xi ∈ [−5, 10].

The global minimum is unique, xg = (0, 0)�, f (xg) = 0. The set Ω∗
5 contains five different local

minima, and one of them is the global minimum. When p ≤ 4, the sets Ω∗
p do not contain the global

minimum. As for the sets Ω�
p, they contain the global minimum for p ≥ 26. The set Ω�

26 contains
twenty-five different local minima, and one of them is the global minimum. In comparison, the set
Ω∗

26 contains eighteen different local minima, and one of them is the global minimum.
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Example 8. Consider the Mishra problem:

f (x1, x2) =
[
sin2

(
(cos(x1) + cos(x2))

2
)
+ cos2

(
(sin(x1) + sin(x2))

2
)
+ x1

]2
+

+0.01(x1 + x2),

xi ∈ [−10, 10], i = 1, 2.

The problem has the unique global minimum xg = (−1.987,−10)�, f (xg) = −0.1198. The sets
Ω∗

p contain the global minimum for p ≥ 6, while the set Ω∗
6 contains five different local minima, and

one of them is global. The sets Ω�
p do not contain the global minima for p ≤ 600. The corresponding

radius of each covering ball for p = 600 is equal to 0.625. Hence, the Mishra problem has very
many “narrow” points of local minima.

Example 9. Consider the Price problem:

f (x1, x2) = 1 + sin2(x1) + sin2(x2)− 0.1e−x2
1−x2

2 ,

xi ∈ [−5, 10], i = 1, 2.

The global minimum is unique, xg = (0, 0)�, f (xg) = 0.9. The sets Ω∗
p contains the global

minimum for p ≥ 26. The set Ω�
p contains the global minimum for p ≥ 13.

Example 10. Consider the Shubert problem:

f (x1, x2) =

(
5

∑
i=1

i cos((i + 1)x1 + i)

)(
5

∑
i=1

i cos((i + 1)x2 + i)

)
,

xi ∈ [−10, 10], i = 1, 2.

There are many global minima, one of them being xg = (−7.084, 4.858)�, f (xg) = −186.7309.
The sets Ω∗

p start to contain a global minimum from p = 5. The set Ω∗
5 contains only two different

local minima, and one of them is global. The sets Ω�
p contain a global minimum when p ≥ 29, and

all twenty-nine local minima of the set Ω�
29 are different.

Example 11. Consider the Trefethen problem:

f (x1, x2) = 0.25x2
1 + 0.25x2

2 + esin(50x1) − sin(10x1 + 10x2) + sin(60ex2)+

+ sin(70 sin(x1)) + sin(sin(80x2)),

xi ∈ [−10, 10], i = 1, 2.

The global minimum is unique, xg = (−0.0244, 0.2106)�, f (xg) = −3.3069. This
problem has very many local minima. For example, the set Ω∗

30 consists of thirty different
local minima, with no global minimum among them. The set Ω�

30 contains twenty-eight
new different local minima in addition to the set Ω∗

30, again with no global minimum among
them. Therefore, the union Ω∗

30
⋃

Ω∗
30 contains the fifty-eight different local minima and no

global minimum. Only for p ≥ 570, the sets Ω∗
p contain the global minimum. The set Ω�

570
contains the five hundred seventy different local minima and no global minimum. Each
radius of the five hundred seventy balls, which cover the feasible set, is equal to 0.625.

In all considered examples, the following properties should be mentioned. As a rule,
the sets Ω∗

p need fewer points to detect a global minimum. Example 8 with the Mishra
function provides a very remarkable confirmation of this assumption: only six points were
used in the set Ω∗

6 to cover the global minimum, whereas even six hundred points were
not enough to detect the global minimum in the case of the set Ω�

600. The price for such a
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behaviour is that many points in the sets Ω∗
p are found several times, in contrast to the sets

Ω�
p. We also have to keep in mind that in example 9 with the Price function, the situation is

opposite: thirteen points to detect the global minimum for the set Ω�
13 and twenty-six points

to detect the global minimum for the set Ω∗
26. The number of different local minimum

points in the sets Ω�
p is usually larger than in the sets Ω∗

p. Nevertheless, local minimum
points in the sets Ω∗

p being smaller in number, usually (not always) have lower objective
function values.

Let us compare the sets Ω∗
p and Ω�

p for all tested problems and for the same number

of points p = 20, that is, we compare the sets Ω∗
20 and Ω�

20. The results of the comparison
are given in Table 5. Column N∗

L(N∗
G) shows the number N∗

L of the different local minima
in the corresponding sets Ω∗

20, with N∗
G being the number of global minima among them.

Similarly, column N�
L(N�

G) shows the number N�
L of different local minima in the sets Ω�

20

with the number N�
G of global minima among them. Column New N�

G shows the number
of global minima in the sets Ω�

20 \ Ω∗
20 (new global minima). Column New N�

L shows the
number of local minima in the sets Ω�

20 \ Ω∗
20 (new local minima). Column NT

L (NT
G) shows

total number NT
L of different local minima and total number NT

G of different global minima
obtained by determining both sets Ω∗

20 and Ω�
20. For example, for the Shubert problem, we

have 13(3) in the column N∗
L(N�

G), which means that the corresponding set Ω∗
20 contains

thirteen different local minimum points and three of them are global minimum points.
In the column N�

L(N�
G), we have 18(3) that means that the corresponding set Ω�

20 contains
eighteen different local minima and three of them are global minimum points. Column New
N�

G shows that one new global minimum point is contained in the set Ω�
20 in comparison

to the set Ω∗
20, and column New N�

L shows that the set Ω�
20 contains fourteen new local

minimum points in comparison to the set Ω∗
20. Finally, in column NT

L (NT
G), we have 27(4),

which means that twenty-seven different local minimum points were determined, and four
of them are global minimum points.

Table 5. Comparison of two multistart strategies.

Problem N∗
L(N∗

G) N�
L(N�

G) New N�
G New N�

L NT
L (NT

G)

Bird 7(2) 7(2) 0 0 7(2)

Branin 10(1) 11(1) 0 2 12(1)

Egg Crate 15(1) 13(0) 0 8 23(1)

Mishra 12(1) 11(0) 0 6 18(1)

Price 6(0) 17(1) 1 12 18(1)

Shubert 13(3) 18(3) 1 14 27(4)

Trefethen 19(0) 15(0) 0 12 31(0)

Assuming the differentiability of the objective function and finiteness of the set of local
minima, it is not possible to assess the number of local minima. Therefore, we propose the
following approach. Assess the number p of local minima from some additional practical
considerations. Then, construct the set Ω∗

p containing a good local minimum point or even

a global minimum point. After that, construct the set Ω�
p to enlarge the number of local

minima to catch situations similar to the Price function. Due to the very high efficiency of
the CONOPT solver, finding the sets Ω∗

p and Ω�
p is not too computationally demanding.

We can obtain a practical assessment of the number of minima of the objective function
by using such a mixture of these two kinds of the multistart strategy. If the number of
total determined local minima is not very large (for example, many of them are found
many times), then we can conclude that we performed a good exploration of the objective
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function. Otherwise, we can reach the conclusion that the objective function is of a very
complicated structure.

6. Testing Sequentially Distant Points in Optimization Problems

We present the results of testing the comparative efficiency of using sequentially distant
and randomly generated points in solving optimization problems. Three strategies, A, B,
and C, based on the cases from Section 1, are tested. Optimization problems are problems of
minimizing highly nonlinear functions over a box or parallelepiped. Firstly, the maximum
radius ball centered at the center of the parallelepiped is constructed. Secondly, for strategy
A, n + 2 ball sequentially points corresponding to (24)–(25) are determined. For strategy B,
2n + 1 points based on (26) are determined. For strategy C, we use the points (28) plus the
center of the parallelepiped, in total 2n + 1 points.

We used the multistart strategy with the generated points as the starting points.
Strategies A, B, and C are compared with random strategies RndA, RndB, and RndC of the
corresponding sizes. In strategy RndA, n + 2 uniformly distributed points are generated;
in strategy RndB, the number of uniformly distributed points is 2n + 1; and in strategy
RndC, the number of uniformly distributed points is 2n + 1. In all strategies, a parallel local
search process based on the CONOPT solver was started.

In Tables 6–9, the column “Duplicated Solutions” shows the number of points, which
were found several times; the column “Different Solutions” shows the number of different
found points; the column “Different Minimum Values” shows the number of different local
minimum values among different solutions (i.e., there could be different local minimum
points with the same objective value); the column “Record Value” shows the value of the
objective function at the best point; in the column “Global Minimum,” the sign “+” means
that the global minimum was found, otherwise the sign “−” is used; and the column
“Time” shows the total solution time in seconds. Testing was performed on an Intel Core
i7-3610QM computer (2.3 GHz, 8 GB DDR3 memory). All computations were done in
GAMS Demo version.

Strategies C and RndC were used for dimensions n = 5 and n = 10, since they are of
exponential complexity.

Griewank function. Consider the optimization problem

f (x) =
1

4000

n

∑
i=1

x2
i −

n

∏
i=1

cos
(

xi√
i

)
→ min,

x ∈ Π = {x ∈ R
n : −600 ≤ xi ≤ 900, i = 1, . . . , n}.

Global minimum x∗ = (0, . . . , 0)�, f (x∗) = 0. Testing results are given in Table 6. Proper-
ties of the Griewank function are studied in [18].

Table 6. Testing results for the Griewank function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values

Record
Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 0.473 − 0.531

RndA 7 0 7 7 0.418 − 0.500

B 11 0 11 4 0.118 − 0.764

RndB 11 0 11 11 0.024 − 0.843

C 33 0 33 33 0.000 + 2.482

RndC 33 0 33 27 0.000 + 2.559
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Table 6. Cont.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values

Record
Value

Global
Minimum

(+/−)
Time (s)

n = 10

A 12 1 11 11 0.000 + 0.858

RndA 12 4 8 8 0.000 + 0.889

B 21 0 21 21 0.000 + 1.388

RndB 21 5 16 13 0.000 + 1.373

C 1025 512 513 208 0.000 + 98.109

RndC 1025 499 526 202 0.000 + 92.259

n = 50

A 52 38 14 14 0.000 + 4.680

RndA 52 51 1 1 0.000 + 3.573

B 101 11 90 84 0.000 + 8.548

RndB 101 100 1 1 0.000 + 8.596

n = 100

A 102 91 11 11 0.000 + 8.938

RndA 102 101 1 1 0.000 + 9.142

B 201 42 159 149 0.000 + 22.089

RndB 201 200 1 1 0.000 + 19.968

n = 300

A 302 184 118 76 0.000 + 38.923

RndA 302 301 1 1 0.000 + 37.768

B 601 269 332 286 0.000 + 83.617

RndB 601 600 1 1 0.000 + 76.893

n = 500

A 502 398 104 71 0.000 + 76.877

RndA 502 501 1 1 0.000 + 76.581

B 1001 595 406 332 0.000 + 169.198

RndB 1001 1000 1 1 0.000 + 138.054

Rastrigin function. Consider the optimization problem

f (x) = 10n +
n

∑
i=1

(
x2

i − 10 cos(2πxi)
)
→ min,

x ∈ Π = {x ∈ R
n : −5.12 ≤ xi ≤ 7.68, i = 1, . . . , n}.

Global minimum x∗ = (0, . . . , 0)�, f (x∗) = 0. Testing results are given in Table 7.
Let us make some comments on the results in Table 7. A uniform distribution of

the starting points happened to be very inefficient: the best solution is very far from the
optimum. Take, for example, the case n = 300. Strategy A found 302 different local minima
with 11 different objective function values. Checking the list of local minimum points
shows that there are 78 different local minimum points, with the best value being 0.995.
Therefore, strategy A shows that there are quite a number of different local minima with
objective value close to the optimal one. Formally, the same can be said about strategies
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RndA and RndB. These random strategies also found a large number of different local
minima; however, the objective function values are very far from the optimal value.

Schwefel function. Consider the optimization problem

f (x) = 418.9829n −
n

∑
i=1

xi sin(
√
|xi|) → min,

x ∈ Π = {x ∈ R
n : −500 ≤ xi ≤ 500, i = 1, . . . , n}.

Global minimum x∗ = (420.9687, . . . , 420.9687)�, f (x∗) = 0. Testing results are given in
Table 8.

Table 7. Testing results for the Rastrigin function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values

Record
Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 0.995 − 0.780

RndA 7 0 7 7 18.904 − 0.515

B 11 1 10 4 0.995 − 0.781

RndB 11 0 11 11 3.979 − 0.765

C 33 1 32 23 0.000 + 2.527

RndC 33 0 33 27 17.909 − 2.480

n = 10

A 12 0 12 9 0.995 − 0.858

RndA 12 0 12 12 39.798 − 0.890

B 21 2 19 5 0.000 + 1.576

RndB 21 0 21 21 39.798 − 1.638

C 1025 53 972 162 0.000 + 101.790

RndC 1025 0 1025 680 21.889 − 96.971

n = 50

A 52 0 52 9 0.000 + 3.354

RndA 52 0 52 52 198.992 − 3.604

B 101 16 85 7 0.000 + 8.549

RndB 101 0 101 101 198.992 − 8.347

n = 100

A 102 0 102 11 0.995 − 12.620

RndA 102 0 102 102 397.983 − 10.188

B 201 43 158 6 0.000 + 21.013

RndB 201 0 201 200 397.983 − 20.124

n = 300

A 302 0 302 11 0.995 − 37.378

RndA 302 0 302 302 1193.949 − 39.503

B 601 87 514 7 0.000 + 79.701

RndB 601 0 601 601 1193.949 − 74.911

n = 500

A 502 3 499 11 0.000 + 76.995

RndA 502 0 502 501 1989.915 − 36.331

B 1001 153 842 7 0.000 + 171.975

RndB 1001 0 1001 1000 1989.915 − 168.044

155



Mathematics 2024, 12, 606

Table 8. Testing results for the Schwefel function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Values

Record
Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 7 929.319 − 0.515

RndA 7 0 7 7 475.270 − 0.531

B 11 1 10 7 238.915 − 0.764

RndB 11 0 11 11 455.533 − 0.749

C 33 1 32 22 118.438 − 2.199

RndC 33 0 33 31 455.533 − 2.480

n = 10

A 12 0 12 12 1562.522 − 0.905

RndA 12 0 12 12 1383.337 − 0.904

B 21 4 17 7 0.000 + 1.388

RndB 21 0 21 21 1223.898 − 1.591

C 1025 165 860 105 0.000 + 99.997

RndC 1025 5 1020 872 651.829 − 100.121

n = 50

A 52 0 52 52 2349.118 − 3.900

RndA 52 0 52 52 8164.279 − 4.040

B 101 25 76 23 0.000 + 8.502

RndB 101 0 101 101 7859.295 + 7.878

n = 100

A 102 0 102 102 296.108 − 9.016

RndA 102 0 102 102 16,993.912 − 8.611

B 201 55 146 31 0.000 + 21.231

RndB 201 0 201 201 16,948.095 − 18.441

n = 300

A 302 0 302 294 5909.961 − 33.119

RndA 302 0 302 302 53,468.437 − 32.479

B 601 215 386 39 0.000 + 68.984

RndB 601 0 601 601 50,650.766 − 69.732

n = 500

A 502 3 502 483 214.513 − 70.747

RndA 502 0 502 502 89,847.498 − 74.974

B 1001 328 673 43 0.000 + 168.498

RndB 1001 0 1001 1000 89,104.515 − 167.998

Again, pure random strategies show the worst results.
Levy function. Consider the optimization problem

f (x) = 10 sin2(πx1) +
n−1

∑
i=1

(xi − 1)2(1 + 10 sin(πxi+1))
2 + (xn − 1)2 → min,

x ∈ Π = {x ∈ R
n : −10 ≤ xi ≤ 10, i = 1, . . . , n}.

Global minimum x∗ = (1, . . . , 1)�, f (x∗) = 0. Testing results are given in Table 9.
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Table 9. Testing results for the Levy function.

Strategy
Number of

Starting
Points

Duplicated
Solutions

Different
Solutions

Different
Minimum

Value

Record
Value

Global
Minimum

(+/−)
Time (s)

n = 5

A 7 0 7 5 0.001 − 0.546

RndA 7 0 7 7 0.337 − 0.515

B 11 1 10 6 1.064 − 0.858

RndB 11 0 11 10 1.064 − 0.764

C 33 0 33 28 0.0005 − 2.465

RndC 33 0 33 31 0.0004 − 2.446

n = 10

A 12 1 11 4 1.064 − 0.858

RndA 12 0 12 12 0.937 − 0.983

B 21 1 20 5 1.064 − 1.575

RndB 21 0 21 19 0.0005 − 1.388

C 1025 0 1025 252 0.0004 − 94.849

RndC 1025 1 1024 568 0.0004 − 94.817

n = 50

A 52 1 51 7 0.0005 − 4.197

RndA 52 0 52 51 0.0005 − 3.728

B 101 1 100 4 1.064 − 8.502

RndB 101 0 101 98 0.001 − 8.377

n = 100

A 102 1 101 4 0.0005 − 8.486

RndA 102 0 102 101 0.0005 − 8.361

B 201 1 200 5 1.064 − 18.939

RndB 201 0 201 199 0.002 − 19.355

n = 300

A 302 1 301 6 0.937 − 33.665

RndA 302 0 302 302 1.064 − 40.778

B 601 1 600 12 1.064 − 76.332

RndB 601 0 601 601 1.064 − 75.629

n = 500

A 502 1 501 7 1.064 − 74.210

RndA 502 0 502 502 1.064 − 94.257

B 1001 1 1000 20 0.0005 − 168.590

RndB 1001 0 1001 1000 1.064 − 171.942

The Levy function was the most difficult testing case for all strategies. Not one of
them could determine the global minimum. Nevertheless, strategies A and B are relatively
efficient in high-dimensional cases.

The total testing showed that the most effective was strategy B, in terms of both finding
the best solution and computational efforts. This effect can be explained in the following
way: strategy B explores the total area of the feasible set more efficiently than the others.

7. Conclusions and Future Work

Sequentially most distant points techniques were suggested for determining good
starting points in multistart strategies for problems of global optimization. Preliminary
testing showed that the new strategies find good local minima very fast. The sequentially

157



Mathematics 2024, 12, 606

distant points can be obtained either by using an inscribed ellipsoid centered at the ana-
lytical center of the feasible set or by approximately solving auxiliary global optimization
problems of special types.

Our future work will be devoted to an extension of the suggested techniques to solving
global optimization problems with nonconvex feasible sets and to solving special highly
nonlinear problems from practical applications.
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Abstract: The problem of a stabilisation system synthesis for the motion of a control object along a
given spatial trajectory is considered. The complexity of the problem is that the preset trajectory is
defined in the state subspace and not in time. This paper describes a stabilisation system synthesis for
motion along a trajectory specified in time and along a trajectory specified in the form of a manifold
in a state space. In order to construct a stabilisation system, it is necessary to determine a distance
between an object and the given trajectory at each moment in time. For trajectories that are not
given in time, the determination of this distance can be ambiguous. An object may be exactly on a
trajectory but at a different time. This paper proposes some approaches to solve the problem. One of
the approaches is to transform a given trajectory in a state subspace into a trajectory given in time.
A description of a universal method to perform this transformation is presented. In order to solve the
synthesis problem automatically, without having to analyse the mathematical model of the control
object, it is suggested that machine learning control by symbolic regression is used. In computational
experiments, examples of stabilisation system syntheses for quadcopter motion along a given spatial
trajectory are presented.

Keywords: machine learning control; optimal control; control synthesis; stabilisation system;
symbolic regression; quadcopter

MSC: 49M25; 68W50

1. Introduction

The problem of stabilising the motion of an object along a given trajectory is very
common for almost all autonomous robots moving in geometric space. If a mathematical
model of a control object is an ODE system with a free control vector in the right part, then
the stabilisation system is a control function that changes the right part so that the ODE
system, as a parametric mapping of the state space into itself, has an attractor property
in the neighbourhood of the given trajectory. An argument of the control function of a
stabilisation system is a deviation of the control object from the given trajectory. An ideal
stabilisation system has such a control function that the ODE system of the mathematical
model of the control object has a stable particular solution or a singular particular solution
in the form of an attractor in the neighbourhood of the given trajectory.

Basically, two approaches are used to solve the tracking problem. The first is analytical,
when the inverse problem is solved (a trajectory is specified in time and a control is sought
that ensures movement along the trajectory). This approach is widely used for simple low-
dimensional models and, as a rule, control is included linearly in the object model. In many
papers related to trajectory tracking [1–5], the control system is built based on the analysis
of the control object model. The developer of the control system studies the mathematical
model of the control object, defines control channels that affect the movement of the object
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and determines the components of the control vector that affect a particular direction of
movement of the object. Further, regulators are inserted into the control channels, which
qualitatively work out movement errors along the trajectory.

The second approach is applied when the trajectory is given in space. A stabilisation
system is built relative to a point in state space and then these points are placed on the
trajectory [6–8]. Switching points occur sequentially and the object moves from one point to
another along a trajectory. This process is known as point tracking. This approach ensures
accurate movement along the trajectory providing the intervals for switching points and
their locations are optimally selected. Note that the movement of a control object from one
stable point to another is not uniform. The speed of the object slows down as it approaches
a stable point of equilibrium. At the equilibrium point, the object stops. Therefore, point
tracking is not optimal if the quality criterion depends on the time of the control process.
Each of these approaches, when executed carefully enough, can produce a satisfactorily
accurate trajectory.

To ensure the stability of the object with respect to the equilibrium point in point
tracking, it is necessary to solve the control synthesis problem. It is necessary to search for a
control function as a function of a state space vector. At present this problem does not have
an exact universal numerical solution. The most general approach is to linearise the model
with respect to the equilibrium point and to find the control as a linear feedback function,
so that the matrix of the control system has eigenvalues in the left half of the complex
plane. Such an approach does not provide any quality in the control process. Solutions of
differential equations in the neighbourhood of a stable equilibrium point can be asymptotic
or periodic.

The control synthesis problem is so complex that it can only be solved when the control
system is created. Trajectories can be given in the process of robotic operation. The motion
stabilisation system should be universal, so that this system can be used to stabilise a wide
class of trajectories, i.e., one stabilisation system should be applied to movement along any
trajectory from a set. In [9], a universal stabilisation system for motion along an optimal
program trajectory is obtained as a result of solving the optimal control problem. The
stabilisation system is constructed on the basis of machine learning control by symbolic
regression. The optimal trajectory is a function of time, so the deviation of the control object
from the given trajectory is simply calculated as a difference between the state vector of the
control object and the current coordinate of the trajectory point in the geometric subspace
at any time. This paper continues the study of the construction of a universal stabilisation
system for the motion of a control object along a given trajectory. In contrast to [9], here we
consider the trajectories that are not functions of time but are given in the state space in the
form of a one-dimensional manifold.

Another aspect of the study deals with the automation of control system development.
For a real control system, the problem of control synthesis is solved manually by studying
the mathematical model of the control object, determining the control channels and inserting
the regulators there. This paper presents the approach of constructing an object motion
stabilisation system along the trajectory based on machine learning control by symbolic
regression. Machine learning (ML) is a branch of artificial intelligence that focuses on
the learning through experience and decision making of computer programs similar to
humans. ML has already been effectively applied to various fields [10], for example, to
develop accurate, interpretable and generalisable nonlinear models for complex natural and
engineered systems [11]. A survey on the application of ML to solve large control problems
is presented in [12]. In [13], the term machine learning control (MLC) was introduced as a
framework to discover effective control laws for complex, nonlinear dynamics, mainly by
genetic programming [14].

The machine, or more precisely the program running on the machine itself, builds a
system for stabilising the movement of the object along the trajectory. Developers do not
need to study the mathematical model of the control object and define control channels.
A computer does it all for them. The developer does not even need to know the trajectory
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itself, so the stabilisation system to be created is first trained to follow any trajectory
consisting of straight segments. The developer then splits the trajectory into segments and
passes them to the stabilisation system in this form. The object under the control of the
stabilisation system moves along a given trajectory. Thus, the novelty of the research is to
propose a universal approach to stabilisation system synthesis for motion along a trajectory
not given in time.

In this paper MLC is used to solve the stabilisation system synthesis problem for
quadcopter motion along a trajectory given in the state subspace by a symbolic regres-
sion method, a network operator method. To estimate the performance of the proposed
approach, a linear trajectory containing sharp corners, which pose difficulties for the
movement of the quadcopter, was chosen.

2. Statement of the Stabilisation System Synthesis of an Optimal Motion

2.1. Stabilisation System along Trajectory Given in Time

The mathematical model of a control object in the form of an ODE system is

ẋ = f(x, u), (1)

where x is a state vector of the control object, x ∈ Rn, x = [x1 . . . xn]T ; the state space vector
consists of two subvectors

xT = [yT ...zT ], y = [x1 . . . xk]
T , z = [xk+1 . . . xn]

T , (2)

y ∈ Rk, Rk is a geometrical subspace, k ∈ {2, 3}, z is a subvector of state vector that
contains components that are not included into geometrical subspace, u is a control vector,
u ∈ U ⊆ Rm and U is a compact set that defines control constraints. For example, control
vector component values may be constrained

u− � u � u+, (3)

u− = [u−
1 . . . u−

m ]
T , u = [u1 . . . um]T , u+ = [u+

1 . . . u+
m ]

T .
For system (1), an initial state domain is

X0 ⊆ R
n. (4)

The terminal state is given in geometrical subspace

y(t f ) = y f = [x f
1 . . . x f

k ]
T , (5)

where t f is a limited terminal time to reach the terminal state and t f � t+, t+ is a given value.
The quality criterion is given in the following common integral form

J0 =

t f∫
0

f0(x, u)dt → min
u∈U

. (6)

The spatial trajectory is presented as a one-dimensional manifold

θi(y) = 0, i = 1, . . . , k − 1. (7)

The terminal state (5) is located on the given trajectory,

θi(y
f ) = 0, i = 1, . . . , k − 1. (8)

The control function is searched as

u = h(y∗ − y(t)) ∈ U, (9)
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where y∗ is the point on the manifold (7) closest to the current value of the state vector

min ‖y∗ − y(t)‖, θi(y
∗) = 0, i = 1, . . . , k − 1. (10)

For any P initial states from the set (4), the following quality criterion reaches the
minimum value

J1 =
P

∑
i=1

( t f ,i∫
0

( f0(x(t, x0,i), h(y∗ − y(t, x0,i))) + p1‖y∗ − y(t, x0,i)‖)dt+

p2‖y f − y(t f ,i, x0,i)‖
)

→ min, (11)

where p1, p2 are weight coefficients, y(t, x0,i) is a particular solution of ODE system

ẋ = f(x, h(y∗ − y)) (12)

from initial state x0,i ∈ X0, i = 1, . . . , P, and t f ,i is a time to reach the terminal state (5),
which is calculated as

t f ,i =

{
t, if t < t+ and ‖y f − y(t, x0,i)‖ � ε1

t+, otherwise
, i = 1, . . . , P, (13)

ε1 is the given small positive value.
The solution of the problem is a control function (9). To solve the problem, it is

necessary to find the point y∗ on the manifold (7) closest to the current state of the control
object at each moment of time. It is a rather time-consuming computational process because
it requires solving an optimisation problem.

2.2. Stabilisation System along Trajectory Given in Space

Let us consider another approach to solve this problem. Suppose that any one-
dimensional manifold can be divided into straight segments. Let y∗,j, j = 1, . . . , N be
the join points of the straight segments in the geometric space, Rk. Then, the length of
straight segment between points yi and yi+1 is

Lj = ‖y∗,j+1 − y∗,j‖. (14)

The length of the manifold is

L =
N−1

∑
j=1

Li =
N−1

∑
j=1

‖y∗,j+1 − y∗,j‖. (15)

If t+ is the maximum time for motion on the manifold, then a module of motion speed
on the manifold is

v =
L
t+

, (16)

and a time of movement on a straight segment j, j = 1, . . . , N − 1, is

tj =
Lj

L
t+. (17)

Now, let us build a reference model

ẏ∗ = v, (18)
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where v = [v1 . . . vk]
T ,

vi =
y∗,j+1

i − y∗,j
i

tj
, (19)

where y∗,j
i is a coordinate i of the point j, i = 1, . . . , k, j = 1, . . . , N − 1.

The mathematical model of the control object includes the reference model for trajec-
tory generation

ẋ = f(x, u),
ẏ∗ = v.

(20)

The task requires the search for a control function, presented as (9), to minimise the
value of the quality criterion (11). To address this control synthesis problem, the approach
of machine learning control through symbolic regression is employed.

3. Network Operator Method

Symbolic regression allows finding a mathematical expression in the form of special
code. Coding depends on the method chosen. To code a mathematical expression, symbolic
regression uses an alphabet of elementary functions. Genetic programming (GP) [14] is
the most popular symbolic regression method. GP codes mathematical expressions in
the form of computation trees. Arguments of mathematical expressions are the leaves of
the trees; functions are located in the nodes. The number of branches leaving the node
is equal to the number of arguments of the function associated with this node. When
performing the crossover operation, two codes exchange the branches exiting from the
nodes selected as crossover points. After crossover, the length of the GP code may change
which requires additional computational effort for analysis. Now, there are about twenty
symbolic regression methods.

In this study the network operator (NOP) method developed by the authors is used [15].
The network operator method uses codes of mathematical expressions presented as directed
graphs. Functions with one or two arguments form the alphabet of elementary functions.
Functions with two arguments are commutative and associative, and have unit elements, so
these functions with two arguments can be potentially used as functions with any number of
arguments. If a function with two arguments has one argument then the second argument
is a unit element of this function. In the network operator method, the source nodes of the
directed graph contain arguments of the mathematical expression. The remaining nodes in
the graph contain functions that require two arguments. The edges between the nodes in the
graph are associated with functions that only require one argument.

3.1. Coding

To illustrate this concept, let us explore an example of encoding a mathematical
expression using the network operator method. Consider mathematical expressions

y1 = x1 exp(−q1x2 + q2) sin(q2x1 + q1),
y2 = x2 exp(−q2x1 + q1) cos(q1x2 + q2),

(21)

where x1 and x2 are variables, and q1 and q2 are constant parameters.
In order to transform the mathematical expression into a code, let us employ the

alphabet of functions:

(1) Functions with one argument

F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = exp(z),
f1,4(z) = sin(z), f1,5(z) = cos(z)};

(22)

(2) Functions with two arguments

F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1 · z2}. (23)
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The identity function f1,1(z), which outputs the same value as its input argument,
should be among the functions with one argument.

Functions with two arguments should be commutative and associative, and have a
unit element,

f2,i(ei, z) = f2,i(z, ei) = z,

where ei is a unit element of the function f2,i(z1, z2). In this case, 0 is a unit element for
the summation function f2,1(z1, z2) and 1 is a unit element for the multiplication function
f2,2(z1, z2).

In Figure 1, the directed graph of the NOP for a given mathematical Expression (21)
is depicted.

Figure 1. The graph of the NOP for (21).

The nodes are enumerated in their upper parts. The arguments are in the source
nodes №1–№4. Nodes other than the source node contain numbers of functions with two
arguments. Numbers of functions with a single argument are displayed over the edges.
Nodes №11 and №12 are the sink nodes. When the node indices are arranged such that the
index of the node where the edge originates is lower than the indices of the nodes where
the edge terminates, the network operator matrix becomes upper triangular.

In the memory of a personal computer, the network operator is represented as an
integer matrix that follows a structure similar to the adjacency matrix of the network
operator graph. The network operator matrix corresponding to the graph shown in Figure 1
takes the following form

Ψ = [ψi,j] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 2 0 1 0 0 2 0 0
0 0 0 0 0 2 0 1 2 0 0 0
0 0 0 0 0 0 1 0 0 0 4 0
0 0 0 0 0 0 0 1 0 0 0 5
0 0 0 0 0 0 0 0 1 0 3 0
0 0 0 0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i, j = 1, . . . , D = 12, (24)

where D is the number of nodes in the graph and dim(Ψ) = D × D.
In the matrix, rows that have zeros on the main diagonal are connected to source

nodes. The other elements on the main diagonal that are not zero represent the numbers of
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functions with two arguments. The elements above the main diagonal, denoted as ψi,j �= 0,
are numbers of functions with one argument.

3.2. Decoding

To calculate the mathematical expression using the network operator, a vector of nodes
is defined. Initially, this vector consists of the arguments of the mathematical expression
and the unit elements of the corresponding functions with two arguments.

The initial vector of nodes for (24) is

z(0) = [x1 x2 q1 q2 1 1 0 0 0 0 1 1]T . (25)

Further, all rows in the network operator matrix are followed sequentially and when a
non-zero element occurs components of the vector of nodes are changed

z(i)j ←
⎧⎨⎩ f2,ψj,j(z

(i−1)
j , f1,ψi,j(z

(i−1)
i )), if ψi,j �= 0

z(i−1)
j , otherwise

, i = 1, . . . , D − 1, j = i + 1, . . . , D, (26)

where ψi,j is an element of the network operator matrix in row i and column j.
Each component of the vector of nodes contains the results of intermediate calculations.
After viewing the (i − 1)-th row of the component, the zi does not change.
For example, in row 1, the first non-zero element is ψ1,5 =1. This means that the

component z5 of the vector of nodes changes. We define a function with two arguments
by the matrix of the network operator, ψ5,5 = 2. Therefore, it is a function of f2,2(z1, z2)
multiplication. The first argument of this function is the value of the current z5 component
of the node vector. The second component is determined by the value of a non-zero element,
ψ1,5 = 1. This is a single argument function with the number 1, f1,1(z). The argument to
this function is the value of the z1 component of the node vector. As a result, we obtain

z(1)5 ← f2,2(z
(0)
5 , f1,1(z

(0)
1 )) = f2,2(1, f1,1(x1)) = 1 · x1 = x1.

The vector of nodes after viewing all rows of the network operator matrix has the
following form

z(11) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
q1
q2

q2x1
q1x2

q2x1 + q1
q1x2 + q2
−q1x2 + q2
−q2x1 + q1

x1 exp(−q1x2 + q2) sin(q2x1 + q1)
x2 exp(−q2x1 + q1) cos(q1x2 + q2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

The last two components are equal to the mathematical expressions (21).

3.3. Variational Genetic Algorithm

In order to find the mathematical expression that is optimal in some criterion using the
network operator method, the variational genetic algorithm (VarGA) is employed. VarGA
follows the principle of making slight changes, so-called small variations, to the initial
solution [16]. The symbolic regression method is utilised to code one potential solution,
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known as the basic solution. Other solutions are presented as small variations of the basic
solution. These variations are represented by an integer vector of four components

w = [w1 w2 w3 w4]
T , (28)

where w1 is a type of variation, w2 is the row number, w3 is the column number, w2 � w3
and w4 is the new value of an element in the matrix.

Four types of small variations are defined for the network operator. The first type,
denoted by w1 = 0, involves substituting the function with a single argument: if ψw2,w3 �= 0,
then ψw2,w3 ← w4.

The second type, w1 = 1, is an exchange of the function with two arguments: if
ψw2,w2 �= 0, then ψw2,w2 ← w4.

The third type, w1 = 2, is an insertion of the additional function with one argument: if
ψw2,w3 = 0, then ψw2,w3 ← w4.

The fourth type, w1 = 3, is an elimination of the function with one argument: if
ψw2,w3 �= 0 and ∃ψw2,j �= 0, j > w2, j �= w3 and ∃ψi,w3 �= 0, i �= w2, then ψw2,w3 ← 0.

Consider an example of the vector of small variations for (24)

w = [2 5 8 4]T . (29)

The first component shows that it is a small variation of type 3 changing a zero non-
diagonal element. In the network operator matrix (24) element in the fifth row w2 = 5, in
the eighth column, w3 = 8 is equal to zero, ψ5,8 = 0. After the small variation (29), this
element is changed to ψ5,8 = w4 = 4. The edge from node 5 to node 8 appears in the graph
(see Figure 2). The new edge is dash lined.

Figure 2. The graph of the NOP after the small variation with a new edge (dash line).

As a result a new mathematical expression is obtained

y2 = x2 exp(−q2x1 + q1) cos(q1x2 + q2 + sin(x1q2)). (30)

All other possible solutions that originated from the basic solution are coded by
ordered sets of vectors of small variations

Wi = (wi,1, . . . , wi,d), (31)

where i = 1, . . . , H, H is a number of possible solutions in the population and d is a depth
of variation.

The crossover in VarGA is performed over ordered sets of small variations. Two
possible solutions are selected randomly or as a result of tournament

Wi = (wi,1, . . . , wi,d), Wj = (wj,1, . . . , wj,d), i, j ∈ {1, . . . , H}. (32)
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The crossover point is selected randomly, c ∈ {1, . . . , d}. New possible solutions
are obtained after the exchange of small variation vectors after the crossover point in the
selected possible solutions

WH+1 = (wi,1, . . . , wi,c, wj,c+1, . . . , wj,d),
WH+2 = (wj,1, . . . , wj,c, wi,c+1, . . . , wi,d).

(33)

4. Computation Experiment

Consider the optimal control problem of the spatial motion of a quadcopter. The
control object is presented by mathematical model

ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = u4(sin(u3) cos(u2) cos(u1) + sin(u1) sin(u2)),
ẋ5 = u4 cos(u3) cos(u1)− g,
ẋ6 = u4(cos(u2) sin(u1)− cos(u1) sin(u2) sin(u3)),

(34)

where g = 9.80665.
The initial state is

x(0) = x0 = [0 5 0 0 0 0]T . (35)

The terminal state is

x(t f ) = x f = [10 5 10 0 0 0]T , (36)

where

t f =

{
t, if t < t+and ‖x f − x‖ ≤ ε1 = 0.01
t+ = 14, otherwise

. (37)

The quality criterion is

J2 =

t f∫
0

1dt = t f → min . (38)

For a given model of the control object, it is necessary to develop a stabilisation system
for movement along a given spatial trajectory. The given trajectory consists of straight
segments in 3D space. To define a spatial trajectory of straight connected segments, it
is enough to define the locations of connection points. In the considered example, the
coordinates of the connection points are as follows

Y∗ = {y∗,1 = [0 5 0]T , y∗,2 = [2 5 2]T , y∗,3 = [8 5 2]T ,
y∗,4 = [2 5 8]T , y∗,5 = [8 5 8]T , y∗,6 = [10 5 10]T} (39)

According to the proposed approach, initially, a reference model (18) is created.
The length of the trajectory is

L =
5

∑
i=1

Li = 2.82843 + 6 + 8.48528 + 6 + 2.82843 = 26.14213. (40)

Equation (17) is used to calculate the values of the reference time intervals. The
following time intervals were obtained: t1 = 1.515, t2 = 3.213, t3 = 4.544, t4 = 3.213 and
t5 = 1.515.
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The control object with the reference model is

ẏ∗1 = v1,
ẏ∗2 = v2,
ẏ∗3 = v3,
ẏ∗4 = 0,
ẏ∗5 = 0,
ẏ∗6 = 0,
ẋ1 = x4,
ẋ2 = x5,
ẋ3 = x6,
ẋ4 = h4(y

∗ − x)(sin(h3(y
∗ − x)) cos(h2(y

∗ − x))×
cos(h1(y

∗ − x)) + sin(h1(y
∗ − x)) sin(h2(y

∗ − x))),
ẋ5 = h4(y

∗ − x) cos(h3(y
∗ − x)) cos(h1(y

∗ − x))− g,
ẋ6 = h4(y

∗ − x)(cos(h2(y
∗ − x)) sin(h1(y

∗ − x))−
cos(h1(y

∗ − x)) sin(h2(y
∗ − x)) sin(h3(y

∗ − x))),

(41)

where h(y∗ − x) is a required control function,

vi =
y∗,j+1

i − y∗,j
i

tj
, if tj−1 � t < tj, j = 1, . . . , 5, t0 = 0. (42)

The current objective is to address the control synthesis problem and determine a
control function based on the deviation between the state vector of the control object and
that of the reference model

h(y∗ − x) = [h1(y
∗ − x) . . . h4(y

∗ − x)]T . (43)

Machine learning control by the network operator method is used. When solving the
synthesis problem, the initial state (35) was replaced by a set of initial states

X0 = {x0,1, . . . , x0,P}, (44)

where

x0,i+3j+9k+1 = [x0
1 + (i − 1)Δ x0

2 + (j − 1)Δ x0
3 + (k − 1)Δ x0

4 x0
5 x0

6]
T , (45)

i ∈ {0, 1, 2}, j ∈ {0, 1, 2}, k ∈ {0, 1, 2}, Δ = 0.5, for i = j = k = 2, P = 27.
When solving the synthesis problem, the error of movement along the given trajectory

and the accuracy of reaching the terminal state for all initial states are additionally included
in the criterion

J3 =
P

∑
i=1

(
t f ,i + p1

t f ,i∫
0

‖y∗ − y(t, x0,i)‖dt + p2‖x f − x(t, x0,i)‖
)

→ min, (46)

where p1 = 1, p2 = 1 and t f ,i is a time to reach the terminal state from the initial state x0,i

according to (13).
Machine learning control by network operator method was performed with the follow-

ing parameters: size of NOP matrix 36 × 36, graph of NOP had 12 source nodes, including
6 nodes for variables and 6 nodes for searched parameters, and 4 sink nodes for output
components of control vector. Parameters of variational genetic algorithm were: number
of possible solutions in initial population—512, number of crossover operations in one
generation—64, number of generations—64, depth of variation—5, number of generations
between change of basic solution—20, number of bits for coding a parameter—16.
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Computations were performed on CPU Intel core i7, 2.8 GHz. Computational time
was approx. 30 min.

The following solution was found by the network operator method

ui =

⎧⎪⎨⎪⎩
u+

i , if ûi > u+
i

u−
i , if ûi < u−

i
ûi, otherwise

, i = 1, . . . , m = 4, (47)

where
û1 = μ(C), (48)

û2 = û1 − û3
1, (49)

û3 = û2 + ρ19(W + μ(C)) + ρ17(A), (50)

û4 = û3 + ln(|û2|) + sgn(W + μ(C))
√
|W + μ(C)|+ ρ19(W)+

arctan(H) + sgn(F) + arctan(E) + exp(q2(y∗2 − x2)) +
√

q1, (51)

C = q6(y∗6 − x6) + q3(y∗3 − x3), W = V + tanh(G) + exp(D),

A = q1(y∗1 − x1) + q4(y∗4 − x4), H = G + tanh(F) + ρ18(B),

F = E + C + arctan(D)− B, E = D + sgn(y∗5 − x5) + (y∗2 − x2)
3,

V = exp(H) + cos(q6(y∗6 − x6)) + sgn(D)
√
|D|, G = F +

3√E + sin(A),

B = sin(q6(y∗6 − x6)) + q5(y∗5 − x5) + q2(y∗2 − x2) + cos(q1) + ϑ(y∗2 − x2),

D = ρ17(C) + B3 + A + ϑ(q5(y∗5 − x5)) + (y∗5 − x5)
2,

μ(α) =

{
α, if |α| < 1
sgn(α), otherwise

,

ϑ(α) =

{
1, if α > 0
0, otherwise

,

ρ17(α) = sgn(α) ln(|α|+ 1),

ρ18(α) = sgn(α)(exp(|α|)− 1),

ρ19(α) = sgn(α) exp(−|α|),
q1 = 7.26709, q2 = 11.46143, q3 = 12.77026, q4 = 3.20630, q5 = 8.38501 and q6 = 5.56250.

The projections of optimal trajectory (black line) and the given trajectory (blue line) on
the horizontal and vertical planes are shown in Figures 3 and 4.
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Figure 3. Projection of optimal trajectory (black line) and the given trajectory (blue line) on the
horizontal plane {x1; x3}.

Figure 4. Projection of optimal trajectory (black line) and the given trajectory (blue line) on the
vertical plane {x1; x2}.

To check the feasibility property of the obtained solution of the optimal control prob-
lem, a simulation of the control system from eight different initial states was performed:
x0,1 = [−0.5 4.5 − 0.5 0 0 0]T , x0,2 = [−0.5 4.5 0.5 0 0 0]T , x0,3 = [−0.5 5.5 − 0.5 0 0 0]T ,
x0,4 = [−0.5 5.5 0.5 0 0 0]T , x0,5 = [0.5 4.5 − 0.5 0 0 0]T , x0,6 = [0.5 4.5 0.5 0 0 0]T ,
x0,7 = [0.5 5.5 − 0.5 0 0 0]T , x0,8 = [0.5 5.5 0.5 0 0 0]T .

The results of the simulation are shown in Figures 5 and 6.

Figure 5. Projections of trajectories of control object from eight initial states (black lines) and the
given trajectory (blue line) on the horizontal plane {x1; x3}.
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Figure 6. Projections of trajectories of control object from eight initial states (black lines) and the
given trajectory (blue line) on the vertical plane {x1; x2}.

The results of the simulation show that the synthesised stabilisation system of the
control object motion along the given spatial trajectory is not sensitive to disturbances;
therefore it is realisable in a real object.

5. Discussion

The main difference of the method considered in this paper is that the trajectory
stabilisation system is built entirely on the basis of machine learning by symbolic regression.
Typically, a person analyses the mathematical model of the control object, identifies the
control channels and determines which channels influence a particular movement of the
object. Controllers are then installed in these channels and only then the parameters
of the controllers are adjusted. This process is manual. A feature of machine learning
control by symbolic regression is that the program is only provided with a model of the
control object with a control function in the right part. The machine performs all other
stages independently, without human intervention. It finds the control function in a coded
form. The authors could not find a similar machine approach for the problem in other
publications. Comparing the machine-learning-based approach discussed in the paper
with control systems manually developed by specialists is not entirely correct, although it
can be noted that the machine built a control system of equal quality. The disadvantage
of the resulting control system is the complexity of the resulting mathematical expression,
because the machine does not sense the complexity of calculations. We still insist that a
machine search for solutions is more promising for building complex control systems than
the manual approach.

In comparison to previous papers by the authors [9], in the present work, the com-
plexity of the optimal control problem is that the given trajectory is defined in space and
not in time. Instead of determining points on a given trajectory to calculate the deviation
of an object from that trajectory as in prior approaches, a reference model is constructed
that determines the reference motion along the trajectory. To solve the control synthesis
problem, a machine learning control by symbolic regression is applied. The main goal
of machine learning is to create a program to automatically write a control function. In
our opinion, this approach will allow artificial intelligence to be created. Computational
experiments have shown that the resulting control system has a feasibility property.

However, the proposed numerical method as all numerical methods has certain
drawbacks. To obtain a solution it uses numerical techniques that include discretisation of
the problem domain and approximation of the solution through an iterative computational
process. Errors are accumulated and affect the final solution which is not exact, but it is still
the only way to solve complex problems, such as the one presented in this paper.

Furthermore, the limitation of the proposed approach, namely, the usage of a reference
model for trajectory generation, is that the velocity can be easily obtained for straight
segments but might become a tricky task for differentiable trajectories.
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6. Future Work

Future research is aimed at applying the presented approach to trajectories of different
types. The applicability of this approach to differentiable trajectories, where the trajectory
does not consist of straight segments, should be investigated. It is also necessary to
investigate how the accuracy of the approximation of a smooth trajectory by straight
segments affects the accuracy of the movement of the object along the trajectory, when
the control synthesis problem has been solved for a reference model of movement on
straight segments.
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Abstract: The article contains a study of methods for solving integral equations in the context of
acoustic problems. The methodology considered is applied to describe acoustic wave propagation
and scattering. Efficient discretization methods are used together with iterative methods to solve the
operator equations, including an apparatus for fast multiplication of the resulting post-discretization
Toeplitz matrices by a vector using the fast Fourier transform. The theoretical analysis of the proposed
numerical algorithm demonstrates its efficiency in terms of the required number of arithmetic
operations and the memory footprint of the computing system. The presented numerical simulation
demonstrates the possibility of solving the problem of acoustic wave propagation in transparent
media using the proposed methods. A visualization of the obtained solutions for a practical problem
with a high level of discretization of the solution volume domain is also presented.

Keywords: integral equations; collocation method; iterative method; modified gradient descent
method; fast Fourier transform

MSC: 15B05; 28-08

1. Introduction

The initial formulation for solving problems of mathematical physics using integral
equations refers to the works of Fredholm, who first proposed the study and solution
of classical problems of mathematical physics using the transformation of the original
differential equations to the formulation of the problem for solving related integral equa-
tions, later called Fredholm equations. The solution of problems of mathematical physics,
both in the form of differential and integral equations. at that time was impossible using
numerical methods and methods of discretization of the initial problem via a grid of high
dimensionality in the number of elementary partitions, as such problems were associated
with impossible manual calculations. With the development of computer technology ap-
peared the formulation and the first methods and algorithms for distributed computations
over differential equations, allowing the modeling of real physical processes, and integral
equations were used less frequently, due to problems with the complexity of calculations,
in the solution of systems of linear algebraic equations (SLEs) over fully filled operator
matrices.

Mikhlin, in his works, investigated different variations of problem statements for
solving integral equations in the theory of elasticity [1], and also investigated the possi-
bilities of obtaining analytical and numerical solutions of singular integral equations [2,3]
related to the problems of mathematical physics. Colton and Kress considered surface and
volume problems of acoustics and electrodynamics based on integral equations, as well as
their numerical formulations [4]. In these papers, however, due to the reasons described
above, there were no numerical results accompanying test problems. Miller, in a series of
papers [5], also investigated modern formulations for the solution of electrodynamics prob-
lems on the basis of computational methods for solving bulk singular integral equations,
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using features of kernels of integral operators based on Green’s functions [4], satisfying
solutions for the volumetric Helmholtz equation.

Mathematical formulation and development of effective computational methods for
solving problems of mathematical physics are the most important areas of science and
technology development today. Modern problems are associated with large requirements
for accuracy and speed of computation, in view of which the requirements of the dimen-
sionality of discretization of problems increase. The classical formulation of the solution of
differential and integral equations, as well as general computational methods for solution,
are becoming insufficient to meet the needs of experimenters, researchers and manufac-
turers. This aspect pushes us to the necessity of developing effective methods for solving
specific problem formulations based on a priori factual knowledge, assumptions about
the structure of the solution, and constraints on the conditions at the boundary of the
domain [6].

Overcoming these limitations, recent works on computational methods, applicable
to the solution of differential equations that reduce to solving systems of linear equations
(SLEs) with high-dimensional sparse operator matrices, have proposed a series of approx-
imate methods capable of addressing the problem of increasing the discretization of the
solution domain, based on homotopies. Among these are the homotopy method described
in detail in [7], the multigrid method [8], the multigrid–homotopy method [9], and the
wavelet multiscale method [10]. These methods are traditionally used in tasks related to
solving problems of mathematical physics, including, for example, [11–13], and conducting
numerical experiments with models based on partial differential equations.

Homotopy methods [7] for approximate solutions of large-dimensional SLEs, resulting
from the discretization of the solution domain of the corresponding differential equation,
allow the obtaining of solutions with specified accuracy on large grids. The main idea of
the method is to use the concept of homotopy for a gradual transition from a simplified
version of the problem to its original, more complex form, while following a path that
maintains connectivity between solutions. The homotopy grid method is especially useful
in cases where direct solving of the original problem is difficult due to its complexity or the
presence of multiple local minima/maxima.

The algebraic multigrid method [8] represents a class of algorithms for solving sys-
tems of linear equations, particularly effective for large sparse matrices arising from the
discretization of differential equations. This method does not require explicit knowledge of
the geometry of the problem and is built directly on the basis of the equation coefficients,
making it applicable to a wider class of problems. The key idea of multigrid methods is to
use iterations at different levels of discretization (grids) to accelerate convergence to the
solution. Simplified versions of the original problem are solved on coarse grids, effectively
reducing error components, which decrease slowly on finer grids. This is achieved by
analyzing the structure of the system matrix and grouping variables in such a way that
the problem dimension decreases at each subsequent level. Various coarsening strategies,
for example, based on the strength of connections between matrix elements, are used for
this purpose.

Combining these two approaches, the multigrid–homotopy method [9] leverages the
advantages of both in order to solve complex nonlinear problems. The homotopy method
allows effective finding of an initial approximation for a nonlinear problem or a series
of such approximations, while the multigrid approach ensures rapid convergence to an
accurate solution at each step of homotopy. This method is particularly useful for problems
where direct application of the multigrid method to a nonlinear system proves inefficient
due to the complexity of the problem or lack of a good initial approximation. Combining
the homotopy approach, to find an initial approximation, with the multigrid method for its
refinement can significantly improve the efficiency of the iterative process.

All the above methods can adequately solve high-dimensional problems related to
setting tasks in terms of differential equations; however, they may be difficult to apply to
tasks based on integral equations. This is due to the complexity of calculations with fully
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populated operator matrices that arise when applying various discretization methods to
integral formulations of mathematical physics problems.

The formulation of problems in terms of integral equations in mathematical physics
is also important, as it allows the finding of the desired solution with fewer restrictions
both on the form of the solution function itself and on the number of initial and boundary
conditions. Solving integral equations on a grid of large dimensionality is associated with
the use of fast iterative methods capable of solving full systems of linear equations in fewer
iterations with a given accuracy. For this, it is necessary to introduce special discretization
grids for a more accurate approximation [14] of the original solution domain, both in
volume and at the boundaries between different media. This work presents one such
technique for introducing a special discretization grid for volumetric integral equations,
allowing for the solution of such equations using efficient matrix–vector multiplications in
the process of any iterative method of solving systems of linear equations based on fast
Fourier transform (FFT).

The development of integral equations theory to date is described by a large num-
ber of works in the field of proving existence and uniqueness theorems for solutions of
the problems of mathematical physics, as well as the development and study of effective
numerical methods for their solution. In electrodynamics, Smirnov Yu.G. proved a large
number of existence and uniqueness theorems for problems of wave propagation, diffrac-
tion and polarization using the Fredholm theory for integral operators and the theory
of pseudo-differential operators [15–17]. In hydrodynamics and aerodynamics, integral
equations can be used in modeling stationary flows, shown in the works of Setukha [18].

In this paper we consider the problems of wave propagation in three-dimensional
bounded transparent structures with inhomogeneous refraction based on the Fredholm
integral equation of the second kind. Modeling problems of acoustic wave propagation in
an inhomogeneous medium has a wide range of applications in various fields. For example,
in oceanography, such models are used to investigate underwater sound channels and to
study the influence of various factors on sound propagation in water [19]. In the process
of developing printed circuit boards, defects, such as delamination, can occur during the
lamination process, which can be detected by the acoustic emission method discussed
in [20]. In electrodynamics, models of propagation and scattering of electromagnetic waves,
built on integral equations, help to make calculations for complex processes of radiation
effects and load on technical devices, necessary to their design [21,22]. Such models are
also used in medical diagnostics and industrial acoustics.

Numerical methods for solving integral equations, along with the growth of computing
power and memory capacity, allow the solution of more and more complex structural
problems with a high degree of discretization, due to optimization and the possibility
of efficient parallelization of the computations of problems with the full operator matrix.
Mathematical modeling of real physical problems on the basis of the apparatus for effective
methods for their solution, shown in this paper, will be useful in real-time calculations
for digital twins in many physical processes, natural phenomena, technical devices and
their manufacturing processes. The main part of the research, problem statements, and
computational methods used in the article grew out of the theoretical basis of the research
on problem statements, methods, and the algorithms for their numerical solution given in
the corresponding book [23].

2. Materials and Methods

In this study, we consider the integral equation within a bounded region of Q of
Euclidean space E3 [24]:

(1 + α η(x)) u(x) +
∫
Q

K(x − y)
Rm η(y) u(y) dy = u0(x), x ∈ Q, m ≤ 3. (1)
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In Equation (1), x = (x1, x2, x3), y = (y1, y2, y3) are the points belonging to the
bounded region Q; R = |x − y| is the distance between the points of the region; and
α, η, K, u0 are known functions, with K(x − y ) a differentiable coordinate function; u(x) is
an unknown function.

Further, suppose that Equation (1) has a unique solution in the corresponding function
space. Numerical methods turn out to be uniquely possible for solving Equation (1). In
this case, Equation (1), by applying the Galerkin method or the collocation method, is
approximated to an SLE with a fully filled matrix.

The equation in the form of Equation (1) describes a number of important applied
problems, including propagation and scattering of acoustic waves on transparent inho-
mogeneous obstacles [4]. In this case, m < 3, α = 0 and the other functions included in
Equation (1) are scalar. Then, the equation is a classical Fredholm integral equation of the
2nd kind, which can be written in the following form:

u(x) + k2
∫

Q G(R)n̂(x)u(y)dy = u0(x);

n̂(x) = η(x)− 1; G(R) = − exp(ikR)
4πR ; u0(x) = −∫

Q G(R) f (y)dy; x ∈ Q,
c (2)

where η(x) is the function characterizing the acoustic refraction of the definition area, and
η(x) = 1, x /∈ Q; k is the wave number characterizing the properties of the simulated
external radiation; G(R) = −K(x − y)/R is the kernel of the integral equation, which is
the solution of the corresponding differential formulation of the Helmholtz equation in
three-dimensional space; f (x) is the modeled external radiation function; and u(x) is the
unknown scalar potential field characterizing the stress for the x ∈ Q.

Previously, in [25], for the integral formulation of Equation (2), the theorem of the
existence and uniqueness of the solution of the corresponding differential equation was
proved under the condition of radiation at infinity, as well as under some conditions for
refraction η(x).

Equation (2) describes both the problems of acoustic wave propagation in bulk trans-
parent media with a homogeneous scalar refraction index η(x) and the problems of wave
scattering at the boundary of media with different η(x), where the function itself is piece-
wise continuous [4]. The method for solving Equation (2) does not depend on the form
of η(x).

In this paper, to demonstrate the proposed numerical methods, we propose to con-
sider a class of acoustic problems represented by Equation (2). It is also worth noting
that other classes of problems of mathematical physics can be described using integral
equations [4,22,26,27].

Collocation method on a uniform grid. In practice, in order to solve integral equations,
it is necessary to resort to discretization of the solution domain under consideration. To
approximate the integral Equation (2), we will use the collocation method [23,28]. For
three-dimensional problems, some difficulties arise in the discretization of integral equa-
tions defined in regions of complex shape.

Let us represent the area Q as a union of NQ cells Ω(i), i = 1, . . . , NQ. Nodal points
in these cells will be chosen in their centers, which are defined by the formulas [29]

xc
l =

∫
Ω xldx
mesΩ

, l = 1, . . . , 3, (3)

where dx = dx1dx2dx3 represents the integration of the volumetric l-th partition of the
solution domain Q, xc =

(
xc

1, xc
2, xc

3
)

is the cell center Ω, and mesΩ its volume. If in region
Ω a differentiable function of its arguments is defined f (x), then approximate equality
is true: ∫

Ω
f (x)dx ≈ f (xc)mesΩ. (4)

Expression (4) will be an exact equality if f (x) is a linear function of the arguments.
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We will approximate the integral Equation (2) by SLE of dimension ∼ NQ with respect
to the values of the unknown function at the nodal points of the domain Q, located in the
centers of the xci cells Ω(i), i = 1, . . . , NQ. We will choose the cell sizes so that the desired
function varies weakly within the cell. Then, redefining the corresponding SLE can be
represented in the following form [23,30]:

u(i) +
NQ

∑
j=1

A(i, j)η(j)u(j) = u0(i), i = 1, . . . , NQ,

A(i, j) = −k2∫
Ω(j)

K(xci−y)
|xci−y| dy; u0(i) = −∫

Q
K(xci−y)
|xci−y| f

(
xci)dy;

i,= 1, . . . , NQ, u(i) = u
(
xci), u0(i) = u0(xci), η(i) = η

(
xci).

(5)

To calculate the integrals in Equation (5), we can use the approximate Formula (4)
or more accurate numerical integration algorithms. Note that, since the nodal points are
located in the center of the cells, the accuracy of approximation of the integral operators
∼ h2 where h is the maximum cell diameter (we define the cell diameter as the maximum
distance between the boundary points). For relatively small values of NQ ≤ 10000, we
can solve the system of Equation (5) by direct or iterative methods. Below, we will outline
efficient algorithms which, using iterative methods, allow us to solve system Equation (5)
with much higher dimensionality.

In the kernel of the integral Equations (1) and (2), there is a term depending on the
difference in Cartesian coordinates of points x and y. However, this circumstance was
not used in any way in the construction of SLE Equation (5). Below, using a uniform grid
and discrete Fourier transform algorithms, we construct an efficient numerical method for
solving Equation (2).

Consider a complex function f (n) of discrete argument n = 0, ±1, ±2, . . .., and let
us assume that f (n) is a periodic function with period N, i.e., f (n ± N) = f (n) for any n.
The discrete Fourier transform of the function f (n) is defined by the well-known formula:

F[ f ] = f F(k) =
N−1

∑
n=0

exp
(

i
2π

N
kn

)
f (n); k = 0, N − 1, (6)

where, obviously, the Fourier transformant f F(k)m is also a periodic function with period N.
If we know the Fourier transformant f F(k), then we can recover the original function

f (n) using the inverse discrete Fourier transform:

F[ f ] = f F(k) =
N−1

∑
n=0

exp
(

i
2π

N
kn

)
f (n); k = 0, N − 1. (7)

In general, the number of arithmetic operations TF(N), which is required to com-
pute the discrete Fourier transform without the cost of computing functions of the form
exp(i2πkn/N), is estimated by the formula:

TF(N) ∼ N2. (8)

When using fast discrete Fourier transform algorithms, the number of arithmetic
operations required is estimated by the formula [23]:

TFF(n) ∼ N · LOG(N), (9)

where LOG(N)—is the integer logarithm, i.e., the sum of all prime divisors of N. If N is a
power of two, then TFF(n) ∼ N · log2(N).
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Let A(l) bea periodic function of a discrete argument with period N. Consider the
sums of the following form:

v(n) =
N−1

∑
m=0

A(n − m)u(m),n = 0, N − 1. (10)

The sums in Equation (10) arise from multiplication of circulant matrices by a vector.
Let us apply the discrete Fourier transform with period N to both parts of (10). It is not
difficult to show that:

vF(k) = AF(k)uF(k), k = 0, N − 1. (11)

Using Equation (11) and fast discrete Fourier transform (FFT) algorithms, one can
efficiently multiply circulant matrices by a vector. However, circulant matrices rarely
appear in real-world problems. However, in many problems, in particular those dis-
cussed below, one needs to compute sums of the form Equation (10), in which the func-
tion A(l),−(N − 1) ≤ l ≤ (N − 1) is arbitrary in the specified range. Such sums arise
when multiplying Toeplitz matrices by the vector [31,32]. This function A(l) is defined
at the (2N − 1) integer point. Let us further define the function A(l) zero at the point
l = N and extend it to all integer values with period 2N. Further, for the function of
the discrete argument u(m), m = 0, . . . , (N − 1), let us define this as zero at the points
m = N, . . . , 2N − 1. Now, consider the sums of the following form:

v(n) =
2N−1

∑
m=0

A(n − m)u(m),n = 0, 2N − 1. (12)

It follows from the above that, at n = 0, . . . , N − 1 function v(n) from Equation (12)
coincides with the values v(n) from Equation (10). Further, for quick calculation of the
sums in Equation (12), we will use the formula:

vF(k) = AF(k)uF(k), k = 0, 2N − 1. (13)

In the inverse Fourier transform, only the components of ν(n), n = 0, N − 1. Thus, it
follows from Equation (9) that the number of arithmetic operations to calculate Equation
(10) is estimated by the formula:

TA ∼ 2NLOG(2N). (14)

Moreover, it is necessary to store in the computer memory an array with the number
of elements equal to:

MA ∼ 2N. (15)

Let us proceed to the discretization of the integral Equation (2). In a rectangular
Cartesian coordinate system, define a parallelepiped Π, within which the region Q is
located. The edges of the parallelepiped are parallel to the coordinate axes, and the lengths
of the edges are equal to Nlhl , l = 1, 2, 3, where hl are the grid steps on the Cartesian
coordinates. Then, the parallelepiped Π can be represented as a union of cells (elementary

parallelepipeds) Π(p), p = (p1, p2, p3), pl = 0, . . . , Nl − 1. Let us define the area
∼
Q as a

union NQ of cells whose centers lie inside the area Q. The nodal points, in which the values
of functions are defined, will be defined in the centers of cells and denoted as x(p) and the
values of functions in these points as f (p).

The integral Equation (2) will be approximated, similarly to Equation (5), by an SLE of
the following form [24]:

u(p) + ∑
y(q)∈Q

A(p − q)η(q)u(q) = u0(p), x(p) ∈ Q,

A(p − q) = −k2∫
Π(q)

K(x(p)−y)
|x(p)−y| dy, p �= q, A(0) = 0.

(16)
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Since the nodal points are at the center of the cells, the accuracy of the approximation

of the integral operator is ∼ h2, h =
√

h2
1, h2

2, h2
3.

It follows from Equation (16) that the main computational cost of multiplying the SLE
matrix by a vector (performing one iteration) is associated with the computation of sums of
the form:

W(p) = ∑
y(q)∈Q

A(p − q)V(q),x(p) ∈ Q. (17)

To calculate W(p) at the nodal points x(p) ∈ Q requires performing ∼ N2
Q arithmetic

operations, where NQ—is the number of nodal points in the domain Q. To reduce the
number of arithmetic operations, we will apply the technique of fast multiplication of
Toeplitz matrices by vector, as described above.

Let us define the function V(q) as zero at the points x(q) of the parallelepiped P, not
belonging to the area Q. Consider the following sums:

W(p1, p2, p3) =
N1−1

∑
q1=0

N2−1

∑
q2=0

N3−1

∑
q3=0

A(p1 − q1, p2 − q2, p3 − q3)V(q1, q2, q3). (18)

It is obvious that at x(p) ∈ Q values W(p) from Equations (17) and (18) coincide. In
Equation (18) the matrix function of the discrete argument A(p) is defined for the values
−(N1 − 1) ≤ p1 ≤ (N1 − 1);−(N2 − 1) ≤ p2 ≤ (N2 − 1);−(N3 − 1) ≤ p3 ≤ (N3 − 1).

Let us denote by Π2 a parallelepiped with sides 2N1h1, 2N2h2 и 2N3h3. Let us continue
the matrix function of the discrete argument A(p1, p2, p3) to all integer values p1, p2, p3
assuming it to be periodic for each variable, with periods, respectively, 2N1, 2N2, 2N3. At
the same time, let us define the function A(p1, p2, p3) as zero at the points where it is not
defined. Next, let us define the function of the discrete argument V(p1, p2, p3) as zero at
all nodal points Π2, not belonging to Π, and extend this to all integer values p1, p2, p3,
assuming it is periodic for each variable, with periods, respectively, 2N1, 2N2, 2N3.

Consider the expression:

W(p1, p2, p3) =
2N1−1

∑
q1=0

2N2−1

∑
q2=0

2N3−1

∑
q3=0

A(p1 − q1, p2 − q2, p3 − q3)V(q1, q2, q3). (19)

Considering the above, it is clear that at x(p) ∈ Q function W(p1, p2, p3) from
Equation (19) coincides with the values from Equation (17). Below, by Π и Π2 we denote
integer parallelepipeds with the number of discrete arguments on each axis N1, N2, N3 и
2N1, 2N2, 2N3, respectively. Now, performing a discrete Fourier transform on each variable
from both parts of Equation (19), we obtain the following equality:

WF(k1, k2, k3) = AF(k1, k2, k3)VF(k1, k2, k3), k ∈ Π2. (20)

Thus, to perform one iteration when solving the SLE Equation (16), it is necessary
to perform the direct Fourier transform of the function V(p1, p2, p3) for each variable and
the inverse transform of the function WF(k1, k2, k3) (the transformation of the function
A(p1, p2, p3) is performed once before starting the iteration procedure). The number of
arithmetic operations and the amount of memory required to perform one iteration are
estimated by the formulas:

TA ∼ 10N LOG(N), MA ∼ 10N, N = N1N2N3. (21)

When choosing grid steps and values N1, N2, N3, it is necessary to be guided by the
following criteria: first, the desired function does not change much within the cells; second,

the region
∼
Q, consisting of cells whose centers are inside Q, describe Q well enough.

Performance indicators of numerical algorithms. Having mentioned earlier that the
solution of integral equations by numerical methods reduces to the solution of SLE with
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fully filled matrices, let us explain the main criteria for the efficiency of the algorithms, and
demonstrate the visual advantage of iterative methods over direct methods in these classes
of problem.

The main efficiency parameters of numerical algorithms are the number of operations
T required to solve the initial problem, the amount of memory M required to implement
the algorithm, the storage of N2 elements of the SLE matrix with N unknowns, etc. It is
obvious that a large number of computational resources is required to solve the problem
under consideration. In the case of the iterative method, these properties of the algorithm
can be estimated using the relations:

T ∼ LTA, M ∼ MA, (22)

where TA is the number of arithmetic operations required to multiply the SLE matrix by a
vector, which is estimated in terms of complexity as TA ∼ N2; L is the number of iterations
required to obtain a solution with a given accuracy; and MA is the number of unique
elements of the matrix.

Let us denote by TG, MG the characteristics of the direct methods for solving SLE. In
comparison to this, when using the direct Gauss method to solve SLE, it is necessary to
perform TG ∼ N3 arithmetic operations and store in the computer memory at the order
of MG ∼ N2 numbers, which demonstrates the preference for using iterative methods in
solving these problems.

Note that only iterative methods can be used to solve SLE Equation (16) using the
considered algorithm. This is due to the fact that iterative algorithms are based on mul-
tiplications of the SLE matrix by a vector. The number of arithmetic operations and the
amount of memory required to solve SLE Equation (16) are estimated by Formulas (21),
(22). At the same time, the number of iterations required to obtain the solution is usually
much smaller than the dimensionality of the SLE. Thus, it is possible to numerically solve
the integral Equation (1) and, in the special case, Equation (2), which is reduced to the SLE
of dimensionality NQ ≥ 106.

Iterative method for solving the problem. In the numerical formulation of Equation (5),
and in particular Equation (16) for the case with approximation of the volumetric domain
of the solution Q by a system of parallelepipeds Π(q), q ∈ Q, we will solve the initial
problem Equations (1) and (2) by the iterative method of gradient descent [33]. Let us
describe the iterations and peculiarities of the method for solving a particular problem.

The task of finding a solution to an SLE is to solve the operator equation:

(H)u = b, (23)

where (H) is a known, in the general case a complex, matrix operator; b is a known, in the
general case complex, vector of the right-hand side; and u is the vector whose values we
want to find. When solving the problem Equations (1) and (2) by numerical methods, the
values of the elements of the matrix operator H are found as a result of discretization of
Equations (5) and (16) of the initial integral equation and calculation of integrals over the
obtained partitions Π(q).

In addition, the action of the integral operator Equation (1) or Equation (2) with respect
to the unknown vector u is not the usual multiplication of a high dimensional matrix by a
vector. Strictly speaking, it follows from Equation (2) that:

(H)u = u + A(η̂u),
(H)u = u(p) + ∑

y(q)∈Q
A(p − q)η̂(q)u(q),p ∈ Q, (24)

where A ∈ C
NQ×NQ is the matrix of coefficients of the integral equation kernel obtained as

a result of calculation of Equations (4) and (5); η̂ ∈ C
NQ is the vector of refraction values at

each point of the p of the given area partition p ∈ Q; u ∈ C
NQ , also in the general case, is

the complex vector of unknown values of the scalar field strength at each discrete point of

181



Mathematics 2024, 12, 789

the given region. Each matrix-to-vector multiplication of any iterative algorithm that will
solve the given problem of Equation (2) must be further defined according to Equation (24),
resulting in iterated methods.

In the iterations of the modified iterative gradient descent method, the action of the
conjugate operator is also presented (H∗) on the vector u. Considering that, by definition
for the matrix operator H∗ = HT where H is a matrix with complex-conjugate elements to
the elements of matrix H, then the action of the operator Equation (24) can be rewritten in
the form:

(H∗)u = u − η
(

ATu
)

,

(H∗)u = u(p) + η(p) ∑
y(q)∈Q

A(q − p)u(q), p ∈ Q (25)

where η is also a refraction vector with complex-conjugate elements to vector η̂. The iterative
method aims to find an approximation um ≈ u of the unknown desired function. Iterations
of the modified iterative method of gradient descent are defined as follows:

r0 = (H)u0 − b; u1 = u0 − ‖(H∗)r0‖2

‖(H)(H∗)r0‖2 (H∗)r0; (26)

rm = (H)um − b; Δrm = rm − rm−1;
tm‖Δrm‖2 + hmRe(Δrm, (H)(H∗)rm) = Re(rm, Δrm),

tmRe(Δrm, (H)(H∗)rm) + hm
∥∥ (H)(H ∗)rm

∥∥2
= Re(rm, (H)(H∗)rm),

um+1 = um − tm(um − um−1)− hm(H∗)rm, m = 1, 2, . . . .

(27)

The only restriction on the iterative method for Equations (24) and (27) is the existence of
a bounded inverse operator to (H). Proofs of convergence of iterations for Equation (26) and
convergence analysis of iterations and increasing dimension of the matrix are presented
in [33].

As a criterion for stopping iterations for Equations (24) and (27), we choose the metric
δm as the relative error of the approximated vector at step m iterations:

δm =
‖um − um−1‖

‖b‖ < ε, (28)

where um и um−1 are the obtained approximations of the unknown scalar field u at the
partition points; and ε is the given accuracy of iterations, which is most often set as equal
to 10−d+1, where d—is the number of significant digits of the computer representation of
floating-point numbers.

As a result, we have a method that effectively copes with the problem of solving
operator equations. The study and comparison of the iterative method for the real problem
of solving SLE with a fully filled matrix was carried out in our previous work [25].

3. Results

Let us present the formulation of the conducted numerical experiment devoted to the
solution of the acoustics problem Equation (2).

The rectangular solution domain Q is characterized by linear dimensions l = 1 on
each of the Cartesian axes x = (x1, x2, x3) and the point of the center of the cubic region
c = (0, 0, 0) at the origin of coordinates. The propagation of a plane wave in a medium is
characterized by the value of the wave number k = 15 as well as the vector of the wave
propagation direction

→
v =

(
1/

√
3 , 1/

√
3 , 1/

√
3
)

. The external function f (x) from
Equation (2) is modeled as complex harmonic oscillations:

f (x) = exp
(
−ik

(
x,

→
v
))

, x ∈ Q, (29)

with a given value of the wave number k and vector of propagation direction
→
v .
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Let us set for the time of the experiment the following function η(x) of refraction of
the transparent bulk medium:

η(x) =

{
2.5 + 1.5i = η1(x), where x1 ∈ (−l/4, l/4),

1.0 + 0.0i = η2(x), where x1 ∈
[
− l

2 ,− l
4

]
∪
[

l
4 , l

2

]
.

(30)

In fact, this formulation of the refraction function does not correspond in any way to a
concrete real object, such as a transparent screen with appropriate physical properties. This
value of refraction was chosen on the basis of considerations of conducting a numerical
experiment with two media having different physical properties, in order to obtain the
effect of refraction of a wave and attenuation of its energy when passing through a point l/4.
A flat screen is defined by a stepwise refraction transition along the Cartesian coordinate x1.
As a result of Equation (30), we have a piecewise constant given function η(x) of refraction
of the region Q, which defines a transition from the medium with constant real refraction
η2(x) to a constant complex refraction η1(x).

Discretization of the area Q is according to Equation (16), into parallelepipeds of equal
volume with equal sides. Modeling the problem in the cubic space, we will vary N, the
number of such cubes, which are located along each of the axes of the Cartesian coordinate
system, and the number of which along each of the coordinates is the same. Then the total
number of partitions is strictly equal to NQ = N3. Within the results of this paper, we will
compare the influence of the degree of discretization of the problem on the final quality of
the solution of the problem for Equation (2).

In a series of numerical experiments, we computed (16) based on the modified iterative
gradient descent method for Equations (24)–(27), in the private formulation of Equations
(29)–(30), with specifically specified parameters. In each of the selected discretizations, for
convenience, we set the stopping criterion of the iterative method ε = 10−4 for the metric
Equation (28).

The obtained solution characterizes the unknown value of the scalar field of intensity u
at each point of the center of partitioning of the initial region Q into parallelepipeds of equal
volume. Let us visualize the obtained results with sufficiently small N = 25 in Figure 1. The
total number of obtainable elementary partitions in such a case is NQ = 15626. The figure
shows the obtained solution u as a result of convergence of iterations for Equations (24)–(27).
The first sub-drawing in Figure 1a shows the values of the |u| of the potential field modulus
in the center of each cube, which vary in the range of |u| ∈ (0.0025, 0.0325). The gradation
of these values is also highlighted in the graph. The sub-drawing Figure 1b shows the real
part of the complex scalar field u whose values vary in the range Re u ∈ [−0.025, 0.025].

  
(a) (b) 

Figure 1. Visualization of the values of the scalar field um as a result of obtaining a solution by
the iterative method with NQ = 15626 at the intersection of the coordinates of a three-dimensional
uniform grid; (a) the absolute values of the resulting field; (b) the real part of the complex scalar
field values.
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According to the character of the obtained picture, we obtain the expected type of the
solution. In Figure 1b, one can notice the refraction of the plane wave Equation (29) incident
from the point of x = (0.5, 0.5, 0.5) against the boundary located at the point along the axis
x1 = l/4 = 0.125. In the limit −l/4 < x1 < l/4, how the refracting wave changed the
direction of its propagation can be seen, and as it passed within this region it experienced
attenuation, due to which both the modulus of its value and the amplitude of its real values
decreased. After passing through the point x1 = −l/4 = −0.125, the propagation resumes
due to the run-up of the plane wave front, as in Equation (29).

We also visualize the obtained results with a sufficiently large N = 100 in Figure 2.
The limits of the scalar field values remained the same, and also the obtained structure for
the solution remained unchanged. The total number of obtainable elementary partitions in
this case amounted to NQ = 106.

  
(a) (b) 

Figure 2. Visualization of the values of the scalar field um as a result of obtaining a solution by the
iterative method with NQ = 100000 at the intersection of the coordinates of a three-dimensional
uniform grid; (a) the absolute values of the resulting field; (b) the real part of the complex scalar
field values.

As a result, having increased the linear partitioning of the domain by approximately a
factor of 4, we obtain a 64-times increase in the discretization of the domain NQ, in view of
which the obtained solutions show more features at the refraction boundary. Let us note the
smoothness of the obtained solution, as a result of which it is possible to take into account
small features both on the refraction boundary and on possible inclusions, whose sizes do
not exceed the linear sizes of the obtained partitions Π(q).

On the center slices on the axis x3 ≈ 0 areas Q in Figure 3, we also see the picture of
the refraction and attenuation of the wave, both in the modulus value, Figure 3a, and in
the values of amplitudes of the real Figure 3b and the complex part of the wave Figure 3c.
On the graph of the modulus approximation of the scalar field values |um|, Figure 3a, we
can clearly see the transition in the range of −l/4 < x1 < l/4, which is a consequence of
the transition of the refraction value in this region. In Figure 3b,c, we see refraction in the
pattern of propagation of the plane wave, as well as the attenuation of the amplitude of the
scalar field values within −l/4 < x1 < l/4.

Performing calculations with different degrees of discretization of the solution domain,
we measure the efficiency of the presented iterative method, Equations (24)–(27), using
values of different metrics. For solutions with different discretization of the domain Q, we
measured the total number of matrix multiplications by the vector m during the algorithm
operation, the relative error of approximations of iterations δm counted by (28), the norm
of incoherence of the obtained approximate solution ||(H)um − b||, and the maximum
value of the modulus of the scalar field max

p∈Q
|um(p)| . In addition to the above metrics, we

measured the program execution time in seconds (t, sec) for a given discretization (N) of
the volume area of the solution on a personal computing device with an intel core i5-10400f
processor and DDR4 RAM, with a frequency of 3200 MHz and a volume of 32 GB. Time
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was measured via the implementation of a C++ program in a sequential single-threaded
execution of instructions.

   
(a) (b) (c) 

Figure 3. Visualization of the values of the scalar field um as a result of obtaining a solution by the
iterative method with NQ = 100000 at slices of visualization Figure 2 at central position of x3 axis;
(a) absolute values of resulting field; (b) real part of complex scalar field values; (c) image part of
complex scalar field values.

Table 1 demonstrates the values of the above metrics for different numbers of partitions
NQ. source region Q.

Table 1. Table of performance and convergence quality of the method with different numbers
of partitions.

N NQ m δm ||(H)um−b|| max
p∈Q

|um(p)| t,s

10 1000 48 9.652 × 10−5 4.221 × 10−5 5.618 × 10−6 0.833
15 3375 48 3.587 × 10−5 3.854 × 10−5 3.198 × 10−6 2.895
20 8000 42 5.366 × 10−5 2.984 × 10−4 1.491 × 10−5 6.131
25 15,625 45 4.784 × 10−5 2.601 × 10−4 9.216 × 10−6 13.065
30 27,000 57 7.434 × 10−5 4.631 × 10−4 1.100 × 10−5 29.069
35 42,875 45 8.941 × 10−5 2.603 × 10−4 6.935 × 10−6 36.775
40 64,000 42 6.731 × 10−5 3.751 × 10−4 6.805 × 10−6 51.703
45 91,125 42 5.311 × 10−5 3.083 × 10−4 5.210 × 10−6 74.258
50 125,000 54 2.992 × 10−5 5.041 × 10−4 6.793 × 10−6 132.335
100 1,000,000 42 9.680 × 10−5 1.273 × 10−4 5.321 × 10−6 1039.317

According to the results, we note that there is no dependence of the investigated values
of the metrics on the number of partitions of the solution domain. It is shown that the
number of matrix multiplications by vector m necessary to obtain an approximation um with
a predetermined accuracy ε does not increase depending on the number of partitions of the
domain Q. However, we observe an oscillation of this value, which may be due to a poor
choice of cube sizes, which resulted in an inaccurate description of the refraction region.

Metrics δm, ||(H)um − b|| do not change depending on the number of partitions; we
can only note the low value of the norm of non-convexity of the integral operator with
respect to the obtained solution at small discretizations NQ = 1000 и NQ = 3375. This
circumstance can also be related to the number of final calculations or to a weak description
of the solution domain of the problem. The index max

p∈Q
|um(p)| also varies within the

error limits.
We display the graphs of the metric Equation (28) of the relative error δm of approxi-

mations during the iterative method for Equations (24)–(27) depending on the number of
applications of the matrix-to-vector multiplication operation m. Figure 4 shows the value of
log10 δm depending on m, due to the exponential nature of the reduction of this metric. By
prologarithmizing δm, we see the convergence pattern of the method in Equations (24)–(27)
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for the problem in Equations (29)–(30), in the values of powers of 10 of the base of the
number system.

Figure 4. Graph of the relative error of iterations Equation (28) for the iterative method min
Equations (24)–(27) as a function of the number of matrix-to-vector multiplications m.

In the linearized dependence shown, we see by the convergence pattern in Figure 4 an
oscillating graph of metric Equation (28), demonstratively converging (in natural values)
to the required value of approximation accuracy ε. It can be seen from the graph that,
with increasing discretization (n on the graph is equal to N or N1, N2 or N3) of the initial
domain, the number of iterations (matrix-to-vector multiplications) does not increase,
which cardinally contributes to the speed in solving the initial formulation of the integral
equation at large discretizations.

4. Discussion

The solution of problems using the most general approaches to approximation of
complex regions is widely used in various works on mathematical modeling of wave effects
on physical bulk multilayer objects of different shapes with different boundary conditions.
To date, there are many ways to solve wave propagation and scattering problems in
volumetric media, in particular for the problem of acoustics, in which, often, complex
discretizations based on tetrahedral meshes are applied. The approach based on tetrahedra
as units of elementary partitioning of the three-dimensional solution domain is due to the
need for the most accurate description of complex domain boundaries to the detriment of
the possibility of fast computations of problems on uniform mesh approximations.

The computational approach demonstrated in this paper will be useful in the case
of a large number of different refractive inclusions that can be described by rectangular
parallelepipeds. This method will also be useful in modeling subtle wave processes due to
the possibility of performing efficient computations over fully filled matrices of large size,
NQ ≥ 106. The condition of applicability of this computational method is the requirement
of the presence of the kernel of the integral operator depending on the coordinate difference;
therefore, the main computations are associated with the computation of the coefficients
of the operator in the form of the Teuplice matrix. The numerical experiment presented
demonstrates an effective approach to solving such a problem formulation, as well as
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qualitative pictures for solving the problems of acoustic wave propagation in a medium
with attenuation and wave scattering at the refraction boundary of transparent bulk media.

It is noteworthy that there are no requirements for the structure of the refraction
function, except for the physical limitations of the modeled materials, which makes it
possible to perform mathematical modeling of the problems presented above for areas of
high complexity. The main limitation will be the size of the area on which the function will
be set.

The modified iterative method of gradient descent proposed for solving the problem
has shown itself to be an effective method for solving the operator equation with a fully
filled operator matrix. According to the results of numerical experiments, it is shown that it
converges steadily when the dimensionality of the problem changes and also converges
steadily for a reasonable number of matrix-to-vector multiplications (about 100 operations).

Moreover, when the dimensionality of the problem increases, the number of such
operations does not change, which is associated only with the physical properties of the
problem formulation. The obtained numerical scheme allows us to seriously accelerate
computations in general formulations of the solution of SLE or operator equations and, with
the use of special discretization, will also allow us to solve a large number of unknowns in
applied modeling problems.

It is also worth noting that, due to the currently prevailing most accurate approach to
describing a three-dimensional domain based on complex elementary partitions, compara-
tive results with other studies cannot be given.

5. Conclusions

Today, the problem of economical fast computations for mathematical models of
physical processes to provide high quality and fast computations over digital doubles
of real in-situ experiments is acute. The development of efficient numerical methods for
solving a narrow class of problems in mathematical physics makes it possible to solve
such problems with increasing requirements on the degree of discretization due to the
reduced complexity of calculations and the required memory for the implementation of
the algorithm. This can be achieved by using the peculiarities of the kernels of the initial
formulation in the form of solving Fredholm integral equations describing mathematical
models of some real processes.

This paper shows how, taking into account the features of the integral equation kernel
function and introducing a special spatial grid, it is possible to obtain a multiple acceleration
of calculations and a reduction in the required memory for the realization of calculations.

The paper proposed a formulation for solving problems in mathematical physics using
integral equations and iterative solution methods. The theoretical efficiency of application
of fast Fourier transform in the optimization of multiplication of the Toeplitz matrix by a
vector is shown. Numerical results are demonstrated on the model problem of acoustic
wave propagation in a transparent bulk medium with an inhomogeneous refraction index.

In future works, it is assumed that the use of this numerical method for discretizing the
volume domain of the solution, the technique of multiplying a Toeplitz matrix by a vector
for optimization of iterative methods according to a given discretization form, as well as
they setting up of the solution of the integral equation problem, will be applied in related
tasks in the propagation and scattering of waves in electromagnetism, which will also find
its application in applied areas such as radio-physics, remote sensing, radio-spectroscopy,
and crystal growth.

Continuing this work will also be considered towards optimizing the numerical
method of solving linear systems with Toeplitz-type matrices, both in terms of specifically
optimizing multiplication with the use of multilevel Toeplitz matrices and in terms of
optimizing the iterative method proposed. This direction of work will be associated with
attempts to simplify the use of the proposed methodology for solving volumetric integral
equations in various related tasks, as well as to speed up computations and reduce estimates
of the required memory for iterations.
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Abstract: We propose a novel distributed method for non-convex optimization problems with
coupling equality and inequality constraints. This method transforms the optimization problem
into a specific form to allow distributed implementation of modified gradient descent and Newton’s
methods so that they operate as if they were distributed. We demonstrate that for the proposed
distributed method: (i) communications are significantly less time-consuming than oracle calls, (ii) its
convergence rate is equivalent to the convergence of Newton’s method concerning oracle calls, and
(iii) for the cases when oracle calls are more expensive than communication between agents, the
transition from a centralized to a distributed paradigm does not significantly affect computational
time. The proposed method is applicable when the objective function is twice differentiable and
constraints are differentiable, which holds for a wide range of machine learning methods and
optimization setups.

Keywords: distributed optimization; non-convex optimization; gradient descent; Newton’s method

MSC: 68W15; 68Q85

1. Introduction

In modern society, digital technologies play an essential role in organizing our work
and daily routine. Ubiquitous computing and digital technologies enable us to solve a wide
range of complex problems in such important fields as ecology [1,2] and medicine [3,4].

The complexity of creating decision support systems in a digital environment requires
the use of advanced technologies for designing and optimizing intelligent information
processing systems. For example, within a holistic approach to integrating computational
intelligence systems and human expert knowledge [5], it is possible to automatically design
machine learning models with self-tuning adaptive stochastic optimization algorithms [6,7].
In this case, the processed data can remain on the problem owner’s servers, which ensures
trust and allows us to remain within a federated approach to learning, and the resulting
models will be interpretable and explainable [8]. However, very large-scale optimiza-
tion problems arising under such conditions require special computations decomposition
methods [9]. At the same time, in many cases, optimization problems of this kind have
properties that allow the use of rigorous mathematical methods in their solution, which
makes it possible to effectively use hybrid approaches [10]. In this regard, along with the im-
provement in adaptive methods of computational intelligence, the evolution of traditional
optimization methods is of great importance. The aim of such advancements could be
focused on adaption to problems of extremely high dimensionality and federated learning
through the decentralization of work and to use such properties of theirs as guaranteed
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convergence to the optimum at high speed, which is fundamentally important in the tasks
under consideration.

Specifically, in the following, we propose a novel decentralized optimization method
for non-convex optimization problems with a separable objective function and coupling
equality and inequality constraints. Under standard assumptions for distributed optimiza-
tion [11,12], the problem has to be solved by a set of agents communicating over a connected
graph. These agents are expected to communicate synchronously and can transmit real-
valued numbers to adjacent agents. Communications are performed synchronously, and
communication delays and packet losses are ignored. In addition to standard conditions,
agents cannot share their decision variables and objective functions as they are considered
to be private information.

Decentralized optimization already proved to be an essential instrument in a wide
variety of applications. Namely, application in optimal transport [13] including coordination
of mobile autonomous agents [14,15] and railway traffic [16,17], power systems control [18,19]
with demand response [20] as well as data analysis in sensor networks [21,21]. Finally,
decentralized optimization gains increasing popularity in federated learning [22] and support
vector machines [23].

1.1. Related Work

While decentralized optimization has many applications of practical relevance, most
of the corresponding results are dedicated to convex or strictly convex optimization. A
comprehensive survey covering these areas can be found in [24]. The majority of these
methods can be separated into primal [13,25], dual [26] or ADMM-based approaches [27,28].
Additionally, there exists a set of works utilizing the primal–dual approach [29,30].

The literature dedicated to non-convex or non-linear constraints is significantly more
scarce. One of the proposed approaches is the application of SQP with the inner ADMM
method [31]. However, in this work, coupling constraints are linear. Lagrangian methods
for polynomial objective and equality constraints are presented in [32], and non-linear
coupling constraints are considered. However, each constraint is associated with one of the
agents and coupling is present only with the variables of adjacent agents.

Finlay, there exist several works that consider convex optimization problems with
separable objective functions such that decision variables and corresponding summands of
objective functions are considered private for each agent and cannot be exchanged with
other participants [19,33]

1.2. Contribution

Here, we propose a novel distributed optimization algorithm for non-convex opti-
mization problems with equality and inequality constraints. It is assumed that the objective
function is twice differentiable and the constraints are differentiable. In addition, communi-
cations are significantly less time consuming than oracle calls. Under these assumptions,
we show that

1. The proposed method can be applied to any optimization problem with non-convex
separable objective function and coupling constraints.

2. Its convergence rate is equivalent to the convergence of Newton’s method with respect
to oracle calls.

3. Decision variables, cost and constraint functions are not exchanged between agents.

The theoretical results are supported by numerical experiments.

1.3. Paper Organization

The remainder of this article is organized as follows. Section 2 introduces the problem
statement. Section 3 is dedicated to the reformulation of optimization problems with
equality constraints. Section 4 outlines the distributed gradient descent algorithm. In
Section 5, a problem with equality and inequality constraint and its equivalent formulation
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is presented. Section 6 outlines the distributed Newton method. Finally, Section 7 presents
the Arrow–Hurwicz method and a numerical example.

1.4. Notations

Let 1K denote the vector of ones of the size K; Iq is the identity q × q matrix. Operator
vec is the vectorization operator for a matrix A; ker A is the matrix kernel. For two matrices
A and B, the Kronecker product is denoted by A ⊗ B, and diag(A, B) means the extended
matrix of the corresponding size with A and B as the blocks on the main diagonal. For a
twice differentiable function f : Rn → R, ∇ f and ∇2 f are the gradient and Hessian matrix,
respectively. For a vector function g : Rn → Rm, its Jacobian matrix is denoted by Jg. For a
vertex (agent) i in a communication graph, a set of adjacent vertices is defined by Adj(i).

2. Problem Statement

Let us consider a non-convex optimization problem with a coupling objective function
and constraints that must be solved by a multi-agent connected network with N vertices
(agents). The optimization problem has the following form:

min
x

{
F(x) =

N

∑
i=1

f i(xi)

}
, (1a)

subject to

G(x) =
N

∑
i=1

gi(xi) = 0, (1b)

H(x) =
N

∑
i=1

hi(xi) ≤ 0. (1c)

Here, the vector of objective variables x ∈ Rn is separated into subvectors of local variables
xi ∈ Rni , i ∈ {1, . . . , N}, n1 + n2 + · · ·+ nN = n. All functions f i : Rni → R, gi : Rni → Rm̃

and hi : Rni → Rm̂, i ∈ {1, . . . , N} are smooth.
Here, we postulate that the Problem (1) has to be solved in the distributed way, which

brings the following perspective. It is assumed that each subvector xi belongs to an agent i
and cannot be shared with the other agents, and the agent network is defined by a connected
graph with the Laplacian matrix L ∈ RN×N . Every node in the graph represents some agent.
Communication in the network is allowed only between neighboring vertices (agents).
An agent i is characterized by its objective function f i, equality constraint function gi and
inequality constrain function hi. The objective function F is separable, so the main difficulty
in deriving a distributed version of problem (1) is given by constraints (1b) and (1c). They
are coupling (non-local) even though the constraint functions G and H are also separable.

Subsequently, we set the goal to develop an algorithm and present a reduction, which,
for an arbitrary problem (1), creates an auxiliary problem, such that

1. The auxiliary problem has the same solution as (1);
2. Methods of gradient descent, gradient projection and quasi-Newton methods will

operate as distributed optimization methods when applied to the auxiliary problem
without any modification (1):

3. Optimization Problem with Equality Constraints

Let us first introduce a simplified version of the problem (1);

min
x∈Rn

{
F(x) = f 1(x1) + f 2(x2) + · · ·+ f N(xN)

}
, (2a)

subject to
g1

1(x1) + g2
1(x2) + · · ·+ gN

1 (xN) = 0, (2b)

192



Mathematics 2024, 12, 2796

g1
2(x1) + g2

2(x2) + · · ·+ gN
2 (xN) = 0, (2c)

· · ·

g1
m̃(x1) + g2

m̃(x2) + · · ·+ gN
m̃ (xN) = 0, (2d)

i.e., the problem defined as in (1) without the inequality constraints. We introduce into consid-
eration an auxiliary vector y ∈ RNm̃ consisting of subvectors yi ∈ Rm̃, yi = (yi

1, yi
2, . . . , yi

m̃)
�,

i = 1, . . . , N. Each subvector yi is connected to the constraint function gi of the vertex i.
Consider the j-th scalar equality constraint from (2):

N

∑
i=1

gi
j(xi) = 0. (3)

It can be reformulated to the following form:

g1
j (x1) +

N
∑

i=1
L1iyi

j = 0,

g2
j (x2) +

N
∑

i=1
L2iyi

j = 0,

...

gN
j (xN) +

N
∑

i=1
LNiyi

j = 0,

(4)

where Lsi, s, i = 1, . . . , N are elements of the Laplacian matrix L. Such a transition is
performed for all m̃ equality constraints. Thus, in the further consideration, we use the
following notation:

g̃ = vec
(

g1, g2, . . . , gN
)

, (5)

L̃ =
(

L ⊗ Im̃
)

, (6)

where L ⊗ Im̃ is the Kronecker product of the Laplacian matrix L and the identity matrix
Im̃. The interpretation of representation (5) is given in Figure 1.

G(x) = g1(x1) + g2(x2) + · · ·+ gN(xN)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g1(x1)

g2(x2)

...

gN(xN)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= g̃(x)

Figure 1. The agent network with information available at each node.

Repeating the transition from (3) to (4) for all j = 1, . . . , m̃ yields the following reformulation
of problem (2):

min
(x,y)∈Rn×RNm̃

F(x), (7a)

g̃(x) + L̃y = 0. (7b)

Lemma 1. The following statements are correct:

1. Problem (2) is feasible if and only if problem (7) is feasible.
2. A pair (x∗, y∗) is the solution to problem (7) if and only if x∗ is the solution to (2).
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Proof. 1. Consider system (4) as a system of linear equations with respect to variables
(y1

j , y2
j , . . . , yN

j ) for fixed x and right-hand side vector (−g1
j (x1),−g2

j (x2), . . . ,−gN
j (xN)).

According to the Fredholm Alternative [34] and due to the symmetricity of L, this system is
consistent if and only if

vec
(

g1
j (x1), . . . , gN

j (xN)
)
⊥ ker L, (8)

where ker L = {v ∈ RN : Lv = 0} is the kernel of the Laplacian matrix L. Since the agent
graph is connected, ker L = {v ∈ RN : v = ρ1N , ρ ∈ R, ρ �= 0}. Then, (8) is equivalent to

vec
(

g1
j (x1), . . . , gN

j (xN)
)�

1N =
N

∑
i=1

gi
j(xi) = 0. (9)

Repeating this consideration for all j = 1, . . . , m, we find that problems (2) and (7) are
feasible simultaneously.
2. The correctness of the second statement follows from the fact that both problems have
the same objective function.

Let us consider the main property of system (4). Since L is the Laplacian matrix, this
system can be rewritten in the following form:

g1
j (x1) + ∑

i∈Adj(1)
(y1

j − yi
j) = 0,

g2
j (x2) + ∑

i∈Adj(2)
(y2

j − yi
j) = 0,

...

gN
j (xN) + ∑

i∈Adj(N)
(yN

j − yi
j) = 0.

(10)

In order to evaluate the �-th constraint in (10), it is necessary to know the local variables x�,
y�j , local function g�j and variables yi

j from the neighboring vertices i ∈ Adj(�) only. This is
the main advantage of system (10) in comparison to constraint (3), for which it is necessary
to know information from all vertices of the agent network.

If we fix vector y, for example, y = ỹ, then, due to the separability of function
F (see (2a)) and property (10), optimization with respect to the remaining vector x in
problem (7) can be performed separately, i.e., each agent � independently solves the corre-
sponding problem:

min
x�

f �(x�), (11)

g�j (x�) = − ∑
i∈Adj(�)

(ỹ�j − ỹi
j), j = 1, . . . , m̃. (12)

Assume that problems (11) and (12) are solvable for all � = 1, . . . , N, and x̃� is the correspond-
ing solutions. The vector x̃ = vec(x̃1, . . . , x̃N) provides the solution of problem (7) for fixed
y = ỹ.

4. Gradient Descent in Variables y

Variables y are called communication variables. If we set ỹ� = y0,� = 0, � = 1, . . . , N,
and problems (11) and (12) are solvable with x0,� as the corresponding solutions, then
the pair (x0, y0) is a feasible starting point for problem (7), and F0 = F(x0) is a starting
objective function record value.
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Let us write down the Lagrange function for problem (7) as

V(x, y, λ) =
N

∑
i=1

f i(xi) + λ�
(

g̃(x) + L̃y
)

, (13)

where λ ∈ RNm̃ is the vector of Lagrange multipliers consisting of subvectors
λi = (λi

1, λi
2, . . . , λi

m̃)
�, i = 1, . . . , N. Each subvector λi corresponds to constraint vector-

function gi of the agent i. The corresponding necessary optimality conditions

∂V
∂x

= vec
(
∇ f 1(x1), . . . ,∇ f N(xN)

)
+ Jg̃(x)�λ = 0, (14a)

∂V
∂y

= L̃λ = 0, (14b)

∂V
∂λ

= g̃(x) + L̃y = 0, (14c)

where Jg̃(x) = diag
(

Jg1(x1), Jg2(x2), . . . , JgN(xn)
)

is the Jacobian of g̃(x). If we again fix
y = y0 and solve the corresponding problem (7) for y = y0, obtaining the corresponding
primal solution x0 and dual solution λ0, then conditions (14a) and (14c) will be satisfied
with x = x0 and λ = λ0. Condition (14b) can be violated ∂V

∂y = L̃λ0 �= 0, since we do not

perform optimization in y. Hence, we correct y0 by the gradient descent step in y

y1 = y0 − ρ0 L̃λ0.

In general, we obtain the following recalculation formula for yk:

yk+1 = yk − ρk L̃λk. (15)

From (14b), we have the following element-wise representation at step k due to the structure
of the Laplacian matrix L and the structure of vector λ :

∂V(xk, yk, λk)

∂yi
j

= ∑
s∈Adj(i)

(
λk,i

j − λk,s
j

)
, j = 1, . . . , m̃. (16)

Therefore, the calculation of ∂V
∂yi

j
satisfies the distributed form, since λi

j is a local dual variable

and all λk
j are dual variables from adjacent agents.

The main computational scheme for solving problem (7) is presented in Algorithm 1.
We assume here that problem (7) is solvable for y = 0.

Since we do not make any convexity assumptions, Algorithm 1 is suggested for finding
a strict local saddle point in the Lagrange function in the sense of [35]. In [36], it is pointed
out that values ρ at Step 4 must be chosen small enough in order to achieve convergence
to a strict local saddle point. One of the recommended choices for ρk is the following:
ρ0 = 1, ρk =

1√
k

for k > 1.

Example 1. Consider the problem with N = 4, ni = 1, i = 1, . . . , 4, m̃ = 1 and

f 1(x1) = (x1)4 + 3(x1)3 − (x1)2 − 3x1, f 2(x2) = − sin(x2) + 0.1(x2)2,

f 3(x3) = (x3)2 − 4, f 4(x4) = x4,

g1(x1) = (x1)3 − 8, g2(x2) = (x2)2 − 7x2 + 10, g3(x3) = x3 − 1, g4(x4) = (x4)2 − 9.
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The network is described by the Laplacian matrix

L =

⎛⎜⎜⎝
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎞⎟⎟⎠.

The starting solution of the corresponding problem (7) with y = y0 = 0 is the following x0 =
(−2, 2, 1,−3)�, λ0 = (0.417, 0.272, 2.000, 0.167)�, F(x0) = −12.509. The tolerance ε = 0.1.
The ε-solution was obtained after 294 iterations of Algorithm 1: x294 = (−2.131,−1.954, 0.098,
−2.877)�, F(x294) = −13.972, ρk =

1√
k
. The optimal solution x∗ = (−2.182, 1.831,−0.093,−2.678)�,

F(x∗) = −14.013. Algorithm 1 generated a sequence of feasible points with decreasing objective
function values.

Algorithm 1 Gradient descent method (for agent �)

Input: f �,g�, ε > 0.
Output: x�,∗
Algorithm steps:
Step 1. Set y0,� = 0 and k = 0;
Step 2. Obtain yk,i, i ∈ Adj(�) from neighboring agents;
Step 3. Solve problem (11) and (12) for ỹ� = yk,�, ỹi = yk,i, i ∈ Adj(�). Let xk,�, λk,� be the
corresponding primal and dual solutions;
Step 4. Obtain λk,i, i ∈ Adj(�) from neighboring agents;
Step 5. If ∣∣∣∣∣∂V(xk, yk, λk)

∂y�j

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
s∈Adj(�)

(
λk,�

j − λk,s
j

)∣∣∣∣∣∣ < ε ∀j = 1, . . . , m̃,

then go to Step 8;
Step 6. Calculate yk+1,�:

yk+1,� = yk,� − ρk
∂V(xk, yk, λk)

∂y�j
;

Step 7. Set k = k + 1 and go to Step 2;
Step 8. Stop: xk,� is an ε-stationary point of problem (2).

5. Problem with Equality and Inequality Constraints

Similarly to the equality constraints, let us introduce vector-function ĥ : Rn → Nm̂:

ĥ =

⎛⎜⎝ h1(x1)
...

hN(xN)

⎞⎟⎠ (17)

and expansion of the Laplacian matrix

L̂ = L ⊗ Im̂. (18)

Then, the new optimization problem has the form

min
x∈Rn ,y∈RNm̃ ,z∈RNm̂

N

∑
i=1

f i(xi), (19a)

g̃(x) + L̃y = 0, (19b)
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ĥ(x) + L̂z ≤ 0. (19c)

Firstly, let us prove the following lemma.

Lemma 2. The following statements are correct:

1. Problem (19) is feasible if problem (1) is feasible.
2. Triplet (x∗, y∗, z∗) is the solution to problem (19) if and only if x∗ is the solution to (1).

Proof. In Lemma 1, it was shown that linear constraints in both problems have the same
solution in x. Let us now consider inequality constraints in both problems. As before, we
consider the constraint j from (1c)

N

∑
i=1

hi
j(xi) ≤ 0 (20)

and the set of corresponding constraints c(j) from (19c)

vec
(

h1
j (x1), . . . , hN

j (xN)
)
+ Lz ≤ 0. (21)

The sum of the rows of L is zero. Thus, the sum of the inequalities (21) yields (20). Let
us now show that if for some x equation (21) is correct, then there always exists x such
that (20) holds. Vector vec

(
h1

j (x1), . . . , hN
j (xN)

)
can always be decomposed using some

orthogonal basis 1N , q2, . . . , qN :

vec
(

h1
j (x1), . . . , hN

j (xN)
)
= α1N +

N

∑
i=2

βiqi = α1N + q. (22)

Vector q is orthogonal to 1N and, consequently, is orthogonal to ker L. Thus, there always
exists z such that Lz = −q. Substitution of such z into left-hand side of (21) gives

vec
(

h1
j (x1), . . . , hN

j (xN)
)
+ Lz = α1N + q + Lz = α1. (23)

Additionally,

N

∑
i=1

hi
j(xi) = vec

(
h1

j (x1), . . . , hN
j (xN)

)�
1 = (α1N + q)1 = α. (24)

Thus, from (20) α ≤ 0 and (21), since this statement holds for all j ∈ {1, . . . , m̂}, the lemma
is proven.

6. Newton’s Method

Here we adapt a Newton-type approach to distributed optimization [37]. In order to
carry this out, we have to derive algorithms for the initial problem (1) and the distributed
problem (19) in parallel. Due to the similar structure of these problems, all variables and
functions of the initial problem will be denoted with an upper index c, which stands
for centralized.

Let us introduce Lagrange functions for problem (19):

V(x, y, λ, μ) = f (x) + λ�(g̃(x) + L̃y) + μ�(ĥ(x) + L̂z). (25)

The corresponding Karush–Kuhn–Tuckker conditions have the form

∂V
∂x

= ∇ f (x) + (Jg̃(x))�λ + (Jĥ(x))�μ = 0, (26a)
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∂V
∂y

= L̃λ = 0 (26b)

∂V
∂μ

= L̂z = 0, (26c)

g̃(x) + L̃y = 0, (26d)

(ĥ(x) + L̂z)iμi = 0, μ ≥ 0. (26e)

In order to replace the complimentary slackness conditions with equations suitable for
the Newton method, the complementarity function ψ : R2 → R is introduced. It has the
following property: ψ(x, y) = 0 if and only if x ≥ 0, y ≥ 0 and xy = 0. It can be chosen in
multiple ways. Here, we use the following form:

ψ(x, y) =
{

y, if x > 0 or y ≥ 0,
−x, otherwise.

(27)

Then, the KKT conditions (26) can be replaced with

φ(x, y, z, λ, μ) = 0, (28)

where

φ(x, y, z, λ, μ) =

⎛⎜⎜⎜⎜⎜⎝
∂V
∂x
L̃λ

L̂μ

g̃(x) + L̃y
ψ
(

μ, ĥ(x) + L̂z
)

⎞⎟⎟⎟⎟⎟⎠. (29)

Next, we introduce diagonal matrices A(x, μ) with elements

Aii(x, μ) =

{
1, ψi(μ, ĥ(x) + L̂z) = ĥ(x) + L̂z,
0, otherwise;

and B(x, μ) with elements

Bii(x, μ) =

{
1, ψi(μ, ĥ(x)) = −μ,
0, otherwise.

Then,

Φ(x, y, z, λ, μ) =

⎛⎜⎜⎜⎜⎜⎝
∂2V
∂x2 0 0 (Jg̃(x))� (Jĥ(x))�

0 0 0 L̃ 0
0 0 0 0 L̂

Jg̃(x) L̃ 0 0 0
AJĥ(x) 0 B L̂ 0 B

⎞⎟⎟⎟⎟⎟⎠ (30)

and the values xk+1, yk+1, zk+1, λk+1, μk+1, corresponding to the k-th Newton iteration step,
are calculated as the solution to the following system:

Φk
(

vec(x, y, z, λ, μ)− vec(xk+1, yk+1, zk+1, λk+1, μk+1)
)
= φk, (31)

where
Φk = Φ(xk, yk, zk, λk, μk), φk = φ(xk, yk, zk, λk, μk). (32)
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Let us introduce the same Newton step equations for initial problem (1). For the Lagrange
function, we have

Vc(xc, λc, μc) = f (xc) + λc�g(xc) + μc�h(xc) (33)

and the corresponding parameters have the form

φc(xc, λc, μc) =

⎛⎜⎜⎝
∂Vc

∂xc

G(xc)

ψ(μc, H(xc))

⎞⎟⎟⎠, (34a)

Φc(xc, λc, μc) =

⎛⎜⎜⎝
∂2Vc

∂xc2 (JG(x))� (JH(x))�

JG(xc) 0 0

A(xc, μc)JH(xc) 0 B(xc, μc)

⎞⎟⎟⎠. (34b)

Finally, with
Φc,k = Φ(xc,k, λc,k, μc,k), φc,k = φ(xc,k, λc,k, μc,k) (35)

for a given Newton step, we have

Φc,k
(

vec(x, y, z, λ, μ)− vec(xc,k+1, yc,k+1, zc,k+1, λc,k+1, μc,k+1)
)
= φc,k. (36)

Let us now prove the following result.

Theorem 1. If the following conditions hold

1. x0 = xc,0;
2. λ0

c(i) = 1λc,0
i /N for i ∈ {1, . . . , m̃};

3. μ0
c(i) = 1μc,0

i /N for i ∈ {1, . . . , m̂};

4. For all i ∈ {1, . . . , m̂} z0
c(i) is solution of the following optimization problem

min
t∈R,zc(i)∈RN

1
2

t�t, (37a)

ĝc(i)(x0,i) + Lzc(i) + t = 0, (37b)

then the convergence of (31) coincides with the convergence of (36).

Proof. If, for the iteration k, conditions 1–4 hold, then, from (31), we arrive at a system of
linear equations. Using Δ to denote the difference between variables at the k-th iteration,
Equation (31) can be rewritten as

∂2V
∂x2 Δx + (JG(xk))�Δλ + (JH(xk))�Δμ =

∂V
∂x

, (38a)

L̃Δλ = L̃λk, (38b)

L̂Δμ = L̂μk, (38c)

Jg̃(xk)Δx + L̃Δy = g̃(xk) + L̃yk, (38d)

A(xk, μk)Jĥ(xk)Δx +A(xk, μk)L̂Δz + B(xk, μk)μk = ψ(μk, ĥ(xk) + L̂zk). (38e)
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This set of equations describes a stationary point in the optimization problem

min
Δx∈Rn ,Δy∈Rm̃N ,Δz∈Rm̂N

1
2

Δx� ∂2V
∂x2 Δx + Δx� ∂V

∂x
, (39a)

Jg̃(xk)Δx + L̃Δy = g̃(xk) + L̃yk, (39b)

(
Jĥ(xk)Δx + L̂Δz

)
J
=

(
ĥ(xk) + L̂zk

)
J

, (39c)

where J = {i ∈ {1, . . . , m̂N} | Aii(xk, μk) = 1}.
Likewise, for the centralized Equation (36), we can obtain a similar optimization problem:

min
Δxc∈Rn

1
2

Δxc� ∂2Vc

∂xc2 Δxc + Δxc� ∂Vc

∂xc , (40a)

Jg̃(xc,k)Δxc = g̃(xc,k), (40b)

(
Jĥ(xc,k)Δxc

)
I
=

(
ĥ(xc,k)

)
I
, (40c)

where I = {i ∈ {1, . . . , m̂} | Aaii(xc,k, μc,k) = 1}. Let us now show that (39) is an expansion
of problem (40). Consider objective functions in both problems, which have first and second
derivatives of the corresponding Lagrange functions. For the first derivative, we have

∂V
∂x

= ∇ f (xk) + (Jg̃(xk))�λ + (Jĥ(xk))�μ. (41)

Note that due to condition 2,

(
(Jg̃(xk))�λk

)
i
=

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi λ
j
k =

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi

λc
k

m̃
= λc

k

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi =
(
(Jg(xk))�λk,c

)
. (42)

The same equality holds for ((Jĥ(xk))�μk. Thus,

∂V
∂x

=
∂Vc

∂xc (43)

and, consequently,
∂2V
∂x2 =

∂2Vc

∂xc2 . (44)

As a result, the objective functions in problems (40) and (39) are equivalent. Let us now
consider the relation between sets J and I. Firstly, we focus on the optimization problem (37).
It can be shown that in its optimum, zc(i) and t are chosen so that ti = tj, since it is the only
case, where t ∈ ker L. Thus, for each i, the corresponding inequality constraints from (40)
and (39),

N

∑
j=1

gj
i(xc,j) ≤ 0 (45)

and
g̃c(i)(x) + Lzc(i) ≤ 0 (46)

are all active or inactive simultaneously. Thus,

J =
⋃
i∈I

c(i). (47)
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As a result, problem (39) is an expansion of problem (40), and according to Lemma 1, has
the same solution in x. Moreover, it means that for k + 1, item 1 of the lemma is satisfied.
Let us now demonstrate that the values xk+1, yk+1, zk+1, λk+1, μk+1 satisfy items 2–4 of the
Lemma. From (38b), for each i ∈ {1, . . . , m̃}, all components of Δλk+1

c(i) are equal to each

other, which gives item 2. The same approach applies for all μk+1
c(i) , i ∈ I, and for all other

i μk+1
c i = 0, which means that item 3 holds. Finally, for zk+1

c(i) , i ∈ I, the corresponding

constraint is active, and problem (37) is solved with t = 0. For all other i, we have zk+1
c(i) ,

and therefore, item 4 holds.

Corollary 1. The convergence speed of Newton’s method applied to problem (19) is equal to the
convergence speed of Newton’s method applied to problem (1).

Corollary 2. Assume that

• functions f , g and h are twice differentiable in some neighborhood of the solution x∗ of
problem (1), and their second derivatives are Lipshitz-continuous in the neighborhood of
the x∗.

• the constraints’ gradients are linear independent in the optimum (linear independence con-
straint qualification);

• solution x∗ has unique corresponding dual variables λc,∗ and μc,∗ in problem (1);
• for x∗, λc,∗ and μc,∗ we have

u� ∂2Lc

∂x2 (x∗, λc,∗, μc,∗) > 0 ∀u ∈ K+(x∗) \ {0}, (48)

where

K+(x∗) =
{

u ∈ ker(Jh(x∗)) | (Jg(x∗))iu = 0 ∀i : gi(x∗) = 0 and μc,∗
i > 0

}
. (49)

Then, in problem (19), for any starting point (x, λ, μ) sufficiently close to (x∗, λ∗, μ∗), where
λ0

c(i) = 1λc,0
i /N for i ∈ {1, . . . , m̃} and μ0

c(i) = 1μc,0
i /N for i ∈ {1, . . . , m̂}, Algorithm 2

converges to the solution with quadratic rate.

This corollary result is based on the estimation of Newton’s method convergence rate
for problem (1) given in [37].

Finally, Algorithm 2 requires the exchange of information only in steps 6 and 8.
However, during this step, the gradient descent method is used with its distributed imple-
mentation shown in the previous section. Thus, operations in Algorithm 2 are performed
in the distributed form.

Example 2. Consider the initial problem with the following components: N = 4, m̃ = 1, m̂ = 0,
n1 = n2 = n3 = n4 = 1, f 1(x1) = (x1

1 − 5)2, f 2(x2) = (x2
1 − 4)2, f 3(x3) = (x3

1 − 3)2,
f 4(x4) = (x4

1 − 2)2, g1(x1) = (x1
1)

2 − 3, g2(x2) = (x2
1)

2 − 3, g3(x3) = (x3
1)

2 − 3, g4(x4) =
(x4

1)
2 − 3. The network is described by the Laplacian matrix (as in example 1):

L =

⎛⎜⎜⎝
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎞⎟⎟⎠.

Starting points x1,0
1 = 2, x2,0

1 = 2, x3,0
1 = 2, x4,0 = 2, y1,0

1 = 0, y2,0
1 = 0, y3,0

1 = 0, y4,0
1 = 0,

λ1,0 = 0.4, λ1,0
2 = 0.4, λ3,0 = 0.4, λ4,0

1 = 0.4. The tolerance ε = 0.01. Then, in four iterations,
Algorithm 2 finds an ε-optimal solution with components x1,4

1 = 2.357, x2,4
1 = 1.886, x3,4

1 = 1.414,
x4,4

1 = 0.943, y1,4
1 = −1.083, y2,4

1 = −0.472, y3,4
1 = 0.694, y4,4

= 0.861, λ1,4
1 = λ2,4

1 = λ3,4
1 =

λ4,4
1 = 1.121. The objective function value F(x4) = 15.088.
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Algorithm 2 Newton’s method
Input: f ,g,L, ε > 0.
Output: x∗
Algorithm steps:
Step 1. Set y0 = 0;
Step 2. For each i ∈ {1, . . . , N} set zc(i) as a solution of (37) using gradient descent;
Step 3. Set λ0 = 0 and μ0 = 0;
Step 4. Set k = 0;
Step 5. Solve optimization problem (39) using the gradient descent method;
Step 6. Assign ⎛⎜⎜⎜⎜⎝

xk+1

yk+1

zk+1

λk+1

μk+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Δxk

Δyk

Δzk

Δλk

Δμk

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
xk

yk

zk

λk

μk

⎞⎟⎟⎟⎟⎠ (50)

Step 7. For all inactive constraints i ∈ {1, . . . , m̂}, solve problem (37) using gradient
descent and assign its solution to zk+1

c(i) ;

Step 8. If ‖xk − xk+1‖ > ε, then set k = k + 1 and go back to step 5;
Step 9. Stop: xk+1 is an ε-stationary point.

7. Application of the Arrow–Hurwicz Algorithm to Problems with
Inequality Constraints

We consider here problem (19) without equality constraints

min
x∈Rn ,z∈RNm̂

N

∑
i=1

f i(xi), (51a)

ĥ(x) + L̂z ≤ 0. (51b)

The Lagrange function is given by

V(x, z, μ) = f (x) + μ�
(

ĥ(x) + L̂x
)

. (52)

Assume that starting vectors (x0, z0, μ0) are given. The Arrow–Hurwicz algorithm can be
described by the following relations ([38]):

xk+1 = xk − ρ
∂V(xk, zk, μk)

∂x
, (53)

zk+1 = xk − ρ
∂V(xk, zk, μk)

∂z
, (54)

μk+1 = max{0, μk + ρh(xk)}. (55)

As was shown above, the computational scheme (53)–(55) with V defined in (52) has the
distributed form. The algorithm stops when ‖xk − xk+1‖ ≤ ε, where ε > 0 is the tolerance.
The following strategy of choosing the step size ρ was used. We set the initial value ρ = 1.
If, during the iterations, the deviation h(xk) is becoming large enough, for example, greater
than the practically chosen value h, then ρ is reset: ρ = ρ

2 , and the algorithms restart from
the initial starting set (x0, z0, μ0). The explanation of such a restarting is the following. If
the deviation ĥ(xk) is big enough, then the point xk is too far from the feasible domain in
contrast to starting point x0, which is assumed to be chosen close enough to the feasible
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domain. The first and main reason of using this algorithm is due to the fact that it pro-
vides a minimization procedure in the non-convex case. The second reason consists of
the following. In some neighborhood of the point of minimum, the Lagrange function is
usually locally convex, and if the algorithm managed to get into this neighborhood, then it
determines this point of minimum.

Example 3. Problem (51) has the following components: N = 4, m̂ = 2, n1 = 2, n2 = 1, n3 = 3,
n4 = 2, f1(x1

1, x1
2) = (x1

1)
2(x1

2)
2, f 2(x2

1) = 2 sin((x2
1 − 3)x2

1), f 3(x3
1, x3

2, x3
3) = (x3

1)
2 + (x3

2)
2 +

(x3
3)

2, f 4(x4
1, x4

2) = (x4
1 − x4

2 − 1)2, h1
1(x1, x1

2) = x1
1 + x1

2 − 3, h1
2(x1, x1

2) = (x1
1)

2 + (x1
2)

2 − 5,
h2

1(x2
1) = (x2

1)
2 − 4, h3

1(x3
1, x3

2, x3
3) = x3

1 + x3
2 + x3

3 − 3, h3
2(x3

1, x3
2, x3

3) = x3
3 − 2, h4

1(x4
1, x4

2) =
x41 − x4

2, h4
2(x4

1, x4
2) = (x4

1)
2 + (x4

2)
2 − 1.

The interpretation of the agent network is shown in Figure 2. The Laplacian matrix is

L =

⎛⎜⎜⎝
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎞⎟⎟⎠.

All components of the starting vectors x0, z0, μ0 were equal to 2. Tolerance ε = 0.001. After 69 it-
erations, the algorithm determined point x69 = (−0.162,−0.162, 0.676, 0, 0, 0,−0.119, 1.119), which
happened to be optimal, y69 = (3.108, 3.296, 2.525, 2.466, 1.940, 1.446, 0.427, 0.791), F(x69) = −1.999.

1

2

3

4

f 1

(
x1

1

x1
2

)(
g1

1

g1
2

)(
z1

1

z1
2

)

f 2

(
x2

1

x2
2

)(
g2

1

g2
2

) (
z2

1

z2
2

)

f 3

(
x3

1

x3
2

)(
g3

1

g3
2

)(
z3

1

z3
2

)

f 4

(
x4

1

x4
2

)(
g4

1

g4
2

) (
z4

1

z4
2

)

Figure 2. The agent network with information available at each node.

8. Conclusions

A novel approach for the decentralized solution of non-convex optimization problems
was proposed. It is based on the reformulation of optimization problems to a specific form
that allows the distributed implementation of modified gradient descent and Newton’s
methods. The main strength of the modified Newton’s method is in having the same
number of oracle callers as a standard Newton’s method applied to the initial problem
formulation. Thus, in the cases when oracle calls are more expensive than communication
between agents, the transition from centralized to distributed paradigm does not signifi-
cantly affect computational time. Moreover, if the convergence speed for Newton’s method
in application to centralized problems is quadratic, the same speed will remain for the
modified decentralized algorithm.

Such properties of the proposed approach are extremely useful in solving optimization
problems that arise when automating the design of decision support systems and digital
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twins based on a holistic approach that uses mathematical and machine learning models
in conjunction with human expert knowledge [5], especially in the context of ubiquitous
computing and digitalization [1].
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