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Preface

In the last decade, remote sensing-based techniques have become a meaningful solution to

maintain the orderly evaluation of urban environments. Three-dimensional reconstruction and

mobile mapping are two critical roles that are essential in supporting varying applications in urban

environments. This Special Issue focuses on the techniques for 3D reconstruction and mobile

mapping in urban environments by using remote sensing, including new instruments for rapid

data acquisitions, perspective invariant algorithms for reliable feature matching, efficient SfM- and

SLAM-based solutions for robust image orientation, and deep learning-based neural networks to

reshape the whole pipeline of 3D reconstruction and mobile mapping. For the construction of this

Special Issue, we really appreciate the authors who contribute their valuable work and the editors for

their passionate assistance, which form the base of the successful organization of this Special Issue.

San Jiang, Duojie Weng, Jianchen Liu, and Wanshou Jiang

Editors
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1. Introduction

Both 3D reconstruction and mobile mapping are critical in supporting various appli-
cations in urban environments, including but not limited to autonomous driving, smart
logistics, pedestrian navigation, and virtual reality. In the last decade, remote sensing-based
techniques have emerged as a meaningful solution for ensuring urban environments are
evaluated in an orderly fashion, due to the rapid evolution of cutting-edge techniques, e.g.,
SfM (Structure from Motion), SLAM (Simultaneous Localization and Mapping), and the
revolution in deep learning techniques that enhance the entire pipeline, e.g., NeRF (Neural
Radiance Field). In conclusion, the explosive development of 3D reconstruction and mobile
mapping has been particularly notable in recent years.

This Special Issue comprises high-quality papers focusing on the techniques and
applications of 3D reconstruction and mobile mapping in urban environments. A total of
15 papers are published in this Special Issue, covering topics such as image feature match-
ing and dense matching, LiDAR/image-fused SLAM for image orientation and tunnel
mapping, NeRF-based scene rendering and orthophoto generation, and other interesting
applications, such as InSAR point cloud registration and 3D Ground-Penetrating Radar
(3D GPR) for underground imaging and positioning. The details of each paper will be
described in the following section.

2. Overview

Reliable feature matching is the first step of 3D reconstruction, determining the success
of subsequent processing. Focusing on the feature matching of spherical images, Jiang
et al. [1] present an algorithm by combining local geometric rectification with convolutional
neural network (CNN) learned descriptors. It addresses the challenge of the geometric
distortions inherent in spherical images and improves the performance of 3D reconstruc-
tion systems. The method utilized includes a local geometric rectification, a CNN-based
descriptor learning network for rectified patches, and a robust essential matrix estimation
for outlier removal. The effectiveness of the proposed solution is demonstrated through
experiments using real spherical images.

Yao et al. [2] introduce a quasi-dense matching algorithm for oblique stereo images
with large viewpoint changes. The core idea of the proposed method relies on the com-
bination of VGG16-UNet-based semantic segmentation with LoFTR-based local feature
enhancement. The method involves segmenting multiplanar scenes, performing affine-
invariant feature matching, and enhancing weak texture regions to improve the matching
accuracy. By using low-altitude stereo images, the experiments demonstrate significant

Remote Sens. 2024, 16, 3236. https://doi.org/10.3390/rs16173236 https://www.mdpi.com/journal/remotesensing1
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advantages in match quantity, accuracy, and spatial distribution over classical and deep-
learning methods.

The 3D reconstruction of ancient buildings plays a critical role in digital city construc-
tion. By using recent techniques, Ge et al. [3] present a NeRF-based 3D reconstruction
workflow for UAV images with depth supervision. It introduces a multi-resolution hash
coding approach to reduce hash conflicts and a truncated signed distance function (TSDF)
to improve geometric accuracy. Through the use of collected UAV (Unmanned Aerial
Vehicle) images, the test results demonstrate that the proposed solution can render images
with clearer structural details and achieves a notable improvement in performance, with
a 15% gain on average in the Peak Signal-to-Noise Ratio (PSNR) and a 10% gain in the
Structural Similarity Index Measure (SSIM), producing detailed and accurate 3D models
that are suitable for the digital preservation of cultural heritage sites.

A digital orthophoto is one of the most important developments, and it has been
produced via the standard photogrammetric workflow for many years. Recently, by using
the cutting-edge technique, Lv et al. [4] have presented a comparative study of explicit
and implicit methods for generating digital orthophotos. The explicit method, termed as
TDM (top-view-constrained dense matching), relies on the traditional geometric approach,
while the implicit method, namely Instant NGP, employs neural rendering with Neural
Radiance Fields. The comparative test concludes that both methods can produce accurate
and high-quality orthophotos; due to the usage of the Compute Unified Device Architecture
(CUDA) acceleration technique, TDM has significantly higher efficiency. To summarize,
the study offers insights for selecting appropriate digital orthophoto generation methods
based on efficiency and quality requirements.

Arza-García et al. [5] propose a cost-effective method for assessing the structural
stability of a typical 3D model application, rubble mound breakwaters (RMBs), through
the combination of UAV photogrammetry and Random Sample Consensus (RANSAC). In
the proposed workflow, the photogrammetric point clouds of the RMB are generated via
Structure from Motion and Multi-View Stereo (SfM-MVS) from pre- and post-storm flights,
and they are fed to RANSAC for plane extraction and segmentation. Finally, by using a
spatial proximity criterion, the cuboids of the two time periods are registered. The tests
conducted on a breakwater in Porto, Portugal, show that the proposed method successfully
identified post-storm structural changes and showcased its potential for monitoring RMB.

For urban 3D modeling, Cui et al. [6] introduce a method to extract urban building
heights from Gaofen-7 stereo satellite images. The key technique involves using a contour
matching algorithm to accurately determine rooftop elevations and using ground filtering
to generate a DEM (Digital Elevation Model) from the DSM (Digital Surface Model). The
proposed solution addresses challenges like occlusions, inaccurate ground elevation, and
high-rise buildings, and it has been well-verified by using stereo images from three different
provinces. The results verify the improved accuracy in building height extraction, especially
beneficial for high-rise buildings and sites with complex terrain or vegetation.

For multi-source data fusion, Liu et al. [7] present a robust multi-sensor SLAM system,
termed LVI-fusion, that integrates camera, lidar, and IMU data. The proposed mainly con-
sists of a time alignment module to handle varying data frequencies, an image segmentation
module for dynamic target removal, and a depth recovery model for feature points. The
system uses a sliding window optimization module to achieve real-time pose calculation.
The tests, carried out in various environments, demonstrate that the proposed method
has high accuracy and robustness, and outperforms the other existing SLAM solutions,
particularly in dynamic settings.

Xu et al. [8] present an enhanced Strapdown Inertial Navigation System (SINS) and
a LiDAR tightly integrated SLAM system for urban environments with sparse structural
features. The method refines an edge point extraction process from the LOAM algorithm
and introduces a Kalman filter using line distance error as the primary observation metric
to improve the robustness and accuracy of the system. The experimental tests conducted in
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various environments demonstrate its superior performance, with a 17% enhancement in
positioning accuracy, especially in scenarios with limited structural features.

Point cloud registration, which aims to align two 3D point clouds using keypoint
correspondences, is essential in photogrammetry and remote sensing. Traditional methods
face challenges due to uncertainties in keypoint detection and matching, leading to outliers
that reduce efficiency and accuracy. Wang et al. [9] present a new registration method using
a compatibility graph and accelerated guided sampling, introducing a minimum subset
sampling approach to minimize outlier impact and a preference-based sampling strategy to
enhance computational efficiency and accuracy. Using synthetic and real datasets, the test
results show that the proposed solution achieves a minimum rotation error of 0.737◦ and a
minimum translation error of 0.0201 m, respectively, compared with existing methods.

In complex scenes with closely adjacent trees and buildings, the accurate extraction
of building point clouds is challenging. Su et al. [10] introduce a two-stage method for
building-point-cloud extraction based on geometric information. The first stage coarsely
extracts building points, which are refined using mask polygons and a region-growing
algorithm in the second stage. The method integrates the Alpha Shape algorithm and
neighborhood expansion to address missing boundary points and applies mask extraction
to the original points to avoid errors in facade identification. The approach shows significant
improvements in extraction accuracy, outperforming PointNet by 20.73% in terms of
precision and achieving results comparable to the HDL-JME-GGO network on the Urban-
LiDAR and Vaihingen datasets.

Mutlti-source data fusion is a key step in the application of vehicle-borne mobile
mapping systems (MMSs). Ji et al. [11] propose a method for vehicle-borne laser point
cloud and panoramic images based on occlusion removal. The approach involves removing
irrelevant points, extracting relevant scenes based on trajectory points, and applying
a collinear model with spherical projection for matching. In addition, a vectorial angle
selection algorithm is designed, in order to filter out occluded projections. The experimental
results show the proposed solution can achieve an average pixel error of 2.82 pixels and
a positional error of 4 cm, verifying that it is effective for data fusion applications in
navigation, surveying, and mapping.

Cheng et al. [12] introduce an image-aided LiDAR framework for the extraction, classi-
fication, and characterization of lane markings from mobile mapping data. The framework
addresses road safety by improving lane-marking inventory through a combination of
imagery and LiDAR data, enhancing the detection of markings under various conditions.
The framework includes road surface identification and color/intensity enhancement, and
utilizes a geographic information system for visualization. The study demonstrates the
system’s effectiveness over an extended road network, showing the potential to improve
road safety analyses.

To address the need for the high-precision point cloud mapping of subway trains in
long tunnel scenarios, Li et al. [13] introduce a LiDAR and inertial measurement sensor-
based map construction method. The approach integrates a tightly coupled front-end
odometry system by using Kalman filters with back-end optimization via factor graphs.
In the front end, inertial measurements predict filter updates based on LiDAR points and
local map planes. A global pose graph, built from inter-frame odometry and constraints,
undergoes smoothing optimization for accurate mapping. The experiments show that
it achieves a trajectory consistency of 0.1 m and an accumulated error of less than 0.2%
compared to ground truth.

Array interferometric synthetic aperture radar (Array InSAR) systems can address
shadow issues by performing scans in opposite directions. However, point clouds from
two scans must be registered accurately. Cui et al. [14] present a robust registration method
for urban Array InSAR point clouds, which uses images to represent 3D data, where pixel
positions reflect azimuth and ground range, and pixel intensity represents height. The
KAZE algorithm and an enhanced matching approach identify corresponding points to
estimate transformation relationships. The experimental results show that it achieves the
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facade registration with a relative angular difference of less than 0.5◦, and ground element
registration achieves a Root Mean Square Error (RMSE) of less than 1.5 m.

Three-Dimensional Ground-Penetrating Radar (3D GPR) offers non-destructive and
continuous subsurface detection but faces challenges regarding positioning accuracy in
complex urban environments. Zhang et al. [15] propose a multi-level robust positioning
method to enhance the accuracy of 3D GPR. In areas with strong GNSS signals, differential
GNSS technology ensures rapid, precise positioning. For weak GNSS signals, a GNSS/INS
tightly coupled solution improves accuracy, while in GNSS-denied environments, SLAM
technology integrates INS data and 3D point clouds. This approach achieves a positioning
accuracy of better than 10 cm, delivers high-quality 3D images of underground urban
structures, and supports urban road surveys and underground disease detection.

3. Conclusions

This Special Issue focuses on the techniques for 3D reconstruction and mobile mapping
in urban environments by using remote sensing methods, detailing the rapid develop-
ment of new instruments for data acquisitions, the perspective invariant algorithms for
feature matching, efficient SfM and SLAM-based solutions for image orientation, and
deep-learning-based neural networks, all of which enhance the whole pipeline of 3D recon-
struction and mobile mapping. Numerous high-quality manuscripts that covered a wide
range of hot topics were submitted to this Special Issue. Ultimately, 15 of these papers were
published after undergoing strict peer review, ensuring that this Special Issue will provide
useful clues to guide further research.
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Abstract: Spherical images have the advantage of recording full scenes using only one camera
exposure and have been becoming an important data source for 3D reconstruction. However,
geometric distortions inevitably exist due to the spherical camera imaging model. Thus, this study
proposes a reliable feature matching algorithm for spherical images via the combination of local
geometric rectification and CNN (convolutional neural network) learned descriptor. First, image
patches around keypoints are reprojected to their corresponding tangent planes based on a spherical
camera imaging model, which uses scale and orientation data from the keypoints to achieve both
rotation and scale invariance. Second, feature descriptors are then calculated from the rectified image
patches by using a pre-trained separate detector and descriptor learning network, which improves
the discriminability by exploiting the high representation learning ability of the CNN. Finally, after
classical feature matching with the ratio test and cross check, refined matches are obtained based
on an essential matrix-based epipolar geometry constraint for outlier removal. By using three real
spherical images and an incremental structure from motion (SfM) engine, the proposed algorithm is
verified and compared in terms of feature matching and image orientation. The experiment results
demonstrate that the geometric distortions can be efficiently reduced from rectified image patches,
and the increased ratio of the match numbers ranges from 26.8% to 73.9%. For SfM-based spherical
image orientation, the proposed algorithm provides reliable feature matches to achieve complete
reconstruction with comparative accuracy.

Keywords: spherical image; feature matching; geometric rectification; structure from motion; 3D
reconstruction; learned descriptor

1. Introduction

Image-based 3D reconstruction has become a critical module in recent photogrammet-
ric systems [1], which has been adopted in varying applications ranging from conventional
digital urban construction [2] to the recent archaeological excavation [3] and transmission
corridor inspection [4]. Because of the low cost of imaging sensors and the maturity of
processing techniques, perspective cameras are the most widely used instruments for
data acquisition in image-based 3D reconstruction, especially for aerial photogrammetry.
With the increasing demands for 3D reconstruction for street or indoor environments,
perspective cameras become inefficient and non-applicable for data acquisition. The main
reason is that their limited FOV (field of view) causes significantly more image recording
burden to cover the omnidirectional scene.

In contrast to the limited FOV of perspective cameras, spherical cameras, also known
as omnidirectional cameras, have the advantage of recording full scenes using only one
camera exposure, as they have respectively 360° and 180° FOV in the horizontal and vertical
directions [5]. Except for professional spherical cameras, e.g., the LadyBug series that is
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widely used in mobile mapping systems (MMSs) [6], recent years have also witnessed the
explosive development of consumer-grade spherical cameras that feature low costs and
light weights, e.g., the Insta360 and Ricoh Theta [7]. For image-based 3D reconstruction,
the capability and popularity of spherical cameras have promoted their usage in varying
fields, including, but not limited to, damaged building evaluation [8], urban 3D model-
ing [9] and tunnel rapid mapping [10]. Thus, spherical images are becoming an important
data source for 3D reconstruction.

Feature matching is the prerequisite to implementing image-based 3D reconstruction.
In the literature, feature matching has been achieved through local feature-based image
matching methods that compute descriptors for image patches around detected keypoints
and cast image matching as searching nearest neighbors among two sets of descriptors.
The pipeline of local feature-based image matching consists of two major steps, i.e., feature
detection and matching based on the well-designed descriptors [11,12], and outlier removal
based on photometric and geometric constraints [13]. Existing research has promoted
the development of feature matching techniques toward the direction of automation and
precision. However, the vast majority of existing algorithms are used for perspective
images, which differ from spherical images in the camera imaging model [14]. Perspective
images use a 2D plane imaging model that projects 3D scene points to 2D image points
on the image plane. On the contrary, spherical images are recorded by projecting scene
points onto the 3D sphere, which are further flattened to the 2D image plane. Because of
the transformation from the 3D sphere to the 2D plane, geometric distortions are inevitably
introduced into the recorded spherical images, which become more and more serious in
the regions near the equator to the poles [15] as shown in Figure 1. Thus, more attention
should be paid to reducing distortions in spherical images.

Figure 1. The illustration of geometric distortion in the spherical images. (a,b) indicate image pairs
that are rotated around the X axis with the angles of 45° and 75°, respectively. The red rectangles and
ellipses show increasing distortions and decreasing matches.

In the literature, both 2D plane and 3D sphere-based algorithms have been docu-
mented to alleviate the geometric distortions in spherical images [16–18]. For 2D plane-
based methods, existing solutions can be divided into three groups, i.e., global methods,
semi-global methods, and local methods. In global methods, Wang et al. [18] have imple-
mented a SLAM (simultaneous localization and mapping) system, namely CubemapSLAM,
in which the cubic-map reprojection solution is used to convert each spherical image into
six perspective images that are then processed by using classical feature matching methods.
Considering the distribution pattern of image geometric distortions, Taira et al. [17] aimed
to execute feature matching on the region near the sphere equator, which is achieved by
rotating spherical images around the Y axis and detecting local features from the regions
near the equator. Compared with the global cubic-map reprojection solution, it can be seen
as a semi-global rectification method. In contrast to the global and semi-global rectifica-
tion solutions, Chuang and Perng [16] proposed reprojecting the local image patches of
keypoints onto the corresponding tangent planes and calculating feature descriptors from
rectified image patches. Except for rectification-based methods, other research achieves
feature detection and descriptor computation by considering the principle of the spherical
imaging model. The proposed solutions are usually designed on the spherical grid for
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neighbor searching, such as SPHORB [19] and BRISKS [20], instead of the plane grid used
in the classical methods. In the above-mentioned solutions, classical heuristic algorithms
are widely used for feature detection and description.

In recent years, CNN (convolutional neural network)-based deep learning networks
have also been widely used for feature matching due to their powerful representation
learning ability [21,22]. According to network tasks, existing CNNs can be divided into
three groups, i.e., joint feature and metric learning networks that learn the similarity of
image patches [23,24], separate detector and descriptor learning networks that learn to
compute descriptors [25,26], and joint detector and descriptor learning networks that learn
to detect keypoints and compute descriptors [27,28]. These CNN models have achieved
comparative or superior performance for feature matching of perspective images. To avoid
the degenerated performance for spherical images, recent research has also attempted to
design CNNs that can adapt to geometric distortions in spherical images. The reported
solutions can be divided into three groups, i.e., tangent projection methods, CNN kernel
shape resizing methods, and CNN sampling point adjustment methods. For the first one,
equirectangular images are first projected to undistorted tangent images [29] or divided
into quasi-uniform discrete images [30], and existing CNNs are applied to the resulting
images. For the second one, CNNs are designed to work on equirectangular images
by adjusting the CNN kernel shape [31–33]. In Su and Grauman [32], a CNN termed
SPHCONV was proposed to produce results as the output of applying perspective CNNs
to the corresponding tangent images. SPHCONV was achieved by defining convolution
kernels with varying shapes for pixels in different image rows. Su and Grauman [34]
proposed a kernel transformer network (KTN) to learn spherical kernels by taking as input
the latitude angle and source kernels for perspective images. For the third one, sampling
points of CNN kernels are adjusted based on geometric distortions instead of adjusting the
convolution kernel shape. Zhao et al. [33] and Coors et al. [31] designed distortion-aware
networks that sample non-regular grid locations according to the distortions of different
pixels. The core idea of these networks is to determine the sampling locations based on
the spherical projection of a regular grid on the corresponding tangent plane. Due to
regular convolution kernels, these frameworks enable the transfer between CNN models
for perspective and equirectangular images.

To achieve feature matching for spherical images, both hand-crafted and learning-
based methods can provide useful solutions. On the one hand, the redesigned methods
can solve the geometric distortions from the camera imaging principle of spherical images.
These algorithms, however, cannot leverage existing mature techniques. On the other
hand, the methods that use a reprojection strategy can be easily adapted to the algorithms
designed for perspective images and cooperated with the representation learning ability
of CNNs. Based on the above-mentioned observation, this study proposes a reliable
feature matching method for spherical images through the combination of local geometric
rectification and CNN learned descriptors. The main contributions are summarized as
follows: (1) we design a local geometric rectification algorithm based on the camera imaging
model of spherical images and the scale and orientation data from the feature detector;
(2) we implement a reliable feature matching workflow for spherical images by using a
CNN descriptor learning network for the rectified image patches and a robust essential
matrix estimation algorithm for outlier removal in feature matching; and (3) we verify
the validation and demonstrate the performance of the proposed solution by using real
spherical images in the terms of feature matching and SfM (structure from motion)-based
image orientation.

This paper is organized as follows. Section 2 presents the details of the proposed
feature matching algorithm, including local geometric rectification, deep learning-based
descriptor generation, and outlier removal via essential matrix estimation. Section 3 gives
the details of the used datasets and experimental analysis and comparison for feature
matching and SfM-based image orientation. Finally, Section 5 presents the conclusions and
future studies.
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2. Methodology

Figure 2 presents the overall workflow of the proposed algorithm and verification
solution. It mainly consists of three steps. First, SIFT (scale invariant feature transform) [12]
keypoints are detected mainly because of their wide usage in industrial fields, and the
image patches around them are reprojected for local geometric rectification; second, feature
descriptors are then calculated from rectified patches based on a pre-trained separate
detector and descriptor learning network, which are subsequently fed into the standard
SIFT matching module with cross-check and ratio-test constraints; third, refined matches
are obtained after outlier removal by using the geometric constraint via the essential matrix
estimation. In this study, the proposed algorithm is finally verified in feature matching
and SfM-based image orientation by using three real spherical images, which are captured
from varying environments and different platforms. The details of the implementation are
presented in the following subsections.

Figure 2. The overall workflow of the proposed algorithm and verification solution.

2.1. Spherical Camera Imaging Model

The camera imaging model defines the geometric relationship between 3D scene
points in the object space and their corresponding 2D image points in the image plane.
In the literature, the widely used spherical camera imaging model can be categorized into
three major groups, i.e., unified camera model [35], general camera model [36], and multi-
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camera model [37]. Due to the wide usage of multi-camera imaging instruments and the
simple formula of the imaging model, the unit sphere camera model that belongs to the
multi-camera model is adopted in this study for feature matching and SfM-based image
orientation. For the unit sphere camera model, the intrinsic parameters K of a sphere
camera include three parameters without other distortion parameters, including one for
the focal length f and two for the principal point (cx, cy). Generally, the radius r of the unit
sphere camera model is set as one. In other words, the focal length of the spherical camera is
set as f = 1; the principal point coordinates are fixed at the center of images, i.e., cx = W/2
and cy = H/2, in which W and H indicate the image width and height, respectively.

Based on the definition of the spherical camera imaging model, the imaging procedure
from the 3D scene points to 2D image points can be illustrated in Figure 3, in which the
spherical image is represented in the equirectangular projection (ERP) format. For the
imaging procedure, Figure 3a presents the spherical camera imaging model that maps
one 3D point P in the object space to the 3D point p on the sphere. Figure 3b shows the
transformation between the 3D point p and its corresponding 2D point in the image plane.
In this projection, the point p on the unit sphere can be formulated in two coordinate
systems, i.e., the geographic coordinate system O − rθϕ and Cartesian coordinate system
O − XYZ. In the former, the coordinate of point p is represented using the longitude θ
and latitude ϕ; in the latter, the coordinate of point p is represented using three coordinate
terms (x, y, z)T .

Figure 3. The principle of spherical camera imaging model and coordinate transformation: (a) the
spherical camera imaging model; (b) the coordinate transformation between the spherical image and
equirectangular image [5].

According to the coordinate system definition, the transformation from the geographic
coordinate system O − rθϕ to the Cartesian coordinate system O − XYZ can be expressed
by using Equation (1), in which the sphere radius r = 1. In addition, the transforma-
tion between 3D geographic coordinates and 2D image coordinates can be formulated as
Equation (2), where Ix and Iy are the image coordinates in the ERP image plane. These two
equations establish the coordinate transformation between 3D sphere points and 2D image
points and form the basic formulas for the subsequent local geometric rectification and
outlier removal: ⎛

⎝x
y
z

⎞
⎠ =

⎛
⎝cos(ϕ) sin(θ)

− sin(ϕ)
cos(ϕ) cos(θ)

⎞
⎠ (1)

(
θ
ϕ

)
=

⎛
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Ix − cx

W
∗ 2π

cy − Iy

H
∗ π

⎞
⎟⎠ (2)
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2.2. Image Patch Reprojection for Local Geometric Rectification

The geometric distortion in the spherical image seriously degenerates the repeatability
of local features due to the appearance difference of image patches around detected key-
points. In this study, image patch reprojection is used to achieve local geometric rectification
and alleviate the geometric distortions. The core of image patch reprojection is to project
the original patch on the sphere to the corresponding patch on the tangent plane that goes
through the keypoint in the geographic coordinate system O − rθϕ. The principle of image
patch reprojection is illustrated in Figure 4. For the keypoint I = (Ix, Iy) detected from
the ERP spherical image, as shown in Figure 4a, its corresponding geographic coordinate
p = (θ, ϕ), as presented in Figure 4b, is first calculated according to Equation (2). By using
the normal vector that starts from the origin O to the sphere point p, a tangent plane is then
defined as shown by the red line in Figure 4b. Based on the imaging geometry, the local
patch around p can be projected onto the tangent plane and generate the rectified patch,
as shown in Figure 4c.

Figure 4. The illustration of image patch reprojection for local geometric rectification: (a) the keypoint
detected from the ERP spherical image; (b) the position of the keypoint is transformed to the
spherical coordinate system, in which the tangent plane is defined; (c) the image grid defined on the
tangent plane.

In the above-mentioned reprojection procedure, the scale scale and orientation ori
parameters should be carefully determined to define image patches since it ensures the scale
and rotation invariant for descriptors. Fortunately, the required data can be obtained from
widely used feature detection algorithms. In the context of feature detection using SIFT,
a feature point f can be represented as f = (Ix, Iy, scale, ori), in which (Ix, Iy) indicates the
pixel coordinates; scale and ori indicate the scale and orientation parameters, respectively.
Suppose that the desired width and height of the rectified patch are labeled as Wp and Hp,
respectively, for the original image scale. Thus, the patch size for the feature point p can be
calculated using Equation (3), in which SR is the scale ratio between the pyramid layers of
the feature point p and the original image. Generally, SR can be calculated as scale/scale0.
For the SIFT used in this study, the original image scale is set as scale0 = 1.6:{

Wsp = Wp ∗ SR

Hsp = Hp ∗ SR
(3)

Based on the defined patch size, a pinhole camera model for the rectified patch is
defined with the focal length fp = W/4 and principal point cxp = Wsp/2 and cyp = Hsp/2
to ensure the same spatial resolution as the original spherical image. In this study, an inverse
procedure is utilized to generate the rectified image patch to ensure the desired dimension
of output patches. The rectified image patch is computed based on the following steps:
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(1) For each image point p = (px, py)T in the rectified image patch, as shown in Figure 4c,
its homogeneous coordinate ph = (pxh, pyh, 1)T is calculated based on Equation (4):

(
pxh
pyh

)
=

⎛
⎜⎜⎝

px − cxp

fp
py − cyp

fp

⎞
⎟⎟⎠ (4)

(2) Considering that a unit sphere camera model is used to define the Cartesian coordinate
system O − XYZ, the homogeneous coordinate ph is then projected onto the sphere
point pls through the normalization operation presented in Equation (5):

pls =
ph

‖ph‖ (5)

(3) The sphere point pls is further transformed from the local Cartesian coordinate system
of the rectified image patch to the global Cartesian coordinate system O − XYZ by us-
ing a transformation matrix R = Ry(θ) ∗ Rx(ϕ) ∗ Rz(ori), as presented by Equation (6).
The transformation matrices Rz(ori), Rx(ϕ) and Ry(θ) define the rotation around the
Z, X, and Y axes with the orientation ori, latitude ϕ and longitude θ, respectively:

ps = R ∗ pls (6)

(4) According to the transformation between 3D sphere points and 2D image points as
presented in Equations (1) and (2), the image point I = (Ix, Iy) in the ERP image is
calculated from ps and used to interpolate the gray values for generating the rectified
image patch.

Based on the above-mentioned procedure, the rectified image patches with the size
of Wsp and Hsp can be generated based on the tangent plane reprojection, which is finally
resized to the dimension of Wp and Hp. Noticeably, in step (3), the rotation Rz(ori) around
the Z axis indicates the transformation from the major orientation of feature point f to the
nominal orientation of the Cartesian coordinate system. It is used to achieve the orientation
invariant for the subsequently generated descriptors.

2.3. Learned Feature Descriptors from Rectified Image Patches

The rectified image patches are then used to compute descriptors for feature matching.
In this study, a separate detector and descriptor learning network is adopted due to two
main reasons. On the one hand, image patches are the input of the network, which
differs from that for the joint detector and descriptor learning network; on the other
hand, this strategy can be easily integrated into the existing workflow for the subsequent
feature matching and SfM-based image orientation, instead of the joint feature and metric
learning network.

Considering the performance of the existing separate detector and descriptor learning
networks [22], a pre-trained HardNet [38] network is selected for the descriptor calculation.
Figure 5 shows the network structure and sampling strategy in network training. The net-
work is the same as L2-Net [26]. It consists of seven CNN layers with batch normalization
and ReLU activation, except for the last layer without activation. To obtain multi-scale
information, the dilated convolution is used in the third and fifth layers. For an input image
patch with a size of 32 by 32 pixels, HardNet outputs a 128D descriptor with the same
dimension as the widely used SIFT descriptor. In contrast to L2-Net, HardNet adopts a hard
negative sampling strategy and triplet margin loss function for network training, which
further enhances the discriminative ability of the network. Thus, by using the HardNet
network, 128D descriptors are calculated from the rectified image patches and used for the
subsequent feature matching.
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Figure 5. The network structure and sampling strategy of HardNet: (a) the network structure of
HardNet; (b) the sampling strategy used in network training.

2.4. Outlier Removal through Robust Essential Matrix Estimation

To establish correspondence between two images, the initial matches are first obtained
based on the standard feature matching strategy. The nearest and second-nearest neighbor
searching is executed between two sets of feature descriptors, and the feature points that
pass through the ratio test are set as candidate matches. Meanwhile, the cross-checking
strategy is also used to further refine the initial matches.

Due to repetitive patterns in images and the limited discriminative ability of local
descriptors, false matches are inevitably retained in the initial matches. In this study,
the coplanar geometric constraint is utilized to refine the initial matches, which requires
that three vectors, i.e., the baseline vector that connects projection centers and two observing
vectors that start from projection centers to the scene point, are coplanar. Suppose that
the relative orientation of two spherical images is expressed by the relative rotation R and
translation T; the intrinsic parameter K of the spherical camera are known. Therefore,
an essential matrix E = [T]×R can be calculated to encode the relative orientation. For two
corresponding rays p1 and p2, the coplanar constraint is then formulated by Equation (7):

pT
2 Ep1 = 0 (7)

where p1 and p2 are the spherical coordinates of two corresponding image points I1 and I2
in the image plane, which are calculated according to Equations (1) and (2). The geometrical
meaning of the coplanar constraint is shown in Figure 6. If p1 and p2 are a true match,
the three vectors Rp1, p2 and T are coplanar. In other words, p2 lies on the circular plane
composed of the vector Rp1 and T with the normal vector �n. Thus, using the estimated
essential matrix E, false matches can be identified from the initial matches.

Figure 6. The principle of relative orientation for spherical images.
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To achieve a robust estimation of the essential matrix E, the RANSAC-based hypothesis-
verify framework [39] is used in this study. During the iteration in RANSAC, the error
metric e and error threshold ep are required to label true and false matches. According
to the coplanar constraint as shown in Figure 6, the corresponding ray p2 of p1 in the left
image lies on the circular plane that is defined by the normal vector�n and the projection
center O2 of the right image. Thus, this study adopts the vector-to-plane geodesic angular
error metric [14] as presented in Equation (8):

e = abs(sin−1(pT
2 Ep1)) (8)

where abs(·) indicates the absolute value. At the same time, the error threshold ep in
the unit of pixels is converted to spherical angles in the unit of degrees. In this study,
the conversion is implemented according to Equation (9):

ea =
2π

max(W, H)
ep (9)

where 2π
/

max(W, H) indicates the scale factor of these two metrics; ea is the error thresh-
old in the spherical angles. In conclusion, based on the estimated essential matrix E,
the corresponding points p1 and p2 are labeled as one inlier if the angular error e < ea.
Based on the coplanar constraint, refined matches are obtained from the initial matches.

2.5. Implementation of the Proposed Algorithm

The proposed algorithm is implemented by using the C++ programming language.
For SIFT feature detection, the open-source library SIFTGPU [40] with default parameter
settings is used due to its hardware-accelerated high efficiency. For descriptor learning,
the pre-trained HardNet network released on the official website is directly used due to
two main reasons. On the one hand, it is trained using the Brown and HPatches datasets,
which have large diversity in terms of viewpoint and illumination; on the other hand,
this study aims to achieve feature matching using geometric rectified patches, instead of
using spherical images directly. Thus, no retraining is necessary for the utilized network.
For nearest neighbor searching-based feature matching, the maximum distance and the ratio
test threshold are set as 0.7 and 0.8, respectively. For essential matrix estimation, the 8-point
algorithm [41] is used, in which eight corresponding points form eight linear equations,
and the linear system is then solved through SVD (singular value decomposition) [42].
In addition, the error threshold ep is set as 4 pixels.

3. Experiments and Results

In the experiments, three datasets are utilized to evaluate the performance of the
proposed algorithm for the feature matching of spherical images. First, the adopted datasets
and evaluation metrics are described. Second, the comparison with other algorithms is
conducted for feature matching in terms of the number of matches and inliers and the
matching precision. Third, the proposed algorithm is integrated with an incremental
SfM workflow for image orientation. In this study, all tests are conducted on a Windows
desktop computer that is configured with 32 GB memory, an Intel Core i7-8700K 3.7
GHz CPU (central processing unit), and an NVIDIA GeForce GTX 1050Ti GPU (graph
processing unit).

3.1. Test Sites and Datasets

Detailed information on the three spherical datasets is presented in Table 1. The datasets
are captured by using both consumer-grade and professional sphere cameras, which are
fixed on the ground or in a hand-held tripod and mounted on the moving car. The charac-
teristic of each test site and the details for data acquisition are listed as follows.
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Table 1. Detailed information of the three spherical datasets.

Item Name Dataset 1 Dataset 2 Dataset 3

Scene type Outdoor Hybrid Street
Sensor type Sphere Sphere Sphere
Camera model Garmin VIRB 360 Garmin VIRB 360 Ladybug3
Storage format Equirectangular Equirectangular Equirectangular
Sensor platform Ground tripod Hand-held rod Moving car
Number of images 37 279 1937
Image size (pixel) 5640 × 2820 5640 × 2820 5400 × 2700

• The first dataset is recorded from a campus, which includes a parterre surrounded by
high buildings as shown in Figure 7a. For image acquisition, a Garmin VIRB 360 camera
is used, which stores images in the equirectangular representation format. The data
acquisition is conducted around the central parterre, and there are a total number of
37 images collected with a resolution of 5640 by 2820 pixels.

• The second dataset includes a complex building structure that covers from its rooftop to
the inner aisles as shown in Figure 7b. Parterres exist on the rooftop, and the inner aisles
connect different layers. For image acquisition, the same Garmin VIRB 360 camera as
in dataset 1 is adopted by using a hand-held tripod. A total number of 279 spherical
images are collected, which cover the whole inner aisles.

• The third dataset is collected using an MMS system. The test site goes along an urban
street, whose length is approximately 7.0 km. Along the street, low residual buildings
are located near the two roadsides as shown in Figure 7c. In this test site, a PointGrey
Ladybug3 camera that is made of six fisheye cameras is used. By setting the interval
distance of 3 m for camera exposure, there are a total number of 1937 spherical images
collected from this site.

(a) (b) (c)

Figure 7. The illustration samples of the used spherical datasets: (a) dataset 1; (b) dataset 2;
(c) dataset 3.

3.2. Evaluation Metrics

The proposed algorithm would be evaluated in feature matching and SfM-based
image orientation. For feature matching, three metrics are utilized, i.e., the number of
matches and inliers, and matching precision. The first indicates the number of obtained
initial matches; the second indicates the total number of obtained true matches; the third
represents the number ratio of true matches and initial matches. In SfM-based image
orientation, the obtained matches are then fed into an incremental SfM engine to reconstruct
camera poses and scene points. For performance evaluation, three metrics are used, i.e., the
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number of images and points, and RMSE (root mean square error). The first and second
metrics indicate the completeness of the image orientation, which is calculated as the
number of registered images and reconstructed 3D points. The third metric is calculated
as the reprojection error in BA (bundle adjustment) optimization. The description of used
evaluation metrics is listed in Table 2.

Table 2. The description of the used metrics for performance evaluation. Categories 1 and 2 indicate
the terms of feature matching and SfM-based image orientation, respectively. RMSE represents the
root mean square error in BA optimization.

Category Metric Description

1

No. matches The number of initial matches before outlier removal (large value
indicates good results).

No. inliers The total number of true matches after outlier removal (large
value indicates good results).

Match precision The ratio between the numbers of true matches and initial
matches (large value indicates good results).

2

No. images The number of resumed images in SfM-based image orientation
(small value indicates good results).

No. points The number of reconstructed 3D points in SfM-based image
orientation (large value indicates good results).

RMSE The RMSE of the bundle adjustment optimization (small value
indicates good results).

3.3. The Analysis of the Performance for Local Geometric Rectification

Local geometric rectification via image patch reprojection is the first step in the pro-
posed algorithm. It aims to alleviate appearance differences caused by the spherical camera
model. For visual analysis, Figure 8 presents the image patches that are directly cropped
from images and geometrically rectified based on tangent plane projection, which are ren-
dered by yellow and green colors, respectively. It is clearly shown that geometric distortions
exist in original image patches, such as the curve boundaries of buildings. After geometric
rectification, the distortions can be decreased, especially for the regions near the poles.

Figure 8. The comparison of extracted local image patches from one image pair in dataset 1. For each
item, the left and right items are directly cropped around keypoints and geometrically rectified based
on tangent plane reprojection, respectively.

In local geometric rectification, the orientation ori and scale scale of the output image
patches have a great influence on the performance of the subsequent descriptor calculation.
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In this study, the scale scale and orientation ori are obtained from the used SIFT keypoint
detectors. Figure 9 shows the comparison of local geometric rectification under different
configurations. The geometric rectification can dramatically decrease the appearance
differences as the results are presented from Figure 9a to Figure 9b. Although they have
high appearance similarity, the generated image patches are not invariant to the changes
in orientation and scale. By using the orientation and scale from detected SIFT features,
the image patches are then rotated and scaled accordingly as illustrated in Figure 9c,d,
respectively. For the visual analysis of the proposed algorithm, Figure 10 illustrates the
generated image patches from dataset 3. We can see that the structure and texture of
generated patches from the proposed algorithm are more regular as verified by the patches
labeled by the red rectangle.

Figure 9. The comparison of local geometric rectification: the image patch (a) directly cropped from
the spherical image without geometric rectification; (b) without orientation and scale; (c) with only
orientation; and (d) with both orientation and scale. Noticeably, the image size is 32 by 32 pixels for
all patches.

(a) (b)

Figure 10. The illustration of generated image patches: image patch (a) directly cropped from the
spherical image without geometric rectification and (b) rectified by the proposed algorithm. The red
rectangle indicates the effect of geometric rectification.

To verify the validation of the proposed local geometric rectification solution, three
image pairs with varying viewpoints are selected from dataset 2 for tests, and the four
configurations presented in Figure 9 are used for image patch extraction and feature
matching. The statistical results of the number of inliers are shown in Figure 11, in which
the methods with labels 1, 2, 3, and 4 correspond to the four configurations in Figure 9a–d.
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It is shown that for all three image pairs, the number of inliers increases obviously for the
methods with the label from 1 to 4. For a visual illustration, Figure 12 presents the matching
results of image pair 2. We can see that the geometric rectification increase matches near
poles as shown in Figure 12b; the introduction of orientation and scale further increases
matches over the whole image plane as presented in Figure 12c,d.

Figure 11. The comparison of the number of inliers of different methods.

(a) 135/180 (b) 166/258

(c) 206/320 (d) 315/480

Figure 12. The comparison of different image patch extraction methods for feature matching: image
patch (a) directly cropped from the spherical image without geometric rectification; geometrically
rectified (b) without orientation and scale; (c) with only orientation; and (d) with both orientation
and scale.

3.4. The Comparison of Local Feature-Based Matching

Local feature-based matching is then conducted by using the geometrically rectified
image patches. In this test, three metrics are used for performance evaluation, including
the number of matches, the number of inliers, and match precision. For comparison
analysis, four methods are adopted in this study, i.e., SIFT, ASLFeat, NGR-H (HardNet
for non-geometric rectified patches), and the proposed algorithm (HardNet for geometric
rectified patches). SIFT is used as the baseline algorithm, which has been widely used
in the photogrammetry field. ASLFeat is an end-to-end network for feature detection
and description [28]. NGR-H is utilized to verify the advantage of deep learning-based
descriptors when compared with hand-crafted descriptors. Before feature matching, image
pairs are first selected based on the sequential and spatial constraints in the data acquisition.
For the three datasets, there are a total number of 157, 4941, and 14,836 image match pairs.
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Table 3 presents the statistical results of feature matching for the three datasets. It is
shown that compared with separated detection and description methods, i.e., SIFT and
NGR-H, the proposed algorithm achieves the best performance under all used metrics,
except for the matching precision in dataset 1. In particular, compared with SIFT, the in-
creasing ratio of the number of inliers is 73.9% for dataset 1, which is higher than the values
of 34.2% and 26.8% for datasets 2 and 3, respectively. The main reason is that the top region
of the images is covered by sky and cloud, as illustrated in Figure 7, and few keypoints are
extracted from the region with large distortions. When comparing SIFT and NGR-H, we
can see that NGR-H achieves better performance in dataset 1 and comparative performance
in datasets 2 and 3. It verifies that the learned descriptor has a high tolerance to image
distortions. For the end-to-end network ASLFeat, the number of inliers is obviously lower
than the proposed method, which are 83, 198, and 177 for the three datasets, respectively.
The main reason is the low position accuracy of detected keypoints from down-sampled
feature maps as mentioned in [22].

Table 3. The statistical results of feature matching for the tested algorithms. The mean of each metric
is calculated from all selected image pairs for feature matching. The best values are in bold.

Metric Method Dataset 1 Dataset 2 Dataset 3

No. matches

SIFT 165 232 296
ASLFeat 337 385 253
NGR-H 248 234 286
Ours 290 297 371

No. inliers

SIFT 111 158 250
ASLFeat 83 198 177
NGR-H 168 160 244
Ours 193 212 317

Match Precision

SIFT 0.57 0.64 0.79
ASLFeat 0.33 0.51 0.68
NGR-H 0.62 0.59 0.81
Ours 0.60 0.67 0.82

For the further visual analysis, Figures 13–15 show the matching results of one selected
image pair from the three datasets. We can see that the proposed algorithm achieves the
best performance in the number of matches and inliers. In the term of match precision,
comparative performance can be observed from image pairs 1 and 3 for the three methods.
For image pair 2, the proposed algorithm has better performance to cope with the large dis-
torted regions. Due to the low position accuracy, the number of inliers and match precision
of ASLFeat is obviously lower than the other methods. Considering the performance of
the evaluated methods, only SIFT, NGR-H, and the proposed algorithm would be further
analyzed in the following experiments.

For the overall statistical analysis, Figure 16 presents the statistical results of the num-
ber of inliers by using the frequency histogram and accumulative frequency. For each
sub-figure, the range of the inlier number is divided into bins with the same width, and the
inlier number of all selected image pairs votes for the bins and the accumulative frequency.
For interpretation, the point near the value of 90% in the accumulative frequency is high-
lighted in each sub-figure, and the range of bins and inliers are labeled. It is shown that for
the three datasets, the proposed algorithm has a larger span for both bins and inliers when
compared with SIFT and NGR-H. It means that more image pairs have a larger number
of inliers.
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(a) SIFT (171/277/0.70)

(b) ASLFeat (68/256/0.27)

(c) NGR-H (187/268/0.70)

(d) Ours (206/298/0.69)

Figure 13. The comparison of feature matching for dataset 1. For each method, the left and right

images represent the results of initial and refined matches. The values in the bracket are the number
of inliers and initial matches, and the match precision, respectively.

(a) SIFT (138/197/0.70)

(b) ASLFeat (65/175/0.37)

(c) NGR-H (143/201/0.71)

(d) Ours (193/263/0.73)

Figure 14. The comparison of feature matching for dataset 2. For each method, the left and right

images represent the results of initial and refined matches. The values in the bracket are the number
of inliers and initial matches, and the match precision, respectively.

20



Remote Sens. 2023, 15, 4954

(a) SIFT (323/416/0.78)

(b) ASLFeat (90/145/0.62)

(c) NGR-H (321/403/0.80)

(d) Ours (413/525/0.79)

Figure 15. The comparison of feature matching for dataset 3. For each method, the left and right

images represent the results of initial and refined matches. The values in the bracket are the number
of inliers and initial matches, and the match precision, respectively.

SIFT NGR-H Ours

(a) dataset 1

(b) dataset 2

(c) dataset 3

Figure 16. The statistical analysis of the number of inliers for the three datasets. Each figure presents
two terms. The bottom one is the bin frequency that inlier numbers fall into, which is arranged in
descending order; the top one indicates the accumulation of the bin frequencies.
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3.5. Application in SfM-Based Image Orientation

SfM-based image orientation can be achieved by using the refined feature matches.
In our previous work, an incremental SfM engine was designed and implemented [5].
The inputs of the SfM engine are spherical images in the ERP format. After the sequential
execution of SIFT feature matching, essential matrix-based outlier removal, and the iterative
bundle adjustment, sparse reconstruction can be obtained, including the oriented images
and reconstructed 3D points. Based on the established workflow, the proposed feature
matching algorithm is integrated with the SfM engine for image orientation.

Table 4 presents the statistical results of image orientation for the three datasets. We
can see that all images can be successfully reconstructed for the three test algorithms.
The number of reconstructed 3D points from the proposed algorithm are 4645, 49,252,
and 363,371 for the three datasets, respectively, whose increase ratios are approximately
80.8%, 22.8%, and 25.2% when compared with SIFT. It is almost consistent with the increased
ratio of feature matching as presented in Section 3.4. Considering the metric RMSE in the
BA optimization, SIFT achieves better performance than the proposed algorithm, whose
values are 0.74, 0.80, and 0.56 for the three datasets, respectively. It can explain from two
aspects. On the one hand, fewer matched points would be involved in the BA optimization,
which would decrease the ratio of false matches in SIFT; on the other hand, the distortions
near the pole are larger than the other regions, which would further decrease the position
accuracy of matched points in the proposed algorithm. In addition, Figure 17 presents the
image orientation results of the three datasets based on the SfM engine. It is shown that
all images in the three datasets are well reconstructed, which can be used for subsequent
3D reconstruction procedures, e.g., dense matching and texture mapping. Based on the
comparison, we can conclude that the proposed algorithm can reconstruct more 3D points
and achieves comparative accuracy when compared with other methods.

Table 4. The statistical results of image orientation for the three datasets in terms of the number of
oriented images and reconstructed 3D points and precision. The RMSE is in pixels.

Dataset Method Images Points RMSE

Dataset 1
SIFT 37 2569 0.74
NGR-H 37 3832 0.80
Ours 37 4645 0.80

Dataset 2
SIFT 279 40,118 0.80
NGR-H 279 38,927 0.83
Ours 279 49,252 0.82

Dataset 3
SIFT 1937 290,240 0.56
NGR-H 1937 289,681 0.61
Ours 1937 363,371 0.60
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(a) dataset 1 (b) dataset 2

(c) dataset 3

Figure 17. Image orientation results based on the SfM engine. The blue rectangles indicate the
oriented images, and reconstructed 3D points are rendered by the color of the images.

4. Discussion

Spherical images are becoming a promising data source for the 3D reconstruction
of complex scenes due to their omnidirectional FOV. However, geometric distortions
are inevitably added to the recorded images of their spherical camera imaging model.
Considering the wide usage of spherical cameras and their promising applications in 3D
reconstruction, this study designs and implements a reliable feature matching method
for spherical images. The main purpose is to reduce the geometric distortions that are
caused by the projection from the 3D sphere to the 2D plane and improve the discriminative
power of descriptors by exploiting deep learning-based techniques. The performance of
the proposed algorithm is verified by spherical images captured from both consumer-grade
and professional cameras.

Compared with existing methods, two major advantages are designed for the pro-
posed algorithm. On the one hand, local geometric rectification is adopted to remove
the distortions. For scale and rotation invariance, it is implemented by considering both
orientation ori and scale oriof the output image patches since they have a great influence
on the subsequent descriptor calculation. Specifically, the scale ori and orientation ori
information in the SIFT keypoint detector is used to improve the performance as demon-
strated in Section 3.3. On the other hand, the learned descriptor is then utilized to describe
rectified patches because they have shown high discriminative power in recent studies,
and the results are verified in Section 3.4. In addition, a robust outlier removal method
is designed as the final step to refine the initial matches, which is based on the essential
matrix estimation in the sphere coordinate system. Based on the designed feature matching
method, reliable feature matches can be used to achieve SfM- and SLAM-based image
orientation as shown in Section 3.5.
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According to the experimental results, some limitations could also be observed in this
study. First, the unit sphere camera model is used for image orientation, which consists of
three intrinsic parameters, i.e., one for the focal length f and two for the principal point
(cx, cy). The ideal camera model may not be enough to establish the imaging model for
consumer-grade cameras. It can be observed from the RMSE presented in Table 4, in which
the RMSE of datasets 1 and 2 is larger than that of dataset 3. Second, the hand-crafted SIFT
detector is used to detect keypoints for patch generation. However, compared with aerial
images, spherical images are often captured from near-ground streets or indoor rooms that
include a majority of low- or non-textured regions. Thus, a few keypoints can be detected
from these scenes, which can be verified by the results presented in Figure 14. In future
studies, more spherical camera imaging models would be compared in the SfM-based
image orientation. Furthermore, deep learning-based detector-free networks can be used to
address the second issue.

5. Conclusions

This study implements a reliable feature matching algorithm for spherical images
via the combination of local geometric rectification and the CNN learned descriptor. Af-
ter SIFT-based feature detection, image patches are first reprojected to their corresponding
tangent planes for the local geometric rectification, which can achieve scale- and orientation-
invariant geometric rectification. Using a pre-trained separate detector and descriptor
network, feature descriptors are then generated and used to obtain the initial matches.
Finally, refined matches are obtained after outlier removal that is implemented using the
essential matrix-based epipolar geometry. The performance is verified by using real spheri-
cal images, and experimental results demonstrate that the proposed algorithm can provide
reliable feature matches and improve the completeness of SfM-based image orientation.
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Abstract: This paper proposes a quasi-dense feature matching algorithm that combines image
semantic segmentation and local feature enhancement networks to address the problem of the poor
matching of image features because of complex distortions, considerable occlusions, and a lack of
texture on large oblique stereo images. First, a small amount of typical complex scene data are used
to train the VGG16-UNet, followed by completing the semantic segmentation of multiplanar scenes
across large oblique images. Subsequently, the prediction results of the segmentation are subjected to
local adaptive optimization to obtain high-precision semantic segmentation results for each planar
scene. Afterward, the LoFTR (Local Feature Matching with Transformers) strategy is used for scene
matching, enabling enhanced matching for regions with poor local texture in the corresponding
planes. The proposed method was tested on low-altitude large baseline stereo images of complex
scenes and compared with five classical matching methods. Results reveal that the proposed method
exhibits considerable advantages in terms of the number of correct matches, correct rate of matches,
matching accuracy, and spatial distribution of corresponding points. Moreover, it is well-suitable
for quasi-dense matching tasks of large baseline stereo images in complex scenes with considerable
viewpoint variations.

Keywords: oblique stereo images; deep learning; semantic segmentation; weak texture feature
matching; quasi-dense matching

1. Introduction

In recent years, obtaining high-resolution multiview images of ground scenes has
become increasingly easier with the development of ground mobile wide-baseline pho-
tography, UAV oblique photography, and other technologies [1]. However, under large
viewpoint conditions, substantial changes in the main optical axis can lead to substantial
distortions or masking in the scale, orientation, surface brightness, and neighborhood
information of the same spatial target in stereo images. In addition, the existence of a
large number of weak texture areas poses a great challenge for dense image matching and
automated image processing [2–4].

Classical image matching methods can be divided into two categories: grayscale and
feature matching. Grayscale-based matching algorithms use the grayscale information of
the image to determine the similarity of the image for matching. Common grayscale algo-
rithms include normalized cross-correlation (NCC) [5], mean absolute difference (MAD) [6],
and least square matching (LSM) [7]. These grayscale matching algorithms have high
accuracy but require high computation and are sensitive to noise. Feature-based matching
methods first detect features in the image, subsequently extract feature descriptors, and
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finally determine matching features based on the Euclidean distance of the descriptors.
Scale-invariant feature matching methods, represented by SIFT, exhibit good scale invari-
ance but are difficult to adapt to considerable changes in viewpoint [8]. Reference [9]
optimized SIFT feature points using the NCC method, improving the matching accuracy.
Reference [10] constructed a feature extraction method combining filter decomposition and
phase consistency rules, and employed a Gaussian mixture model to determine matching
points. Reference [11] proposed an affine-invariant oblique image matching method that
estimates the initial affine transformation based on image orientation parameters, corrects
the image based on the affine transformation, and finally performs SIFT matching on the
corrected image. Reference [12] simulated the full-range viewpoint change of the image and
performed SIFT feature matching. This method exhibits good affine invariance; however,
obtaining matching features in weak texture areas is challenging.

With the rapid development of computer software and hardware, deep learning
methods based on convolutional neural networks (CNNs) have opened up a new way
for realizing image matching. Deep learning matching is a data-driven image matching
method that can autonomously learn the deep-level representation of object features from a
large amount of image data. Currently, deep learning matching is classified into dense and
sparse matching. The former achieves pixel-by-pixel dense correspondence in overlapping
areas by predicting the disparity map of stereo images and the latter is oriented toward
feature extraction, description, and matching for staged training and optimization with
high matching reliability, such as the classical L2-Net [13]. HardNet [14,15] enhances the
differentiation between descriptors by constraining the distance between nonsynonymous
descriptors through a loss function based on L2-Net. AffNet proposed in reference [16]
uses multiscale Hessian to detect feature point locations, followed by HardNet and its loss
function to estimate the affine neighborhood. R2D2 achieved improvements in network
architecture, training strategy, and visualization methods as well as improved the computa-
tional efficiency and robustness through separable convolutional layers [17]. Inspired by
SuperGlue [18], reference [19] introduced the position encoding and attention mechanism
using the Transformer network to construct a model called LoFTR, which has texture
enhancement capabilities. This method considerably improved the matching performance
in weak texture areas; however, adapting to changes in the viewpoint of the images is
challenging. Reference [20] proposed a performance baseline for deep feature matching
called DFM. It adopts a two-stage approach, where the initial transformation is performed
using feature information containing rich deep semantic information. Then, through hier-
archical matching from deep to shallow and coarse to fine levels, the final matching pairs
are obtained. Similarly inspired by SuperGlue [18], the GlueStick uses a depth map neural
network to unify the descriptors of points and lines into one framework, and employs the
information between points to glue the lines from the matching images, improving the joint
matching efficiency of the model. This indicates that the complementary performance of
using two features in a single framework greatly improves performance [21]. Furthermore,
reference [22] proposed an end-to-end deep learning network and its weighted average
loss function for wide-baseline image matching with high inclination angles. This approach
allows nonmatching similarity descriptors to participate in training through weighting,
improving the discriminability of nonmatching descriptors and matching performance
of matching descriptors. However, adapting to images with multiple planar scenes and
oblique perspectives is difficult. VGG16 is a classic deep CNN model comprising 16 convo-
lutional and three fully connected layers with powerful feature extraction capabilities [23].
UNet is a deep learning model for semantic segmentation tasks that comprises symmetric
encoder and decoder parts and can achieve pixel-level image segmentation [24]. Refer-
ence [25] proposed an integrated VGG16-UNet, which has demonstrated some reliability
in image classification and segmentation tasks and provided a feasible method for image
segmentation and matching in multiplanar complex scenes.

In summary, for oblique stereo images with complex scenes and geometric distortions,
it is difficult to achieve more reliable dense matching results using both classical feature
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matching algorithms and deep learning matching strategies. Deep learning segmentation
models and texture-enhanced convolutional networks are expected to be the breakthrough
in solving such image matching problems. Therefore, this paper proposes a reliable quasi-
dense feature matching algorithm that combines image semantic segmentation and local
feature enhancement network, which integrates the VGG16-UNet multiplanar semantic
segmentation and LoFTR local feature enhancement network. The proposed algorithm first
segments and extracts the corresponding planar scene and then applies the weak texture
enhancement strategy in the planar scene to obtain quasi-dense feature matching. The
effectiveness of the proposed method is verified using actual stereo images of complex
scenes with large viewpoints.

2. Materials and Methods

For stereo images of multiplanar scenes with large viewpoints, we first train the
VGG16-UNet model using typical segmented data of oblique multiplanar scenes, achiev-
ing preliminary segmentation of complex scenes into individual planes. Subsequently,
we employ a neighborhood search-based adaptive thresholding strategy to optimize the
segmented local regions. Afterward, we use affine-invariant feature matching to recognize
corresponding planes and apply the LoFTR method with local feature transformation to
extract weak texture features for each identified plane. Finally, we fuse the results of local
plane matching and obtain a semi-dense matching result. Figure 1 shows the technical
approach of the proposed algorithm.

 

Figure 1. Technical approach of the proposed algorithm.

2.1. Automatic Semantic Segmentation Strategy
2.1.1. Multiplanar Semantic Segmentation Model

VGG16-UNet is a deep CNN model based on the fusion of VGG16 and Unet models.
It combines the powerful feature extraction capability of VGG16 and pixel-level semantic
segmentation capability of Unet. To cope with the quasi-dense matching task of complex
scenes, we propose to apply VGG16-UNet to the semantic segmentation of multiplanar
scenes. Figure 2 shows the model structure and the design of each parameter. In the
encoding stage, the first 13 convolutional layers of VGG are used as the feature extraction
network, and a 3 × 3 size convolutional kernel is used to compress the input image from
512 × 512 pixels to 32 × 32 × 512 pixels after four down-sampling steps to achieve
the feature extraction from multiplanar scenes. In the corresponding decoding part, up-
sampling and feature fusion are used to complete the segmentation of each plane, and
the decoder restores the final output layer size to 512 × 512 pixels through continuous
up-sampling and convolutional stacking, and subsequently outputs the segmentation map.
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Figure 2. VGG16-UNet network architecture diagram.

2.1.2. Training Data

Extensive testing has revealed that VGG16-UNet has strong feature extraction capabil-
ities and good transfer learning performance. Therefore, to fully train the VGG16-UNet
model, we carefully selected 80 typical building image data of various types. These data
are taken from low-altitude oblique views, and due to the presence of occlusion factors,
the buildings in the images show one top and two side views, with a paucity of texture on
the scene surface (Figure 3). These data are manually labeled into five sections: building
top (pink), building facade (yellow or purple), ground (green), and background (dark red),
corresponding to the 80 labeled images. Figure 3 shows an example of the training data.

 
Figure 3. Example of training dataset for image segmentation used in this paper.

2.1.3. Image Segmentation and Adaptive Optimization

The trained VGG16-UNet automatically predicts a set of pixels located in the same
plane, extracts the mask map of each plane, and completes the initial segmentation of the
local plane. However, some mask maps may contain holes, and the use of segmentation re-
sults at this point will inevitably affect subsequent matching results. Therefore, we propose
an adaptive optimization method. Figure 4 shows a schematic of adaptive optimization,
which mainly includes discrete region removal outside the main plane region and the filling
of the hole region in the main plane region. Removal of the discrete region eliminates
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segmentation noise outside the main plane, whereas filling the hole eliminates the noise
inside the main plane.

r =
1

2max(R)
, R = ∪n

i=1Si, (1)

where R represents the area of the connected region, n denotes the number of iterations,
and Si represents the area of the region obtained by expanding in the i-th iteration. The
maximum value of R corresponds to the area of the main plane region.

 

Figure 4. Adaptive optimization for local plane segmentation.

Next, to obtain the optimized results inside and outside the main region, the locally
connected regions are color-inverted based on the adaptive threshold r. Considering the
optimization accuracy and efficiency, an eight-neighborhood template is used to retrieve
small discrete areas, whereas a four-neighborhood template is used to fill small hole areas.
When segmenting, the local plane segmentation can be achieved by performing a Bitwise-
AND operation between the mask map and the original image. This operation results
in an image content containing only the mask region. Figure 5 shows the effect of each
plane segmentation optimization. It shows that the proposed strategy achieves adaptive
optimization of the planar scene by correcting the noise in the internal and external body
regions, ensuring the reliability of segmentation and laying the foundation for subsequent
quasi-dense matching of the planar scenes.
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Figure 5. Comparison before and after plane segmentation optimization.

2.2. Quasi-Dense Matching Method
2.2.1. Automatic Identification of Corresponding Planes

Before performing the enhancement matching of weak texture features, it is necessary
to first pair and recognize the corresponding plane scenes in the left and right images for
obtaining corresponding planes. The affine-invariant feature matching algorithm described
in reference [22] can robustly extract corresponding features from plane scenes with large
viewpoint variations. Therefore, in this section, we employ this algorithm to automatically
recognize corresponding planes. The process can be briefly described as follows: extract
any plane from the left image, match it with each plane in the right image, identify the
corresponding plane with the most corresponding features, and >m (matching points,
set to 8) is identified as the corresponding plane. Similarly, we iterate through all the
planes in the left image, complete the feature matching with each plane of the right image
and discriminate, and finally obtain each corresponding plane pair. Figure 6 shows the
automatic identification process.

 

Figure 6. Process of automatic identification of corresponding planes.

2.2.2. LoFTR-Based Weak Texture Feature Enhancement Matching

The LoFTR strategy proposed in reference [19] can effectively enhance feature dis-
tinctiveness in weak texture regions; however, it struggles to adapt to affine deformations
between images. Therefore, in this section, we first estimate the perspective transformation
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matrix based on the obtained corresponding planes and their corresponding features to
minimize the geometric deformations between corresponding planes. Subsequently, we
apply the LoFTR algorithm to extract weak texture features from the corresponding planes.
Figure 7 shows the specific matching process, which primarily comprises the five key steps
outlined below.

 

Figure 7. Weak texture feature enhancement matching for large viewpoint transformation.

(1) Large viewpoint correction: First, using the IA and IB matching points obtained in
the previous plane recognition process, we estimate the projection transformation
matrix H based on Equation (2) and the random sample consensus (RANSAC)
algorithm as follows: ⎧⎨

⎩
x′ = h11x+h12y+h13

h31x+h32y+h33

y′ = h21x+h22y+h23
h31x+h32y+h33

, (2)

where (x, y) and (x′, y′) represent the feature matching points in IA and IB, respectively,
and h11, h12 . . ., h33 represent the nine projection transformation parameters in H. Sub-
sequently, according to Equation (3), the right image is corrected through projective
transformation as follows: ⎡

⎣x′′

y′′

1

⎤
⎦ =

⎡
⎣h11

h21
h31

h12
h22
h32

h13
h23
h33

⎤
⎦
⎡
⎣x′

y′
1

⎤
⎦, (3)

where (x′, y′) and (x′′, y′′) represent the pixel coordinates of IB and IB’ before and after
the correction of the projective deformation in the right image, respectively. After
correcting the right image through projective deformation, the affine distortion of
the corresponding region is considerably improved, and the geometric consistency
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of the plane tends to be better than before. Thus, the LoFTR strategy is introduced
for matching.

(2) Feature extraction: For the image pair IA and IB
′, feature extraction is first performed

using VGG CNN, resulting in 1/8 coarse feature and 1/2 fine feature maps for
both images.

(3) Generating coarse-level feature prediction results: The coarse extracted feature maps
∼
F

A
and

∼
F

B
are flattened into one-dimensional vectors, and position encoding is added

to each vector. These vectors with position encoding are then inputted into the LoFTR
module, which comprises N (N = 4) self-attention and cross-attention layers. The
LoFTR module utilizes a self-attention mechanism to capture the correlations between
different positions within the image, learning the importance of local features and
enhancing the discriminative ability of the convolutional model for different texture
features. After processing through this module, two enhanced texture feature maps

with higher discriminability, labeled as
∼
F

A

tr and
∼
F

B

tr, are outputted. Subsequently, the
similarity between these two feature maps is calculated to perform the matching of
corresponding features.

(4) Outputting the prediction results: For any coarse-level matching prediction
(
∼
a ,

∼
b
)

∈ Mc, local corresponding windows of size w × w (w = 5) are cropped from the fine
feature maps â,b̂. Second, a smaller LoFTR module then transforms the cropped
features within each window, yielding two transformed local feature maps, F̂A

tr (â)
and F̂B

tr

(
b̂
)

, centered at â and b̂, respectively. Third, we correlate the center vector

of F̂A
tr (â) with all vectors in F̂B

tr

(
b̂
)

and thus produce a heatmap that represents the

matching probability of each pixel in the neighborhood of â with b̂, and the location b̂′
is obtained by calculating the expectation of the probability distribution. Finally, all
coarse-level matches are refined within the local windows of the fine level, resulting
in the fine-level matching predictions Mf for IA and IB

′.
(5) Outputting the final result: Finally, the coordinates of the fine-level matching points

on IB
′ are normalized to the original coordinate system of the right image IB using

Equation (3), representing the final result of weak texture feature-enhanced matching.

3. Results

3.1. Experimental Environment

In the experiment, we used RTX2080ti GPU, 9-9900K processor, 64 GB RAM, and
Ubuntu18.04 operating system. The software platform is PyCharm (v 2023.3.2). The
training dataset of weak texture feature based on LoFTR is adopted from the open-source
MegaDepth dataset. During the training process, the Transformer loop count N is set to
four, the LoFTR module feature transformation count Nf is set to one, and the window size
w for extracting patches from the fine-level feature map is set to five. The threshold θC for
coarse-level matching prediction is set to 0.2. The training is completed after 30 iterations
using the gradient descent algorithm.

3.2. Evaluation Metrics

(1) Number of correct matching points, kε0 : Fifteen pairs of uniformly distributed cor-
responding points are manually selected from the stereo images. The fundamental
matrix F0 is estimated using the least-squares method and considered as the ground
truth. Using the well-known fundamental matrix F0, the error of any matching point
is calculated using Equation (4). A threshold ε0 (set to 3.0) is set and imposed for
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the error. If the error was less than ε0, the pair of points is a correct pair of matching
points and is included in the count of correct matching points, kε0 :

εi =

√(
xi

′T F0xi

)2
/((F0xi)

2
1 + (F0xi)

2
2. (4)

(2) Match correct rate, α: This is defined by α = kε0 /k, where k denotes the total number
of matching points.

(3) Matching root-mean-squared error (RMSE) εRMSE (pixel). This is calculated using
Equation (5):

εRMSE =

√
1
k ∑k

i=1 εi
2, (5)

where k represents the total number of matches and εi is calculated using Equation (4).
(4) Matching spatial distribution quality, D̂: References [26,27] generated Delaunay trian-

gulation based on the matching points. They evaluated the spatial distribution quality
of the matching points by considering the areas and shapes of each triangle, as well
as the global and local distribution of the matching points. This is calculated using
Equation (6):

D = DA × DS =

√
∑n

i=1((Ai/A)−1)
n−1 ×

√
∑n

i=1(Si−1)
n−1 , A = ∑n

i=1 Ai
n , Si =

3max(Ji)
π

D̂ = D
DG

, DG = (∑n
i=1 Ai)/AI

⎫⎬
⎭, (6)

where n represents the total number of generated triangles; Ai and max(Ji) represent
the area and maximum arc of the i-th triangle, respectively; A represents the average
area of the triangles; DA represents the uniformity of the areas of each triangle; and
DS represents the uniformity of the internal angles of the triangles. The lower the D
value, the higher the geometric uniformity of the local triangles. Ai represents the area
of the image and DG represents the coverage of matching points in the global image.
A higher DG value indicates a wider spatial distribution of matching points in the
image. Therefore, this model can fully reflect the quality of the matching point spatial
distribution, and the quality of the matching point spatial distribution increases with
decreasing D̂.

3.3. Experimental Methods and Data

To fully validate the advantages of our proposed method, we used six methods for
comparative testing. (1) DFM: This method achieves high accuracy by performing coarse-
to-fine matching of images at different hierarchical levels of features. (2) AffNet: This
method uses an affine-invariant estimation network to learn affine parameters. It enhances
the distinctiveness between descriptors using the HardNet loss function, making it suitable
for scenes with viewpoint changes. (3) SuperGlue: This method constructs an image
information aggregation model based on attention mechanisms. The loss function of the
model is established using graph neural networks. (4) LoFTR: This method combines
position encoding and attention mechanisms in the Transformer, generating a model
suitable for weak texture matching. (5) GlueStick: A GNN architecture is designed to
be able to combine the contextual information of all features to improve the accuracy of
the matching. (6) Our proposed method. To objectively evaluate these six methods, the
RANSAC algorithm is used to remove outliers, and the inlier coordinates for each method
are outputted. As shown in Figure 8, six groups of low-altitude large viewpoint building
scene images (a–f) are selected as the test data.
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Figure 8. Test images. (a–f) six groups of large oblique stereo images with building scene.

3.4. Experimental Results and Analysis

Figures 9–14 show the matching results of six groups of data based on DFM, AffNet,
SuperGlue, LoFTR, GlueStick, and our proposed method, respectively. Table 1 presents the
quantitative experimental results of the six methods. Here, kε0 and α represent the number
of correctly matched points and the correct rate of matching, respectively. εRMSE represents
the RMSE of matching, and D̂ represents the quality of spatial distribution of matching
points. The optimal test results of each group of data in the table are represented in bold.

Table 1. The contrast of test results using six methods. The best values are highlighted in bold.

Test Data Evaluation Metrics Ours DFM AffNet SuperGlue LoFTR GlueStick

(a)

kε0 /(Pair) 2751 1199 832 618 1695 336
a/(%) 0.80 0.61 0.41 0.61 0.58 0.58

εRMSE/(Pixel) 1.20 0.36 0.35 1.83 0.65 0.65
D̂ 56.9 59.2 87.2 64.9 59.2 33.7

(b)

kε0 /(Pair) 898 31 82 537 520 259
a/(%) 0.49 0.53 0.14 0.52 0.22 0.40

εRMSE/(Pixel) 0.35 0.18 0.37 0.39 0.38 0.81
D̂ 32.6 37.5 17.13 54.33 40.9 39.8

(c)

kε0 /(Pair) 2751 602 1100 618 1695 393
a/(%) 0.68 0.34 0.33 0.61 0.58 0.47

εRMSE/(Pixel) 0.99 0.35 0.37 1.24 2.07 0.71
D̂ 45.5 27.7 45.9 23.3 46.5 32.6

(d)

kε0 /(Pair) 2254 237 296 330 1291 241
a/(%) 0.82 0.40 0.20 0.50 0.60 0.52

εRMSE/(Pixel) 0.86 0.35 0.36 2.9 0.57 0.67
D̂ 41.1 32.0 28.2 26.8 43.3 24.4

(e)

kε0 /(Pair) 1530 56 125 196 1015 179
a/(%) 0.64 0.43 0.22 0.24 0.46 0.48

εRMSE/(Pixel) 0.99 0.32 0.36 1.88 1.06 0.69
D̂ 40.1 24.1 18.8 23.5 43.3 23.0

(f)

kε0 /(Pair) 2059 915 974 273 1034 226
a/(%) 0.69 0.46 0.42 0.39 0.47 0.44

εRMSE/(Pixel) 0.49 0.37 0.35 1.88 1.46 0.75
D̂ 27.5 83.3 28.2 32.5 43.3 34.6
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Figure 9. Test results of group images (a).

 

Figure 10. Test results of group images (b).

 

Figure 11. Test results of group images (c).
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Figure 12. Test results of group images (d).

 

Figure 13. Test results of group images (e).

 
Figure 14. Test results of group images (f).
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4. Discussion

(1) The proposed method has significant advantages in terms of the number of cor-
rectly matched points. Table 1 presents the quantitative experimental results for
six groups of large viewpoint stereo images in architectural scenes that show the
highest number of correctly matched points obtained using the proposed method.
As shown in Figures 9–14, our proposed method can achieve accurate and dense
matching results in each group of images, especially for matching a large number
of corresponding points on the top and facades of buildings, which provides suffi-
cient tie points for image orientation and three-dimensional (3D) reconstruction.
The reasons are twofold. First, the multiplane segmentation and corresponding
plane matching method proposed in this paper can transform the matching of
complex 3D scenes into simple plane scene matching. Second, the LoFTR texture
enhancement strategy introduced in this paper effectively improves the problem
of weak texture on the top and facades of buildings, leading to accurate and dense
matching results.

(2) According to the above experimental results, DFM has advantages in accuracy, but its
effect on affine changes is poor. Compared with DFM, SuperGlue is more capable of
handling large viewpoint affine transformations and single-texture regions; however,
the number of matching points is much less than that obtained using our method.
The LoFTR algorithm, which is based on the SuperGlue method, uses Transformer
positional encoding and attention mechanisms to significantly enhance the texture
features of building facades. GlueStick has not improved or even decreased in quantity
compared to SuperGlue, but has improved in spatial distribution quality and matching
accuracy. However, obtaining a sufficient number of matching points due to the
influence of image distortion is challenging.

(3) Our method also demonstrates some advantages in terms of matching accuracy and
precision. Table 1 shows that our method achieves high matching correctness rates for
most of the test data (a, b, d–f), and sub-pixel matching precision for test data (b–f).
The reasons behind this are as follows. First, our method performs individual match-
ing for each planar scene and utilizes strict homography geometric transformations
for distortion correction and constrained matching, effectively ensuring matching
correctness and precision. Second, during the quasi-dense matching process, the
proposed method first conducts coarse-level matching prediction and then refines the
matches at a finer level, ensuring the accurate positioning of matching points.

(4) The proposed method exhibits good spatial distribution quality for the matching
points. Figures 9–14 show that the distribution area of the matching points of our
method in image space has significantly improved. Table 1 demonstrates that our
method outperforms DFM and LoFTR algorithms in terms of the spatial distribution
quality of matching points. Our method has good spatial distribution quality for
matching points.

5. Conclusions

In this study, we propose a matching algorithm that combines image semantic seg-
mentation and local feature enhancement networks for stereo images in complex scenes
with significant viewpoint changes. The proposed algorithm first employs an automatic
semantic segmentation method to extract the planes of different scenes. The LoFTR strategy
is then used to enhance the weak texture features of each local plane, enabling accurate and
dense feature matching. The experimental results demonstrate that the proposed method
has advantages in terms of the number of correctly matched points, matching accuracy,
matching precision, and spatial distribution quality of matched points. It is suitable for the
dense matching of wide-baseline oblique stereo images. In future work, we plan to inte-
grate a line feature matching algorithm to achieve more complementary feature matching
along building structure edges. This can be applied to the fine-scale 3D reconstruction of
urban building scenes.
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Abstract: The 3D reconstruction of ancient buildings through inclined photogrammetry finds a
wide range of applications in surveying, visualization and heritage conservation. Unlike indoor
objects, reconstructing ancient buildings presents unique challenges, including the slow speed
of 3D reconstruction using traditional methods, the complex textures of ancient structures and
geometric issues caused by repeated textures. Additionally, there is a hash conflict problem when
rendering outdoor scenes using neural radiation fields. To address these challenges, this paper
proposes a 3D reconstruction method based on depth-supervised neural radiation fields. To enhance
the representation of the geometric neural network, the addition of a truncated signed distance
function (TSDF) supplements the existing signed distance function (SDF). Furthermore, the neural
network’s training is supervised using depth information, leading to improved geometric accuracy
in the reconstruction model through depth data obtained from sparse point clouds. This study
also introduces a progressive training strategy to mitigate hash conflicts, allowing the hash table
to express important details more effectively while reducing feature overlap. The experimental
results demonstrate that our method, under the same number of iterations, produces images with
clearer structural details, resulting in an average 15% increase in the Peak Signal-to-Noise Ratio
(PSNR) value and a 10% increase in the Structural Similarity Index Measure (SSIM) value. Moreover,
our reconstruction model produces higher-quality surface models, enabling the fast and highly
geometrically accurate 3D reconstruction of ancient buildings.

Keywords: 3D reconstruction; UAV images; neural radiation field; deep supervision; hash coding

1. Introduction

The utilization of 3D reconstruction techniques not only facilitates the restoration of
the original structure and color of ancient buildings but also enables the digital preservation
of these historical treasures [1,2]. Through 3D reconstruction, meticulous digital replicas
can be generated to safeguard and document these invaluable cultural legacies [3,4]. This
paper employs the neural radiance fields (NeRF) technique [5] in the 3D reconstruction of
ancient buildings, aiming to explore a swift and highly precise method for reconstructing
buildings through neural rendering.

Unmanned Aerial Vehicles (UAVs) are known for their mobility, flexibility, speed
and cost-effectiveness. Utilizing UAVs as aerial photography platforms enables the rapid
acquisition of high-quality, high-resolution images, holding significant promise for the pro-
duction of geographic mapping data [6,7]. With the advancement of tilt photogrammetry,
techniques for dense point cloud generation and the construction of 3D triangular grid
models from 2D images have matured, incorporating sparse reconstruction (Structure from
Motion, SFM) [8] and dense reconstruction (Multiple View Stereo, MVS) [8,9]. This has
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made 3D solid building reconstruction a reality. However, existing tilt photogrammetry-
based 3D reconstruction methods are slow and entail substantial time overheads [10].
Dense reconstruction, which involves matching all or most of the pixels in multiple images,
demands extensive data processing and often redundant computations, resulting in an
overall low reconstruction efficiency. These limitations hinder its real-time applications [11].
Additionally, this method necessitates a complex process involving feature extraction,
feature matching, depth fusion and Poisson reconstruction [12,13], which can introduce
errors at various stages and lead to incomplete or flawed final results. This paper addresses
the following issues that need to be resolved: (1) The conventional approach to recon-
structing the surface model of ancient buildings is hampered by the slow processing speed.
(2) The intricate surface textures found on ancient buildings, coupled with the presence of
repetitive textures, can have a detrimental impact on the geometric accuracy of the model
reconstruction.

In recent years, the NeRF technique, based on neural rendering, has gained extensive
use in the field of 3D reconstruction. NeRF leverages neural implicit representation, em-
ploying neural networks to implicitly learn 3D scene features. It reconstructs triangular
mesh models by combining these learned features with the Marching Cubes algorithm [14].
However, NeRF faces efficiency challenges due to the use of computationally intensive
large Multilayer Perceptrons (MLPs), requiring hours or even days for training. Addition-
ally, NeRF represents geometry by predicting the object density through neural networks,
which lacks a strong physical foundation. This leads to the generation of triangular mesh
models with rough surfaces, low geometric accuracy and suboptimal quality, limiting its
applications [15]. Recent research has introduced new ideas based on NeRF, such as PlenOc-
trees [16] and Instant Neural Graphics Primitives (Instant-ngp) [17], aimed at accelerating
NeRF network model training to minutes. However, these methods often compromise
geometric accuracy, resulting in rough surface meshes that do not faithfully represent real-
world physical structures. Subsequently, the Instant-NSR method [18] emerged, combining
the approaches of Instant-ngp and NeuS [19], enhancing the model’s geometrical structure.
While this approach has improved the results, it may still exhibit depressions and uneven
surface pits. Mip-NeRF [20] effectively resolves NeRF’s challenges with high-frequency
detail aliasing and distortion by refining the encoding of the sampling points, yet it still
requires a considerable amount of time for network training. Neuralangelo [21] enhances
the network architecture, but this advancement comes at the cost of increased computa-
tional demands and prolonged training periods due to additional sampling requirements.
Meanwhile, 3D Gaussian splatting (3D GS) [22] introduces Gaussian functions for scene
representation, offering increased adaptability in scene portrayal. However, its utility is
somewhat constrained, as it struggles to accommodate images captured at varying scales.

In modern times, the 3D reconstruction of ancient buildings, achieved through the uti-
lization of UAVs and various data collection methods, seeks to create more comprehensive
models by integrating vast amounts of information. However, these data-rich approaches
often lead to a significant computational burden in traditional 3D reconstruction, which
places added strain on computers and prolongs the reconstruction process. Consequently,
this paper proposes to improve the accuracy and training speed of reconstructions by
combining the truncated signed distance function (TSDF) with sparse point cloud depth
supervision, as well as implementing a progressive training strategy. This technique is
introduced into the field of the three-dimensional reconstruction of ancient buildings
to address the challenges of extensive computational demands and slow reconstruction
speeds in traditional methods. This paper aims to enhance the geometric accuracy of
NeuS-reconstructed models through two methods of geometric optimization. The primary
contributions of this paper are as follows:

• Combined network training with the TSDF and depth supervision: Our approach
combines the TSDF and depth supervision in network training. Integrating the TSDF
into the signed distance function (SDF) neural network to improve geometric repre-
sentation within the neural network. Simultaneously, this study utilizes sparse point
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cloud depth information to supervise the training of the SDF neural network, further
enhancing the geometric accuracy of three-dimensional mesh models.

• A progressive training method that gradually enhances the resolution of hash coding
during the training process has been designed. This approach focuses on improving
the characteristics of the scene and hash coding, effectively utilizing the feature hash
table’s capacity. By doing so, it mitigates hash conflicts within the mesh feature hash
table under multi-resolution conditions. The ultimate goal is to produce rendered
images with clear, detailed textures, enriching the visual quality.

This paper aims to enhance the accuracy of the NeuS-reconstructed geometric model
through two geometric optimization methods. The first method involves the incorpora-
tion of the TSDF into the SDF neural network, which results in an improved geometric
representation within the neural network. The second method utilizes depth information
to supervise the neural network training, further enhancing the geometric accuracy of
the reconstruction model using data from a sparse point cloud. In outdoor scenes, where
large hash conflicts are common, this paper proposes a progressive training method based
on multi-resolution hash coding technology to alleviate these conflicts and improve the
expressive capabilities of the neural network.

2. Related Work

In a range of fields including mapping, remote sensing and computer vision, the NeRF
technique has enabled the rendering and reconstruction of 3D scenes [23]. Despite its
groundbreaking capabilities, NeRF still grapples with issues related to model generation
efficiency, quality and scalability. One of the primary concerns is its computational inten-
sity, both in terms of the number of sampling points and the time required for training,
particularly due to the utilization of two large MLPs containing eight hidden layers [24].
Moreover, NeRF’s reliance on straightforward volume rendering and direct density pre-
diction through density MLP neural networks, lacking a robust physical foundation, often
results in a rough surface and low geometric accuracy in the generated triangular mesh
model [25]. In light of these challenges, researchers worldwide are dedicating efforts to
improve and innovate the NeRF model.

In traditional geometric reconstruction, the literature [26–28] all focuses on the opti-
mization of dense point clouds to enhance their quality. The literature [28] leverages images
from multiple viewpoints, combines scene geometry constraints and estimates depths for
sparse points to achieve high-quality dense reconstruction. The literature [26] proposes
the sparse voxel DAGs method, efficiently reconstructing point clouds by establishing a
sparse voxel data structure and employing dynamic adaptive mesh refinement and lo-
cal region. The literature [27] presents a progressive 3D point set upsampling method
based on localized blocks, gradually increasing the point density by utilizing the geometric
and normal information among these blocks, thereby enhancing the point cloud details
and resolution. However, due to the substantial memory requirements of these meth-
ods, they are more suited for small-scale reconstruction projects, where they tend to yield
better results.

To address the issues of clarity and realism in NeRF technology, numerous researchers
have conducted in-depth explorations into various aspects of the technology process,
achieving significant improvements. To enable NeRF to handle a wider range of image
situations and reduce its requirements for image sources, the literature [29] addresses the
issue of NeRF producing poorer results with low-quality images by simulating the blurring
process to synthesize blurred views, thereby improving NeRF’s robustness to blurred
input images. The literature [20] introduces Mip-NeRF, which transforms the original
NeRF point sampling method into cone sampling, enriching the details of the sampling
and considering the changes in the scale of the observation distance in ray sampling.
The NeRF++ [30] model divides the scene into foreground and background parts. The
foreground sampling method is consistent with NeRF, but background sampling involves
projecting light onto a unit sphere, thus controlling the depth of light within a defined
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range. Similarly, we have adopted this method in ancient architectural scenes, specializing
in the encoding of foreground targets. The literature [31] integrates NeRF++ and Mip-NeRF
concepts, ensuring positional relevance is maintained as sampling points extend to infinity.
The literature [30,31] extends NeRF to large scene domains, but the increase in sampling
information adds to the network training burden. To tackle the challenges of rough 3D
models and noise low-fidelity geometric approximations, researchers both domestically and
internationally have integrated deeper physical foundations into the geometric expression
of neural networks to improve the accuracy. The literature [32] introduces UNISURF, using
an occupancy network to represent implicit surfaces, assigning each sampling point as 0 or
1 to indicate the presence of a surface. The literature [33] presents Plenoxels, emphasizing
the critical role of micro-voxel renderers in the evolution of NeRF technology. Plenoxels
depart from using neural networks, focusing instead on optimizing the density and color
parameters of voxel grid vertices through derivative-based solutions. This method achieves
a training speed 3000 times faster than traditional NeRF. The literature [19] discusses NeuS,
providing a mathematical explanation for NeRF’s low geometric accuracy and employing
SDF values to create an unbiased density function, thereby rectifying inherent biases in
volumetric rendering formulas. To accelerate network training and reduce memory usage,
the literature [34] presents NSVF, a strategy that manages scene data through a sparse
voxel octree, selectively excluding irrelevant voxels during light sampling to speed up
the process and minimize data overheads. The literature [17] proposes Instant-ngp, using
a multi-resolution hash encoding (MHE) model [35] to encode the spatial information
of 3D points, allowing for smaller MLP networks in training and rendering, marking a
considerable advance in the NeRF training speed, reducing it from hours to just a few
seconds. However, the need for pre-allocating fixed memory for data storage could lead to
conflicts and impact the quality of results when training data volumes increase. To enhance
the training efficacy, some researchers have integrated supervisory mechanisms during
training. Point-NeRF [36] merges traditional MVS methods with NeRF, introducing a point
cloud-based NeRF. The literature [37] uses MVS-generated depth maps to supervise SDF
network training. Nerfing MVS [38] uses depth information from the NeRF network to
train depth networks, then creates predicted depth maps to inversely guide NeRF network
training. These methods, however, are time-consuming in generating depth information,
leading to longer overall process times. Our approach, in contrast, does not use depth
maps but instead employs sparse point clouds to gather depth information, considerably
shortening the total process duration.

Despite the ongoing advancements in neural radiation field research, there remain
certain unresolved issues: (1) The accuracy of neural radiation field reconstruction sur-
faces is not yet at a desirable level. (2) The training speed of the NeRF model remains
relatively slow. To address these challenges, this study introduces a novel approach for
surface representation based on multi-resolution hash coding using symbolic distance
functions. Additionally, it also replaces the SDF with the TSDF to enhance model stability
and employs sparse point cloud supervision to improve the depth expression within the
model. Furthermore, this study advocates for the adoption of incremental training, aim-
ing to significantly improve both the accuracy of the model reconstruction and training
speed overall.

3. Methods

This paper integrates the multi-resolution hash position coding method and NeuS with
the concept of a signed distance function into the NeRF framework for volume rendering.
The optimization of the TSDF neural network, combined with sparse point cloud depth
supervision, is utilized to reconstruct models of ancient buildings in outdoor environments
from UAV images. The technology roadmap is depicted in Figure 1.
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Figure 1. Flowchart of the algorithm of neural radiation field reconstruction based on depth supervision.

In this paper, the method is outlined as follows: starting from a pixel in an image and
the light is recovered. The light passes through a multi-resolution hash grid and the internal
hash features of the grid can be obtained using interpolation methods. These hash features
are then combined with their positions in an SDF network. The SDF network provides SDF
values and geometric features. These values, along with the viewing direction, are input
into a color network to generate RGB values. The network is optimized by minimizing the
difference between the output RGB values and the actual image pixel values. For pixels
corresponding to sparse point clouds, the point cloud depth information is computed
to supervise the optimization of the 3D model structure by weighting the pixel depths
obtained from the TSDF values.

3.1. Data Processing

The fast retrieval feature of hash feature coding, as demonstrated in reference [17], has
significantly reduced the training time of NeRF networks from hours to seconds. While
multi-resolution hash coding provides computational efficiency by trading a larger memory
footprint, the constraint is the finite memory and hash table size. This study introduces
two methods to minimize conflicts when dealing with limited hash tables: (1) foreground
centralized positional coding and (2) progressive multi-resolution hash coding, which will
be detailed in Section 3.2.

Foreground centralized positional coding tackles the issue of growing scene content
that exceeds the limited and fixed storage capacity of the 3D feature mesh. This overage
results in severe hash conflicts in position encoding, which surpass the neural network’s
capacity to resolve. The surrounding environmental data can cause training neglect and
result in image blurring.

In the wrap-around tilt photography approach, the scene is divided into foreground
and background, as depicted in Figure 2; the foreground is our target object, while the
background is the surrounding scene environment. The application of Grabcut [39] enables
the distinction between the foreground (comprising the target building and the central
region of interest) and the background (encompassing non-target scene elements along the
image periphery). To enhance the neural network’s grasp of vital target information, this
paper primarily feeds the network with foreground information, while diminishing the
influence of background data at the image edges. This approach curtails the feature overlap
between critical information and edge information in the hash table, thereby reinforcing
the network’s attentional mechanism.
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Figure 2. Grabcut distinguishes between before and after backgrounds.

Our depth supervision information is derived from a sparse point cloud, obtained
through sparse reconstruction. Sparse reconstruction, also known as SfM, involves feature
extraction from the input multi-view images, followed by feature matching to obtain
homonymous image points between the images. Based on these homonymous image
points, SfM can estimate the internal and external orientation elements of each image
more accurately via methods such as forward rendezvous and backward rendezvous and
obtain the sparse point cloud in the object-side space and use the depth information of the
corresponding pixels of the point cloud as the a priori information for depth supervision.

3.2. Progressive Multi-Resolution Hash Coding

This paper employs progressive multi-resolution hash coding, as depicted in Figure 3,
where blue represents low-resolution encoding grids, used for extracting low-resolution
features, while pink represents high-resolution encoding grids, used for extracting high-
resolution features. Hash coding can lead to data volume and hash conflict challenges.
Progressive multi-resolution hash coding is adopted in this study, allowing low-resolution
mesh features to capture scene or object outlines and similarities, while high-resolution
mesh features prioritize detailed scene or object information.

Figure 3. Occupancy grid and multi-resolution hash encoding.

Instant-ngp combines low-resolution and high-resolution feature encoding for all scene
points, which results in hash conflicts and partial blurring of image details. Progressive
multi-resolution hash coding, depicted in Figure 4, aims to prevent non-critical points from
affecting high-resolution mesh features. This approach enhances the speed and accuracy of
3D building reconstruction for neural rendering.
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Figure 4. Asymptotic multi-resolution hash coding technology roadmap.

The proposed coding method follows a “from coarse to fine” principle. Initially,
during network pre-training, high-resolution feature coding information is masked, while
low-resolution hash feature coding is preserved to represent the model’s general outline
and location. Additionally, the low-resolution feature information is utilized to eliminate
empty grid cells, speeding up light sampling and reducing interference from blank areas.
As training progresses, the masking of high-resolution feature-encoding information is
gradually reduced to enhance the model’s surface representation. This encoding approach
maximizes the utilization of the high-resolution hash feature table, mitigating hash conflicts
to some extent. As a result, it leads to enhanced clarity in image rendering and a significant
improvement in the detail of the geometric model.

3.3. Asymptotic TSDF-Based Deep Supervision Strategy

NeuS has exposed inherent errors in NeRF’s volume rendering formulation, specifi-
cally related to the polar inconsistency of the density and weight values, which results in low
geometric accuracy in the neural radiation field. This paper incorporates the concept of the
SDF constraint network from NeuS and introduces the TSDF, a form of three-dimensional
implicit expression. The TSDF represents an enhancement of the SDF concept, introducing
truncation to create values within the range of [−1, 1]. The formula for the TSDF is depicted
in Figure 5.

tsd f i(x) = max(−1, min(1,
tsd f i(x)

t
)) (1)

where t denotes the truncation distance and the TSDF will truncate to 1 or −1 when the
absolute value of the SDF is greater than t. The TSDF reduces the variance between the
data, increases the stability and makes it easier for the loss to converge in network training,
while removing voxels that are farther away from the surface, reducing spurious airborne
floats and decreasing the memory size of the reconstructed mesh.
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Figure 5. Truncated symbol distance function.

The TSDF is not differentiable at its truncation points, which makes it less suitable for
neural network learning. In this paper, the Tanh function is introduced as an approximation
of the TSDF. The computational formula is given in Equation (2), where “S” is a trainable
hyperparameter and “Z” represents the value of the symbolic distance function. This func-
tion bears a resemblance to the TSDF, as both are monotonically increasing odd functions
with a value range of [−1, 1]. During network training, the value of “S” is initially set to
a smaller value, retaining the volume density of points farther from the surface. As the
training progresses and the network’s scene perception improves, “S” gradually increases,
reducing the TSDF truncation distance, thereby focusing on preserving the volume density
of points in closer proximity to the surface, which is critical for effective volume rendering.

TSDF =
eSZ − e−sz

eSZ + e−sz (2)

The TSDF neural network is established based on the SDF neural network, as depicted
in the optimization flow chart in Figure 6, where the TSDF is introduced for truncation
after the network outputs the SDF values, converting them into density values. Light-
sampled spatial points are first filtered through the occupancy grid to retain points with
high occupancy probabilities. These selected points undergo multi-resolution hash coding.
The result of this coding is then fed into the SDF neural network, which produces a
multidimensional feature vector where the first dimension represents the SDF value. The
color neural network takes this feature vector along with additional information, such as
the direction and normal vectors of the points output by the SDF neural network, and it
outputs the RGB values. Each valid sampled point is assigned a density value, synthesized
by the TSDF value and an RGB value. Points along the same ray are grouped together and
their colors are combined according to an unbiased volume rendering formula to obtain the
pixel’s color value. During training, this paper employs network supervision for the RGB
truth values, while the TSDF values are used to update the occupancy of the occupancy
mesh. This explicit adjustment brings the voxels of the occupancy mesh close to the object’s
surface, effectively sieving out points that are far from the reconstructed surface or have no
impact on the surface, thus enhancing the light sampling efficiency.

NeRF inputs are only image data and corresponding bitmap information. The ren-
dering and reconstruction of the 3D scene are achieved solely based on the pixel values as
supervision, which leads to a significantly constrained geometric representation within the
neural network. On the one hand, there is an inherent error in the volume density values
obtained by NeRF due to biased volume rendering formulas. On the other hand, there is a
lack of supervision regarding the 3D information. In response to this situation, this paper
introduces sparse depth information to supervise network training, aiming to enhance the
neural network’s capability to represent geometric structures.
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Figure 6. Optimization flow of TSDF neural network framework.

The sparse point cloud used in this paper is not for all pixels of all images, so the
training of the deep supervised network is not for all rays. During the training process of the
deep supervised network, this paper divides the training rays into two categories, which are
ordinary rays and depth rays. As shown in Figure 7, ordinary rays are randomly extracted
from all training images, while depth rays are extracted from the pixels corresponding to
the sparse point cloud.

Figure 7. Recovery of normal and deep light training flowchart.

In this paper, the TSDF values obtained from network training are converted into
weight values. This weight value can not only synthesize the color, but also the depth.
Knowing the position and step spacing of all sampling points on the ray, it is easy to obtain
the distance of each point from the origin, which is the depth value. By performing a
weighted sum using the depth value and its corresponding weight value, the depth value
for this specific ray can be accurately determined. As depicted in Figure 8, the neural
network consists of two fully connected MLP networks: the SDF neural network and the
color neural network. The SDF neural network comprises one hidden layer, while the color
neural network comprises three hidden layers.
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Figure 8. Flowchart of forward propagation of deeply supervised neural radiation field.

The inputs and outputs of the two networks are different. The input of the SDF
neural network comprises three-dimensional point coordinates (x, y, z), which are encoded
utilizing a multi-resolution hash position encoding methodology. The output from the SDF
neural network is a feature vector of 13 dimensions. The foremost dimension of this vector
signifies the SDF value, which can be further convertible into the TSDF value. The inputs
of the color neural network are the 13-dimensional feature vectors, including the direction
vector and the normal vector information of the point, where the normal vector can be
obtained by finding the gradient of the SDF function or approximated by Equation (3). The
output produced by the color neural network is a tri-dimensional vector, representing the
RGB components.

→
n =

⎡
⎣ f (x + ε, y, z)− f (x − ε, y, z)

f (x, y + ε, z)− f (x, y − ε, z)
f (x, y, z + ε)− f (x, y, z − ε)

⎤
⎦ (3)

To train the neural network, three loss functions are constructed in this paper, which
are the color loss, SDF loss and depth loss. The color loss is calculated as follows:

Lcolor =
1
m∑k R

(
Ĉk, Ck

)
+

1
m∑k MSE

(
Ĉk, Ck

)
(4)

where m denotes the number of rays per batch, R denotes the L1 loss, MSE denotes the
mean square error loss and Ĉk and Ck denote the predicted and true color values.

The SDF loss is the Eikonal loss, which is used to constrain the symbolic distance
function and is calculated as follows:

LEikonal =
1

nm∑k,i

(∥∥∨ f
(

P̂k,i
)∥∥

2 − 1
)2 (5)

where n denotes the number of all sampling points, m denotes the number of rays per batch
and ∨ f

(
P̂k,i

)
denotes the derivative of the SDF function, which can also be interpreted as

the normal vector of the sampling points.
The depth loss is used to supervise the depth value of a depth ray and the depth loss

of a general ray is calculated as follows:

Ldepth =
1
m∑k MSE

(
D̂k, Dk

)
(6)

where MSE denotes the mean square error loss, and D̂k and Dk denote the predicted depth
value and the true depth value.

4. Experiments

4.1. Experimental Data

In order to verify the effectiveness of the algorithm, three sets of DTU building datasets
are used for the experiments in this paper; each set of data contain image data, mask data,
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empty three-file data, etc., and the description of the datasets is shown in Table 1. When
collecting the DTU data, the position of the camera is placed on a sphere with a radius of
50 cm and the camera is roughly 35 cm from the surface of the object.

Table 1. Description of the DTU dataset.

Dataset Numbers of Image Data Content

DTU15 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

DTU24 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

DTU40 49

Resolution (of a photo) 1600 × 1200
Camera parameters

Mask data
Point cloud data

The other set of experimental data are the UAV-acquired building image data, one set
of Pix4d sample data and one set of self-collected data from the Yellow Crane Building, as
shown in Table 2; the two sets of data are acquired by flying in a circular manner around
the building. The third set of data are from Huayan Temple, consisting of five camera shots,
with the shooting angle being from above the Huayan Temple tower.

Table 2. Drone image data.

Dataset Number of Images Image Size

Pix4d sample Data 36 4592 × 3056
Yellow Crane Data 60 3965 × 2230

Huayan Temple Data 40 6000 × 4000

4.2. Evaluation Indicators

The Peak Signal-to-Noise Ratio (PSNR), which can be used to measure the difference
between two images, is calculated as shown in Equation (7).

PSNR = 10·log10

(
MAX2

G
MSE

)
(7)

where MAX2
G is the maximum pixel value appearing in the truth image. Usually, if the

pixel value is represented by B-bit binary, then MAXG = 2B − 1. MSE is the mean square
error between the true value image G and the rendered image R of the same size. This
paper uses color images, so it is necessary to calculate the PSNR of the three channels of
RGB separately and take the average, as the final PSNR value. The higher the PSNR value,
it means that the image is closer to the original image.

The Structural Similarity Index Measure [40] (SSIM) is a full-reference image quality
evaluation index, which can better reflect the subjective perception of the human eye.
The calculation is relatively complex, respectively, from the brightness L, contrast C and
structure S, which are three aspects of the measure of image similarity. The formulas for
the three functions are as follows:

L(x, y) =
2μxμy + C1

u2
x + μ2

y + C1
(8)
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C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(9)

S(x, y) =
σxy + C3

σxσy + C1
(10)

where μ denotes the mean, σ denotes the variance and C1, C2 and C3 denote the constants
used to keep the formula stable; the σxσy in the above formula is calculated as follows:

σxσy =
1

N − 1∑N
i=1 (xi − μx)

(
yi − μy

)
(11)

SSIM combines the three functions, and the final formula is as follows:

SSIM(x, y) = [L(x, y)]α·[C(x, y)]β·[S(x, y)]γ (12)

where α > 0, β > 0 and γ > 0 denote the weight values of each metric, which are generally
equal weights.

SSIM ∈ [0, 1], the larger the SSIM value, the smaller the image distortion and closer
to the original image it is. In practical applications, the image can be chunked using sliding
windows so that the total number of chunks is N. Considering the influence of the window
shape on the chunks, Gaussian weighting is used to compute the mean, variance and
covariance of each window and then the structural similarity of the corresponding chunks
is computed as the SSIM and, finally, the mean value is used as the structural similarity
measure of the two images, i.e., the average SSIM.

4.3. Hash Coding Experiment

The experimental platform was an ubuntu system with 32 G of RAM, a GeForce RTX
3080Ti graphics card with 12 G of video memory and a 12th Gen Intel@CoreTM i7-12700KF
× 20 processor. The number of network training iterations for Instant-ngp, NeuS and the
method in this paper were 100,000, 50,000 and 50,000, respectively.

4.3.1. Qualitative Experimental Analysis

This paper employs progressive multi-resolution hash coding and primarily focuses
on comparing and analyzing the results of two methods, Instant-ngp and NeuS. Instant-
ngp utilizes multi-resolution hash coding, while NeuS employs frequency coding in NeRF.
Figure 9 illustrates the comparison of the rendering results for the three algorithms on
DTU15, DTU24 and DTU40, respectively.
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Figure 9. Rendering results of different methods. (a) Shows the DTU dataset scene 15 rendering
results; (b) shows scene 24; (c) shows scene 40.

As a whole, NeuS has the most iterations, but has the worst rendering quality and
cannot render the image clearly; both Instant-ngp and this paper’s method can synthe-
size the viewpoints better and the image obtained via this paper’s method is clearer in
comparison between the two. In the DTU15 dataset, the method proposed in this paper is
clearer and more realistic than the Instant-ngp method, particularly evident in the billboard
letters shown in Figure 9a, which is closer to the original image. In the roof surface part
of the DTU24 dataset, the results of this paper’s method are clearer than the Instant-ngp
texture structure, more granular and three-dimensional. In the DTU40 dataset, there is no
significant difference between the results of Instant-ngp and this paper’s method, but it is
clearer than NeuS.

4.3.2. Quantitative Experimental Analysis

This subsection evaluates Instant-ngp, NeuS and the method of this paper using two
metrics, the PSNR and SSIM. After the network is trained to a certain extent, this paper
randomly selects a number of images from the image dataset to be used for testing and
obtains the corresponding rendered images. Then, the PSNR value and SSIM value between
the rendered image and the original image are calculated and the average is taken as the
final evaluation value. Table 3 shows the comparison of the PSNR value of the rendered
images of the three methods, and six rendered images and the original image are randomly
selected from each method for comparison. It can be observed that for the rendered
images of the three datasets, the NeuS method exhibits the lowest PSNR values, which
are 20.9014, 22.0228 and 27.8526, indicating a lower proximity to the original image and a
large amount of blurring. In contrast, the average PSNR values of the method proposed in
this paper are 22.2156, 24.3423 and 28.7186, respectively. These values are notably higher
than those achieved via the Instant-ngp method, exceeding Instant-ngp’s PSNR values
by more than 25%. This suggests that the application of low-conflict progressive multi-
resolution hash coding can enhance the detail expression capability of the neural network,
leading to rendered images that, consequently, are clearer and more closely resemble the
original image.
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Table 3. PSNR evaluation table of the rendered image results of the three methods.

Instant-ngp NeuS Ours

DTU15

1 21.5906 17.8316 24.5007
2 22.8636 16.7975 21.3661
3 20.4145 16.8967 23.5825
4 20.2797 18.2014 21.3009
5 19.2271 16.1140 20.8408
6 21.0331 18.9674 21.7025

Average 20.9014 17.4681 22.2156

DTU24

1 23.8592 19.6505 24.0335
2 19.9375 19.8496 21.9429
3 23.5673 21.7333 24.5284
4 25.3783 17.9581 29.2147
5 21.3128 18.5247 22.9470
6 18.0817 18.3397 23.3875

Average 22.0228 19.3427 24.3423

DTU40

1 26.8330 21.1750 29.2166
2 26.9306 20.4683 29.2910
3 27.3707 21.6330 28.7746
4 27.7076 19.8074 28.3549
5 28.7993 19.5547 28.1579
6 29.4745 21.3349 28.5163

Average 27.8526 20.6622 28.7186

Table 4 shows the comparison of the SSIM values of the rendered images of the
three different methods. From the table, it can be seen that the NeuS method shows a
relatively low image structure similarity, with values around 0.7, which suggests that
the images produced using NeuS are not adequately trained, leading to an incomplete
expression of detailed structures. However, the method discussed in this paper exhibits the
highest structural similarity value for the rendered images. Following closely is Instant-ngp
and both these methods achieve SSIM values generally in the range of 0.9, which is signifi-
cantly higher compared to NeuS. This comparison further demonstrates the effectiveness
of multi-resolution hash coding in the fine-grained representation of structures.
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Table 4. Evaluation table of SSIM values of rendered image results for the three methods.

Instant-ngp NeuS Ours

DTU15

1 0.8540 0.7951 0.8883
2 0.8975 0.5711 0.9267
3 0.9107 0.6188 0.9142
4 0.8301 0.7983 0.8395
5 0.9002 0.9002 0.9076
6 0.8497 0.8497 0.8666

Average 0.8450 0.6953 0.8809

DTU24

1 0.9313 0.7350 0.8795
2 0.6199 0.7510 0.9290
3 0.9090 0.7978 0.9299
4 0.9164 0.6847 0.9471
5 0.8806 0.7028 0.9176
6 0.8055 0.8079 0.7687

Average 0.8438 0.7465 0.8953

DTU40

1 0.9193 0.7186 0.9246
2 0.9210 0.6985 0.9228
3 0.9179 0.6346 0.9020
4 0.9119 0.7381 0.9193
5 0.9041 0.7309 0.9324
6 0.9025 0.7215 0.9437

Average 0.9128 0.7070 0.9275

Table 5 shows the training efficiency comparison between the NeuS method repre-
sented by frequency position coding and Instant-ngp represented by multi-resolution hash
coding. It is obvious from the table that multi-resolution hash coding has an absolute
advantage in time and Instant-ngp is almost 50 times faster than NeuS. For the rendered
images obtained via different methods, NeuS needs at least 8 h to obtain the corresponding
rendering results, but the rendered image has a large gap with the original image and the
clarity is not high, while Instant-ngp only needs about 10 min to obtain the rendered image
with relatively good quality.

Table 5. Evaluation table of training time for the three methods.

Ours Method/min Instant-ngp/min NeuS/min

DTU15 10.1 10 497
DTU24 10.3 10 501
DTU40 10.2 10 494

The method in this paper is based on multi-resolution hash coding and the training
time is similar to Instant-ngp for the same number of iterations. The training efficiency is
also significantly improved compared to the NeuS method.

4.4. Depth-Supervised Ablation Experiments on Ancient Buildings

The Instant-ngp, NeuS and Colmap methods are compared in this section of experi-
ments. Among them, the number of NeuS iterations is 100,000 times and the number of
Instant-ngp and the method in this paper is 50,000 times. The experimental platform is the
ubuntu system with 32 G of RAM, GeForce RTX 3080Ti with 12 G of video memory and
12th Gen Intel@CoreTM i7-12700KF × 20 processor.

4.4.1. Qualitative Experimental Analysis

The qualitative experiment is divided into two parts, a comparison of the rendering
quality of the methods and a comparison of the reconstruction models between the methods.
(1) Rendering quality comparison. The three columns in Figure 10, respectively, show the
rendered images and local magnification effects of NeuS, Instant-ngp and the method
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presented in this paper. As a whole, NeuS can only render the general structure and outline
of the model and cannot capture the detail information, which is due to the insufficient
network expression of NeuS and the need for a longer training time; Instant-ngp and the
method in this paper have better rendering results and both of them have the ability to
express detail.

Figure 10. Comparison of rendering results of different methods. (a) Shows Pix4d sample data
rendering results; (b) shows the Yellow Crane Tower data rendering results.

For the Pix4d sample data, the rendering result of NeuS can only vaguely express the
shape and appearance of the building and fails to adequately render the detailed structure,
such as the tile structure on the roof, three rows of solar panels, etc. Instant-ngp and the
method described in this paper are both capable of quickly rendering the detailed structure
of the building in a short time. However, the method presented in this paper outperforms
Instant-ngp by producing a clearer rendering and more pronounced texture, resulting in a
rendered image with enhanced clarity and a more distinct structural representation.

For the Yellow Crane Tower data, the difference in the rendering quality between the
three different methods is even more obvious. From the perspective of the plaque of the
Yellow Crane Tower, NeuS does not render the shape and content of the plaque because of
insufficient training and the complexity of the structure of the Yellow Crane Tower itself;
Instant-ngp and this paper’s method can directly render the shape of the plaque and the
three words “Yellow Crane Tower” and the two methods have a significant improvement
in rendering quality compared with NeuS. Both of them have a significantly improved
rendering quality compared with NeuS. Compared with Instant-ngp, this paper shows that
under the same resolution and the same number of training times, the method in this paper
renders the “Yellow Crane Tower” with a higher clarity. Similarly, the image obtained via
this method is more detailed and can significantly represent the arrangement of the tiles.
(2) Reconstructing geometric contrasts. This paper proposes two geometric optimization
methods: one is TSDF optimization and the other is the introduction of a depth supervi-
sion method based on TSDF optimization. This paper compares the Instant-ngp, NeuS
and Colmap methods and analyzes the differences between the reconstruction models of
each method.
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Figure 11 shows the comparison of the reconstructed models of the Instant-ngp, NeuS,
TSDF and Colmap methods. The geometric reconstruction quality of Instant-ngp is lower
and cannot reconstruct the surface well; NeuS and the TSDF method in this paper can
reconstruct the closed watertight model, but the surface of the TSDF optimization method
in this paper is flatter and the reconstruction effect is slightly better.

 
Figure 11. Comparison of TSDF optimization and reconstruction effect of each method. (a) Shows
the reconstruction results for Pix4d sample data; (b) shows the reconstruction results for the Yellow
Crane Tower data.

As shown in Figure 11, the Instant-ngp method results in a relatively sparse and
fragmented reconstructed model for both the Pix4d sample data and the Yellow Crane
Building data, failing to form a satisfactory surface model. While the NeuS method is
capable of reconstructing the surface, it falls short in adequately expressing the geometric
structure of the building over a certain period, leading to structural errors or imperfections
in some areas, such as sunken roofs and uneven solar panels, etc. The TSDF method
presented in this paper offers a more comprehensive reconstruction than both Instant-
ngp and NeuS, particularly for buildings with simpler structures like those in Pix4d. For
complex structures, such as the Yellow Crane Tower, the results are superior to other
methods, but the visualization still does not meet the criteria for high precision.

Figure 11 shows the reconstruction model and local method effects of the TSDF method,
Colmap method and the addition of the depth supervision method in this paper. For the
complex structure of the Yellow Crane Tower data, the surface refinement achieved via the
TSDF method is inadequate. However, the reconstruction quality significantly improves
after adding the depth supervision on the basis of the TSDF optimization method. The eave
edges of the Yellow Crane Tower exhibit a fine and even structure, with sharp protruding
edges and a flat, smooth eave surface. Compared with the Colmap reconstruction model,
the surface of the model of this paper’s method is smooth, avoiding the problem of surface
noise and the detailed parts are also more prominent, such as the corridors, columns and
other structures of the Yellow Crane Tower in the local zoomed-in image.

For the Pix4d building, the model after adding depth supervision can show the
staggered feeling of the roof tile structure. This effect is attributed to a portion of the
sparse point cloud on the roof, which constrains the geometric representation in the neural
network. However, the solar panels appear uneven due to the intense light reflection on
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their surfaces, leading to deviations in the point cloud position and thus the unevenness of
the reconstructed surface. The surface of the model of the Colmap method is too smooth and
many structures are not fully expressed, such as the eaves of the tiles and their appendage
structures, etc.

As shown in Figure 12, for the complex Huayan Temple data, using the SDF method
did not achieve sufficient surface refinement. Adding depth supervision to the TSDF
method significantly improved the reconstruction, resulting in finely detailed roof edges,
sharp and prominent edge parts and a smooth eave surface. Compared to Colmap and
NeuS, our method produced a model with a smoother surface, avoiding noise issues and
more pronounced details.

Figure 12. Comparison of the reconstruction effect. The SDF, SDF + Depth supervision, TSDF and
the method in this paper are the results of ablation experiments; Colmap and NeuS methods are the
results of comparison experiments.

4.4.2. Quantitative Experimental Analysis

This part of the quantitative analysis focuses on the quality analysis of the rendered
images and the overall modeling efficiency analysis. The quality of the rendered image
represents the expressive ability of the neural network and, to a certain extent, it can also
indicate the geometric effect of the reconstruction. Table 6 shows the comparison of the
PSNR indexes of the rendered images of Instant-ngp, NeuS and the method in this paper.

It can be seen from Table 6 that the NeuS method renders the worst image quality,
with the average PSNR values for the two datasets being 21.2128 and 22.0479, respec-
tively. Although NeuS demonstrates superior geometric expression capabilities, its training
efficiency is suboptimal, resulting in inadequately rendered images over a short period.
Compared to the rendering quality of the Instant-ngp method, the PSNR values of this
paper’s method are higher at 24.0229 and 25.5023.

Table 7 shows the comparison of the structural similarity index of the results of each
method. From the data in the table, it can be seen that the rendered image of this paper’s
method has a higher degree of restoration and a clearer texture structure.
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Table 6. PSNR evaluation of rendered images via different methods.

Instant-ngp NeuS Our Method

Pix4d

1 25.4210 21.5347 25.8437
2 24.4684 22.8885 25.4387
3 24.8765 21.9155 25.8641
4 24.7463 22.7518 26.5812
5 24.7451 21.5997 24.8237
6 24.1549 21.7302 24.4624

Average 24.7353 22.0701 25.5023

Yellow Crane

1 22.0467 20.5486 23.9559
2 22.3473 19.5063 24.2902
3 21.7972 22.2307 23.7182
4 21.6883 22.6365 23.7127
5 22.3321 20.8539 24.3762
6 22.0755 21.5008 24.0845

Average 22.0479 21.2128 24.0229

Table 7. SSIM evaluation of different methods for rendering images.

Instant-ngp NeuS Our Method

Pix4d

1 0.9469 0.9024 0.9470
2 0.9517 0.9100 0.9518
3 0.9437 0.9052 0.9535
4 0.9465 0.9127 0.9559
5 0.9404 0.9082 0.9493
6 0.9395 0.9070 0.9563

Average 0.9448 0.9076 0.9523

Yellow Crane

1 0.9276 0.8943 0.9406
2 0.9278 0.8982 0.9397
3 0.9255 0.8867 0.9394
4 0.9264 0.8999 0.9389
5 0.9288 0.8922 0.9427
6 0.9274 0.8972 0.9416

Average 0.9273 0.8948 0.9405

The average SSIM values of the two datasets of this paper’s method are 0.9405 and
0.9523, respectively. In contrast, the rendered images of the NeuS method are more blurred
and lack detail in parts, resulting in the lowest quality scores of 0.8948 and 0.9076. The SSIM
values of the rendered images using the Instant-ngp method are 0.9273 and 0.9448, in which
the structural similarity of the Pix4d data is quite close to that of the method proposed
in this paper, because the structure and texture of the building are relatively simple, thus
minimizing the differences. However, from the data of the Yellow Crane Building, we
can see that this paper’s method demonstrates superior rendering capabilities in more
complex scenes.

Table 8 shows the comparison of the training time for NeuS, Instant-ngp, Colmap and
the method in this paper.

Table 8. Training schedule for different methods.

Dataset Instant-ngp/min NeuS/min Colmap/min Our Method/min

Pix4d 9 504 41 16
Yellow Crane 10 517 44 16

The data presented in the table indicate that the NeuS method exhibits the longest
reconstruction time, with training durations exceeding 8 h. Despite 100,000 iterations of
learning, the neural network’s expressive capability remains suboptimal. Followed by Colmap,
the reconstruction time is 40 min to 50 min. The method in this paper, while marginally longer
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in training duration compared to Instant-ngp, significantly enhances both the rendering
quality and the geometric precision of the reconstruction. Consequently, the training time for
the method delineated in this paper is considered within an acceptable threshold. The PSNR
and SSIM in the ablation experiments are shown in Tables 9 and 10, respectively:

Table 9. PSNR evaluation of rendered images via different methods.

NeuS SDF SDF + Depth TSDF Our Method

Huayan
temple

1 20.0790 19.7807 18.6804 22.0038 21.4941
2 21.4474 21.8201 19.8980 20.3897 23.0139
3 20.1258 20.5362 21.3039 20.1366 21.4459
4 19.4199 19.5288 20.8696 21.6823 22.2220
5 19.3783 19.7992 18.2688 19.7121 20.1800
6 18.2056 21.7851 20.9672 22.3610 21.0538

Average 19.7760 20.5417 19.9980 21.0476 21.5683

Table 10. SSIM evaluation of different methods for rendering images.

NeuS SDF SDF + Depth TSDF Our Method

Huayan
Temple

1 0.8131 0.8327 0.8915 0.9105 0.9012
2 0.8512 0.7858 0.8854 0.8654 0.8733
3 0.8859 0.8069 0.7965 0.8421 0.9102
4 0.7964 0.7934 0.8701 0.8369 0.9171
5 0.7842 0.8610 0.8531 0.8554 0.8760
6 0.8701 0.8714 0.8068 0.9024 0.8821

Average 0.8335 0.8252 0.8506 0.8514 0.8933

The comparison of the training as well as reconstruction durations is shown in Table 11.

Table 11. Training schedule for different methods.

Dataset Colmap/min NeuS/min SDF/min SDF + Depth/min TSDF/min Our Method/min

Huayan Temple 35 311 23 24 22 23

Based on Tables 9 and 10, it can be observed that the average PSNR and SSIM metrics
in this paper are superior to those of other experiments. However, the difference is not very
significant, mainly due to issues with the aerial perspective and the presence of certain
occlusions. The effect is not as good as surround shooting. Nevertheless, through ablation
experiments using the method employed in this paper, it can be seen that the accuracy is
still better than other algorithms.

From Table 11, it can be deduced that the NeuS method has the longest reconstruc-
tion time, exceeding 5 h of training time. After 100,000 iterations, the neural network’s
expressive capability is insufficient. Next is Colmap, with a reconstruction time of 35 min.
When compared to the ablation experiments, the rendering quality of the method in this
paper has significantly improved. This paper’s method is on par with the SDF, SDF depth
supervision, TSDF and it outperforms Colmap in terms of rendering speed.

5. Discussion

This study proposes a deep-learning-based method for the 3D reconstruction of an-
cient buildings from UAV-captured images. The method comprises three main steps:
processing sampling points using multi-resolution hash coding, introducing the TSDF for
threshold truncation during training and integrating depth information for supervised
training. The innovations and characteristics of this research can be summarized as fol-
lows: (1) Progressive multi-resolution hash coding: This study focuses on target objects
in large scenes, implementing centralized foreground position coding and adopting a
“coarse-to-fine” progressive multi-resolution hash coding strategy. In the initial phase
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of network training, high-resolution feature-encoding information is masked, retaining
only the low-resolution hash feature encoding. As the training progresses, the masking
of high-resolution feature-encoding information is gradually reduced, thereby optimizing
feature expression. (2) Progressive TSDF-based depth supervision strategy: The Tanh
function is used instead of the traditional piecewise distance function in the TSDF and
the truncation distance of the TSDF is set to decrease progressively with the training time.
Additionally, depth information from sparse point clouds generated by SfM is introduced
as prior knowledge, enhancing the network’s capability to express 3D geometric structures.

This paper utilizes a dataset of building images collected by UAVs conducting a com-
parative analysis with several classical neural radiance field technology-based methods
to validate the practicality of the proposed algorithm. From Figure 9, it is evident that,
compared to classical neural radiance field methods, the rendered images from this paper’s
method exhibit enhanced detail richness and superior texture clarity. In comparison with
NeuS, the improved method in this paper not only ensures the quality of the rendered
images but also significantly enhances the network training time. When contrasted with
Instant-ngp, the rendered image details in this paper’s method are more distinct. Further-
more, as seen in Figures 10 and 11, the 3D implicit reconstruction method in this paper
demonstrates a higher accuracy compared to other methods. Finally, as shown in Table 8,
compared to Instant-ngp and Colmap, this method is capable of reconstructing high-quality
3D models more swiftly compared to Instant-ngp and Colmap. Despite taking slightly
longer than Instant-ngp for reconstruction, it is within an acceptable range.

The main reasons for the improvements in the rendered image quality, model geo-
metric structure and network training efficiency of the proposed method are analyzed
as follows:

(1) Reasons for improvement in rendered image quality: In this study, the images were
preprocessed during the model training phase, employing a strategy of masking the
background area to reduce the interference from background noise. Additionally, the
adoption of progressive multi-resolution hash coding combined with occupying a
three-dimensional grid fully exploits the high-resolution feature space in the hash ta-
ble. Such a strategy allows the high-resolution grid to more accurately and intensively
represent the detailed structure of the scene. This not only effectively resolves hash
conflicts but also substantially improves the quality of the rendered images, leading
to a more precise and detailed visual output.

(2) Reasons for improvement in model geometric structure: The integration of the TSDF
values in this method ensures that the voxels in the occupied grid more closely
adhere to the object’s surface. This mechanism effectively filters out key points that
significantly impact the reconstructed surface while eliminating points with little or
no effect. Furthermore, the incorporation of depth supervision information enhances
the model’s depth representation capability, significantly improving the geometric
structure of the generated model.

(3) Reasons for improvement in network training efficiency: At the initial stage of training,
this study employed progressive multi-resolution hash coding, accelerating the ray
sampling process by eliminating ineffective grids in the occupied grid. As the training
progresses, the strategic application of the TSDF values for the threshold truncation
continuously updates the occupancy of the grid, further speeding up the ray sampling
efficiency. Moreover, integrating depth supervision information into the training
regimen significantly hastens the model’s convergence towards high-quality outcomes,
ensuring the rapid attainment of superior results.

Therefore, the method proposed in this study is suitable for processing 3D ancient
buildings data reconstruction, especially in scenarios requiring rapid and high-precision
reconstruction. Not only can this method quickly reconstruct high-quality 3D models, but
it also excels in maintaining the clarity of details and textures in rendered images.
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6. Conclusions

This paper introduces a low-conflict multi-resolution hash feature location coding
method that alleviates hash conflicts through background masking and progressive training.
The initial step involves masking the background region in the scene, followed by a “from
coarse to fine” approach where low-dimensional position encoding is applied prior to high-
dimensional position encoding. This reduction in hash conflicts within high-dimensional
features and the mitigation of aliasing in high-dimensional features not only enhances
the quality of neural radiance field rendering but also ensures efficient network training,
thereby facilitating subsequent geometric optimization. This paper tackles two main issues:
(1) The development of a TSDF representation for surface reconstruction and model training
supervision through the use of sparse point clouds. This approach serves to stabilize model
training and enhance the model’s depth representation, thereby significantly enhancing the
overall model accuracy. (2) The introduction of an asymptotic training strategy based on
multi-resolution hash grids. This strategy gradually refines the details of the reconstructed
model, boosting model convergence and expediting the model training process.

Furthermore, this paper introduces an advanced geometric optimization technique
for TSDF networks. The native NeRF relies on a biased volume rendering formulation
that synthesizes colors solely through density and color, resulting in noisy reconstructed
surfaces and low geometric accuracy. To address this, the SDF value is introduced as a
weight for color synthesis instead of the original density value. The SDF is asymptotically
truncated to obtain the TSDF using the SDF-MLP network, thereby enhancing the geometric
constraints of the network and improving the geometric accuracy and detail expression
in the reconstructed model. Additionally, a geometric optimization method is employed
for deep-information supervised neural networks. Sparse reconstruction estimates the
bitmap information from the input image and acquires a sparse point cloud for the depth
information. In this approach, training rays are divided into depth rays and ordinary rays,
both of which are input into the neural network simultaneously. The depth rays are super-
vised by depth information during training, enhancing the network’s geometric expression
capabilities. This method fully utilizes the depth information from sparse reconstruction,
facilitating the accurate reconstruction of intricate architectural structures. Through experi-
mental comparisons, this method outperforms the Colmap 3D reconstruction method in
terms of reconstruction efficiency and quality.

This paper introduces an improved neural radiance field technique into the field of
the 3D reconstruction of ancient architecture, capable of performing centralized multi-
resolution hash coding for large-scale ancient architectural scenes captured by UAVs. This
method effectively eliminates irrelevant background information, minimizing redundant
data encoding, thus significantly enhancing the rendering quality of ancient architectural
images. Additionally, this paper proposes a progressive TSDF depth supervision network,
providing robust support for the geometric optimization of ancient buildings. Compared to
traditional NeRF methods, which may suffer from surface noise and insufficient geometric
accuracy in processing ancient buildings, our proposed approach can reconstruct the
geometric structure and surface details of ancient architecture more precisely, greatly
improving the accuracy in the preservation and restoration of cultural relics. Through this
advanced 3D reconstruction technology, a new perspective and methodology are offered
for the digital preservation and study of ancient buildings, aiding in the better conservation
and heritage of these precious cultural assets.

The 3D reconstruction of ancient architecture using NeRF with depth map supervision
is a method that utilizes neural networks and deep-learning techniques. Despite achieving
certain effects, there are still limitations in data quality: the reconstruction quality heavily
relies on the quality of the input data. If the resolution of the depth map data is low,
contains a significant amount of noise or lacks diversity, it may result in the model being
unable to accurately capture the details of the building. Subsequent measures, such as
using UAVs and ground-level supplementary captures, can be employed to achieve a more
refined 3D reconstruction.
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Abstract: A digital orthophoto is an image with geometric accuracy and no distortion. It is acquired
through a top view of the scene and finds widespread applications in map creation, planning, and
related fields. This paper classifies the algorithms for digital orthophoto generation into two groups:
explicit methods and implicit methods. Explicit methods rely on traditional geometric methods,
obtaining geometric structure presented with explicit parameters with Multi-View Stereo (MVS)
theories, as seen in our proposed Top view constrained Dense Matching (TDM). Implicit methods
rely on neural rendering, obtaining implicit neural representation of scenes through the training of
neural networks, as exemplified by Neural Radiance Fields (NeRFs). Both of them obtain digital
orthophotos via rendering from a top-view perspective. In addition, this paper conducts an in-depth
comparative study between explicit and implicit methods. The experiments demonstrate that both
algorithms meet the measurement accuracy requirements and exhibit a similar level of quality in
terms of generated results. Importantly, the explicit method shows a significant advantage in terms of
efficiency, with a time consumption reduction of two orders of magnitude under our latest Compute
Unified Device Architecture (CUDA) version TDM algorithm. Although explicit and implicit methods
differ significantly in their representation forms, they share commonalities in the implementation
across algorithmic stages. These findings highlight the potential advantages of explicit methods
in orthophoto generation while also providing beneficial references and practical guidance for fast
digital orthophoto generation using implicit methods.

Keywords: digital orthophoto; neural radiance fields; unmanned aerial vehicles

1. Introduction

A digital orthophoto is a remote sensing image that has undergone geometric cor-
rection, possessing both map geometric accuracy and image characteristics. It accurately
portrays the terrain and landforms of a scene and can be utilized for measuring real dis-
tances. It plays a crucial role in various fields, such as land surveying, urban planning,
resource management, and emergency response. It aids in monitoring urban development
and changes, tracking alterations in land cover and land use. Additionally, in times of
natural disasters, time is of the essence. The fast generation of digital orthophotos enables
rescue personnel to quickly understand the situation in disaster-stricken areas, enhancing
efficiency in responding to emergencies.

The core of digital orthophoto generation lies in obtaining the elevation and texture
information of objects within the spatial scene. In order to obtain the elevation and texture
of the spatial objects’s surface, as shown in Figure 1, the traditional method of generating
digital orthophoto mainly draws inspiration from the concept of MVS. It involves repro-
jecting three-dimensional objects onto different images using the camera’s intrinsic and
extrinsic parameters. By extracting two image patches centered around the reprojection
point, this method then infers the likelihood of the object being at the current elevation

Remote Sens. 2024, 16, 786. https://doi.org/10.3390/rs16050786 https://www.mdpi.com/journal/remotesensing66



Remote Sens. 2024, 16, 786

based on a quantitative assessment of the similarity between these scenes. Consequently, it
reconstructs the necessary spatial structural information of the scene, and the final results
are obtained through top-view projection. We define such algorithms that utilize traditional
geometry-based approaches to acquire explicit three-dimensional spatial structures and
subsequently generate digital orthophotos as explicit methods. The generation process of
many types of commercial software, such as Pix4D (version 2.0.104), is carried out using
explicit methods. For example, Liu et al. [1] proposed a post-processing method based
on Pix4D for digital orthophoto generation. Some works [2–4] are optimized for linear
structures in structured scenes.

As a rapidly advancing emerging neural rendering method, NeRF [5] has gained
significant attention and shown great potential in recent years. NeRF-related methods
inherently offer arbitrary viewpoints, theoretically making them applicable for digital
orthophoto generation. They can be used in any scene as long as sparse reconstruction
is completed. Therefore, we specifically focused on the feasibility of NeRF in digital
orthophoto generation. As shown in Figure 1, NeRF initiates the rendering process by
sampling a series of points along targeted rays (represented by the black dots), then
estimates the volume density and radiance at specific viewpoints (represented by the circles
with an orange outline) for these sample points with neural networks F(Θ); finally, it
applies volume rendering to produce the pixel values. As a specific viewpoint of the scene,
the digital orthophoto can be rendered using NeRF by employing a set of parallel rays that
are orthogonal to the ground. In this paper, we define the digital orthophoto generation
methods based on neural rendering, which do not rely on traditional three-dimensional
reconstruction, as implicit methods.

Figure 1. We categorize digital orthophoto generation methods into two types: explicit methods
and implicit methods. The typical workflow of explicit methods involves obtaining the geometric
structure with explicit parameters like mesh. The implicit methods are based on neural rendering,
approximating the geometric structure with implicit neural networks. Both of them generate digital
orthophoto through orthogonal projection.

In this paper, we will compare the algorithmic processes and performance of explicit
and implicit methods in digital orthophoto generation. Within the explicit methods, we
selected the TDM algorithm [6], known for its exceptional speed performance. To unleash
its potential, we conducted CUDA version porting and optimization modifications, sig-
nificantly enhancing the generation efficiency. For implicit methods, we implemented
orthographic view rendering based on NeRF and selected the speed-optimized Instant
NGP [7] as a representative experiment. The experimental results reveal that the explicit
method demonstrates notably high efficiency in generation speed. Both explicit and im-
plicit methods yield acceptable levels of measurement accuracy and exhibit comparable
rendering quality.
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2. Related Work

2.1. DigitalOrthophoto Generation Methods

In digital photogrammetry, a mature workflow of digital orthophoto generation is
presented in [8]. A general digital orthophoto generation approach often relies on 3D
reconstruction. Schonberger et al. [9] proposed a complete structure-from-motion (SfM)
pipeline. Shen et al. [10] proposed a patch-based dense reconstruction method, allowing
for the integration with the SfM pipeline to achieve an entire 3D reconstruction process.
Some works [11,12] used smartphone sensors to generate the 3D models. After the 3D
reconstruction is completed, it can be orthogonally projected onto a horizontal plane to
obtain the digital orthophoto. A digital orthophoto generation method with the assistance
of Pix4D is proposed in [1]; they also propose post-processing methods based on Pix4D for
digital orthophoto generation. Many efforts are being made to accelerate digital orthophoto
generation, but these works are usually focused on specific scenarios. Some works have
optimized digital orthophoto generation in structured scenes. For instance, Wang et al. [4]
extracted and matched lines from the original images and then transformed these matched
lines into the 3D model, reducing the computational cost of pixel-by-pixel matching in dense
reconstruction. Li et al. [13] used deep learning methods to obtain a topological graph in
the scenes, enhancing the accuracy at the edges of buildings. Lin et al. [2] arranged ground
control points at the edges of buildings to ensure the accuracy of these edges. Some studies
have made improvements for more specialized scenes. For instance, Lin et al. [14] focused
on agricultural surveying scenarios, utilizing the spectral characteristics of vegetation to
determine its location, thereby achieving fast digital orthophoto generation in agricultural
mapping contexts. Zhao et al. [15] assumed the target scene to be a plane, employing
simultaneous localization and mapping (SLAM) for real-time camera pose estimation and
projecting the original images onto the imaging plane of the digital orthophoto. These
methods speed up the digital orthophoto generation by sacrificing the generality of the
algorithms. Some methods [16,17] utilize Digital Elevation Model (DEM) to accelerate the
digital orthophoto generation, but this approach is constrained by the acquisition speed of
the DEM.

Zhao et al. [6] were the first to propose a process for digital orthophoto generation
directly using sparse point clouds. This approach eliminates the redundant computations
that occur in the dense reconstruction phase of the standard 3D reconstruction-based digital
orthophoto generation methods, significantly increasing the speed of generation.

2.2. NeRF with Sparse Parametric Encodings

In recent years, methods for novel view image synthesis on neural rendering have
rapidly evolved. Mildenhall et al. [5] introduced NeRF, which represents a scene as a
continuous neural radiance field. NeRF optimizes a fully connected deep network as an
implicit function to approximate the volume density and view-dependent emitted radiance
from 5D coordinates (x, y, z, θ, φ), with σ representing the volume density at a spatial point.
To render an image from a specific novel viewpoint, NeRF initially (1) generates camera
rays traversing the scene and samples a set of 3D points along these rays, (2) inputs the
sampled points and viewing directions into the neural network to obtain a collection of
densities RGB values, and (3) employs differentiable volume rendering to synthesize a
2D image.

Many recent works have incorporated sparse parametric encoding into NeRF for
enhancement, generally aiming to pre-construct a series of auxiliary data structures with
encoded features within the scene. We summarize these NeRFs with sparse parametric
encoding into four stages in Figure 2: (1) scene representation, (2) radiance prediction,
(3) differentiable renderer, and (4) loss function. For the first stage in Figure 2a, nu-
merous sparse parametric encoding techniques have been proposed, such as dense and
multi-resolution grids [7,18,19], plannar factorization [20–22], point clouds [23], and other
formats [24,25]. The central concept behind these methods is to decouple local features of
the scene from the MLP, thereby enabling the use of more flexible network architectures.
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They are typically represented by a grid, as shown in Figure 2a, resulting in the local
encoding feature lookup table shown in the orange part. For the second stage in Figure 2b,
a coarse–fine strategy is often used to sample along rays, and a cascaded MLP is typically
used to predict volume density and view-dependent emitted radiance. Several studies
have attempted to enhance rendering quality by improving sampling methods [22,26,27];
some have employed occupancy grids to achieve sampling acceleration [28]; others have
focused on adjusting the MLP structure to facilitate easier network training [29]. For the
third stage in Figure 2c, the figure exemplifies the most commonly used volume rendering,
but other differentiable rendering methods are also employed [30], with Nvdiffrast [31]
providing efficient implementations of various differentiable renderers. For the fourth
stage in Figure 2d, the figure presents the most commonly used mean squared error loss
between rendered and ground truth images, with some works introducing additional
supervision, such as methods incorporating depth supervision [32,33]. With different
scene representations, various loss functions are incorporated to constrain the network.
Neural radiance fields can achieve photorealistic rendering quality and lighting effects,
but it often takes hours to optimize the network parameters, and the training process is
computationally expensive.

(a) (b) (c) (d)

Figure 2. A schematic representation of NeRF with sparse parametric encoding. The process is
divided into four stages: (a) scene representation, primarily defining auxiliary data structures for
a scene’s sparse parametric encoding; (b) radiance prediction, where queried encoded features
(orange arrows) and embedded sampling points are represented as feature embeddings and the
radiance at these points is obtained through the function F(Θ); (c) differentiable rendering, rendering
meaningful pixel RGB values based on the radiance of sampling points; (d) loss computation,
calculating the loss based on the rendering results, followed by backpropagation (green arrows) to
optimize network parameters.

Both explicit and implicit methods require the initial step of SfM to obtain sparse
point clouds and camera poses. The former predicts depth using multi-view geometry
theories and describes the geometric structure of the scene using explicit parameters such
as mesh, voxel, raster, etc. In contrast, implicit methods gradually fit to the real scene
through implicit neural representation during the training process. Finally, both methods
render digital orthophoto images from an orthographic viewpoint.

3. Method

An explicit digital orthophoto generation method typically involves the SfM and MVS
processes. The TDM method facilitates the fast generation of digital orthophotos directly
from sparse point clouds. Unlike MVS, the computation process of TDM is specifically
tailored toward the final output of digital orthophotos. Factors unrelated to digital or-
thophotos are not involved in the computation, facilitating faster generation of digital
orthophotos. So we selected the TDM algorithm as the representative explicit method for
fast digital orthophoto generation and Instant NGP as the representative implicit method.

An implicit digital orthophoto generation method typically involves optimizing a
group of parameters with posed images. This optimization process often takes several
hours or even dozens of hours. Instant NGP [7] represents a speed-optimized neural
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radiance field, achieving the shortest optimization time among current radiance field
methodologies. Hence, we select Instant NGP as the representative implicit method for fast
digital orthophoto generation.

Both methods rely on the sparse reconstruction results from SfM. To generate digital
orthophotos, both methods require prior information of accurate ground normal vectors.
By using the Differential Global Positioning System (DGPS) information as a prior for
sparse reconstruction, we can obtain accurate ground normal vectors while also recovering
the correct scale of the scene.

3.1. Explicit Method—TDM

The TDM algorithm, when generating digital orthophotos, essentially processes infor-
mation for each pixel, equivalent to raster data processing. To achieve the final rendering,
the key lies in accurately estimating the elevation values and corresponding textures for
each raster. The following will introduce the algorithm flow of our CUDA-adapted and
optimized version of the TDM algorithm in this paper.

Raster Attribute Initialization: by specifying the spatial resolution Rs, the raster image
G to be generated is obtained with dimensions W × H, where each raster represents a pixel
in the final digital orthophoto image. Each raster unit possesses five attributes: (1) raster
color Co = (Ri

g, Gi
g, Bi

g); (2) raster elevation Zg; (3) raster normal vector −→n = (nx, ny, nz).
(4) Confidence score of raster elevation Sg. (5) The camera group to which the raster belongs
Cg. As shown in Figure 3, the algorithm traverses through all three-dimensional point
clouds and performs orthographic projection to obtain the raster unit gi corresponding to a
certain three-dimensional point (Xi, Yi, Zi)

T . Subsequently, the elevation Zg of that raster
is initialized.

Figure 3. The figure illustrates the process of raster elevation initialization. In the initial stage, there
are some points in three-dimensional space. Following the initialization process, rectangular raster
units are obtained. The height of the vertical column represents the elevation values of each cell.

Then, we will search for the corresponding camera group Cg for each raster containing
an elevation value. This camera group retains the best-angle cameras in all eight directions
that can see this raster, facilitating the subsequent process of finding and determining the
views. As shown in Figure 4, the space is first evenly divided into eight regions. Then, the
camera with the highest view score Sv in each of the eight directions that can see the raster
gi is retained.
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Figure 4. The figure illustrates the process of initializing the camera group. Based on the projection
relationship of the pinhole camera, the projection pg of the raster’s world center point Pg on the
image plane is obtained. The original space is evenly divided into eight regions, and the camera with
the highest Sv in each region is found to be the camera group for this raster.

We denote the principal point coordinates of the image as (px, py)
T , and the world

coordinates Pg of the raster gi, after being projected by the camera, as pg. The optimal view
score Sv is then calculated as

Sv =
1

(u − px)
2 + (v − py)

2 + ε
(1)

Finally, the eight cameras with the highest scores in each direction are selected as a
camera group for the raster. The camera with the highest score is considered as the optimal
view camera Cb for the raster unit.

Elevation Propagation: Given rasters with known elevation are considered as seed
units gs, and the propagation starts iteratively from these seed units. Each iteration propa-
gates the elevation information Z from the seed raster unit to all raster units within a patch.
Subsequently, the adjustment of Zg occurs via the random initialization of the normal
vector −→n , as shown in Figure 5. We project the i-th raster of the raster support plane Sk

onto a corresponding image I j in the camera group Cg
i, and the corresponding pixel color

is denoted as (Rjki, Gjki, Bjki). The average color of the nine raster units projected onto the
image I j in the raster support plane Sk is denoted as (Rjk, Gjk, Bjk). Define a color vector
Vjk to represent the color information of Sk:

Vjk = (Rjk1 − Rjk, Gjk1 − Gjk, Bjk1 − Bjk, ..., Rjk9 − Rjk, Gjk9 − Gjk, Bjk9 − Bjk)
T

(2)

The number of cameras in the camera group of the i-th raster unit is denoted as
Ni

C, and the number of color vectors that Sk possesses is Nk
C. Therefore, the equation

Nk
C =

9
∑

i=1
Ni

C can be derived. The color vector corresponding to the optimal view camera

Cbs of the seed raster is taken as the reference vector. To measure the consistency of Nk
C

color vectors, the average cosine distance between the reference vector and other vectors is
defined as the matching score Mk

s for Sk:

Mk
s =

∑
j=1...Nk

C ,j �=s,j/∈Φko

Vjk T
Vsk

‖Vjk‖‖Vsk‖
Nk

C − Nko
(3)

where Vjk T
Vsk

‖Vjk‖‖Vsk‖ represents the cosine distance, Vsk is the reference vector, Φk
o is the set

of occluded images, and Nk
o is the number of images in Φk

o.
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Furthermore, we can evaluate the reasonableness of depth information through color
consistency. Once the computed Mk

s exceeds the confidence threshold η, the current depth
information is considered reasonable. Then, we update the Zg, Sg and −→n of all raster units
within the patch. During an iteration, there will be multiple random initializations of −→n . If
the matching score remains below η, elevation information will not be propagated.

Figure 5. The figure demonstrates the elevation propagation process. The red rectangular raster
represents the seed unit. The seed unit with a known elevation and the surrounding eight raster units
with unknown elevation form a raster support plane. The raster support plane calculates a matching
score based on color consistency. If the score meets the threshold, the elevations of other raster units
will be initialized based on the normal vector of the seed raster unit.

Multi-resolution Interpolation-based Elevation Filling: The original algorithm grad-
ually reduces η after each iteration until the elevation propagation is complete. This will
result in subsequently obtaining a lower confidence score for Zg and wasting a consider-
able amount of time. To efficiently reduce iteration time, we propose a multi-resolution
interpolation-based elevation filling algorithm to acquire elevations of raster units with low
confidence scores. When the initial value of η is η0, it gradually decreases with the increase
in iteration count until it equals ηe. At this stage, we utilize the proposed algorithm to
assign values to raster units gi without elevations, as shown in Figure 6.

(a) (b) (c)

Figure 6. The figures illustrate the multi-resolution interpolation-based elevation filling process.
(a) The raster image obtained after elevation propagation contains raster units with unknown eleva-
tions. (b) The process of generating the multi-resolution interpolation raster images. (c) The resulting
raster image after elevation filling using the multi-resolution interpolation raster images.

After the elevation propagation, the initial seed gi
s for this filling algorithm is derived

from raster units gi within the raster image G, where the confidence measure Sg exceeds
η0. The spatial resolution Ri

sp of the filling raster image Gi
p for the i-th layer of this

multi-resolution raster is as follows:

Ri
sp =

min[(Xmax − Xmin), (Ymax − Ymin)]

2i (4)
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where Xmax and Ymax are the maximum values of the X- and Y-coordinates in this area.
Likewise, Xmin and Ymin are the minimum values. When multiple gi

s fall into the same
raster unit gi of Gi

p, we set the average of these points as the elevation value for that raster
unit. If no points fall within a specific raster unit, we will retrieve the elevation value
corresponding to the raster position from multi-resolution interpolation raster image Gi−1

p

and set it as the elevation value for gi. If Ri
sp < Rs, the process is repeated, continuously

constructing Gi
p as described above. Eventually, there are some raster units that have

not been assigned elevation values in G. We will then search for the elevation values
corresponding to the raster positions in the highest resolution interpolation raster image
G f

p and assign them accordingly.
Texture Mapping: In each image, certain objects might be occluded by other objects,

leading to erroneous texture mappings. Occlusion detection is necessary in such cases.
Subsequently, texture mapping is performed based on gi and the corresponding

projection relationship with the optimal view camera Cb, obtaining color information
Co = (Ri

g, Gi
g, Bi

g) for the raster unit. Finally, the generation of the final digital orthophoto
is completed.

3.2. Implicit Method—Instant NGP

We will use the most representative Instant NGP [7] as an example to illustrate the
process of digital orthophoto generation using implicit methods. As a neural radiance
field utilizing sparse parametric encodings, Instant NGP introduces multi-resolution hash
encoding to address the O(N3) parameter complexity associated with dense voxel grids;
Figure 7 illustrates this multiresolution hash encoding process in 2D.

Figure 7. Illustration of the multiresolution hash encoding in 2D. For a given coordinate x, the method
queries the encoded features on the surrounding voxels’ vertices (blue and orange circles) with the
hashing result (numbers in the circles) and performs interpolation on the encoded features in θl across
L levels. For a given direction d, the embedding function e(d) is applied to generate auxiliary inputs ξ.
Subsequently, the encoded features at each level and auxiliary inputs will be concatenated as the final
MLP embedding input y ∈ R

LF+E to obtain the radiance (c, σ). Its optimizable parameters consist of
L hash tables θl and tiny MLP m(y; Φ).

In practice, Instant NGP divides the scene into voxel grids with L levels of resolution.
For each level of the resolution grids, a compact spatial hash table θl of a fixed size T is used
to store the F-dimensional feature vectors on that resolution level’s grid. When querying
the feature vector of a spatial coordinate x in Instant NGP, the process first identifies grid
corners spatially close to x on each resolution layer. Then, the feature vectors of adjacent
grid corners are looked up in θl . Next, linear interpolation is performed to obtain the feature
vector of the spatial coordinate x at that resolution level. This process is executed across
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all L resolution levels. Subsequently, these feature vectors from different resolution layers
are concatenated with auxiliary inputs ξ ∈ R

E, forming the final MLP embedding input
y ∈ R

LF+E. Finally, Instant NGP uses a Tiny MLP m(y; Φ) to obtain the radiance (c, σ) for
the spatial coordinate x. This process also aligns with the generalized description of neural
radiance fields based on sparse parametric encoding, as shown in Figure 2. Instant NGP can
achieve a balance between performance, storage, and efficiency by selecting appropriate
hash table sizes T.

As mentioned in Section 1, digital orthophotos can be rendered with neural approaches.
In contrast to the typical pinhole camera imaging model, digital orthophotos are rendered
using a set of parallel light rays perpendicular to the ground, as shown in Figure 1. To
ensure that Instant NGP achieves a rendering quality comparable to explicit methods in
scalable scenes, we adopted the largest scale model recommended in the paper.

4. Experiments and Analysis

The data utilized in this study were acquired from the Unmanned Aerial Vehicle (UAV)
following a serpentine flight path pattern. A CW-25 Long Endurance Hybrid Gasoline &
Battery VTOL drone was used in this data collection. It has a long service life, is fast, has a
large payload, and is structurally stable and reliable. It is equipped with the RIY-DG4Pros
five-lens camera, providing 42 million pixels and a resolution of 7952 × 5304 pixels. We
established the drone ground station GCS1000. The UAV is equipped with the Novatel617D
dual-antenna satellite positioning differential board card on board. Subsequently, through
DGPS, the UAV can accurately capture changes in the ground station’s position, speed, and
heading in real time.

We selected the TDM algorithm as the representative explicit method for digital
orthophoto generation. Similarly, we used Instant NGP as the representative implicit
method for digital orthophoto generation. The commercial software Pix4D is widely used
and performs exceptionally well in digital orthophoto generation. Therefore, we have
chosen its generated results as the benchmark for measuring accuracy. Pix4D, being an
explicit method, requires the full process of traditional 3D reconstruction during digital
orthophoto generation. Hence, for the time comparison test, we selected the TDM algorithm,
which eliminates redundant computations during the dense reconstruction.

As described in this section, we initially conducted digital orthophoto generation tests
on three common scenes: buildings, roads, and rivers. The objective was to demonstrate the
image generation quality and algorithm robustness of both explicit and implicit methods
across various scenes. Subsequently, to assess the accuracy of the two methods, comparisons
were made with the commercial software Pix4D regarding measurement precision. Finally,
to evaluate the efficiency of both methods, we measured the time required for generating
scenes of different sizes.

4.1. Test on Various Scenes

Figure 8 shows a set of original village photo data used for testing, including nu-
merous scenes of slanted roofs of houses, trees, and other objects. We performed sparse
reconstruction in conjunction with the camera’s DGPS information, enabling the recovery
of accurate scale information and spatial relationships. The resultant 3D sparse point cloud,
as shown in Figure 9, and camera poses served as prior information for subsequent explicit
and implicit methods in digital orthophoto generation. The resulting digital orthophotos
after the final processing through the explicit and implicit methods are shown in Figure 10.
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Figure 8. The original images of some village scenes captured by unmanned aerial vehicles.

Figure 9. The point cloud of the village scenery obtained after sparse reconstruction.

As shown in Figure 11, we conducted digital orthophoto generation tests for various
scenes using both explicit and implicit methods. Figure 11a,b show that TDM may lead to
inaccuracies in areas experiencing sudden height variations, for example, the roof edges of
houses, while Instant NGP can accurately depict sudden height variations. Figure 11c,d
show that moving objects within the scene may induce ghostly artifacts in the results of
Instant NGP but have a minimal impact on TDM. Figure 11e,f show that the clarity of
the outputs of Instant NGP does not match that of TDM. The imaging quality of implicit
methods is predominantly influenced by the model scale, whereas TDM is directly dictated
by the clarity of the original image.
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(a) Explicit method (TDM) (b) Implicit method (Instant NGP)
Figure 10. The figure illustrates the digital orthophoto generation results from two methods within
the same village scene. (a) depicts the output derived from the explicit method. (b) depicts the output
obtained from the implicit method.

To quantitatively analyze the quality of the digital orthophoto generated using the two
methods, we employed two no-reference image quality assessment techniques, Brisque [34]
and NIQE [35]. The results in Table 1 show that, in the majority of scenarios, the quality gen-
erated by the explicit method (TDM) surpasses that of the implicit method (Instant NGP).

(a)

(b)
Figure 11. Cont.
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(c)

(d)

(e)

(f)
Figure 11. The figure shows digital orthophoto of scenes “houses”, “bridges”, and “rivers” generated
using two different methods. Images (a,c,e) were generated using the explicit method (TDM), while
images (b,d,f) are generated using the implicit method (Instant NGP).

Combining qualitative and quantitative analysis, it can be concluded that the TDM
algorithm exhibits superior imaging clarity but demonstrates inaccuracies in areas expe-
riencing sudden height variations. Conversely, Instant NGP is capable of capturing the
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majority of the scene’s structure accurately, yet its imaging clarity is constrained by the scale
of the model and may produce ghostly artifacts. Both methods are capable of generating
usable digital orthophoto.

Table 1. Quality assessment of images generated using two methods in different scenes and compar-
isons with the real image. The ↓ means lower is better.

Scenes
Method|Metric

Houses Bridges River

Brisque↓ NIQE↓ Brisque↓ NIQE↓ Brisque↓ NIQE↓

TDM (cuda) 12.96 2.77 7.88 2.33 12.90 5.01

Instant NGP 50.93 5.47 60.26 7.43 23.66 3.99

Real Images 6.72 1.67 5.91 1.72 7.74 1.74

4.2. Evaluation of Accuracy

An important characteristic of digital orthophotos is map geometric accuracy, so the
accuracy of distance measurements is crucial. To validate the measurement accuracy of
different digital orthophoto generation methods, we selected a specific area within the
city for subsequent testing scenes. We utilized explicit methods (TDM), implicit methods
(Instant NGP), and commercial software (Pix4D) to generate digital orthophoto, followed
by comparing length measurements, as shown in Figure 12. The box plot displays the differ-
ences in distance measurements in digital orthophotos, as can be seen from Figure 13. The
median of the box plot generated from Pix4D-to-TDM is 0.0376 m, while the other median
from Pix4D-to-Instant NGP is 0.0442 m, both around 0.04 m. In comparison with Pix4D,
this study concludes that both the explicit method (TDM) and the implicit method (Instant
NGP) for digital orthophoto generation meet the requirements for mapping purposes.

(a)

Figure 12. Cont.
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(b)

(c)
Figure 12. Digital orthophotos generated by TDM, Instant NGP and Pix4D.The segments with
consistent colors and corresponding values represent identical distances measured across the three
results. (a) Distance measurement of the explicit method (TDM), (b) Distance measurement of the
implicit method (Instant NGP), (c) distance measurement of Pix4D.

Figure 13. The box plot shows the differences in distance measurements between the explicit method
(TDM) and the implicit method (Instant NGP) compared to Pix4D in the same scene, as depicted
in Figure 12.
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Furthermore, because the brightness of the color difference map can represent the de-
gree of difference between digital orthophoto generated by different algorithms at the same
location, in order to further measure the accuracy for digital orthophoto generation, this
paper establishes the color difference maps between those methods. As shown in Figure 14,
the color difference map shows that explicit methods (TDM) and implicit methods (Instant
NGP) produced the same measurability and visibility of the generated digital orthophoto
as those generated by the commercial software (Pix4D). In general, the accuracy of the two
methods is acceptable according to the comparison with commercial software (Pix4D).

(a)

(b)
Figure 14. Color difference map between each of the two results. (a) Color difference map between
Pix4D and TDM. (b) Color difference map between Pix4D and Instant NGP.

4.3. Evaluation of Efficiency

To verify the generation efficiency between explicit and implicit methods, in this
section, we conducted tests on the generation time of digital orthophotos in five different
size scenes. These two types of methods were run on a personal computer with an Intel (R)
Core (TM) i7-12700 CPU @ 4.90 GHz and an NVIDIA GeForce RTX 3090.

Table 2 illustrates the time consumption for digital orthophoto generation using
TDM and Instant NGP at different scene sizes. For TDM, the time measurement ranges
from obtaining sparse reconstruction results to the generation of digital orthophotos. For
Instant NGP, it starts from acquiring sparse reconstruction results, proceeds through model
training, and culminates in rendering digital orthophoto. Across five different scene
sizes, the TDM algorithm exhibits superior speed performance compared to Instant NGP,
with its runtime reduced by two orders of magnitude. Therefore, the explicit method
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currently holds a significant advantage over the implicit method in terms of efficiency in
digital orthophoto generation.

Table 2. Efficiency comparison of three methods of various scene sizes.

Scene Size (m)
@Images

Method

TDM Instant NGP

150 × 150 @ 78 36 s 10,243 s

200 × 200 @ 130 60 s 16,931 s

250 × 250 @ 256 88 s 33,210 s

300 × 250 @ 281 103 s 36,454 s

300 × 300 @ 333 129 s 43,576 s

5. Conclusions

In this paper, we categorized the methods for digital orthophoto generation into
explicit and implicit methods, exploring the potential of using NeRF for implicit digi-
tal orthophoto generation. We selected the most representative fast algorithms from the
two categories: the TDM algorithm and Instant NGP. Additionally, we adapted and opti-
mized TDM algorithm to a CUDA version, significantly enhancing the efficiency of digital
orthophoto generation.

In both explicit and implicit methods, an initial step involves sparse reconstruction
to obtain camera poses, point clouds, and other prior information. The former employs
an elevation propagation process that explicitly integrates the local color consistency of
images with multi-view geometry theories to acquire scene elevation information and
corresponding textures. Conversely, in NeRF, the loss function is designed as the color
difference between rendered and real images. Throughout the training process, the neural
network gradually fits into the real scene, implicitly capturing the surfaces and textures of
scene objects and synthesizing novel view images through differentiable rendering. Finally,
both methods complete the entire process to generate digital orthophoto.

We conducted tests on explicit and implicit methods for digital orthophoto generation
in various scenes, measuring the generation efficiency and result quality. We employed
the commercial software Pix4D as a standard for assessing measurement accuracy and
reliability, evaluating both methods. The results indicate that currently, explicit methods
exhibit higher efficiency and lower computational resource requirements in generation
compared to implicit methods, achieving results with respective advantages and disadvan-
tages. Moreover, both methods meet the requirements for measurement accuracy. In our
future work, we aim to further explore the development of implicit methods for digital
orthophoto generation, accelerating the generation speed and enhancing the clarity of
implicit methods by adding more constraints suitable for digital orthophoto generation.
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Abstract: Traditional methods for assessing the stability of rubble mound breakwaters (RMBs) often
rely on 2.5D data, which may fall short in capturing intricate changes in the armor units, such as
tilting and lateral shifts. Achieving a detailed analysis of RMB geometry typically requires fully 3D
methods, but these often hinge on expensive acquisition technologies like terrestrial laser scanning
(TLS) or airborne light detection and ranging (LiDAR). This article introduces an innovative approach
to evaluate the structural stability of RMBs by integrating UAV-based photogrammetry and the
random sample consensus (RANSAC) algorithm. The RANSAC algorithm proves to be an efficient
and scalable tool for extracting primitives from point clouds (PCs), effectively addressing challenges
presented by outliers and data noise in photogrammetric PCs. Photogrammetric PCs of the RMB,
generated using Structure-from-Motion and MultiView Stereo (SfM-MVS) from both pre- and post-
storm flights, were subjected to the RANSAC algorithm for plane extraction and segmentation.
Subsequently, a spatial proximity criterion was employed to match cuboids between the two time
periods. The methodology was validated on the detached breakwater of Cabedelo do Douro in Porto,
Portugal, with a specific focus on potential rotations or tilting of Antifer cubes within the protective
layer. The results, assessing the effects of the Leslie storm in 2018, demonstrate the potential of our
approach in identifying and quantifying structural changes in RMBs.

Keywords: drone; RMB; groins; in-field inspection; photogrammetry; SfM-MVS; random sample consensus

1. Introduction

The protection of coastal zones and harbors from wave damage is crucial to prevent
severe economic and ecological consequences. One of the most commonly employed
structures for this purpose are the rubble-mound breakwaters (RMBs). These structures
are built using various materials and can be adapted to diverse underwater topographies,
designed to withstand different wave conditions [1]. However, these protective structures
are susceptible to damage and require repairs throughout their lifespan [2]. Therefore,
understanding the performance of rubble-mound armor in terms of hydraulic stability is
essential for designing new structures and upgrading existing ones, particularly in light of
climate change effects such as sea level rise and increased wave storminess [3,4].

Detecting local defects in coastal defense structures, like displacements, breakage, or
removals of concrete armor units (CAUs), is crucial to prevent potential threats to the safety
of breakwaters. Damages observed in these structures can lead to sliding, settlement, or
toppling, causing the displacement, breakage, or removal of CAUs. Additionally, scouring
at dike foundations may occur and result in severe damages under extreme wave forces
from storms. Identifying local shifts in the elements of these structures would be beneficial
for studying their performance and mitigating damages caused by potential defects [5].
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Techniques for assessing and measuring lab-scale physical models, with a focus on
examining the behavior of RMBs under wave action, have advanced significantly in re-
cent years. Laboratory investigations exploring this subject employ a range of scanning
devices, including structured light scanners, infrared scanners, and laser scanners, along
with conventional profilers [6]. Some studies have also integrated devices with addi-
tional depth measurement capabilities, such as time-of-flight (ToF) and RGB-D cameras
(e.g., Kinect) [7–10], providing the advantage of collecting information from the submerged
portions of RMB models. Image-based methodologies are also increasingly utilized [11],
with a specific subset of studies concentrating on photogrammetric reconstruction [12,13]
to achieve a detailed three-dimensional representation of the slopes.

However, unlike laboratory testing of physical models, the field of on-site monitoring
of RMBs still has ample room for further advancement in both research and the develop-
ment of assessment methodologies. Currently, the evaluation of the current maintenance
conditions in RMBs and groins typically relies heavily on visual inspections to assess
structural damage. Whether conducted during routine monitoring campaigns or post-
storm assessments, these inspections provide essential insights for improving breakwater
design and maintenance, ensuring their long-term effectiveness. Nevertheless, developing
standardized and more efficient methodologies for the in-field evaluation of RMB damage
remains a challenging task due to the significant variability in construction from site to site,
as well as associated costs and safety considerations.

1.1. SfM-MVS Photogrammetry in RMB Inspection

Terrestrial photogrammetry [14] and terrestrial laser scanning (TLS) [5] have proven
to be efficient techniques for examining changes in small dikes or RMBs using point clouds
(PCs) derived from different epochs. Nevertheless, the advent of uncrewed aerial vehicles
(UAVs) has revolutionized coastal monitoring, offering a cost-effective, flexible, and high-
resolution approach to data collection across large areas [15]. While UAVs can be equipped
with various sensors, such as UAV-borne LIDAR, affordable and lightweight RGB cameras
have become the standard for remote sensing and photogrammetric research. In this context,
the photogrammetric applications of these tools in the field are diverse, encompassing
tasks such as investigating near-shore hydrodynamics [16], mapping and quantifying
volumetric changes on beaches [17], and inspecting offshore civil infrastructures [18].
The integration of UAVs into such tasks not only establishes a robust toolkit for detailed
photogrammetric reconstructions and analyses but also introduces real-time monitoring
capabilities, particularly crucial after severe events [19]. UAV-based photogrammetry
has also proven to be a useful reverse engineering technique, providing data on actual
morphologies that can be translated into numerical analyses in different applications (e.g.,
flooding risk assessment [20], slope stability analysis [21], erosion and accretion studies [22],
etc.). However, it is important to acknowledge that the use of UAV-based photogrammetry
in water-related studies is not without challenges. Addressing concerns such as limitations
in flight time, payload capacity considerations, legal issues, drone security, and varying
data acquisition conditions remains critical in some applications [15].

Specific applications of UAV-based surveys in rubble mound groins can be found
in previous research, such as in the work of Henriques et al., 2017 [23], which generated
photogrammetric orthomosaics and PCs to obtain data about the most exterior protection
layer of breakwaters. Gonçalves et al. 2022a and 2022b [24,25] expanded the photogram-
metric workflow by incorporating UAV-based real-time kinematic (RTK) data to accurately
map the geometry of rubble mound groins. They also conducted an accuracy assessment
using independent techniques (i.e., GNSS and TLS). These previous studies demonstrate
the potential of UAV-based photogrammetry in monitoring the structural integrity by
generating three-dimensional (3D) geometric reconstructions of RMBs, achieving accu-
racies in some cases better than 3 cm of error in checkpoints. In this regard, UAV-based
photogrammetry has proven to be a highly suitable technique to obtain detailed and pre-
cise 3D reconstructions, particularly advantageous when dealing with large, complex,
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and potentially hazardous structures like these. However, to the best of our knowledge,
there is still insufficient research on multi-temporal monitoring of RMBs using UAV-based
photogrammetry. More specifically, there is a clear shortage of studies exploring possible
methods of automatic change detection.

1.2. Change Detection Analysis in RMBs

Change detection poses a critical challenge in various remote sensing applications.
Historically, studies within this domain have relied on 2D information from remote sensing
images to address large-scale issues, such as forest monitoring or urban sprawl. Previous
research has dedicated significant efforts to developing new methods for detecting changes
from images, starting with traditional/classical pixel-based methods that primarily focus
on spectral values [26]. More recently, methods in geographic object-based image analysis
(GEOBIA) have emerged [27,28], introducing innovative segmentation and classification
techniques that consider spatial context along with spectral, topographical, textural, and
morphological properties. The emergence of new detectors and feature descriptors has
gone beyond the limitations of traditional top-view 2D pixel/object-based analyses [29,30],
playing a pivotal role in applications like security and surveillance, infrastructure monitor-
ing, or precision agriculture [31]. However, as image resolution advances to finer levels,
several challenges arise when employing 2D image-based methods. Issues like spectral vari-
ability and perspective distortion become prominent. In response to these challenges, the
incorporation of 3D data in finer-scale studies introduces a different modality for analysis,
enabling highly detailed geometric analysis [32].

Among the common techniques used to identify changes from 3D datasets acquired at
different time intervals, cross-sectional assessment or the simple comparison of digital sur-
face models (DSM), also known as the DEM of Difference (DoD) method [33], are frequently
employed. However, these techniques still predominantly rely on 2.5D information as
they primarily operate within a 2D spatial framework, despite considering the elevation or
height of objects [34]. In contrast, the damage progression along a sloping coastal structure
like a rubble-mound breakwater (RMB) is fundamentally a 3D process. It is crucial to
recognize that objects may undergo vertical shifts, rotations, or tilting, emphasizing the
need for approaches that can capture and analyze changes in the full 3D spatial context.

On the other hand, methods lacking full 3D spatial information often struggle to
differentiate individual armor units, reducing possibilities for subsequent analysis. While
the simpler DoD approach can be useful for estimating erosion volume in the breakwater, a
more detailed assessment can be carried out at the individual block level. This approach
yields more precise statistics and provides a more reliable count of the displaced armor
units [6].

Earlier investigations aimed to refine methods for estimating poses of individual
blocks, though there is a relative absence of applications on dense PCs obtained directly
from on-site photogrammetric surveys. In a study conducted by Puente et al. in 2014 [5],
changes in RMBs were examined using TLS PCs from different time periods. To estimate
the rigid body transformation parameters, they employed K-means clustering to identify
planar segments representing the faces of the cuboids. Bueno Esposito et al., in 2015 [35],
presented an approach for reconstructing wave-dissipating blocks from incomplete PCs
of RMBs captured by airborne LiDAR. Their method used segmentation based on normal
vectors and prior knowledge about the properties of the cuboids to refine the segmentation
and define the boundaries of individual armor units. Xu et al., in 2022 [36], presented a
deep-learning-based approach for block pose identification that could even identify CAUs
with complex shapes, such as tetrapods or clinger blocks. However, this method entails
the need for extensive training datasets to feed the convolutional neural network and
substantial computational resources, which may present implementation difficulties and
necessitate site-specific fine-tuning.

Although not specifically applied to RMBs, Shen et al., in 2018 [37], presented a
methodology to extract individual brick poses from a laser scan PC of a cluttered pile of
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cuboid bricks. Their proposed workflow includes connected component analysis, principal
component analysis, and a voting scheme to reconstruct bricks individually. Shen, Wang,
and Puente in 2020 [38] proposed a method for detecting changes in masonry walls using
TLS PCs with a regular distribution of bricks, a case study analogous to cube-armored
breakwaters with a regular placement pattern. They utilized the TLS intensity attribute
to differentiate between materials of mortar and bricks, followed by a 3D connected
components algorithm to extract and label individual bricks.

1.3. The RANSAC Approach

While there are multiple valid strategies in the statistics field for determining block
pose through surface extraction, several of the reviewed solutions may suffer from practical
limitations, such as computational intensity, implementation complexity, and sensitivity
to data noise [39]. For instance, the M-estimator, L-estimator, R-estimator [40], and Least
Median of Squares (LMedS) [41] methods approached regression with outliers as a min-
imization problem, akin to the least square method that minimizes the sum of squared
error values. However, they employed nonlinear and intricate loss functions instead of the
square of the error. LMedS aimed to minimize the median of the error values, requiring a
numerical optimization algorithm to solve such nonlinear minimization problems. The 3D
Hough [42] method transforms spatial data (e.g., 3D points corresponding to a plane) from
the 3D data space into a parameter space (e.g., normal vector components and distance from
the origin). The most prevalent point in the parameter space is identified as its estimation,
demanding a significant amount of memory to represent the parameter space. As stated
before, deep learning methods, such as convolutional neural networks (CNNs) for 3D pose
estimation [43], have also gained popularity. However, they may face challenges such
as high computational resource requirements, the need for large training datasets, and
complexity in adapting to different scenarios.

In contrast to the aforementioned methods, the random sample consensus (RANSAC)
algorithm [44] simplifies the process into two steps: generating a hypothesis from random
samples and verifying it against the data. This approach eliminates the need for complex
optimization algorithms and large memory allocations. In that sense, RANSAC can ro-
bustly work in a wide range of applications and with several sources of data (e.g., TLS,
photogrammetry), even if these data include more than 50% of outliers [45]. Besides its
enhanced computational efficiency, RANSAC presents another important advantage in
its scalability concerning the size of the input PC and the number and size of the shapes
within the data.

This algorithm has already been validated in other applications, such as the automatic
extraction of building elements (e.g., roof planes and walls) [46,47], structural planes of
rocky slopes [48], water-level planes [49], etc. In these studies, the application of RANSAC
has demonstrated efficient performance, even in photogrammetric PCs, which are typically
noisier than those obtained through TLS or LiDAR.

This article introduces a novel methodology for monitoring the structural stability
of wave-dissipating cuboids of RMBs using UAV-based photogrammetric surveys and
RANSAC-based segmentation. To assess the practicality and performance of this approach,
we conduct a case study application on a detached breakwater that has experienced dam-
age due to a severe maritime storm. This case study aims to evaluate the effectiveness
of the proposed RANSAC-based approach in comparison to traditional methods such
as the Difference of Digital Surface Models (or DoD), particularly in the context of de-
tecting and quantifying changes like tilting in individual armor units. The methodology
enables the generation of quantitative insights into the extent of damage and the overall
structural integrity of the RMB, facilitating the conduction of a zonal stability analysis for
this breakwater.
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2. Materials and Methods

2.1. Study Site

Located at the mouth of the Douro River in Porto, Portugal, the Cabedelo do Douro
area (41◦08′N, 8◦40′W) has a detached breakwater designed for shore protection due to the
significant wave energy in this coastal zone. The RMB plays a crucial role in shielding the
Douro River estuary from the Atlantic waves. Its strategic location reinstates the protective
function of the sand spit, ensuring the safety of ships and boats navigating through the
area [50].

The RMB was constructed with a curved shape, spanning approximately 450 m in the
southeast to northwest direction, and its concavity faces the land (Figure 1). The relatively
low crest elevation, standing at +6.0 m above mean sea level (AMSL), minimizes its visual
impact on the landscape. The structure comprises a rockfill core, overlaid by secondary
layers of granite blocks, featuring filter functions and an outer protective layer. This
protective layer consists of high-density concrete grooved cuboids (Antifer type) weighing
8 kN, initially arranged in a regular placement pattern.

 

(a) (b) 

Figure 1. Location of the structure within the mouth of Douro River (a), and (b) detailed view of
the RMB.

2.2. Field Campaigns

Two flight campaigns were conducted on 12 September and 27 November 2018, with
the aim of capturing potential displacements of the armor units. While the interval between
the dates may appear short for detecting significant displacements, this period allows
for the analysis of the impact of Hurricane Leslie (13–14 October 2018) on the structure.
The hurricane, also known as Leslie storm in Spain and Portugal once in the extratropical
category, was the most powerful cyclone to reach the Iberian Peninsula since 1842 and one
of the longest-lasting Atlantic hurricanes over time. In this sense, the test field provides
an excellent environment for validating the methods and detecting potential movements
in CAUs.

The aerial images were captured using a UAV Phantom 4 Pro v.2 equipped with a
built-in camera (Table 1). All flights were planned using Pix4DCapture (Pix4D, Lausanne,
Switzerland) v.4.2.0 following a grid pattern along the breakwater and the adjacent coast,
capturing overlapping images (Table 2). The flight speed was set to an intermediate value
in the Pix4D app, which, after calculations, resulted in approximately 2.3 m/s.

88



Remote Sens. 2024, 16, 331

Table 1. Specifications of UAV Phantom 4 Pro quadcopter.

Weight 1388 g
Max Wind Speed Resistance 10 m/s
Max Flight Time Approx. 30 min
GNSS Positioning GPS/GLONASS
Hover Accuracy Range Vertical: 0.5 m (GPS positioning)

Horizontal: 1.5 m (GPS positioning)
Camera resolution 20 megapixels
Sensor size 1-inch CMOS

Table 2. Flight planning parameters.

Altitude for Mapping Mission 30 m
Frontlap 80%
Sidelap 60%
Ground Sample Distance <1 cm
Speed of Flight 2.3 m/s
Mission Area 2.33 ha

The required level of detail is commonly associated with the concept of ground
sampling distance (GSD), which represents the real-world size of an element represented
by a single pixel. The GSD can be calculated based on the focal length (f ), shooting distance
(d), and pixel size (p), as shown in Equation (1) [51]. According to that equation and the
camera specifications, the flight altitude was set at 30 m above the ground level to obtain
images with GSD values less than 1 cm.

GSD =
d
f
·p (1)

The field operations involving the marking and measurement of ground control points
(GCPs) and checkpoints (CPs) were carried out on the same day, immediately preceding
each flight. The points were marked on the ground using paint. For the georeferencing
of each point, three readings were recorded, and an average was calculated. This pro-
cess was conducted in real-time kinematic (RTK) mode using double-frequency GNSS
equipment with centimetric precision (Leica GNSS Smart Rover 1200). Differential correc-
tions were obtained from the Portuguese DGT’s ReNEP reference stations. Topologically,
the scene’s geometry is a linear acquisition, and such image distribution tends to pro-
duce the bending or “dome” effect in photogrammetry. To mitigate this effect, a total of
48 points, forming 7 groups/rows distributed along the central corridor, were selected and
measured as illustrated in Figure 2. Subsequently, 8 of these points were chosen as CPs to
validate accuracies.

Figure 2. Ground control. (a) GNSS receiver and distribution of the GCPs and checkpoints along
(b) rows and (c) the whole RMB.
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2.3. Flowchart of the Process

The methodological flow of this study, depicted in Figure 3, is based on the con-
ventional Structure-from-Motion and MultiView Stereo (SfM-MVS) photogrammetric
pipeline. Subsequently, RANSAC is employed for plane extraction, as detailed in the
following sections.

 
Figure 3. Workflow of the methodology implemented in this study.

2.4. Photogrammetric Reconstruction

SfM-MVS photogrammetry is recognized as a pivotal technique for reconstructing
3D scenes from a set of overlapping 2D images [52,53]. Image processing based on these
algorithms involves a series of steps, collectively referred to as the photogrammetric work-
flow, which facilitates the generation of dense PCs. The core of the photogrammetric
workflow lies in the SfM reconstruction (see Figure 3), commencing with (i) key feature
extraction, where distinctive (key) points are identified in the input images. These features
are extracted by the software, using techniques like Scale-Invariant Feature Transform
(SIFT) or Speeded-Up Robust Features (SURF) and serve as the foundation for subsequent
stages. Following feature extraction, (ii) a feature matching process is undertaken to es-
tablish correspondences between key points across different images. The matched points
(namely, tie points) extracted from the images enable the determination of the initial camera
positions and matched points in 3D space. These initial estimates are then refined using
(iii) bundle adjustment, which iteratively adjusts the camera poses to minimize inconsisten-
cies and enhance the overall accuracy of the reconstruction. By incorporating GCPs into
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bundle adjustment, external calibration sources are introduced, aligning the reconstruction
with real-world coordinates. This alignment compensates for distortions from factors
like lens aberrations and sensor imprecisions, thereby enhancing the overall reliability of
the reconstruction.

Another component of the workflow is (iv) Multi-View Stereo (MVS), where the
initial sparse PCs undergo further refinement and densification to generate a dense PC.
Multi-view stereo algorithms, such as Semi-Global Matching (SGM) or PatchMatch Stereo,
leverage the geometry and photometric information across multiple views to produce
detailed and high-density PCs representing the scene geometry.

To process the aerial datasets of the RMB, we implemented the photogrammetric
pipeline using Metashape software (Agisoft, St. Petersburg, Russia) v2.0.2 within a cloud-
based infrastructure configured with 64vCPU, @2.3 GHz, 488 GB RAM, 4x Nvidia Tesla
M60/32 GB. This setup ensures the computational power necessary for the efficient process-
ing of the aerial datasets. Table 3 outlines the key photogrammetric processing parameters
employed in Metashape.

Table 3. Photogrammetric processing parameters.

Image Alignment Method Adaptive camera model
Alignment Accuracy High (original image size)
Key Point Limit 50,000
Tie Point Limit 10,000
Depth Maps Quality High
Filtering Mode Aggressive

2.5. RANSAC-Based Segmentation

The RANSAC method is a robust algorithm commonly employed for model fitting
and segmentation in PCs, enabling their partitioning into simple shapes such as planes,
spheres, cylinders, cones, tori, etc. The algorithm operates by iteratively selecting a random
subset of points from the input data and fitting a model to these points. The model is then
evaluated by counting the number of inliers, which are points that align with the model
within a certain threshold [45].

The objective was to use this algorithm to extract planar patches representing the
upper faces of the Antifer cuboids of the RMB. Therefore, parameters corresponding to
the mathematical model and termination conditions were defined before the iteration
process, depending on the characteristics of the PCs. The regularity of the cuboids played
an important role, allowing the fine-tuning of parameters based on the results until a
certain level of correctness and completeness was achieved. These parameters include
the minimum number of points required to form a plane and other thresholds for inlier
selection, such as the maximum distance to the plane, the maximum angular deviation of
the plane’s normal, etc.

A consensus solution was obtained as the best result after k iterations, approximately
determined as a function of the desired probability, according to the following equation [54]:

k =
log(1 − z)

log(1 − wn)
(2)

where z represents the minimal probability of success in finding at least one proper set of
observations, w denotes the percentage probability of observations allowed to be incorrect,
and n is the minimal number of points necessary for computing the model.

Once the best model has been identified (i.e., the one with the largest number of
inliers), the corresponding consensus planes were extracted by selecting all the inliers
consistent with the models. This process was executed on the two photogrammetric PCs
using the RANSAC Shape Detection algorithm implemented in CloudCompare software
(GNU GPL), v.2,13, with the same parameters, resulting in two segmented PCs.
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2.6. RMB Change Analysis

The RANSAC algorithm functions as a surface extraction process, identifying planar
segments representing the upper faces of each CAU one by one. The results are then ex-
ported as separate entities, with the detected planes having associated attributes, including
coordinates defining their centers {Cx, Cy, Cz} and normal vectors {Nx, Ny, Nz}. However,
at this stage, there is no direct plane-to-plane correspondence between the cuboids of PC#1
and their counterparts in PC#2. To establish this correspondence, we employed the criterion
of proximity, utilizing a GIS tool called “spatial join”. This tool assigns each entity with all
attributes of the corresponding one in the layer being joined that is closest to it.

By comparing the resulting planes between the two datasets, it becomes possible to
quantify the angular deviations or tilting that occurred over time at the individual cuboid
level. These deviations were then analyzed in-depth to evaluate the structural changes or
shifting within the breakwater.

3. Results and Discussion

3.1. Photogrammetric Reconstruction

The workflow outlined in Section 2.3 was applied to the two datasets obtained in their
respective flight campaigns. All processing steps, as described in the preceding sections,
were executed in ETRS89 (European Terrestrial Reference System 1989) with rectangular
coordinates PTTM06 (Portugal Transverse Mercator 2006), EPSG: 3763. The orthometric
height is referenced to the geoid model for mainland Portugal, GeodPT08 [55].

Both image orientation and the subsequent densification of the PC were performed
within the automated pipeline of Metashape, selecting the “high” quality setting controls.
With this option, the software operates with the original size of the photos, allowing
for more detailed and accurate geometry, albeit at the cost of longer processing times.
Table 4 summarizes the key characteristics of the photogrammetric processing for both
time periods.

Although the flight planning files used in both flights were not exactly identical, the
number of images and flight altitude remained reasonably consistent. This consistency
is crucial when comparing data across multiple time periods, and whenever possible,
equivalent parameters should be maintained, ideally by using the same waypoint file. This
approach ensures that image resolutions, and consequently the resolutions of derived PCs,
remain relatively uniform. Furthermore, employing the same technique for generating
PCs and equivalent GCPs for georeferencing contributes to positional consistency in the
resulting photogrammetric products. When PC sources are different, preprocessing steps
are often required before applying any change detection algorithm [56]. In contrast, in this
case, intermediate co-registration processes can be skipped, making PC data from different
time periods directly comparable.

Table 4. Summary of photogrammetric processing results.

Flight #1 Flight #2

# of images 249 237
Mean flight height (m) 30.9 29.6

GSD (mm) 8.7 8.0
Key points 206,882 212,619

Dense cloud size (points) 23,119,079 23,645,284

Residuals from GCPs (mm)
X 3.8 6.5
Y 6.1 17.8
Z 7.6 9.7

Accuracy from CPs (mm)
X 7.2 6.8
Y 8.9 11.4
Z 6.6 14.3

DEM resolution (mm/pix) 34.9 32.5
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As a reference for further comparison with the proposed RANSAC-based method, we
also generated the DoD map (Figure 4) by deriving the differences between the two DEMs,
each with resolutions better than 3.5 cm/pix, as shown in Table 4. The DoD provides a
straightforward representation of surface elevation changes, making it rather easy to detect
and visualize areas experiencing severe alterations. However, even in these cases, obtaining
a precise interpretation of the number of shifted blocks is challenging using this approach.

Figure 4. Global DoD. The detail view illustrates the NW head of the RMB showing some accreted
and eroded areas that hint at the displacement of some CAUs.

3.2. RANSAC-Based Analysis
3.2.1. PC Segmentation

The PC segmentation process was implemented following the methodology described
above to fit planes to the PC data (Figure 5). While applying the RANSAC algorithm, the
largest planes in the original PC (Figure 5a), corresponding to the top concrete platform
of the RMB, were also detected, as illustrated by the pink, orange, and green patches in
Figure 5b. These planes were subsequently removed from the classified data, retaining only
the planes representing the CAUs.

Additional challenges associated with the use of RANSAC are depicted in Figure 5c,d.
In some instances, planes were fitted across the surfaces of multiple cuboids due to their
proximity or similar elevations. This phenomenon is predominantly observed in the
upper zone of the RMB, where the CAUs were initially placed level, and due to the
stability of these areas, they remain mostly level. Moreover, the narrow gaps between
neighboring armor units often go unsampled, consolidating several wave-dissipating
block poses into a singular representation, as highlighted by previous studies utilizing
alternative methodologies [57,58]. Conversely, there are cases wherein finding a suitable
plane representing specific cuboids proves challenging. This occurs predominantly at the
lower levels of the RMB, where the PC exhibits lower quality and increased noise due to
degraded texture of the cuboids in these areas and the presence of water, algae, etc.
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Figure 5. RANSAC segmentation: (a) RAW point cloud; (b,c) point cloud segmented into planes,
and (d) examples of how some parameter settings produce issues affecting the precision of the
segmentation. The colors of planes are assigned arbitrarily for differentiation purposes.

The process of determining appropriate fitting parameters has been carried out it-
eratively, involving trials with gradual refinement until reasonably satisfactory results
were achieved in terms of meaningful interpretation and comprehensiveness. The best
outcomes, based on these criteria, were obtained with a minimum support points per plane
of 200 and a maximum distance to the fitting plane of 0.005 m. The maximum allowable
deviation in the normal direction of the plane from the estimated normal was set to 5◦. The
overlooking probability value was set to 0.0001, aiming to work with a low probability of
missing outliers during the RANSAC plane fitting process.

To evaluate the accuracy of the RANSAC results, we chose a representative sampling
area in the southeast quadrant of the RMB, encompassing approximately 1037 CAUs, which
accounts for roughly a quarter of the total number of armor units. To prevent the inclusion
of flooded areas, cuboids situated at elevations lower than 0 m AMSL were excluded from
the sampling. As illustrated in Figure 6, a manual sampling of this zone was performed to
verify the correct classification of planes in both time periods.

Items classified as True Positives (TP) correspond to actual cuboids correctly modeled
by a plane. False Positives (FP) refer to detected planes that do not precisely correspond
to the top face of an individual wave-dissipating block. A significant portion of items
falling into this category consists of planes fitted to the lateral faces of some cuboids. False
Negatives represent actual CAUs that were not detected as planes by the RANSAC fitting,
so they were manually added to account for their number. A single plane fitting two (or
more) cuboids has been considered in terms of counting as two (or more) FNs. Lastly,
the concept of True Negative (TN) is somewhat more abstract and includes non-cuboids
correctly classified as such. As shown in Figure 6, this class includes manually added
elements like large rocks within inter-block spaces, which the algorithm correctly identified
as non-cuboids.

Table 5 shows the confusion matrix containing TP, TN, FP, and FN values. These
values are components of the confusion matrix which defines actual and predicted classes.
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Figure 6. Post-classification accuracy assessment.

Table 5. Confusion matrix.

Predicted Class

A
ct

u
a

l
cl

a
ss

True positives False negatives Positive
PC#1 932 PC#1 41 PC#1 973
PC#2 882 PC#2 68 PC#2 950

1814 109 1923
False positives True negatives Negative

PC#1 51 PC#1 12 PC#1 63
PC#2 66 PC#2 21 PC#2 87

117 33 150

Positive Negative
PC#1 983 PC#1 53
PC#2 948 PC#2 89

1931 142

Sensitivity, specificity, precision, negative predictive value, and accuracy can be easily
derived from the confusion matrix values, with the formulas mentioned in Table 6:

Table 6. Performance indicators based on the TP, FP, TN, and FN parameters [59].

Sensitivity = TP
TP+FN (3)

Speci f icity = TN
TN+FP (4)

Precision = TP
TP+FP (5)

Accuracy = TP+TN
N (6)

Sensitivity, representing the percentage of positive cases, is 94%, while specificity,
the percentage of negative cases, is 22% in our experiment. Precision achieved 94%, and
accuracy, indicating the percentage of correctly identified cases, is 89%.

While these results are promising, there is potential for improvement in the method,
especially in reducing FPs associated with detecting lateral faces on the CAUs. Moreover,
the count of FNs is relatively high, mainly due to planes fitted to multiple Antifer blocks
simultaneously. Conducting lower altitude flights with higher PC resolution could poten-
tially enhance the detection of discontinuities between cuboids and improve sensitivity to
detect outliers based on the distance to the planes.
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3.2.2. RMB Stability Assessment

The maximum consensus planes obtained by applying the RANSAC algorithm to
each of the dense PCs were cross-referenced through a proximity-based criterion. Through
this spatial join or alignment process, a total of 3697 pairs of corresponding planes were
identified across the entire surface of the breakwater.

While the correlation method used here is advantageous due to its inherent simplicity,
it is not without its drawbacks. The effectiveness of this method relies significantly on the
precision of the RANSAC algorithm in detecting and segmenting planes. Any inaccuracies
in the segmentation of either PC, such as FPs or FNs, directly impact the subsequent
plane matching phase. Essentially, an orphan plane, which exists in one dataset without a
counterpart in the other, may be matched with the nearest available plane. This could result
in semantic inconsistencies and distort subsequent analyses, although it does provide the
advantage of generating a comprehensive and continuous dataset. To address these issues,
the spatial join tool introduces a distance field within the outcome, representing the spatial
closeness of linked geometries. This enables the definition of a specific tolerance threshold
to prevent these inconsistencies.

The normal vectors of the fitted planes for each corresponding pair of block faces
can be acquired to estimate the tilt angle within a single block. Figure 7 illustrates the
overall inclination values obtained for each cuboid in the RMB, categorized based on
their magnitudes.

Figure 7. Overall inclination map based on the RANSAC-based method. The colors represent the
magnitude of rotations.

In the graphics presented in Figure 8, a more detailed breakdown of these inclinations,
considering both magnitude and inclination direction, is provided. Analysis of these
figures allows us to deduce that the most significant instabilities of the blocks occur in
the predominant southwest (SW) direction, aligning with the most exposed flank of the
breakwater. Some tilting of the cuboids is also noticeable in the northeast (NE) body of
the RMB, although the movements detected here are generally much smaller. In terms of
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magnitude, it is observed that 61.1% of the wave-dissipating blocks undergo rotations of
zero or less than 1◦, and 91.7% experience movements of less than 2◦ based on data derived
from the RANSAC method. However, it is worth noting that rotations of certain CAUs can,
in specific cases, exceed 50◦.

Figure 8. Overall tilt analysis of the identified cuboids: (a) magnitude and (b) direction of rotations.

In Figure 9, an illustrative region displaying relatively stable blocks within the south-
west (SW) body is presented. Evaluating displacements or rotations solely through a visual
examination of orthophotos from two different time periods poses a significant challenge.
Factors like variations in imaging texture due to cuboid shading, the presence of biofilm,
algae, etc., add complexity to the visual comparison of the orthophotos. Nonetheless,
careful observation may suggest some rotation in the lower-right cuboid of the image.

 

Figure 9. Comparison of DoD vs. RANSAC-based methods. Orthophotos corresponding to
(a) the first flight (pre-storm) and (b) the second flight (post-storm), (c) DSM subtraction (DoD), and
(d) tilting results measured with the RANSAC-based approach.

In the case of DoD, discerning any form of displacement or rotation is challenging,
especially for cuboids with significant displacements. Unlike cuboids with noticeable
movements, it is difficult to infer any changes in the elevations of rotated CAUs, as these
elevations may remain relatively stable despite the rotation. Some elevation fluctuations are
observable within inter-block spaces, potentially attributed to the movement of small stones
in the underlayer or artifacts in the DSMs caused by occluded regions. The DoD represents
elevation changes on a cell-by-cell basis, typically along a predefined direction, often the
Z-axis (vertical direction). While the simplicity of the DoD method is advantageous, it does
have limitations in intricate contexts, such as overhangs and nearly vertical slopes, where
vertical differences may not provide comprehensive insights. Similar findings have been
reported in previous studies [60]. Consequently, the precision of interpreting elevation
differences along the edges of each CAU is not entirely accurate when using a traditional
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2.5D method for change detection like DoD. As illustrated in Figure 9d, the RANSAC-based
plane-fitting method demonstrates increased sensitivity, showcasing its effectiveness even
in more stable regions of the RMB model.

Operating at the level of individual cuboids, the proposed methodology allows for
a more detailed analysis of the structure. The graphs in Figure 10 present both a global
analysis (Figure 10a) and a zonal breakdown of cuboid counts against their detected
inclinations. The zonal analysis divides the total count of CAUs into five principal zones
characterizing the RMB. The crest of the detached breakwater, referred to as RMB top,
spans its entire length and includes three rows of wave-dissipating blocks on each side of
the central platform. Due to the substantial number of blocks within this area, it exhibits a
relatively low occurrence of CAU inclinations, as illustrated in Figure 10b. In the breakwater
heads (Figure 10c,d), a limited number of units exhibit relatively high shifts, primarily
found in the northwest (NW) head. Furthermore, the southwest (SW) body zone shows
significantly higher CAU inclinations than the inner breakwater region (Figure 10e,f), which
is consistent with its exposure to wave action. Beyond this simplified examination, the
results underscore the potential of these methods to provide quantitative assessments of
the extent of damage.

 

Figure 10. Zonal stability analysis of breakwater. (a) Overall distribution of tracked Antifer cubes
and zonal tilt measurements in (b) RMB top, (c) NW head, (d) SE head, (e) SW body, and (f) NE body.

4. Conclusions and Future Remarks

The evaluation of structural changes and tilting in coastal structures, particularly
breakwaters, is crucial for ensuring their long-term stability. The integration of aerial
imagery, photogrammetric reconstruction, and RANSAC-based segmentation provides an
intriguing tool for the continuous monitoring and assessment of breakwater stability.
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While DoD remains a prevalent method for analyzing multi-temporal changes due to
its simplicity, it has limitations. DEMs inherently lack complete 3D spatial information and
may struggle to differentiate individual armor units, leading to reduced accuracy in change
detection. This limitation becomes particularly evident in scenarios involving vertical
shifts, rotations, or tilting of individual cuboids. The results of this study demonstrate that
the proposed approach based on RANSAC is more effective than DEM-based methods in
detecting even subtle tilting. This approach provides a detailed and localized understand-
ing of the structural integrity of the breakwater. By enhancing the ability to detect and
comprehend structural changes in the RMB over time, it contributes to improved coastal
infrastructure management and resilience.

Further improvement and validation of the methodology should focus on obtaining
unambiguous matches between CAUs in different epochs. It would also be desirable to re-
fine segmentation accuracy, possibly by integrating the RANSAC method with image-based
approaches, such as using detectors and feature extractors for block edges. Additionally,
exploring the adaptability of this approach to more intricate shapes of the armor units by
fitting other geometric primitives presents an interesting avenue for research.
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Abstract: The traditional method for extracting the heights of urban buildings involves utilizing
dense matching algorithms on stereo images to generate a digital surface model (DSM). However,
for urban buildings, the disparity discontinuity issue that troubles the dense matching algorithm
makes the elevations of high-rise buildings and the surrounding areas inaccurate. The occlusion
caused by trees in greenbelts makes it difficult to accurately extract the ground elevation around the
building. To tackle these problems, a method for building height extraction from Gaofen-7 (GF-7)
stereo images enhanced by contour matching is presented. Firstly, a contour matching algorithm
was proposed to extract accurate building roof elevation from GF-7 images. Secondly, a ground
filtering algorithm was employed on the DSM to generate a digital elevation model (DEM), and
ground elevation can be extracted from this DEM. The difference between the rooftop elevation
and the ground elevation represents the building height. The presented method was verified in
Yingde, Guangzhou, Guangdong Province, and Xi’an, Shaanxi Province. The experimental results
demonstrate that our proposed method outperforms existing methods in building height extraction
concerning accuracy.

Keywords: building height extraction; contour matching; Gaofen-7 satellite imagery; urban 3D
reconstruction

1. Introduction

A recent study on urban growth typology shows that there has been a large increase
in high-rise buildings in China [1]. The building height information holds significant
application value in various fields, such as urban local climate [2,3], building energy
consumption evaluation [4,5], urban pollution dispersion [6,7], urban carbon emissions
evaluation [8,9], earthquake perception [10], and urban 3D reconstruction [11]. Therefore,
building height extraction over large regions is essential for a comprehensive understanding
of an urban development.

Remote sensing technology is the most commonly used method for building height ex-
traction. Typically, building heights are extracted through three approaches: airborne light
detection and ranging (LiDAR), side-looking radar imagery, and high-resolution optical im-
agery. Airborne LiDAR allows high accuracy measurements [12]. These algorithms extract
buildings and their heights through point cloud classification algorithms [13,14] or utilize
building footprints from digital maps to reconstruct buildings in three dimensions [15].
However, airborne LiDAR has limitations in coverage and high costs. Algorithms utilizing
side-looking radar imagery often require building footprints obtained from digital maps or
other sources [16–19]. Nevertheless, with the side-looking geometry, radar images usually
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record signals from a mixture of different microwave scattering mechanisms, leading to
relatively high uncertainties of building height extraction [20].

In contrast, optical satellite imagery has high acquisition efficiency and offers abundant
spatial details, hence being widely applied in building height extraction. For single optical
satellite images, the shadow-based method is commonly employed to extract building
heights. This method utilizes the relationship between the sun, satellite, building rooftops,
and shadows in the imagery to extract building height [21–25]. However, the shadow-based
method faces difficulties in building height extraction when buildings are short or when
shadows are occluded by other objects [26].

For stereo images, a common method involves generating a DSM through dense
matching and projecting building footprints or rooftops onto the DSM to extract building
heights. Liu et al. [27] utilized semi-global matching (SGM) [28] to generate a DSM,
employed morphological filtering [29] on the DSM to generate DEM, and finally derived
the normalized DSM (nDSM) using the maximum values within the nDSM as the building
heights. Wang et al. [30] improved DEM generation with the more precise cloth simulation
filter (CSF) method [31]. To address the issue of missing rooftop elevations in a DSM
generated by the SGM algorithm, Zhang et al. [26] proposed a contour-constrained rooftop
matching algorithm for building height extraction.

With the rapid development of deep learning, deep learning methods have been
widely applied in dense matching [32–34], opening up new possibilities for building height
extraction. For instance, Chen et al. [35] utilized a DSM generated by deep learning
algorithms in building height extraction. End-to-end deep learning methods have also been
proposed for building height extraction in stereo images. Cao et al. [36] designed the M3net
network to extract buildings and their heights from multi-view, multi-spectral images. This
method does not rely on dense matching algorithms but requires known building height
data for training.

The GF-7 satellite is capable of capturing panchromatic stereo images spanning 20 km
in width with a resolution finer than 0.8 m. Its backward camera holds a tilt angle of
−5 degrees, while the forward camera tilts at 26 degrees, maintaining a favorable balance
between minimized occlusion and a wider stereo intersection angle. It offers valuable
data for building height extraction. However, limitations in resolution and the forward
camera tilt angle challenge the application of current dense matching algorithms, hindering
their accuracy in building height extraction. Relevant research indicates that many 3D
breaklines are modeled as more or less smooth transitions from ground level to building
level [37]. Figure 1a,b illustrates the impact of this problem on building height extraction.
This DSM is generated by the algorithm of He et al. [32] using GF-7 stereo images of Xi’an.
In Figure 1a, inaccuracies in the ground elevation around the building are evident. While
the actual ground elevation is 355 m, the DSM shows elevations higher than the reality.
Figure 1b shows inaccuracies in high-rise buildings. The actual building height is 350 m,
with a rooftop elevation of 702 m. There are substantial differences in shape and elevation
between the reconstructed buildings and their actual counterparts. Figure 1c illustrates
occlusion caused by trees in Guangzhou. Detailed data for both Xi’an and Guangzhou are
provided in Section 3.1. These challenges lead to difficulties for algorithms relying on a
DSM in accurately extracting the building heights.

To improve the building height estimation accuracy, we proposed a contour matching
enhanced building height extraction method. Instead of overlaying the building contours
on the DSM directly, we used a contour matching algorithm to obtain more accurate rooftop
elevation and ground filtering to generate a DEM from the DSM for more robust ground
elevation. Firstly, the given building contours, which can be in ground space or on a GF-7
backward image, are matched to GF-7 forward images with a contour matching, and the
rooftop elevation can be extracted using the geometric relationship between the matched
building rooftop. Secondly, the ground elevation around the building can be extracted from
the DEM, which filters the DSM generated from GF-7 stereo images. GF-7 multispectral
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images are utilized to improve the accuracy of ground filtering. Finally, the difference
between the rooftop elevation and the ground elevation represents the building height.

Figure 1. The problems faced in building heights extraction from the DSM. (a) Inaccuracies in the
ground elevation; (b) Inaccuracies in high-rise buildings; (c) Occlusion caused by trees. (Left: build-
ings in the GF-7 backward images, middle: corresponding DSM for the buildings, right: inaccurate
elevations in the DSM).

The main contributions of this paper are as follows:

• An object-level contour matching algorithm is proposed to extract the rooftop plane
elevation. Contrary to the pixel-level dense matching, which can generate smooth
transitions in the DSM, the proposed algorithm, taking the rooftop as an object, can
overcome the complex detail interruption of the rooftop.

• A ground filtering considering ground types is proposed for ground elevation ex-
traction. Most existing ground filtering algorithms, which are designed for LiDAR
cloud points with multi-echo, will not generate good DEM when applied directly to a
satellite-DSM-generated DSM. In our new algorithm, we use multi-spectral imagery
to assist in identifying non-ground points and inaccurate ground points in ground
filtering algorithms.
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Our paper is organized as follows: Section 2 of the paper extensively describes the
extraction of the building height and discusses scenarios where multiple elevations exist for
building rooftops. Section 3 of the paper demonstrates the effectiveness of this approach
through experiments. The proposed algorithm is discussed in Section 4. Finally, Section 5
concludes this paper.

2. Methodology

The algorithm workflow for building height extraction is illustrated in Figure 2. The
known data required in this algorithm include the GF-7 images, DSM generated from
GF-7 stereo images, building footprints in the geographic coordinate system, or building
rooftop contours in GF-7 backward images. The contour matching algorithm for building
footprints (CM-F) is described in Algorithm 1. The building rooftop contours in GF-7
backward images may have unclear edges or may encompass podium buildings and
building sides. Our algorithm utilizes the backward images to reduce the impact of unclear
edges. Furthermore, it is possible to use differences between the forward and backward
images to identify building sides and podium buildings. The contour matching algorithm
for building rooftop contours (CM-R) is described in Algorithm 2.

Algorithm 1. The contour matching algorithm for building footprint (CM-F)

• Input: GF-7 forward image I f wd, building footprint Bf , DSM.
• Output: Building height H.
• Estimate the elevation search range of rooftop [Zlb, Zub]. (Section 2.5)
• Extract contours in I f wd.(Section 2.1)
• for all Zi in [Zlb, Zub]

• Obtain candidate building rooftop contour in I f wd, denoted as Bi
f .

• Generate building contour template based on Bi
f . (Section 2.2)

• Calculate the weighted contour matching degree WCMi. (Section 2.3)
• Obtain building rooftop elevation Eroo f based on WCMi. (Section 2.4)
• Extract the ground elevation around the building Eground. (Section 2.5)
• Calculate the building height H.

Algorithm 2. The contour matching algorithm for building rooftop contour (CM-R)

• Input: Stereo pair images Ibwd and I f wd, building rooftop contour Br, DSM.
• Output: Building height H.
• Generate epipolar images EIbwd and EI f wd from Ibwd and I f wd.
• Extract contours from EIbwd and EI f wd. (Section 2.1)
• Estimate the disparity search range of rooftop in the epipolar image [Dislb, Disub].

(Section 2.5)
• Generate building contour template based on Br. (Section 2.2)
• Calculate the contour matching degree on EIbwd, denoted as CMbwd. (Section 2.3) And

obtain the set of matched building edges Sbwd. (Section 2.6)
• Correct the building contour template. (Section 2.3)
• for all Disi in [Dislb, Disub]
• Calculate the weighted contour matching degree, denoted as WCMi. (Section 2.3)
• Obtain the building rooftop elevation Eroo f based on WCMi. (Section 2.4)
• Calculate the contour matching degree in EI f wd, denoted as CM f wd. And obtain the set of

matched building edges S f wd. (Section 2.6)
• Input S f wd, Sbwd, CMbwd, CM f wd into Algorithm 3 to identify the building side and

podium building.
• Extract the ground elevation around the building Eground. (Section 2.5)
• Calculate the building height H.
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Figure 2. Building height extraction workflow.

2.1. Image Contour Extraction

Building contour consists of a collection of edges formed by continuous curves or
lines, which match with the edges extracted from the image in contour match. The Canny
edge detection algorithm [38] is utilized to extract edges in the image as contour points.
The gradient direction of the image is calculated as the contour point direction, as shown in
Equation (1):

α = tan−1(Gy /Gx

)
(1)

where Gx and Gy represent the gradients in the horizontal and vertical directions, respec-
tively. In the arctan function, the signs of Gx and Gy are used to ensure that the gradient
direction ranges from [−π, π].

This study extends the range of contour point direction values from the [0, π] as in
conventional methods [39] to [−π, π]. Due to the parapet walls at the rooftop, there are
two adjacent indistinguishable edges in the image. By expanding the range of gradient
direction, these two edges can be distinguished based on their positive or negative gradient
directions. An example is provided in Figure 3.
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Figure 3. Edge detection results and contour point directions (a) original image; (b) edge detection
results; (c) contour point direction in conventional method; (d) contour point direction in our method.

2.2. Building Contour Template Construction

Building contour templates are constructed to describe building rooftops. Figure 4
illustrates the process of building contour template construction. The vector polygon of
the building is simplified by the Douglas algorithm [40]. Then, we created buffer zones for
the edges of the vector polygon. The pixels within the buffer zone are considered potential
contour points that constitute building contour templates. Their weights are calculated by
the distance to the building edges, as shown in Equation (2).

dw =

{
1 − |d|/Dmax, |d| < Dmax

0, |d| ≥ Dmax
(2)

Here, Dmax represents the buffer distance; d denotes the distance from the point to the
edge in pixels, where d is negative when the point is inside the building contour.

The potential contour point direction is perpendicular to the corresponding edges
of the polygon. As buildings in remote sensing images are generally brighter than other
features [41], we set the potential contour point direction points inside the polygon. For
any point Pti on the edge, draw a perpendicular line to the edge. The potential contour
points that the perpendicular line passes through are grouped as a set, denoted by Gi. In
contour matching, the matched contour of Pti is found within the range of Gi.
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Figure 4. Building contour template construction. (The colors in building contour template represent
the weight of the contour point).

2.3. Contour Matching Degree Calculation and Building Contour Template Correction

The contour matching degree represents the similarity between the building rooftop
and the contours within the image. The contour matching degree is calculated as follows:
The building contour template is moved to the location of the candidate building rooftop
in the image, and each potential contour point can correspond to an image pixel. When a
corresponding image pixel is a contour point extracted from the image, the angle between
the potential contour point direction and contour point direction is calculated, denoted as
θ. Then, the weight of the contour point in the image is calculated using Equation (3).

dwmp =

⎧⎨
⎩

dw
dw × p

0

θ ≤ 15◦
θ ≥ 165◦

15◦ < θ < 165◦ or without corresponding contour point
(3)

In this equation, p represents a penalty coefficient. In our study, p is assigned a value
of 0.5 experientially.

In set Gi, the contour point with the maximum weight is matched with the Pti, denoted
as Ptmax

i . We denote this maximum weight as max
Gi

(
dwmp

)
, and the contour matching degree

can be calculated using Equation (4). When the candidate building rooftop is changed, the
building rooftop contour in the image will move along the epipolar line. Therefore, the
building edges perpendicular to the epipolar line play an important role in roof elevation
extraction. Consequently, by increasing the weights of contour points in these edges, more
accurate rooftop elevations can be obtained, and the weighted contour matching degree is
computed using Equation (5).

CM =

∑
numg
i=1 (max

Gi

(
dwmp

))
C

(4)
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WCM =

∑
numg
i=1 (max

Gi

(
dwmp

)× f (Gi))

C
(5)

In this context, numg represents the total number of sets Gi, and C denotes the cir-
cumference of the building contour in pixels. The value of the weight function f (Gi) is
determined by the edge where Pti is located. When the angle between the edge and the
epipolar line exceeds 60 degrees, f (Gi) = 2; otherwise, f (Gi) = 1.

In practical application, the input building rooftop contours extracted by the building
extraction algorithm may have unclear edges. Building contour template correction can
improve the accuracy of the algorithm in this case. By computing the contour matching
degree between the building rooftop contour and the GF-7 backward image, the matched
contour points in the backward image are found and used to recalculate the weights of
the potential contour point. The corrected weights of the potential contour point are
calculated as follows: for any set Gi, if max

Gi

(
dwmp

)
> 0, then the distance d′ between

potential contour points within Gi and Ptmax
i is calculated. Subsequently, d′ is used in

Equation (2) to recalculate dw. If max
Gi

(
dwmp

)
= 0, the dw values of potential contour points

in Gi are set to 0. The correction results are illustrated in Figure 4.

2.4. Building Rooftop Elevation Extraction

The principle of building rooftop elevation extraction is illustrated in Figure 5. Accord-
ing to known building contour, multiple candidate building rooftops can be obtained within
the elevation search range of rooftop. These candidate rooftops are projected onto the GF-7
forward image using the rational function model and verified by contour matching.

Search Range

 Search Range of 
Rooftop Elevation

Backward Image Forward Image

Backward Image Projective Center Forward Image Projective Center

Building Footprint

Building Rooftop Contour

Candidate  Rooftop

Figure 5. The principle of building rooftop elevation extraction.

The conventional contour matching method [39] sets a threshold for the contour
matching degree and obtains the matched building contour based on the maximum value
of the contour matching degree. In rooftop elevation extraction, multiple local maximum
values of contour matching degree are caused by similar buildings or unclear building
edges. The local maximum values lead to mismatches and significant errors. Therefore, our
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study utilizes elevation information from the DSM to filter out the local maximum values
with significant errors.

The curve of contour matching degree versus candidate rooftop elevation is acquired
at first. The elevation search range of the rooftop can be estimated using Equation (6).

[Zlb, Zub] =
[
Z′

min, Z′
min + BHmax

]
(6)

where BHmax is set to be slightly greater than the estimated maximum building height, and
Z′

min is the minimum elevation within the building buffer zone.
For building footprints in geographic coordinates, the variation between adjacent

candidate rooftop elevations is set based on image resolution and stereo intersection angle.
For each Zi within the range [Zlb, Zub], the candidate building rooftop is projected onto the
GF-7 forward image, and WCMi can be calculated using the method mentioned earlier.
For the building rooftop contours in the backward image, the elevation search range of
rooftop is transformed to the disparity search range of rooftop, designated as [Dislb, Disub].
For each integer Disi within the range [Dislb, Disub], the WCMi and rooftop elevation is
calculated, allowing us to acquire the curve of WCMi versus rooftop elevation.

The minimum elevation Z′
min and maximum elevation Z′

max within the building
buffer zone in the DSM are utilized to filter the local maximum value of contour matching
degree. The local maximum values of contour matching degree are sorted in descending
order, denoted as WCM1

LM, WCM2
LM, . . . WCMj

LM . . ., and their corresponding rooftop

elevations are denoted as Z1
LM, Z2

LM, . . . Zj
LM . . .. If condition CMW1

LM × 0.7 > CMW2
LM

is satisfied, it means the contour matching degree has a significant maximum value, and
Z1

LM is the rooftop elevation. In the absence of a significant maximum value, two situations

need to be distinguished. If any local maximum value satisfies CMWj
LM > CMW1

LM × 0.7,

and the rooftop elevation satisfies
∣∣∣Zj

LM − Z′
max

∣∣∣ < 5 m, then Zj
LM is considered as the

rooftop elevation. If condition Z′
max − Z′

min < 3 m is satisfied, it is considered that the
corresponding building rooftop does not exist in the GF-7 forward image. This indicates
that the building is occluded in the forward image or that the known building differs
from reality.

2.5. Ground Elevation Extraction around the Building

Our proposed method utilizes the results of GF-7 multispectral image classification
to enhance the accuracy of the DEM generated by the ground filtering algorithm. GF-7
multispectral images are employed to compute the normalized difference vegetation index
(NDVI) and the normalized difference water index (NDWI), allowing for the classification
of vegetation and water from the image. By projecting input buildings into the DSM, the
building can be classified from the DSM. The non-ground points such as vegetation and
buildings are removed from the DSM. Additionally, large water bodies lacking texture that
tend to cause mismatches are also removed from the DSM.

Subsequently, inaccurate ground points around buildings and trees are removed. In
Figure 6a, profile comparisons of DSMs from LiDAR and stereo images are presented for a
building in Guangzhou. The red lines represent the DSM from stereo images, and the black
represents the DSM from LiDAR. In the ground pointed by the arrow, the DSM from the
stereo image is higher than the DSM from LiDAR. These points should be removed from
the ground filter. Figure 6b illustrates the method for identifying inaccurate ground points.
For each window near the building, we calculated the elevation change along four lines. If
h1 > 1.5 × h2, the points on this line are considered as inaccurate points. Figure 6c shows
a partial multispectral image of Guangzhou, Figure 6d shows the removed points in this
image. This process ensures that the elevation of the occluded ground is estimated from
nearby ground.
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Figure 6. Ground filtering algorithm. (a) Profile comparisons of DSMs from LiDAR and the stereo
image. (b) The way of searching inaccurate ground points. (c) Multispectral image. (d) Inaccurate
points. (e) Input DSM. (f) Generated DEM.
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Finally, the progressive TIN densification algorithm [42] is employed to filter the
ground points in the DSM. Figure 6e is the input DSM, and Figure 6f is the generated DEM.
The mean elevation around the buildings in the DEM is used as the ground elevation,
denoted as Eground.

2.6. Segmentation of Building Rooftop Contours Containing Multiple Elevations

The material of the podium building and building side is similar to that of the main
building rooftop, making it difficult to distinguish them in remote sensing images. Con-
sequently, some building rooftop contours in input data encompass the podium building
and building side. To address this problem, differences in building contour between for-
ward and backward images are utilized to segment these building rooftop contours. The
algorithm process is as follows:

Algorithm 3. Building rooftop contour segmentation process

• Input: Epipolar images EIbwd and EI f wd, building rooftop contour Br, matched building
edge sets Sbwd and S f wd, contour matching degrees CM f wd and CMbwd.

• Output: Building rooftop contours Bm, Bp.
• Identify building contours that need to be segmented based on Sbwd, S f wd, CM f wd, CMbwd.
• Extract samples of the main building rooftop and samples of the podium building rooftop

using Sbwd and S f wd.
• Utilize clustering algorithms to classify pixels in EI f wd and obtain the main building rooftop

Bm using the extracted samples.
• Podium building rooftop Bp = Br − Bm.
• Apply Algorithm 2 to Bp. Classify Bp as podium building or building side.

In contour matching, a matched building edge has a long enough parallel line in the
image. We proposed a method to identify matched edges. We divide the building contour
template into multiple subsets based on the edges in the building rooftop contours. For
each subset, the total number of Gi is denoted as numtotal

e . For each Gi within the subset,
the distance between Ptmax

i and Pti is calculated. To distinguish points inside the building
contour from points outside the building contour, the distance of the point inside the
building contour is set to a negative value. Considering that the lines in the image have
dimensions, the distance intervals [−Dmax,−Dmax + k], [−Dmax + 1, −Dmax + k + 1], . . .,
[Dmax − k, Dmax] are used to represent the parallel lines. The k represents the width of the
parallel line and is set to 2 pixels. If the distance between Ptmax

i and Pti belongs to any
internal, Ptmax

i belongs to this parallel line. The parallel line with the most contour points
is the longest, denoting this contour point number as nume. When nume

numtotal
e

> 0.5, the edge
is considered as a matched edge. Set Sbwd to represent matched edges set in the backward
image, and S f wd to represent matched edges set in the forward image. Figure 7 shows two
building rooftop contours and the corresponding Sbwd, S f wd.

As shown in Figure 7, the matched edges are different in the forward and backward
images. Due to the tilt angles, the building sides in the backward image are occluded in the
forward images. Additionally, the relative location between the podium building and the
main building has changed. The differences between Sbwd and S f wd provide samples for
building contour segmentation. Define the set of edges Sme = Sbwd ∩ S f wd, where the edges
in Sme belong to the main building rooftop. Define the set of edges Spe = Sbwd − S f wd,
where the edges in Spe belong to the podium building rooftop. By buffering Sme and
intersecting it with the building contours, the samples of the main building are obtained.
Similarly, applying these operations to Spe provides samples of the podium building. In
Figure 8a, the red edges represent Sme, and the blue edges represent Spe. Meanwhile,
Figure 8b shows samples of the main building rooftop, and Figure 8c shows samples of the
podium building.
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Figure 7. The building rooftop contours with multiple elevations and their matched edges. The
red edges in the image indicate matched edges. (a) The building rooftop contour encompassing
the podium building. (c) The building rooftop contour encompassing the building side. (b,d) The
contour matching results in the forward image.

Figure 8. Building contour segmentation process. (a) The Sme and Spe; (b) Samples of the main
building rooftop; (c) Samples of the podium building; (d) Initial main building rooftop; (e) Main
building rooftop; (f) Result of segmentation.

The pixels within the building rooftop in the forward images are classified into main
building pixels and podium building pixels based on their grayscale. The K-means cluster-
ing algorithm is employed to group these pixels into eight clusters. For each cluster, the
numbers of pixels in main building samples and podium building samples are counted,
separately. If the number of pixels in the main building samples exceeds those within the
podium building samples, this cluster is considered as a part of the main building rooftop.
The resulting main building rooftop from this process is depicted in Figure 8d. Due to the
limitations of panchromatic images, pixels with the same grayscale as the main building
rooftop are misclassified. To address this issue, the parts overlapping with the samples of
the main building are preserved, illustrated in Figure 8e. Thereafter, the longest edge in
the original building contour is found to assist in gap filling. For each pixel outside the
main building rooftop, parallel and perpendicular lines of the longest edge are drawn. If
both ends of the parallel or perpendicular lines intersect with the main building rooftop,
the pixel is considered part of the main building rooftop. We denote the main building
rooftop as Bm, while the remaining building rooftop is a podium building, denoted as Bp.
Figure 8f shows the classification result, where the red area represents Bm, and the blue
area represents Bp.

For podium building rooftop Bp, the contour matching algorithm is executed. Bp is
identified as a podium building when a building rooftop is matched in the forward image.
Otherwise, it is considered as occluded building sides. Following Zhang’s algorithm [26]
as a reference, this paper conducted building contour segmentation experiments in Xi’an.
Figure 9 shows the partial results of the building contour segmentation.
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Figure 9. Building contour segmentation results. (a) The known building contours, where the red
edges indicate matched edges. (b) The contour matching results, where the red edges indicate Sme.
(c) The samples of the main building rooftop. (d) The main building rooftop extracted by our method.
(e) The contour matching results after segmentation.

3. Results

3.1. Data Description and Experimental Area

This paper selected three regions—Yingde and Guangzhou in Guangdong Province,
and Xi’an in Shaanxi Province—as experimental areas for the algorithm. Their basic details
are as follows:

As for the Yingde experimental area, the GF-7 image was captured on 11 October 2020.
The center coordinates of the backward image were 113.409◦E and 24.326◦N, with solar
zenith and azimuth angles of 33.466◦ and 158.717◦, respectively. A total of 841 building
footprints within this experimental area were acquired. The images and the building
footprints of the Yingde experimental area are shown in Figure 10. The DSM used in
the experiments was computed using He et al.’s algorithm [32]. LiDAR data from the
experimental area were collected as the reference for building heights. Figure 11 displays
the DSM obtained from the LiDAR data and the DSM generated from the stereo images.

In the Guangzhou experimental area, the GF-7 image was captured on 14 March 2020.
The center coordinates of the backward image were 113.329◦E and 23.137◦N, with solar
zenith and azimuth angles of 32.013◦ and 140.211◦, respectively, as shown in Figure 12. A
total of 89,093 building rooftop contours were extracted from the backward image by a
building extraction algorithm. The DSM utilized in the experiments was derived using He
et al.’s algorithm [32]. LiDAR data from this region served as the reference for building
heights. Figure 13 illustrates a portion of the extracted building rooftop contours, the DSM
obtained from LiDAR data, and the DSM generated from stereo images.
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Figure 10. The images and building footprints of the Yingde experimental area. (a) The backward
image, (b) the forward image, and (c) the building footprints.

Figure 11. The DSM of Yingde experimental area. (a) The DSM obtained from the LiDAR data, with
a spatial resolution of 1 m; (b) the DSM generated from the GF-7 stereo images.

115



Remote Sens. 2024, 16, 1556

Figure 12. The GF-7 image of the Guangzhou experimental area. (a) The backward image; (b) the
forward image.

Figure 13. A portion of building rooftop contours and the DSM in the Guangzhou experimental area.
(a) The DSM obtained from the LiDAR data, with a spatial resolution of 1 m; (b) the DSM generated
from the GF-7 stereo images; (c) the building rooftop contours.

In the Xi’an experimental area, we utilized the dataset provided by Zhang et al. [26] The
GF-7 image was captured on 17 February 2020, with the center coordinates of the backward
image at 108.951◦E and 34.255◦N, having solar zenith and azimuth angles of 50.029◦ and
154.657◦, respectively. The Xi’an experimental area encompasses the tallest building in
Xi’an (350 m) and its surrounding areas. A total of 34 building rooftop contours were
manually marked in the backward image, and reference building heights were obtained
through manual marking of corresponding points. The DSM used in the experiments was
calculated using He et al.’s algorithm [32]. Figure 14 illustrates the images, building rooftop
contours, and the DSM generated from stereo images.
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Figure 14. The Xi’an experimental area. (a) The backward image and building rooftop contours;
(b) the forward image; (c) the DSM generated from the GF-7 stereo images.

In the Yingde and Guangzhou experimental areas, the reference building heights were
calculated according to the vertical distance of ground around the building to the rooftop
surface using LiDAR data. However, the production times of the LiDAR data and the GF-7
image were different, which led to different buildings in these data. To ensure the accuracy
of the reference building heights in precision assessment, hundreds of buildings were
randomly selected and manually removed the building that had discrepancies between the
GF-7 images and the LiDAR data. In the Yingde and Guangzhou experimental areas, 343
and 506 buildings were obtained for precision assessment, respectively.

The buildings in the three experimental areas exhibit distinct characteristics that can
validate our algorithm in different cases. Figure 15 illustrates the distribution of reference
building heights: most buildings in Yingde are below 20 m, while in Guangzhou, the
majority of building heights fall within the range of 20 to 100 m, and in Xi’an, half of the
buildings are over 100 m. Additionally, the challenges related to contour matching differ
across these study areas. In Xi’an, accurate building contours marked by humans are easy
to match. Conversely, in Yingde, the building rooftops of adjacent footprints may overlap
in images, as depicted in Figure 16a. In Guangzhou, the contour matching suffers from
unclear edges, as depicted in Figure 16b.

(a) (b) (c)

Number of buildings:343 Number of buildings:506 Number of buildings:34

Figure 15. The distribution of reference building height. (a) Yingde; (b) Guangzhou; (c) Xi’an.
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Figure 16. The factors influencing contour matching in the Yingde and Guangzhou experimental areas.

3.2. Evaluation Metrics

This paper evaluates the algorithm’s accuracy by comparing the extracted building
heights with the reference building heights. Mean error (ME), mean absolute error (MAE),
and root mean square error (RMSE) were chosen as the evaluation metrics in this paper.
They are calculated as follows:

ME =
1
N

N

∑
i=1

(
hi − hi

)
(7)

MAE =
1
N

N

∑
i=1

∣∣∣hi − hi

∣∣∣ (8)

RMSE =

√√√√ 1
N

N

∑
i=1

(
hi − hi

)2
(9)

In the equations, hi represents the extracted building height, while hi denotes the
reference building height.

Due to the building samples used in the experiments, significance testing is conducted
to assess whether differences in experiment results are statistically meaningful or could
have occurred by chance alone. The t-test was employed to compare the MAEs of two
experimental groups. The null hypothesis and alternative hypothesis of the t-test are
detailed in the notes following the table.

3.3. Performance of Building Height Extraction

The evaluation result is shown in Figure 17. The MAE and RMSE for each group
are calculated and presented in Table 1 below. The right-tailed, two-sample t-test was
conducted to compare the MAEs. The results of the t-test are summarized in Table 2.
Additionally, Figure 18 displays the 3D reconstruction models of buildings. According to
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the statistical results and significance testing, our algorithm performed worst in Guangzhou
and best in Xi’an.

(a)Yingde (b)Guangzhou (c)Xi'an
Figure 17. The building height extraction results of our algorithm.

Table 1. Accuracy statistics of our method.

MAE (m) RMSE (m)

Yingde 1.96 2.68
Guangzhou 3.76 7.60

Xi’an 1.55 1.93

Table 2. Results of right-tailed, two-sample t-test for the proposed algorithm.

Test Case t p

Guangzhou Yingde 3.5637 0.0002
Guangzhou Xi’an 4.2637 0.0000

Yingde Xi’an 1.8538 0.0348
Note: 1. For the first row, the null hypothesis states that there is no difference in MAE between the two groups,
while the alternative hypothesis suggests that the MAE of the below 20 m group is greater than the MAE of the
20–100 m group. 2. The significance level for all tests was set at 5%.

Figure 18. Three-dimensional reconstruction models of buildings.
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Our algorithm was implemented in C++ and ran on a desktop computer with an Intel
Core i5-6500 processor clocked at 3.20 GHz, featuring four cores and four threads. The
algorithm utilized OpenMP for parallelization to leverage multi-core processing capabilities.
In Guangzhou’s experimental areas, contour matching processed 89,093 buildings in a
total time of 11,191 s, while ground filtering processed the DSM with dimensions of
34,613 × 38,824 in a total time of 14,041 s.

3.4. Comparative Experiment

The building height extraction methods based on the GF-7 satellite image chosen for
the comparison experiments are as follows:

(1) The first comparison calculates building heights using the maximum and minimum
elevations within the DSM within the building buffer zone [35], hereafter referred to
as the ‘DSM method’.

(2) In the second comparison, the ground elevation around the building is extracted by
our algorithm, and the building rooftop elevation is extracted using the maximum
elevations within DSM elevations within the building buffer zone, hereafter referred
to as the ‘DSM + DEM method’.

(3) Wang et al.’s method [30] was chosen as the third comparison, hereafter referred to as
the ‘nDSM method’.

(4) Zhang et al.’s method [26] was compared with ours, hereafter referred to as ‘Zhang’s
method’.

Table 3 summarizes the accuracy of the comparative experiment. As Zhang’s algorithm
cannot use building footprints as input data, we cite their experimental results in Xi’an [26]
for comparison with ours. The right-tailed, two-sample t-test was conducted to compare
the MAE of these methods. The results are summarized in Table 4. ME was used to reflect
the distribution of errors in this comparative experiment, and the one-sample t-test was
conducted to test whether errors followed a normal distribution with a mean of zero. Table 5
shows the result of the one-sample t-test. Figure 19 showcases the distribution of errors in
building height extraction. The statistical analysis demonstrated that the building height
extraction accuracy achieved by our algorithm outperformed comparative methods across
all three study areas. The significance testing in Table 5 shows that the error distribution of
the DSM method and DSM + DEM method did not have a mean equal to zero. This means
that the building height extracted by these methods was higher than it actually was.

Table 3. Accuracy statistics of building height extraction in the comparative experiment.

Yingde Guangzhou Xi’an

ME (m)
MAE
(m)

RMSE (m) ME (m) MAE (m) RMSE (m) ME (m)
MAE
(m)

RMSE (m)

DSM 4.48 4.84 7.52 6.19 6.69 10.92 6.74 7.00 8.56
DSM + DEM 4.01 4.35 6.70 4.84 5.40 9.78 3.85 4.85 5.24

nDSM 3.99 4.33 5.47 0.35 4.32 8.65 0.86 4.40 6.17
Zhang - - - - - - - 1.69 2.23
Ours −0.32 1.96 2.68 0.22 3.76 7.60 −0.15 1.55 1.93

Table 4. Results of right-tailed, two-sample t-test for the comparative experiment.

Test Case t p

Yingde

DSM Ours 8.8137 0.0000
DSM + DEM Ours 8.1771 0.0000

nDSM Ours 11.4755 0.0000
DSM DSM + DEM 1.1702 0.1212
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Table 4. Cont.

Test Case t p

Guangzhou

DSM Ours 7.2432 0.0000
DSM + DEM Ours 4.8014 0.0000

nDSM Ours 2.6618 0.0039
DSM DSM + DEM 2.4266 0.0077

Xi’an

DSM Ours 6.1901 0.0000
DSM + DEM Ours 5.1362 0.0000

nDSM Ours 3.6606 0.0004
DSM DSM + DEM 2.6572 0.0052

Note: 1. For the first row, the null hypothesis states that there is no difference in MAE between the two groups,
while the alternative hypothesis suggests that the MAE of the DSM method is greater than the MAE of our method.
2. The significance level for all tests was set at 5%.

Table 5. Results of one-sample t-test for error distributions.

Test Case t p

Yingde

DSM 13.7416 0.0000
DSM + DEM 13.8075 0.0000

nDSM 19.7254 0.0000
Ours −2.2283 0.0265

Guangzhou

DSM 15.4601 0.0000
DSM + DEM 12.7919 0.0000

nDSM 0.9139 0.3612
Ours 0.6516 0.5150

Xi’an

DSM 7.3354 0.0000
DSM + DEM 6.2139 0.0000

nDSM 0.8068 0.4255
Ours −0.4548 0.6515

Note: 1. For the first row, the null hypothesis states that the errors of the DSM method come from a normal
distribution with a mean equal to zero and unknown variance, while the alternative hypothesis suggests that the
error distribution does not have a mean equal to zero. 2. The significance level for all tests was set at 5%.

(a)Yingde

(b)Guangzhou
Figure 19. Cont.
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(c)Xi'an

Figure 19. Distribution of building height extraction errors in comparative experiments. (The contour
matching algorithm for the building footprint is referred to as the ‘CM-F’; the contour matching
algorithm for building rooftop contour is referred to as the ‘CM-R’).

To make a comparison with Zhang’s method, the t-test for a hypothesized mean was
conducted. The null hypothesis states that the absolute errors of our method came from
a distribution with a mean of 1.69 m. The t-test yielded a t-value of −0.6928 with a corre-
sponding p-value of 0.4933. This means that Zhang’s method demonstrated comparable
accuracy to our algorithm in the Xi’an experimental area. However, our method can utilize
building footprints as input data, making it more versatile in its application.

3.5. Ablation Experiment

To improve the performance of contour matching, this paper proposes two improve-
ments: contour template correction based on the edges extracted on a backward image and
local maximum values filtering by the DSM. The effect of improvements was examined in
the ablation experiment. The following algorithms were used in ablation experiments:

(1) Conventional contour matching algorithm [39], hereafter referred to as the ‘CM-C’.
(2) Contour matching algorithm with contour template correction based on the edges

extracted on backward image, hereafter referred to as the ‘CM-I’.
(3) Contour matching algorithm with local maximum values filtering by the DSM, here-

after referred to as the ‘CM-D’.

In Yingde, the contour matching algorithm for the building footprint only includes
the module that local maximum values filtering. Therefore, CM-C was performed for the
ablation experiment. In Guangzhou, all methods were used for the ablation experiment.
In Xi’an, due to the high precision of the building rooftop, there was no mismatch in the
conventional contour matching method. Therefore, no ablation experiment was conducted.

According to the three-sigma rule of thumb, the thresholds for identifying mismatches
were computed using the errors of our method. Table 6 presents the thresholds and the
counts of matched buildings and mismatch. Figure 20 illustrates the distribution of absolute
error in building heights. The experimental results demonstrate that our improvement can
effectively reduce mismatches.

Table 6. Accuracy statistics of building height extraction in the ablation experiment.

Yingde (343 Buildings) Guangzhou (506 Buildings)

3σ Matched Buildings (AE < 3σ) Mismatch 3σ Matched Buildings (AE < 3σ) Mismatch

CM-C

6.70

242 101

7.93

368 138
CM-I - - 425 81
CM-D - - 467 39
CM-F 336 7 - -
CM-R - - 476 30

Note: The contour matching algorithm for the building footprint is referred to as the ‘CM-F’. The contour matching
algorithm for the building rooftop contour is referred to as the ‘CM-R’.
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CM-C CM-F
(a)Yingde

CM-C CM-I

CM-D CM-R
(b)Guangzhou
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Figure 20. Distribution of building height extraction errors in the ablation experiment.

4. Discussion

4.1. Buildings of Different Heights

The building height extraction methods were compared on the buildings of differ-
ent heights. The buildings were divided into three groups according to the reference
height: below 20 m, between 20 and 100 m, and taller than 100 m. Table 7 provides a
summary of the accuracy metrics. In Yingde, conventional methods exhibited poorer
performance on buildings between 20 and 100 m compared to those below 20 m. Similarly,
they fared worse on buildings taller than 100 m compared to those between 20 and 100 m
in Guangzhou. This can be attributed to the disparity discontinuity issue encountered by
dense matching algorithms.

In contrast, our proposed algorithm demonstrated superior performance on high-
rise buildings relative to low-rise buildings. This was because low-rise buildings are
more susceptible to occlusion, whereas high-rise buildings tend to have larger and more
distinct features. As shown in Figure 21, there were instances of building loss in the DSM
from stereo images for high-rise buildings exceeding 300 m. Nevertheless, our proposed
algorithm is capable of matching building rooftops in such cases.
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Table 7. Accuracy statistics of buildings with different heights.

Number MAE (m) RMSE (m)

Yingde

<20 m 287

ours 2.03 2.63
DSM 4.60 7.35

DSM + DEM 4.33 6.74
nDSM 4.27 5.49

20–100 m 56

ours 1.63 2.94
DSM 6.08 8.31

DSM + DEM 4.49 6.49
nDSM 4.62 5.40

≥100 m 0 - -

Guangzhou

<20 m 28

ours 5.98 12.07
DSM 14.72 22.71

DSM + DEM 13.42 21.67
nDSM 9.29 17.63

20–100 m 429

ours 3.01 7.57
DSM 5.72 9.55

DSM + DEM 4.74 8.67
nDSM 3.86 7.94

≥100 m 49

ours 2.45 3.31
DSM 10.56 11.77

DSM + DEM 6.65 7.82
nDSM 5.57 6.51

Xi’an

<20 m 0 - -

20–100 m 14

ours 1.57 1.95
DSM 7.21 8.49

DSM + DEM 4.18 4.45
nDSM 5.80 8.06

≥100 m 20

ours 1.54 1.92
DSM 6.85 8.60

DSM + DEM 3.37 5.73
nDSM 3.42 4.37

Figure 21. Examples of buildings above 300 m in the Guangzhou experimental area.
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4.2. Building in Different Environments

In this paper, the error sources of the algorithm were analyzed in three zones with
different environments. Figure 22 shows the three zones. ‘Zone 1’ is situated in the Xi’an
experimental area, characterized by flat terrain and minimal vegetation. ‘Zone 2’ is located
in the Guangzhou experiment area, featuring flat terrain but substantial occlusion by trees.
‘Zone 3’, also located in Guangzhou, exhibits occluded undulating terrain.

Figure 22. The zones with different environments.

Table 8 summarizes the accuracy of rooftop elevation and ground elevation. According
to the ME of rooftop elevation in the three zones, the roof elevation obtained from the DSM
was higher than the actual value. The appendages on the rooftop, such as elevator rooms,
stairwells, and water tanks, contributed to this discrepancy, as they were higher than the
rooftop plane. This primarily accounts for the higher building height extracted by the DSM
method in the comparison experiment. In contrast, our method extracts the elevation of the
rooftop plane by matching the building rooftop. In applications such as per capita housing
area estimation, considering the structural height as the building height becomes necessary.
Our method is more suitable for addressing these cases.

Table 8. Accuracy statistics of buildings with different environments.

Number
Rooftop Elevation Ground Elevation

ME (m) MAE (m) RMSE (m) ME (m) MAE (m) RMSE (m)

Zone 1 34
ours −0.07 1.15 1.42 0.08 1.46 1.86
DSM 3.93 4.11 5.07 −2.81 3.53 4.83

nDSM 2.42 3.58 4.67 1.56 3.52 4.84

Zone 2 42
ours −0.33 0.74 1.16 −0.40 1.49 2.09
DSM 6.84 6.84 9.00 2.15 3.41 4.73

nDSM 3.31 3.46 4.16 6.54 6.54 7.23

Zone 3 30
ours −1.82 1.99 2.73 −3.26 3.80 5.60
DSM 2.96 3.04 3.28 −0.90 1.18 1.58

nDSM 2.24 2.71 3.06 2.75 2.75 3.08

According to the ME of ground elevation, the ground elevation extracted by the
nDSM method is higher than the actual value. As shown in Figure 6a, 3D breaklines were
modeled as smooth transitions from the ground level to the building level. The smooth
transitions were easily classified as ground points by the CSF algorithm, resulting in the
DEM corresponding to the building location being higher than the surrounding ground.
We eliminated inaccurate ground points around buildings, resulting in a more accurate
ground elevation, as shown in Figure 23.
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Figure 23. Comparison of ground filtering algorithms.

For traditional methods, the MEs of ground elevation in Zone 2 were larger than
those in Zone 1. This indicates that the traditional method faces difficulty in extracting
ground elevation in areas with high vegetation coverage. The proposed method uses image
classification to ensure that the elevation of occluded ground is estimated from slightly
distant ground points. It performs well on flat terrain such as Zone 2.

4.3. Limitation

Unclear building edges. Despite implementing two improvements, namely, contour
template correction based on the edges extracted on the backward image and local maxi-
mum values filtering by the DSM, mismatches caused by unclear building edges remained
in the Guangzhou experiment. To address this issue in future research, semantic segmenta-
tion can be used to exclude the edges that do not belong to building rooftops, and better
edge extraction methods can also be used to extract more complete building edges for more
accurate matching.

Occluded undulating terrain. As observed in the experimental results of Zone 3 in
Section 4.2, obtaining ground elevation from the DSM in areas where undulating terrain is
occluded by trees poses a significant challenge. To overcome this limitation, integrating
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additional data sources such as ground measurement data or other satellite images could
offer a solution.

Pitched roof. As discussed in Section 4.2, the contour matching algorithm performed
poorly in Zone 3, attributed to the presence of buildings with pitched roofs. Identification
of pitched roofs is still a challenging task due to the limitations of image resolution. We
aim to address this challenge in the future by leveraging higher resolution images.

5. Conclusions

This paper proposes a method for extracting building heights from high-resolution
GF-7 stereo imagery. The method employs contour matching techniques to enhance build-
ing rooftop elevation extraction. Within the contour matching process, the method filters
local maximum values by a DSM to resolve the mismatch issue. Moreover, the contour
template correction is used to ensure higher precision in cases of unclear building edges. To
improve the accuracy of the ground elevation extraction around the building, this method
utilized image classification from the GF-7 multispectral imagery to identify and remove
error-prone regions within the DSM, aiming to enhance the accuracy of ground filtering.
The proposed method was validated in Yingde, Guangzhou, and Xi’an, showcasing its
performance against comparative algorithms. The proposed method has more advantages
for high-rise buildings. In the rooftop elevation extraction, the proposed algorithm takes
the rooftop as an object, unaffected by issues such as smooth transitions in the DSM and
rooftop appendages affecting the rooftop, resulting in more accurate results. In the ground
elevation extraction, the proposed method effectively removes non-ground points and
inaccurate ground points from the DSM, yielding accurate results in flat terrain.

However, problems such as unclear building edges and occluded undulating terrain
are still challenges in building height extraction. In future research, semantic segmentation
for identifying building edges and other data sources for ground elevation estimation
can be considered to improve the accuracies of the elevation of rooftop and the ground
elevation. Additionally, different satellite images from different cities, different countries,
and even climate zones can be used to validate and improve the proposed methods.

Author Contributions: Conceptualization, Y.C., S.Z. and W.J.; methodology, Y.C. and W.J.; software,
Y.C.; validation, Y.C.; formal analysis, Y.C.; investigation, Y.C.; resources, W.J.; data curation, Y.C.;
writing—original draft preparation, Y.C.; writing—review and editing, G.Y.; visualization, Y.C. and
S.Z.; supervision, S.Z.; project administration, S.Z.; funding acquisition, S.Z. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the High-Resolution Remote Sensing Application Demonstra-
tion System for Urban Fine Management under grant 06-Y30F04-9001-20/22.

Data Availability Statement: Data available on request due to restrictions. Our method is based on
the original stereo images, which is restricted to be accessed on web according to the data policy of
China, we are sorry that we cannot share our research data.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or Spreading out? Typologies of Urban Growth across 478 Cities of 1 Million+.
Environ. Res. Lett. 2019, 14, 124077. [CrossRef]

2. Du, Y.; Mak, C.M.; Tang, B. Effects of Building Height and Porosity on Pedestrian Level Wind Comfort in a High-Density Urban
Built Environment. Build. Simul. 2018, 11, 1215–1228. [CrossRef]

3. Li, X.; Yang, B.; Liang, F.; Zhang, H.; Xu, Y.; Dong, Z. Modeling Urban Canopy Air Temperature at City-Block Scale Based on
Urban 3D Morphology Parameters—A Study in Tianjin, North China. Build. Environ. 2023, 230, 110000. [CrossRef]

4. Xu, S.; Li, G.; Zhang, H.; Xie, M.; Mendis, T.; Du, H. Effect of Block Morphology on Building Energy Consumption of Office
Blocks: A Case of Wuhan, China. Buildings 2023, 13, 768. [CrossRef]

5. Zhou, X.; Huang, Z.; Scheuer, B.; Wang, H.; Zhou, G.; Liu, Y. High-Resolution Estimation of Building Energy Consumption at the
City Level. Energy 2023, 275, 127476. [CrossRef]

6. Hang, J.; Li, Y.; Sandberg, M.; Buccolieri, R.; Di Sabatino, S. The Influence of Building Height Variability on Pollutant Dispersion
and Pedestrian Ventilation in Idealized High-Rise Urban Areas. Build. Environ. 2012, 56, 346–360. [CrossRef]

127



Remote Sens. 2024, 16, 1556

7. Kim, J.-W.; Baik, J.-J.; Park, S.-B.; Han, B.-S. Impacts of Building-Height Variability on Turbulent Coherent Structures and Pollutant
Dispersion: Large-Eddy Simulations. Atmos. Pollut. Res. 2023, 14, 101736. [CrossRef]

8. Zhang, X.; Liao, Q.; Yin, X.; Yin, Z.; Cao, Q. Spatial Characteristics and Influencing Factors of Multi-Scale Urban Living Space
(ULS) Carbon Emissions in Tianjin, China. Buildings 2023, 13, 2393. [CrossRef]

9. Lian, H.; Zhang, J.; Li, G.; Ren, R. The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve
Carbon Neutrality Goals: A Case Study of Wuhan, China. Sustainability 2023, 15, 15751. [CrossRef]

10. Tosi, P.; De Rubeis, V.; Sbarra, P. Earthquake Perception Data Highlight Natural Frequency Details of Italian Buildings. Earthq.
Spectra 2023, 39, 1240–1254. [CrossRef]

11. Gui, S.; Qin, R. Automated LoD-2 Model Reconstruction from Very-High-Resolution Satellite-Derived Digital Surface Model and
Orthophoto. ISPRS J. Photogramm. Remote Sens. 2021, 181, 1–19. [CrossRef]

12. Baltsavias, E.P. A Comparison between Photogrammetry and Laser Scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94.
[CrossRef]

13. Sun, S.; Salvaggio, C. Aerial 3D Building Detection and Modeling From Airborne LiDAR Point Clouds. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2013, 6, 1440–1449. [CrossRef]

14. Lao, J.; Wang, C.; Zhu, X.; Xi, X.; Nie, S.; Wang, J.; Cheng, F.; Zhou, G. Retrieving Building Height in Urban Areas Using ICESat-2
Photon-Counting LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102596. [CrossRef]

15. Zheng, Y.; Weng, Q. Model-Driven Reconstruction of 3-D Buildings Using LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2015, 12,
1541–1545. [CrossRef]

16. Li, X.; Zhou, Y.; Gong, P.; Seto, K.C.; Clinton, N. Developing a Method to Estimate Building Height from Sentinel-1 Data. Remote
Sens. Environ. 2020, 240, 111705. [CrossRef]

17. Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World
Settlement Footprint 3D—A First Three-Dimensional Survey of the Global Building Stock. Remote Sens. Environ. 2022, 270, 112877.
[CrossRef]

18. Dong, B.; Zheng, Q.; Lin, Y.; Chen, B.; Ye, Z.; Huang, C.; Tong, C.; Li, S.; Deng, J.; Wang, K. Integrating Physical Model-Based
Features and Spatial Contextual Information to Estimate Building Height in Complex Urban Areas. Int. J. Appl. Earth Obs. Geoinf.
2024, 126, 103625. [CrossRef]

19. Zhuang, D.; Zhang, L.; Zou, B. Interferometry Modeling and Model-Based Height Estimation for Buildings in Urban DSM
Reconstruction Based on Interferometric Synthetic Aperture Radar Technology. J. Appl. Remote Sens. 2023, 17, 034508. [CrossRef]

20. Sun, Y.; Hua, Y.; Mou, L.; Zhu, X.X. Large-Scale Building Height Estimation from Single VHR SAR Image Using Fully Convolu-
tional Network and GIS Building Footprints. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes,
France, 22–24 May 2019; IEEE: Vannes, France, 2019; pp. 1–4.

21. Izadi, M.; Saeedi, P. Three-Dimensional Polygonal Building Model Estimation From Single Satellite Images. IEEE Trans. Geosci.
Remote Sens. 2012, 50, 2254–2272. [CrossRef]

22. Lee, T.; Kim, T. Automatic Building Height Extraction by Volumetric Shadow Analysis of Monoscopic Imagery. Int. J. Remote Sens.
2013, 34, 5834–5850. [CrossRef]

23. Qi, F.; Zhai, J.Z.; Dang, G. Building Height Estimation Using Google Earth. Energy Build. 2016, 118, 123–132. [CrossRef]
24. Zhao, Y.; Wu, B.; Li, Q.; Yang, L.; Fan, H.; Wu, J.; Yu, B. Combining ICESat-2 Photons and Google Earth Satellite Images for

Building Height Extraction. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103213. [CrossRef]
25. Zhang, H.; Xu, C.; Fan, Z.; Li, W.; Sun, K.; Li, D. Detection and Classification of Buildings by Height from Single Urban

High-Resolution Remote Sensing Images. Appl. Sci. 2023, 13, 10729. [CrossRef]
26. Zhang, C.; Cui, Y.; Zhu, Z.; Jiang, S.; Jiang, W. Building Height Extraction from GF-7 Satellite Images Based on Roof Contour

Constrained Stereo Matching. Remote Sens. 2022, 14, 1566. [CrossRef]
27. Liu, C.; Huang, X.; Wen, D.; Chen, H.; Gong, J. Assessing the Quality of Building Height Extraction from ZiYuan-3 Multi-View

Imagery. Remote Sens. Lett. 2017, 8, 907–916. [CrossRef]
28. Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008,

30, 328–341. [CrossRef] [PubMed]
29. Zhang, K.; Chen, S.-C.; Whitman, D.; Shyu, M.-L.; Yan, J.; Zhang, C. A Progressive Morphological Filter for Removing Nonground

Measurements from Airborne LIDAR Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [CrossRef]
30. Wang, J.; Hu, X.; Meng, Q.; Zhang, L.; Wang, C.; Liu, X.; Zhao, M. Developing a Method to Extract Building 3D Information from

GF-7 Data. Remote Sens. 2021, 13, 4532. [CrossRef]
31. Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on

Cloth Simulation. Remote Sens. 2016, 8, 501. [CrossRef]
32. He, S.; Zhou, R.; Li, S.; Jiang, S.; Jiang, W. Disparity Estimation of High-Resolution Remote Sensing Images with Dual-Scale

Matching Network. Remote Sens. 2021, 13, 5050. [CrossRef]
33. Laga, H.; Jospin, L.V.; Boussaid, F.; Bennamoun, M. A Survey on Deep Learning Techniques for Stereo-Based Depth Estimation.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1738–1764. [CrossRef] [PubMed]
34. Li, S.; He, S.; Jiang, S.; Jiang, W.; Zhang, L. WHU-Stereo: A Challenging Benchmark for Stereo Matching of High-Resolution

Satellite Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5603914. [CrossRef]

128



Remote Sens. 2024, 16, 1556

35. Chen, P.; Huang, H.; Liu, J.; Wang, J.; Liu, C.; Zhang, N.; Su, M.; Zhang, D. Leveraging Chinese GaoFen-7 Imagery for
High-Resolution Building Height Estimation in Multiple Cities. Remote Sens. Environ. 2023, 298, 113802. [CrossRef]

36. Cao, Y.; Huang, X. A Deep Learning Method for Building Height Estimation Using High-Resolution Multi-View Imagery over
Urban Areas: A Case Study of 42 Chinese Cities. Remote Sens. Environ. 2021, 264, 112590. [CrossRef]

37. Perko, R.; Raggam, H.; Gutjahr, K.H.; Schardt, M. Advanced Dtm Generation from Very High Resolution Satellite Stereo Images.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 165–172. [CrossRef]

38. Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [CrossRef]
39. Gong, J.; Hu, X.; Pang, S.; Wei, Y. Roof-Cut Guided Localization for Building Change Detection from Imagery and Footprint Map.

Photogramm. Eng. Remote Sens. 2019, 85, 543–558. [CrossRef]
40. Ebisch, K. A Correction to the Douglas–Peucker Line Generalization Algorithm. Comput. Geosci. 2002, 28, 995–997. [CrossRef]
41. Huang, X.; Zhang, L. Morphological Building/Shadow Index for Building Extraction From High-Resolution Imagery Over Urban

Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 12. [CrossRef]
42. Zhang, J.; Lin, X. Filtering Airborne LiDAR Data by Embedding Smoothness-Constrained Segmentation in Progressive TIN

Densification. ISPRS J. Photogramm. Remote Sens. 2013, 81, 44–59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

129



Citation: Liu, Z.; Li, Z.; Liu, A.; Shao,

K.; Guo, Q.; Wang, C. LVI-Fusion: A

Robust Lidar-Visual-Inertial SLAM

Scheme. Remote Sens. 2024, 16, 1524.

https://doi.org/10.3390/rs16091524

Academic Editor: Joaquín

Martínez-Sánchez

Received: 21 March 2024

Revised: 16 April 2024

Accepted: 24 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

LVI-Fusion: A Robust Lidar-Visual-Inertial SLAM Scheme

Zhenbin Liu, Zengke Li *, Ao Liu, Kefan Shao, Qiang Guo and Chuanhao Wang

School of Environment Science and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China; lzb@cumt.edu.cn (Z.L.); liuao@cumt.edu.cn (A.L.); guo_qiang934@cumt.edu.cn (Q.G.);
ts23160184p31@cumt.edu.cn (C.W.)
* Correspondence: zengkeli@cumt.edu.cn

Abstract: With the development of simultaneous positioning and mapping technology in the field of
automatic driving, the current simultaneous localization and mapping scheme is no longer limited to
a single sensor and is developing in the direction of multi-sensor fusion to enhance the robustness
and accuracy. In this study, a localization and mapping scheme named LVI-fusion based on multi-
sensor fusion of camera, lidar and IMU is proposed. Different sensors have different data acquisition
frequencies. To solve the problem of time inconsistency in heterogeneous sensor data tight coupling,
the time alignment module is used to align the time stamp between the lidar, camera and IMU.
The image segmentation algorithm is used to segment the dynamic target of the image and extract
the static key points. At the same time, the optical flow tracking based on the static key points
are carried out and a robust feature point depth recovery model is proposed to realize the robust
estimation of feature point depth. Finally, lidar constraint factor, IMU pre-integral constraint factor
and visual constraint factor together construct the error equation that is processed with a sliding
window-based optimization module. Experimental results show that the proposed algorithm has
competitive accuracy and robustness.

Keywords: IMU; monocular camera; lidar; SLAM; sensor fusion

1. Introduction

Surveying and mapping technology based on lidar and photogrammetry has devel-
oped rapidly. With the rapid rise of automatic driving, UAV (unmanned aerial vehicle) and
other fields, surveying and mapping technology based on mobile platforms has also been
further developed and has experienced a process from static to dynamic surveying and
mapping. SLAM (simultaneous localization and mapping) technology as the basic module
in these fields, has also been rapidly developed [1].

SLAM technology is roughly divided into two categories according to the different
forms of sensors. Vision SLAM technology mainly uses sensors in the form of monocular,
binocular, and RGB-D forms [2]. Lidar (Light Detection and Ranging)-based SLAM technol-
ogy is dominated by 2D (two dimensions) lidar and 3D (three dimensions) lidar [3]. Among
them, 2D lidar is mainly used in indoor plane positioning and mapping, and 3D lidar is
used in outdoor 3D localization and mapping. SLAM technology based on vision sensor
relies more on environmental texture information and lighting conditions, while SLAM
technology based on lidar is prone to motion degradation in a structured environment. As
an environment-independent sensor, the IMU (Inertial Measurement Unit) can measure the
acceleration and angular velocity of the carrier at high frequencies. However, its positioning
accuracy has been poor for a long time because the IMU contains the influence of zero bias
and noise. At present, with the increasing complexity of mobile robot application scenarios,
a single sensor can no longer meet the demand, and SLAM technology is gradually devel-
oping in the direction of multi-sensor fusion. SLAM technology that fuses vision with IMU
sensors is also known as VI-SLAM. The fusion of lidar and IMU sensors is also known as
LI-SLAM. The IMU can effectively assist the lidar sensor in point cloud undistortion and
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provide pose constraints for vision and lidar sensors and high-frequency pose initial values
to speed up optimization [4]. With the development of SLAM research, researchers realized
that vision and lidar also have good complementary properties, and SLAM schemes for the
fusion of lidar and vision sensors have gradually emerged [5].

The SLAM scheme based on multi-sensor fusion is mainly based on filtering and
optimization [6]. The above two processing methods are essentially solving the maximum
a posteriori estimation of the state variable. Experiments show that under the same
computational complexity, the fusion method with graph optimization has better effect and
more heterogeneous sensors are more easily fused [7]. Therefore, this study chooses the
graph optimization method for fusion vision, lidar and IMU. LVI-SAM [8] (state-of-the-art
SLAM algorithms) proposes a factorial graph framework to fuse vision, lidar, and IMU
sensors. The LVI-SAM uses a lidar inertial odometer to assist in the initialization of the
visual inertial odometer, which provides initial pose estimation for lidar matching. This
approach is more like two separate systems running separately, without simultaneous
data processing. Different from existing multi-sensor fusion SLAM schemes, LVI-fusion
proposed in this paper is a tight-coupled system in a true sense. The contributions of this
article are as follows:

1. Based on the issue of inconsistent time frequency between the camera and lidar, we
proposed a time alignment module, which divide and merge point clouds according
to visual time. This method can effectively solve the problem of time asynchrony in
the tight coupling process between vision and lidar sensors.

2. The image segmentation algorithm is used to segment the dynamic target of the
image, eliminating the influence of dynamic objects, and the static key points can be
achieved.

3. A robust feature point depth estimation scheme is proposed. The sub-map is used
to assign depth to each image key frame feature point, and the 3D world point
coordinates are calculated for the same feature point under different camera positions
and poses. When the depth estimation is accurate, the world coordinates recovered
by the same feature point under different keyframe pose should be consistent. In this
way, the depth of feature points can be estimated robustly.

4. In order to ensure the real-time performance of the back-end optimization, a sliding
window optimization method is adopted for pose calculation, and we implemented a
complete multi-sensor fusion SLAM scheme. To extensively validate the positioning
accuracy performance of the proposed method, extensive experiments are carried
out in the M2DGR dataset [9] and a campus dataset collected by our equipment.
The results illustrate that the proposed approach outperforms the state-of-the-art
SLAM schemes.

The rest of this article is organized as follows. The related work of vision SLAM, lidar
SLAM and SLAM of vision and lidar fusion are presented in Section 2. Section 3 describes
the factor graph framework proposed in this paper in detail. The experimental setup and
precision evaluation is discussed in Section 4, and we draw our conclusions in Section 5.

2. Related Works

At present, there are many excellent SLAM schemes based on vision and lidar [3].
However, providing a detailed overview of the existing SLAM technology is impossible
due to the length restriction of the paper. Hence, this paper attempts to summarize
representative SLAM schemes. According to the category of sensors, this study divides
SLAM technology into three categories, visual SLAM, lidar SLAM, and SLAM of vision and
lidar fusion [10]. The following is an overview of the three types of SLAM technologies.

2.1. Visual SLAM

Visual SLAM has been around for nearly 30 years. In the past decade, with the popu-
larity of autonomous driving, drones, various service robots, VR/AR and other industries,
SLAM has been widely studied by researchers. MonoSLAM is the first monocular SLAM
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scheme that can run in real time [11]. This algorithm uses Harris corner points for tracking
at the front end, constant velocity model for forecasting, and EKF (Extended KalmanFilter)
for pose estimation at the back end, which is of milestone significance. PTAM innovatively
proposed the concepts of front-end and back-end of V-SLAM based on the monocular
camera, where in the front-end was responsible for the extraction and tracking of feature
points, and the back-end used BA (bundle adjustment) for the pose optimization update
and map construction [12]. The ORB-SLAM [13] scheme builds an image pyramid for in-
coming images and uses ORB features [14] for feature extraction and matching. Compared
with PTAM, ORB-SLAM scheme has better scale and rotation invariance and can achieve
more stable tracking. Based on the ORB-SLAM foundation, the ORB-SLAM2 supports
SLAM implementation of multiple camera models and adds map reuse and relocation
functions [15]. The localization accuracy of the above visual SLAM scheme based on image
feature point matching depends heavily on the accuracy of feature point matching, and
often has poor effect in a texture environment. The direct method, another important
branch of visual SLAM, builds a mathematical model based on the assumption of constant
luminosity between adjacent frames, avoiding the process of key point extraction and
feature description. The SVO scheme uses key point pixel blocks to construct pixel error
recovery pose motion information, which is divided into two steps [16]. The pixels of key
points between adjacent frames are compared to obtain a rough pose estimation. On this
basis, key points of current frames are further matched with key points of map, and pose
optimization is further carried out. The LSD-SLAM scheme [17] is a direct algorithm for
semi-intensive reconstruction, which consists of three main steps: tracking, depth map
estimation, and map optimization. Based on LSD-SLAM, DSO considers the exposure
time and lens distortion, and puts the calibration results into the back-end optimization
process and uses the sliding window optimization method to perform real-time motion
estimation [18]. The above direct method can make full use of image information and
build dense or semi-dense maps, but this modeling method has a poor positioning effect
on scenes with large lighting changes. Visual-based SLAM schemes are prone to environ-
mental problems, especially when the vision sensor is a monocular camera, there is also
a problem of scale ambiguity, so the fusion of vision and IMU has been widely studied.
Visual inertial fusion positioning systems can generally be divided into optimization meth-
ods and Filter methods, in which the multi-state constraint Kalman filter (MSCKF) is a
typical representative of filter-based methods [19]. OKVIS-implemented binocular inertial
odometer with an optimization method, which constructed the visual reprojection error
and IMU constraints, is optimized by using a fixed sliding window of key frame [20]. The
VINS series is one of the perfect examples of visual-IMU fusion SLAM systems based on
optical flow tracking [21,22]. Based on ORB-SLAM2, ORB-SLAM3 proposes a fast and
robust visual IMU initialization method, which is a representative scheme of visual IMU
fusion based on feature method [23]. The above schemes are summarized in Table 1.
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Table 1. Representational SLAM scheme based on visual and IMU.

Scheme Release Time Sensor Form Characteristic

MonoSLAM [11] 2007 a EKF + Feature point method
PTAM [12] 2007 a Feature point method

ORB-SLAM [13] 2011 a ORB feature point method
ORB-SLAM2 [15] 2015 b ORB feature + multiple mode cameras

SVO [16] 2014 a Semi-direct method
LSD-SLAM [17] 2014 a Direct method + semi-dense reconstruction

DSO [18] 2020 b Direct method+ Sparse reconstruction
MSCKF [19] 2020 c IESKF (iterative error state Kalman filter)
OKVIS [20] 2020 c Key frame + graph optimization

VINS-mono [21] 2017 c Optical flow + graph optimization
VINS-fusion [22] 2019 c Optical flow + multimode
ORB-SLAM3 [23] 2021 c ORB feature+ multimode

a indicates support for monocular camera, b indicates support for multiple mode cameras, and c indicates support
for visual integration with IMU.

2.2. Lidar SLAM

Lidar-based SLAM schemes can be divided into 2D SLAM and 3D SLAM, and since
the emergence of Cartographer [24], 2D lidar SLAM indicates basic maturity. Compared
with 2D lidar, 3D lidar can perceive more environmental information. At present, with the
price of 3D lidar gradually decreasing, the size is getting smaller and smaller, and the SLAM
scheme based on 3D lidar has gradually attracted the attention of researchers. The 3D lidar
SLAM is represented by LOAM [25], and the scheme adopts point-to-line and point-to-
surface matching, which has great enlightenment for subsequent 3D SLAM. Subsequent
researchers have done a lot of work based on the LOAM framework. A-LOAM [26] uses
the ceres-solve library to streamline the optimization code of Loam. LeGO-LOAM [27]
segments ground points on the basis of LOAM and clusters point clouds to reduce the
impact of noise on matching. SC-LeGO-LOAM [28] uses scan context [29] to add a loopback
detection module on the basis of Lego-loam. Based on the 3D lidar SLAM, the researchers
tried to combine the IMU with lidar, and the IMU assisted the de-distortion of the lidar
point cloud. SLAM based on IMU and lidar fusion can be divided into categories based on
filtering and optimization according to the backend. Table 2 summarizes some of the most
representative lidar SLAM schemes from which most of the current research work begins.

Table 2. Visual-inertial navigation system (VINS) scheme for visual inertial measurement unit
(IMU) fusion.

Scheme Release Time Sensor Form Characteristic

LOAM [25] 2014 a Milestone, based on feature matching
A-LOAM [26] 2018 a Streamline LOAM code with optimization library

LeGO-LOAM [27] 2018 a Ground point filtering, point cloud clustering
SC-LeGO-LOAM [28] 2020 a Add loopback detection based on Scan Context

LIOM [30] 2020 b CNN dynamic target elimination; ESKF filtering
LIO-Mapping [31] 2019 b Graph optimization method

LIO-SAM [32] 2020 b Factor graph optimization method
LINS [33] 2020 b IESKF (iterative error state Kalman filter)

FAST-LIO [34] 2020 b IEKF (Iterative Extended Kalman Filtering)
FAST-LIO2 [35] 2021 b Incremental KD data structure (fast efficiency)

Faster-LIO [36] 2022 b Use iVox data structure based on FAST-LIO2 to further
improve efficiency

a indicates support for 3D lidar, b indicates support for 3D lidar and IMU.

2.3. SLAM of Vision and Lidar Fusion

Vision sensors can obtain rich environmental color information, lidar can obtain
distance information to perceive the environment, and the two types of sensors have natural

133



Remote Sens. 2024, 16, 1524

complementary properties. With the deepening of SLAM research, a number of excellent
SLAM schemes based on the visual and lidar fusion have gradually emerged. LIMO [37]
combines lidar and monocular vision, uses the depth measured by lidar to give depth
information to visual feature points, and then predicts robot motion based on key frame BA.
V-LOAM [38], a representative SLAM scheme of visual and lidar fusion, ranks second on
the KITTI dataset [39]. For many years, V-LOAM adopts a positioning process from coarse
to fine, obtains the initial pose according to the visual matching, and the lidar point cloud
matches the frame to the local map according to the initial pose to obtain higher accuracy
pose results. Lidar-based systems have proven to be superior compared to vision-based
systems due to their accuracy and robustness. VIL-SLAM [40] combines tightly coupled
stereo vision inertial odometer (VIO) with lidar mapping and lidar-enhanced visual loop
closure to solve the problem of motion degradation of lidar in a structured environment.
LIC_Fusion [41] is based on the efficient MSCKF framework, using the coefficient edge/suf
feature points detected and tracked by the lidar, as well as sparse visual features and IMU
readings, to complete the multimodal fusion. LIC_Fusion2 [42] is a lidar, camera and
IMU fusion odometer based on sliding window optimization on the basis of LIC_Fusion,
which has the function of online spatiotemporal calibration. ULVIO [43] constructs a
factor graph that combines vision, lidar and inertial information for optimization. The
point features extracted by vision, the line and surface features extracted by lidar, and
the residual constructed by IMU pre-integration are put into the same factor graph for
optimization. This method has high requirements for hardware time synchronization.
R2live [44] estimates the state within the framework of the error-state iterated Kalman filter,
and further improves the overall precision with factor graph optimization to guarantee
real-time performance. R3live [45] based on R2live, utilizes measurements from solid-state
lidar, inertial measurement units, and vision sensors to achieve robust and accurate state
estimation. R3live contains two subsystems, namely lidar-Inertial Odometer (LIO) and
Vision-Inertial Odometer (VIO). The LIO subsystem uses the measurements of lidar and
inertial sensors to construct the geometry of a global map, which records the input lidar
scans and estimates the state of the system by minimizing point-to-plane residuals. The VIO
subsystem utilizes visual-inertial sensor data to render the texture of the map, render the
RGB color of each point with the input image, and update the system state by minimizing
the frame-to-frame PnP reprojection error and the frame-to-map photometric error. Based
on LIO-SAM, LVI-SAM is coupled with a visual inertial odometer. The algorithm includes
a lidar inertial odometer module and a visual inertial odometer module. The visual inertial
odometer uses VINS-Mono. In the scenario of radar degradation, the visual odometer
positioning results are used to replace the position and attitude of the lidar degradation
direction, and the visual inertial odometer system is initialized with the results of the lidar
inertial odometer. The visual word bag loopback detection results are also used in the radar
inertial odometer to participate in the factor graph optimization. FAST-LIVO [46] integrates
IMU vision and lidar using the iterative error Kalman filter to realize efficient and robust
localization and mapping. Table 3 summarizes some of the most representative SLAM
schemes based on visual and lidar fusion, based on which most of the current research
work is carried out.
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Table 3. Representative slam scheme based on visual and lidar fusion.

Scheme Release Time Sensor Form Characteristic

LIMO [37] 2018 a lidar-assisted visual recovery of feature point depth
V-LOAM [38] 2018 a Match from high frequency to low frequency

VIL-SLAM [40] 2019 b VIO assisted lidar positioning
LIC_Fusion [41] 2019 b MSCKF filter (sensor online calibration)
LIC_Fusion2 [42] 2020 b Sliding window filter

ULVIO [43] 2021 b Factor Graph Optimization
R2live [44] 2021 b ESKF filtering + factor graph optimization
R3live [45] 2021 b Minimize the photometric error from frame to map

LVI-SAM [8] 2021 b Factor Graph Optimization
FAST-LIVO [46] 2022 b IESKF filtering

a indicates support for 3D lidar and camera, b indicates support for 3D lidar, camera and IMU.

3. System Overview

The LVI fusion framework designed in this paper consists of five parts as shown in
Figure 1. Each module is described in detail below.

(1) Time alignment. Regardless of systems triggered by external clocks (such as GNSS),
each sensor is collected at a different start time stamp, and different sensors have
different data acquisition frequencies. State fusion estimation requires aligning data
with different timestamps to the same time node. LVI-fusion takes the camera time
stamp as the benchmark, splits the lidar point cloud data according to the camera
time stamp, and merges the point cloud data between image frames into one frame
point cloud. IMU data is interpolated according to the time stamp of the camera to
obtain IMU data aligned with the camera time stamp. Through the above operations,
the lidar data, IMU data and camera data can be time-stamped aligned.

(2) Data preprocessing. The state propagation of IMU data between adjacent image
frames is carried out, and the point cloud data between two image frames is dedis-
torted according to the state prediction results, and the point cloud is unified to the
end time of the point cloud of the frame. The YOLOv7 dynamic target recognition
algorithm [47] is used to segment the dynamic target of the image, eliminate the
influence of the dynamic target, obtain the static target image, construct the image
pyramid of the deleted dynamic target image, extract the Harris key points from each
layer of the image, and use the quadtree to homogenize the feature points to obtain
uniformly distributed feature points. The tracked feature points are added to the
image queue.

(3) Constraint construction. The IMU data between adjacent image key frames are pre-
integrated, the pre-integral increment of adjacent image key frames is obtained, and
the Jacobian matrix and covariance of the pre-integral error matrix are constructed.
The local point cloud map near the current key frame is used to assign depth to the
image feature points, and the image feature points with depth are obtained. The
reprojection error constraints are constructed according to the 3D coordinates of the
feature points and the image frames tracked to their coordinates. Due to the high
frequency of the camera, the field of view Angle of the lidar data with the camera
time is less than half of the original, and the key frame is selected according to the
pose result obtained by the VIO odometer. When it is a key frame, the lidar data of
the current frame and the lidar data of the previous two frames are combined into one
frame point cloud data. Line features and surface features are extracted from key frame
point cloud data and matched with a local map to construct pose constraint based
on lidar. According to IMU pre-integral constraints, visual reprojection constraints
and lidar matching constraints, the nonlinear optimization objective function can be
constructed, and the real-time pose calculation can be performed by using the sliding
window optimization method, and the optimization results are fed back to the visual
inertial odometer.
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(4) Closed loop detection. The closed-loop detection algorithm based on 3D lidar, and
the visual-based bag of words model were used for closed-loop detection. When the
constraints of both methods are met, the closed-loop constraints between visual and
lidar are added to the global optimization.

(5) Global optimization. Opens a separate thread for global optimization of keyframe-
based pose.

Figure 1. LVI-fusion framework based on visual, lidar and IMU fusion.

3.1. Symbolic Description

(·)w, (·)b, (·)L, and (·)c represent the world coordinate system, IMU coordinate system,
lidar coordinate system, and visual coordinate system, respectively. Define the body
coordinate system to coincide with the IMU coordinate system. The variables χ represents
all the variables in the sliding window. χ includes the state variables x of keyframes
within the sliding window, as well as the inverse depth λ of all feature points within the
sliding window. n represents the number of keyframes within the sliding window, and
m represents the number of key points. xk includes the position pw

bk
, velocity vw

bk
, attitude

qw
bk

, acceleration bias ba, and angular velocity bias bg. qw
bk

and pw
bk

depict the rotation and
shift of the body coordinate system to the world coordinate systemwhen the k-th image
is taken, where qw

bk
is a quaternion. vw

bk
depicts the velocity of the body coordinate system

to the world coordinate system when the k-th image is taken. pw
bk

. vw
bk

, ba, and bg are all
three-dimensional vectors.

χ = [x0, x1, · · · xn, λ0, λ1, · · · , λm]

xk =
[

pw
bk

, vw
bk

, qw
bk

, ba, bg

]
, k ∈ [0, n]

(1)

3.2. Time Aligned

There are two kinds of timestamps in ROS, one is the ROS system time stamp (ROS
time), and the other is the time stamp of external hardware devices (such as cameras,
lidar, etc.), also known as hardware time. The ROS timestamp is a floating-point number,
measured in seconds, calculated from 00:00:00 UTC on 1 January 1970. The ROS timestamp
is globally unique in the entire ROS system, that is, when nodes in the ROS system need
to synchronize time, the ROS timestamp can be used as a standard, and each node can
synchronize based on it. The hardware timestamp is provided by an external device and
can be either a relative timestamp (the time difference between the device startup time or a
fixed point in time) or an absolute timestamp (the time relative to a fixed point in time).
Since the external device and the ROS system are different systems, their clocks may differ,
so timestamp conversion is required to convert hardware timestamps to ROS timestamps,
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or ROS timestamps to hardware timestamps for operations such as time synchronization
and data fusion. In this paper, we consider a system where lidar and camera are not
triggered by an external clock (such as GNSS). In order to ensure the consistency of the
time system, we assign time information to different sensor data according to the built-in
time system of the robot operating system. The individual timestamp of the points can be
obtained from the sensor’s driver. If the timestamp for a point is not available, it also can
be calculated by orientation difference. After the time reference of the lidar point cloud,
the camera, and IMU are aligned to the ROS time system, the time alignment operation
can be performed. Since the startup time and frequency of different sensors are different,
this paper takes the frequency of the camera as the benchmark. The lidar data is split
and merged, and the point cloud located between the time stamps is repackaged into a
frame of point cloud data according to the time stamps between the adjacent images, as
shown in Figure 2. Image acquisition can be considered instantaneous, and the data of a
frame of lidar point cloud is continuous. In this paper, a frame of lidar point cloud data is
dedistorted to the last moment of the frame. As shown in Figure 3. For specific operations,
refer to FAST-LIO2, and then it can be considered that the frame of lidar point cloud data is
acquired synchronously with the camera.

Figure 2. Time aligned: split-and-merge; dotted lines refer to the camera timestamp, and solid
lines refer to the lidar timestamp. Lidar point cloud data is split and merged based on the camera
timestamp (Stars represents the timestamp corresponding to the data collected by the camera).

Figure 3. Align the point cloud to the end of the frame.

The IMU and camera time stamps are synchronized by timestamp interpolation, and
the IMU data before and after the camera time stamps are interpolated to obtain the IMU
data corresponding to the image time stamps, as can be seen from Figure 4.
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Figure 4. The IMU is aligned with the camera timestamp (Arrows correspond to the time of data
collection).

The K-frame acquisition time of the camera is ti. Due to the misalignment of time
stamps, there is no IMU data at this time. The measured values of t0 and t1 before and after
this time correspond to m0 and m1 respectively. The IMU data corresponding to ti can be
interpolated according to the Formula (2) to realize the alignment of time stamps. Similarly,
the measured value at time tj can be calculated according to Formula (3). Through the
above processing, we do not need external timing equipment to complete the timestamp,
which greatly increases the scene applicability of the system itself and provides a data basis
for multi-sensor fusion based on graph optimization.

mi =
m0(t1 − ti) + m1(ti − t0)

t1 − t0
(2)

mi =
m10(t11 − tj) + m11(tj − t10)

t11 − t10
(3)

3.3. Key Point Depth Association

Robust key point depth recovery is very important for positioning accuracy and
robustness. The key point depth reply process of this paper is shown in Figure 5. Firstly,
dynamic target segmentation is carried out on the image, and key points are extracted from
the static target image. Secondly, the key point of the mask region boundary is eliminated
to eliminate the error key point caused by the mask. Then, the local point cloud map is
used to assign the depth value to the static key points, and the key points that are wrong
in terms of depth recovery are checked, and the key points without depth are restored by
triangulation.

 

Figure 5. Key points depth recovery process.
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3.3.1. Image Target Detection

In recent years, real-time target detection algorithms have been developed rapidly. For
example, MCUNet [48] and NanoDet [49] worked to improve model inference speed on
low-power edge CPU chips. The Yolox [50] algorithm focuses on improving the speed of
model inference on various GPU devices. At present, the development of real-time object
detection algorithms focuses on the design of the efficient backbone network modules of
models. For real-time object detection algorithms used on cpus, backbone network design
is mainly based on MobileNet [51], ShuffleNet [52] or GhostNet [53]. On the other hand, on
the GPU, most of the mainstream real-time target detection algorithms use ResNet [54] or
DLA [55], and then use the gradient strategy in CSPNet [56] to further optimize the module.
In addition to the design of the model backbone network, the YOLOv7 algorithm also pays
special attention to the optimization of the model training process. These modules and
methods can enhance the training effect and improve the accuracy of target detection, but
do not increase the inference cost. The YOLOv7 backbone network is mainly composed of
extended efficient layer aggregation networks (E-ELAN) [55], and features of three scales
are used to detect output targets, as shown in Figure 6. The YOLOv7 algorithm can achieve
a good detection effect while maintaining the detection speed. Therefore, this paper selects
the YOLOv7 algorithm to complete image-based dynamic target detection.

Detection 
head

Detection 
head

Detection 
head

Object detection and 
segmentation

P1 P2 P3

E-ELAN E-ELAN E-ELAN

Original image

 

Figure 6. Network structure of YOLOV7 model.

Since YOLOv7 can detect a wide range of target categories, as shown in Figure 7b, in
order to prevent static targets from being eliminated, this paper mainly identifies dynamic
targets such as “people”, “bicycles”, “motorcycles” and “cars” according to realistic dy-
namic scenes, as shown in Figure 7c. In addition, in order to facilitate subsequent feature
point extraction, the mask is set to pure white, as shown in Figure 7d.
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(a) (b) 

(c)  (d)  

Figure 7. Schematic diagram of removing dynamic objects from YOLOv7. (a) Original image.
(b) Original segmentation. (c) Specific dynamic target segmentation. (d) Dynamic target white mask.

Figure 8a shows the key points extraction results of images with deleted dynamic
targets. Through Figure 8a, it is found that some key points have also been extracted on
the contour of the dynamic target mask, which needs to be removed. Identify dynamic
target edge feature points with a pixel value of 255 for surrounding pixels with a radius of
3 of key points and remove them. The elimination results are shown in Figure 8b. It can be
found that the feature points on the edge of the dynamic feature are well eliminated and
the key points under the static target image are obtained.

(a) (b) 

Figure 8. Static key points extraction results after tuning quadtree homogenization. (a) Quadtree
equalization after removing dynamic targets. (b) Mask edge feature points are eliminated.

3.3.2. Key Point Depth Recovery

The sub-map is used to assign depth to each image key frame static key point. The
feature points of the image are used to search for the three nearest-neighbor lidar points;
the lidar points are fitted to the plane, and the distance between the feature points and
the plane is calculated for depth assignment. When point p is in the same plane as the
surrounding lidar point cloud, the following functional relationship is satisfied:

w p1 = Tw
ci

ci w(ci pj − ci w)·→η i

‖→η i‖
(4)
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w p2 = Tw
c2

ci+1 w(ci+1 p2 − ci+1 w)·→η i+1

‖→η i+1‖
(5)

w p = w p1 = w p2 (6)
w p represents the coordinates of point p in the world coordinate system, Tw

ci
and

Tw
c2

represent the conversion relationship between the camera coordinate system and the

world coordinate system under different field angles, respectively.
→
η i and

→
η i+1 represent

plane normal vectors fitted by lidar point clouds at different viewing angles, respectively.
ci w and ci+1 w represent the normalized image plane coordinates of the same key point
under different viewing angles, respectively, which can be calculated according to pixel
coordinates and camera parameters.

Due to the complexity of the real environment, and the feature points are basically
the positions where the image gradient changes greatly, such positions are often not in the
same plane with the three nearest lidar point clouds, resulting in wrong depth estimation.
The relationship of formula 6 is no longer satisfied, as can be seen from Figure 9. Therefore,
we can use this feature to test the correctness of the correlation between feature points and
depth values. When the modulus length of the coordinate difference between w pi and w p2
is less than a certain threshold, it is considered that the correlation of the depth value is
correct; otherwise, the correlation of depth value of the feature point is cancelled, and the
coordinate of the triangle point is restored based on visual triangulation; the process is
shown in Figure 10.

Figure 9. The projection relationship of the same key point under different keyframe perspectives.

141



Remote Sens. 2024, 16, 1524

w w
i ip p

 
Figure 10. Process of determining the wrong depth assignment of feature points.

3.4. Constraint Construction
3.4.1. Pre-Integration Factor

The acceleration model of IMU is shown in Formula (7), and the angular velocity
model of IMU is shown in Formula (8).

ât = at + bat + RI
wgw + na (7)

ŵt = wt + bwt + nw (8)

ât and ŵt represent the raw measurements of the IMU sensor. The accelerometer noises
na and nw are assumed to obey white Gaussian noise, na ∼ η(0, σ2

α),nw ∼ η(0, σ2
w). RI

w
represents rotation from the world coordinate system to the carrier coordinate system. gw

represents the gravity vector in the world coordinate system, whose magnitude direction
is known. The accelerometer bias and gyroscope bias follow random walks, as shown in
Formulas (9) and (10).

.
bat = nba , nba ∼ η(0, σ2

ba
) (9)

.
bwt = nbw , nbw ∼ η(0, σ2

bw
) (10)

There are multiple IMU data between the two image keyframes bk and bk+1. According
to the dynamic equation of IMU, its integral form in continuous time is as follows:

α
bk
bk+1

=
∫ ∫

t∈[tk ,tk+1]
Rbk

t (ât − bat)dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
Rbk

t (ât − bat)dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]
1
2 Ω(ŵt − bwt)γ

bk
t dt

(11)

where

Ω(w) =

[−�w�× w
−wT 0

]
, �w�× =

⎡
⎣ 0 −wz wy

wz 0 −wx
−wy wx 0

⎤
⎦ (12)

α
bk
bk+1

, β
bk
bk+1

and γ
bk
bk+1

represent the pose, velocity, and rotation angle corresponding to

the pre-integral, respectively. The formula shows that the three quantities α
bk
bk+1

, β
bk
bk+1

and

γ
bk
bk+1

have no relationship with the state of bk. For two adjacent IMU observation data i
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and i + 1, whose time interval is Δt, Formula (11) can be written in a discretized form as
Formula (13).

âbk
i+1 = âbk

i + β̂
bk
i δt + 1

2 R(γ̂bk
i )(α̂i − bai )δt2

β̂
bk
i+1 = β̂

bk
i + R(γ̂bk

i )(α̂i − bai )δt

γ̂
bk
i+1 ⊗

[
1
1
2 (ŵi − bwi )δt

] (13)

According to the equation of state and observation equation, the error equation of
IMU can be obtained as Formula (14).
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xyz
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

According to Formula (14), the variation formula of the covariance equation corre-
sponding to the error equation over time can be derived by using the error propagation
theorem, and the specific derivation form is referred to [57].

3.4.2. Vision Factor

The visual part is shown in Figure 11. Thanks to the lidar sensor, ranging information
from lidar point clouds can be used to provide depth information for visual features, and
with depth information, it is easy to obtain 3D (three-dimensional) coordinates of key
points. In addition, the threshold is used to judge and screen out the key points of the
wrong depth information. The method of triangulation within the sliding window is used
to recover the 3D coordinates of visual key points with incorrect depth information. The
above process ensures that the 3D coordinates of the visual key points are more robust.
Reprojection error constraints can be constructed in the sliding window to constrain the
pose. In addition, the coordinates of triangulated key points are optimized to ensure the
robustness of the coordinates of the triangulated feature points. The construction process
of the error constraint for the reprojection error is described below.

Figure 11. Structure diagram of visual restraint.

For the convenience of description, this study uses the pinhole camera model for
modeling. The image observation value of the feature point f in the i-th frame is (ûci

f , v̂ci
f ),

and the point is projected to the j-th frame based on the result of the IMU status prediction.
The coordinate of the feature point f in j-th frame can be calculated by Equation (15). The
coordinates of feature point f in j-th p̂

cj
f (û

cj
f , v̂

cj
f ) can be traced according to optical flow.

According to the predicted feature point coordinates and the feature point coordinates
of optical flow tracking, the reprojection error equation can be constructed, as shown
in Equation (16). Kc

−1 represents the inverse of the camera internal parameter matrix.
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Formula (17) is constructed by summing the square of all visual observation reprojection
errors. C represents the feature points observed at least twice in the sliding window. The
maximum likelihood estimation of state variables can be obtained by the nonlinear solution
of Equation (17) using the L-M method.

p
cj
f = Rc

b(R
bj
w(Rw

bi
(Rb

c
1
λl

Kc
−1(

[
ûci

f
v̂ci

f

]
) + pb

c) + pw
bi
− pw

bj
)− pb

c) (15)

rc(ẑ
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l , χ) = p̂
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l − p

cj
l

‖p
cj
l ‖

(16)

min
χ

⎧⎨
⎩ ∑

(l,i)∈C
ρ‖rc(ẑ

cj
l , χ)‖2

P
cj
l

⎫⎬
⎭ (17)

3.4.3. Lidar Factor

For time-stamped alignment with the vision sensor, the lidar data is divided and
merged and the horizontal field of view angle of the repackaged point cloud data becomes
one-third of the original when the frequency of the vision sensor is three times the frequency
of the lidar sensor. Therefore, it is also difficult to match between frames based on the
point cloud. It is necessary to build a local map to match the point cloud with the current
frame. Therefore, this scheme needs to be stationary for a period of time, so that the lidar
can fully scan and build a local map. When new time-aligned lidar data are received, we
project the point cloud to the point cloud end time as FAST-LIO do. Surface features and
line features are extracted from each frame of lidar and local point cloud map, and then
matching constraints based on features are constructed. In order to maintain more efficient
computing speed, ikd-Tree [35] is used for local map management and the nearest neighbor
search of feature points. The construction process of feature extraction and lidar constraint
is followed as LIO-SAM. Essentially, it minimizes the distance from the point to the line
and the distance from the point to the surface, as shown in Formula (18).

min
χ

{
n1

∑
i=0

dei +
n2

∑
j=0

dhj

}
(18)

dei represents the distance from the i-th line feature point to the line feature, dhj

represents the distance from the j-th plane feature point of to the corresponding plane. n1
and n1 represent the total number of line and surface features, respectively.

3.5. Local Sliding Window Optimization

The constraint factors constructed by different sensors all have common constraint
variables, and the different constraint factors are combined, as shown in Formula (19). The
first term

{
rp − Hpχ

}
in Equation (19) represents the marginalized prior information. The

Levenberg–Marquardt method is adopted in this paper to optimize the solution of the
constraint equation. The size of the window can be adjusted according to the performance
of the computer.

min
χ

⎧⎨
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k∈B
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l , χ)‖2

P
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+
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∑
i=0

dei +
n2

∑
j=0

dhj

⎫⎬
⎭ (19)

3.6. Loopback Detection

This paper is based on the Scan Context (SC) [29] algorithm of 3D lidar for loop closure
detection. In order to ensure that the lidar key frame can maintain a 360◦ field of view,
the key frame is combined with the previous two frames of lidar data to form a frame
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of point cloud data and projected to the end of the key frame point cloud. Scan Context
is calculated for each key frame and SC descriptors of different keyframes are matched
to find point clouds in historical keyframes that are similar to current keyframes, so as
to find loopback frames. It searches loopback frames by the similarity between the point
clouds of individual keyframes, so it is not affected by geometric distance, and the loopback
detection function can be completed even in large scenes. On this basis, the closed-loop
detection of the visual word bag model is added. When the loopback detection of the
above two methods is met at the same time, it is judged as a candidate frame. The sub-map
is constructed with candidate frames for point cloud matching with the current frame.
According to the matching situation, it is further determined whether it is a loop frame.
When there is closed-loop detection, visual-based loop constraint and lidar loop constraint
is added to the state estimation equation to minimize the cumulative error.

4. Experimental Setup and Evaluation

4.1. M2DGR Dataset

This paper uses the M2DGR dataset collected by Shanghai Jiao Tong University.
M2DGR is the SLAM dataset collected by the ground robot navigation, which includes the
look around RGB camera, infrared camera, event camera, 32-line lidar, IMU and original
GNSS information, as shown in Figure 12. The dataset covers challenging scenes both
indoor and outdoor, day and night, as shown in Figure 13. This paper selects 6 datasets
from M2DGR for testing in different challenging scenarios and Table 4 summarizes the
characteristics of different datasets.

 

Figure 12. Sensor integration platform.
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Figure 13. M2DGR dataset partial scenarios.

Table 4. The characteristics of different datasets in M2DGR.

Sequence Name Duration (s) Features

hall_02 128 random walk, indoor, day
room_02 75 room, bright, indoor, day
door_02 127 outdoor to indoor, short-term, day
gate_03 283 outdoor, day
walk_01 291 back and forth, outdoor, day
street_05 469 straight line, outdoor, night,

4.1.1. Mapping Effect

All experiments in this paper were conducted in the Intel i7-107500H CPU test en-
vironment with 24 gb RAM. In this paper, the proposed algorithm LVI-fusion is used to
test the mapping and positioning accuracy analysis. As shown in Figure 14, all scenes
can establish accurate 3D point cloud maps. Next, we will further analyze the positioning
track accuracy.
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(a) hall_02  (b) room_02  

  
(c) door_02 (d) gate_03 

  
(e) walk_01 (f) street_05 

Figure 14. The mapping results of the mode 3 proposed in this paper.

4.1.2. Precision Analysis

To show the positioning performance of LVI-fusion proposed in this paper, It can
be seen intuitively from Figure 15 that there is no big deviation between LVI-fusion’s
positioning trajectory and the truth trajectory, and the trajectory shape is basically the same.
The bar on the right of Figure 15 represents the error range and the unit is meters.

 

(a) hall_02  (b) room_02  

Figure 15. Cont.
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(c) door_02 (d) gate_03 

 
(e) walk_01 (f) street_05 

Figure 15. Track error of LVI-fusion proposed in this paper. Reference represents the truth value in
the dataset, represented by a dotted line. The colored trajectory indicates the LVI-fusion running
trajectory, and different colors indicate different degrees of error.

In order to further analyze the positioning performance of the LVI-fusion proposed
in this paper, this paper uses the RMSE (Root Mean Square Error) index to calculate the
positioning accuracy of the LVI-fusion. In addition, in order to better demonstrate the com-
petitiveness of the algorithm proposed in this paper, this paper uses the current outstanding
and representative SLAM schemes including VINS-Mono, A-LOAM, LIO-SAM, and LVI-
SAM to test the above 6 scenarios, respectively. Based on the above 10 scenarios, the RMSE
indicators of different SLAM schemes are shown in Table 5. The RMSE calculation formula
of the estimated trajectory based on different SLAM schemes is as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

‖ log (T−1
gt,iTesti,i)

∨ ‖2
2 (20)

where Testi,i and Tgt,i respectively represent the estimated pose and truth pose at time i,
respectively, where i = 1, · · · , N. Tables 5 and 6 show the positioning accuracy of different
SLAM schemes. Table 4 shows the odometer accuracy of different SLAM schemes without
Loop closure detection, and Table 6 contains the positioning accuracy after loopback
detection. Among them, A-LOAM does not have the loopback closure detection module, so
this paper only tests the accuracy of the front-end odometer for these two SLAM schemes.
It can be found from Table 5, that the positioning accuracy of the lidar-based positioning
scheme is generally better than that of the VINS-Mono scheme based on visual inertia
fusion. Among them, the positioning results of the proposed algorithm in this paper
are generally better than the A-LOAM, VINS-Mono, and LIO-SAM schemes except for
individual scenarios, showing the advantages of multi-source sensor fusion. Through the
positioning accuracy in different scenarios, it is found that the LVI-fusion can achieve better
positioning accuracy than LVI-SAM. This is because the coupling degree of the proposed

148



Remote Sens. 2024, 16, 1524

algorithm is higher, and all variables are optimized and solved at the same time. As can
be seen from Table 5, the accuracy of LVI-fusion proposed in this paper has a significant
advantage compared with the existing representative SLAM scheme, and the accuracy is
increased by more than 20% compared with the LVI-SAM scheme.

Table 5. Comparing the (rmse)/m results of VINS-Mono, A-LOAM, LIO-SAM, LVI-SAM and our
method based on M2DGR datasets (without loop closure).

Approach Hall_02 Room_02 Door_02 Gate_03 Walk_01 Street_05

VINS-Mono fail 0.462 1.653 5.838 9.976 fail
A-LOAM 0.208 0.121 0.168 0.246 3.303 0.657
LIO-SAM 0.399 0.125 0.124 0.111 0.891 0.407
LVI-SAM 0.279 0.123 0.186 0.113 0.885 0.394

LVI-fusion 0.214 0.103 0.117 0.104 0.627 0.371

Table 6. Comparing the (rmse)/m results of VINS-Mono, A-LOAM, LIO-SAM, LVI-SAM and our
method based on M2DGR datasets (with loop clousure).

Approach Hall_02 Room_02 Door_02 Gate_03 Walk_01 Street_05

VINS-Mono fail 0.311 1.522 5.838 9.976 fail
LIO-SAM 0.291 0.125 0.106 0.111 0.830 0.405
LVI-SAM 0.270 0.120 0.171 0.114 0.888 0.395

LVI-fusion 0.181 0.101 0.099 0.105 0.631 0.370

4.2. Low-Dynamic Environment

In this paper, data acquisition is carried out based on the tracked robot, which is
equipped with a camera, IMU, multi-line lidar (Robosense 16), and RTK (real-time kine-
matic) module for obtaining the truth value [58], as shown in Figure 16. The parameter
indicators of Lidar and IMU are shown in Tables 7 and 8. The left eye of the MYNT EYE
camera standard version is used as the image acquisition device, with an acquisition fre-
quency of 25 Hz and a resolution of 752 × 480. Since the IMU is built into the tracked robot,
it cannot be seen in Figure 16. We selected two representative scenes on the campus of
China University of Mining and Technology, namely the square scene, the road scene, as
shown in Figure 17, where the red trajectory is the positioning trajectory based on RTK.

Table 7. RS-LiDAR-16 parameters.

Parameter RS-LiDAR-16

Ranging range 20 cm~150 m
Distance measurement accuracy ±2 cm

Field of view angle horizontal 360◦
Vertical +15◦~−15◦

Angle resolution horizontal 0.2◦
Vertical 2◦

Collect points per second 28,800
scan period 0.1 s
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(a) robosense (b) IMU (c) MYNTEYE-S1030 

Figure 16. Mobile measurement platform based on tracked robot.

Table 8. IMU parameters.

Parameter Index

Accelerometer
Speed Random Walk

(ug/
√

hz)
57

Zero bias instability (ug) 14

gyroscope angle random walk(◦/
√

hr) 0.18
Zero bias instability (◦/hr) 8

magnetometer Noise (m Gauss) 3
Zero bias stability (m Gauss) 1

  
(a) Road scene  (b) Square scene 

Figure 17. Data acquisition environment satellite map.
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4.2.1. Mapping Effect

LVI-SAM is a multi- sensor fusion SLAM representative scheme based on graph
optimization. In this paper, mapping experiments based on LVI-fusion and LVI-SAM are
carried out based on the above three data, as shown in Figures 18 and 19. It can be seen
from Figures 18 and 19 that LVI-fusion’s drawing effect is clearer and more accurate.

(a) LVI-fusion (b) LVI-SAM 

Figure 18. Comparison of map construction effect based on LVI-SAM and LVI-fusion in the road
scene (the picture the arrow points to is a detailed enlarged photo of the box).

 
(a) LVI-fusion  (b) LVI-SAM 

Figure 19. Comparison of map construction effect based on LVI-SAM and LVI-fusion in the square
scene (the picture the arrow points to is a detailed enlarged photo of the box).
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4.2.2. Precision Analysis

In this paper, the EVO tool is used to draw the trajectory error graph of LVI-fusion, as
shown in Figure 20. Table 9 shows the RMSE of LIO-SAM, LVI-SAM and LVI-fusion. It can
be seen that the scheme proposed in this paper has the best precision and is more stable. In
low-dynamic scenes, it was found that LVI-fusion has the highest accuracy and LIO-SAM
has the lowest accuracy, and the multiple sensor fusion has more positioning advantages.
Due to the higher coupling degree of LVI-fusion, it can achieve better positioning accuracy
compared to LVI-SAM.

Figure 20. The colored trajectory indicates the LVI-fusion running trajectory, and different colors
indicate different degrees of error.

Table 9. Comparing the (rmse)/m results of LIO-SAM, LVI-SAM and LVI-fusion.

Approach
Road Scene

(m)
Square Scene

(m)

LIO-SAM 1.16 1.09
LVI-SAM 1.04 0.98

LVI-fusion 0.80 0.79

4.3. High-Dynamic Environment

In order to verify the robustness of LVI-fusion in a dynamic environment, this paper
selects the East gate of China University of Mining and Technology, a scene with abundant
dynamic targets, as shown in Figure 21. The red trajectory in Figure 21a is the motion
trajectory collected by the RTK positioning module. Figure 21b shows part of the data
acquisition scenario. As can be seen from Figure 21b, the East gate of China University
of Mining and Technology contains a large number of people, bicycles, electric vehicles,
and taxis and other dynamic targets around the mobile measurement platform. Figure 22a
shows the results of dynamic target segmentation based on the YOLOv7 dynamic target
detection algorithm. Figure 22b shows the effect of the static key point extraction.
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(a) Google satellite map (b) Data collection scenario 

Figure 21. Data acquisition of the 3D lidar/Vision/IMU dynamic scene.

(a) Dynamic target segmentation based on YOLOv7 (b) Static feature point extraction 

Figure 22. Static feature point extraction (The green dots represent the extracted key points).

LIO-SAM and LVI-fusion are representatives of multi-source fusion SLAM schemes
based on optimization. Figure 23 shows the positioning trajectory diagram of LIO-SAM,
LVI-SAM and LVI-fusion proposed in this paper. It can be seen that LVI-SAM has the
worst positioning effect in a dynamic environment. Due to the presence of a large number
of dynamic targets in the environment, incorrect point cloud information assigns values
to visual dynamic key points, further leading to incorrect matching of visual key points.
Therefore, the combination of the two is not as effective in positioning in high-dynamic
environments as the LIO-SAM scheme. Due to the removal of dynamic key points and the
use of only static key points for visual constraints, as well as the use of depth information
for judgment, LVI-fusion removes key points with incorrect assignment, resulting in better
localization performance compared to LVI-SAM and LIO-SAM. From Table 10, it can be seen
that LVI-fusion has the highest positioning accuracy, with a 26% improvement compared
to LIO-SAM and a 40% improvement compared to LVI-SAM. Figure 24 shows the mapping
results of LVI-SAM and LVI-fusion. It can be seen that LVI-fusion has higher mapping
quality, and no significant point cloud overlap appears.

Table 10. LIO-SAM, LVI-SAM, and LVI-fusion positioning accuracy.

Representative SLAM Scheme LIO-SAM LVI-SAM LVI-Fusion

RMSE(m) 1.201 1.548 0.890
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Figure 23. Positioning track of LIO-SAM, LVI-SAM and LVI-fusion.

  
(a) LVI-SAM (b) LVI-fusion 

Figure 24. Mapping effect of LVI-SAM and LVI-fusion.

5. Conclusions

This article proposes a robust SLAM scheme LVI-fusion for lidar/vision/IMU fusion.
This scheme proposes a sensor soft synchronization time alignment method and utilizes
lidar cloud depth assignment and triangulation to achieve a maximum number of image
key point depth recovery. In addition, this scheme utilizes the YOLOV7 object recognition
algorithm to eliminate the erroneous effects caused by matching key points in dynamic
environments, achieving robust multi-source fusion localization and mapping. The po-
sitioning accuracy on the M2DGR dataset indicates that LVI-fusion can achieve better
positioning accuracy compared to the current representative SLAM scheme. In addition,
data collection is carried out in low-dynamic and high-dynamic environments through
the built mobile measurement platform. Compared with the LVI-SAM scheme, LVI-fusion
improves positioning accuracy by about 20% in low-dynamic scenes and by about 40% in
high-dynamic scenes. The above results indicate that the LVI-fusion proposed in this article
has better positioning accuracy in both low-dynamic and high-dynamic environments.
And in dynamic environments, LVI-fusion has better robustness.

154



Remote Sens. 2024, 16, 1524

Although the LVI-fusion proposed in this paper can be robustly positioned and map-
ping, offline calibration is needed to transplant the algorithm to different hardware plat-
forms, which brings great inconvenience to cross-platform applications. Therefore, it is
an urgent problem to realize the high-precision and robust online calibration of external
parameters between each sensor based on LVI-fusion.
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Abstract: LiDAR-based simultaneous localization and mapping (SLAM) offer robustness against
illumination changes, but the inherent sparsity of LiDAR point clouds poses challenges for continuous
tracking and navigation, especially in feature-deprived scenarios. This paper proposes a novel
LiDAR/SINS tightly integrated SLAM algorithm designed to address the localization challenges in
urban environments characterized in sparse structural features. Firstly, the method extracts edge
points from the LiDAR point cloud using a traditional segmentation method and clusters them to form
distinctive edge lines. Then, a rotation-invariant feature—line distance—is calculated based on the
edge line properties that were inspired by the traditional tightly integrated navigation system. This
line distance is utilized as the observation in a Kalman filter that is integrated into a tightly coupled
LiDAR/SINS system. This system tracks the same edge lines across multiple frames for filtering and
correction instead of tracking points or LiDAR odometry results. Meanwhile, for loop closure, the
method modifies the common SCANCONTEXT algorithm by designating all bins that do not reach
the maximum height as special loop keys, which reduce false matches. Finally, the experimental
validation conducted in urban environments with sparse structural features demonstrated a 17%
improvement in positioning accuracy when compared to the conventional point-based methods.

Keywords: 3D LiDAR navigation; SLAM; tightly integrated navigation; LiDAR odometry and
mapping; urban structural feature weaken occasions

1. Introduction

In recent years, the domain of simultaneous localization and mapping (SLAM) [1]
has been an integral part of autonomous navigation, especially in environments where
the reception of global navigation satellite system (GNSS) signals is unreliable or absent
and where dynamic environmental conditions are the norm. SLAM aims to determine a
robot’s pose while simultaneously generating a map of its environment using onboard
sensors. This process occurs in environments that may be unknown or partially known.
The diversity of applicable sensors in use has naturally led to the bifurcation of SLAM
into two primary SLAM categories: LiDAR-based SLAM and visual SLAM. Visual SLAM
encompasses various subtypes, including monocular, stereo, and RGB-D [2]. LiDAR-
based approaches demonstrate superior accuracy in pose estimation and maintain robust
performance across varying environmental conditions, such as time of day and weather.
In contrast, visual SLAM, as illustrated in Figure 1, is highly susceptible to factors like
lighting and the availability of distinctive features, thus potentially limiting its effectiveness
in certain settings [3]. Therefore, this paper concentrates on navigation systems leveraging
LiDAR technology.
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(a) (b) 

 
(c) 

Figure 1. The figures illustrate the impact of the environment on different sensors; (a,b) show the
effect of darkness and illumination on the visual sensor, respectively, while (c) indicates that LiDAR
can work normally under such conditions.

The last two decades have witnessed significant strides in LiDAR-based SLAM
methodologies, fueled by advancements in computer processing power and optimiza-
tion algorithms. While machine learning-based LiDAR SLAM methods are constrained
by the scope and quality of training data, two primary categories dominate the current
landscape: normal distributions transform (NDT) [4] and iterative closest point (ICP) [5]
algorithm. The NDT approach, which has seen extensive application in 2D LiDAR SLAM
scenarios, entails the discretization of the point cloud data into a grid-like structure, the
computation of Gaussian distributions for each cell, and subsequent alignment-based
matching and fitting procedures [4]. However, the transition from 2D to 3D applications
has exponentially increased computational demands, posing a significant challenge in
meeting the stringent requirements for real-time processing [6]. To put it simply, when
classified solely based on the quantity of point clouds and meshes, the computational
data of the most basic 3D LiDAR are at least 16 times that of a 2D LiDAR, as they have
at least 16 scanning projection planes. Although efforts to mitigate this issue have been
made through algorithms such as SEO-NDT [7] and KD2D-NDT [8], they have occasion-
ally resulted in trade-offs concerning accuracy and processing time in certain scenarios.
ICP-based methods face similar challenges. However, the advent of LiDAR odometry and
mapping (LOAM) [9] has marked a pivotal shift in focus; LOAM focuses the iteration
process towards feature-rich points rather than the entire point cloud. This paradigm
shift has propelled the widespread implementation of LOAM-inspired ICP techniques in
addressing LiDAR SLAM challenges over the past decades.

LOAM distinguishes itself from conventional ICP techniques by classifying points in
the point cloud based on their smoothness. This involves identifying and extracting “edge
points”, which are characterized by coarse texture, and “planar points”, which exhibit
fine texture. Subsequently, the derived feature points are systematically selected through
a sector-based averaging technique. The system leverages these refined point clouds;
the system performs odometry calculations at a frequency of 10 Hz using LiDAR data.
Following the odometry computation, the aggregated point clouds are then employed for
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mapping at a reduced frequency of 1 Hz, thereby achieving a more accurate and efficient
representation of the environment. To address LOAM’s limitations in computational
demands and loop closure, Shan and Englot proposed LeGO-LOAM [10]. This method,
which stands for lightweight and ground-optimized LiDAR odometry and mapping, is
specifically tailored for real-time six-degrees-of-freedom pose estimation with ground
vehicles. However, further experiments have shown that the strategy of entirely segregating
ground points from the surrounding point cloud environment for separate matching can
result in a notable vertical drift. Furthermore, the methodologies for loop closure still face
certain challenges.

Li He and colleagues investigated the application of Multiview 2D projection (M2DP) [11]
to describe 3D points to achieve loop closure, but their findings showed limited scope and
efficacy. Scan Context [12] and its advanced iteration, Scan Context++ [13], were introduced by
Giseop Kim in 2018 and 2021, respectively. These innovative approaches have rapidly gained
recognition as leading solutions for loop closure in 3D LiDAR-based SLAM. This is a non-
histogram-based global descriptor that directly captures egocentric structural information from
the sensor’s field of view without relying on prior training. However, the aforementioned
methods and their derivatives, such as F-LOAM [14], do not utilize strapdown inertial
navigation systems (SINSs) or only use them for the rectification of LiDAR point clouds.

Compared to the mature field of vision-aided SINS, the integration of SINS and
LiDAR within LiDAR-based SLAM algorithms remains largely unexplored. A study [15]
employed a loosely coupled extended Kalman filter (EKF) to fuse IMU and LiDAR data
within a two-dimensional framework. However, this approach lacked the robustness to
handle the complexities of three-dimensional or multifaceted environments. Furthermore,
a scholarly review published in 2022 [16] emphasized that within the majority of current
systems employing the SINS/LiDAR integration systems, the SINS primarily functions
to smooth trajectories and mitigate distortions. IMU data are often optionally integrated
to predict platform motion and enhance registration accuracy during abrupt maneuvers.
However, only gyroscopic measurements between consecutive LiDAR scans are utilized.
Although these studies and related works often self-identify as “loose integration” based
on the data fusion strategies outlined in this article, a more accurate designation would be
“pseudo integration”.

As illustrated in Figure 2, the concept of loose integration in LiDAR/SINS systems
can be redefined from the GNSS/SINS loose integration navigation system. This approach
involves combining position and other navigation data obtained from different sensors.
In this process, none of the sensors involved in the integration have undergone in-depth
data integration, but only a simple integration of the navigation results. By applying this
redefined concept of loose integration, it becomes evident that studies such as [17,18], while
claiming to employ tight integration, actually align more closely with the characteristics
of loose integration. Specifically, these studies treat the individual systems as black boxes,
focusing solely on integrating their outputs to generate the final navigation solution rather
than performing in-depth data extraction and analysis.

To achieve a deeper level of sensor fusion than loose integration, the integration pro-
cess should occur before the generation of individual navigation solutions. For instance,
in a GNSS/SINS system, this translates to integrating data during the pseudorange mea-
surement stage, prior to GNSS position determination. A key advantage of tightly coupled
GNSS/SINS integration [19] over the loosely coupled approach is its reduced reliance
on a high number of visible satellites. This integration scheme can function even with a
single observable satellite, unlike loose integration, which typically requires at least four.
Investigating tight integration within SLAM systems necessitates understanding the nature
of the data employed for navigation. In LiDAR-based systems, these data comprise point
clouds, while vision-based systems utilize feature point information. Some studies [20,21]
have demonstrated that within the SLAM framework, the concept of lines exhibits greater
stability than points, particularly during data transformations (rotation and translation)
across multiple frames. Similarly, research on multi-frame feature tracking within multi-
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state constrained Kalman filters for vision-aided inertial navigation [22] has validated
the enhanced accuracy and robustness of this approach compared to traditional methods.
This has led to the development of a prototype tightly integrated LiDAR/SINS navigation
system that utilizes line features extracted from the LiDAR point cloud as observations.
The system employs continuous, multi-frame tracking of these line features to refine the
SINS data. However, due to the sparse nature of the LiDAR point cloud, it is difficult
to accurately track the same line. Consequently, revisiting the concept of distance as a
measurement, akin to its application in GNSS/SINS systems, becomes crucial. Notably,
distance, being a scalar quantity, offers a significant advantage—rotational invariance. This
property can substantially reduce the computational burden of the integration process. The
algorithm’s core principle centers on leveraging shared features, specifically line distances,
across multiple frames to enhance Kalman filter accuracy. In summary, this paper presents
the following contributions:

1. This paper refines the edge point extraction process of the LOAM algorithm by
implementing a more granular clustering approach. By classifying clustered edge
points as either convex or concave, the mapping precision is enhanced. Leveraging
the rotational invariance of line distances, a Kalman filter is developed that employs
line distance error as its primary observation metric. This approach improves the
system’s robustness and accuracy.

2. This paper presents structural modifications to the LOAM algorithm that are predi-
cated on the Scan Context framework to optimize its performance and ensure the data
processing occurs more efficiently. The experiments have proven that the situation of
incorrect loop closures in LiDAR SLAM has been mitigated effectively.

3. Extensive experiments conducted in various on-campus and off-campus environments
validate the proposed algorithm and offer comparisons with traditional methods.
These experiments highlight the superior performance of the proposed algorithm.

Do not combine, only use 
SINS data for interpolation 

or weighted averaging

Combine the velocity and 
position outputs from 

GNSS with SINS

Estimate the pseudorange 
of GNSS satellites using 

SINS data for combination.

SINS data are solely used 
for smoothing and 

eliminating distortions.

Combine the attitude and 
position outputs from 

LiDAR with SINS

Use SINS to estimate the 
line distances of the LiDAR 

point cloud and perform 
the combination.

Pseudo Integration

Loose Integration

Tight Integration
 

Figure 2. Use the concept of traditional SINS/GNSS integrated navigation systems to redefine the
LiDAR integrated navigation system.

2. Method

This section outlines the workflow of our algorithm. This includes an insightful
overview of the foundational principles that govern the pertinent hardware components,
coupled with a thorough elucidation of the methodologies employed for the preprocessing
of data. Section 3 will then delve into the system error model and measurement model,
providing a comprehensive analysis of these crucial framework elements. Additionally, to
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elucidate the algorithmic details, the subsequent sections of this paper will operate under
the assumption that the LiDAR point cloud was sourced from a 16-line LiDAR system
by default. This is representative of commonly used systems such as Velodyne’s VLP-16
(Velodyne Acoustics GmbH, Hamburg, Germany) and the LeiShen MS-C16 [23] (Leishen
Intelligent System Co., Ltd., located in Shenzhen, China) employed in the experiments
of this paper. These systems, with a horizontal angular resolution of 0.2◦ and a vertical
resolution of 2◦, generate a range image of 1800 by 16 pixels [23]. This translates to a point
cloud with 16 projection planes, each containing 1800 points.

2.1. Algorithm Overview

Figure 3 provides the overview of a tightly integrated LiDAR/SINS SLAM algorithm.
Let P be the original points received in a laser scan. However, because scanning occurs
over a timeframe t (typically exceeding 0.1 s), the resulting point cloud represents the
environment over this duration rather than instantaneously. Consequently, in dynamic
environments, the recorded point cloud may exhibit distortions caused by movements,
particularly pronounced during significant angular variations. To mitigate this, it is essential
to utilize the high-frequency motion data provided by the SINS to project all points onto
the reference timestamps, either the beginning of the period tk−1 or the end tk.

LiDAR

Point cloud registration 
and distortion removal

Point cloud classification

10 Hz LiDAR odometry

1 Hz LiDAR mapping

Keyframe extraction

Scan-Context based 
loopback check

SINS

Navigation algorithm 
computation

Reference line 
distance estimation

Extended Kalman filter 
and IMU error estimation

Point cloud line extraction 
and distance calculation

Vehicle navigation result 
output in global frame

10 Hz Points
Cloud Output

100 Hz

1 Hz Error Correction

100 Hz Vehicle Navigation 
Data in Body Frame

100 Hz Inertial
Data Output

Figure 3. The algorithm overview of SINS-based 3D LiDAR tightly integrated SLAM.

After processing, the point cloud is denoted as P̂ and proceeds to the next stage. Here,
each point undergoes a meticulous classification into four categories based on its properties:
(a) ground points, representing the surface on which the vehicle travels; (b) planar points,
indicative of flat surfaces except the ground; (c) edge points, which demarcate boundaries
or the perimeter of objects; and (d) the others, encompassing all points that do not fit
into the previous categories. The subsequent section will elaborate on the point cloud
classification technique, ensuring a thorough understanding. All points outside the ground
in a key frame are compressed into scan context descriptors, and the key frames are set
based on distance and the structure of the point clouds. Concurrently, after the clustering
process, edge points are re-extracted to form edge lines. These edge lines will then serve
as a basis for further computation of the reference line distances and facilitate tightly
coupled filtering.

The LiDAR/SINS odometry primarily relies on the SINS navigation results, and the
outputs further processed by LiDAR mapping, which matches and registers the undistorted
point cloud onto a map at a frequency of 1 Hz. The Scan Context system performs loop
closure detection based on both time and the distance traveled. When the similarity
measure in the loop closure detection reaches a certain threshold, it is considered that the
vehicle has returned to a previously visited location. Subsequently, the system optimizes
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the overall trajectory using this information. Successful loop closure detections will also
contribute to the refinement of the SINS navigation and Kalman filtering processes.

2.2. Point Cloud Classification and Point Cloud Lines Extraction

Figure 4 shows the undistorted raw point cloud, ground points, edge points, and
planar points, as well as edge line points, respectively. The following will detail the
extraction methods for each point type.

  
(a) (b) 

  
(c) (d) 

Figure 4. Feature extraction process for a scan in noisy environment. The original point cloud is
shown in (a). (b) The red points are labeled as ground points. The rest of the points are the points that
remain after segmentation. This method will be shown in Section 2.2.1. (c) Green and pink points
indicate edge and planar features, which are mentioned in Section 2.2.2. (d) The blue points represent
edge line points. The specific extraction method is explained in Section 2.2.3.

2.2.1. Ground Points

LeGO-LOAM employs a straightforward and efficient ground point extraction method,
which involves specifically examining the 8 lines out of the total 16 that are positioned
below 0◦ for detection [23].

In point cloud P̂, point clouds are labeled with rings and scan sequence; let pi,j ∈ P̂,
i = 1, 2, 3 · · · 16, and j = 1, 2, 3 · · · 1800. As shown in Figure 5, to calculate the angle between
adjacent points pi,j and pi+1,j, this paper assumes their coordinate differences are denoted
as di f f x, di f f y and di f f z. The angle θ could be set as:

θ = tan−1
(

di f f z,
√

di f f x2 + di f f y2
)

(1)
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2 2( x y )diff diff

z
di
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Figure 5. Ground points extracted from the point cloud P̂.

Once θ < 10◦, points are marked as candidate ground points. Furthermore, an
advanced point cloud sieving process [24] will utilize the RANSAC (random sample
consensus) [25] technique to confirm the identification of ground points. This step is critical
to avoid the misclassification of non-ground points as ground points, thereby ensuring
the accuracy and reliability of the ground detection process. The fitted ground equation is
as follows:

Ax + By + Cz + d = 0 (2)

Then, an image-based segmentation method [26] is applied to the range image to
group points into many clusters. Points from the same cluster are assigned a unique label.

2.2.2. Edge and Planar Points

The feature extraction process is similar to the method used in [9]; but, instead of
extracting from the raw point cloud P̂, we exclusively utilize the portion of the point cloud
that remains unmarked as ground points. Let S be the set of points of pi from the same
ring of the point clouds. Half of the points are on either side of pi. The set for this paper
is presented in Table A1. Using the range values computed during segmentation, we can
evaluate the roughness of point pi in S,

c =
1

|S|·‖ri‖

∥∥∥∥∥ ∑
j∈S,j �=i

(
rj − ri

)∥∥∥∥∥ (3)

where rj means the range from pi to the center of LiDAR.
Similar to LOAM, we use a threshold cth to distinguish different types of features. We

call the points with c larger than cth edge points, and the points with c smaller than cth
planar points. Then, we sort the edge and planar points from minimum to maximum. The
point cloud is segmented into several distinct parts, and a specific number of feature points
are extracted from within each segment.

Following the extraction of feature points, another attribute will be computed, specifi-
cally, the concavity or convexity of the edge points. Figure 6 shows the difference between
the concave points and convex points. Compare the distances between a specific point pi
and the remaining points within set S. If the majority of these points have distances greater
than that of pi, then pi is considered a convex point. Otherwise, it is a concave point.
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Figure 6. The concavity or convexity of the edge points.

2.2.3. Edge Lines

After classifying edge points as concave or convex, this paper employs K-means
clustering [27] to group them into lines. Similarly, these lines will inherit concavity or
convexity from the points that constitute them. This choice of using edge lines instead of
individual edge points for subsequent computations stems from the inherent sparsity of
LiDAR point clouds. Ensuring the capture of the exact same point across consecutive scans
is a challenging proposition. In contrast, lines, when considered as collective entities, offer
a higher degree of continuity and are much more amenable to persistent tracking. This
approach enhances the reliability and robustness of the subsequent processing steps.

Section 3 will elaborate on the method for calculating point-to-line distances and the
line selection criteria.

2.3. Scan Context

Scan Context was inspired by Shape Context [28], proposed by Belongie et al.; it is an
algorithm for place recognition using 3D LiDAR scans. It works by:

1. Partitioning the point cloud into bins based on azimuthal and radial directions.
2. Encoding the point cloud into a matrix where each bin’s value is the maximum height

of points within it.
3. Calculating similarity between scan contexts using a column-wise distance measure.
4. Employing a two-phase search for loop detection that is invariant to viewpoint changes.

Figure 7 shows the bin division along azimuthal and radial directions. Using the top
view of a point cloud from a 3D scan, the paper [10] partitioned ground areas into bins,
which were split according to both azimuthal (from 0 to 2π within a LiDAR frame) and
radial (from center to maximum sensing range) directions. They referred to the yellow area
as a ring, the cyan area as a sector, and the black-filled area as a bin.

 

Figure 7. The scan context bins.

However, assigning the maximum height of points within a bin a value in the scan
context can be problematic in certain situations. As depicted in Figure 8, due to the forma-
tion principle of LiDAR point clouds, the point cloud does not fully unfold at close ranges,
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which may result in the highest point not accurately representing the actual environmental
point cloud.

 
Figure 8. Close-range point cloud scanning scenario in Cloud-Compare software (2.13).

A straightforward and effective solution is to perform a ring-based search for the
highest point. If the highest point lies within the outermost ring of the 3D LiDAR and is
lower than the adjacent bins, an additional annotation is made to record that the highest
point has not been detected. The marked bin can then serve as a ring-key in scan context
for the initial match.

Simultaneously, because the point cloud distribution is dense near and sparse far, for
each point cloud P selected as a key frame, we can first calculate its centroid:

P̂(O) =
1
n∑ pi,j, pi,j = pi,j − P̂(O) (4)

where n is the total number of the point cloud and pi,j is the point cloud pi,j transformed
back to the center of the original point cloud.

As is shown in Figure 9, the transformed point cloud will have a common center,
which will save a significant amount of time in subsequent scan context description and
matching processes.

 
Figure 9. Transformed point clouds stacked in Cloud-Compare software (2.13).

3. LiDAR/SINS System Model

3.1. System Error Model

The SINS integrated navigation system error model was designed following the list
in [29]:

δ
.
x = Fδx + Gw (5)

F =

⎡
⎢⎢⎢⎢⎣

F11 F12 03∗3 03∗3 03∗3
F21 F22 F23 03∗3 Rn

b
F31 F32 F33 Rn

b 03∗3
03∗3 03∗3 03∗3 F44 03∗3
03∗3 03∗3 03∗3 03∗3 F55

⎤
⎥⎥⎥⎥⎦ (6)
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The specific parameters in Equation (6) can be referred to in Equation (A1). And
φ and λ are local latitude and longitude. RM and RN are meridian radius and normal
radius. The h is the geodetic height. Rn

b is the transformation matrix from body frame to
navigation frame.

For system state variables, δx =
[
δpn, δvn, δan, bn

ω, bn
f

]T
, δpn denotes the positional

errors in longitude, latitude, and height. δvn presents the velocity errors related to the
three directions above. δan is the error attitude. bn

ω and bn
f are the sensor noise errors of the

gyroscopes and accelerometers, respectively.
The w is system noise, and the corresponding system noise matrix is given by:

G =
[
09∗1

√
2βωxσ2

ωx

√
2βωyσ2

ωy
√

2βωzσ2
ωz

√
2β f xσ2

f x

√
2β f yσ2

f y

√
2β f zσ2

f z

]T
(7)

where βωx, βωy, and βωz denote reciprocals of the correlation times of the autocorrelation
sequence of bn

ω while β f x, β f y, and β f z are related to bn
f . The σ2

ωx, σ2
ωy, σ2

ωz, σ2
f x, σ2

f y, and σ2
f z

are variance associated with gyroscope and accelerometer errors.

3.2. The Observation Model

Traditionally, LiDAR-IMU integration has followed a loosely coupled approach. The
observation variables of the model defined as the estimated position errors are:

Z =

⎡
⎣φLidar − φSINS

λLidar − λSINS
hLidar − hSINS

⎤
⎦ (8)

However, this integration approach merely treats LiDAR and SINS as two black boxes,
simply combining their output results without any deeper level of mutual correction. This
paper draws on the concept of tight integration between GNSS and SINS, selecting the
error of the reference line distance d as the observation variable for filtering.

The selection of the error of d as the observation variable is based on the following considerations:

1. Frame invariance: In navigation systems, the relative orientation between the body
frame and the navigation frame continuously changes. Distance, however, remains
consistent across different frames.

2. Robustness to data loss: Compared to vision data, LiDAR point clouds are inherently
sparse. Using feature points and their associated information directly as observation
variables increases the susceptibility to data loss.

In three-dimensional space, the distance from a point L0 to a straight line that was
built by points L1 and L2 can be calculated as follow:

d =
|(L0 − L1)× (L2 − L1)|

|L2 − L1| (9)

Imagine the points L1 and L2 with coordinates (xl1, yl1, zl1) and (xl2, yl2, zl2), respec-
tively, and the origin of the vehicle or robot in time tk could be estimated as

∼
pk =

(∼
xk,

∼
yk,

∼
zk

)
while the ground truth is pk = (xk, yk, zk); the relationship between them is:

∼
pk =

⎧⎪⎨
⎪⎩

∼
xk∼
yk∼
zk

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

xk + Δxk
yk + Δyk
zk + Δzk

⎫⎬
⎭ (10)

where Δxk, Δyk, and Δzk are the position errors in the ENU directions and
δp = (Δxk/(RN+h)cosφ, Δyk/(RM + h), Δzk)′. The figure above represents the relationship
between the vehicle and the reference line in three-dimensional space, where L′

0 denotes
the actual position of the vehicle and L0 signifies the vehicle’s estimated position.
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The measurement parameter in the EKF system is:

Z = Δd = d′ − d (11)

As is shown in Figure 10, Δd is much smaller than d or d′; it can be approximately
considered that the normal vector to the line L1L2 connecting L′

0 and L0 is consistent. Then,
the relationship between Δd and δp could be set as follows:

Δd =
→
n .δp (12)

where
→
n =

(
nx, ny, nz

)
is the normalized vector from L0Ld. Meanwhile, the corresponding

system design matrix H is:

H =

⎡
⎢⎢⎢⎢⎣

nx1(RN + h)cosφ, ny1(RM + h), nz1, 01∗12
nx2(RN + h)cosφ, ny2(RM + h), nz2, 01∗12
nx3(RN + h)cosφ, ny3(RM + h), nz3, 01∗12

. . .
nxi(RN + h)cosφ, nyi(RM + h), nzi, 01∗12

⎤
⎥⎥⎥⎥⎦ (13)

where i is the number of reference lines selected in the integrated system. It will always be
changed with the changing of point clouds.

Ld'

L1

L2

Ld

d'

L0'
L0

d

Figure 10. The distance from a point to a line.

For the LiDAR/IMU EKF system, the formulation linking the system observation
variables and state variables is:

Z = Hδx + v (14)

where Z, H, and δx were defined previously and v represents the observation noise. As
mentioned above, the LiDAR point cloud is the covariance value of v. LiDAR point clouds
exhibit sparsity, and the uncertainty of a single point affects its entire surrounding space.
The surrounding space is a truncated segment of a torus. For ease of calculation, this paper
assumes it to be a rectangular prism, and its volume represents the covariance value of the
measurement noise v.

For example, imagine a special distance of the reference line d0. The covariance value
of the noise of d0 is d2

0
(
sin2 θh + sin2 θv

)
and θh is the horizontal separation angle of the

LiDAR device while θv is the vertical separation angle.
As mentioned above, i refers to the number of reference lines; in this stated equation,

this paper proposes that the following principles should be adhered to in controlling the
reference lines involved in the filtering process.

1. Region division: The point cloud is segmented into multiple regions based on the
scanning direction. Each region is characterized by the edge lines exhibiting distinct
convexity/concavity properties.

2. Reference line tracking: The position of each reference line is tracked across multiple
frames using SINS transformations. This ensures the consistent matching of the same
reference line over an extended period.
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3. Dynamic reference line management: Due to the inherent sparsity of point clouds, ref-
erence lines exceeding a predefined distance threshold are discarded. New reference
lines are introduced to maintain robust matching.

3.3. Tracking of Reference Lines

1. The selection rules of the reference lines are mentioned in Section 3.2. Here, the
tracking of these lines will be revealed with details.

2. As mentioned in Section 2.3, scan context built a series of point bins to extract the point
cloud information. Imagine the attitude transformation matrix during the tracking
period is R3∗3 while the t3∗1 represents the displacement provided by SINS. The
projections L′

1, L′
2 of points L1 and L2 in the new point cloud could be calculated in

Equation (12): [
L′

1
1

]
=

[
RT

3∗3 −t3∗1
01∗3 1

][
L1
1

]
(15)

3. Connect L1 and L2 to obtain the scan context bins they pass through. By statistically
analyzing these bins with their adjacent bins, select the edge line Lnew that is also
located in the same bin area. To further determine whether it is derived from a change
in the original edge line, in addition to judging its concavity and convexity as well as
the concavity and convexity and distance of the closest edge line, a further similarity
analysis can be conducted on the line vectors.

s = 1 −
→

L′
1L′

2.
→

Lnew
→∥∥L′
1L′

2

∥∥ →
‖Lnew‖

(16)

4. The smaller the value of s is, the higher the similarity between the two lines is. Based
on the above conditions, it can be determined whether the new edge line is the target
that needs to be tracked. The final threshold selection for this paper can be referred to
in the data presented in Table 1.

Table 1. Parameters of method in this paper.

Parameters Value

Separated Point Cloud Region 8
Reference Line Distance Threshold 80 m

Set of Points 10
Edge Line Similarity Detection Threshold 0.01

4. Experiment

4.1. Algorithm Parameter Settings

As mentioned in the above text, the algorithm parameter settings for the relevant
experiments of this paper are all listed in the Table 1.

4.2. Sensors System

All the sensors were mounted on a sport utility vehicle (SUV) for data collection. The
LiDAR unit and the GNSS antennas were installed on the roof, while the SINS equipment
and power supply were secured within the SUV.

Figure 11 depicts the experimental setup, which utilized a high-performance fiber-
optic gyroscope navigation system (Self-developed experimental equipment of Harbin
Engineering University, Heilongjiang, China.) integrated with a GNSS receiver (K823 GNSS
receiver, ComNav Technology Ltd., Shanghai, China) to provide ground truth data. Table 2
summarizes the specifications of this system. The precise alignment of sensor positions
is crucial to minimize navigation errors arising from lever arm effects. Therefore, the
central positions of all sensors were carefully measured and aligned with the azimuth axis.
Detailed measurement data are available in Table A1. Note that this table omits sensors
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with less stringent relative positioning requirements, such as the magnetometer used for
initial SLAM orientation.

  
(a) (b) 

Figure 11. The experimental hardware: (a) shows the 3D LiDAR and GNSS antenna while (b) shows
the GNSS processing, fiber optic gyroscope, and MEMS.

Table 2. The specifications of reference integrated navigation system.

Reference Accuracy Specifications

Pitch <0.02◦
Yaw <0.02◦

Heading <0.05◦
Velocity (Integrated) <0.1 m/s

Positioning (Integrated) <1 m
Output Rate 100 Hz

The LiDAR sensor employed in this study was the Leishen 16 Line 3D-LiDAR, with
performance parameters detailed in Table 3.

Table 3. The performance parameters of 3D-LiDAR.

Performance Parameters

Detection Range 200 m
Point Rate 320,000 pts/s (single echo)

Distance Measurement Accuracy ±3 cm
Laser Wavelength 905 nm

Maximum Echo Count for Reception 2
Scanning Channels 16

Field-of-View Angle 360◦ × −15◦~15◦
Scanning Frequency 5~20 Hz
Angular Resolution 5 Hz: 0.09◦/10 Hz: 0.18◦

Power Supply Range 9 V~36 V DC
Operating Temperature −20 ◦C~55 ◦C

Table 4 lists the performance parameters of the ADIS16445 (Analog Devices, Inc.,
Wilmington, MA, USA) Micro-Electro-Mechanical System (MEMS), a complete inertial
system comprising a tri-axial gyroscope and a tri-axial accelerometer. The UM6 (Clearpath
Robotics, Kitchener, ON, Canada) magnetometer provided a static heading with an accuracy
of better than 2◦, serving as the initial heading for the system. Similarly, the GNSS receiver
provided the initial longitude, latitude, and altitude.

Data processing was performed on a laptop equipped with an Intel i7-6700 CPU,
a GT960m graphics card, and 12 GB of RAM. The operating system was Ubuntu 16.04,
running the ROS (robot operating system) kinetic distribution. This software environment
supports both sophisticated data simulation and advanced graphical rendering.
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Table 4. The performance parameters of ADIS16445.

Performance Parameters

Gyroscope Dynamic Range ±250◦/s
Gyroscope Sensitivity 0.01◦/s

Gyroscope Nonlinearity ±0.1%
Gyroscope Bias Stability 12◦/h
Angular Random Walk 0.56◦/

√
h

Accelerometer Dynamic Range ±5 g
Accelerometer Sensitivity 0.25 mg

Accelerometer Nonlinearity ±0.2%
Accelerometer Bias Stability 0.075 mg

Velocity Random Walk 0.0735 m/s/
√

h
Bandwidth 330 Hz

Output Rate 100 Hz

4.3. Experimental Area

All data in the paper were collected in April 2023 at Harbin Engineering University and
its surrounding areas, with geographic coordinates approximately at 126.68◦ longitude and
45.77◦ latitude and an elevation of about 130 m. Based on the actual driving environment,
the driving speed of the SUV in different experiments was controlled between 15 km/h
and 30 km/h.

4.4. Result and Analysis

As shown in Figure 12, this work compared two currently popular LiDAR SLAM
methods with the algorithm proposed in the text. When the information is relatively
rich, both LOAM and the algorithm presented in this paper achieved satisfactory results.
However, due to the incorrect loop closure judgment at the end, SC-Lego-LOAM resulted in
a certain deviation in the overall outcome. When the scene information was not sufficiently
rich, such as in Figure 13, the LOAM algorithm exhibited attitude deviations at the end,
which led to errors in the navigation results. In contrast, SC-Lego-LOAM encountered
more severe errors in loop closure, rendering it entirely inoperative.

Data_1 was collected at 6 PM on 4 April 2023, near Building 61 of Harbin Engineering
University, with a total traveled distance of 1460 m. In this scenario, the SUV’s route
was to circle around the building for two laps, and the main purpose of the scene setup
was to verify the effectiveness of the algorithm in the paper under general environmental
conditions. In the initial 1000 m, SC-Lego-LOAM maintained relatively good performance.
However, after the final incorrect loop closure, the total distance was re-optimized, which
led to a significant misalignment between the final distance and the azimuth angle. The
method presented in this paper performed similarly to LOAM in the early stages, but
because the original LOAM lacked loop closure detection functionality, its errors were
bound to increase over time. Table 5 provides an overall summary of that experiment.

Data_2 was collected at 5 PM on 5 April 2023, near the parking lot of Harbin Engi-
neering University, with a total traveled distance of 1403 m. As is shown in Figure 14
and Table 6, the structural feature weakened near the parking lot; the lack of structural
features caused matching issues with the algorithm that relied on points. The experiment
was mainly designed to demonstrate the stability of the algorithm in this paper relative
to the comparative algorithms under the preset conditions of this paper. Judging from
the comparison of results, the incorrect loop closure (red circle) by SC-Lego-LOAM led
to severe issues once again, causing the method to fail entirely in this set of experiments.
After the first loop closure, LOAM began to accumulate heading errors, which resulted
in the continuous amplification of positioning errors in the subsequent SLAM due to the
heading deviation.
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Figure 12. The result of LiDAR SLAM in Data_1: (a) was built by the LOAM; (b) was built by
SC-Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct
comparison between various algorithms; (e) represents the positioning errors of the algorithms
measured in meters.
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(c) (d) 

 
(e) 

Figure 13. The result of LiDAR SLAM in Data_0405: (a) was built by the LOAM; (b) was built by
SC-Lego-LOAM; (c) shows the mapping result of the method from this paper; (d) depicts a direct
comparison between various algorithms; (e) represents the positioning errors of the algorithms
measured in meters.
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Table 5. The performance of SLAM methods for Data_1.

Method LOAM SC-Lego-LOAM Method in Paper

Avg. Positioning Error (m) 3.89 4.14 3.33
Final Heading Error (◦) 2.17 5.43 2.32

Max Positioning Error (m) 6.17 10.12 5.32
Travel Distance Error (m) 17 18 13

 
Figure 14. The point clouds near the parking lot.

Table 6. The performance of SLAM methods for Data_2.

Method LOAM SC-Lego-LOAM Method in Paper

Avg. Positioning Error (m) 5.79 Failed 2.25
Final Heading Error (◦) 6.22 Failed 1.02

Max Positioning Error (m) 15.17 Failed 4.12
Travel Distance Error (m) 22 Failed 11

The remaining data were also collected from 3–5 April 2023, at Harbin Engineering
University and its surrounding areas. Data_3 had a loop closure point available shortly
after the start, which could be used to eliminate accumulated errors. Data_4 featured
a longer segment of nearly straight-line travel. These two sets of experiments were not
designed intentionally with specific scenarios. They were standard test experiments; hence,
they are not elaborately compared in detail within the text but are listed as supplementary
experimental data in the Table 7.
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Table 7. Comparison of positioning errors for other data.

Data LOAM SC-Lego-LOAM Method in Paper Travel Distance

Data_3 28.79 m 18.12 m 14.17 m 2205 m
Data_4 16.73 m 9.25 m 10.34 m 2234 m

5. Discussion

5.1. Results’ Interpretation and Contribution

It redefines the fundamental computational unit in LiDAR SLAM by shifting the
focus from LiDAR regression to an INS, rather than treating it as merely an accessory to
LiDAR. The high-frequency output from the SINS navigation significantly reduced the
computational load on the odometry component of LiDAR SLAM, thereby enhancing the
accuracy of its positioning results.

In conventional scenarios, the performance of the algorithm proposed herein was
comparable to that of LOAM. However, in scenarios where structural features were sparse
or lacking, the algorithm demonstrated superior performance. The experimental results
indicate that, while the algorithm achieved results similar to LOAM under typical con-
ditions, it excelled in environments with limited structural features. In experiments that
satisfied loop closure conditions, its relative advantage was even more pronounced. The
relative accuracy improved by approximately 17%. From Figure 12, it can be observed
that, in a general scenario, although the algorithm in the paper achieved good results, its
basic performance was consistent with the other two algorithms. This scenario was only to
verify the universal applicability of the algorithm in the paper, so there was no significant
improvement in the specific comparative data. Figure 13 (DATA_2) is a preset scenario for
the paper. Excluding the SC-Lego-LOAM algorithm, which was eliminated due to loop
closure failure, from the error in Figure 13e, it can be seen that, after entering the parking
lot environment, the error of the LOAM algorithm began to gradually increase, while the
algorithm in the paper maintained a stable trajectory tracking. This fully demonstrated
that the algorithm proposed in the paper achieved optimization for special scenarios while
maintaining universality.

At the same time, this paper reorganizes and extracts the inherent characteristics of
the point cloud. It goes a step further in the use of points, focusing the application of
LiDAR point clouds on the edges that are less susceptible to the sparsity of point clouds
and frequent changes in attitude matrices. This virtual edge composed of edge points
is inherently a form of clustering. As long as points that meet the clustering criteria can
be scanned, they can be continuously tracked in LiDAR SLAM and used to correct the
positioning results of SINS. Of course, considering that the density of the point cloud has
an attenuation characteristic with distance, in actual selection, further screening will only
be carried out when a cluster contains at least four consecutive points and the line length
exceeds 1 m. The selection of line distance rather than points, lines, or surfaces as the
observation variable effectively reduces the computational load of the filter and increases
the feasibility of real-time computation on low-performance devices.

For LiDAR SLAM loop closure based on scan context, the paper also makes certain
rules changes. Experiments have proven that it can effectively reduce the occurrence of
incorrect loop closure points and thereby enhance the overall accuracy of SLAM.

Although LiDAR SLAM algorithms based on machine learning have achieved excel-
lent results, for in-vehicle processors, due to limitations in size and power, it is still difficult
for their core to meet the real-time requirements in navigation. This work provides another
feasible path within traditional algorithms.

5.2. Further Research

The experimental results presented in this paper demonstrate that the algorithm pro-
posed within the text has superiority over traditional algorithms in both the odometry and
mapping components of LiDAR SLAM. However, the results for Data_5 also indicate that in
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complex long-distance environments, relying solely on LiDAR and SINS for navigation still
cannot achieve long-term precise positioning. This suggests that the algorithm presented
in the paper should only be used as a supplementary method to maintain the original
navigation accuracy when GNSS signals are lost, rather than a complete substitute, in urban
environments. In future research, exploring how to integrate GNSS-related data to further
enhance the performance of LiDAR SLAM will be investigated.

Additionally, another point that requires attention is that, similar to other LiDAR
algorithms, the divergence issue in the height channel of the algorithm presented in the
paper has not been significantly improved. When the LiDAR is scanning in open areas
(such as forest trails), it becomes extremely difficult to obtain lateral edge lines, and at
this point, 3D LiDAR SLAM can degrade to a performance like that of 2D LiDAR SLAM.
Furthermore, how to further subdivide and utilize ground points will also be one of the
key research projects’ focuses in the future.

6. Conclusions

This paper presents a novel LiDAR/SINS tightly integrated SLAM algorithm designed
to address the localization challenges in urban environments characterized by sparse
structural features. Building upon the LOAM framework, the algorithm introduces further
processing of LiDAR point cloud classification to extract edge lines through clustering.
Leveraging the rotational invariance of distance, the algorithm constructs a Kalman filter
system based on the distance variation in edge lines. This approach contributes to enhanced
robustness and positioning accuracy.

Experimental results obtained in local urban scenarios demonstrated a 17% enhance-
ment in positioning accuracy when compared to traditional point-based methods, particu-
larly in environments characterized by sparse features. By proposing a line distance-based
observation model and detailing the associated EKF framework and parameter settings, the
proposed method redefines the concepts of loosely and tightly coupled integration within
LiDAR/SINS systems.

Future research will explore the integration of GNSS data to further enhance the
performance of the proposed LiDAR SLAM system, particularly in complex and long-
distance navigation scenarios. Additionally, key areas of focus for future work include
improving performance in open areas, particularly in the vertical channel, and optimizing
ground point utilization.

This study not only achieves significant algorithmic improvements over existing
methods but also paves a new technological pathway for autonomous driving and robotic
navigation applications.
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Appendix A

The parameter settings for F in Equation (6) are as follows:

F11 =

⎡
⎢⎢⎣

0 0 −
.
φ

RM+h
.
λtanφ 0 −

.
λ

RM+h
0 0 0

⎤
⎥⎥⎦, F23 =

⎡
⎣ 0 fu − fn
− fu 0 fe

fn − fe 0

⎤
⎦,

F12 =

⎡
⎢⎣

0 1
RM+h 0

1
(RN+h)cosφ

0 0
0 0 1

⎤
⎥⎦, F32 =

⎡
⎢⎣

0 1
RM+h 0

−1
RN+h 0 0
−tanφ
RN+h 0 0

⎤
⎥⎦,

F21 =

⎡
⎢⎣2ωe(vusinφ + vncosφ) +

.
λvn/cosφ 0 0

−2ωevecosφ −
.
λve/cosφ 0 0

−2ωevesinφ 0 2g/RN

⎤
⎥⎦,

F22 =

⎡
⎢⎢⎣
(vntanφ − vu)/(RN + h)

(
2ωe +

.
λ
)

sinφ −
(

2ωe +
.
λ
)

cosφ

−2ωevecosφ −
.
λve/cosφ −vu/(RM + h) − .

φ

−2ωevesinφ 2
.
φ 0

⎤
⎥⎥⎦,

F31 =

⎡
⎢⎣ 0 0 − .

φ/(RM + h)
ωesinφ 0

.
λcosφ/(RN + h)

−ωecosφ −
.
λ/(RN + h)cosφ 0

.
λsinφ/(RN + h)

⎤
⎥⎦,

F44 =

⎡
⎣−βωx 0 0

0 −βωy 0
0 0 −βωz

⎤
⎦, F55 =

⎡
⎣−β f x 0 0

0 −β f y 0
0 0 −β f z

⎤
⎦,

F33 =

⎡
⎢⎢⎢⎣

0 (ω e +
.
λ
)

sinφ −(ω e +
.
λ
)

cosφ

−(ω e +
.
λ
)

sinφ 0 − .
φ

(ω e +
.
λ
)

cosφ
.
φ 0

⎤
⎥⎥⎥⎦

(A1)

Table A1. The positions of different sensors relative to the FOG center.

Sensors Right Forward Up

MEMS 5.3 cm −22.5 cm −4.3 cm
LiDAR −32.5 cm 78 cm 113.5 cm

GNSS Antenna 21.5 cm 68.5 cm 83 cm
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Abstract: Point cloud registration is a crucial technique in photogrammetry, remote sensing, etc. A
generalized 3D point cloud registration framework has been developed to estimate the optimal rigid
transformation between two point clouds using 3D key point correspondences. However, challenges
arise due to the uncertainty in 3D key point detection techniques and the similarity of local surface
features. These factors often lead to feature descriptors establishing correspondences containing
significant outliers. Current point cloud registration algorithms are typically hindered by these
outliers, affecting both their efficiency and accuracy. In this paper, we propose a fast and robust
point cloud registration method based on a compatibility graph and accelerated guided sampling.
By constructing a compatible graph with correspondences, a minimum subset sampling method
combining compatible edge sampling and compatible vertex sampling is proposed to reduce the
influence of outliers on the estimation of the registration parameters. Additionally, an accelerated
guided sampling strategy based on preference scores is presented, which effectively utilizes model
parameters generated during the iterative process to guide the sampling toward inliers, thereby en-
hancing computational efficiency and the probability of estimating optimal parameters. Experiments
are carried out on both synthetic and real-world data. The experimental results demonstrate that
our proposed algorithm achieves a significant balance between registration accuracy and efficiency
compared to state-of-the-art registration algorithms such as RANSIC and GROR. Even with up to
2000 initial correspondences and an outlier ratio of 99%, our algorithm achieves a minimum rotation
error of 0.737◦ and a minimum translation error of 0.0201 m, completing the registration process
within 1 s.

Keywords: point cloud; registration; compatibility graph; accelerated guided sampling; correspondence

1. Introduction

Point cloud registration is a fundamental task in remote sensing [1,2], robot per-
ception [3,4], photogrammetry [5], and other fields, and has been applied to a variety
of technologies such as 3D reconstruction [6], structural health monitoring [7,8], target
recognition and localization [9], simultaneous localization, and mapping [10]. Due to the
fixed limitations of the laser scanner in terms of field of view and viewpoints, a single
data acquisition with fixed viewpoints can only capture part of the point cloud of a scene.
In order to obtain a complete 3D representation of the scene, it is necessary to fuse and
splice the point clouds with different viewpoints. The goal of point cloud registration lies
in estimating the optimal rigid transformation between the two point clouds in order to
accurately align the point clouds under different viewpoints.

The feature-based global registration method is the mainstream method for point
cloud registration [11]. It generally consists of two stages: the feature extraction stage and
the robust transform estimation stage. The feature extraction stage extracts key points
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and generates feature descriptors, and establishes the correspondence between two point
clouds based on the similarity of the feature descriptors between the points. The robust
transform estimation stage estimates the transformation parameters between two point
clouds based on the correspondence. Many well-differentiated point cloud description
methods have been proposed, such as FPFH [12], RoPS [13], SDASS [14], etc. However,
noise is still unavoidable, mainly due to (1) Most of the point clouds partially overlapping,
so the established correspondences may be inliers only if they are located in overlapping
regions, while correspondences in non-overlapping regions introduce a large number of
outliers. (2) The presence of many similar local surfaces in the point cloud, resulting in very
similar corresponding feature descriptors, and forming false correspondences. Since the
correspondences established in the feature extraction stage usually have a large number of
outliers, the reliability of the robust transform estimation is seriously affected. Therefore,
one of the difficulties in feature-based point cloud registration is how to select inliers from
the correspondence containing a large number of outliers and then accurately estimate the
transformation parameters.

In recent years, a large number of robust transform estimation methods have been
proposed. Random sampling consistency (RANSAC) [15] is the most commonly used
method in robust transform estimation. RANSAC solves the transform parameters by
iteratively sampling the minimum subset, and then selects the hypothesis of the maximum
number of inliers as the estimation parameter. RANSAC requires a large number of
iterations and does not guarantee obtaining the optimal solution, and, moreover, it cannot
deal with the situation where the outlier ratio is very high. In order to cope with the
problem of a very high outlier ratio in the correspondence, many methods choose to use the
geometric properties corresponding to the inliers to identify the inliers. GORE [16] utilizes
geometric consistency to exclude outliers. VODRAC [17] and RANSIC [18] establish the
minimum subset by judging the compatibility between the sampled points, and use the
compatible subset to generate the hypothesis transformation matrix. However, pairwise
consistency is not sufficient since outliers are equally likely to occasionally satisfy length
consistency. SC2-PCR [19] is further used to distinguish between inliers and outliers by
computing second-order spatial compatibility. These methods have been shown to be
effective in improving the parameter estimation problem in the case of a high outlier ratio,
but there are still some limitations, such as the extremely low computational efficiency
of RANSIC when the outlier ratio is too high, which limits the practical application of
the algorithm.

Despite the great progress made in current research, it is still a challenging task to
determine the inliers from correspondences containing a large number of outliers. Currently,
feature-based point cloud registration algorithms suffer from the following problems: (1)
Due to the diversity of scenes, the outlier ratio varies in different scenes, which limits the
robustness and adaptability of the algorithms. (2) When the number of correspondences
is high or the outlier ratio is too high, the parameter estimation process becomes very
time-consuming and inefficient. (3) How to select the inliers from a large number of
outliers and estimate the transformation parameters accurately is very difficult. To address
the problem of fast robust point cloud registration containing a large number of outliers,
we propose a fast robust point cloud registration algorithm based on a compatibility
graph and accelerated guided sampling, which can realize the accurate registration of the
corresponding point cloud that is seriously contaminated by the outliers, and, at the same
time, has a high computational efficiency. The contribution of this paper is mainly:

• Constructing a compatibility graph based on the compatibility between inliers and
proposing a minimum subset sampling method combining graph edge sampling and
graph vertex sampling to reduce the influence of outliers on the registration results.

• Introducing a preference-based accelerated guided sampling strategy that utilizes
the hypothetical model generated during the iterative process to guide the subse-
quent samples to be biased toward the inliers, achieving efficient and robust point
cloud registration.
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• Compared to many existing state-of-the-art methods, the proposed algorithm is able
to cope with a very high outlier ratio (outlier ratio > 99%) and strikes a remarkable
balance between registration accuracy and efficiency.

2. Related Works

A key step in feature-based point cloud registration algorithms is to establish the
correspondences between the source and target point clouds based on local feature de-
scriptors. Feature descriptors have been widely studied in the past decades, and tra-
ditional descriptors such as PFH [20], FPFH [12], SHOT [21], and RoPS [13] describe
the local geometric structure of the point cloud from different measurements. In order
to further improve the descriptive performance of descriptors, TOLDI [22], SDASS [14],
and KDD [23], introducing additional information such as local reference frame or point
density features can more effectively describe the local features of the point cloud and
generate more reliable correspondences. With the rapid development of deep learning
technology, learning-based descriptors have received more attention due to their excellent
differentiation and robustness. Learning-based local feature extraction modules usually use
frameworks such as point-pair features [24,25], local reference frame [26], and rotationally
invariant networks [27]. These learning-based feature description methods have good
generalization but are usually computationally inefficient. Recently, Transformer [28] has
also been successfully applied to 3D feature matching with promising results. Predator [29]
introduces an overlap-aware module based on self-crossing and self-attention. CoFiNet [30]
utilizes an attentional mechanism to aggregate the contextual information between two
piece point clouds. GeoTrans [31] employs a geometric Transformer module to encode
rotationally invariant geometric features of point clouds, which generates model assump-
tions using local correspondences and performs model validation using global fitness,
thus accomplishing local-to-global alignment. These algorithms are effective in detecting
overlapping regions and are shown to have the potential to solve the low overlap rate
registration problem. Although current feature-matching methods can establish robust
correspondences, a large number of outliers in the constructed correspondence set still
inevitably exist. Therefore, it is necessary to rely on model-fitting methods for robust rigid
transformation estimation.

The main robust estimation methods that have been used to solve the point cloud reg-
istration problem include M-estimation [32], truncated least squares [33], Lp-paradigm [34],
and RANSAC family [15]. Since a large number of outliers will inevitably exist in the initial
correspondence, how to estimate the accurate model parameters from the data containing
a large number of outliers is the difficulty of robust transformation. In order to solve this
problem, many researchers have proposed registration algorithms based on outlier filtering,
and the core of these methods lies in removing the wrong matches in the correspondences,
so as to avoid dealing with outliers in the registration process. Fast global registration
(FGR) [35] is one of the typical algorithms that removes outlier points by geometric tests,
then uses Geman McClure as the objective function and proposes a global method that
combines a line process with robust estimation to optimize the model parameter estimation
process. Similarly, Li et al. [36] constructed a topological graph based on correspondences,
then proposed a side-voting strategy to remove outliers, and proposed a Cauchy-weighted
Lq-paradigm as the cost function to achieve robust registration with a 90% outlier rate. A
guaranteed outlier removal strategy was introduced in GORE [16], which removes outliers
from correspondences by computing a simple geometric consistency test. A cleaner set of
correspondences is obtained, which guarantees a globally optimal solution, but its high com-
putational complexity leads to very low efficiency. CLIPPER [37] incorporated the concept
of geometric consistency into the graph theoretic framework by finding dense subgraphs
to determine the inliers. In order to improve the registration efficiency, Yang et al. [38]
introduced a truncated least squares cost that is insensitive to the outliers to deal with the
transformation parameter estimation problem, and rewrote the problem as a quadratically
constrained quadratic programming problem. They proposed a convex semidefinite pro-
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gramming relaxation for the optimal solution, which can achieve the computation of the
verifiable optimal solution under the condition of 95% outliers while guaranteeing effi-
ciency. Zhang et al. [39] proposed a point cloud registration approach based on a Maximal
cluster (MAC). MAC first constructs the initial correspondence compatibility graph, then
searches for the largest clusters in the graph, and finally selects the largest clusters with
large weights to calculate the transformation assumptions in combination with the SVD
algorithm. While this approach accurately obtains the optimal transformation parameters,
it suffers from low computational efficiency. Li et al. [40] use the correspondence matrix and
the generalized correspondence matrix to seek the corresponding tight upper bounds and
lower bounds, and then combine them with an adaptive Cauchy’s estimator for optimal
parameter estimation. Yao et al. [41] proposed a global-to-local registration method and
introduced a hypergraph consistency module to learn the high-order consistency of guided
sampling to obtain more reliable clusters of inliers. Second-order spatial compatibility was
proposed in SC2-PCR++ [19] to distinguish the inliers from the outliers at an early stage.
GROR [42] introduced the concepts of graph node reliability and graph edge reliability by
constructing a correspondence graph to quickly and accurately remove the inliers from the
outliers. Li et al. [43] proposed a maximum group correspondence selection strategy based
on reliable edges, which combines the adaptive Maxwell–Boltzmann (AMB) algorithm and
confidence intervals to estimate the rotation and translation parameters.

The RANSAC algorithm is another pipeline widely used in correspondence-based
point cloud registration, but the randomness of the algorithm itself leads to its low ac-
curacy and the need for a large number of samples in order to find a relatively correct
solution, which is likely to fail on the data with serious contamination of outliers. Many
improved algorithms have been proposed to address the problems of RANSAC [44–46].
Maximum Likelihood Estimated Sample Consistency (MLESAC) [47] improves the robust-
ness of RANSAC by replacing the cost function from the size of the consistent samples
to maximize the likelihood. Locally Optimized RANSAC (LO-RANSAC) [45] performs
local optimization by deriving solutions from random samples, which improves speed by
two to three times compared to standard RANSAC. Wu et al. [48] introduced a particle
swarm optimization algorithm in RANSAC to directly sample the model parameters and
achieved good results in image alignment. GESAC [49] introduced a graph to enhance
the sample consistency and achieved effective registration even if there are outliers in the
smallest subset of the sampled points. ICOS [50] accelerated the search for inliers by con-
structing a compatibility structure. One-Point RANSAC [32] introduced a scale-annealing
bi-weighted estimator to stepwise optimize the estimation of the transform parameters.
Invariant and compatible random selection of minimum subsets are introduced in RAN-
SIC [18]. Hu et al. [17] proposed a fast robust point cloud registration algorithm based on
election-compatible weighted two-point random sampling (VODRAC), which combines
scale-invariant constraints with a two-point random sampling framework, and can achieve
fast candidate inliers search. Cheng et al. [51] proposed a point cloud registration algorithm
based on local sampling and global hypothesis generation. Gentner et al. [52] proposed
a graph-based maximum consistency alignment algorithm (GMCR), in which a novel
consistency function was introduced specifically to translate the consistency maximizing
objective into the graph domain. The algorithm is robust to various types of outliers.
C-RANSAC [53] introduces a scale histogram-based outlier filtering method and involves
a master–slave handshake mechanism for optimal parameter estimation, which achieves
high-accuracy registration and fast convergence.

3. Methods

In this Section, we propose a novel fast robust point cloud registration based on a
compatibility graph and accelerated guided sampling. We first introduce the problem
formulation of registration and describe the framework of the proposed method. Then, we
introduce in detail the key processes, including the correspondence compatibility graph
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construction, the minimum compatible subset sampling, the preference-based guided
sampling strategy, and the complete registration algorithm.

3.1. Problem Formulation

The procedure of the feature-based point cloud registration algorithm is to establish
the correspondences between the source and target point clouds based on the local feature
descriptors, and then estimate the registration parameters based on the correspondences.
We first give the method of the correspondence establishment. Assume that the two
point clouds to be aligned are called source point cloud Ps and target point cloud Pt.
(1) Due to the excessive number of points in the initial point cloud, which contains a
large amount of redundant information, the key point estimation technique is first used
to estimate the key points Ps f = {xi|1 ≤ i ≤ N} and Pt f =

{
yj

∣∣1 ≤ j ≤ N
}

of the source
and target point clouds, respectively. (2) Generate feature description vectors for key
points using feature descriptors, e.g., classical FPFH, learning-based GeoTrans. (3) For each
key point xi in Ps f , the nearest neighbor yi corresponding to xi in Pt f is obtained based
on the feature description vectors using a KD-Tree, so that the initial correspondence set
C = {(xi, yi)|1 ≤ i ≤ N} of Ps and Pt can be established.

Since Ps and Pt are usually partially overlapping, and the feature descriptors cannot
completely and accurately distinguish each point in Ps and Pt, a large number of incorrect
correspondences inevitably exist in C. The purpose of the feature-based point cloud regis-
tration method is to estimate the transformation parameters of the source and target point
clouds based on the correspondence set. The objective function is denoted as

minimize
R,t

N

∑
i=1

||yi − (Rxi + t)||2 (1)

where R∈SO(3) is an orthogonal rotation matrix, t is a 3 × 1 translation vector, (xi,yi) is a
correspondence in the correspondence set C, ‖ · ‖ denotes L2-norm.

Due to the large number of wrong correspondences in the initial correspondences,
the above objective function can be further expressed as a maximizing consensus problem,
denoted as

maximize
R,t,I⊂C

|I|
Subject to ||yi − (Rxi + t)||< ε, ∀(xi, yi) ∈ I

(2)

where I is called the consensus set, |I| denotes the size of the consensus set, ε is an inliers
threshold, and (R, t) corresponding to the consensus set is considered to be the optimal
transformation parameter. In order to search for the maximum consensus set in the initial
correspondences, the commonly adopted approach is to sample a series of minimum subsets
(a subset consisting of three points) from the initial correspondences for estimating (R, t),
and then to compute the correspondences in the initial correspondences that are consistent
with the minimum subset, i.e., correspondences that satisfy ||yi − (Rxi + t)||< ε . Finally,
the set with the most consensus correspondences is selected as the maximum consensus
set. To address the above question, we propose a sampling consistency algorithm that
combines a compatibility graph and accelerated guided sampling. The overall framework
of the algorithm is shown in Figure 1, by constructing the compatibility graph structure of
the initial correspondences, combining graph edge sampling and graph vertex sampling to
obtain the minimum compatible subset, and introducing a preference-based accelerated
guided sampling strategy to search for the optimal minimum subset so as to determine the
maximum consensus set and estimate the transformation parameters.
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Figure 1. Overview of the proposed method. First, taking the initial correspondences as inputs, the
compatibility graph is constructed by calculating the compatibility of each correspondence with other
correspondences. Then the minimum compatible subset is constructed by combining compatible
edge sampling and candidate vertex sampling, model hypotheses are generated, preference scores
for model hypotheses are computed for each correspondence, and similarity matrices are further
constructed to select the set of possible inliers to participate in the subsequent iterations. Finally, the
transformation parameters are calculated based on the maximum consensus set obtained from the
iterations, and the registration is completed using the transformation parameters.

3.2. Correspondence Compatibility Graph Construction

In our approach, the selection of the inliers of the correspondences will be performed
on a graph structure, which is a better representation of the compatibility degree between
correspondences than the Euclidean distance space. Therefore, it is first necessary to
construct an undirected graph of the initial correspondences, where each correspondence
is represented as a graph vertex, and geometrically compatible nodes are connected by
graph edges.

For the initial correspondence set C, suppose that two elements in C are ci = (psi, pti)
and cj = (psj, ptj), where psi, psj denote two points in the source point cloud and pti, ptj
denote two points in the target point cloud corresponding to psi, psj. The compatibility
between ci and cj can be quantitatively measured as

dcmp(ci, cj) =
∣∣ ∥∥psi − psj

∥∥− ∥∥pti − ptj
∥∥ ∣∣. (3)

When ci and cj are ideal inliers, dcmp(ci, cj) = 0. Noise inevitably exists in the point
cloud, and dcmp(ci, cj) cannot be strictly 0. Therefore, when dcmp(ci, cj) < ε, it indicates that
ci and cj are compatible and considered to be inliers.

Construct a compatibility graph based on the compatibility between any vertices,
given an initial set of correspondences C = {ci|1 ≤ i ≤ N}, the graph formed by them
denoted as G = (V, E), with V being the vertices of the graph and V = {ci|1 ≤ i ≤ N}, E
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being the edges of the graph and E =
{

eij
∣∣1 ≤ i ≤ N, 1 ≤ i ≤ N

}
, where eij = (ci, cj). In the

process of constructing the graph, for two correspondences ci and cj, they are considered
compatible so that eij is in E only when dcmp(ci, cj) < ε, and in this way the compatibility
graph of C is constructed. At the same time, we build an N × N compatibility matrix MC,
and when dcmp(ci, cj) < ε, the corresponding positional element of MC, MC(i, j) = 1, which
indicates that the correspondences ci and cj are compatible, and MC(i, j) = 0, otherwise
denoted as:

MC(i, j) =

{
1, i f dcmp(ci, cj) < ε

0, otherwise
(4)

3.3. Minimum Compatible Subset Sampling

In the traditional RANSAC algorithm, point cloud registration requires randomly
selecting three correspondences to form a minimum subset, and then combining them
with Horn’s triad-based method [54] to estimate the transformation parameters between
two point clouds. Due to the presence of a large number of outliers, the probability of
RANSAC sampling to a minimum subset of all inliers is extremely low. According to [17],
when the outlier ratio in the correspondences is certain, the number of iterations required
for RANSAC to sample a subset of all inliers grows exponentially with the size of the
minimum subset, and a large number of iterations are often required to obtain a more
optimal solution. In order to reduce the influence of the outliers, this paper introduces
a compatible minimum subset sampling method based on the constructed compatibility
graph, and the method consists of two layers, the edge sampling layer, and the vertex
sampling layer.

In the edge sampling layer, we first randomly select an edge eij = (ci, cj) in the com-
patibility graph, and search the vertices connected to this edge to form a triangle as the
candidate correspondence set Φ = {ck|0 ≤ k ≤ K}. Then, enter the vertex sampling layer and
randomly select a point ck in Φ, with eij forming a minimal subset sk = {ci, cj, ck}. Next, we
use Horn’s method to compute the rotation and translation parameters, and compute the
consensus set Lk corresponding to the smallest subset sk of the candidate correspondence
set Φ from the estimated transformation parameters. Repeat sampling in Φ until reaching
the set maximum iteration number of vertex sampling MIv to obtain a series of consensus
sets LV = {Lk|0 ≤ k ≤ MIv}, and always retain the largest consensus set in LV as the best
consensus set for the vertex sampling layer, i.e., Lbest = argmax

Lk∈Lv

(|Lk|). To avoid too much

redundant computation, each time we obtain a new Lbest, we update MIv according to
Lbest. After the vertex sampling layer is completed, return to the edge sampling layer and
use Lbest to compute the transformation parameters, and calculate the consensus set Gn
corresponding to the currently sampled edge in the initial correspondence C. Repeat the
edge sampling until reaching the set maximum iteration number MIe of edge sampling,
and the iterative process generates a series of consensus sets GE = {Gn|0 ≤ n ≤ MIe}. Al-
ways retain the maximum consensus set Gbest = argmax

Gn∈GE

(|Gn|) during the iterative process.

Similarly, each time we obtain a new Gbest, we update MIe according to Gbest. Finally,
estimate the registration parameters using SVD [55] based on Gbest. We dynamically adjust
the maximum iteration number MIe of edge sampling and the maximum iteration number
MIv of vertex sampling according to the consensus set size. Similarly to RANSAC [15], the
maximum iteration number is updated by the following rule.

MIv =
log(1 − P1)

log
(

1 − |Lbest |
|Φ|

) (5)

MIe =
log(1 − P2)

log
(

1 −
( |Gbest |

N

)2
) (6)
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where |·| denotes the set size. P1 and P2 denote the probability of sampling at least one all-
inlier subset for vertex sampling and edge sampling, respectively, and we set P1 = P2 = 0.99.

3.4. Preference-Based Guided Sampling Strategy

For an established compatibility graph, given a vertex cn ∈ G in the graph and cn
denotes a correspondence, define the set of vertices in the compatibility graph that are
compatible with cn as

Ncn =
{

cn′
∣∣MC(n, n′) = 1

}
. (7)

Based on the constructed compatibility graph G, according to the introduced minimum
compatible subset sampling method, compatible edges are sampled in the graph and
combined with compatible vertices to estimate the model, and a locally optimal model
hypothesis can be obtained for each compatible edge sampled. Assuming that M edges
are initially sampled through iterations, M model hypotheses are generated accordingly,
denoted as H = {hm|1 ≤ m ≤ M}, where hm = (Rm, tm), and the M+1th model is generated
by the guided sampling strategy. Specifically, for each data cn = (xn, yn), we compute
the residual distance r(cn, hm) = ||yn − (Rmxn + tm)|| of cn with respect to the mth model
hypothesis based on the Euclidean distance. We then introduce the preference function,
which represents the degree of preference of a correspondence cn over a model hypothesis
hm, as follows:

f n
m =

{
e−r2(cn ,hm)/δ2

, i f r(cn, hm) < τm

0, otherwise
(8)

where τm is an inlier threshold and δ is a regularization constant. Thus, the preferences
of a correspondence cn for M model hypotheses in the set of model hypotheses H can be
expressed as a set fn =

[
f n
1 , f n

2 , · · · , f n
M
]
. For any two correspondences cn and cn′ , whose

preference vectors are computed as fn and fn′
, respectively. We use cosine similarity to

compute the residual correlation between the two correspondences, denoted as

ϕ(cn, cn′) =

〈
fn, fn′〉

∣∣∣∣∣∣fn
∣∣∣∣∣∣×∣∣∣∣∣∣fn′ ∣∣∣∣∣∣ (9)

where 〈·, ·〉 and ‖ · ‖ denote the inner product and L2 norm, respectively. It is intuitive
that inliers should be compatible with each other, and inliers should share many of the
same modeling assumptions with each other. Thus, if two correspondences cn and cn′ are
inliers, the corresponding similarity scores of them are high. Otherwise, if cn and cn′ are
outliers, they do not have similar preferences for different modeling assumptions, so the
corresponding similarity scores will be low.

Based on the mutual compatibility between inliers, high similarity scores of inliers
should be accompanied by the existence of edge connections, so the similarity between cn
and cn′ is further defined as

w(cn, cn′) =

{
ϕ(cn, cn′), cn′ ∈ Ncn

0, cn′ /∈ Ncn

(10)

where Ncn donates the set of vertices in the compatibility graph that are compatible with
cn, and satisfies Equation (7). Thus, the similarity scores of the spatially incompatible
correspondences are set to 0, in which case the similarity matrix Ms between the correspon-
dences can be obtained and Ms(n, n′) = w(cn, cn′). Assuming that cn is fixed, the similarity
score between cn and the jth corresponding cj in C is Dnj = Ms(n, j). Finally, the similarity
between cn and the rest of the data in C constitutes an association vector Dn
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Dn = [Dn1, Dn2, . . . , Dnj, . . . , DnN ]. (11)

As in [56], define the gap γj as the difference between the maximum value of Dn
and Dnj

γj = max(Dn)− Dnj (12)

γj is not less than 0, the smaller γj is, the more similar cn is to cj. Define the probability
of γj as

η(γj) = γj

/
N

∑
k=1

γk (13)

According to [57], the information provided by the jth correspondence is denoted as

ej = − log(η(γj) + ξ) (14)

where ξ is a small positive value, and the sum of the information entropies of the remaining
points in C on cn is

EPn =
N

∑
j=1

η(γj)ej. (15)

The information entropy is computed for each vertex in G to form the vector EP =

[EPn]
N
n=1. The smaller EPn indicates that cn is more likely to be an inlier, so the vertex with

smaller information entropy is selected according to EP as the set of vertices participating
in the subsequent sampling of the compatible edges for the next model estimation. The
vertex selection strategy is denoted as follows.

χ = {cn|EPn < mean(EP)}. (16)

Using this method to select significant vertices that are more likely to be inliers, and
sampling compatible edges in the set of significant vertices in the next iteration, effectively
increases the probability of sampling the smallest subset of all inliers and speeds up the
estimation of the optimal model.

3.5. Complete Registration Algorithm

Based on the compatibility graph and preference-guided sampling, we further propose
a complete correspondence-based point cloud registration algorithm for clouds with a high
outlier ratio. In order to control the selection process of significant vertices, we define a
batch size b as well as a maximum inlier update time max_up. b controls the frequency of
vertex information entropy computation; i.e., we perform the vertex information entropy
computation only for every b model hypothesis generated. And max_up is used as the end
condition of the algorithm; i.e., after significant vertices have been selected max_up times,
it is considered that the inliers have been involved in enough iterations to have obtained
the exact transformation parameters; i.e., it is considered that the optimal solution has
been obtained and the iteration is ended. The flow of the algorithm is shown in Algorithm 1.
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Algorithm 1. Proposed Method

Input: Initial correspondences C: {  = ( , )|  }; inlier threshold , ; 
regularization constant ; batch size b; maximum inliers update times 
max_up; positive constant ; 

Output: optimal (R, t); maximum consensus set ; 
  = Ø,  = , edge sample iteration number = 0;  

inliers update times t_up = 0; preference calculations times t_pr = 0; = C; 
 Construct compatibility graph G, obtain V = , E = 

, get  = {(i, j)| } with Equation (4); 
 while    do 
    =  + 1; 
 Randomly select 2 points ( , ) from ; 
   if (i, j) = 1 then 
   Search for candidate set  according to , set  = Ø,  

vertex sample iteration number = 0,  = ; 
   while    do 
    =  + 1; 

   Randomly select 1 vertex  from ; 
   Use Horn’s minimal method to estimate R, t with { , , ; 
   Find consensus set , using R, t; 
   if    then 
       = , and update  with Equation (5); 
   end 
   if    then 
   break 
      end 
   end 
   Use SVD to estimate R, t with ; 
   Find consensus set C, using R, t; 
   if    then 
       = , and update  with Equation (6); 
   end 
 Calculate the degree of preference  of C for R, t; 
   t_pr = t_pr + 1; 
   if mod(t_pr, b) = 0 then 
   t_up = t_up+1; 
   Calculate the information entropy EP of C with Equation (15); 
   Obtain possible inliers set, update  according to EP with  

Equation (16); 
   end 
    end 
   if    or t_up > max_up then 
      break 
   end 
 end 
 Use SVD to estimate R, t with ; 
 return R, t, ;
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4. Experimental Results

To validate the effectiveness of the proposed algorithm, we conducted a series of
experiments on several datasets, including the synthetic dataset Stanford 3D Scanning
Repository dataset, the indoor dataset 3DMatch, the low-overlap indoor dataset 3DLo-
Match, and the outdoor dataset KITTI. The addresses of all datasets can be seen in the Data
Availability Statement.

The Stanford 3D Scanning Repository dataset contains several mesh models, which
were obtained by scanning with a range scanner, followed by registration and surface
reconstruction techniques. In order to verify the basic performance of our algorithm, we
constructed test data pairs by randomly generating rotation matrices and translation vectors
as ground truth transformations. 3Dmatch [58] is a point cloud dataset of eight indoor
scenes obtained from RGBD sequences, containing a total of 1623 test pairs, each with a
real camera pose and an overlap of more than 30%. 3DLoMatch [29] is a dataset of the
same eight scenes with an overlap of between 10% and 30%, containing a total of 1781 pairs.
KITTI [59] is a large-scale outdoor LIDAR dataset, which provides 11 sequences with pose
annotations. Its ground truth transformations are obtained by GPS with refinement by the
standard iterative closest point (ICP) algorithm [60]. This dataset contains several thousand
frames of data in each sequence, and data in the same sequence have a high overlap rate.

4.1. Synthetic Data Experiment

We use the armadillo [61] point cloud model from the Stanford 3D Scanning Repository
dataset for basic performance validation of the algorithm. First, 1000 points are sampled in
the initial point cloud model as key points Ps, then its scale is changed so that the point
cloud is inside a 1m×1m×1m enclosing box. And then rigid transformation R∈SO(3)
and t∈R3 are randomly generated and the initial point cloud model is transformed to
obtain the transformed point cloud, where the transformed key points are Pt. To make the
experiment closer to the real situation, we add Gaussian noise with a mean value of 0 and
a standard deviation σ = 0.01 to the transformed key points Pt to simulate the noise present
in the actual collected data, and obtain an inlier set Cin = (Ps, Pt). To obtain the outliers,
we generate Nout random points Qout in a spherical space with the center of gravity of
Pt as the spherical center and the length of the diagonal of the bounding box of Pt as the
radius. Then, randomly select Nout points Pout in Ps and release Pout from matching with
the corresponding points in Pt. Next, establish the correspondence between Pout and Qout
to form the outlier set Cout = (Pout, Qout), and the corresponding set C containing outliers is
obtained by replacing the positions in Cin with the same index as Cout. In order to simulate
the case of different outlier ratios, by changing the value of Nout, set the outlier ratio at {20%,
40%, 60%, 80%, 90%, 92%, 94%, 96%, 98%, 99%}. Figure 2 shows the key points obtained
by subsampling the point cloud and the initial correspondences of different outlier ratios,
respectively. Due to the randomness of the noise distribution, each experiment is repeated
50 times to ensure the stability of the results.

In order to quantitatively assess the performance of the registration algorithms, the
widely used rotation error (ER) and translation error (Et) are used as evaluation criteria [62],
which are respectively {

ER = |arccos tr(RT
GTRe)−1

2 | · 180◦
π

Et =||tGT − te||
(17)

where RGT and tGT denote the true values of the rotation and translation matrices, re-
spectively. Re and te denote the estimated values of the rotation and translation matrices,
respectively, computed by the registration algorithm. tr(·) denotes the trace of the matrix.
ER is used to measure the angular difference between RGT and Re, and Et is used to mea-
sure the Euclidean distance between tGT and te. In addition, we evaluate the efficiency of
the algorithm by comparing the running time (Tc) required for the registration.
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(a) (b) (c) 

(d) (e) 

Figure 2. The generation of simulation data, where green lines denote the inliers while red lines
denote the outliers, and the bolded points indicate key points: (a) Key points, (b) 20% outliers are
added, (c) 60% outliers are added, (d) 90% outliers are added, and (e) 99% outliers are added.

In order to test the influence of the algorithm parameters on the experimental results,
parameter analysis experiments are carried out. The main parameters involved in the
proposed algorithm are the batch size b and the maximum number of updates of the inliers
set max_up. For b, we first set max_up = 3, and increase b from 10 to 50 in steps of 10. Then
we fix b to 20, and increase max_up from 2 to 6 in steps of 1. Experiments were carried out
on data with different outlier ratios, and each parameter condition was run 50 times to
record the mean rotation error, mean translation error, and mean time cost. The results of
the experiments are shown in Figure 3.

According to the results, it can be seen that when b = 10, the rotation error and
translation error are large; this is because at this time it is not possible to fully sample
the inliers, resulting in the results having a larger error. When b = 20, the rotation and
translation errors are relatively small, while the computational efficiency is high, and the
accuracy and efficiency are in good balance. The time cost will increase significantly if b
continues to increase. For max_up, when the outlier ratio is less than 98%, max_up has less
influence on the experimental results. When the outlier ratio is 99%, max_up = 3 corresponds
to a small mean rotation error and mean translation error. At the same time, the time cost is
very little, which achieves a good balance in terms of accuracy and efficiency. Therefore, in
this paper, b and max_up are set to 20 and 3, respectively.

In order to verify the performance of our algorithm equivalent to advanced robust
point cloud registration algorithms, we compare the proposed method with six state-of-the-
art algorithms, namely, RANSAC [15], GORE [16], One-Point RANSAC [32], GROR [42],
RANSIC [18], and VODRAC [17]. Among these algorithms, RANSAC is the widely used
initial registration algorithm, GORE and GROR are the most recently proposed provable
and have good outlier filtering performance. One-Point RANSAC, RANSIC, and VODRAC
are recently proposed state-of-the-art algorithms and show excellent performance in point
cloud registration tasks heavily contaminated by outliers. Specifically, we set the maximum
number of iterations to 105 for all RANSAC-type algorithms and set the inlier threshold
to 6pr for all algorithms, where pr denotes the resolution of the input point cloud [63]. pr
is obtained by summing and averaging the distances between each point and its nearest
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neighbor. The parameters of the different algorithms are shown in Table 1 and are the same
for the rest of the experiments.

(a) (b) (c) 

  
(d) (e) (f) 

Figure 3. Influence of the parameters b and max_up on the performance of proposed method:
(a) Rotation error for sensitivity test of b, (b) translation error for sensitivity test of b, (c) running
time for sensitivity test of b, (d) rotation error for sensitivity test of max_up, (e) translation error for
sensitivity test of max_up, (f) running time for sensitivity test of max_up.

Table 1. Detailed Settings of the Compared Algorithms.

Method Parameters

RANSAC Maximum number of iterations: 105; inlier threshold: 6pr
GORE Lower bound: 0; repeat: true; consistent threshold: 6pr

One-Point RANSAC Confidence: 0.99; subset size: 1;
Maximum number of iterations: 105; step size: 1.3

GROR reliable set size: 800; inlier threshold: 6pr
RANSIC Maximum number of iterations: 105; Confidence: 0.99

VODRAC Maximum number of iterations: 105; Confidence: 0.99; inlier threshold: 6pr

Ours Maximum number of iterations: 105; inlier threshold: 6pr
P1 = P2 = 0.99; b = 20; max_up = 3; δ = 10pr; ξ = 10−6

The registration results of different algorithms are shown in Figure 4 and some visual-
ization results are shown in Figure 5. From the results, it can be seen that RANSAC can be
useful when the outlier ratio is lower than 80%. The algorithm fails when the outlier ratio
continues to increase, and the rotation and translation errors of the parameters estimated
by RANSAC are large. GORE maintains a stable performance under different outlier ratios
due to its ability to reliably remove the outliers and its robustness to noise. However, it
exhibits limited registration accuracy, and the computational complexity of GORE is high.
The time it takes to complete registration is usually several orders of magnitude higher
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compared to the other algorithms. When the outlier ratio is lower than 98%, One-Point
RANSAC shows competitive performance in terms of registration accuracy and registration
efficiency, but when the outlier ratio is 99%, the registration accuracy of the algorithm
decreases rapidly, and the algorithm usually fails to estimate the correct registration pa-
rameters. GROR maintains good registration accuracy at different outlier ratios. While the
registration efficiency decreases with the increase in the outlier ratio, the algorithm takes a
long time to complete the registration. Both RANSIC and VODRAC have good robustness
to outliers, and maintain high registration accuracy even when the outlier ratio is very high.
When the outlier ratio is as high as 99%, the rotation and translation errors of the parameter
estimated by RANSIC are about 1.221◦ and 0.0061 m, respectively, and the rotation and
translation errors of the parameter estimated by VODRAC are about 1.655◦ and 0.0075 m.
The registration efficiency of VODRAC increases first and then decreases with the increase
in the outlier ratio. When the outlier ratio is 80%, the registration efficiency is highest, and
it takes about 0.085 s to complete the registration. When the outlier ratio is lower than 96%,
the registration efficiency of RANSIC is very high, and is higher than that of VODRAC.
When the outlier ratio is higher than 96%, the time required for RANSIC to complete the
registration increases significantly, and when the outlier ratio is 99%, RANSIC takes about
20.46 s to complete the registration.

Figure 4. Registration performance on simulated data. In the figure, indicates data between
25% and 75% of all data in the result in descending order of magnitude; I indicates maximum and
minimum values; - indicates average value; � denotes outliers: (a) Box-plot of rotation error. (b)
Box-plot of translation error. (c) Box-plot of time cost.

    

(a) (b) (c) (d) 

Figure 5. Visualization results on synthetic dataset, where blue points indicate source point cloud.
green lines and green points denote the inliers while red lines and red points denote the outliers:
(a) Correspondences with 60% outliers, (b) Registration result of (a), (c) Correspondences with 99%
outliers, (d) Registration result of (c).

As can be seen from the results, the proposed algorithm has excellent performance in
terms of rotation error, translation error, and time cost. When the outlier ratio is lower than
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96%, compared with other algorithms, the proposed algorithm exhibits remarkably low
levels of both rotation and translation errors, and its time cost remains consistently stable
at 0.035 s. When the outlier ratio is higher than 96%, the proposed algorithm still maintains
a very high registration accuracy. When the outlier ratio is 96% and 98%, the proposed
algorithm efficiency is significantly higher than the RANSIC and VODRAC algorithms.
When the outlier ratio is 99%, One-Point RANSAC is no longer able to accurately estimate
the registration parameters despite its low time cost, while the proposed algorithm still
has a high accuracy. The excellent performance of the algorithm proposed in this paper
can be attributed to the following factors: (1) The compatibility graph is constructed with
full consideration of the compatibility relationship between the inliers, which can avoid
the influence of the outliers on the registration results and ensure the accuracy of the
algorithm. (2) The minimum subset sampling is split from three-point random sampling
into compatible edge sampling and candidate subset sampling, which effectively reduces
the computational complexity. (3) A guided accelerated sampling strategy is introduced,
by calculating the preference between the correspondence and the estimated parameter to
determine the inliers faster, which effectively improves the speed of convergence of the
parameter estimation.

4.2. Challenging Real-World Data Experiments

To evaluate the registration performance of the proposed algorithm on real-world data,
we conduct registration experiments using the 3DMatch dataset [58], which contains a total
of 8 scenes, namely, Kitchen, Home1, Home2, Hotel1, Hotel2, Hotel3, Studyroom, and Lab. In
each scene, we select 20 data pairs that overlap as test data. For each data pair, we adopt the
Harris3D key point detection algorithm [64] to sample about 2000 key points in the source
and target point clouds, respectively. Then, we use the FPFH [12] descriptor to obtain the
feature vectors of the key points, and then further establish the initial correspondences
between the two point clouds based on the feature descriptors. A pair of data is selected
from each scene, and the initial correspondences are shown in Figure 6, where the red
lines indicate the wrong correspondences, i.e., the outliers, and the green lines indicate the
correct correspondences, i.e., the inliers. It can be seen that the initial correspondence set
is contaminated by a large number of outliers, which makes it extremely challenging to
align accurately.

The registration experiments on the 3DMatch dataset also compare six registration
algorithms, including RANSAC, GORE, GROR, One-Point RANSAC, RANSIC, and VO-
DRAC. We compare the rotation error, translation error, and time cost of the different
algorithms. In order to qualitatively demonstrate the performance of the different algo-
rithms, we select a pair of data pairs with low overlap between the source and the target
point clouds from each scene for visualization, and the results of the different algorithms are
shown in Figure 7. Visually, RANSAC can only roughly align the Lab scene, and similarly,
GORE performs poorly, One-Point RANSAC performs slightly better and can effectively
align two scenes, and GROR has a large improvement in performance, effectively aligning
six scenes, but the algorithm fails for Home2 and Hotel3. Both RANSIC and VODRAC
can complete the registration of all scenes, but RANSIC takes a lot of time to align each
scene, and VODRAC is more efficient but still less efficient when the initial number of
correspondences is very large. Our algorithm efficiently completes the registration of all the
scenes, and the registration efficiency is very high in all cases, which proves the robustness
and efficiency of the proposed algorithm.

Since FPFH is a manually designed feature descriptor, the correspondences established
by it usually contain a large number of outliers with an outlier ratio of up to 99%. We
record the rotation error, translation error, and time consumption of different algorithms.
The experimental results are shown in Figure 8. The average outlier ratios and registration
results of the experimental data for different scenarios are shown in Table 2.

Registration Accuracy Analysis: As shown in Table 2, the initial correspondences
contain a large number of outliers, and the average outlier ratio of each scene is close to
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99%. RANSAC can only achieve approximate registration for a few scenes, and the rotation
and translation errors of most of the scenes are very large. This limitation is due to the
fact that RANSAC needs to sample randomly in a large number of initial correspondences,
which results in its inability to achieve effective registration within the set number of
iterations. Its rotation and translation errors reach a maximum of 86.584◦ and 2.116 m.
According to Figure 8a,b, under this condition of the number of correspondence sets and
the outlier ratio, GORE and One-point RANSAC are also ineffective for most of the data
pairs. They can only achieve accurate registration for a small portion of pairs, and the
robustness of the algorithms needs to be further improved. In contrast, the performance of
GROR is greatly improved. For most of the correspondences that are heavily contaminated
by outliers, GROR can achieve accurate registration. As can be seen, many of the GROR
registration results have a rotation error of less than 1◦, and a translation error of less than
0.05 m. However, GROR still faces failures for individual data pairs. We speculate that
this is due to the fact that an excessive number of outlier points affect the reliability of
the algorithms in terms of graph node reliability and graph edge reliability, which leads
to inaccurate final registration results. Under the condition that the correspondence set
is heavily contaminated, RANSIC and VODRAC show excellent performance. Both of
them can achieve accurate registration for each scene, in which the mean rotation error of
RANSIC reaches a minimum of 0.984◦, and the mean translation error reaches a minimum
of 0.041 m. The mean rotation error of VODRAC reaches a minimum of 0.842◦ and the
mean translation error reaches a minimum of 0.0302 m, which are significantly better than
those of RANSAC, GORE, and One-Point RANSAC. According to the experimental results,
the registration algorithm proposed in this paper reaches the advanced level in terms of
registration accuracy, and can complete the accurate registration of all data pairs. The
algorithm has good robustness to outliers, the mean rotation error of the registration results
reaches 0.737◦ at the lowest level, and the mean translation error reaches 0.0201 m at the
lowest level, which has a very high accuracy.

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 6. Initial correspondences for different scenarios, where green lines denote the inliers while red
lines denote the outliers, blue points and red points indicate the source and target point clouds, and
the bolded points indicate key points: (a) Kitchen, inliers/totals: 21/1876. (b) Home1, inliers/totals:
23/2682. (c) Home2, inliers/totals: 20/2494. (d) Hotel1, inliers/totals: 27/1947. (e) Hotel2, in-
liers/totals: 21/2167. (f) Hotel3, inliers/totals: 20/3044. (g) Studyroom, inliers/totals: 20/1500. (h)
Lab, inliers/totals: 20/1359.
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Figure 7. The visual performance of real-world data experiment of algorithms, where yellow and
cyan indicate the source and target data.
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Figure 8. Registration performance on 3DMatch dataset. In the figure, indicates data between
25% and 75% of all data in the result in descending order of magnitude; I indicates maximum
and minimum values; - indicates average value; � denotes outliers: (a) Box-plot of rotation error.
(b) Box-plot of translation error. (c) Box-plot of time cost.

Table 2. Quantitative results on 3DMatch dataset.

Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Studyroom Lab

Mean outlier ratio 98.55% 98.74% 98.70% 98.96% 98.93% 98.83% 98.69% 98.74%

Mean Rotation Error (◦)

RANSAC 60.854 70.984 86.465 60.237 72.172 70.028 86.584 71.358
GORE 56.389 62.745 65.342 42.885 38.998 47.645 42.732 89.329

One-Point RANSAC 50.128 65.939 79.379 44.533 45.151 45.930 45.533 72.256
GROR 14.382 6.920 19.685 9.135 0.943 7.842 24.886 12.356

RANSIC 1.794 1.173 1.189 1.133 0.984 1.029 1.079 1.022
VODRAC 1.395 1.040 1.004 0.842 0.949 1.047 1.194 1.142

Ours 1.147 0.909 0.999 0.737 0.933 0.931 1.122 0.921

Mean Translation Error (m)

RANSAC 1.4804 1.8729 1.9635 1.8119 1.7625 1.7233 2.1161 2.8324
GORE 1.5556 2.1000 2.1068 1.7491 1.8869 1.8829 1.4261 2.5204

One-Point RANSAC 1.1090 1.6728 2.1970 1.1921 0.9329 1.0032 1.4640 1.8214
GROR 0.2562 0.2826 0.5506 0.2687 0.0316 0.2386 0.6235 0.3536

RANSIC 0.0472 0.0469 0.0494 0.0490 0.0406 0.0417 0.0463 0.0540
VODRAC 0.0327 0.0321 0.0333 0.0302 0.0315 0.0357 0.0386 0.0461

Ours 0.0201 0.0327 0.0339 0.0304 0.0326 0.0327 0.0362 0.0407

Mean Time Cost (s)

RANSAC 3.398 4.967 6.426 8.389 7.457 8.276 4.134 11.439
GORE 0.469 1.697 1.867 0.921 0.494 1.370 1.618 2.154

One-Point RANSAC 0.299 0.354 0.364 0.434 0.432 0.430 0.283 0.446
GROR 2.778 3.554 3.332 4.069 3.828 3.857 2.829 3.494

RANSIC 69.001 57.093 151.787 182.039 183.542 119.140 116.414 326.279
VODRAC 1.983 2.643 2.773 3.300 3.246 3.260 2.013 2.989

Ours 0.759 1.129 1.121 0.948 1.155 0.826 0.804 2.001

Registration efficiency analysis: Figure 8c shows the registration time distribution
of different algorithms on eight scenes, and Table 2 records the average registration time
of different algorithms for each scene. According to the results, it can be seen that the
registration efficiency of RANSAC is low, and its running time is mainly related to the
preset number of iterations, which requires a large number of iterative calculations to
obtain relatively better results. The running time of GORE is very short because there
are too few inliers in the correspondence. The algorithm cannot efficiently compute the
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upper and lower bounds, and it skips the computation of the parameter updating process.
One-Point RANSAC has high running efficiency, which is due to the fact that the algorithm
decomposes the registration problem, and the parameter space is drastically reduced,
allowing it to quickly find what it considers to be the optimal solution. GROR has a
high registration efficiency, generally taking 2~4 s to complete the registration. VODRAC
has a slightly higher registration efficiency than that of GROR, which is due to the fact
that it has the step of random sampling consistency decomposition. In the case of high
outlier ratios, despite achieving accurate registration, the registration efficiency of RANSIC
is very low, usually requiring tens or hundreds of seconds to complete the registration.
In contrast, our algorithm has very high registration efficiency, and even if the initial
number of correspondences reaches 2000 and is heavily contaminated by outliers, it can
still compute very accurate registration results in less than 1 s in most cases.

4.3. Low-Overlap Point Cloud Registration Experiments

In order to verify the ability of the proposed algorithm to handle point cloud pairs
with low overlap rate, we carried out experiments on 3DLoMatch, which contains 1781 test
point cloud pairs and has a low overlap rate between point cloud pairs, with the overlap
rate ranging from 10% to 30%. It is difficult to establish correspondences between these
point cloud pairs by handcrafted descriptors. Recently, Transformer-based correspondence
estimators have shown excellent performance on point clouds with low overlap rates to
establish reliable correspondences between point cloud pairs. We use GeoTrans [31] to
establish the correspondences of 3DLoMatch data and incorporate the proposed parameter
estimation method to improve the registration performance. We evaluate the performance
of the algorithm by using ER, Et and registration recall (RR) [65]. RR is the proportion of
the results with ER, Et under the error threshold to the total number of test samples, i.e., the
rate of successful registration, and we set the threshold to (15◦, 0.3 m). As correspondences
established using GeoTrans usually contain enough inliers, most data pairs can be success-
fully aligned. Following [65], since part of the failed registration can generate large rotation
and translation errors, we only computed the mean rotation error (ER) and translation error
(Et) of successfully registered point cloud pairs of each method to avoid unreliable metrics.
A local-to-global (LGR) parameter estimation method is proposed in GeoTrans, and the
experiments are compared with this method. The basic RANSAC algorithm and advanced
algorithms including GROR and RANSAIC are also compared.

The experimental results obtained are shown in Table 3, and some qualitative results
are shown in Figure 9. According to the experimental results, it can be seen that the
proposed algorithm can effectively improve the registration recall by 3.41% compared
to LGR, due to the more effective handling of the case of fewer inliers within the corre-
spondences. As GROR and RANSIC are able to detect inliers in the correspondences,
both of them provide some performance gains, while RANSAC has a poorer performance.
The experiments illustrate that the proposed algorithm can effectively align point cloud
pairs with very low overlap and achieve significant performance in conjunction with the
learning-based descriptor.

Table 3. Registration results on 3DLoMatch with learning-based correspondences.

Method ER (◦) Et (m) RR (%)

LGR 2.992 0.0867 77.50
RANSAC 4.516 0.1385 61.93

GROR 3.186 0.1012 80.85
RANSIC 3.549 0.1143 79.79

Ours 2.967 0.0962 80.91
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LGR RANSAC GROR RANSIC Ours Ground Truth 

Figure 9. Visualization of two groups of point cloud registration results on the 3DLoMatch, where
yellow and cyan indicate the source and target data. The upper group has an overlap rate of 11.14%
and the lower group has an overlap rate of 11.98%. From left to right: results of LGR, RANSAC,
GROR, RANSIC, ours, and ground truth. RANSAC fails for the data pair in the first row, while other
algorithms successfully align these data pairs.

4.4. Outdoor Scene Registration Experiments

To further validate the ability of the proposed algorithm to handle more complex
scenarios, we conducted experiments on the outdoor LIDAR dataset KITTI, where the data
scale of the outdoor scene is much larger than that of the indoor scene. As in [66], we
selected scenes 8 to 10 as the test dataset and obtained a total of 555 test data pairs. Again,
we used GeoTrans to establish the correspondences between the point cloud pairs and
then combined the parameter estimation methods to estimate the registration parameters
between the point cloud pairs. ER, Et, and RR are used to evaluate the experimental results,
and the error threshold of RR is set to (5◦, 0.6 m). LGR, RANSAC, GROR, and RANSAIC
are used as comparison algorithms.

The experimental results are shown in Table 4, and some visualized results are shown
in Figure 10. From the experimental results, it can be seen that LGR, RANSAIC, and the
proposed algorithm obtain the highest registration recall with high parameter estimation
accuracy, and the proposed algorithm reaches the optimum in terms of rotation error.
RANSAC achieves high registration recall, although the estimated parameters are usually
sub-optimal but mostly within acceptable range. GROR performs slightly worse on the
KITTI dataset compared to the other algorithms. It is experimentally verified that the
proposed algorithm has excellent performance in estimating registration parameters and is
common across different scenarios.

Figure 10. Visualization results on KITTI, where yellow and blue indicate the source and target data.
From left to right: results of LGR, RANSAC, GROR, RANSIC, ours, and ground truth. All algorithms
successfully align the data pairs.
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Table 4. Registration results on KITTI with learning-based correspondences.

Method ER (◦) Et (m) RR (%)

LGR 0.378 0.0693 99.10
RANSAC 0.803 0.1861 98.38

GROR 0.505 0.1287 97.84
RANSIC 0.385 0.0872 99.10

Ours 0.341 0.0804 99.10

5. Discussion

In this paper, we propose a method for solving the problem of estimating transforma-
tion parameters in feature-based point cloud registration algorithms. For feature-based
point cloud registration, high outlier ratios in correspondences established by feature
descriptors are a common problem. The outlier ratio in correspondences established by
classical handcrafted descriptors such as FPFH is usually higher than 90%. In this case, the
proposed algorithm still obtains a high registration accuracy and maintains the optimal
accuracy compared to algorithms such as RANSAC, GORE, and One-Point RANSAC.
Meanwhile, the proposed algorithm has high registration efficiency, which is tens times
faster than RANSIC and several times faster than GROR and VODRAC under the condition
of a very high outlier ratio. In conclusion, our algorithm has superior robustness, accuracy,
and computational efficiency compared with other state-of-the-art methods.

In terms of algorithm generality, the proposed algorithm takes correspondences as
input and outputs the final registration parameters. Point cloud registration can be accom-
plished by combining any feature matching and correspondence establishment methods,
such as handcrafted descriptors and learning-based descriptors. Due to the advanced
feature description performance of the learning-based descriptors, combining them with
the proposed method can be used for point cloud registration in low-overlap and complex
scenarios, and a remarkable registration performance can be obtained. Combining the
proposed algorithm with GeoTrans achieves a 3.41% improvement in registration recall
on low-overlap point cloud datasets compared to LGR. The algorithm can also be applied
to the registration of large-scale scenarios, and the proposed algorithm combined with
GeoTrans for large-scale point cloud data registration also obtains the optimal performance.

Although the proposed algorithm is able to achieve fast and robust point cloud
registration, it still has some limitations. Firstly, the proposed algorithm still relies on
the initial correspondences. If the number of inliers in the correspondences is too small,
the proposed algorithm may not be able to find enough correct inliers for parameter
estimation, leading to the failure of the algorithm. Secondly, the algorithm relies on the
Euclidean distance to determine the compatibility between the correspondences. However,
the Euclidean distance has an inherent ambiguity in 3D space; i.e., the Euclidean distances
from the surface of the sphere to the center of the sphere are all equal. This property may
lead to a lack of stability in the compatibility calculation, thus affecting the performance of
the algorithm.

6. Conclusions

In this paper, we present an efficient and robust point cloud registration method that
directly outputs the final alignment registration based on correspondences and excels in
terms of accuracy, efficiency, and robustness. Compared to many existing techniques,
the algorithm in this paper operates efficiently under very high outlier conditions and
strikes an excellent balance between efficiency and accuracy. In order to minimize the
influence of the outliers, this paper introduces the concept of the compatibility graph, and
proposes a minimum subset sampling method for the combination of compatible edges
and compatible vertices, which effectively avoids the participation of a large number of
outliers in the computation. A preference-guided accelerated sampling strategy is further
proposed to effectively utilize the estimated transformation parameters at the initial stage,
calculate the preference score of each vertex based on the transformation parameters, and
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then guide the execution of the sampling in the direction of more likely to be an inlier to
improve the efficiency of registration. Finally, the transformation parameters are estimated
based on the maximum set of compatible vertices to complete the accurate registration.
Based on a synthetic and real dataset, the proposed registration algorithm is compared and
analyzed with classical and advanced algorithms. Simulation experiments demonstrate
the robustness and efficiency of the algorithm, which can still accomplish registration
quickly when the outlier ratio is as high as 99%. Real data show that the algorithm can
successfully perform point cloud registration even if the correspondence established by the
feature description contains a large number of outliers. Compared with the state-of-the-art
algorithms, the proposed algorithm is able to realize a point cloud registration several
times faster while maintaining a comparable or higher registration accuracy. By combining
the proposed algorithm with a learning-based feature description method, the registration
accuracy can be further improved and can be applied to low overlap and large-scale point
cloud registration tasks.

In follow-up work, as the proposed algorithm is still closely related to the quality of
the initial correspondences, and more inliers can give more accurate results, designing
more reliable correspondence establishment methods will be a priority. In addition, the
proposed method relies on the Euclidean distance of the correspondence to compute the
compatibility, and the compatibility results obtained are not stable enough, so exploring the
compatibility of the correspondence with higher orders to further improve the parameter
estimation performance and registration accuracy is another future research work.
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Abstract: Buildings are significant components of digital cities, and their precise extraction is essential
for the three-dimensional modeling of cities. However, it is difficult to accurately extract building
features effectively in complex scenes, especially where trees and buildings are tightly adhered.
This paper proposes a highly accurate building point cloud extraction method based solely on the
geometric information of points in two stages. The coarsely extracted building point cloud in the
first stage is iteratively refined with the help of mask polygons and the region growing algorithm
in the second stage. To enhance accuracy, this paper combines the Alpha Shape algorithm with the
neighborhood expansion method to generate mask polygons, which help fill in missing boundary
points caused by the region growing algorithm. In addition, this paper performs mask extraction on
the original points rather than non-ground points to solve the problem of incorrect identification of
facade points near the ground using the cloth simulation filtering algorithm. The proposed method
has shown excellent extraction accuracy on the Urban-LiDAR and Vaihingen datasets. Specifically,
the proposed method outperforms the PointNet network by 20.73% in precision for roof extraction of
the Vaihingen dataset and achieves comparable performance with the state-of-the-art HDL-JME-GGO
network. Additionally, the proposed method demonstrated high accuracy in extracting building
points, even in scenes where buildings were closely adjacent to trees.

Keywords: building; point cloud; geometric information

1. Introduction

Building points are widely used in a variety of fields, including urban planning, cultural
preservation, and disaster management, due to their capacity to capture detailed geometric
features [1,2]. With the rapid development of cities, the surrounding environment of
buildings has become complicated, making accurate building extraction a difficult task [3–6].

Building point cloud extraction methods can be classified into two categories based
on data sources: single-source methods and multi-source methods. Single-source methods
only use LiDAR data to extract building points. Zou et al. [7] proposed an adaptive strips
approach for extracting buildings, which used adaptive-weight polynomials to classify each
point and extract the edge points of buildings based on the regional clustering relationship
among the points. This method only utilized the three-dimensional coordinate values
of LiDAR data without the need for other auxiliary information to successfully identify
buildings. Huang et al. [8] developed a top-down method based on the object entity
to extract building points. Ground points were separated from non-ground points, and
non-ground points were split to identify smooth zones. The building regions were then
distinguished from smooth regions by top-level processing using their geometric and
penetrating properties. Lastly, employing topological, geometric, and penetrating properties,
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the down-level processing was used to eliminate non-building points surrounding structures
from each building region. The method produced good results in terms of area-based and
object-based quality. Hui et al. [9] developed a multi-constraint graph segmentation method
that converted point-based building extraction into object-based building extraction through
multi-constraint graph segmentation and then utilized the spatial geometry information
of objects and a multi-scale progressive growth algorithm to obtain building points. These
methods perform well in extracting buildings in general urban environments and enable
automated building recognition. However, when dealing with tree points closely attached
to buildings, there is a possibility of misclassifying them as buildings.

The multi-source methods integrate LiDAR, aerial images, and ground planning
maps into building point extraction, typically employing traditional and deep learning
techniques. In the traditional technique, Qin and Fang [10] proposed a hierarchical building
extraction method from high-resolution multispectral aerial images and Digital Surface
Model (DSM) data. The method began with shadow detection using the morphological
index, followed by the calculation of NDVI for correction. Subsequently, the top-hat
reconstruction of DSM was combined with the NDVI to create the initial building mask
data. Finally, the extracted building data was optimized using graph segmentation based
on an improved super-pixel method. Acar et al. [11] introduced a building roof extraction
algorithm that incorporated multiple data sources. Initially, the NDVI was calculated using
spectral information, followed by applying a threshold to distinguish between vegetation
and non-vegetation data. Subsequently, the Triangular Mesh Progressive Encoder Filter
algorithm was employed to separate ground data. Lastly, the random sample consensus
algorithm was utilized to extract the planar information of buildings. The algorithm
achieved an average accuracy of 95%, completeness of 98%, and quality of 93%. Hron
and Halounová [12] introduced a method for autonomously creating topologically correct
roof-building models using building footprints and vertical aerial images. The method
enabled the detection and categorization of roof edges in orthophotos by leveraging spatial
relationships and height data from a digital surface model. This strategy enabled buildings
with complicated designs to be divided into small portions that could be treated separately.

In the deep learning technique, Ghamisi et al. [13] proposed a fusion approach that com-
bines extinction curves and convolutional neural networks for spectral-spatial classification
of LiDAR and hyperspectral data. Firstly, extinction curves were extracted from different
attributes to capture elevation and spatial information from both LiDAR and hyperspectral
data. Afterwards, the extracted features were merged through either feature concatenation
or graph feature fusion. Finally, the merged features were fed into a deep learning-based
classifier for generating classification maps. Using optical imagery and unregistered airborne
LiDAR data, Nguyen et al. [14] proposed an unsupervised and fully autonomous snake model
without manual beginning points or training data to extract buildings. It was demonstrated
that the method could recover buildings of different colors from intricate surroundings with a
high degree of overall accuracy. Yuan et al. [15] proposed an end-to-end fully convolutional
neural model based on residual networks for handling high-resolution aerial imagery and
LiDAR data. The residual network effectively extracted high-level features, thus reducing the
performance degradation associated with increasing network depth. The network demon-
strated excellent performance, achieving an IoU of 93.19% and an OA of 97.56% on the WHU
dataset and an IoU of 94.72% and an OA of 97.84% on the Boston dataset.

Combining LiDAR with aerial images and other data can significantly enhance the
accuracy of building extraction. However, it is still challenging to combine data from
different sources into the same reference coordinate system.

To improve building extraction accuracy, this paper proposes a highly accurate build-
ing point cloud extraction method based solely on the geometric information of the points.
The method is divided into two stages: coarse extraction and fine extraction. In the coarse
extraction stage, a coarsely extracted building point cloud is obtained using the cloth
simulation filtering algorithm and the region growing algorithm. In the fine extraction
stage, the coarsely extracted building point cloud is iteratively refined using mask polygons

205



Remote Sens. 2024, 16, 1934

and the region growing algorithm. This step-by-step refinement process allows for a more
accurate extraction of the building point cloud. The proposed method is evaluated on the
Urban-LiDAR and Vaihingen datasets, demonstrating excellent extraction accuracy. The
main contributions of this paper are summarized as follows:

1. This paper combines the Alpha Shape algorithm with the neighborhood expansion
method to compensate for the shortcomings of the region growing algorithm in the
coarse extraction stage, thereby obtaining more complete building points.

2. To address the issue of misidentifying facade points near the ground, we perform
mask extraction on the original points instead of non-ground points. This approach
allows us to obtain more comprehensive facade points within the mask polygons
compared to the ones obtained using the cloth simulation filtering algorithm.

3. Even in cases where buildings are closely adjacent to trees, the proposed method can
successfully separate and extract building points from tree points, thereby improving
accuracy and reliability.

2. Methods

This section introduces the proposed method for building extraction in complex
scenes in detail. Our method is divided into two stages, namely coarse extraction and fine
extraction, to achieve accurate extraction of the building point cloud.

In the coarse extraction stage of the building point cloud, our proposed method identifies
non-ground points in the point cloud using the cloth simulation filtering (CSF) algorithm and
uses a region growing algorithm to obtain the coarse extraction of the building point cloud. At
this stage, the region growing algorithm may fail to identify some building boundary points.

In the fine extraction stage of the building point cloud, our proposed method obtains
mask polygons based on the coarsely extracted building points by applying the Alpha
Shape algorithm and the neighborhood expansion method. The building point cloud is
enlarged and replaced by non-ground points within mask polygons. Discrete tree points
are removed from the building point cloud using the region growing algorithm and the
Euclidean clustering algorithm. The building point cloud is then upgraded by merging
with the facade point cloud near the ground. Noise points are removed using the radius
filtering algorithm to obtain the final building point cloud. The detailed workflow and
visualization flowchart for the building point cloud extraction are shown in Figures 1 and 2.
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Figure 1. Workflow of the building point cloud extraction.
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Figure 2. Visualization flowchart of the building point cloud extraction.

2.1. Coarse Extraction of the Building Point Cloud

Due to the large terrain undulations and uneven density distribution of points, tradi-
tional filtering algorithms have difficulty obtaining high-accuracy non-ground points. In
order to remove ground points with high accuracy, this paper uses the CSF algorithm to
separate non-ground points from ground points.

The basic idea of the CSF algorithm is to invert the original points and use a cloth
model composed of spring-connected cloth particles to simulate the filtering process [16].
The position of particles on grid nodes in space determines the shape of the fabric [17].
According to Newton’s Second Law, the relationship between particle position and force
can be expressed as follows [18]:

m
∂X(t)

∂t2 = Fe(X, t) + Fi(X, t), (1)

where m is the mass of the particle. X(t) is the position of the particle at time t. Fe(X, t) is
the external force on the particle. Fi(X, t) is the internal force of the particle at position X at
time t.
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According to Equation (1), we first only calculate the influence of gravity on each
particle, resulting in the position of each particle [18]:

X(t + Δt) = 2X(t)− X(t − Δt) +
G
m

Δt2, (2)

where G is the gravity. X(t) is the position of the particle at time t, and Δt is the step length
of time.

Next, consider the internal forces between particles to limit their displacement in
the void area of the inverted points. The displacement of each particle is calculated as
follows [18]:

→
d =

1
2

b
(→

pk −
→
p0

)
·→n, k = 1, 2, 3, . . . (3)

where
→
d is the displacement vector of particles. b is a parameter that determines whether

a particle can move (b = 1 indicates it can move; b = 0 indicates it cannot move); pk is the
position of adjacent particles of p0.

→
n = (0, 0, 1)T.

Finally, the relative position of particles is adjusted based on the internal forces between
them and the fabric stiffness parameters. If the distance between the actual point and the
simulated particles is less than the pre-set threshold, it is considered a ground point;
otherwise, it is considered a non-ground point (Figure 3).

Figure 3. The point cloud is divided into ground points and non-ground points using the CSF filtering
algorithm (ground points are displayed in dark yellow, and non-ground points are displayed in blue).

After identifying non-ground points in the point cloud, we use the region growing
algorithm to obtain the coarse extraction of the building point cloud from non-ground
points. The algorithm selects the point with the minimum curvature as the initial seed
point. Given a neighboring point A of a seed point B, if the angle between the normal vector
of A (N neighbor) and that of B(N seed) is less than a given threshold θ (Equation (4)) and
the curvature value of A(σneighbor) is less than a given threshold value σ (Equation (5)),
point A is considered a new seed point. The region continues to grow until all points are
processed (Figure 4) [19].

acos

⎛
⎝ Nseed

||Nseed|| ·
Nneighbor∣∣∣∣∣∣Nneighbor

∣∣∣∣∣∣
⎞
⎠ < θ, (4)

σneighbor < σ. (5)

Here, θ and σ are usually small enough to avoid incorrectly identifying non-building
points that are approximately planar as building points. In this case, the region growing
algorithm may fail to extract some building boundary points due to the large angles
between the local normal vectors of adjacent points (Figure 5b).
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Figure 4. Plane segmentation results using the region growing algorithm.

Figure 5. (a) Ground truth; (b) coarse extraction results using the region growing algorithm, with
buildings in red, trees in green, and ground points in dark yellow.

2.2. Fine Extraction of the Building Point Cloud

Considering that the region growing algorithm may fail to include the boundary points
of the buildings during the coarse extraction stage, the building point cloud is enlarged
and replaced with the help of mask polygons.

In this paper, mask polygons are used to identify the points located within them. To
obtain mask polygons, we first project the coarsely extracted building point cloud onto the
XOY plane. Then, we use the Alpha Shape algorithm [20] to extract edge points from the
projected points and finally extend the edge points through the neighborhood expansion
method based on corresponding multipliers.

Mask polygons are extracted in the following steps (Figure 6):

(1) All possible pairs of projected points are processed in the same way. For any pair of
points P1(x1, y1) and P2(x2, y2) from projected point cloud on the XOY plane of point
cloud S, the center point P3(x3, y3) of the circle whose distance from is calculated and
is equal to α based on the distance intersection method (Figure 7) [21]:

{
x3 = x1 +

1
2 (x2 − x1) + H(y2 − y1)

y3 = y1 +
1
2 (y2 − y1) + H(x2 − x1)

, (6)

where ⎧⎨
⎩

H =
√

α2

S2
P1P2

− 1
4

S2
p1 p2

= (x1 − x2)
2 + (y1 − y2)

2
. (7)

(2) The distance d between each point in S and P3 is calculated. If d is less than α, the
point is considered to be inside the circle; otherwise, it is deemed to be outside the
circle. If there are P1 and P2 such that there are no other points inside the circle, then
P1 and P2 are defined as edge points, and P1P2 is defined as a boundary line. The edge
points are obtained until all point pairs in S have been processed.

(3) The centroid coordinates Cenpoint of all edge points and the distance Dispoint from each
edge point to the Cenpoint, as well as the direction vector Dirpoint from the Cenpoint to
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each edge point, are calculated. Multi refers to the corresponding multipliers. The
expanded corresponding edge point Exppointis as follows:

Exppoint = Cenpoint + Dirpoint × Multi × Dispoint. (8)

(4) Edge points are sorted based on the polar angles between adjacent points and connect
them to form a closed polygon for extracting points within the polygon.

Figure 6. Mask polygon extraction using a combination of the Alpha Shape algorithm and neighbor-
hood expansion method.

Figure 7. Calculation of the center coordinates of a circle based on the distance intersection method.

The steps for connecting edge points are as follows: First, the center point of all edge
points is calculated. Then, the edge points are sorted based on their polar angles relative to
the center point in a counterclockwise direction in ascending order. Finally, all edge points
are connected in counterclockwise order to create a closed polygon (Figure 8).

Figure 8. Polygonal connection based on the polar angles.

After the mask polygons are obtained based on the coarsely extracted building point
cloud, the building point cloud is enlarged and replaced by all non-ground points within
the mask polygons. Due to the possibility of adding certain tree points to the building point
cloud, we use the region growing algorithm and the Euclidean clustering algorithm [22] to
filter out some discrete tree points from the building point cloud.

The specific operation process of the Euclidean clustering algorithm is as follows:

(1) The K nearest neighbor points for any point P in space are found using the KD-Tree
nearest neighbor search algorithm.

(2) For the K nearest neighbor points, the Euclidean distance between each point and P
is calculated.
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(3) If there are points within the K nearest neighbors that have a distance smaller than
the set threshold, these points are clustered into a set Q.

(4) The above process is repeated until the number of elements in set Q no longer increases.

At this stage, the threshold values for the normal vector and curvature in the region
growing algorithm are relatively large to include the boundary points of the buildings.

Subsequently, the building point cloud is upgraded by merging with the façade point
cloud near the ground, which is obtained by conducting mask extraction on the original
points instead of non-ground points and setting appropriate values for the Z-axis to adjust
the height to a certain distance from the ground (Figure 9). Given that the façade point
cloud may overlap with the existing building point cloud, the duplicate points are removed
from the merged building point cloud. Finally, we use the radius filtering algorithm to
remove the discrete noise points within the building point cloud.

Figure 9. Misclassification of building points using the CSF algorithm within the red circle, with
ground points in dark yellow and non-ground points in blue.

The main idea of the radius filtering algorithm is to assume that each point in the
original points contains at least a certain number of neighboring points within a specified
radius neighborhood [23]. When this assumption is satisfied, the point is considered a
valid point and retained. On the contrary, if the conditions are not met, it will be identified
as a noise point and removed. As an example, Figure 10 specifies a radius of d. If at least
one adjacent point is specified within this radius, only the blue points in the figure will
be removed from the point cloud. If at least two adjacent points are specified within the
radius, both the purple and black points will be removed.

Figure 10. Radius filtering algorithm.

3. Experiment Settings

3.1. Study Areas

To evaluate the performance of our proposed method, we conducted experiments on
two datasets: the Urban-LiDAR dataset (https://www.lidar360.com/ accessed on 2 May
2022) and the Vaihingen dataset (http://www2.isprs.org/ accessed on 7 April 2022). The
Urban-LiDAR dataset consists of a total of 719,823 points. The dataset includes various
types of objects, including buildings, trees, and ground points, as shown in Figure 11.
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The terrain in this area has undergone significant changes, with dense vegetation and
high buildings.

Figure 11. Urban-LiDAR dataset.

The Vaihingen dataset contains 411,722 points. The Vaihingen dataset is divided
into two parts: Vaihi-1 and Vaihi-2, which have been processed separately in this paper,
as shown in Figure 12 (displayed by elevation). In the Vaihingen dataset, non-ground
points are composed of buildings, powerlines, low vegetation, cars, fences, hedges, shrubs,
and trees; ground points are composed of impervious surfaces. The Vaihingen dataset is
collected by the Leica ALS50 system with a point density of 4–8 m−2. The terrain in this
area is relatively flat, with sparse vegetation and low buildings.

Figure 12. Vaihingen dataset. (a) Vaihi-1 data; (b) Vaihi-2 data.

3.2. Parameter Settings

In the process of extracting the building point cloud, this paper involves some im-
portant algorithms, including the CSF algorithm, the region growing algorithm, and the
Euclidean clustering algorithm. In this article, the parameters we set are mainly based on
the density of points and terrain undulations. The specific parameter settings are shown
in Table 1, where the parameter settings of the region growing algorithm are used for the
coarse extraction stage of building points.

When using the CSF algorithm to separate ground and non-ground points, the fol-
lowing key parameters play an important role: (1) cloth_resolution represents the size
of the terrain coverage grid, that is, the setting of the grid resolution, which affects the
precision of generating a digital terrain model (DTM). A larger cloth resolution usually
leads to a rougher DTM generated; (2) max_iterations represents the maximum number of
iterations; (3) classification_threshold represents the distance threshold between the actual
point and the simulated terrain, used to divide the point cloud into ground points and
non-ground points.
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Table 1. Parameter settings of some important algorithms.

Algorithm Parameter Urban-LiDAR Vaihi-1 Vaihi-2

CSF algorithm
cloth_resolution 1.0 0.3 1.0
max_iterations 500 500 500

classification_thresold 2.0 1.5 2.2

Region growing algorithm

theta_threshold 5 30 10
curvature_threshold 0.05 0.05 0.03

neighbor_number 20 15 30
min_pts_per_cluster 100 40 50
max_pts_per_cluster 10,000 10,000 10,000

European clustering algorithm
tolerance 0.58 1.5 1.25

min_cluster_size 80 180 180
max_cluster_size 100,000 10,000 15,000

In the coarse extraction stage of the building point cloud, the region growing algorithm
is used to extract building points from non-ground points. The region growing algorithm
involves the following key parameters: (1) theta_threshold represents the smoothing
threshold; (2) curvature_threshold represents the curvature threshold; (3) neighbor_number
represents the number of neighborhood search points; (4) min_pts_per_cluster represents
the minimum number of points for each cluster; and (5) max_pts_per_cluster represents
the maximum number of points in each cluster.

When using the Euclidean clustering algorithm to filter discrete tree points and obtain
building points, the Euclidean clustering algorithm involves several important parameters:
(1) tolerance represents the search radius of nearest neighbor search, which is the minimum
Euclidean distance between two different clusters; (2) min_cluster_size represents the
minimum number of cluster points; (3) max_cluster_size represents the maximum number
of cluster points.

3.3. Evaluation Indicators

This paper uses precision, recall, and the F1 score as evaluation indicators to verify the
effectiveness of the proposed method in extracting building points.

Precision represents the proportion of correctly predicted building points to all pre-
dicted building points [24]:

Precision =
TP

TP + FP
, (9)

Recall represents the proportion of correctly predicted building points to actual build-
ing points [24]:

Recall = TP/(TP + FN), (10)

The F1 score is the weighted average of precision and recall, which is closer to the
smaller value of precision and recall [24]:

F1 = 2 × Precision × Recall
Precision + Recall

(11)

where TP represents the number of correctly predicted building points, FP represents that
non-building points are incorrectly predicted as building points, and FN represents that
building points are incorrectly predicted as non-building points.

3.4. Benchmark Algorithm

To verify the effectiveness of the proposed method, a manually interactive recognition
of the building point cloud was used as a reference. In the Urban LiDAR dataset, this paper
mainly analyzes the building point cloud obtained through manual interactive recognition.
In the Vaihingen dataset, this paper compares the PointNet [25], PointNet++ [26], and
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HDL-JME-GGO [27] networks with the proposed method. The PointNet, PointNet++, and
HDL-JME-GGO networks estimate test data by learning from training data (Figure 13).

 
Figure 13. Training data. Ground points are in dark yellow; the facades are in purple; the roofs are in
red; and other elements are in green.

The basic idea of the PointNet network is to utilize a multi-layer perceptron to capture
the feature information of the point, followed by the use of maximum pooling to aggregate
these point features into a global feature representation. The PointNet network is able to
directly process unordered point cloud data without considering the order of points.

The PointNet++ network incorporates a hierarchical structure comprising a sampling
layer, a grouping layer, and a feature extraction layer. This structure allows for the organi-
zation of each point and its surrounding neighborhood into local regions, which are then
processed using the PointNet network to extract features from the corresponding point
cloud. By employing this hierarchical structure, the network becomes capable of effectively
learning local feature information as the context scale expands.

The HDL-JME-GGO network utilizes layered data to enhance deep feature learning
using the PointNet++ network. It incorporates a joint learning method based on nonlinear
manifolds to globally optimize and embed deep features into a low-dimensional space,
taking into account the contextual information of spatial and deep features. It effectively
addresses artifacts caused by partitioning and sampling in the processing of large-scale
datasets. This network achieves global regularization by optimizing initial labels to ensure
spatial regularity, resulting in locally continuous and globally optimal classification results.

4. Results

We evaluated the building extraction performance of the proposed method on the
Urban-LiDAR dataset and the Vaihingen dataset. The building point cloud could be
divided into two non-overlapping point clouds: the facade point cloud and the roof point
cloud. The separation of facade points and roof points was achieved based on the normal
vector threshold in the Z direction. The extraction results of the proposed method on
Urban-LiDAR, Vaihi-1, and Vaihi-2 data are shown in Figures 14–16, respectively. It was
evident from the figures that the proposed method achieved a high level of accuracy in
extracting building points.
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(a) (b) 

Figure 14. Urban-LiDAR’s extraction results: ground points are in dark yellow; tree points are in
green; the facades are in purple; the roofs are in red. (a) Ground truth; (b) the extraction results using
the proposed method.

 
(a) (b) 

Figure 15. Vaihi-1’s extraction results: ground points are in dark yellow; tree points are in green;
the facades are in purple; the roofs are in red. (a) Ground truth; (b) the extraction results using the
proposed method.

 
(a) (b) 

Figure 16. Vaihi-2’s extraction results: ground points are in dark yellow; the facades are in purple;
the roofs are in red. (a) Ground truth; (b) the extraction results using the proposed method.

5. Discussion

This paper evaluated the extraction results of the proposed method on Urban-LiDAR
data, as shown in Table 2. For the roofs, the proposed method yielded a precision of 98.74%,
a recall of 98.47%, and an F1 score of 98.60%. For the facades, the values were 97.98%,
70.94%, and 82.30%, respectively.

216



Remote Sens. 2024, 16, 1934

Table 2. Accuracy assessment of Urban-LiDAR’s extraction (%).

Precision Recall F1 Score

Roof 98.74 98.47 98.60
Façade 97.98 70.94 82.30

In addition, we analyzed the extraction accuracy of the roof in the Urban-LiDAR data.
From Table 3, it can be seen that the highest precision, recall, and F1 scores all reached 100%
(Roof 14 and Roof 29). The minimum accuracy rate of the roof was 79.57%, the recall was
89.13%, and the F1 score was 84.08% (Roof 28). The experimental results showed that the
proposed method exhibited high accuracy and completeness in roof segmentation.

Table 3. Accuracy assessment of Urban-LiDAR’s roof extraction (%).

ID Precision Recall F1 Score

0 99.54 99.77 99.66
1 98.25 98.92 98.58
2 99.80 98.42 99.11
3 96.05 98.00 97.02
4 97.19 98.56 97.87
5 95.22 95.62 95.42
6 99.85 99.80 99.82
7 100 98.14 99.06
8 84.08 91.31 87.55
9 98.72 98.88 98.80
10 98.68 97.35 98.01
11 98.82 98.38 98.60
12 98.00 98.52 98.26
13 99.50 97.70 98.59
14 100 100 100
15 99.12 96.64 97.86
16 98.79 97.65 98.22
17 99.94 99.32 99.63
18 96.67 98.28 97.47
19 88.47 93.46 90.90
20 93.29 96.37 94.80
21 99.87 97.78 98.81
22 99.62 99.17 99.39
23 97.69 97.96 97.82
24 99.41 92.02 95.57
25 97.46 92.42 94.87
26 96.18 98.06 97.11
27 98.91 98.68 98.79
28 79.57 89.13 84.08
29 100 100 100
30 92.76 95.66 94.19

Although the CSF algorithm can effectively separate ground points from non-ground
points, it may mistakenly identify façade points that are closer to the ground as ground
points. To solve this difficult problem, this paper extracted masks based on original points
rather than non-ground points and set appropriate values for the Z-axis to obtain the
façade point cloud near the ground. Comparing Figure 17c, the façade points within mask
polygons in the original points were more complete than those in the non-ground points
acquired using the CSF algorithm.
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(a) (b) 

 
(c) 

Figure 17. (a) Facade points within mask polygons in the original points; (b) the facade points within
mask polygons in the non-ground points; (c) the overlay of (a,b).

In addition, we evaluated the effectiveness of building point extraction in two different
scenes from the Urban-LiDAR dataset: a complex scene and a low-density scene. Figure 18c
displayed the extracted building point cloud using the proposed method in the complex
scene, and the precision, recall, and F1 score of the roof were 98.82%, 98.38%, and 98.60%,
respectively. It demonstrated that the proposed method could extract building points
accurately in the complex scene. Figure 19c shows the extraction results using the proposed
method in the scene with low point density. The recall of the roof was only 92.02%, but
the precision was 99.41%, and the F1 score was 95.57%. It could be seen that there were
relatively dense points with significant fluctuations at the edges of the original points, and
even if we used the region growing algorithm to process it, points at that location could
still be lost.

Our proposed method is compared with three segmentation networks: PointNet,
PointNet++, and HDL-JME-GGO on the Vaihingen dataset. The performance indicators
are listed in Table 4. The proposed method performed outstandingly in roof extraction,
achieving a precision 20.73% higher than that of the PointNet network. However, the F1
score of the proposed method was only lower by 0.28% compared to the HDL-JME-GGO
network. For facade extraction, the precision of the proposed method was 49.63% higher
than that of the PointNet network, 16.53% higher than that of the PointNet++ network,
but only 3.87% lower than that of the HDL-JME-GGO network. While our proposed
method achieved slightly lower accuracy than the HDL-JME-GGO network, it considerably
outperformed the PointNet and PointNet++ networks in extracting building points based
on geometric information.

218



Remote Sens. 2024, 16, 1934

 
(a) 

  
(b) (c) 

Figure 18. Extraction of buildings results in complex scenes: (a) original data; (b) label data; (c) the
extraction results of the building using the proposed method.

 
(a) 

  
(b) (c) 

Figure 19. Extraction of the buildings with low cloud density: (a) original point cloud; (b) manually
delineated reference building points. The integration of texture information into data collected by
unmanned aerial vehicles (UAVs) may introduce errors, as exemplified by the points highlighted in
blue in the figure, which should ideally be categorized as building points; (c) the extracted building
points using the proposed method.
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Table 4. Accuracy assessment of Vaihingen’s extraction (%).

Algorithm Indicator Roof Facade

PointNet
Precision 73.0 (↑20.73) 10.7 (↑49.63)

Recall 82.2 0.1
F1 score 77.6 5.4

PointNet++
Precision 92.8 43.8 (↑16.53)

Recall 81.0 38.3
F1 score 86.9 41.0

HDL-JME-GGO
Precision 92.8 64.2 (↓3.87)

Recall 89.3 24.2
F1 score 91.1 (↓0.28) 44.2

The Proposed Method
Precision 93.73 60.33

Recall 88.08 27.33
F1 score 90.82 37.62

Because the Vaihingen dataset was composed of the Vaihi-1 point cloud and the Vaihi-2
point cloud, we conducted a detailed analysis of the extraction results on the two-point
clouds. For roof extraction, the proposed method achieved precision, recall, and an F1 score
of 91.49%, 92.32%, and 91.90% for the Vaihi-1 point cloud and 96.27%, 83.93%, and 89.68%
for the Vaihi-2 point cloud, respectively (Table 5).

Table 5. Accuracy assessment of Vaihi-1 and Vaihi-2’s extraction (%).

Precision Recall F1 Score

Vaih-1 Vaih-2 Vaih-1 Vaih-2 Vaih-1 Vaih-2

Roof 91.49 96.27 92.32 83.93 91.90 89.68
Facade 58.33 61.45 17.77 38.36 27.24 47.23

Furthermore, we selected 21 buildings and analyzed the roof extraction accuracy
for both the Vaihi-1 point cloud and the Vaihi-2 point cloud (Table 6). For the Vaihi-1
point cloud, the proposed method achieved the highest precision, recall, and F1 score, all
reaching 100%. The proposed method yielded the lowest precision, recall, and F1 score at
71.91%, 81.51%, and 76.41%, respectively. Regarding the Vaihi-2 point cloud, the proposed
method achieved the highest precision (99.90%), recall (98.39%), and F1 score (99.04%).
Conversely, the proposed algorithm exhibited the lowest precision (86.80%), recall (55.14%),
and F1 score (71.05%). These results indicate the proposed method’s capability to achieve
high-accuracy results in roof extraction.

Although the proposed method achieved high accuracy in extracting the Vaihi-1
point cloud and the Vaihi-2 point cloud, there were still some shortcomings. Due to the
limitations of the CSF algorithm, it may have difficulty extracting certain roof points
close to the ground, such as those points shown in the white circle in Figure 20b. In
addition, it was difficult to extract building points solely based on geometric information
for some roofs with significant undulations, as shown in the black circle of building points
in Figures 20b and 21b.
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Table 6. Accuracy assessment of Vaihi-1 and Vaihi-2’s roof extraction (%).

ID Precision Recall F1 Score

Roof Vaih-1 Vaih-2 Vaih-1 Vaih-2 Vaih-1 Vaih-2

0 100 86.80 100 91.83 100 89.24
1 88.94 98.04 93.87 90.77 91.34 94.27
2 100 92.65 99.80 92.45 99.90 92.55
3 97.83 97.91 99.77 95.02 98.79 96.44
4 99.45 99.90 99.73 94.43 99.59 97.09
5 97.75 99.88 97.61 78.13 97.68 87.68
6 99.39 94.78 95.46 84.80 97.39 89.51
7 100 99.88 95.58 55.14 97.74 71.05
8 99.02 99.41 99.18 68.67 99.10 81.23
9 71.91 99.72 81.51 94.67 76.41 97.13

10 98.52 99.29 98.89 94.40 98.70 96.78
11 100 97.21 100 93.43 100 95.28
12 98.14 99.70 86.17 98.38 91.77 99.04
13 98.18 96.57 96.83 97.70 97.50 97.13
14 98.96 99.55 95.65 98.31 97.28 98.93
15 99.43 99.84 99.15 87.41 99.29 93.21
16 100 99.07 99.76 98.05 99.88 98.56
17 99.29 99.23 99.29 90.44 99.29 94.63
18 100 99.16 89.25 98.39 94.32 98.77
19 96.92 97.68 98.43 91.75 97.67 94.62
20 97.35 96.92 96.89 97.55 97.12 97.23

 
(a) (b) 

Figure 20. Vaihi-1 data. (a) Label of Vaihi-1; (b) Vaihi-1’s extraction results using the proposed method.

 
(a) (b) 

Figure 21. Vaihi-2 data. (a) Label of Vaihi-2; (b) Vaihi-2’s extraction results using the proposed method.

6. Conclusions

This paper proposes a highly accurate building point cloud extraction method based
solely on the geometric information of points. The method is divided into two stages: coarse
extraction and fine extraction. In the coarse extraction stage, a coarsely extracted building
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point cloud is obtained using the cloth simulation filtering algorithm and the region
growing algorithm. In the fine extraction stage, the coarsely extracted building point cloud
is iteratively refined using mask polygons and the region growing algorithm. The proposed
method has shown excellent extraction accuracy on the Urban-LiDAR and Vaihingen
datasets. On the Urban-LiDAR dataset, the method achieved a precision of 98.74%, a recall
of 98.47%, and an F1 score of 98.60% for roof extraction. For facade extraction on the same
dataset, the precision, recall, and F1 scores were 97.98%, 70.94%, and 82.30%, respectively.
On the Vaihingen dataset, the proposed method outperformed the PointNet network by
20.73% in roof extraction precision and achieved comparable performance with the HDL-
JME-GGO network. For facade extraction, the method surpassed the PointNet network
by 49.63% in precision, the PointNet++ network by 16.53%, and fell slightly behind the
HDL-JME-GGO network by only 3.87%. Additionally, the proposed method can still extract
building points with high accuracy, even in cases where buildings are closely adjacent to
trees. However, relying solely on geometric information for building extraction may face
significant challenges for roofs with significant fluctuations or in situations where point
density is low. We will introduce more feature information, such as color or texture, to
enhance the ability to extract buildings, thereby achieving more accurate and complete
building extraction in the future.
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Abstract: Vehicle-borne mobile mapping systems (MMSs) have been proven as an efficient means of
photogrammetry and remote sensing, as they simultaneously acquire panoramic images, point clouds,
and positional information along the collection route from a ground-based perspective. Obtaining
accurate matching results between point clouds and images is a key issue in data application from
vehicle-borne MMSs. Traditional matching methods, such as point cloud projection, depth map
generation, and point cloud coloring, are significantly affected by the processing methods of point
clouds and matching logic. In this study, we propose a method for generating matching relationships
based on panoramic images, utilizing the raw point cloud map, a series of trajectory points, and
the corresponding panoramic images acquired using a vehicle-borne MMS as input data. Through
a point-cloud-processing workflow, irrelevant points in the point cloud map are removed, and the
point cloud scenes corresponding to the trajectory points are extracted. A collinear model based
on spherical projection is employed during the matching process to project the point cloud scenes
to the panoramic images. An algorithm for vectorial angle selection is also designed to address
filtering out the occluded point cloud projections during the matching process, generating a series of
matching results between point clouds and panoramic images corresponding to the trajectory points.
Experimental verification indicates that the method generates matching results with an average
pixel error of approximately 2.82 pixels, and an average positional error of approximately 4 cm, thus
demonstrating efficient processing. This method is suitable for the data fusion of panoramic images
and point clouds acquired using vehicle-borne MMSs in road scenes, provides support for various
algorithms based on visual features, and has promising applications in fields such as navigation,
positioning, surveying, and mapping.

Keywords: vehicle-borne mobile mapping system; laser point cloud; panoramic imaging; matching;
occlusion removal

1. Introduction

In recent years, the technology of vehicle-borne mobile mapping systems (MMSs) has
seen rapid development. Vehicle-borne MMSs often integrate laser scanners, cameras, an
inertial measurement unit (IMU), a global navigation satellite system (GNSS), and other
equipment [1]; when the vehicle is traveling at a certain speed, the GNSS and IMU obtain,
in real-time, the position and attitude data of the equipment, while LiDAR and a panoramic
camera synchronously obtain a series of point clouds and panoramic images of the scene.
This technology can efficiently collect ground information from streets, industrial parks,
mining warehouses, forests and other scenes around the clock, and is widely used in
fields such as road maintenance, 3D scene construction, topographic mapping, position-
ing, and navigation [2–6]. The high-precision fusion of multi-source data can bring the
complementary advantages of different types of sensors; the point cloud data obtained
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using a vehicle-borne MMS have rich spatial location information with high accuracy [7];
and panoramic data can be integrated for imaging, with a 360-degree field of view, and
contain a large amount of textural and color information [8]. Achieving the matching of the
two types of data is a hot research direction in vehicle-borne MMS applications.

Matching between the point cloud and images often requires several steps, including
coordinate transformation, registration, and fusion [9]. In terms of coordinate transforma-
tion, matching currently relies mainly on the collinear equation, direct linear, and pyramid
methods [10] to establish the relationship between the point cloud and pixel data. The
important factors directly affecting registration include the quality and synchronization
rate of data collection from various sensors, the accuracy regarding the relative position
between sensors, and the method of solving and correlating the various types of collected
raw data [11]. With the iteration of the hardware system and calibration method, the errors
generated in the first two aspects have reached a relatively low level. In the past few years,
the focus of research has been on the use of algorithms to achieve further fine registration.
Yao et al. used feature points to divide the point clouds generated with multiple laser
scanners into blocks, and determined the accurate relationship between points and pixels
by correlating the visual field of the panoramic camera with the point cloud blocks and
the principle of the collinear equation [12]. Zhang et al. used the spherical epipolar line
method and spherical absolute orientation model to achieve dense matching between
images and point clouds based on Harris angle extraction, thereby obtaining more accurate
registration parameters [13]. Wang et al. extracted the rods in the panoramic image and
the corresponding point clouds, re-projected them to a virtual image, and obtained refined
correspondence by maximizing the overlap area through particle swarm optimization [14].
Zhu et al. proposed a relative orientation model for panoramic images (PROM), which
used feature point matching between adjacent panoramic images to calculate their relative
poses, combined with the absolute pose of the starting panoramic image, to achieve reg-
istration under the condition that the image pose parameters are unknown [15]. Li et al.
used Fast-RCNN to extract vehicles in panoramic images and matched them with possi-
ble corresponding vehicles in the point clouds through initial poses, thereby improving
registration accuracy [16]. Wang et al. used the semantic segmentation method to remove
the sky in panoramic images, projected the point clouds after ground removal to images
to obtain registration primitives, and then achieved fine registration through the whale
algorithm [17].

Fusion is often divided into point cloud coloring based on 3D point clouds and point
cloud projection and depth maps based on 2D images [18]. Point cloud coloring is the
process of assigning actual material colors to each laser point, which is commonly used in
point cloud classification or 3D real scene modeling [19]; its implementation is based on
using timestamps to find the optimal image correspondence of the point cloud, searching
further for the pixel correspondence of the laser point, and assigning color attributes to
the point clouds. Yuan et al. proposed an iterative strategy through which to construct
color and textural information from point clouds using multi-view observations; for the
color conflicts of point clouds generated from different viewpoints, they used differential
image regions to assign values to the point clouds [20]. Shinohara et al. used PointNet++ to
estimate the color of points in the point clouds and used a differentiable renderer to convert
the colored point cloud into an image. The difference between the real image and the
converted image was used as a loss function with which to train the network [21]. Depth
maps are similar to point cloud projection; based on the coordinate transformation theory,
point clouds are projected onto the image, and corresponding pixels are given depth of
field or spatial position information, thereby achieving the measurement and positioning
of ground objects through two-dimensional images [22]. The main difference between the
two methods is that the depth map assigns an initial depth value to all pixels, replaces
them with the depth values of the point clouds, and sets a scaling factor of panoramic
image to increase the continuity of depth measurement [23]. Ku et al. used only basic
computer vision operations (such as dilation, smoothing, etc.) to solve the problem of
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generating depth maps from point clouds, achieving good performance [24]. Xiang et al.
proposed a deep learning network, 3dDepthNet, to generate accurate dense depth maps
from pairs of point clouds and color images, then trained and validated it based on the
KITTI dataset [25]. Bai et al. proposed a lightweight network with a significant reduction
in the number of parameters, achieving a depth map generation algorithm applicable to
embedded devices [26].

At present, for the data-matching method based on two-dimensional images, a vehicle-
borne MMS often undergoes calibration after delivery, which can enable it to obtain highly
accurate sensor external parameter data, thus reducing the workload for registration.
However, there are still some unresolved issues in other aspects. Firstly, if data matching
is performed based on deep learning, then the application effect is largely limited by the
quality of the dataset and requires significant computational resources.

Secondly, due to the fact that point clouds represent discrete data, the projection
generated with a point cloud representing an object on the image may be a series of
discontinuous pixels. The point cloud map generated using a vehicle-borne MMS contains
the 3D point clouds of most objects in the scene; meanwhile, a single panoramic image
reflects the imaging from a certain perspective, and some objects in the scene are occluded.
Therefore, when transforming point clouds into images, a point cloud projection in a region
representing an occluded object might be generated incorrectly, in addition to the visible
point cloud projections that should exist, which will cause a number of pixels with incorrect
depth values to appear in the generated results of the point cloud map or depth map,
and errors will be generated when querying the location coordinates based on the pixels.
In addition, a generated point cloud map contains a large number of noise points and
data with no measurement values (such as ground point clouds), which directly leads to
accuracy interference in the generated results and reduces computational efficiency. In
order to address the above issues, a method for matching point clouds with panoramic
images based on occlusion removal, which assigns spatial position information to the main
target on the image, is proposed. The algorithm removes invalid points contained in the
generated point clouds and filters erroneous projection points from occluded objects, thus
obtaining high-precision matching results.

2. Materials and Methods

In order to achieve accurate matching between point clouds and panoramic images,
it is necessary to determine the fusion area, based on the coverage range of a single
panoramic image, and search for the corresponding relationship between point clouds and
images based on the time series. Specifically, the key technology can be divided into three
parts—sequence point cloud scene generation, fusion coordinate conversion, and image
matching—and the implementation method of each is described below.

2.1. Sequence Point Cloud Scene Generation

A vehicle-borne MMS can obtain the original point cloud data from the scanner, and
the trajectory data from the IMU, during the acquisition process. This equipment outputs
point cloud maps through a preprocessing system. Within the preprocessing system, the
inertial navigation data are corrected based on the base station to obtain Position and
Orientation System (POS) data that represent the trajectory of the inertial navigation center
point. The system integrates the point cloud from each frame in the local coordinate system
into a point cloud map in the world coordinate system, based on the scanner data and the
POS data.

The point cloud map contains the point cloud data of the entire scanned scene, with
a lot of data, but also useless information such as noise and ground points. In order to
improve the efficiency and accuracy of point cloud projection into panoramic images, it is
necessary to preprocess the point cloud. In this study, we designed a set of point-cloud-
processing algorithms; the pseudocode is shown in Figure 1.
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Figure 1. Flow of sequence point cloud scene generation.

During this process, the point cloud data were read, and then the uniform sampling
algorithm was used to reduce the density of the point cloud data to an appropriate level.
Secondly, the statistical filtering algorithm was used to remove irrelevant points, such as
outliers in the point clouds. Thereafter, the cloth simulation filter (CSF) algorithm was
used to separate non-ground point cloud data [27]. Furthermore, the trajectory data of
the camera optical center were read, and, based on the region segmentation algorithm, a
suitable scene range was set and the point cloud roughly corresponding to each trajectory
point was segmented. Finally, the point cloud data were saved, and the point cloud file
corresponding to each panoramic image frame was generated. It should be noted that the
setting of various thresholds in this process primarily achieved good processing effects in
the experimental scenario described in this paper; it can be adjusted according to the actual
circumstances. The density of the point cloud, as the principal data feature, influences the
selection of certain thresholds in this process. For sparser point clouds, ‘every_k_points’
in the uniform sampling step and ‘mean_k’ in the statistical filtering step should be re-
duced, while ‘cloth_resolution’ in the CSF algorithm step should be appropriately in-
creased. Conversely, for denser point clouds, these parameters should be adjusted in the
opposite direction.

2.2. Coordinate Transformation

The world geodetic coordinate system is affected by the positioning and pose deter-
mination method, as well as the initial coordinate system of the 3D point cloud generated
from a vehicle-borne MMS [28]. In order to integrate panoramic images with point clouds,
firstly, coordinate system transformation is required for the point cloud, and then collinear
relationships and spherical projection are applied to complete the mapping of the point
cloud to the panoramic image [29].

To complete coordinate transformation from the point cloud to the corresponding
image, the point cloud coordinates need to be unified to the camera coordinate system,
with the camera center as the origin at the time of image capture. Each camera shooting
time corresponds to the timestamp of a POS trajectory point, and the pose information of
the IMU at that time can be queried in the trajectory. By using this pose and the relative
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position relationship obtained from calibrating the IMU and camera, the pose of the camera
optical center at the time of shooting can be determined.

Given the coordinates of the point cloud and the pose of the camera optical center in
the world coordinate system at the time of shooting, the coordinates of the point cloud in
the camera optical center coordinate system can be calculated using the following formula:

⎡
⎣xc

yc
zc

⎤
⎦ = R

⎛
⎝

⎡
⎣xw

yw
zw

⎤
⎦− T

⎞
⎠ (1)

In Formula (1), (xw, yw, zw) represents the coordinates of the point cloud in the world
coordinate system, (xc, yc, zc) represents the coordinates of the point cloud in the camera
coordinate system, and R and T represent the rotation matrix and translation matrix of
the camera optical center in the world coordinate system, corresponding to the pose of
the camera optical center. The camera trajectory pose points are usually represented by
a set of Euler angles. In order to convert Euler angles into a rotation matrix, different
Euler angle definitions have different rotation matrix generation rules. In this experiment,
the corresponding order and rules in the East–North–Up coordinate system are used to
generate the rotation matrix.

After obtaining the coordinates of the point cloud in the camera coordinate system,
with the camera coordinate system origin as the center of sphere, the coordinates from the
camera coordinate system are converted to the spherical coordinate system, the calculation
formula for which is as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ = arctan xc
yc

xc > 0, yc > 0

θ = π + arctan xc
yc

xc < 0, yc > 0

θ = π + arctan xc
yc

xc < 0, yc < 0

θ = 2π + arctan xc
yc

xc > 0, yc < 0
φ = π

2 − arctan zc√
xc2+yc2

(2)

In Formula (2), (θ, φ) is the coordinate of the point cloud in the spherical coordinate
system, which can be understood as its longitude and latitude on the sphere.

The panoramic image can also be converted into a panoramic sphere, corresponding
to the spherical coordinate system. To convert the point cloud from a spherical coordinate
system to a panoramic pixel coordinate system, the calculation formula is as follows:

⎧⎨
⎩

m = rθ
n = rφ
r = w/2π

(3)

In Formula (3), (m, n) is the coordinate of the point cloud in the pixel coordinate
system, and r is the spherical radius corresponding to the panoramic image. Using the
above formula, the point cloud in each frame of the scene can be projected onto the
corresponding region on the panoramic image.

2.3. Data Matching

As previously mentioned, scene data are processed and segmented from a point cloud
map scanned in the field, containing the overall 3D information of the region. When
converting this information to a two-dimensional image, there may be situations in which
the point cloud information from objects occluded in the camera’s perspective is projected
onto the panoramic image, but these projection point data do not conform to physical
reality and should be filtered out. In this study, we designed a filtering algorithm, based on
vectorial angle, to divide the processing logic into the two following main parts:
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Nearest point preservation: all point cloud data are traversed during the projection
process; if a pixel corresponds to multiple data points, only the data points closest to the
camera center are retained.

Filter out occluded points based on vectorial angle: to determine whether a point
to be processed is an occluded point, we propose an algorithm based on angle filtering
under spherical projection. Within the range of the spherical projection, a pair of points
that do not have an occlusion relationship from a certain perspective form a larger angle
with the viewpoint, and, similarly, a pair of points that are easily occluded tend to form a
smaller angle.

As shown in Figure 2, the angle in (a) between the vector Miw Min formed from the
visible point Miw is the starting point to adjacent points Min, and the vector MiwO, formed
from the visible point to the spherical center O, is significantly greater than the angle in (b)
between the vector Mow Min and the vector MowO, both of which start with the occluded
point Mow.

  
(a) (b) 

Figure 2. Different angles formed by visible and invisible points as vertices in spherical projection:
(a) visible points; (b) invisible points.

By calculating the angle between vectors, it can be judged whether a point in 3D space
is occluded by other points during centroid projection. Taking Figure (a) as an example,
firstly, the unit vector between the point to be processed and the camera optical center can
be constructed, the calculation formula for which is as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vix = x0−xiw
vis

viy = y0−yiw
vis

viz =
z0−ziw

vis

vis =
√
(x0 − xiw)

2 + (y0 − yiw)
2 + (z0 − ziw)

2

(4)

In Formula (4), (xiw, yiw, ziw) is the coordinate of the point to be processed in the world
coordinate system, (x0, y0, z0) is the world coordinate of the camera optical center, vix, viy,
and viz are the normalized components of the unit vector from the point to the camera
optical center in the three directions of the coordinate axis, and vis is the modulus of the
vector from the point to the camera optical center.

A radius threshold r f ilter is set, and all pixels within the threshold range as nearby
pixels are found. For these nearby pixels, their corresponding point cloud is queried and
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the unit vectors formed by these points with the point to be determined are calculated
as follows: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wix = xin−xiw
wis

wiy = yin−yiw
wis

wiz =
zin−ziw

wis

wis =
√
(xin − xiw)

2 + (yin − yiw)
2 + (zin − ziw)

2

(5)

In Formula (5), (xin, yin, zin) is the coordinate of the point cloud corresponding to
adjacent pixels in the world coordinate system, wix, wiy, and wiz are the normalized com-
ponents of the unit vector from the point to be processed to adjacent points in the three
directions of the coordinate axis, and

⇀
wi is the modulus of the vector from the point to

adjacent points.
Finally, the angle between the two vectors is calculated using the following formula:

α = arccos

⎛
⎝ ⇀

vi·⇀wi∣∣∣⇀vi

∣∣∣∣∣∣⇀wi

∣∣∣
⎞
⎠ (6)

Simplification leads to the following formula:

α = arccos[(xin − xiw)(x0 − xiw) + (yin − yiw)(y0 − yiw) + (zin − ziw)(z0 − ziw)] (7)

In Formula (7), α is the angle formed by the point to be processed and the camera
optical center and the adjacent point. The adjacent points are traversed according to the
threshold value, and the minimum angle generated between the point to be processed
and the adjacent points within the radius threshold is recorded. The angle screening
threshold thangle is set. If the minimum angle is less than the screening threshold, the point
is judged to be invisible, filtered as an occluded point, and is not reflected on the panoramic
image projection.

Based on the research methods described above, we designed and implemented an
algorithm for generating the matching results of point clouds and panoramic images, the
pseudocode for which is shown in Figure 3:

 

Figure 3. Flow of matching result generation.
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The algorithm first read the camera optical center trajectory; for each trajectory point,
it read the corresponding point cloud scene and panoramic image. The projection result
of the point cloud scene on the corresponding panoramic image was obtained through
the coordinate transformation function in step 10. In step 12, the data-matching function
took the point cloud projection result, the position of camera optical center, and the pa-
rameters of the occlusion removal algorithm as input data and traversed all points that
had been processed through the nearest point preservation. The function was used to
calculate the vector angles formed by these points, and their neighbors within the search
radius, and determined whether any points were occluded based on the threshold value
of the angle. For all points that completed occlusion determination, the corresponding
relationship between the generated non-occluded points and pixels was retained, and a
series of pixel-to-point correspondences was output in the form of a database file, which
contains the coordinates of some pixels on the panoramic images and the corresponding
spatial points in the world coordinate system. The algorithm traversed all trajectory points,
generating a series of matching result files and corresponding visualization files in a speci-
fied folder, thus realizing batch processing of point cloud and image matching based on
trajectory information.

3. Experimentation and Results

In order to verify the correctness and reliability of the matching method detailed in
this article, a complete implementation process for matching point clouds and panoramic
images was designed. The specific technical route is shown in Figure 4.

 
Figure 4. The implementation process of this study.

3.1. Preparation of Experiment

In this study, the experimental basic data were collected and generated using the
ARS-1000L mobile mapping platform produced by the company Hi-target DigitalCloud.
The system composition is shown in Figure 5.
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Figure 5. Vehicle-borne mobile mapping system used in the experiment.

In the hardware system, the acquisition equipment mainly includes a Riegl VUX-
1HA laser scanner, aSPAN-ISA-100C inertial navigation equipment, and a Ladybug5Plus
panoramic camera. The equipment is fixed and connected via mechanical devices and
calibrated with high precision so that original sensor data can be obtained. The main
performance parameters are shown in Table 1.

Table 1. Main performance parameters of equipment.

Performance Parameters ARS-1000L

Basic parameters
Absolute accuracy ±5 cm

Weight (main unit) 4.6 kg

Laser scanning unit

Max. measuring distance 1350 m@60%

Laser frequency 820 K Hz

Scanning speed 10–200 lines/s

Ranging accuracy 10 mm@150 m

Scanning angle 330◦

Angle resolution 0.001◦

Panoramic camera unit

Panoramic image resolution 8192 × 4096

Pixel size 3.45 μm

Focal length 4.4 mm

Inertial navigation unit

Positioning accuracy
Plane 0.01 m

Elevation 0.02 m

Directional accuracy 0.010◦

Attitude accuracy 0.005◦

The Shandong Xiaoya Group campus was selected as the site for experimental data
acquisition in order to complete the verification of the proposed method. Located at
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No. 44, Industrial North Road, Licheng District, Jinan City, Shandong Province, the area
features expansive and level roads, along with numerous well-organized buildings, which
facilitated accuracy verification. Data acquisition was carried out in the afternoon, when
direct sunlight was not strong. The driving route of the experimental vehicle was planned,
from the nearby road to the industrial park, the mobile scanning platform was started, and
the vehicle was driven on the planned route at a speed of approximately 15 km/h. The
original data of the park were synchronously acquired with each sensor, and then a point
cloud map of the planned route, a trajectory corresponding to the camera optical center,
and panoramic images corresponding to trajectory points were generated.

3.2. Experimental Evaluation of Matching Effect

To qualitatively analyze the matching effects, we utilized point cloud maps, camera
optical center trajectories, and the panoramic images corresponding to the trajectory points
as input data. Data processing was conducted sequentially through the workflows de-
signed previously for generating sequential point cloud scenes and matching results. We
investigated threshold selection for occlusion removal algorithms, examined the visual
effects of the method, and assessed its processing efficiency. Furthermore, in order to
facilitate a comparative analysis of the algorithms, the same experimental dataset was used
to generate colored point clouds, using a point cloud coloring algorithm, and to generate
point cloud projection, directly based on the original point cloud map. The visual effects
produced using both algorithms, as well as their computational efficiencies, were obtained
and compared.

3.2.1. Selection of Threshold Value for Occlusion Removal Algorithm

In the filtering algorithm based on vector angles, the setting of the threshold directly
affects the result of the processing. The radius threshold represents the search range of the
surrounding data points from the points to be evaluated in the image coordinate system.
Sufficient surrounding points help to make more accurate judgments. The angle selection
threshold determines the screening level of the algorithm for the points to be evaluated.
The higher the threshold, the more points will be filtered out. In the matching process,
the density and distribution characteristics of point clouds, the sizes of images, and other
characteristics are all related to the selection of algorithm thresholds. The appropriate
selection of algorithm thresholds should be based on reasonable empirical ranges, with
multiple experimental evaluations conducted to select a good set of thresholds as the
parameters of subsequent algorithms.

According to the characteristics of data acquisition utilized in this experiment, the
range of r f ilter was set to be within 10 pixels, and the range of thangle was set to be within 0.1.
Taking the scene corresponding to a trajectory point in the industrial park as the test dataset,
different filtering thresholds were set within this range to compare the filtering effect
produced using the algorithm. Table 2 and Figure 6, respectively, show the influence of
different thresholds within the range on the number of filtered points, and the visualization
of matching results at representative positions after completing the occlusion removal
process. It can be seen that thangle determines the overall filtering effect. The smaller the
threshold value, the more filtered points, and the more obvious the distinction between
occluded objects. The filtering effect on the occluded part at the junction of two surfaces
of an object is significantly improved, but too small a threshold value can easily lead to
erroneous filtering of visible points, especially those at the far end, resulting in sparse point
cloud projection. The increase in r f ilter improves the accuracy of occlusion judgment, which
has a significant impact on the point cloud projection at the boundary between different
objects, producing the effect of distinguishing the boundaries of objects. However, too large
a value can cause a significantly loss of valuable point clouds at the boundary.
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Table 2. The number of points filtered out using the algorithm at different thresholds.

rfilter thangle
Number of

Projection Points Filtered Out
Percentage of

Total

2 0.1 1,137,043 35.77%
5 0.1 1,311,833 41.27%
7 0.1 1,378,921 43.38%

10 0.1 1,461,944 45.99%
5 0.07 1,371,933 43.16%
5 0.05 1,427,822 44.91%
5 0.03 1,531,863 48.19%
5 0.01 1,897,458 59.69%

When threshold A is set to 0.1 and B is set to 5, the filtering result is more in line with
the physical reality, effectively filtering out the points of the occluded object and preserving
the points of the object within view, with a low loss of position information. Scanning
devices of the same type with similar settings tend to have consistent image and point
cloud generation characteristics; so, the current threshold value can be used as an empirical
parameter for processing scenes of this type. For scenes with different data characteristics,
accurate occlusion removal can be achieved by applying different threshold and search
radius values.

It is evident from algorithmic principles that the density of the point clouds is the
most significant data characteristic affecting processing outcomes. To achieve the desired
accuracy in occlusion removal, the threshold of the algorithm should be adjusted according
to the density of the point clouds. In certain scenarios, where the target object is situated at
a greater distance from the acquisition device, or where the acquisition vehicle is traveling
at a higher speed, the resulting density of the point clouds is lower; for these situations,
the search radius for each point to be processed should be increased, correspondingly
elevating the threshold r f ilter. The sparseness of points also results in an increase in the
angle formed by occluded points, necessitating a corresponding increase in the threshold
thangle. Conversely, when the density of the point clouds is increased, the threshold of the
algorithm should be correspondingly reduced.

(a)

  
(b) (c)

Figure 6. Cont.
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(d) (e)

  
(f) (g)

  
(h) (i)

Figure 6. The visualization of occlusion removal under different parameter configurations: (a) The
original effect of a point cloud projection. (b–i) Occlusion removal effect with different thangle and
r f ilter at the following local positions: (b) 0.1–2, (c) 0.1–5, (d) 0.1–7, (e) 0.1–10, (f) 0.07–5, (g) 0.05–5,
(h) 0.03–5, and (i) 0.01–5.

Each panoramic image is taken on the ground, and there are some point clouds that
are significantly higher than or far away from the camera optical center. According to
the algorithm principle, the vector angle does not change with the increase or decrease
in the distance between the object and the camera optical center, so the selection of the
threshold thangle is not obviously affected by the point cloud distance. However, the width
of the edge area resulting from the projection of adjacent objects is not affected by point
cloud distance. For point clouds that are far away from the camera optical center, the
edge area occupies a large proportion of the projection area, which may lose the effective
spatial information. Therefore, when determining the value of r f ilter, the utilization rate
of the projection information for tall or far away objects should be considered. For the
situation where the corresponding spatial information of these two types of objects needs
to be retained, r f ilter should not be set too large. On the contrary, the value of r f ilter can be
appropriately increased to make the projection discrimination of objects close to the camera
optical center more obvious.

3.2.2. Visualization of the Processing Effect

In the visualization of sequence point cloud scene generation, a series of point cloud
scene data extracted frame by frame is obtained through the designed workflow. Figure 7a,b
shows the generation effect of the point cloud map and the extraction effect of the point
cloud scene corresponding to a certain trajectory point. As shown in the figure, the device
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generates a 3D point cloud scene of the planned road section, with a large amount of noise
and many insignificant points. After processing via the workflow, the valuable point clouds
(such as buildings) in the scene are well preserved, the invalid points are mostly filtered,
and the quality of the point cloud is generally good. The point cloud corresponds to the
real scene around the panoramic camera at the time of shooting and can be used to match
the panoramic image with the corresponding point cloud. Additionally, Figure 7c shows
the generation effect of the point cloud coloring algorithm. As can be seen from the figure,
this algorithm ensures the accurate assignment of real color information to the point cloud,
without affecting the point cloud map data. The data benchmark of this method is point
cloud information, and it lacks the capability to extract spatial information from images.

  
(a) (b) 

  
(c) 

Figure 7. Visualization of point cloud processing. (a) Point cloud map generation. (b) Point cloud
scene extraction. (c) Point cloud map coloring.

In the visualization of data matching, using point cloud scenes, trajectory data, and
corresponding panoramic images as inputs for the matching module, thangle is set to 0.1,
r f ilter is set to 5, and corresponding point cloud projections are generated on the image,
acquiring the point cloud direct projection result using the point cloud map as input.
Figure 8 shows the visual effects of point cloud direct projection and the matching method
we proposed, before and after occlusion removal. It is observable that, upon transforming
the point cloud onto a two-dimensional plane, the projection of the point cloud exhibits a
good degree of coincidence with the corresponding objects in the panoramic imagery; how-
ever, some point clouds that should not appear in the image also generate projections. The
point cloud direct projection result contains significant numbers of occluded point clouds,
noise points, and ground point clouds. If one were to directly query the spatial coordinates
corresponding to image pixels, representing objects of surveying value (such as building
facades), based on this matching result, erroneous outcomes are likely to be obtained. In the
matching method we proposed before occlusion removal, noise points and ground points
were effectively removed, while the projection points of some occluded objects still persist,
affecting the correct matching relationship between pixels and point clouds. Point cloud
matching with occlusion removal significantly improves this phenomenon. Visual objects
can be correctly assigned with point cloud information, and the point clouds that should
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not be displayed on the image are effectively filtered. The edge discrimination between the
projections of different objects is obvious, and the spatial information of tall and far away
objects is also well preserved. The matching results between 2D image pixels and 3D point
cloud coordinates are more consistent with physical reality.

  
(a) 

  
(b) 

  
(c) 

Figure 8. Visualization of different matching methods. (a) Point cloud direct projection. (b) Matching
method before occlusion removal. (c) Matching method after occlusion removal.

3.2.3. Processing Efficiency of the Method

In terms of processing efficiency, we compared the designed method and two com-
parative algorithms in terms of data quantity and time metrics in our experiments, as
shown in Table 3, revealing that the sequence point cloud generation workflow processed
approximately 460 million data points in 4337.68 s, batch-generating files corresponding to
430 trajectory points and filtering out approximately three-quarters of insignificant points,
thereby conserving computational resources for subsequent processing. The point cloud
coloring algorithm consumed 3775 s to generate a colored point cloud map, which was
saved as a map file; however, this commonly used matching method does not demonstrate
significant efficiency advantages. In the matching result generation workflow, taking the
trajectory points processed in the previous section as an example, 20,326,339 data points
were read, and 1,866,860 data points were processed for matching, with a total time con-
sumption of 60.62 s. The point cloud direct projection algorithm consumed 607.31 s due
to using raw point cloud map as input, indicating relatively inefficient processing. In
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summary, the method proposed in this paper can perform serialization processing on large
data volumes with relatively short time consumption and good processing efficiency.

Table 3. The processing efficiency of different methods.

Algorithm Time Metrics Values Quantitative Metrics Values

Sequence point cloud scene
generation

/ / Number of points read 459,358,534

Downsampling 4.95 s Number of points after
downsampling 229,679,267

Statistical filtering 1311.98 s Number of points after
statistical filtering 227,209,999

CSF filtering 523.98 s Number of points after
CSF filtering 125,906,128

Region segmentation
and saving 2496.77 s Number of files generated 430

Total 4337.68 s / /

Point cloud map coloring Total 3775 s Number of colored points 459,358,534

Point cloud direct projection
(Take the processing of a

trajectory point)

/ / Number of points read 459,358,534

Total 607.31 s Number of point clouds
projected onto the image 9,744,335

Data matching
(Take the processing of a

trajectory point)

/ / Number of points read 20,326,339

Coordinate
transformation 27.91 s Number of point clouds

projected onto the image 3,178,693

Occlusion
removal 32.71 s Number of point clouds

matching with pixels 1,866,860

Total 60.62 s / /

3.3. Analysis of Matching Accuracy

To quantitatively analyze the matching error, 18 typical feature points in the industrial
park were selected as control points. These control points were located 5–30 m from the
center of the shooting area. The authentic world coordinates of the control points were
obtained using a reflector-less total station, employing the WGS84 coordinate system,
wherein the x, y, and z axes, respectively, represent the north coordinate, east coordinate,
and geodetic height. On the bases of data acquisition and the processing results of the
algorithm described in the previous section, the coordinates were used as a benchmark for
comparative evaluation.

3.3.1. Generation Accuracy of Point Clouds

In order to evaluate the generation accuracy of point clouds, we manually selected
the point cloud locations corresponding to the control points on the point cloud map and
calculated the difference between the generated coordinates of the selected points and the
true coordinates of the control points. The results are shown in Table 4 and Figure 9. As
shown in the table, the average point cloud generation error is about 3 cm, the mean error
in the plane is about 2.5 cm, and the maximum generation error is not above 5 cm. The
source of error mainly includes the mechanical error of the sensor in data acquisition, the
calibration error of the sensor, etc.; the error distribution of each point is relatively uniform,
the overall generation accuracy is good, and the point cloud map can better restore the
spatial information characteristics of the real scene.
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Table 4. Accuracy error in point cloud generation.

Num
Control Points Scanning Points Errors

x/m y/m z/m x/m y/m z/m dx/m dy/m dz/m d/m

1 513,033.881 406,5421.019 29.501 513,033.905 406,5421.024 29.519 0.024 0.005 0.018 0.030
2 513,034.079 406,5417.709 30.886 513,034.094 406,5417.698 30.905 0.015 −0.011 0.019 0.026
3 513,052.259 406,5431.14 34.345 513,052.272 406,5431.123 34.361 0.013 −0.017 0.016 0.027
4 513,052.256 406,5433.86 29.44 513,052.274 406,5433.854 29.462 0.018 −0.006 0.022 0.029
5 513,052.381 406,5429.156 28.316 513,052.396 406,5429.137 28.340 0.015 −0.019 0.024 0.034
6 513,079.245 406,5422.23 30.011 513,079.263 406,5422.253 30.021 0.018 0.023 0.010 0.031
7 513,056.006 406,5421.309 27.651 513,056.027 406,5421.324 27.667 0.021 0.015 0.016 0.030
8 513,051.238 406,5416.133 27.585 513,051.262 406,5416.131 27.623 0.024 −0.003 0.038 0.044
9 513,060.643 406,5385.074 44.224 513,060.657 406,5385.077 44.259 0.014 0.003 0.035 0.038

10 513,031.439 406,5388.888 37.06 513,031.462 406,5388.868 37.081 0.023 −0.020 0.021 0.037
11 513,013.924 406,5389.131 34.979 513,013.946 406,5389.114 35.005 0.022 −0.018 0.026 0.038
12 513,002.87 406,5388.761 37.571 513,002.877 406,5388.746 37.602 0.007 −0.015 0.031 0.035
13 513,050.191 406,5388.903 32.037 513,050.182 406,5388.917 32.024 −0.009 0.014 −0.013 0.021
14 513,043.428 406,5388.673 31.944 513,043.425 406,5388.689 31.969 −0.003 0.016 0.025 0.030
15 513,033.963 406,5418.855 29.508 513,033.984 406,5418.852 29.528 0.021 −0.003 0.020 0.029
16 513,089.411 406,5386.011 44.216 513,089.432 406,5386.045 44.214 0.021 0.034 −0.002 0.040
17 513,040.848 406,5426.86 27.589 513,040.861 406,5426.887 27.598 0.013 0.027 0.009 0.031
18 513,033.798 406,5423.09 28.772 513,033.832 406,5423.099 28.777 0.034 0.009 0.005 0.035

Mean square error 0.019 0.017 0.021 0.033

Mean square error in plane 0.025 Average
value d 0.032

 

Figure 9. The histogram represents the accuracy error in point cloud generation.

3.3.2. Comparison of Pixel Matching Error

To evaluate the accuracy of the projection, 18 control points were manually labeled
with pixel coordinates on the image. Using the real 3D coordinates of the control point as
input and calculating the target pixel coordinates of the control point on the corresponding
panoramic image based on the point cloud projection formula, the difference between the
two coordinates was calculated as an evaluation of projection accuracy. As shown in Table 5
and Figure 10, the average error in pixel coordinates is 2.82, with a median error of 3.2 and
a maximum error of around 6. The error source of pixel matching is mainly the accuracy
error generated from the camera optical center trajectory, which is directly related to the
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calibration effect of the camera. Moreover, as the distance between the control point and
the shooting center increases, the error tends to increase. The overall matching error is at a
low level, and it can be considered that the matching effect between the point clouds and
the images is relatively accurate.

Table 5. Pixel error in point cloud image matching.

Num
Control Points Target Points Pixel Errors

w h w’ h’ dw dh d

1 5717 2139 5717 2142 0 −3 3.00

2 5983 1953 5982 1955 1 −2 2.24

3 1922 1524 1922 1523 0 1 1.00

4 1540 2106 1537 2103 3 3 4.24

5 1479 2274 1479 2270 0 4 4.00

6 1970 2059 1970 2056 0 3 3.00

7 2437 2322 2437 2321 0 1 1.00

8 3197 2381 3197 2379 0 2 2.00

9 3549 1646 3548 1645 1 −1 1.41

10 4637 1827 4638 1832 −1 −5 5.10

11 4075 1617 4075 1620 0 −3 3.00

12 4600 1670 4599 1672 1 −2 2.24

13 3870 2029 3869 2029 1 0 1.00

14 3887 2033 3885 2037 2 −4 4.47

15 5477 2141 5478 2147 −1 −6 6.08

16 2916 1774 2916 1775 0 1 1.00

17 7044 2836 7044 2834 0 2 2.00

18 5977 2227 5977 2231 0 −4 4.00

Mean square error 1.03 3.03 3.20

Average error of d 2.82

 

Figure 10. The histogram represents the pixel error in point cloud image matching.
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3.3.3. Comparison of Position Matching Error

The matching results generated in this study correspond to the correspondence be-
tween the pixel points representing the primary targets in the panoramic images and their
actual spatial coordinates. In order to evaluate the spatial matching errors of this method,
the corresponding spatial coordinates were retrieved from the matching results for each
control point, according to its pixel coordinates in the image. These coordinates were then
compared with the actual coordinates of the control points to calculate the spatial matching
errors, the results of which are presented in Table 6 and Figure 11. From the table, it can
be seen that the mean square error in plane is about 3.2 cm, the distance error is about
4 cm, and the maximum distance error is no more than 6 cm. The accuracy of the position
matching result is directly related to the accuracy of point cloud generation, the accuracy
of the pixel matching result, and the filtering effect of the occluded data points. The overall
error of this result is at a low level, and there is no obvious error fluctuation, indicating
that there is no situation in which the wrong match point is queried. It can be considered
that the matching relationship between the point cloud and the image generated using the
method can better characterize the distribution characteristics of spatial information based
on the images, and the corresponding position information can be obtained accurately for
the pixels with spatial information.

Table 6. Spatial coordinate error of point cloud image matching.

Num
Control Points Target Points Errors of Spatial Coordinate

x/m y/m z/m x/m y/m z/m dx/m dy/m dz/m d/m

1 513,033.881 406,5421.019 29.501 513,033.894 406,5421.048 29.541 −0.013 −0.029 −0.040 0.051

2 513,034.079 406,5417.709 30.886 513,034.088 406,5417.722 30.916 −0.009 −0.013 −0.030 0.034

3 513,052.259 406,5431.140 34.345 513,052.279 406,5431.118 34.299 −0.020 0.022 0.046 0.055

4 513,052.256 406,5433.860 29.440 513,052.293 406,5433.826 29.434 −0.037 0.034 0.006 0.051

5 513,052.381 406,5429.156 28.316 513,052.422 406,5429.128 28.302 −0.041 0.028 0.014 0.052

6 513,079.245 406,5422.230 30.011 513,079.257 406,5422.214 29.977 −0.012 0.016 0.034 0.040

7 513,056.006 406,5421.309 27.651 513,055.961 406,5421.318 27.650 0.045 −0.009 0.001 0.045

8 513,051.238 406,5416.133 27.585 513,051.208 406,5416.113 27.583 0.030 0.020 0.002 0.036

9 513,060.643 406,5385.074 44.224 513,060.606 406,5385.081 44.249 0.037 −0.007 −0.025 0.045

10 513,031.439 406,5388.888 37.060 513,031.439 406,5388.918 37.085 0.000 −0.030 −0.025 0.039

11 513,013.924 406,5389.131 34.979 513,013.900 406,5389.116 35.027 0.024 0.015 −0.048 0.056

12 513,002.870 406,5388.761 37.571 513,002.866 406,5388.745 37.612 0.004 0.016 −0.041 0.044

13 513,050.191 406,5388.903 32.037 513,050.155 406,5388.932 32.068 0.036 −0.029 −0.031 0.055

14 513,043.428 406,5388.673 31.944 513,043.406 406,5388.669 31.928 0.022 0.004 0.016 0.028

15 513,033.963 406,5418.855 29.508 513,033.967 406,5418.861 29.531 −0.004 −0.006 −0.023 0.024

16 513,089.411 406,5386.011 44.216 513,089.412 406,5386.039 44.216 −0.001 −0.028 0.000 0.028

17 513,040.848 406,5426.860 27.589 513,040.835 406,5426.853 27.592 0.013 0.007 −0.003 0.015

18 513,033.798 406,5423.090 28.772 513,033.811 406,5423.106 28.788 −0.013 −0.016 −0.016 0.026

Mean square error 0.024 0.021 0.027 0.042

Mean square error in plane 0.032 Average
value of d 0.040
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Figure 11. The histogram represents the spatial coordinate error in point cloud image matching.

4. Discussion

In this study, the proposed method automates the generation of a series of matching
result files, based on point cloud and panoramic image data acquired using a vehicle-
borne MMS. In experiments, the method demonstrated favorable outcomes in terms of
visualization effects, processing efficiency, and matching accuracy. Compared to two other
matching methods, the point cloud coloring algorithm has a relatively shorter processing
time, but the resulting output is a colored point cloud map, which does not facilitate spatial
information applications based on vision. The method of point cloud direct projection is
simple, but the matching results contain a significant amount of noise points and projected
points from occluded objects, which interfere with accuracy and require longer processing
times. Overall, the method presented in this paper demonstrates certain advantages.

Additionally, the method is subject to certain limitations of use, which are summarized
as follows:

1. The data for this method are derived from a vehicle-borne MMS; hence, the input
necessitates point cloud maps and panoramic images captured from a ground per-
spective on flat roads. Should the acquisition method alter (such as handheld or
unmanned aerial vehicle acquisition), the data processing logic may require corre-
sponding adjustments.

2. In order to achieve the desired processing outcomes, the threshold of the algorithm
should be adjusted according to the characteristics of the input data. The text dis-
cusses the method of adjusting the threshold based on point cloud density, which is
the most significant data characteristic; however, this necessitates a certain level of
prior knowledge and preliminary debugging. Consideration should be given to the
intelligent enhancement of the process, enabling the threshold setting to adapt and
adjust according to the actual circumstances.

3. With this method, the point cloud map exhibits a sparse distribution of points in
the peripheral regions and the partial absence of point clouds for certain key tar-
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gets, thereby affecting the comprehensiveness of spatial data. In order to acquire
a comprehensive point cloud map, one may refer to the methods described in the
literature [30,31], which involve acquiring point clouds multiple times for the same
target to generate redundant data. Subsequently, an error model is employed to assess
the quality of the point cloud, with only higher-quality data points retained, thus
yielding a high-density, precise point cloud of the target object.

5. Conclusions

For this research, we studied a method for generating a matching relationship between
point clouds and panoramic image data obtained from a vehicle-borne mobile mapping
system based on occlusion removal. Through the designed point-cloud-processing work-
flow, the effective point clouds corresponding to the camera scenes were generated; based
on the spherical projection model and the design logic of filtering occluded points using
vector angles, the problem of filtering the projection of occluded points in the perspective
of panoramic images was solved, and the method logic was streamlined with the ability to
automate and batch process.

An experimental comparison of the characteristics between this method and two com-
monly used matching techniques—point cloud coloring and point cloud direct projection—
was conducted to demonstrate our method’s superiority in terms of processing efficiency
and accuracy. Furthermore, an analysis was performed to examine the impacts of data
characteristics, primarily point cloud density and distance of the points from the camera
optical center, on the selection of algorithm thresholds. Under appropriate threshold values,
accuracy experiments were also conducted, and the results show that, under the proposed
process, the average generation error of point clouds is around 3 cm, with a maximum
error of no more than 5 cm; the average pixel matching error is around 2.8 pixels, with a
maximum error of about 6; additionally, the average position matching error is about 4 cm,
with a maximum error of no more than 6 cm.

In light of the preceding discussion, the prospective research directions for this method
ought to be concentrated on the following components:

1. Enhancing the applicability of algorithms under different acquisition methods and
varying data characteristics. Devising multiple algorithmic logics in order to accom-
plish the processing of input data in diverse forms should be considered. Threshold
control functions that utilize more fundamental variables, such as vehicle speed and
the distance to the primary target, should be designed as inputs, enabling adaptive
adjustment of thresholds to achieve the desired processing outcomes.

2. Acquisition of high-quality point cloud maps. Incorporating an optimization module
for point cloud maps should be considered. Based on redundant point cloud data
acquired multiple times, a filtering algorithm should be designed to retain high-
quality data points, thereby generating an accurate point cloud of the primary target
and supplementing the missing portions of the point cloud maps from conventional
acquisition methods.

3. Enhancing registration accuracy and processing efficiency of data. Accurate match-
ing results are derived from precise calibration parameters of the camera and laser
scanner. Consideration should be given to employing registration algorithms that
integrate point clouds with images to acquire more accurate coordinate transforma-
tion parameters between the two data types. Additionally, the computational speed
of the method can be further enhanced through programming techniques such as
parallelization and CUDA acceleration, thereby reducing the time consumption for
generating matching results.

Overall, the proposed method yields satisfactory matching results, offering a reference-
value-rich scheme for the fusion of multi-source data based on point clouds and panoramic
images. The generated matching results can provide spatial information corresponding to
pixel coordinates based on the image, offering robust support for algorithms that acquire
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object positional information through visual features. This method can be broadly applied
in the fields of surveying, mapping, positioning, and navigation.
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Abstract: The documentation of roadway factors (such as roadway geometry, lane marking retrore-
flectivity/classification, and lane width) through the inventory of lane markings can reduce accidents
and facilitate road safety analyses. Typically, lane marking inventory is established using either
imagery or Light Detection and Ranging (LiDAR) data collected by mobile mapping systems (MMS).
However, it is important to consider the strengths and weaknesses of both camera and LiDAR units
when establishing lane marking inventory. Images may be susceptible to weather and lighting
conditions, and lane marking might be obstructed by neighboring traffic. They also lack 3D and
intensity information, although color information is available. On the other hand, LiDAR data are not
affected by adverse weather and lighting conditions, and they have minimal occlusions. Moreover,
LiDAR data provide 3D and intensity information. Considering the complementary characteristics of
camera and LiDAR units, an image-aided LiDAR framework would be highly advantageous for lane
marking inventory. In this context, an image-aided LiDAR framework means that the lane markings
generated from one modality (i.e., either an image or LiDAR) are enhanced by those derived from
the other one (i.e., either imagery or LiDAR). In addition, a reporting mechanism that can handle
multi-modal datasets from different MMS sensors is necessary for the visualization of inventory
results. This study proposes an image-aided LiDAR lane marking inventory framework that can
handle up to five lanes per driving direction, as well as multiple imaging and LiDAR sensors onboard
an MMS. The framework utilizes lane markings extracted from images to improve LiDAR-based ex-
traction. Thereafter, intensity profiles and lane width estimates can be derived using the image-aided
LiDAR lane markings. Finally, imagery/LiDAR data, intensity profiles, and lane width estimates
can be visualized through a web portal that has been developed in this study. For the performance
evaluation of the proposed framework, lane markings obtained through LiDAR-based, image-based,
and image-aided LiDAR approaches are compared against manually established ones. The evaluation
demonstrates that the proposed framework effectively compensates for the omission errors in the
LiDAR-based extraction, as evidenced by an increase in the recall from 87.6% to 91.6%.

Keywords: lane marking inventory; lane marking extraction; LiDAR; image; visualization/reporting;
mobile mapping systems; lane marking characterization

1. Introduction

Several transportation engineers conduct road safety analyses to explore ways to
decrease accidents by correlating crash data with human, roadway, or vehicle factors. As
shown in Figure 1, out of the 95% of accidents related to human factors, 41% are the result of
roadway features (highlighted in lavender in Figure 1) [1], which include (i) road surface con-
ditions (i.e., potholes or cracks), (ii) lane marking classification (i.e., color/pattern/location),
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(iii) lane marking retroreflectivity, (iv) roadway geometry, and (v) lane width [2–4]. There-
fore, lane marking inventory documenting roadway factors could reduce accidents and
facilitate road safety analyses. Furthermore, a practical reporting mechanism that can
visualize such information is critical for comprehensive, easy-to-grasp lane marking in-
ventory. Several researchers established inventory using MMS data through road surface
identification, color/intensity enhancement, lane marking extraction, classification, and
characterization, as well as reporting mechanisms, which are briefly explained below.

• Road surface identification: define road surface regions in imagery/LiDAR data;
• Color/intensity enhancement: enhance the utility of color/intensity information for

road surface in imagery/LiDAR data;
• Lane marking extraction: detect lane markings in the enhanced road surface im-

agery/LiDAR data;
• Lane marking classification: assign varying labels based on color/pattern/location

to detected lane markings according to the Federal Highway Administration (FHWA)
standard [5];

• Lane marking characterization: derive lane marking attributes (e.g., visibility condi-
tions of lane markings, intensity profiles, and lane width) using classified lane markings;

• Reporting mechanisms: visualize the derived lane marking results (e.g., extracted
lane markings and their characteristics) based on imagery and/or LiDAR data.

It is important to acknowledge that while human, vehicle, and roadway factors play
a significant role in accidents, other factors such as weather, lighting, and systemic trans-
portation issues can also contribute to accidents. This study focused on the importance of
human, vehicle, and roadway factors due to their notable influence on road safety analysis,
as outlined by the Federal Highway Administration (FHWA) [6].

Figure 1. Distribution of how human, vehicle, and roadway factors result in accidents (adapted from
Plankermann, K., 2014 [1]).

The majority of existing research has focused on steps a-d using either (1) imagery,
(2) LiDAR, or (3) a combination of both. Image-based approaches [7–11] encompass road
surface identification, color enhancement, and lane marking extraction. These approaches
are reliable under reasonable weather and lighting conditions. On the other hand, LiDAR-
based strategies [12–16] involve road surface identification, intensity enhancement, and
lane marking extraction. LiDAR-based strategies demonstrate greater effectiveness in
areas where there is a significant contrast between lane marking and pavement regions.
Recently, several studies have investigated the potential of combining MMS imagery and
LiDAR data for lane marking extraction. Huang et al. [17] proposed a lane marking
extraction algorithm based on video and LiDAR datasets in urban areas. They used a 1D
kernel filter to extract lane markings from each video frame and remove false positives
using LiDAR-based road surface identification. Li et al. [18] utilized an MMS to detect
the road surface by combining LiDAR and image data and subsequently extracted lane
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markings from the images. First, the road surface is determined using elevation changes
in point clouds and color variability in RGB images. After that, road surface regions in all
images are transferred into bird-eye-view imagery. Finally, Otsu thresholding and Hough
transform strategies are applied to the bird-eye-view imagery for lane marking extraction.
Shin et al. [19] presented a lane marking extraction approach based on imagery and LiDAR
data, where road surface points are first identified by applying RANSAC-based plane fitting
to point clouds. Next, lane marking points are extracted from road surface point clouds
through intensity thresholding. Lane markings are also identified from images using a
median filter and local thresholding. Finally, the LiDAR-based lane markings are projected
onto images to eliminate false positives, considering only the lane markings detected by
both LiDAR and images as correct detections. Gu et al. [20] proposed an algorithm to
fuse imagery and LiDAR data for lane marking extraction. They identified road surface
points based on the installation height of the used LiDAR scanner and projected them onto
the corresponding images. In the road surface regions of each image, the RGB model is
converted into HSV, and the saturation channel is replaced with LiDAR intensity. These
road surface regions are used as input for training a convolutional neural network (CNN)
model [21] for lane marking extraction. They labeled 30,000 images to train the model.
Bai et al. [22] developed a CNN model for lane marking extraction using imagery and
LiDAR data. They converted LiDAR point clouds into three channel images, with the
first channel representing intensity and the second and third channels representing the
elevations of the highest and lowest points within each discretization bin. After that, the
images were fed to a ResNet50 model [23] to estimate road surface elevation. Based on the
road surface elevation, all camera images are converted into bird-eye-view ones. Finally,
LiDAR and camera images are used to train a CNN model for lane marking extraction.

Although the aforementioned approaches are capable of extracting lane markings, they
have primarily been conducted or evaluated using an MMS equipped with a single camera
and/or LiDAR unit within a limited study area (typically ranging from 1 to 25 km long).
Furthermore, these approaches have mainly focused on extracting lane markings along the
driving lane, with few studies addressing lane marking classification and characterization.
In most image LiDAR-based approaches, imagery data have been predominantly used
as the primary source, while LiDAR data are utilized to enhance lane marking extraction.
Even when using imagery to enhance LiDAR-based extraction, the focus is mainly on
addressing false positives in LiDAR-based lane markings. However, it is important to
consider the strengths and weaknesses of both camera and LiDAR units when establishing
lane marking inventory, as summarized in Table 1. Images are susceptible to weather and
lighting conditions, and lane markings can be obstructed by neighboring traffic. They also
lack 3D and intensity information, although color information is available. On the other
hand, LiDAR data collection is not affected by adverse weather and lighting conditions,
and it has minimal occlusions. One should note that occlusion minimization in LiDAR
data depends on the type of used scanner. A single 2D LiDAR system would suffer from
occlusions as it scans a given object location only once. Implementing two 2D LiDAR
units will have fewer occlusions as the two units will scan an area from two locations,
which could minimize occlusions. When using several multi-beam spinning LiDAR units,
occlusions are greatly reduced by the fact that a given object region is scanned from several
locations by the same and different units onboard the mobile mapping system. LiDAR
data also provide 3D and intensity information. Moreover, relying solely on imagery or
LiDAR data presents challenges in assessing the insufficient grinding of lane markings and
temporary pavement markers. Figure 2 displays a situation where inadequate grinding
of previous lane markings can still be visible in a LiDAR point cloud but not in an image.
Conversely, temporary lane markings can be observed in imagery but not in LiDAR data
if glass beads are not applied, as shown in Figure 3. Considering the complementary
characteristics of camera and LiDAR units, an image-aided LiDAR framework would be
highly advantageous for lane marking inventory purposes.
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Table 1. Advantages and shortcomings of using either camera or LiDAR units onboard an MMS for
lane marking extraction.

Sensor Pros Cons

Camera

• Color information is available
• Massive existing

image-processing strategies
• Temporary lane markings might

be detected

• Images are affected by weather
and lighting conditions

• Lots of occlusions due to
neighboring traffic

• No 3D and intensity information
• Insufficient grinding of lane

markings might not be detected

LiDAR
scanner

• Data collection is not affected by
adverse weather and
lighting conditions

• Minimal occlusions
• 3D and intensity information

is available
• Insufficient grinding of lane

markings might be detected

• No color information
• Temporary lane markings might

not be detected

Figure 2. Insufficient grinding of lane markings invisible in RGB imagery (empty magenta circle) but
visible in a LiDAR point cloud (red dot).

Figure 3. Temporary lane markings visible in RGB imagery (empty magenta circle) but invisible in a
LiDAR point cloud (red dot).

For a reporting mechanism of lane marking inventory, several transportation agencies
have utilized a geographic information system (GIS) [24,25]. These GIS-based reporting
mechanisms involve overlaying various 2D bird-eye-view features on top of each other for
visualization or spatial analysis [26]. However, with the advent of MMS platforms, existing
GIS-based reporting mechanisms may not be adequate for displaying lane marking results
derived from imagery/LiDAR data. Given that an MMS captures perspective-view images,
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the image-based lane marking results may require orthorectification before using them in
GIS-based reporting mechanisms. However, the visualization of perspective-view images
in a reporting mechanism raises another issue of integrating 2D imagery and 3D LiDAR
data. This issue could be addressed through forward and backward projection. Forward
projection allows the transformation from a 2D point on an image to the corresponding
3D point in LiDAR data. In contrast, backward projection enables the transformation
from a 3D point in LiDAR data to the corresponding 2D point on an image. Additionally,
forward/backward projection in a reporting mechanism is essential for effective quality
control of the results obtained from lane marking extraction, as it allows for the assessment
of the alignment of derived lane markings from multiple sensors or an MMS. Nevertheless,
to the best of the authors’ knowledge, no study has been found that utilizes the projection
capability to develop reporting mechanisms for lane marking inventory.

This paper addresses the aforementioned challenges by developing an image-aided
LiDAR framework for establishing lane marking inventory. The main contributions of this
study can be summarized as follows:

• Propose an image-aided LiDAR framework for the following:
• Lane marking extraction/classification/characterization;
• Identifying all lane markings visible in imagery/LiDAR data (not only along the

driving lane);
• Handling multiple imaging and LiDAR sensors onboard an MMS;
• Evaluate the performance of the proposed strategies using an MMS equipped with

multiple camera and LiDAR units along extended road segments;
• Develop a reporting mechanism for visualizing imagery and LiDAR data together

with extracted lane markings, as well as their characteristics (e.g., visibility conditions
of lane markings, intensity profiles, and lane width).

The remainder of this paper is organized as follows. Section 2 introduces the used
MMS and imagery/LiDAR data. Section 3 presents the models used for forward/backward
projection, the proposed image-aided LiDAR lane marking inventory framework, and
metrics for performance evaluation. The experiment results are reported in Section 4.
Finally, the conclusions and scope for future work are summarized in Section 5.

2. Data Acquisition Systems and Dataset Description

To propose a framework that can handle multiple imaging and LiDAR sensors with
different positions and orientations, an MMS was deployed for data acquisition along
extended road segments in this study. The following subsections outline the MMS specifi-
cations and provide details about the study site and acquired datasets.

2.1. Mobile Mapping System

To address the research objectives, this study adopted an MMS equipped with multiple
imaging and LiDAR sensors; namely, the Purdue wheel-based mobile mapping system–
high accuracy (PWMMS-HA), as displayed in Figure 4. The PWMMS-HA is equipped with
four multi-beam LiDAR scanners: three Velodyne HDL-32E and one Velodyne VLP-16
Hi-Res. The HDL-32E comprises 32 vertically aligned laser rangefinders with a total vertical
FOV ranging from −30.67◦ to +10.67◦. The VLP-16 Hi-Res consists of 16 laser rangefinders
with a vertical FOV ranging from −10◦ to +10◦. The HDL-32E has a point capture rate
of 700,000 points per second [27], while the VLP-16 Hi-Res has a point capture rate of
300,000 points per second [28]. In addition, three FLIR Grasshopper 3 9.1MP GigE cameras
are installed on the PWMMS-HA: two forward facing and one rear facing. These cameras
have a maximum image resolution of 9.1 MP (3376 column pixels × 2704 row pixels) and
are synchronized to capture images at a rate of 1 frame per second per camera. The two
front cameras are installed at 2.3 m height, with a slight downward angle of approximately
1◦ from the horizontal plane at their locations, allowing the bottom row of the image to
capture the ground roughly 1.5 m ahead of the camera position. Similarly, the rear camera
is positioned at the same height but at a slightly steeper angle of approximately 7◦, allowing
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the bottom row of the image to capture the ground roughly 1 m behind the camera position.
The above sensors are directly georeferenced by an Applanix POS LV 220 GNSS/INS unit.
The GNSS collection rate is 20 Hz, and the measurement rate of the IMU is 200 Hz [29].

Figure 4. Illustrations of the Purdue wheel-based MMS–high accuracy system (PWMMS-HA).

After GNSS/INS post-processing, the positional accuracy is around ±2 cm, and the
attitude accuracy is approximately ±0.020◦ [29]. The expected accuracy of the resulting
point cloud, based on the LiDAR and navigation system specifications, is roughly 2–4 cm
at a 30 m scanning range [30]. To achieve this expected accuracy, system calibration is
conducted to estimate the mounting parameters relating the GNSS/INS unit to LiDAR and
imaging sensors [31–33].

2.2. Study Site and Dataset Description

To demonstrate the capability of the proposed image-aided LiDAR framework, the
PWMMS-HA is employed to collect a large set of imagery and LiDAR data. Specifically, a
110-mile section of I-465 in the United States, which includes both inner and outer loops,
is surveyed. The trajectory and testing locations, where the performance of the proposed
approaches (discussed later in Section 4.3) was evaluated, along I-465 are depicted in
Figure 5. For the testing locations in Figure 5, locations 1–300 are situated on the inner
loop, while locations 301–600 are located within the outer loop. The PWMMS-HA was able
to capture up to five lanes per driving direction, denoted by location i in Figure 5. The
specifications of the acquired imagery and LiDAR datasets along I-465 are provided in
Table 2. The average local point spacing (LPS) of the road surface point clouds captured by
the PWMMS-HA is 2.5 cm.

Table 2. Description of the imagery/LiDAR data collected by the PWMMS-HA along I-465 in the
United States.

Highway Date
Average

Driving Speed
(mph)

Imagery Data
(# of Images)

LiDAR Data
(# of Points)

I-465 11 July 2023 inner loop: 50.6
outer loop: 50.4 22,428 1 42,000 million

1 Each camera captured a total of 7476 images.
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Figure 5. Study site, MMS trajectory (red dot), and 600 testing locations (blue dot, exaggerated for
visibility) for performance evaluation along I-465, as well as sample RGB images capturing up to five
lanes per driving direction in location i.

3. Methodology

To ensure consistent performance across datasets captured by multiple imaging and
LiDAR sensors, this study proposes a geometric image-aided LiDAR framework. The
geometric framework aims to overcome the potential inconsistency in performance that
may arise from learning-based strategies when applied to datasets captured by different
sensors [34]. The proposed image-aided LiDAR lane marking inventory framework is illus-
trated in Figure 6. This framework builds upon the forward/backward projection technique
and previous research on LiDAR-based strategies for road surface identification, intensity
normalization, and lane marking extraction/classification/characterization (interested
readers can refer to previous studies [35] for more details regarding the above procedure).
The subsequent subsections provide detailed explanations of the models used for the for-
ward/backward projection between the imaging and LiDAR units onboard an MMS, the
proposed image-aided LiDAR framework, and the metrics for performance evaluation.

Figure 6. Flowchart of the proposed image-aided LiDAR lane marking inventory framework.
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3.1. Point Positioning Models for Forward/Backward Projection

For the forward/backward projection in this study, the point-positioning equations
for camera and LiDAR units onboard an MMS are established, as graphically explained
in Figure 7. First, an imaging or laser beam ray relative to its sensor coordinate system
needs to be defined. This can be achieved based on the imagery/LiDAR measurements
(i.e., the image coordinates for a camera as well as the scanning range and direction
for a LiDAR unit) and the Interior Orientation Parameters (IOPs) of the used sensors
(i.e., parameters describing principal point coordinates, principal distance, and distortion
parameters for a camera, as well as encoder mechanism for a LiDAR unit). After that, the
position and orientation of the imaging or laser beam ray relative to the mapping frame
can be established based on the Exterior Orientation Parameters (EOPs), which describe
the position and orientation of the sensor relative to the mapping frame.

Figure 7. Schematic diagram of the point positioning models for GNSS/INS-assisted camera and
LiDAR units onboard an MMS.

According to Figure 7, the point-positioning model of a camera onboard an MMS
can be described by Equation (1), where λ(i,c,t) is a scaling factor associated with point

i in the image captured by camera c at time t and rc(t)
i is the imaging ray for an image

point i relative to the camera coordinate system at time t. Here, rc(t)
i is defined by the

image coordinates of a point i (xi and yi) and the camera IOP, including the principal point
coordinates (xp and yp) and principal distance ( f ), as well as distortions for the x and y
coordinates (distxi and distyi ). As presented in Equation (2) and Figure 7, the position and
orientation information of the camera frame relative to the mapping frame (rm

c(t) and Rm
c(t))

can be derived using the GNSS/INS trajectory information (rm
b(t) and Rm

b(t)) and mounting

parameters between the camera frame and GNSS/INS body frame (rb
c and Rb

c ).

rm
I = rm

c(t) + λ(i,c,t)R
m
c(t)r

c(t)
i , rc(t)

i =

⎡
⎣xi − xp − distxi

yi − yp − distyi

− f

⎤
⎦ (1)

rm
c(t) = rm

b(t) + Rm
b(t)r

b
c & Rm

c(t) = Rm
b(t)R

b
c (2)

Similarly, the point-positioning model for a LiDAR unit onboard an MMS is described
in Equation (3) and Figure 7. In Equation (3), rlu(t)

I represents the position of the footprint
of a laser beam relative to the LiDAR unit frame at time t, while rm

lu(t) and Rm
lu(t) are the

position and orientation of the LiDAR unit frame relative to the mapping frame at time t.
rlu(t)

I is determined based on the measurements of the LiDAR unit’s range and pointing
direction, as well as its IOP. In the case of a spinning multi-beam laser scanner, each laser
beam is fired at a fixed vertical angle β, and the horizontal angle α is determined based on
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the rotation of the LiDAR unit. The range ρ is calculated based on the time it takes for the
laser beam to travel from the firing point to the footprint. Accordingly, Equation (4) defines
the coordinates of a 3D point relative to the LiDAR unit coordinate system. As shown
in Figure 7, rm

lu(t) and Rm
lu(t) can be estimated according to Equation (5), where rm

b(t) and
Rm

b(t) are the position and orientation of the GNSS/INS body frame relative to the mapping

frame at time t and rb
lu/Rb

lu represent the lever arm and boresight rotation matrix between
the LiDAR unit and GNSS/INS body frame coordinate systems. Accordingly, for a LiDAR
unit, the coordinates of an object point I in the mapping frame (rm

I ) can be computed in
Equations (3)–(5).

rm
I = rm

lu(t) + Rm
lu(t)r

lu(t)
I (3)

rlu(t)
I =

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝ρ(t)cosβ(t)cosα(t)

ρ(t)cosβ(t)sinα(t)
ρ(t)sinβ(t)

⎞
⎠ (4)

rm
lu(t) = rm

b(t) + Rm
b(t)r

b
lu & Rm

lu(t) = Rm
b(t)R

b
lu (5)

Equations (1)–(5) indicate that accurate sensor measurements, trajectory, and sys-
tem calibration parameters are crucial for obtaining properly georeferenced data from
imaging and LiDAR units. In this study, a calibration procedure [32] is conducted to esti-
mate the mounting parameters between the different LiDAR scanners and the GNSS/INS
unit to reconstruct georeferenced, well-aligned point clouds. In addition, a simultane-
ous calibration [32,33] between the camera and LiDAR units is implemented to compute
the mounting parameters of the onboard cameras, relative to the reference frame of the
GNSS/INS unit. Based on the estimated trajectory and mounting parameters, forward
and backward projection between point clouds and images can be established. Specifically,
forward projection can identify the corresponding location in a LiDAR point cloud for a
selected feature point in an image. On the other hand, backward projection allows for the
determination of the corresponding point in an image where a 3D object point identified in
a point cloud is selected. This forward/backward projection serves as the foundation for
proposing an image-aided LiDAR lane marking inventory framework.

For forward projection, the corresponding object point coordinates to an image point
(xi, yi) are estimated by finding the intersection between the imaging ray and a 3D LiDAR
point cloud. To solve for the unknown scale factor λ(i,c,t) in Equation (1), an octree-based
ray tracing algorithm [36] is adopted. This algorithm involves building an octree of the
LiDAR points and generating a set of points at equal intervals along the imaging ray,
denoted by Iray,1 ∼ Iray,8 in Figure 8. The closest LiDAR point to each point along the ray
is identified, and the distance between the imaging ray and LiDAR points is computed.
Starting from Iray,1 (the closest point to the perspective center) in Figure 8, the first point
(considered as the forward projected point) that satisfies the following two criteria can
be determined: (i) the distance is smaller than a prespecified threshold (e.g., 0.2 m), and
(ii) the distance is smaller than the distance for the next point. These criteria ensure the
identification of the intersection between the imaging ray and the closest LiDAR surface
(i.e., the visible surface). As shown in Figure 8, Iray,3 is the first point that satisfies the
criteria, with L3 being the closest LiDAR point, while Iray,4 and Iray,7, although meeting the
criteria, are not visible. By projecting L3 onto the imaging ray (the yellow point in Figure 8),
the closest LiDAR surface (i.e., the visible surface) can be determined. Finally, the forward
projection solution can be obtained by the intersection between the projected point and the
object’s surface.
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Figure 8. Schematic illustration of the forward projection algorithm: starting from Iray,1 and Iray,3

is the first point that satisfies the criteria, while Iray,4 and Iray,7 (which are not visible) also meet
the criteria.

For backward projection, the corresponding image point for an object point I in a point
cloud can be directly evaluated. The image point positioning equations—Equations (1) and
(2)—can be reformulated as per Equation (6), expressing the image point coordinates as
a function of known parameters, such as GNSS/INS trajectory information, camera IOP,
camera mounting parameters, and ground coordinates of the object point, as well as the
unknown scale factor λ(i,c,t). To eliminate this unknown scale factor, the first and second
rows of Equation (6) are divided by the third row, resulting in Equations (7) and (8), which
present the image point coordinates (xi, yi) corresponding to an object point I.

rc(t)
i =

1
λ(i,c,t)

[
Rc

bRb(t)
m

(
rm

I − rm
b(t) − Rm

b(t)r
b
c

)]
=

1
λ(i,c,t)

⎡
⎣Nx

Ny
D

⎤
⎦ (6)

xi = −c
Nx

D
+ xp + distxi (7)

yi = −c
Ny

D
+ yp + distyi (8)

3.2. Image-Aided LiDAR Lane Marking Inventory Framework

The image-aided LiDAR lane marking inventory framework section starts by describ-
ing the LiDAR-based, image-based, and image-aided LiDAR strategies. Subsequently, the
developed Potree-based web portal is introduced.

3.2.1. LiDAR-Based Lane Marking Extraction

According to Figure 6, the adopted LiDAR-based lane marking extraction includes
road surface identification, generalized intensity normalization, and geometric lane mark-
ing extraction. For road surface identification, the cloth simulation filtering algorithm [37]
is adopted to separate bare earth from above-ground objects. After that, the bare earth
point cloud is divided into road surface blocks using the block length (L) along the driving
direction and width (W) across the driving direction. In this study, L—e.g., 12.8 m—is
chosen based on the minimum radius of curvature required for designing highways [38],
which ensures that the lane markings are straight along the driving direction. The block
width (W)—e.g., 18 m (with a 9 m extent on the right and left sides of the vehicle)—is
determined by the average LPS of a point cloud, which ensures that the points representing
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lane markings are sufficiently dense for their extraction. To assess the LPS of the lane
markings, a hypothesized lane marking is derived by applying the percentile intensity
thresholding (Thint)—e.g., top 95th—to a small bare earth point cloud along the driving
direction. The LPS of the hypothesized lane marking point cloud is then evaluated using
the approach proposed by Lari and Habib [39]. This analysis indicates that if the width of
road surface blocks exceeds 9 m on either side of the vehicle, the LPS of hypothesized lane
markings is larger than the standard width of lane markings (i.e., lane markings cannot be
extracted from LiDAR data at such distance).

The original intensity values of these road surface blocks are then normalized using
a generalized normalization approach [35], which reduces intensity variation within and
across different LiDAR units (i.e., normalizing intensity across all laser beams of a LiDAR
scanner as well as all LiDAR units onboard an MMS). Finally, lane markings are extracted
through five steps: (i) top 95th percentile intensity thresholding, (ii) scan line-based outlier
removal, (iii) density-based spatial clustering [40], (iv) geometry-based outlier removal,
and (v) local and global refinement. For a given road surface block, as shown in Figure 9a,
hypothesized lane markings after step (i) are illustrated in Figure 9b. Next, for step (ii), the
scan lines (which represent a sequence of points emitted by a LiDAR unit, denoted by scan
line in Figure 9b) within these hypothesized lane markings are removed if they exceed a
certain length, as shown in Figure 9c. This removal approach is based on the assumption
that scan lines within a lane marking should not exceed a pre-defined threshold (Thline),
as lane markings have a specific width. The remaining hypothesized lane marking points
are grouped into isolated segments using a density-based spatial clustering algorithm,
as displayed in Figure 9d. After that, a geometry-based strategy is applied to remove
non-linear segments and outlier points within linear segments, as shown in Figure 9e.
Removing non-linear segments relies on each segment’s principal component analysis
(PCA), while removing outlier points within linear segments is based on a straight line that
best fits each segment and random sample consensus (RANSAC). To connect isolated linear
segments, two refinement strategies are employed: local refinement aims to connect small
segments within each block and identify undetected lane marking points between small
segments, while global refinement focuses on combining the same lane marking segments
in successive blocks, as shown in Figure 9f,g.

Figure 9. Cont.
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Figure 9. LiDAR-based lane marking extraction workflow: (a) road surface block, (b) hypothesized
lane markings, (c) lane marking points after the scan line-based outlier removal, (d) lane marking
segments after density-based spatial clustering, (e) lane marking segments after geometry-based
outlier removal, lane marking segments after (f) local and (g) global refinements.

3.2.2. Image-Based Lane Marking Extraction

For images captured by an MMS, lane markings are typically found in the bottom half
of an image, while the upper half contains elements, such as the sky and landmarks [41,42],
in Figure 10. Thus, it is reasonable to focus on the bottom half of an image for image-based
lane marking extraction. Nonetheless, merely applying a thresholding-based segmentation
or straight line-based detection algorithm to the bottom half may not suffice due to several
factors influencing the accuracy of image-based lane marking extraction. These factors
include lighting conditions, lane marking geometry, and image resolution. For instance,
lighting conditions may fluctuate within the bottom half of an image, leading to incorrect
segmentation when using global thresholding. Although most lane markings close to
the camera appear as straight lines in an image, their geometry may change to curved
lines as they get further away. Additionally, as the distance from a camera to a lane
marking increases, the image resolution at those lane markings decreases. To address
these challenges, a region of interest (ROI) partitioning inspired by a prior study [43] is
implemented. In this study, two ROIs—near and distant—within the bottom half of an
image are established. The near ROI encompasses the area from the bottom row of an image
up to a row above, denoted by a 10 m boundary, where a camera captures the road surface
10 m in front of the vehicle, as indicated by the red polygons in Figure 11. Conversely, the
distant ROI covers the area beyond the 10 m boundary and extends to another row above,
denoted by a 25 m boundary, where a camera captures the road surface 25 m in front of
the vehicle, as represented by the blue polygons in Figure 11. One should note that the
same ROI definition procedure applies to the rear camera, with the exception that the 10 m
and 25 m distances are behind the vehicles. Applying different segmentation or detection
algorithms to the two ROIs separately can reduce the impact of the aforementioned issues.

Figure 10. Schematic diagram of a front camera (capable of capturing one image per second; the
bottom row of an image is capturing the ground roughly 1.5 m ahead of the camera position) onboard
an MMS operating at 50 miles per hour (≈22 m per second) with two sample RGB images captured
at epochs i seconds and i + 1 s.
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Figure 11. Near and distant ROIs for sample images captured by front and rear cameras onboard the
PWMMS-HA.

To define the 10 m boundary and 25 m boundary on an image, the LiDAR point cloud,
as well as the position and orientation information of the used cameras (as described in
Section 2.1), are utilized. For the 10 m boundary, the point along the road surface 10 m
ahead of a camera is selected from the LiDAR data. This point is then backward projected
(as described in Section 3.1) to find its corresponding point on an image, allowing for the
determination of the 10 m boundary. The same procedure is implemented to determine
the 25 m boundary. The boundaries, as described by their image rows, of the near/distant
ROIs for each camera onboard the PWMMS-HA are listed in Table 3. One should note that
the two front cameras are installed with similar downward angles, resulting in the same 10
and 25 m boundaries. However, the rear camera has a slightly steeper downward angle,
leading to different 10 and 25 m boundaries. The choice of a 10 m boundary is based on a
minimum design speed of 30 mph (≈13 m/s) and a chord length of 10 m, corresponding
to an arc length of approximately 10.01 m for the minimum radius of curvature of 231 ft
(≈70.4 m). Thus, the 10 m boundary ensures that lane markings are straight in a near ROI.
In addition, the 25 m boundary guarantees sufficient overlap between successive images
while the vehicle travels at speeds of approximately 50 mph (≈22 m/s). Given that the
PWMMS-HA can capture one image per second, the gap between two successive image
positions is about 22 m, which is less than the specified 25 m (resulting in around 3 m
overlap between successive images), as shown in Figure 10. This study also assumes that
lane markings are straight in the distant ROI, as the chord length and arc length are around
14.97 m and 15.0 m, respectively, for a minimum design speed of 30 mph.

Table 3. Boundary utilized for defining near and distant ROIs within the bottom half of images
captured by the three cameras used in this study for image-based lane marking extraction.

Camera
Image Size (Pixel)

#of Columns × # of Rows

Near ROI (Pixel)
10 m Boundary—Bottom

Row

Distant ROI (Pixel)
25 m Boundary—10 m Boundary

front-left camera
3376 × 2704 1800–2704 1450–1800

front-right camera

rear camera 1600–2704 1250–1600

Next, according to the proposed framework (Figure 6), vanishing point generation
is conducted in this study. Vanishing points are crucial in extracting lane markings from
images, as they provide geometric information for delineating lane markings along road
surfaces. The concept of vanishing points relies on the fundamental principle of perspective

258



Remote Sens. 2024, 16, 1668

in images—parallel lines in the real world converge to a single point in an image. For
images captured by an MMS, lane markings are typically represented by parallel lines.
By identifying the vanishing points corresponding to lane markings, one can infer the
geometry information of the lane markings, which aids extraction.

Because lane markings are assumed to be straight in near/distant ROIs, two distinct
vanishing points are generated using LiDAR-based lane markings within the respective
ROIs in this study. Vanishing point generation is achieved by backward projecting the
LiDAR-based lane markings (as explained in Section 3.1) onto each ROI in the images.
Subsequently, the intersection point, determined by the projected lane markings in each ROI,
can be considered a vanishing point, as shown in Figure 12. According to Yang et al. [44],
the two vanishing points can be utilized to remove outliers within their respective ROIs.
One should note that in cases where lane markings are not detected in LiDAR data, the
vanishing points from the previous frame will be used for the current frame.

Figure 12. Vanishing points in near and distant ROIs for sample images captured by each camera
onboard the PWMMS-HA.

Finally, for image-based lane marking extraction, color information of lane markings
(e.g., white or yellow) is utilized, as they exhibit distinct hues compared to the surrounding
pavement. According to Son et al. [10], lane markings exhibit consistent characteristics
in the YCbCr model under different lighting conditions. Specifically, the Y layer can be
utilized to identify most lane markings, as they consistently have higher values compared
to other colors, regardless of lighting conditions. Conversely, the Cb layer can be used to
distinguish non-white (e.g., yellow or red) lane markings, as they consistently have lower
Cb values compared to other colors under various lighting conditions. Figure 13 illustrates
an RGB image captured under poor lighting conditions and the corresponding Y and Cb
layers. By taking advantage of the fact that lane markings are generally brighter than the
surrounding pavement, most of them can be detected in the Y layer of an image, as shown
in Figure 13a. Furthermore, the Cb layer can differentiate non-white lane markings, as
shown in Figure 13b. One should note that the selection of the dark RGB image in Figure 13
was deliberate to illustrate the characteristics of lane markings in the Y and Cb layers under
poor lighting conditions, and these images are not a consequence of printing issues.

259



Remote Sens. 2024, 16, 1668

Figure 13. RGB-to-YCbCr conversion under poor lighting conditions: (a) Y layer with clear lane
markings and (b) Cb layer with clear non-white lane markings.

Based on the ROIs, vanishing points, and characteristics of lane markings in Y/Cb
layers, image-based lane marking extraction will be implemented through the following
steps: (a) RGB-to-YCbCr conversion, (b) Y/Cb thresholding, (c) connected component
labeling (CCL) [45], (d) contrast-based outlier removal, (e) vanishing point-based outlier
removal, and (f) 3D width-based outlier removal. Figure 14a displays the Y and Cb layers
overlaid with near/distant ROIs after step (a). Step (b) applies a Y percentile thresholding
(Thy)—e.g., top 97th—to the Y layers within each ROI since lane markings have higher Y
values. In addition, a Cb percentile thresholding (Thcb)—e.g., lowest third—is applied to the
Cb layers within each ROI since lane markings have lower Cb values. The selection of the
top ninety-seventh and lowest third thresholding is based on the experiments conducted
by Son et al. [10]. The results after Y/Cb thresholding are shown as binary images in
Figure 14b. Subsequently, the detected pixels in each binary image are grouped into several
segments based on four connectivity-based CCL in step (c), as presented in Figure 14c.
After that, step (d) identifies segments with low contrast compared to their neighboring
area and eliminates them as false positives, as displayed in Figure 14d. In step (d), each
lane marking segment is divided into smaller segments using a length parameter (S)—e.g.,
100 pixels—along the column direction of an image, as shown in Figure 15. Then, a buffer
is created around each small segment by a buffer parameter (B)—e.g., 20 pixels—along
the row direction of an image, and the average Y/Cb value within the buffer is calculated.
Additionally, the average Y/Cb value within each small segment is computed. If the
difference between the Y/Cb averages of a small segment and its surrounding buffer is
less than a pre-defined threshold (Thcontrast), the small segment is deemed a false positive
and subsequently removed. Step (e), as shown in Figure 14e, eliminates segments whose
directional vector is not parallel to the vector formed by connecting its centroid to the
corresponding vanishing point (the correspondence is determined based on near and
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distant ROIs). Step (f) involves checking the average 3D distance between the two edges
across the main direction of each segment to remove outliers. The two edges are forward
projected onto LiDAR data (as explained in Section 3.1), and the average distance between
the projected edges is computed. Segments whose width does not meet the standard size of
lane markings (Th3D) are removed. The lane marking segments after step (f) are illustrated
in Figure 14f. Finally, the results from the Cb layers can be used to differentiate between
white and non-white lane markings extracted from the Y layers.

Figure 14. Cont.
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Figure 14. Image-based lane marking extraction algorithm: (a) Y and Cb layers overlaid with
near/distant ROIs after (b) applying top 97th percentile thresholding to the Y layers within each ROI
and lowest 3rd percentile thresholding to the Cb layers within each ROI, (c) four connectivity-based
connected component labelings, (d) contrast-based outlier removal, (e) vanishing point-based outlier
removal, and (f) 3D width-based outlier removal.

Figure 15. Schematic diagram of a lane marking segment in an image and the corresponding buffer
determined by a length parameter (S) and a buffer parameter (B).
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3.2.3. Image-Aided LiDAR Lane Marking Extraction/Classification/Characterization

Based on the lane markings derived from the LiDAR-based and image-based strate-
gies described in Sections 3.2.1 and 3.2.2, respectively, image-aided LiDAR lane marking
extraction can be conducted. First, all lane marking segments extracted from images are
forward projected (as explained in Section 3.1) onto LiDAR data. In this study, the results
obtained from all the images captured by the three cameras are projected onto LiDAR
data. Figure 16 illustrates examples of the centerline points (at intervals of 10 pixels) of 2D
image-based lane markings and the corresponding forward projected points onto the Li-
DAR data. Thereafter, considering the complementary characteristics of camera and LiDAR
units (as mentioned in Section 1), LiDAR-based lane markings can be refined based on the
correspondence between image-based and LiDAR-based lane markings. In this study, the
correspondence between image-based and LiDAR-based lane markings is determined by a
distance threshold (Thaid)—e.g., 20 cm—as follows:

• If projected image-based lane markings are within 20 cm of LiDAR-based lane mark-
ings, the LiDAR-based extraction will be colored according to the image-based results
and FHWA standard colors [5]. For instance, if image-based lane markings are white,
LiDAR-based ones will be colored using RGB values of 247, 241, and 227.

• If no projected image-based lane markings are within a 20 cm neighborhood of LiDAR-
based lane markings (i.e., no corresponding LiDAR-based extraction in point clouds),
the image-based extraction will be utilized to extract lane markings in point clouds.
First, the top 95th percentile intensity thresholding is applied to a road surface point
cloud to derive hypothesized lane markings. In the hypothesized lane marking point
cloud, points within 20 cm (Thaid) of projected image-based lane markings are extracted.
The resultant lane markings will also be colored according to the abovementioned
procedure. One should note that this study aims to utilize image information to refine
LiDAR-based lane markings for establishing inventory, including intensity profiles
for evaluating retroreflectivity. To prevent misrepresentation of the intensity profiles,
areas with no intensity contrast in the LiDAR data will not be utilized to extract lane
markings in point clouds.

Figure 16. Two-dimensional image-based lane marking centerline points (at intervals of ten pixels)
from three cameras and the corresponding forward projected points onto LiDAR data.
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Once the image-aided LiDAR extraction is completed, lane markings can be further
classified according to their pattern/location information through three steps: (I) length-
based classification, (II) spline-based clustering, and (III) reference-based clustering. For
step (I), as depicted in Figure 17a, each lane marking is categorized as either part of a solid,
dash, or dotted line based on the FHWA standard length [5]. Thereafter, lane markings
of the same type are grouped based on their relative position information for step (II), as
shown in Figure 17b. Spline fitting [46] is applied to each lane marking within a specific
type, and if the distance between any two splines meets a pre-defined criterion ( Thcluster),
these two lane markings are grouped together. Here, the distance between two splines
is estimated using an approach proposed by D’Errico [47]. In step (III), the lane marking
clusters derived from step (II) are further grouped, as displayed in Figure 17c. Starting
from the longest lane marking cluster, spline fitting is applied, and the spline is used as a
reference. Spline fitting is then applied to the other lane marking clusters, and the distances
between the reference spline and the splines from the other lane markings are estimated. If
any splines from the other lane markings meet a pre-defined criterion ( Thcluster), these lane
markings are grouped together. Throughout the subsequent discussion, we will refer to the
groups of lane markings derived from the classification as “lane marking clusters”.

Figure 17. Lane marking classification algorithm: (a) length-based classification, (b) spline-based
clustering, and (c) reference-based clustering.

After the classification, the resultant lane marking clusters can be utilized to derive
intensity and lane width information. For intensity profile generation, each lane marking
cluster (as shown in Figure 18a) is divided into 20 cm portions along the driving direction.
The average intensity values are computed for each portion, and a graph can be created to
display the average intensity against the traveled distance, as shown in Figure 18b. Lane
width estimation starts with lane marking clusters. First, centerline points are generated at
intervals of 20 cm along each cluster, as displayed in Figure 19a. In cases with missing lane
markings for the gaps between dashed or dotted lines, a linear interpolation is performed
to fill the gap between two consecutive centerline clusters, as shown in Figure 19b. One
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should note that this study adopts linear interpolation as per the FHWA standard [5], which
stipulates that a straight line should connect two dashed/dotted lane markings. However,
to avoid linear interpolation on curved roads, interpolation is not applied if the gap exceeds
a pre-defined threshold ( Thgap

)
. Subsequently, lane width can be computed using opposite

centerline points from different lane marking clusters, as presented in Figure 19c. Finally, a
plot can be generated to display the lane width against the traveled distance, as shown in
Figure 19d.

Figure 18. Illustrations of (a) 20 cm portions of each lane marking cluster and (b) an intensity
profile plot.

Figure 19. Illustrations of (a) centerline points generation, (b) linear interpolation, (c) lane width
computation, and (d) a lane width plot.

3.2.4. Potree-Based Web Portal Visualization

In this study, Potree (http://www.potree.org, accessed on 1 January 2023) [48] is
adopted to create a prototype visualization web portal. The architecture of the developed
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web portal, as well as the forward/backward projection functions and intensity profile/lane
width displaying tools, are discussed in the following paragraphs.

Potree-based web portal

The architecture of the established Potree-based web portal is depicted in Figure 20.
The front end, which is the graphical user interface, is used to display georeferenced im-
agery/LiDAR data (such as satellite imagery and LAS/LAZ files). The back end consists of
various functions that allow users to manipulate the georeferenced data. The imagery and
LiDAR data are stored in a database. Figure 21 displays the image placeholders (which
indicate the position/orientation of the images) and LiDAR point clouds captured by the
PWMMS-HA on top of a Cesium base map (https://cesium.com/, accessed on 25 Septem-
ber 2023) at Exit 25 on I-465. Thanks to the georeferencing parameters obtained from the
GNSS/INS trajectory and system calibration procedures, the images are properly posi-
tioned and oriented relative to the point clouds, denoted by the yellow ovals in Figure 22.
The back end receives client requests from the front end and processes them by interacting
with the database using visualization and/or computational functions. For instance, in this
study, the back end facilitates forward/backward projection functions in coordination with
the front end and database.

Figure 20. Architecture of the Potree-based web portal established in this study.

Figure 21. Illustration of the base map overlaid with a LiDAR point cloud and image placeholders
(black polygons with a green boundary) at Exit 25 on I-465 in the Potree-based web portal.
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Figure 22. Illustration of an image properly aligned with a LiDAR point cloud, as highlighted by the
yellow ovals, on top of a base map at Exit 25 on I-465 in the Potree-based web portal.

In addition, the Potree-based web portal provides users with built-in functionality
for measuring distance, angles, and area in LiDAR data. Each measurement is visually
represented by a sequence of user-selected vertices and labels, adhering to the International
System of Units (SI). For example, a distance measurement can be represented by a vector
connecting two vertices and a label showing the distance, as displayed in Figure 23a. On
the other hand, an angle or area measurement necessitates a minimum of three vertices
selected by a user, after which the angles or lengths of each edge and the area will be
displayed in the web portal, as depicted in Figure 23b,c.

Figure 23. Illustrations of built-in measurement functionality in the Potree-based web portal:
(a) measuring distance using two user-selected vertices (red dot) together with the correspond-
ing label (white on black), (b) measuring angles using three user-selected vertices (red dot) together
with the corresponding labels (white on black), and (c) measuring area using four user-selected
vertices (red dot) together with the corresponding labels for the length of each edge (white on black)
and area (green on black).

Forward/backward projection functions

To facilitate the visualization of corresponding features in imagery and LiDAR data,
forward/backward projection functions (as explained in Section 3.1) are developed. As
illustrated in Figure 24, the forward projection function projects a selected point from an
image onto the corresponding LiDAR point cloud, with the blue placemark in the former
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appearing as a red dot (with a white-on-black label for the 3D coordinates) in the latter.
Figure 25 shows that the backward projection function projects an object point (red dot
with a white-on-black label for the 3D coordinates) in a point cloud onto the corresponding
images, denoted by a blue placemark. These projection functions enable users to visualize
georeferenced imagery/LiDAR data captured simultaneously or at different times by the
same or various MMS. Additionally, this projection function can be employed to assess the
accuracy of trajectory and system calibration. For instance, LiDAR-based lane markings
can be backward projected onto an image to visualize any discrepancies between lane
markings derived from multi-modal data.

Figure 24. Illustration of a selected point on an image (blue placemark) is forward projected onto the
corresponding LiDAR point cloud (a red dot with a white-on-black label for the 3D coordinates) in
the Potree-based web portal.

Figure 25. Illustration of a selected point in a LiDAR point cloud (a red dot with a white-on-black
label for the 3D coordinates) is backward projected onto the corresponding image (blue placemark)
in the Potree-based web portal.

Displaying tools for intensity profiles and lane width

To facilitate the visualization of the intensity profiles and lane width plots derived
from the proposed lane marking characterization (as discussed in Section 3.2.3), tools for
displaying these products are developed in this study. Figure 26 illustrates an intensity
profile viewer within the Potree-based web portal. This viewer allows users to select a
point of interest (crosshair cursor) in a profile, which will then display the corresponding
point (red dot with a white-on-black label for the 3D coordinates) on the point cloud.
Similarly, the lane width plot can also be visualized by a viewer, as shown in Figure 27.
Users can select a point of interest (crosshair cursor) in lane width estimates, and then the

268



Remote Sens. 2024, 16, 1668

corresponding point pair (connected by two red dots with a white-on-black label for the
lane width) on the point cloud will be shown on the web portal, as shown in Figure 27.
Once the points of interest are projected onto point clouds, users can further utilize the
backward projection function to locate the corresponding points in an image.

Figure 26. Illustration of a selected point in an intensity profile (crosshair cursor) and the correspond-
ing point in a LiDAR point cloud (a red dot with a white-on-black label for the 3D coordinates), as
well as the backward projected point (blue placemark), on an image.

Figure 27. Illustration of a selected point in lane width plot (crosshair cursor) and the corresponding
point pair in a LiDAR point cloud (connected by two red dots with a white-on-black label for the lane
width), as well as the backward projected points (blue placemark), on an image.
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3.3. Performance Evaluation

Given the minimal occlusions in LiDAR data compared to images, this study assumes
that all lane markings are visible in point clouds. Consequently, this study manually
annotated the point clouds captured by the PWMMS-HA to generate reference data for
performance evaluation. Figure 5 shows the locations where LiDAR data were annotated.
The annotated LiDAR data cover 600 road surface blocks (each block spans 12.8 m along
the driving direction, covering a total area of approximately a 5-mile-long road surface),
with 300 blocks located along the inner loop and another 300 blocks along the outer loop.
As mentioned previously in Section 3.2.1, each LiDAR road surface block has a width of
18 m, which can capture up to five lanes (assuming a lane width of 3.6 m). However, not all
600 road surface blocks capture five lanes due to variations in road geometry, lane width,
and the number of lanes on I-465. Additionally, even in a five-lane area, not all lanes can be
captured if the vehicle is not driving in the middle lane. Thus, a total of 600 road surface
blocks along I-465 are selected to ensure the evaluation of performance under different
scenarios described above.

To compare the extracted lane markings with the reference LiDAR data, centerline
points were created along each detected/annotated lane marking through the following
steps. For the LiDAR-based extraction, each lane marking is divided into 3-meter-long
segments to represent curved solid lines using straight segments. Centerline points are then
computed along each segment at 20 cm intervals. The above procedure is also implemented
to generate centerline points for the image-aided LiDAR and reference lane marking point
clouds. On the other hand, for the image-based extraction, the lane marking segments in
all images are forward projected onto LiDAR data (as explained in Section 3.1). Again,
each projected lane marking is divided into 3-meter-long segments, and then 20-centimeter-
interval centerline points are created along each segment.

Precision, recall, and F1-score are used as metrics to evaluate the performance of the
LiDAR-based, image-based, and image-aided LiDAR lane marking extraction strategies.
These metrics are calculated using Equations (9)–(11), where true positives, false positives,
and false negatives are denoted by TP, FP, and FN, respectively. True positives refer
to the lane markings correctly identified by a particular approach, while false positives
(also known as commission errors) happen when a lane marking is mistakenly identified,
even though it does not exist in the actual scene. False negatives (also known as omission
errors) are the lane markings that an approach fails to identify. Accordingly, if an extracted
centerline point is within 20 cm of a reference centerline point, it is considered a true positive.
Conversely, if there is no reference point within the 20 cm neighborhood of an extracted
point, it is considered a false positive. Similarly, if there is no extracted point within
the 20 cm neighborhood of a reference point, it is considered a false negative. Precision
measures the proportion of correctly detected lane markings out of detected ones, while
recall presents the proportion of correctly detected lane markings out of reference ones.
Lastly, F1-score, which provides an overall assessment of performance, is a combination of
precision and recall using a harmonic mean.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 − score =
2 × Precision × Recall

Precision + Recall
(11)

4. Experimental Results and Discussion

For the proposed image-aided LiDAR lane marking inventory framework, the thresh-
olds/parameters used in this study are summarized in Table 4. These thresholds/parameters
are applied consistently across imagery/LiDAR data obtained from different MMS sensors.
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The experimental results and discussion section begins by presenting the products (i.e.,
extracted lane markings, intensity profiles, and lane width estimates) generated by the
image-aided LiDAR lane marking inventory framework. Subsequently, the performance of
LiDAR-based/image-based/image-aided LiDAR lane marking extraction strategies is eval-
uated through qualitative and quantitative analyses. Finally, the products and performance
evaluation are discussed.

Table 4. Thresholds/parameters used for LiDAR-based/image-based/image-aided LiDAR strategies
in this study.

Threshold/
Parameter

Description Strategy (Section) Value

L Length of road surface blocks LiDAR-based
lane marking extraction (3.2.1) 12.8 m

W Width of road surface blocks LiDAR-based
lane marking extraction (3.2.1) 18 m

Thint
Percentile intensity threshold for lane marking
extraction from point clouds

LiDAR-based
lane marking extraction (3.2.1)

top
95th %

Thline Length threshold for scan line-based outlier removal LiDAR-based
lane marking extraction (3.2.1) 25 cm

Thy
Percentile Y value threshold for lane marking extraction
from images

Image-based
lane marking extraction (3.2.2)

top
97th %

Thcb
Percentile Cb value threshold for lane marking
extraction from images

Image-based
lane marking extraction (3.2.2)

lowest
3rd %

S Length for dividing a segment in an image Image-based
lane marking extraction (3.2.2) 100 pixels

B Number of pixels for creating buffers around a segment
in an image

Image-based
lane marking extraction (3.2.2) 20 pixels

Thcontrast
Y/Cb value threshold for contrast-based outlier removal
in an image

Image-based
lane marking extraction (3.2.2)

5 Y/Cb
values

Th3D
Lane marking width threshold for 3D width-based
outlier removal in an image

Image-based
lane marking extraction (3.2.2) 15 cm

Thaid

Distance threshold for determining the correspondence
between image-based and LiDAR-based lane markings,
as well as extracting lane markings in point clouds using
image-based results

Image-aided LiDAR
lane marking extraction (3.2.3) 20 cm

Thcluster Distance threshold for grouping splines Image-aided LiDAR
lane marking classification (3.2.3) 75 cm

Thgap
Gap threshold for avoiding linear interpolation on
curved roads

Image-aided LiDAR
lane marking characterization (3.2.3) 40 m

4.1. Products from Image-Aided LiDAR Lane Marking Inventory Framework

The proposed image-aided LiDAR lane marking inventory framework was applied
to mobile data spanning 110 miles. Table 5 lists the execution time for the different lane
marking extraction approaches. Figure 28 demonstrates the Cesium base maps overlaid
with the point clouds and image placeholders along I-465. The portal is able to render
the LiDAR and imagery datasets for both inner and outer loops in around ten seconds.
Furthermore, extracted lane markings can also be visualized through the portal, as shown
in Figure 29. Users can interact with the rendered data using the built-in functions, such as
rotation, zooming in/out, and panning, without experiencing any delays, as demonstrated
by the red zoom-in boxes in Figures 28 and 29. Additionally, the web portal allows users
to visualize intensity profile/lane width plots along I-465. By selecting a specific portion
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based on mile markers, users can view the corresponding intensity profile/lane width plot
in a viewer window, as shown in Figure 30.

Table 5. Processing time for LiDAR-based, image-based, and image-aided LiDAR strategies based on
one-mile-long lane marking extraction.

Approach
Time Taken (Seconds) for

One-Mile-Long
Lane Marking Extraction

Platform

LiDAR based ~450 1 32 GB RAM computer

Image based ~5070 2 12.7 GB RAM (GPU) Google
Collaboratory

Image-aided LiDAR ~5970 3 32 GB RAM computer and 12.7 GB
RAM (GPU) Google Collaboratory

1 Time is estimated using four LiDAR units. 2 Time is estimated using three cameras, and each individual image
requires approximately 45 s. 3 Time includes the duration required for LiDAR-based and image-based strategies.

Figure 28. Illustrations of the base map overlaid with (a) LiDAR point clouds and (b) image place-
holders and their zoom-in windows (red dotted polygon) in the Potree-based web portal.

272



Remote Sens. 2024, 16, 1668

Figure 29. Illustration of the base map overlaid with lane marking point clouds and a zoom-in
window (red dotted polygon) in the Potree-based web portal.

Figure 30. Illustration of the Potree-based web portal viewers for intensity profiles and lane width
estimates, allowing users to select a specific portion of the highway (red polygon) based on mile
markers for visualization.

4.2. Qualitative Evaluation Using Potree-Based Web Portal Visualization

Through the built-in functionality and tools developed in this study for the web
portal, the extracted lane markings and intensity profile/lane width results, as well as
the alignment of lane markings derived from imaging/LiDAR units, can be qualitatively
evaluated. For evaluating LiDAR-based/image-based/image-aided LiDAR extraction
strategies, LiDAR-based lane marking point clouds are imported into the web portal. The
centerline points generated using the forward projected image-based lane markings (as
explained in Section 3.3) are also imported. Finally, the image-aided LiDAR and reference
lane markings are imported for evaluation. Figure 31 presents a region where lane markings
were not detected using the image-based approach but were successfully identified using
the LiDAR-based and image-aided LiDAR strategies. In contrast, Figure 32 demonstrates
a region where the LiDAR-based approach failed but the image-based and image-aided
LiDAR strategies were effective. Figures 33 and 34 display the LiDAR-based and image-
based lane marking centerline points as well as the corresponding images with the 2D
extraction at the same locations as Figures 31 and 32.

As depicted in Figure 33, the inability of the image-based strategy to extract lane
markings is attributed to the excessive change in lighting conditions. To investigate the
failure of the LiDAR-based lane marking extraction, the intensity profiles in the same
locations as Figure 32 were examined using the intensity profile display tool in the web
portal. The intensity values for the lane markings were not detected by the LiDAR-based
approach, and their surrounding lane markings are depicted in Figure 34. The decrease

273



Remote Sens. 2024, 16, 1668

in intensity values from 52 to 47, as shown in Figure 34, could potentially explain the
failure of the LiDAR-based extraction. The lane markings with intensity values lower
than the surrounding ones might not be extracted using the LiDAR-based approach. This
finding also suggests that the incorporation of image information can enhance the extrac-
tion of lane markings that are not detected by the LiDAR-based approach. Furthermore,
Figures 32 and 34 serve as evidence that the proposed framework is capable of extracting
lane markings within a five-lane region.

For the qualitative evaluation of intensity profiles, Figure 35 displays a worn-out
lane marking region with an intensity value of 45, along with the corresponding extracted
lane marking point cloud and image. Figure 36 shows another region with an intensity
value of 55 for well-preserved lane markings and its corresponding point cloud and image.
These intensity values are consistent with the lane marking conditions in the corresponding
images. For the qualitative evaluation of lane width estimates, Figure 37 presents a region
with a lane width estimate of 3.60 m (yellow oval) and the corresponding point cloud
and image. The red dots within the yellow oval in Figure 37 are correctly positioned on
the opposite lane markings, and the estimate is similar to the manual measurements of
3.61 m (cyan oval), which is close to the value of the estimate, obtained through the built-in
functionality of the web portal. All the placemarks in all the camera images in Figures 35–37
are derived by backward projecting the intensity profile/lane width points in LiDAR data.

Figure 31. Illustration of lane markings derived through LiDAR-based, image-based, and image-
aided LiDAR approaches (cyan ovals show a region where lane markings were not detected using
the image-based approach but were successfully identified using the LiDAR-based and image-aided
LiDAR strategies).
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Figure 32. Illustration of lane markings derived through LiDAR-based, image-based, and image-
aided LiDAR approaches (cyan ovals show a region where lane markings were not detected using
the LiDAR-based approach but were successfully identified using the image-based and image-aided
LiDAR strategies).

Figure 33. Illustration of the LiDAR-based and image-based lane markings and the corresponding
images with 2D extraction (lavender point) for lane markings that were not detected in the imagery
data (cyan oval shows a region where lane markings were not detected using the image-based
approach but were successfully identified using the LiDAR-based and image-aided LiDAR strategies).
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Figure 34. Illustration of the LiDAR-based and image-based lane markings with LiDAR intensity
values (blue text) highlighting an area (yellow text) showing the relative lane marking extraction
performance (cyan ovals show a region where lane markings were not detected using the LiDAR-
based approach but were successfully identified using the image-based and image-aided LiDAR
strategies) and the corresponding images with 2D extraction (lavender point).

Figure 35. Illustration of an intensity value of 45 (red dot) and the corresponding point cloud and
image (overlaid by a blue placemark, showing the backward projected intensity point) with a zoom-in
window (red dotted circle) for worn-out lane markings (green oval).
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Figure 36. Illustration of an intensity value of 55 (red dot) and the corresponding point cloud and
image (overlaid by a blue placemark, showing the backward projected intensity point) with a zoom-in
window (red dotted circle) for well-preserved lane markings (green oval).

To evaluate the alignment of lane markings derived from imagery and LiDAR data,
Figure 38 displays the forward projection of two points along 2D image-based lane marking
centerlines onto the corresponding LiDAR data. Figure 39 shows the backward projection
function of two points along LiDAR-based lane markings onto the corresponding images.
These figures can be used to assess the quality of the current trajectory and system calibra-
tion. It is noted that when an image-based object/LiDAR point is close to the camera, no
significant discrepancies are observed between the image-based and LiDAR-based lane
markings. However, as the distance between an image-based object/LiDAR point and the
camera increases, slight discrepancies between the image-based and LiDAR-based lane
markings become apparent.

Figure 37. Illustration of a lane width estimate of 3.60 m (yellow oval) and the corresponding point
cloud and image (overlaid by two blue placemarks, showing the backward projected lane width
points) with a zoom-in window (red dotted circle) as well as a manual measurement of 3.61 m (cyan
oval) in LiDAR data.
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Figure 38. Illustration of two points (blue placemark) along 2D image-based lane marking centerlines
(lavender point) that are forward projected onto the corresponding LiDAR point cloud (red dot) with
their zoom-in windows (red dotted circles) in the Potree-based web portal.
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Figure 39. Illustration of two points (red dot) along LiDAR-based lane markings that are backward
projected onto the corresponding image (blue placemark) with their zoom-in windows (red dotted
circle) in the Potree-based web portal.

4.3. Quantitative Evaluation

Based on the centerline points derived (as explained in Section 3.3) from the three lane
marking extraction strategies—LiDAR based, image based, and image-aided LiDAR—the
performance is evaluated by comparing them to the reference data. The evaluation metrics
for the 600 locations, as shown in Figure 5, are summarized in Table 6. Figures 40–44
display samples of centerline points and corresponding images for each approach. The
main findings are categorized based on (1) LiDAR based, (2) image based, and (3) image-
aided LiDAR.

LiDAR-based lane marking extraction

The LiDAR-based approach demonstrates slightly lower precision (93.2%), recall
(87.6%), and F1-score (90.3%) compared to the image-aided LiDAR strategy. This is ex-
pected, as LiDAR sensors are not affected by adverse weather and lighting conditions
and have minimal occlusions, allowing them to outperform the image-based extraction.
However, there is room for improvement in refining some lane markings (denoted by the
red ovals and blue ovals/placemarks in Figures 40 and 41), where image-aided LiDAR
performs better. Overall, the LiDAR-based extraction has few commission (as represented
by the precision) and omission (as represented by the recall) errors, and most extracted
lane markings are true positives.

Image-based lane marking extraction

The image-based approach exhibits the lowest precision (88.5%), recall (69.4%), and
F1-score (77.8%) compared to the other two strategies. The significantly lower recall is
caused by the inevitable influence of excessive change in lighting conditions (denoted by
the blue ovals/placemarks in Figure 42) and/or traffic occlusions (denoted by the blue
ovals/placemarks in Figure 43). Additionally, the low resolution of the images significantly
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limits the image-based extraction approach, making it challenging to identify dash/dotted
lines located beyond the driving lane on either side (denoted by the blue ovals/placemarks
in Figure 44).

Image-aided LiDAR lane marking extraction

The image-aided LiDAR approach achieves the highest precision (93.4%), recall
(91.6%), and F1-score (92.5%) compared to the other two strategies. The recall increases
from 87.6% (LiDAR based) to 91.6% (image-aided LiDAR), surpassing the improvement
from 93.2% (LiDAR based) to 93.4% (image-aided LiDAR) in precision. This suggests that
the enhancement in lane marking extraction is more pronounced when addressing the omis-
sion errors in the LiDAR-based approach (as shown in Figure 32, Figure 40, and Figure 41)
rather than compensating for commission errors. The F1-score also shows an increase
from 90.3% (LiDAR based) to 92.5% (image-aided LiDAR), indicating that the image-aided
LiDAR approach is capable of extracting most lane markings, and the image information
indeed enhances the LiDAR-based extraction, as per the discussion in Section 4.2.

In summary, the image-aided LiDAR lane marking extraction achieves the best per-
formance, followed by the LiDAR-based approach. The image information is particularly
effective in compensating for the omission errors in the LiDAR-based approach. These
findings align with the complementary nature of camera and LiDAR units emphasized in
this study.

Table 6. Performance metrics for different lane marking extraction strategies.

Lane Marking Extraction Precision (%) Recall (%) F1-Score (%)

LiDAR based 93.2 87.6 90.3
Image based 88.5 69.4 77.8

Image-aided LiDAR 93.4 91.6 92.5

Figure 40. Illustrations of centerline points derived through (a) LiDAR-based, (b) image-based, and
(c) image-aided LiDAR lane marking extraction in areas where lane markings were not detected using
the LiDAR-based approach (red oval)—due to low point density in (d) hypothesized lane markings
(yellow oval)—but were successfully identified using the image-based (blue oval/placemark) and
image-aided LiDAR strategies (green oval), as well as the corresponding images captured by
(e) front-left, (f) front-right, and (g) rear cameras onboard the PWMMS-HA.
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Figure 41. Illustrations of centerline points derived through (a) LiDAR-based, (b) image-based, and
(c) image-aided LiDAR lane marking extraction in areas where lane markings were not detected using
the LiDAR-based approach (red oval)—due to low intensity in (d) hypothesized lane markings (yel-
low oval)—but were successfully identified using the image-based (blue oval/placemark) and image-
aided LiDAR strategies (green oval), as well as the corresponding images captured by (e) front-left,
(f) front-right, and (g) rear cameras onboard the PWMMS-HA.

Figure 42. Illustrations of centerline points derived through (a) LiDAR-based, (b) image-based, and
(c) image-aided LiDAR lane marking extraction in areas where lane markings were not detected using
the image-based approach (blue oval)—due to excessive change in lighting conditions in imagery
(blue placemark)—but were successfully identified using the LiDAR-based and image-aided LiDAR
strategies (green oval), as well as the corresponding images captured by (d) front-left, (e) front-right,
and (f) rear cameras onboard the PWMMS-HA.
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Figure 43. Illustrations of centerline points derived through (a) LiDAR-based, (b) image-based, and
(c) image-aided LiDAR lane marking extraction in areas where lane markings were not detected using
the image-based approach (blue oval)—due to traffic occlusion in imagery (blue placemark)—but
were successfully identified using the LiDAR-based and image-aided LiDAR strategies (green oval),
as well as the corresponding images captured by (d) front-left, (e) front-right, and (f) rear cameras
onboard the PWMMS-HA.

Figure 44. Illustrations of centerline points derived through (a) LiDAR-based, (b) image-based, and
(c) image-aided LiDAR lane marking extraction in areas where lane markings were not detected
using the image-based approach (blue oval)—due to insufficient resolution for representing a dotted
lane marking in imagery (blue placemark)—but were successfully identified using the LiDAR-based
and image-aided LiDAR strategies (green oval), as well as the corresponding images captured by
(d) front-left, (e) front-right, and (f) rear cameras onboard the PWMMS-HA.

4.4. Discussion

In this study, the processing time for image-aided LiDAR lane marking extraction
approaches was approximately 100 min per mile (including the duration required for
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LiDAR-based—8 min per mile—and image-based—85 min per mile—strategies) of the
point clouds from four LiDAR units and the images from three cameras. For instance, on
a 100-mile-long highway, the extraction of lane markings using the image-aided LiDAR
framework would take approximately 168 h (7 days), which is less than the estimated
service times for lane markings (white: 10.4~22.6 months; yellow: 15.6~39.7 months) on
highways [49]. Thus, the proposed framework has the potential to provide routine updates
to lane marking inventory throughout the lifespan of lane markings. One should note
that the processing time in this study was not executed in parallel, and the use of parallel
processing techniques could significantly reduce processing time.

Overall, the image-aided LiDAR lane marking extraction (F1-score: 92.5%) outper-
forms the LiDAR-based (F1-score: 90.3%) and image-based (F1-score: 77.8%) approaches.
Nevertheless, LiDAR-based and image-based approaches have strengths and weaknesses
for various potential applications. Image-based approaches may have inferior performance
compared to LiDAR-based strategies for establishing lane marking inventory. However,
image-based approaches are more suitable for autonomous vehicle applications when only
lane markings along the driving lane need to be identified, owing to recent advancements
in machine learning technology and camera affordability.

5. Conclusions and Recommendations for Future Research

This paper presents an image-aided LiDAR framework for establishing lane marking
inventory. The framework utilizes lane markings extracted from images to enhance the
accuracy of LiDAR-based extraction. Thereafter, intensity profiles and lane width estimates
can be derived using image-aided LiDAR lane markings. The proposed image-aided
LiDAR framework can handle lane markings within a 9-meter-extent on either side of the
vehicle, as well as multiple imaging and LiDAR sensors mounted on an MMS. Additionally,
this study developed a Potree-based web portal for visualizing imagery/LiDAR data. A
Potree-based web portal was developed to include a function that facilitates the projection
between 2D images and 3D point clouds, as well as tools for displaying intensity profiles
and lane width estimates.

The performance of the proposed framework was evaluated using a dataset of
22,428 images and approximately 42,000 million LiDAR points collected along I-465 in
the United States. Lane markings spanning around 110 miles (55-mile-long inner and outer
loops) were extracted using the image-aided LiDAR approach, requiring an average of
100 min per mile for processing. The proposed framework improves the performance of
lane marking extraction, as evidenced by the highest F1-score (92.5%) of the image-aided
LiDAR approach, outperforming the LiDAR-based (90.3%) and image-based (77.8%) ones.
Specifically, the recall increase of 0.4%—from 87.6% (LiDAR based) to 91.6% (image-aided
LiDAR)—surpasses the slight improvement in the precision of 0.2%—from 93.2% (LiDAR
based) to 93.4% (image-aided LiDAR). These findings indicate that the enhancement in
LiDAR-based extraction is more pronounced when addressing omission errors rather than
compensating for commission errors. On the other hand, the web portal can render the
LiDAR datasets along I-465 in around ten seconds and visualize intensity profiles and lane
width estimates. Additionally, users can select points of interest in an intensity profile/lane
width plot, which will then be highlighted as points in the corresponding LiDAR data.
Furthermore, the highlighted points can be projected onto the corresponding images where
they are visible.

Future work will focus on leveraging the lane markings derived across different imag-
ing and LiDAR sensors to enhance the alignment of imagery and LiDAR data. The lane
markings derived from LiDAR point clouds can be backward projected onto correspond-
ing images to identify any discrepancy between the LiDAR-based and image-based lane
markings. By minimizing the discrepancy between conjugate lane markings extracted from
multiple modalities, it will be possible to enhance the trajectory information of an MMS,
as well as the calibration parameters of imaging and LiDAR sensors. Furthermore, future
efforts will seek to reduce the execution time by utilizing parallel processing techniques. Re-
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ducing the execution time is particularly crucial to ensure that the proposed framework can
offer regular updates for lane marking inventory over the lifespan of pavement markers.
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Abstract: In response to the demand for high-precision point cloud mapping of subway trains in long
tunnel degradation scenarios in major urban cities, we propose a map construction method based
on LiDAR and inertial measurement sensors. This method comprises a tightly coupled frontend
odometry system based on error Kalman filters and backend optimization using factor graphs. In
the frontend odometry, inertial calculation results serve as predictions for the filter, and residuals
between LiDAR points and local map plane point clouds are used for filter updates. The global
pose graph is constructed based on inter-frame odometry and other constraint factors, followed
by a smoothing optimization for map building. Multiple experiments in subway tunnel scenarios
demonstrate that the proposed method achieves robust trajectory estimation in long tunnel scenes,
where classical multi-sensor fusion methods fail due to sensor degradation. The proposed method
achieves a trajectory consistency of 0.1 m in tunnel scenes, meeting the accuracy requirements for
train arrival, parking, and interval operations. Additionally, in an industrial park scenario, the
method is compared with ground truth provided by inertial navigation, showing an accumulated
error of less than 0.2%, indicating high precision.

Keywords: urban subway; multi-sensor integration; simultaneous localization and mapping;
degraded environments

1. Introduction

Urban rail transit, as a critical infrastructure and major livelihood project, plays a
pivotal role as the arterial system of urban transportation. After more than a century
of development, major metropolises around the world have evolved into cities on rails.
Traditional urban rail transit trains primarily rely on automatic block signaling technology
provided by the communication signal system to avoid collisions, enabling trains to be
isolated from each other on different sections. This system uses beacons to obtain dis-
continuous positions of trains, lacking efficiency and accuracy in real-time applications.
Moreover, it requires massive civil construction investment for building and continuous
maintenance, hindering the technological upgrade and widespread development of urban
rail transit. Therefore, it is crucial to use autonomous perception technology to achieve
environmental information in tunnel scenes and the pose information of trains.

With the development of intelligent and unmanned technologies, the field of rail tran-
sit is gradually introducing intelligent driving systems to enhance operational efficiency
and safety. However, commonly used Global Navigation Satellite Systems (GNSSs) in
autonomous driving provide flexibility and accurate positioning in open areas but are not
suitable for tunnel scenes in large urban subways. To obtain accurate pose data of trains
and surrounding environmental information, it is necessary to construct a high-precision
point cloud map of the train operating area, providing rich a priori information for posi-
tioning and environmental perception. Many previous works based on Mobile Mapping

Remote Sens. 2024, 16, 809. https://doi.org/10.3390/rs16050809 https://www.mdpi.com/journal/remotesensing287



Remote Sens. 2024, 16, 809

Systems (MMSs) have adopted this approach [1,2]. MMSs can provide direct georefer-
encing but require a series of post-processing and expensive measurement instruments.
Therefore, they are not suitable for real-time positioning of urban subway vehicles and
large-scale deployment.

With the continuous maturation of Simultaneous Localization and Mapping (SLAM)
technology, new opportunities have arisen for the construction of high-precision maps for
subway environments and applications based on high-precision maps. However, there is
currently a lack of methods for high-precision map construction for long subway tunnel
features in degraded scenes. The main technical challenges can be summarized as follows:

1. Cumulative Errors in Long Tunnel Environments: Subway tunnels in large cities
are often long and lack reference information like GNSSs for ground truth vehicle
pose estimation. This leads to increased positioning errors with distance, making
it challenging to meet the accuracy requirements for train pose estimation during
station stops.

2. Degraded Scenarios with Repetitive Features: Inside tunnels, the most observable
features are repetitive tunnel walls, tracks, and power supply systems. This presents
challenges for existing SLAM methods designed for urban scenes.

3. Lack of Loop Closure Opportunities: SLAM typically corrects accumulated drift over
detected loop closures. However, trains lack revisit locations, making loop closure
detection difficult.

4. Narrow-Field, Non-Repetitive Scan LiDARs: Solid-state LiDARs with limited fields
of view can easily fail in scenarios with insufficient geometric features.

To address these issues, we propose a system for the precise positioning and mapping
of rail vehicles in tunnel environments. This system tightly integrates multimodal informa-
tion from LiDARs and IMUs in a coupled manner. The main contributions of our work can
be summarized as follows:

1. We develop a compact positioning and mapping system that tightly integrates LiDARs
and IMUs.

2. In response to tunnel degradation scenarios, a high-dimensional, multi-constraint
framework is proposed, integrating a frontend odometry based on an error state
Kalman filter and a backend optimization based on a factor graph.

3. Leveraging geometric information from sensor measurements, we mitigate accumu-
lated pose errors in degraded tunnel environments by introducing absolute pose,
iterative closest point (ICP), and Landmark constraints.

4. The algorithm’s performance is validated in urban subway tunnel scenarios and
industrial park environments.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
introduces the specific algorithms used in our system. Section 4 presents experimental
results. Finally, Section 5 concludes the paper and outlines future research directions.

2. Related Work

Train positioning based on query/response systems, commonly referred to as a “Balise
transmission system”, is a prevalent method in rail transportation. Typically, it comprises
onboard interrogators, ground beacons, and trackside electronic units. Ground beacons
are strategically placed along the railway line at specific intervals. As a train passes each
ground beacon, the onboard interrogator retrieves stored data, enabling point-based train
positioning [3,4]. However, this method provides only point-based positioning, leading
to conflicts between beacon spacing and investment requirements. Consequently, hybrid
positioning methods have been widely adopted, involving distance accumulation through
wheel encoders and error correction using query/response systems. Nevertheless, this
approach can introduce significant cumulative errors in scenarios involving changes in
wheel diameter, slipping, or free-wheeling. Furthermore, onboard interrogators rely on
ground beacons and trackside electronic units, making trains incapable of self-locating in
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cases of ground system failures. Given the substantial capital investment required and
the issues related to low positioning efficiency and the inability of onboard equipment
to self-locate, researchers have explored solutions using onboard sensors [5–7] or feature
matching-based methods [8].

In the field of intelligent transportation, both domestic and international scholars
have proposed numerous methods for constructing point cloud maps [9–16]. Among these
methods, LIO mapping stands out as a real-time technique for 3D pose estimation and
mapping. This method successfully achieves tight coupling between IMUs and LiDAR
technology. However, it comes with a high computational cost and lacks backend global
pose optimization, resulting in substantial cumulative errors over long distances [14].
LiDAR-inertial odometry and mapping (LIOM), on the other hand, presents a method for
correcting distortion in LiDAR point clouds using IMUs and employs nearest-neighbor
techniques for semantic segmentation of point clouds in urban road conditions to mitigate
the influence of moving objects. Nevertheless, its frontend adopts a loosely coupled design,
leading to reduced performance in feature-sparse degraded scenarios [15]. VINS-MONO
introduces a tightly coupled method that combines vision and IMUs, offering advantages
such as high real-time performance and insensitivity to external parameters. However,
it exhibits insensitivity to measurement scales, rendering it unsuitable for tunnel areas
with suboptimal lighting conditions [16]. With the rapid advancement of LiDAR hardware,
solid-state LiDARs have gained renown for their cost-effectiveness and compliance with
automotive regulations, making them widely adopted in autonomous driving and robotics
technologies [17–19]. However, their limited field of view makes them susceptible to failures
in degraded environments lacking distinctive features [20]. To address this limitation,
integrating LiDAR with other sensors proves effective in enhancing the system’s robustness
and accuracy [21–24].

In the realm of rail transportation, O Heirich and others from Germany have pro-
posed a synchronous mapping and localization method based on track geometry informa-
tion [25]. However, it exhibits low accuracy and is unsuitable for relocalization. In China,
Y Wang et al., for instance, have introduced a mapping and localization method for outdoor
rail transportation scenes based on a tightly coupled LiDAR-vision-GNSS-IMU system [26].
This method offers advantages such as high accuracy and robustness. Nevertheless, it
necessitates GNSS integration and has not been optimized to address the specific challenges
posed by long subway tunnel degradation scenarios.

Therefore, this paper addresses the need for high-precision offline point cloud map
construction in subway tunnel environments with degraded features. It presents a mapping
method designed for long-distance feature-degraded scenarios, relying on a tightly coupled
LiDAR-IMU frontend inter-frame odometry and backend global graph optimization. First,
it introduces a framework that incorporates an error state Kalman filter (ESKF)-based
frontend odometry and a factor graph-based backend optimization. This framework
facilitates the establishment of frontend point-plane residual constraints using local maps
updated after backend pose refinement. Second, to tackle the challenges posed by degraded
tunnel features, this paper introduces absolute pose constraints, iterative closest point (ICP)
constraints, and Landmark constraints to the backend factor graph constraints, effectively
reducing pose accumulation errors. Finally, the algorithm’s performance is validated in rail
transit tunnel scenarios.

3. Materials and Methods

Common options for positioning, mapping, and target perception sensors include
GNSS, IMU, LiDAR, and cameras. However, the tunnel’s suboptimal lighting conditions
significantly affect cameras, and their contribution to improving mapping accuracy in
tunnel scenes is limited [27,28]. Additionally, GNSS signals cannot be received under-
ground. Therefore, this study primarily employs LiDAR and IMU units as the main
sensors. LiDAR can be further categorized into mechanical LiDAR and solid-state LiDAR.
Mechanical LiDAR, with its large size and high cost, contrasts with solid-state LiDAR,
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which is lightweight, cost-effective, and more suitable for mass applications. However,
solid-state LiDAR also introduces new challenges to algorithms, including a small field of
view (FOV) that leads to degradation in scenes with fewer features. Due to differences in
the LiDAR’s scanning method, traditional point cloud feature extraction algorithms need
adaptation based on the scanning method. Moreover, compared to the rotational scanning
of mechanical LiDAR, the laser point sampling time of solid-state LiDAR varies and is
challenging to compensate for using kinematic equations. All these factors pose challenges
to the mapping and positioning applications of solid-state LiDAR [20]. This paper proposes
a universal frontend odometry that eliminates the commonly used point cloud feature
extraction module. The algorithm is agnostic to the scanning method and principles of the
LiDAR. The workflow of the algorithm is illustrated in Figure 1 and can be broadly divided
into five modules: hardware drivers, data preprocessing, frontend odometry, backend
graph optimization, and map maintenance.

Figure 1. Algorithm overall flowchart.

3.1. Frontend Odometry

The frontend odometry module is responsible for calculating the relative pose rela-
tionship between consecutive LiDAR frames, providing pose constraints between adjacent
LiDAR frames. As LOAM-series frontend odometry relies on the computation of point-to-
line features [29], and the extraction of line-plane features in solid-state LiDAR is related to
the LiDAR’s scanning method. This paper adopts the idea from FastLio, proposing a tightly
coupled frontend odometry that does not depend on traditional point cloud curvature
calculation for extracting line features [18,30]. The algorithm is modified to suit the rail
transportation environment and the requirements of offline map construction.

The algorithm is based on an ESKF filter for the tightly coupled LiDAR-IMU method [30].
During initialization, the system is required to remain stationary for a period, utilizing
collected data to initialize the gravity vector, IMU biases, and noise, among other parame-
ters. When the algorithm is running, raw data from the LiDAR are input into the LiDAR
point cloud preprocessing module. Invalid points and points in close proximity are filtered
out, and the remaining points are sorted based on sampling time in ascending order. This
sorting facilitates distortion compensation based on IMU preintegration results. The prein-
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tegration method is then used to perform inertial navigation on the raw IMU data. Based
on the inertial navigation results, motion distortion in the point cloud is compensated, and
the prediction phase of the ESKF filter is executed. The temporal flow of LiDAR and IMU
data is illustrated in Figure 2 [20,31].

Figure 2. Schematic diagram of time flow for LiDAR and IMU.

Figure 2 depicts two scans of the LiDAR, denoted as T1 and T2, with the starting time
as the start and the ending time as the end. During a scan, the pose transformation of the
LiDAR within the time interval Tstart

1 to Tend
1 is represented by P1 and R1. Therefore, all

point clouds within the time interval Tstart
1 to Tend

1 are transformed to the Tend
1 moment

to compensate for the motion distortion in the original point cloud. Simultaneously, the
frontend odometry needs to output the inter-frame pose transformation between two scans.
In the prediction phase of the ESKF filter, the inertial navigation results P1−2 and R1−2
within the time interval Tend

1 to Tend
2 are directly used as the filter’s prediction input.

The state variables and kinematic equations used in the ESKF filter are represented
by Equations (1) and (2), where all variables are denoted with superscript “I” for the IMU
coordinate system and “G” for the Earth coordinate system.

x =
[
RG

I pG
I vG

I bω ba Gg
]

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
pG

I = vG
I

.
vG

I = RG
I (am − ba − na) + Gg

G .
g = 0

.
R

G
I = RG

I �ωm − bω − nω�∧.
bω = nbω.
ba = nba

(2)

pG
I —position in the Earth coordinate system; vG

I —velocity in the Earth coordinate sys-
tem; RG

I —rotation matrix of the attitude in the Earth coordinate system; am—accelerometer
measurement; ba—accelerometer bias; na—accelerometer noise; Gg—gravity vector;
ωm—gyroscope measurement; bω—gyroscope bias; nω—gyroscope noise; nbω

—gyroscope
bias random walk noise; nba —accelerometer bias random walk noise.

In the map maintenance module, a sliding window is maintained based on the current
position of the LiDAR, and a local map is output for scan-to-map matching. The raw LiDAR
point cloud undergoes motion compensation and voxel filtering down-sampling. The ESKF
filter establishes the point-to-plane constraint relationship. Using kd-tree nearest-neighbor
search, the five nearest points (P1 P2 P3 P4 P5) to the current point (P) are selected
from the local map. This decision is primarily based on the structural characteristics of
the point cloud within the tunnel environment. Opting for five points in the plane-fitting
process ensures accurate fitting of the ground plane and other features present in the tunnel,
such as installed signs and road edge planes. Choosing more than five points might result
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in a scarcity of plane points, leading to significant solving errors, while selecting fewer than
five points could result in larger residuals in the fitted plane, causing fitting inaccuracies.
The plane equation is then fitted using Principal Component Analysis (PCA) as follows [32]:

Each dimension of the data is subtracted by its mean value. After transformation, the
mean value of each dimension becomes zero. Compute the covariance matrix for the three
coordinates. The covariance matrix C is defined as follows:

C =

⎡
⎣ cov(x, x)cov(x, y)cov(x, z)

cov(y, x)cov(y, y)cov(y, z)
cov(z, x)cov(z, y)cov(z, z)

⎤
⎦ (3)

where cov(x, x) represents the covariance between the x and y coordinates, and cov(x, x)
is the variance of the x coordinate. The covariance calculation is defined by Equation (4),
where xi, yi are the coordinates of the centered points:

cov(x, y) =
∑n

i=1 xiyi

n − 1
(4)

The eigenvalues and eigenvectors of the covariance matrix C are computed. The
calculated eigenvalues, sorted in descending order, are denoted as λ1, λ2, λ3, with cor-
responding eigenvectors ξ1, ξ2, ξ3. Clearly, the eigenvectors ξ1, ξ2 corresponding to the
two largest eigenvalues form a set for the plane to be fitted, while ξ3 represents the normal
vector of the fitting plane, with components a, b, c. If the fitting plane passes through the
point P(x0, y0, z0), the equation of the fitted plane is given by Equation (5):

a(x − x0) + b(y − y0) + c(z − z0) = 0 (5)

The curvature-based feature extraction method has the advantage of rapidly extracting
line and surface features, but it is challenging to achieve comprehensive and accurate
feature extraction in long tunnel scenarios lacking distinct features. This method is prone
to degradation in the driving direction. To prevent the ESKF filter from diverging in scenes
with fewer features, a method for constructing plane point constraints is proposed. This
method uses the following two conditions to determine whether a point can be used to
construct a constraint relationship as a planar point:

1. The distance from each of the five points (P1 P2 P3 P4 P5) to the fitted plane is
less than 0.1 m.

2. The threshold is set to s = 1 − 0.9 × pd
pl , where pd is the distance from point P to the

fitted plane, and pl is the distance from point P to the center of the LiDAR. As pd is much
smaller than pl between any two frames, to filter measurement errors from exceptional
plane points, the constructed plane constraint is considered valid only when s ≥ 0.9.

Finally, the ESKF filter is updated based on the point-to-plane residual constraints,
and the optimal estimate of the state variables is output as the output of the inter-frame
frontend odometry. The covariance matrix is updated, and the ESKF filter is iterated.

3.2. Backend Graph Optimization

In the context of the backend optimization problem based on the pose graph, each
node in the factor graph represents a pose to be optimized. The edges between any two
nodes represent spatial constraints between the corresponding poses, including relative
pose relationships and their associated covariances. The relative pose relationships between
nodes can be computed using frontend odometry, IMU pre-integration, frame-to-frame
matching, and other methods. Given the utilization of the tightly coupled LiDAR-IMU
approach in the frontend odometry, frame-to-frame IMU pre-integration constraints are
not employed in the backend optimization.

Addressing the challenges of solving high-dimensional constraints, this paper pro-
poses a framework with high dimensionality and multiple constraints, as illustrated in Fig-
ure 1. The framework leverages ESKF in the frontend odometry to provide high-frequency
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position updates. In the backend, a graph optimization constraint-solving approach is
employed, integrating various constraints. The ESKF frontend odometry provides high-
frequency position updates, and the backend uses graph optimization constraints that fuse
various constraints. The key constraints integrated into the factor graph include frame-to-
frame odometry factors, absolute pose factors, ICP factors, and Landmark factors, forming
the factor graph depicted in Figure 3. In the optimization process after adding each new
keyframe, the initial values for solving are provided by the frontend odometry.

Figure 3. Algorithm flowchart for backend graph optimization.

To batch optimize historical keyframe poses x = {x0 x1 x2 · · · xi}, this paper employs
a factor graph optimization method, where each keyframe pose xi is a vertex in the graph.
Through the computation of frontend odometry and point cloud matching results, edges
are constructed between adjacent keyframe poses or any two keyframe poses. Additionally,
for extra observations such as absolute pose constraints or Landmark constraints, edges
connecting vertices are added to the factor graph.

3.2.1. Frame-to-Frame Odometry

The inter-frame constraints for adjacent keyframes in the backend graph optimization
are provided by the frontend odometry module. To select keyframes for optimization, the
current frame xi+1 is compared to the state of the previous keyframe xi. When the pose
change exceeds a threshold, the current frame is chosen as a keyframe. In the factor graph,
the newly selected keyframe xi+1 is associated with the previous state node xi. LiDAR
scans between two keyframes are discarded to maintain a relatively sparse factor graph
while balancing map density and memory consumption, suitable for map construction.
Ultimately, the relative pose transformation ΔTi,i+1 between xi and xi+1 is obtained. In
practical testing, considering the field of view of the LiDAR and ensuring offline mapping
accuracy in degraded scenarios, the thresholds for positional and rotational changes to
identify keyframes are set to 0.5 m and 1 degree, respectively.

3.2.2. Absolute Pose Factors

In degraded scenarios, relying solely on long-term pose estimates from IMU and Li-
DAR will accumulate errors. To address this issue, the backend optimization system needs
to incorporate sensors providing absolute pose measurements to eliminate cumulative
errors. Absolute pose correction factors mainly include two types:

1. GPS-Based Factors

Absolute poses are obtained from GPS sensors in the current state and transformed
into the local Cartesian coordinate system. As shown in Figure 3, an absolute pose factor has
already been introduced at keyframe x1. After adding new keyframes and other constraints
to the factor graph, due to the slow growth of accumulated errors from the frontend
odometry, introducing absolute pose constraints too frequently for backend optimization
can lead to difficulty in constraint solving and poor real-time algorithm performance.
Therefore, a new GPS factor is added to keyframe x3 only when the position change
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between keyframe x3 and keyframe x1 exceeds a threshold. The covariance matrix of
the absolute pose depends on the precision of the sensor used and the quality of satellite
signal reception.

2. Control Point-Based Factors in GPS-Limited Environments

In environments lacking satellite signals, such as tunnels, GPS sensors cannot be
directly used for pose correction. In such cases, control points’ absolute coordinates are
obtained in advance using surveying equipment like total stations. When the LiDAR moves
near the relevant control points, the target perception algorithm outputs the control points’
relative coordinates in the LiDAR coordinate system. Using Equation (6), the LiDAR’s
absolute pose coordinates are then determined. The covariance matrix of the absolute pose
depends on the covariance of the target positions output by the Kalman tracking algorithm
in the perception algorithm.

Ppoint = R × Prel + Plidar (6)

where Ppoint—absolute coordinates of the control point; R—rotation matrix representing
the LiDAR’s pose; Prel—relative coordinates of the control point in the LiDAR coordinate
system; Plidar—absolute coordinates of the LiDAR.

In the actual process, absolute pose factors are only introduced into the system for
global optimization when the pose covariance output by the frontend odometry is signifi-
cantly larger than the received absolute pose covariance.

3.2.3. ICP Factors

The ICP factor involves solving the relative pose transformation between point clouds
corresponding to any two keyframes using the ICP algorithm. In the factor graph shown
in Figure 3, when keyframe xn is added to the factor graph, a set of ICP constraints is
constructed between keyframes x3 and xn. The backend optimization factor graph adds
ICP factors in the following two situations:

1. Loop Closure Detection

When a new keyframe xi+1 is added to the factor graph, it first searches for the
keyframe xk in the Euclidean space that is closest to xi+1. An ICP factor is added to the
factor graph only if xk and xi+1 are within a spatial distance threshold Δd and a temporal
separation greater than a threshold Δt. In practical experiments, due to the difficulty of
forming loop constraints in the unidirectional movement of subways, loop constraints are
constructed in platform areas of both up and down directions on the same route.

2. Low-Speed or Stationary Conditions

In degraded scenarios, the IMU zero offset estimates in the frontend odometry can
accumulate significant errors during prolonged low-speed or stationary vehicle conditions,
leading to drift in the frontend odometry. Therefore, additional constraints need to be
added in such scenarios to avoid pose drift during prolonged stops. Subway trains typically
stop only at platforms in tunnel scenes, where point cloud features are abundant, providing
sufficient geometric information for ICP constraint solving. When the system detects
low-speed or stationary states, it re-caches every keyframe in this state. Whenever a new
keyframe xi+1 is added to the factor graph, a constraint relationship is established between
xi+1 and the keyframe xk, which is the furthest in time from the current keyframe.

When the conditions for adding ICP factors are met, the system searches for the n
closest keyframes in the historical keyframes to establish a local point cloud map. This local
point cloud map is then used for ICP constraint solving with xi+1, ultimately obtaining
a set of relative pose transformation relationships between xi+1 and xk. The covariance
matrix of the ICP factor is calculated based on the goodness of fit output during the ICP
solving process.
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3.2.4. Landmark Factors

The establishment and solving of Landmark factors adopt the Bundle Adjustment
(BA) optimization concept commonly used in visual SLAM. As shown in Figure 3, when
keyframes x0, x1, and x2 all observe the same landmark point L1, and since the absolute
coordinates of L1 remain constant, constraint relationships between x0—x1, x1—x2, and
x0—x2 can be established based on Equation (7).

PL1 = R0 × Pr0 + Pl0 (7)

where PL1—absolute coordinates of landmark point L1, not directly solved during the
process; Ri—attitude rotation matrix of the LiDAR in keyframe xi; Pri—relative coordinates
of the landmark point in keyframe xi in the LiDAR coordinate system; Pli—absolute
coordinates of the LiDAR in keyframe xi.

Therefore, the key to adding Landmark factors lies in how to obtain real-time observa-
tions of the position and attitude of the same landmark point. The selection of landmark
points is crucial, ensuring continuous observations over a short period and maintaining
relatively constant shape and size during the observation to avoid abrupt changes in
the object’s center of mass. In urban scenes, road signs are chosen as landmark points,
while in tunnel scenes of rail transportation, mileposts alongside the track are selected as
landmark points.

3.3. Map Update

After completing the global optimization for each keyframe, it is necessary to update
the stored global map based on the optimized keyframe poses. Furthermore, considering
the LiDAR’s position in the map, a local feature map is extracted from the global map. This
local feature map serves as input to the frontend odometry for scan-to-map matching. In the
process of updating the local feature map, this paper implements a position-based sliding
window approach. It involves extracting information from the nearest n sub-keyframes to
the current LiDAR position, focusing on plane point clouds. Subsequently, the concatenated
map undergoes voxel filtering and downsampling to reduce computational load during
the matching process.

4. Experimental Results and Discussion

Considering the difficulty in obtaining real-time ground truth poses in the tunnel
environment of rail transportation, the proposed offline mapping method with a tightly
coupled frontend and graph optimization backend was experimentally validated in both
urban road outdoor scenes and rail transportation scenes.

Taking into account the challenge of obtaining real-time ground truth poses in the
tunnel environment of rail transit, the mapping method proposed in this paper, featur-
ing a tightly coupled frontend and a graph optimization backend, has not only been
experimentally validated in subway scenarios but has also been compared with RTK+IMU
integrated navigation in industrial park building obstruction environments. This additional
comparison aims to further assess the cumulative error of the proposed method.

4.1. Experimental Equipment

The mapping data acquisition system uses the RS-LiDAR-M1, an automotive-grade
solid-state LiDAR. It operates with a 905 nm wavelength laser, providing a maximum range
of 200 m and an accuracy ranging within ±5 cm. The LiDAR has a horizontal field of view
of 120◦ with a resolution of 0.2◦, a vertical field of view of 25◦ with a resolution of 0.2◦, and
the ability to output up to 750,000 points per second in single-echo mode. The selected
IMU model is the STIM300, with an accelerometer resolution of 1.9 μg, bias instability of
0.05 mg, gyroscope resolution of 0.22◦/h, and gyroscope bias instability of 0.3◦/h. The
sensor installation and layout diagrams for the subway environment and the industrial
park environment are illustrated in Figure 4a,b, respectively.
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Figure 4. Physical installation and arrangement of sensors. (a) Sensors on the train. (b) Sensors on
the autonomous driving platform vehicle.

4.2. Subway Tunnel Scene

Given the degraded nature of tunnel scenes, where the number of feature points in
LiDAR point clouds for matching is limited and prone to misalignment, the covariance of
point-to-plane residuals needs to be increased when detecting degradation in the frontend
odometry. Simultaneously, in the ESKF filter, the covariance of IMU inertial solutions is
reduced. During the backend optimization process, considerations include addressing drift
in low-speed stationary train scenarios and selecting appropriate landmarks.

4.2.1. Low-Speed Stationary Scenario

During the map data collection process, the train normally stops in the platform area,
which is rich in features. There are enough planar feature points for inter-frame matching
and the addition of ICP constraints, as shown in Figure 5. Features such as the tunnel wall
and the train stop sign can be used for matching.

 
Figure 5. Point cloud effect in normal station platform parking (underground subway parking).

However, in situations where the train is stationary in the curved section of the tunnel
or when the ICP factor is turned off in the algorithm, significant drift can occur when there
is a large change in train speed during stationary periods, as illustrated in Figure 6. The
output trajectory exhibits a backward movement when the train is stationary, emphasizing
the need to avoid abrupt acceleration, deceleration, and stops in severely degraded scenes
during map data collection.
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Figure 6. Drift in train parking trajectory in tunnel. The trajectory exhibits a phenomenon of moving
backward within the red circle.

4.2.2. Landmark Selection

Due to the limited number of extractable landmarks in subway tunnel scenes, the
intensity information of point clouds and the arrangement of signs inside the tunnel
are considered. The recognition of hundred-meter markers is chosen as a landmark for
constraints, as shown in Figure 7. Since the hundred-meter markers are made of metal, the
intensity information is substantial, allowing for direct extraction of relevant point clouds
based on intensity filtering. The final step involves extracting the centroid coordinates of
the relevant point clouds and incorporating them into the factor graph for optimization
and solving.

 

hundred-meter marker 

Figure 7. Detection of hundred-meter markers in the tunnel.

297



Remote Sens. 2024, 16, 809

4.2.3. Landmark Selection

In the subway tunnel scenario, quantitative analysis is challenging due to the lack
of ground truth. Therefore, the evaluation is based on multiple data collections in the
same subway tunnel scene, comparing the consistency of trajectories and focusing on
the assessment in platform areas and tunnel sections. The three-dimensional point cloud
results of the mapping are shown in Figures 8 and 9. In the original point cloud, the tracks
and tunnel walls are clearly visible, indicating that our algorithm achieves high accuracy in
local areas.

 

Figure 8. Mapping results of subway tunnel platform.

 

Figure 9. Mapping results of subway tunnel curve.

To evaluate the consistency of data collected, we used the trajectory from the initial
mapping session as ground truth and analyzed the error in the overlap between the trajec-
tories of subsequent mapping sessions. To address the challenge of ensuring a consistent
starting point for each data collection, we utilized the evo tool to align the trajectories
of multiple sessions, as illustrated in Figure 10. Developed by Michael Grupp, the evo
tool is a Python package designed for assessing odometry and SLAM results. It provides
functionalities, including aligning and comparing trajectories, computing errors, and gen-
erating visualizations, facilitating a comprehensive evaluation of localization and mapping
performance. The maximum Absolute Pose Error (APE) recorded was 0.1 m, with an
average of 0.04 m and a Root Mean Square Error (RMSE) of 0.05 m.
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(a) (b) 

Figure 10. Consistency results for data collected at different times in the same subway tunnel scene.
(a) APE, RMSE, median, mean, std. (b) APE in the xy-plane.

Additionally, due to the significant distance between subway stations in tunnels, map-
ping within the tunnels involves a higher number of keyframes and the use of unsampled
point clouds for stitching. This results in elevated computational and memory requirements
for offline map construction. To address these challenges, we propose a multi-map stitching
approach, creating a map for each platform interval and then concatenating maps from
multiple intervals. Since subway platforms exhibit rich features, we choose to stop and
concatenate maps at these locations. We record the last frame pose of the previous map as
the initial pose for the current map and manually adjust constraints at the platform using
the interactive SLAM method to reduce cumulative errors [33].

4.3. Industrial Park Building Obstructed Environment

To simulate tunnel environments as much as possible and provide a comparison
with RTK + IMU combined navigation positioning as ground truth, the experiments were
conducted in an industrial park scene. In this scene, the LiDAR’s horizontal field of view
was obstructed by buildings, but it still received satellite positioning signals. The sensors
were mounted on the roof of the vehicle, as shown in Figure 4a. The addition of GPS factors
in the backend optimization was constrained only at the starting and ending positions of the
trajectory. The ground truth trajectory during mapping was provided by a high-precision
RTK + IMU combined navigation device, and the established point cloud map is shown in
Figure 11. In the 3D point cloud map, vehicles and signs are clearly visible, indicating that
our algorithm has high precision in local areas.

We compared the keyframe trajectories output by our algorithm after backend opti-
mization with the ground truth provided by the combined inertial navigation (RTK + IMU)
to quantitatively evaluate the accuracy of the mapping algorithm. The trajectory curves in
the x, y, and z directions are plotted in Figure 12. The blue curve represents the ground
truth trajectory provided by the RTK + IMU combined navigation device, and the gray
dashed line represents the keyframe trajectory output by the mapping algorithm. It can be
observed that the trajectory error is small in the horizontal direction, while in the vertical
direction, the altitude error from the RTK + IMU combined navigation is relatively larger
compared to the errors in the horizontal direction. The altitude trajectory curve output by
our mapping algorithm is smoother and generally consistent with the ground truth trend.

In the quantitative assessment of algorithm accuracy, we selected the APE of the tra-
jectory as the evaluation metric, focusing only on position error and neglecting orientation
error. Therefore, the calculated APE results are in units of meters. The computed APE
results are shown in Figures 13 and 14.
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Figure 11. Point cloud map in an industrial park scene. The red boxes are displays that have been
partially enlarged.

Figure 12. Cont.
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Figure 12. Position comparison in x, y, and z directions.

Figure 13. APE trajectory curve. Red arrows and circles are employed for locally enlarged displays.

Figure 14. APE statistical results.

301



Remote Sens. 2024, 16, 809

Due to the inclusion of GPS factors only at the starting and ending points during the
backend optimization process and the use of trajectory alignment methods, the APE is
larger at the starting point. The increased error at turning points is attributed to calibration
errors between the LiDAR and IMU, with the calibration error causing more noticeable
APE as the turning speed increases. Additionally, partial occlusion by buildings results in
a decrease in the accuracy of the RTK + IMU combined navigation used as ground truth,
further contributing to an increase in APE values.

The statistical results of APE in Figure 14 are as follows: maximum value (max) = 0.88 m,
minimum value (min) = 0.04 m, mean = 0.23 m, and root mean square error = 0.26 m. The
quantitative analysis results demonstrate the algorithm’s high trajectory accuracy.

4.4. Discussion

In comparison to mainstream SLAM algorithms, such as Fast-LIO [18,30], our pro-
posed frontend odometer and backend optimization framework focuses on mapping. This
approach addresses the challenges of pose estimation in degraded tunnel environments.
The design of our framework is specifically tailored to the structural characteristics of
tunnel scenes and the operational requirements of trains in tunnel intervals, resulting in
high-precision point cloud construction.

In the subway mapping and localization process, the absence of a GNSS as ground
truth may result in cumulative errors. Additionally, during the initial wake-up phase of the
train, without GNSS signals for providing the initial position, the system faces challenges
in initialization.

To address these limitations, we propose utilizing visual recognition of mileposts and
their unique identifiers alongside the tracks. The unique identifiers of mileposts can be
leveraged for calibrating subway positions. Moreover, incorporating visual methods can
enhance the success rate of initialization, thus increasing the robustness of the subsequent
localization system.

5. Conclusions

In this paper, we proposed a high-precision point cloud map construction method
based on LiDAR and IMU. The approach utilizes a tightly coupled frontend odometry with
an ESKF for inter-frame pose estimation, and a backend global pose optimization employing
graph optimization theory. Absolute pose factors, ICP factors, and Landmark factors are
incorporated into the optimization process based on real-world scenarios. In the context of
long urban subway tunnels, the algorithm introduces detection for degraded scenes in the
frontend odometry and emphasizes the inclusion of ICP factors in low-speed stationary
situations and the selection of Landmark points in the backend graph optimization.

The algorithm’s performance is evaluated by assessing the consistency of trajectories
using different data collected on the same route, with a particular focus on platform and
tunnel areas. The trajectory alignment error is consistently below 0.11 m. No degrada-
tion anomalies were observed throughout the entire tunnel section. Additionally, in the
experimental setup in an industrial park scenario, the optimized trajectory is compared
with the ground truth provided by the integrated navigation system, yielding an RMSE
of 0.26 m for the APE and an accumulated error of less than 0.2%. It is evident that the
proposed algorithm achieves high-precision map construction in tunnels and obstructed
environments. The next step will be to address the pose initialization problem in degraded
environments, particularly in long tunnel scenarios.
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Abstract: The array interferometric synthetic aperture radar (Array InSAR) system resolves shadow
issues by employing two scans in opposite directions, facilitating the acquisition of a comprehensive
three-dimensional representation of the observed scene. The point clouds obtained from the two
scans need to be transformed into the same coordinate system using registration techniques to create
a more comprehensive visual representation. However, the two-point clouds lack corresponding
points and exhibit distinct geometric distortions, thereby preventing direct registration. This paper
analyzes the error characteristics of array InSAR point clouds and proposes a robust registration
method for array InSAR point clouds in urban scenes. It represents the 3D information of the point
clouds using images, with pixel positions corresponding to the azimuth and ground range directions.
Pixel intensity denotes the average height of points within the pixel. The KAZE algorithm and
enhanced matching approach are used to obtain the homonymous points of two images, subsequently
determining the transformation relationship between them. Experimental results with actual data
demonstrate that, for architectural elements within urban scenes, the relative angular differences of
registered facades are below 0.5◦. As for ground elements, the Root Mean Square Error (RMSE) after
registration is less than 1.5 m, thus validating the superiority of the proposed method.

Keywords: array interferometric synthetic aperture radar (Array InSAR); KAZE; point clouds registration;
flattened phase error; RANSAC

1. Introduction

Recently, 3D imaging techniques have witnessed rapid development. Compared
with 2D images, point clouds have the ability to capture the precise spatial structures
and geometric features of objects. By analyzing and processing point clouds, valuable
information such as distances, angles, and occlusion relationships between objects can be
extracted, making it of great significance in applications such as robot navigation [1], map
creation [2], environmental reconstruction [3], and virtual reality [4].

Laser scanning technology [5,6], photogrammetric stereo matching [7,8], and array
InSAR [9] are the primary methods for acquiring point clouds. In contrast to optical sensors,
SAR exhibits excellent imaging capabilities even under adverse weather conditions. By
deploying multiple antennas in the across-track direction, array InSAR enables multi-angle
observations of the target scene. It effectively addresses the problem of overlap between
targets and terrain in 2D images, significantly enhancing the capabilities of target detection,
identification, and detailed interpretation [10].

In urban scenes, microwaves emitted by radar are often obstructed by artificial fa-
cilities, leading to incomplete point clouds generated from a single scan. In practical
applications, point cloud registration techniques are typically required to match and fuse
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point clouds acquired from different scans. Figure 1 presents a schematic diagram illustrat-
ing the acquisition of complete 3D information of urban scenes through two scans.

Figure 1. Airborne array InSAR acquires complete 3D information of an urban area through two
flight tests.

Two flight tests were conducted from opposing directions to image and generate point
clouds. Firstly, disparities in shadow positions and the anisotropy of scatterers result in a
lack of corresponding points between the two scans. Additionally, the SAR point cloud
contains a substantial number of outliers, attributed partly to multiple scattering effects
and partly originating from the super-resolution imaging algorithm. Subsequently, the SAR
point cloud requires a transformation from the azimuth-range-elevation coordinate system
to the azimuth-ground range-height coordinate system. Discrepancies in the selection of
reference heights lead to conspicuous vertical and ground range offsets in the point clouds,
as well as a stretching effect along the ground range direction [11], resulting, as illustrated in
Figure 2. Lastly, airborne array InSAR exhibits significant changes in local incidence angles
within the spatial domain, introducing supplementary geometric approximation errors [12].
In a word, the registration of array InSAR point clouds faces substantial challenges.

_

_

Air line1

Air line2

Figure 2. Capture geometry of the two tracks.

Conventional point cloud registration typically follows a strategy of coarse registration
followed by fine registration [13]. The purpose of coarse registration is to find a suitable
initial transformation that serves as a foundation for subsequent fine registration. Fine
registration involves refining the initial transformation matrix through multiple iterative
optimization steps to achieve a global optimum.

Coarse registration of point clouds typically involves extracting geometric features
from the point cloud. These features can be categorized as point-based, line-based, and
surface-based. Barnea applied the Scale-Invariant Feature Transform (SIFT) to laser point
cloud registration [14]. Aiger introduced a method called Four-Point Congruent Sets (4PCS),
which utilized the invariant property of the ratio of lines formed by four coplanar points,
achieving global point cloud registration [15]. Compared to points, lines possess stronger
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geometric topological characteristics and are easier to extract. Jaw proposed a line-based
registration method, where the matching of 3D line features is constrained by angle and
distance [16]. Cheng Liang presented a hierarchical registration method based on 3D road
networks and building outlines [17]. Lee extracted line features by utilizing the intersection
points of adjacent planes and adjusted the differences between overlapping data using
these line features [18]. Surface features contain more information compared to point or
line features and are less affected by noise. Researchers generally use methods such as least
squares, random sample consensus (RANSAC), and principal component analysis (PCA)
for surface fitting. The minimum sum of squared Euclidean distances between surfaces is
taken for the objective function [19].

One of the most classical methods for fine registration is the Iterative Closest Point
(ICP) algorithm [20]. Through iterative optimization, the ICP algorithm aims to align the
positions of two sets of point clouds as closely as possible. K. AL-Durgham combined the
RANSAC method with the SIFT operator, effectively addressing the registration problem
without local features [21]. Eijiro proposed the Normal Distribution Transform (NDT)
method [22], which converts point clouds in a 3D grid into probability distribution functions.
The probability distribution of each position measurement sample in the grid follows a
normal distribution. By optimizing the normal distribution probabilities of two point
clouds using the Hessian matrix method, fine registration is achieved. These methods
assume that one point set is a subset of the other. When this assumption is invalid, it leads
to false matches [23].

In recent years, the success of deep learning in advanced visual tasks has extended
to the domain of point cloud processing. PointNet [24] and PointNet++ [25] represent
two significant milestones. PointNet generates a descriptor for each point, while Point-
Net++ is a key technology for extracting local information from point clouds. The crucial
stage involves the set abstraction module, composed of sampling, grouping, and PointNet
components. Subsequently, numerous researchers have adopted learning-based tech-
niques [26–29] for point cloud registration. The objective of these techniques is to extract
features from 3D points and find accurate corresponding points, followed by the estimation
of transformations using these corresponding points.

The aforementioned methods are widely applied in the registration of laser point
clouds. However, for array InSAR point clouds, it is a challenge to extract matching
features from the 3D information of point clouds. Dr. Zhu proposed an approach to
extract the L-shaped structures of buildings in tomographic SAR point clouds and achieve
automatic registration of point clouds from different scans [30]. Dr. Tong from Tongji
University proposed a method that utilizes the constraint of parallel building facades to
match specific pairs of building facades [31]. However, the bottom scenes of buildings have
holes due to occlusion, and there is a large amount of noise below the building facades due
to third-order scattering [32]. The fitted building facades exhibit large errors. Additionally,
the stretching phenomenon within the ground range of the point clouds has not been taken
into account. To address these challenges, this paper proposes a novel method for the
registration of array InSAR point clouds.

In this study, we first correct the flattened phase error caused by the differences in
local incidence angles. For point clouds of large urban scenes, the ground range can be
several hundred meters or more, and the flattened phase error caused by the differences
in local incidence angles cannot be ignored. The height variation of the ground points is
relatively flat, which allows us to easily calculate the relationship between point cloud
height and ground range and correct the flattened phase error. Next, we project the
corrected point cloud onto the x–y plane and divide the plane into grids, which serve as
pixels for generating grayscale images. The pixel intensity is represented by the average
height of the points falling within each grid. The quality of the generated images is
subpar, and utilizing traditional image-matching methods makes it challenging to attain the
transformation relationship between the two images. We utilize the KAZE [33] algorithm
to extract feature points from both the original and blurred images. The stable feature
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point refers to a feature point in the original image for which there exists a feature point
in the blurred image that is sufficiently close to it. Next, we filter matching point pairs
from the stable feature points in the images. The transformation relationship between point
clouds in the azimuth and ground range directions is calculated based on the positional
relationship of the matching points. The height offset between point clouds is represented
by the average intensity difference of the matching points. In summary, this method makes
two main contributions:

1. An analysis was conducted on the height errors in airborne array InSAR point clouds
caused by local incidence angle variations, followed by their subsequent correction.

2. The KAZE algorithm was introduced into the point cloud registration problem, and a
method for selecting robust feature points was proposed to address the registration of
array InSAR point clouds.

2. Methods

The main challenge in effectively fusing array InSAR point clouds lies in the inability
to extract stable feature points and determine true corresponding matching points in the
3D information. The proposed workflow for point cloud registration is shown in Figure 3.
Firstly, the flattened phase error caused by local incidence angle differences is corrected.
Then, the point cloud is projected onto the ground to generate a grayscale image, where
the pixel intensity represents the average height of the points within the pixel. To obtain
stable feature points, the KAZE algorithm is employed to extract feature points from both
the grayscale image and the image with applied defocus blur, and a distance threshold
is set to select stable feature points. Subsequently, the nearest neighbor distance ratio
(NNDR) strategy and vector consistency are employed to determine the matching points
between the two images. The position of the matching points is used to determine the
transformation relationship in the azimuth and ground range directions of the two flight
test point clouds. The pixel intensity of the matching points is utilized to determine the
height offset between the two point clouds.

 

Original
point cloud

Ground
point cloud

SMRF RANSAC Flattened phase error as a
function of ground distance

Corrected
point cloud

Grayscale
image

Blurred
image

Feature
points

Stable
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transformation

Step 1: Flat phase error correction

Step 2, calculate the 3D transformation

Feature
points

KAZE

Figure 3. Algorithm flow.

2.1. Flattened Phase Error Correction

The multi-channel images of the airborne array InSAR are obtained simultaneously,
so there is no temporal decoherence factor, and it is only sensitive to the target elevation.
The phase component of airborne array InSAR is composed of flat earth effect, height, and
system noise [12]. Figure 4a illustrates the geometric configuration of radar interferometry
in relation to the flattened phase. In the process of interferometry, a reference object is
essential to mitigate the impact of the flat earth effect. Due to the nature of radar imaging,
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it becomes challenging to distinguish scatterers that are equidistant from the radar. Thus,
considering a point p with a relative height of h, an equivalent point r is specified to
calculate the flattened phase, local incident angle, and perpendicular baseline. Then h can
be defined as follows:

h = R cos θr − R cos θp (1)

where R is the slant range and θp is the local incident angle. θr is the equivalent incident
angle for calculating flat earth effect.
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Figure 4. Calculate target height using local incidence angle of reference point. (a) InSAR system geometric
model. (b) Simulation of the relationship between the height error and ground range position.

In fact, the actual local incident angle θp cannot be obtained. In conventional pro-
cessing, the local incident angle is substituted for the equivalent incident angle θr on the
reference body. At this time, h can be expressed as

h =
λR sin θr

4πB cos(θr − α)
(φp − φr) (2)

where φp and φr are the interference phases of point p and point r, respectively, and B
denotes the length of baseline. The following can be obtained through the combined
calculation of Equations (1) and (2):

Δh = R cos θr − R cos θp − λR sin θr

4πB cos(θr − α)
(φp − φr) (3)

And according to the geometric relationship shown in Figure 4a, φp and φr can be
represented as

φp =
4π(R −

√
B2 + R2 − 2BR sin(θp − α))

λ
(4)

φr =
4π(R −√

B2 + R2 − 2BR sin(θr − α))

λ
(5)

The ground range position of the point p is y, according to geometric relationships, y
can be represented by R and φp.

y = R· sin θp (6)

By substituting Equations (4)–(6) into Equation (3), setting the baseline inclination
angle α to 0, the relationship between Δh and y can be obtained as follows:

Δh = h −

√
(H − h)2 + y2·

(√
B2 − 2B

√
h2 − 2Hh + y2 + (H − h)2 + y2 −

√
B2 − 2By + (H − h)2 + y2

)
·√h2 − 2Hh + y2

H
(7)
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The Δh is related to the radar platform height H, target height h, and local incidence
angle θp (corresponding to y). For a point cloud generated from a single flight, the height
of the radar platform remains constant, thereby exerting an equal influence on the measure-
ment errors. The error impact caused by the height factor of the same target is equivalent
between two flights. Hence, we solely consider the influence of the local incidence angle
on height errors and aim to establish the relationship between height errors and ground
range positions. Based on Equation (3) and the simulation parameters from Table 1, the
relationship between height error and ground range position is simulated, as shown in
Figure 4b.

Table 1. Simulation parameters.

H/(m) λ/(cm) h/(m) B/(m) θP/(◦)

4000 2 100 2 20–45

Expanding Equation (7) in a Taylor series, where the series is finite, and the highest
power term is a 5th-order term. The magnitudes of the third, fourth, and fifth-order terms
are 10−8, 10−11 and 10−14, respectively. In this paper, we can neglect terms of the third
order and higher. In response to the Δh, we assume that the urban terrain is a flat plane. The
plan is to extract the ground portion and fit a quadratic function to model the relationship
between height and ground distance. According to the analysis in [34], among the various
filtering algorithms, morphology-based filters have demonstrated the best performance
in extracting the ground in urban scenes. Morphology-based filters primarily rely on two
fundamental operations: dilation and erosion. These operations, in combination, give
rise to opening and closing operations, which are employed for point cloud filtering. The
method rasterizes the original point cloud based on the lowest points within a given
window size and subsequently processes it using an opening operation. Points for which
the height difference before and after the operation is less than a specified tolerance are
labeled as ground points. It is evident that the performance of this filtering technique is
greatly influenced by the choice of window size, making it challenging to strike a balance
between removing large-sized objects and retaining detailed ground features. As shown
in Figure 5, the progressive morphological filters proposed in [35,36] address this issue by
gradually increasing the window size and height threshold.

Figure 5. SMRF flow.

In this paper, the ground extraction is performed using the simple morphological filter
(SMRF) proposed in [35]. Subsequently, we divide the ground range from the original point
cloud into sub-intervals, project the ground points onto each sub-interval, and calculate
the average height of the points within each sub-interval. The RANSAC method is then
employed to fit a quadratic function that models the relationship between the average
height and the position of the ground range. For a single flight-acquired point cloud, using
the center position along the ground distance axis as a reference, we calculate the required
upward or downward adjustment in height for each point based on its distance from the
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center along the ground distance axis and its relationship with the fitted quadratic curve.
This allows us to correct the overall height of the point cloud, ensuring that each point
is adjusted appropriately to align with the desired height. The flowchart of point cloud
height correction is shown in Figure 6.
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Figure 6. The flowchart of point cloud height correction.

2.2. Obtain Matching Points with KAZE
2.2.1. Generate Grayscale Image

In this study, the point cloud is projected onto the x–y plane, where the x-axis represents
the azimuth direction and the y-axis represents the ground range direction. A 2D matrix
is created by dividing the x–y plane into grids with a specified step size along the x and y
axes, with a step size of 0.8 m. The average height of the points that fall within each grid
cell is computed and assigned as the corresponding element of the matrix.

2.2.2. Feature Point Extraction

Traditional feature detection methods employ Gaussian linear scale-space downsam-
pling to detect feature points. Visually, the matching points between two images are
typically found along the edges and certain details within the scene. However, Gaussian
filtering can cause edge blurring and loss of fine details. As a result, using linear scale-space
feature detection algorithms for image registration in this study yielded unsatisfactory
results. The KAZE algorithm uses nonlinear diffusion filtering to construct a scale space,
which effectively reduces image edge blur and detail loss [33]. It retains higher local ac-
curacy and distinguishability while maintaining scale invariance. The KAZE algorithm
mainly includes the following steps:

1. Constructing Nonlinear Scale Space:

The KAZE algorithm constructs a nonlinear scale space through the utilization of
nonlinear diffusion filtering and the Additive Operator Splitting (AOS) algorithm. The
nonlinear diffusion filtering method interprets the variations in image brightness at different
scales as the divergence of a certain form of flow function, which can be described by
nonlinear partial differential equations:

∂L
∂t

= div(c(x, y, t)·∇L) (8)

where L represents the image brightness, c denotes the conductivity function, and t repre-
sents the scale parameter. The conductivity function determines the extent to which the
diffusion process in an image adapts to its local structure. The expression for c is as follows:

c(x, y, t) = g(|∇Lσ(x, y, t)|) (9)

where Lσ is the gradient of the image after Gaussian smoothing. In this study, we adopt the
g2 function as proposed in [33].

g2 =
1

1 + |∇Lσ |2
k2

(10)
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Due to the lack of specific analytical solutions for the partial differential equation of
nonlinear diffusion filtering, numerical methods are required to estimate the solution of the
differential equation. The linear implicit scheme is a feasible discretization method, and
the equation is as follows:

Li+1 − Li

τ
= ∑m

l=1 Al(Li)Li+1 (11)

Al represents the matrix representation of the image in different dimensions. The
solution Li+1 of the equation is represented as follows:

Li+1 = (I − τ∑m
l=1 Al(Li))

−1
Li (12)

The aforementioned steps constitute the fundamental construction scheme for nonlin-
ear scale space.

2. Feature point detection:

Since nonlinear diffusion filtering is based on the theory of heat conduction, its model is
formulated in terms of time units. Therefore, it is necessary to perform a conversion between
image pixel units and time units. This conversion can be represented by Equation (13),
where ti is referred to as the evolution time.

ti =
1
2

σ2
i (13)

Using the AOS scheme, the nonlinear scale space can be represented as follows:

Li+1 = (I − (ti+1 − ti)∑m
l=1 Al(Li))

−1
Li (14)

The feature point detection in KAZE is achieved by searching for local maxima using
the Hessian matrix:

LHessian = σ2(LxxLyy − L2
xy) (15)

Each pixel is compared with the pixels in a 3 × 3 neighborhood window at its current
scale as well as the scales above and below. If the pixel value is greater than all the pixels in
the neighborhood window, it is considered a feature point. Subpixel-level localization of
feature points is achieved by employing a Taylor expansion in the scale space.

3. Feature descriptor:

For feature points with a scale parameter of σi, a window of size 24σi × 24σi is taken
on the gradient image, centered at the feature point. The window is divided into a grid of
4 × 4 sub-scenes, each with a size of 9σi × 9σi. Adjacent sub-scenes have an overlap strip of
width 2σi. Each sub-scene is weighted using a Gaussian kernel with a standard deviation
of σ1 = 2.5σi. A sub-scene descriptor vector of length 4 is computed for each sub-scene.
These sub-scene descriptors are then weighted using another Gaussian window of size
4 × 4 with a standard deviation of σ2 = 1.5σi. Finally, the descriptors are normalized to
obtain a 64-dimensional descriptor vector.

2.2.3. Feature Matching Method

Traditional feature point matching algorithms typically compute the Euclidean dis-
tance between feature vectors and utilize the NNDR strategy to determine whether two
feature points are a match. After applying the NNDR, RANSAC methods are often em-
ployed to determine the final set of matched point pairs.

The generated images from the point cloud exhibit a significant number of unstruc-
tured holes with an unordered distribution. The application of the KAZE algorithm leads
to the detection of numerous unstable feature points, and many of these feature points have
very similar descriptors. Increasing the threshold in the NNDR algorithm does not yield
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better matching results; instead, it may even result in the elimination of correctly matched
point pairs.

This study proposes the construction of a circular scene mean filter to perform filtering
on the original image. The filtering process aims to eliminate small holes present in the
original image while also resulting in increased blurring along the image boundaries.
Subsequently, the KAZE is employed to detect feature points separately in both the original
and filtered images. For a particular feature point p = (x, y) in the original image, if there
exists a feature point q = (x′, y′) in the filtered image and it satisfies condition |p − q| ≤ ε,
the point p is considered a stable feature point, where the size of ε is one pixel length.
Subsequently, we utilize the NNDR to find matching point pairs. In this study, there is no
rotation transformation between the two images. Only displacements exist in the azimuthal
and ground range directions, with a certain level of scaling in the ground range direction. To
further eliminate false matching points, the angle between the spatial vector of the matched
point pairs and the horizontal vector is computed. After applying the NNDR, let us denote
the set of feature points in the target image as A = {a1, a2, . . . , an}, with individual points
represented as an = (xn, yn), and the set of feature points in the registration image as
B = {b1, b2, . . . , bn}, with individual points represented as bn = (wn, kn). We can calculate
the angle between the distance vector and the horizontal vector (1,0).

θn = arccos(
wn − xn√

(wn − xn)
2 + (kn − yn)

2
) (16)

The probability distribution of θn is depicted in Figure 7. It can be observed that after
NNDR, θn is concentrated around a prominent peak, which exhibits a triangular shape. To
eliminate matching point pairs that deviate from the main peak, a threshold is set. The
purpose of this threshold is to select matching point pairs that satisfy the condition of θ
being within the triangular peak. The threshold is determined as follows:

δθ =
1

max(PDFθ)
(17)
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Figure 7. The probability distribution of θn.

2.3. Calculate 3D Transformations

The airborne array interferometric SAR system incorporates a high-precision position
and orientation system (POS), consequently yielding minimal errors in the azimuthal
direction between the point clouds obtained from two consecutive flights. In the ground
range direction, apart from a certain displacement, there was also scaling. In the vertical
direction, after the flattened phase error correction, only displacement was evident. The
positions of the feature points in the image correspond to the coordinates in the azimuth and
ground range directions of the point cloud, while the intensity of the feature point pixels
corresponds to the average height of the point cloud. We computed the angular deviation
between matching points and performed a statistical analysis to examine the probability
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distribution of these deviations, as illustrated in Figure 8a. We employed a quantile-quantile
(Q-Q) plot to assess the adherence of this dataset to a Gaussian distribution, aiming to
determine its normality.
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Figure 8. Statistics of azimuth offset between matching points. (a) Probability distribution of offset;
(b) Q-Q plot (sample data-standard normal).

Within the Q-Q plot, a significant number of points align along a straight line while
demonstrating some curvature on the tails. This curvature phenomenon can be attributed
to the existence of upper and lower limits in the actual data. Therefore, the deviation of
azimuthal orientations between point clouds can be confirmed as the offset corresponding
to the maximum probability density.

The directional offsets in ground distance and height corresponding to the matching
points of the two images are depicted in Figure 9a,b, respectively. In Figure 9a, the abscissa
represents the ground distance coordinates corresponding to the matching points in the
source image. By fitting these coordinates into a straight line using the least squares method,
the slope of the red line reflects the stretching effect in the ground distance direction between
the two acquired point clouds. For the source point cloud, the offset value is determined
based on the relationship between the ground distance coordinate of each point and the
fitted line. The intensity differences data between matched points of the two images is
divided into four segments. The value of 0 is observed when no point cloud falls into the
matched pixel in either of the two images. The outliers in the upper and lower sections are
caused by pixel intensities of 0 in only one of the two matched images. In this study, we
only consider the real values from the middle section, where the height offset fluctuations
within ±2 m, as shown in Figure 9b. The average value of these points is taken as the offset
in the height direction between point clouds.

  
a  b  

0 100 200 300 400

Match points
0

100

200

300

400

(m
)

Figure 9. The offsets in the ground distance direction and height direction between the matching
points. (a) Offset of ground distance; (b) Height offset.
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3. Results

3.1. Experimental Data

To conduct experimental validation in this study, we utilized point cloud data obtained
from actual flight tests. These flight tests were conducted in Sichuan Province in 2022.
The radar images are presented in Figures 10a and 10b, respectively. The flight-related
parameters are listed in Table 2, where Sa represents azimuth resolution, Sr represents
range resolution, and Sh represents elevation resolution.
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Figure 10. Intensity SAR images: (a) The SAR image obtained from the first flight (platform moving
from west to east); (b) Point clouds of the two scenes generated from the first flight; (c) The SAR
image obtained from the second flight (platform moving from east to west); (d) Point clouds of the
two scenes generated from the second flight.

Table 2. Flight parameters.

H/(m) Band α/(◦) B/(m) Sa/(m) Sr/(m) Sh/(m)

4500 Ku 0 1.986 0.237 0.1875 1.357

The area of experimental scene 1 is 0.22 square kilometers, with a ground range length
of 0.31 km. The area of experimental scene 2 is 0.72 square kilometers, with a ground range
length of 0.83 km. Scene 2 has a larger area with more diverse elements, including clear
roads, bridges, and riverbanks. This contributes to the registration task for the image. Scene
1, on the other hand, has a smaller area, with only a prominent road on the left side. The
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generated images in this scene exhibit a simpler composition, primarily aimed at verifying
the applicability of the proposed method. Point clouds of both scenes depict urban scenes
adhering to the assumption of a level ground surface, as posited in this study.

3.2. Evaluation Criterion

Traditional evaluation metrics for point cloud registration methods include Root Mean
Square Error (RMSE), mutual information, entropy, and point cloud overlap. RMSE measures
the distance difference between point pairs in point clouds. It is calculated by computing the
distances between corresponding points in the point clouds, taking the square of each distance,
averaging them, and then taking the square root to obtain the RMSE value. Mutual information
is calculated to assess the similarity between two point clouds. Entropy is used to measure the
uncertainty of point distribution within a point cloud and can evaluate the consistency of its
structure. Point cloud overlap evaluates the registration quality by calculating the proportion of
the overlap scene between two point clouds.

Due to the low overlap between the SAR point clouds obtained from two flight
experiments, these metrics cannot directly evaluate the effectiveness of SAR point cloud
registration. Therefore, we adopt the metrics proposed by [31]. Ref. [31] utilizes the
constraint of parallel relative facades of the same building to extract the building facades
from the fused point cloud. For effective registration methods, the directions of the two
relative facades should be parallel. Hence, as illustrated in Figure 11, ref. [31] calculate the
angular difference θ between the two normal vectors of each facade pair.

  
a  b  

Figure 11. Evaluation index for registration results. (a) Two parallel facades; (b) The angle difference
of normal vector from the source façade center to the normal extension of the target façade.

The evaluation metrics proposed in [31] only capture the effectiveness of building point
registration. In this study, we manually selected certain road point clouds and considered them
to be overlapping between two point clouds. The RMSE between these road point clouds was
computed as an evaluation metric. The definition of RMSE is as follows:

RMSE =

√√√√ n

∑
i=1

(xi − yi)
2

n
(18)

where X and Y represent two point clouds, N represents the number of corresponding
points, xi is the i − th point in X, and yi is the corresponding point in Y for xi,

The locations of the road are illustrated in the red box in Figure 12. On the other hand,
we adopted the correntropy proposed in [37] as an additional evaluation metric. Correntropy
effectively alleviates the impact of outliers and noise, and its definition is as follows:

V(X, Y) =
1
N

N

∑
i=1

exp(
−|xi − yi|2

2σ2 ) (19)
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Figure 12. The positions of control points.

The definition of parameters is the same as Formula (18) and σ takes the value of 1 in
this paper. A larger correntropy indicates a better registration performance.

3.3. Experimental Results

To validate the claimed superiority, in this subsection, we apply our proposed method
alongside the approach outlined in [31] and the classical ICP algorithm to the point cloud
fusion task of two distinct scenes. In scene one, the two-point clouds consist of 1,672,216
and 1,682,162 points, respectively. After applying simple morphological filtering and outlier
removal using the RANSAC method, the ground points for scene 1 were obtained. The
relationship between the average height of ground points and ground distance for the two
corresponding point clouds in scene 1 is shown in Figure 13.
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Figure 13. The average height of the ground as a function of the ground distance position. (a) Source
point cloud; (b) Target point cloud.

After height calibration of the point clouds, a two-dimensional image was generated
using the method mentioned in Section 2.2.1. The KAZE algorithm was employed to extract
key points from the image, and matching points were obtained using our proposed method,
as illustrated in Figure 14.
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Figure 14. Results of image matching algorithms.

In scene 1, the area is relatively small, with the majority of the scene being comprised
of buildings. The left side of Figure 14 corresponds to a small area in Figure 10b. Due to
occlusion caused by buildings, there are significant shadows present near the riverbank ad-
jacent to the building area. As a result, the majority of the matching points are concentrated
in the road area above the image and in the vicinity of the bridges spanning the river.

The results of point cloud registration are depicted in Figure 15. The three fused results
demonstrate the extraction of building facades using the density threshold filtering method.
Excluding no corresponding facades, there are 22 pairs of building facades corresponding
to each other.
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Figure 15. The effect of registration in scene 1 after using (a) our proposed method, (b) the method
of [31], and (c) ICP.

The ICP algorithm tends to maximize the alignment of two-point clouds. From the
extracted building facades, it can be observed that the two opposing building facades
almost completely overlap. The algorithm is essentially ineffective in the task of SAR
point cloud fusion. The method in [31] first extracts the building facade and calculates the
transformation relationship from the source point cloud to the target point cloud using
the constraint of two opposite facades of the same building being parallel to each other.
Visually, there is no significant difference between the two methods for extracting building
point clouds after registration. Table 3 presents the quantified results.
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Table 3. Evaluation of registration accuracy for scene 1.

Method RMSE (m) Correntropy Mean θ (deg) Time (s)

ICP 5.3275 0.1074 0.5372 74.56183
[25] 4.0469 0.2282 0.4263 250.6351

Proposed 1.4773 0.2640 0.4292 3.8633

From the third quantitative indicator in Table 3, it seems that our method does not
have superiority over the method proposed in [31]. However, the effect of SAR point cloud
registration should not be solely considered from the constraints of extracting parallel
building facades. The algorithm in [31] minimizes the angle between the planes fitted
by the building facade point cloud and the correspondence between the center points,
naturally resulting in better indicators. In the Euclidean distance metric of point-to-point,
our method is significantly superior to the method proposed in [31]. As shown in Figure 16,
our proposed approach exhibits superior accuracy. In our approach, 81.91% of the nearest
neighbor distances fall within the range of 0 to 5 m, whereas the corresponding value for
the comparative method is 76.05%.

  
a  b  

Figure 16. Histogram of nearest neighbor distance of (a) our proposed approach and (b) the method
of [31].

For scene 2, the number of points obtained during the two flights is 3,536,789 and
4,554,655, respectively. Some results of using our method to process the point cloud in
scene 2 have been shown in the second part. Figure 17 shows the matching point pairs.

Figure 17. Results of image matching algorithms.

Scene 2 has a large area and rich contents, and more matching point pairs were
obtained using the KAZE algorithm compared to scene 1. When integrating the point
clouds of scene 2 using the algorithm proposed in [31], there was a significant difference
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in the extracted sets of building facade point clouds from the two point clouds. In some
cases, only one of the point clouds captured the facade corresponding to the same building,
and there were substantial disparities in the relative facades of most buildings. The coarse
registration method employed in [31] faced challenges in determining which facades
corresponded to each other. Consequently, we manually selected several facades with
better extraction results and used the algorithm in [31] to fuse them in order to compare
the registration performance of our proposed algorithm against that of [31].

The registration results are depicted in Figure 18. Observably, the results of the fusion
using the ICP algorithm display misaligned architectural structures, with considerable
fusion errors evident in ground-level roads. The method proposed in [31] exhibits poor
fusion results for the ground above the scene, where the two point clouds fail to align
adequately. Conversely, our proposed method demonstrates superior fusion outcomes for
both ground and architectural points in the SAR point cloud.
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Figure 18. The effect of registration in scene 2 after using (a) our proposed method, (b) the method
of [31], and (c) ICP.

For a more detailed analysis, we employed a density threshold method to extract the
buildings within the scene, as depicted in Figure 19. The results indicate that concerning
the reconstruction of architectural structures, there is no significant difference between our
proposed method and the approach outlined in [31]. However, the ICP algorithm merely
aligns the two point clouds without adequately reconstructing the architectural elements.
Table 4 presents the quantified results.

Table 4. Evaluation of registration accuracy for scene 2.

Method RMSE (m) Correntropy Mean θ (deg) Time (s)

ICP 8.357 0.0725 0.9382 453.3789
[31] 5.863 0.0910 0.3873 120.3572

Proposed 1.035 0.2239 0.3892 16.8694

As shown in Figure 20, compared to scene 1, the application of our approach in scene
2 demonstrates a more pronounced advantage. In our approach, 69.14% of the nearest
neighbor distances fall within the range of 0 to 5 m, whereas the corresponding value for
the comparative method is 44.71%.
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Figure 19. The registration effect on the buildings within scene 2 after using (a) our proposed method,
(b) the method of [31], and (c) ICP.

  
a  b  

Figure 20. Histogram of nearest neighbor distance of (a) our proposed approach and (b) the method of [31].

3.4. Time Performance

To evaluate the efficiency of our proposed method, we computed the time cost for
each registration process. Our method was implemented using MATLAB 2021, and all
experiments were conducted on a computer with an AMD R7 5800H processor and 16 GB
of memory. The ICP algorithm requires multiple iterations to select the closest points
between two point clouds and calculate the transformation relationship. As the number
of points in the point cloud increases, the computation time also increases. The method
proposed in [31] involves extracting building facades from the point cloud and fitting these
facades to generate corresponding parameters. The processing time is related to the number
of buildings in the scene. However, in large-scale scenarios, significant differences might
exist between the extracted building facades from two-point clouds. This dissimilarity
sometimes prevents the automatic determination of which facades belong to the same
building, thereby limiting its application. The time required by our proposed method is
primarily dependent on the size of the scene. Our proposed method demonstrates clear
advantages in terms of efficiency.
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4. Discussion

In this study, a proposed approach is presented to address the point cloud registration
problem of array InSAR, which contains a large number of noisy points and exhibits
significant errors. The approach involves utilizing image registration methods to achieve
point cloud registration. The analysis focuses on the height errors along the ground
range direction in a single flight experiment and the scale variations in the ground range
direction between two consecutive flight experiments. Unlike traditional point cloud
registration tasks that compute a rotation matrix and translation vector as transformation
parameters, the registration of array InSAR point clouds primarily involves error correction
and computation of the displacement between the two point clouds.

The urban scenes under consideration predominantly consist of building areas, but
they also contain several features that are beneficial for point cloud registration tasks, such
as road lines, bridges, and structured artificial facilities. In a specific scenario, referred to as
scene 1, with a relatively small area, there are only noticeable common features on the left
side of the two point clouds. Although the number of computed matching point pairs is
limited, it does not affect the accuracy of point cloud registration, as these matching points
can be considered true correspondences.

To achieve high-precision point cloud registration, this study relies on subpixel-level
accurate image registration algorithms to calculate the offsets between the azimuth and
ground range directions of the point clouds. Additionally, the study reveals that the
majority of image-matching points are concentrated in the unobstructed ground scenes.
The building facade points directly beneath contain a significant amount of clutter caused
by triple scattering. Additionally, due to interference from high-angle sidelobes, the
unstructured ground scene also presents some artifacts in the vertical dimension. By
utilizing the average height of the point cloud to represent the pixel intensity of the image
and using the pixel intensity difference of the matching points as the offset in the height
direction, the registration accuracy in the height direction can be ensured to be lower than
the height resolution of the array InSAR point cloud.

In contrast to previous work, which innovatively utilized the angles between the
extracted normal vectors of building facades and the distances from the facade centers to
the extended normal vectors of opposing facades as evaluation metrics, this study found
that accurately extracting building facades from array InSAR point clouds is challenging.
The simple application of density threshold filtering methods tends to filter out low-rise
buildings, and some extracted facades are incomplete, resulting in significant differences
between opposing facades of the same building and making it difficult to fit the facades
correctly. Moreover, the presence of clutter generated by triple scattering at the bottom of
the buildings hinders the accurate correspondence of the fitted facade center heights. As
for the classic ICP algorithm, it is entirely unsuitable for SAR point cloud registration tasks
because the two point clouds lack matching points. The approach of manually annotating
control points and using the Euclidean distances between them as evaluation metrics also
has limitations, as the true correspondences of the manually annotated points cannot be
determined. Therefore, for the registration task of array InSAR point clouds, it is necessary
to define more comprehensive metrics to evaluate the accuracy of building facade extraction
and point cloud registration.

5. Conclusions

This paper proposes an automatic image-based registration method for array InSAR
point cloud registration. It analyzes the height errors present in array InSAR point clouds
and describes the entire process of point cloud registration.

According to the InSAR system model, an analysis of the relationship between the
height errors in point clouds and their ground range positions is conducted. Initially, the
SMRF algorithm is employed to extract the ground portion of the point cloud, which is
utilized for fitting the relationship between height errors and ground range. Subsequently,
the height-corrected point clouds are projected onto the azimuth-ground range plane to
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generate images, where the pixel intensity is represented by the average height of all points
falling within the pixel. Finally, the KAZE algorithm, along with an angular threshold, is
employed to extract matching points between two images. The transformation relationship
between the two point clouds is then calculated based on the positions and intensity
differences of the matching points.

Previous research on array InSAR point cloud registration is limited, and this paper
primarily compares the proposed method with the approach presented in [31]. Experimen-
tal results using real data demonstrate the high robustness of the proposed method in two
different scenarios. For the architectural elements within the scene, the average angular
difference between their respective facades is less than 0.5◦. As for the ground portions
within the scene, the RMSE after registration is less than 1.5 m. These results are considered
acceptable for SAR point clouds. Compared to previous methods that extract and fuse
building facades, our approach addresses point cloud registration from the perspective of
image registration. It involves fewer steps, is more efficient, and consumes only 14% of the
time required by the method proposed in [31].

In future work, for array InSAR point cloud registration, we consider utilizing deep
learning methods after obtaining a large dataset to achieve the task of point cloud registration.
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Abstract: Three-Dimensional Ground Penetrating Radar (3D GPR) detects subsurface targets non-
destructively, rapidly, and continuously. The complex environment around urban roads affects
the positioning accuracy of 3D GPR. The positioning accuracy directly affects the data quality, as
inaccurate positioning can lead to distortion and misalignment of 3D GPR data. This paper proposed
a multi-level robust positioning method to improve the positioning accuracy of 3D GPR in dense
urban areas in order to obtain more accurate underground data. In environments with good GNSS
signals, fast and high-precision positioning can be achieved based on GNSS data using differential
GNSS technology; in scenes with weak GNSS signals, high-precision positioning of subsurface data
can be achieved by using GNSS and IMU as well as using GNSS/INS tightly coupled solution
technology; in scenes with no GNSS signals, SLAM technology is used for positioning based on INS
data and 3D point cloud data. In summary, this method ensures a positioning accuracy of 3D GPR
better than 10 cm and high-quality 3D images of underground urban roads in any environment. This
provides data support for urban road underground structure surveys and has broad application
prospects in underground disease detection and prevention.

Keywords: multi-level robust positioning method; 3D ground penetrating radar; 3D mobile survey
system; laser SLAM positioning

1. Introduction

Ground Penetrating Radar (GPR) is one of the non-destructive measurement tech-
niques that uses electromagnetic waves to locate objects or interfaces buried within visually
opaque material or underground. GPR transmits a regular sequence of low-power elec-
tromagnetic energy to the material or ground and receives and surveys weak reflected
signals from buried objects. GPR uses electromagnetic waves to respond to changes in the
electromagnetic properties of the shallow subsurface. The propagation velocity of electro-
magnetic waves is the main controlling factor in generating reflections; it is determined by
the relative dielectric constant contrast between the background material and the object.
The GPR method is a rapid, nondestructive, high-accuracy, continuous, and high-resolution
method for subsurface target detection.

Three-dimensional (3D)-GPR is a new type of non-destructive detection equipment
that can reconstruct underground 3D structure detection information. Compared with
2D-GPR, the 3D-GPR array antenna is able to acquire huge amounts of seamlessly stitched
radar data without resulting in a lack of subsurface information. The 3D array antenna
realizes true 3D acquisition, which makes the underground target imaging clear and
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accurate, and can display any depth horizontal slice of the underground target [1]. There
are now many commercially available 3D-GPR devices, and the scope and capabilities of
the technology are gradually evolving. GPR has also been successfully used to provide
forensic information during criminal investigations [2,3], to detect buried mines [4–6], to
survey roads [7–9], to detect utilities [10,11], to measure geophysical strata [12–14], and in
other areas [15,16].

The 3D GPR data have high requirements for positioning accuracy because of the
high sampling density. Large positioning errors may cause distortion of GPR data, as in
Figure 1a. Only 3D GPR systems with centimeter-level positioning accuracy can collect
high-quality 3D GPR data. In addition, with regard to the surface area required to perform
covered underground detection, due to the limited single detection width of the 3D GPR
system, it is usually necessary to operate in strips, and the positioning accuracy of 3D GPR
directly affects the position alignment effect between channels and strips, as shown in
Figure 1b, which in turn affects the data quality of underground remote sensing detection.
Thus, 3D GPR positioning affects the quality and accuracy of underground remote sensing
detection data. Therefore, the accurate positioning of the GPR system is crucial.

Figure 1. Results due to 3D GPR positioning errors.

The 3D-GPR positioning is generally achieved by laying out acquisition grids in the
early stages [17,18], and the positioning accuracy is improved by modifying the encoder [19].
These methods have significant limitations, as the measurement needs to be kept straight.
In addition, since no height information is available, the ground should not have too much
undulation, and the measurement area should be smooth in topography. The positioning
method without recording elevation information is obviously not suitable for 3D GPR,
which requires x, y, and z coordinates.

Later, with the development of survey technology, various positioning techniques
began to be used to improve 3D GPR positioning accuracy. At present, 3D GPR mainly
uses GNSS for positioning. However, the positioning accuracy is affected by the quality
of satellite signals. In practical applications, 3D GPR is used to survey a variety of envi-
ronments, including roads, woods, and other areas surrounded by tall buildings or trees.
These areas experience difficulty in receiving a sufficient number of satellite signals. The
positioning accuracy of the 3D GPR system cannot be guaranteed simply by using a GNSS
solution, and thus the quality of 3D GPR data cannot be guaranteed. In the environment
with no satellite signals, such as tunnels or underground mines, these devices have no
access to position information, which in turn does not allow for a reconstruction of the 3D
underground space.
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In addition, self-tracking systems, such as self-tracking robotic terrestrial positioning
systems (TPSs) [20] and self-tracking total stations (TTSs) [21,22], were introduced in
ground-penetrating radar positioning. These can achieve centimeter-level positioning
accuracy. But, in dense urban areas, the signal tracked by the self-tracking system is lost
when a clear line of sight is not available.

Other applications include the GPR positioning algorithm based on video recordings
and special marker recognition [23], as well as a high-precision handheld GPR positioning
system using an ultra-wideband (UWB) radio module [24]. In these positioning methods,
with the help of RLPS and other mapping equipment and technology, positioning accuracy
is significantly improved. However, these GPR data positioning methods need to set up
one or more pieces of positioning equipment in the detection area and need to specify the
detection route and delineate the detection range. When the ground is undulating and the
shape of the detection area is irregular, one cannot lay positioning instruments in complex
detection scenarios, limiting the possibility of flexible and convenient detection.

The Mobile Laser Scanner (MLS) has long been used in the field of land surveying.
Studies [25,26] integrate MLSs into GPR. MLSs obtain ground point clouds of the ground
that can be constructed in 3D space and correct the elevation of the GPR data. However,
it is not possible to obtain accurate x, y coordinates. The portable rotary laser positioning
system (RLPS) was applied to the GPR real-time positioning solution by Grasmueck and
Viggiano [27]; this could obtain accurate centimeter-level x, y, and z coordinates. These
positioning methods are aimed at small-scale underground detection, requiring GPR
acquisition instruments in the range that other positioning equipment can capture, so
they are not suitable for a large range of underground detection tasks, such as kilometer-
level roadbed detection, large areas of underground pipeline detection, and other tasks.

There have also been some studies [28–30] that used SLAM algorithms to assist in
GPR positioning. They integrated existing commercial mobile measurement systems with
GPR and used SLAM algorithms to accomplish positioning in areas where GNSS signals
were not available. However, the SLAM algorithm was not targeted to improve the GPR,
which resulted in a GPR offset in the z-direction. In addition, some studies [29,30] do not
add RTK GNSS, so if a survey area is wide and flat with no features, the laser scanner will
not be able to obtain a valid point cloud to participate in the positioning. Moreover, in areas
where GNSS signals are available, adding GNSS to participate in positioning can improve
the positioning accuracy.

This paper proposes a high-precision positioning method with multi-level and multi-
sensor fusion for 3D GPR integrated aboveground and underground remote sensing sur-
veys. For the challenges of high-precision positioning of 3D GPR underground data and
seamless splicing of multiple bands, an integrated aboveground and underground 3D mo-
bile survey system is proposed and designed. It realizes the synchronous acquisition of an
aboveground 3D laser point cloud, GNSS/IMU positioning and attitude, and underground
3D spatial data. The mobile survey module and the GPR control module were designed
and developed with smaller hardware size, integrated acquisition and control, and more
autonomy in solving the positioning data. Based on the multi-source data acquired by
the system, a multi-level and multi-source data fusion positioning method is proposed
for underground 3D GPR data. In areas without GNSS signals, this paper proposes a new
and improved SLAM algorithm, which makes full use of the ground constraints through
the double-threshold ground filtering algorithm and can effectively control the drift of the
SLAM system in the z-direction. In areas with good GNSS signals, the tightly coupled
GNSS/INS is used for positioning, and the positioning accuracy is higher compared with
the SLAM algorithm. Through GNSS/INS tightly coupled positioning and laser SLAM po-
sitioning, this method realizes a positioning accuracy within 10 cm and a full spatial survey
aboveground and underground, in an environment with or without good GNSS signals.
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2. Materials and Methods

In order to enable 3D GPR to achieve multi-scene and multi-level high-precision
positioning, an aboveground and underground integrated 3D mobile survey system is
firstly designed. The GNSS receiver collects the GNSS signals for obtaining the position
information of the system. The IMU acquires inertial data for obtaining the attitude and
acceleration of the system. Attitude and acceleration from the inertial data are required
for the GNSS/INS tightly coupled solution and SLAM algorithms. The 3D laser scanning
system collects point cloud data for participating in SLAM positioning while constructing
the 3D spatial structure on the ground. The 3D GPR acquires the underground 3D spatial
data. In scenes with good GNSS signals, such as open squares, fast and high-precision
positioning can be achieved based on GNSS data using differential GNSS technology.
In scenes with weak GNSS signals, such as roads obscured by tall buildings or border
trees, high-precision positioning of subsurface data can be achieved by using GNSS and
IMU, combining position and attitude information, and using GNSS/INS tightly coupled
solution technology. In scenes where GNSS signals are completely absent, such as tunnels
and underground mines, SLAM technology is used for positioning based on INS data
and 3D point cloud data. Ultimately, the underground data can be positioned with high
precision in any scene, as shown in Figure 2.

Figure 2. Multi-level and high-precision positioning of 3D GPR underground remote sensing detection.

In terms of hardware, the aboveground and underground integrated 3D mobile survey
system is equipped with a GNSS receiver module, an inertial measurement unit module
(IMU), a 3D laser scanner, and a 3D GPR. A GNSS receiver capable of receiving more than
four satellites continuously can be characterized as being in an environment with good
signals. With good GNSS signals, the combined positioning of GNSS and IMU can improve
the positioning accuracy of 3D GPR. When the number of satellites is insufficient or even
zero for a long time, the 3D LiDAR active positioning with the laser SLAM algorithm
ensures 3D GPR positioning accuracy.

2.1. Aboveground and Underground Integrated 3D Mobile Survey System

The aboveground and underground integrated 3D survey system designed in this
paper consists of a 3D mobile survey system and a GPR system. The GPR system explores
the subsurface, and the 3D mobile survey system is used to locate the GPR and acquire
the ground point cloud data. The configuration of the aboveground and underground
integrated 3D survey system is shown in Figure 3. A cart is used as a carrier platform,
where the 3D mobile survey system is mounted on the GPR system to obtain high-precision
positioning information and ground point cloud data while the GPR obtains subsurface
data. Figure 4 shows a simplified layout of the 3D survey system. The control units of the
3D mobile survey system and the GPR system are connected via an ethernet cable to the
control PC, which controls both areas of data acquisition using the operating software.
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Figure 3. Aboveground and underground integrated 3D survey system configuration.

Figure 4. Simplified system layout with the aboveground and underground integrated 3D
survey system.

2.2. Multilevel Positioning Framework

The aboveground and underground integrated 3D survey system gives the position
attitude information of 3D laser scanning mobile survey system to 3D GPR system through
GNSS time synchronization to realize the high-precision positioning of 3D GPR under-
ground remote sensing detection. The positioning process of the multi-level multi-sensor
fusion is shown in Figure 5.

The aboveground and underground integrated 3D survey system collects GNSS signal
data, INS inertial data, and laser point cloud data, based on which a multi-level ground-
penetrating radar remote sensing detection and positioning method applicable to different
measurement environments can be realized. In scenarios with good GNSS signals but
still having some time GNSS data missing (such as general urban roads), the positioning
information is obtained by a tightly coupled GNSS + INS solution, which can not only
overcome the transient GNSS signals being missing but also obtain smoother and more
accurate attitude trajectory information. In the measurement environment where GNSS
signals are weak or GNSS is completely unavailable (e.g., in tunnels, under buildings), the
combination of laser scanner + INS inertial unit is used to realize the system self-positioning
by using laser SLAM technology, which does not rely on GNSS for operation and greatly
improves the system’s applicability. In summary, the multi-level ground-penetrating radar
remote sensing detection and positioning method can ensure that the aboveground and
belowground integrated 3D survey system in this paper has the capability of system
positioning and 3D mine detection mapping applicable in any environment.
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Figure 5. Flow chart of GPR data acquisition and positioning processing.

2.2.1. GNSS Differential Positioning with Good GNSS Signals

The GPR system is equipped with GNSS receivers; when the GNSS signal quality is
good, fast positioning can occur based on the signal received from the GNSS receiver using
the GNSS differential technique, as shown in Figure 6. GNSS differential technology is a
method that can effectively reduce measurement errors to improve positioning accuracy.
The measurements of satellite signals received by GNSS receivers all contain a certain
amount of error, and some of these error terms are correlated in time and space, which is
the fundamental reason for being able to use GNSS differential technology.

 

Figure 6. GNSS differential positioning in scene with good GNSS signals.

The deployment of additional reference stations is required to use differential tech-
nology, which is different from GNSS receivers. In addition to tracking visible satellite
signals, the reference station has the function of transmitting signals. At a certain moment,
the position coordinates of the reference station are precisely known, so its distance to the
satellite is also precisely known. The reference station also measures the pseudo-range
carrier phase measurements at this time. The difference value between the measured value
and the actual value is the measurement error at the reference station at the current moment.
The reference station continuously sends out the calculated measurement errors. The GNSS
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receivers within its signal coverage area can correct the measured pseudo-range carrier
phase measurements. Positioning errors are reduced with the help of received differential
corrections. The closer the distance to the reference station, the higher the correlation
between the measurement errors and the better the effect of differential positioning.

2.2.2. GNSS/INS Tightly Coupled Positioning with Weak GNSS Signals

The pure GNSS differential algorithm positioning method has a simple workflow and
is easy to implement, but it has a low positioning density and relatively low accuracy and
is also completely dependent on the quality of the GNSS signals. Once the GNSS receiver
is blocked or jammed, the GNSS signals will experience loss of lock, and thus the complete
positioning cannot be achieved. However, GPR detection environments are complex and
diverse; for example, detection on roads may be blocked by tall buildings and border trees
on both sides of the road, detection in woods may be blocked by the dense tree canopy,
and detection in tunnels may not even receive GNSS signals at all. In order to locate and
increase the positioning accuracy even when the GNSS signals are weak or are out of lock
in the short term, this paper combines GNSS and INS by using a tightly coupled GNSS/INS
solution based on the pseudo range and the pseudo-range rate for positioning, as shown in
Figure 7.

 

Figure 7. GNSS/INS tightly coupled positioning in scene with weak GNSS signal.

The basic principle of the GNSS/INS tightly coupled solution positioning algorithm is
as follows. The pseudo range and pseudo-range rate output from the GNSS receiver are
used as the reference information for the combined GNSS/INS solution. The calculated
pseudo range and pseudo-range rate between the carrier and the satellite are used as
the measurement information for the combined GNSS/INS solution. In addition, the
difference between the two is used as the observation information of the system. The
error information of INS (misalignment angle, velocity error, position error) and the clock
error information of GNSS receiver are estimated by Kalman filtering; then, the system is
corrected by open-loop output or closed-loop feedback [20]. The flow chart of GNSS/INS
tightly coupled positioning is shown in Figure 8.

The tightly coupled results are smoothed after the solution is finalized. When there
are breakpoints in the positioning results, processing with the smoothing algorithm not
only reduces position, velocity, and attitude errors caused by GNSS signals’ loss of lock, but
also smooths the trajectory. GNSS/INS tight coupling can output high-update rate position
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information due to the INS output frequency of 500 Hz. The tight coupling provides
continuous, high-accuracy, high-update rates and smooth positioning results, even when
the GNSS receiver is tracking less than four satellites.

Figure 8. Flow chart of GNSS/INS tightly coupled positioning.

2.2.3. Laser SLAM Positioning with No GNSS Signal

Lidar is used for autonomous positioning in environments where GNSS signals are
out of lock for a long time or even where there is no signal. In this paper, we use the
tightly coupled iterative Kalman filter of FAST-LIO and FAST-LIO2 to implement the laser
odometry module. Based on ScanContext [21] and LegoLOAM [22], we add Scan Context
loopback detection to achieve the mapping optimization module.

Laser odometry high-frequency real-time operation is used to track the real-time
motion. Forward propagation is performed for IMU pre-integration to obtain the pre-
diction state and prediction error. The point cloud after ground segmentation is motion-
compensated by backward propagation to obtain an in-frame distortion-free point cloud.
The point-to-face distance is calculated as the residual, and the state is updated by iterative
Kalman filtering until convergence, when the odometer is output.

The mapping optimization low frequency operates for closed-loop detection and
optimization. The odometer estimated by the state estimation module will be added to a
factor map in the form of factors; also introduced are the closed-loop factors obtained by
scan matching. The odometer information is used to provide constraints for adjacent scans
to ensure the accuracy of local maps, and the closed-loop information is used to provide
constraints for global maps to ensure that large-scale map building can be performed
properly. The flow chart of laser SLAM positioning is shown in Figure 9.

Figure 9. Flow chart of laser SLAM positioning processing.
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Based on this framework for laser SLAM positioning, this paper improves the adapt-
ability of adjacent frame matching and point cloud motion estimation in the framework.

1. Point cloud adjacency frame matching

In this paper, the ground point is filtered using a point cloud feature point matching
method based on double-threshold ground filtering. The feature points are extracted by
using a curvature-based point cloud feature extraction algorithm for non-ground points,
and the feature points are aligned.

The specific algorithm steps are as follows.
Step 1: Double-threshold ground filtering process to filter out non-ground points
(1) Project p f k onto the reference plane of the grid M. (2) Refine the roughly deter-

mined ground point Grough as the determined ground point G using the RANSAC method.
(3) Remove the NaN (Not a number) point cloud of non-ground point NG and points with
too-close distance measurement results. The rocess is as in Algorithm 1.

Algorithm 1: Double-threshold ground filtering algorithm

Input: k moment point cloud pk
(i)

Output: non-ground points NG
//Minimum distance ringradius; Max distance ghostradius; Height threshold δh1, δh2

While (pk
(i)∈pk) do

if ringradius ∗ ringradius < Distance < ghostradius ∗ ghostradius
pk

(i) ∈ pfk

While (pfk∈Mi) do

for (pfk
(i)∈pfk) do

if hk − h(i)min < δh1 and h(i)min − h(i)minmin < δh2
pfk

(i) ∈ Grough

if pk
(i) /∈ G

pk
(i) ∈ NG

Step 2: Non-ground point cloud feature extraction based on curvature
Calculate the smoothness c of the Lidar points pi in each frame of non-ground point

NG for which curvature is to be found. Rank all the data according to the magnitude of
the smoothness c. Classify the feature points into two categories, edge points εk and plane
points Hk. Calculate using Equation (1).

c =
1

|S| ·
∥∥∥XL

(k,i)

∥∥∥
∥∥∥∥∥ ∑

j∈S,j �=i

(
XL
(k,i) − XL

(k,j)

)∥∥∥∥∥ (1)

where S in Equation (1) is the set of continuous points of i returned by the laser scanner in
the same scan, and there is a point i in the coordinate system {Lk} whose origin is located
at the geometric center of the Lidar; i ∈ pk is the coordinate of a point in the point cloud
sensed during scan k as XL

(k,i).
Edge points εk and face points Hk feature points are obtained within each scan line

based on the edge point features with larger discrete curvature and face point features with
smaller discrete curvature extracted from the discrete curvature of the single-frame Lidar
point cloud.

Step 3: Feature matching based on edge points and face points
The point cloud pk obtained during scan k is projected to the timestamp tk+1 to obtain

Pk. In the set εk+1 of edge points in the feature points, the associated features of points are
edges in Pk. In the set Hk+1 of plane points in the feature points, the associated features of
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the points are plane blocks in Pk. For edge points, their association features are lines,
and for planar points, their association features are faces. The distances from the two types
of feature points to their associated features are calculated separately, which will be used in
the spatial 3D building section to estimate the motion of the Lidar.

2. Point cloud motion estimation

The motion attitude of the optical radar is calculated using the Lidar odometry method,
and finally, the Lidar building module is used to refine the trajectory for 3D building to
obtain an accurate trajectory and point cloud map. The specific steps are as follows.

Step 1: Lidar motion estimation
The set of edge and plane points, εk+1 and Hk+1, obtained from pk+1 are obtained

by curvature-based non-ground point cloud feature extraction, and
∼
ε k+1 and

∼
Hk+1 are

the point sets projected to tk+1. The transformation relationship between εk+1 and
∼
ε k+1 or Hk+1

and
∼
Hk+1 needs to be found to estimate the motion of the Lidar. Using TL

k+1 =
[
tx, ty, tz, θx, θy, θz

]T

to represent the motion attitude of the Lidar, Equation (2) can be derived.

XL
(k+1,i) = R

~
X

L

(k+1,i) + TL
(k+1,i)(1 : 3) (2)

where XL
(k+1,i) is the coordinate of point i in εk+1 or Hk+1,

∼
X

L

(k+1,i) is the coordinate of the

corresponding point in
∼
ε k+1 or

∼
Hk+1, TL

(k+1,i)(1 : 3) is the first to third set of TL
(k+1,i), and R

is the rotation matrix defined by the Rodriguez formula.
Step 2: The motion attitude of the Lidar calculated by the Lidar odometry method
The input value of the Lidar mileage calculation method is the undistorted point cloud

Pk. The point cloud pk+1 is obtained during k + 1, and the attitude TL
k+1 is obtained with

respect to the Lidar odometer.

By the distances between the points in
∼
ε k+1 and

∼
Hk+1 and their associated features,

the geometric relationship between the edge points in εk+1 and the corresponding edge
lines can be derived, as shown in Equation (3).

f ε
(

XL
(k+1,i), TL

k+1

)
= dε, i ∈ εk+1 (3)

Similarly, the geometric relationship between the points in Hk+1 and their associated
planar blocks is

f H
(

XL
(k+1,i), TL

k+1

)
= dH, i ∈ Hk+1 (4)

Next, the Levenberg–Marquardt method is used to estimate the motion of the Lidar.
For each feature point in εk+1 and Hk+1 using the derived Equations (3) and (4), a nonlinear
function, such as specified in Equation (5), can be obtained.

f
(

TL
k+1

)
= d (5)

Equation (5) is solved by minimizing the distance between each feature point and its
associated feature to zero in a nonlinear iteration, as shown in Equation (6).

TL
k+1 ← TL

k+1 −
(

JT J + λdiag (JT J
)
)−1 JTd (6)

λ is a factor determined using the Levenberg–Marquardt method. Double-squared
weights are assigned to each feature point in this process, and iterations are performed to
update the motion pose TL

k+1 of the Lidar for nonlinear optimization until the end of the
iteration; the results are input to the Lidar map building module for processing.
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3. Results

3.1. Experiment Area and Data
3.1.1. Experiment with Good GNSS Signals

The orthophoto of the measurement area of the experiment in the good GNSS environ-
ment is shown in Figure 10. The experiment was conducted at Wuhan University, where
we surveyed the underground area of Zhuoer Gymnasium Ring Road, with a measured
length of 872 m. The road was wide, with no trees or tall buildings blocking the road on
both sides, and the GNSS signal quality was good. The number of satellites tracked by the
GNSS receiver in the survey area is shown in Figure 11. Only in the middle few seconds
of the time is the number of tracked satellites less than 4; the other moments have good
satellite observation. We placed 13 metal plates of 35 cm × 35 cm on the road as positioning
targets in order to calculate the system positioning accuracy.

 

Figure 10. DOM, measurement trajectory and positioning target distribution of the good GNSS
environment.

 
Figure 11. Number of satellites tracked by GNSS receivers in the good GNSS environment.
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3.1.2. Experiment with Weak GNSS Signals

The orthophoto of the measurement area of the experiment in the partly loss-of-lock
GNSS environment is shown in Figure 12. The experiment surveyed the underground area
of the road around the playground of the Department of Informatics of Wuhan University;
the length of the road is 630 m, the width of the road is about 5 m, the road is surrounded
by dense trees and tall buildings and twice traverses the internal space of the building up to
20 m, and the environmental GNSS signals are seriously obscured. The number of satellites
tracked by the GNSS receiver in the survey area is shown in Figure 13; excluding the good
condition of GNSS satellites at the beginning and end of the static convergence phase of
the measurement as well as the ability to track four satellites for part of the measurement
process, there was an insufficient number of satellites or even zero satellites for a large part
of the measurement time. As shown in Figure 12, 10 metal plates of 35 cm × 35 cm were
evenly placed on the road as positioning targets to evaluate the positioning accuracy of the
aboveground and underground integrated 3D survey system.

 

Figure 12. DOM, measurement trajectory, and positioning target distribution of the partly loss-of-lock
GNSS environment.

Figure 13. Number of satellites tracked by GNSS receivers in the partly loss-of-lock GNSS environ-
ment.
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3.2. Positioning Results and Accuracy Analysis
3.2.1. Experiment with Good GNSS Signals

1. Trajectory results

As shown in Figure 14, the trajectory results of the GNSS differential solution, GNSS/INS
tightly coupled solution, and laser SLAM autonomous positioning are obtained under
the good GNSS signal environment. It can be seen that there are two interruptions in the
trajectory of GNSS differential decomposition, while the trajectories of GNSS/INS tightly
coupled decomposition and laser SLAM autonomous positioning are continuous, without
interruption, and relatively smooth.

Figure 14. The results of solving the trajectory by three positioning methods in the GNSS good
environment.

2. Positioning accuracy evaluation

The cart passed through 13 metal positioning targets during the measurement of
experiment in the GNSS good environment. The coordinates of the center points of the
targets can be calculated and extracted from each of the three positioning methods: the
GNSS differential positioning corresponding to imaging, GNSS/INS tightly coupled posi-
tioning corresponding to imaging, and laser SLAM autonomous positioning. It is possible
to count the errors between the coordinates and the true values at the 13 control points
for the three positioning methods. Table 1 shows the statistics of positioning precision of
the three positioning strategies for the experiment in the GNSS good environment at the
13 control points.

Table 1. Statistics of positioning precision of three positioning strategies for the GNSS good environment.

Methodology Direction MIN (m) MAX (m) AVE (m) S.D. RMSE (m)

GNSS
E 0.007 0.222 0.067 0.077 0.099
N 0.003 0.107 0.036 0.037 0.050

GNSS/IMU
E 0.001 0.043 0.014 0.012 0.018
N 0.000 0.066 0.014 0.018 0.022

SLAM
E 0.001 0.112 0.054 0.038 0.057
N 0.000 0.087 0.032 0.028 0.037

From Table 1, it can be seen that the highest positioning accuracy is achieved by the
GNSS/INS tightly coupled decomposition positioning method, with the average posi-
tioning error being less than 0.01 m in both the east and north directions and the RMSE
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around 0.02 m, and the minimum, maximum, mean, standard deviation and RMSE of the
errors all at a minimum. Only the GNSS differential decomposition algorithm positioning
method and the laser SLAM self-localization method performed comparably, with the
mean error and RMSE higher than 0.05 m in the east direction. The experiment in the
GNSS good environment shows that the system can obtain the best positioning effect by
using the GNSS/INS tightly coupled decomposition positioning method in the case of
good GNSS signals.

The GNSS positioning frequency is about 1–10 hz, and the IMU sampling frequency
in the system is up to 500 hz. The IMU does not lose information during high-speed
sampling, which can improve the sampling and positioning accuracy. It can also obtain high-
precision attitude information for correcting the positioning attitude. With the combined
GNSS/INS tightly coupled positioning, even if there is a short time quality degradation
of the GNSS signals, the high-precision IMU can still provide continuous high-precision
position reference. As a result, the positioning accuracy is not affected.

3.2.2. Experiment with Weak GNSS Signals

1. Trajectory results

Figure 15 shows the trajectory results of GNSS differential decomposition, GNSS/INS
tightly coupled decomposition, and laser SLAM autonomous positioning under the weak
GNSS signal environment. The trajectory calculated by GNSS differential decomposition
has good trajectory quality, except for the southernmost and northernmost ends, and the
reliable GNSS signals cannot be tracked on the east, west, and south sides of the playground
because of thick trees and building obstruction. Because GNSS has a long, uninterrupted
out-of-lock period (the first out-of-lock time is about 3 min, and the second out-of-lock
time is about 2 min), the trajectory has a wide range of interruptions, and it is basically
impossible to determine the results. In contrast, the GNSS/INS tightly coupled solution
can provide a short-term continuous high-accuracy position reference without affecting the
positioning accuracy, even if the quality of GNSS signals is degraded for a short period of
time due to the participation of INS in the calculation; the solved trajectory is continuous
without interruption and with high solution accuracy.

Figure 15. The results of solving the trajectory by three positioning methods in the GNSS partly
loss-of-lock environment.
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2. Positioning accuracy evaluation

The coordinates of the center point of the target can be calculated and extracted from
the three positioning methods to obtain the coordinates of the 10 points. The positioning
coordinates of the three positioning methods at the 10 control points were calculated, as
was the error between them and the real values. Statistical analysis of the positioning errors
was carried out; see Table 2.

Table 2. Statistics of positioning precision of different positioning strategies for the GNSS partly
loss-of-lock environment.

Methodology Direction MIN (m) MAX (m) AVE (m) S.D. RMSE (m)

GNSS
E 0.033 20.531 2.325 6.400 6.502
N 0.013 3.530 0.710 1.041 1.216

GNSS/IMU
E 0.002 0.282 0.059 0.086 0.101
N 0.000 0.218 0.075 0.078 0.105

SLAM
E 0.004 0.104 0.071 0.036 0.079
N 0.002 0.130 0.089 0.037 0.095

As can be seen from Table 2, the accuracy of using pure GNSS positioning is very
poor in scenarios where GNSS signals are weak or even absent. The maximum value of
the error in the north direction is greater than 3 m, the average error value is 0.7 m, the
RMSE is greater than 1 m, and the standard deviation of the error is greater than 1. The
error fluctuation is large. The positioning accuracy of the east direction is slightly higher,
while the error average and RMSE are tens of centimeters, and the accuracy is lower than
that of the GNSS/INS combined positioning and SLAM positioning algorithms.

The difference in positioning accuracy between the GNSS/INS post-solution method
and the SLAM algorithm is not significant. The RMSEs of the GNSS/INS combined
positioning method are slightly greater than 10 cm for the east and north directions, while
the RMSEs of the SLAM algorithm are less than 10 cm for both the east and north directions.
The error standard deviation of SLAM shows smaller error fluctuations, and the maximum
value of the error is smaller than that of the combined GNSS/INS positioning. GNSS signals
are not used in the SLAM algorithm, so an accuracy better than 10 cm can be obtained
using the laser SLAM positioning algorithm, whether or not GNSS signals are available.

3.3. 3D GPR Imaging Results
3.3.1. Experiment with Good GNSS Signals

Figure 16I shows an example of 3D GPR data positioning imaging in a good GNSS
signal environment. The 3D GPR data represent a horizontal section located at 0.2 m below
ground level. Figure 16II shows the local enlargements of the imaging corresponding to the
GNSS differential positioning, the imaging corresponding to the GNSS/INS tightly coupled
positioning, and the imaging corresponding to the laser SLAM autonomous positioning in
the overall image.

Because of the good quality of GNSS signals in the environment, the overall shapes of
the subsurface GPR data imaged based on the three positioning methods were basically
the same, and no obvious deformation occurred. Comparing with the local zoomed-in
figure (Figure 11), the GPR data based on GNSS differential decomposition localization
showed trajectory jitter or slight deformation in individual areas, as in part (a), (b), and (e)
of the figure. In contrast, the GPR data based on GNSS/INS tightly coupled decomposition
and laser SLAM self-localization have smooth trajectories throughout, and no deformation
phenomenon occurs.
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Figure 16. Overall and local images (horizontal section) of 3D GPR data imaged by different posi-
tioning methods in the GNSS good environment, with local enlarged images of GNSS differential
positioning (red border), GNSS/INS tightly coupled positioning (green border), and laser SLAM
autonomous positioning (blue border). The local images respectively belong to regions a, b, c, and d
of the overall image. (The yellow arrows point to heterogeneity).

3.3.2. Experiment with Weak GNSS Signals

Figure 17 shows an example of 3D GPR data positioning imaging in the GNSS partly
loss-of-lock environment, in which the 3D GPR data are located at 0.2 m below the ground
level in the horizontal section. In the experiment, except for the north and south ends, which
receive a small number of satellite signals, the region receives less than four satellites and even
zero satellites. GPR data based on GNSS differential decomposition positioning as a whole
have a dramatic deformation and serious track drift; thus, GPR data cannot be imaged properly.
The overall shapes of subsurface GPR data imaging based on GNSS/INS tightly coupled
decomposition and laser SLAM-based self-localization methods are basically the same.
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Figure 17. Overall and local images (horizontal section) of 3D GPR data imaged by different posi-
tioning methods in the GNSS partly loss-of-lock environment; GNSS differential positioning corre-
sponding to 3D GPR image (red border), GNSS/INS tightly coupled positioning corresponding to
3D GPR image (green border), and laser SLAM autonomous positioning corresponding to 3D GPR
image (blue border) in a locally enlarged view. The local images respectively belong to regions a, b, c,
and d of the overall image.
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Figure 17 shows the local enlargements of the imaging corresponding to GNSS differ-
ential positioning, GNSS/INS tightly coupled positioning, and laser SLAM autonomous po-
sitioning. From the local view, the subsurface GPR data based on GNSS/INS tight-coupling
solution and laser SLAM-based autolocalization methods show no obvious deformation in
each part, and normal data interpretation and decoding can be performed.

4. Discussion

This paper proposes a 3D GPR positioning method based on a GNSS differential
solution, GNSS/INS tightly coupled solution and LiDAR SLAM method, and proves
the accuracy and effectiveness of the algorithm through underground detection tests in
different scenes. Compared with the traditional positioning by GNSS only, we add the
GNSS/INS tightly coupling algorithm and SLAM algorithm to cope with different survey
environments. We carry out good and weak GNSS signal experiments and compare the
positioning accuracy using the GNSS algorithm, GNSS/INS tightly coupled algorithm, and
SLAM algorithm. It is demonstrated that this multi-level positioning method has high
accuracy and good robustness.

In scenes with good GNSS signals, the 3D GPR positioning can be achieved quickly by
using the GNSS differential solution method, and positioning accuracy within 10 cm can
be achieved. Compared with the GNSS differential solution, the GNSS/INS tightly cou-
pled solution is more complicated, but the positioning accuracy is significantly improved.
Therefore, in a scene with good GNSS signals, 3D GPR should choose the GNSS differential
solution for fast positioning and the GNSS/INS tight coupling solution for high positioning
accuracy. The SLAM method has no obvious advantage at this time.

In the condition of weak GNSS signals, the positioning will be offset by using the GNSS
differential solution method, while using the GNSS/INS tightly coupled solution method
can still provide reliable positioning. The GNSS positioning frequency is about 1–10 hz,
while the sampling frequency of IMU in the aboveground and underground integrated 3D
survey system is up to 500 hz, which can improve the sampling and positioning accuracy
without losing information in the high-speed sampling process. The addition of IMU can
also obtain high-precision attitude information for correcting the positioning attitude. With
the combined GNSS/INS positioning method, even if the GNSS signals have a quality
degradation problem in a short period of time, the high-precision IMU can still provide a
continuous high-precision position reference in a short period of time without affecting the
positioning accuracy.

In the case where GNSS signals demonstrate loss of lock for a long time or no GNSS
signals, the GNSS receiver cannot receive GNSS signals, and neither the GNSS differential
solution nor the GNSS/INS tightly coupled solution can achieve positioning. Aboveground
and underground integrated 3D mobile survey systems use Lidar, IMU, and odometers
for positioning by laser the SLAM algorithm. The IMU obtains the prediction state and
prediction error, and the motion compensation of the point cloud acquired by the Lidar
obtains a distortion-free point cloud. The odometer is calculated and output, and the
mapping is optimized to achieve closed-loop detection. The odometer information is used
to provide constraints for adjacent scans to ensure the accuracy of local positioning, and
the closed-loop information is used to provide constraints for global maps to ensure that
large-scale positioning can be completed. Adjacent frame matching and point cloud motion
estimation are adaptively improved to achieve high-precision autonomous positioning by
laser SLAM. The laser SLAM autonomous positioning algorithm can obtain positioning re-
sults with an accuracy better than 10 cm. The SLAM method combines IMU and laser point
cloud features at the level of primary observations, realizes joint nonlinear optimization of
multi-source data, and achieves accurate positioning optimization using laser point cloud
precision matching [31–33]. This enables this aboveground and underground integrated 3D
survey system to acquire 3D underground medium distribution data with high-precision
positioning information in environments without GNSS signals (e.g., underground mines
and tunnels).
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5. Conclusions

This paper proposed a high-precision positioning method of multi-level and multi-
sensor fusion for 3D GPR aboveground and underground integrated detection. Through
the designed aboveground and underground integrated 3D survey system, the under-
ground medium distribution is detected, and the aboveground 3D spatial structure is
measured at the same time, to realize the rapid integrated measurement of aboveground
and underground space. The survey system is able to achieve high-precision positioning of
3D GPR in environments with or without GNSS signals.

Compared with GNSS solved positioning, in the case of good GNSS signals, the
aboveground and underground integrated 3D survey system collects INS data, has higher
sampling frequency and accurate attitude information, has more accurate positioning, and
can be applied to high-speed measurement scenarios. In scenarios where GNSS signals
are weak or interrupted, the system is able to ensure continuous positioning output due to
the use of a tightly coupled GNSS and INS solver positioning method. Such environments
are the main working scenarios of GPR systems and include roads, bridges, and woods;
these contribute to the stable and reliable use of 3D GPR. In scenarios without GNSS
signals, the system uses Lidar sensors for active positioning, and the experiments prove
that the positioning accuracy is better than 10 cm, which means the 3D GPR can be used for
underground mine safety inspection, long tunnel construction detection, etc. In addition,
the point cloud data obtained by the laser scanner in the system can generate the 3D
spatial structure of the ground space. This multi-source data of the integrated spatial
structure above and below ground is useful for spatial display, comprehensive analysis,
and decision making.

In conclusion, the aboveground and underground integrated 3D detection multi-level,
multi-sensor fusion high-precision positioning method proposed in this paper can achieve
integrated aboveground and underground rapid measurement in any environment and
ensure better than 10 cm positioning accuracy, ensuring that the 3D GPR can complete
accurate detection and large-scale survey and can provide data security for imaging and
interpretation of underground data.
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